
VOLITIONAL INHIBITION: THE 
GATEWAY FOR AN EFFICIENT 
CONTROL OF VOLUNTARY  
MOVEMENTS

Hosted by 
Giovanni Mirabella

NEUROENGINEERING

http://www.frontiersin.org/Neuroengineering/researchtopics/%E2%80%9CVolitional_inhibition_the_gat/242
http://www.frontiersin.org/Neuroengineering/researchtopics/%E2%80%9CVolitional_inhibition_the_gat/242
http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/Neuroengineering/researchtopics/%E2%80%9CVolitional_inhibition_the_gat/242


Frontiers in Neuroengineering November 2012 | Volitional inhibition: the gateway for an efficient control of voluntary movements | 1

ABOUT FRONTIERS
Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering 
approach to the world of academia, radically improving the way scholarly research is managed. 
The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share 
and generate knowledge. Frontiers provides immediate and permanent online open access to all 
its publications, but this alone is not enough to realize our grand goals.

FRONTIERS JOURNAL SERIES
The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online  
journals, promising a paradigm shift from the current review, selection and dissemination  
processes in academic publishing. 
All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service 
to the scholarly community. At the same time, the Frontiers Journal Series operates on a revo-
lutionary invention, the tiered publishing system, initially addressing specific communities of 
scholars, and gradually climbing up to broader public understanding, thus serving the interests 
of the lay society, too.

DEDICATION TO QUALITY
Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interac-
tions between authors and review editors, who include some of the world’s best academicians. 
Research must be certified by peers before entering a stream of knowledge that may eventually 
reach the public - and shape society; therefore, Frontiers only applies the most rigorous and 
unbiased reviews.
Frontiers revolutionizes research publishing by freely delivering the most outstanding research, 
evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting scholarly 
publishing into a new generation.

WHAT ARE FRONTIERS RESEARCH TOPICS?
Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are 
collections of at least ten articles, all centered on a particular subject. With their unique mix 
of varied contributions from Original Research to Review Articles, Frontiers Research Topics 
unify the most influential researchers, the latest key findings and historical advances in a hot 
research area! 
Find out more on how to host your own Frontiers Research Topic or contribute to one as an 
author by contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

FRONTIERS COPYRIGHT 
STATEMENT
© Copyright 2007-2012  
Frontiers Media SA. 
All rights reserved.

All content included on this site, 
such as text, graphics, logos, button 
icons, images, video/audio clips, 
downloads, data compilations and 
software, is the property of or is 
licensed to Frontiers Media SA 
(“Frontiers”) or its licensees and/or 
subcontractors. The copyright in the 
text of individual articles is the 
property of their respective authors, 
subject to a license granted to 
Frontiers.

The compilation of articles 
constituting this e-book, as well as 
all content on this site is the 
exclusive property of Frontiers. 
Images and graphics not forming 
part of user-contributed materials 
may not be downloaded or copied 
without permission.

Articles and other user-contributed 
materials may be downloaded and 
reproduced subject to any copyright 
or other notices.  No financial 
payment or reward may be given for 
any such reproduction except to the 
author(s) of the article concerned.

As author or other contributor you 
grant permission to others to 
reproduce your articles, including 
any graphics and third-party 
materials supplied by you, in 
accordance with the Conditions for 
Website Use and subject to any 
copyright notices which you include 
in connection with your articles and 
materials.

All copyright, and all rights therein, 
are protected by national and 
international copyright laws.

The above represents a summary 
only. For the full conditions see the 
Conditions for Authors and the 
Conditions for Website Use.

Cover image provided by Ibbl sarl, 
Lausanne CH

ISSN 1664-8714
ISBN 978-2-88919-062-1
DOI 10.3889/978-2-88919-062-1

http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/Neuroengineering/researchtopics/�Volitional_inhibition_the_gat/242
http://www.frontiersin.org/


Frontiers in Neuroengineering November 2012 | Volitional inhibition: the gateway for an efficient control of voluntary movements | 2

Hosted By:
Giovanni Mirabella, University of Rome “La Sapienza”, Italy 

Being able to suppress a pending action is 
a fundamental ability for surviving in an 
unpredictable World. Sudden events, such as 
the appearance of a physical obstacle, might 
require a quick change of the planned motor 
strategy. The first step toward this goal is 
to suppress the pre-programmed actions. 
Understanding the functional characteristics 
and the neural underpinnings of inhibition 
is a primary aim, both for the treatment of 
such diseases as attention-deficit hyperactivity 
disorder, where the decision-making abilities 
are severely impaired, and for the development 
of efficient brain–machine interfaces. 

Despite an incredible amount of work, 
witnessed by tens of articles published on 

Medline, both the localizations of the neural substrates of voluntary inhibition and their 
specific contributions to this executive function are still controversial. However, the ability 
of vetoing pending actions is likely to be at the basis of self control and of mental simulation 
of voluntary actions. In other words the veto power is a cornerstone of our will. As such the 
neural code underling volitional inhibition should be taken into account to feed appropriate 
signals into artificial devices to mimic voluntary movements. 

The aim of the present Research Topic is twofold. On the one hand it will show the most 
innovative aspects of the current researches on the neural substrates and functional mechanisms 
of volitional inhibition. On the other hand it will deal with the possible applications of the 
acquired knowledge for building up interfaces that could collect and decode incoming neural 
signals in order to move artificial limbs and/or to interact with personal computers.
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(reactive control), but also provides signals enabling the subject 
to adopt a response strategy which takes into account the context 
in which he or she operates. This form of cognitive control over 
response execution, named proactive control, adjusts the response 
selection and preparation process in anticipation of known task 
demands, driven by endogenous signals. Several lines of evidence 
indicate the involvement of the medial frontal cortex in proactive 
control. Wriessnegger et al. (2012) also ascribe to these regions a 
role in inhibiting learned motor programs.

Despite the relevance of volitional inhibition in shaping vol-
untary behavior, its role has been almost completely neglected by 
those scientists who tried to implement brain–machine interfaces 
(BMIs). These interfaces are aimed at exploiting neural activity 
recorded from the brain, e.g., motor commands, to control the 
movements of external devices, e.g., prosthetic limbs. By translating 
brain signals into action, a BMI can enable a person suffering from 
paralysis to move again using artificial limbs. Notwithstanding the 
successes of the BMI approach there are still several limitations. 
Signals extracted from the brain are typically noisy, so the guid-
ance of prosthetic limbs is still far from approximating natural 
behaviors. In this Research Topic, three papers report significant 
improvements in BMI algorithms. Wang et al. (2012) demonstrate 
the possibility of detecting the onset and the direction of intended 
movements exploiting electrocorticographic signals recorded from 
the surface of the cortex of pharmacoresistant epileptic patients. 
Lew et al. (2012) show that from the analysis of the readiness 
potential is possible to detect the movement intention in single 
trials. This is very relevant because the capability of detecting the 
neural correlates of self-paced movement at the single-trial level 
is a fundamental step toward the development of efficient BMIs. 
In fact, normally we perform a given movement just once rather 
than repeating them several times in a stereotyped fashion. As a 
consequence, BMI algorithms relying on brain activity averaged 
over a number of trials are not very naturalistic.

Finally, Ifft et al. (2012) successfully tried, for the first time, 
to implement a BMI that can extract response inhibition signals 
and thus can mimic the suppression of a motor plan and its 
reprogramming when required by external events. As a model 
they used single-unit activity of over trained monkeys so it 
is not obvious that this result could be applied effortlessly to 
humans; however, it is the first demonstration that brain signals 
sustaining the flexibility of human behavior can be fed into a 
BMI. In the same direction, Yang et al. (2012) have developed a 

A key feature of voluntary behavior is its flexibility which, in a 
sense, represents the other side of self-control. We need to select and 
perform actions whenever they are more opportune, i.e., whenever 
the costs intrinsically associated with them are lower than their 
benefits. Given that we cannot predict with certainty the occur-
rence of an event and the time lag elapsing between the decision to 
move and the physical execution of a movement, we have developed 
the ability to cancel pending actions. Suppressing ongoing acts is 
fundamental when sudden changes in the surrounding environ-
ment take place. For instance, the sudden arrival of a car in the 
road we were about to cross requires us to stop our step to avoid 
being hit. The great importance of this executive function, named 
“volitional” inhibition, is witnessed by the great number of brain 
regions implicated in its elaboration. Here, the term volitional does 
not imply a conscious participation. In humans the emergence of 
awareness coupled with the vetoing ability gave rise to what Libet 
(1985) called “free would not,” that is, our capacity to freely cancel 
those actions we do not wish to perform. However, we do not exert 
our free will on every choice we have to make, but just on those 
more controversial or salient (e.g., how to respond to the request 
of working over the week-end). Most of the time the fate of actions 
is decided by automatic processes, otherwise we could not have 
sufficient free capacity for other computations.

Overall volitional inhibition represents a cornerstone of volun-
tary behavior but, despite an incredible amount of work, both the 
localizations of its neural substrates and their specific contributions 
are still controversial. For instance, it has been suggested that inhibi-
tory commands are generated in a right-lateralized frontal–basal 
ganglia–thalamic network (Aron et al., 2007), but there is scant 
knowledge about where they act. One paper in this Research Topic 
(Mattia et al., 2012) indicates that the motor cortices (both the 
primary motor cortex and the premotor cortex) are the targets of 
cancelation commands (see also Mirabella et al., 2011). In other 
words, it suggests that the same neural substrates involved in plan-
ning and executing an act (see also Busan et al., 2012) are also 
involved in its suppression. Along the same lines, Pastor-Bernier 
et al. (2012) show that neurons of the premotor cortex continu-
ously update their activities during movement planning, so that 
their discharge reflects switches between alternative plans when a 
selected movement option suddenly turns out to be inappropriate.

Importantly, as described in the review by Stuphorn and Emeric 
(2012), the inhibitory network not only provides signals indicat-
ing the withholding of actions whenever a stop signal is presented 
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 field-programmable gate array using dedicated real-time hard-
ware circuitry exploiting a model built on the firing rate recorded 
in the frontal eye field of monkeys during a countermanding 
oculomotor task (a task which probes the subject’s ability to stop 
pending saccades). Their device is able to simulate the behavioral 
performance during the task, showing the reliability of the inhibi-
tory control system that can potentially be employed to build an 
efficient prosthetic system. Although intriguing, further studies 
are required to assess whether this system can be generalized to 
limb movements, as there is evidence showing that the saccadic 
and arm movements are controlled in different ways (see, e.g., 
Mirabella et al., 2009, 2011).

All in all I hope that the readers of this issue will be convinced of 
intimate and inextricable connection between volitional inhibition 
and voluntary behavior. From this it should naturally follow that, 
in order to allow prosthetic devices to mimic naturally enacted 

movements, it is necessary to build algorithms capable of decod-
ing brain activity underlying the suppression of pre-programmed 
actions when unpredictable events require a quick change of the 
planned motor strategy.
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Previous studies have shown that neural activity in primate dorsal premotor cortex
(PMd) can simultaneously represent multiple potential movement plans, and that activity
related to these movement options is modulated by their relative subjective desirability.
These findings support the hypothesis that decisions about actions are made through a
competition within the same circuits that guide the actions themselves. This hypothesis
further predicts that the very same cells that guide initial decisions will continue to
update their activities if an animal changes its mind. For example, if a previously selected
movement option suddenly becomes unavailable, the correction will be performed by the
same cells that selected the initial movement, as opposed to some different group of cells
responsible for online guidance. We tested this prediction by recording neural activity in
the PMd of a monkey performing an instructed-delay reach selection task. In the task, two
targets were simultaneously presented and their border styles indicated whether each
would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was
allowed a choice while in the remaining trials (FORCED) one of the targets disappeared
at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move
to the less valuable target and started moving either toward the new target (Direct) or
toward the target that vanished and then curved to reach the remaining one (Curved).
Prior to the GO signal, PMd activity clearly reflected the monkey’s subjective preference,
predicting his choices in FREE trials even with equally valued options. In FORCED-LOW
trials, PMd activity reflected the switch of the monkey’s plan as early as 100 ms after the
GO signal, well before movement onset (MO). This confirms that the activity is not related
to feedback from the movement itself, and suggests that PMd continues to participate
in action selection even when the animal changes its mind on-line. These findings were
reproduced by a computational model suggesting that switches between action plans can
be explained by the same competition process responsible for initial decisions.

Keywords: decision-making, movement preparation, reach, motor planning, free choice, monkey, computational

model, biased competition

INTRODUCTION
Natural behavior requires animals to make many kinds of deci-
sions. For example, an animal is often faced with selecting
between different movements that accomplish the same behav-
ioral goal, such as different directions to run to escape a predator.
At a higher level of selection, the same animal may decide between
different types of activity, such as running away versus turning
around to fight. Still other kinds of decisions may involve purely
abstract choices, which are not (at least immediately) associated
with any specific action. In human behavior, such decisions may
be extremely abstract, such as choosing what kind of career to
pursue in life. Because the brain was built through continuous
evolutionary refinement, we expect that the neural mechanisms
of decisions at different levels of abstraction share many aspects
of their architecture, and that consideration of simple spatial
decisions between movement options may yield insights into
decision-making in general (Cisek and Kalaska, 2010).

Recent work has suggested that, at least in the case of select-
ing between actions, decision-making is intimately integrated

with sensorimotor control (Basso and Wurtz, 1998; Platt and
Glimcher, 1999; Romo et al., 2004; Cisek and Kalaska, 2005; Gold
and Shadlen, 2007). This has led to the proposal that while an
animal is deciding between actions, neural activity in the sen-
sorimotor system represents several movements simultaneously
and the decision is made by selecting between these parallel rep-
resentations (Kim and Shadlen, 1999; Cisek, 2007; Cisek and
Kalaska, 2010). For example, Cisek and Kalaska (2005) found that
while a monkey is deciding between two different potential reach-
ing movements, neural activity in dorsal premotor cortex (PMd)
represents both options simultaneously and reflects the selec-
tion of one over the other when the monkey makes his choice.
This is consistent with earlier proposals suggesting parallel move-
ment preparation (Fagg and Arbib, 1998; Tipper et al., 1998;
Erlhagen and Schoner, 2002), and with the hypothesis that action
selection is accomplished through a biased competition within a
sensorimotor map of potential actions (Cisek, 2006).

This “affordance competition” hypothesis (Cisek, 2007) stands
in contrast to the classical serial model, in which decisions
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are made in higher cognitive centers and the resulting choice
passed down to the sensorimotor system for execution. Instead,
it suggests that decisions are determined when a competition
between actions is resolved within the sensorimotor system—
e.g., for reaching, within the fronto-parietal cortex and associated
corticostriatal loops. This means that although the biases that
influence the decision may come from many sources, including
the activity of higher cognitive regions, it is in the sensorimo-
tor system that the final decision is taken. For selecting between
actions, this makes good sense from an ecological perspective: the
systems most sensitive to the spatial and dynamic attributes of
the candidate actions are best qualified to make the final selection
that takes all of these factors into account. For example, when
choosing between actions, the spatial layout of the immediate
environment directly specifies the options and is of critical impor-
tance for evaluating what is the best choice in terms of payoffs and
costs. Indeed, all else being equal, humans select the action that
is least demanding from a biomechanical perspective (Cos et al.,
2011), suggesting that the same “forward models” (Shadmehr
et al., 2010) useful for predicting the consequences of motor com-
mands may also play a role in selecting the actions themselves by
biasing activity in sensorimotor cortices.

Decision-making within a sensorimotor map is particularly
useful for spatial choices, such as selecting among different ways
to escape a predator through an environment filled with obsta-
cles. If two escape routes are close together, then you should not
waste time deciding but instead run between them and choose
in flight. In contrast, if you are up against a wall then a clear
“winner-take-all” decision is critical, even if it takes a little more
time to resolve. Finally, even during ongoing escape, you must
continuously evaluate and update the options presented by the
environment in case what appeared as an escape route turns out
to be a dead end and/or if a new and better option presents itself.
If that new option is already partially represented in sensorimotor
maps of potential actions, then switching to it will be very fast.

In an analogy to the above scenario, here we consider selec-
tion between reaching movements to different spatially specified
targets. The affordance competition hypothesis predicts that if we
present a monkey with multiple reaching options associated with
different rewards, neural activity in PMd will be modulated by
the relative value of those rewards. However, if a single option
is present, then its value will not influence PMd activity because
there is no competition. A recent study in our lab (Pastor-Bernier
and Cisek, 2011) confirmed both of these predictions, showing
relative value modulation when two targets were presented but
no value modulation with one target. Furthermore, it was found
that the competition between options was strongest when they
were furthest apart—just as predicted in the prey escape exam-
ple described above. All of these results are consistent with the
idea that the competition unfolds within a sensorimotor map that
respects the pragmatic issues of selecting actions in space, and
all of them could be simulated with a simple model of biased
competition among populations of tuned cells (Cisek, 2006).

In summary, previous studies have shown that the process of
deciding between actions involves the very same brain regions
that are implicated in sensorimotor guidance of actions, consis-
tent with the affordance competition hypothesis (Cisek, 2007).

However, the hypothesis also makes a complementary predic-
tion: that the same cells involved in selecting the initial action
will continue to be involved in adjusting and even switching
between actions during overt behavior. In other words, if the
environment changes and old opportunities are lost or new ones
become available, the same integrated selection and sensorimotor
guidance system should reflect the switch of the plan. Here, we
investigate this issue by examining neural activity in PMd after a
monkey has chosen one of two actions, but the selected option
becomes unavailable. We examined the same cells whose delay
period activity showed relative value modulation in our previous
work (Pastor-Bernier and Cisek, 2011) but extended our analysis
to the activity after the GO signal, with particular interest in tri-
als in which the option with highest payoff becomes unavailable.
Some of these results have been previously presented in abstract
form (Pastor-Bernier et al., 2011).

MATERIALS AND METHODS
INSTRUMENTATION AND TECHNICAL PROCEDURES
A male monkey (Macaca mulatta) performed a planar center-out
reaching task illustrated in Figure 1A. The task involved mov-
ing a cursor from a central circle (2 cm radius) to one of six
possible targets (2.4 cm radius) spaced at 60◦ intervals around a
12.6 cm radius circle. The monkey performed movements using a
cordless stylus whose position was recorded (125 Hz) by a dig-
itizing tablet (CalComp). Target stimuli and continuous cursor
feedback were projected onto a mirror suspended between the
monkey’s gaze and the tablet, creating the illusion that they are in
the plane of the tablet. Oculomotor behavior was unconstrained,
as eye movements do not strongly influence arm-related PMd
activity (Cisek and Kalaska, 2002), but was monitored with an
infrared oculometer (ASL). Neural activity was recorded with 3–4
independently moveable microelectrodes (NAN microdrive) and
data acquisition was performed with AlphaLab (Alpha-Omega).
On-line spike discrimination was used to estimate cell preferred
directions for choosing target locations. All analog waveforms
were stored on disk for offline sorting using principal compo-
nents (Plexon). All task events, trajectory data and spike times
were stored in a database (Microsoft SQL Server 2005) accessed
through custom scripts for data analysis (Matlab). After complet-
ing training, the animal was implanted under general anesthesia
with a titanium head post and a recording chamber placed
using MRI images (Brainsight primate). The chamber was cen-
tered on the arm area of PMd, between the precentral dimple
and the junction of the arcuate sulcus and spur (Figure 1B).
All procedures followed university and national guidelines for
animal care.

BEHAVIORAL TASK
The monkey began each trial by placing the cursor in the cen-
tral circle for a 350–650 ms Center-Hold-Time (CHT). Next, one
or two cyan targets appeared, with border styles indicating the
amount of juice that the monkey was likely to receive for reaching
to that target (See Figure 1A, inset). The reward was determined
probabilistically to encourage the monkey to explore available
options (Herrnstein, 1961). A “low-value” target (L, thick border)
had a 60% chance of yielding 1 drop, 30% chance of yielding 2,
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FIGURE 1 | (A) Behavioral tasks. The tasks involve moving a cursor
from a central circle to one of six possible target locations. At the
beginning of each trial the monkey placed the cursor in the center and two
targets appeared. Each target was associated with different rewards
indicated by different border styles (legend shows the probability of receiving
1 (red), 2 (green), or 3 (blue) drops of juice for each border style).
The monkey had to keep the cursor in the center until the targets changed
color (GO signal). Then, it moved to one of the targets and held the cursor

there to get a reward. In one variant of the task, the monkey was
presented with only one target (1T). In a second variant two targets were
presented, and the monkey was either free to move to either of them
after the GO signal (FREE trials), or one disappeared after GO leaving the
monkey with only the remaining option (FORCED trials). (B) The recording
locations in PMd. Black crosses indicate recording sites. The locations for
cells modulated by relative value (RV cells) are shown with red circles
(N = 52).

and 10% chance of yielding 3 (Expected value, EV = 1.5). A
“medium-value” target (M, no border) was worth 2 (60%), 1
(20%), or 3 drops (20%) (EV = 2). A “high-value” target (H,
thin border) was worth 3 (60%), 2, (30%), or 1 drop (10%)
(EV = 2.5). The non-monotonic relationship between border
thickness and value was used to dissociate motivational factors
from physical properties of stimuli. In particular, the most visu-
ally salient cue with a thick border style is deliberately chosen
to have a small payoff (“low value”) to dissociate saliency from
value effects. The monkey held the cursor in the center for an
instructed delay period (DELAY, 700–1300 ms) until a GO signal
was indicated by a change in target color and the disappearance
of the central circle. After the GO signal, the monkey had to ini-
tiate the movement within a 550 ms reaction time (RT) (which
had to be at least 100 ms, to discourage anticipation). To receive
a reward, the monkey had to move to a target within a maxi-
mum 550 ms movement time (MT) and hold the cursor there
for 500 ms (Target-Hold-Time, THT). When cells were isolated,

we first ran a block of 90 trials in which only one target was
presented (1T), to identify the DELAY-period preferred target
(PT) of each cell. Next, we ran a block of 180 two-target trials
(2T), including ones where the PT target was present and low,
medium, or high-valued, while the other target (OT) appeared at
60◦, 120◦, or 180◦ away and was low, medium, or high-valued.
Each block also included 30 trials in which the targets were 120◦
apart but neither was in the direction of the PT. In this paper we
focus only on trials in which the targets are 120◦ apart (90 tri-
als per 2T block) and at least one of the presented targets was
the cell’s PT. In 67% of 2T trials (FREE), the monkey was free
to move to either target after the GO signal. In 33% of 2T tri-
als (FORCED), one of the targets disappeared at GO and the
monkey had to move to the remaining one. FREE and FORCED
trials were randomly interleaved to encourage the animal to keep
both options partially prepared. FORCED trials were classified
according to the value of the target that disappears after the GO
signal. In FORCED LOW trials the target with the higher expected
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value disappears (inset in Figure 1A bottom), while the opposite
is true in FORCED HIGH trials. In a FORCED EQUAL trial both
the target that disappears and the target that remains have the
same value.

KINEMATIC ANALYSIS
Movement trajectories were re-sampled at a constant rate
(200 Hz) and filtered using a two-way butterworth filter [0 phase
lag, 4th order, norm. cutoff 0.05 (∼20 Hz)] using Matlab func-
tions butter and filtfilt (Mathworks). The initial direction vector
(IDV) was calculated as the X and Y coordinate cartesian arct-
angent (atan2) between the position at movement onset (MO)
and the position 100 ms later. Trials were sorted by short RT
(<180 ms), medium RT (between 180 ms and 240 ms) or long RT
(>240 ms). The mean trajectory profiles and mean IDVs were cal-
culated for each RT group independently. To determine whether
the IDV was pointing to a given target in space, we calculated
the mean IDV in the 1T condition for each target individually.
Then, 2T trials were classified as “direct” to the selected target if
their IDV fell within ±60 degrees of that target’s mean IDV in the
1T condition. Trials whose IDV pointed away from the ultimately
acquired target were classified as “curved.”

CELL TUNING AND RELATIVE VALUE DISCRIMINATION
We investigated only cells that had both spatial tuning and rel-
ative value discrimination (see Pastor-Bernier and Cisek, 2011)
during DELAY. We calculated directional tuning preferences for
the cells during each behavioral epoch (DELAY, MT, and THT)
and assessed significance with a non-parametric bootstrap test
(1000 shuffles, p < 0.05; Cisek et al., 2003). To assess whether
a cell discriminated relative value during DELAY, we exam-
ined whether the cell showed statistically significant differences
in firing rate between a “HIGH” value condition (value in
PT was larger than OT) and a “LOW” value condition (value
in OT larger than PT) for the last 300 ms prior to the GO
signal (One-Way ANOVA, p < 0.05). This was done to verify
whether the same cells that are involved in the initial deci-
sion continue to reflect plan switches after the GO signal. Cells
satisfying both requirements were used for post-GO analyses.
Discrimination latencies were obtained using a sliding ANOVA
method adapted from Peng et al., 2008 (window: 50 ms, step:
5 ms, p < 0.05) to perform a statistical temporal analysis between
the HIGH and LOW value conditions. We obtained latencies
for relative value discrimination with respect to the GO sig-
nal by aligning the neural activity on GO and parsing each
trial backwards for 700 ms (shortest variable DELAY duration).
This chosen interval ensured that all trials had a similar time
range for firing rate comparisons. The latency of relative-value
discrimination was obtained as the last 80 ms sliding time-
window for which a statistical difference could be observed.
The cells that satisfied both the One-Way ANOVA and sliding-
ANOVA requirements were called relative value discriminating
cells (RV cells, N: 52). This population is identical to the data-set
described previously (Pastor-Bernier and Cisek, 2011) in which
relative-value effects were assessed for particular value combi-
nations (PTvsOT: 3vs1, 2vs1, 3vs2) using paired ANOVA and
Tukey–Kramer tests.

PLAN-SWITCH ANALYSIS
FORCED LOW trials were of particular interest for plan-
switching analysis because they represent conflict situations in
which the more desirable option must be replaced by the less
desirable option. In these “plan-switch” cases, DELAY activity
prior to GO (pre-GO plan) was compared with activity after GO
(post-GO plan). We further distinguished cases where the target
that disappears is located in the cell’s PT or in the OT, giving rise
to two different kinds of FORCED LOW trials. In FORCED LOW
PT2OT trials the pre-GO DELAY activity reflects an initial plan
to PT and the post-GO activity a final plan to OT. In FORCED
LOW OT2PT trials the pre-GO DELAY activity reflects a move-
ment plan to OT and the post-GO activity a final plan to PT. To
obtain plan-switch latencies FORCED LOW trials were compared
with trials belonging to the FREE condition in which the animal
naturally chose the high valued option (FORCED-FREE compar-
ison). To obtain the switch latency from an initial plan to PT to
a final plan to OT (SwitchPT2OT) the activity of FORCED LOW
PT2OT trials was compared with FREE trials in which PT was the
plan selected (FREE HIGH PT). This type of switch is illustrated
in Figure 3A. The plan-switch latency was obtained by parsing the
neural activity for both types of trials from GO to movement off-
set using a sliding ANOVA method (window: 50 ms, step: 5 ms,
p < 0.05) and calculated as the first moment in time in which
they were significantly different for at least 80 ms after the GO
signal. For the plan-switch latency to be valid we also required
that there be no significant difference between the FORCED LOW
PT2OT and the FREE HIGH PT types of trial for at least 300 ms
before the GO signal (One-Way ANOVA, p < 0.05 ms). To cal-
culate the switch latency from an initial OT plan to a final PT
plan (SwitchOT2PT) the activity of FORCED LOW OT2PT tri-
als was compared to FREE HIGH OT trials in which OT was
selected. Figure 3B illustrates an example of this type of switch.
We define as “convergence” the situation in which the pre-GO
DELAY activity for two types of trials represents different move-
ment plans, while the post-GO activity represents the same plan.
The time of convergence to a plan in the PT direction (CONV)
is found by comparing FORCED LOW OT2PT trials with FREE
HIGH PT trials (Figure 3C). Convergence to an OT plan can-
not be determined from the activity of cells because activity to
OT is generally low. To obtain CONV latency a similar sliding
ANOVA method was used, although the time of convergence
was defined as the first moment after the GO signal in which
the difference between the two types of trial was not significant
(p > 0.05) for at least 80 ms. We also required the pre-GO DELAY
activity between FORCED LOW OT2PT and FREE HIGH PT to
be different for at least 300 ms (One-Way ANOVA, p < 0.05). In a
variant of the plan-switch latency study we used FORCED HIGH
trials instead of FREE HIGH trials for the calculation of plan-
switch latencies (FORCED-FORCED comparison). This allowed
us to address whether differences in visual input after the GO sig-
nal (the number of remaining targets) could have an effect on the
plan-switching process.

The population’s mean switch latencies (ms) were calcu-
lated using the sliding-ANOVA method mentioned above. The
confidence intervals (CI) at 95% probability (p < 0.05) were
obtained as ±Z × √

E, where Z represents the critical area for
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the distribution of mean switch latencies across trials. Z can be
approximated to ±1.96 assuming by the central limit theorem
(Polya, 1920) that the mean distribution tends to normality with
large sample sizes. The variable E represents the error variance of
the mean and was calculated using the expression correcting for
overlapping intervals described in Müller (1993) (Equation 3.7)
and cited elsewhere (Dacorogna et al., 2001; Hansen and Lunde,
2006).

E = r/N2 × [rR − (r2 − 1)/3]

where r = min(m,N), R = max(m,N) and where m is the over-
lap between intervals and N is the number of samples per time
interval.

In our case we have a 50 ms window sliding by 5 ms bins.
Therefore, m = 45 and N = 10. Because m > N, then r = N, and
R = m, and the previous expression takes the form:

E = m − N/3 − 1/3N

Solving numerically with m = 45 and N = 10, we obtain E =
41.7 and therefore,

CI = ±1.96
√

41.7 = ±12.6 ≈ ±13 ms

With no overlap m = 0, r = 0, R = 1, N = 1, and the error of
overlap E = 0.

COMPUTATIONAL MODELING
The model (Cisek, 2006) is aimed at explaining and predicting
systems-level phenomena such as response patterns over large
population of neurons. It is implemented with a set of equa-
tions describing the activity of several populations of neurons that
correspond to specific cortical regions. Each population is orga-
nized as a layer of neurons that are tuned to spatial directions
of potential actions. Each neuron in a layer behaves according to
an expression that defines how its activity changes over time as
a function of four terms: passive decay, excitation toward satu-
ration, inhibition, and noise. This expression can also be called
“mean-rate leaky integrator” (Grossberg, 1973) and takes the
following form:

dX/dt = −αX + (β − X)γ · E − X · I + θ, (1)

where X is the mean firing rate of a given neuron, dX/dt is
the change in rate over time, E is the excitatory input, I is the
inhibitory input, α is a decay rate, β is the maximum activity of
a neuron, γ is the excitatory gain, and θ is the Gaussian noise.
The connections between each layer are hardwired and organized
to respect basic neuroanatomical connection patterns. Further
details concerning connectivity patterns and model behavior have
been described previously elsewhere (Cisek, 2006). For purposes
of the present task the model’s “prefrontal” activity was scaled
by a signal related to the absolute value of each target (low =
0.3, medium = 0.7, high = 1.0). To simulate plan switches, we
removed one of the two presented targets (high valued target
in FORCED LOW trials) at the beginning of the GO epoch. All

parameter settings were identical to Cisek (2006), except that
we used a gradual GO signal that allows the activity in PMd
to gradually spill into the M1 layer. The gradual GO signal is
defined as a multiplicative factor that scales the input from PMd
to M1 and is zero before the GO instruction. After the GO
instruction, it grows as 2.5·t where t is the time since the GO
instruction.

Note that the model in its present form is not intended to sim-
ulate the movement itself. Activity in the model M1 population
simply indicates the initial direction of movement, computed as
the preferred direction of the first M1 cell that crosses a threshold
of activity equal to 1.75.

BEHAVIORAL RESULTS
In 1T trials the monkey’s success rate was 98%, in 2T FREE it was
99%, and in 2T FORCED it was 96% (in all cases N > 60,000).
In 2T FREE trials the monkey selected the more valuable target
90% of the time, indicating that he understood the meaning of the
stimulus cues. We found that movement times (MT) were shorter
to higher-valued targets in 1T trials (400 ms to high-value and
416 ms to low-value targets). Although the difference was small,
it was significant (Kolmogorov–Smirnov test (KS), p < 0.01). RTs
in 1T trials did not depend on target value (KS-test p > 0.05 for
all comparisons).

