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Editorial on the Research Topic

Artificial Intelligence Applications in Nuclear Energy

As a highly complex man-machine-network integration system, the nuclear power plant’s
development, construction and operation are still facing many obstacles and risks. Firstly, plant
instruments and equipment may fail during operation, which will affect the performance and safety
of nuclear power plants. Secondly, although nuclear power plants have been digitalized after decades
of development, most of them still adopt traditional and inefficient operation and control methods.
Finally, due to the above reasons and stringent control requirements, human operators are under
great pressure. In the past decades, artificial intelligence (AI) and machine learning (ML), especially
methods related to deep learning, have made great progress and have been widely used in computer
vision, automatic control and other fields (Bakator and Radosav, 2018; Singla et al., 2020; Taskiran
et al., 2020; Usuga Cadavid et al., 2020). At present, many researchers have begun to apply AI to the
field of nuclear energy to overcome the above obstacles and risks. Potential application scenarios
include nuclear power software development (Bao et al., 2019; Liu et al., 2019), equipment
prognostics and health management (Zhao et al., 2021; Zhong and Ban, 2022), reactor design
optimization (Kumar and Tsvetkov, 2015; Turkmen et al., 2021), reactor autonomous control and
operation (Wilson, 2019; Lee et al., 2020; Lin et al., 2021), and nuclear safety analysis and accident
management (Zeng et al., 2018; Chung, 2021). This topic explores the application of the latest AI
technologies in nuclear energy to promote research, sharing and development.

We have collected two papers on AI for nuclear power software development: Dong et al. andWu
et al. Dong’ work proposed a neural network-based data-driven model to predict the bubble
departure diameter in subcooled boiling flow. The model is based on mechanistic bubble departure
models and takes dimensionless numbers as input, thus demonstrating good generalization
capability on a broad range of flow conditions.

We have collected three papers on intelligent prognostics and health management of plant
equipment: Fan et al., He et al., and Yao et al. Fan’s work focused on the fatigue detection of glass-to-
metal seals in nuclear power plants, with the assistance of the spectrum characterization of fiber
Bragg grating (FBG) sensors. The spectral response to non-uniform strain distributions in glass-to-
metal are reconstructed precisely based on the transfer matrix model, and the asymmetric
deformation induced by fatigue conditions is detected efficiently by the variations of Bragg
wavelength shift and full width at half maximum.

We have collected four papers on AI for reactor design optimization: Pevey et al., Zhang et al., Yu
et al., and Li et al. Hines’ work proposed a convolutional neural network–based surrogate model
optimization of fast neutron source configurations. Their new algorithm produced more viable
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designs that significantly improved the objective function
utilizing the same computational resources compared to the
standard multi-objective genetic algorithm NSGA-II.

We have collected three papers on AI for nuclear safety
analysis and accident management: Gong et al., Dong et al.,
and Sallehhudin and Diab. With the assistance of a deep learning
model called zLSTM, Gong’s work focused on the multivariate
time series prediction for LOCA development. The zLSTM is
constructed by introducing an improved gate function Zigmoid
within the original LSTMmodel, allowing the non-linearity, both
short and long-term memory, and multiple system parameters to
be fully covered for a more accurate LOCA prediction.

As the development of AI technologies has accelerated in
recent years, the nuclear industry has begun to look for the
potential of AI for code development, real-time intelligent
operation and maintenance, reactor design optimization, and
safety analysis and accident management. The industry will

follow suit if AI shows strong capabilities in research. In AI
research, data as a carrier of knowledge plays a dominant role
in the performance of AI and ML models. However, data
containing valid information is scarce in the nuclear
industry. In the coming period, the focus should be on how
to make AI effective in practice under small sample, sample
imbalance, and strong noise conditions. This may be a long-
term challenge, but in the end all the effort will be worthwhile.
In the future, with the popular application of AI technologies,
the whole chain of the nuclear industry will become more
intelligent.
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Using Machine Learning to Predict the
Fuel Peak Cladding Temperature for a
Large Break Loss of Coolant Accident
Wazif Sallehhudin1 and Aya Diab1,2*
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In this paper the use of machine learning (ML) is explored as an efficient tool for uncertainty
quantification. A machine learning algorithm is developed to predict the peak cladding
temperature (PCT) under the conditions of a large break loss of coolant accident given the
various underlying uncertainties. The best estimate approach is used to simulate the
thermal-hydraulic system of APR1400 large break loss of coolant accident (LBLOCA)
scenario using the multidimensional reactor safety analysis code (MARS-KS) lumped
parameter system code developed by Korea Atomic Energy Research Institute (KAERI). To
generate the database necessary to train the ML model, a set of uncertainty parameters
derived from the phenomena identification and ranking table (PIRT) is propagated through
the thermal hydraulic model using the Dakota-MARS uncertainty quantification framework.
The developed ML model uses the database created by the uncertainty quantification
framework along with Keras library and Talos optimization to construct the artificial neural
network (ANN). After learning and validation, the ML model can predict the peak cladding
temperature (PCT) reasonably well with a mean squared error (MSE) of ∼0.002 and R2 of
∼0.9 with 9 to 11 key uncertain parameters. As a bounding accident scenario analysis of
the LBLOCA case paves the way to using machine learning as a decision making tool for
design extension conditions as well as severe accidents.

Keywords: nuclear safety, large break LOCA, artificial neural network, machine learning, uncertainty quantification,
peak cladding temperature

INTRODUCTION

Deterministic safety analysis has traditionally been utilized to demonstrate the robustness of nuclear
power plants, usually adopting a conservative approach. However, the conservative approach relies
on a number of assumptions that do not necessarily reflect the real plant performance (Queral et al.,
2015). On the other hand, the best estimate (BE) approach provides a more realistic system response
based on detailed thermal-hydraulic mechanistic models provided it is accompanied with
uncertainty quantification (UQ). The integration of BE and UQ is known as best estimate plus
uncertainty (BEPU) and is built upon a statistical foundation to provide a more realistic estimation of
the safety margin and hence ensure that the safety limit is met.

Utilities were given an ample opportunity to apply the best estimate plus uncertainty (BEPU)
methodology following the United States Regulatory Commission (USNRC) amendment of
10CFR50.46 Appendix-K in 1988. Accordingly, the USNRC assisted in the steady transition
from the conservative to BEPU methodology by introducing the USNRC Regulatory Guide
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1.157, “Best Estimate Calculations of Emergency Core Cooling
System Performance” and the demonstration of code scaling,
applicability and uncertainty (CSAU) methodology in 1989
aiming to quantify the uncertainty parameters (USNRC, 1989).
In addition to the CSAU methodology, various international
collaboration projects had been undertaken to propose and
validate other uncertainty quantification methodologies such
as the uncertainty method study, UMS, (OECD, 1998), the
BEMUSE project (OECD, 2007a) and the SM2A study within
the SMAP framework (OECD, 2007b).

The BEPU methodology has been used to predict key safety
parameters such as the peak cladding temperature (PCT),
departure from nucleate boiling ratio (DNBR), etc. for critical
accident scenarios. In BEPU analysis, a BE code is used to
simulate the plant response given the variations in a multitude
of uncertain parameters (UPs) that can be propagated within the
thermal-hydraulic system code. The process of uncertainty
propagation is however lengthy and hence BEPU analysis has
so far been limited to the analysis of bounding design basis
accident (DBA) scenarios, e.g. large break loss of coolant accident
(LBLOCA) (Chang et al., 2020) and only recently to the analysis
of a station blackout (SBO) (Musoiu et al., 2019) and to the main
steam line break (MSLB) (Petruzzi et al., 2016).

This concern can be addressed by using data-driven
approaches that provide a prediction based only on the
database previously obtained from experimental, or simulation
results. A data-driven model tries to learn the salient
characteristics embedded within the system by developing a
mathematical relationship between the system parameters
rather than solving the physics-based models to describe the
system performance. This process is known as machine
learning (ML).

ML is one of the branches of artificial intelligence (AI). Currently,
there aremanymachine learning tools that can be used for prediction
or classification such as artificial neural network (ANN), support
vector machine (SVM), Naïve-Bayes algorithm, random forest,
decision tree, logistic regression (LR), K- nearest neighbors
(KNN), etc. Any of these tools may be used to develop a machine
learning algorithm. Each algorithm is based on its unique strategy in
making predictions. Generally speaking, ML algorithms learn from
the datasets and try to decipher the salient characteristics within the
data that reflect the relationship between the inputs and outputs.
Based on the datasets, a mathematical relationship can be generated
between the input vector variables and the scalar output variables.
The learning process helps improve the relationship by constantly
changing the learning parameters to tune the model until the
objective function is optimized. The objective functions for each
machine learning algorithm is different and needed to be specified
accordingly.

Recently, the International Atomic Energy Agency (IAEA) has
urged the nuclear community to integrate ML in the industry
within the framework of emerging technologies, given its superior
capability in handling big-data (IAEA, 2020). In fact, the potential
of using ML technology has been explored to estimate some key
figures of merit such as the power pin peaking factor (Bae et al.,
2008), the wall temperature at critical heat flux (Park et al., 2020),
the flow pattern identification (Lin, 2020), to detect anomalies

and warn of equipment failure (Ahsan and Hassan, 2013; Chen
and Jahanshahi, 2018; Devereux et al., 2019); to determine core
configuration and core loading pattern optimization (Siegelmann
et al., 1997; Faria and Pereira, 2003; Erdogan and Gekinli, 2003;
Zamer et al., 2014; Nissan, 2019), to identify initiating events and
categorize accidents (Santosh et al., 2003; Na et al., 2004; Lee and
Lee, 2006; Ma and Jiang, 2011; Pinheiro et al., 2020; Farber and
Cole, 2020) and to determine of key performance metrics and
safety parameters (Ridlluan et al., 2009; Montes et al., 2009;
Farshad Faghihi and Seyed, 2011; Patra et al., 2012; Young,
2019; Park et al., 2020; Alketbi and Diab, 2021), and in
radiation protection for isotope identification and classification
(Keller and Kouzes, 1994; Abdel-Aal and Al-Haddad, 1997; Chen,
2009; Kamuda and Sullivan, 2019), etc. However, it is worth
noting that the application of ML in nuclear safety is still limited
despite its potential to enhance performance, safety, as well as
economics of plant operation (Chai et al., 2003) which warrants
further research (Gomez Fernandez et al., 2017). For a more
comprehensive review of the status and development efforts
utilizing data-driven approaches in nuclear industry, the
reader may consult (Gomez Fernandez et al., 2017; Gomez
Fernandez et al., 2020).

In this study, an artificial neural network (ANN) is developed
to predict the PCT under LBLOCA conditions as a bounding
accident scenario. The goal is to develop a fast and cost-effective
tool for uncertainty quantification of PCT under LBLOCA
conditions using ML. This is achieved by using a database to
train the ML algorithm, and once trained and tested, the meta-
model can be used as a predictive tool. The database required to
train and test the model is generated via the thermal hydraulic
system code MARS-KS (KAERI, 2004) within an uncertainty
quantification framework using Dakota (Adams et al., 2020).
Once proven, the ML technology may be used to help the nuclear
designers and/or operators to expedite the decision making
process particularly in those situations that involve complex
interconnected phenomena during design optimization or in
the event of a nuclear accident.

ARTIFICIAL NEURAL NETWORK

ANN is a machine learning model inspired by the biological
network of the nerve cells that make up the brain. Fundamentally,
the ANN behaves in a way similar to the nerve cells. However,
each biological structure is replaced with layers of neurons with a
pre-defined architecture that communicates data between the
input signals and output signals via weights, biases, and activation
functions to find the best weight matrix that best describes the
relationship between the inputs and outputs. The ANN structure
can be split into three different classes; artificial neural network
(ANN), convolutional neural network (CNN) and recurrent
neural network (RNN). This research focuses only on ANN.

The ANN generally refers to the modelling of the data through
a stack of computational layers. The ANN utilizes the back
propagation based on the stochastic gradient descent (SGD)
technique that approximates the loss function optimal points
which guarantees convergence and terminate at the optimal
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solution (Dawani, 2020). Currently, the improvised gradient
descent techniques such as the adaptive moment estimate
(Adam) is being widely used for many ANN applications. The
SGD teaches the ANN how to tweak the connection weights and
biases in order to converge to the closest mathematical
representation of the data at hand. A number of activation
functions, such as the hyperbolic tangent function and the
rectifier linear unit function (ReLU), may be used to provide
signal transformations for each input layer and hence provide
better representation of the underlying non-linearity of complex
systems.

The ANN is based on a multi-layer perceptron model and can be
used for both regression and classificationproblems.The trainingprocess
of an ANN is a two-step process. The first is a forward propagation step
and involves evaluating the error or loss function. In the second step, the
resulting error is propagated backwards through the network to adjust
the weights and biases. This process is repeated until no further
improvement in the error between the predicted outputs and desired
values is achieved. The complexity of the network is determined by the
number of hidden layers, the number of nodes in each layer, the type of
activation function. The output is predicted by summing the functions
within the hidden layers to produce a net input function.

The goal of the training process is to tune the model hyper-
parameters for better prediction. Those hyper-parameters
include: the number of neurons, number of hidden layers,
network structure, activation function, type of optimizer, loss
function, etc. Common hyper-parameters associated with the
regression problems are described in Table 1.

During the optimization process, provisions should be made
to ensure a global minimum is achieved rather than a local
minimum or saddle point, for which small neural networks
are prone. A balance between generalization and fitness to the
training data should be achieved to ensure that over-fitting or
retaining redundant features in the neural network is avoided.

METHODOLOGY

To achieve the goal of this paper, three main objectives can be
identified which are, 1) the thermal hydraulic model
development, 2) the uncertainty quantification and database
creation and 3) machine learning model development. Each
will be delineated in the next subsections.

Thermal-Hydraulic Model Development
This section focuses on the details of the thermal hydraulic model
development. In this investigation, the best estimate system code,

MARS-KS version 1.4, is used to simulate the nuclear power plant
response under LBLOCA conditions. MARS-KS is a multi-
dimensional two-phase thermal hydraulic system code
developed by KAERI (2009). The model representation in
MARS-KS, including nodalization, boundary and initial
conditions as well as the main assumptions will be presented next.

APR1400 Nodalization
First, the details of the APR1400 reactor are described using the
system nodalization shown in Figure 1 to represent the key
systems and components which includes a reactor pressure vessel,
a pressurizer, two loops with four cold legs and two hot legs. The
nodalization also includes detailed description of the two steam
generators (SG), the main steam lines and associated valves
(MSSV, MSIV, ADV, etc). The turbine however, is modeled as
a boundary condition. The safety injection system (SIS) is
modeled to represent the emergency core cooling system
(ECCS) of the APR1400. The SIS modelling is necessary to
understand the reactor dynamic behavior in dealing with the
LBLOCA scenario and to ensure the safety parameters stay within
the safety limits during the different phases of the accident.

The containment building is modelled as a boundary
condition and the containment spray system (CSS) are
excluded from the nodalization process as it is not required in
the analysis of the reactor response under the LBLOCA scenario.
The core is divided into a hot channel and an average channel.
The hot channel represents the hottest fuel assembly; while the
average channel represents the remaining 241 fuel assemblies in
the APR1400 nuclear power plant core configuration.

The core channels are modeled in MARS using a pipe
hydrodynamic component with a vertical orientation using 20
axial nodes. A solid structural element is attached to the
hydrodynamic component to represent the fuel assembly with
20 axial nodes and nine radial nodes. For the downcomer, an
annulus hydrodynamic component is used. The annulus is
divided circumferentially into six channels at different angle
(0°, 60°, 120°, 180°, 240°, 300°, 360°), each having five axial
nodes with a vertical orientation.

The same nodalization scheme is used for the upper annulus
region, which hosts the entry location of the emergency coolant
from the SIS that should be directed to the core. The general
pathway of emergency coolant should start from the upper
annulus to the downcomer, to the lower plenum, to the
bottom of the core and finally to the core itself.

The inlet and the outlet of the core are nodalized using branch
components. The core inlet hosts the lower support structure
(LSS) and in-core instrumentation while, the core outlet hosts the

TABLE 1 | Common hyper-parameters for ANN.

Hyper parameters Typical values

Number of input neurons One per input feature
Number of hidden layers Problem-dependent, usually 1–5
Neurons per hidden layers Problem-dependent, usually 10–100
Number of output neurons One per prediction value
Activation functions ReLU, SELU, Softplus, Logistic, tanh
Loss functions MSE, MAE, Huber loss
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fuel alignment plate (FAP), the upper guide structure, the core
shroud and the fuel barrel assembly. The crossflow is permitted
between the downcomer regions, the upper annulus, the
downcomer upstream, between the average channel and the
hot channel and between the loop elevation reference regions.
The cross flow allows the inventory tomove sideways between the
hydrodynamic components to represent the secondary cross flow.
At the middle part of the reactor pressure vessel (RPV), a bypass
is used to connect the bottom region of the core towards the fuel
alignment plate without passing through the core site. The bypass
allows liquid to move vertically from the lower plenum to the fuel
alignment plate (FAP). To simulate the safety injection system
(SIS), both the safety injection tanks (SITs) and the safety
injection pumps (SIPs) are modelled in the nodalization.
There are four units of SITs that are modelled using the
accumulator hydrodynamic component. The SIT are
connected to the upper annulus and is controlled using a
combination of logical and variable trips. A set point that
refers to the low pressurizer set point pressure is used to
navigate the turning on of the SITs. The SIT valve is divided
into two part for each train to represent the low-flow and high-
flow conditions of the actual APR1400 fluidic device. The fluidic
device act as a flow regulator in the actual APR1400 plant to

optimize the usage of the emergency inventory during the loss of
coolant scenario. Meanwhile, the SIPs are comprised of 4 units
however, only two units of SIP are available in accordance to the
conservative assumption adopted by the APR1400 Design
Control Document (DCD) for LBLOCA evaluation. The SIPs
will be available only for the break side and the opposite direction
across from the break, i.e. located at 60° and 240°, respectively.
The SIPs are modeled using a time dependent volume and a time
dependent junction instead of pump hydrodynamic components.
This configuration allows the user to impose flow boundary
conditions and control the velocity of the coolant. Each SIP
and SIT is connected to the upper annulus model at different
circumferential angles based on APR1400 description.

Consistent with APR1400 DCD the decay heat model is based
on the ANS-1973 model and a reactivity table is also provided in
the code to account for the negative reactivity insertion due to
control rod insertion. However, based on the APR1400 DCD, the
negative reactivity contribution from the control rod is
discredited for conservatism when conducting the LBLOCA
analysis. This will allow the SIS capability in managing the
accident and maintaining the core integrity to be fully tested
during the LBLOCA accident. Regarding the reactor internals, the
heat structure components are used and attached to the related

FIGURE 1 | APR1400 nodalization for the LBLOCA thermal-hydraulic model.
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hydrodynamic volumes to reflect the heat transfer boundary
conditions and architecture of the APR1400 design.
Meanwhile to describe LBLOCA scenario, a double ended
guillotine break is placed on the cold leg after the pump
discharge. This is achieved by incorporating two trip valves to
divert the coolant from the vessel to the time dependent volume
attached to each of the trip valves when the accident is initiated.

LBLOCA Model Assumptions
Following the DCD recommendation, a double ended guillotine
break (DEGB) equivalent to double the area of the pipe with the
largest cross section of the RCS, i.e. the cold leg piping is used in
this work. The standard internal diameter of the connecting pipes
between the pump discharge and the reactor pressure vessel inlet
nozzle is 762 mm (30 inches) which corresponds to the break area
of 0.456 m2. The thermal hydraulic model development is based
on several assumptions similar to those reported in the DCD
document: 1) LBLOCA occurs at loop B1 near the pump
discharge site. 2) Break type is double ended guillotine break
(DEGB). 3) Loss of offsite power (LOOP) for the RCPs. 4) No
negative reactivity insertion from the control rods. 5) Single
emergency diesel generator (EDG) is not functioning causing
two out of four safety injection pumps (SIPs) to be non-operable.
6) All safety injection tanks (SIT) are in operation.

Uncertainty Quantification Framework
Development
The statistical tool, Dakota (Adams et al., 2020), is used in this
work to propagate the uncertainty parameters into the thermal
hydraulic model. Dakota is an open source statistical software
tool developed by Sandia National Laboratory. It can be used for
optimization, sensitivity analysis and uncertainty quantification.
The uncertainty propagation process is achieved by developing
the uncertainty quantification framework by loosely coupling the
best estimate system code, MARS-KS, and the statistical tool,
Dakota, via a python script to manage the data exchange process.
Several important files such as, the Dakota input file, the python
interface script, the MARS steady state file and the MARS
transient file are necessary for the uncertainty quantification
framework to run smoothly and propagate the uncertainty
parameters.

Uncertain Parameters Identification
As indicated in the introduction, the current work explores the
possibility of usingML to predict the PCT under the conditions of
a LBLOCA, being an important bounding accident scenario.
LBLOCA was used in nuclear safety as a design basis for the
emergency core cooling system, ECCS, to provide assurance that
the ECCS would not violate any of the safety limits and hence
preserve the fuel integrity during a loss of coolant accident
(LOCA). For LBLOCA, the key performance measure of the
ECCS, as defined by the 10CFR50.46 Appendix-K guideline is
that the PCT does not exceed the safety limit of 1477 K (2,200℉)
to ensure the integrity of the fuel under the accident conditions
(Martin and O’Dell).

Now for the ML algorithm to be developed and trained, it is
necessary to use a database of the most important system
parameters (features) that impact the safety parameter of
interest, in this case the PCT. Generally speaking, the
model can use a database originating from the plant
historic data, which is not possible under DBA conditions.
Alternatively, it can be generated using simulation results
produced by system codes. In this work, the database is
created, using the latter approach.

A BEPU analysis is undertaken to generate a database of the
system response under LBLOCA. In general, uncertainty
quantification can be achieved using either the input
uncertainty propagation approach or the output uncertainty
propagation approach (Martin and O’Dell, 2008). The former
approach will be followed in this work.

To conduct the BEPU analysis, the uncertainty quantification
process requires the identification of the uncertain parameters
that can impact the PCT. Those uncertainty parameters can be
derived from the phenomena identification and ranking table
(PIRT). The PIRT describes the key phenomena and processes
relevant to the plant’s thermal-hydraulic response for a specific
accident condition. Most of the PIRT developed throughout the
years centered on the LBLOCA cases due to its importance to
nuclear safety as a bounding DBA scenario. Several PIRTs have
been developed for LBLOCA scenario such as: Westinghouse
PIRT (USNRC, 1988), AP600 PIRT (LA-UR-95-2718, 1995),
KREM PIRT (KHNP, 2014), KNGR PIRT (KINS, 2001),
APR1400 PIRT (KEPCO, 2014). For the current project, the
investigation will focus on the APR1400 PIRT which is based on
the KNGR PIRT, which in turn is derived from the
Westinghouse PIRT.

Based on the work of (Lee et al., 2014; Kang, 2016), eight key
phenomena were considered in this study. The key phenomena
underlying the LBLOCA scenario are gap conductance, energy
stored in the fuel, decay heat, rewetting process, reflooding heat
transfer, critical flow, pump performance and core reflooding as
shown in Table 2. A total of 19 uncertainty parameters have been
derived from these key phenomena. These key uncertain
parameters and the statistical information associated with each
(range and distribution) are listed in Table 2.

Data Pre-Processing
Before propagating the uncertainty parameters into the best
estimate thermal-hydraulic system model, it is essential for the
uncertainty parameters to undergo a normalization process. The
normalization is done with respect to the statistical information
available for each uncertain parameter derived from the PIRT.
First, the mean value is calculated using the following expression:

μ � ∑n
i�1

xi

n
(1)

Next, the upper and lower limit can be scaled using this mean
value as follows:

Lhigh � xhigh

μ
(2)
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Llow � xlow

μ
(3)

And finally for the standard deviation can be calculated as
follows:

σ �
���������������
1

n − 1
∑n
i�1

(xi − μ)2√
(4)

where xi represents value of uncertain parameter in the sample,
andxhigh and xlow are the upper and lower values of the uncertain
parameter, respectively. For a normal distribution function, the mean,
standard deviation and upper and lower limits are required; while, for
a uniform distribution, only the upper and lower limits are required.
Table 3 shows the uncertain parameters after scaling.

Uncertainty Propagation and Database Generation
With the key uncertain parameters identified and scaled
appropriately, they are randomly propagated into the thermal
hydraulic system code, MARS-KS using DAKOTA. The goal is to
generate a large enough sample that can be representative of the
realistic system performance in accordance with the USNRC
requirement specified in 10CFR50.46 Appendix-K, i.e. the
safety criteria should be satisfied with a probability of 95%
and a confidence level of 95%. The 95/95 rule has been
recognized by the USNRC to have sufficient conservatism for
LBLOCA analyses. Usually a large number of samples are
required which can be achieved using the Monte-Carlo
random sampling technique. To determine the minimum
number of samples required for Monte Carlo method to

TABLE 2 | Key uncertain phenomena and associated uncertain parameters.

Phenomenon Uncertainty parameter Distribution Range

Heat conductance Gap conductance Normal 0.4–1.5
Energy storage Fuel thermal conductivity Uniform 0.847–1.153

Core power Normal 0.98–1.02
Decay heat Decay heat Normal 0.934–1.066
Rewetting process Groeneveld critical heat flux Normal 0.17–1.8

Transition boiling HTC Normal 0.54–1.46
Reflooding heat transfer Chen nucleate boiling HTC Normal 0.53–1.46

Dittus-Boelter liquid HTC Normal 0.606–1.39
Dittus-Boelter vapor HTC Normal 0.606–1.39
Film boiling HTC Normal 0.428–1.58

Critical flow Break discharge coefficient Normal 0.729–1.165
Pump performance two phase head multiplier Uniform 0.0–1.0

two phase torque multiplier Uniform 0.0–1.0
Reflooding SIT actuation pressure (MPa) Normal 4.03–4.46

SIT water inventory (m3) Uniform 45.31–54.57
SIT water temperature (K) Normal 294.11–321.89
SIT loss coefficient Uniform 10.8–25.2
SIP water temperature (K) 283.0–321.89

System pressure Pressurizer pressure (MPa) Normal 11.94–19.08

TABLE 3 | Normalized uncertain parameters.

UP Parameter description Mean, μ Standard deviation, σ Range, Lhigh-Llow

1 Core power 1.0 0.01 0.98–1.02
2 Groeneveld-CHF 1.0 0.414 0.173–1.827
3 Chen nucleate boiling HTC 1.0 0.234 0.553–1.467
4 Transition boiling HTC 1.0 0.230 0.54–1.46
5 Dittus-Boelter liquid HTC 1.0 0.196 0.607–1.393
6 Dittus-Boelter vapor HTC 1.0 0.196 0.607–1.393
7 Film boiling HTC 1.0 0.287 0.426–1.574
8 Break discharge coefficient 1.0 0.115 0.77–1.23
9 Decay heat 1.0 0.033 0.934–1.066
10 Gap conductance 1.0 0.289 0.421–1.579
11 SIT actuation pressure (MPa) 1.0 0.025 0.949–1.051
12 SIT water inventory (m3) 1.0 0.046 0.907–1.093
13 SIT loss coefficient 1.0 0.20 0.6–1.4
14 Pressurizer pressure (MPa) 1.0 0.113 0.77–1.23
15 Fuel thermal conductivity - - 0.847–1.153
16 Pump two phase head multiplier - - 0.0–1.0
17 Pump two phase head multiplier - - 0.0–1.0
18 SIT water temperature (K) - - 0.955–1.045
19 SIP (IRWST) water temperature (K) - - 0.936–1.064
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achieve the safety criteria according to the 95/95 rule, it is
essential to ensure convergence when the average output
stabilizes over the number of samples.

ANN Model Development
In this investigation, six ANN model development steps are
applied. The six steps are 1) input selection, 2) data splitting,
3) architecture selection, 4) structure selection, 5) model
optimization and 6) model validation.

The input data for the ANN model will be a selected set of the
uncertain parameters identified earlier and derived using the
PIRT for LBLOCA. The feature selection process is important
for ANN model development since too many variables will slow
down the optimization process and may prevent the model from
finding a good solution (Geron, 2019); whereas a few features
may not be sufficient for the model to properly learn the system
characteristics embedded in the data. A correlation matrix based
on Spearman’s method is therefore used to identify the key
features from the 19 uncertain parameters that impact the
PCT the most.

Next, the random sampling technique is applied to split the
database into three main categories: one for training (3,022
samples), validating and testing the model (202 and 332
samples, respectively). In order to improve the ANN
performance metrics during training, the input and output
parameters should have the same scale. Before the
propagation of uncertainty, all input parameters have been
scaled; hence only the output parameter (peak cladding
temperature, PCT) needs to be normalized using the min-
max scaling function:

yscaled � ( yi − ymin

ymax − ymin
) (5)

where ymax and ymin are the maximum and minimum values of
PCT in the dataset, respectively; while yi represents the
temperature to be scaled and yscaled represents the scaled
temperature.

Architecture selection refers to the choice of ANN hyper-
parameters. Since there are a lot of hyper-parameters that can be
tuned, choosing the suitable set is a delicate task given the large
number of degrees of freedom that the user can manipulate
during the ML tuning process. The tuning process of the ML

model is therefore more an art than a science and depends on the
problem at hand as well as the characteristics of the data. Hence,
finding a set of optimal hyper-parameters that provide the best
model performance without compromising either its predictive
accuracy or generalization capability can be computationally
challenging. This is particularly true for hyper-parameters as
opposed to other model parameters since the former are not
learnt by the model during the training process but must be set
manually. Various techniques can be employed to search for the
most appropriate hyper-parameters: grid search, random search
and Bayesian optimization. In this work, the random search
method is used to expedite the convergence. Table 4 shows all
the hyper-parameters that are tuned in this study.

ANN tuning is an important step to enhance the model
predictability by converging on the most optimum combination
of hyper-parameters. In this study, an automatized optimization
tool, the Talos (Autonomio Talos, 2019) software, is used. Talos
is an open sources software written in Python language. It is
compatible with Keras (Chollet, 2015) application
programming interface (API) that is suited for the
development of artificial neural network (ANN) models.
Currently, Talos does not support any other machine
learning model other than the ANN architecture and it only
supports Keras backend machine learning algorithms.

Initially, the user needs to define the Keras for the ANN
algorithm development. Then the user needs to define the
search space boundary in the format of key-value pair python
dictionary. Afterwards, the scan function is used to run the
Talos experiment. The arguments of the scan function
include the type of search method (grid or probabilistic),
model’s name, number of epochs, batch size and search
constraints. Talos will generate a list of possible hyper-
parameters combinations along with their corresponding
values that can be analyzed using the built in command
such as report and predict functions. The size of the
results list depends on the number of parameters defined
in the search space boundary dictionary. The analysis process
can be done by analyzing the whole or the specific model
combinations.

If the user is satisfied with the value of the performance metric
generated from the results list, then the deploy function is used to
save and call the model from the defined python dictionary path
and hence the Talos experiment is complete.

TABLE 4 | List of considered hyper-parameters.

Hyper parameters Dictionary

Number of neurons in 1st layer 10, 20, 50, 100
Number of neurons in 2nd layer 10, 20, 50, 100
Number of hidden layers 1, 2, 3, 4, 5
Optimizers Adam, Adadelta RMSprop
Kernel (weight) initializers He (normal, uniform), Xavier (uniform, normal)
Activation functions ReLU, Tanh, Sigmoid
Learning rate 10.0, 1.0, 0.1, 0.01, 0.003, 0.001
Weight L2 regularizer 0.1, 0.001, 0.0001, 0.00001
Bias L2 regularizer 0.1, 0.001, 0.0001, 0.00001
Activity L2 regularizer 0.1, 0.001, 0.0001, 0.00001
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As mentioned earlier, the random quantum search method is
used to optimize the model. To further reduce the computing
time to find the optimized model, both early stopping and
window reduction strategies are used. Early stopping prevents
the Talos tool from evaluating models that shows unproductive
permutation when its metrics are no longer improving; whereas,
the window reduction strategy allows the Talos tool to compare
the upcoming model with the previously evaluated model based
on the specific metrics. Once any of the two criteria is satisfied
first, the computation will stop and the results list is generated.
Table 5 shows all the parameters used to reduce
computation time.

It should be noted that the Talos ability to find the
optimized architecture based on hyper-parameters
combinations relies heavily on the defined search space
boundary. As such, if the final results do not provide
reasonable performance metrics, it is essential to redefine
the search space dictionary by adding new hyper-
parameters or retuning their corresponding values in order
to improve the model accuracy. Even though the Talos is an
automated optimization tool, it is still based on a trial and
error process that required extensive knowledge in regards to
the behavior of each hyper-parameter towards the ANN
model. However, the Talos can expedite the optimization
process.

It is worth noting that neither under-fitting nor overfitting is
desirable in machine learning. To prevent under-fitting, a large
database has been generated to train the model, as many input
parameters are used to develop the model and the training time
was increased until the cost function is minimized to an
acceptable value. To mitigate over-fitting, number of
techniques can be used for example: cross validation,
regularization, dropout, and early stopping. An overfitting
model tends to have good learning metrics during training but
performs poorly during the validation process. To avoid this, the
data is split into “training”, “testing” and “validation” data
subsets. The model uses the “training” subset during learning
and used the unseen subsets for validation and prediction,
respectively. Validation metrics were therefore generated using
a subset of the database unseen during the training process to
ensure that the ANNmodel is not overfitting the data. In addition
to cross-validation, regularization and early stopping were also
used to make sure the model does not memorize the data. Further

a dropout layer was placed between the input and the hidden
layer, whereby the drop rate is determined solely based on
random search algorithm.

The regression type ANN was evaluated using the mean
squared error (MSE) that represents the squared difference
between the predicted and actual value as shown in Eq. 6:

MSE � ∑n

i�1(ypred − yact)2
n

(6)

where ypred and yact are the predicted and actual or known value
of the dependent variables, respectively; while, n is the number
of samples in the dataset. Another important performance
metric is the determination coefficient or the R2 value that
measure how well the model predict under sporadic unseen
data. The highest value is 1.0 and indicates that the model has
strong generalization capability. The R2 metric is expressed as
Eqs 7, 8:

R2 � 1 − ∑n

i�1(yi,act − yi,pred)2∑n

i�1(yi,act − y)2 (7)

y � 1
n
∑n

i�1yi,act (8)

RESULTS AND DISCUSSION

This section is dedicated to the obtained results. The first
subsection focuses on the results of the thermal hydraulic
model. This is followed by the results of the uncertainty
quantification and post-processing of the generated database.
Finally, the results of the ML model are presented.

Thermal Hydraulic Model Results
The thermal hydraulic system response is validated against values
reported in the APR1400 DCD (KHNP, 2014) for both steady
state and transient simulations. The comparison between the
MARS and the APR1400 steady state response are shown in
Table 6.

Based on Table 6, the steady state simulation agrees
reasonably well with the plant reference data and the
calculated variables are considered to be within the acceptable

TABLE 5 | Variables for reducing computation time.

Variables Types

Search method Stratified sampling method
Random method Quantum method
Fraction limit 0.1
Reduction method Spearman
Reduction interval 1
Reduction window 1
Reduction threshold 0.3
Reduction metric Mean squared error
Minimized loss True
Fraction limit 0.2
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error limit of less than 5% when compared to the corresponding
values reported in the DCD for APR1400. For the transient
simulation, key events for the LBLOCA scenario are listed and
compared in Table 7.

The progression of the LBLOCA is characterized by three
different phases; that is, the blowdown, refill, and reflood. At time

t � 0 where blowdown phase is taking place, the RCP discharge
piping starts to break with double ended guillotine break (DEGB)
condition. Instantaneously, the loss of offsite power occurred causing
all RCPs to coast down. For this scenario the loss of a single
emergency diesel generator (EDG) unit is assumed. This leads to
the loss of a single safety system train and hence the loss of two SIPs.

TABLE 6 | Validation of steady state analysis.

Parameters MARS DCD Error (%)

Power (MWt) 4062.66 4062.0 0.0
RCP flowrate (kg/s) 5272.0 5250.0 0.4
Core flowrate (kg/s) 20367.0 20361.0 0.03
Primary pressure (MPa) 15.52 15.51 0.01
Core inlet temperature (K) 564.3 563.8 0.12
Core outlet temperature (K) 598.4 597.1 0.16
Upper head temperature (K) 563.9 584.5 3.53
Pressurizer level (m) 8.22 8.18 0.5
Secondary pressure (MPa) 6.90 6.86 0.58
Hot rod fuel temperature (K) 1988.7 1985.2 0.18

TABLE 7 | Validation of the timing of key LBLOCA events.

Key events Event time (s)

MARS DCD

Cold leg break 0.0 0.0
RCP trip and SG secondary isolations 0.0 -
SIP signal reached 6.0 9.5
Maximum PCT during blowdown (1165.1 K/891.95 C) 10.0 -
High flow SIT signal 15.4 -
High flow SIT injection initiated 15.5 14.8
Core reflood begins 31.0 32.5
SIP injection initiated (42.0 s delay) 48.0 48.3
Low flow SIT injection initiated 57.0 -
Maximum PCT during reflood (1141.7 K/868.55 C) 65.0 -
PCT for average core 143.0 -
PCT for the hot core 151.0 -
SIT depletion time 201.0 171.4

FIGURE 2 | Cladding axial temperature for the hot core.
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During the blowdown phase, the core uncovers and as a
result the heat transfer coefficient drops significantly which
causes the fuel cladding temperature to increase reaching a
maximum of 1165.1 K (891.95°C) at ∼10 s which is still below
the acceptance criterion of 1447.6 K (1204.44°C) as illustrated
in Figure 2. Later on, as the decay heat drops the cladding
temperature starts to decrease. Further reduction in the
cladding temperature is observed due to the large
condensation that occurs at the upper guide structure
(UGS) and reactor vessel upper head. The condensate
passes through the reactor core in reverse direction (from
top to bottom) into the lower plenum and headed towards the
downcomer region.

The cool down effect continues until the coolant inventory from the
upper head of the reactor vessel is depleted. Once the top quenching is
over, the fuel-cladding starts to reheat again approximately ∼17 s after
the break due to the accumulation of decay heat. After this time, there is
no longer any cooling mechanism for the core except the one initiated
by the safety injection system (SIS) during the reflooding phase.

The refill period starts when the emergency coolant reaches the
lower plenum of the vessel and stabilizes till is completely filled and
ends when the water level in the lower plenum vessel reaches the core
inlet. The SIT high-flow injection starts when the core pressure reaches
the set point pressure, approximately 4.2MPa (∼43 kg/cm2) at ∼ 17 s
after the pipe break.

The emergency coolant will flow from the downcomer, towards the
lower plenum and up into the core. However, even though the SIP is
initiated earlier compared to the SIT because of the higher set point
pressure approximately, 12.5MPa (128 kg/cm2), the SIP starts to inject
the emergency coolant at 48.0 s with a 42.0 s delay time. As such after
the blowdown phase, the core is cooled initially by the UGS inventory
before being assisted by the injection from the SIT followed by the SIP.
This delay accounts for the time required for signal actuation time as
well as the time needed to start the SIP.

The reflood phase is further subdivided into two phases: the early
reflood and late reflood phases. During early reflood phase, sufficient
injection from the SIS helps the downcomer to be filled up relatively
quickly. However, due to the limited space available in the downcomer
combined with the excess amount of emergency coolant, some of the
inventory is bypassed through the pipe break regions causing inventory
loss. Nonetheless, the amount of coolant available is still sufficient to
maintain the core integrity.

The downcomer is nearly filled at around 50 s after the break. At
this time, the water level in the downcomer region starts to stabilize as
the fluidic device shifts from the high-flow injection to the low-flow
injection. The low flow injection stabilizes the downcomer level as the
water rises up into the core. The quench frontmoves vertically upwards
to quench the whole core during this times. Themaximum flow rate is
reached approximately 30 s after the blowdown phase; while the low-
flow injection will continue until 200 s. The SIP assist the low flow
injection to cover andquench the core. This phase endswhen the entire
core is quenched from the bottom up gradually and the fuel rod
temperature is slightly above the coolant saturation temperature.

During the early refill phase, the steam binding phenomenon
may occur whichmay slow down the process. However, this effect
diminishes once the vapor from the upper section of the core no
longer received the de-entrainment liquid from the bottom part

of the vessel at the surface of the quench front. Afterwards, the
steam binding effect starts to disappear after some time which
allows the reflooding phase to resume and the reactor core to be
filled with water again.

The late reflood phase is marked by the SIT depletion as the
SIT low-flow injection comes to an end. During this time, the task
of replenishing and providing the emergency inventory for core
cooling and core coverage process is achieved solely by the SIPs.
The downcomer water level is maintained at a relatively constant
value. Both the hot core and average core are finally quenched
around 150 s without violating the fuel acceptance criterion of
1477.0 K.

Uncertainty Quantification Results and
Database Post Processing
Using the uncertainty quantification framework, the databases for the
machine learning model was generated. The Monte Carlo random
sampling technique is used to generate 5,000 runs in order to acquire a
large data base for the machine learning model. The simulation is
conducted using a single PC platform with 3GHz Intel® Xeon® Gold
CPU processor, with 64.0 GB random access memory (RAM), 24
parallel processors and a Windows 10 platform. The time taken to
complete the simulation is approximately 3 days.

It is worth noting that, out of the 5,000 samples, only 3,556 samples
were successful and used to train the machine learning model. To
ensure the number of datasets is enough to represent the 95%
probability and 95% confidence criteria, the mean value for the
PCT is averaged over the number of samples. As seen in Figure 3,
the Monte Carlo simulation stabilizes after approximately 2000 runs,
hence, a sample size of the 3556 is adequate for to meet the criteria.
Figure 3 shows the spread of PCTwhich follows a normal distribution
with a mean value of 1169 K. The majority of the data are well below
the PCT safety criterion of 1477 K. However, there are two data points
that lie very close to the safety limit with values of 1462.3 K and
1451.8 K.

As discussed earlier, 19 uncertain parameters are
propagated into the thermal hydraulic model using the
Dakota uncertainty framework in order to generate the PCT
response under LBLOCA scenario. The independent variables
are the uncertain parameters (UPs); while the dependent
variable is the peak cladding temperature (PCT). However,
each UP has different degree of influence towards the PCT.
Hence, a sensitivity study is conducted to assess the correlation
between the uncertain parameters and the PCT. Spearman’s
rank correlation, which is a non—parametric measure of the
statistical dependency between the variables, is used for the
sensitivity analysis. Using the Spearman’s correlation coefficients,
the strength and the direction of the relationship between the
independent and the dependent variables can be evaluated using
the following expression:

ρ � Σi(xi − x)(yi − y)�������������������
Σi(xi − x)2Σi(yi − y)2√ (9)

where xi refers to the input variable, i, x is the input variable’s
mean, yi is the output variable,i, and y is the output variable’s

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 75563810

Sallehhudin and Diab ML Prediction of PCT under LBLOCA

15

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


mean. Figure 4 shows the Spearman’s correlation matrix
generated from the database. A positive correlation
coefficient means when the independent variable is
increased, the dependent variable also increases. While, a
negative correlation coefficient means that when the
independent variable is increased, the dependent variable
decreases. The sensitivity study proves that the uncertainty
parameters are independent from each other.

From the sensitivity analysis, a threshold value needs to be
defined in order to choose the most significant parameters to
reduce the number of inputs for the machine learning model. By
selecting a threshold of ±20%, any correlation coefficient higher
than the threshold value is deemed to be strongly correlated with
the PCT either proportionally or inversely. However, selecting the
threshold value is subjective as such it should be tested to find the
best value possible.

FIGURE 3 | PCT convergence (A) and scatter plot (B) vs. number of runs.

FIGURE 4 | Spearman’s correlation matrix.
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ANN Model Results
The ANN algorithm has been successfully developed and trained
using the database created via the uncertainty quantification
framework. After tuning, the model was deployed using the
Talos optimization tool. 20 models that differ in architectures
and hyper-parameters are generated. Among those 20 models,
the best model is selected based on the lowest validation metric,
i.e. MSE. The final ANN structure recommended by the Talos
optimization tool is composed of an input layer, three hidden layers

and an output layer Table 8 shows the hyper-parameters for the
selected ANN model achieving the best performance.

The model is trained using the training subset of the available
PCT database. Next, the validation dataset is used to measure the
model ability to learn the salient characteristic of the data. Once the
meta-model has been trained, its performance is tested using an
unseen subset of data to make the predictions. Figure 5 shows a
comparison between the model predictions of the PCT and the
known values produced using the uncertainty quantification

TABLE 8 | Selected ANN model hyper-parameters.

Hyper-parameters Values

Number of hidden layers 3
Number of neurons in hidden layer 10
Activation function Tanh, ReLU
Epoch size 300
Optimizer Adam
Learning rate 0.001
Regularizes 0.00001
Objective function MSE
Dropout rate 0.0

FIGURE 5 | Scatter plot for PCT using 19 uncertain parameters.

TABLE 9 | ML model accuracy corresponding to number of input parameters.

Number of
inputs

Spearman’s coefficient
threshold (%)

R2 MSE MAE MLSE

5 23 0.73319 0.00699 0.0686 0.00336
7 20 0.85655 0.00410 0.04818 0.00189
9 9 0.93484 0.00186 0.03083 0.00084
11 4 0.89104 0.00185 0.03273 0.00091
17 1 0.74024 0.00406 0.04875 0.00198
19 1 0.90242 0.00390 0.0343 0.00117
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framework for all 19 key uncertain parameters. The ML meta-
model predicts the PCT with reasonable accuracy (MSE � 0.0039);
however, it tends to underestimate the high temperatures which is
problematic from a safety point of view. This may be due to the fact
that unnecessary data from other uncertainty parameters may
confuse the ML algorithm and hence impact the model accuracy.

However, the obtained MSE depends on the chosen input
parameters. To assess the model sensitivity to the number of
input parameters, the model is tested with multiple sets of inputs
(5, 7, 9, 11, 17, and 19 UPs) that correspond to different threshold
values for the Spearman’s correlation coefficient (i.e. level of
importance to PCT). Table 9, summarizes the performance
metrics of the model with different number of uncertain
parameters used as inputs to the meta-model. After dimension
reduction, the various cases investigated are compared to each
other using a number of performance metrics: the determination
coefficient (R2), the mean square error (MSE), the mean
arithmetic error (MAE) and the mean logarithmic squared
error (MLSE).

Judging by both R2 and MSE, the model with 9 to 11
parameters achieves reasonable performance. Considering the
results presented in Table 9, the lowest possible MSE is
approximately 0.00185 which is obtained using 11 inputs with
an R2 value of ∼0.89. When, the machine learning model is tested
with nine inputs, approximately similar results are obtained with
a loss function, MSE, of ∼0.00186 at an R2 value of ∼0.93. Outside
this range (9 to 11 inputs) the ML model performance

deteriorates. Given, the aleatory nature of the ANN model
optimization which is based on random optimization, the
optimum number of input parameters is expected to be within
the range 9 to 11 variables with slight variation in performance
metrics results (MSE ∼0.002, R2 ∼ 0.9). It is worth noting that
from a safety perspective, it is better to tune the model for high
temperatures.

Figure 6 shows the prediction results in comparison to the
actual known PCT values with different number of input
parameters. Clearly, the lower number of input parameters
does not capture fully the relationship between inputs and
outputs embedded in the database. On the other hand, the
higher number of input parameters may include unnecessary
details that may confuse the model. One would suspect an
optimum number of input parameters may exist for better
prediction capability as evidenced by the results shown in
Table 9.

CONCLUSION

The aim of this work is to develop a machine learning (ML)
algorithm that is capable of accurately predicting the key safety
parameter, PCT, under LBLOCA scenario. The algorithm was
trained using a database created using the best estimate code
MARS-KS V1.4, with uncertainty quantification using the
statistical tool, Dakota to propagate the uncertainty parameters

FIGURE 6 | Scatter plot for PCT using different number of uncertain parameters as inputs.
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through the thermal hydraulic model. A Monte Carlo sampling
method was used to generate 3,556 successful samples to train the
ML model using 19 key uncertain parameters. The Monte Carlo
simulation converged after 2,000 samples yielding the required
average PCT in consistency with the USNRC requirement of 95%
probability and 95% confidence interval.

An ANN model was developed, trained and optimized using
the provided database. The ANN model was successfully tuned
using the Talos optimization tool to predict the PCT with high
accuracy. The optimum model is chosen based on the desirable
objective function and the validations metric, MSE. A model with
9 to 11 inputs best represents the data and can be used to predict
PCT accurately with a MSE of ∼0.002 with R2 value of ∼0.9.

This study successfully shows that ANN can be used as a
surrogate to the thermal hydraulics MARS-KS model to
predict the PCT value for the LBLOCA scenario using
only the key uncertain input parameters with reasonable
accuracy. For future work, the framework developed for this
project can be used for uncertainty quantification of other
key safety parameters such as Departure from Nucleate
Boiling Ratio (DNBR) under LBLOCA or other critical
scenarios. This is a preliminary step towards developing
an expert support system that can be used to guide the
operator actions under the stressful accident conditions.
As a bounding accident scenario, the analysis of the

LBLOCA case paves the way to using machine learning as
a decision making tool for design extension conditions as
well as severe accidents.
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Model-Based Deep Transfer Learning
Method to Fault Detection and
Diagnosis in Nuclear Power Plants
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Deep learning–based nuclear intelligent fault detection and diagnosis (FDD) methods have
been widely developed and have achieved very competitive results with the progress of
artificial intelligence technology. However, the pretrained model for diagnosis tasks is hard
in achieving good performance when the reactor operation conditions are updated. On the
other hand, retraining the model for a new data set will waste computing resources. This
article proposes an FDD method for cross-condition and cross-facility tasks based on the
optimized transferable convolutional neural network (CNN) model. First, by using the
pretrained model’s prior knowledge, the model’s diagnosis performance to be transferred
for source domain data sets is improved. Second, a model-based transfer learning
strategy is adopted to freeze the feature extraction layer in a part of the training model.
Third, the training data in target domain data sets are used to optimize the model layer by
layer to find the optimization model with the transferred layer. Finally, the proposed
comprehensive simulation platform provides source and target cross-condition and
cross-facility data sets to support case studies. The designed model utilizes the strong
nonlinear feature extraction performance of a deep network and applies the prior
knowledge of pretrained models to improve the accuracy and timeliness of training.
The results show that the proposed method is superior to achieving good generalization
performance at less training epoch than the retraining benchmark deep CNN model.

Keywords: fault detection and diagnosis, deep learning, transfer learning, freezing and fine-tuning strategy, nuclear
power plants

INTRODUCTION

No matter how advanced the energy systems have progressed with state-of-the-art techniques,
operation safety and reliability will be a central research topic all the time. Especially for nuclear
systems, safeguards are even more critical and cannot be ignored (Perrault, 2019; Matteo et al., 2021;
Yao et al., 2021). Most of the severe nuclear leakage events throughout the history of humankind
have been caused by operators’ inappropriate responses and solutions. Therefore, it is critical to
provide administrators with auxiliary information under different nuclear system operation
conditions before an accident worsens (Wahlström, 2018; Yoo et al., 2018).

One predictive maintenance approach that has become increasingly valued is fault detection and
diagnosis (FDD), to judge (detection) and identify (diagnosis) the type of fault (Yangping et al., 2000;
Ma and Jiang, 2011). According to the review work from Zhao et al. (2021), the development of fault
diagnosis in nuclear power plants (NPPs) mainly goes through three essential stages: the model-
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based method, knowledge-based rule method, and currently
popular data-driven method. Model-based approaches fall into
twomain categories. One is through the statistical anomaly (fault)
and average state residuals, such as parity check, wavelet
transform, and time–frequency analysis of quantitative models
(Zhong et al., 2018). The other is a qualitative analysis based on
the physical or graph structure models. Besides, the rule-based
approaches are an essential branch of fault diagnosis research,
which by triggering specific “if–then” rules to determine results
related to measured/detected fault symptoms. The rule libraries
are developed using expert judgment and prior knowledge of
systems; the most famous rule of which is the fuzzy rule (Xu et al.,
2019).

However, modern industrial systems have a nonlinear,
considerable time delay, uncertainty factors, which makes it
challenging to build precise mathematical models. Therefore,
the application of model-based and rule-based methods is limited.

The data-driven method does not require prior knowledge of
the object system (mathematical model or expert experience). It
takes the monitoring data as the research object to estimate the
state of the target system, avoiding the shortcomings of the
physical model–based method. Feature extraction and classifier
design are two main parts of this method. The popular method in
feature extraction is principal component analysis, which reduces
the dimension of the data and extracts critical information (Peng
and Wang, 2018). The famous classifiers mainly include Support
Vector Machine (Yao et al., 2020a), Extreme Learning Machine
(Zheng et al., 2019), and artificial neural network (Xin et al.,
2019).

With the advances of the Internet of Things, big data, and the
continuous improvement of equipment scale (Lee et al., 2014;
Wang et al., 2015; Seabra et al., 2016), deep learning–based fault
diagnosis methods such as the automatic deep encoder–decoder
(Wang and Zhang, 2018), deep belief networks (DBNs) (Tang
et al., 2018), and deep convolutional neural networks (CNNs)
(Wen et al., 2017) are gradually coming into view. Compared with
traditional data-driven methods, high integrated and end-to-end
deep networks with multiple hidden layers can learn and fit any
nonlinear relationship under sufficient training data, widely
applied in different energy systems.

Correa-Jullian et al. (2020) discussed several deep
networks–based methods. They applied them to prognose the
performance of solar hot water systems under different
meteorological conditions. Xu et al. (2020) combined the
CNNs with the variational mode decomposition algorithms to
accomplish the fault diagnosis of the rolling bearing of wind
turbines. Guo et al. (2018) proposed a fault diagnosis approach
using a DBN with a model optimization strategy for building
energy saving. In nuclear systems, Peng et al. (2018) utilized the
feature selection capability of correlation analysis for
dimensionality reduction and DBNs for fault identification.
Saeed et al. (2020) proposed a fault diagnosis model based on
the deep hybrid networks to achieve FDD with different levels.
Mandal et al. (2017) introduced a DBN-based detection and
diagnosis method for the thermocouple sensor fault. Yao et al.
(2022) presented a residual CNN with an adaptive noise
elimination procedure for the FDD in small modular reactors.

The designed deep network–based model can learn features
from the original data and have overwhelming advantages in
solving various fault classification problems. On the other hand,
the end-to-end deep learning model has integration advantages
compared with traditional machine learning–based manual
feature engineering selection. When training diagnostic models
based on data-driven methods, we usually default to the same
training and test data distribution. Suppose that there are enough
training samples for the fault diagnosis task of a given scene. In
that case, the model nonlinear relationship can be fitted through
parameter optimization to achieve a high-precision diagnosis.

However, in the actual system operation process, the nuclear
systems are in a stable operation state most of the time. The
difficulty of obtaining fault data leads to a small number of samples,
and most faults are in an unmarked condition. Traditional deep
learning models such as CNNs and DBNs will overfit when
training on small sample data sets and significantly reduce
diagnostic performance. On the other hand, the historical
training model fails to identify new data once the system runs
under different conditions or upgraded or updated environment.

The transfer learning (TL) method is proposed to solve the above
problems. It transfers the knowledge learned from the neighboring
domain to improve learning performance under insufficient target
task training data. In recent years, it has been developed and applied
in natural language processing, computer vision, and autonomous
driving (Ruder et al., 2019; Zhuang et al., 2020). Furthermore, to
apply TL in the FDDs is to relax the constraint that targets domain
data, and the source domain datamust obey the same distribution. It
will reduce the urgency of collectingmassive data combined with TL.
At present, relevant research in energy is scarce. For nuclear systems,
TL-based fault diagnosis, the initial exploration, has not been
involved.

To address the above problems, we propose a diagnosis
framework based on transferable CNN models to make full
use of the prior knowledge of the pretraining model.
Compared with the traditional deep network–based diagnosis
framework, the proposed method has the following advantages:

1) A novel freezing and tuning transfer strategy based on a
pretraining model can be applied in the nuclear systems’
fault diagnosis under different operating conditions and
equipment.

2) The proposed method does not need to train and optimize the
parameters of each layer of the model one by one. Still, it
makes full use of the high-dimensional feature extraction
capability of the pretraining model for source domain data.

3) The proposed method significantly reduces the model
retraining time. Under insufficient data, avoiding data
expansion technology minimizes the probability of model
overfitting and improves the training performance.

4) The proposed method has good portability. After simple
optimization for different target transfer environments,
future research can achieve ideal results.

The remainder of the article is organized as follows: Vanilla
CNN Structure briefly introduces the vanilla CNN structure.
Proposed Method proposes a TL-based fault diagnosis
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procedure. The case study is presented in Case Study. Results and
discussions are shown in Results and Discussion. Conclusion
concludes the article and makes an outlook for the future work.

VANILLA CONVOLUTIONAL NEURAL
NETWORK STRUCTURE

CNNs (LeCun et al., 2015) are traditional deep networks
commonly used in classification research. They are mainly
based on the feedforward networks to add the corresponding
convolution operation process to extract the high-dimensional
characteristics of the input data to be analyzed. From the initial
application in speech and image recognition to the current
machinery, energy, aerospace, and other fields of abnormal
detection, fault diagnosis, time-series prediction, and other
applications have a wide range of prospects. Compared with
traditional neural networks, neurons in the CNN structure are
arranged in three dimensions, as is shown in Figure 1.

The neurons in the layers are not fully connected traditionally
but are only related to a small area of the previous layer. The CNN
structure is mainly composed of three essential parts: the
convolutional layer, pooling layer, and fully connected layer,
which are executed to make feature extraction, filtering, and
output with nonlinear combination, respectively.

PROPOSED METHOD

Brief Structure
Figure 2 shows the scheme of the proposed TL-based diagnosis
framework. It mainly contains four critical steps: data set
construction, model presetting, transferable model
construction, and model optimization and testing.

First, the source and target domains of the research data sets are
constructed through the existing comprehensive experimental
platform. The source domain data comes from the previous
data, and the target domain data comes from different working

FIGURE 1 | The comparison between fully connected neural networks and the convolutional neural network.

FIGURE 2 | Variations of training accuracy and loss in benchmark
convolutional neural network and the proposed transfer diagnosis model
aiming at different target domain data sets.
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conditions or new reactor types. Second, the CNN-based model
designed initially is used to complete sufficient training and
hyperparameter optimization for the source domain data. Third,
a part of the data set in the target domain data set is selected for the
transferred model training, which is completed by freezing and
tuning some layer parameters. Finally, the hyperparameter tuning
is performed on the transferred model, and the target domain data
sets are adopted to test the diagnostic performance of the proposed
method. The detailed procedure of model presetting and the
transferable model building will be introduced.

Model Presetting
The basic structure of the transfer model refers to the previous
design, which is modified compared with the vanilla CNN
structure (Yao et al., 2020b). It has one input layer, three
convolutional layers, three max-pooling layers, and two fully
connected layers. Meanwhile, the layers in the network are
grouped and divided into specific modules to discuss the
influence of different model parts on transfer performance
during freezing and tuning. The detailed introduction of the
model structure is shown in Table 1. On this basis, combined
with the state information imaging method, the network input is
a two-dimensional matrix image. Furthermore, the number of the
convolution kernel is set as a more considerable number (128) to
enhance the network feature learning ability. The number of the
following convolution kernels is settled as 32 and 64, respectively.

The criterion sets the number of convolution kernels from the
least to the most. It gradually increases in multiple relationships to
obtainmore discriminative features at the higher level of the network.
In addition, zero padding is used to make the feature output before
and after the convolution operation maintain the same size.
Moreover, batch normalization is adopted to avoid network
overfitting, thereby maximizing saving the original input
information. For the pooling layer parameter setting, the number
of feature maps in each component block is the same as that in the
convolution layer, verified in the previous work. The Softmax
function is selected as the classification function. The Adam

optimization method (Kingma and Ba, 2014) is used to make
gradient updating, introduced in reference Kingma and Ba (2014)
in detail.

Transferable Model Building
The transferable model is based on a fully pretrained CNN–based
diagnosis model for the source domain data set. The output of the
Softmax function should be replaced by the number of samples in the
target domain when constructing the forward transfer model for
samples in the target domain. For the hyperparameters of other
network layers, layer-by-layer freezing and optimization are adopted,
as is shown in Figure 3. The detailed procedure is as follows:

Step 1: Replace the output fault categories in the Softmax
function according to the target task category.

Step 2: Adopt the target domain data training in a small
sample environment, freeze the parameters of the pre-sequence
network layer.

Step 3: Adopt a small learning rate design to tune the
subsequent connection layer to realize the generalization
transfer of the network.

Step 4: Reduce the number of frozen, fixed layers and move
them to the transfer connection layer. Similarly, a small learning
rate is adopted to tune the transfer connection layer, and the
whole process is shown in Figure 3.

Step 5: The test data set samples are substituted into the model
to obtain its discriminant classes, and the diagnostic performance
of the model is tested.

In the Proposed Method, Part A, we have selected the basic
structural hyperparameters of the CNN model, which includes the
step size, number of kernels, batch size, etc. However, the influence of
the learning rate on model training is not to be further considered.
When using the gradient descent algorithm, if the learning rate is too
low, the convergence of the model will be slow. Furthermore, more
epochs are needed to complete the training, thus wasting
computational power.

On the other hand, if the setting is too large, the model will not
converge, reducing the model’s diagnostic performance. The

TABLE 1 | Pretrained convolutional neural network model structure.

Layer no Module no Layer type Kernel size Output size Stride Padding

1 Input — 200 p 316 p 3 — —

2 M 4 Convolution 128 100 p 158 p,128 2 Yes
3 BN — 100 p 158 p,128 — —

4 ReLU — 100 p 158 p,128 — —

5 Max pooling 128 50 p 79 p,128

6 M 3 Convolution 32 25 p 40 p 32 2 Yes
7 BN — 25 p 40 p 32 — —

8 ReLU — 25 p 40 p 32 — —

9 Max pooling 32 13 p 20 p 32

10 M 2 Convolution 64 7 p 10 p 64 2 Yes
11 BN — 7 p 10 p 64
12 ReLU — 7 p 10 p 64
13 Max pooling 64 4 p 5 p 64

14 M 1 Dense — 256
15 Dense — 128

16 Softmax 11
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learning rate decay (LDR) is a commonly used method in deep
network training. Although the adaptive gradient descent
algorithm (Adam) is adopted in the pretraining model to
optimize the updating strategy of the gradient, the LDR is still
applicable to the training of the model.

Therefore, to improve the efficiency of freezing and fine-tuning
the procedure, we divided the training epoch into several parts and
adopted an exponential LDR strategy in each part to enhance the
training effect of the model, which is as follows:

α � Depoch
p pα0 (1)

where Dp represents the LDR in each epoch. P represents the
number of division parts. α0 represents the initial value of the
learning rate.

CASE STUDY

Research Platform
Since 2011, the project to build the accelerator-driven systems for
nuclear waste transmutation has been developed and researched
by the Chinese Academy of Science, including three key stages.
Gen-IV China LEAd-based Reactor (CLEAR) was proposed as
the reference for the above project (Wu, 2016a).

And then, to test the 1:1 prototype key component and verify
the thermal hydraulic performance of the designed CLEAR-I, the
integrated nonnuclear test facility CLEAR-S was built
commissioning at the end of 2017 (Wu, 2016b). In 2018, the
basis experimental hardware system CLEAR assistant simulator
was made for the neutron transportation simulation, structure
engineering design, and accident security analysis. It utilizes a
computerized man–machine interface and digitalized
instrumentation and control system. We are currently

conducting research and analysis based on nonnuclear test
devices and a hardware-in-the-loop simulation experimental
platform, which provides data support for further study.

Data Set Description
The data set in this study comes from the CLEAR-I and
CLEAR-S accident simulation data stored in the previous
research on the simulation experiment platform with the
RELAP5 simulation calculation program–based core, which
is shown in Figures 4, 5.

The RELAP program is a thermo-hydraulic program
developed by Idaho National Laboratory to simulate a
transient accident in a light water reactor (Li et al., 2014). It is
a one-dimensional transient, two-phase fluid, six hydrodynamic
equation and one-dimensional heat conduction. Moreover, point
reactor dynamics models are widely used in NPP’s accident safety
analysis, accident evaluation, experimental analysis, and other
fields. RELAP5-HD is a new version developed based on
RELAP5. Its most significant feature is that it highly integrates
the functions of RELAP5-HD and its three-dimensional (3D)
thermo-hydraulic and neutron dynamics modeling capabilities,
which can achieve more accurate 3D reactor construction. It can
meet the real-time simulation requirements of the simulator. It
can be adopted as a simulation program for the thermal-hydraulic
system of the reactor simulator.

Source Domain Data Set
The source domain data set Ds is acquired from the CLEAR-I
operation data. In the study, 10 typical operation scenarios are
included which contain one scenario under standard steady
scenario [100% rate full power (RFP)], two power step
scenarios (from 100 to 120% and 150% RFP), a severe
accident scenario (loss of coolant with a small break), and six
scenarios of rotating machinery of component faults in the fan or

FIGURE 3 | The process of adopted freezing and fine-tuning transfer strategy.
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a pump. Table 2 shows the detailed information about each
operation scenario in Ds.

Each scenario starts instantaneously except for scenario 1
(steady-state). The corresponding transient operation or fault
is introduced from t = 0 to track the development trend. The
sampling time set in the program is 0.25 s, and the sample length
is 200, i.e., a total of 50 s. Each scenario contains 100 data samples,
50% of which are obtained through data enhancement. The
method adopted is the sliding window method introduced in a
previous work (Yao et al., 2020b). Each sample consists of 316
monitoring points from different components. The 316

monitoring points are distributed in 17 key node parameters,
which are detailed as follows:

Core (5): Reactivity, power, control rod position, core
temperature, and flow rate.

Steam Generator (6): SG primary side temperature, flow rate,
and pressure; SG secondary side temperature, flow rate, and
pressure.

Pump (2): Main pump flow rate and secondary pump
flow rate.

Fan (4): Primary temperature, flow rate, and secondary
temperature and flow rate.

FIGURE 4 | Research platform. (A) The designed schematic diagram of China LEAd-based Reactor (CLEAR)-I. (B) The experiment and designed schematic of
CLEAR-S. (C) Control room.

FIGURE 5 | RELAP5–HD communication interface in research platform.
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Target Domain Data Sets
The target domain data sets in this study are constructed
according to specific transfer tasks. Two different target data
sets for the cross-condition and cross-facility mission are built in
the case study to verify the validity of the proposed model-based
transfer method.

The target domain data sets Dt1 and Dt2 are settled to evaluate
the ability of the network’s transfer and generalization capability
under different steady states. Dt1 shares the same reactor type
(CLEAR-I) as Ds but operates at a much higher steady-state
power (120% RFP). The sample size in each failure case is 30% of
the source domain data set, but the data sample’s length is the
same. Dt2, based on Dt1, improves the difficulty of cross-operating
conditions transfer, including 80 and 120% RFP steady-state
operating conditions of the reactor. Because the monitored
parameters will be changed with different operating conditions
under accident, the diagnosis task for Dt2 will be more challenging
than that of Dt1. To ensure the comparability of experimental
results, the total number of samples between two target data sets

is unified. Table 3 shows details of the cross-condition target
domain data set.

Dt3 and Dt4 are constructed for cross-facility transfer tasks
built from a completely different reactor (CLEAR-S), as is shown
in Table 4. The steady-state and power step operation data were
derived from the experimental data on the existing facility.
Compared with cross-condition data sets, cross-facility data
sets differ significantly from source domain data in
distribution characteristics, improving transfer complexity. The
purpose of building this type of target domain data set is to
explore the ability of the proposed transfer strategy between
different facilities. It is worth noting that there are differences
in structure between CLEAR-S and CLEAR-I nodes (CLEAR-I
nodes are more precisely divided). To ensure that the cross-
facility data set is dimensionally the same as the source data, we
use zero padding for the default nodes to unify the data
dimension, avoiding data heterogeneity.

To be similar to the procedure in the cross-condition transfer
task, when compared with Dt3, Dt4 is replaced with the data in

TABLE 2 | China LEAd-based Reactor-I source domain data set.

Data set type Scenario no Scenario description Data size

Ds 1 Steady-state with 100% rated full power 200 p 316 p100
2 20% increasing power steps from steady-state 200 p 316 p100
3 50% increasing power steps from steady-state 200 p 316 p100
4 LOCA with the small break 200 p 316 p100
5 One of the main pump rotor seizures 200 p 316 p100
6 Two main pump rotor seizure 200 p 316 p100
7 One of the feed pump rotor seizures 200 p 316 p100
8 Two feed pump rotor seizure 200 p 316 p100
9 Fan rotor seizures 200 p 316 p100
10 Fan speed decreases by 10% 200 p 316 p100
11 Fan speed decreases by 30% 200 p 316 p100

LOCA, loss of coolant accident.

TABLE 3 | China LEAd-based Reactor (CLEAR)-I source domain data set.

Data set type Reactor type Scenario label Scenario description Data size

Dt1 CLEAR-I 1 Steady state with 120% rated full power 200 p 316 p 80
2 20% increasing power steps from steady state 200 p 316 p 80
3 LOCA with the small break 200 p 316 p 80
4 One primary pump rotor seizure 200 p 316 p 80
5 Double primary pump rotor seizures 200 p 316 p 80
6 One secondary pump rotor seizure 200 p 316 p 80
7 Double secondary pump rotor seizures 200 p 316 p 80
8 Fan rotor seizures 200 p 316 p 80
9 Fan speed decreases by 30% 200 p 316 p 80

Dt2 CLEAR-I 1 Steady state with 80% or 120% rated full power 200 p 316 p 40&40
2 20% increasing power steps from steady state 200 p 316 p 40&40
3 LOCA with the small break 200 p 316 p 40&40
4 One primary pump rotor seizure 200 p 316 p 40&40
5 Double primary pump rotor seizures 200 p 316 p 40&40
6 One secondary pump rotor seizure 200 p 316 p 40&40
7 Double secondary pump rotor seizures 200 p 316 p 40&40
8 Fan rotor seizures 200 p 316 p 40&40
9 Fan speed decreases by 30% 200 p 316 p 40&40

LOCA, loss of coolant accident.
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Table 4 | Cross-facility target domain data set.

Data set type Reactor type Scenario label Scenario description Data size

Dt3 CLEAR-S 1 Steady state with 100% rated full power 200 p 316 p 40
2 20% increasing power steps from steady state 200 p 316 p 40
3 50% increasing power steps from steady state 200 p 316 p 40
4 LOCA with the small break 200 p 316 p 40
5 Main pump rotor seizures 200 p 316 p 40
6 Secondary pump rotor seizures 200 p 316 p 40
7 Fan rotor seizures 200 p 316 p 40
8 Fan speed decreases by 10% 200 p 316 p 40
9 Fan speed decreases by 30% 200 p 316 p 40

Dt4 CLEAR-S 1 Steady state with 100% or 120% rated full power 200 p 316 p 20&20
2 20% increasing power steps from steady state 200 p 316 p 20&20
3 50% increasing power steps from steady state 200 p 316 p 20&20
4 LOCA with the small break 200 p 316 p 20&20
5 Main pump rotor seizures 200 p 316 p 20&20
6 Secondary pump rotor seizures 200 p 316 p 20&20
7 Fan rotor seizures 200 p 316 p 20&20
8 Fan speed decreases by 10% 200 p 316 p 20&20
9 Fan speed decreases by 30% 200 p 316 p 20&20

LOCA, loss of coolant accident.

FIGURE 6 | Variations of diagnostic accuracy using the freezing-and-tuning strategy with different training data ratios and tuning modules ((A) Dt1; (B)Dt2; (C)Dt3;
(D) Dt4).
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120% operating conditions to increase the transfer complexity. It
is more challenging to transfer the model under different steady-
state operating conditions simultaneously under cross-facility
conditions.

RESULTS AND DISCUSSION

To highlight the effectiveness of the proposed transfer model, we
discussed and analyzed the screening results of model layers. The
comparison results between transfer and non-transfer models.
We also considered the final training and optimization results for
cross-condition and cross-facility transfer tasks. The training
procedure of the proposed transfer model was implemented in
Keras v2.2.4 onMicrosoftWindows 10 operating system based on
an Intel Core i7-10750 2.6 GHz CPU with 64 GB RAM and
accelerated by the Cuda v11.1 environment with NVIDIA
RTX 3070 GPU.

Freezing and Fine-Tuning Result
To discuss the influence of the ratio of training samples on the
transfer model’s freezing-and-tuning process, we further divide
Dt1 to Dt4 into three parts, which include 25, 50, and 100%
training samples. Meanwhile, the training and test samples’ ratio
is the same as the pretraining model in the source domain, set as
4:1. All training and testing sites were cross-validated by a
percentage of five folds to ensure accuracy. Meanwhile, all the
test results are averaged 10 times.

Figures 6A,B show the influence of different training data
ratios and tuning modules on the diagnosis accuracy in cross-
working condition data sets (Dt1 to Dt2). The horizontal axis
shows the included tuning modules. For example, M 1 represents
that only the last fully connected layer is tuned. At the same time,
M 1–4 illustrate that all modules from 1 to 4 are adjusted layer by
layer. The vertical axis shows the diagnostic accuracy of the target
domain test data set.

It can be concluded that the diagnostic accuracy of all transfer
models aiming at Dt1 and Dt2 can reach more than 70% under the
most extreme condition of the 25% training samples when only
the latter fully connected layers in the model are fine-tuned.
These results indicate that the designed model transfer scheme is
feasible for cross-condition target domain data sets. On the other
hand, the diagnostic accuracy is also improved in the increasing
proportion of fine-tuning modules after transfer. Significant
improvement has been made in learning the lowest level
convolutional pooling module with the M 1–2 strategy.
However, the effect of this promotion is gradually decreasing,
indicating that the low-level features of the training process of the
transfer model have universal value. By contrast, the transfer of
high-level features is more complex and abstract. It is challenging
to obtain ideal training effects.

When all modules are fine-tuned, the diagnosis accuracy only
improves 0.66% compared to that of theM 1–3 strategy under the
condition of 100% training samples. To make matters worse, the
diagnostic performance of the model decreased by 1.79% under
the condition of 25% training samples. According to the structure
of the model in the Proposed Method, Part B, it can be seen that

the large size of the convolution and pooling layer makes it
impossible to train a large number of neurons for parameter
optimization and update when the number of samples is small.
Therefore, over-fitting problems occurred in model training,
introducing the decrease in diagnostic performance.

However, we do not need to be pessimistic because this
situation will be improved as the number of training samples
increases. Therefore, it is often necessary to fix the weight of the
underlying parameters rather than fine-tune all model
parameters in the whole transfer procedure.

Figures 6C,D show the results of variations of diagnostic
accuracy in cross-facility data sets (Dt3 to Dt4). It can be found
that when all the training data are used for training and the
number of tuning layers is more remarkable than three, the
diagnostic accuracy of the target domain sample can reach an
ideal result, which is more than 75%. By comparing the data of
different transfer modules, it can be found that the freezing and
tuning transfer strategies significantly improve the diagnosis
accuracy under the cross-facility transfer task.

It shows that the high-dimensional features of the source
domain in the transferred layer are beneficial to the
generalization of the model in the target domain. In addition,
the improvement of diagnostic accuracy of data samples is more
significant, indicating that for cross-facility condition data with
apparent differences in distribution, sufficient trainable samples
are more important for advancing model performance.

Meanwhile, Table 4 shows the influence of the amount of
training data and the number of transferred layers on the training
time of the model. It can be found that the increase in the number
of tuning layers will significantly prolong the model training time.
Compared with M 1–3, tuning all layers in the model (M 1–4)
improved 97.36, 86.06, and 77.25% in three different training data
levels. The above results mean that tuning a high level with high
dimensional characteristics increases model complexity. However,
usingmore training data does not significantly increase the training
time of the model compared with tuning more layers. Combined
with the above discussion results related to Figure 6, we finally
selectedM 1–3 as the transferred tuningmodel structure compared
with the benchmark CNN in the following discussions.

Compared With the Benchmark
Convolutional Neural Network Model
In this section, we verify the effectiveness of the proposed method
by comparing the accuracy and loss changes of different models.
The benchmark CNN model and the pretraining model are
identical in structure to ensure the fairness of comparison
results, as is shown in Table 1. The former directly uses the
insufficient data of the target domain for direct training. By
contrast, the latter uses the M1-3 structure for different
transfers to perform full pretraining on the CLEAR-I source
domain data and then migrates the source domain knowledge to
the target domain network.

Figure 7 shows the variations of accuracy and loss of the
benchmark CNN model and the proposed transfer model in the
training process of 100 epochs for different transfer target data
sets. According to the cross-condition target data set results,
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which are shown in Figures 7A,B, both models get 98.5%
accuracy after 100 epochs training. The training loss in the
proposed transfer model gradually approaches a fixed value. It
remains stable after 50 epochs, but the similar target losses of the
benchmark CNN model for Dt1 and Dt2 gradually stabilized after
60 and 90 epochs, respectively.

The results indicate that the CNN model is more prone to
over-fitting for sample data in target domains, thus falling into
local optimal solutions. The proposed method adopts the transfer
strategy based on the pretraining model, effectively reducing the
network’s dependence on training parameters and sample
numbers. On the other hand, it makes the network parameters
establish a better initial value in the searched parameter space,
conducive to faster training and convergence of the model.

Figures 7C,D show the training results of the transfer model
for cross-facility data sets. It can be found that compared with the
benchmark CNN model, the training loss of the transfer model
decreases faster in the initial stage, indicating that source domain
knowledge plays a specific role in the transfer process. However,
with the epoch increases in the later period, training loss was not

further reduced, mainly because of the significant difference in
sample distribution among different devices. The prior
knowledge obtained from the source domain data could not
be further generalized to target domain data set to improve
diagnostic accuracy. As the CNN model is retrained, its
accuracy could be further improved with the epoch increase,
which is better than the transfer model after 100 epochs.
However, the ideal training effect cannot be achieved due to
insufficient samples in the cross-facility target domain.

FIGURE 7 | Variations of training accuracy and loss in benchmark CNN and proposed transfer diagnosis models aim at different target domain datasets ((A) Dt1;
(B) Dt2; (C) Dt3; (D) Dt4).

TABLE 5 | Cross-facility target domain data set.

Tuning module Training time cost/epoch (s)

25% training
data

50% training
data

100% training
data

M 1 0.22 0.44 0.53
M 1–2 0.69 0.83 1.21
M 1–3 1.14 1.65 2.11
M 1–4 2.25 3.07 3.74
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Since the proposed strategy can achieve good generalization
performance at the initial training stage, we discuss the proposed
method with the benchmark CNN’s training time and diagnostic
accuracy after only 50 epochs. At the same time, we also give the
results after 100 epochs, as is shown in Table 5.

It can be found that compared with the benchmark CNN
model, after training with 100-epoch, the proposed transfer
strategy saves 53.21% on average in the overall training time
for the target domain data sets. Similar training accuracy is
achieved on the cross-condition data sets (Dt1 and Dt2). What
is more noteworthy is that after 50 training sessions, the test and
diagnosis accuracy of the proposed method for Dt1 and Dt2 is
close to 90%, which achieves a high model training effect in less
time, proving the effectiveness of the proposed transfer strategy.
However, the transfer strategy has not achieved satisfactory
results in cross-facility data sets (Dt3 and Dt4). Although the
accuracy was significantly improved initially, it could not be
further improved due to the difference in data distribution,
which proved that the existing high-dimensional
feature extractor did not realize its function in the target
domain samples.

CONCLUSION

In this article, we proposed an FDD method based on the
optimized transferable CNN model. The priority knowledge
and proposed fine-tuning strategy improved the diagnosis
performance of the pretrained model aiming at a new target
domain data set. It saved 53.21% of the training time compared
with the benchmark CNNmodel. In addition, acceptable training
accuracy could be achieved no more than 50-epoch training,
proving that the proposed method has good generalization
performance and timeliness.

On the other hand, although the proposed transfer strategy
could not achieve ideal diagnostic accuracy for the cross-facility
diagnosis task, the model performance increased at the initial
stage of training. It indicates that the training model with
characteristic information in the source domain data set
provided a specific help. However, the data distribution

difference is too big between the two data sets. The available
training data are limited, leading to worse diagnosis results.
Similarly, the CNN model could not obtain ideal training
results when the data were missing.

In general, the proposed method ideally solved the problem of
cross-condition transfer. Besides, collecting fault data of different
domains at the initial stage is time-consuming and essential,
which is also to prepare for future TL-related tasks. We will
optimize the diagnostic performance of the deep TL model to
resolve data distribution differences. In addition, the transferred
non–deep learning method can be equally valuable, which will be
further discussed and attempted.
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An Improved Method for PWR Fuel
Failure Detection Using
Cascade-forward Neural Network
With Decision Tree
Bing Dong1, Kang Yang2, Wei Zhang2, Junlian Yin1 and Dezhong Wang1*

1School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, China, 2China Nuclear Power Engineering
Company, Beijing, China

When a fuel rod is damaged, determining the degree of fuel failure makes sense. The
operators can decide whether to continue operating the reactor or shut it down based on
the severity of the fuel failure. The isotopic ratio of two radioactive fission products (FPs) is a
typical technique for evaluating the degree of fuel failure, although this is not applicable in
the case of little fuel failure but large tramp uranium mass. The feedforward neural network
(FFNN) has been used to identify fuel failures in order to overcome the shortcomings of the
isotopic ratio method, although there is still inadequacy in the ability to distinguish between
an intact fuel rod and a defective fuel rod with a small defect. In this study, we propose a
cascade-forward neural network with a decision tree for fuel failure detection that performs
well at classifying the degree of fuel failure and, in particular, at differentiating between an
intact fuel rod and a defective fuel rod with a small size defect. The input of the neural
network is the specific activity of FPs measured in the coolant. The degree of fuel failure is
determined by the neural network’s output, which is labeled using one-hot encoding. The
training set is constructed using the Booth-type diffusion model and the first-order kinetic
model. The performance of the improved neural network is demonstrated. It is shown that
the improved method is more accurate and responsive than the previous neural network
when recognizing the onset of fuel failure. Finally, the most important nuclides are
determined through the sensitivity analysis, and the neural network is simplified
according to the importance of nuclides and the limitation of the radioactive detector in
practical application.

Keywords: nuclear fuel, cladding defect, fuel failure detection, neural network, decision tree, fission product

1 INTRODUCTION

The reactor generates a substantial amount of fission products (FPs) during operation. Under normal
operating conditions, the fission products are contained within the fuel cladding which prevents
them from escaping into the primary coolant and maintains the coolant’s specific activity within the
management limit. While the performance of the fuel rods keeps improving, the fuel cladding is
inevitably defective during operation for a variety of reasons (Qin et al., 2020), including the
following: 1) power ramp defects caused by stress corrosion cracking (SCC) or pellet-cladding
interaction (PCI); 2) circumferential cracking caused by hydrogen embrittlement; 3) fabrication
defects; and 4) fretting defects caused by interaction with the grid spacer or debris in the primary
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coolant (Lewis et al., 2017). When the fuel cladding is defective,
FPs can migrate from the fuel cladding gap to the primary
coolant, considerably increasing the specific activity of the
coolant. If the specific activities or defect sizes exceed the
critical values, the reactor must shut down according to the
regulation (Likhanskii et al., 2006; Qin et al., 2019). Otherwise,
it may increase the risks of occupational exposure and harm the
safety of reactor operation (Iqbal et al., 2007; Qin et al., 2020).

In order to determine whether the fuel cladding is defective,
either a chemical sampling approach from the let-down flow or
the real-time online monitoring system is used to collect specific
activities in the primary coolant. By analyzing the specific
activities of FPs derived by sampling or online monitoring,
fuel rod failures are discovered by various methodologies, such
as the release-to-birth ratio method (Zanker, 1989), fitted escape
rate coefficient method (Yamamoto and Morishita, 2015), and
isotopic ratio method (Kalinichev et al., 2018; Li et al., 2017) (Qin
et al., 2016). Generally, these strategies are developed in
consideration of the FP release model or reactor operation
experience. Among these strategies, the isotopic ratio method
is the one that is most frequently used to detect fuel failures
during reactor operation. It is based on the ratios of specific
activities of two isotopic FPs, which can be used to determine
whether the fuel cladding is defective (Menéndez, 2009). In
addition, it can identify the degree of fuel failure if the fuel
cladding is defective (Li et al., 2017). The advantage of the isotopic
ratio method is its simplicity, as it allows for straightforward
determination of the specific activities of FPs by analyzing the
spectrum obtained from sampling or online monitoring for the
primary coolant. The feature of the isotopic ratio method is that it
does not require the historical operation data of sampling or
online monitoring. The status of the fuel rod can be assessed by
the isotopic ratio at a certain time.

The isotopic ratio method has distinct disadvantages. When
the defect size is small and the mass of tramp uranium is large,
it has been demonstrated that the isotopic ratio increases
slowly before reaching the threshold (Dong et al., 2019).
Thus, the response of the isotopic ratio method is
insensitive for detecting fuel failures. Even in some
circumstances, the isotopic ratio method may fail under the
influence of tramp uranium. In addition, there is no single
standard for the isotopes and the threshold of the isotopic ratio
method (Li and Yang, 2008; Menéndez, 2009; Li et al., 2017;
Lyu and Xiong, 2019).

To address the limitations of the isotopic ratio method, the
neural network–based method for fuel failure detection is
developed (Likhanskii et al., 2006). Artificial neural networks
(ANNs) are a highly effective technique for establishing a
connection between input data and output data in
multidimensional space. ANNs have been extensively used in
the field of nuclear engineering, particularly in fault diagnosis.
Andrews et al. (1999) use ANN models to predict the cesium
release fraction from a water reactor under severe accident
conditions and demonstrate that the models are capable of
reproducing the relationships between the release fraction and
time. Guo et al. (2019) apply the deep neural network to detect the
damaged fuel assembly by processing the real-time image frame

and point out that the deep neural network has more advantages
over the traditional computer vision method. Wang et al. (2022)
use the deep convolutional neural network (CNN) to detect the
system-level fault in the nuclear power plant (NPP) and
demonstrate that it is able to improve the NPP fault diagnosis.
Ebrahimzadeh et al. (2022) use the feedforward neural network in
detection and estimation of fault sensors in the NPP and prove
that it has advantages over traditional methods. Zhang et al.,
(2021) develop a surface crack detection method for nuclear fuel
pellets based on the CNN and show that the new method
improves the performance of traditional machine vision
inspection systems.