We observed an interaction effect between RT and trajectory
kinematics in 2T trials. Trajectories belonging to short RT tri-
als were generally more curved than trajectories belonging to
medium or long RT trials (Figure 2A). This effect was accentuated
by the value of the unselected target with respect to the value of
the selected target in the FORCED condition. Trajectories in the
FORCED LOW condition (Figure 2A, rightmost panel) were gen-
erally more curved than the ones in the FORCED HIGH or FREE
HIGH conditions (Figure 2A, left and middle panels). These
curved movements have an initial launching direction toward
the target that vanishes and are corrected later to the remain-
ing target. To quantify this we obtained the mean trajectory IDV
across all conditions (Figure 2B). We observed that a great deal
of the curvature in FORCED LOW trials was due to movements
launching to the target that becomes unavailable after GO (High
value). This effect was particularly strong for short RT trials and
moderate for intermediate RT trials. Long RT trials were essen-
tially straight toward the remaining target (Figure 2B, rightmost
panel). We didn’t see this effect when the monkey was forced to
move to the high value target or when the monkey was free to
choose among the two targets, because in either situation the pre-
ferred and available target were the same. We further investigated
the interaction between RT, relative value, and initial launch-
ing direction by comparing raw RT distributions. The mean
RTs in FREE HIGH (266 ms, light-brown dashed histogram),
FORCED HIGH (271 ms, dark-brown dashed histogram), and
FORCED LOW (279 ms, black dashed histogram), were very sim-
ilar (Figure 2D) with only small differences between the mean
RTs in FREE HIGH and FORCED LOW distributions (KS-test,
p < 0.01). This could be due to the contribution of a higher pro-
portion of correct trials in FREE HIGH than in FORCED LOW
trials (3% difference). Most importantly we observed that the
mean RT in FORCED LOW trials with “direct” trajectories (red
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FIGURE 2 | (A) Average trajectories for 2T trials with the unselected
target located 120◦ clockwise (red) or counterclockwise (green) to the
selected target (always on the right). The three panels from left to right
represent FREE, FORCED HIGH, and FORCED LOW trials. The line
thickness represents trials classified by their RT. Thick lines correspond to
long RT (>240 ms), medium sized lines to intermediate RT (between
180 and 240 ms) and thin lines short RT (<180 ms) (See Method sections
for details). (B) Distribution of initial launching directions, with selected
target at 0◦. The color and line thickness code is the same as in
Figure 2A. Blue histograms represent 1T trials to the selected target.

(C) Method used to classify trials as direct (red) or curved (blue).
The top panel shows individual FORCED LOW trials when the remaining
target is to the right and the vanished target is to the upper left. Small arrows
indicate the IDVs and the red region indicates the 120◦ angle around the
average, within which trials were considered to be “direct.” The bottom panel
shows a rose plot of the distribution of individual IDVs. (D) The RT
distributions of FORCED LOW (black dash) trials, including FORCED LOW
“direct” (red solid) and “curved” (blue solid) trials along with the RT
distributions of FREE HIGH (light brown dash) and FORCED HIGH (dark
brown dash).
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histogram, 291 ms) was significantly longer (21 ms difference, KS-
test, p < 0.01) than the mean RT in FORCED LOW trials with
“curved” trajectories (blue histogram, 270 ms). In comparison,
FORCED LOW “curved” trials and FORCED HIGH trials did not
show RT differences (KS-test, p > 0.05) (Figure 2D).

NEURAL RESULTS
PMd ACTIVITY PREDICTS SWITCHING OF MOTOR PLANS
AHEAD OF MOVEMENT ONSET
Activity was recorded from 327 cells from the arm area of PMd
(Figure 1B) of which 226 (69%) had significant directional tun-
ing during at least one epoch (DELAY, MT, THT) and were con-
sidered task-related. Here, we focus on cells with DELAY-period
tuning (181/226, 80%), 52 of which (29%) were modulated by
relative value combinations during DELAY (One-Way ANOVA,
p < 0.05) and were considered further for the plan-switch analy-
ses (relative value, RV cells). In the first variant of this analysis we
compared neural activity in FORCED LOW versus FREE HIGH
conditions (FORCED-FREE). Figures 3A–C shows three individ-
ual cells illustrating the different types of plan-switch analyses. In
a SwitchPT2OT (Figure 3A) we compare trials that had a pre-GO
plan to PT and a post-GO plan to OT (FORCED LOW PT2OT,
green trace) with trials that had both a pre-GO and post-GO plan
to PT (FREE HIGH PT, red trace). In a SwitchOT2PT (Figure 3B)
we compare trials with a pre-GO plan to OT and a post-GO plan
to PT (FORCED LOW OT2PT, blue trace) with trials that had
both a pre-GO and post-GO plan to OT (FREE HIGH OT, pink
trace). In a convergence (CONV) the pre-GO plan is different
for two types of trials (FORCED LOW OT2PT and FREE HIGH
PT) but is the same (movement plant to PT) after the GO signal
(Figure 3C). Figures 3D–G show additional examples that had
statistically significant plan switches at the individual cell level.
Thirty-seven of the 52 (71%) RV cells showed statistically sig-
nificant modulation (sliding ANOVA p < 0.05) in at least one
plan-switch analysis in the FORCED-FREE latency comparison
and are referred to as Switch cells. Switches of activity of the other
cells did not reach statistical significance, often because those cells
were recorded during only a few trials of each type.

To address the role of visual input (the number of targets
remaining after GO) on the plan-switching process, we also
compared FORCED LOW versus FORCED HIGH conditions
(FORCED-FORCED comparison). Figures 3F–G illustrates a sin-
gle cell example in which plan switches were obtained both
for the FORCED-FREE comparison (Figure 3F) and for the
FORCED-FORCED comparison (Figure 3G). Twenty-eight out
of 52 (54%) RV cells showed statistically significant modulation
to plan switches in the FORCED-FORCED comparison. Table 1
summarizes the cell counts for the different types of switch in
both comparisons.

To test whether the plan-switch pattern observed at the indi-
vidual cell level also held at the population level, we obtained the
population profile for plan-switching in Switch Cells and all RV
cells separately and for both FORCED-FREE (Figures 4A–B) and
FORCED-FORCED (Figures 4C–D) comparisons. We observed
that the latency of SwitchPT2OT and SwitchOT2PT for Switch
Cells was 155 ± 13 ms (95% CI) after the GO signal and, there-
fore, well before MO (300 ± 50 ms) in both FORCED-FREE and

FORCED-FORCED comparisons (Figures 4E–F). Convergence
to a plan occurred later, 190 ms ± 13 ms after the GO signal, but
still well-ahead of MO. These results held for both the Switch cell
or RV cell populations, although we observed that switch laten-
cies in the larger RV cell population were later than in the Switch
cell population by about 15–20 ms (this difference did not reach
statistical significance, ANOVA p > 0.05), and was presumably
due to the presence, in the RV population, of cells with very few
trials resulting in a larger standard error. Table 2 summarizes the
latency results for each cell population and comparison.

PMd CONTRIBUTION TO KINEMATICS PRIOR TO MOVEMENT
ONSET (INITIAL DIRECTION) IS OBSERVED IN SITUATIONS
WHERE THERE IS NO RELATIVE VALUE BIAS
We examined the cell responses in the plan-switch paradigm tak-
ing into account the initial direction of the reach movements in
each trial. By doing so we classified trajectories as initially aiming
to the selected target (“direct,” to PT or OT) or initially aim-
ing to the unselected target (“curved”). We compared both direct
and curved movements in the conditions that were more likely to
provoke curvatures due to plan-switches, namely the FORCED
LOW and FORCED EQUAL conditions. Figures 5A–C shows
population histograms for Switch cells and RV cells, comparing
FORCED LOW direct and curved trials. We observed that cur-
vature is not predicted by DELAY activity in the FORCED LOW
condition. We did not observe statistically significant differences
either between activity in the FORCED LOW PT2OT direct trials
and FORCED LOW PT2OT curved trials, or between FORCED
LOW OT2PT direct and FORCED LOW PT2OT curved (ANOVA,
p > 0.05 in both cases). However, DELAY activity in the FORCED
EQUAL conditions does predict whether a trial will be curved or
straight. During the 600 ms prior to the GO signal, we observed
statistically significant differences (ANOVA, p < 0.05) between
FORCED EQUAL direct and FORCED EQUAL curved trials, for
both Switch cell and RV cell populations (Figures 5D–F). It is
noteworthy to mention that these differences take place only dur-
ing DELAY prior to the monkey’s knowledge of which target
will disappear (GO), and reflect pre-GO selection biases. That is,
among the FORCED EQUAL trials there are some in which the
pre-GO activity happens to be strongly biased toward one target,
and when that target disappears, the bias is likely to cause a curved
movement (green and blue traces).

Note that, as shown in Figures 5B,E, when we align activity on
the MO we can see that the switch of the plan (computed at the
population level) occurs approximately 150 ms before MO. This is
interesting because in the curved trials the monkey still launches
to the now non-existent target.

A BIASED COMPETITION MODEL CAN REPRODUCE THE
DYNAMICS OF THE PLAN-SWITCH
Cisek (2006) described a “biased competition” model of action
selection, in which populations of cells along the dorsal stream
implement a distributed representation of potential actions that
compete against each other through lateral inhibition (Figure 6A,
see Methods). The model simulates relative value effects reported
previously when reward-related biasing signals are introduced
into PFC (Pastor-Bernier and Cisek, 2011). Here, we used the
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FIGURE 3 | Top-left: The different types of trials are represented in color
boxes. Target position is indicated by a blue circle in PT or in OT. The target
value is indicated by circle size. In a “FORCED LOW” condition the most
valuable option disappears after the GO signal (dashed circles) giving rise to
two possibilities: whether the target with the larger value (big circle) was the
cell’s PT (green box) or the other target (blue box). In both cases the monkey
is forced to move to the remaining option (small circle). We compare these
trials with “FREE HIGH” trials, in which the monkey is free to choose the
target located either in PT or OT (red or pink) and selects the option with
higher value (FORCED-FREE comparison). We also separately compare
FORCED LOW trials with “FORCED HIGH” trials in which the target that
disappeared after the GO signal was the less valuable one (orange and violet)
(FORCED-FORCED comparison). In all panels bold black arrowheads indicate
the selected option. (A–G) Examples of the activity of individual cells
illustrating the switching of movement plans observed between the pre-GO

and the post-GO period. Cell activity is depicted as firing-rate histograms,
with mean ± s.t.e., and rasters in which black marks indicate cue onset, go
signal, movement onset and offset, with trials sorted by RT. A switch from PT
to OT (SwitchPT2OT) is seen by comparing trials that have a pre-GO plan to
PT and a post-GO plan to OT (green) with trials that have both a pre-GO and
post-GO plan to PT (red). The time of the switch is indicated by a gray vertical
bar (only in Figures 1A–C for simplicity). The alignment of activity on the GO
signal for rasters and firing rate histograms is indicated by a black vertical bar
in all panels. A switch from OT to PT (SwitchOT2PT) is seen by comparing
trials that have a pre-GO plan to OT and a post-GO plan to PT (blue) with trials
that have both a pre-GO and post-GO plan to OT (pink). The time of
convergence to a plan in the PT direction (CONV) is found by comparing trials
with a pre-GO and post-GO plan to PT (red) with trials with a pre-GO plan to
OT but a post-GO plan to PT (blue). Convergence to an OT plan cannot be
determined from the activity of cells because activity to OT is generally low.
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same model to simulate plan switches by removing one of the
two presented targets at the beginning of the GO epoch and by
letting the activity in PMd gradually spill into the M1 layer (see
Methods). Figure 6D shows the activity of a simulated neuron
illustrating plan switches from OT2PT, PT2OT, and convergence
to PT. Note that the timing of the PT2OT and OT2PT plan
switches occur simultaneously and prior to MO. This is also
the case for convergence to PT. These results are compatible

Table 1 | Classification of cells.

PMd Cell counts N

Cells with any delay activity 181

Delay activity only 77

Movement and delay activity 104

Discrimination of relative value (RV) 52

Delay and movement 30

Delay only 22

Switch Cells ∗FORCED vs. FREE 37

Switch OT2PT 31

Switch PT2OT 22

Convergence PT 15

Switch ∗∗FORCED vs. FORCED 28

Switch OT2PT 24

Switch PT2OT 17

Convergence PT 13

∗FORCED LOW vs FREE HIGH
∗∗FORCED LOW vs FORCED HIGH

Cell counts per condition and type of plan switch.

with the experimental data and suggest that PMd contains all
the information concerning the final action plan before MO.
Figure 6B shows RT distributions from FORCED LOW sim-
ulations for trials in which the model launched toward the
target that vanished (blue) or the remaining target (red). We
observe that RTs are shorter for trials initiated toward the van-
ishing target, in agreement with behavioral data (Figure 2D).
Figure 6C shows the distribution of initial launching direc-
tions. Note that the blue distribution (which comprises the
majority of early RT trials) is aimed toward the target that
vanished, predicting that if the model were equipped with
online feedback during the movement itself, it would produce
curved trajectories as in the behavioral data. Figure 6E shows

Table 2 | Population latencies obtained with sliding ANOVA.

SwitchPT2OT SwitchOT2PT Convergence PT

N:37 POP ANOVA

FORCED-FREE 155 ± 13∗ 155 190

FORCED-FORCED 170 155 190

N:52 POP ANOVA

FORCED-FREE 170 170 190

FORCED-FORCED 190 160 190

∗CI for all comparisons.

Plan switch latencies in PMd cells that discriminate relative values (RV cells,

N = 52) and in a cell subset with individually statistically significant switches

(Switch cells, N = 37). The mean activity for each individual cell was calculated

prior to pooling the cells together in order to obtain a balanced contribution of

each cell. Latency values were obtained by a sliding ANOVA on the population

profile. CI = 95% confidence interval for latency values at p < 0.05.

A B
E

C D
F

FIGURE 4 | Population activity. Cells with statistically significant plan
switches (Switch Cells, N = 37) and all cells discriminating relative values
(RV Cells, N = 52) were examined separately for switch latencies in the
FORCED vs. FREE (A–B) and FORCED vs. FORCED comparisons (C–D). The
gray bar indicates the time range of movement onset. The legend has the

same color code as in Figures 3E–F. Comparison of the latencies of
SwitchPT2OT, SwitchOT2PT, and CONV in these two groups of cells in
FORCED-FREE (blue bars) and FORCED-FORCED comparisons (brown bars).
The horizontal line above the histograms represent comparisons that were
statistically significant (ANOVA, p < 0.05).
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A
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C F
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D

FIGURE 5 | Cell responses in the plan switch paradigm taking into

account the initial direction of the reach movements in each trial.

(A–C) Comparison of direct and curved movements in the FORCED
LOW condition for Switch Cells (A–B) and RV Cells (C). Trajectories are
classified as curved to PT (blue box), curved to OT (green box), direct to PT
(orange), or direct to OT (violet). (D–F) Comparison of straight and curved
movements in the FORCED EQUAL condition for Switch Cells (D–E) and

RV Cells (F). Trajectories are classified as curved to PT (dark blue box),
curved to OT (dark green box), direct to PT (magenta) or direct to OT
(cyan). In panels A, C, D, and F the data is aligned on GO and the
gray bar represents the time range of movement onset. Panels
B and E replot the data in A and D, respectively, with alignment on
movement onset (MO), and the grey bar indicates the time range of the
GO signal.

the model’s Parietal, PFC (rostral and caudal), PMd (rostral
to caudal), and M1 population patterns of activity during a
FORCED LOW trial where we observe a plan switch that is com-
pleted before MO. In contrast, in the trial shown in Figure 6F,

the model launches the movement before the plan switch is
complete. We observe that the timing of plan switches in all
PMd layers is before MO, in agreement with our experimental
results.
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FIGURE 6 | (A) Model of action selection, in which populations of cells
along the dorsal stream implement a distributed representation of potential
actions that compete against each other through lateral inhibition. Each
population is modeled as a set of tuned neurons with
“on-center-off-surround” recurrent connectivity. The model includes posterior
parietal cortex (PPC), prefrontal cortex (PFC), three regions of PMd (rostral to
caudal), and primary motor cortex (M1). Biasing signals related to absolute
reward value (High, H or Low, L) enter as independent inputs to particular
PFC layers (PFC-H, PFC-L). (B) RT distributions for trials in which the model
launched to the target that vanished (blue) or to the remaining target (red).
(C) Initial launching directions toward the vanishing target (blue, at position

20) or remaining target (red, at position 50). (D) A simulated neuron
showing activity during four compared conditions: FORCED LOW OT2PT
(blue), FORCED HIGH OT (purple), FORCED LOW PT2OT (green), and
FORCED HIGH PT (red). Individual lines represent individual simulated
trials. (E) Patterns of activity in the model’s Parietal, PFC, PMd (rostral to
caudal) and M1 populations, during a FORCED LOW trial in which the target
at position 50 was more valuable but vanished at the time of the GO signal,
and the plan switch was completed prior to MO. (F) Patterns of activity in
another FORCED LOW trial, but in which the movement was launched
before the plan switch was complete, initiating to the target at
position 50.

DISCUSSION
Recent studies have shown that while a monkey is deciding
between two potential reaching movements, neural activity in
the dorsal PMd can specify both movements simultaneously

(Cisek and Kalaska, 2002, 2005; Klaes et al., 2011), and the neu-
ral representations of these movements are modulated by their
relative subjective desirability (Pastor-Bernier and Cisek, 2011).
These findings suggest that decisions between reaching actions are
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made within the same brain regions involved in the execution of
the actions themselves, in agreement with research on reaching
(Cisek, 2007; Pesaran et al., 2008; Cisek and Kalaska, 2010) and
oculomotor control (for reviews, see Glimcher, 2003; Gold and
Shadlen, 2007). In fact, decisions about eye movements appear
to involve even the superior colliculus, a brainstem structure that
is just two synapses away from the motor neurons that move the
eye (Basso and Wurtz, 1998; Carello and Krauzlis, 2004; Horwitz
et al., 2004; Ignashchenkova et al., 2004; Thevarajah et al., 2009).

However, the finding that decision variables (such as relative
value) influence neural activity in sensorimotor regions does not
necessarily imply that these same cells continue to be involved
in the on-line guidance of movement. It is plausible that once a
decision is made and an action is launched toward a given tar-
get, the decision-related cells fall silent while a separate circuit
becomes responsible for guiding movement toward the selected
target. The results presented here suggest that this is not the case.
We found that the very same PMd cells previously shown to reflect
relative value during a delay period continue to update their activ-
ity to reflect when the monkey changes its plan during situations
in which a previously selected action becomes unavailable. This
argues against the distinction between regions responsible for
choosing an action and those responsible for its guidance through
on-line feedback, and in favor of the hypothesis that decisions
emerge through a competition within the same circuit that guides
movement execution (Cisek, 2007).

A number of earlier studies provide converging evidence con-
sistent with this integrated view. For example, it has been shown
that humans and monkeys can quickly and smoothly update their
movement plans when the location of the reach target suddenly
and unpredictably changes (Georgopoulos et al., 1981, 1983;
Prablanc and Martin, 1992; Desmurget et al., 1999; Day and Lyon,
2000; Archambault et al., 2009, 2011; Gritsenko et al., 2011), even
when they are not consciously aware of the change. During these
“target jump” experiments, neural activity in fronto-parietal cor-
tex smoothly transitions between the original and final motor
plan (Archambault et al., 2009, 2011), without any “refractory
period” for aborting the previous plan before preparing a new
one. Among the regions tested, the earliest changes in neural
activity were found in PMd, in which 50% of cells reflected the
new plan about 140 ms after a target jump, followed by M1 at
180 ms and dorsal area 5 at 200 ms (Archambault et al., 2011).
This is comparable to the latency of responses to target jumps
in earlier studies by Georgopoulos et al. (1983), who observed
latencies of about 130–150 ms in the rostral part of M1.

Interestingly, the neural latencies to target jumps are com-
parable to the latencies of plan switches observed in PMd in
our study—about 155 ms for both increases (SwitchOT2PT) and
decreases of activity (SwitchPT2OT). They are also comparable
to the latencies reported by Wise and Mauritz (1985) in a study
in which the stimulus that instructed the plan switches was pre-
sented during the delay period, well before the GO signal. In that
study, it was found that PMd cells reflected the switch with a
median latency of 140–150 ms. In other words, the latency with
which neural activity in PMd reflects a plan change is approxi-
mately 140–150 ms after the sensory stimulus which instructs that
plan change. This holds true regardless of whether that stimulus

is the change of a target from one location to another during
the delay period (Wise and Mauritz, 1985), the displacement of
a target during RT or movement (Georgopoulos et al., 1983;
Archambault et al., 2009, 2011), or the offset of a PT that leaves
only a less-desirable one available (present study). Furthermore,
we found that the latency at which cells became suppressed when
their PT disappeared (SwitchPT2OT) was not statistically differ-
ent than the latency with which their discharge increased when
their PT, which was initially less desirable, suddenly became the
only remaining option (SwitchOT2PT). The similarity of these
neural latencies across different experimental conditions demon-
strates that in all cases, neural activity in PMd remains sensitive to
new information pertinent to available actions and their values.
This suggests a view whereby sensory information continuously
flows into the motor system (Coles et al., 1985; Cisek, 2007), as
opposed to a view of separate computational stages involved in
canceling one motor program and computing a new one.

The neural processes of canceling a planned movement have
been studied in the frontal eye fields (Hanes et al., 1998), superior
colliculus (Pare and Hanes, 2003) and for arm-reaching stud-
ies in the supplementary motor area (SMA), pre-SMA (Scangos
and Stuphorn, 2010) and PMd (Mirabella et al., 2011) using the
countermanding task (Logan et al., 1984). In this task, subjects
are asked to make a saccade or reach to a target, but to inhibit
the movement if an infrequent STOP-signal is presented after a
variable delay following the GO signal. As the delay increases, it
becomes increasingly difficult to successfully inhibit the move-
ment, making it possible to estimate a given subject’s “stop-signal
reaction time” (SSRT). Although many cortical areas such as
motor cortex (M1) and supplemental cortical areas (pre-SMA
and SMA) harbor neurons with DELAY activity related to move-
ment planning (Okano and Tanji, 1987) it is unlikely that these
areas are involved in processes causally related to movement can-
cellation because their responses to a stop signal take place after
the SSRT (Scangos and Stuphorn, 2010). In contrast, Mirabella
et al. (2011) found that during successful STOP trials, neurons in
PMd show activity changes prior to the SSRT, making it possible
that this region is involved in inhibiting the movement. This is
consistent with the findings reported here that the suppression of
PMd activity tuned to the target which vanished (SwitchPT2OT)
occurs well before MO.

Our behavioral results are compatible with the proposal that
at the end of the DELAY period, the movement to the higher-
valued target is more strongly prepared than the movement to
the lower-valued target. When the higher target disappears in a
FORCED LOW trial, then one of two things can happen. If the
RT is short, then the movement initiates toward the location of
the unavailable target and the monkey must later turn around
(curved trials, Figure 2D blue). If the RT is long, then the monkey
completes his plan switch and initiates directly to the remaining
target (direct trials, Figure 2D red). Nevertheless, what is surpris-
ing is that in both cases, neural activity in PMd already clearly
reflects the change of plan more than 150 ms before the MO. This
can be seen in Figures 5A,B. For example, the green traces illus-
trate trials in which the monkey initiated the movement toward
the PT of recorded cells, which was the more valuable of the tar-
gets present during the DELAY. However, that target vanished
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and so the monkey curved its movement trajectory and arrived at
the remaining target. Although the neural activity becomes sup-
pressed within 200 ms of the GO signal, reflecting the change of
plan away from the PT, the initial movement some 100 ms later is
still launched in the direction of the original plan. This happens
most often during trials with short RTs (Figures 2B,D) suggesting
that the motor system has a certain “inertia” that cannot be easily
overcome. That is, movement initiation and muscle contraction
could be starting to take place shortly after the GO signal despite
the possibility that the more desirable choice will become unavail-
able. In this sense, the short-RT curved movements would be a
natural consequence of the monkey’s impulsivity and a strategy of
reaching quickly and correcting the trajectory when necessary. In
FORCED LOW trials, we found no significant difference in PMd
activity between curved versus direct trials (Figures 5A–C), sug-
gesting that other regions (presumably M1) may be more strongly
responsible for determining whether the movement launches
toward the initially selected or not. In FORCED EQUAL trials, we
did observe differences in PMd activity when comparing curved
versus direct movements (Figures 5D–F), but we believe this is
simply due to selection bias: Curved movements (dark blue and
green traces) are more likely to occur when the monkey happens
to be strongly biased during DELAY toward the target that van-
ished, while direct movements could result equally from trials in
which DELAY activity is biased to the PT, the OT, or neither, and
the average DELAY activity of these three groups of trials will lie
somewhere in the middle (red and cyan traces).

Cisek (2006) described a model of biased competition between
action plans, which was originally designed to capture neural data
on the simultaneous specification of multiple movements (Cisek
and Kalaska, 2005) and behavioral data on the distributions of
initial directions in short-RT pointing tasks (Favilla, 1997; Ghez
et al., 1997). That same model, without any changes in param-
eters, was able to simulate more recent data on the modulation
of PMd activity by relative subjective desirability (Pastor-Bernier
and Cisek, 2011). In the model, potential actions are encoded as
hills of activity in populations of directionally tuned neurons with
short-range mutual excitation between similarly tuned cells and
long-range lateral inhibition among cells with different tuning.
The distance dependence of these lateral interactions is respon-
sible for producing both the distance-dependent distributions of
initial reach directions (Favilla, 1997; Ghez et al., 1997) and the
distance-dependent influence of the value of one target on the
PMd activity related to another (Pastor-Bernier and Cisek, 2011).
That same model, only slightly modified with a gradual GO sig-
nal, is also able to reproduce our current results on plan switches
(Figure 6D) and the distributions and timing of initial launching
directions (Figures 6B,C). Note, however, that the model makes
no attempt whatsoever to explain activity after MO—it includes
no dynamics for producing or guiding movement, and its M1
activity should only be interpreted as capturing the initial pat-
tern around the time of MO. Nevertheless, despite the absence
of any movement production mechanisms in the present form
of the model, it is consistent with models in which the move-
ment trajectory is generated through continuous feedback via
proprioceptive and visual signals (Bullock and Grossberg, 1988;
Bullock et al., 1998; McIntyre and Bizzi, 1993; Burnod et al.,

1999; Shadmehr and Wise, 2005) and through internal forward
models (Bullock et al., 1993; Miall and Wolpert, 1996; Shadmehr
et al., 2010). The model is compatible with general theories
proposing that movements unfold as a dynamical system that is
guided by the continuously updated pattern of activity within
a distributed sensorimotor map. These patterns of activity can
be shaped by a variety of processes, including attention (Tipper
et al., 1998; Baldauf and Deubel, 2010), decision-variables (Cisek,
2007), and continuous spatial information from the dorsal visual
stream (Goodale and Milner, 1992; Milner and Goodale, 1995;
Desmurget et al., 1999; Day and Lyon, 2000).

That a relatively simple “biased competition” model can
explain this fairly large set of data is particularly interesting given
that the same mechanism is often used to explain the neural
mechanisms of spatial attention (Desimone and Duncan, 1995;
Boynton, 2005). This supports the conjecture (Allport, 1987;
Rizzolatti et al., 1987; Neumann, 1990; Duncan, 2006; Cisek,
2007) that both attention and decision-making are related aspects
of a general process of selection necessary to arbitrate between the
many demands and opportunities for action that animals are con-
tinuously faced with in their natural environment. In this view,
sensory information is continuously winnowed along the dorsal
stream as it is converted into information specifying potential
actions and ultimately guiding their execution. In all cases, this
winnowing process involves a biased competition, but the specific
dynamics of the process may be somewhat different in different
brain regions.

For example, Louie et al. (2011) showed that activity in LIP
was best described as

R = Rmax
Vin + β

σ + Vin + Vout
, (2)

where R is the firing rate, Rmax is the maximum firing rate, V in is
the value of targets in the receptive field, Vout is the total value of
targets outside the receptive field, and β and σ are the baseline
activity and semi-saturation terms, respectively, (see Reynolds
and Heeger, 2009). Note that, as shown by Grossberg (1973),
the normalization computation described by Equation (2) can be
produced by the steady-state solution of Equation (1) if the exci-
tation term E is equal to V in and the inhibition term I is equal
to Vout (see Cohen and Grossberg, 1983, for a proof of Lyapunov
stability for a general class of such networks). In other words, divi-
sive normalization may result from the competitive interactions
within neural populations.

Louie et al. (2011) found that to explain their LIP data, the
parameter σ had to be large, implying incomplete normalization
such that LIP cells exhibited value-related modulation even with
a single target. In contrast, our results suggest that PMd exhibits
complete or nearly complete divisive normalization, because in
the 1T task we found no value-related modulation whatsoever
(Pastor-Bernier and Cisek, 2011), as if the σ parameter is zero.
This raises the intriguing question of whether partial divisive nor-
malization is the trend in parietal cortex, which is still far from
overt execution, while activity is more fully normalized in regions
closer to motor output, such as PMd. This would make good sense
if PMd is most closely related to the process of final arbitration
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between potential actions, but a deeper understanding of these
differences between LIP and PMd requires further investigation.

To summarize, we found evidence that PMd neurons, which
appear to be involved in the competition determining the initial
selection of action, continue to take part in action selection after
MO, reflecting a change of plan when a selected target becomes
unavailable. This finding is compatible with previous studies of
plan changes during the delay period (Wise and Mauritz, 1985)
and during target jump paradigms (Georgopoulos et al., 1983;
Archambault et al., 2009, 2011), as well as with the suggestion that
PMd activity may be causally involved in the voluntary inhibition
of movement (Mirabella et al., 2011). Taken together, these results

provide support for the general hypothesis that the brain mecha-
nisms for selecting between actions involve the same circuits that
guide the execution of the actions during overt behavior.
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To better define the neural networks related to preparation of reaching, we applied
transcranial magnetic stimulation (TMS) to the lateral parietal and frontal cortex. TMS
did not evoke effects closely related to preparation of reaching, suggesting that neural
networks already identified by our group are not larger than previously thought. We
also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new
analyses were performed to better support reliability of already reported findings (Zanon
et al., 2010; Brain Topography 22, 307–317). We showed the existence of neural circuits
ranging from posterior to frontal regions of the brain after the stimulation of parietal
cortex, supporting the idea of strong connections among these areas and suggesting
their possible temporal dynamic. Connection with ventral stream was confirmed. The
present work helps to define those areas which are involved in preparation of natural
reaching in humans. They correspond to parieto-occipital, parietal and premotor medial
regions of the left hemisphere, i.e., the contralateral one with respect to the moving
hand, as suggested by previous studies. Behavioral data support the existence of a
discrete stream involved in reaching. Besides the serial flow of activation from posterior
to anterior direction, a parallel elaboration of information among parietal and premotor
areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment)
show propagation of activity to frontal, temporal, parietal and more posterior regions,
exhibiting distributed communication among various areas in the brain. The neural system
highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the
TMS behavioral approach. Further studies are needed to unravel this paucity of overlap.
Moreover, the understanding of these mechanisms is crucial for the comprehension of
response inhibition and changes in prepared actions, which are common behaviors in
everyday life.

Keywords: movement execution, parietal cortex, premotor cortex, reaching, transcranial magnetic stimulation,

TMS/EEG co-registration

INTRODUCTION
Several works have tapped on neural underpinnings of reaching
movement preparation, focusing on parieto-frontal circuits (e.g.,
Andersen and Buneo, 2002; Andersen and Cui, 2009; Cisek and
Kalaska, 2010). In particular, reaching movements under visual
guidance are prepared using different information which is elab-
orated in different frames of reference. These are, for example,
eye-, limb-, body- or head-centered (Cohen and Andersen, 2002;
Beurze et al., 2010) using visual as well as proprioceptive infor-
mation (Buneo et al., 2002; Filimon et al., 2009; Jackson et al.,
2009). Since preparation of reaching movements involves the acti-
vation of a fronto-parietal network (Tannè et al., 1995; Johnson
et al., 1996; Galletti et al., 2001; Marconi et al., 2001; Gamberini
et al., 2009; Bakola et al., 2010; Passarelli et al., 2011), it has
been hypothesized that it integrates information about physi-
cal properties and location of a target into the motor plan of a
reaching movement (Buneo et al., 2002; Cohen and Andersen,

2002). In fact, Milner and Goodale (2006) suggested the existence
of a dorsal stream that mediates sensory-motor transformations
for visually-guided movements overlapping with the above men-
tioned anatomic regions. They also suggested the existence of a
ventral stream, which would be more involved in the elaboration
of object’s features primarily involving occipito-temporal regions.

An unsolved issue regarding implementation of reaching
movements is related to the possible dominance of one hemi-
sphere, preferably the left one (Goodale, 1988), usually viewed as
the dominant hemisphere in right-handed people (e.g., Iacoboni,
2006; Vingerhoets et al., 2011). Thus, the left hemisphere likely
plays a special role in organizing movements during visually-
guided reaching (Goodale, 1988). The contralateral limb may be
more represented during planning of reaching, activating a wide
series of neural networks (e.g., Kertzman et al., 1997; Medendorp
et al., 2003, 2005). The activation of both hemispheres in similar
tasks (Calton et al., 2002; Connolly et al., 2003; Prado et al., 2005)
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or of structures modulated by ipsilateral reaching has also been
reported (Chang et al., 2008; Busan et al., 2009b). However, in our
previous and present investigations, we mainly concentrated on
the left hemisphere of subjects using their right hand, considering
that this should allow to individuate the better representation of
neural circuits for reaching (see above).