In this study, a cascade-forward neural network with a
decision tree is proposed for fuel failure detection, which has a
good performance to classify the degree of fuel failure,
particularly in distinguishing the intact fuel rod and small-size
defective fuel rod. The inputs of the neural network are the
radioactivity of fission products measured in the coolant. The
output of the neural network is the degree of fuel failure, which is
labeled using one-hot encoding. The dataset is generated by the
Booth-type diffusion model and the first-order kinetic model.
The performance of the improved neural network is presented in
the study.

The remaining sections of this manuscript are organized as
follows. Section 2 is dedicated to the improved method for fuel
failure detection. Section 3 shows the performance of the
improved method and results of sensitivity analysis. Finally,
Section 4 concludes the study.

2 METHODOLOGY

2.1 Conceptual Framework
During normal reactor operation, the major source of specific
activity in the coolant is tramp uranium, which has a relatively
low level of specific activity. When the fuel cladding is defective,
the FPs released from the gap in the fuel cladding dominate the
specific activity, that is, in a rather high level. It is obvious that a
large defect size will result in a high level of specific activity. As a
result, the coolant’s specific activity serves as a fingerprint for
predicting the status of fuel failure. While it should be noted that
if the defect size is very small and the tramp uranium mass is
considerable, the tramp uranium contribution may overwhelm
the defective fuel rod contribution.

The framework for the detection approach is depicted in
Figure 1, which is divided into three parts. The blue parts
illustrate how the training, validation, and test datasets are
generated. Due to the extremely low probability of fuel failure
and pursuit of zero fuel rod failure, there is no appropriate fuel
failure dataset for training the network. Thus, the dataset is
generated using the FP release model, which includes the
Booth-type diffusion model and first-order kinetic model, as
detailed in the previous study (Dong et al., 2019). The Booth-
type diffusion and first-order kinetic models are proven to be
appropriate for calculating fission gas release fraction (Lewis
et al., 2017). The green parts denote the establishment of a
system for detecting fuel failures. The system is trained and
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validated on the dataset generated by the blue-outlined technique.
The red parts demonstrate how the system is being used to predict
the status of a fuel failure.

2.2 Fission Product Release Model
2.2.1 Booth-type Diffusion Model
The FP release from the pellet to the gap is dominated by the
diffusion process. Following the assumption from Booth, a one-
dimensional diffusion equation is created considering the FP
generation in the uranium grain due to fission, eliminated by the
decay:

zC r, t( )
zt

� D

r

z2 rC r, t( )( )
zr2

− λC r, t( ) + B, (1)

where C is the concentration of fission products in the uranium
grain (m−3); D is the diffusion coefficient of fission products
(m2s−1); λ is the decay constant of the fission products (s−1); and B
is the production rate of the fission products m−3s−1.

Solving Eq. 1, the release-to-birth ratio of FP release can be
derived:

R

B
� 3
a

��
D

λ

√
, (2)

where a is the radius of the uranium grain.

2.2.2 First-Order Kinetic Model
The FPs in the gap and coolant can be treated as a first-order rate
process in which the degree of fuel failure is characterized by the
escape rate coefficient ]i. Then, the equilibrium equations of
fission products can be established:

dNgi

dt
� Ri + σjϕNgj +∑

k

fikλkNgk − vi + λi + σ iϕ( )Ngi

dNci

dt
� viNgi + τσjϕNcj +∑

k

fikλkNck − λi + Q

W
ηi + β + τσ iϕ + L

W
( )Nci

dNtramp
ci

dt
� Rtramp

i − λi + Q

W
ηi + β + τσ iϕ + L

W
( )Ntramp

ci

,

(3)
where i, j, and k denote the isotopes; Ng is the number of FPs in
the gap;Nc is the number of FPs in the coolant; Ri is the FP release
rate from the pellet to gap, which can be derived from Eq. 2; σjϕN
is the FP transmutation; fikλkN is the FP decay and fik is the
branching ratio; ]i is the escape rate coefficient from the gap to
coolant; Q/Wηi is the FP elimination due to purification; β is the
FP elimination due to boron control; τσiϕ is the FP elimination
due to neutron absorption; and L/W is the FP elimination due to
coolant leakage; Among them, Q is the let-down flow rate (kg/s),
L is the leakage flow rate (kg/s), ηi is the purification efficiency,
and W is the total coolant mass (kg); tramp denotes the
contribution of tramp uranium.

2.3 Structure of the Network
In this study, an improved method for fuel failure detection is
proposed based on the cascade-forward neural network (CFNN).
The CFNN is a type of feedforward neural network, in which
there is a direct connection between every two layers of the
network. It means that there is an additional connection between
the input layer and output layer for a regular three-layer neural
network. The advantage of the CFNN is that it accommodates the
nonlinear relationship between the input and output by not
eliminating the linear relationship between the two (Warsito
et al., 2018). Thus, it is suitable for establishing a relationship

FIGURE 1 | Overview of the fuel failure detection method.
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between the specific activity in the coolant and degree of fuel
failure.

Figure 2 illustrates the structure of the CFNN utilized to
identify fuel failures. The network’s input is a vector containing
the normalized specific activity of FPs in the coolant, and the
network’s output is the degree of fuel failure, which is encoded in
one-hot form. The degree is divided into six categories: degree 1
denotes an unbroken fuel cladding, whereas degrees 2–6 denote a
defective fuel cladding. Correspondingly, a high degree indicates
a big defect size. After going through a Softmax layer, the value of
the neuron represents the probability of that degree of failure
occurring.

Perez and Hamawi (2017) show that typical elements in design
basis source term determinations can be represented by Kr, Xe,
Br, I, Rb, Cs, Sr, Ba, Mo, and Te. Among these elements, Kr, Xe, I,
and Cs are most important FPs in fuel failure detection. The
nuclides mainly considered in the study are Kr, Xe, I, and Cs,
which have a relatively large fission yield and a relatively long
half-life, including Kr-85, I-131, I-133, Xe-133, Xe-135, and Cs-
137. Simultaneously, considering the decay chain and the
representativeness of nuclides in each group, the generated
dataset has specific activities of 23 nuclides: Br-83, Kr-85, Kr-
85m, Kr-87, Kr-88, Sr-90, Te-131, Te-131m, I-129, I-131, I-133, I-
134, I-135, Xe-133, Xe-133m, Xe-135, Xe-135m, Xe-138, Cs-134,
Cs-134m, Cs-137, Cs-139, and Pr-143, which are used as the
input of the neural network. Then, the neural networks using 23

nuclides as input are trained in this study. Table 1 shows typical
samples of the input and output of the neural network.

2.4 Development of the Neural Network
Prior to training the neural network, various parameters must be
adjusted to make the neural network work well. The number of
neurons in the hidden layer is obtained empirically using the
following formula (Dong et al., 2019):

l � ����������������������������������
0.43nm + 0.12 m2 + 2.54n + 0.77 m + 0.35

√ + 0.51, (4)
wherem, n, and l are the corresponding number of neurons in the
output, input, and hidden layer, respectively.

Eq. 4 is proven to be an efficient formula to determine the
number of neurons in the hidden layer. Since it is shown that the
neural networks with the number of hidden layer neurons around
the formula all have good performance, the number of hidden
layer neurons is determined directly by the formula. The number
of hidden layer neurons is 11 for an input of 23 nuclides.

As Figure 2 shows, neurons pass their value to the next
layers. Besides the final layer, an activation function, rectified
linear unit (ReLu) function, is applied between the two layers
to make the neural network present the nonlinear relationship.
The ReLu function helps solve the gradient vanishing problem
and increases training efficiency (Choi et al., 2021). The
Softmax function is applied as the activation function in the
final layer:

FIGURE 2 | Structure of the CFNN used for fuel failure detection.

TABLE 1 | Typical samples of the input and output of the neural network.

Specific activity (Bq/g) Normalized specific activity
(input)

Probability vector (output) Degree of
failure

\{1.4 357e+01, 4.2 612e-02, 4.4 207e+01, 8.7 714e+01,
1.1 916e+02, 7.0 106e-03, 8.0 954e+01, 3.8 272e+00,
1.1 828e-09, 4.7 286e+00, 6.7 657e+01, 2.4 087e+02,
1.2 158e+02, 3.0 619e+02, 7.1 566e+00, 1.0 031e+02,
4.1 319e+01, 2.1 286e+02, 1.6 813e-07, 8.2 949e-05,
7.0 140e-03, 2.1 082e+02, 5.2 939e+00\}

\{0.089 0, 0.060 3, 0.077 9, 0.088 3, 0.083 5, 0.047 4,
0.098 3, 0.063 0, 0.053 1, 0.006 4, 0.043 5, 0.091 8,
0.076 1, 0.045 4, 0.057 6, 0.044 9, 0.088 1, 0.096 5,

0.038 2, 0.087 1, 0.053 1, 0.098 3, 0.098 0\}

\{4.9 257e-02, 8.9 995e-01,
5.0 790e-02, 0, 0, 0\}

2

\{1.4 453e+02, 2.1 697e-01, 4.4 500e+02, 8.8 301e+02,
1.1 996e+03, 6.9 479e-02, 8.1 495e+02, 3.8 526e+01,
1.1 871e-08, 4.5 788e+01, 6.8 098e+02, 2.4 248e+03,
1.2 239e+03, 1.9 201e+03, 6.1 294e+01, 1.0 097e+03,
4.1 595e+02, 2.1 428e+03, 1.6 831e-06, 8.3 504e-04,
7.0 395e-02, 2.1 224e+03, 5.3 292e+01\}

\{0.896 2, 0.306 9, 0.783 8, 0.888 5, 0.840 5, 0.469 3,
0.989 6, 0.634 0, 0.533 3, 0.061 7, 0.438 2, 0.923 8,
0.766 4, 0.284 6, 0.493 5, 0.452 4, 0.886 9, 0.971 1,

0.382 5, 0.877 2, 0.533 3, 0.989 4, 0.986 5\}

\{9.4 024e-02, 1.0 606e-01,
7.9 991e-01, 0, 0, 0\}

3
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yi � exi∑je
xj
, (5)

where xi and xj indicate neurons in the previous layer.
After applying a Softmax function, the values of the neurons

are normalized to [0,1], and the summation of each value of
neurons in the final layer is 1. Then, the value of neurons can
represent the probability of the corresponding degree of failure.
The advantage of Softmax function is that it can improve the
discrimination between the output neurons and hence increase
learning efficiency.

Accompanying the Softmax function, cross-entropy is selected
as the loss function (de Boer et al., 2005):

L � − 1
N

∑N
i�1

∑
j

y i( )
j log ŷ i( )

j( ), (6)

where N is the total number of samples, i denotes the sample
number, j denotes the neurons in the final layer, y(i)

j is the real
value in the training sample, and ŷ(i)

j is the output value of the
neural network. Using Softmax function and cross-entropy
together will make the training process faster and more
stable.

Adam is selected as the optimizer (Kingma and Ba, 2017),
and the neural network is trained with a learning rate of 0.01
balancing the convergence and training speed. The loss of
training and validation is shown in Figure 3. It can be seen that
the loss of training and validation almost does not decrease
after 1,000 epochs. In addition, aiming to avoid the
discrepancy of single training, the neural network is trained
10 times individually and averaged to inference the degree of
fuel failure.

2.5 Optimization for Small Defects
The dataset utilized to train the ANN is imbalanced, with the
intact condition prevailing. As a consequence, the trained
neural networks have a tendency to categorize degree 2 or 3
(small defects) as degree 1 (intact), which significantly

underestimates the degree of fuel failure. To overcome this
issue, a decision tree (DT) such as the classifier is developed, as
shown in Figure 4.

Two distinct forms of the CFNN are developed in the
improved method. The CFNN1 is used for predicting whether
the fuel cladding is defective. Its structure is the same as shown in
Figure 2, except that the output layer contains just two neurons.
If the output of the CFNN1 indicates that the fuel cladding is
intact, the degree of fuel failure can be assessed to 1. Otherwise,
the CFNN2 is used to predict the degree of fuel failure when the
fuel cladding is defective. The output of the CFNN2 is the
probability of the corresponding degree under defective
condition.

2.6 Relative Importance of the Input of the
Neural Network
Due to the fact that the neural network is a black-box used to
make a connection between the input and output, it is
incapable of explaining the mechanisms behind physical

FIGURE 3 | Training and validation loss over epochs.
FIGURE 4 |Diagram of the CFNNwith the decision tree designed for fuel
failure detection.

FIGURE 5 | Comparison of accuracy between the previous FFNN
method and the improved method.
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phenomena. While the output of the neural network depends
on the magnitude of the weights between connections, the
contribution of input variables can be determined by
interpreting the weights of the trained neural network.
This is meaningful information for reactor operators to
select the appropriate FPs predicting the status of fuel
failure.

Amethod to determine the relative importance of the input of the
neural network is proposed first by Garson, (1991) and simplified by
Gevrey et al., (2003). Themethod essentially involves partitioning the
hidden-output connection weights of each hidden neuron into
components associated with each input neuron.

For each hidden neuron, the absolute value of the input hidden
layer connection weight is divided by the sum of the absolute
value of the input hidden layer connection weight of all input
neurons:

Qnl � Wnl| |∑
n
Wnl| |, (7)

where W denotes the weight between neuron connections, n
denotes the input layer, and l denotes the hidden layer.

Once the parameter Qnl is determined, the sum of Qnl for each
hidden neuron is divided by the sum of each hidden neuron of the
sum for each input neuron of Qnl. The relative importance of all
output weights attributable to the given input variable is then
obtained. Then, the relative importance of all output weights for a
given input variable can be obtained:

RIn �
∑
l
Qnl∑

l
∑
n
Qnl

. (8)

Apart from the connection between the input and hidden
layer, there are also connections between the input and other
layers. Then, the relative importance should also include other
connections and be averaged:

RIaven � 1
3

RI1→2
n + RI1→3

n + RI1→4
n( ). (9)

3 RESULTS AND DISCUSSION

3.1 Performance of the Method
3.1.1 Accuracy of the Method
The accuracy is calculated as the ratio between the number of
correct predictions to the total number of predictions. For
example, when a fuel cladding shows degree 1 failure, the
prediction is correct if the output of the neural network
indicates a degree 1 failure. Otherwise, the prediction is
wrong. The predictions are made for all samples in the test set
using the trained neural network.

It has been proven that the general FFNN predicts the degree of
fuel failure and performs well when the defect size is relatively large,
while there will be deviations for small defects, particularly under the
impact of large mass of tramp uranium. Figure 5 shows the
comparison among the FFNN in the previous study, the CFNN,

TABLE 2 | Confusion matrix of neural network results for small defects in percentage.

(A) FFNN

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 55.0% 8.3
Predicted degree 2 0 45.0% 5.7
Predicted degree 3 0 0 86.0

(B) CFNN

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 30.6% 7.9
Predicted degree 2 0 69.4% 0.9
Predicted degree 3 0 0 91.2

(C) CFNN with DT

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 20.0% 3.7
Predicted degree 2 0 80.0% 3.1
Predicted degree 3 0 0 93.2

FIGURE 6 | Variation of total specific activity and neural network output
after fuel failure of degree 5.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8518486

Dong et al. CFNN With DT for Fuel Failure Detection

38

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


and the CFNN with the DT. It can be seen that the CFNN increases
the accuracy from 45 to 69% for degree 2, while the CFNN with the
DT further increases the accuracy to 80% for degree 2. In addition,
there is a minor increase in accuracy for degrees 3–6.

The detailed prediction results for small defects are listed in
Table 2. As can be observed, both the CFNN and CFNN with DT
methods continue to underestimate the degree of fuel failure for
degree 2. However, the improved method significantly lowers the
underestimation rate. The underestimation phenomenon in the
previous study is attributed to an imbalanced dataset, where the
sample number of degree 1 is larger than that of other degrees.
Supposing the neural network is trivial, it is obvious that
classifying all samples into degree 1 has a higher accuracy
than classifying all samples into any other degree. Then, the
trained neural network has a tendency to identify degree 2 and
degree 3 as degree 1, increasing the probability of correct
prediction.

Using a DT-like technique can address this issue. As the first
step is to decide whether the fuel cladding is defective using a
CFNN, the dataset needs to be divided into two categories: intact
and defective. Under such condition, the dataset is balanced.
After passing through the CFNN1, the samples with intact fuel
cladding are classified into degree 1, and other samples with
defective fuel cladding go to CFNN2. The dataset of defective fuel
cladding of degrees 2–6 is also balanced. Theoretically, the
CFNN1 and CFNN2 in the DT are both trained by the
balanced dataset, and the degree of fuel failure should not be
underestimated. From Table 2, it can be seen that some samples
are still underestimated. The major reason is that the escape rate
coefficient of degree 2 is extremely small (< 1 × 10−7s−1). In
addition, some samples of degree 2 are in the cases of short-time
after defective fuel cladding. The specific activity in the coolant is
not significantly different from the intact condition. This
indicates that the feature is not sufficiently noticeable for
samples of small defect size. As a result, the CFNN with the
DT method still underestimates 20% degree 2 samples.

3.1.2 Responding Speed
When the fuel cladding is defective, it is necessary to rapidly
detect the status of fuel failure. On the contrary, the growth in
specific activity in the coolant is a gradual process. At the onset of
fuel failure, the neural network lacks the confidence in predicting
that the fuel cladding is defective, as illustrated in Figure 6.

Figure 7 shows the comparison of response time between the
previous FFNN method and improved method. The test set is
randomly sampled considering the influence of the failure onset
time, the escape rate coefficient, and the tramp uranium mass.
The sample space is built on 10 random defect time, 10 random
tramp uranium mass, and 15 random escape rate coefficients of
degrees 3–5, a total of 1,500 samples. As illustrated in Figure 7A,
there is significant delay in detecting fuel failures using the
previous FFNN when the defect size is small and defect
occurrence is early. Under these conditions, the response of
the CFNN is 15% faster than that of the FFNN. Furthermore,
the response of the CFNN with DT is twice faster than that of the
FFNN for degree 3 with early defect occurrence. Both the CFNN
and CFNN with DT work well for late defect occurrence, with
responses more than twice faster than those of the FFNN.

For degrees 4 and 5, the performance of the FFNN is adequate.
The results of the CFNN and CFNN with DT are consistent with
those of the FFNN and demonstrate no significant improvement

FIGURE 7 | Comparison of response time between the previous FFNN
method and the improved method. (A) Degree 3, (B) Degree 4, and (C)
Degree 5
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in reaction speed, as shown in Figures 7B,C. That is because the
degrees 4 and 5 correlate to a relatively large defect size, which
induces a high increase rate of specific activity in the coolant. The
neural network has a high degree of confidence in predicting the
occurrence of the defect after the specific activity reaches a
critical value.

Table 3 shows the confusion matrix of the neural network
results of the test set. The time frame of evaluation is chosen as
48 h from the commencement of fuel failure. Since the
structure of the FFNN and CFNN is relatively close,
comparing Table 3A and Table 3B, it can be seen that the
accuracy does not decrease, although the CFNN method
responds more quickly than the FFNN method. However,
the accuracy of the CFNN with DT method is worse than
that of the FFNN or CFNN methods, despite its high response

speed. This indicates that the CFNN with DT makes a trade-off
between accuracy and speed.

The main reason for the fast response of the CFNN with DT
method is because the first classifier of the DT is used to detect
whether the fuel cladding is defective, which is a binary
classification problem. In comparison to the FFNN or CFNN,
which are multi-class classification problems, there is a more
distinct dividing line between different classes. Since the first
classifier of DT responds fast, the second classifier of DT is unable
to accurately detect the degree of fuel failure at the moment of the
commencement of fuel failure. The feature of the current specific
activity may be similar with a minor degree of fuel failure. This
phenomenon can also be found in Figure 6.

3.2 Contribution of the Nuclide
It is known that hundreds of nuclides are produced during reactor
operation, and their fission yields and decay constants are
significantly different, which may vary several orders of

TABLE 3 | Confusion matrix of neural network results of the test set in percentage.

(A) FFNN

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 100% 2.2% 0 0
Predicted degree 4 0 97.8% 0 0
Predicted degree 5 0 0 96 0
Predicted degree 6 0 0 4 0

(B) CFNN

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 99.8% 0 0 0
Predicted degree 4 0.2% 98.2% 0 0
Predicted degree 5 0 1.8% 96 0
Predicted degree 6 0 0 4 0

(C) CFNN with DT

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 95.6% 0% 0 0
Predicted degree 4 4.4 94.8% 0 0
Predicted degree 5 0 5.2% 94.6 0
Predicted degree 6 0 0 5.4 0

FIGURE 8 | Contribution of FPs to the output of the neural network.

FIGURE 9 | Energy spectrum of FPs obtained by a CZT detector.
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magnitude. Because using all nuclides for fuel failure detection is
uneconomical and impracticable, it is vital to identify the key
nuclides for predicting the status of the fuel cladding.

The neural networks in this study use 23 nuclides as the input,
mainly including noble gases, iodine, and cesium. Due to their
relatively large fission yield and long half-life, these types of
nuclides are already frequently utilized in the isotopic ratio
method for fuel failure detection. In order to evaluate the
contribution of these nuclides to the determination of the
degree of fuel failure and support the further selection of FPs,
a sensitivity analysis is performed using the method provided in
Section 2.6.

After training the neural network, the connection weights are
acquired. Then, Qnl in Eq. 7 can be easily calculated. After
obtaining Qnl, the contribution of the input variable can be
calculated using Eq. 8. Since there are connections between
the input and other layers, it should be noted that the
contribution derived by Eq. 8 needs to be averaged.

The contribution of FPs derived by sensitivity analysis of 10
trained neural networks is shown in Figure 8. It can be obviously
seen that the most important nuclides are I-131, Xe-133, Xe-135,
and Kr-85, which is consistent with the prevalent knowledge.
These nuclides are already usually used in the isotopic ratio
method for fuel failure detection (Menéndez, 2009; Li et al.,
2017; Lyu and Xiong, 2019). These four nuclides are critical in the
fuel failure detection process. Besides these four nuclides, it can be
seen that Xe-133m, Sr-90, and I-133 also have a relatively high
contribution.

The previous study has shown that increasing the quantity of
input nuclides can improve detection accuracy. While
considering the efficiency and limitation of the detection
apparatus, some nuclides may be ignored. Although the neural
network can be simplified by ignoring some FPs, it is better to not
ignore the aforementioned seven nuclides.

3.3 Nuclide Selection in Real Scenario
The ideal neural network should make extensive use of FP-
specific activity. While due to the detection limitation of the
detector, only a few nuclides can be used as the input of the neural
network. Since the specific activity of FPs in the coolant is
supposed to be detected by a cadmium zinc telluride (CZT)
detector, the nuclides used as the input are selected based on
matching the energy spectrum of the CZT detector and generated
dataset. A typical spectrum of FPs derived by the CZT detector is
shown in Figure 9, and the generated dataset has specific

activities of 23 nuclides as stated in Section 2.3; the nuclides
used as the input are selected as I-131, I-133, Xe-133, and Xe-135
combining the sensitivity analysis in Section 3.2. Then, the neural
networks with an input of four nuclides are trained based on the
improved method and used for practical application, which is
consistent with the previous study.

4 CONCLUSION

In this study, an improved method based on the CFNN and DT
for fuel failure detection is proposed. The method considerably
improves the accuracy of fuel failure detection when the defect
size of the fuel cladding is small. The CFNN with DT method
increases the detection accuracy from 45 to 80% for fuel failure of
degree 2. In comparison to the previous FFNN method, the
response speed of the CFNN with DT method is more than
twice, although at the expense of sacrificing some precision. The
sensitivity analysis of the trained neural network indicates that I-
131, Xe-133, Xe-135, and Kr-85 are the most important nuclides
in fuel failure detection. Besides these four nuclides, Xe-133m, Sr-
90, and I-133 also have a relatively high contribution to the neural
network for detecting fuel failure.
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An Intelligent Optimization Method for
Preliminary Design of Lead-Bismuth
Reactor Core Based on Kriging
Surrogate Model
Qiong Li1,2, Zijing Liu1,2*, Yingjie Xiao1,2, Pengcheng Zhao1,2, Yanan Zhao1,2, Tao Yang1,2 and
Tao Yu1,2*

1School of Nuclear Science and Technology, University of South China, Hengyang, China, 2Hunan Engineering and Technology
Research Center for Virtual Nuclear Reactor, University of South China, Hengyang, China

To meet the numerous application demands of lead-bismuth reactors, different design
optimization tasks need to be conducted on these reactors based on the existing reactor
core solutions. However, the design optimization of lead-bismuth reactors is a challenging
task because it is a complex, multi-dimensional, and nonlinear constrained problem. To
resolve these issues and improve the efficiency of design optimization, a new method,
called the KSM-OLHS-SEUMRE method, based on the Kriging surrogate model (KSM),
orthogonal Latin hypercube sampling (OLHS), and space exploration and unimodal region
elimination (SEUMRE) algorithm is proposed in this study. Based on this method, a design
optimization program of lead-bismuth reactors (DOPPLER-K) is developed, which realizes
functions like sample point generation, optimization analysis, pre-post processing of
reactor calculation, coupling of the Reactor Monte Carlo (RMC) calculation code and
the Steady-state Thermal-hydraulic Analysis Code (STAC). Further, taking lead-bismuth
reactors SPALLER-4 and URANUS as prototypes, the proposed intelligent optimization
method for preliminary design of lead-bismuth reactor core is verified. The results show
that this method can rapidly and accurately find the target scheme satisfying the
optimization conditions, and it is three orders of magnitude faster than pure Monte
Carlo calculation. Compared with the initial core scheme of URANUS, the optimization
rates of fuel loading, total core mass, active zone volume, and total core volume are
reduced by 10.8, 11.5, 18.1, and 17.1%, respectively. These results validate the feasibility
and efficacy of the proposed method for design optimization of lead-bismuth reactor core.

Keywords: lead-bismuth reactor, intelligent optimization, Kriging surrogate model, SEUMRE algorithm, orthogonal
Latin hypercube sampling

1 INTRODUCTION

Over the recent years, lead-bismuth reactors have received considerable attention from the major
nuclear energy countries owing to their unique characteristics such as long-life, miniaturization
ability, high flux, and natural circulation, which lead to outstanding advantages in the utilization of
nuclear energy (Wu, 2018). However, it may be noted that different technical indicators and reactor
core design schemes are required in various application scenarios and missions, thus numerous
design optimization tasks need to be conducted based on the existing lead-bismuth reactor core
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schemes. It is well known that since it involves coupled
calculation and analysis of physical/thermal-hydraulic
characteristics and strength of structural materials, the design
optimization of lead-bismuth reactor core is a complex, multi-
dimensional, and nonlinear constrained problem, and a large
uncertainty exists in the calculation results, which is caused by the
nuclear reaction cross section, approximation of calculation
model, etc. The existing traditional semi-empirical design
methods that rely on the designer experience cannot find the
optimal solution efficiently under the influence of multi-factor
coupling. On the other hand, the single heuristic optimization
algorithms, such as genetic algorithm, simulated annealing
algorithm, particle swarm algorithm, etc., need a large number
of stochastic samples andMonte Carlo calculations to support the

design optimization and suffer from the problems of slow
convergence and a trend of falling into local optimum
(Meneses et al., 2009; Khoshahval et al., 2011; Zameer et al.,
2014). Therefore, it is necessary to develop an intelligent
optimization method for preliminary design of lead-bismuth
reactor core with random effects, low computational cost, high
convergence speed, and strong optimization ability.

To solve these problems such as excessive calculation, slow
convergence, and large uncertainty in traditional Monte Carlo
computation and single heuristic optimization algorithm, the
surrogate modeling technique in which an approximate model
is constructed based on the experimental points to replace the
complex original model has been considered. The commonly
used surrogate models include the response surface method,
radial basis function interpolation, Kriging model, and so on
(Zhang, 2014). Among them, the Kriging surrogate model (KSM)
can not only fit a smooth curve closer to the original objective
function but also can be easily adapted to different variation
trends, and it covers the inherent uncertainty of objective
functions by selecting different regression models and related
functions (Kempf et al., 2012). Therefore, although the accuracy
of the KSM will decrease when solving the prediction of the
objective function with more than 8 design parameters, the
KSM is still used in this study due to its overall strong fitting
effect and the modeling method that can cover the inherent

A B

FIGURE 1 | Intelligent optimization method. (A) Flow chart of KSM-OLHS-SEUMRE method, (B) Functional modules of DOPPLER-K.

TABLE 1 | Commonly used correlation functions and their expressions.

Correlation function Expression

Exponential function Rk(θk ,dk) � exp(−θkdk)
Gaussian function Rk(θk ,dk) � exp(−θkd2

k )
Linear function Rk(θk ,dk) � max{0, 1 − θkdk}
Cubic spline function

Rk(θk ,dk) �
⎧⎪⎪⎨⎪⎪⎩ 1 − 15ζk + 30ζ3k , 0≤ ζk ≤0.2

1.25(1 − 15ζk)3 , 0.2< ζk < 1
0 , ζk ≥ 1, ζk � θkdk
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uncertainty in the reactor calculation. To date, KSM has been
widely used in the design optimization of aerospace,
machinery, automobiles, and other fields, and it is now
being used in the reactor field as well. Zeng et al. (2020)
used KSM to provide a generalized framework for the core
optimization of sodium-cooled fast reactor, and Kempf et al.
(2012) used it to obtain the optimal geometric parameters for a
high-flux research reactor. Kim et al. used the KSM for shape
optimization of the inlet plenum and rising channels in the
pebble-bed modular reactor (Kim and Lee, 2009). Li et al.
studied the effects of flow and heat transfer factors in the rod
bundle of fast reactor assemblies on the thermal-hydraulic
characteristics through the Kriging technology (Song and

Yang, 2018). All the above studies verified the good
prediction accuracy and high computational efficiency of
the KSM. Thus, the optimization method combined with
KSM can be a feasible and effective approach for the design
optimization of a lead-bismuth reactor core.

In this study, an intelligent optimization method is proposed
for preliminary design of lead-bismuth reactor core, which is
based on the combination of KSM, orthogonal Latin hypercube
sampling (OLHS), and space exploration and unimodal region
elimination (SEUMRE) algorithm. This method is called the
KSM-OLHS-SEUMRE method. By coupling the reactor Monte
Carlo (RMC) code, a Monte Carlo code for reactor core analysis,
and the steady-state thermal-hydraulic analysis code (STAC), a

FIGURE 2 | Construction records of KSM, OLHS, and SEUMRE. (A) Fitting effect of KSM constructed by different regression models with Gaussian function, (B)
Fitting effect of KSM constructed by different correlation function with second-order regressionmodel, (C)MSE of KSM constructed by exponential/Gaussian correlation
function with second-order regression model, (D) Comparison between ordinary LHS and OLHS distribution, (E) Flow diagram of SEUMRE algorithm.
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design optimization program of lead-bismuth reactors based on
KSM-OLHS-SEUMRE (DOPPLER-K) has been developed.
Taking lead-bismuth reactors SPALLER-4 and URANUS as

prototypes, the proposed optimization method is verified
through a rapid search for target design schemes and core
parameter optimization.

FIGURE 2 | Continued.
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The rest of this paper is organized as follows. Section 2 provides
a brief introduction to the KSM-OLHS-SEUMRE method and the
DOPPLER-K software. The construction principles of KSM,
OLHS, and SEUMRE algorithm are described in Section 3. The
optimization verification results for SPALLER-4 and URANUS are
discussed in Section 4. Finally, the study is concluded in Section 5.

2 INTELLIGENT OPTIMIZATION METHOD

The intelligent optimization method constructed in this study
includes the KSM-OLHS-SEUMRE method (introduced in
Section 2.1) and DOPPLER-K software (introduced in Section
2.2). The construction principles of KSM, OLHS and SEUMRE

FIGURE 2 | Continued.
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involved in KSM-OLHS-SEUMRE method are described in
Section 3.

Different from traditional or single heuristic optimization
method, the optimization method adopted in this research firstly
uses KSM technology to replace the original Monte Carlo code with
slow calculation speed to predict the core characteristic parameters,
which not only greatly improves the calculation efficiency, but also
realizes the target prediction under the simultaneous coupling of
multiple core design parameters. Secondly, when multiple design
parameters influence at the same time and the design range is wide,
this method makes the optimization avoid the problem of local
optimum and difficult convergence in the traditional optimization
algorithm as far as possible through sequence iteration, preferential
addition point selection and SEUMRE space search technology to
improve the optimization search efficiency. Finally, through the
developed DOPPLER-K software, the automatic execution of
sampling, Monte-Carlo program calling calculation and target
optimization analysis can be carried out, which provides great
convenience to optimization designers.

2.1 KSM-OLHS-SEUMRE Method
The design optimization of lead-bismuth reactor core generally
involves the establishment of a mathematical model, selection of
design variables, calculation of physical/thermal characteristic
parameters, and determination of the optimal scheme. Based on
this strategy and the construction principles in Section 3, the
optimization method KSM-OLHS-SEUMRE is developed. Its
flow chart is shown in Figure 1A, and the basic
implementation steps are as follows:

Step 1. Establish the mathematical model of the lead-bismuth
reactor core to be optimized, including design space and
variables, objective functions, and constraint conditions.

Step 2. Generate sample points of the mathematical model by the
OLHS technique.

Step 3. Calculate sample points to generate the training set based
on the physical Monte-Carlo/thermal-hydraulics
calculation code.

Step 4. Construct KSM based on the training set and evaluate the
objective values of the training set to find the optimal space.

Step 5. Predict the points of target/constraint functions and assess
them to select the optimal point verified by physical Monte Carlo/
thermal-hydraulics calculation code.

Step 6. Update the design space and KSM continuously based on
the principle of optimal point selection and SEUMRE algorithm
to improve the prediction accuracy and overall optimization
efficiency of the model.

Step 7. Perform iterative optimization to quickly approximate the
objective function and obtain the optimal convergence solution.

2.2 DOPPLER-K Software
Based on the KSM-OLHS-SEUMRE method, the design
optimization program of lead-bismuth reactors, called
DOPPLER-K software, which couples RMC and STAC and
realizes functions, such as sampling, modeling, and
optimization, has been developed in MATLAB. The functional
modules of DOPPLER-K software are shown in Figure 1B.

In the sampling module, all the design variables are sampled
and saved in the initial training set using OLHS after the user
defines the variables and initial design space.

In the physical calculation module, some characteristic
parameters of sample points are calculated by RMC (Kan
et al., 2015), a three-dimensional Monte Carlo neutron
transport code developed by the Reactor Engineering Analysis
Laboratory (REAL), Department of Engineering Physics,
Tsinghua University. These characteristic parameters, such as
effective multiplication factor (Keff), flux, power, and burnup, can
be used as objective functions or constraint conditions for design
optimization of the lead-bismuth reactor core.

In the thermal calculation module, thermal-hydraulic
characteristic parameters, such as the maximum fuel cladding
and pellet temperature, coolant velocity, based on the sample
points and reactor core power distribution are used as
the constraint conditions for the design optimization of
lead-bismuth reactor core. These parameters are calculated by
STAC (Zhao et al., 2020), which was developed by one of the
authors and includes the physical model of liquid lead/lead-
bismuth, calculation model of wall heat transfer and pressure
drop, and some models built for lead-bismuth reactor like single
channel, closed parallel multichannel, and hottest channel model.

As the coupling interface of sampling, physical/thermal-
hydraulic calculation, and optimization analysis, the pre and
post processing module automatically matches the reactor core
parameter values of sampling points to generate the input file,
reads the physical/thermal characteristic parameters of output
files after carrying out parallel calculations by calling RMC and
STAC automatically, and finally generates the training set or
accuracy verification conditions.

In the optimization analysis module, firstly, the KSM is
constructed by analyzing the structural characteristics of
known objective function values and quantifying their spatial
correlation. Secondly, the objective function values of new
valuation points are predicted based on the surrogate models
after determining the neighborhood range and searching for
neighborhood points. Finally, according to the principle of

TABLE 2 | Design parameters of SPALLER-4 and URANUS.

Design parameter SPALLER-4 URANUS

Reactor thermal power/MWt 4 100
Refueling cycle/EFPY 10 20
Fuel loading/kg 577.89 17,580
Fuel (Mass fraction of Pu) PuN-ThN (31/48) UO2 (9.55/17.09)
Coolant 208Pb-Bi 208Pb-Bi
Reflector 208Pb-Bi 208Pb-Bi
Shielding B4C B4C
Moderator BeO —

Fuel pin cladding HT-9 HT-9
Filling gas in the gap of pin He He
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optimal point selection and SEUMRE algorithm, the sample
points are updated to revise the surrogate model and the
design space to approximate the target function iteratively
until the optimal solution is obtained.

3 CONSTRUCTION PRINCIPLES OF
KRIGING SURROGATE MODEL,
ORTHOGONAL LATIN HYPERCUBE
SAMPLING, AND SPACE EXPLORATION
AND UNIMODAL REGION ELIMINATION

3.1 Construction Principle of Kriging
Surrogate Model
Kriging is a regression algorithm for spatial modeling and
prediction of random fields based on the theory of
correlation functions and structural analysis. In contrast
to other interpolation algorithms, the KSM is an optimal
unbiased estimation technique, which is composed of a

global trend function F(β, x) and a random distribution
departure Z(x). Its mathematical expression is as follows
(Jin et al., 2000):

y(x) � F(β, x) + Z(x) � βpf T(x) + Z(x) (1)
Here, F(β, x) = βpfT(x), where β is the coefficient of the

regression function fT(x), and Z(x) indicates that the local error
approximation is the key to the accuracy of this model. The
characteristics of Z(x) are given as follows:

E[Z(x)] � 0 (2)
Var[Z(x)] � δ2 (3)

Cov[Z(xi),Z(xj)] � δ2R(c, xi, xj) (4)
In other words, the mathematical expectation of random

distribution bias is zero, and the variance δ2 is minimum, which
can be calculated by Eq. 4, where Cov[Z(xi),Z(xj)] is the
covariance of the random deviation and R(c, xi, xj) is the
correlation function, representing the spatial correlation between
any two points. R(c, xi, xj) is expressed as follows:

R(c, xi, xj) � ∏n

k�1Rk(θk, ∣∣∣∣∣xki − xkj
∣∣∣∣∣) � ∏n

k�1Rk(θk, dk) (5)
Where n is a variable number, θk is the proportionality factor, and dk
is the Euclidean distance between two points. It can be seen from
these above definitions that the key to the accuracy of KSM is
the selection of the correlation function. The commonly used
correlation functions include exponential, Gaussian, linear, and
cubic spline functions, whose expressions are listed in Table 1
(Zhang, 2014).

FIGURE 3 | Original core (A,B), fuel assembly (C), and fuel rod (D) of SPALLER-4.

TABLE 3 | Range of design parameters for SPALLER-4.

Design parameter Range

Thickness of solid moderator/cm [0, 20]
Mass fraction of Pu in fuel/% [25, 50]
Fuel pin radius/cm [0.2, 0.6]
Height of core active zone/cm [30, 150]
Pitch to diameter ratio (P/D) [1.01, 1.5]
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TABLE 4 | Accuracy verification results of KSM for predicting Keff and burnup.

Contrast group 1 2 3 4 5

Thickness of solid moderator/cm 4.655,531 4.822,177 4.990,846 4.589,912 4.782,832
Mass fraction of Pu in fuel/% 47.202,398 45.410,111 48.931,457 48.822,818 46.664,652
Fuel pin radius/cm 0.291,086 0.277,635 0.260,789 0.211,688 0.217,254
Height of core active zone/cm 112.165,889 115.235,329 118.186,032 103.660,647 116.591,780
Pitch to diameter ratio (P/D) 1.371,007 1.377,327 1.411,726 1.353,392 1.354,788
Third year Keff

Prediction by KSM 1.050,181 1.035,229 1.032,517 1.016,440 1.024,406
Calculation by RMC 1.050,343 1.035,223 1.033,391 1.017,445 1.023,389
Relative error/% −0.015,427 0.000,602 −0.084,557 −0.098,739 0.099,373

Burnup/(MW·d·kg−1)
Prediction by KSM 22.947,678 24.660,966 26.864,599 46.352,778 39.158,879
Calculation by RMC 22.796,000 24.446,000 26.894,000 46.544,000 39.396,000
Relative error/% 0.665,370 0.879,352 −0.109,323 −0.410,841 −0.601,890

A

B

C

FIGURE 4 |Optimization verification results of SPALLER-4. (A)Comparison of Keff and burnup obtained based on KSM and RMC, (B)Core structure of SPALLER-
4 to be optimized, (C) Iterative graph of fuel loading optimization for SPALLER-4.
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To select the best combination of regressionmodel and correlation
function to construct KSM, the selection of regression model was first
carried out. As shown in Figure 2A, the comparison of the fitting
effects of KSM constructed by the combination of zero-order, first-
order and second-order regression models with Gaussian correlation
functions shows that the fitting effects of KSM constructed by the
second-order regression model are more smooth and consistent.
Then, the second-order regression model is combined with the

exponential, Gaussian, linear and cubic spline correlation
functions to construct the model for comparison of fitting
effect. As shown in Figure 2B, it can be seen that the fitting
effect of Gaussian and exponential function is the best. Since the
fitting effects of Gaussian and exponential correlation functions
are consistent, the mean square error (MSE) is used for
experimental comparison. As shown in Figure 2C, the MSE
of KSM constructed by Gaussian function is slightly smaller
than that of exponential function, which is relatively better.
Consequently, the second-order regression and Gaussian
correlation function are used to construct the KSM in this study.

3.2 Construction Principle of Orthogonal
Latin Hypercube Sampling
The selection of sampling points is vital for evaluating the target
objects and constructing the surrogate model. Since the sampling
points should be selected to represent almost the entire design
space and their number should be as less as possible to avoid
redundant calculation, it is particularly significant to pick a
sampling method with both orthogonality and uniformity.

Based on the ordinary Latin hypercube sampling (LHS)
(Pebesma and Heuvelink, 1999), OLHS evenly divides the
sampling space into N grids to ensure that there is at least one
sample point in each grid, which effectively avoids the uneven
distribution of sampling results when sampling fewer points
by LHS and facilitates spatially balanced sampling. A
comparison between LHS and OLHS distribution is given
in Figure 2D.

TABLE 5 | Optimization results of core design scheme for SPALLER-4.

Design parameter Optimal scheme

Thickness of solid moderator/cm 4.573
Mass fraction of Pu in fuel/% 49.869
Fuel pin radius/cm 0.200
Height of core active zone/cm 100.082
Pitch to diameter ratio (P/D) 1.313
Initial Keff 1.028,058
Third year Keff

Prediction by KSM 1.005,741
Calculation by RMC 1.005,189
Relative error/% 0.054,959

Burnup/(MW·d·kg−1)
Prediction by KSM 53.702
Calculation by RMC 53.799
Relative error/% −0.002

Refueling cycle/EFPY 3
Fuel loading/kg 81.414
Maximum temperature of fuel cladding/K 643.162
Maximum temperature of fuel pellet/K 1,133.073

FIGURE 5 | Original core (A,B), fuel assembly (C), and fuel rod (D) of URANUS.
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3.3 Construction Principle of Space
Exploration and Unimodal Region
Elimination
A large number of statistical sampling and calculations are
required to ensure the accuracy of KSM when the object to
be optimized has a strong degree of non-linearity and a wide
range of design variables. Thus, to improve the efficiency of
optimized search, the SEUMRE algorithm is introduced to
rapidly find the global optimum solution by updating the
optimal region repeatedly and iteratively.