By stimulating medial parieto-occipital, parietal and premo-
tor regions with TMS, we have previously identified a discrete
network of regions that were involved in the preparation of reach-
ing movements (Busan et al., 2009a,c). Specifically, at the start of
preparation, we induced a facilitation in reaction time (RT) in
a medial parieto-occipital region near the parieto-occipital sul-
cus, independently of the use of foveal or peripheral vision, and
independently of the target position (however, strongest effects
were observed for foveal vision and central reaching). Moreover,
the stimulation of a region close to the posterior parietal cortex
resulted in slower RT when TMS was delivered at about half of the
preparatory process, affecting only central reaching. This same
region was facilitated (showing faster reaction times) when stim-
ulating at the start of reaching preparation. This was explained
by the state-dependent theory of TMS (Silvanto and Muggleton,
2008): the TMS effect may strongly depend on the excitabil-
ity of the stimulated region. Referring to our data, TMS could
“pre-activate” cortical regions at the start of the preparatory pro-
cess before their effective involvement in the stream, facilitating
their intervention. In contrast, when cortical regions are already
involved in the task, the adjunction of “neural noise” (Miniussi
et al., 2010) may interfere with their correct functioning and,
consequently, a slower elaboration of information may result.

When stimulating at about half of the mean RT in a more
anterior left parietal region (around the intraparietal sulcus), we
were able to induce an additional shortening of RT, facilitating the
preparation of reaching (Busan et al., 2009a). Moreover, we were
able to evoke a similar effect stimulating the left premotor dorsal
cortex, in the same time window, suggesting a parallel processing
of information in these cortical regions (Busan et al., 2009a).

We have now extended the mapping of cortical areas possi-
bly involved in preparing visually-guided reaching movements.
We tested whether the application of TMS to regions more lat-
erally located in comparison to previous ones will affect the
reaching movement preparation. Occipital, parietal and premo-
tor cortices were stimulated. Negative results would have implied
that the preparation of natural reaching is strictly related to
structures in the superior parietal lobule (SPL). This should
support the hypotheses of a “dorso-medial” stream that is prefer-
entially involved in reaching movements, classically opposed to a
“dorso-lateral” stream, possibly more devoted to grasping and/or
reach-to-grasp movements (Jeannerod et al., 1995; Davare et al.,
2006, 2010; Koch et al., 2010). On the contrary, if TMS would
have elicited any effect, this would suggest a wider extent of the
stream and a role for some of its more lateral regions in the prepa-
ration of reaching (Koch et al., 2008; Vesia et al., 2008, 2010;
Reichenbach et al., 2011).

We also were interested in understanding the relations among
cortical regions possibly involved in the preparation of reach-
ing. Using a TMS/Electroencephalography (EEG) co-registration
approach, we individuated an ensemble of areas recruited by

stimulation of the left parietal cortex (putatively around the intra-
parietal sulcus) that comprises areas of the temporo-occipital
regions (i.e., the ventral stream; Zanon et al., 2010). This con-
firms an interchange of information between dorsal and ventral
streams, and that they are not segregated systems (e.g., Schenk
and Milner, 2006; Borra et al., 2008), adding information about
the temporal dynamics of this activity.

We also wished to further characterize the temporal dynamics
of activation elicited by stimulation of the previously investi-
gated region (Zanon et al., 2010), thus we used a TMS/EEG
co-registration approach replicating that experiment, but adopt-
ing different analyses. Slightly different, but compatible findings
were expected that would strengthen the previous conclusions.

A better understanding of the circuitry involved in the prepa-
ration of reaching is important for practical purposes such as,
for example, the implementation of rehabilitative protocols or
prosthetic devices. Moreover, the understanding of the organi-
zation and physiology of response inhibition could be helped by
the knowledge of the physiology and organization of unrestrained
reaching movements.

MATERIALS AND METHODS
BEHAVIORAL TMS STUDY
Subjects
A total of 58 healthy subjects underwent TMS over different cor-
tical regions, as reported in Table 1. Subjects were right-handed
(Edinburgh Inventory; Oldfield, 1971). Participants gave writ-
ten informed consent after receiving information about TMS,
in compliance with the Declaration of Helsinki and the Ethics
Committee of the University of Trieste. Participants could leave
the study at any time, although all completed the experiments.
These statements apply also to TMS/EEG procedures.

Cortical stimulation
TMS was delivered over three brain regions of the left hemisphere:
five scalp locations were in parietal cortex, four in premotor cor-
tex, and one in parieto-occipital cortex. For each location, TMS
was delivered at three different times during preparation of reach-
ing: 25% of mean reaction time (m-RT), 50% of m-RT, and 75%
of m-RT (Table 1).

TMS (Medtronic MagPro R30) was delivered through a figure-
of-eight coil (diameter of each wing about 7 cm), oriented tan-
gentially to the scalp (single pulse stimulation; biphasic waves;
pulse duration: 280 µs). The coil was secured on the scalp by
hand and position was checked and readjusted if necessary. The
coil was maintained with a 45◦ orientation with respect to the
inter-hemispheric fissure with the handle pointing downward and
backward.

Subject’s heads were not restrained, although participants were
asked to maintain a stable position for the entire experiment. The
stimulation coil was maintained in position even when no TMS
was delivered.

Stimulated scalp positions, were determined according to an
adapted EEG coordinate system (e.g., Herwig et al., 2003; Jurcak
et al., 2007) and using a probabilistic method (Steinsträter et al.,
2002; http://www.neuro03.uni-muenster.de/ger/t2tconv/). Points
of stimulation were marked on a cap. Stimulated points with the
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Table 1 | Stimulated areas and subjects recruited for the behavioral experiments.

Stimulated cortical region Time of stimulation Subjects

(left hemisphere) (% of m-RT)
N males/females Age range Mean age/standard

deviation

Lateral parieto-occipital cortex 25 13 8/5 20–29 23.4/3.0

Lateral parieto-occipital cortex 50 and 75 10 6/4 20–27 24.8/3.1

and lateral premotor cortex

Inferior parietal lobule 25 9 5/4 20–30 23.9/2.8

Inferior parietal lobule 50 10 3/7 22–31 25.5/3.1

Inferior parietal lobule 75 16 9/7 22–46 25.5/3.5

Lateral premotor cortex 25 10 6/4 20–27 24.8/3.1

The time of stimulation with respect to the onset of movements is also reported. The same 10 subjects participated in premotor cortex and parieto-occipital (with

TMS at 50% and 75% of m-RT) experiments.

underlying main sulci are shown in Figure 1. In each experiment,
scalp locations were randomly stimulated in blocks.

Pre-experimental procedures
Before each experiment, the best point activating the right hand
first dorsal interosseous muscle (FDI) was determined and the
resting motor threshold (RMT) was the stimulus intensity trig-
gering at least a 50 µV response on electromyography (EMG;
band pass filtering 20–2000 Hz) in half of stimulations. Surface
Ag/AgCl electrodes were used (tendon-belly montage). Intensity
of TMS was then set at 120% RMT. When stimulating premotor
areas, the intensity of TMS was 110% RMT to limit current diffu-
sion to primary motor cortex. Before the experiment, stimulation
points in premotor cortex were evaluated for the possibility that
stimulation led to muscular responses on hand/tongue muscles by
EMG. When a muscular response was evident, the point of stim-
ulation was slightly moved anteriorly until muscular response
was no longer evident. Clearly, these procedures could make the
individuation of premotor cortex uncertain, but we preferred
to minimize contamination from neighboring neural structures,
such as the motor cortex.

Experimental setting
During experiments, each subject was seated at a table. He/she
was asked to place his/her right hand on a sensor light placed
5 cm away from his/her chest. The sensor light was connected
to an impedance detector allowing measurements of the RT (the
time elapsed from the go-signal to movement onset). A metal-
lic grid was placed over the table, covering three light emitting
diodes (LEDs) positioned at the center, right, and left at about
35 cm from subjects. LEDs were covered by a white sheet and were
visible when illuminated only. LEDs to the right and left of sub-
jects were positioned at 40◦ from the central one. LED lighting
was the go-signal and the subject was asked to move the hand
from the sensor, toward the grid to reach the LED. A cross drawn
along the midline of the grid was used to maintain steady fixa-
tion during the experiment. Subject reached targets on the left
and the right using peripheral vision, while the central target was
reached using foveal vision. This requirement forced the inhibi-
tion of saccadic movements toward the target when it was lateral.

However, this was necessary to investigate the effect of peripheral
vision in the preparation of reaching. Arm and eye movements
were recorded with a digital video camera (Sony DCR-SR30E)
to discard incorrect trials. Timing of TMS delivery and all events
were controlled by a PCMCIA acquisition board (NI-DAQ 6024E,
National Instruments, Texas, USA) allowing RT recording. Before
experiments, subjects performed about 20 reaching trials with
targets distributed to the center, right, and left to measure their
m-RT.

At the beginning of each trial, subjects focused their atten-
tion on the cross. They maintained their right hand on the light
sensor before the LED was lit. This signaled the subject to move
as soon as possible, maintaining steady central fixation. Subjects
performed 42 randomized trials for each stimulated point: 21 tri-
als with and 21 without TMS (TMS and NO-TMS conditions; 14
trials for every target location, 7 with and 7 without TMS) for each
point and for each TMS condition (25%, 50%, 75% of m-RT). If,
after the execution of a block, the m-RT was reduced more than
20% (due to implicit learning or familiarization with apparatus),
a new m-RT was measured considering the last NO-TMS trials.

Data treatment and statistical analysis
TV recordings were analyzed off-line, excluding trials where eyes
did not remain on the central cross for the entire trial duration.
To avoid the influence of inadequate attention, trials with an RT
longer than 700 msec or shorter than 100 msec were excluded.
Trials were discarded when trajectory corrections were made.
Data that were beyond two standard deviations with respect to the
mean of the condition were discarded. Statistical analysis on RT
was conducted with repeated measures ANOVA (see the “Results”
section). A p < 0.05 was considered as the significant threshold.
When interactions among main effects were significant, further
analyses were conducted to explore these effects (see the “Results”
section). The normality of data was also checked.

Control experiments
Past and present experiments detected different effects due
to methodological issues, also in relation to the TMS state-
dependent theory (Silvanto and Muggleton, 2008). Thus, we
replicated part of previous experiments (see Busan et al., 2009c)
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FIGURE 1 | Location of points of stimulation on the scalp and

previous results. (A) Schematic drawing of the scalp showing points
of stimulation in previous investigations (black, yellow and red circles;
Busan et al., 2009a,c) and the present work (black circles with letters).
Positions of selected scalp EEG electrodes are also reported together

with an outline of main sulci. Point A corresponds to a parieto-occipital
lateral position, points B-F are positioned over the putative inferior
parietal lobule, while points G-J are positioned over the putative premotor
cortex. (B) Table of stimulated points and related locations on
the scalp.

in which a slightly different setting was used. In those experi-
ments, subjects reached a solid target: the go-signal was given
with eyes closed, so as not to see the positioning of the target
itself. Thus, a “double” RT was registered, composed of the time
needed to open the eyes and that required to start movements.
The stimulation of a region over medial SPL (5% of the nasion-
inion distance below Pz and 5% of the bi-auricular distance to the
left) was effective in increasing RT at 75% of the (double) m-RT.

In eight right-handed, healthy subjects (three males, five
females; age range 20–25, mean age 22.4, standard deviation –
SD- 1.5), we performed the same experiment as the previous
by applying TMS at 75% of m-RT of the (double) RT over
medial SPL.

Results were compared to those collected in a second control
experiment, where six right-handed, healthy subjects (two males,
four females; age range 22–29; mean age 23.7, SD 2.7) performed
the same task, but with open eyes and using LEDs instead of the
solid target. TMS was applied at 50% of m-RT, a time considered

as equivalent to the 75% of the (double) m-RT in previous exper-
iments. Statistical comparisons were made using Student’s t-test.
The results obtained from these settings have been qualitatively
compared to evaluate the possibility that different effects could be
observed with respect to slightly different experimental requests,
possibly sustaining the TMS state-dependent theory (Silvanto and
Muggleton, 2008).

TMS/EEG study
A TMS/EEG experiment was carried out to confirm and extend
previous findings (Zanon et al., 2010). Nine right-handed healthy
subjects (five males and four females, age range 20–26 years, mean
age 23.9 years, SD 2.1) participated in these experiments. Subjects
were seated with closed eyes for the duration of blocks to reduce
ocular artifacts.

TMS apparatus, coil orientation, protocols, instrumentations
and data acquisition procedures were the same as those described
in Zanon et al. (2010). Stimuli were delivered on the left parietal
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cortex on the same scalp location stimulated previously (Zanon
et al., 2010). It corresponded to a region putatively involved in
reaching preparation (Busan et al., 2009a).

EEG and data analysis
EEG traces were recorded and treated as in Zanon et al. (2010).
For data analysis, an average of 95.7 (SD 15.3) epochs was consid-
ered for real TMS and 89.7 (SD 15.3) for sham. Part of the TMS
artifact as well as all the other remaining artifacts were eliminated
as much as possible using EEGLAB (Delorme and Makeig, 2004).
The first 20 msec prior to the delivery of stimulations and 35 msec
after them were deleted. Independent component analysis (Jung
et al., 2000) allowed for elimination of artifacts (e.g., those related
to the slow decay/recovery after TMS).

Epochs were then averaged to obtain real and sham TMS
evoked potentials (TEPs). Considering the remaining TMS arti-
fact that could influence the analyses, a “linear detrend” function
was applied when needed, generally in a time between 35 and
300 msec after the delivery of stimuli. Finally, averaged real and
sham TEPs were re-referenced (average reference).

sLORETA (standardized low resolution brain electromagnetic
tomography; Pascual-Marqui, 2002) was used to compute the
cortical three-dimensional distribution of neuronal activity com-
paring real and sham TEPs. sLORETA is a standardized discrete,
three-dimensional distributed, linear, minimum norm inverse
solution (Pascual-Marqui, 2002). Computations were made in
a realistic head model (Fuchs et al., 2002) using the MNI152
template (Mazziotta et al., 2001), with three-dimensional space
solution restricted to cortical gray matter, as determined by the
probabilistic Talairach atlas (Lancaster et al., 2000), and with elec-
trode positions superimposed on the MNI152 scalp (Oostenveld
and Praamstra, 2001; Jurcak et al., 2007). The intracerebral vol-
ume is partitioned in 6239 voxels at 5 mm spatial resolution.
Anatomical labels such as Brodmann areas are also reported using
MNI space, with corrections to Talairach space (Brett et al., 2002).

In the present work, sLORETA was used to perform a voxel-by-
voxel within-subjects comparison of real vs. sham TMS induced
current density distribution in the brain. Significant differences
in EEG source maps were assessed with non-parametric statistical
analysis (Statistical non-Parametric Mapping: SnPM; Nichols and
Holmes, 2002), as previously described (Zanon et al., 2010).

We reduced the localization error by applying regularization
in the source reconstruction. We considered the mean signal-to-
noise ratio of averaged ERPs, for each subject in every condition,
from 35 to 300 msec after delivery of the stimulus with respect to
baseline.

After reconstructing the EEG cortical sources distribution for
both real and sham TMS conditions, analyses were conducted
considering single time frames in a time ranging from 35 to
300 msec after stimulation. Statistics were implemented also con-
sidering the mean neural activity in time windows individuated
by visual inspection of TEPs. The following comparisons were
implemented: from 35 to 60 msec, from 60 to 130 msec, from
130 to 245 msec, and from 245 to 300 msec. Significance was
set at p < 0.05, correcting for multiple comparisons. SnPM in
sLORETA allowed for correction of multiple comparisons even
with respect to all voxels and all time samples.

RESULTS
BEHAVIORAL TMS STUDY
We considered the main effects and interactions among TMS
(yes/no), location of stimulation on the scalp (one, four, or five
positions), target position in space (central, left, and right) with
repeated measures ANOVA. We conducted analyses for each tim-
ing of TMS delivery. Student’s t-test (Bonferroni corrected) was
used to characterize significant findings. When a three-way inter-
action was significant, the statistical model was investigated by
two-way interactions and then with a Student’s t-test (Bonferroni
corrected). Results obtained for all conditions (Figure 1) are sum-
marized in Table 2. We observed that an effect related to target
position was always evident (parieto-occipital cortex: 25% m-
RT: p = 0.043; 50% m-RT: p = 0.012; 75% m-RT: p = 0.013;
parietal cortex: always p < 0.009; premotor cortex: always p <

0.009), mainly indicating that subjects had longer RTs for move-
ments toward the left targets. Moreover, TMS always resulted in
faster RT when stimulating at 25% of m-RT (TMS main factor,
independently of target position, always p < 0.009).

When considering the premotor cortex, we observed an inter-
action of TMS vs. location of stimulation at 25% of m-RT (p =
0.004). However, subsequent analyses showed the presence of
significant effects on all stimulated points (point G: p < 0.009;
point H: p < 0.009; point I: p < 0.009; point J: p < 0.009 in
Figure 1). Due to the wide distribution of effective points of stim-
ulation, we considered these results as unspecific effects, likely
confirming that the facilitating effect caused by TMS when stim-
ulating at 25% of m-RT was not related to a genuine effect (e.g.,
Sawaki et al., 1999). All remaining comparisons never reached
significance.

CONTROL EXPERIMENTS
Two control experiments were performed. In the first, we repli-
cated the original result of slowed RT (TMS mean reaction time:
690.25, SD 101.5; no-TMS mean reaction time: 652.8, SD 109.2;
p = 0.04) when stimulating medial left posterior parietal cor-
tex using the original experimental setting (Busan et al., 2009c),
reaching toward the center. We performed a second experiment
where subjects were required to keep their eyes open. In this
instance we did not replicate findings of the previous experiment,
and no significant differences were evident between TMS and no-
TMS when reaching toward the center with foveal observation
(TMS mean reaction time: 309.0, SD 33.8; no-TMS mean reaction
time: 312.1, SD 30.0; p = 0.60).

TMS/EEG STUDY
ERP description and sLORETA
Real and sham TEPs showed positive and negative deflections
(see, for example, Paus et al., 2001; Bonato et al., 2006).
Specifically, when Cz electrode was considered, we observed four
peaks (Figure 2) during real TMS: (i) a negative component
(N45; mean amplitude −4.2 microvolts, SD 3.0; mean latency
44.8 msec, SD 2.4), (ii) a positive one (P65; mean amplitude 1.7
microvolts, SD 1.5; mean latency 63.2 msec, SD 5.2), followed by
(iii) a negative one (N95; mean amplitude −6.6 microvolts, SD
2.1; mean latency 95.5 msec, SD 11.7), and, finally, (iv) a pos-
itive one (P165; mean amplitude 7.2 microvolts, SD 2.3; mean
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Table 2 | Reaction times observed in behavioral experiments.

Points Target location 25% of m-RT 50% of m-RT 75% of m-RT

TMS NO-TMS TMS NO-TMS TMS NO-TMS

A Central 287.6 (39.6) 301.1 (39.6) 286.6 (24.9) 293.2 (25.9) 296.0 (32.6) 290.3 (29.3)

Left 292.9 (47.9) 318.6 (43.0) 298.8 (25.0) 305.2 (30.3) 303.1 (22.2) 309.5 (27.6)

Right 284.5 (34.1) 301.7 (39.8) 288.1 (31.5) 287.2 (30.4) 292.2 (23.8) 290.7 (22.8)

B Central 290.2 (39.5) 304.3 (40.7) 348.4 (64.3) 345.0 (79.8) 309.6 (35.9) 310.8 (34.9)

Left 327.0 (56.6) 341.4 (59.1) 382.2 (69.7) 391.1 (68.3) 333.5 (51.4) 336.6 (49.4)

Right 284.8 (38.7) 296.4 (41.3) 328.9 (58.2) 339.2 (67.9) 299.9 (39.4) 302.9 (38.9)

C Central 298.2 (46.4) 309.2 (49.2) 338.1 (54.1) 342.4 (58.4) 308.9 (40.6) 308.0 (39.6)

Left 314.4 (62.2) 346.6 (66.1) 380.7 (61.7) 374.1 (63.3) 338.1 (60.6) 334.4 (60.4)

Right 279.8 (36.5) 294.7 (42.1) 323.9 (40.4) 330.1 (49.5) 306.4 (40.9) 302.7 (43.5)

D Central 290.9 (42.0) 308.7 (43.5) 349.0 (56.6) 351.4 (52.6) 314.7 (45.2) 311.7 (46.7)

Left 308.5 (66.6) 333.5 (68.9) 389.0 (71.6) 387.7 (65.2) 340.4 (58.5) 343.7 (62.3)

Right 287.9 (44.5) 299.5 (37.3) 329.4 (53.5) 339.3 (52.7) 311.2 (44.5) 312.9 (40.3)

E Central 292.4 (42.3) 305.5 (43.7) 348.2 (49.9) 342.2 (57.0) 316.5 (45.9) 324.7 (52.4)

Left 323.4 (72.7) 346.5 (63.8) 389.2 (61.1) 383.6 (64.0) 344.4 (62.9) 350.3 (62.6)

Right 277.0 (38.2) 298.2 (40.3) 327.5 (44.7) 329.9 (49.3) 308.4 (43.5) 307.7 (41.3)

F Central 292.3 (46.9) 305.8 (42.6) 359.9 (61.7) 369.1 (58.8) 312.2 (44.2) 313.0 (40.7)

Left 321.3 (62.7) 338.8 (65.2) 395.6 (72.2) 400.2 (81.6) 347.3 (59.6) 341.7 (62.0)

Right 287.3 (39.8) 294.7 (38.4) 340.7 (56.9) 352.2 (59.3) 300.1 (36.8) 305.7 (37.5)

G Central 267.3 (22.4) 293.8 (21.7) 289.3 (22.6) 291.5 (23.0) 292.5 (27.7) 291.6 (35.6)

Left 273.7 (12.4) 305.6 (26.2) 305.2 (21.1) 307.4 (28.9) 310.0 (25.6) 303.4 (34.4)

Right 267.8 (21.9) 297.4 (20.1) 282.5 (20.2) 292.3 (29.9) 292.7 (22.1) 287.9 (29.7)

H Central 270.8 (21.1) 285.7 (24.5) 296.7 (17.4) 289.6 (21.1) 283.4 (21.2) 286.8 (31.1)

Left 288.7 (27.1) 303.1 (27.8) 301.9 (15.8) 313.8 (27.8) 297.9 (22.7) 300.6 (26.1)

Right 275.8 (25.5) 286.0 (27.2) 278.7 (23.6) 286.2 (23.5) 283.8 (20.4) 285.9 (24.7)

I Central 278.9 (16.7) 297.1 (18.2) 292.2 (27.4) 293.7 (25.9) 290.8 (20.2) 288.5 (26.4)

Left 287.1 (22.1) 304.3 (25.9) 296.4 (29.8) 306.8 (32.7) 300.3 (30.5) 303.7 (26.7)

Right 278.9 (25.8) 299.5 (26.5) 289.6 (27.8) 287.1 (25.2) 290.9 (22.4) 290.5 (29.1)

J Central 272.2 (22.3) 294.5 (21.3) 288.7 (18.7) 292.1 (21.4) 288.3 (25.7) 286.3 (33.0)

Left 285.7 (30.6) 313.6 (25.7) 309.8 (30.1) 312.8 (23.0) 309.0 (28.4) 301.1 (27.0)

Right 267.9 (21.4) 293.1 (30.4) 287.3 (27.0) 293.4 (26.8) 292.9 (26.4) 284.2 (24.6)

Mean of reaction times (SD in brackets) obtained for parieto-occipital (point A), parietal (points B–F), and premotor (points G–J) cortices.

latency 161.9 msec, SD 15.3). Sham TEPs showed similar deflec-
tions with reduced amplitudes compared to real TMS (Figure 2).
The acoustic contamination was evident (Nikouline et al., 1999)
in both conditions.

Time frame by time frame comparison of the entire time
window showed a significant (p < 0.05) difference between the
real and sham TMS in the time ranges between 116–126 msec,
134–146 msec, and at about 190 msec after the delivery of stimuli.

In the first time range (116–126 msec), we observed significant
voxels in the left postcentral gyrus, left inferior parietal lobule
(IPL), and right motor regions. In the same interval, but with
a slight delay, further significant voxels were also evident in the
right cuneus, right middle occipital gyrus, right lingual gyrus,
right precuneus, right SPL, right IPL, as well as in the right angu-
lar gyrus. The cingulate gyrus and the posterior cingulate also
showed significant voxels in this time window.

In the second time range (134–146 msec) we observed sig-
nificant voxels in the right SPL, right IPL, right supramarginal
gyrus, right postcentral gyrus, precuneus and sub-gyral. Finally,

at 190 msec after TMS we observed significant voxels in the left
superior temporal gyrus and supramarginal gyrus.

Maximal peaks of activation and number of voxels activated
for each significant time frame are reported in Table 3. The main
patterns of activations are shown in Figure 3.

We also took into consideration the mean activation across
the overall four time-windows of interest (Figure 4). In this case,
significance was p < 0.0125. The first time window (from 35 to
60 msec) did not reach the threshold for significance, while it was
reached in the second time window (60–130 msec): we observed
significant voxels in the contralateral posterior regions (mainly in
the cuneus and precuneus –bilaterally-, IPL and SPL, the middle
occipital gyrus, the lingual gyrus –bilaterally-, the cingulate gyrus,
and posterior cingulate –bilaterally). Significant voxels were also
evident in the right inferior, middle, and superior temporal gyrus.
Finally, we observed significant voxels in the left and right supe-
rior, middle and medial frontal gyrus, right inferior frontal gyrus,
left and right precentral gyrus, right postcentral gyrus, and left
sub-gyral.
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FIGURE 2 | Real TMS and sham TMS evoked potentials in 9 healthy

subjects. (A) Grand-average of real TMS evoked potentials ranging from
100 msec before to 300 msec after the stimulation, showing all recorded
electrodes. Real TMS evoked potentials are superimposed on sham-evoked
potentials. Site of stimulation over the parietal cortex is also shown.
(B) Grand-average of evoked potentials recorded at the Cz electrode,
showing the main deflections described in the text.

The third time window (130–245 msec) showed a pattern of
significant voxels that comprised the right precentral and post-
central gyrus, right inferior frontal gyrus, and the left medial
frontal gyrus. Posteriorly, we observed significant voxels in the
right and left fusiform gyrus, left uncus, left and right parahip-
pocampal gyrus, right cuneus and precuneus, right posterior
cingulate, right lingual gyrus and right IPL. Finally, significant
propagation was seen also in the left and right inferior temporal
gyrus and the right insula.

The last window, ranging from 245 to 300 msec, showed acti-
vations in the right postcentral gyrus and left superior temporal
gyrus. Results are summarized in Table 4 and Figure 4.

DISCUSSION
In the present investigation, we report findings obtained by stim-
ulating cortical areas along a “dorso-lateral” stream in the left

hemisphere in healthy right-handed people during the prepara-
tion of visually-guided reaching movements performed with the
dominant hand. Lateral parietal and premotor regions resulted
not to be strictly involved in the preparation of visually-guided
reaching as measured by the present protocol. This confirms that
the neural network for preparation of reaching is quite localized,
as already suggested by our previous works (Busan et al., 2009a,c).

The following discussion will focus on the parietal cortex,
considering that our previous results on dorsal premotor cortex
(Busan et al., 2009a) could be related to non-specific effects, even
if we are well aware that the premotor cortex plays a role in the
preparation of motor responses and in reaching (e.g., Prado et al.,
2005; Pesaran et al., 2006; Batista et al., 2007; Hoshi and Tanji,
2007; Beurze et al., 2010).

SEGREGATED SYSTEMS FOR THE PREPARATION OF REACHING
MOVEMENTS?
The present findings suggest that the neural network herein
stimulated is not strongly involved in visually-guided reaching
movements. Our previous studies (Busan et al., 2009a,c) showed
the presence of a discrete dorsal neural circuit starting from the
medial parieto-occipital cortex, involving the SPL near the intra-
parietal sulcus and the dorsal premotor cortex. However it should
be kept in mind that the effect of TMS could be due to the
modulation of regions simply linked to the stimulated area.

The left hemisphere was chosen for its dominance for praxis
(e.g., Goodale, 1988; Haaland and Harrington, 1989), and the
left parietal cortex involvement in arm movement planning
(Rushworth et al., 2003; Wheaton et al., 2009). SPL lesions in
the left hemisphere can result in misreaching throughout the
workspace (Perenin and Vighetto, 1988), while a right hemi-
sphere lesion may be more related with lateralized visual field
effects (Perenin and Vighetto, 1988; Battaglia-Mayer et al., 2006).
However, left parietal lesions may have effects only in the con-
tralateral visual field (Riddoch, 1935). Thus, the posterior parietal
cortex plays a pivotal role in the preparation of actions (Goodale
and Milner, 1992; Jeannerod et al., 1995; Andersen et al., 1997)
with a contralateral limb bias in more anterior parietal regions
and less evident in the parieto-occipital cortex (Busan et al.,
2009b; Vesia et al., 2010).

Our previous and present results are in agreement with lit-
erature (e.g., Kastner et al., 1998; Fattori et al., 2001, 2005;
Andersen and Buneo, 2002; Calton et al., 2002; Snyder et al., 2006;
Trillenberg et al., 2007; Ciavarro and Ambrosini, 2011; Striemer
et al., 2011) supporting a role for SPL in preparation of reach-
ing (Goodale and Milner, 2004; Buneo and Andersen, 2006). In
particular, Beurze et al. (2010) found parieto-occipital activations
related with foveal vision comparable with our results.

Striemer et al. (2011) suggested that SPL is preferentially
related to programming of actions and on-line control, while
IPL should not. The latter should be more related with select-
ing the goal and/or target of the action. They found an effect
on endpoint accuracy when using a triple pulse TMS over SPL
during the preparation of movement, while this was not observed
when stimulating IPL. They also observed a significant reduction
in RT, which might be related to unspecific effects but it might
also be a genuine result. In fact, this finding is congruent with
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Table 3 | Results from time frame by time frame sLORETA analysis.

Time of activation Maximal peak of activation Other significant Number of

(msec) voxels (BA) activated

voxels
x, y, z BA Anatomical landmark

(MNI coordinates)

116 −50, −30, 55 2 Left postcentral gyrus 40 L, 1 L, 4 R 15

118 −45, 25, 50 2 Left postcentral gyrus 1 L, 3 L, 19 R 10

120 40, −75, 40 19 Right Precuneus 2 L, 3 L, 7 R, 18 R, 30 R, 31 R, 39 R, 40 L/R 57

122 40, −75, 45 7 Right superior parietal lobule 18 R, 19 R, 23 L/R, 31 R, 39 R 45

124 −5, −15, 30 23 Left cingulate gyrus 17 R, 18 R, 19 R, 23 R, 24 L, 29 R, 30 R, 31 L/R 111

126 10, −75, 15 18 Right cuneus 7 R, 17 R, 23 R, 30 R, 31 R 109

134 20, −60, 55 7 Right precuneus / 11

136 25, −60, 60 7 Right superior parietal lobule 5 R 42

138 30, −60, 60 7 Right superior parietal lobule 5 R, 40 R 27

140 30, −55, 60 7 Right superior parietal lobule 2 R, 5 R, 40 R 44

142 30, −60, 60 7 Right superior parietal lobule 2 R, 5 R, 40 R 66

144 35, −60, 55 7 Right superior parietal lobule 5 R, 40 R 52

146 50, −45, 45 40 Right inferior parietal lobule / 23

190 −60, −60, 20 22 Left superior temporal gyrus 40 L 2

Time of activation and location of maximal peaks which were significant with analysis made on the entire window of interest (35–300 msec). The remaining

significant voxels are also reported. BA: Brodmann Areas; L = left; R = right.

our previous results (Busan et al., 2009a,c). Striemer et al. (2011)
suggested that those results might be correlated to attentional
or intentional processes rather than to motor planning. Along
these lines, we already controlled the possibility that unspecific
attention processes biased our results (Busan et al., 2009a,c), but
the possibility that they were also related to attention processes
specifically related to reaching movements cannot be ruled out.
However, these processes should be more likely related with IPL
than with SPL involvement (Rushworth et al., 2001; Desmurget
and Sirigu, 2009). Striemer et al. (2011) also suggested that an
influence of TMS on motor programming should have an impact
on motor performance in terms of movement accuracy, while an
influence on motor attention or intention (Desmurget and Sirigu,
2009) should affect RT (Striemer et al., 2009). However, Snyder
et al. (2006) demonstrated in nonhuman primates that RT could
be affected when interfering with SPL. Other studies suggested
that IPL may also have a role in programming goal directed reach-
ing, whereas the SPL and intraparietal sulcus may be more related
to on-line control of movement (Glover, 2004; Pisella et al., 2006).

Thus, our present and previous data (Busan et al., 2009a,c)
support the existence of different and partially segregated neu-
ral circuits for the implementation of different motor tasks
(Jeannerod et al., 1995). They are consistent with the suggestion
of a “dorso-medial” stream preferentially involved in reaching
movements, classically opposed to a “dorso-lateral” stream that
preferably manages reach-to-grasp and/or grasping movements
(e.g., Jeannerod et al., 1995; Burnod et al., 1999; Randerath et al.,
2010). This suggestion is supported by results obtained with dif-
ferent paradigms and settings (Desmurget et al., 2005; Prado
et al., 2005; Fernandez-Ruiz et al., 2007; Filimon et al., 2009; for a
review see Vesia et al., 2010).

However, evidence against this possibility has also been
advanced (Desmurget et al., 1996; Smeets and Brenner, 1999;

Mon-Williams and McIntosh, 2000), showing that the imple-
mentation of reaching is not so much segregated, and that wider
circuits can participate. In fact, circuits for preparation of reach-
ing may overlap with the neural requests needed for grasping or
reach-to-grasp implementation, with still more integrated mech-
anisms needed for prehension (Binkofski et al., 1998; Smeets and
Brenner, 1999; Ulloa and Bullock, 2003; Tunik et al., 2005; Rice
et al., 2006). Moreover, it should be noted that regions of the
IPL, as for example the angular or the supramarginal gyrus, have
been associated with preparation and/or on-line control of visu-
ally guided reaching (Koch et al., 2008; Vesia et al., 2008, 2010;
Reichenbach et al., 2011).

In the brain, information can be processed serially as well
as along parallel pathways (e.g., Burnod et al., 1999; Naranjo
et al., 2007; Buneo et al., 2008). Serial organization fits well
with the concept that information travels from peripheral to
complex “association” areas and then to output channels for
action. Similarly, parallel organization of cognitive processes
(Cisek and Kalaska, 2010) is supported by a series of studies
suggesting that tasks such as visuo-motor integration rely on a
network that provides concomitant activation of different corti-
cal regions (Battaglia-Mayer et al., 2006; Naranjo et al., 2007).
Our previous data (Busan et al., 2009a,c) support the vision
of a mainly serial elaboration of information in this type of
task, but also offer a suggestion toward the concept of a parallel
elaboration.

TMS/EEG results are in relation with state-dependent activ-
ity of the brain, since they were obtained in a resting condition
and closed eyes. Brain dynamics were evaluated in a basic con-
dition, usually defined as a “default mode brain state” (Raichle
et al., 2001; Raichle and Snyder, 2007; Greicius et al., 2009) where
the brain is however active. This reduced the possibility of EEG
contamination by movements or other processes.
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FIGURE 3 | Results from time frame by time frame sLORETA analysis. Representation of the main patterns of activation obtained in time frame by time
frame analysis compared to a butterfly plot showing the grand-averaged (for all subjects) evoked potentials (real TMS) for each electrode.

Concurrent TMS/EEG offers insights into how brain areas
interact during information processing (Ilmoniemi and Kicić,
2010). The present work shows propagation of activity ranged
mainly from the left somatosensory and parietal structures to
right parietal, somatosensory, motor, and more posterior activa-
tions. Deep regions of the brain, such as cingulate regions, had
significant voxels in late and discrete time windows. Finally, activ-
ity in the left temporal and parietal cortices was evident around
190 msec from the delivery of TMS. Instead, when considering
the mean neural activity in discrete time of interest, interactions
were found among the parietal cortex and, mainly, the poste-
rior regions of the brain. Moreover, significant propagations were
found in the left and right frontal regions and in post-central
areas, as well as in occipito-temporal regions, and in the right
insula.

Our previous studies (Zanon et al., 2010) suggested the pres-
ence of an interchange of information between parietal cortex
and occipito-temporal cortex at about 170 msec after TMS. An
interaction between dorsal and ventral streams has already been
proposed (e.g., Himmelbach and Karnath, 2005; Borra et al.,
2008; Makuuchi et al., 2012). Valyear and Culham (2010) showed
that tool-selective activity was related with parietal and ventral
stream activations.

Interestingly, in the present findings, we observed the acti-
vation of a neural source around 190 msec from TMS (stim-
ulating the left parietal cortex) in a ventral region in left
temporo-parietal cortex. This gives further support to previous
results regarding the possibility of an interchange of informa-
tion between the dorsal and ventral streams: this region has
been reported to have a supportive role in the elaboration, for
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FIGURE 4 | Results from discrete time window sLORETA analysis.

Representation of some of the main results obtained when considering the
mean neural activity in discrete time windows. Results are plotted compared
to the different time ranges considered, as evident from the butterfly plot

showing the grand-averaged (for all subjects) evoked potentials (real TMS) for
each electrode. Colors and letters are plotted in correspondence to the different
time windows of interest. (A) Time window from 60 to 130 msec. (B) Time
window from 130 to 245 msec. (C) Time window from 245 to 300 msec.

Table 4 | Results from discrete time windows sLORETA analysis.

Window of Maximal peak of activation Other significant Number of

activation (msec) voxels (BA) voxels activated
x, y, z (MNI coordinates) BA Anatomical landmark

35–60 N.S. N.S N.S. N.S. N.S.

60–130 15, −95, 25 19 Right cuneus 1 R, 2 R, 3 R, 4 R, 6 L/R, 7 R, 8 L/R, 9 R, 513

17 R, 18 L/R, 20 R, 21 R, 23 L/R, 29 L/R,

30 L/R, 31 L/R, 32 L, 38 R, 39 R, 40 R

130–245 60, −15, 35 4 Right precentral gyrus 1 R, 2 R, 3 R, 6 R, 9 R, 13 R, 17 R, 18 R, 280

19 L/R, 20 L/R, 23 R, 25 L, 28 L, 30 R,

31 R, 34 L, 35 L, 36 L/R, 37 L/R, 40 R

245–300 55, −30, 50 2 Right postcentral gyrus 22 L 4

Time of activation and location of maximal peaks which were significant are reported. The remaining significant voxels are also reported. BA: Brodmann Areas; L,

left; R, right; N.S. = Not Significant.

example, of object features in a cross-modal integration (Taylor
et al., 2009). Moreover, the analysis of mean neural activity con-
firmed the presence of neural activations in occipito-temporal
regions of the brain in a time window comprised between
130–245 msec, again suggesting interactions between the two
systems.

The present findings are in general agreement with pre-
vious TMS/EEG studies that assessed the temporal dynamics
underlying different tasks. For example, Massimini et al. (2005)

investigated how the activation of cortical areas was transmit-
ted to the rest of the brain during wakefulness or sleep. In
the case of aware subjects, activation in the parietal cortex was
observed about 120 msec after TMS onset. An inverse propaga-
tion from the parietal cortex to premotor regions in comparable
times was also observed. Another study showed that stimula-
tion of left posterior regions of the brain could elicit activations
of frontal areas bilaterally in the first 80 msec from the delivery
of the stimulus, depending on a series of variables such as, for
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example, stimulation intensity or stimulation angle (Casali et al.,
2010).

The present findings integrate and extend previous results
(Zanon et al., 2010), suggesting the possibility of the existence of
wide links between the parietal cortex and other brain regions,
ranging from frontal to more posterior parietal, temporal and
occipital areas (e.g., Hagmann et al., 2008; Borra and Rockland,
2011). These findings are the result of a series of possible direct
and/or indirect links among the highlighted cortical regions. The
ones discussed are only the main aspects related to the present
pattern of cortico-cortical interactions centered on the parietal
cortex, in order to guide the interpretation of behavioral results.
Further information about this topic can be found by referring to
more specific publications (e.g., Hagmann et al., 2008; Mars et al.,
2011).

PREPARATION AND INHIBITION OF MOVEMENTS
This study shed light on the neural underpinnings of visually-
guided reaching movements. The knowledge of regions involved
in reaching movement preparation is relevant also to understand
the way in which the suppression of reaches is implemented. To
this respect it has been proposed that a network composed by
the inferior frontal cortex, the subthalamic nucleus and pre-SMA
(supplementary motor area) is responsible of inhibitory control
(Aron et al., 2007a). In fact, neural substrates of suppression
have been found in SMA, pre-SMA, basal ganglia and frontal
regions (e.g., Matsuzaka and Tanji, 1996; Aron and Poldrack,
2006; Chen et al., 2010; Mirabella et al., 2012; Swann et al., 2012),
as well as in cingulate cortex, insula, prefrontal, fronto-parietal
and temporal regions (e.g., Kalaska and Crammond, 1995; Aron
et al., 2007b; Chikazoe et al., 2009; Coxon et al., 2009; Stinear
et al., 2009; Swick et al., 2011). However, evidence suggests that
the motor cortex should be the final target of inhibitory com-
mands that could be elaborated elsewhere (Coxon et al., 2006;
Mirabella et al., 2011). Furthermore it has been shown that the
parietal cortex can play a role in response stopping or inhibi-
tion (e.g., Watanabe et al., 2002; Coxon et al., 2009; Wheaton
et al., 2009) and in movement decision-related tasks (Karch et al.,
2009). Again these are structures that might also be involved
in movement control (e.g., Battaglia-Mayer et al., 2006, 2007;
Lindner et al., 2010; Ciavarro and Ambrosini, 2011). Some over-
lap between inhibition and execution of reaching is witnessed
by the fact that strategic changes in movement programming
for the very same movements under different cognitive con-
texts have been shown, requiring different degrees of control
during movement (Mirabella et al., 2008). However, Mirabella
et al. (2006) showed that the Stop/Go processes interacting in a
countermanding task are independent, but likely influenced by
a common factor when they are under the control of the same
hemisphere.

LIMITATIONS OF THE STUDY
The present study has a few limitations. The use of slightly dif-
ferent experimental settings could lead to poorly comparable
results. However, the lack of significant effects cannot be entirely
attributed to the differences adopted. Particular time windows of
stimulation or the state-dependent excitability of the cortex could

be also critical. Finally, the possibility that different regions could
intervene in different manner compared to task requests should
be kept in mind.

One of the changes we adopted in the present experiments was
to make the subject work with open rather than closed eyes. The
rationale for using a “double” RT paradigm in the previous exper-
iments (putatively, a first one from the go signal to the opening of
the eyes and a second one from the opening of the eyes to the
start of movement; Busan et al., 2009a,b,c) was in relation with
the possibility to study a real-time preparation of reaching move-
ments, avoiding that the subject knew in advance positioning of
the target. However, it is evident that the presence of a “double”
RT represents a complication. On the other hand, in the present
experimental setting, a possible effect related to the visual feed-
back of the arm cannot be completely ruled out. However, in our
previous study (Busan et al., 2009c), the evidence of a slower RT
only toward the central reaching position could make this point
less critical (e.g., Ferraina et al., 1997; Graziano et al., 2000; Buneo
and Andersen, 2006; Khan et al., 2007; Filimon et al., 2009; Beurze
et al., 2010; Bosco et al., 2010). We should also consider the pos-
sibility that different preparations of movement could be present
at the same moment in the brain (Cisek and Kalaska, 2010; Cui
and Andersen, 2011) before the go-signal, and that subjects sim-
ply selected the movement when requested (Cisek and Kalaska,
2010).

We might have not been able to apply TMS at the right
time and the possibility that some effects were undetected
in present and previous investigations remains, also in rela-
tion to the state-dependent theory (Silvanto and Muggleton,
2008). In this sense, the facilitating effects induced by TMS
could be also explained as a possible disruption of inhibitory/
controlling/competitive processes, which allowed the controlled
areas to enhance their functioning (Walsh and Pascual-Leone,
2003).

Specific limitations in the TMS/EEG experiment may also be
present. For example, TMS evokes not only responses related to
TMS, but also potentials due to acoustic and somatic stimulation.
Sham stimulation was implemented to obtain a control for acous-
tic stimulation, but an optimal control for somatic stimulation is
difficult to be obtained. Even if we tried to eliminate the majority
of artifacts with ICA (Jung et al., 2000), the possibility remains
that these and some other hidden artifacts were still present in the
collected data.

CONCLUDING REMARKS
The data herein reported contribute to further understand the
organization of movements. They are in agreement with the
suggestion that SPL is more involved in the preparation of nat-
ural reaching compared to more lateral structures. However,
TMS/EEG findings showed that parietal cortex stimulation prop-
agates toward a wide system of areas. This suggests that seg-
regation among neural systems is not restrictive, and favors
alternative hypotheses suggesting that overlap between different
neural structures is needed for the implementation of different
movements.

This evidence also represents a complementary point of view
with respect to neural organization of movement and response
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inhibition or stopping, suppression of pending actions, or the
quick change of prepared actions. In fact, the organization of
reaching and its neural machinery should be highlighted in order
to relate them to situations such as inhibition or stopping of
action.
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Stop-event-related potentials from intracranial electrodes
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stopping ongoing movements
M. Mattia 1, S. Spadacenta 2,3, L. Pavone 2, P. Quarato 2, V. Esposito2, A. Sparano 2, F. Sebastiano2,
G. Di Gennaro 2, R. Morace2, G. Cantore 2 and G. Mirabella 2,4*

1 Department of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
2 IRCCS Neuromed, Via Atinense, Pozzilli (IS), Italy
3 PhD Program in Neurophysiology, Department of Physiology and Pharmacology, University of Rome La Sapienza Piazzale Aldo Moro, Rome, Italy
4 Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro, Rome, Italy

Edited by:

Laura Ballerini, University of Trieste,
Italy

Reviewed by:

Hari S. Sharma, Uppsala University,
Sweden
Liang Guo, Massachusetts Institute
of Technology, USA

*Correspondence:

G. Mirabella, Department of
Physiology and Pharmacology
“V. Erspamer”, La Sapienza
University, Piazzale Aldo Moro 5,
00185 Rome, Italy.
e-mail: giovanni.mirabella@
uniroma1.it

In humans, the ability to withhold manual motor responses seems to rely on a
right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary
motor area and the inferior frontal gyrus (IFG). These areas should drive subthalamic
nuclei to implement movement inhibition via the hyperdirect pathway. The output of
this network is expected to influence those cortical areas underlying limb movement
preparation and initiation, i.e., premotor (PMA) and primary motor (M1) cortices.
Electroencephalographic (EEG) studies have shown an enhancement of the N200/P300
complex in the event-related potentials (ERPs) when a planned reaching movement is
successfully stopped after the presentation of an infrequent stop-signal. PMA and M1
have been suggested as possible neural sources of this ERP complex but, due to the
limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to
its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from
the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients
performing a reaching version of the countermanding task while undergoing presurgical
monitoring. We consistently found a stereotyped ERP complex on a single-trial level when
a movement was successfully cancelled. These ERPs were selectively expressed in M1,
PMA, and Brodmann’s area (BA) 9 and their onsets preceded the end of the stop process,
suggesting a causal involvement in this executive function. Such ERPs also occurred in
unsuccessful-stop (US) trials, that is, when subjects moved despite the occurrence of a
stop-signal, mostly when they had long reaction times (RTs). These findings support the
hypothesis that motor cortices are the final target of the inhibitory command elaborated
by the frontal–basal ganglia–thalamic network.

Keywords: volitional inhibition, stop signal task, countermanding task, voluntary movements,

electrocorticography (ECoG), reaching movements, event-related potentials (ERP)

INTRODUCTION
Our survival depends on our ability to maximize the chances
of achieving desired goals. Given that in the real-world events
cannot be predicted with certainty, the opportunity of execut-
ing an action needs to be continuously evaluated during the
entire period, from the instant when the initial decision whether
to act is taken to the time when motor output is generated.
In fact, during this temporal gap the environmental conditions
might have changed and thus the cost of the selected action
might turn out to be high or to be inappropriate for achieving
the selected goal (Haggard, 2008). This check might be achieved
by comparing the output of a predictive forward model with a
goal description (Wolpert and Miall, 1996) and might lead to
the suppression of the pending movement when the mismatch
between the two becomes too large, i.e., in those situations in
which a radical change of the planned motor strategy is required.

Thus, voluntary inhibition is a hinge of our behavioral flexibil-
ity. This form of inhibitory control has often been studied by
exploiting the countermanding paradigm (Logan, 1994). This
paradigm probes a subject’s ability to withhold a planned move-
ment triggered by a go signal when an infrequent stop signal
is presented after a variable delay. Starting from the behavioral
performance during the countermanding task it is possible to
yield an estimate of the duration of the suppression process
(stop-signal reaction time, SSRT; Logan and Cowan, 1984; Band
et al., 2003; Boucher et al., 2007). The SSRT is a key behav-
ioral parameter for uncovering the neural substrates of inhibi-
tion. In fact, those brain regions showing a change in activity
when a movement is produced with respect to when it is sup-
pressed, and where the onset of this shift precedes the end of the
SSRT, can be assumed to be causally related to the suppression
process.
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Several studies in humans have ascribed the inhibitory control
of manual motor actions to a network of regions, belonging to the
right hemisphere, which comprises two areas of the frontal cortex,
the inferior frontal gyrus (IFG; Aron et al., 2003, 2007; Chambers
et al., 2006) and the pre-supplementary motor area (Floden and
Stuss, 2006; Aron et al., 2007; Nachev et al., 2007). Both areas
are thought to modulate the cortical neural processes for move-
ment initiation via the hyperdirect route, passing through the
right subthalamic nucleus (STN) (Aron and Poldrack, 2006; Aron
et al., 2007). However, the picture is far from complete. Some
recent studies have suggested that both subthalamic nuclei con-
tribute to voluntary inhibition (van den Wildenberg et al., 2006;
Mirabella et al., 2012). Li et al. (2008) demonstrated that the head
of the caudate nucleus of both hemispheres have a role in move-
ment suppression, while activity of the STN would be related
to attentional monitoring of the stop signal. In addition, Brass
and Haggard (2007) showed that the left dorsal fronto-median
cortex (dFMC; BA 9) is specifically associated with endogenous
inhibition of intentional action. In this case a possible explana-
tion for this divergence comes from the fact that previous studies
focused on inhibition triggered by external stimuli rather than
inner volition (see also Mirabella, 2007).

Even though both the neural substrates of voluntary inhibi-
tion and their specific role in this executive function are still hotly
debated, it is very likely that commands generated by these brain
regions have to influence in a top-down manner those cortical
areas critically involved in limb movement preparation and ini-
tiation, i.e., M1 and PMA (Evarts, 1968; Tanji and Evarts, 1976;
Cheney and Fetz, 1980; Weinrich and Wise, 1982; Crammond
and Kalaska, 2000; Churchland et al., 2010). In fact, Coxon et al.
(2006), by applying the transcranial magnetic stimulation on M1
during the execution of a countermanding task, demonstrated
that this area is involved in movement suppression. Furthermore,
a recent study by Mirabella et al. (2011) demonstrated the exis-
tence of neurons in the dorsal PMA which exhibit a pattern of
activity compatible with the control of reaching arm movement
initiation and suppression.

Scalp EEG studies exploiting the countermanding task have
shown that successfully stopped trials are associated with an
enhancement of the N200/P300 complex in the ERPs with respect
either to unsuccessful-stop (US) trials or no-stop trials (Kok et al.,
2004; Ramautar et al., 2006; Schmajuk et al., 2006; Liotti et al.,
2007; Dimoska and Johnstone, 2008). Even though few studies
have indicated PMA and M1 as the neural source of a compo-
nent of this complex, because the spatial resolution of scalp EEG
is limited it is not yet clear which brain regions contribute to its
generation.

Swann et al. (2009) tried to overcome this limitation by
recording directly from the cortical surface of pharmaco-resistant
epileptic patients undergoing presurgical monitoring. In this
study results were provided for only two electrodes for each
patient, one located over the right IFG and the other located
over M1. Swann et al. (2009) found that responses in the beta
frequency band (13–18 Hz) at the two sites were differently mod-
ulated for successful-stop (SS) versus US trials. Thus, they con-
cluded that the stopping command is implemented in a right
IFG-basal ganglia circuit via synchronized activity in the beta

band, and finally acts upon M1. This study left a number of
unanswered questions. First of all, ERPs were not computed
and thus it was not possible to assess whether an ERP complex
associated with inhibitory control was expressed. Second, and
more importantly, as just two out of many more electrodes were
selected an overall picture of the activity changes recorded from
the sampled regions of the brain could not be drawn. In order
to provide answers to these questions we recorded the electro-
corticogram (ECoG) of five epileptic patients with a grid placed
over fronto-temporal regions. Thanks to the high spatiotempo-
ral resolution of ECoG, we aimed to identify the cortical areas
involved in inhibitory control and the timing of their activa-
tion. We found that a stereotyped ERP complex was selectively
expressed in M1, PMA, and BA 9 on a single-trial level whenever
a movement was successfully suppressed. As the ERP onset pre-
ceded the end of the SSRT, we concluded that motor cortices are
causally involved in inhibitory control, and likely they might rep-
resent the final target on which inhibitory commands exert their
action.

MATERIALS AND METHODS
PARTICIPANTS
Five right-handed subjects with intractable epilepsy, who under-
went temporary implantation of subdural electrode grids for
the localization of seizure foci prior to surgical resection, par-
ticipated in the present study. All subjects gave their informed
consent and were free to withdraw from the study at any time.
The general procedures were approved by the local Institutional
Ethics Committee (IRCCS Neuromed, Pozzilli, Italy) and were
performed in accordance with the ethical standards laid down in
the Declaration of Helsinki of 1964.

Apart from the chronic epilepsy, none of the subjects showed
major overt cognitive deficits and were functionally independent.
Thus, all patients fully understood experimenters’ instructions
and performed the task easily. Their relevant demographic, clini-
cal, neuropsychological, and neuroradiological data are reported
in Table 1.

ELECTRODES AND ECoG ACQUISITION
The implanted electrode grids (Ad-Tech Medical Corp., Racine,
WI, USA) consisted of circular (1 mm height, 4 mm diameter)
platinum–iridium contacts embedded in a thin (0.5 mm) flexible
transparent silastic plate and evenly spaced at 10 mm centers. All
patients but one had 64-contact grids; one (RO) had a 48-contact
grid. The number and placement of electrodes were determined
solely by clinical considerations.

Data acquisition relied on a 128-AC-channel Beehive
Millenium monitoring system (Grass Telefactor, West Warwick,
RI, USA), with sampling rate of 400 Hz and a bandpass filter
between 0.1 and 70 Hz. All recording contacts were referenced
to an electrode placed outside the skull (either at Fpz or on the
mastoid bones).

Exploiting the same apparatus we also recorded the elec-
tromyogram (EMG) of the flexor digitorum superficialis, the
electrocardiogram (ECG), and both eye movements and blinking
via an electro-oculogram (EOG) derived from electrodes placed
over the lateral canthus of the left eye.
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Table 1 | Clinical data of patients affected by refractory epilepsy participating in the experiment.

Age Sex Years since Education Total IQ Sizure focus Grid location MRl findings

diagnosis (years)

RO 43 M 25 13 69 Left fronto-mesial Left frontal No pathological findings

BR 39 F 11 8 95 Left temporo-mesial Left fronto-temporal Focal cortical dysplasia of the left

temporal pole

RN 25 M 20 17 103 Right temporo-mesial Right fronto-temporal No pathological findings

PF 30 M 19 13 76 Left temporo-mesial Left fronto-temporal Left mesial temporal lobe sclerosis

DA 34 F 27 8 86 Unclear Right fronto-temporal No pathological findings

For each patient sex, age, years since diagnosis, years of education, total intelligence quotient (IQ), location of the seizure focus, positioning of the grid, and clinical

findings revealed by magnetic resonance imaging (MRI) are given.

ELECTRODE LOCALIZATIONS
Subdural electrodes were localized exploiting a 3-D high-
resolution computed tomography (CT; General Electric Light
Speed Multi Slice, Milwaukee, WI, USA), made one day after
grid placement. The CT scans of the electrode array were pro-
jected onto a brain template using the “Location on Cortex”
package (Miller et al., 2007), which returns the location of
each electrode in Tailarach coordinates. Finally, Tailarach coor-
dinates were converted in the corresponding MNI (Montreal
Neurological Insitute) coordinates using the Tailarach-Client
application (Lancaster et al., 2000).

APPARATUS
Patients were lying on their beds, in front of a PC monitor (17
inch, LCD, refresh rate 75 Hz, 640 × 480 resolution) on which
visual stimuli, consisting of red circles (2.4 cd/m2) with a diam-
eter of 2.8 cm against a dark background of uniform luminance
(<0.01cd/m2), were presented. The PC monitor was equipped
with a touch screen (MicroTouch; sampling rate 200 Hz) for
touch-position monitoring. A non-commercial software pack-
age, CORTEX, was used to control stimulus presentation and
collect behavioral responses. The temporal arrangements of stim-
ulus presentation were synchronized with the monitor refresh
rate. Salient behavioral events (start of the trial, go-signal onset,
stop-signal onset, finger detach, end of trial) were sent to the
ECoG data system acquisition via TTL pulses reduced in ampli-
tude by a voltage divider and decoupled through an optoisolator
chip.

BEHAVIORAL TASKS
Patients performed a reaching version of the countermanding
task previously described (Mirabella et al., 2006, 2008, 2009).
The countermanding task consisted of a random mix of 67%
no-stop trials and 33% stop trials (Figure 1A). All trials began
with the appearance of a central cue which the subjects had to
touch with their right index finger, holding that position for a
variable period (500–800 ms). Then, in no-stop trials the cen-
tral cue disappeared and, simultaneously, a peripheral target
appeared (go-signal) 15 cm to the right or to the left of the cen-
ter of the screen. Subjects had to perform a speeded reaching
movement toward the peripheral target. In contrast, in stop tri-
als the central cue re-appeared (stop-signal) at a variable delay
(stop-signal delay; SSD) following the go-signal. In this instance

subjects were instructed to inhibit their movements, holding the
central cue for a period of 400–600 ms. SS trials were those in
which subjects withheld the movement, while US trials were those
in which they moved. Auditory feedback was given for correct
responses.

The SSD is the critical dependent variable in this paradigm
because stopping becomes increasingly difficult as it lengthens.
To allow the participants to succeed in cancelling the response in
about 50% of the stop trials, SSDs were changed using a stair-
case procedure (Levitt, 1971; Osman et al., 1990). In each stop
trial, SSD increased by three display refresh intervals (or 39.9 ms)
if in the previous stop-trial the patient succeeded in cancelling the
response. SSD decreased by the same amount of time if patients
failed. The staircase started from an SSD of 119.7 ms (9 refresh
rates), an appropriate delay suggested by pilot experiments to
quickly achieves the desired failure rate for stop trials.

We verbally informed patients about the staircase procedure
and thus we made them aware that the probability of stopping
would approximate to 50%, irrespective of whether they were
postponing their response or not. In addition we set an upper
reaction time (RT) limit for no-stop trials; whenever the RTs were
longer than 800 ms, no-stop trials were aborted.

Patients were required to complete four (three patients) or
six (two patients) blocks of 60 trials (240 or 360 trials). Resting
periods were allowed between blocks whenever requested. Before
starting the task, about 50 practice trials were given for familiar-
izing subjects with the apparatus.

BEHAVIORAL DATA ANALYSIS
For each experimental condition the corresponding SSRT was
estimated, according to the procedure described in detail in
Mirabella et al. (2009). Briefly, we exploited the so-called integra-
tion method, relying on the hypothesis of a stop process modeled
by a constantly growing state variable, the SSRT, which is the
time needed to cross a threshold value (Logan and Cowan, 1984;
Logan, 1994; Band et al., 2003). Using the so-called mid-run
estimate method (Wetherill and Levitt, 1965; Levitt, 1971), we
computed the “representative SSD” as the delay that best allows
the subject to withhold a response half of the times. This value was
calculated as follows. In each session, the sequence of SSDs dis-
played ramps of either increasing or decreasing values according
to the performance of the subject; the “representative SSD” was
estimated by averaging the values corresponding to the midpoint
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FIGURE 1 | Behavioral task and single-trial estimate of stop-ERPs.

(A) Sequence of screen displays (white boxes) and subject responses (hand
positions) during no-stop (top) and successful-stop (SS, bottom) trials of the
countermanding task. No-stop trials were randomly interspersed with stop
trials, which were 33% of the total trials. MT, movement time. See
“Materials and Methods” for further details. (B) Top: distributions of SSDs in
stop trials (red) and of RTs in no-stop trials (green). Bottom: event-related
potentials (ERPs) aligned to the go-signal. Green curve: average ERP of
“latency-matched” no-stop trials (green area in top panel), i.e., trials having
RT longer than the stop signal reaction time (SSRT, vertical purple dotted

line). Dashed red curve: ERP of a single SS trial. Solid red curve: stop-ERP for
the same SS trial resulting from the difference between dashed-red and
solid-green curves. Red vertical dotted line: stop-signal presentation. (C) Top
panel. Distributions of RTs in unsuccessful-stop (US) trials (blue) and in
no-stop trials (green, same as in panel B). Bottom panel: solid green curve:
average ERP of no-stop trial latencies matched with US trials (green area in
top panel), i.e., trials having RTs in the 100 ms interval centered around
movement onset (blue vertical dotted line) of the given US trial. Blue dashed
curve: ERP of a single US trial. Blue solid curve: stop-ERP resulting from the
difference between dashed-blue and solid-green curves.

of every second ramp. The ending time of the stop process was
calculated by integrating the RT distribution of no-stop trials
from the onset of the go-signal until the integral equaled the
corresponding observed proportion of US trials (Logan, 1994;
see Figure 1C). Finally, the SSRT estimate was computed as the
difference between the ending time of the stop process and the
“representative SSD.”

ELECTROPHYSIOLOGICAL DATA POST-PROCESSING
Electrode recordings from all patients were post-processed in
order to improve the signal-to-noise ratio and to remove possi-
ble artifacts. A cross-correlation analysis showed a significant and
non-specific correlation between acquired electrical potentials
from electrodes of the grid and the EOG. No correlation was
found with other “external” signals such as EMG, ECG, and
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trigger channels used to synchronize timing of the ECoG data
with behavioral events (see section “Apparatus”).

To remove ocular electrical artifacts, for each subject we per-
formed an independent component analysis (ICA) on a time
interval of 400 s using the FastICA toolbox for Matlab (Natick,
MA, USA; Hyvärinen and Oja, 1997; Hyvärinen, 1999). The
independent component (IC) most closely correlated with every
ECoG channel was the one best representing the EOG. Hence,
we “cleaned” ECoG by subtracting this IC from the originally
acquired signals.

Artifact-free ECoG potentials were smoothed in time by low-
pass filtering time series with a moving average on a sliding
window of 50 ms. This window size was a good compromise
between improvements in signal-to-noise ratio and lack of tem-
poral resolution.

Finally, we performed spatial filtering to remove possible non-
specific global fluctuations in electrical potentials across nearby
electrodes. We applied a variant of the surface Laplacian pro-
posed by Hjorth (1975), recently adapted to high-density EEG
data processing (Cimenser et al., 2011). Following this procedure
we computed, as local reference for each ECoG electrode of the
grid, the average voltage of the closest neighboring ECoG chan-
nels. Electric potential Vi(t) at location i and time t was detrended
as follows:

Ji(t) = Vi(t) − 1

M

M∑

m = 1

Vm
i (t)

where the sum was over the four nearest neighbors of the given
electrode. On the grid border, where fewer than four neighbors
were present, only the two symmetric nearby electrodes were
taken into account. The following ERP analysis relied only on
filtered voltages Ji(t), to which we simply referred as electrical
potentials or electrode voltages.

ESTIMATE OF STOP-ERPs
In this paper we adopted a novel approach to isolate the elec-
trophysiological activity related to movement suppression, i.e.,
we tried to extract it at the single-trial level exploiting the fol-
lowing approach. In each SS trial the inhibitory activity overlaps
with two other processes, (1) the perceptual elaboration of the
go-signal and (2) movement planning. In order to subtract these

two components and to detect the countermanding-related activ-
ity, we contrasted the neural responses during a single SS trial
with that recorded in the so-called “latency-matched” no-stop tri-
als, i.e., those trials whose RTs were longer than the sum of SSD
and SSRT calculated from the same data (see Hanes et al., 1998
and Mirabella et al., 2011). These are the trials in which, given
the length of the SSRT, the movement would have been canceled
if the stop signal had been presented at the given SSD (repre-
sented by the subset of trials under the green area in the top panel
of Figure 1B). We first computed the average ERPs of latency-
matched no-stop trials (Figure 1B, bottom panel), centered on
the go-signal, and we obtained a “stop-ERP” (dashed line) by
subtracting it from the ERP measured during a single SS trial
(continuous line).