The flow diagram of SEUMRE algorithm is shown in
Figure 2E. First, the design space is divided into different
spaces after generating the training data in the initial design
space and assessing the objects/constraints, and the most
promising space is determined. Next, the surrogate model is
constructed to predict the points and select the local optimal
point to obtain the next promising space. Finally, the above steps
are repeated for iterative search until all the spaces are traversed
and the global optimal solution is acquired (Younis and Dong,
2010).

4 OPTIMIZATION VERIFICATION
EXAMPLES AND RESULTS

The critical reactor core usually requires thousands of kilograms
of fuel because of the small fuel fission cross section under fast-
spectrum conditions. The fast-spectrum lead-bismuth reactor is
generally heavy and expensive due to a large amount of fuel
loading and high-density of lead-bismuth. Therefore, the
minimum fuel loading of reactor core is considered as the
optimization goal, and lead-bismuth reactors SPALLER-4
(independently developed by one of the authors) and

URANUS (Lee, 2017; Kwak and Kim, 2018; designed by Seoul
National University, South Korea) are taken as prototypes. The
design parameters of the two reactors are listed in Table 2. Two
optimization models are established after a certain simplification
process. Different design variables and constraints are set for the
two models to find the optimal reactor core scheme and optimal
parameters through the intelligent optimization method
(introduced in Section 2), and they are verified by the RMC code.

4.1 SPALLER-4 Model
The original structure of SPALLER-4 is shown in Figure 3.
Considering the limited reactivity adjustment capability of the
control rod system and the corrosive effect of lead-bismuth on
materials, the SPALLER-4 optimization model can be described
as follows:

minFs(xs, ys, ls, ms, ns) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1.005≤KBOC ≤ 1.030

1.0≤KEOC

3 EFPY � RC
873K≤Tc,max

1773K≤Tf,max

3m/s≤ Vc,max

(6)

where minFs(xs, ys, ls, ms, ns) is the minimum fuel loading
under the simultaneous influence of five variable parameters.
The constraints of the model include KBOC (Keff at the beginning
of the cycle), KEOC (Keff at the end of the cycle), RC (refueling
cycle), Tc,max (maximum temperature of cladding), Tf,max

(maximum temperature of fuel pellet), and Vc,max (maximum
coolant velocity).

4.1.1 Sample Generation
Considering that the increase in the initial reactivity and breeding
ability and the decrease in the neutron leakage and parasitic
absorption can effectively reduce the fuel loading, and the size of
core and lattice affects the fuel loading by changing the neutron
energy spectrum and neutron leakage (Michael and Pavel, 2005;
Zhang et al., 2020). And basing on the prototype value of the core
and the design parameters’ values of the classic liquid metal
cooled reactor core such as ALFRED (Grasso et al., 2014),
ELECTRA (Suvdantsetseg, 2012) and CEFR (Yang and Guo,
2020), the design variables and their ranges are set as shown
in Table 3. 480 initial sample points are randomly sampled by

TABLE 7 | Accuracy verification results of KSM for predicting Keff and burnup.

Contrast group 1 2 3 4 5

Fuel pin radius/cm 0.728,693 0.737,298 0.738,832 0.740,970 0.737,436
Height of core active zone/cm 164.311,938 157.445,331 156.993,296 153.933,096 157.438,697
Pitch to diameter ratio (P/D) 1.320,736 1.320,794 1.321,136 1.320,508 1.320,326
Twentieth year Keff

Prediction by KSM 1.000,957 1.000,382 1.000,515 0.999,350 1.000,614
Calculation by RMC 1.001,767 1.000,720 1.000,924 0.999,935 1.000,317
Relative error/% −0.080,889 −0.033,774 −0.040,893 −0.058,523 0.029,713

Burnup/(MW·d·kg−1)
Prediction by KSM 44.079,677 45.274,617 45.226,628 43.583,013 45.264,459
Calculation by RMC 44.410,000 45.271,000 45.213,000 43.554,000 45.256,000
Relative error/% −0.743,804 0.007,989 0.030,142 0.066,614 0.018,690

TABLE 6 | Original value and initial optimal range of design parameters for
URANUS.

Design parameter Original value Initial optimal range

Fuel pin radius/cm 0.72 [0.4, 1.0]
Height of core active zone/cm 180 [50, 200]
Pitch to diameter ratio (P/D) 1.35 [1.01, 1.5]
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A

B

C

D

FIGURE 6 |Optimization verification results of URANUS. (A)Comparison ofKeff and burnup obtained using KSM and RMC code, (B)Core structure of URANUS for
optimization verification, (C). Iterative graph of fuel loading optimization for URANUS, (D) Final optimal design space for URANUS.
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OLHS in these ranges and calculated by physical and thermal
calculation modules of DOPPLER-K.

4.1.2 Prediction Accuracy of Kriging Surrogate Model
To ensure the prediction accuracy of KSM, the accuracy of
surrogate model is verified in each iterative optimization step.
Five groups are randomly selected from the training set as the
contrast group and are compared with the values calculated by
RMC code, and the remaining groups are used as the training set
to fit and construct the KSM.

Table 4 and Figure 4A show the accuracy verification results
of KSM for predicting third year Keff and burnup at full power
operating conditions in the optimal design space, which contains
155 groups in the final training set. It can be seen that the relative
errors between the predicted Keff and burnup by KSM and the
calculated values by RMC are within ±0.1% and ±1%, respectively.
This indicates that when a certain amount of training data is
ensured, KSM has a high accuracy for linear or nonlinear, directly
or indirectly correlated target prediction, which is affected by
multiple parameters at the same time. Compared with the RMC
code, the calculation time is greatly reduced.

4.1.3 Optimization Results
According to the original design parameters, the core structure of
SPALLER-4 (shown in Figure 4B) to be optimized is constructed
after some simplification. After calculating 480 groups of initial
training sets by the RMC code, the intelligent optimizationmethod is

used for iterative optimization. 1,060,000 groups of schemes are
predicted by KSM in each iteration, and a total of 175 iterations are
carried out. After verification by RMC, six groups of solutions meet
the optimization constraints, and the final two iterative schemes
meet the convergence conditions (shown in Figure 4C). In the entire
optimization process, 655 groups of training data are calculated.

Table 5 shows the final optimal design scheme, which is
verified by RMC. This scheme meets all the constraint limits
of initial Keff, refueling interval, steady-state thermal safety
conditions, etc. The minimum fuel loading is 81.4135 kg,
which is significantly lower than the original fuel loading. At
the same time, the relative error between the predicted value by
KSM and the calculated value by RMC is within the accuracy
range, and the search speed of the target scheme is much higher
than that of the traditional Monte Carlo calculation and the
single heuristic optimization algorithm.

4.2 URANUS Model
To verify the feasibility of the proposed intelligent optimization
method in practical engineering, a core optimization model is
established based on the lead-bismuth reactor URANUS (shown
in Figure 5). In this section, a three-dimensional and six-
constraint optimization problem is solved with Ubiquitous,
Robust, Accident-forgiving, Nonproliferating and Ultra-lasting
Sustainer (URANUS) model for demonstrating the validity of the
proposed model in parameter optimization. The optimization
model can be described as follows:

min Fu(xu, yu, lu) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1.005≤KBOC ≤ 1.035

1.0≤KEOC

20 EFPY � RC
773K≤Tc,max

1273K≤Tf,max

3m/s≤ Vc,max

(7)

TABLE 8 | Initial and final optimal range of design parameters for URANUS.

Design parameter Initial optimal range Final optimal range

Fuel pin radius/cm [0.4, 1.0] [0.7, 0.8]
Height of core active zone/cm [50, 200] [150, 185]
Pitch to diameter ratio (P/D) [1.01, 1.5] [1.28, 1.41]

TABLE 9 | Optimized design parameters for URANUS.

Design parameter Initial value Optimized value

Fuel pin radius/cm 0.72 0.731,415
Height of core active zone/cm 180 155.583,777
Pitch to diameter ratio (P/D) 1.35 1.289,290
Initial Keff 1.028,859 1.030,741
Twentieth year Keff

Prediction by KSM — 1.000,729
Calculation by RMC 1.003,136 1.000,958
Relative error/% — −0.022,884

Burnup/(MW·d·kg−1)
Prediction by KSM — 46.577,347
Calculation by RMC 41.524 46.553,000
Relative error/% — 0.0522,990

Refueling cycle/EFPY 20 20
Fuel loading/kg 17,580.09248 15,681.069,740
Total mass of core (including reflector)/kg 175,459.3633 155,309.949,600
Volume of active zone/m3 5.213,753 4.269,707
Average volume power density of active zone/(W·cm−3) 19.18,004 23.420,813
Total volume of core (including reflector)/m3 8.573,414 7.105,878
Maximum temperature of fuel cladding/K 600.6,219 604.170,155
Maximum temperature of fuel pellet/K 770.3,892 796.058,922
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where min Fu(xu, yu, lu) is the minimum fuel loading under
simultaneous influence of three variable parameters. The
constraints of the model include KBOC, KEOC, RC (refueling
cycle), Tc,max (maximum temperature of cladding), Tf,max

(maximum temperature of fuel pellet), and Vc,max (maximum
coolant velocity).

4.2.1 Sample Generation
Similar to the optimization steps of SPALLER-4 model, the
optimization variables of URANUS and their range are listed
in Table 6. Further, 216 groups of initial sample points are
randomly sampled by OLHS in these ranges and calculated by
physical and thermal calculation modules of DOPPLER-K.

4.2.2 Prediction Accuracy of Kriging Surrogate Model
The accuracy verification results of KSM for predicting 20th
year Keff and burnup at full power operating conditions in the
optimal design area, which contains 45 groups of training sets,
are shown in Table 7 and Figure 6A. It is clear that the relative
errors between the predicted Keff and burnup by KSM and the
calculated values by RMC are within ±0.1% and ±1%,
respectively.

4.2.3 Optimization Results
According to the original design parameters, the core structure
of URANUS (shown in Figure 6B) to be optimized is
constructed after some simplification. After calculating 216
groups of initial training sets by the RMC code, the intelligent
optimization method is used for iterative optimization.
Further, 1060000 groups of schemes are predicted by KSM
in each iteration, and a total of 37 iterations have been carried
out. After verification calculation by RMC, 29 groups of
solutions meet the optimization constraints, and the final
two iterative schemes meet the convergence conditions
(shown in Figure 6C). At this time, the final optimal range
of design parameters is shown in Figure 6D and Table 8.
Compared to initial design space, the range of optimal space is
reduced. In the entire optimization process, 253 groups of
training data are calculated.

Table 9 presents a comparison between the initial and
optimized schemes. Compared with the initial model under
the same constraint limits, the optimized core fuel loading,
total mass, volume of active zone, and total volume are reduced
by 1,899 kg, 20,149 kg, 0.944,047 m3, and 1.467,536 m3,
respectively, and the reduction rates are 10.8, 11.5, 18.1,
and 17.1%. This verifies the efficacy of the proposed
intelligent optimization method for preliminary design and
optimization of lead-bismuth reactor core.

5 CONCLUSION

In this study, an intelligent optimization method, which included
KSM-OLHS-SEUMRE method and DOPPLER-K software, was
developed for addressing the problems of multiple physical
parameters, multiple variables, multiple constraints, a large
amount of calculation, and low speed in the design

optimization of lead-bismuth reactors. Lead-bismuth reactors:
SPALLER-4 and URANUS, were used as verification examples to
find the optimal scheme and optimal parameters. The entire
calculation process could be automatically completed by the
developed software. The main results of the study are
summarized as follows:

1) KSM has a high prediction accuracy. According to the KSM
prediction results for the two optimization examples, it can
be concluded that when a certain amount of training data is
given, the KSM has a high accuracy for the prediction of
multi-constrained, linear or nonlinear, directly or
indirectly related objective functions. Meanwhile,
compared with the RMC code, which needed
approximately 6.5 h to calculate a group of schemes, the
KSM only needed more than 2 min to predict 1,060,000
groups of data under the same computer hardware
conditions. Therefore, the KSM-based intelligent
optimization method can greatly shorten the calculation
time and improve the efficiency of preliminary design
scheme search and optimization.

2) The proposed method is feasible, efficient, and effective for
preliminary design and optimization of lead-bismuth reactor
core. The optimal design scheme of SPALLER-4 was obtained
using the five-variable and six-constraint model, which
indicated that the intelligent optimization method is fast
and efficient for the optimal scheme search under the
influence of multi-factor coupling. The optimization of
URANUS was conducted using a three-variable and six-
constraint model, and the optimization rates of fuel
loading, total core mass, active zone volume, and total core
volume were found to be 10.8, 11.5, 18.1, and 17.1%,
respectively, which suggested that the proposed method is
effective for parameter optimization of the lead-bismuth
reactor core.

3) Comparing the optimization results of SPALLER-4model and
URANUS model, it can be seen that the dimension of design
variables will affect the training amount required to ensure the
accuracy of Kriging surrogate model. The more design
variables there are, the more training volume is required.
While the number of objective/constraint functions does not
affect the training number. In addition, to a certain extent, the
search efficiency and optimization effect of the target scheme
are also affected by the initial design variables, the initial
optimal range and constraints. Therefore, the intelligent
optimization method constructed in this study can better
improve the optimization effect after reasonably and
comprehensively selecting design variables and setting
design scope.

Overall, to achieve different reactor design objectives, the
proposed intelligent optimization method can rapidly
identify the key design parameters and influence laws.
Furthermore, through the rapid estimation of the reactor
by this method, the optimal design space and preliminary
design scheme of parameters matching the objectives can be
obtained to provide reference for the detailed reactor
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scheme. Thus, the proposed method opens a new route for
the design optimization of miniaturized and lightweight
lead-bismuth reactors in remote areas or marine
environment in the future.
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Denoising Method of Nuclear Signal
Based on Sparse Representation
San-Jun He, Na Sun, Ling-Ling Su, Bin Chen and Xiu-Liang Zhao*

School of Nuclear Science and Technology, University of South China, Hengyang, China

Nuclear signals are sensitive to noise which may affect final monitoring results significantly.
In order to suppress the nuclear signal noise, a sparse representation method, which is
based on the sparse representation of signals and a matching pursuit algorithm, has been
proposed for denoising. Time–frequency matching “atoms” have been selected for
building an over-complete library by training atoms matching with the characteristics of
nuclear signals regardless of the noise. The best time–frequency matching atoms have
been extracted by sparsely representing the noisy signals with an Orthogonal Matching
Pursuit (OMP) algorithm and the library. The residual ratio threshold has been chosen as a
stopping criterion in the OMP algorithm for avoiding the influence of improper selection of
iterations on denoising results. At the end, the pulse matching the atom extracted by each
iteration has been optimized by performing effective sparse representation on the original
noiseless nuclear signal component in noisy nuclear signals. The proposed method has
been used to denoise the simulated and measured signals and has been compared with
the nuclear denoising result using traditional wavelet theory. The results show that the
proposed method can accurately suppress the noise interference of nuclear signals, and
the denoising effect is better than that of the traditional wavelet method.

Keywords: sparse representation, nuclear signal, signal processing, denoising method, noise reduction

INTRODUCTION

Nuclear radiation detection is one of the key technologies in nuclear analysis and also the
fundamental of nuclear science and technology and has been widely applied in the operation of
nuclear power and its safety, uranium mining and metallurgy, environmental monitoring and
radiation protection, homeland security and nuclear non-proliferation, industrial buildings and
radiation imaging, and other fields. The nuclear information, such as energy, time, and position, is
usually converted into voltage in visual and thus can be expediently analyzed and used for obtaining
valuable information (KNOLL, 2000). As the nuclear signals are usually very weak and there is large
electromagnetic noise in a practical environment, therefore, noise suppression has become a problem
that must be solved in the analysis and processing of nuclear signals in nuclear measurement systems
(Williams, 2005; Hashemian and Bean, 2011; To-PoWang and Zong-Wei Li, 2014; Min et al., 2015).

Sparse representation of signals is a method to represent the original signal as accurately as
possible by less specific information, first proposed byMallet and Zhang in 1993 (Mallat and Zhifeng
Zhang, 1993), in which the signal can be represented by a linear superposition of different basis
signals, and the set of these basis signals is called a dictionary, and the basis signals are called atoms.
The sparse representation of signals is based on the adaptive selection of a small number of atoms to
represent the signal with full consideration of the signal characteristics, and because the method does
not require the atoms to have orthogonality, the selection of atoms in the dictionary is flexible and
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can better characterize the signal and retain the frequency- and
time-domain information of the original signal to the maximum
extent, and it has many advantages such as a wide range of signal
representation, concise representation method, and strong
representation capability (Mallat and Zhifeng Zhang, 1993;
Zhang et al., 2017; Othmen et al., 2021; Shi et al., 2021),
which has been more often applied in the fields of image
restoration, image denoising, and signal recognition (Deeba
et al., 2020; Maqsood and Javed, 2020; Alotaibi, 2021;
Balnarsaiah and Rajitha, 2021). Sparse representation methods
include both sparse decomposition algorithms and construction
of over-complete atomic dictionaries, and the main sparse
decomposition algorithms are convex optimization algorithms
and greedy algorithms. Typical convex optimization algorithms
include Basis Pursuit (BP) (Ekanadham et al., 2011), and in 2015,
Selesnick et al. constructed convex sparse representation models
based on parametric non-convex functions and proposed
corresponding sparse decomposition algorithms, which
achieved superior performance in signal denoising and other
aspects (Selesnick et al., 2014; Parekh and Selesnick, 2015).
Convex optimization algorithms have a more rigorous
mathematical optimization solution process, and compared
with greedy algorithms, convex optimization algorithms can
find sparser or more accurate solutions, but the computational
complexity is high and will take a lot of time. Typical greedy
algorithms include Matching Pursuit (MP) (Mallat and Zhifeng
Zhang, 1993), Orthogonal Matching Pursuit (OMP) (Yi and
Song, 2015), which is developed on the basis of MP,
Regularized Orthogonal Matching Pursuit (ROMP) (Sajjad
et al., 2015), Sparsity Adaptive Matching Pursuit (SAMP)
(Wang et al., 2020), Compressive Sampling Matching Pursuit
(CoSaMP) (Huang et al., 2017), Subspace Pursuit (SP) (Li et al.,
2015), and other methods, and all of them can achieve sparse
signal reconstruction very well. Matching Pursuit class algorithms
are commonly used for image sparse representation, and
Rubinstein’s team (Rubinstein et al., 2008) used Batch
Orthogonal Matching Pursuit (Batch-OMP) to achieve fast
noise reduction and sparse representation processing of image
signals. Greedy class algorithms with mature theory, low
complexity, and fast running speed are widely used for signal
sparse decomposition. The construction of over-complete
dictionaries mainly includes conformal dictionaries and
learning dictionaries. Constructed dictionaries are constructed
by analyzing the signal feature structure, using parametric
wavelets as atoms, and obtaining a large number of different
atoms by changing parameters, such as the Gabor
time–frequency atom dictionary (Mallat and Zhifeng Zhang,
1993) and the chirplet time–frequency atom dictionary (Mann
and Haykin, 1995). The learned dictionaries are mainly learned
from training samples and have good adaptability, but in
application scenarios where the signal interference noise is
relatively strong, the learned dictionaries may not be optimal
and do not perform well for sparse representations of other
signals of the same type; moreover, dictionary learning
algorithms are generally high in complexity and are not
suitable for dealing with large-scale datasets. The current
typical dictionary learning methods include the method of

optimal directions (MOD) (Engan et al., 2000), K-SVD
(Aharon et al., 2005), and online dictionary learning (ODL)
(Celik and Bilge, 2017). At the moment, sparse
decomposition’s application and research in nuclear signal
processing is still in its infancy. In 2011, Trigano T et al.
(Trigano et al., 2011) conducted a study on activity estimation
of radioactive source based on the sparse representation of signals
method and investigated the efficiency of this approach on
simulation and real datasets. And also in 2018, Zhang (Zhang
et al., 2018) investigated the rapid and effective extraction method
of nuclear pulse signals based on the sparse representation
method.

In this paper, a sparse representation method has been applied
for denoising nuclear signals. As nuclear signal matching atoms,
Gabor time–frequency atoms and chirplet time–frequency atoms,
which can accurately correlate with the characteristics of the
original nuclear signal, were first produced. Gabor and chirplet
atoms exhibit good time–frequency aggregation, according to the
uncertainty principle, and the nuclear signal is a type of uncertain
signal with unpredictable time and amplitude. The
time–frequency features of the nuclear signal can be
completely revealed utilizing the sparse representation of the
signal generated using the Gabor dictionary and chirplet
dictionary. Then, the Orthogonal Matching Pursuit (OMP)
algorithm was applied for searching the best matched atom in
the noisy nuclear signals from the over-complete library
composed of time–frequency atoms, and the threshold of
residual ratio was taken as the stopping criterion of OMP
algorithm. Because the matched atoms obtained from each
iteration can only effectively sparse represent the original
nuclear signals without noise components, the aim of nuclear
signal denoising can be achieved. In this work, the above methods
have been used to denoise the simulated and measured nuclear
signals, respectively (Chen et al., 2009; Zhou et al., 2011). The
results prove that the method proposed in this paper is more
effective and superior compared with the traditional wavelet
denoising method.

ORIGINAL RESEARCH ARTICLE

Sparse Representation Theory of Signals
Any signal f ∈ RN can be represented as a linear combination of
atoms (ϕγ(t))γ∈Γ in the dictionary D:

f � ∑
γ∈Γ

αγϕγ , (1)

where αγ is the expansion coefficient. Since the dictionary D is
non-orthogonal and over-complete, a signal f has various
possible representations in the dictionary D. Solving the
sparse signal representation coefficient in a certain atomic
dictionary D is equivalent to solving the following
optimization problem:

(P0) : min
����x0

���� s.t. y � Dx, (2)
where ‖x‖0 � |{i: x(i) ≠ 0}| is the number of non-zero terms in
the coefficient vector x.
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The denoising of the nuclear signals infected by noise can be
composed of two parts, namely, the original nuclear signals
without noise and the noise signal, and its mathematical
model can be expressed as (SARKAR et al., 2012)

f � fp + fn, (3)
where f is the nuclear signal infected by noise, fp is the original
nuclear signal without noise, and fn is the noise signal.

Basically, fp has a particular structure, but fn does not, or fp

and fn have different structures. If there is some kind of atom Pγ,
and its atomic structure is related to fp and unrelated or has weak
correlation to fn, when sparse representation based on the
decomposition algorithm is done to fp in an over-complete
dictionary of atoms composed of Pγ atoms, the inner product of
atoms and fp must be greater than that of atoms and fn. Based on
the rational of MP algorithm, the first extracted nuclear signal must
be the original nuclear signal without noise and can be formulized as

f � ∑k

k�1 <R
kf, pk

γ >pk
γ + Rk+1f, (4)

where ∑k
k�1 <Rkf, pk

γ >pk
γ is the original nuclear signal without

noise, Rk+1f represents the noise signal, and pk
γ denotes matched

atoms for nuclear signals.

Sparse Representation and Decomposition
Algorithm
Orthogonal Matching Pursuit Signal Sparse
Decomposition Algorithm
The process of Matching Pursuit algorithm (Mallat and Zhifeng
Zhang, 1993) is presented as follows: Firstly, the atom xr0 that best
matches the signal y to be decomposed is selected from the over-
perfect dictionary to satisfy the following conditions:∣∣∣∣<y , xr0 >

∣∣∣∣ � sup
∣∣∣∣<y , xri >

∣∣∣∣. (5)
The signal can be decomposed into components and residuals

on the optimal atom:

y � <y , xr0 >xr0 + R1, (6)
where R1 is the residue after the optimal matching of the original
signal with the optimal atom. The same decomposition process
above can be carried out for the residue after the best matching:

Rt � <Rt , xrt >xrt + Rt+1. (7)
After the T step decomposition, the signal is decomposed into

y � ∑T−1
t�0 <Rt , grt >grt + RT. (8)

And a small number of atoms can represent the main component
of the signal, namely,

y ≈ ∑T−1
t�0 <Rt , grt >grt. (9)

From Equation 6, it can be seen that the sparse decomposition
of signals by the matching tracking algorithm is a continuous
iterative process. Without limiting the residual energy threshold
and decomposition iteration times, signals can be decomposed
indefinitely on a fixed atomic dictionary.

The OMP algorithm uses the Gram–Schmidt
orthogonalization method to normalize the matched atoms xrt

at each step of MP decomposition (Yi and Song, 2015), which can
not only accelerate the convergence rate but also avoid
introducing unnecessary components when residual errors are
projected on the atoms xrt. The specific process assumes u0 � xr0,
the most matching atom xrt is selected according to Equation 7,
and then xrt is normalized:

ut � xrt −∑N−1
t�0

<xrt, ut−1 >
u2
t−1

ut−1. (10)

After N iterations, the system output signal y is decomposed:

y � ∑N−1
t�0

<xrt, ut−1 >
u2
t−1

ut−1 + RN. (11)

The Nuclear Signal Over-Complete Atomic Dictionary
The Gabor Atomic Over-Complete Dictionary
According to the principle of sparse representation, the sparse
representation of a signal can be achieved in any over-complete
atomic dictionary (Mallat and Zhifeng Zhang, 1993). From the
point of view of obtaining a better sparse representation of the
signal, the over-complete dictionary of atoms chosen or

FIGURE 1 | Flow chart of the sparse decomposition algorithm based on
block processing.
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constructed should match as closely as possible the intrinsic
structure and properties of the signal, so that as few atoms as
possible can be used for the representation, and the
representation results will be more sparse. In addition, in
order to better describe the time-varying characteristics of
non-stationary nuclear signals from the perspective of
time–frequency analysis, the atoms in the dictionary should

have good resolution in both the time domain and the
frequency domain. In this study, a Gabor atom is firstly used
to construct an over-complete dictionary due to the best
time–frequency aggregation. It is expressed as follows:

gγ(t) � 1�
s

√ g(t − u

s
)cos(vt + w), (12)

FIGURE 2 | Simulation GUI interface of the nuclear signal.

FIGURE 3 | Denoising results of the nuclear pulse simulation signal.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8378234

He et al. Denoising Method for Nuclear Signal

60

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where g(t) � e−πt2 represents a Gaussian window function, γ �
(s, u, v, w) is the atomic time–frequency parameter, s is the
scaling factor, u is the shift factor, v is the frequency factor, and w
is the phase factor. Signal sparse representation requires high
redundancy and enough diversity of atomic dictionary. To meet
the design requirements, we discretize the atomic time–frequency
parameters into

γ � (aj, paj Δu, ka−j Δv, iΔw). (13)

Here, a = 2, Δu = 1/2, Δv = π, Δw = π/6, 0< j≪ log2N,
0≪P≪N2−j+1, 0≪ k≪ 2j+1, 0≪ i≪ 12, and N represents the
number of sampling points of a frame signal processed.

The Chirplet Atomic Over-Complete Dictionary
The chirplet atom (Mann and Haykin, 1995) is the most widely
used atom after the Gabor atom. On the principle of Gabor atom,
and then the chirplet atom, a one-dimensional frequency
modulation parameter is added, which makes the chirplet

TABLE 1 | Nuclear signal sparse decomposition algorithm based on block processing.

Input: Raw nuclear
signal vector y

Processing: Use the im2col function to transform the signal vector to be processed into an M*N matrix, that is, the signal is divided into M segments of length N, and the data
less than N are processed by adding 0
Task: Select the corresponding time–frequency atoms according to nuclear signal characteristic construction and generate an over-complete atomic dictionary of
corresponding size according to the length of Block data
Initialization: Set the current cycle number m = 1, the maximum cycle number m = M, m = 1,2, . . ., M, and the cycle termination condition m ≥ M
Repeat steps 1 to 6
1. Input: Import the m Block signal data and the generated over-complete dictionary
2. Initialization: Set the cumulative number of stopping updates of the current iteration N = 1 and the maximum number of stopping iterations N=K. And set both N ≥ K and the
residual ratio threshold
3. q(RN−1) � RN−ξRN−1

ξRN−1 < ε, N = 1,2, . . ., K, as the calculation iteration termination condition.
4. Start OMP algorithm decomposition, initialize residual to original noisy signal Block data, set the atomic index set, initialize support set, and decompose sparse vector α
5. Repeat steps 1 to 5
1) The atom xr0 that best matches the signal Block data y is selected from the over-complete dictionary to satisfy the following conditions:
|< y , xr0 > | � sup|< y , xri > |
2) Schmidt orthogonal processing for all selected atoms: set u0 � xro
ut � xrt −∑N−1

t�0
< xrt ,ut−1 >

u2t−1
ut−1

3) Sparse is decomposed by the following calculation:

y � ∑N−1
t�0

< xrt ,ut−1 >
u2t−1

ut−1 + RN

and the sparse vector α is updated
4) Update signal residual RN

RN � RN−1 − < xrN−1 ,uN−2 >
u2N−2

uN−2, N = 2,3. . .,K

5) Determine if termination conditions are met: N ≥ K or q(RN−1) � RN−ξRN−1
ξRN−1 < ε, ξ �

������������������
E[(RN)2]/E[(RN−1)2]

√
If one of the above conditions is satisfied, stop the iteration; if not, set N=N+1 and return to step 1
6. Processing: Signal Block data are represented by a linear combination of the best matched atoms selected each time, that is, Y = D.α, and the last residual represents the
noise removed
7. Determine whether to meet the loop termination condition: m ≥ M; if satisfied, stop the loop and execute the next step; if not, set m = m+1 and return to step 1
Processing: Use the reshape function to reorganize the M-segment Block data to reconstruct the complete signal

TABLE 2 | Calculation results of denoising effect evaluation indexes.

Index Method 1 2 3 4 5 6 7 8 9 10 Overall

RMSE Signal with noise 0.0373 0.0369 0.0397 0.0419 0.0386 0.0382 0.0408 0.0397 0.041 0.0412 0.0395
Chirplet 0.0068 0.0059 0.0062 0.006 0.0059 0.0073 0.0071 0.0057 0.0066 0.0067 0.0064
Gabor 0.0094 0.007 0.0069 0.0055 0.0075 0.0112 0.0076 0.0073 0.0088 0.0068 0.0078
Db4 0.0091 0.0091 0.0103 0.0082 0.0091 0.0099 0.0095 0.0116 0.0102 0.0124 0.0099
Db8 0.0089 0.0105 0.0095 0.0084 0.0098 0.0117 0.0106 0.0108 0.0109 0.0112 0.0102

NCC Signal with noise 0.5901 0.6131 0.5848 0.5405 0.5977 0.6523 0.6073 0.6137 0.6009 0.6325 0.6033
Chirplet 0.8243 0.8772 0.843 0.8246 0.8609 0.8677 0.8538 0.8808 0.8524 0.8712 0.8556
Gabor 0.7361 0.8494 0.8157 0.8351 0.8101 0.7766 0.8329 0.8431 0.7914 0.8695 0.8160
Db4 0.7467 0.7977 0.7174 0.7393 0.7686 0.8062 0.7878 0.7306 0.7555 0.7363 0.7586
Db8 0.7511 0.7603 0.7423 0.7288 0.7473 0.7681 0.7597 0.7509 0.737 0.7669 0.7512

SNR Signal with noise 14.29 14.02 14.02 13.78 14.14 14.18 13.90 14.01 13.88 13.85 14.01
Chirplet 21.66 22.27 22.09 22.19 22.30 21.38 21.49 22.47 21.82 21.71 21.94
Gabor 20.29 21.55 21.58 22.16 21.25 19.53 21.12 21.36 20.53 21.67 21.16
Db4 20.40 20.42 19.87 20.88 20.39 20.05 20.22 19.34 19.93 19.05 20.05
Db8 20.51 19.79 20.22 20.75 20.10 19.33 1976 19.67 19.61 19.50 19.92
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atom have a good matching effect on the linear frequency
modulation signal. It can be expressed as follows:

gγ(t) � 1�
s

√ g(t − u

s
)exp(j(ξ(t − u) + 1

2
c(t − u)2)), (14)

where g(t) � e−πt2 represents a Gaussian window function, γ �
(s, u, ξ, c) is the atomic time–frequency parameter, s is the
telescopic scale, u is the shift factor, ξ is the modulation
factor, namely, frequency center, and c is the linear frequency
modulation factor responding signal frequency over time. The
real part of the time–frequency atom can be expressed as

gγ(t) � 1�
s

√ g(t − u

s
)cos(ξ(t − u) + 1

2
c(t − u)2). (15)

According to the optimal discretization method, the atomic
parameter set γ is discretized:

γ �� (s, u, ξ, c, ω)
� (aj, paj Δu, ka−j Δξ, la−2j Δc, iΔw), (16)

in which a = 2, Δu = 1/2, Δξ = π, Δw = π/6, 0< j≪ log2N,
0≪P≪N2−j+1, 0≪ k< 2j+1, 0≪ l< 2j+1, 0≪ i≪ 12, and N
represents the number of sampling points of a frame signal
processed.

The Termination Conditions of Residual Threshold
The iterative termination conditions of the OMP algorithm are
mainly composed by the hard and soft threshold methods. The
former refers to the fixed iteration termination number K, and the
original signal was replaced with the linear combination of K
original signals. This method is simple but has the flaw that the K
value is difficult to determine accurately. When K is too small, the
original noiseless signal component will be lost, while the noise
component will be introduced in reverse with a very large K. On
the contrary, the soft threshold method holds that the iteration is

terminated when the residual signal is less than a certain
threshold. Its denoising effect is fine when the signal-to-noise
ratio is high, whereas at low signal-to-noise ratios, a larger noise
component will impact on the judgment of the residual error
threshold. Thus, no matter how many times iteration was done,
the residual all cannot reach the specified threshold. In addition,
when the number of iterations is too much, a noise component
will further be introduced, which also will influence the denoising
effect. A termination condition of the residual ratio threshold of
the signal denoising was introduced in the study of Liang and Que
(2010) based on the MP theory, which avoids the influence on the
judgment of the threshold of the residual ratio when the noise
energy is large; as a consequence, the noise disturbance was
reduced, and the robustness of the sparse representation was
improved. Taking Rkf and Rk+1f, respectively, as the k-th and
k+1-th residuals, the residual error ratio is

q(RKf) � ����RK+1f − ξRKf
����

ξRKf
, (17)

where ξ �
��������������������
E[(Rk+1f)2]/E[(Rkf)2]

√
and E(·) denotes the

expectation value.

Steps of Nuclear Signal Denoising Method Based on
Sparse Representation
The steps of the nuclear signal denoising method based on sparse
representation are presented as follows:

1) The number of dictionary contents will be huge, when the
length of the signal to be processed is large enough for the size
of the over-complete dictionary used in sparse decomposition
which depends on the length of the signal to be processed. To
solve this problem, the collected data sequence is divided into
blocks. A Block is a segment of an entire data sequence
(Rubinstein et al., 2008).

FIGURE 4 | Measured nuclear pulse signals in the laboratory. FIGURE 5 |Measured nuclear pulse signals with noise superimposed in
the laboratory.
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2) The corresponding time–frequency atoms are constructed
according to the characteristics of the nuclear signal, and
the over-complete atomic dictionary is generated according to
the length of the Block.

3) For each Block, OMP decomposition is performed separately.
Set the cumulative number of stopping iterations N = 1, and
set the maximum allowed number of stopping iterations to K.

4) According to the threshold condition of residual ratio, do
determination when the OMP calculation iteration
termination condition is satisfied. If not, return to step 3); if
so, a Block denoising ends.

5) Each Block is processed separately and then spliced.

Flow chart of the sparse decomposition algorithm based on
block processing is shown in Figure 1, and the detailed algorithm
is shown in Table 1.

Simulation Verification and Analysis
Nuclear Signal Simulation
The simulation experiment is designed to verify the
effectiveness of the method based on sparse representation.
According to the random statistical law of nuclear event
(Bertuccio and Pullia, 1993; Georgiev and Gast, 1993), the
waveform shape, amplitude, adjacent pulse time interval, and
system interference noise characteristics of the nuclear signal
are statistically described, and then the simulated nuclear
signal is generated on this basis.

1) The mathematical model of pulse waveform

To select an appropriate signal mathematical model according
to the type of preamplifier after the detector, in this paper, a
resistance–capacitance feedback preamplifier is employed to
simulate the output pulse waveform. It is approximated by a
double exponential function:

sn(t) � An × (e−(t−tn)/τ1 − e−(t−tn)/τ2) × u(t − tn), (18)
where An represents the amplitude of the nth pulse waveform, tn
stands for the formation time of the pulse waveform, τ1 and τ2
show the corresponding slow time constant and fast time
constant, respectively, and the function u(t − tn) is the first
step function..

2) The pulse time interval satisfies the exponential
distribution rule

dI(t) � me−mtdt, (19)
where m represents the average counting rate of pulses.

3) The pulse amplitude is proportional to the energy loss of the
incident particle in the detector, which has random
fluctuation characteristics. Generally, the pulse amplitude
distribution of the nuclear signal meets the conditions of
normal distribution:

H(A) � 1����
2πσ

√ e−(A− �A)2/2σ2 , (20)

where �A is the average pulse amplitude and σ is the amplitude
standard deviation determined by the intrinsic energy R of the
detector and the average pulse amplitude, σ � R × ( �A/2.355 ).

4) The statistical characteristics of noise interference

The interference noise will be introduced in the measurement
of the nuclear signal due to the influence of electronic devices and
environment. The white noise distribution satisfies the normal
distribution rule and is superposed linearly with the nuclear

FIGURE 6 | Denoising result of nuclear pulse signals measured in the laboratory: (A) denoising result based on sparse representation; (B) denoising result by
wavelet morphology–wavelet method (Db4); (C) denoising result by wavelet morphology–wavelet method (Db8).

TABLE 3 | Evaluation indexes of denoising effect of measured nuclear signals in
the laboratory.

Denoising method RMSE NCC SNR

Before denoising 10.4730 0.1760 −10.2007
Method in this paper 0.0971 0.9275 10.1279
Wavelet Db4 0.8023 0.4989 0.9568
Wavelet Db8 0.6742 0.5787 1.7121
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signal to form an observation signal. The slow and fast time
constants in the dual exponential function are set to 20 and 0.5 µs,
respectively, based on the pulse waveform of the nuclear signal.
For the pulse amplitude, the natural resolution of the detector is
set to 20%, and the average pulse amplitude is set to 1 V, which
obeys the normal distribution. The generation time of the pulse
waveform is obtained randomly through exponential distribution
according to the pulse time interval and the setting of the average
count rate of nuclear signal pulse of 6,000 cps. For the
interference noise, the mean value and standard deviation of
the noise signal are set as 0 and 0.2 V, respectively, which obeys
the additive superposition rule. Figure 2 shows the original
nuclear signal obtained by sampling frequency 1 MHz and
sampling time 1 ms.

Analysis of Denoising Effect of Nuclear Signal
Thewavelet analysismethod is selected to denoise the simulated signal
to compare and illustrate the denoising effect of this method.Wavelet
packets, respectively, choose wavelet Db4 and wavelet Db8, which are
currently widely applied in the nuclear signal denoising area, and the
denoising results are shown in Figure 3: straight from the top, in turn,
plots present the original nuclear signal without noise, the nuclear

signal with noise, the result of the sparse decomposition based on the
Gabor dictionary, the result of the sparse decomposition based on the
chirplet dictionary, the result processed by Db8, and the result
processed by Db4.

In this work, three parameters were introduced, which formed
the evaluation index of denoising effect, that is, signal-to-noise
ratio (SNR), root mean square error (RMSE), and normalized
correlation coefficient (NCC). The SNR was used to evaluate the
noise energy; the smaller the value of SNR, the lower the noise
energy in the signal. The RMSE was used to evaluate the overall
error between the recovered signal after denoising and the
original noise bureau broadcast signal. The smaller the value
of RMSE is, the lower the error is. The NCC reflects the degree of
similarity between the recovered signal and the original ideal
signal waveform without noise after denoising, and the closer it is
to 1, the more similar the two waveforms are.

Based on the results in Figure 3 and Table 2, the following
conclusions can be drawn by comparing the denoising results and
denoising evaluation indexes of the four methods:

1) The denoising effect of the nuclear signal based on sparse
representation introduced in this paper is better than that
of wavelet analysis. The waveform of each pulse recovery
signal remains consistent, the pulse trend remains the
same, and the error based on sparse representation is the
smallest compared with the original pulse signal after
denoising.

2) The denoising results obtained by denoising the nuclear signal
based on sparse representation are related to the selection of
over-complete dictionaries, and the results vary obviously by
different over-complete dictionaries.

3) The selection of wavelet basis has great influence on the
denoising effect of the nuclear signal based on wavelet
analysis. Compared with that of the original signal, the
amplitude of the denoised signal has big error, and its
waveform was distorted.

The Verification of Measured Signals
In the laboratory, a γ pulse nuclear signal was obtained
through the nuclear measurement system composed of an
NaI detector and γ radiation source 60Co. Figure 4 shows
the waveform measured by the above measurement system in
the laboratory by the sampling frequency of 100 M Hz. Due to
the weak interference in the laboratory, the nuclear signal can

FIGURE 8 |Nuclear pulse signal output by the neutron detection system
built in the laboratory.

FIGURE 7 | Structural block diagram of the neutron measurement system.
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be easily differentiated. In this paper, background noise of the
laboratory is measured and amplified and then superimposed
into the measured signal to simulate the noisy nuclear signal.
Its waveform is shown in Figure 5.

The method introduced in this paper is adopted to carry out
denoising processing for the above nuclear signal with noise, and
the result is shown in Figure 6A. Meanwhile, the denoising
results by wavelet morphology–wavelet method were also
measured and are shown in Figures 6B,C.

Due to the small noise interference of the original measured
nuclear signal, it can be approximately equivalent to the ideal
noise-free waveform, and the evaluation index of denoising effect
of each method is calculated. The results are shown in Table 3.

Based on the results in Figure 6 and Table 3, the method in this
paper can still restore the measured nuclear pulse signal in the
laboratory under high noise, whereas the denoising effect of
wavelet method is poor with large energy loss and large distortion.
In general, the method of denoising the nuclear signal introduced in
this paper has high accuracy, small waveform distortion, and good
retention of the time characteristics and amplitude of the original
nuclear pulse signal. So, its denoising effect is obviously better than
that of the wavelet method.

To validate the denoising effect of the method in this paper for a
weak signal under a long cable transmission nuclear measurement
system, a set of neutron detection systems was built in the laboratory,
whichmodeled themeasurement system in the core pool of a sodium-
cooled fast reactor. In the system, the Am–Be neutron source and LB-
125 fission ionization chamber were applied, and the output signal of
the fission ionization chamber was transported through a 10m long
cable to the preamplifier for amplification to improve the SNR of the
detector and then sent to the linear amplifier through a long shielded
cable. The structural block diagram of the neutron measurement
system is shown in Figure 7.

The nuclear pulse signal shown in Figure 8was read out by the
neutron detection system built in this paper after the main

amplifier. Due to the long distance between the preamplifier
and the fission ionization chamber, interference noise can easily
be mixed into the measurement process through the transmission
cable, so large noise has been superimposed in the nuclear pulse
signal measured by the experiment.

The nuclear pulse signal denoising method adopted in this
paper was used for sparse decomposition and reconstruction of
the nuclear pulse signal output by the neutron detection system
built in the laboratory. Figure 9 shows the result obtained
through adjusting the iteration threshold parameters.

RMSE, NCC, SNR, and other parameters cannot be used for
evaluation, as there is noway to obtain the nuclear pulse without noise
through the neutron detection system. However, from the
reconstructed pulse image, we can obviously find the method can
effectively extract the nuclear signal from the system with a random
noise signal and maintain the time information of the original pulse.

CONCLUSION

In this paper, a sparse representation–based nuclear signal denoising
method is proposed for nuclear signal extraction in a strong noise
interference environment. Firstly, the Gabor time–frequency atoms
and chirplet time–frequency atoms are constructed, and then the
sparse decomposition and reconstruction of the signal are performed
by the Batch Orthogonal Matching Pursuit (Batch-OMP) algorithm,
and the residual ratio threshold is used as the termination condition of
the iteration of the algorithm. The simulation results show that this
method outperforms the traditional wavelet method in all indexes,
with high accuracy and low error, and retains the kernel signal
characteristics. The experiments prove that the method can
effectively extract the kernel signal in the noisy environment and
retain the original pulse information well.
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Research on Thermal-Hydraulic
Parameter Prediction Method of the
Small Lead–Bismuth Fast Reactor
Core Based on Adaptive RBF Neural
Network
Hong Wu1, Ren Li2, Pengcheng Zhao1, Tao Yu1* and Yanan Zhao1*

1School of Nuclear Science and Technology, University of South China, Hengyang, China, 2College of Nuclear Science and
Technology, Harbin Engineering University, Harbin, China

In this study, a cladding surface temperature prediction method based on an adaptive RBF
neural network was proposed. This method can significantly improve the accuracy and
efficiency of the thermal safety evaluation of the lead–bismuth fast reactor. First, based on
the sub-channel analysis program SUBCHANFLOW, the core sub-channel model of the
small lead–bismuth fast reactor SPALLER-100 was established. Second, the calculated
2000 groups of core power distribution and coolant flow distribution data were used as
training samples. The adaptive RBF neural network model was trained to predict the
surface temperature of fuel elements in the lead–bismuth fast reactor. Finally, by
comparison, the effectiveness and superiority of the adaptive RBF neural network
method were proved. The results indicate that the relative error of the maximum
temperature of the fuel cladding predicted using the adaptive RBF neural network
method was less than 0.5%, which can be used for the rapid prediction of the thermal
and hydraulic parameters of the lead–bismuth fast reactor.

Keywords: RBF neural network, adaptive algorithm, small lead–bismuth fast reactor, thermal safety,
SUBCHANFLOW

INTRODUCTION

As one of the six originally selected GEN IV nuclear energy systems of the Generation IV
International Forum, the lead-cooled fast reactor (LFR) has attracted continuous and widespread
research upsurge worldwide (Pioro 2016; Alemberti 2017; Forum 2014). The distinctive
configurations and features offer the LFR distinctive advantages in the aspects of long-term fuel
sustainability, safety, economics, proliferation resistance, and physical protection.

So far, major nuclear powerhouses have proposed their own LFR development road map and
relevant conceptual designs. In terms of technology maturity, Russia’s BREST–300 takes the
considerably leading position, which is expected to operate in 2026 (Forum 2014; Zabudko
et al., 2021). In parallel, activities are also carried out on SVBR-100, which is based on the
previous naval propulsion systems. Meanwhile, Japan has developed a small LFR (LSPR) and a
direct-contact PBWFR (Takahashi et al., 2008; Alemberti et al., 2014). Europe proposed the
industrial-size plant ELFR design along with its demonstrator called ALFRED (Alemberti et al.,
2020). In the United States, only limited development of the SSTAR has been implemented (Smith
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et al., 2008). Moreover, a number of innovative LFR conceptual
designs that are in various stages have been carried out for
different purposes worldwide (Forum 2014). It is worth noting
that the research on LFR systems in China has received great
emphasis from research institutes to universities (Wu et al., 2016).
One of the representative LFR activities in China is the CLEAR
series carried out by the Institute of Nuclear Energy Safety
Technology (INEST) within the Chinese Academy of Sciences
(CAS), which adopts a pool-type configuration and use
lead–bismuth eutectic (LBE) as the primary coolant. Other
research institutes including the China Institute of Atomic
Energy (CIAE) and Nuclear Power Institute of China (NPIC)
also carried out their own LFR system concepts (Pioro 2016; Ma
et al., 2019).

Actually, in the past decade, a large number of the major LFR
design and engineering problems have been tackled, and
improvements have been implemented in the practices. Issues
such as system integration, component design, performance
assessment, lead technology, and safety analysis (including
accident mitigation) have got remarkable achievements.
However, some technological problems still exist that needed
to be resolved, for example, material corrosion, fuel development,
and further safety validation. Among these problems, a common
problem is the detection and prediction of the cladding maximum
temperature, since the cladding maximum temperature is a key
parameter of the LFR’s thermal safety criteria. It is well known
that the high boiling temperature of lead allows the LFR to require
neither pressurization nor concerning the overheating of the
primary coolant. However, the cladding maximum
temperature still needs to be considered in the LFR thermal
safety analysis due to its higher coolant operating temperature.
The chemical reaction between the LBE and the cladding
material, and the failure of the cladding are closely related to
the cladding temperature.

In recent years, the neural network has been proven that it is
qualified to provide accurate and fast thermal parameter
prediction. The representative application is reported in Cong
et al. (2013), which uses an artificial neural network and wavelet
analysis to carry out the nonlinear research of reactor thermal-
hydraulic analysis. Cong’s work proves that the neural network
method is feasible in thermal-hydraulic analysis. Subsequently,
much research has been carried out to verify the feasibility and
accuracy of the neural network method in different aspects of
reactor thermal-hydraulic analysis. Wang used the BP artificial
neural network method to predict the three key parameters of
core fuel refueling of Qinshan phase II PWR (Wang et al., 2020).
Based on the regularized radial basis function (RBF) neural
network model, Peng studied the power distribution of the
ACP-100 modular reactor. It is not only concluded that the
method can accurately reconstruct the axial power distribution
of the reactor core but also proved that the method has good
robustness and can overcome the inherent uncertainty in the
power distribution reconstruction (Peng et al., 2014).
Furthermore, Xia constructed a real-time three-dimensional
distribution monitoring system of core power by using the
nuclear measurement system and RBF neural network, which
improved the accuracy and real-time performance of monitoring

(Xia et al., 2014). Chen established a feature fusion neural
network with seven layers to predict the key safety parameters
of the Qinshan reactor. The prediction results show great
agreement with the simulation data conducted using the
COSMO code (Chen et al., 2022). Although the neural
network method has been widely used in the prediction of
thermal-hydraulic parameters of reactors and shows great
agreement beyond expectation, the relevant research on
lead–bismuth fast reactors is still insufficient.

In the present study, the adaptive RBF neural network method
is selected to predict the cladding surface temperature of the
SPALLER-100 reactor after comparing the performance of
several neural network methods. (At present, the BP neural
network and RBF neural network are often used to study, so
this study takes the BP neural network as a typical comparison.)
The training data samples used as a training set and prediction set
are obtained by SUBCHANFLOW program. The performance
and generalization ability of the adaptive RBF neural network
were also verified.

MATHEMATICAL MODEL AND METHOD

A Brief Introduction of the RBF Neural
Network
The radial basis function (RBF) neural network is a feedforward
neural network with a three-layer structure, namely, the input
layer, the output layer, and the hidden layer as is shown in
Figure 1 (Hartman, Keeler, and Kowalski 1990; Park and
Sandberg 1991). The basic mathematical model of the RBF
neural network is a locally distributed non-negative nonlinear
function with central radial symmetric decay. It can approach any
nonlinear function with arbitrary precision and has the ability to
approximate the error of global, which fundamentally solves the
local optimization problem of the BP neural network. Moreover,

FIGURE 1 | The structure of the RBF neural network.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8521462

Wu et al. Neural Network LFR Parameter Prediction

68

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


it has a compact topology so that the structural parameters can
realize separation learning and achieves quick convergence. This
characteristic is quite suitable for the real-time control.

The output of hidden layer neurons is as follows:

hj � exp⎛⎝ −
����x − cj

����2
2b2j

⎞⎠, (1)

where x = [xi]T represents the input of the network, the hidden
layer output of the network is expressed as h = [hj]T, hj is the
output of the jth neuron in the hidden layer, c = [cij] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ c11 / c1m

..

.
1 ..

.

cn1 / cnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the coordinate vector of the center point

of the Gaussian basis function of the jth neuron in the hidden
layer, i � 1, 2, 3, . . . , n, j � 1, 2, 3, . . . , m; b � [b1, b2, . . . , bm]T,
and bj is the width of the Gaussian basis function of the jth
neuron in the hidden layer. The implied number of layers in this
article is 20, and the transfer function is tanh.RBF network
weights are as follows:

ω � [ω1, . . . ,ωm]T, (2)
The output of RBF network is as follows:

ymt � ω1h1 + . . . + ωmhm, (3)
The error index of the RBF neural network can be written as

follows:

E(t) � 1
2
(y(t) − ym(t))2, (4)

In addition, the RBF neural network has the characteristics
of self-learning, self-organizing, and self-adaptive functions.
Meanwhile, the RBF neural network has the uniform
approximation to nonlinear continuous functions and high
learning efficiency. The advantages expressed before offers the
RBF neural network the capability of large-scale data fusion
and data high-speed parallel processing. Presently, the RBF
neural network has been successfully applied to the aspects of
nonlinear function approximation, time series analysis, data
classification, pattern recognition, information processing,
image processing, system modeling, control, fault diagnosis,
etc. (Seshagiri and Khalil 2000; Li et al., 2004; Wang and Yu
2008).

Adaptive RBF Neural Network
An adaptive algorithm is a process aimed at approaching the
target continuously, which is based on a gradient algorithm. By
introducing the adaptive algorithm into the conventional neural
network, the “over-fitting” phenomenon can be effectively
eliminated. Thus, it can significantly reduce the dependence
on the accuracy of the neural network identifier and
dramatically improve the weakness of the conventional neural
network.

According to mature literature, compared with the adaptive
BP neural network, the adaptive RBF neural network can
effectively improve the performance of the controller when the

system has large uncertainty and has a better prediction effect
(Zhu et al., 2008). In view of this, the adaptive gradient descent
(Adam) algorithm is adopted to overcome the drawbacks of
falling into local minimum and slow convergence that the
traditional BP neural network has. The flowchart of the
adaptive RBF neural network algorithm is demonstrated in
Figure 2.

The Adam algorithm updates the parameters as follows:

FIGURE 2 | Flowchart of adaptive RBF neural network algorithm.
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θt+1 � θt − η��̂
νt

√ + ϵ
m̂t, (5)

where η is the learning rate, which controls the update ratio of
weights and takes a smaller value, which will make the training
converge to better performance, t is the iteration time, m̂t is the
weighted average of the gradient, and ]̂t is the weighted deviation.
During training, β represents the error signal between the output
layer and the hidden layer, β1 is the exponential decay rate of the
first moment estimation, and β2 is the exponential decay rate of

the secondmoment estimation. In this article, η � 0.001, β1 � 0.9,
β2 � 0.999, and ϵ � 10−8. The detailed process is shown in
Figure 3.

SPALLER-100 Introduction
SPALLER-100 is a small lead–bismuth fast reactor with a
thermal power of 100 MW (Liu et al., 2020). The schematic
diagram of the small lead–bismuth fast reactor SPALLER-100
core is shown in Figure 4 (cross-section view) and the main
parameters of the SPALLER-100 is listed in Table 1. The core
of the SPALLER-100 is hexagonal and consists of 48 fuel
assembly, 13 control rod components, 66 reflector
components, and 126 shielding components. The coolant
and reflector were 208 Pb–Bi, and the shielding material was
B4C. In this study, the SPALLER-100 is chosen as the research
target.

SUBCHANFLOW Code Description
The data used for training the RBF neural network is conducted
using the SUBCHANFLOW code. SUBCHANFLOW is a sub-
channel flow code to analyze thermal-hydraulic phenomena in
the core of pressurized water reactors, boiling water reactors, and
innovative reactors operated with gas or liquid metal as coolant,
which is developed by the Karlsruhe Institute of Technology
(Imke and Sanchez. 2012).

The SUBCHANFLOW code can handle rectangular and
hexagonal geometry fuel rod types. The total flow or each
channel flow can be selected as the boundary conditions.
According to the friction force at the inlet of the tube bundle,
the flow can be automatically allocated to the parallel channel. In
addition, the given inlet and outlet pressure difference boundary
can be used for steady-state calculation. The inlet fluid
temperature and outlet pressure are always given as boundary
conditions. In this study, the SPALLR-100 core channel is divided
and numbered first. The nodalization scheme of the SPALLER-
100 core is shown in Figure 4A. The nodalization scheme of the
SPALLER-100 core is shown in Figure 4B. The heat conduction
of fuel rod (heating part) in the SUBCHANFLOW is solved using
the standard finite volume method. The convective heat transfer
coefficient between the fuel rod and coolant is calculated
according to the empirical relationship between the heat
transfer form and coolant flow pattern. The constitutive
relation used in the SUBCHANFLOW code is listed as follows:

(1) Physical properties model: the thermophysical
properties data of lead–bismuth alloy are from the
HLMC handbook.

(2) Thermal conductivity model: SUBCHANFLOW uses the full
implicit finite difference method to calculate the heat
conduction process in fuel core and cladding materials.

(3) Heat convection model: the general heat transfer equation of
liquid metal heat transfer:

Nu � A + B · PeC, (6)

(4) Pressure loss model: the Novendstern model and Rehme
model are used for the pressure drop calculation.

FIGURE 3 | Flowchart of Adam algorithm.
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PERFORMANCE ANALYSIS OF THE
ADAPTIVE RBF NEURAL NETWORK

The feasibility, accuracy, and efficiency of the RBF neural network
are verified based on the steady-state data in this section. First, the
hottest assembly in the core is found according to the
SUBCHANFLOW calculation results. This searching process
repeats 100 times to guarantee the result’s reliability. Second,
focusing on the hottest assembly, several groups of data were
randomly selected with the power ranging from 0 to 1,200 kW
and the mass flow ranging from 1,200 to 2,200 kg/s. Third, these
data are calculated using the SUBCHANFLOW code as an input.
Finally, 2000 groups of effective data samples are obtained.
Among these 2000 groups of data samples, 1900 groups are
selected as the training set, and the remaining 100 groups are
selected as the prediction set. Then, the prediction model is
evaluated by comparing the error between the prediction
results and the calculation result.

Figure 5A and Figure 6A demonstrate the error band between
the prediction result and the calculation result of the adaptive
BP neural network and adaptive RBF neural network
separately. It can be observed that the prediction results
conducted using the adaptive RBF neural network show a
good agreement with the calculation results in the cladding
maximum temperature, since the error bound is within 5%.
Meanwhile, Figure 5B and Figure 6B show the comparison
results between the predicted and experimental values of the
two methods. By comparing the two figures, it can be seen that
the fitting results of the two lines in Figure 6B are better, that
is, the adaptive RBF neural network shows a better
performance in predicting cladding maximum temperature
than the adaptive BP neural network.

Table 2 illustrates the efficiency and accuracy of different
methods after 50 times prediction. The adaptive RBF neural
network reaches the average relative error of 0.10 within 6 s
and 160 iteration times, which is fully superior to the adaptive BP
neural network. Therefore, the adaptive RBF neural network
prediction model has better accuracy and feasibility in
predicting cladding maximum temperature.

THE TRANSIENT PREDICTION
PERFORMANCE ANALYSIS

In the transient response analysis part, the axial and radial power
of each fuel rod in the fuel assembly is assumed and uniformly
distributed for simplification, since the power distribution has a
little influence on the transients. All the coolant channels in a
single assembly can be merged into a large channel centered on
the fuel rod with the equivalent heating perimeter and wetted
perimeter. The initial power is set to 30 MW. Figure 7 shows the
variation of the coolant mass flow and the variation of the

FIGURE 4 | Cross-section view and the nodalizaiton scheme of SPALLER-100 core.

TABLE 1 | Main parameters of the SPALLER-100.

Parameter Numerical value

Number of fuel rods in the assembly 61
Internal and external diameters of fuel rod (cm) 1.2/1.35
Number of components 48
Rod diameter ratio 1.7
Average linear power density (kW/m) 22.77
Average volume power density (MW/m3) 29.37
Active zone length (cm) 150
Cladding thickness (mm) 12.7
Fuel rod gap width (mm) 0.15
Cladding thickness (mm) 0.6
Cladding material Stainless steel
Fuel material UO2
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maximum cladding temperature conducted using the
SUBCHANFLOW code.

Among these calculation data, 800 groups were randomly
selected in the 80s data sample, 750 groups were used as the
training set, and the remaining 50 groups were used as the
prediction set. Similar to Performance Analysis of the Adaptive
RBF Neural Network, the mass flow and the heating power is
considered as the input and the cladding maximum temperature

is considered as the output. The neural network is operated to
predict the cladding maximum temperature in the following 5s,
that is, 80–85s. Thus, the error bound between the prediction
results and the calculation results is used to evaluate the transient
performance of different prediction methods, which is shown in
Figures 8A,B, Figures 9A,B.

Both the adaptive BP neural network and adaptive RBF
neural network show remarkable transient prediction ability

FIGURE 5 | The error comparison diagram and the error bound of adaptive BP neural network.

FIGURE 6 | The error comparison diagram and the error bound of adaptive RBF neural network.

TABLE 2 | Comparison of calculation efficiency.

Model Iteration times Calculation time/s Average
absolute error (°C)

Average
relative error (%)

Adaptive BP neural network 241 8 9.67 0.26
Adaptive RBF neural network 160 6 0.72 0.10

Prediction performance to the mass flow variation.
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to the mass flow variation with the error bound being within
3%. It can be concluded from Figures 8B, 9B that the
difference between the two prediction results is not large.
However, in the error point diagram given by Figures 8A, 9A,
it can be clearly seen that the results of adaptive RBF are
compared with adaptive BP, and most of the data are close to
the center line, indicating that its stability is better. The
average errors are shown in Table 3. The maximum
relative error of adaptive RBF neural network is 2.1%, and
the average absolute error is 2.94°C, which proves the adaptive
RBF neural network is able to deal with transient conditions as
well. Also, it is reasonable to infer that the adaptive RBF
neural network will have a better accuracy when extending the

prediction time, since the preorder prediction result will
influence the following prediction result.

Prediction Performance to the Power
Variation
Similarly, transient responses to the power variation are
verified by setting the initial coolant mass flow to 4,000 kg/
s, and assuming the core power changes. Figure 10 shows the
change of core power and the cladding maximum temperature
calculated using the SUBCANFLOW code within 80s. The
effectiveness of the adaptive RBF neural network under power
variation conditions is analyzed.

FIGURE 7 | Variation of coolant mass flow and cladding maximum temperature within 80s.

FIGURE 8 | The error comparison diagram and the error bound of adaptive BP neural network under coolant mass flow variation condition.
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Figure 11 gives the predicting error bound of the adaptive
BP neural network and adaptive RBF neural network during
power variation condition separately. The average error data

are shown in Table 4. It can be seen that compared with the
adaptive BP results, the adaptive RBF has more error points
close to the center line, and its accuracy is better. In addition,

FIGURE 9 | The error comparison diagram and the error bound of adaptive RBF neural network under coolant mass flow variation condition.

TABLE 3 | Comparison of average error under mass flow variation condition.

Model Average
relative error (%)

Average
absolute error (°C)

Adaptive BP neural network −0.04 4.20
Adaptive RBF neural network 0.03 2.92

FIGURE 10 | Variation of reactor power and cladding maximum temperature within 80s.
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the correctness of the aforementioned results can be verified
from the point-line diagrams of the predicted and
experimental values given in Figure 11A and Figure 11B.
As shown in Table 4, the error of adaptive RBF neural network
is less than 1%, which is slightly better than the adaptive BP
neural network prediction method.

Combined with the conclusion conducted in Prediction
Performance to the Power Variation, it can be concluded that the
adaptive RBFneural network shows good effectiveness and superiority
in predicting cladding maximum temperature under power variation
and coolant mass flow variation conditions. Thus, the adaptive RBF
neural network can be used to real-time predict the dynamic value of
LFR claddingmaximum temperature, which is obviously beneficial for
the reactor’s safety under both transient conditions and accident.

CONCLUSION

This study analyzes the performance of the adaptive RBF
neural network in predicting the cladding maximum
temperature for the typical LFR. The feasibility, accuracy,
and efficiency of the adaptive RBF neural network under
both steady-state and transient conditions are evaluated.
The conclusions drawn from the study are summarized as
follows:

(1) A cladding maximum temperature prediction method based
on the adaptive RBF neural network for the LFR is proposed.
The SUBCHANFLOW program is used to generate data for
the RBF neural network training.

(2) By comparing the adaptive RBF neural network and the
adaptive BP neural network, the adaptive RBF neural
network shows full superiority. The adaptive RBF neural
network has good feasibility, accuracy, and efficiency in
predicting the cladding maximum temperature of the
lead–bismuth fast reactor.

(3) The adaptive RBF neural network can accurately predict the
trend of the cladding maximum temperature in short time

FIGURE 11 | The accuracy comparation between adaptive BP neural network and adaptive RBF neural network.

TABLE 4 | Average error results calculated by different methods.

Model Average
absolute error (°C)

Average
relative error (%)

Adaptive BP neural network 3.29 −0.16
Adaptive RBF neural network 2.31 0.09
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under the transient conditions of power variation and
coolant mass flow variation.

(4) The real-time thermal-hydraulic parameter
prediction capability of the adaptive RBF neural network
is of great significance for the LFR’s thermal safety.
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Multivariate Time Series Prediction for
Loss of Coolant Accidents With a
Zigmoid-Based LSTM
Shanshan Gong, Suyuan Yang, Jingke She*, Weiqi Li and Shaofei Lu

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

Post-LOCA prediction is of safety significance to NPP, but requires a processing coverage
of non-linearity, both short and long-term memory, and multiple system parameters. To
enable an ability promotion of previous LOCA prediction models, a new gate function
called zigmoid is introduced and embedded to the traditional long short-term memory
(LSTM) model. The newly constructed zigmoid-based LSTM (zLSTM) amplifies the
gradient at the far end of the time series, which enhances the long-term memory
without weakening the short-term one. Multiple system parameters are integrated into
a 12-dimension input vector to the zLSTM for a comprehensive consideration based on
which the LOCA prediction can be accurately generated. Experimental results show both
accuracy evaluations and LOCA progression produced by the proposed zLSTM, and two
baseline methods demonstrating the superiority of applying zLSTM to LCOA predictions.

Keywords: LOCA, prediction, multivariate time series, zigmoid, LSTM

1 INTRODUCTION

Loss of coolant accident (LOCA) is a severe accident that causes safety threat to nuclear power plants
(NPPs). Obviously, it is of great importance to systematically analyze, prevent, and predict LOCAs
such that effective decision-making support can be offered to the emergency response strategy. The
prediction of the LOCA progression trends, as one of the significant emergency measures, provides
evaluation of safety threats ahead of their physical occurrence and allows the emergency response
strategy to plan accordingly before worse scenarios emerge. However, the non-linearity of LOCAs
and associated complex system factors prevent accurate LOCA predictions. As a coupling result
influenced by multiple system parameters, the prediction for LOCA progression also faces
multivariant processing challenges, which makes the system modeling more complicated.

In the past decades, various attempts have been taken for process predictions in NPPs. A series of
assumptions based on statistical methods and mathematical equations are applied for process
predictions such as 1) monitoring the real-time condition of LOCA via time–frequency domain
reflectometry (TFDR) (Lee et al., 2017) and 2) using RELAP5/MOD3.3 code to predict the LOCA of
the main stream break on generation III reactor (Yang et al., 2019). The aforementioned research
studies rely on effort-consuming system modeling and have made feasible progress on LOCA
prediction, but the challenges of multivariate processing/coupling remain for further investigation.

Using data-based artificial intelligence (AI) approaches has become an effective way to solve the
non-linearity problem with the progress of machine learning, especially when enormous simulated
NPP data from previous research studies have founded a firm database for AI applications.

A variety of traditional machine learning algorithms have been applied to NPPs. An abnormal
operation state detection method of NPP based on an unsupervised deep generative model is
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established by using variational auto encoders (VAE) and
isolation forest (iForest) (Li et al., 2021). Moshkbar-
Bakhshayesh and Ghafari (2022) used support vector machine
(SVM) as a machine learning–based method to predict the vessel
water level. Xiang et al. (2020) proposed a clustering algorithm for
the transient detection in NPPs. Furthermore,Wang et al. (2021a)
utilized the clustering algorithm together with SVM and principal
component analysis (PCA) for the sensor anomalies in NPPs,
which is also reviewed in Hu et al. (2021).

By stacking multiple hidden layers, deep neural network
(DNN) has stronger non-linear feature extraction ability. It
was utilized to predict the vessel water level (Koo et al., 2018)
as well as to identify the fault diagnosis scheme (Santos et al.,
2019).

Convolutional neural network (CNN) is a variant of DNN and
is usually used for image processing. Viewing NPP sensor data as
images, CNN was applied to event identification (Lin et al., 2021;
Pantera et al., 2021) and break size estimation (Lin et al., 2022).
The mentioned traditional machine learning algorithms (SVM)
and deep learning methods (DNN and CNN) can deal with non-
linearity, while the sequential data-dependency and multiple
physical factors are not taken into account.

Recurrent neural network (RNN), as a classical example, has
been successfully applied to sequential data modeling in former
explorations. Several long short-term memory (LSTM)–based
models cover both the non-linearity and time correlation of
LOCAs. For example, the LSTM-based expert system was
adopted to predict LOCA behaviors (Mira et al., 2020;
Santhosh et al., 2010; Chen et al., 2021) and to evaluate
abnormal operation conditions in NPPs (She et al., 2020;
Wang et al., 2021b). The coolant flowrate variation was
analyzed by She et al. (2021) using a combination of CNN
and LSTM. PCA and LSTM were used to identify the fault
diagnosis scheme Saeed et al. (2020).

It is necessary to consider modeling non-linearity, multivariate
processing, and long-term memory for accurate prediction of
LOCA. The aforementioned literatures ignored that LSTM
cannot model longer time series. To fully cover the non-
linearity, time correlation, and multivariate processing for
LOCA predictions, this study proposes an improved LSTM
model in which a new gate function called ‘zigmoid’ is
constructed. With rigorous experimental verifications
conducted on simulated LOCA datasets, the zLSTM is proved
to be more accurate and efficient for post-LOCA predictions.

This article starts with Section 1 as the introduction and
illustrates the zigmoid function in Section 2. After the
presentation of the verification experiments in Section 3, this
article is then concluded in Section 4.

2 ZIGMOID METHOD

2.1 Zigmoid for Better Long-Term Memory
Established for the sequential processing problems, RNN
obtained preliminary short-term memory. To enable the long-
term memory, Hochreiter and Schmidhuber (1997) made a gate-
level innovation on RNN and created LSTM that is capable for

both short and long-term processing. Nevertheless, the
contribution of xt in LSTM will decay in k timesteps by fk

t
when ft is a constant (Tallec and Ollivier, 2018). This gives the
unit an effective decay period timescale of O( 1

1−ft
). In case the

LSTM is required to have a memory of 1,000 steps, the forget gate
parameter ft has to reach 0.999 since the effective decay period
timescale = 1/(1 − ft). However, it is very challeging to achieve
this, according to the following analysis of LSTM.

The standard LSTM process is defined as follows:

it � sigmoid Wixxt +Wihht−1 + bi( ) (1)
f t � sigmoid Wfxxt +Wfhht−1 + bf( ) (2)
ot � sigmoid Woxxt +Wohht−1 + bo( ) (3)
ĉt � tanh Wcxxt +Wchht−1 + bc( ) (4)
ct � ft ⊙ ct−1 + it ⊙ ĉt (5)
ht � ot ⊙ tanh ct( ) (6)

whereWix,Wih, bi,Wfx,Wfh, bf,Wox,Woh, bo,Wcx,Wch, and bc are
trainable parameters.

However, the derivative of sigmoid is 0.000999 when ft = 0.999,
as shown in Figure 1, which causes LSTM to be untrainable at
this stage. In other words, the LSTM’s long-term memory ability
is weakened at the far end of the time series and cannot guarantee
accurate prediction in LOCAs.

Since the sigmoid function in the forget gate determines the
long-term memory of LSTM, a natural idea is to amplify the
derivative of the sigmoid function such that model training is still
feasible for LSTM even when ft reaches 0.999. For this purpose,
zigmoid is constructed by embedding a transfer function within
the original sigmoid.

zigmoid x( ) � sigmoid trans x( )( ) (7)
trans x( ) � eβpx − 1 x≥ 0

1 − e−βpx x< 0
{ (8)

where β is a hyper-parameter.
The derivative of zigmoid is

dzigmoid x( )
dx

� dsigmoid x( )
dtrans x( ) *

dtrans x( )
dx

(9)

FIGURE 1 | Sigmoid properties.
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dtrans x( )
dx

� βpeβpx x≥ 0
βpe−βpx x< 0{ (10)

When β is a large value, that is, max(dzigmoid(x)
dx )≥ 1.0, this may

lead to gradient explosion. The numerical experiments in PyTorch
show that such a case can be avoided when β≤ 2.5402. On the other
hand, the lower bound of β is set to 1.0 because a small value of β
cannot achieve effective gradient amplification. Therefore, β is
ranged to [1.0, 2.5402] to ensure the system stability.

As shown in the comparison of Figures 1, 2, zigmoid amplifies the
derivate at the far end of the time axis where sigmoid failed to do so.

2.2 zLSTM
The aforementioned defined zigmoid with ranged β is expected to
alleviate the gradient problem for long time series. The following

attempts are then conducted to build a new variant of LSTM
using the proposed zigmoid (zLSTM) as shown in Figure 3:

1. Replace sigmoid function in the forget gate with zigmoid such
that the gradient can be effectively amplified (Figure 3).

2. Replace it with (1 − ft) (Cho et al., 2014) in order to reduce the
trainable parameters.

ft � zigmoid Wfxxt +Wfhht−1 + bf( ) (11)
ot � sigmoid Woxxt +Wohht−1 + bo( ) (12)
ĉt � tanh Wcxxt +Wchht−1 + bc( ) (13)
ct � ft ⊙ ct−1 + 1 − ft( ) ⊙ ĉt (14)
ht � ot ⊙ tanh ct( ) (15)

whereWix,Wih, bi,Wfx,Wfh, bf,Wox,Woh, bo,Wcx,Wch, and bc are
trainable parameters.

2.3 Hyper-Parameter β
An appropriate hyper-parameter β is of great significance for
controlling the intensity of the derivative amplification. β should
be a value that amplifies the gradient enough for the network to
learn long-term information.

Further information to be learned is that the smaller gradient
is in zigmoid. For an input sequence with length L:

1
1 − ft

� L (16)
ft � zigmoid x( ) (17)

Therefore,

FIGURE 2 | Zigmoid properties.

FIGURE 3 | Structure of zLSTM.
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dzigmoid x( )
dx

� L − 1
L2

β 1 + log L − 1( )( ) (18)

The gradient has to be greater than a certain value gmin such
that the networks can continue the learning. The gmin is observed
and suggested in this study as 0.01.

L − 1
L2

β 1 + log L − 1( )( )≥gmin (19)

yields

β≥
gminL2

L − 1( ) 1 + log L − 1( )( ) (20)

Thus, the β value can be calculated as

β �
1.0 βlim < 1.0
βmin 1.0≤ βlim ≤ 2.5402
2.5402 βlim > 2.5402

⎧⎪⎨⎪⎩ (21)

where βlim � gminL
(L−1)(1+log(L−1)).

2.4 Capabilities of zLSTM
zLSTM obtained by the aforementioned procedure has the
following capabilities:

1. zLSTM contains basic properties of LSTM:
a. Non-linearity: As a variant of RNN, zLSTM inherits the

non-linearity processing ability.
b. Short-term memory: Zigmoid maintains LSTM’s short-

term memory ability.
2. As an improved version of LSTM, zLSTM has advantages

such as
a. Long-term memory: Compared with sigmoid, zigmoid has

a greater gradient with the same output. This enhances the
long-term performance by allowing the model to conduct
learning over the full length of the time series. Longer
inputs are then allowed to be fed into the model, enriching
the information used for predictions.

b. Reduced trainable parameters: Given that the sum of forget
gate and input gate is 1, the input gate can be omitted to
deduct parameters. Gate reduction brings reduced
trainable parameters such that the computing time and
resource are less than traditional models.

With the properties and advantages mentioned previously,
this work proposes zLSTM as a better solution for LOCA
prediction due to the following considerations:

1. Compared to traditional machine learning algorithms, such as
the ones mentioned in Moshkbar-Bakhshayesh and Ghafari
(2022), and feed-forward neural network (Santos et al., 2019),
zLSTM can achieve better feature extraction with its LSTM
kernel that performs the calculation along timesteps. It is then
suggested for the non-linear LOCA process, whose variation
features are hard to capture.

2. Long term features can be captured by a combination of
existing models, such as CNN + LSTM (Wang et al.,

2021c), with a sacrifice of more hyper-parameters and more
tuning tricks, which burdens the model hyper-parameter
processing and deployment. zLSTM, on the contrary,
avoids such process by using an improved structure
without additional hyper-parameters.

3. The training process of zLSTM is more executable due to
reduced gate and parameters, allowing it to generate training/
predicting results with less time and efforts.

4. Compared to those baseline models, the LOCA prediction
from zLSTM has better credibility and enhanced
generalization performance due to zLSTM’s lower
overfitting probability and fewer trainable parameters.

3 EXPERIMENTS

3.1 Datasets
The datasets are obtained from LOCA simulations using an
industry-grade NPP simulation platform (Sun et al., 2017).
The simulations are carried out at 100% reactor power for
LOCA cases, that is, break sizes of 0.9, 0.95, 1.0, 1.5, and
2.0 cm2.

There are a total of twelve crucial system parameters selected
as the modeling features:

1. pressurizer water level;
2. coolant average temperature;
3. steam generator No. 1 water level;
4. steam generator No. 2 water level;
5. loop 1 coolant flowrate;
6. loop 2 coolant flowrate;
7. pressurizer pressure;
8. stream generator No. 1 output pressure;
9. stream generator No. 2 output pressure;
10. reactor power;
11. cold leg temperature;
12. hot leg temperature.

3.2 Data Preprocessing
To reduce the influence of multiple dimensions, the dataset is
preprocessed using the z-score method such that fast
convergency can be achieved during the model training
process.

xscaled � x − �x

σ
(22)

where �x and σ denote mean and variance of x, respectively.

3.3 Metrics
As common metrics for regression task evaluation, mean
squared error (MSE) and mean absolute error (MAE) are
chosen as the performance judgment for the proposed
zLSTM model.

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (23)
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MAE � 1
n
∑n
i�1

|yi − ŷi| (24)

where yi and ŷi are the original value and predicted value,
respectively.

3.4 Hyper-Parameter Setting
The zLSTM structure consists of one input layer, two hidden
layers, and one output layer. Details are provided in Table 1.

3.5 Baseline Methods
There have been two similar investigations performed by She
et al. (2020) and She et al. (2021). However, their major
purpose was to verify the feasibility and effects of applying
deep learning methods to the LOCA predictions. Neither of
them covers the multivariate processing performance that
requires theoretical innovation on the NN itself, such as
defining a new zigmoid function for the LSTM model. To
demonstrate the superiority of using the zigmoid method for
multivariate processing, these two previous cases are selected
as the baseline, and the prediction accuracy represented by
MSE and MAE is compared among all the three methods. The
mentioned two previous works, LSTM and CNN-LSTM, are
compared with zLSTM to demonstrate its superiority on post-
LOCA predictions.

3.6 Model Training
All datasets are randomly split into three subsets, that is, a
training set (60%), a validation set (20%), and a test set (20%).
Multivariate time series data needed for model training are
derived by applying the rolling update method. Following the
previous work, the window sizes for LSTM and CNN-LSTM
remain 5 and 50. zLSTM uses the same window size as the
compared baseline, which means that it uses window size 5
when comparing with LSTM and 50 for CNN-LSTM. The
training parameters are optimized using Adam algorithm
(Kingma and Adam, 2014) with a learning rate 10–3 for all
models. When the training starts, a sliding window moves
from the first row of the training dataset and provides a series
of training input data describing the parameter variation
during the period limited by the window size. The model
learns and memorizes the variations such that it can
reproduce similar ones once the test data is fed to it. The
model is trained during such iterations until desired loss value
is reached. More training process details are provided in She
et al. (2020).

3.7 Model Verification Experiments
The performance of the proposed zLSTM is verified through
experiments designed to predict crucial parameters of
LOCA, in which both univariate scenario and multivariate
scenario are tested using zLSTM and the two baseline
methods.

The first crucial parameter chosen as the prediction feature
is loop 1 flowrate since it is the most impacted parameter
during a LOCA. Flowrate data from the test dataset are the so
called “single input” for the univariate scenario. As for the
multivariate scenario, all the twelve system parameters are
integrated into a vector xt and fed into the zLSTM for a
coupled prediction processing. A single output (loop 1
flowrate prediction) is generated by zLSTM’s single-cell
output layer that merges the processing results of the 12-
dimension vector. The multivariate experiment is only for
zLSTM since both baseline methods are originally single-
input models without parameter-coupling capability. With
a diversity consideration, similar univariate and multivariate
experiments are conducted to predict the pressurizer water
level as well.

The univariate test is necessary since the two baseline methods
are oriented to only one system parameter prediction. During this
experiment, the memorizing performance of the models for long-
and short-term information is tested, allowing the zLSTM to
present its long-term memory advantage with the amplified
gradient. For a fair play, zLSTM used for this experiment
takes the same single input as the baseline methods. Such
univariate-input zLSTM is named zLSTM-univariate
(zLSTM-U).

The multivariate test, on the other hand, is to confirm a lower
loss value when the prediction is generated with an algorithm
(zLSTM) that takes all associated parameters into account. In this
case, system parameters associated to the predicted feature are fed
to zLSTM as multivariate inputs, naming it zLSTM-multivariate
(zLSTM-M).

3.7.1 Prediction of Loop 1 Coolant Flowrate
As mentioned in the verification process introduction, the
univariate experiment uses the single input value for LSTM,
CNN-LSTM, and zLSTM-U. The multivariate experiment,
which is for zLSTM-M only, yields a single predicted feature
(flowrate or water level) using a 12-dimension vector containing
all the key system parameters. The experiments in this subsection
focus on the variation of the loop 1 coolant flowrate during LOCAs
of five different break sizes. Regarding the discussion in Section
3.6, both zLSTM-U and zLSTM-M select window size 5 to run the
univariate and multivariate tests against LSTM, which forms a test
group {LSTM, zLSTM-U5, zLSTM-M5}. When comparing to
CNN-LSTM that has window size 50, the test group becomes
{CNN-LSTM, zLSTM-U50, zLSTM-M50}. Model performance is
evaluated using MSE and MAE for each of the six models,
providing twelve accuracy evaluation results for each of the five
LOCA cases. Table 2 shows all these 60 results for the loop 1
flowrate predictions. The predicted LOCA trends are plotted in
Figures 4, 5.

TABLE 1 | Hyper parameters of zLSTM model.

Item Value

Units of input layer 1a or 12b

Units of zLSTM of 1st hidden layer 128
Units of zLSTM of 2nd hidden layer 64
Units of output layer 1

a1 for zLSTM univariate (zLSTM-U).
b12 for zLSTM multivariate (zLSTM-M).
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3.7.2 Prediction of Pressurizer Water Level
As another crucial system parameter describing the LOCA
behavior, the pressurizer water level is predicted in this
subsection by experiments same as in Section 3.7.1. Table 3
presents the 60 MSE/MAE data as the accuracy evaluations of the
two test groups. Meanwhile, the water level variation illustrated
by all the models is presented in Figures 6, 7.

3.7.3 Result Analysis
The prediction accuracy metrics listed in Tables 2, 3 describe
the prediction performance of the tested models. The upper
half of each table presents the prediction errors from zLSTM
(both U and M) against those from LSTM. It can be seen that
zLSTM achieves lower errors than LSTM on both MAE and
MSE. For instance, the average MAE difference between LSTM
and zLSTM-U5 for flowrate prediction is 0.26 in Table 2,
giving a 28.7% improvement on prediction accuracy.
Additionally, zLSTM working on multivariate mode also
beats its univariate mode due to the advantages brought by

the 12-dimension parameter vector. The average MAE
difference between zLSTM-U5 and zLSTM-M5 is 0.24,
giving an accuracy improvement of 28.8%. Similar
comparison is reflected by the lower half of each table,
where zLSTM once again proves its superiority over CNN-
LSTM with accuracy improvements such as 29.52% for
pressurizer water level prediction (MSE in Table 3, CNN-
LSTM vs. zLSTM-U50).

Figure 4 to Figure 7 visually illustrate the predicted LOCA
trends in different LOCA cases. The mini graphs within the figures
amplify chosen segments of the trends, offering a better view to the
model performance. After the LOCA occurs at t = 10s, the loop 1
flowrate and the pressurizer water level experience dramatical
variations, and then approach a stable state with help from the
emergency response system. During the entire process, the zLSTM
group {U5,M5, U50,M50} represents a more precise prediction
performance. At the beginning of the LOCA, it is the zLSTM
that grasps the suddenly inserted non-linear variation using
its efficient short-term memory, producing a prediction close

TABLE 2 | Prediction accuracy evaluations for loop 1 flowrate.

Metric Model 0.9 0.95 1.0 1.5 2.0

LSTM
vs.
zLSTM

MAE LSTM 1.751 × 100 1.841 × 100 3.023 × 10–3 1.114 × 100 4.800 × 10–3

zLSTM-U5 1.598 × 100 1.605 × 100 2.732 × 10−3 1.040 × 100 3.928 × 10−3

zLSTM-M5 9.235 × 10–1 9.243 × 10–1 2.008 × 10–3 9.603 × 10–1 3.443 × 10–3

MSE LSTM 1.039 × 101 1.048 × 101 2.700 × 10–5 7.702 × 100 8.000 × 10–5

zLSTM-U5 9.835 × 100 9.850 × 100 2.300 × 10−5 4.659 × 100 5.700 × 10−5

zLSTM-M5 3.458 × 100 3.444 × 100 1.800 × 10–5 3.984 × 100 5.000 × 10–5

CNN-LSTM
vs.
zLSTM

MAE CNN-LSTM 2.353 × 100 2.270 × 100 2.615 × 10–3 1.223 × 100 3.848 × 10–3

zLSTM-U50 9.006 × 10−1 8.550 × 10−1 2.003 × 10−3 1.030 × 100 3.187 × 10−3

zLSTM-M50 7.217 × 10–1 7.241 × 10–1 1.630 × 10–3 1.025 × 100 2.330 × 10–3

MSE CNN-LSTM 2.140 × 101 2.322 × 101 2.700 × 10–5 6.878 × 100 5.700 × 10–5

zLSTM-U50 4.054 × 100 4.030 × 100 1.500 × 10−5 5.231 × 100 5.300 × 10−5

zLSTM-M50 2.126 × 100 2.121 × 100 1.300 × 10–5 4.141 × 100 4.400 × 10–5

Underline data, the best result of univariate experiments; bold data, the best result of multivariate and univariate experiments.