Using the same method we also computed the US ERPs by
subtracting the ERP in a given US trials from the average ERP
computed from the subset of no-stop trials corresponding to a
100 ms RT interval centered around the time of movement onset
of the US trial (Figure 1C, green area of the top panel). These are
the trials in which the movement would not have been canceled
if the stop-signal had been presented. This comparison reveals
whether a stop-ERP was present even though the subject made
a mistake.

RESULTS
BEHAVIORAL RESULTS
Behavioral data relevant to the performance of the countermand-
ing task are reported in Table 2. The average SSRT was compatible
with that measured in epileptic patients tested in similar condi-
tions (Swann et al., 2009). Some subjects (PF and BR) showed
a lower stopping rate than desired; however, they performed the
task sufficiently well. Furthermore, for each subject we found that
in all occurrences the distributions of the RTs of US trials were
significantly shorter than those of no-stop trials (Kolmogorov–
Smirnov test, P < 0.05), as required by the race model (Logan
and Cowan, 1984; Logan, 1994; see also Boucher et al., 2007) in
order to obtain a reliable estimate of the SSRT.

SINGLE-TRIAL DETECTION OF STOP-ERP IN SS TRIALS
Neural activity correlated with inhibition processes might be
effectively coupled with a machine decoder or an automated
controller only if it fulfills a minimum requirement: it has to be

Table 2 | Behavioral data describing the performance in the countermanding task.

SSRT (ms) Representative P(failure) Mean RTs (ms) of Mean RTs (ms) of

SSD (ms) no-stop trials (±SEM) US trials (±SEM)

RO 258.9 256 0.45 580.7 (±19.7) 445.9 (±19.4)

BR 260 119.8 0.40 614.0 (±25.8) 436.8 (±34.3)

RN 241.2 483.6 0.54 390.6 (±9.7) 336.9 (±7.65)

PF 195.38 483.6 0.39 741.3 (±23) 518.0 (±39.9)

DA 271.8 185.2 0.48 511.2 (±16.4) 380.3 (±7.1)

Mean 245.5 ± 13.4 309.7 ± 78.3 0.45 ± 0.03 567.6 (±57.9) 423.6 (±30.8)

For each patient the duration of the suppression process (the stop-signal reaction time, SSRT), the representative stop signal delay (SSD), the probability of cancelling

a response [P(failure)], the mean reaction times (RTs) of no-stop and unsuccessful-stop trials are reported. The average values (±SEM) are shown in the bottom

row.
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detectable at the single-trial level with high enough time reso-
lution. From a visual inspection of average ERPs in stop trials
aligned to the stop-signal appearance, we found evidence of a
characteristic pattern of delayed deflections of electrode voltages.
To find out whether such average ERP complexes were observable
in single trials we performed a correlation analysis comparing
the ERPs from each couple of SS trials (see Figure 2A). As stop-
ERPs are likely to occur at different times in different trials, we
measured the Pearson correlation coefficient ρ between ERPs

artificially shifted in time (Figure 2A, right). Exploiting this pro-
cedure we aimed to identify the time shift which would give
the maximum ρ (Figure 2A, left). We considered only ERPs in
a time interval between 100 and 350 ms following stop-signals.
For each grid electrode we computed the correlation between all
possible couples of SS trials. The matrix of maximum ρ values
between couples of SS trials from the same example channels
(Figure 2B) clearly shows that in most instances a high value
of ρ (reddish pixels) was found. This indicates that the same,

FIGURE 2 | Stop-ERP detection at single-trial level for successful-stop

(SS) trials. (A) Pearson correlation (ρ, leftmost panel) between two
stop-ERPs derived from the two example SS trials, represented in the
rightmost panel (dark and light gray curves), obtained when they are
artificially and progressively shifted in time. The optimal shift is the time shift
for obtaining the maximum positive correlation (45 ms). (B) Matrix of
maximal ρs obtained at the optimal shifts between all SS trials for one grid
contact. Rightmost panel, medians of the maximal ρs for each SS trial
(represented in a row of the left matrix). Vertical dashed line, median of the
median ρs across SS trials. Vertical dotted line, lower threshold for
selected SS trials (black diamonds represent SS trials with median correlation
above threshold, gray diamonds represent those below threshold; see Result

section for details). (C) Matrix of optimal shifts between SS trials
leading to the maximal correlation. Optimal shifts ranged from −60
to +60 ms. (D) Top panel: raster plot of stop-ERPs in SS trials from the same
example recording. Red dotted line, stop-signal occurrence.
Purple dotted line, end of the SSRT. Diamonds, absolute time shift
related to the SSRT for each SS trial estimated from the time shift matrix of
panel C. Bottom panel: realignment of stop-ERPs with respect to the
absolute time shift of SS trials with a median correlation above the threshold
(n = 24 of 33). (E) Average stop-ERP obtained from trials of top and bottom
raster plots of panel D. Gray areas, time intervals at which the realigned
stop-ERP was significantly different from 0 (Wilcoxon signed-rank test,
P < 0.01).
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or a very similar, ERP complex was present in most SS tri-
als. In order to detect in which trials the stop-ERPs emerged
more neatly, we computed the median of the maximum ρ for
each SS trial (Figure 2B, right). We discarded those trials with
median values lower than a threshold (dotted vertical line) as
they did not show the typical stop-ERP complex (gray dia-
monds). The threshold value was computed as the median of
the medians (dashed vertical line) minus three times the stan-
dard deviation (SD) of the 50% larger medians (black diamonds
on the right of dashed line). Figure 2C represents the matrix
of the “optimal” time shifts producing the maximum ρ matrix.
From this matrix we extracted the “absolute” time shift for each
trial, that is, the amount of time shift needed to realign the
voltage trace in order to obtain the maximum ρ. The array of
absolute time shifts X was carried out by inverting the linear
equation A X = B, where values of B were the optimal shifts
shown in Figure 2C and A was a matrix of 0, 1, and −1 to
express optimal shifts as differences between absolute time shifts.
Because such a linear system is over-determined (A was not a
square matrix) its solution is the best one in the least-squares
sense.

In the top panel of Figure 2D, voltage changes with time for
each SS trial are reported with respect to the end of the SSRT
in a raster plot. In each trial the absolute time shift is indi-
cated by a diamond. Stop-ERP complexes have a recognizable
negative–positive peak sequence. To make it clearer we realigned
the selected SS trials with respect to the absolute time shift
(Figure 2D, bottom). The realignment gave an improvement
in the signal-to-noise ratio in the average ERPs, as shown in
Figure 2E where the original and realigned stop-ERPs are super-
imposed. Interestingly, this ERP complex started to emerge within
the SSRT, that is, voltage deflection was significantly different
from 0 before the end of the SSRT (first gray area). This sug-
gests a causal relationship between the average stop-ERPs and the
ongoing inhibition process.

DISTRIBUTION OF AVERAGE STOP-ERPs ACROSS THE CORTEX
Subdural grids give the opportunity of simultaneously sampling
wide regions of the cortex with a relatively high spatial res-
olution, so this technique makes it possible to investigate the
cortical regions where the stop-ERPs originate and which areas
are involved in the suppression process.

As a preliminary step we selected those recording channels
with no pathological EEG activity throughout the investigation
(e.g., pathological interictal activity) and those located outside the
seizure onset area (identified by expert neurologists PQ and GD).
To be as objective as possible, for each electrode contact we com-
puted the trial-by-trial SD of ERPs in the 100 ms following the
go-signal in SS trials (see Figure 3A for an example patient). To
discard noisy channels we computed a threshold value as follows.
We calculated the median of the SDs across all the grid contacts,
selected the 50% of channels with the lowest SDs and then cal-
culated the standard deviation of their SDs; we then added three
times this SD to the median to give the threshold value. Those
electrodes with SDs larger than the threshold value were excluded.
For the remaining channels we computed the realigned stop-
ERPs, as previously described. As can be seen from Figure 3B,

the average stop-ERP was selectively expressed in only a few areas
(mainly BA4, BA6, BA9), where it occurred well before the end
of SSRT (purple dotted lines). The selective occurrence of average
stop-ERPs in this example patient can be better appreciated from
the contour map of Figure 3C where the largest peaks of each ERP
are plotted. A hot spot in BA6 (PMA) is apparent, together with
smaller peaks located at other contacts of the same area and in
the nearby regions BA4 (M1) and BA9 (dFMC) (the same dashed
regions as in Figure 3B).

To identify grid contacts showing the largest average stop-
ERPs, we measured the stop-ERP size by computing the integral
of the absolute voltage within those time intervals where the
ERPs were significantly different from 0 (gray intervals) during
the SSRTs (Figure 3D). Then we selected those channels whose
ERP size was larger than the median plus three times the SD of
the ERP sizes of the 50% of contacts with the smallest sizes. In
the example patient, Figure 3D, 14 out of 47 channels passed the
selection.

The same analysis was performed across all other patients, and
overall we retained a population of 39 electrodes. The distribution
of these contacts (Figure 4A) clearly showed that most of them
were located either in M1, in PMA or in dFMC. Other BAs never
had more than two channels with large enough average stop-ERPs
(blue bar). Importantly, in the overwhelming majority of contacts
the onset time of average stop-ERPs always preceded the end of
SSRT (Figure 4B, right, average time lag: −82.7 ± 7.3 ms), sug-
gesting a causal relationship between these ERPs and successful
movement inhibition. Furthermore, average stop-ERP complexes
seemed to emerge first in motor cortices (M1, PMA, BA9) and
later in other areas (t-test, df = 37; P < 0.05).

We also evaluated the similarity between average stop-ERPs
across all selected channels, computing the time lag between the
negative and positive (N-P) peak of the complex. As shown in
Figure 4C, we found that the distribution of this time inter-
val was fairly narrow, the SD being only 21% of the mean
(92.1 ± 19.4 ms; SE 3.1 ms); this supports the idea of the exis-
tence of a stereotyped stop-ERP complex across cortical areas and
subjects.

SINGLE-TRIAL DETECTION OF STOP-ERP IN US TRIALS
We have interpreted the emergence of stop-ERP at the single-trial
level as a footprint of the inhibitory process of pending reaching
arm movements. Clearly it could not be linked to either eye move-
ments or blinking as ocular artifacts were removed (see Materials
and Methods). The ERP could not even be related to the sen-
sory processing of the go-signal given that we subtracted neural
responses during SS trials from those recorded during no-stop tri-
als (see Materials and Methods). However, it could be argued that
the countermanding-related modulation during SS trials could be
driven by the visual presentation of the stop-signal. In fact, only
in stop trials did the stop-signal appear after the SSD.

To rule out this possibility we compared the neural activity in
SS and US trials as the stop-signal is presented in both type of
trials and therefore possible differences cannot be ascribed merely
to its appearance.

In top panel of Figure 5A, the raster plots of ERPs computed
from US trials were shown for the same contact as illustrated
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FIGURE 3 | Spatiotemporal distribution of stop-ERPs in successful-stop

(SS) trials. (A) Map of the standard deviations (SDs) of field potentials (FPs)
in SS trials at each contact of the grid for an example patient (right). SDs of
FPs were evaluated in a time window of 100 ms following the go-signal
onset. Gray elements were excluded from further analyses because they had
SDs greater than a threshold value (see Results section for further details).
Left, ERPs for two example channels with low (top) and high (bottom) voltage
variability. Solid curves, average ERPs. Reddish areas represent time course
of ERP distribution across trials: different shadings mark percentiles multiples
of 10. (B) Average realigned stop-ERPs (solid red curves) of SS trials
centered on stop-signal appearance corresponding to the selected channels.

Other conventions as in Figure 2E. Subplot labels: Broadmann’s areas (BAs)
over which electrodes were positioned. Colored areas: electrodes placed
over the primary motor cortex (red, BA4), the premotor cortex (yellow, BA6)
and the dorsal fronto-median cortex (green, BA9). (C) Smoothed contour map
of the maximum absolute stop-ERP amplitudes (ERP) shown in panel B.
Dashed areas correspond to the colored area of panel B. (D) Histogram of
the stop-ERP sizes of panel B. Stop-ERP sizes were computed as the integral
of absolute values of stop-ERP voltage deflections in the interval periods
marked by gray areas within SSRT. Dashed line: threshold value for selecting
the subset of channels with large enough stop-ERPs used for population
analyses (see text for details).

in Figure 2D. Interestingly, using the same procedure described
in section “Behavioral Results,” we found in several US trials
stop-ERPs closely matched with those detected in SS trials.
They occurred sparsely across trials, mainly when the RTs were
longer (top trials in Figure 5A, top).  The realignment of stop-
ERPs according to the optimal time shift (Figure 5A, bottom)
evidently displayed the similarity with ERP complexes of SS tri-
als. The average ERP of US trials (Figure 5B, solid blue curve)
showed that, although the shape of stop-ERPs was preserved,
voltage deflections in SS trials (red curve) occurred earlier than
in US trials. The presence and the timing of stop-ERPs in US
trials ruled out the possibility that such ERPs could be merely a
visually-evoked reaction to the stop-signal. In fact, if this were the
case then ERPs should have occurred in both SS and US trials

with the same frequency and average latency from the stop-signal
appearance.

We tested the robustness of this result across our population by
probing whether the 39 contacts at which we previously detected
stop-ERPs in SS trials also showed them in US trials. We found
that a large subset of electrodes (n = 32 of 39; 82%) showed
stop-ERPs in both types of trial. To assess the latency between
the two average stop-ERPs, we computed the time lag between
the midpoint of the negative and the positive peaks of the com-
plex and the stop-signal presentation. Then we calculated the
difference between such time lags for US and SS trials. As shown
in Figure 5C, average stop-ERPs in US trials occurred mainly
later than those of SS trials (mean delay: 6.9 ± 2.1 ms, Wilcoxon
signed-rank test, P < 0.01).
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FIGURE 4 | Onset of stop-ERPs in successful-stop trials. (A) Number of
channels showing large enough average stop-ERPs (n = 39) grouped by
Brodmann area (BA; see text for details). Blue bar (others) represents those
areas where channels were not selected more than twice across all
patients (B) Box plot of stop-ERP onsets measured with respect to the end
of SSRT across all selected channels in all patients. Stop-ERP onset was
defined as the first time that an electrode voltage was significantly different
from 0. Diamonds indicate average onset times. Thick bars indicate the first
and the third quartile. Vertical lines indicate the extreme time lags in the
channel group. Right, distribution of stop-ERP onset times. Dashed line,
average stop-ERP onset (± SEM) across all selected channels.
(C) Distribution of time lags between negative and positive (N-P) peaks
across stop-ERPs. Dashed line, average peak distance (± SEM).

Finally, we worked out a detection index D to quantify how
many times a stop-ERP was detected in US trials with short versus
long RTs as follows:

D = (Flate − Fearly)/(Flate + Fearly)

where Fearly and Flate are, respectively, the fraction of stop-ERPs
detected in the first and in the last 33% of US trials sorted by
RTs, as in Figure 5A. The index can be negative down to minus

FIGURE 5 | Stop-ERPs in unsuccessful-stop (US) trials. (A) Raster plots
of stop-ERPs in US trials from the same channel illustrated in Figure 2. Top
panel. Red dotted line, stop-signal occurrence. Purple dotted line, end of
the SSRT. Blue dots: movement onset time. Diamonds, optimal shift with
respect to SSRT (purple dots; see text for futher details). Bottom panels:
stop-ERP of US trials realigned to the optimal shift. (B) Average of realigned
stop-ERPs of SS trials (solid red, the same as in Figure 2E) and US trials
(solid blue). Dotted blue curve, average across not-shifted US trials.
(C) Distribution of latency differences between realigned stop-ERPs of US
and SS trials (see text for details). (D) Histogram of detection index values
indicating how many stop-ERPs were found for late movement onset times
(last third of US trials in panel A-top) versus early detaches (first third of US
trials).

Frontiers in Neuroengineering www.frontiersin.org June 2012 | Volume 5 | Article 12 | 44

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Mattia et al. Neural signatures of inhibitory control

one, when stop-ERPs are not present in the late fraction of US tri-
als, or up to plus one, when stop-ERPs are present only in the
fraction of US trials with long RTs. The result of this analysis
(Figure 5D) shows a distribution of D significantly shifted above
0 (mean: 0.265 ± 0.054; Wilcoxon signed-rank test, P < 0.001),
confirming that most stop-ERPs occur for those US trials with
the longest RTs.

DISCUSSION
ROLE OF MOTOR CORTICES IN INHIBITING REACHING ARM
MOVEMENTS
The main goal of the present study was to investigate the neural
activity associated with arm movement suppression across sev-
eral brain regions, mostly located over the lateral surface of the
frontal lobe. Among these areas motor cortices (e.g., PMA, Coxon
et al., 2006; M1, Mirabella et al., 2011), as well as IFG (Aron et al.,
2003) have been shown to be involved in preventing planned arm
movements. However, to date none have been recorded simulta-
neously from all these regions exploiting the high spatiotemporal
resolution allowed by the ECoG. To this aim we did not select
a priori any electrode but, after discarding those contacts with
a high noise level, we analyzed the activity of all the remaining
ones.

In addition, taking advantage of the larger amplitude of EEG
signals recorded from subdural electrodes with respect to scalp
EEG signals, we extracted neural activity at the single-trial level
(stop-ERP) related to the inhibitory process of reaching move-
ments and excluding other confounding factors (e.g., the appear-
ance of the go-signal, eye movement or movement planning). We
found that a characteristic signature of the cancellation process
occurs in the great majority of SS trials. Because, as expected,
there was a trial-by-trial variability in the timing of stop-ERP
emergence, we improved the signal-to-noise ratio by realigning
the trials with respect to the end of the SSRT (see section “Single-
trial detection of stop-ERP in SS trials” for further details). Then
we computed the average stop-ERP across realigned trials at each
contact and we selected those contacts that had the largest voltage
amplitudes. At the end of this “blind” procedure we found that
the selected recording channels were mainly located in M1, PMA,
and dFMC. Crucially, the analysis of the stop-ERP onset revealed
that the change in the electrical activity took place well before the
behavioral estimate of the end of the cancellation process. This
finding indicates that these areas are causally involved in stopping
ongoing movements and that they are probably the source of the
N200/P300 complex found in scalp EEG studies.

Clearly, these are not the only neural substrates of the cancel-
lation process. In fact, it is very well known that ERPs are gen-
erated by fixed-latency phase-locked responses, especially at low
frequencies (Heinze et al., 1994). At the same time brain dynam-
ics also entail non-phase-locked oscillations (Tallon-Baudry and
Bertrand, 1999; Bernat et al., 2007), as those occurring when mul-
tiple task conditions and/or many stimulus types are processed
(Jung et al., 2001). Therefore, there is no contradiction between
our results and those obtained by Swann et al. (2009) showing
an increase in the beta frequency band in the right IFG for SS
versus US trials. In fact it is known that the IFG is implicated
in several cognitive functions such as stimulus-driven attention

(Corbetta and Shulman, 2002), response selection (Mostofsky
and Simmonds, 2008), working memory (Mars et al., 2008) and
inhibitory control (Aron et al., 2003).

Interestingly, Swann et al. (2009) demonstrated that, in agree-
ment with our data, M1 is involved in inhibitory processes
because US trials induce a larger desynchronization in the
alpha/beta band than do SS trials. Even though they did not
explore PMA activity, the study by Mirabella et al. (2011) iden-
tified in the dorsal part of PMA of monkeys a population of
neurons showing a pattern of activity which correlates with the
suppression of programmed arm movements. Overall our find-
ings are fully congruent with the existing literature, but for the
first time they offer a clearer picture of the involvement of motor
cortices in the countermanding task, strongly suggesting that
inhibition occurs at relatively low levels in the motor hierarchy
(see also Stinear et al., 2009). We also found that the dFMC has
a role in voluntarily inhibiting actions based on external stimuli,
extending previous findings indicating a role for this area just in
the suppression of self-generated movements (Brass and Haggard,
2007). Classically this is considered a high hierarchy motor area;
however, at least in this context it seems to behave similarly to
lower lever motor regions.

Motor cortices are probably the final target on which the
inhibitory command generated by the frontal–basal ganglia–
thalamic network acts. The components of this network and the
precise way it works are still hotly debated. However, on the basis
of the available anatomical and physiological data, we can put for-
ward the following hypothesis of network functioning. Whenever
we are about to move, the motor cortices (M1 and PMA) send an
efferent copy of their descending output to the input components
of the basal ganglia, the striatum, and the STN. These projec-
tions are somatotopically organized (Mink, 1996) and influence
the activity in the thalamocortical pathway, projecting back to
M1 and PMA. Both the STN (Aron and Poldrack, 2006; van den
Wildenberg et al., 2006; Mirabella et al., 2011) and the stria-
tum (Li et al., 2008; Zandbelt and Vink, 2010) are involved in
inhibitory control, but possibly they have different roles (see
Mirabella et al., 2011). STN should have a direct role in the sup-
pression of the movement, while the striatum should play a role
in proactive control during countermanding. Whenever the stop
signal is presented its appearance would be detected by some of
the frontal areas of the network, probably by the right IFG, given
that it monitors unexpected changes in the external environment
(Corbetta and Shulman, 2002). In its turn the IFG would activate
the STN through the hyperdirect pathway (Nambu et al., 2002),
allowing for quick braking of the motor output from motor cor-
tices (Aron and Poldrack, 2006; Aron et al., 2007). Therefore,
according to this schema PMA and M1 would represent the final
target of the inhibitory command elaborated by the frontal–basal
ganglia–thalamic network.

It has to be stressed that in the present study we could not
assess whether the inhibitory network is right-lateralized (Aron
et al., 2007). Among our patients, three had a grid placed over
the surface of the fronto-temporal lobes of the right hemi-
sphere and two had a grid over the same regions of the left
hemisphere. Qualitatively, data were not different even though
subjects were right-handed and all used the dominant hand.
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This might be explained by the fact that we mainly found
inhibitory signals in PMA and M1. These regions are known
to be bilaterally activated during the production of reaching
movements (Kawashima et al., 1998; Donchin et al., 2002; Cisek
et al., 2003) and thus it is likely that, to suppress a reach-
ing movement, inhibitory commands have to be sent bilaterally
to both motor cortices. This topic definitely deserves further
studies.

Finally, it is noteworthy to underline that the present find-
ings can be affected to some extent by the coarse spatial sampling
of our clinical grids. Indeed the optimal inter-electrode distance
of 1.25 mm (Srinivasan et al., 1998; Freeman et al., 2003) is
much smaller than the 1 cm spacing of the grids we employed.
Thus, neural activity might be more localized than that we have
detected. Furthermore, our procedure for electrode localization,
based on the projection of electrode contacts onto a brain tem-
plate (see section “Electrode localizations”), is less precise than
the estimates relying on the projection of the electrode position
on the subjects’ own brain maps. In particular, as all the selected
electrodes in BA 9 where just on the border with PMA we suspect
they actually might be located in PMA.

STOP-ERP IN US TRIALS AND THE HORSE RACE MODEL
In its original formulation the race model assumed that the go
process (the process initiated by the go-signal leading to the exe-
cution of the movement) and the stop process (the one initiated
by the stop-signal leading to the inhibition of the movement)
were stochastically independent, i.e., their ending times were
uncorrelated (Logan and Cowan, 1984). However, complete inde-
pendence between the go and stop process is unlikely. In fact,
Boucher et al. (2007) revised the model, proposing that the go
and stop processes are independent for most of their duration but
they interact briefly and strongly near the end of the race (interac-
tive race model). However, even in this interactive race model, the
length of the SSRT primarily reflects the period during which stop
and go processes are independent, so its predictions correspond to
those of the original race model.

One prediction of the race model testing the independence
assumption between go and stop processes is that the mean RT
of US trials should be shorter than the mean RT of no-stop trials
(Logan and Cowan, 1984). That is because reaching movements
were produced in both the no-stop trials and the US, but the
latter were initiated because the go process finished before the
stop process. Therefore, considering the distribution of the RTs
of the no-stop trials, the responses that escape inhibition should
be those corresponding to reaching movements that had RTs
shorter than the SSD plus the estimated SSRT. We found that this
prediction was satisfied for all patients.

Nonetheless we also found that stop-ERPs occurred not only
when subjects successfully stopped their movement but also when
they wrongly moved their arm despite the occurrence of a stop-
signal. Crucially, stop-ERP in US trials are mainly present in the
fraction of US trials with long RTs (see Figure 5A). This finding is
compatible with a late modulation of neural activity determined
by an ineffective stop process, namely by a stop processes which
is incapable of suppressing an arm movement. In conclusion,
stop-ERPs in US trials might represent the effect of the inter-
action between the stop and the go process taking place around

the end of the race (Boucher et al., 2007), when the stop process
loses.

DECODING OF RESPONSE INHIBITION: BRAIN-COMPUTER
INTERFACE AND REHABILITATION
Decoding cortical signals underpinning motor decisions is the
backbone of brain-computer interfaces (BCI) to recover or
improve motor functions (Nicolelis, 2003; Schwartz, 2004). In
particular, ECoG signals, although more invasive, have been
proven to allow a more effective decoding of motor intentions
and to outperform EEG-based BCI (Leuthardt et al., 2004; Schalk
et al., 2008; Schalk, 2010).

Effective BCIs have to read not only detailed information
about overt movements to perform but also their volitional con-
trol (Fetz, 2007; Moritz et al., 2008). In other words, to drive
external devices, automated decoders have to access not only
motor program features but also those signals indicating the
intention to move. From this perspective, it is rather surprising
that the wide literature on BCIs has paid no attention to neural
correlates of cognitive and behavioral inhibition. The capabil-
ity of detecting a neural correlate of response inhibition at the
single-trial level from ECoG signals might represent a first step in
the direction of taking into account all the features of voluntary
movement. BCI could rely on the stop-ERPs we have detected to
take into account a sudden need to suppress planned movements,
especially because on average they appear early, i.e., about 100 ms
before the SSRT.

Developments in BCI have also provided robust evidence
that closed-loop approaches, in which decoding performances
are fed back, allow subjects to adapt their brain activity to
BCI capabilities and constraints, and hence to improve motor
control (Nicolelis, 2003; Schwartz, 2004). Recently, closed-loop
BCIs have been suggested as a way to selectively enhance brain
plasticity, envisaging more effective rehabilitative approaches to
recovering from motor and cognitive impairments such as those
due to strokes (Dobkin, 2007; Daly and Wolpaw, 2008). Such
improvements can be driven by a closer monitoring of how brain
activity changes with exercise well before any behavioral output.
Another possibility is to induce subjects to perform suited men-
tal practice, such as motor imagery, capable of speeding up an
activity-dependent plasticity for proper rewiring of compromised
cortical circuits (Millán et al., 2010; Wang et al., 2010). Accessing
in real time the cortical fingerprints of the suppression process
extends the possible clinical applications of such neurofeedback.
In fact, rehabilitation strategies for cognitive deficits character-
ized by inefficient inhibitory control (Chamberlain et al., 2005;
Chamberlain and Sahakian, 2007), such as obsessive–compulsive
disorder or attention-deficit hyperactivity disorder, might benefit
from closed-loop BCIs relying on stop-ERP detection.
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In the present study inhibitory cortical mechanisms have been investigated during
execution and inhibition of learned motor programs by means of multi-channel functional
near infrared spectroscopy (fNIRS). fNIRS is an emerging non-invasive optical technique
for the in vivo assessment of cerebral oxygenation, concretely changes of oxygenated
[oxy-Hb], and deoxygenated [deoxy-Hb] hemoglobin. Eleven healthy subjects executed
or inhibited previous learned finger and foot movements indicated by a visual cue.
The execution of finger/foot movements caused a typical activation pattern namely an
increase of [oxy-Hb] and a decrease of [deoxy-Hb] whereas the inhibition of finger/foot
movements caused a decrease of [oxy-Hb] and an increase of [deoxy-Hb] in the hand
or foot representation area (left or medial somatosensory and primary motor cortex).
Additionally an increase of [oxy-Hb] and a decrease of [deoxy-Hb] in the medial area
of the anterior prefrontal cortex (APFC) during the inhibition of finger/foot movements
were found. The results showed, that inhibition/execution of learned motor programs
depends on an interplay of focal increases and decreases of neural activity in prefrontal
and sensorimotor areas regardless of the effector. As far as we know, this is the first study
investigating inhibitory processes of finger/foot movements by means of multi-channel
fNIRS.

Keywords: motor learning, response inhibition, anterior prefrontal cortex (APFC), PFC, motor cortex, fNIRS

INTRODUCTION
In daily life successful human behavior strongly depends on
learning and inhibition of inappropriate behavior. Specifically
inhibitory control is an essential function to provide appropri-
ate preparation and online control of required motor programs.
Furthermore a fine balance between activation and inhibition is
necessary for preparation of movement, initiation, motor con-
trol, and timely inhibition of the act. There are a lot of studies
focusing on the question about the neural correlate of effec-
tive inhibition or suppression of behavior. Most of them used
experimental paradigms like GO/NOGO (Rubia et al., 2003;
Herrmann et al., 2005; Simmonds et al., 2008) tasks or STOP-
Signal (Boecker et al., 2007; Tabu et al., 2011, 2012) paradigms
to investigate inhibition processes. The differences between the
tasks are that the GO/NOGO paradigm requires a response
selection process, namely execute or inhibit a motor response,
triggered by a go or a no-go-stimulus. On the other hand, in
the stop task the stop signal requires withholding or stopping an
already triggered motor response. For example, the results of a
meta-analysis using 11 studies of event-related functional mag-
netic resonance imaging (fMRI) during GO/NOGO task have
shown that the pre-supplementary motor area (pre-SMA) and
the prefrontal-parietal circuits are crucial for response inhibition
(Simmonds et al., 2008). More evidence for the involvement of
the prefrontal cortex (PFC) in response inhibition came from

Rubia et al. (2000, 2001, 2003) who found predominantly right
hemispheric PFC activations. For example in a stop-signal study
(Rubia et al., 2003) they found different activation patterns for
successful and failed stopping. The right inferior PFC was cor-
related with successful inhibition and bilateral inferior parietal
cortices were associated with failed inhibition. Whereas most
fMRI studies investigated only manual response inhibition the
recent study of Tabu et al. (2012) investigated also the brain rep-
resentation of foot stop-signal task for the first time. They found
common activation patterns of prefrontal areas (pre-SMA and
bilateral ventrolateral PFC) for hand and foot stop signal tasks.

Beside a lot of fMRI studies there are also some fNIRS studies
focusing on the role of PFC activation during cortical inhibi-
tion (Boecker et al., 2007; Kono et al., 2007). Functional near
infrared spectroscopy (fNIRS) is a non-invasive optical imaging
technique to quantify cortical activity. fNIRS allows measur-
ing the oxygenation (haemoglobin concentration) in the cere-
bral cortex, which is strongly correlated to the fMRI Blood-
Oxygen-Level-Dependent (BOLD) signal (Strangman et al., 2002;
Steinbrink et al., 2006). Even though fNIRS has lower spa-
tial resolution than fMRI, it has the advantage of providing
information about two parameters, namely oxygenated- (oxy-
Hb) and deoxygenated (deoxy-Hb) hemoglobin. As fNIRS mea-
sures changes in oxy-Hb and deoxy-Hb and consequential total
hemoglobin (tot-Hb) concentration, this approach allows also
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to draw conclusions about changes in neurovascular parame-
ters like cerebral metabolic rate of oxygen (CMRO2), cerebral
blood flow (CBF), and cerebral blood volume (CBV) (Malonek
and Grinvald, 1996; Malonek et al., 1997; Wolf et al., 2002).
Furthermore it is not sensitive to motion artifacts, is portable and
can be easily used with children and patients (Strangman et al.,
2002; Wolf et al., 2002).

For example Herrmann et al. (2005) replicated previous find-
ings from fMRI-studies using fNIRS in a GO/NOGO paradigm.
He found significantly higher increases of oxy-Hb and decreases
of deoxy-Hb concentration during inhibition phases in the infe-
rior part of the PFC.

It is known that successful behavior also requires appropri-
ate retrieval of acquired motor programs or inhibition of learned
actions. That is, activation and deactivation or inhibition of brain
regions representing these actions. Another paradigm investigat-
ing cortical inhibition used by Hummel et al. (2002, 2004) is
similar to common GO/NOGO tasks but has no time pressure
and is additionally based on previous learning processes. Hummel
et al. (2002) showed that acquired motor behavior is a context-
dependent interaction of execution and inhibition of learned
motor programs. Inhibition was associated with a decrease in
motor cortical excitability below the resting state and was addi-
tionally correlated with a task-related increase of 11–13 Hz oscil-
latory activity on the electroencephalogram (EEG). In a later
study they used fMRI to investigate inhibition of learned motor
programs (Hummel et al., 2004). They found that the inhibitory
changes were characterized by negative BOLD responses in an
extended cerebro-cerebellar network of sensorimotor structures
with a predominant role of the PFC. Such PFC activation was also
found in the fNIRS study by Boecker et al. (2007) reporting a sub-
stantial activation increase in the right PFC during inhibition of
already initiated responses.

In the present study we applied fNIRS to healthy subjects per-
forming a paradigm comparable to that used by Hummel et al.
(2004). We investigated bidirectional inhibition-activation pro-
cesses during execution/inhibition of learned motor programs
executed by hand and foot. The aim of the present study was two-
fold: first we wanted to replicate the findings of Hummel et al.
(2004) using fMRI with multichannel fNIRS. Secondly, we inves-
tigated hemodynamic changes of response inhibition during foot
movements. To our knowledge the inhibition of learned motor
programs executed by hand and foot has never been investigated
with multichannel fNIRS.

MATERIALS AND METHODS
PARTICIPANTS
Investigations were carried out on a group of 11 voluntary healthy
subjects (four males, seven females) aged from 22 to 37 years
(27.3 ± 3.9, mean ± SD). All subjects were right-handed and had
normal or corrected to normal vision. Hand performance was
assessed with the “Hand Dominance Test” (HDT) by Steingrüber
and Lienert (1971). This test comprises three dexterity tasks,
each to be performed with maximal speed and precision over
15 s, separately for the right and left-hand (tracing lines, dot-
ting circles, and dotting squares). In this regard, dominance
refers to the performance advantage of one hand relative to

the other. All experiments were in compliance with the World
Medical Association Declaration of Helsinki. The protocol was
approved by the Ethics committee of the Medical University of
Graz and the subjects gave informed written consent before the
experiment.

EXPERIMENTAL PARADIGM
Three weeks prior to the experiment, subjects were instructed
to train themselves on six sequences of right hand finger and
right foot movements of two different task complexities at home.
In Table 1 the three experimental blocks are described in detail,
divided by type of limb (finger or foot), presentation modality
(activation, inhibition), sequence type (easy/difficult), number of
trials and total duration of each block (Table 1). The necessary
resources, a keyboard for finger movements and a template to
train foot movements, were provided to the participants. Prior the
experimental session the success of the training was tested. Only
subjects, who successfully completed the test, meaning that they
executed the requested finger/foot movements without errors,
performed the experiment.

During the experimental sessions all subjects were seated in a
comfortable arm-chair in front of a TFT monitor. The distance
between the participants and the screen was about 120 cm. To
avoid artifacts, the participants were instructed to relax as much
as possible during the measurement. The study consisted of three
sessions (Table 1): a finger movement session (indicated by a pic-
ture of a hand), a foot movement session (indicated by a picture
of a foot), and a session with randomized finger and foot move-
ments. Sessions were presented blockwise in the described order
(Table 1). Within each block 50% of trials required inhibition
and 50% execution. The sequences in the blocks were randomly
presented.

During the finger movement session subjects had to execute or
inhibit 48 sequences of right hand finger movements presented on
the monitor. In order to indicate if execution or an inhibition task
was required a green (execution) or a red (inhibition) frame was

Table 1 | Experimental blocks.

Block Limb Presentation modality #Trials Duration

1 finger execution: 12 easya , 12 difficultb

inhibition: 12 easy, 12 difficult
2 new

50 13 min

2 foot execution: 12 easy, 12 difficult
inhibition: 12 easy, 12 difficult
2 new

50 13 min

3 finger execution: 6 easy, 6 difficult
inhibition: 6 easy, 6 difficult
2 new

52 13 min

foot execution: 6 easy, 6 difficult
inhibition: 6 easy, 6 difficult
2 new

aeasy sequences: 1-2-3-4-1-2-3-4 bdifficult sequences: 4-1-3-2-1-2-3-1

1-1-2-2-3-3-4-4 3-2-1-4-3-4-1-3

1-3-2-4-1-3-2-4 4-2-1-4-3-1-4-2

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 17 | 50

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Wriessnegger et al. Inhibitory control of learned motor behaviour

shown around the picture of the hand one second after sequence
presentation. One sequence consisted of eight movements [pre-
sented on the screen as a sequence of eight numbers (digits 1–4)]
and lasted 10 s. The fingers were labeled corresponding to these
digits as follows: the index finger “1,” the middle finger “2,” the
ring finger “3,” the little finger “4.” During the execution task the
subjects were instructed to perform the requested sequence (e.g.,
4-1-3-2-1-2-3-1) on a modified keyboard until the screen turns
black. The average frequency of finger (Figure 2B) tapping was
about 25.03, resulting in about three sequences. During the inhi-
bition task they should avoid any button press. After one trial a
pause of 5 s followed. Additionally to the well trained sequences,
two new sequences (1 execution, 1 inhibition) were presented in
order to maintain the subject’s attention. So the finger movement
session consisted of 50 trials. A detailed description of the timing
of one trial is given in Figure 1.

During the foot movement session subjects had to execute
or inhibit foot movement sequences on a custom made console
(Figure 2A). The average frequency of foot tapping was 21.18,
resulting in nearly three full sequences. Apart from that, the tim-
ing and number of trials were the same as in the finger movement
block. Again, in order to indicate if execution or inhibition was
required a green (execution) or a red (inhibition) frame was
shown around the picture of the foot.

Finally, in the session with randomized finger and foot move-
ments the subjects had to execute or inhibit 24 fingers and foot
movement sequences in random order. In contrast to the fin-
ger and foot block, four new sequences occurred, so the block
consisted of 52 trials. Between the blocks the subjects had short
breaks of about 5 min (see Figure 1).

DATA ACQUISITION AND PROCESSING
To record brain oxygenation a multichannel commercial fNIRS
system (ETG-4000, Hitachi Medical Co., Japan), which is based
on the continuous wave principle was used. The sampling rate
was set to 10 Hz. The multi-channel system measures the change
of [oxy-Hb] and [deoxy-Hb]1 in the unit of m(mol/l) × mm (fur-
ther denoted as mM mm) and consisted of 15 photo-detectors
and 18 light emitters, resulting in a total of 46 channels. Two 3 × 3
optode probe sets (each containing four photo-detectors and five
light emitters) were used to cover the frontal and frontocentral
regions as well as the parietal and occipital regions. Additionally
a 3 × 5 optode probe set (containing seven photo-detectors and
eight light emitters) was used to cover the central, temporal, and
partially the parietal regions (Figure 2C). The probe sets were
interconnected and mounted on a custom-made cap (Figure 2D).
The cap was arranged in such a way that channel 40, which
was used as the reference marker, was placed exactly over Cz
position, according to the International 10–20 system for EEG
recordings. The distance between source and detector was 3 cm,
which resulted in measuring approximately 3 cm beneath the
scalp. To allow a probabilistic reference to the underlying cortical
areas we calculated the projections of the fNIRS channels on the
cortical surface. Therefore, we used a procedure which projects
topographical data based on skull landmarks into a 3D reference
frame (MNI-space, Montreal Neurological Institute) optimized
for fNIRS analysis (Singh et al., 2005). So for each fNIRS chan-
nel position, a set of MNI coordinates (x, y, and z) with an

1Subsequent the concentration of oxy-Hb and deoxy-Hb is denoted as
[oxy-Hb] and [deoxy-Hb].

FIGURE 1 | Time course of one experimental trial (finger/foot, execution/inhibition). Left side: timing of finger movement execution/inhibition;
Right side: timing of foot movement execution/inhibition.
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FIGURE 2 | (A) Custom made console used for foot movement
responses positioned in front of a TFT monitor. (B) Modified keyboard for
finger movement responses. (C) Schematic illustration of the multi-channel
arrays (46 channels, two 3 × 3 grids and one 3 × 5 grid) covering frontal,

central and parietal regions. (D) fNIRS cap with mounted optodes.
(E) Projections of the fNIRS channel positions on the cortical surface.
Positions are overlaid on a MNI-152 compatible canonical brain which is
optimized for fNIRS analysis.

error estimated (SD) was calculated (see Figure 2E and Table 2).
Table 2 shows five different regions of interest (ROI) with the
according channel numbers, MNI-space correspondence (x, y, z
with SD) and brodmann areas (BA). For further details on the
corresponding anatomical structures see (Okamoto et al., 2004;
Singh et al., 2005).

After a visual inspection of the raw fNIRS data by a trained
expert, trials containing motion artifacts were removed manually.
Additionally, channels with poor signal quality, e.g. containing
noise (on average less than 7% of the channels), were excluded.
Baseline drifts were reduced by using a 0.01 Hz Butterworth high
pass filter of order 6 with 30 dB attenuation in the stop band.

Afterwards a common average reference (CAR) spatial filter was
used to remove global influences like respiratory or blood pres-
sure rhythms. As a result, for every time point, the mean of all
non-excluded channels was calculated and subtracted from each
channel (Pfurtscheller et al., 2010).

CALCULATION OF TASK RELATED CHANGES AND TOPOGRAPHIC
DISTRIBUTION
The mean task related changes of [oxy-Hb] and [deoxy-Hb]
referred to a 5-s baseline interval prior the task (seconds −5 to
0) were calculated. For the excluded channels (at the maximum 6
out of 46 channels) the changes were recalculated by interpolation
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Table 2 | Definition and coordinates of ROIs.

ROI Channel MNI space correspondence Cortical areas

x y z SD BA

FPI 2 −29 67 11 5 10 MFG

4 −13 65 28 5 10 SFG

5 −15 73 1 4 10 MeFG

FP2 9 16 67 27 5 10 SFG

10 15 73 0 4 10 MeFG

12 28 69 11 5 10 SFG

C3 34 −34 −7 68 8 6 PreG

38 −47 −24 65 5 3 PosG

43 −36 −32 72 6 4 PreG

C4 37 39 −8 68 7 6 PreG

42 50 −24 65 5 1 PosG

46 39 −32 71 6 4 PreG

CZ 35 −12 −4 76 7 6 SFG

36 15 −3 76 6 6 SFG

40 4 −18 76 8 6 MeFG

44 −12 −32 80 6 4 PreG

45 15 −35 80 5 4 PreG

The projections of the fNIRS channels on the cortical surface were calculated

by projecting topographical data based on skull landmarks into a 3D reference

frame (MNI space, Montreal Neurological Institute). The table shows five differ-

ent regions of interest (ROI) with the according channel numbers, MNI space

correspondence (x, y, z with SD) and brodmann areas (BA).

BA, Brodmann area; MeFG, medial frontal gyrus; MFG, middle frontal gyrus;

PreG, precentral gyrus; SFG, superior frontal gyrus; PosG, postcentral gyrus.

of the surrounding channels. In all subjects not more than one
channel was interpolated in each ROI. Furthermore no interpola-
tion was performed in frontal ROIs (FP1 and FP2). As the fNIRS
data was checked for artifacts, such interpolation of channels will
only cause a spatiotemporal smoothing of the hemodynamic pat-
tern. The topographic distributions during the tasks are further
visualized by plotting the [oxy-Hb] and [deoxy-Hb] values at
their corresponding spatial position. A 2-D interpolation on a fine
Cartesian grid was used to generate a scalp distribution. The aver-
age over two different time windows are calculated. The first time
window between 0 and 4 s corresponds to the cue presentation
and start of the task. The second time window between 10 and
12 s corresponds to the end of the task. The mean concentration
changes of oxy-Hb and deoxy-Hb are visualized in different plots
with the same scale. Increases are plotted in blue and decreases
in red (according to the toolbox “EEG-Lab” from Matlab). Only
well trained sequences run into analyses, concretely the mean task
related concentration changes of 48 trials for each condition are
plotted. The new sequences during the experimental trials were
only used to keep attention.

STATISTICAL ANALYSES
Before running statistical analyses the following pre-processing
steps were performed:

First, five regions of interest (ROIs: FP1, FP2, C3, Cz, C4)
covering the frontal and motor cortex of both hemispheres were

defined: Frontal cortex: FP1 (CH: 2, 4, 5); FP2 (CH: 9, 10, 12);
Motor cortex: C3 (CH: 34, 38, 43); Cz (CH: 35, 36, 40, 44,
45); C4 (CH.: 37, 42, 46). The MNI coordinates and anatomi-
cal locations of the included channels are given in Table 2 and
Figure 2E. Second, the mean concentration changes were calcu-
lated in a time window of 4 s, 2 s prior and 2 s after the end of
the task. Again, only the well trained sequences (48 each con-
dition) were considered since the novel sequences were used for
attentional purposes only. For statistical analyses a 2 × 2 × 2 uni-
variate repeated measures analyses of variance (ANOVA) with the
within-subject factors EXEC/INHIB (execution vs. motor inhibi-
tion), FRONTAL/CENTRAL (ROI FP1/FP2 vs. ROI C3/Cz/C4),
and HEMI (left vs. right hemisphere) were applied, separately for
the dependent variable oxy-Hb and deoxy-Hb and for the finger
and foot movement condition.

RESULTS
In general all subjects showed strong changes of [oxy-Hb]2 and
[deoxy-Hb] during execution/inhibition of finger/foot move-
ments in frontal and central cortical regions [left or medial SMA,
primary motor (M1) and primary somatosensory (S1) cortex;
Figures 3, 4]. During finger movement execution an [oxy-Hb]
increase was found central (ROI C3) compared to the inhibition
condition, where frontal regions (ROI FP1 and FP2) showed [oxy-
Hb] increase and [deoxy-Hb] decrease. This effect is clearly visible
in the topographic maps of Figures 5A (foot) and B (finger).
Figure 5A shows oxy-Hb and deoxy-Hb concentration changes
for foot movement execution (left side) and inhibition (right side)
at two different points in time (0–4 s and 8–12 s). At time point
2 (8–12 s) a clear [oxy-Hb] decrease was found at central sites
during execution of finger and foot movements, whereas dur-
ing movement inhibition both conditions showed a [oxy-Hb]
decrease at central sites and an increase at frontal sites.

In the following paragraphs significant results of the 2 × 2 ×
2 univariate ANOVA are reported for finger and foot condition
separately. Table 3 shows a summary of significant F-values for
[oxy-Hb] and [deoxy-Hb]. F-values at 5% level are marked with
one asterisk (∗), at 1% level with two asterisks (∗∗). All repeated
measures tests are Huynh–Feldt corrected.

FINGER CONDITION
For [oxy-Hb], the ANOVA revealed a significant two-way inter-
action effect of EXEC/INHIB ∗ FRONTAL/CENTRAL [F(1, 10) =
19.20, p < 0.01; η2 = 0.66]. This interaction indicated that the
type of task leads to different hemodynamic responses at frontal
and central brain regions. Post hoc-tests (Bonferroni) showed
a stronger increase in [oxy-Hb] during motor inhibition com-
pared to active movement at frontal brain regions (FP1, FP2).
At central sites (C3, Cz, C4) no significant difference in [oxy-
Hb] between motor inhibition and active movement was found.
Additionally [oxy-Hb] increased over central compared to frontal
sites in the active movement condition. Furthermore the three-
way interaction effect EXEC/INHIB ∗ FRONTAL/CENTRAL ∗
HEMI [F(1, 10) = 6.24, p < 0.05; η2 = 0.38] was significant.

2Subsequent the concentration of oxy-Hb and deoxy-Hb is denoted as [oxy-
Hb] and [deoxy-Hb].
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FIGURE 3 | Multichannel map illustrating oxygenation levels

of ROIs of finger movement execution (A) and inhibition (B).

In the middle the mean concentration changes of [oxy-Hb] and [deoxy-Hb]

for each channel are illustrated. The shaded bars indicate the
activation time of 10 s. Around the channel map the defined ROIs are
zoomed.
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FIGURE 4 | Multichannel map illustrating oxygenation levels

of ROIs of foot movement execution (A) and inhibition (B). In the
middle the mean concentration changes of [oxy-Hb] and [deoxy-Hb]

for each channel are illustrated. The shaded bars indicate the
activation time of 10 s. Around the channel map the defined ROIs are
zoomed.
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FIGURE 5 | Multichannel ROI map illustrating the mean concentration changes of [oxy-Hb] and [deoxy-Hb] for execution (thick lines) and inhibition

(thin lines) together. (A) execution/inhibition of finger movement. (B) execution/inhibition of foot movement. The shaded bars indicate the activation time of 10 s.

Post hoc-tests (Bonferroni) showed stronger increases in [oxy-
Hb] during motor inhibition compared to active movement at
frontal left brain regions (FP1) and no significant difference at
frontal right areas (FP2). At central left areas (C3) [oxy-Hb]

was higher during active movement than during motor inhibi-
tion. Like at frontal right sites, these two conditions showed no
significant difference in [oxy-Hb] at central right sites (C4). In
the inhibition condition, [oxy-Hb] was significantly increased at
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Table 3 | Summary of significant F -values for [oxy-Hb] and [deoxy-Hb].

ANOVA effects (N = 11) EXEC/INHIB (2) × FRONTAL/CENTRAL (2) × EXEC/INHIB (2) × FRONTAL/CENTRAL (2) ×
HEMI (2) [oxy-Hb] HEMI (2) [deoxy-Hb]

FINGER CONDITION

EXEC/INHIB × FRONTAL/CENTRAL F(1, 10) = 19.20∗∗

EXEC/INHIB × FRONTAL/CENTRAL × HEMI F(1, 10) = 6.24∗ F(1, 10) = 6.16∗

FOOT CONDITION

EXEC/INHIB F(1, 10) = 10.79∗∗

EXEC/INHIB × FRONTAL/CENTRAL F(1, 10) = 29.82∗∗ F(1, 10) = 6.52∗

FRONTAL/CENTRAL × HEMI F(1, 10) = 5.73∗

EXEC/INHIB × FRONTAL/CENTRAL × HEMI F(1, 10) = 7.42∗

F-values at 5% level are marked with one asterisk (*), at 1% level with two asterisks (**). All repeated measures tests are Huynh–Feldt corrected.

frontal left and right compared to central left sites. In the active
movement condition, [oxy-Hb] was significantly higher at cen-
tral left sites than at frontal left and right sites. Summarizing,
the results showed significant differences in oxy-Hb concentra-
tion changes between execution and inhibition at central and
frontal sites. There is no difference in [oxy-Hb] between left and
right hemisphere in the inhibition condition, leading to a more
bilateral activation. The mulit-channel maps in Figure 3 showed
the mean concentration changes of [oxy-Hb] and [deoxy-Hb]
described above for each ROI and for execution (Figure 3A) and
inhibition (Figure 3B) separately.

For [deoxy-Hb] in the finger condition, the three-way inter-
action effect of EXEC/INHIB ∗ FRONTAL/CENTRAL ∗ HEMI
[F(1, 10) = 6.16, p < 0.05; η2 = 0.38] was significant. Post hoc-
tests (Bonferroni) indicated a stronger decrease of [deoxy-Hb]
during active movement than during motor inhibition at central
left brain regions (C3).

FOOT CONDITION
In the foot condition, [oxy-Hb] was higher in the motor inhi-
bition than in the active movement condition, which gave
rise to a significant main effect of EXEC/INHIB [F(1, 10) =
10.79, p < 0.01; η2 = 0.52]. The significant interaction effect
of EXEC/INHIB ∗ FRONTAL/CENTRAL [F(1, 10) = 29.82, p <

0.01; η2 = 0.75] confirmed a substantial frontal increase of [oxy-
Hb] during motor inhibition compared to active movement.
Additionally, [oxy-Hb] was higher at frontal sites (FP1, FP2) than
at central sites (Cz) in the motor inhibition condition, whereas
in the active movement condition [oxy-Hb] was higher at cen-
tral sites (Cz) compared to frontal areas (FP1, FP2). This effect is
clearly visible in the following multi-channel map of foot move-
ment execution (Figure 4A) and inhibition (Figure 4B). In the
middle of both figures activation changes of all 52 channels are
plotted. The ROI positions are illustrated in the zoomed figures
around.

Furthermore, the three-way interaction effect EXEC/INHIB ∗
FRONTAL/CENTRAL ∗ HEMI [F(1, 10) = 7.42, p < 0.05; η2 =
0.43] was significant, too. At central sites (Cz) no significant
differences in [oxy-Hb] between active movement and motor
inhibition could be found. At frontal sites (FP1, FP2), [oxy-Hb]
was higher in the inhibition condition than during active move-
ment in both hemispheres. During inhibition [oxy-Hb] was lower

at central sites (left and right) compared to frontal sites (left and
right). During active movement [oxy-Hb] was higher at central
sites (left and right) compared to frontal sites (left and right). No
significant differences in [oxy-Hb] between frontal left and right
sites during inhibition were found. Again during inhibition, acti-
vation was bilateral at frontal sites like in the finger movement
condition.

For [deoxy-Hb] the ANOVA revealed a significant interaction
effect of EXEC/INHIB ∗ FRONTAL/CENTRAL [F(1, 10) = 6.52,
p < 0.05; η2 = 0.39]. Like for [oxy-Hb] the type of task evokes
different hemodynamic responses at frontal and central sites.
Additionally, the interaction effect of FRONTAL/CENTRAL ∗
HEMI [F(1, 10) = 5.73, p < 0.05; η2 = 0.36] was significant, due
to a stronger decrease in [deoxy-Hb] over central right sites
compared to frontal right sites.

The overall results clearly show differences in the frontal and
central brain regions depending on the type of task. In Figure 5
the hemodynamic responses of execution and inhibition are plot-
ted in one graph to compare the neuronal modulations more
easily. In Figure 5A the execution/inhibition responses for fin-
ger movements and in Figure 5B for foot movements are plotted
together.

Particularly during the finger movement execution an [oxy-
Hb] increase was found centrally compared to the inhibition
condition, where frontal regions showed [oxy-Hb] increase and
[deoxy-Hb] decrease. This effect is clearly visible in the topo-
graphic maps of Figures 6A (foot) and B (finger). At time point
2 (8–12 s) a clear [oxy-Hb] decrease was found at central sites
during execution of finger and foot movements, whereas dur-
ing movement inhibition both conditions showed a [oxy-Hb]
decrease at central sites and an increase at frontal sites.

DISCUSSION
The grand average hemodynamic response during finger move-
ment execution showed a typical activation pattern, namely an
increase in the [oxy-Hb] and a decrease of [deoxy-Hb] in the
hand representation area (left sensorimotor cortex). In parallel
with this activation pattern an [oxy-Hb] decrease and an increase
of [deoxy-Hb] in the medial area of the anterior prefrontal cortex
(APFC; approximately BA 10) was also observed. Furthermore,
the responses during finger movement inhibition showed a
decrease in the [oxy-Hb] and an increase of [deoxy-Hb] in the
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FIGURE 6 | Topographic distribution of foot (A) and finger (B) movement activation (left side) and inhibition (right side) at two time points (0–4 and

8–12 s) for [oxy-Hb] and [deoxy-Hb]. An increase of oxy/deoxy-Hb is indicated by cold colors and a decrease by warm colors.

hand representation area (left sensorimotor cortex) whereas in
the medial area of the APFC [oxy-Hb] increased and [deoxy-Hb]
decreased. These findings are in line with previous fMRI stud-
ies (Rubia et al., 2001, 2003; Hummel et al., 2004; Nakata et al.,
2008) and fNIRS studies (Boecker et al., 2007) investigating the
role of the PFC during response inhibition. For example, also
Rubia and colleagues (2001) found increased BOLD signals in left
hemispheric dorsolateral prefrontal, medial, and parietal cortices
during a go/no-go task. In a later fMRI study investigating inhi-
bition of learned motor programs, performed by Hummel et al.

(2004) was shown that the inhibitory changes are reflected by neg-
ative BOLD responses in an extended cerebro-cerebellar network
of sensorimotor structures with a predominant role of the PFC.

A lot of studies identified a neural network during response
inhibition consisting of ventrolateral prefrontal cortex (VLPFC),
insula, basal ganglia, pre-SMA, and dorsolateral prefrontal cortex
(DLPFC) (Wager et al., 2005; Aron and Poldrack, 2006; Li et al.,
2008; Nakata et al., 2008; Cai and Leung, 2009; Chikazoe et al.,
2009; Chen et al., 2010; Hampshire et al., 2010; Sharp et al., 2010;
Tabu et al., 2011; Mirabella et al., 2012). We additionally showed
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that the APFC and sensorimotor regions (see also Coxon et al.,
2006; Mirabella et al., 2011) are also involved. Whereas most of
these studies only investigated cortical responses during execu-
tion/inhibition of hand movements, we are the first who addi-
tionally investigated metabolic changes of execution/inhibition
during foot movements with fNIRS. Like the activation changes
during finger movements we found the same pattern during
foot movements, namely an increase of [oxy-Hb] during execu-
tion of foot movements over the corresponding representation of
the sensorimotor areas regions and a further increase of [oxy-
Hb] during inhibition of the same over APFC. This might be
due to the interconnections of the PFC to motor areas, such as
premotor, cingulate, and SMA, and to parietal areas (somatosen-
sory areas). Another recent fMRI study performed by Tabu et al.
(2012) also investigated response inhibition during hand and foot
movements. They compared hand and foot inhibition mecha-
nisms during a stop signal task. They found common inhibitory
mechanisms in the pre-SMA and VLPFC regardless of modalities
between hand and foot which is in line with our results.

For finger movements the same PFC activation was found in
the fNIRS study by Boecker et al. (2007) using a stop-change
paradigm. They compared successful as well as failed inhibition
and they found PFC activation during both tasks, with pro-
nounced activation increase in the right PFC during successful
inhibition. In contrast to this study, where a two-channel fNIRS
apparatus was used, we could also report activation changes over
motor cortical regions additionally to PFC activity by using a
multi-channel fNIRS system (46 channels). These results further
support the idea that PFC activation is likely to reflect the imple-
mentation of inhibitory control of motor behavior. Covering
sensorimotor areas we were able to provide evidence that appro-
priate contextual control of learned motor acts is represented in
the brain by an extended network of sensorimotor structures in
which metabolic activity is bidirectional modulated as suggested
by Hummel et al. (2004). Concretely the stronger increase of [oxy-
Hb] during execution compared to inhibition over sensorimotor
areas and the stronger increase of [oxy-Hb] during inhibition of
activation over prefrontal and SMA will support the theory of a
distributed cortical network controlled by prefrontal top-down
processes. The term “bidirectionality” as introduced by Hummel
et al. (2004) does not stringently include causality, but rather the
fact of reverse hemodynamic responses during inhibition and exe-
cution of movements. Whereas the study by Boecker et al. (2007)
already showed that fNIRS is a suitable technique measuring pre-
frontal activation during the inhibition of initiated responses and
the contribution of the PFC to response inhibition we could
extend that knowledge by additionally showing a similar corti-
cal activation pattern for execution/inhibition of foot movements
with multichannel fNIRS.

The finding that inhibition/execution of learned motor pro-
grams depends on increases and decreases of neural activity in
prefrontal and sensorimotor areas regardless of the effector is
linked to the absence of a somatotopic organization of the PFC
(see Tabu et al., 2012). Our study provides further evidence for a
common neural network for finger and foot response inhibition.

All mentioned fMRI and fNIRS studies emphasize the role
of the PFC during response inhibition, but in contrast to our

results they primarily found activation in the right PFC. For
example Boecker et al. (2007) found a substantial increase of
[oxy-Hb] in the right PFC during successful inhibition of already
initiated responses. For failed inhibition activation changes were
observed bilaterally. Also Rubia et al. (2003) found in their event-
related stop-signal study different activation patterns for success-
ful and failed stopping. The results of the present study showed
an increase of [oxy-Hb] in the APFC bilaterally for inhibition
which might be due to the fact that we did not differentiate
between successful and failed inhibition and both types run into
analyses.

LIMITATIONS OF THE STUDY
The missing documentation of the type of inhibition is one lim-
itation of the study which should be improved in future studies.
A further limitation of the study is the lack of recording behav-
ioral data at all. Whereas the typing frequencies of all movements
have been recorded, the exact events (e.g., number of correct
sequences) were missing.

CONCLUSION
During finger movement execution of right handed subiects,
we found an increase of [oxy-Hb] and a decrease of [deoxy-
Hb] in the hand representation area (left sensorimotor cortex).
Additionally a [oxy-Hb] decrease and an increase of [deoxy-Hb]
in the medial area of the APFC were observed, more promi-
nently in the left hemisphere. During finger movement inhibi-
tion a decrease in the [oxy-Hb] and an increase of [deoxy-Hb]
in the hand representation area was found. Furthermore, an
[oxy-Hb] increase and a [deoxy-Hb] decrease in the medial
area of the APFC bilaterally and the supplementary sensori-
motor regions was observed. These bidirectional neuronal con-
trol which is represented by increase/decrease of oxy-Hb and
deoxy-Hb concentration are in line with the results by Hummel
et al. (2004) suggesting the importance of considering not only
increases but also decreases of neuronal activity in the senso-
rimotor network and the importance of the PFC in top-down
control.

Furthermore the same interpretation is valid for foot move-
ments, where we found an increase of [oxy-Hb] over APFC
during the inhibition condition. This novel finding reinforces the
claim that the PFC plays an important role during inhibitory con-
trol of motor responses (Hummel et al., 2004; Boecker et al.,
2007). Clearly, inhibitory control is not a unitary process medi-
ated by a distinct brain region, instead several neural structures
contribute to different components of inhibitory control of move-
ments. This knowledge will help to understand disorders which
are closely related to inhibition, for example ADHD (Aron, 2009),
bipolar disorders (Rubia et al., 2001) or Parkinson’s disease (Van
den Wildenberg et al., 2006; Mirabella et al., 2012).
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Adaptive behavior requires the ability to flexibly control actions. This can occur either
proactively to anticipate task requirements, or reactively in response to sudden changes.
Recent work in humans has identified a network of cortical and subcortical brain region
that might have an important role in proactive and reactive control. However, due to
technical limitations, such as the spatial and temporal resolution of the BOLD signal,
human imaging experiments are not able to disambiguate the specific function(s) of
these brain regions. These limitations can be overcome through single-unit recordings in
non-human primates. In this article, we describe the behavioral and physiological evidence
for dual mechanisms of control in response inhibition in the medial frontal cortex of
monkeys performing the stop signal or countermanding task.

Keywords: primate, stop signal task, inhibition, supplementary motor area, control

INTRODUCTION
Adaptive behavior requires the ability to flexibly control actions.
This can occur either proactively to anticipate task requirements,
or reactively in response to sudden changes. The stop-signal,
or countermanding, task is a commonly used behavioral task
that requires both forms of behavioral control. It is, therefore,
uniquely suited to study the neuronal mechanism of proactive
and reactive control.

Recent neuroimaging studies of humans in the stop signal task
using manual and eye movements show activation centered on the
medial and lateral frontal cortex and subthalamic nucleus (STN;
Curtis et al., 2005; Aron and Poldrack, 2006; Li et al., 2006; Aron
et al., 2007a). These human imaging results have emphasized crit-
ical roles of the supplementary motor cortex (preSMA/SMA),
right inferior frontal cortex (IFC), and the STN in response inhi-
bition during a manual stop signal task (reviewed by Aron, 2011).
Reactive stopping depends on a fronto-basal ganglia network
which includes the preSMA, the IFC, the basal ganglia, and M1.
Specifically, it has been suggested that the fast inhibition of a pre-
pared response requires activity of the IFC (Aron et al., 2003).
The exact role of the IFC within the proactive inhibition process
is debated and may involve the attentional detection of the stop
signal and/or a direct role in inhibitory control. Furthermore, it
has been suggested that the inhibitory control may be instantiated
via hyperdirect input to the basal ganglia via the STN (Aron and
Poldrack, 2006). Proactive control also depends on a fronto-basal
ganglia network which includes premotor cortex (e.g., preSMA),
dorsolateral prefrontal cortex, striatum, and palladium. In this
context, inhibitory control may be instantiated via the indirect
pathway.

This recent work in humans has identified a network of cor-
tical and subcortical brain region that might have an important
role in proactive and reactive control. However, due to tech-
nical limitations, such as the spatial and temporal resolution

of the BOLD signal, fMRI experiments are not able to disam-
biguate the specific function(s) of these brain regions. In an
ongoing research project we and other labs have, therefore, inves-
tigated the role of these frontal areas in behavioral control using
single-unit and local field potential recordings in awake, behav-
ing primates performing a countermanding task. In the following
we will review some of the insights into the neuronal mechanisms
underlying proactive and reactive control that this research has
provided.

PROACTIVE AND REACTIVE CONTROL
Braver (2007, 2012) proposed the dual mechanisms of control
framework which states that cognitive control operates via two
distinct operating modes: proactive control and reactive con-
trol. Proactive control is a form of early selection in which
goal-relevant information is actively maintained in a sustained
manner, before the occurrence of cognitively demanding events,
to optimally bias attention, perception, and action systems in a
goal-driven manner (Miller and Cohen, 2001). Reactive control
is recruited as a late correction mechanism that is mobilized only
as needed, in a just-in-time manner, such as after a high inter-
ference event is detected (Jacoby et al., 1999). Thus, proactive
control relies upon the anticipation and prevention of interfer-
ence before it occurs, whereas reactive control relies upon the
detection and resolution of interference after its onset. Although
substantial theoretical and experimental progress toward eluci-
dating the mechanisms underlying reactive inhibitory control has
been made (see for example reviews by Stuphorn and Schall, 2002;
Schall and Boucher, 2007), the mechanisms underlying proactive
control have remained less clear.