FIGURE 4 | Prediction of loop 1 coolant flowrate on break size 0.9 cm2.
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to the actual trend. How the zigmoid function can enhance
the model’s long-term memory is well verified when the
zLSTM models generate better predictions at the far end
of the time axis. zLSTM-M50 is the one that grasps the
progression trends most accurately and persistently, which
demonstrate the importance and effect of using multivariate
processing (12-dimension vector) and wide data window
(size 50).

The analysis conducted to investigate further explanations is
presented as follows:

1. The multivariate mode of zLSTM (zLSTM-M) allows the
prediction to be generated based on the coupling of system
parameters, that is, the prediction comprehensively considers
all the 12 critical system parameters relevant to LOCA
progression. Sufficient information provided by such a 12-
variable input vector guarantees improved prediction accuracy.

2. LOCA predictions for small breaks received higher loss
values than those for big ones. They confirm the

difficulties of learning and simulating a process with
dramatical variations, for example, a small LOCA.
Inflect points shorten the time period necessary for
information gathering, preventing the model from
sufficient evaluation of the progression process. The loss
values rise along with the number of inflect points,
showing that more inflect points cause more missing
information during learning and prediction.

3. It is observed that a larger input window size gives the zLSTM
model a better performance since the window size
determines the coverage of critical information. More
accurate results are generated when the model is capable
of learning comprehensively by capturing more useful
information from the predicted process.

To summarize, the application of zigmoid function to LSTM
has enhanced the short and long-term memory of the model.
With the input vector integrated using 12 system parameters, the
zLSTM-M model can be even more comprehensive to the

FIGURE 5 | Prediction of loop 1 coolant flowrate on break size 1.0 cm2.

TABLE 3 | Prediction accuracy evaluations for pressurizer water level.

Metric Model 0.9 0.95 1.0 1.5 2.0

LSTM
vs.
zLSTM

MAE LSTM 1.505 × 10–1 1.519 × 10–1 4.167 × 10–2 4.791 × 10–1 8.124 × 10–2

zLSTM-U5 1.402 × 10−2 1.393 × 10−2 3.855 × 10−2 4.698 × 10−1 7.919 × 10−2

zLSTM-M5 8.800 × 10–4 8.990 × 10–4 1.214 × 10–6 1.346 × 10–3 5.000 × 10–6

MSE LSTM 7.775 × 10–2 7.898 × 10–2 2.423 × 10–3 3.794 × 10–1 9.233 × 10–3

zLSTM-U5 7.723 × 10−2 7.723 × 10−2 2.126 × 10−3 3.453 × 10−1 8.841 × 10−3

zLSTM-M5 1.618 × 10–2 1.894 × 10–2 9.000 × 10–4 2.939 × 10–2 1.761 × 10–3

CNN-LSTM
vs.
zLSTM

MAE CNN-LSTM 9.192 × 10–2 9.238 × 10–2 3.150 × 10–2 4.221 × 10–1 3.595 × 10–2

zLSTM-U50 5.561 × 10−2 4.991 × 10−2 2.770 × 10−2 3.777 × 10−1 3.373 × 10−2

zLSTM-M50 1.264 × 10–2 1.410 × 10–2 5.940 × 10–4 2.448 × 10–2 9.870 × 10–4

MSE CNN-LSTM 3.231 × 10–2 3.234 × 10–2 1.359 × 10–3 3.216 × 10–1 2.872 × 10–3

zLSTM-U50 1.227 × 10−2 1.131 × 10−2 1.196 × 10−3 2.416 × 10−1 2.029 × 10−3

zLSTM-M50 4.600 × 10–4 4.860 × 10–4 6.000 × 10–6 8.740 × 10–4 2.00 × 10–5

Underline data, the best result of univariate experiments; bold data, the best result of multivariate and univariate experiments.
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multivariate environment of LOCA, allowing the predicted
feature to be more accurate.

4 CONCLUSION

A new gate function zigmoid is raised as a solution to the far-end
gradient problem of RNN class models, which is proposed to
cover the non-linearity, time correlation, and multivariate
processing for LOCA predictions. Proved through theoretical
analysis, the zigmoid function is embedded into traditional LSTM
to form zLSTM that is capable of effectively memorizing both
short- and long-term information. Its multivariate processing is
enabled by using a 12-dimension input vector that integrates 12
system parameters. The multivariate mode gathers all-sided
system information that eliminates blind spots during the

prediction process. The verification experiments successfully
demonstrate the aforementioned advantages of the zLSTM
model. The accuracy metrics (MAE/MSE) of zLSTM is kept
lower than traditional models for both univariate and
multivariate scenarios. During the LOCA progression, the
parameter trends are followed by zLSTM’s prediction, with
the smallest deviation according to the experiment figures.
All these findings confirm zLSTM to be a better method for
LOCA predictions.

In addition to the achievements, there are a few issues
remaining for future investigation. First, zLSTM is constructed
by replacing only the forget gate in LSTM. Possible further
enhancement could be obtained with more applications of the
zigmoid function. The next is the model training process that may
be improved using more actual NPP data. Last but not least,
inflect points in the LOCA trend cannot be well followed by the

FIGURE 6 | Prediction of pressurizer water level on break size 0.9 cm2.

FIGURE 7 | Prediction of pressurizer water level on break size 0.95 cm.2
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prediction curve generated from the deep learning models, which
implies alternative solutions in future explorations.
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Intelligent Optimization Method for
Core Flow Zoning of Long-Cycle
Lead-Bismuth-Cooled Reactor
Qingyuan Yu1, Shengqi Dai 1, Pengcheng Zhao1,2*, Yanan Zhao1, Yingjie Xiao1,
Liangxing Peng1 and Tao Yu1*

1School of Nuclear Science and Technology, University of South China, Hengyang, China, 2Science and Technology on Reactor
System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, China

Flow zoning is an important way to achieve core outlet temperature flattening. Appropriate
zoning can improve safety and economy. This study combines an artificial intelligence
optimization algorithm with a parallel multi-channel model to develop a model for
calculating reactor core flow zoning based on the modern optimization theory,
convergence analysis of a genetic algorithm, differential evolution algorithm, and
quantum genetic algorithm is carried out for long-life reactor flow partitioning. Using
the optimized algorithm, two flow rates are determined using power distribution at the
beginning of the core life as the sample data and the maximum power of each fuel
assembly during the entire life as the sample data. Comparative analysis of two different
flow zoning schemes is implemented on a small long-life natural circulation lead-bismuth
fast reactor, SPALLER-100. The findings of this study show that the quantum genetic
algorithm has the best convergence for the long-life reactor among the three intelligent
optimization algorithms, and it can quickly provide optimal results. In flow zoning scheme
calculations based on the core power distribution at the beginning of reactor life, the
maximum outlet temperature of the fuel assembly exceeds the thermal safety limit of the
reactor, and in the flow zoning scheme calculations based on the average core power
distribution during the whole reactor life, the maximum outlet temperature of the fuel
assembly is 140 K lower than the maximum outlet temperature obtained in the previous
scheme, remaining below the thermal safety limit. The optimal number of partitions for the
SPALLER-100 reactor is determined to be 5, and increasing the number of zones only
slightly improved the thermal safety performance of the reactor.

Keywords: lead-bismuth reactor, flow zoning, intelligent optimization algorithm, quantum genetic algorithm, safety
performance

INTRODUCTION

From the perspective of thermal-hydraulic design, the core flow distribution of nuclear reactors is
one of the most important issues. At the core outlet, the mixing of coolant temperatures causes
temperature oscillation with a specific frequency and amplitude, resulting in thermal stress in the
thermal measurement device and the central measurement column. Core flow zoning is an important
means to realize core outlet temperature flattening. Flow distribution between different components
is realized by opening specific component pins. High-power components have larger flows than low-
power components, because of which, different components have similar outlet temperatures. The
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non-uniform distribution of the outlet temperatures of the
reactor core will greatly limit the operation life of the reactor.
Reasonable zoning can improve the safety and economy of the
reactor. Therefore, to improve the operation life of the long-life
reactor and realize the rapid optimization of core outlet
temperature flattening, it is urgent to develop a new core flow
zoning method.

Flow zoning to ensure reactor safety and performance has
been investigated by many researchers. Nagy et al. (2012)
analyzed the influence of flow zoning on the life of a graphite-
moderated of a molten salt reactor and examined the fuel
proliferation efficiency. The fuel proliferation efficiency or the
life of graphite was increased by separating the core into two
radial regions with different amounts of graphite. Basualdo et al.
(2020) coupled the sub-channel code SUBCHANFLOW with the
reactor dynamics diffusion code PARCS. This coupling aimed to
improve the physical model involved in the core analysis by
enhancing the prediction accuracy. Moreover, it enabled the
detailed prediction of local thermal-hydraulics parameters.
Zhao et al. (Chen et al., 2014) developed a non-uniform
heating parallel channel flow field calculation code for a small
modular natural circulation lead- or lead alloy-cooled fast reactor
(LFR) and compared it with the CFD method to verify the
accuracy of the code, and then, based on the results of
optimization analysis, they proposed a 10 MW natural
circulation LFR core flow distribution optimization design. Liu
et al. (Yizhe et al., 2012) developed the hydraulic characteristic
calculation code DAEMON to calculate the flow distribution of
the whole core under different working conditions, according to
the design characteristics of the core and the primary circuit of
the China Experimental Fast Reactor (CEFR). Zhou et al. (2018)
developed and verified a code for the thermal-hydraulic design
and optimization of a CFR600 fast reactor; the functions included
in the code were fast reactor full-pile graphical modeling, fine
sub-channel automatic division, thermal-hydraulic analysis
considering heat transfer between components, and automatic
flow zoning optimization. Li et al. (2019) divided the reactor core
into external, middle, and internal fuel zones, calculated the
minimum coolant flow required for each fuel assembly in each
fuel zone, and then, divided the flow of the reactor core according
to the different values of adjacent minimum coolant flows. Based
on intelligent optimization algorithm, Wang et al. (2020)
established the optimization model of flow partition design.
Considering the maximum fuel temperature limit and the
cladding temperature limit as boundary conditions, the total
flow of the reactor core was minimized; the average
temperature of the reactor core outlet was the highest,
providing a novel method to address flow partition in large
reactor cores. Zhang et al. (2017) used genetic algorithm (GA)
and artificial neural network (ANN) (Cong et al., 2011) to predict
CHF and succeeded to correlate the existing CHF data with better
accuracy than the existing empirical correlations. Moreover,
Chen et al. (2010) proposed mechanism-based correlations for
LBB leakage by genetic algorithm. The presented correlations
provide higher precision than the existing correlation.

With the increase of the number of fuel assemblies and partitions,
resulting in poor convergence of the algorithm, longer time required

for calculation, which cannot realize the rapid optimization design of
core outlet temperature flattening. The power of each fuel assembly
changes with changes in core life. In model establishment and
calculation of results, the impact of different life periods on
reactor power distribution should be considered. The designed
flow zoning method should also ensure that the reactor is below
the thermal safety limit during the entire life period. Based on the
modern optimization theory, the study about artificial intelligence
optimization algorithms with a parallel multi-channel model, and
develops a reactor core flow zoning calculation model; the
convergence of genetic algorithm, differential evolution algorithm,
and quantum genetic algorithm for addressing the flow zoning
problem of long-life reactors is analyzed, and the convergence
optimal algorithm is obtained. According to the obtained optimal
algorithm, for a small long-life natural circulation lead-bismuth fast
reactor, SPALLER-100, considering two data samples, power
distribution at the beginning of life and the maximum power of
each fuel assembly in the whole life, two different flow zoning
schemes are compared and analyzed, and the optimal flow zoning
scheme is determined. It can be applied to other types of reactors to
provide reference help for the design of the reactor, which will be
strengthened in future study.

MATHEMATICAL PHYSICAL MODEL

Fuel Rod Heat Conduction Model
In this study, the fuel rod heat transfer model is used to describe
the heat transfer process of a fuel rod in a reactor core, without
considering the exchange of mass and momentum between
channels. The heat conduction model is established using the
rod bundle fuel rod, and its axial and radial control bodies are
divided, as shown in Figure 1.

FIGURE 1 | Fuel rod heat conduction model.
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The axial heat conduction of fuel rods and the heat source
inside the cladding are ignored, and the heat transfer between
control bodies at a certain height in the core active zone is
expressed as follows:

(1) Coolant controller:

Q(x) � Wcp(tf ,x − tf ,x−1) (1)

(2) External surface of the cladding control body:

tcs(x) � tf(x) + ql(x)
πdcshx

(2)

(3) External surface of the cladding control body:

tci(x) � tcs(x) + ln(dcs/dci) ql(x)
2πkclad

(3)

(4) External surface of the fuel pellets control body:

tu(x) � tci(x) + ln(dci/du) ql(x)
2πkgas

(4)

(5) Fuel pellets control body central temperature:

to(x) � tu(x) + ql(x)
4πku

(5)

In the above equations, Q is the heat absorbed by the coolant
(W), W is mass flow (kg/s), Cp is the average constant pressure
specific heat capacity (J · kg−1 · K−1), x is the axial control body
symbol, ql(x) is the linear power density of the xth axial
controller (W/m), h is the convective heat transfer coefficient
(W · (m−2K−1)), kcald is the thermal conductivity of the cladding
(W/(m · K)), kgas is the thermal conductivity of interstitial gas
(W/(m · K)), ku is the thermal conductivity of the core
(W/(m · K)), dcs is the largest outer diameter of fuel rods (m),
dci is the inner diameter of the cladding (m), du is the core
diameter (m), tf(x) is the temperature of the xth coolant control
body (K), tcs(x) is the x cladding control body surface
temperature (K); tci(x) is the x cladding to control the body
surface temperature (K), tu(x) is the x core control body surface
temperature (K), to(x) is the xth core control center
temperature (K).

Parallel Multi-Channel Model
The parallel multi-channel model considers that the required heat
pipe is isolated and closed. To facilitate calculation, it is assumed
that there is no exchange momentum, energy, and mass of
coolant with adjacent channels at any point in the core height.
The parallel multi-channel model is most suitable for analyzing
closed channels, but it can also be used for open channels to
simplify calculation. Due to the existence of transverse mixing,
the parallel multi-channel model is rough, and transverse mixing
engineering heat pipe factors should be used to control increase in
enthalpy. The parallel multi-channel model includes following
steps.

(1) Enter data and determine the number of partitions.
(2) Identify the hottest pipe in each partition according to the

partition scheme.
(3) Considering the reactor thermal-hydraulic pressure and core

power distribution, determine the hottest tube of the
cladding.

(4) Calculate the outlet temperature of the hottest pipe coolant,
and obtain the hottest pipe flow in each zone.

(5) Calculate the total flow of the whole reactor, and obtain the
average core outlet temperature (Tout) according to the
relationship between the average core outlet temperature
and the total reactor flow. The relationship between
average core outlet temperature and total reactor flow is
given as follows:

Tout � Tin + P/(CpW) (6)
where Tin is the core inlet temperature (K), P is the total core
power (W).

Designing the Intelligent Optimization
Algorithm for Life Cycle Traffic Zoning
The genetic algorithm (Zhang, 2017), differential evolution
algorithm (Yang and Gu, 1997), and simulated annealing
algorithm (Gai, 2017) are contemporary commonly used
optimization algorithms. The novel quantum genetic algorithm
(QGA) (Ying et al., 2018; Liu et al., 2020) provides new ideas for
solving optimization problems. In this study, the genetic
algorithm, differential evolution algorithm, and QGA are
coupled with the parallel multi-channel model for determining
the most suitable intelligent optimization algorithm to calculate
the flow partition of a long-life miniaturized reactor, and then the
convergence of each algorithm is analyzed. The calculation results
of these three algorithms are compared, and the optimal
algorithm to solve the core flow zoning problem is
determined. The main steps of solving flow zoning are as follows.

(6) Import the initial data and design the initial partition
scheme. The partition number (K), of this scheme starts
from 1.

(7) For each component, the partition number k is randomly
allocated between 1 and K.

(8) According to the partition results obtained in the second
step, calculate the average core outlet temperature using the
parallel multi-channel model.

(9) Obtain the optimal flow zoning scheme under the number
of zones and its corresponding total core flow and average
core outlet temperature. If the outlet temperature meets the
requirements, output the zoning scheme to end the cycle.
Otherwise, obtain a new zoning scheme using the intelligent
optimization algorithm.

(10) Obtain another new partition scheme using the intelligent
optimization algorithm.

In this study, three intelligent optimization algorithms will be
used for calculation, namely, genetic algorithm, differential
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evolution algorithm, and QGA. The main steps of the genetic and
differential evolution algorithms are as follows.

Coding Design.
It is assumed that there are k possibilities in the flow area of each
fuel assembly and s fuel assemblies in the whole core. To ensure
that the algorithm can determine the optimal zoning scheme, the
optimization domain should include all flow zoning schemes. The
binary code is used to code the mi of the fuel assembly flow zone,
and the required binary bit number is log2K up integer, denoted
as T. For example, when the number of zones is 4, the required
binary bit number is 2, and the binary codes of flow areas 1–4 are
00, 01, 10, and 11, respectively.

Individual Fitness Design.
To achieve the optimization goal of minimizing the total core flow
in the flow area, the fitness function is defined as:

Fit � Σ
j�1
K (nj · min qj) (7)

where K is the number of zones, j is the number of the flow zone,
and nj is the number of fuel assemblies in the jth flow zone.
min qj is theminimum flow rate required by themaximum power
component in the jth flow zone, which is determined by the fuel
rod temperature limit, that is, the minimum flow not exceeding
the temperature limit.

Evolution and Mutation.
This is the core step of the three algorithms, and it is also what
differentiates them. The genetic algorithm and the differential
evolution algorithm use the same evolutionary operation but
different mutation operations. The genetic algorithm performs
mutation processing according to the previously set mutation
operation, while differential genetic algorithm uses mutation
vector to realize population evolution:

]i,G+1 � xbest,G + λg(xr1,G − xr2,G) (8)
where λ is a random number from [0,1], and xr1,G and x2r,G are
different chromosomes.

The QGA combines two special operation methods, namely,
quantum computing and genetic algorithm, and thus, it has the
advantages of two operation methods and is a probabilistic
optimization algorithm. QGA is based on the state vector
representation of quantum, and the probability amplitude of
quantum bit is applied to chromosome coding, because of which,
a chromosome can express the superposition of multiple states. The
quantum logic gate is used to realize the chromosome update
operation, thereby realizing the optimal solution of the target.

The main differences between QGA and genetic algorithm is
the different coding methods and the population evolution
modes. QGA replaces the chromosome coding operator of
genetic algorithm with a quantum bit probability symbol. The
standard QGA uses a quantum revolving gate to update the
population rather than the evolution and crossover operation
used in the standard genetic algorithm. The quantum revolving
gate and its renewal process are given as follows:

U(θi) � [ cos(θi) − sin(θi)
sin(θi) cos(θi) ] (9)

[ α′
i

β′i
] � U(θi)[ αi

βi
] � [ cos(θi) − sin(θi)

sin(θi) cos(θi) ][ αi

βi
] (10)

θi � s(αi, βi)Δθi (11)
where (αi, βi)T and (α’i, β’i)T are the probability amplitudes
before and after the update of the ith qubit rotation gate of
the chromosome, respectively; U is the quantum rotation gate; θi
is the rotation angle, calculated from Equation 11, and Δθi is the
magnitude of the rotation angle; s(αi, βi) is the direction of
rotation. The values of δ and s(αi, βi) are given by 8 cases
consisting of xi, bi, f(xi) and f(bi). The specific value-giving
strategy is shown in Table 1. Typically, 0.01π ≤ δ ≤ 0.05π.

Interpret the iterative steps of the algorithm: When the
maximum number of iterative steps designed by the algorithm
is reached, the original partition number is updated, K = K + 1,
and then, return to the first step to continue the calculation. If
the maximum number of iteration steps designed by the
algorithm is not reached, the new partition scheme
generated by the intelligent optimization algorithm is
returned to the second step to continue the calculation. The
algorithm flow is shown in Figure 2.

Algorithm Test
To test the rationality and convergence of the three algorithms in
flow zoning, CEFR was selected as the research object to test the
adaptability of the three intelligent optimization algorithms. The
half core power distribution of CEFR is shown in Figure 3. Under
the premise of considering the design margin, the limiting
conditions were set as follows: the maximum temperature of
the cladding is ≤569°C, the temperature of the fuel center is
≤2,100°C, and the number of zones is 4. The three intelligent
optimization algorithms were used to calculate the traffic
partition separately. According to the partition results, the
results obtained by the three intelligent optimization
algorithms were consistent. The CEFR traffic is divided into
four zones, which is the same as the actual partition results.
Therefore, all three intelligent optimization algorithms were

TABLE 1 | Quantum rotation gate updating table.

xi bi f(xi)≥ f(bi) Δθi s(αi , βi)
αiβi > 0 αiβi < 0 αi � 0 βi � 0

0 0 False 0 — — — —

0 0 True 0 — — — —

0 1 False δ +1 -1 0 ±1

0 1 True δ −1 +1 ±1 0

1 0 False δ −1 +1 ±1 0

1 0 True δ +1 -1 0 ±1

1 1 False 0 — — — —

1 1 True 0 — — — —

“—”—“nil”;δ—;Δθi—;b i—;x i—;f—.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8498744

Yu et al. Optimization Method for Core Flow Zoning

90

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


feasible for traffic zoning. Figure 4 shows the traffic partition
schemes calculated using the three optimization algorithms.

Table 2 shows that the total iterative steps of QGA and genetic
algorithm are set to 1,000 steps; the QGA tends to converge only
after 101 iterations, and the calculation time is 13,368 s. The
genetic algorithm converges after 316 iterations, and the
calculation time is 15,757 s. Compared with the genetic
algorithm, for the QGA, there was 15.16% reduction in time
and 68.03% reduction in iteration steps. Therefore, the QGA has
obvious advantages over the genetic algorithm in convergence

speed; however, the advantage in the speed of iterative calculation
is not very obvious. Compared with the differential evolution
method, the advantages of QGA are obviously reflected. The
differential evolution algorithm has 1,298 convergence steps, and
the total time consumption is 63,774 s. Comparatively, for QGA,
there is 79.03% reduction in time and 92.21% reduction in
iterative steps. Compared with the differential evolution
algorithm, the QGA has obvious advantages in terms of total
time consumption and convergence speed. Comparing these
three algorithms, we know that the QGA has obvious
advantages over the other two algorithms in terms of
convergence steps and total time required for calculation, and

FIGURE 2 | Flow chart of flow partitioning algorithm design.

FIGURE 3 | Power distribution of CEFR half core power.

FIGURE 4 | Flow zoning results of half CEFR.
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it can be used as an intelligent optimization algorithm for the
optimization of core flow zoning calculation of a long-life small
reactor.

To compare the convergence between algorithms, adaptive
curves of QGA intuitively, genetic algorithm, and differential
evolution algorithm were extracted, as shown in Figure 5. QGA
has obvious advantages in convergence compared with the other
two algorithms. The final mass flows obtained by the three
algorithms have relatively close values.

OPTIMIZATION OF SPALLER-100 FLOW
ZONING DESIGN

SPALLER-100 Core Introduction
SPALLER-100 is a small long-life natural circulation lead- or
lead-bismuth-based fast reactor that named SPALLER-100
designed at the University of South China. Figure 6 shows the
core section diagram of the SPALLER-100 reactor.

The thermal power of SPALLER-100 reactor core is 100 MW,
the refueling cycle is 30 years, the operating temperature is
260–400°C, and the coolant temperature is 200°C under the
condition of refueling shutdown. The height of the reactor
core active zone is 1.5 m, and the equivalent diameter is 1.7 m.
It comprises 48 fuel assemblies, 13 control rod components, 66
reflector components, and 126 shielding components. SPALLER-
100 single fuel assembly has 61 fuel rods, and it uses PuN-ThN
fuel. The effective density of fuel is 85% TD, and the cladding

material is HT-9. He is filled in the gap between the fuel pellet and
the cladding. The diameter of the fuel pellet is 12 mm, and the
thickness of the cladding is 0.6 mm. The inner diameter of the fuel
rod is 12 mm, and the outer diameter is 13.5 mm. The in-pile
loading of nuclear fuel is 5,475.88 kg, and the loading of fissile
nuclides is 891.02 kg. The core activity is divided into internal and
external zones. There are 12 fuel modules in the internal zone,
with a Pu mass fraction of 20.5%, and 36 fuel modules in the
external zone, with a Pu mass fraction of 30.8%. Table 3 shows
the limit conditions of thermal-hydraulic design for the
SPALLER-100 reactor.

Design of Core Flow Zoning Scheme for
SPALLER-100 Full Life Cycle
Based on the power distribution at the beginning of SPALLER-
100 life, flow partition calculation was carried out using QGA.
Flow rates for zones 1–4 were 79.14 kg/s, 72.26 kg/s, 65.05 kg/s
and 57.85 kg/s, respectively. When the number of core zones was
4, the outlet temperature and mass flow rate of SPALLER-100
were 522.92°C and 3,143.38 kg/s, respectively. Figure 7 shows the
flow zoning scheme when the number of core zones is 4.

The containment temperature of the reactor was limited to
550°C. The closed channel model does not consider the transverse
mixing between the components, thereby retaining the margin of
25°C. For the closed channel, the calculation results showed 24
boxes of fuel assembly with temperature >525°C in the whole life
period; the outlet temperature of 12 boxes of fuel assembly was
much higher than the limiting temperature. For the sub-channel,
the calculation results showed 20 boxes of fuel assembly with
temperature >550°C in the whole life period; the outlet
temperature of 12 boxes of fuel assembly was much higher
than the limiting temperature. It was concluded that the
calculation of flow zoning based on the power distribution of
a single time point can lead to serious security risks. Therefore,
core flow zoning during the whole life period should be
considered to ensure the safety of the core during operation.

The maximum power of each fuel assembly during the whole
life of the reactor was considered as sample data, and whole life
flow partition calculation was carried out for SPALLER-100. On
this basis, the relationship between the minimum flow achieved
by different partition numbers and the average outlet temperature
of the active zone was analyzed, as illustrated in Figure 8.

Figure 8 shows that when the number of zones was 5, the
average outlet temperature of the reactor core was close to
saturation. Increasing the number of zones slightly improved
the average outlet temperature of the reactor core, and so, it is
reasonable to divide the reactor into five zones. The total core flow
was 3,424.20 kg/s, and the average outlet temperature of the core

TABLE 2 | Algorithm convergence analysis results.

Algorithm Type Total time(s) Total Iteration Steps Convergence Steps

Quantum genetic algorithm 13,368 1,000 101
Genetic algorithm 15,757 1,000 136
Differential evolution algorithm 63,774 1,500 1,298

FIGURE 5 | Adaptive curves of the three intelligent algorithms.
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was 504.38°C. The partition results are shown in Figure 9. Flow
rates of zones 1-5 are 82.36 kg/s, 79.14 kg/s, 72.29 kg/s, 60.05 kg/s
and 58.00 kg/s, respectively.

Verification of SPALLER-100 Full Life Core
Flow Zoning Scheme
To verify the accuracy of this procedure, the power of each
component at 36 different times during the whole life of the
reactor was extracted, and the maximum power of each
component was selected as the sample data. The parallel
multi-channel model designed in this study was used for
calculations, and the calculated outlet temperature distribution
is shown in Figure 12. The maximum power of each component
was selected as the sample data. The fuel assemblies are shown in
Figure 10, and the axial power distribution of the core is shown in
Figure 11. These data were input into the card parameters, and
the sub-channel code SUBCHANFLOW(Ferraro et al., 2020) was

FIGURE 6 | Cross-sectional schematic diagram of SPALLER-100 core.

TABLE 3 | Thermal hydraulic design limits of SPALLER-100.

Project Design Limit

Maximum Temperature Limit
of Fuel/°c

2,300

Maximum temperature limit of cladding/°C normal condition 550
accident conditions 650

Maximum flow rate limit of coolant/(m/s) 2
Minimum temperature of coolant/°C 200

FIGURE 7 | Flow partitioning results for SPALLER-100 (beginning of core).
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used for calculation. The calculated outlet temperatures are
presented in Figure 13.

Analyses shown in Figure 12, Figure 13 show that under the
same flow partition, the calculation results of the proposed model
are in good agreement with the calculation results of the sub-
channel code SUBCHANFLOW. The minimum relative error,
the maximum relative error, and the average relative error were
0.5, 2.9, and 2.3%, respectively. Therefore, it can be considered
that the calculation results of the proposed parallel multi-channel
model design are sufficiently credible.

To verify the impact of flow zoning on the reactor core
outlet temperature, the maximum power of each fuel assembly
in the whole life was taken as sample data, and the coolant
mass flow distribution of each fuel assembly in the core and the
coolant outlet temperature of each fuel assembly without
zoning were compared and analyzed. First, after partition
treatment, the outlet temperature was calculated to obtain
total coolant mass flow of each fuel assembly partition.
Then, the coolant mass flow obtained above was averaged
for each fuel assembly to obtain the outlet temperature without
zoning. The SUBCHANFLOW program was used to calculate

the results. According to the calculation results, the following
conclusions were obtained.

When the core coolant was treated in zones, and the number
of flow zones was 5, the average outlet temperature of the core
coolant was 508.50°C; the difference between the maximum and

FIGURE 8 | Total active zone flow and active zone exit temperature for
different number of zones.

FIGURE 9 | SPALLER-100 final partition scheme.

FIGURE 10 | SPALLER-100 fuel assembly.

FIGURE 11 | Axial power distribution of SPALLER-100.
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minimum temperatures was 22.44 °C. When the core coolant was
not partitioned, the average coolant outlet temperature of the core
was 507.82°C; the difference between the maximum and
minimum temperatures was 76.85°C. When the total amount
of coolant passing through remained unchanged, the average
temperature change at the core outlet caused by the zoning and
non-zoning treatments was slight, but the temperature
fluctuation after zoning treatment is smaller; the difference
between the maximum and minimum temperatures was small,
and the outlet temperature was better flattened. Therefore, core
flow treatment can flatten the core coolant outlet temperature.
The detailed outlet temperatures are illustrated in Figures 14, 15.

CONCLUSION

Reasonable core flow zoning of nuclear reactor can improve its
safety and economy. Core flow zoning is also an essential
means to flatten the core outlet temperature. Based on the
modern optimization theory, artificial intelligence
optimization algorithms were coupled with a parallel multi-
channel model to construct a reactor core flow zoning
calculation model. The convergence of different
optimization algorithms was analyzed, and the optimal
optimization algorithm was determined. This optimal
optimization algorithm was used to carry out comparative
analysis of two different flow zoning schemes using sample
data of power distribution at the beginning of the life and the
maximum power in the whole life of SPALLER-100. Following
conclusions were obtained.

(1) Considering CEFR as the research object, for three
intelligent optimization algorithms, namely, genetic

FIGURE 13 | Sub-channel program simulates and calculates the
maximum outlet temperature of each component.

FIGURE 14 | Outlet temperature without zoning.

FIGURE 15 | Outlet temperature under zoning.

FIGURE 12 |Maximumoutlet temperaturedistributionat 36groupsof power.
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algorithm, differential evolution algorithm, and QGA,
convergence analysis was carried out for reactor flow
zoning. The results showed that QGA has the best
convergence in long-life miniaturized reactor flow
zoning, compared with the genetic algorithm. The total
time consumption decreased by 15.16%. Compared with
differential evolution algorithm, the total time consumption
decreased by 79.03%.

(2) The flow zoning schemes designed based on the sample data of
power distribution at the beginning of life and the maximum
power of each fuel assembly in the whole life were compared
and analyzed. The maximum outlet temperature of the fuel
assembly based on the power distribution at the beginning of life
exceeded the thermal safety limit of the reactor. Based on the
power distribution of the whole reactor life, themaximumoutlet
temperature of the fuel assembly decreased by 140 K and was
maintained below the thermal safety limit. The optimal number
of zones of SPALLER-100 reactor at this time was 5. Increasing
the number of zones led to challenges in flow distribution and
did not significantly improve the thermal safety performance of
the reactor.

(3) Flow zoning can bring a good flattening effect to the core
outlet temperature. The SUBCHANFLOW program was
used to analyze SPALLER-100. Taking the maximum
power of the core in the whole life period as the
calculation data, the following conclusions were obtained.
When the core coolant was treated in zones and the number
of flow zones was 5, the average outlet temperature of the core
coolant was 508.50°C, and the difference between the
maximum and minimum temperatures is 22.44°C. When
the core coolant was not partitioned, the average coolant
outlet temperature of the core was 507.82°C, and the
difference between the maximum and minimum

temperatures was 76.85°C. When the total amount of
coolant passing through remained unchanged, the average
temperature change at the core outlet caused by zoning and
non-zoning treatments was only slight; however, the
temperature fluctuation after zoning treatment was
smaller; the difference between the maximum and
minimum temperatures was smaller, and the outlet
temperature was better flattened. Therefore, core flow
treatment can flatten core coolant outlet temperature.
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Measurement and Discrimination of
Asymmetric Non-uniform Strain
Distribution Based on Spectrum
Characterization of FBG Sensors
Zhichun Fan1,2*, He Yan2, Zhiyong Huang2 and Jing Liu1

1School of Ocean Information Engineering, Jimei University, Xiamen, China, 2Institute of Nuclear and New Energy Technology,
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center for
Advanced Nuclear Energy Technology, Tsinghua University, Beijing, China

The asymmetric deformation of glass-to-metal seals is an important defect that would lead
to the failure of the pressure boundary in nuclear reactors. In this research, an efficient
approach to measure the asymmetric deformation and prevent the potential failure was
proposed based on the spectrum characterization of fiber Bragg grating (FBG) sensors.
The asymmetric deformation was induced from small-size large-gradient nonuniform strain
in sealing materials; as a result, it could be monitored through the spectra of embedded
FBGs affected by strain variations. The theoretical analysis of the FBG spectrum was
carried out using the transfer matrix model (TMM) to validate the measuring feasibility and
reliability. Based on the theoretical results, the asymmetric deformation was measured by
the distributed embedded FBG experimentally. By combining the reconstructed spectrum
and the experimental results, the asymmetric deformation of glass-to-metal was proved to
be monitored, and the defect was able to be prevented during the manufacturing process
effectively via the proposed method.

Keywords: glass-to-metal seal, fiber Bragg grating (FBG), transfer matrix method (TMM), non-uniform strain
distribution, nuclear power plant

1 INTRODUCTION

The glass-to-metal seal has played an important role in the hermeticity of pressure boundaries
applied in nuclear and renewable energy industries. The compressive strain generated in sealing
glass during the manufacturing process with the compaction of the steel shell was the main factor
for maintaining good hermeticity in glass-to-metal at harsh environments. Defects such as
asymmetric deformation would be induced by the special model design, which would lead to the
hermetic failure of glass-to-metal seals. Many advanced techniques [digital image correlation
(Van Lancker et al., 2016) and photoluminescence spectroscopy (Li S et al., 2022)] were carried
out recently to monitor the strain/stress in real-time; however, it was difficult for these methods
to be applied in remote sensing under harsh nuclear environments. Based on our previous
research studies (Fan et al., 2019; Fan et al., 2020), the embedded fiber sensing technique is
demonstrated in this research. Fiber Bragg grating (FBG) sensors have been developed in the past
40 years, and they have been applied in various sensing schemes (Zaghloul et al., 2018; Fan et al.,
2019; Morana et al., 2019). FBG has emerged as a reliable, in situ, nondestructive tool for
monitoring, diagnosing, and controlling civil structures, and the versatility of FBG sensors
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represents a key advantage over other technologies in the
structural health monitoring (SHM) field (Majumder et al.,
2008).

Generally, asymmetric deformation would cause the local
strain distribution to vary significantly, so the measurement of
strain distribution was essential in this research. Strain
measurement has attracted research interest for its important
role in SHM. The strain distribution of large equipment (bridges,
composite structures, etc.) is regarded as being uniform in the
measuring region of small sensors, so the strain signals would be
stable and clear, as shown in Figure 1 (Ling et al., 2006; Chen
et al., 2017; Goossens et al., 2019; Xiong et al., 2019; Li J et al.,
2022). However, for small-size equipment such as glass-to-metal
seals, the strain distribution was nonuniformwith a large gradient
to guarantee hermeticity, so it would be challenging to realize
accurate strain measuring because the spectrum would be
broadened and distorted by nonuniform strain (Kersey et al.,
1997). Previous results showed that it was feasible to characterize
the properties of strain distributions with a chirped spectrum
(Fan et al., 2019). This phenomenon was widely applied to
identify nonuniform strain induced by defects [crack locations
in composites (Okabe et al., 2004), crack propagations (Jin et al.,
2019), and transverse loads detection (Rajabzadeh et al., 2019)],
and the results demonstrated its feasibility.

This research performed a practical monitoring method for
the hermetic material of glass-to-metal seals, which could realize
the discrimination of nonuniform strain distribution and
prevention of asymmetric deformation with a high measuring
resolution. The spectrum reconstruction of FBG under
nonuniform strain was studied using the combined transfer
matrix model (TMM) and finite element method (FEM). The
relationship between the gradient parameter of strain distribution
and the full width at half maximum (FWHM) of the FBG
spectrum was obtained. The characteristic parameters (Bragg
wavelength shift and FWHM) of the chirped spectrum were
proved to monitor asymmetric deformation efficiently through
the in situmonitoring experiments, and the accuracy was verified
by the numerical simulations.

2 NUMERICAL SIMULATION

2.1 Transfer Matrix Method
According to the index modulation depth distribution of the
grating region, FBG can be divided into apodized FBG (AFBG)
and uniform FBG (UFBG). The feasibility of AFBG to measure
the strain was verified in the previous research. UFBG was also
applied to monitor the small-size nonuniform strain distributions
because its spectrum was more sensitive and would generate
appreciable distortions with the nonuniform strain (Jin et al.,
2019). The parameters of applied UFBG in this article are shown
in Table 1.

FBG is similar to a wavelength-selective reflection filter. A
narrow band of the incident optical field is reflected by coherent
scattering from the index variations with a wavelength λB given by
(Hill and Meltz, 1997)

λB � 2neffΛ (1)
where Λ is the grating period and neff is the modulation index.
The neff perturbation in the core for UFBG is described by

Δneff(z) � Δneff{1 + υ cos[2π
Λ
]} (2)

where Δneff is the average change of the modulation index and υ
is the fringe visibility.

The grating forces couple between propagating modes since
they impose a dielectric perturbation to the waveguide. The

FIGURE 1 | Sensing scheme of sizable and small-size equipment with the related measuring strain distribution.

TABLE 1 | Parameters of the UFBG.

Parameters Value

Refractive index 1.452
Bragg wavelength (nm) 1550
Length (mm) 12
Elastic modulus (GPa) 73
Poisson’s ratio 0.17
Average index change 1 × 10−4
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coupled mode theory is effective to describe this behavior. A set of
coupled first-order differential equations is used to describe the
propagation:

dR

dz
� jσ̂R(z) + jκS(z) (3)

dS

dz
� −jσ̂S(z) − jκpR(z) (4)

where R(z) and S(z) represent the amplitude of forward- and
backward-propagation, respectively. σ̂ is the general “dc” self-
coupling coefficient, which is a function of the propagating
wavelength λ, given by

σ̂ � 2πneff(1
λ
− 1
λD

) + 2π
λ
Δneff − 1

2
ϕ′(z) (5)

where ϕ’(z) � dϕ/dz and λD � 2neffΛ0 is the design wavelength
for a Bragg scattering within an infinitesimal variation of the
effective index (Δneff → 0). κ is the “ac” coupling coefficient
defined as

κ � π

λ
]Δneff (6)

This equation represents the uniform grating with a constant
average refractive index change. However, the strain distribution
of glass-to-metal was nonuniform with a large gradient, and it
would cause a chirp in the grating period. If roughly treated as a
uniform strain distribution, the measuring results would generate
notable deviations. In this paper, the transmission and reflection
spectra from the two-mode coupling can be reconstructed using
the transfer matrix method (TMM), whereby the grating is
divided into finite discrete uniform sections represented by a
2 × 2 matrix. The matrix for the whole FBG can be obtained by
multiplying all the discrete matrices (Figure 2).

The calculation accuracy of the TMM depends on the section
number N, and when N ≃ 100 is more sufficient to accurately
model the chirped gratings, the characteristics of the
reconstructed spectrum led to a convergence after N increased
above 100. Defining Ri and Si to be the field amplitudes after
traversing the ith section, the propagation through this uniform
section is described by

[Ri

Si
] � Fi[Ri−1

Si−1
] (7)

Fi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosh(γBΔz) − i

σ̂

γB
sinh(γBΔz)

i
κ

γB
sinh(γBΔz)

−i κ
γB

sinh(γBΔz)
cosh(γBΔz) + i

σ̂

γB
sinh(γBΔz)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

The components of the transfer matrix Fi are defined
subsequently, where γB �

������
κ2 − σ̂2

√
and Δz is the length of

each section. The coefficients κ and σ̂ have local values at the
ith section.

The limits of the grating were defined as 0≤ z≤ L. The
boundary conditions of the matrix are R(0) � 1 for z≤ 0 and
S(L) � 0 for z≥ L. For the entire grating, the matrix F can be
written as

[R(0)
S(0) ] � F[R(L)

S(L) ]0[ 1
S(0)] � F[R(L)

0
] (9)

where F � ∏N
i�1Fi. Fi can be expressed as

Fi � [f11

f21

f12

f22
] (10)

In addition, substituting Eq. 10 in Eq. 9 results in

[ 1
S(0)] � [f11R(L)

f21R(L) ] (11)

Thus, reflectivity as a function of wavelength can be
calculated by

r(λ) �
∣∣∣∣∣∣∣∣S(0)R(0)

∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣f21

f11

∣∣∣∣∣∣∣∣2 (12)

FIGURE 2 | (A) Propagation of a waveguide in an optical fiber. (B)
Discrete strain distribution by the TMM.

FIGURE 3 | Schematic diagram of a specially designed glass-to-metal
sealing model.
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Similarly, the transmitted spectrum can be found as

t(λ) �
∣∣∣∣∣∣∣∣R(L)R(0)

∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣ 1f11

∣∣∣∣∣∣∣∣2 (13)

2.2 Finite Element Simulation
The finite element model of glass-to-metal seals was built to
obtain the strain distributions in glass. The thickness of the metal
shell was a main factor determining the distribution of
compressive strain, so it was designed in a rectangular shape
to induce asymmetric deformation defect. The length and width
were set to 6 and 0.5 mm (Figure 3), respectively, which could
generate remarkable asymmetric strain along the circumference
of the hermetic material. The geometrical parameters of the
model are shown in Table 2.

To prove the feasibility and measuring resolution of the
FBG spectrum, the TMM and FEM were combined to
reconstruct the spectrum response with specific nonuniform
strain in glass-to-metal seals. This spectrum reconstruction
method combined the advantages of both FEM and TMM, and
it has been applied by many researchers to predict spectrum
variations under large-gradient strain distribution (Kakei et al.,
2018; Rajabzadeh et al., 2019; Fazzi et al., 2019; Stathopoulos
et al., 2019). The strain of the fiber core transferred directly to
the surface of the sealing glass to simplify the simulation
(Wang et al., 2019) because the bare fiber was well-fused
with molten glass during the manufacturing process and
there was little difference between the mechanical properties
of fiber and sealing glass (the main component for both was
SiO2).

3 EXPERIMENTAL SETUP

AFBG and UFBG were embedded in the hermetic material to
monitor the nonuniform strain distribution. The experimental
setup is shown in Figure 4. The FBGs used in this research were
type II gratings inscribed by femtolaser provided by
Femtofibertech. The previous results showed that FBG had
good endurance at high temperature (1000 °C) (Fan et al.,
2020). The experimental model was consistent with the finite
element model (Table 1). The experimental model was
manufactured with FBGs by a gasket. To achieve distributed
strain and asymmetric deformation monitoring, four sensors
(including 3 AFBGs and 1 UFBG) were embedded
simultaneously as shown in Figure 4A, which were located at
the same distance (3 mm) with varied metal thickness. The shell
thickness of path 1 to path 4 was 6 mm, 5.5 mm, 1 mm, and
0.5 mm, respectively, which ensured the spectra of FBGs would be
affected by different strain distributions.

Themodel was designed under a specific heating process (20°C
to 450°C, 10°C/min) to make the hermetic material fuse well with
the metal shell and FBGs (Figure 4B). After cooling down to
room temperature, the glass-to-metal model with embedded
FBGs was obtained, and the hermetic reliability was
guaranteed by the compressive strain formed in the sealing
glass. The FBGs embedded in four paths were connected to
the interrogator to record the real-time spectrum and
characteristic parameters. The experimental results were
analyzed and compared with the reconstructed spectra
obtained by the TMM. The accuracy and feasibility of the
proposed method to measure the large-gradient nonuniform
strain and prevent the asymmetric deformation defect were
demonstrated.

4 RESULTS AND DISCUSSION

4.1 Spectrum Reconstruction to
Large-Gradient Nonuniform Strain
The axial strain distributions in the hermetic material were
extracted along the measuring path of FBG. A total of 16
groups of strain with different gradients were obtained under

TABLE 2 | Geometrical parameters of the designed model.

Parameters (mm) component Section Height

Length Width Diameter

Metal shell 20 9 — 30
Hermetic material — 8 5 —

Conductor pin — 2.5 30 —

FIGURE 4 | Experimental setup for the asymmetric model with distributed FBGs: (A) the schematic diagram and (B) the photograph.
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different working conditions from 20°C to 300°C (Figure 5). The
sine function was applied to fit the strain distributions with
different gradient parameters a, as shown in Figure 5. The
gradient parameter a changed from 680 to 2400 with the

increase in the amplitude. All the fitting functions were close
to the original strain distributions with a deviation of less
than 5%.

The strain distributions along the measuring paths and their
variation range are summarized in Figure 6. It was shown that
those axial strains could be fitted by the sine curve method, and
the following three features could be obtained as a conclusion:

1) When the length z = 0 and z = 5,000, the strain was 0.
2) All the distributions could be summarized by the sine curve y

= a*sin (bx + c).
3) b = 6.7e-4, and c = 3.028 (based on features 1 and 2).

According to the features, all the axial strain distributions in
the hermetic material could be described by the sine curve fitting
method with an appropriate parameter a, which represented the
difference between the maximum and the minimum value of the
distribution. The strain distributions could be assigned to the
grating region by the TMM.

A total of 16 groups of sine curve fitting functions were
imposed to FBG through the coupling parameters of the transfer
matrix, and the spectra were reconstructed as shown in Figure 7.
The FWHM tended to broaden (from 0.78 to 2.81 nm) with
increasing a, and the relationship between these two parameters

FIGURE 5 | Fitting curve of the large-gradient nonuniform strain distributions in glass-to-metal with gradient parameters a.

FIGURE 6 | Features of axial strain distribution in hermetic material.
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is defined in Figure 8. Considering that the resolution of the
interrogator was 0.05 nm, consequently, the measuring
resolution of the nonuniform strain distribution in the

hermetic material was about 70 με. The deviation between
the fitting curve and the origin data was around 8%. As a
result, the FWHM was proved to characterize the variation
in axial strain in the hermetic material. The gradient and
distribution of nonuniform strain could be calculated by the
spectrum based on the defined relationship. The combined FEM
and TMM method was feasible to reconstruct the spectrum
response in the hermetic material under different operating
conditions.

4.2 The Monitoring Results of Asymmetric
Model
The deformation and strain contour of the designed model were
obtained by the finite element method. The temperature of the
model changed from 380°C to 20°C to simulate the manufacturing
process of glass-to-metal. The deformation was extracted along
two radial paths, as shown in Figure 9A. It was shown that the
deformation was extremely asymmetric along radial path 1 and
path 2, of which the difference Δl was about 0.008 mm
(Figure 9B), which was about 10% compared with the origin
radius. The asymmetric deformation would be induced in the
hermetic material. Then the strain was extracted along axial path
1 and 2 (Figure 10A), which were related to experimental path 1

FIGURE 7 | Related spectra variations of FBG induced by different nonuniform strain distributions in glass-to-metal.

FIGURE 8 | Fitting relationship between the FWHM of FBG and the
gradient parameters a.
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and path 4 (Figure 5A), respectively. The gradient of the strain
distribution increased with the thickness of the metal shell. Based
on the theoretical measuring resolution in Section 4.1, the
asymmetric deformation was feasible to be monitored by the
distributed FBG sensors embedded in the hermetic material.

A total of four FBGs were embedded simultaneously to
monitor the asymmetric deformation during the experiment.
The details of four FBGs are shown in Table 3. The AFBGs
were embedded in paths 1~3, and the single UFBG was located in
path 4. The two kinds of FBGs were arranged to provide
comparisons of the chirped spectrum with nonuniform strain
distribution. The distributed monitoring results are shown in
Figure 11. The spectra signified with a purple frame were FBGs
located in the hermetic material, which generated obvious
distortions influenced by the strain variations. The spectra
with a yellow frame were FBGs settled near the hermetic
material, and the Bragg wavelength shifted as the temperature
cooled down without the broadening of the FWHM.

The distortions of spectra in the purple frame tended to vary
with the thickness of the metal shell, and the feature parameters
were extracted as shown in Figure 12. The Bragg wavelength of
four FBGs in the hermetic material generated an obvious shift due
to the induced compressive strain. However, because the strain
distribution was nonuniform with a large gradient, the
relationship between the Bragg wavelength shift and the
average strain was not linear. In Figure 12, the Bragg
wavelength of paths 1 and 2 (the thickness of the metal shell
>5.5 mm) was considerably larger than those of paths 3 and 4 (the
thickness of the metal shell <1 mm), of which the shift was
0.94 nm, so the asymmetric deformation of the hermetic
material was characterized effectively via the Bragg wavelength
shift. The FWHM increased with increasing metal shell thickness,
and the bandwidth variation induced by the asymmetric
deformation was up to 1.16 nm. Therefore, the broadening of
the FWHM was feasible to monitor the distributed nonuniform
strain distribution in the hermetic material.

FIGURE 9 | (A) Contour of the asymmetric deformation of the designed model; (B) deformation along two radial paths in glass with the thickest and the thinnest
metal shell.

FIGURE 10 | (A) Contour of the compressive strain of the designed model; (B) large-gradient nonuniform strain distribution along two radial paths in glass with the
thickest and the thinnest metal shell.
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To verify the accuracy and reliability of the experimental
results, the combined TMM and FEM method was carried out
to reconstruct the spectrum variation of embedded FBGs in
paths 1 and 4. The strain distribution along the special paths
was obtained by numerical results in Figure 13, and then the
spectra were reconstructed by the transfer matrix with the
nonuniform strain distribution as shown in Figure 10B. The
theoretical Bragg wavelength shift of FBGs in paths 1 and 4 was
0.70 nm, and the FWHM variation was about 0.91 nm.
Compared with the experimental results, the deviation was
around 20%, which was induced by the approximate strain
distribution of the TMM and the boundary conditions of the
FEM. The experimental results proved to remain consistent
with the simulations in different paths of the asymmetric
model. Thus, in summary, the spectrum would generate
obvious distortions when the asymmetric deformation
developed in glass-to-metal, and the Bragg wavelength and

FWHM would increase as the deformation becomes more
severe. Because the FBG spectrum remained stable under
consistent operating conditions, the asymmetric
deformation could be characterized with the variations in
the spectrum distortion, Bragg wavelength, and FWHM.
Therefore, the glass-to-metal sample produced with such
defect would be replaced promptly to prevent hermetic
failure under operating conditions.

TABLE 3 | Parameters of customized FBG array sensors.

FBG position Refractive index Array quantity Origin wavelength (nm) Origin FWHM (nm)

1–3 f(z) = exp [−10 × (z−L/2)̂2/L̂2] 2 1545, 1555 0.82, 0.65
4 10−4 1 1550 0.28

FIGURE 11 | Spectral characterization of the asymmetric deformation in
glass-to-metal obtained by an interrogator.

FIGURE 12 | Monitoring and discrimination of the asymmetric
deformation reflected by the FWHM and Bragg wavelength shift of FBGs.

FIGURE 13 | Reconstruction spectrum by the TMM in position 1 and
position 4 of the experimental model.
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5 CONCLUSION AND FUTURE WORK

This research investigated the spectrum characterization of FBG
to non-uniform strain distribution and the derived monitoring
and prediction method of the asymmetric deformation defect.

1) The TMM was demonstrated to be a feasible approach to
reconstruct the FBG spectra with large-gradient nonuniform
strain distributions in glass-to-metal equipment. The FWHM
of the reconstructed spectrum tended to increase linearly with
the gradient parameter a of strain distributions. The
measuring resolution of strain variation in this research
was 70 με.

2) The spectrum was feasible to monitor the asymmetric
deformation defect of the special model by the distributed
FBG array. The embedded FBGs generated distortions
affected by the large-gradient nonuniform strain, and the
outer FBGs remained as origin spectra with individual
Bragg wavelength shift.

3) The FBG spectrum showed distinct variations in different
paths of the experimental model. Both the Bragg wavelength
shift and the variations in the FWHM proved that the
distributed FBGs could measure the asymmetric
deformation effectively during the manufacturing process.

Based on the proposed approach, the potential defect in the
hermetic material was able to be monitored and prevented, and

the quality of products could be inspected and improved after the
manufacturing of glass-to-metal equipment.
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Neural Network Acceleration of
Genetic Algorithms for the
Optimization of a Coupled Fast/
Thermal Nuclear Experiment
John Pevey*, Vlad Sobes and Wes. J. Hines

University of Tennessee, Nuclear Engineering Department, Knoxville, TN, United States

Genetic algorithms (GA) are used to optimize the Fast Neutron Source (FNS) core fuel
loading to maximize a multiobjective function. The FNS has 150 material locations that can
be loaded with one of three different materials resulting in over 3E+71 combinations. The
individual designs are evaluated with computationally intensive calls to MCNP. To speed
up the optimization, convolutional neural networks (CNN) are trained as surrogate models
and used to produce better performing candidates that will meet the design constraints
before they are sent to the costly MCNP evaluations. A major hurdle in training neural
networks of all kinds is the availability of robust training data. In this application, we use the
data produced by the GA as training data for the surrogate models which combine
geometric features of the system to predict the objectives and constraint objectives.
Utilizing the surrogate models, the accelerated algorithm produced more viable designs
that significantly improved the objective function utilizing the same computational
resources.

Keywords: nuclear reactor, optimization, fast neutron source, convolutional neural networks, surrogate model,
machine learning

1 INTRODUCTION

The optimization of nuclear problems can be a complex task often with multiple competing
objectives and constraints. There is much research into the optimization of various aspects of
nuclear reactors such as the initial design (Gougar, et al., 2010), fuel shuffling (Zhao, et al., 1998;
Chapot, Da Silva and Schirru 1999), and shielding (Kim and Moon 2010; Tunes, De Oliveira and
Schön 2017) optimizations. Due to the non-linear nature of these problems, optimization
algorithms such as evolutionary and simulated annealing algorithms are often used. These
methods do not guarantee that the optimal solution is found but can, with sufficient
computational resources, clever heuristics, and the application of expert knowledge, often find
solutions which are near-optimal.

When an optimization is of a function that is prohibitively expensive (such as solving the neutron
transport equation), a surrogate model (Sobester, Forrester and Keane 2008) is produced and
optimized instead. Surrogate models generally trade the computation expense of the original
function for less accurate, but less expensive functions. The surrogate model is optimized
instead of the original function. These can be as simple as linear functions or as complex as
deep neural networks. In nuclear optimizations, surrogate models have been built to approximate
expensive functions such as finite-element structural analysis (Prabhu, et al., 2020), computational
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fluid dynamics (Hanna, et al., 2020), and neutron transport (Faria
and Pereira, 2003; Hogle 2012; El-Sefy et al., 2021; Sobes, et al.,
2021) related objectives.

In this paper, an optimization of the Fast Neutron Source at
the University of Tennessee was performed using objectives
calculated by solving the neutron transport equation. A
surrogate model for these objectives is presented, and a genetic
algorithm with and without acceleration using that surrogate
model are compared. The following sections include overviews of
both the Fast Neutron Source and of the neural network
architecture used as the surrogate models. Two genetic
algorithm optimizations are presented, the first uses the Non-
dominated Sorting Algorithm-II and Monte Carlo N-Particle
transport code (MCNP) (Goorley, et al., 2012) to solve the
objective and constraint functions. The second optimization
uses surrogate models with the NSGA-II algorithm, after
which the individuals in the Pareto Front are evaluated
with MCNP.

1.1 Fast Neutron Source
The Fast Neutron Source (FNS) (Pevey, et al., 2020) will be a
platform for sub-critical integral cross section experiments at the
University of Tennessee. It will be driven by 2.5 MeV neutrons
produced by a deuterium-deuterium (DD) neutron generator and
feature a flexible construction which will produce sub-critical
benchmark experiments targeting specific nuclear data needs of
next generation reactors.

The reduction of the uncertainty on next-generation reactor
designs is a need for the expected rapid deployment of next
generation reactors. Nuclear data uncertainty is propagated to
all nuclear-related figures of merit of reactors such as k-eff, void,
temperature and power reactivity coefficients and reactivity
worth’s. In a recent assessment of the nuclear data needed
for advanced reactors, it was found that for several next-
generation reactors need better resolved nuclear data
(Bostelmann, et al., 2021). For example, in a sensitivity
analysis of the Advanced Burner Reactor 1000 MWth
Reference Concept, it was shown that the uncertainty in
important nuclear characteristics is driven by uncertainties in
uranium, plutonium, iron and sodium. In this concept, the
uncertainty on k-eff, temperature coefficients of reactivity and
Na void worth were 0.900%, 8.397% and 13.483%, respectively.
These uncertainties require added margin in designs and can
lead to less-than-optimal designs to account for these
uncertainties.

Systematic integral data assimilation can be done to
decrease these uncertainties. In this type of analysis, a suite
of known benchmark models is collected, and a sensitivity
analysis is completed for each. The known experimental values
(and associated biases in the computational models) are then
used to further decrease the uncertainty in the relevant
quantities of interest. The FNS will be a source of these
types of benchmarks which targets the reduction of
uncertainties in neutronics calculation due to nuclear data
uncertainty. The goal of a given configuration of the FNS then
is to maximize the relevance of the experiment to some target
advanced reactor concept and to maximize the total flux

produced by the configuration to reduce the required FNS
run-times.

The most basic geometry unit of the FNS are six″ x six″ x 0.5″
plates which can be one of three different materials in this study.
Up to 20 of these plates are combined into aluminum cassettes
(See Figure 1). Twenty-five of these cassettes are then combined
into a 5 × 5 array called a zone (See Figure 2). There are three
zones in the FNS, as seen in Figure 2A. In each zone, due to
rotational symmetry, there are up to six unique cassette patterns
(labeled I-N in Figure 2B). Note that in the work in this paper
only the interior three cassette patterns (I, J, K) in each zone are
optimized. The corner cassettes (N) are filled with stainless steel
in this optimization and the cassettes labelled L and M are either
the target coolants material (Zone A, B) or the thermal
moderator (Zone C). The center cassette pattern, labeled I, is
a variable sized that can be between 0-30 plates (up to an interior
length 15″). The length of this cassette is a function of the
number of plates within the cassette, with the experiment
volume moving along with the cassette’s changing length.
The DD neutron source is in Zone C in a fixed location and
is modelled as an isotropic 2.5 MeV neutron source. Other
features of the FNS in the MCNP model are the stainless-
steel reflector (F), the concrete pedestal (H), and the B4C
plates (G) which ensure subcriticality when inserted.

2 MATERIALS AND METHODS

2.1 Non-Dominated Sorting Algorithm-II
Genetic algorithms are a class of optimization algorithms which
implement natural selection to optimize what may otherwise be
intractable optimization problems. In simplest terms, a genetic
algorithm takes an initial generation of individuals which are
evaluated with respect to one or more objectives, and a subset of
these individuals is selected and then combined to produce a
unique individual and/or mutated randomly. How exactly each of
the steps is accomplished is part of the art of a well-designed
genetic algorithm. Genetic algorithms can also be augmented by
using user-defined heuristics in each step to further increase the
effectiveness of the algorithm to produce a suite of individuals
required by the analyst.

FIGURE 1 | Fast neutron source single cassette MCNP geometry.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8741942

Pevey et al. Neural Network Acceleration of Genetic Algorithms

109

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The Non-Dominated Sorting Algorithm-II (Deb et al.,
2002) is a well-known variation on the standard genetic
algorithm which incorporates the heuristics of elitism, non-
dominated sorting and crowding distance to select the parents
of the next generation. Elitism is simply the idea that parents
are compared to the children of the current generation. This
ensures that no progress made during the optimization is lost
from one generation to the next. Non-dominated sorting is a
heuristic for selecting which individuals are selected as parents
of the next generation, which ranks individuals by the number
of other individuals which dominate it (i.e.: have a better
evaluation of an objective function). If no other individual
has at least one objective which is better than a given
individual, then that individual is non-dominated and is
assigned rank 1. Subsequent individuals are assigned a non-
dominated rank based on how many and which individuals
dominate it. Rank 2 individuals are only dominated by rank 1
individuals, etc. Parents of the next generation are selected
based on their non-dominated rank. If there are more
individuals in each rank than there are available slots for
parents, then the crowding distance metric is applied.
Crowding distance is a heuristic which calculates the
volume around each individual in the objective space.
Individuals are selected as parents first based on the
minimum and maximum for each objective function, and
then by which occupy the largest volume in the objective
space until the parent population is full. This heuristic is
meant to both preserve the maximum and minimum
individuals for each objective function and to preferentially
select individuals which are in a less populated section of the
objective space as parents with the goal of increasing the
genetic diversity of the population.

The NSGA-II Algorithm is presented in Figure 3. It is
adapted from the original paper describing the algorithm, A
Fast and Elitist Multiobjective Genetic Algorithm NSGA-II
(Deb et al., 2002):

2.2 Convolutional Neural Networks
A convolutional neural network (CNN) is a type of artificial
neural network which can approximate a function in which not
just the input values are important, but the relative positional
information of the inputs is also important. CNNs are used
primarily in machine vision tasks (Krizhevsky, Sutskever and
Hinton 2012) and language processing tasks (Kalchbrenner,
Grefenstette and Blunsom 2014). In machine vision tasks, the
magnitude, relative position, and combinations of pixels are
important for predicting what the pixels represent. In machine
language tasks the relative positions of words are an important
aspect to producing accurate translations.

CNN architectures include several layer types such as
convolutional layers, pooling layers, non-linearity layers and
fully connected layers (Albawi et al., 2017). In the
convolutional layer, the namesake of the neural network
architecture, is the convolution operation performed on the
input to the layer and one or more learned kernels to produce
a feature map. The convolution operation is a mathematical
function that describes how one function modifies another as
it is shifted over it. In practical terms, with a 2D input and kernel,
the dot product between both functions is calculated and stored in
the feature map. The kernel is then shifted by some number of
columns and the dot product is calculated again. A non-linear
function, such as a Rectified Linear Unit, is applied to the outputs
of the convolutional layers.

The next layer type is the pooling layers. In these layers, a fixed
filter is applied to the input to the layer. Commonly used filters
are averaging and maximum pooling filters which return the
average of a subset of the feature map or the maximum value
within a subset. Unlike the convolutional layer, the stride of this
operation is generally equal to the width of the filter. Commonly
in machine-vision tasks a 2 × 2 filter is used. A 2 × 2 max pooling
layer would reduce the size of the feature map by producing a new
feature map which is composed of the maximum values in each
2 × 2 grid in the input feature map.

FIGURE 2 | Fast Neutron Source MCNP Geometry (A) XZ and (B) YZ View.
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The last layer type commonly used in convolutional neural
networks are fully connected layers. These final layers take as
input the flattened final feature maps from the previous layers
and non-linearly combine them into a prediction. The weights
and biases in these layers, along with the kernels of the
convolutional layers, are trained by backpropagation algorithm
used to train other neural networks.

In nuclear applications, the relative position of materials to
each other is important information when predicting nuclear
quantities of interest such as k-eff. The k-eff of a given
configuration of fissile, moderating, and absorbing materials
is a function of where these materials are in 3-D space relative
to each other, along with their respective nuclear data. CNNs
produce predictions based on combinations of features which
incorporate this 3-D data. There are other deep neural network
architectures, such as recurrent (Liang and Hu, 2015) and
transformer networks (Han et al., 2022), that have similarly
been applied to machine vision tasks and therefore may also be
able to predict nuclear related figures of merit such as k-eff,
representativity, etc.

3 RESULTS AND DISCUSSION

This section discusses the initial optimization of the FNS using
the NSGA-II algorithm and the subsequent optimization using
the CNN-based surrogate models for the objective and constraint
functions.

3.1 Optimization of the FNS by NSGA-II
The target of this FNS optimization is a generic sodium cooled
fast reactor spectra. The objectives of this optimization are the

maximization of the neutron flux per source particle in the
experiment volume, the maximization of the representativity
of the flux spectra in the experiment volume and the
maximization of the change in k-eff when placing the target
material in the experiment volume. These objectives are used as
heuristics in place of the true objective of the FNS, which is to
produce configurations which minimize the uncertainty on a
target reactor concept propagated from nuclear data. Maximizing
the total flux per source particle would mean reducing the total
time required to complete a FNS experiment to sufficient
statistical certainty. Representativity, or the E similarity coefficient
in the SCALE manual (Rearden and Jessee 2018), is the angle
between two n-length vectors in n-dimensional space. A value of
0 means that the two vectors are perpendicular to each other, a value
of 1.0 would correspond to the two vectors pointing in the same
direction and are therefore proportional to each other. The integral
k-eff objective seeks to maximize the delta between the FNS
experiment and an integral experiment where the entire
experiment volume is filled with the material of interest. This
last objective approximates a potential use-case of the FNS
to perform integral experiment where the reactivity worth of
the target moderator in the system is being measured before
and after insertion. Maximizing the Δk-eff of that experiment
would make the practical matter of measuring the reactivity
difference easier.

These objectives were calculated by an MCNP source
calculation with a total uncertainty on the experimental
volume flux tally converged to <0.005% standard error. In
addition, a constraint on k-eff was enforced which required
all parents to have a k-eff below 0.95. This constraint was
calculated using MCNP and to a standard uncertainty of at
least 0.00150 dk-eff. An increasingly strict constraint on

FIGURE 3 | The Non-Dominated Sorting Genetic Algorithm-II (Deb et al., 2002).
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representativity based on the idea of simulated annealing was
also enforced. This constraint increased linearly over the first 50
generations of the optimization to E > 0.95. This constraint was
enforced such that if there were not enough individuals in the
parent population which met it, then it would be relaxed until at
least 20 individuals met the constraint. Enforcing the constraint
on representativity later in the optimization allows the
algorithm to explore areas on the design space that would
not be allowed by a strict constraint.

This optimization used three plate types: 9.75% enriched
uranium metal, polyethylene, and sodium metal. The initial
optimization of the FNS was run on the NECLUSTER at the
University of Tennessee. This NSGA-II algorithm was
implemented with the parameters described in Table 1. A
total of 8,100 potential patterns of the FNS were evaluated in
this optimization. Of these, 3,145 individual patterns met the k-eff
criteria and were evaluated for the neutron flux-based objectives.
The stopping criteria used for this optimization was number of
generations, which was selected due to taking approximately
3 days (wall time) to complete. The MCNP calculations of the
objective functions required the most computational time.

Figure 4 shows the average k-eff, representativity, total flux,
and the integral k-eff value (times 10). The integral value is
multiplied by 10 to show more detail in the data. Some features of
this figure are that the linearly increasing constraint on
representativity is obvious from both the linearly increasing
average representativity and the decreasing average total flux
over generations 34 to 53. Thereafter, the average total flux of the
parents increases slightly but plateaus at generation 61.

This optimization produced a Pareto front of FNS designs
which can be seen in Table 2. This set of individuals represent the
trade-off between the objective functions of representativity, total
flux and integral k-eff as found by the optimization algorithm.
The representativity of these individuals ranges from 0.9510 to
0.9789. The total flux in the experiment volume ranges from
0.00146 to 0.0041, and the Δk of the integral experiment ranges
from -0.00592 to +0.00195. Like previous analysis of a simplified
approximation of the FNS, the representativity of the flux in the
experiment volume and the total of that flux are negatively
correlated (-0.858) while the flux and Δk-eff are positively
correlated (0.810). An increase in Δk-eff will increase the total
flux in the experimental volume but at the expense of the ability of

the flux spectra to match the primarily fast target spectra as
measured by representativity.

3.2 Surrogate Model Optimization of
the FNS
The surrogate model optimization of the FNS used the same
objectives and constraint as the optimization described in Section
3.1, but with the CNN-based surrogate models as solvers for the
MCNP k-eff and source calculations required to evaluate the
objectives. The architectures of these networks were found by the
application of the Keras Tuner Python library (O’Malley, et al.,
2019) using the data produced by the NSGA-II optimization. The
hyper parameters found by this optimization can be found in
Table 3. Further discussion of the method of optimizing the
surrogate models will be presented in a forthcoming PhD
dissertation at the University of Tennessee by the lead author.

The surrogate-based optimization algorithm is as follows:

1. Initialize population of 100 individuals and evaluate for
objectives and constraint with MCNP.

2. Train surrogate models if more than 100 individuals have been
evaluated.

3. Run NSGA-II algorithm (Deb et al., 2002) with the parameters
described in Table 1, using the CNN-based surrogate models
as the objective and constraint solvers.

4. Evaluate the final Pareto front (80 individuals) from the
surrogate-based optimization with MCNP

5. If the total number of generations equals the stopping
criteria, exit.

6. Return to Step #2

The data produced by the outer loop of the optimization,
whereMCNP is used to calculate the objectives and the constraint
functions for every individual, was used for the training of the
surrogate models used to evaluate the objectives of the inner loop
of the optimization. A minimum of 100 valid individuals are
required for training to occur, so after the first generation only the
k-eff surrogate model was trained. The objective functions were
trained after generation 2. The surrogate models were trained for
500 epochs using 90% of the available training data with 10% used
for validation. The weights and biases of the epoch which

TABLE 1 | Description of NSGA-II and surrogate NSGA-II hyperparameters.

Description NSGA-II hyperparameters Surrogate NSGA-II hyperparameters

Stopping Criteria 100 Generations after initial generation 10 Generations after initial generation
Parent Population 20 80
Child Population 80 1,920
Crossover Rate 50% 50%
Crossover Type Single point crossover Single point crossover
Mutation Rate 10%, per plate 10%, per plate
Mutation Type Single plate material change Single Plate Material Change
Initial Population 100 randomly created 80 Pareto front individuals selected from all individuals evaluated with

MCNP plus 1,920 randomly created
Objective/Constraint Solver MCNP CNN surrogate
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minimized the validation error were used as the surrogate model
for that generation. The models were initialized with random
weights at the beginning of the optimization.

The ability of the surrogate models to predict their respective
values can be quantified by calculating the mean squared error
(MSE) of the predictions to the true values as defined by,

Mean Squared Error � 1
n
∑n
n�1

(xi − x̂i)2.

Where, xi and x̂i are the true and predicted values.
TheMSE of each of the surrogate models initially are relatively

large and decrease as the number of training examples increases.
The surrogate model predicting k-eff is the first to stabilize at a
value of approximately 1.0E-01 at generation 10. During the
optimization the training data for this model increases by 80
in each step. If an individual does not have a k-eff below 0.95, then
the three objective functions are not calculated for it. Figure 5
shows the MSE of the prediction of the objective and constraints
versus the true, MCNP-calculated, values for all individuals
produced in each generation. The MSE of the surrogate
models of the objective functions plateau at approximately

FIGURE 4 | Average parent objective function and constraint evaluation during NSGA-II optimization.

TABLE 2 | Final 20 individuals NSGA-II optimization.

Individual # k-eff Representativity Total flux per
source particle

Delta k-eff

1 0.94695 0.97893 0.002218 0.00002
2 0.93427 0.97825 0.002068 0.00144
3 0.91207 0.97750 0.001461 0.00191
4 0.91730 0.97548 0.001545 0.00405
5 0.94904 0.97460 0.002740 0.00178
6 0.91365 0.97293 0.001757 0.00468
7 0.93771 0.97225 0.002202 −0.00195
8 0.93805 0.96988 0.002228 0.00393
9 0.93879 0.96869 0.002518 0.00296
10 0.94841 0.96764 0.002966 0.00374
11 0.94323 0.96562 0.002991 0.00086
12 0.92581 0.96504 0.002105 0.00592
13 0.94596 0.96129 0.003270 −0.00027
14 0.92903 0.96045 0.002396 0.00471
15 0.94987 0.95876 0.003172 0.00266
16 0.94908 0.95574 0.003736 0.00122
17 0.94713 0.95333 0.003174 0.00268
18 0.94721 0.95227 0.003905 0.00150
19 0.94859 0.95187 0.004131 −0.00151
20 0.94371 0.95095 0.003571 0.00450

TABLE 3 | FNS CNN surrogate model hyperparameters.

Hyper parameter k-eff Total flux Representativity Integral K-Eff

1st Conv. Width 32 40 56 16
2nd Conv. Width 64 64 16 32
3rd Conv. Width 64 40 48 40
4th Conv. Width 40 24 16 24
5th Conv. Width N/A N/A N/A 40
6th Conv. Width N/A N/A N/A 16
Kernel Size 4 4 3 3
Dense Layer Width 32 256 32 96
Max Pool Size 9 4 10 7
# of Hidden Conv. Layers 3 3 3 5
Dropout Percentage 0.5 0.2 0.5 0.4
Learning Rate 0.0208839 0.0160466 0.0317394 0.0018139
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generation 36 for the experimental k-eff value surrogate,
generation 65 for the representativity surrogate and generation
80 for the total flux surrogate.

During this optimization, a total of 8,100 individuals were
evaluated with MCNP and 2,120,000 individuals were evaluated
with the surrogate models. Of the 8,100 patterns evaluated with
MCNP a total of 5,868 individuals met the k-eff constraint and
therefore evaluated with a MCNP source calculation. The average
objective function and k-eff of all the individuals in the parent
population is plotted in Figure 6. Like the NSGA-II algorithm
before, the constraint on representativity that is maximally
applied at generation 50 has a visible effect on the parent
population.

The objective and constraint evaluations of the Pareto front
individuals are provided in Table 4. The representativity of these
individuals ranged between 0.95075 and 0.99502, the total flux
per source neutron between 0.00077 and 0.00512 and the
maximum and minimum integral Δk-eff values were +0.00717
and -0.00490, respectively. Like in the NSGA-II calculation,
representativity and total flux per source neutron had a strong
negative correlation (-0.95096).

3.3 Comparison of the Optimizations
The surrogate-based NSGA-II optimization of the FNS produced a
Pareto front of potential FNS designs which outperformed those
produced by the standard NSGA-II algorithm. Table 5 presents the
average, maximum and minimum of the objectives and constraint
functions of the final Pareto front of each calculation. The surrogate-
based optimization produced individuals with higher
representativity, total flux per source particle and both a larger
positive and negative integral Δk-eff. The final Pareto front of both
calculations plotted by representativity vs. total flux per source
particle and integral experimental k-eff vs. representativity is
presented in Figure 7 and Figure 8. These figures show that the
surrogate-model based optimization produced a suite of individuals
which better optimize the objectives.

A total of 8,100 potential FNS patterns were evaluated in during
the both the NSGA-II and NSGA-II surrogate optimizations. In the
standard NSGA-II calculation a total of 3,145 potential patterns met
the k-eff constraint of 0.95. During the NSGA-II with surrogate
model, a total of 5,845 potential patterns met the k-eff constraint.
This is an increase of over 85% more viable FNS configurations
evaluated in the surrogate accelerated calculation.

FIGURE 6 | Average objective and constraint evaluation during surrogate NSGA-II optimization for all parents in each generation.

FIGURE 5 | MSE of surrogate models during optimization.
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The trade-off of this increase in both calculational efficiency
and in the more optimized Pareto Front is computational time
for both the increased number of MCNP calculations and for the
training and utilizing of the surrogate models. The increased
number of MCNP calculations is a by-product of more
effectively producing potential FNS designs and could be
resolved by decreasing the number of the parent population.
In the first time step the training of the surrogate models

required an average of 2.3 min. By the final time step this
increased to a maximum of 33 min. This increase in time
requirement could be offset by capping the total number of
examples used for surrogate model training or by reducing the
size and complexity of the surrogate models themselves. Once
trained, the surrogate models required on average a total of
approximately 7.5 s to evaluate the 1,920 unique children in
each interior GA step.

TABLE 5 | Average, Minimum and Maximum Constraint and Objective Functions of Final Pareto Front of NSGA-II and NSGA-II Surrogate Calculations. Mean values are
italicized with the minimum and maximum values given in brackets below.

NSGA-II Surrogate NSGA-II % Difference

k-eff 0.93829, 0.91207, 0.94987 0.94102, 0.84565, 0.94984 0.003% [−7.3%, 0.3%]
Representativity 0.96557, 0.95095, 0.97893 0.99502, 0.95075, 0.97402 1.6% [−0.02%, 0.9%]
Total Flux Per Source Particle 0.00271, 0.00146, 0.00413 0.00304, 0.00077, 0.00512 24% [−47%, 12%]
Integral k-eff 0.00592, -0.00195, 0.00224 0.00209, -0.00490, 0.00717 −6.7% [151%, 21%]

TABLE 4 | Final 100 individuals CNN-surrogate NSGA-II optimization.

Ind.
#

k-eff Rep Total
flux

Int
Δk-eff

Ind.
#

k-eff Rep Total
flux

Int
Δk-eff

1 0.86656 0.99502 0.00085 −0.00058 41 0.94480 0.97322 0.00303 0.00381
2 0.84565 0.99483 0.00077 −0.00128 42 0.94430 0.97188 0.00280 0.00645
3 0.90486 0.99476 0.00110 0.00037 43 0.94883 0.97118 0.00352 0.00157
4 0.90453 0.99462 0.00106 0.00148 44 0.94627 0.97090 0.00307 0.00400
5 0.88307 0.99409 0.00092 0.00303 45 0.94724 0.97068 0.00339 0.00256
6 0.94573 0.99409 0.00176 0.00003 46 0.94332 0.97064 0.00317 0.00430
7 0.94834 0.99308 0.00192 0.00116 47 0.94785 0.96974 0.00344 0.00199
8 0.94824 0.99297 0.00185 −0.00179 48 0.94906 0.96917 0.00357 0.00157
9 0.94705 0.99280 0.00187 −0.00385 49 0.94334 0.96841 0.00322 0.00327
10 0.94807 0.99187 0.00201 0.00203 50 0.94213 0.96836 0.00324 0.00393
11 0.94601 0.99114 0.00197 0.00304 51 0.94366 0.96778 0.00309 0.00459
12 0.94664 0.99079 0.00208 0.00229 52 0.94655 0.96706 0.00338 0.00465
13 0.94800 0.98978 0.00200 −0.00348 53 0.93790 0.96665 0.00303 0.00529
14 0.94374 0.98886 0.00172 −0.00448 54 0.94861 0.96638 0.00346 0.00184
15 0.94591 0.98876 0.00230 0.00208 55 0.94789 0.96625 0.00344 0.00261
16 0.88478 0.98852 0.00110 0.00502 56 0.94633 0.96557 0.00350 0.00167
17 0.94551 0.98746 0.00239 0.00278 57 0.94892 0.96512 0.00356 0.00307
18 0.93909 0.98695 0.00181 0.00415 58 0.94965 0.96450 0.00413 0.00157
19 0.94767 0.98596 0.00225 −0.00348 59 0.94463 0.96399 0.00357 0.00343
20 0.94870 0.98494 0.00251 0.00296 60 0.94700 0.96272 0.00419 0.00030
21 0.94806 0.98472 0.00252 −0.00003 61 0.94698 0.96081 0.00430 −0.00065
22 0.93854 0.98468 0.00188 −0.00374 62 0.94770 0.96068 0.00435 0.00118
23 0.94867 0.98407 0.00253 0.00192 63 0.94942 0.96004 0.00430 0.00121
24 0.94735 0.98385 0.00240 0.00301 64 0.94336 0.95989 0.00432 0.00135
25 0.92275 0.98374 0.00172 0.00576 65 0.94886 0.95958 0.00456 0.00107
26 0.94248 0.98346 0.00207 −0.00490 66 0.94951 0.95917 0.00458 0.00181
27 0.94835 0.98342 0.00237 0.00348 67 0.94756 0.95866 0.00452 0.00330
28 0.94765 0.98300 0.00266 0.00090 68 0.94824 0.95809 0.00479 0.00130
29 0.94594 0.98173 0.00233 0.00524 69 0.91854 0.95791 0.00279 0.00717
30 0.94690 0.98116 0.00266 0.00408 70 0.94885 0.95771 0.00459 0.00290
31 0.94897 0.97944 0.00282 0.00201 71 0.94605 0.95724 0.00434 0.00338
32 0.94878 0.97897 0.00267 0.00249 72 0.94886 0.95590 0.00433 0.00344
33 0.94429 0.97866 0.00280 0.00213 73 0.94709 0.95555 0.00473 0.00371
34 0.94766 0.97851 0.00283 0.00327 74 0.94565 0.95527 0.00476 0.00243
35 0.94557 0.97816 0.00282 0.00388 75 0.94688 0.95517 0.00448 0.00508
36 0.94740 0.97655 0.00288 −0.00150 76 0.94799 0.95497 0.00486 0.00351
37 0.94984 0.97601 0.00315 −0.00178 77 0.94526 0.95436 0.00458 0.00443
38 0.94662 0.97463 0.00286 0.00258 78 0.94195 0.95367 0.00453 0.00575
39 0.94811 0.97421 0.00304 0.00197 79 0.94922 0.95197 0.00512 0.00101
40 0.94567 0.97381 0.00266 0.00411 80 0.94733 0.95075 0.00472 0.00513
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4 CONCLUSION

The work in this paper presents the benefit of accelerating a
genetic algorithm used for a multi-objective optimization of a
nuclear experiment using convolutional neural network surrogate
models comparing to a standard benchmark genetic algorithm.
These surrogate models are trained in-line during the genetic
algorithm and allow the evaluation of an increased number of
potential designs, which leads to an increase in all objective
functions. The architectures for the k-eff, representativity,
neutron flux and integral k-eff experiment surrogate
models are presented along with the methodology for
producing them. Future work includes further expanding the
use of the surrogate models for other useful objectives relevant for
selecting FNS designs and producing more surrogates for other
FNS designs targeting uncertainties in next-generation reactor
designs.
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Surrogate Model of Predicting
Eigenvalue and Power Distribution by
Convolutional Neural Network
Jinchao Zhang1*, Yufeng Zhou1, Qian Zhang2*, Xiang Wang1 and Qiang Zhao1

1Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology,
Harbin Engineering University, Harbin, China, 2Department of Physics, Laboratory for Advanced Nuclear Energy Theory and
Applications, Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, China

During loading pattern (LP) optimization and reactor design, a lot of time consumption
spent on evaluation is one of the key issues. In order to solve this issue, the surrogate
models are investigated in this paper. The convolutional neural network (CNN) and fully
convolutional network (FCN) are adopted to predict the eigenvalue and the assembly-wise
power distribution (PD) for a simplified pressurized water reactor (PWR) during depletion,
respectively. For the eigenvalue prediction during depletion, the error in the begin of cycle
(BOC) and middle of cycle (MOC) is higher than that in the end of cycle (EOC). For the BOC
and MOC, the samples with discrepancy over 500 pcm are less than 1%, except four
burnup points. For the EOC, the fraction of samples with error over 500 pcm is less than
1%. As for the error of assembly power, the average absolute error is on the same level for
all test cases. The average absolute relative error in the center region and the peripheral
region is higher than that in the inter-ring region. The prediction results indicate the
capability of neural network to predict core parameters.

Keywords: surrogatemodel, convolutional neural network, reactor design, eigenvalue prediction, power distribution
prediction

1 INTRODUCTION

One of the key issues during loading pattern (LP) optimization and reactor design is time
consumption for evaluating millions of LPs. The purpose of evaluation is to give out the fitness
of each LP, which is commonly represented by the core key parameters. The conventional evaluation
method gives the fitness by executing core calculation repeatedly, and it is the main source of time
consumption. Therefore, a surrogate model, which rapidly produces the core key parameters, is
desired.

In the past research, the artificial neural network (ANN) has been used in predicting core key
parameters. Due to the constraints of computing resources, earlier studies apply the multi-layer
perceptron (MLP) as the prediction model. The linearized parameter or macro data in the core are
used as the input. Early examples of research into the model include the prediction of power peak
factor (Mazrou and Hamadouche, 2004; Souza and Moreira, 2006; Niknafs et al., 2010; Saber et al.,
2015), eigenvalue (Mazrou and Hamadouche, 2004; Saber et al., 2015), departure from nucleate
boiling ratio (Lee and Chang, 2003), and core reload program (Kim et al., 1993a; Kim et al., 1993b;
Hedayat et al., 2009). However, previous studies with the MLP model have failed to find any link
between the input data and the environment. Loss of spatial information is an inherent problem of
MLP, which is caused by the linearization of input parameters.
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Recently, researchers have shown an increased interest in
predicting core key parameters with the convolutional neural
network (CNN) (Krizhevsky et al., 2012). Unlike the MLP
neural network, the CNN directly uses the information related
to the problem as its input. In this way, the CNN avoids the

inherent problem caused by the linearization of input
parameters. Besides, the CNN uses the convolutional kernel
as its base unit, which is beneficial to the learning of local
features. Thus, in core parameter prediction, the CNN has a
higher potential than the MLP, which is composed of dense
layers. Surveys such as that conducted by Jang and Lee (2019)
have shown that the CNN has higher accuracy than the
conventional neural network, when they use the LP
information as input to predict the peak factoring and
cycle lengths. Further research (Jang and Lee, 2019) reveals
that there is still some potential of the CNN model. When
regularization and normalization are used, the prediction
accuracy could be improved. Unlike Jang and Lee (2019)
and Jang (2020), Zhang (2019) predicted the eigenvalue by
the CNN with the assembly cross sections (XSs) as its input.
The results indicate that the single freedom of XS as the input
of the CNN has better performance than the multiple of that.
In addition to lumped parameter prediction, Lee et al. (2019)
used the macroscopic XSs as input and predicted the
assembly-wise power distribution (PD). The results show
that the CNN model has better performance for the
problems similar to training data than the dissimilar
problems. This phenomenon could be mitigated by the
involvement of adversarial training data. Besides, the same
padding setting is used to ensure the unchanged data size
before and after through the convolutional layer. In the field of
PD prediction, Whyte and Parks (2020) took the LP
information as input to predict the pin-wise PD. Different
from the former, they achieved PD prediction by reshaping
normal CNN output to the LP size. However, to predict the
PD by the CNN, the original network needs some special
settings or changes. For example, Lee et al. (2019) involved the

FIGURE 1 | Computing framework of core parameter prediction.