THE STOP SIGNAL TASK
The stop signal or countermanding paradigm (Figure 1) has been
used to investigate the neural control of movement initiation and
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Corrected 
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Non-canceled 
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       Trial

Stop Signal Trial

No Stop Signal Trial

SSD

FIGURE 1 | The arm countermanding task. Each trial begins when the
cursor is positioned inside the center box. After a delay, the target box
appears to one side of the screen and the center box disappears,
instructing the monkey to move the cursor into the target box. On stop
signal trials, the center box reappears after the SSD signaling that the
monkey should cancel the planned movement. On the variable-reward
version of the paradigm, the color of the center box indicates whether the
trial will result in a high or low reward if performed correctly.

inhibition in rats, awake behaving monkeys, and human sub-
jects (reviewed by Schall and Boucher, 2007). The stop signal
paradigm, which includes both a task design and a theoreti-
cal construct, was developed to investigate the control of action
(reviewed by Logan, 1994). The stop signal paradigm has also
been used to examine inhibitory control in a variety of other
contexts (reviewed by Verbruggen and Logan, 2008). The stop
signal task has also been used to examine patients with ADHD
(reviewed by Alderson et al., 2007) and, recently, has been
selected for translation for use in clinical trials (Carter et al.,
2009).

Although many variations in the stimuli and effectors have
been used in the stop signal task, the requirements of the task
are quite simple. The stop-signal task probes the ability to con-
trol action by requiring subjects to inhibit a planned movement
in response to an infrequent stop signal which they do with vari-
able success depending on the delay of the stop signal. Stop signal
task performance can be accounted by a race between a process
that initiates the movement (GO process) and by one that inhibits
the movement (STOP process). This race model provides an esti-
mate of the stop signal reaction time (SSRT), which is the time
required to inhibit the planned movement. The SSRT can be esti-
mated using various methods (reviewed by Logan, 1994; Band
et al., 2003). T measured in the saccade SSRT average is approx-
imately 100 ms in monkeys and 130 ms in humans (e.g., Hanes
and Schall, 1995; Hanes and Carpenter, 1999). In the manual
stop signal task, the SSRT is an average of 150 ms in monkeys
and 250 ms in humans (e.g., Boucher et al., 2007; Scangos and
Stuphorn, 2010).

The rationale and approach for the race model analysis of
the neural stop signal data has been described previously (Logan

et al., 1984; Hanes et al., 1998; Hanes and Schall, 1995). Briefly,
the chief virtue of the stop signal paradigm is that one can
determine whether a neural or motor related signal [e.g., single-
units, local field potentials (LFPs), evoked-potentials (ERPs),
electromyograms (EMGs)] is sufficient to control the initiation
of movements. The race model imposes two criteria that a sig-
nal must meet to play a direct role in the control of movement.
First, the signal must be different when a movement is initiated
versus when it is inhibited. Second and most important, this dif-
ference in activity must evolve before the SSRT elapses. Signals
sufficient to control movement initiation are reactive control sig-
nals that are exerted in response to the sudden occurrence of a
stop signal.

The race model assumes that the GO and STOP processes
are stationary stochastic processes with independence between
trials. In other words, the response time on the current trial
is independent of the preceding trial. However, response times
are often non-stationary and non-independent (e.g., Gilden,
2001; Wagenmakers et al., 2004). For example, it is commonly
observed across experimental conditions and response modal-
ities that subjects’response times tend to increase in the con-
text of the stop signal task relative to that in simple response
time tasks (e.g., Logan, 1981; Logan and Burkell, 1986; van den
Wildenberg et al., 2003; Mirabella et al., 2006). Specifically, both
short-term and long-term changes in stop-signal frequency lead
to behavioral adjustments (Emeric et al., 2007; Nelson et al.,
2010). For example, response times decrease after no stop signal
trials and increases after stop signal trials. Furthermore, sub-
jects’ response times increase and the probability of a cancelled
response increases with increasing global proportion of stop sig-
nal trials. It seems clear that when stop signal trials occur, subjects
proactively adopt a more cautious strategy by slowing responses
on subsequent trials.

Importantly, the stop signal task evokes both reactive and
proactive forms of control. Although the Braver et al. (2007),
Braver (2012) account of control is couched in terms of atten-
tional processes, it can be used as a working hypothesis for
investigating the proactive and reactive control processes involved
in inhibition. The dual mechanisms of control account provide
strong predictions about the temporal dynamics of brain activ-
ity related to proactive versus reactive control. Proactive control
should be associated with sustained and/or anticipatory activa-
tion, which reflects the active maintenance of task goals. This
activity may serve as a source of top-down bias that can facili-
tate processing of expected upcoming events. By contrast, reactive
control should be reflected in transient activation subsequent to
unexpected events.

NEURAL NETWORK UNDERLYING BEHAVIORAL CONTROL
A network of brain areas in the frontal cortex and the basal
ganglia have been implicated in playing a key role in behav-
ioral control (Floden and Stuss, 2006; Aron et al., 2007b; Picton
et al., 2007) and specifically during the stop signal paradigm
(Curtis et al., 2005; Aron and Poldrack, 2006; Li et al., 2006;
Aron et al., 2007a). A critical component of this network is the
medial frontal cortex, in particular the supplementary eye field
(SEF), pre-supplementary motor area (pre-SMA), and adjacent
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supplementary motor area (SMA). The SEF is involved in the
control of eye movements and provides input to ocular motor
structures in the striatum, SC, and brainstem (Huerta and Kaas,
1990). In contrast, the SMA is more important for the control of
skeletomotor movements, such as movements of the arm and the
hand (Fujii et al., 2002). The role of the pre-SMA is more debated,
but seems to be more cognitive than the one of the other two and
less clearly related to only one major motor system (Sumner et al.,
2007). The pre-SMA and SMA, which are reciprocally connected,
differ in their connectivity, with pre-SMA connected to prefrontal
cortex but not motor regions, and SMA to motor regions but not
prefrontal cortex (Luppino et al., 1991; Tanji, 1996; Johansen-
Berg et al., 2004). The SEF, pre-SMA, and SMA also provide
input to the striatum and STN (Alexander and Crutcher, 1990;
Alexander et al., 1990; Nambu et al., 1996). The physiology of the
medial frontal areas, as well as the one of other cortical and sub-
cortical regions has been examined for signals sufficient to control
movements in monkeys performing the saccade stop signal task
(Hanes et al., 1998; Stuphorn et al., 2000, 2010; Paré and Hanes,
2003; Emeric et al., 2008, 2010; Godlove et al., 2011) and skeleto-
motor (Chen et al., 2010; Scangos and Stuphorn, 2010) stop signal
tasks.

REACTIVE CONTROL AND PRIMARY MOTOR AREAS
In the context of the stop signal task, reactive control is recruited
as a late correction mechanism that is mobilized only as needed,
in a just-in-time manner, such as the instant a stop signal is
perceived. Because this control mechanism is engaged only at
short notice, it requires the ability to generate control signals at
high speed that are capable of influencing ongoing motor activ-
ity even at a late stage of the movement preparation. This form
of behavioral control is therefore, likely to be found within and
interacting with the primary motor systems that directly con-
trol the relevant effectors. Most of the neurophysiological work
that has investigated reactive control in monkeys has been con-
centrated on the oculomotor system, due to the fact that this
is the currently best understood motor system (Hanes et al.,
1998; Stuphorn et al., 2000; Ito et al., 2003; Paré and Hanes,
2003; but see Scangos and Stuphorn, 2010; Mirabella et al.,
2012).

The FEF, located in the rostral bank of the arcuate sulcus in
macaque monkeys, participates in the transformation of visual
signals into saccade motor commands (reviewed by Schall, 1997).
Two of the functional subpopulations of neurons that have been
observed in the FEF during gaze shifts are movement and fixa-
tion neurons. Movement neurons in the FEF exhibit increased
discharge before and during saccades (Goldberg, 1985; Schall,
1991a; Hanes and Schall, 1996) while fixation neurons are active
during fixation and exhibit decreased discharge preceding sac-
cades (Hanes et al., 1998; Sommer and Wurtz, 2000). FEF neurons
innervate the superior colliculus (Segraves and Goldberg, 1987;
Sommer and Wurtz, 2000) and the neural circuit in the brainstem
that generates saccades (Segraves, 1992).

Hanes et al. (1998), the first study to apply the race model to
single-unit activity during the saccade stop signal task, examined
the sufficiency of FEF neurons to control the initiation of saccadic
eye movements. Applying the race model to neuronal activity

acquired in the context of the stop signal task, provided clear
evidence that movement and fixation neurons in FEF generate
signals sufficient to control the production of gaze shifts. Saccades
were initiated if and only if the activity of FEF movement neurons
reach a specific and constant threshold activation level which
is independent to the response time (Hanes and Schall, 1996;
Brown et al., 2008). Movement neurons, whose activity increased
as saccades were prepared, decayed in response to the stop sig-
nal before the SSRT elapsed. Fixation cells that decreased firing
before saccades exhibited elevated activity in response to the stop
signal before the SSRT elapsed. The majority of visual neurons, on
the other hand, did not discharge differently when saccades were
initiated versus inhibited. The visual neurons that did discharge
differentially when saccades were initiated versus inhibited, did so
well after the SSRT had elapsed. Paré and Hanes (2003) observed
parallel results for visual, movement, and fixation neurons in the
superior colliculus (SC).

REACTIVE CONTROL AND MEDIAL FRONTAL CORTEX
Thus, at least one form of reactive control signals in the oculomo-
tor system is the reactivation of fixation neurons in the FEF and
SC. What is driving the onset of these neurons? At least one source
is an external event, the onset of the stop signal. Its potency in the
oculomotor stop signal task was probably due to the fact that it
was a flash of a light in the fovea, which directly activated the gaze
fixation system (Everling et al., 1998). However, there are likely to
be other, more complex, driving factors. For example, the mon-
keys initially did not respond to reappearance of the fixation light,
or at least not necessarily by inhibition of saccade preparation.
This response, and presumably the sensitivity of fixation cells to
specific sensory stimuli, was acquired during training. Likewise,
even after training, the monkeys did not show saccade inhibition,
when outside of the task setting or at the end of the recording
session, when their motivation was low. Thus, there is clearly a
task set that the monkeys learn during training and that guides
their behavior in the stop signal task, when they know that there
is a relationship between receiving reward and following certain
behavioral rules, i.e., the task set. The representation of task set
is a primary function of frontal cortex (Sakai, 2008). We decided,
therefore, to study neurons in frontal regions that were hierar-
chically higher than the primary motor areas and provided input
into FEF and SC. The first of the candidate regions that was tested
was SEF.

The SEF is an area on the dorsomedial convexivity of the
frontal cortex that seems to parallel the FEF in many ways. The
activity of neurons in the SEF are modulated by visual or audi-
tory stimuli, while other SEF neurons are modulated preceding
and during saccades (e.g., Schall, 1991b; Schlag and Schlag-Rey,
1987. Stuphorn et al. (2000, 2010) examined single-unit activity
during the saccade stop signal task to determine the sufficiency of
SEF neurons to control the initiation of saccadic eye movements.
Like the FEF movement neurons, the activity of SEF movement
neurons increased as saccades were prepared. However, unlike
their counterparts in the FEF, these neurons do not exhibit a
reliable threshold and vanishingly few neurons in the SEF gen-
erate signals that are sufficient to control gaze (Stuphorn et al.,
2000, 2010). Emeric et al. (2010) observed parallel results in the
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event related local field potentials. Importantly, in the current
context, no neurons were observed that showed enhanced activ-
ity on trial were the monkey successfully cancelled the saccade
generation. Thus, SEF does not seem to carry reactive control
signals.

Recently, we used the stop signal task to investigate the con-
trol of arm movements (Chen et al., 2010; Scangos and Stuphorn,
2010). There are important differences between these two motor
systems. For example, unlike saccades, arm movements can be
stopped at any point along their path (De Jong et al., 1990). This
non-ballistic nature of the arm movements result in differences
in the nature of the control signals required compared to the
oculomotor system.

Another reason to study SMA and pre-SMA is that they are
widely considered to play a completely different role in motor
control, than behavioral control. Specifically, it is hypothesized
that SMA and pre-SMA are primarily responsible for voluntary
movement initiation (Eccles, 1982; Goldberg, 1985; Sumner et al.,
2007; Haggard, 2008). This hypothesis was first formulated after
the discovery of the readiness potential (RP), a slow negative
scalp potential that precedes self-initiated movements in humans
(Kornhuber and Deecke, 1965) and whose source has been local-
ized to the pre-SMA (Lang et al., 1991; Ikeda et al., 1999; Yazawa
et al., 2000). Single-unit recordings in monkeys have shown that
the pre-SMA and SMA contain long-lead neurons that become
active up to 2 s before the initiation of self-paced movements
(Okano and Tanji, 1987) and that pre-SMA neurons signal the
initiation of action in a time-selective manner (Mita et al., 2009).
In addition, lesion studies indicate an important role of SMA
in inhibition, as well (Sumner et al., 2007). Thus, there are at
least two different hypotheses in the literature concerning the role
of pre-SMA and SMA in motor control. The experiments men-
tioned above have demonstrated that the earliest activity related
to movements arises in the pre-SMA and SMA, but does this
activity play a causal role in movement initiation or is this activity
related to reactive or proactive control?

Scangos and Stuphorn (2010) probed SMA and pre-SMA
movement related neurons with a manual version of the stop
signal paradigm and vanishingly few neurons provided signals
sufficient to control movement initiation according to the logic of
the stop signal paradigm (Figure 2A). However, a second group
of neurons, similar to the FEF/SC fixation neurons, were more
active during successful response inhibition. A minority of these
cells responded early enough to be able to influence the inhibition
of the movement (Figure 2B). Thus, a minority of SMA/pre-
SMA neurons may play a role in movement inhibition but do not
appear to control movement initiation.

Chen et al. (2010) examined the local field potentials that were
acquired simultaneously with the SMA single-units for signals
sufficient to control the initiation of arm movements. Unlike the
single-units, there were significant differences in LFP power in a
number of frequency bands, which correlated with the success-
ful inhibition of the arm movement. In the beta band (5–20 Hz)
there was an increase in power evoked by the stop signal which
persisted long after the SSRT elapsed. Within the high gamma
band (130–140 Hz), especially for planned contralateral move-
ments, there was an increase of power immediately after the
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FIGURE 2 | Movement and inhibition related activity on canceled trials.

The first dotted line represents the SSD. The second dashed line
represents the SSRT. (A) Activity from a pre-SMA cell showing a difference
in activity on latency-matched no-stop signal and canceled trials for the first
SSD for movements to the right and left. Inhibition time occurs after the
SSRT boundary for both plots. (B) SMA cell with a possible role in stopping
movement. The arrowheads mark the average time of movement start and
end. The range is indicated by the gray bar. The red and black boxes above
each plot indicate the type of trial, the target location, and the movement
direction (for no-stop signal trials).

stop signal and before the SSRT. Importantly, the modulation of
LFP power in both recordings clearly started before the SSRT.
This indicates that the neuronal processes that underlie the
changes in LFP power in the respective parts of pre-SMA and
SMA were sufficient to reactively control the inhibition of arm
movements.

The evidence we have discussed thus far suggests that, of all
the brain areas probed with the stop signal paradigm, only the
neurons in the FEF, SC, and pre-SMA/SMA carry signals suf-
ficient to control movement initiation and thus provide signals
consistent with reactive control. These findings show a poten-
tial functional difference between the control of the oculomotor
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system (through SEF) and control of the skeletomotor system
(through pre-SMA/SMA). In the oculomotor system reactive
control signals are found on the level of the primary motor areas,
but not in medial frontal cortex. In contrast, in the skeletomotor
system the medial frontal cortex participates in reactive control.
There is a number of considerations and possible interpretations
of these findings.

First, it is possible that the reactive control signals exist in the
SEF, but were simply overlooked in past recording experiments.
That is always possible, but the fact that the negative finding in
SEF is based on results in four monkeys, while the positive finding
in pre-SMA/SMA is based on results in only two monkeys, makes
this possibility less likely.

Second, it is possible that this finding reflects a real differ-
ence in the structure and organization of behavioral control. The
number of cortical areas dedicated to the control of skeletomotor
movements and their relative size is much larger than the ones of
cortical areas dedicated to oculomotor control (e.g., Geyer et al.,
2000). This likely reflects the fact that the dynamics and kinematic
of skeletomotor movements are far more complex than saccadic
eye movements. Therefore, it might not be surprising, that pri-
mary motor regions, such as FEF and SC, are sufficient for the
reactive control of saccades, while in the case of skeletomotor
movements it is necessary to recruit or involve medial frontal
cortex as well.

Finally, one should keep in mind that the investigation and
comparison of the oculo- and skeletomotor system is still incom-
plete. Mirabella et al. (2011) tested dorsal premotor cortex (PMd)
using a variant stop signal task where the monkeys responded to
visual targets by touch with a speeded reaching movement. The
study found that among neurons with a movement-preparatory
activity, about one-third exhibit a modulation before the behav-
ioral estimate of the time it takes to cancel a planned movement.
Hence these neurons exhibit a pattern of activity suggesting that
PMd plays a critical role in the control of arm movement ini-
tiation and suppression. Some PMd neurons in the study were
specifically active, when the monkeys were cancelling the arm
movement. This is an intriguing finding, but a number of tech-
nical difficulties, such as the absence of EMG recordings limit the
interpretation of neural activity as clear evidence of reactive con-
trol signals. Furthermore, there is currently no single-unit study
of M1 using the stop signal task.

The location of the final decision as to whether or not a
planned arm movement is carried out is, therefore, still not
known. One possibility is that it takes place in the premotor
or in the primary motor cortex (M1). A recent countermand-
ing study in humans found that in M1, corticomotor excitability
was reduced and intracortical inhibition was significantly greater
on Stop trials compared with No stop signal trials at a time
that preceded the onset of muscle activity (Coxon et al., 2006).
These results indicate that inhibitory networks within M1 might
contribute to volitional inhibition of prepared action. Another
possible location for the final decision could be the basal gan-
glia (Mink, 1996). The internal segment of the globus pallidus
(GPi) inhibits thalamic and cortical neurons, and thus serves
as a block on the initiation of any action. The direct pathway
through the striatum releases an action by inhibiting a specific

set of GPi neurons. Both the hyperdirect pathway through the
STN and the indirect pathway from the striatum through the
external segment of the globus pallidus suppress actions by more
wide-spread excitation of GPi (Mink, 1996; Nambu, 2004). A
recent human neuroimaging study provided evidence for a role of
the STN and the hyperdirect pathway in countermanding (Aron
and Poldrack, 2006). Furthermore, deep brain stimulation of
STN affects response inhibition in Parkinson’s patients (Mirabella
et al., 2012).

THE STOP SIGNAL TASK: PROACTIVE CONTROL
Proactive control adjusts the response selection and preparation
process in anticipation of known task demands. Proactive control
is guided by endogenous signals, instead of external triggers, and
is constantly present throughout response selection and prepara-
tion. It can reflect a variety of factors such as the incentives for
choosing different responses, and the frequency of task-relevant
events. In the context of the stop signal task, proactive control
is mostly related to a regulation of the level of excitability of the
motor system. By adjusting the level of excitation and inhibi-
tion of the motor system, the proactive control system sets the
threshold for initiating a response. In making these adjustments
the proactive system has to negotiate the tradeoff between speed
(reaction time) and accuracy (cancelation likelihood) (Bogacz
et al., 2010).

Task performance in the stop signal task is clearly influenced by
factors that are independent of the presence of an actual stop sig-
nal (Verbruggen and Logan, 2009). Behavioral studies in monkeys
and humans show that the mean response time during no stop
signal trials is delayed relative to a situation when no stop sig-
nal is expected (Verbruggen et al., 2004; Stuphorn and Schall,
2006; Verbruggen et al., 2006). Short-term changes in stop sig-
nal frequency lead to behavioral adjustments (Emeric et al., 2007;
Mirabella et al., 2008; Chen et al., 2010; Nelson et al., 2010). These
systematic modulations in the mean reaction time indicate the
presence of proactive control.

While the experimental evidence in favor of a role of the
medial frontal cortex in reactive control was mixed, there is very
clear evidence for such a role in the case of proactive control.
Very few neurons carried signals sufficient for saccade initiation
(Stuphorn et al., 2010). However, there exists a more subtle rela-
tionship between SEF activation and saccade production. The
activity of some SEF neurons was correlated with response time
and varied with sequential adjustments in response latency. Trials
in which monkeys inhibited or produced a saccade in a stop
signal trial were distinguished by a modest difference in dis-
charge rate of these SEF neurons before stop signal or target
presentation. Parallel results were observed in the SMA (Chen
et al., 2010). Furthermore, the analysis of LFP in the SMA
showed that longer response times following stop signal trials
(Figure 3A) were accompanied by an increased power in the very
low-frequency (1–20 Hz) and the beta band (25–40 Hz) start-
ing approximately 120 ms before target onset (Figure 3B). These
findings indicate that neurons in the SEF and pre-SMA/SMA,
in contrast to FEF/SC movement and fixation cells, do not con-
tribute directly and immediately to the initiation of visually
guided saccades. However the SEF, pre-SMA, and SMA may
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FIGURE 3 | Changes in LFP power predict arm movement inhibition.

Effects of trial history on response time. (A) Response times for
no-stop-signal and stop trials surrounding noncanceled trials (left),
trials surrounding canceled trials (middle), and trials surrounding
corrected trials (right). The type of trials to which the response time
corresponds to is shown in bold (G: no stop signal; E: noncanceled;
Ca: canceled; Co: corrected). The dotted line indicates the average

response time on no-stop-signal trials. (B) Effects of trial history on
LFP power in the SMA. Comparison was performed between three
groups of no-stop-signal trials: those that followed another canceled trial
(Ca-Go), those that followed a noncanceled error trial (E-Go), and those
that followed a go trial (Go-Go). The time-frequency maps are aligned on
target onset. The significant differences between them are shown in
the right panel.

proactively regulate movement initiation by adjusting the level
of excitation and inhibition of the occulomotor and skeletomo-
tor systems based on prior performance and anticipated task
requirements.

REGULATION OF SPEED-ACCURACY TRADEOFF BY MEDIAL
FRONTAL CORTEX
In terms of computational reaction time models, a change in the
responsiveness of the motor system translates into a shift of the

Frontiers in Neuroengineering www.frontiersin.org June 2012 | Volume 5 | Article 9 | 66

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Stuphorn and Emeric Proactive and reactive control by MFC

distance to the threshold at which a response is initiated (Ratcliff,
1978; Luce, 1986; Reddi and Carpenter, 2000). A decrease of the
threshold is equivalent to an increase of the baseline, and vice
versa (Stuphorn and Schall, 2002; Bogacz et al., 2010). Such shifts
can explain speed-accuracy tradeoffs (Uchida et al., 2006). The
results of neurophysiological experiments fit such reaction time
models very well. The firing rate of neurons in the oculomotor
(Hanes and Schall, 1996) and skeletomotor system (Lecas et al.,
1986) indeed exceeds a fixed threshold, when movements are ini-
tiated. There is also some evidence for changes in baseline activity
in the oculomotor system. In the superior colliculus, neurons with
visual and saccade-related activity increase their baseline firing
rate with increasing probability that a saccade in their motor field
is required (Basso and Wurtz, 1998; Dorris and Munoz, 1998) or
is more rewarding (Isoda and Hikosaka, 2008a,b).

We propose here that the dorsomedial frontal cortex, including
the SMA, is the source of the proactive control signal that modu-
lates the baseline motor activity. This hypothesis is supported by
the fact that activity levels in and around the pre-SMA increased
when response speed is emphasized during speed-accuracy trade-
off experiments (Forstmann et al., 2008; Ivanoff et al., 2008; van
Veen et al., 2008).

The hypothesis that movement-related neurons in SEF, pre-
SMA, and SMA influence reaction time by controlling excitability
in the oculomotor and skeletomotor system, respectively, might
be seen as contradicting the finding that these same neurons
do not carry signals sufficient to control movement initiation
(Scangos and Stuphorn, 2010; Stuphorn et al., 2010). However,
this is not the case. We propose that SMA activity determines
the response threshold, i.e., the amount of rise in motor activ-
ity that is necessary to initiate a movement. While the distance
to the threshold clearly influences the average time at which it is
exceeded, it is not sufficient to fully determine whether and when
the threshold is actually exceeded. We propose that this process
takes place in M1 and FEF, while SMA and SEF modulates this
process by setting the urgency with which a movement is chosen
and executed.

MOTIVATION FOR SPECIFIC ACTIONS AND ITS
RELATIONSHIP TO PROACTIVE CONTROL
While our findings make it unlikely that pre-SMA and SMA play
a causal role in initiating movements, lesions in these areas do
have a profound influence on behavior. We found that the activ-
ity of most movement-related neurons in SMA and SEF was
very strongly influenced by the reward contingency of the action
(Scangos and Stuphorn, 2010; So and Stuphorn, 2010). Thus, SEF,
pre-SMA, and SMA might represent the urge to act in a specific
way rather than the commitment to do so. According to this inter-
pretation the neurons in the medial frontal cortex represent a map
of action values.

This interpretation of medial frontal cortex activity as a moti-
vation signal fits with a large number of lesion and recording
studies in humans and monkeys that indicate that the medial
frontal cortex, in particularly pre-SMA, is responsible for self-
generated, voluntary actions (Papa et al., 1991; Romo and Schultz,
1992; Deiber et al., 1999), and reflects the reward obtained by
these actions (Stuphorn et al., 2000; Ito et al., 2003; Roesch and

Olson, 2003, 2004; Campos et al., 2005; Sohn and Lee, 2007).
Voluntary behavior is characterized by the motivation to act in
order to obtain a particular goal. Lesions of the pre-SMA and
SMA may lead to apathy, because the motivational drive that
normally links reward expectation with specific actions is absent.
However, since the motor system is still functional, external stim-
uli may still trigger automatic or habitual movements. This is, in
fact, what is observed for SMA lesions in monkeys (Thaler et al.,
1988, 1995) and humans (Levy and Dubois, 2006; Schmidt et al.,
2008).

There exists a close relationship between this interpretation
of medial frontal cortex activity as a motivational signal to the
earlier discussed interpretation that the activity might represent
proactive control signals. From an motivational point of view,
there are two mutually exclusive motivations that compete with
each other in the stop signal task. First, there is a motivation
to GO resulting from the very frequent link between movement
exceution and reward delivery. Secondly, there is a motivation to
WAIT (not to stop per se) generated by the awareness that on any
given trial a stop signal might be given. These two motivations
(or action values for GO and WAIT) vary in strength according
to the most recent reward and trial history. The relative strength
of these motivations determines the level of excitability and the
momentary speed-accuracy tradeoff of the subject at any moment
in the task. However, this changing modulation of the level of
excitability of the motor system was exactly what was discussed
as a proactive control system earlier.

Our behavioral data showed strong sequential effects of errors
and successful cancelations on the reaction time of arm move-
ments in the stop signal task. Errors or an increased frequency
of stop signal trials lead to longer reaction times on subsequent
trials. Fewer stop signal trials lead to shorter reaction times. The
reaction time reflects the level of responsiveness in the motor sys-
tem. A less excitable state leads to longer reaction times, while a
more excitable state leads to shorter reaction times. The sequen-
tial effects show that the state of responsiveness of the motor
system is constantly adjusted by control signals that reset the
balance of excitation and inhibition within the motor system.

We observe motivational signals in SEF, pre-SMA, and
SMA during movement generation. In contrast, activity in the
orbitofrontal cortex appears earlier, immediately after a cue indi-
cating potential reward is revealed (Tremblay and Schultz, 1999;
Roesch and Olson, 2003, 2004; Padoa-Schioppa and Assad, 2006),
but it does not encode the action necessary to obtain the reward
(Wallis and Miller, 2003; Padoa-Schioppa and Assad, 2006).
Lateral prefrontal cortex activity reflects reward size and prefer-
ence in the delay period before a response is made (Kobayashi
et al., 2006; Sakagami and Watanabe, 2007). Striatal activity arises
after a cue is presented and remains high until reward is delivered
(Hikosaka et al., 1989; Hollerman et al., 1998). Thus, early reward
related signals from other brain areas might feed into the SMA
and pre-SMA where they are transformed into incentive signals
for specific actions (So and Stuphorn, 2010).

COMPARISON OF HUMAN AND MONKEY DATA
Taken as a whole, electrophysiological data from humans and
monkeys during stopping point to comparable proactive and

Frontiers in Neuroengineering www.frontiersin.org June 2012 | Volume 5 | Article 9 | 67

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Stuphorn and Emeric Proactive and reactive control by MFC

reactive control mechanisms. The preSMA and STN become
more active when a prepotent response must be reactively inhib-
ited (Isoda and Hikosaka, 2007, 2008a,b), while the preSMA and
SMA activity is correlated with subsequent proactive changes in
response time (Chen et al., 2010; Stuphorn et al., 2010). These
findings fit well with the results of human studies (Aron and
Poldrack, 2006; Sharp et al., 2010).

In addition, Aron and Poldrack (2006) have used human imag-
ing results to emphasize the role of the right IFC and the STN in
response inhibition during a manual stop signal task. Area 45, the
cortex anterior to the inferior spur of the arcuate sulcus and lateral
to the principal sulcus, is the most likely monkey homolog of the
rIFG (Petrides and Pandya, 1999). Unfortunately, only very few
electrophysiological recording studies in monkeys have examined
neurons in area 45 in tasks requiring inhibition. These studies
have used a go/nogo task and have reported neurons in BA45
that responded to behaviorally relevant cues and identified them
as nogo signals (Sakagami et al., 2001). However, no activity was
reported during the time period when the response to the target
needed to be suppressed. Clearly, neurophysiological studies in
monkeys are necessary to validate the role of IFC in stopping.

Aron et al. (2007a) used diffusion-weighted imaging tractog-
raphy to show that the IFC and the STN region are connected
via a white matter tract, which could underlie a hyperdi-
rect pathway for basal ganglia control. Although, the cor-
ticocortical and thalamocortical connections of area 45 have
been identified in the monkey (Contini et al., 2010; Gerbella
et al., 2010), there have been no anatomical studies describ-
ing a hyperdirect projection from area 45 to the STN (e.g.,
Monakow et al., 1978). The existence of a hyperdirect con-
nection between IFC/area 45 and STN is critical for the role
of ICF in reactive stopping (Aron, 2011). It is therefore, of
great priority to verify the existence of such a projection in
monkeys.

CONCLUSION
Converging evidence from human imaging and monkey electro-
physiology during stopping point to comparable proactive and
reactive control mechanisms. However the exact function al role
of IFC, basal ganglia, and thalamus in stopping is still unclear
and will require further investigations using neurophysiological
in awake behaving monkeys.
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Communication of intent usually requires motor function. This requirement can be limiting
when a person is engaged in a task, or prohibitive for some people suffering from
neuromuscular disorders. Determining a person’s intent, e.g., where and when to move,
from brain signals rather than from muscles would have important applications in clinical or
other domains. For example, detection of the onset and direction of intended movements
may provide the basis for restoration of simple grasping function in people with chronic
stroke, or could be used to optimize a user’s interaction with the surrounding environment.
Detecting the onset and direction of actual movements are a first step in this direction.
In this study, we demonstrate that we can detect the onset of intended movements and
their direction using electrocorticographic (ECoG) signals recorded from the surface of the
cortex in humans. We also demonstrate in a simulation that the information encoded in
ECoG about these movements may improve performance in a targeting task. In summary,
the results in this paper suggest that detection of intended movement is possible, and
may serve useful functions.

Keywords: brain computer interface, ECoG, movement direction prediction, movement onset prediction,

neurorehabilitatation, performance augmentation

1. INTRODUCTION
Brain-computer interfaces (BCIs) aim to translate a person’s
intentions into meaningful computer commands using brain
activity alone (Wolpaw et al., 2002; Mak and Wolpaw, 2009). In
particular, determining when and where a person intends to move
would have important clinical applications for those suffering
from neuromuscular disorders (Sejnowski et al., 2007; Tan and
Nijholt, 2010). For example, a BCI that detects intended move-
ment onset in absence of actual movements could restore grasp
function in people with chronic stroke (Buch et al., 2008; Daly
and Wolpaw, 2008; Wisneski et al., 2008; Muralidharan et al.,
2011; Yanagisawa et al., 2011). Also, a BCI that predicts intended
movement onset prior to actual movements would have many
practical applications in everyday life. For example, it may sup-
port faster braking during vehicle operation (Haufe et al., 2011)
or more rapid targeting in military applications (Gunduz and
Schalk, 2011).