FIGURE 2 | Geometry of the simplified PWR.

TABLE 1 | Burnup points.

BU (GWd/t) 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5, 75, 77.5, 80, 82.5, 85, 87.5, 90,
92.5, 95, 97.5, 100
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same padding setting. Whyte and Parks (2020) reshaped the
normal output. To avoid further machinery, Long et al. (2015)
designed a fully convolutional network (FCN) to achieve

pixel-to-pixel prediction. For PD prediction, the pixel-to-
pixel predicting process is similar to the conventional core
calculation. They both use the pixel-like information as input
and output. The main differences include two aspects. The
first one is that the CNN uses the LP information as its input,
while the core calculation uses the assembly XSs as its input.
Another one is that the CNN predicts the PD by a neural
network, while the core calculation gets it by solving partial
differential equations. Therefore, the FCN is a natural choice
for assembly-wise PD prediction with the LP information as
its input. Zhang et al. (2020) modified the FCN to predict the
PD and flux distribution with the assembly XSs as its input.
Compared to the MLP, the FCN shows better performance.
This research reveals that the FCN has potential in distributed
parameter prediction. But there has been minimal
investigation of predicting the PD with the FCN during
depletion.

Therefore, in this study, the CNN and FCN are
implemented to predict eigenvalue and assembly-wise PD
during depletion, respectively. And a simplified PWR
problem with 13 burnup points is used to assess the
performance of the trained models. To simplify the input of
the neural networks, we choose the single freedom as the
model input. The LP is encoded as the index matrix to
serve as input of the models.

The remainder of this paper is organized as follows. The
methodology is introduced in Section 2. The numerical results
are presented in Section 3. Finally, Section 4 gives
conclusions.

FIGURE 3 | Assembly geometry.

FIGURE 4 | Geometry configuration of different cells.
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2 METHODOLOGY

2.1 Computing Framework Based on Neural
Network
In the evaluation process, the conventional method gets the
eigenvalue and PD by performing core calculation. But the
method used in this article predicts them with the CNN and
FCN models. It is the main difference between this research and
before. Neural network models are generated by training with the
datasets. The general computing framework is shown in Figure 1,
which comprises three parts:

(1) Dataset generation. First, multiple fuel assemblies with different
enrichment fuel and burnable poison rod quality are designed
and labeled with a unique ID. Second, the few-group constants
are generated by lattice calculation with the Monte Carlo code
Serpent (Leppänen et al., 2015). Third, the core LP is generated
by the random method. Finally, the core calculation is
performed with the in-house diffusion code to generate the
training and validation datasets. The details are described in
Section 2.2.

(2) Model training. For a neural network model, it achieves
learning knowledge by adjusting the parameters in its
network. The learning process is named training. The
architecture of the network decides the degree of learning.
In this study, the CNN and the FCN are adopted as
prediction models. They are introduced in Section 2.3.

(3) Model verification. The verification is performed to verify the
efficiency of the trainedmodels. And Section 3 gives the results.

2.2 Dataset Generation
The eigenvalue and the PD during burnup are determined by the
initial LP. In this study, the reflector is fixed. The LP is randomly
generated in a simplified PWR geometry in Figure 2, and the
repetitive one will be abandoned. This generation process stops
until the dataset size is reached. Then, the Serpent code is used to
generate assembly few-group constants with the reflective
boundary condition. Finally, the core calculation is performed
with the in-house diffusion code for these LPs to obtain the
eigenvalue and PD in each burnup point.

In order to preserve spatial information, the LP is encoded as
a two-dimensional matrix, which is comprised of assembly IDs.
Different assemblies have different fuel enrichments and
burnable poison rod quantities. They include 25 enrichments
varying from 12% to 18% divided into a constant interval of
0.25% and six different poison rod numbers including 0, 9, 13,
17, 21, and 25. The poison rods have the same 10B enrichment,
which is 95%. Through the arrangement and combination of
these settings, 150 different assemblies are formed. The
temperature of the different problems is fixed as 900K. The
fuel assembly is depleted to 100GWd/t, and the specific burnup
steps are listed in Table 1. The basic power density of the fuel
assembly is 0.5 MW/kg. In the designed assemblies, the

FIGURE 5 | Schematic diagram of the FCN structure.

TABLE 2 | Model parameters.

CNN FCN

Activation functions ReLU (rectified linear unit) ReLU
Loss function MSE (mean squared error) MSE
Optimizer Adam (adaptive moment estimation) Adam
Learning rate 1e-3 1e-4
Batch size 512 512
Epoch 700 700
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moderator is fixed as the 561K water without the void and
boron. The cladding material is fixed as the 600K stainless steel.
The gap is fixed as 600K oxygen. The compositions of the above

materials are given in Supplementary Appendix Table SA1.
Figure 3 and Figure 4 describe the geometry of fuel assembly
and the configuration of pin cell, respectively. As shown in

FIGURE 6 | Eigenvalue predicted accuracy of the BOC.
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Figure 3, there are four different groups of poison rod locations.
For the assembly with nine poison rods, the location of the
poison rod is marked with B1. For the assembly with thirteen

poison rods, the poison rods are placed not only in B1 but also in
B2. For the assembly with seventeen poison rods, the poison
rods are placed in B1 and B3. For the assembly with twenty-one

FIGURE 7 | Eigenvalue predicted accuracy of the MOC.
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poison rods, the poison rods are placed in B1, B2, and B3. For
the assembly with twenty-five poison rods, the poison rods are
placed in B1, B3, and B4.

In addition, considering that the eigenvalue in different
burnup points is not prior data, the eigenvalue is not
normalized.

FIGURE 8 | Eigenvalue predicted accuracy of the EOC.
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2.3 Model Description
Different problems need different models with different
architectures. In this study, two types of neural network
models are used. We performed some primary sensitivity
analysis on the network architectures used in this research.
The results indicate that the current networks are the best.
Any adjustment to them will worsen the prediction accuracy.
Besides, it is difficult to find the law between the adjustment and
the model performance. Thus, we do not report it in this
manuscript. A complete sensitivity analysis of the network
architecture requires a lot of iterations, which are difficult to
complete in this research and are considered for the future. Then,
the models used in this research are introduced. The first type is
the CNN, which is adopted to predict the eigenvalue. Its structure
comprises convolutional, pooling, and fully connected layers,
which are shown in Supplementary Appendix Table SA2.
The convolutional layer aims to take the spatial data into
account. The pooling layer summarizes the feedback of the
whole neighborhood and improves the efficiency of the
network. The network finishes up with the fully connected
layer, which connects the network and the object.

The second type is the FCN, which is a variant of CNN and is
presented diagrammatically in Figure 5. It is noticed that, at the
end of conventional CNN, several upsampling layers and
concatenate layers are added to achieve backward stride
convolution. They combine different feature layers and
generate the output of corresponding size to the input. Thus,
the FCN can predict the assembly-wise PD with the LP as its
input. The FCN structure, which is adopted in this study, is
shown in Supplementary Appendix Table SA3.Table 2 gives the
parameters used in the above models.

Furthermore, there are two points that need attention. First,
the models with different burnup points are trained separately,
which means that different burnup points have different neural
networks. Second, due to the computational load for training 50
neural networks, this study chooses several representative burnup
points. Thirteen burnup points are selected as representatives,

including 0, 0.2, 0.5, 1.0, 2.0, 35.0, 37.5, 40.0, 42.5, 92.5, 95, 97.5,
100.0 GWd/t, which represent the begin of cycle (BOC), middle
of cycle (MOC), and end of cycle (EOC).

In this study, the Keras framework (Chollet, 2015) is used to
establish neural network structures upon TensorFlow. The CPU
and GPU used in this work are 3.3 GHz Intel Core i9-7900X and
Nvidia GeForce GTX 2080Ti, respectively.

3 NUMERICAL RESULTS

3.1 Eigenvalue Prediction
In this section, the CNNs are trained to predict the eigenvalue in
different burnup points. The architecture shown in
Supplementary Appendix Table SA2 was used. 1 million
samples (0.8 million for training and 0.2 million for
validation, with no overlap between the two datasets) were
generated to train and validate the CNNs.

Figures 6–8 show the scattering plot of eigenvalue and the error
distribution of predicted eigenvalue. In the scattering plot, the red
line is the mean absolute error (MAE) ±500pcm. In the error
distribution histogram, the black line is the normal distribution
curve based on the prediction results. The σ symbol represents the
standard deviation of error distribution. The green region, the blue
region, the red region, and the black region are the normal
distribution range of 1σ, 2σ, and 3σ and the region out of 3σ,
respectively. Table 3 summarizes the detailed results.

As a result of validation, in different burnup stages, the error
distribution of the discrepancy between the predicted eigenvalue
and the reference is close to normal distribution. However,
compared to the normal distribution, the eigenvalue prediction
error of CNN models is higher within the 1σ range. This means
that the distribution of prediction error is more concentrated
around the average error. But in the region of error exceeding 1σ,
the distribution is wider than the normal distribution. The
average error in all cases is within 100pcm. There is no
obvious peak shift. Besides, the samples with the absolute

TABLE 3 | Eigenvalue prediction error of trained models.

Depletion (GWd/t) eavg
a estd

b Frac. with ec<200pcm Frac. with ec>500pcm

BOC 0.0 68 136 84.52 0.68
0.2 −27 237 64.84 4.40
0.5 −26 174 81.62 1.80
1.0 31 177 78.86 1.56
2.0 35 98 94.99 0.15

MOC 35.0 −16 176 88.42 2.61
37.5 12 64 99.00 0.07
40.0 16 78 98.08 0.16
42.5 55 128 87.68 0.52

EOC 92.5 −27 71 98.20 0.07
95.0 7 58 99.51 0.04
97.5 −19 58 99.58 0.04
100.0 33 144 84.90 0.55

a = average error (pcm).
b = standard deviation (pcm).
c = fraction of the eigenvalue with error (%).
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error over 500 pcm are less than 3%, except for the second burnup
point in the BOC. In general, the error in the BOC and MOC is
higher than that in the EOC. This is because the reactivity of

different assemblies varies greatly with poison depletion, which is
greatly affected by the location. It increases the difficulty of the
prediction process.

FIGURE 9 | Power distribution prediction result of the BOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.
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3.2 Power Distribution Prediction
As a further test of neural network, the FCNs are trained to predict
PD. The architecture, shown in Supplementary Appendix Table
SA3, was used. 1 million PD samples, generated with the
eigenvalue, were used to train and validate the FCNs.

For the relative power of each assembly in different burnup
stages, Figures 9–11 give the assembly average power, the
assembly average absolute error, and the average value of the
absolute relative error. The color of figures is given according to
the assembly average power.

The average power of assembly decreases with the increase of
the distance from the core center. The average absolute error
shows the same trend. The error in the core center is higher than
that in the core periphery. But the error is in the same level. For

the average value of the absolute error, similar to eigenvalue
prediction, the error in the BOC and MOC is higher than that in
the EOC. In a specific burnup point, the error in the center region
and peripheral region is higher than that in the inter-ring region.
This phenomenon is caused by the spatial self-shielding effect. It
means that there is different performance in different positions,
even if the configuration is the same. Besides, the boundary
condition, the reflector, and the void region exist in the core
center and peripheral regions, which increases the difficulty of
learning in these regions.

3.3 Discussion on Efficiency
In the process of evaluating the accuracy of models, the
efficiency was also tested. During the diffusion calculation,

FIGURE 10 | Power distribution prediction result of the MOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.
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each node was considered an assembly, and two-group
constants were used. A steady-state diffusion calculation
takes a few seconds, and the burnup calculation time can be

neglected. It takes nearly 2 days to generate 1 million samples.
However, for the neural network models obtained with
training, it takes 18 s and 14 s to generate 0.2 million
eigenvalues and PDs. The calculation efficiency is
remarkably improved. For the CNN and FCN models,
learning once (epoch) costs 23 s and 40 s, respectively. The
detailed time comparison is listed in Table 4.

Similar to the application of neural network in other fields, the
generalization of trained models is an issue. In the process of
training, each assembly was labeled with a unique ID. The
existing IDs cannot identify any new assembly. It directly
leads to the lack of generalization ability. This is the limitation
of neural networks in this study.

FIGURE 11 | Power distribution prediction result of the EOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.

TABLE 4 | Time comparison.

Numbers (million) Time

Dataset generation 1 2 days
CNN/training/one epoch 0.8 23 s
CNN/validation 0.2 18 s
FCN/training/one epoch 0.8 40 s
FCN/validation 0.2 14 s
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4 CONCLUSION

In this study, the CNN and the FCN were adopted to predict the
eigenvalue and the power distribution for a simplified core during
burnup, respectively. The loading pattern is encoded as a two-
dimensional matrix as the models’ input. As a result of validating
for 0.2 million samples, the performance of the trained models for
the EOC is better than that for the BOC and MOC. For eigenvalue
prediction, the fraction of the eigenvalue with error more than 500
pcm is less than 1% for all burnup points in the EOC. But there are
third burnup points in the BOC and one burnup point in the MOC,
where the fraction is over 1%. This is caused by the changes of
reactivity balance between poison and fuel in the BOC and MOC.
However, in the EOC, the differences between different assemblies
become small as the poison nuclide depletes to a negligible level.
With regard to the power distribution, the performance of the
trained models for the EOC is better than that for the BOC and
MOC, too. The mean absolute error of assembly power follows that
the error decreases with the increasing distance from the core center.
But the error is in the same level. The average value of absolute
relative error in the center and peripheral regions is larger than that
in the inter-ring region. It is caused by the self-shielding effect, which
leads to the different performance in different positions, even if the
configuration is the same. Besides, the presence of boundary
condition and the fact that the same information is shared
among different fuel positions also increase the difficulty of learning.

This investigation indicates that the neural network has the
capability to predict core key parameters, such as the eigenvalue
and power distribution. Compared with the conventional diffusion
calculation, the introduction of neural network as the surrogate
model significantly reduces the computation time. However, the
error is influenced by the depletion and the assembly location. This
indicates that it is not appropriate to directly use the ID of assembly

as input in this research. The selection of themodel input needs to be
further analyzed.
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An Evaluation of the Data-Driven
Model for Bubble Maximum Diameter
in Subcooled Boiling Flow Using
Artificial Neural Networks
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In the subcooled boiling flow under low-pressure conditions, bubble characteristic
diameter is of great influence on the surface heat transfer coefficient. However, large
errors are still found in calculations using traditional mechanistic models or empirical
correlations, especially for wide experimental condition. In this paper, we propose a
widely applicable data-driven model using artificial neural networks (ANN) to predict the
bubble maximum diameter and investigate the effect of experimental conditions. After a
series of analyses on structural parameters and input parameters, the ANN model is
established and validated based on six available experimental databases. The result
shows that the relative error is around 14%. Uncertainty analysis is carried out for the four
experimental conditions and two structural conditions. The results show the measuring
accuracy of pressure is one of the most sensitive parameters on the prediction of bubble
maximum diameter in the subcooled boiling flow under 1.0 MPa, especially for the
bubble sizes larger than 0.5 mm. According to the results of uncertainty analysis, a new
correlation is proposed for coefficients C and φ, which are used to express the effect of
pressure and fluid dynamic. The new correlation works well for all the experimental
databases, and the error for bubble datasets of large size is also modified. Furthermore,
another independent validation with a low relative error to 14% is provided to prove the
accuracy of the new correlation.

Keywords: bubble maximum diameter, data-driven model, subcooled boiling flow, artificial neural networks,
sensitivity analysis

1 INTRODUCTION

In a typical pressurized water reactor, saturation of boiling phenomenon is not allowed for its
impairment to the fuel element. However, subcooled boiling flow may potentially occur in
some special positions, such as the outlet of the fuel assembly or corners beside the spacer grid.
The phase change could bring about a large increase in heat transfer efficiency of the heated
surface. In complicated experiments involving a reactor core, the heat flux of the cladding
surface is difficult to control precisely. Boiling crises determined by critical heat flux (CHF)
may occur under some accident conditions. The CHF is a complicated two-phase flow
phenomenon, characterized by a heat transfer mechanism change that rapidly decreases
the efficiency of the heat transfer performance and increases the temperature of the heater
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surface. The high temperature could melt the fuel cladding
and significantly damage the reactor core.

In general, the gas phase is always present in the form of
bubbles during the subcooled boiling process. It features a series
of action according to the effects of heat and fluid dynamics, such
as generation, growth, sliding, and lift-off. In the subcooled
boiling flow, the coefficient of the convective heat transfer is
influenced by the characteristic parameters and dynamic
behaviors of bubbles, their size and shape in particular. To
describe the heat exchange and the heat flux partition on the
heated surface in a theoretical view, the Rensselaer Polytechnic
Institute (RPI) model (Kurul and Podowski, 1991) is widely used
in the simulation of subcooled boiling flow. In this mechanistic
model, the characteristic bubble diameter is considered one of the
most important parameters, and it should be calculated
accurately.

In the subcooled boiling flow, the characteristic bubble size has
three main features, the maximum, departure, and lift-off
diameter, which is shown in Figure 1. The maximum bubble
diameter describes the limited size of growth for bubbles adjacent
to the heated surface, while the other two parameters refer to the
patterns of movement of the bubbles during the growth process.

There are few differences among these three parameters.
However, the maximum bubble diameter and lift-off diameter
are usually considered to be the same for the low and medium
pressure conditions. Furthermore, the three bubble sizes show
less of a difference for the non-slip bubble in low pressure and
velocity (Hoang et al., 2016; Yoo et al., 2018). In calculations using
computational fluid dynamics (CFD) method, all of these three
characteristic sizes can be used in the calculation of the void
fraction, heat and mass transfer, wall temperature, and quenching
process of the different conditions (Tu and Yeoh, 2002; Krepper
et al., 2013; Cheung et al., 2014; Gu et al., 2017).

Many approaches have been developed to calculate the bubble
diameter, and these can be divided into three classifications,
namely, empirical correlation, heat balance model, and force
analysis model. Empirical correlations are proposed using the
fitting of experimental databases. These usually contain several
non-dimensional numbers, gradients, and ratios. Continuous
multiplication and polynomial structure are a common

functional form in the correlations, such as the model
proposed by Prodanovic et al. (2002) and Brooks and Hibiki
(2015). Certainly, these models show good performance for their
own database. As the data expand and reach a larger scope, not all
of the models could give the accurate results. Murallidharan et al.
(2018) developed a bubble growth model that includes infinite
bubble growth, wall effect multiplier, and bulk effect multiplier.
Most of the coefficients in this model are fitted into polynomial
structures. Although the model shows a good applicability over a
wide range of conditions, it lacks any convenience of application
and suitability for new experimental databases.

Apart from the empirical correlation, force balance and heat
balance theories are used to calculate the characteristics bubble
sizes from a theoretical view. According to the basic principle, the
force balance model (Klausner et al., 1993; Situ et al., 2005; Yeoh
et al., 2008) is suitable for calculating the departure and lift-off
diameters of the bubbles, and the heat balance model (Ünal, 1976)
is used to calculate the maximum diameter of the bubble. As can
be seen from the application (Dong and Zhang, 2021) of these two
models, the relative errors of the wide experimental databases
reach around 40%. In reality, not all of the experiments provide
local wall superheating as a result of immature measurement. The
Chen correlation is always used for the calculation of wall
superheat, especially in the heat balance model (Hoang et al.,
2016; Dong and Zhang, 2021). This is the most accurate model for
wall superheating, and its relative error is around 20%, which is a
large proportion of the total error in the maximum bubble
diameter.

Three submodules beyond wall superheating reflect the
influence of pressure, velocity, and local subcooling. The
former two are empirical correlations, while a partially
mechanistic model is provided for the effects of local
subcooling (Ünal, 1976). Because they were proposed in
Ünal’s original heat balance model, almost no modification
has been made for over 40 years. Dong and Zhang (2021)
used Reynolds numbers instead of velocity values, which
decreases the relative error by about 5–10%. After the
investigation of several experimental databases, a more
accurate model should be proposed to describe the effects of
pressure on the characteristic bubble sizes in the future.

FIGURE 1 | The sketch map of bubble characteristic size. (A) Bubble maximum diameter, (B) bubble departure diameter, (C) bubble lift-off diameter.
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Thanks to the successful application of data mining techniques,
data-driven theory has been used in many areas of industrial
knowledge, such as fluid dynamics and intelligent
manufacturing. In the fluid dynamics and thermodynamics,
many data-driven models have been used to identify of flow
regimes (Salgado et al., 2010; Affonso et al., 2020; Aarabi
Jeshvaghani et al., 2021) and predict boiling crises (Greenwood
et al., 2017; Yan et al., 2021) using artificial neural networks (ANN).
All the results show good performance in a wide experimental
condition. The relative error of CHF is around 20% which is better
than that of empirical correlation ormechanistic models. Jung et al.
(2020) investigated the bubble size distribution in turbulent air-
water bubbly flows by using multi-layer ANNs. Compared to the
20% error of traditional theoretical models, the results of the use of
ANNs show average relative error of 4.98% for the given
experimental datasets.

This study discusses the application of ANNs for the
calculation of maximum bubble diameter. We also try to
investigate the influence of several experimental conditions
based on the trained ANN model. The conclusions of
uncertainty analysis are helpful to correct the correlation of
coefficients to reflect the effects of pressure and mass flux in a
more accurate way.

2 MECHANISTIC AND ARTIFICIAL NEURAL
NETWORKS MODELS OF BUBBLE
MAXIMUM DIAMETER
2.1 Mechanistic Models
Although there are differences among the proposed heat balance
models, the key theoretical points are shared; these describe an
equivalence between absorbed and released heat bubbles. As
Figure 2 shows, the bubble is regarded as an approximate
sphere, while the growth process is determined by the heat
from thin liquid film qtf, from superheated liquid layer qsl,

and heat qc, dissipated through the subcooled liquid at the
upper-half surface. Although a dry patch at which the vapor is
contacted with heated wall directly exists, its heat flux is neglected
when the bubble reaches its maximum value.

According to heat balance theory, the mechanistic model can
be developed as Equation 1.

ρghlg
d

dt
(πD3

6
) � qslAsl + qtfAtf − qcAc (1)

The heat flux components used in Equation 1 are described in
detail (Levenspiel, 1959; Zuber, 1961; Sernas and Hooper, 1969)
and are given as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qsl � klΔTc����
παlt

√

qtf � klΔTwγ����
παlt

√

qc � hcΔTsub

(2)

Themodel of qtf was developed by Sernas and Hoopers (1969)
and was used in Ünal’s heat balance theory. Parameter γ is used to
reflect the influence of the thermal properties of the heated wall.
This is shown in Equation 3.

γ �
������
ksρsCs

klρlCpl

√
(3)

hc is the heat transfer coefficient for condensation. Based on the
model developed by Levenspiel (1959), Ünal (1976) derived a
model for condensation heat transfer coefficient, as follows:

hc � CφhlgD

2(1/ρg − 1/ρl) (4)

where C and φ are determined by the pressure and velocity of
liquid phase, respectively.

C � { 65 − 5.69 × 10−5(P − 105)
0.25 × 1010P−1.418

0.1MPa≤P≤ 1MPa
1MPa<P≤ 17.7MPa

(5)

φ � max[1, (v/0.61)0.47] (6)
Dong and Zhang (2021) provided a new model (Equation 7)

for parameter φ using the Reynolds number instead of velocity.
Rel is widely used to determine the flow status, which has a
decisive role on the characteristic temperature distribution of
superheated liquid layer. In addition, it can reflect the shape effect
of flow channel.

φ � max(0.141, (Rel/39300)1.43) (7)
The surface area ratio of each heat flux is also of great

importance for the heat balance model. The surface area Atotal

of the generated bubble can be divided into four parts, including
the area of thin liquid film Atf, area of superheated liquid layer
Asl, area of heat dissipation Ac, and area of dry patch Adryout.
These five parameters can be described by the following
equations.

FIGURE 2 | Heat flux partition for a growing bubble in the subcooled
boiling flow.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Atotal � πD2

Adryout �
πD2

dryout

4

Atf � LπD2 − πD2
dryout

4

Asl � mπD2

Ac � nπD2

(8)

In Equation 8, L, m, and n refer to the fractions of surface area
for thin liquid film, superheated liquid layer, and condensation.
Under the assumption that the dry patch shrinks and disappears
when the diameter of the bubble reaches the maximum value, the
sum of L, m and n should be equal to 1.

By substituting Eqs. 2–5, 7, and 8 into Equation 1, we obtain
the basic equation for bubble diameter, as follows:

dD(t)
dt

� 2fklΔTw

ρghlg
����
παlt

√ m + 2klΔTwγ

ρghlg
����
παlt

√ L − CφD

1 − ρg/ρl ΔTsubn (9)

Using Ünal’s method and the Taylor series (Ünal, 1976), the
approximate solution of bubble maximum diameter can be
written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dmax � 1.20724A��
B

√

tmax � 1
1.46B

A � [fm + γL] 2klΔTw

ρghlg
���
παl

√

B � CφnΔTsub

1 − ρg/ρl
(10)

where f is a coefficient of the characteristic temperature used to
reflect an inhomogeneous of superheated liquid layer.

2.2 Artificial Neural Networks
In addition to the mechanistic model, an ANNmodel is proposed to
predict the maximum diameter of a bubble using the BP (Back-
Propagation) algorithm. The ANNmodel is a two-layer feed-forward
network with sigmoid hidden neurons and linear output neurons. All
of the calculations are carried out on the MATLAB platform.

As we can see from Figure 3, the ANN model consists of one
input layer, one or more hidden layers and one output layer.
Several parameters are chosen as input elements after analysis of
the experimental conditions. These elements should reflect the
effects of experimental conditions, such as pressure, mass flow,
hydraulic diameter, heat flux, local subcooling, and the physical
thermal properties of a heated surface.

For each neuron, an activation function is necessary to
transforms the input value to the next hidden layer or the
output layer. Commonly used activation functions include
sigmoid/logistic, tansig, ReLU, and ELU. The main purpose of
the activation function is to increase the non-linear ability of the
ANN model.

The training algorithm is another important element of an
ANN model. It is used to train the network and form a fixed
model. However, it is very difficult to know which training
algorithm will be most suitable for a given problem. This
depends on many factors, including the complexity of the
problem, the number of data points in the training set, and
the number of weights and biases in the network. Different
training algorithms should be compared to gain a good
accuracy in the calculation.

The last key parameter is the coefficient of determination R,
which represents the fitting degree between the experimental
value and the calculated value. It varies from 0 to 1, with larger
values being better. The function is expressed as follows:

R �
∑n

i�1(yi − �y)((ŷi − ŷ))����������������������∑n
i�1(yi − �y)2∑n

i�1(ŷi − ŷ)2
√ (11)

where n is the quantity of dataset, ŷi represents the calculated
value by ANN model, and yi is the experimental value.

3 EXPERIMENTAL DATABASES

As Table 1 shows, six experimental databases are used for the
validation of ANN model. All of the experimental conditions are
kept at low pressure and low velocity. The number of data points
sum to 366, which is sufficient to execute an ANN.

The experimental data published by Situ et al. (2005), Brooks
et al. (2015) Brooks and Hibiki (2015), Ahmadi et al. (2012),
Okawa et al. (2007) and Xu et al. (2014) include bubble lift-off
diameters. These datasets of the experiment are measured using a
high-speed video camera. In the original heat balance theory,
Ünal assumed that the bubbles would not leave the heated surface
when they reached their maximum diameter. In this paper,
bubble lift-off diameter is regarded as same as maximum
bubble diameter.

FIGURE 3 | Schematic diagram of the ANN model.
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Analyzing the original heat balance theory and using
Equation 3, we can identify a power relation between the
maximum bubble maximum diameter and the other four
important parameters of the mechanistic model. The thermal
properties of heated surface are not used as an impact parameter
for the limited data of surface material. As can be seen in
Equation 5, the direct influence of pressure P is worked
through the parameter C. After integration, the order x of P
should be in the range (-0.5, 0]. Considering that the vapor
density is sensitive to the variation of pressure in the subcooled
boiling flow, we also check the power relationship of ρg and the
maximum bubble diameter. The pressure has a greater effect
through changing the vapor density.

Dmax ~ f(Px, q1.0,ΔT−0.5
sub , G

−0.235, ρ−1.0g , D−0.715
h ) (12)

In the original research, φ is only considered to be a function of
velocity itself. However, we find that an equation incorporating
the Reynolds number is more accurate for calculating the
maximum diameter of the bubble in the former investigation
(Dong and Zhang, 2021). The hydraulic diameter in the Reynolds
number can reflect the effect of the channel dimension on bubble
growth, which is more suitable for use in the calculation than
velocity is.

4 VALIDATION AND DISCUSSION

In general, the key parameters of the ANN model include the
number of neurons, number of hidden layers, activation function,
and training algorithm. After a sensitivity analysis, we choose to
use two hidden layers with eight neurons as the basic structure.
The related R value can be increased to 0.9916, which is
sufficiently accurate for the necessary calculations. In addition,
the activation function and the training algorithm are also
determined after comparing the accuracy of multiple
combinations. The results show that the combination of logsig
and tansig activation functions with the trainbr training
algorithm gave the best performance, with a relative error of
13.50%. The trainbr algorithm, using Bayesian regularization
back propagation, is a network training function that updates

the weight and bias values according to Levenberg-Marquardt
optimization. Trainbr can train any network, so long as its weight,
net input, and transfer functions have derivative functions. It can
minimize a linear combination of squared errors and weights and
modify the linear combination so that at the end of training. the
resulting network has good generalization qualities, even for
different, small, or noisy datasets. Drawing on the above
structure of the ANN model, more than 150 iterations of
training are carried out for this prediction of maximum
bubble diameter. The coefficient of determination R for nearly
all the training sets is higher than 0.9, and 82% are higher than
0.95. This shows that the ANNmodel has a high confidence level,
which increases the credibility of the calculated results.

4.1 Input Parameters in the Artificial Neural
Networks Model
Appropriate input parameters are necessary structural elements in
the ANN model. The parameters cannot be chosen arbitrarily and
should reflect the effects of experimental conditions. For the
prediction of maximum bubble maximum diameter in the
subcooled boiling flow, experimental conditions, which include
pressure, mass flow, hydraulic diameter, heat flux, local subcooling,
and the physical and thermal properties of a heated surface should
be paidmore attention. Several dimensional parameters are chosen
to test the relevance with bubble maximum diameter. The results
are shown in Table 2. Multiple R and F refer to the significance
level of relevance. It is concluded that dimensional dynamic
viscosity μl/μv has little relevance to bubble maximum diameter,
while the other parameters have a stronger or weaker
relationship. However, some of the parameters have a direct
connection with the others. ρl/ρv, Pe, Eo and S are chosen as
the input parameters of ANN model. Considering the mechanism
model and experimental conditions, subcooling ΔTsub and heat
flux qw are added as a supplement.

4.2 Validation of Artificial Neural Networks
Model
After determining the structural elements of ANN model,
experimental databases are used to train the ANN model. For

TABLE 1 | Experimental databases for the validation.

Database Prodanovic et al.
(2002)

Situ et al.
(2005)

Brooks et al.
(2015), Brooks

and Hibiki
(2015)

Ahmadi et al.
(2012)

Okawa et al.
(2007)

Xu et al.
(2014)

N 54 90 92 54 28 48
Fluid Water Water Water Water Water Water
Heated material Stainless steel Stainless steel Stainless steel Stainless steel ITO film Copper block
Geometry Annulus Annulus Annulus Rectangle Rectangle Rectangle
P (KPa) 105, 200, 300 101 150, 300, 450 98–860 121–125 101
Dh (m) 0.0093 0.019 0.019 0.01333 0.003 0.0032
qw (KW/m2) 100–1,200 60.7–206 100–492 81–611 67–549 26.3–215.4
V (m/s) 0.08–0.83 0.487–0.939 0.246–1.03 0.175–1.25 0.09–1.49 0.15–0.75
ΔTsub (K) 10–60 1.38–19.88 5.4–39.8 4.0–29.7 9.2–20.8 6.6–27.4
Db (mm) 0.37–3.24 0.145–0.605 0.046–0.338 0.02–3.90 0.50–3.02 0.091–0.245
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all 366 sets of bubble maximum diameter, 70% of databases are
randomly selected as training data, and 15% are used as the test
and validation respectively. The results are shown in Table 3 and
Figure 4; the average error of all the experimental databases is
13.54% which is much lower than for other mechanistic models.
Furthermore, the ANN model increases the accuracy of
calculations of large bubbles from Prodanovic’s database.

However, due to the inner black box features of ANNs, the
trained ANN model can only be used for prediction, with the
experimental conditions covered by the trained database. Once

one of the experimental parameters exceeds the range used by
training, the calculated maximum bubble diameter could show a
partial large relative error.

4.3 Uncertainty Analysis of Experimental
Conditions
Considering installation error and measurement error, the
uncertainty analysis of the experimental conditions is carried
out in this section. The errors include the measurement accuracy
of measuring instruments and the uncertainty of measuring
position, while the other environmental influences are not
considered. The errors of experimental conditions and their
influence to input parameters are shown in Table 4. Because
the maximum coarseness of the common pressure gauge reaches
level 4, the relative error is 4%, so the measurement error for
pressure is set to ±5% in this paper. Pressure fluctuation would
change the density, Prandtl number, and surface tension.
Dimensional density, Pe, and Eo are affected. In general, the
average heat flux of the experiment is calculated based on the
heating power and the scale of heated surface. The local heat flux
of subcooled flow boiling can be measured with a non-contacting
heat flowmeter. Taking the measuring accuracy of the equipment
into account, the average relative error of heat flux is set to ±5%.
The flowmeter has a better accuracy the other instruments of
measurement, that is, no more than 2% for various types. In
addition, there is no position error in the measurement of mass
flux. On the contrary, the main contribution of measurement
error for local subcooling is the position error. In the heat balance
theory, the local subcooling is used for the calculation of bubble
condensation. It is therefore important to measure the subcooled

TABLE 2 | Relevance analysis of potential input parameters.

Input Parameter Description Multiple R Significance F

ρl/ρv The ratio of liquid density and vapor density 0.299 5.71E-09

Re � ρl uDh

μ
Reynolds number used to describe flow status 0.404 7.95E-16

Pr Prandtl number 0.316 5.97E-10
Pe = RePr Peclet number which is used to describe the velocity ratio of convection and diffusion phenomenon 0.404 7.75E-16

Eo � g(ρl−ρv )D2
h

σ
Eotvos number is used to describe the bubble shape in continuous liquid flow. It is the ratio of buoyancy force and
surface tension

0.404 7.75E-16

Mo � g(ρl−ρv )μ4L
ρ2l σ

3
Moton number works together with Eo to describe the bubble shape in continuous liquid flow 0.303 3.46E-09

μl/μv Ratio of liquid dynamic viscosity and vapor dynamic viscosity 0.033 5.26E-01
S � ksρsCs Product of thermal conductivity, density, and heat capacity of solid heated surface 0.215 3.50E-05

TABLE 3 | Arithmetic-mean errors of different models for the databases.

Model Prodanovic et al.
(%)

Situ et al.
(%)

Brooks et al.
(%)

Ahmadi et al.
(%)

Okawa et al.
(%)

Xu Jianjun
et al.

Ünal 30.75 164.71 248.54 240.67 34.16 —

Hoang 63.16 32.68 40.38 52.13 72.00 —

Levin 97.23 81.53 83.51 80.29 96.81 —

Previous mechanistic model (Dong and Zhang,2021) 42.40 31.32 35.66 36.90 32.52 —

ANN model 4.02 20.90 10.95 20.38 4.86 12.80%

Note: Because wall superheat data of Xu’s experiment cannot be predicted by Chen’s correlation, so this database is unable to calculate throughmechanistic method. The superheat data
is also a shortcoming of prediction and the main contribution of relative error in numerical calculation.

FIGURE 4 | Bubble maximum diameter predicted by the ANN model.
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TABLE 4 | The potential measuring error for different experimental conditions.

Experimental Condition Measurement Error Affected Input Parameter Relative Error

Pressure ±5% ρl/ρv ±5%
Pe −0.7–0.25%
Eo −0.7–0.6%

Heat flux ±5% qw ±5.0%
Mass flux ±2% Pe ±2.0%
Local subcooling ±3% ΔTsub ±3.0%
Hydraulic diameter ±3% Pe ±3.0%

Eo ±6.1%
Thermal properties of heated surface ±3% S ±3.0%

FIGURE 5 |Results of the ANNmodel under the fluctuations of experimental conditions. (A) Pressure, (B) heat flux, (C)mass flux, (D) local subcooling, (E) hydraulic
diameter, (F) thermal properties.
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temperature of the position that the bubble generates through
non-contacting measurement instruments. Considering the
potential position error of this parameter, the measuring error
of local subcooling is set to ±3%. Apart from these four
parameters, the hydraulic diameter and thermal properties of
heated surface are also given ±3% as a measurement error in this
sensitivity analysis. However, the trend of data deviation induced
by these two reasons should be the same for everything in the
same experimental facility.

From the given measurement error and position error, new
values of experimental conditions are chosen according to a
uniform distribution in the value range. Then the input
parameters are calculated and are used to form a series of new
matrix. The maximum bubble diameters shown in Figure 5 are
calculated by the trained ANNmodel based on the new databases
of input parameters. As can be seen from the first four figures in
Figure 6, only the fluctuations of pressure in four experimental
conditions show appreciable effect on the bubble maximum
diameter. The relative error of the total data set is enlarged
from 13.54% to 19.04% when the pressure varies in a ±5%
range. Therefore, pressure is considered to be the most
sensitive parameter in the experimental conditions. This
conclusion is consistent with the power relationship shown in
Equation 10. It is also concluded that the ANNmodel has a good
accuracy and robustness when facing the measurement error of
experimental conditions. From the last two figures in Figure 6,
the two experimental conditions related to experimental facility
produce a large effect on the results, especially the hydraulic
diameter. Furthermore, these two parameters remain the same
through each experiment. Thus, it is necessary to determine the
parameters related to the experimental section in a more accurate
way before the experiment starts.

In the further analysis of pressure, the results are divided into
four zones, according to the size of bubble maximum diameter.
As can be seen in Figure 6, pressure has a larger influence on the
zone where the bubble maximum diameter larger than 0.5 mm.
The relative error increases about 12% while that of the other two
zones varies only little. From a physical view, the larger bubble a
larger amount of vapor inside. The fluctuation of pressure would
influence larger bubble more through changing the vapor density.

To increase the accuracy of the prediction, the correlation with
pressure should be observed in both the experiments and in the
mechanistic theoretical analysis.

4.4 New Correlation of Coefficients C and φ
The experimental condition pressure shows great sensitivity to
the maximum bubble diameter, and its measurement should be
prioritized. In the mechanistic model, we should also check the
direct description of pressure, which is parameter C, used on the
condensation part. In Ünal’s original paper, the correlation (5) of
C proposed by Ünal is fitted from no more than 30 experimental
datasets, as well as parameter φ. This may have the largest
contribution to the error of heat balance models. This error is
especially remarkable for the large maximum bubble value under
low-pressure conditions.

Parameter C is only related to pressure, and parameter φ is
only related to liquid velocity or Re in the original heat balance
model (Ünal, 1976) and its modification (Dong and Zhang,
2021). In this paper, the product of C and φ is regarded as
one element Cφ. Drawing on the conclusions of the sensitivity
analysis of ANN model, further modifications are proposed for a
mechanistic model that uses the input parameters ρl/ρv, Pe, and
Eo instead of pressure and Re to form the new correlation of C
and φ. After a statistical regression analysis, the new correlation of
Cφ is shown below. It can be used directly in the coefficient B for
Equation 3.

Cφ � 2.454 × 10−3⎛⎝ρl
ρg
⎞⎠−0.185

Pe0.890Eo0.323 (13)

The results shown in Figure 7 are compared between the new
correlation and original model (Dong and Zhang, 2021). The new
correlation shows better performance for the bubble larger than
1 mm, in which the relative error is decreased from 51.39% to
33.19%. Other ranges of bubble size can also reach the same level
or have greater accuracy.

Beyond the experimental data above, another calculation
based on Kaiho et al.’s experiment (Kaiho et al., 2017) is
carried out for an independent validation of the improved
mechanistic model. The pressure range is 107–143 kPa, nearly

FIGURE 6 | The distributions of bubble maximum diameter for different ranges of size. (A) Excluding the measurement error of P, (B) including the measurement
error of P.

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 9034648

Dong et al. Data-Driven Model for Bubble Diameter

138

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


atmospheric condition. The heat flux of the heated surface is
around 175–617 kW/m2 while the mass flux is 159–700 kg/m2s.
The subcooling of water is 10–30 K. The experimental results
from Kaiho’s research include the arithmetic mean value and the
volume average value of maximum bubble diameter. In this
validation, average volume is chosen as the experimental data,
which is closer to the assumptions of heat balance theory. The
calculated results are shown in Figure 8. The total relative error is
14.43%, which shows good performance for the present model.

5 CONCLUSION

Using ANNs, a data-driven model is proposed for the evaluation
of bubble maximum diameter in subcooled boiling flow. After a
basic sensitivity analysis is done on neuron number, two hidden
layers with eight neurons each are used to develop the data-
driven model. In addition, the activation function and training
algorithm are screened out for the ANN model. Through the
training using several experimental databases, the data-driven
model shows good performance, with a relative error of around
14%. Sensitivity analysis is also proposed for the four
experimental conditions and two structural conditions. The
results identify the accuracy and robustness of the ANN
model. It is also concluded that the measuring accuracy of
pressure is of the most sensitivity on the bubble maximum
diameter in the subcooled boiling flow under low-pressure
conditions, especially for bubble sizes larger than 0.5 mm. A
regression analysis of parameters C and φ, a new correlation is
developed for the mechanistic model. This new model functions
well for all the experimental databases and the large bubble
datasets. Another independent validation also proves the
accuracy of the improved mechanistic model. To sum up, the
modified mechanistic model covers a wide range of subcooled
boiling flow under low-pressure conditions. In the next step,
additional attention will be paid to increasing the generalization
performance of ANN model for larger experimental conditions.
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