The first step in this direction is to establish whether it is
possible to detect the onset of actual movements from brain
signals. Several previous studies have shown that intracortical
activities recorded in primates over the premotor or parietal cor-
tices are related to the onset of movements (Achtman et al., 2007;
Lebedev et al., 2008; Hwang and Andersen, 2009; Hasan and Gan,
2011; Mirabella et al., 2011), but access to intracortical activity in
humans has been scarce (e.g., Hochberg et al., 2006; Simeral et al.,
2011). Other studies have investigated movement onset using

electroencephalographic (EEG) signals in humans (Mason and
Birch, 2000; Millan and Mouriño, 2003; Borisoff et al., 2004; Leeb
et al., 2007; Bai et al., 2008; Hasan and Gan, 2011; Muralidharan
et al., 2011), but accurately detecting the corresponding EEG sig-
natures in single trials has proven difficult. Electrocorticographic
(ECoG) signals are recorded directly from the surface of the cor-
tex, and thus have a higher signal-to-noise ratio compared to
EEG (Ball et al., 2009). They also readily support detection of
certain physiological phenomena, such as high gamma activity
(>70 Hz), that is largely inconspicuous on the scalp. The ability
to detect high gamma activity is an important advantage, since
many ECoG studies (e.g., Miller et al., 2007, 2009; Kubánek et al.,
2009; Chao et al., 2010) demonstrated that spatially focused high
gamma activity correlates closely with specific aspects of motor
functions. Yet, no previous study comprehensively studied the
possibility that movement onset can be detected using ECoG
signals.

The second step in this direction is to determine whether
ECoG also holds information about movement direction prior
to the actual movement. Several studies (Schalk et al., 2007;
Pistohl et al., 2008; Gunduz et al., 2009) showed that ECoG
signals collected during movements hold information about two-
dimensional trajectories of hand movements, and Leuthardt et al.
(2004) and Schalk et al. (2008) demonstrated one- and two-
dimensional real-time control of a computer cursor using ECoG,
respectively. However, there has only been scarce evidence that
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brain signals recorded in humans give information about move-
ment direction prior to the movement (Leuthardt et al. (2004)
using ECoG, Wang et al. (2010) using MEG), and that this
information may be useful.

In this paper, we investigate whether ECoG holds information
about the onset and direction of hand movements in a center-
out task. Specifically, we use a support vector machine (SVM)
classifier to determine, at each step in time, the probability that
the subject initiated a hand movement at that particular time. We
also characterize the ECoG features that hold the most informa-
tion about movement onset. We then use a novel implementation
of a time-varying dynamic Bayesian network (TVDBN), which
was designed to take advantage of the spatio-temporal dynam-
ics of ECoG features, to determine the direction of the intended
movement using ECoG signals prior to the movement. Finally,
we simulate a targeting application in which brain signals prior to
the movement are combined with the actual movement signals.
In this simulation, the time-to-target reduces by up to 150 ms
when we use the directional information captured in ECoG sig-
nals. Overall, our results contribute to our understanding of the
neural representation of intended movements and suggest that
integrating information from brain signals and motor execu-
tion may eventually lead to systems that can improve a user’s
performance.

2. MATERIALS
2.1. HUMAN SUBJECTS
Five subjects participated in this study. The subjects were patients
with intractable epilepsy who underwent temporary implantation
of subdural electrode arrays for the localization of seizure foci
prior to surgical resection. Table 1 summarizes the subjects’ clin-
ical profiles. All of the subjects had normal cognitive capacity and
were functionally independent. The study was approved by the

Institutional Review Board of Albany Medical College as well as by
the Human Research Protections Office of the US Army Medical
Research and Materiel Command, and the subjects gave informed
consent. The implanted electrode grids (Ad-Tech Medical Corp.,
Racine, WI) consisted of platinum-iridium electrodes that were
4 mm in diameter (2.3 mm exposed) and were configured with an
inter-electrode distance of 1 cm. Subject E was implanted with a
higher density (6 mm inter-electrode distance) grid with 68 con-
tacts (PMT Corp., Chanhassen, MN) over the temporal lobe. Each
subject had postoperative anterior-posterior and lateral radio-
graphs (see Figure A1), as well as computer tomography (CT)
scans to verify grid location. The number of implanted electrodes
varied between 58 and 120 contacts across subjects (Table 1). We
excluded data collected over the occipital strips (in Subjects A
and B) from the analyses to minimize the potential impact of
visual stimulation on the results.

2.2. CORTICAL MAPPING
We used Curry software (Compumedics, Charlotte, NC) to cre-
ate subject-specific 3D cortical brain models from high resolution
pre-op MRI scans. We co-registered the MRIs with post-op CTs
and extracted the stereotactic coordinates of each grid electrode.
We identified the cortical areas underneath each electrode using
an automated Talairach Atlas (Lancaster et al., 2000) (http://www.

talairach.org/daemon.html) for functional mapping. We also
projected the electrodes onto the reconstructed brain models (see
Figure 1) and generated activation maps using custom Matlab
software to delimit the cortical areas involved in prediction of
movement onset and direction.

2.3. DATA COLLECTION
We recorded ECoG signals at the bedside using eight 16-channel
g.USBamp biosignal acquisition devices (g.tec, Graz, Austria) at a

Table 1 | Clinical profiles of the subjects that participated in the study.

Subject Age Sex Handedness Perf. IQ Seizure focus Grid/Strip location # of Electrodes

A 29 F R 136 Left temporal Left fronto-parietal 64

Left temporal 23

Left temporal pole 3

Left occipital 6

B 56 M R 87 Left temporal Left frontal 56

Left temporal 35

Left occipital 6

Right posterior mesial 4

C 45 M R 95 Left temporal Left fronto-temporal 54

Left temporal pole 4

D 49 F L 99 Left temporal Left fronto-temporal 61

Left temporal mesial 4

Left frontal 4

E 29 F R 95 Left temporal Left frontal 40

Left temporal 68

Left frontal 4

Left inferior temporal 4

Left parietal 4
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FIGURE 1 | Subject-specific brain models and projected electrode

locations for Subjects A–E. The brain template on the bottom right,
indicated with a star, depicts the location of the central sulcus, Sylvian

fissure, and important Brodmann areas. The areas most relevant to our task
are Brodmann areas 6 (premotor), 4 (primary motor), 1–3 (sensory motor),
and 7 (posterior parietal cortex).

sampling rate of 1200 Hz. Electrode contacts distant from epilep-
tic foci and areas of interest were used for reference and ground.
In addition to recording brain activity, we also recorded the sub-
jects’ eye gaze using a monitor with a built-in eye tracking system
(Tobii Tech., Stockholm, Sweden) positioned 54–60 cm in front of
the subjects, and the movements of a joystick. The eye tracker was
calibrated to each subject at the beginning of the experimental
session using custom software that invoked standard calibration
functions provided by Tobii. Data collection from the biosig-
nal and behavioral acquisition devices (g.USBamp, eye tracker,
and joystick, respectively), as well as control of the experimental
paradigm and stimulus presentation, were accomplished simulta-
neously using BCI2000 software (Schalk et al., 2004; Schalk and
Mellinger, 2010). BCI2000 provides a flexible general-purpose
software platform that consists of modules that realize signal
acquisition, signal processing, user feedback, and an operating
protocol. BCI2000 facilitates the implementation of any BCI or
related system, and is used in hundreds of laboratories for this
purpose.

2.4. EXPERIMENTAL PARADIGM
ECoG signals were collected while the subjects performed an
8-target center-out cursor movement task (Georgopoulos et al.,
1982) while fixating their eye gaze at a central fixation cross. Eye
gaze fixation was enforced online by BCI2000: a trial was aborted
if the subject looked away from the center for more than 5◦ for
more than 500 msec. Each trial started with the presentation of
a target in one of eight possible locations. A cursor appeared 1 s
later at the center of the screen. The subjects’ task was to use their
hand contralateral to the implant(s) to control a joystick so as to
move the cursor into the target. (Only Subject D used the non-
dominant hand.) We positioned the subjects such that the joystick
movements were mainly restricted to the wrist (see Figure A2).
The subjects were instructed to make exaggerated movements and

achieve maximal radial extension of the joystick to hit the targets.
Once the target was hit, the next trial started after an inter-trial
interval of 1 s. Figure 2 gives a simple illustration of the stages of
the task. Trials aborted by the eye tracker, trials in which joystick
movement preceded the presentation of the cursor, and trials in
which subjects failed to hit the correct target were omitted from
further analyses. The total number of remaining valid trials were
394, 584, 258, 398, and 305 for Subjects A through E, respectively.

3. METHODS
The primary goal of this study was to determine whether ECoG
may be used to detect the onset and direction of an intended
movement, and whether this information could be useful to
reduce the time-to-target in a simulated targeting application. In
the following sections, we describe our methods for ECoG fea-
ture extraction, movement onset and direction prediction, and
the simulation of the targeting application.

3.1. FEATURE EXTRACTION
We first re-referenced the raw ECoG signals (excluding occipital
channels) using a common average reference (CAR) spatial filter
to remove spatial noise (Kubánek et al., 2009). For each 100 ms
time step and each channel, we converted 300 ms windows (i.e.,
200 ms overlap) of ECoG time series into the frequency domain
using an autoregressive model of order 25 (Marple, 1986). Using
this model, we derived frequency amplitudes between 0 and
200 Hz in 1 Hz bins. Figure 3 shows an example of ECoG activity
at different frequencies during the preparation for and execution
of the movement task with respect to rest averaged across trials.
Spectral amplitudes were divided by an average spectrum of the
rest condition. A normalized amplitude of 1 suggests no task-
related modulations at a particular time and frequency, whereas
a value of 2, for instance, suggests that the spectral amplitude
of interest doubled during the task. ECoG features were attained
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FIGURE 2 | Illustration of all eight possible target locations (left) and the five experimental stages.

-0.2

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z)

Time (sec)
0 1 2

N
or

m
al

iz
ed

 A
m

pl
itu

de

1

2

0.5

++

Stage 2 Stage 3
50

100
150

50
100

150

FIGURE 3 | Exemplary time-frequency plots from Subject B of

normalized spectral amplitude (indicated with a linear colorscale) for

an electrode over the premotor cortex (indicated by the blue star in

the brain model on top) and an electrode over primary motor cortex

(yellow hexagon). The horizontal axis gives time (the target was presented
at time 0; the cursor was presented at 1 s). The vertical axis gives
frequency.

by averaging these frequency amplitudes across three frequency
bands: mu (8–12 Hz), beta (18–26 Hz), and high gamma activity
(70–170 Hz). In addition to these three spectral features, we also
calculated the local motor potential (LMP) (Schalk et al., 2007;

Kubánek et al., 2009) by averaging the raw time-domain signal at
each channel over each 300 ms time window (also 200 ms over-
lap). This process resulted in a total of four features from each
ECoG channel at each (100 ms) time step.

To remove features unrelated to movement onset and direction
prediction, we performed feature selection via forward search on
five cross-validation folds (i.e., dividing the number of total tri-
als into five and using four-folds for training and one-fold as the
novel testing set, five times). The algorithm started with an empty
feature set and, at every iteration, added a new feature to the set to
generate best classification accuracy across each of the five testing
folds. We chose the size of features as 20 for both movement onset
prediction and movement direction prediction.

3.2. PREDICTION OF MOVEMENT ONSET
We downsampled the joystick data to 10 Hz using a moving aver-
age filter (300 ms window, 200 ms overlap) to align with the ECoG
features. In each trial, we defined the actual movement onset as
the time sample when the joystick was pushed beyond one eight
of its maximum radial extension from its rest position. For each
trial, there was a single onset sample and all time samples from
the beginning of the trial up to this onset were labeled as not
onset.

We then designed a detector that accumulated 1 s of ECoG fea-
tures into a first-in-first-out (FIFO) buffer and determined from
a full buffer whether the subsequent time step would be the onset
of a movement. Each trial started with an empty buffer which was
updated with new features every 100 ms. Once the buffer was full,
a prediction was made every 100 ms via a weighted SVM (Huang
and Du, 2005). We opted for a weighted SVM as it overcomes
the classification bias that results from the unbalanced nature
of the data (i.e., the class not onset’ is much more likely than
the class onset) by setting the ratio of penalties to the inverse
ratio of the class sizes. We configured the weighted SVM to use
a radial basis function as the kernel. The labeled joystick data
was divided into 5-folds; four of these folds were used for train-
ing the weighted SVM, and one fold was allocated for testing.
We repeated this process five times until each fold was used for
testing 1.

1In ancillary analyses, we performed feature selection on 1/5th of the data,
which were subsequently not used in the training and testing of the onset and
direction predictors. The results of this more conservative analysis were very
similar to the results reported in the paper.
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The output of the weighted SVM classifier yielded the proba-
bility of an onset as a function of time. Time points were classified
as movement onsets if their probability values were greater than
an empirically determined threshold of 0.3. We chose the F1-score
as our accuracy metric as it is preferable over percent accuracy or
error rate for highly unbalanced classes (van Rijsbergen, 1979).
F1-score is defined as:

F1 = 2TP

2TP + FP + FN
(1)

where TP, FP, and FN are the occurrences of true positive, false
positive, and false negative predictions. F1-score is particularly
befitting for our onset predictor, as the metric is not influenced
by true negative (TN) predictions. Given the imbalance of our
two classes, any random classifier is likely to yield high TN
rates. F1-scores take on values between 0 and 1, with the latter
corresponding to a perfect classifier.

We computed the F1-scores of onset predictions for all sub-
jects. We were also interested in determining the ECoG features
(i.e., spectral bands and spatial locations) that were most pre-
dictive of movement onset. To do this, we calculated F1-scores
separately for each ECoG feature using the methods described
above. We ran the 5-fold cross validation 20 times; each time there
was a random division of the folds. A series of high F1-scores sug-
gests that the prediction was highly accurate, whereas ratios close
to zero indicate a poor predictor. Hence, we tested whether the
F1-scores in these 20-folds were significantly different than zero
via a t-test. The corresponding p-values represent the significance
of the F1-scores, and thus the accuracy of the classifier. We con-
verted these p-values into indices of confidence [(i.e., −log(p))],
and mapped those confidence indices on the cortex models of the
individual subjects.

3.3. PREDICTION OF DIRECTION OF INTENDED MOVEMENT
We predicted movement direction using all ECoG features from
1s prior to the actual movement onset (i.e., the same window used
to predict the movement onset). Routinely in such multivariate
prediction problems, multichannel time series are re-arranged
into a vector to be used as input features to train a classifier,
e.g., a neural network or SVM. However, the shortcoming of
this approach is that it generally ignores the spatial and temporal
structure of the multidimensional time series. Because we felt that
such structure was likely important for directional classification,
we opted to implement a novel modified time-varying dynamic
Bayesian network (MTVDBN) that can capture the spatial and
temporal dependency of the ECoG signals across both domains.

A Bayesian network is a probabilistic graphical model that
represents a set of variables and their conditional dependen-
cies via directed acyclic graphs, in which nodes represent ran-
dom variables and edges represent conditional dependencies.
A Bayesian network is an established method for modeling depen-
dency structures in complex multivariate systems. An extension
of Bayesian networks that models time series is called a dynamic
Bayesian network (DBN). However, an important assumption
underlying DBNs is that the time series are generated by a sta-
tionary process, which generally does not hold for neural signals.

TVDBN (Song et al., 2009) introduced non-stationary tempo-
ral transitions, but did not describe spatial dependency between
variables. In this paper, we extend the TVDBN to the modi-
fied TVDBN (MTVDBN) in which the non-stationary temporal
and spatial dependencies of ECoG signals are modeled simul-
taneously. Figure 4 depicts a block diagram of a MTVDBN in
which (vertical) arrows within each time slice (i.e., across rows
of a column) represent spatial dependencies, while (horizon-
tal) arrows across time slices (i.e., across columns) describe
the temporal dependencies. Regular TVDBNs lack the former
spatial structure, i.e., the (vertical) arrows within each time
slice.

Let Xt = (Xt
1, ..., Xt

M)T be a vector representing the ECoG fea-
tures (mu, beta, high gamma bands, and LMP) from all channels
at time t (i.e., M is four times the number of channels for each
subject). The joint likelihood of the time sequence of length T
can be expressed as:

P(X1, ..., XT) =
T∏

t=1

M∏

m=1

P(Xt
m|Xt−1

πm
, Xt

πm
), (2)

where Xt−1
πm

and Xt
πm

denote the parents of input feature Xt
m at

time (t − 1) and t, respectively (see Figure 4). Since we use 1 s
of ECoG features, we are interested in a time sequence of length
T = 10 samples. Note that the parent Xt−1

πm
represents temporal

dependencies, where as parent Xt
πm

represents spatial dependen-

cies. An equivalent form of representing P(Xt
m|Xt−1

πm
, Xt

πm
) is the

following linear model (Duda et al., 2008):

Xt
m = at−1

m Xt−1
πm

+ at
mXt

πm
+ ε, where ε ∼ N(0, 1), (3)

at−1
m and at

m are row vectors of the coefficients of parents of fea-
ture Xt

m at times (t − 1) and t, respectively, and the variable ε is
Gaussian noise with mean zero and unit standard deviation. The
coefficients a represent the structure of the network. The zero
elements of a represent the missing links within the structure,
whereas the non-zero elements stand for the dependence strength.
The coefficients are learned through maximizing the likelihood
of Xt

m across all training samples. To prevent overfitting and to
encourage sparse structures, we learn a through an �1 penalty.
Specifically, the coefficients at−1

m and at
m are learned by:

min
at−1

m ,at
m

1

N

N∑

n=1

(
Xn,t

m − at−1
m Xn,t−1

πm
− at

mXn,t
πm

)2

+ λ(||at−1
m ||1 + ||at

m||1), (4)

where N is the size of training vector samples, Xn,t
m represents

the data at the feature m at time t in the nth training vector.
Similarly, Xn,t

πm is the parent of Xn,t
m at time t in the nth training

sample. Parameter λ is the penalty coefficient, which controls the
sparsity of the structure and it is identified by cross validation.
Equation (4) is solved by least angle regression and shrinkage
(LARS) (Efron et al., 2004), which has a computational complex-
ity of O(N(2M − 1)3) time. Equation (4) was applied to each
node to select the potential parents. However, this preprocessing
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FIGURE 4 | Block diagram of a modified time-varying dynamic Bayesian network (MTVDBN). The shaded nodes are the parents of the node ∗.

does not automatically result in acyclic graphs at each time slice.
A hill-climbing algorithm was then used to greedily construct an
acyclic graph in which the edges were restricted by the selected
potential parents (Schmidt et al., 2007).

We built a MTVDBN for each direction trained using
only the trials toward that direction. For each direction d =
{1, 2, ..., 8}, the set of parameters at

d,m for m = {1, 2, ..., M} and
t = {1, 2, ..., T} were trained. Each MTVDBN thus learned the
patterns of the input ECoG features associated with planning a
movement in their assigned direction (Equation 3). After these
model parameters were trained, given a test sample of ECoG
features, the classification was done by:

d∗ = argmin
d

T∑

t=1

M∑

m=1

− log P(X∗,t
m |X∗,t−1

πm
, X∗,t

πm
)

= argmin
d

T∑

t=1

M∑

m=1

(X∗,t
m − at−1

d,mX∗,t−1
πm

− at
d,mX∗,t

πm
)2. (5)

In other words, every time an onset was detected, 1 s of input
features (i.e., T = 10 samples) were fed into eight MTVDBNs.
Each of these eight MTVDBNs yielded the joint likelihood of X∗
for one particular direction, d. In each trial, we then chose the
direction that yielded the highest likelihood (i.e., lowest negative
log-likelihood) as the predicted direction.

3.4. INTEGRATION OF ECoG-BASED PREDICTIONS AND TASK
In additional offline analyses, we simulated the integration of
the directional prediction using ECoG signals with the task. We
placed the cursor in the predicted direction at a distance α from
the center. In other words, if the directional prediction was accu-
rate, the cursor would be placed closer to the target, resulting in
a decreased time needed to hit the target. Figure 5 gives a sim-
ple illustration of re-positioning the cursor toward the predicted
target direction. In this figure, the black box is the target and the
predicted direction is (somewhat inaccurately) towards the right.
If the radius of the circle in Figure 5 is R, to decrease movement

+ α

R
R’

FIGURE 5 | An illustration of the simulated brain-assisted targeting

system. The black box depicts the current target and the white boxes
represent all other possible target locations. The arrow shows the
incorrectly predicted direction. The dashed circle is the locus of all points at
a distance R away from the target. When the cursor is re-positioned in this
circle, the distance to the target is decreased, as R′ < R.

time, the distance between the re-positioned cursor and the tar-
get should be less than R. The dashed circle is the locus of all
points at a distance R to the target. Thus, to be closer to the target,
after direction prediction the cursor should lie within the dashed
circle. The area enclosed by the two circles is 39% of the area
of the solid circle, implying that if we place the cursor in a ran-
dom direction, then there would be a 61% chance that the cursor
would be farther away from the target compared to if were left
in the center of the circle. In other words, if we randomly placed
the cursor within the solid circle, on average it would take the
subject longer to hit the target. Conversely, if the output pre-
diction is the correct target or at least one of its neighbors, this
would bring the cursor closer to the target and may allow the
user to reduce the time it would take to hit the target. The angle
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between the imaginary line that passes through the center and
the actual target and the imaginary line that passes through the
center and one of the intersection points between the two circles
is 60◦. Hence, we have an error margin of ±60◦ to improve the
performance.

4. RESULTS
4.1. PREDICTION OF MOVEMENT ONSET
As described in the Methods, we computed from ECoG signals
(i.e., amplitudes in the mu, beta, and gamma band, as well as
the LMP) the likelihood of an occurrence of a movement onset.
Figure 6 gives an exemplary resulting time course of the like-
lihood values of an onset over 20 s for Subject A, along with
arrows that indicate the actual and predicted movement onsets.
We observe that the likelihood curves exhibit sharp peaks around
the actual movement onset, which demonstrates that the classi-
fier can accurately detect movement onsets using ECoG signals.
In each subject, we used these likelihood values to classify each
time point t as “onset” if the likelihood value exceeded an empir-
ically attained threshold value of 0.3. The confusion matrices,

evaluated during actual movement, for all five subjects are shown
in Table 2 in percentages, along with the total number of events
and the resulting F1-scores. Most of the false positives occur
200 ms around the movement onset (i.e., the peak of the proba-
bility function). The predictor yields high detection performance
for Subjects A and B. The high occurrence of false negatives
decreased the F1-score for Subjects D and E. The high number
of false negatives and false positives led to reduced performance
in Subject C.

Figure 7 shows the confidence indices of the ECoG features
that are most predictive of the movement onset. (Note that a
significance level of p < 0.05 corresponds to a confidence index
of −log(p) > 3). The two larger brain models in the top row
show the confidence indices for the high gamma band and LMP,
the most predictive of the features, accumulated across all sub-
jects. The bottom two rows show the results of the high gamma
band and LMP for individual Subjects A–E. These results indicate
that the brain areas yielding prediction of movement onset are
centered on hand representations of motor cortical areas for the
high gamma band and extend beyond the hand representations
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FIGURE 6 | Time course of likelihood of movement onset for Subject A. The dashed line represents a probability level of 0.3, which was used as a
threshold to predict the movement onset.

Table 2 | Confusion matrices of movement onset prediction for Subjects A–E. The values shown in parentheses are the false positives that

occur more than 200 ms away from the actual movement onset. The bottom row gives the F1-score.

Subject A Subject B Subject C Subject D Subject E

Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual

not onset onset not onset onset not onset onset not onset onset not onset onset

Predicted not onset 94% 27% 94% 36% 73% 74% 84% 65% 93% 66%

Predicted onset 6%(0.5%) 73% 6%(0.7%) 64% 27%(22%) 26% 16%(9%) 35% 7%(4%) 34%

Number of events 3991 316 4021 468 4537 205 3380 316 4640 320

F1-score 0.69 0.63 0.06 0.23 0.35
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FIGURE 7 | Relationship of brain signals with movement onset. This figure shows the spatial distribution of accumulated confidence indices −log(p)

for the 70–170 Hz high gamma band (top left) or the LMP (top right) across all subjects. The spatial distribution of the confidence indices for each subject
are depicted in the bottom rows.

for the LMP. This finding is in agreement with results from a
previous report that investigated finger flexions (Kubánek et al.,
2009). However, areas other than the sensorimotor cortex were
used in the onset prediction as selected by the feature selection
algorithm (see Methods). On the other hand, mu and beta bands
did not yield statistically significant activations for prediction of
movement onset. Although desynchronization of these bands has
been posited to relate to local increases in high gamma amplitude
in the motor cortex (i.e., as a gating mechanism) (Miller et al.,
2009), the corresponding brain signals are known to be spatially
widespread and slowly evolving, and thus may not be the best
indicators for the exact timing of movement onset.

4.2. PREDICTION OF DIRECTION OF INTENDED MOVEMENT
We computed the absolute value of the angular error of the direc-
tional predictions obtained by the MTVDBNs for each trial and
each subject, and calculated their mean and standard deviation
across all trials. This yielded the following single-trial angular
error statistics for Subjects A–E, respectively: 55.29◦ ± 52.61◦,
46.28◦ ± 57.80◦, 68.95◦ ± 55.16◦, 70.55◦ ± 53.78◦, and 87.8◦ ±
57.9◦. A single-sided t-test revealed that the accuracy of our
results was better than chance (i.e., 90.0 ± 57.36◦) at a signifi-
cance level of 5% (p < 0.05) for all subjects. Our method yielded
single-trial angular errors that were smaller than 90◦ for all sub-
jects, and as low as 46◦ in one subject. Given that the targets are
separated by 45◦, the results indicate that the classifier was able to

infer the direction of intended movements within less than two
targets in single trials.

4.3. INTEGRATION OF ECoG-BASED PREDICTIONS AND TASK
We further studied whether integrating information extracted
from ECoG signals would improve performance in a simulated
targeting task. Every time a movement onset and direction were
predicted, we placed the cursor in the predicted direction. As
described in the Methods, this stimulation will result in improved
performance if the single-trial error of the predicted direction is
less than 60◦. Figure 8 shows the positions of the cursor averaged
across trials for each target for Subject A. It is clear that, after the
re-positioning of the cursor based on the predicted directions, on
average the subject would need to move a shorter distance to hit
each target, and therefore should complete the task in less time
assuming he/she would not have been distracted by the changing
position of the cursor. After the cursor was placed closer to the
decoded target, we simulated the cursor movement toward the
target at each subject’s average moving speed.

The distance α at which we place the cursor toward the
predicted target is an important parameter that needs to be
optimized. Note that α is a factor of the distance to the target
(i.e., α = 0.5 places the cursor halfway between the center and
the predicted target) and thus 0 < α ≤ 1. With either too small
or too large of an α (α > 1), we might not take full advantage
of the prediction results. The time needed to hit the target as a
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FIGURE 8 | Results for movement direction prediction results for

Subject A. The symbols represent the eight different targets. The
symbols in bold depict the actual positions of the targets and the thinner
symbols show the averaged pre-movement positions of the cursor
across all trials in each direction. (Note that these are average cursor
positions. Values for single-trial angular errors are given in the text.)
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FIGURE 9 | Time to hit the target as a function of α for Subject A,

where α is a scaling factor of the distance from the center to the

targets. The dashed line gives the average time to hit the target without
the assistance of ECoG signals. Error bars give the standard deviation of
the mean. Note that predictions from the brain signals do not have any
effect when α is zero.

function α is plotted in Figure 9 for Subject A, which suggests
an optimal value of 0.8 for α. The optimal α values for other
subjects are listed in Table 3, which also compares the average
movement time with and without the assistance of ECoG signals.

The results in this table also demonstrate that the movement time
of the majority of trials would have improved up to 150 ms. These
encouraging results suggest that at least under certain assump-
tions2, ECoG signals may improve a user’s performance in a
targeting task.

5. DISCUSSION
In this paper, we demonstrated that it is possible to use ECoG
signals to detect the onset and the direction of an intended move-
ment. We also demonstrate in a simulation that it may be possible
to use these predictions to reduce the time to complete a targeting
task by pre-positioning the cursor using ECoG signals acquired
only prior to the movement. We achieved detection of movement
onset by continually analyzing the incoming ECoG signals using
a SVM classifier, and predicted the intended movement direc-
tion using a novel variant of a dynamic Bayesian network (i.e.,
the MTVDBN algorithm) that captures the spatial and temporal
structure of the ECoG features.

5.1. OPTIMAL INTEGRATION OF BRAIN SIGNALS FOR
IMPROVEMENT OF PERFORMANCE

The distance α from the center at which the cursor is repo-
sitioned affects the improvement in performance as shown in
Figure 9. Moreover, we see in Table 3 that the optimal α values
ranges from 0.4 to 1.0 across subjects. It can also be observed
that a higher α value is reflected in higher percentage of tri-
als with improved movement time. This does not imply that a
higher α value improves performance, which is not the case for
Subjects D–E. Rather, it implies that if the directional classifier
yields accurate outputs, we can take better advantage of the system
(with a high α) for improving performance. Hence, improv-
ing classifier performance is crucial for the optimal integration
of information from brain signals with external (e.g., joystick)
control.

5.2. RELEVANCE FOR ASYNCHRONOUS BCIs
Synchronous BCIs restrict the user to communicate in prede-
fined time frames. Asynchronous BCIs, which allow the user to
communicate spontaneously, may support more powerful practi-
cal applications as they are self-initiated and self-paced systems.
However, asynchronous BCIs require the detection of the event
in addition to identifying the properties of the event. The results
presented in this paper may prove useful as the basis for an
asynchronous BCI. While data collection was achieved using
cued external events, our decoder was ambivalent to these events
and processed the incoming data asynchronously. That is, the
only input to the decoder in our experiment was the ECoG
time sequence. At each time t, the decoder detected whether
the user was beginning to move the joystick, and also predicted
the intended movement. Future research could explore similar
capacities in completely uncued situations, and in people who
attempt but do not actually execute movements, such as people
with chronic stroke.

2One assumption here is that reduced distance-to-target will reduce move-
ment time or at least will have other distinct benefits.
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Table 3 | Statistics and parameters of the simulated performance: optimal α values, original average movement times, average simulated

movement times achieved by integrating ECoG, percentage of trials with improved movement time, percentage of trials with degraded

movement time, and the statistical significance of performance improvement (in trials with reduced movement time).

Subject A Subject B Subject C Subject D Subject E

Optimal α 0.6 0.8 0.6 0.4 0.4

Average movement time 1050 ± 160 1067 ± 355 1710 ± 156 1635 ± 148 1507 ± 480

without ECoG (ms)

Average movement time 882 ± 430 789 ± 469 1604 ± 494 1610 ± 687 1483 ± 733

with ECoG (ms)

Percentage of trials with 61% 70% 54% 43% 53%

improved movement time

Percentage of trials with 39% 30% 46% 57% 47%

degraded movement time

Significance (p-value) of 7.3 × 10−9 1.5 × 10−19 2.7 × 10−4 6.2 × 10−2 7.4 × 10−3

improved movement time

5.3. RELEVANCE FOR PERFORMANCE AUGMENTATION
We showed in a simulation that the time required to perform
a directional motor task can be reduced by up to 150 ms. Such
improvements in human performance should have a number of
important applications. As an example, a reduction of the time to
acquire a target may increase the probability to come out ahead
in tactical combat. To investigate this possibility, the methods
presented in this paper could be readily transferred to real-time
testing. In this scenario, model parameters are estimated once ini-
tial training data are collected. The computational complexity of
the MTVDBN directional classifier during the online testing ses-
sion is O(dTM2), where d is the number of directions, T is the
memory depth (i.e., input time samples), and M is the number
of input features (i.e., spectral bands times the number of chan-
nels). This relatively modest computational requirement should
readily support real-time testing once the MTVDBNs are trained.
Nevertheless, real-time implementation and testing is necessary
to determine whether the time to hit the target will also decrease
in actual online experiments.

5.4. EXPERIMENTAL LIMITATIONS
While the signal characteristics of ECoG are attractive, the acqui-
sition and study of ECoG have several important limitations.
Foremost, to record cortical signals subdurally, a craniotomy and
dural incision must be performed. Hence, the implantation of
the grids is associated with infrequent, but serious risks, such
as inflammation or death. Moreover, the extent of grid cover-
age and its placement is not standardized across subjects and is
determined by the clinical needs of the patients. For instance, the
subject with the smallest fraction of trials with improved move-
ment time (i.e., Subject D) had grids implanted ipsilateral to
her dominant (left) hand. Thus, she was asked to use her non-
dominant hand (i.e., contralateral to her implants) during the
experiment, which might have contributed to reduced informa-
tion about movement direction, and hence the low percentage
of trials with improved movement times. Next, the physical and
cognitive condition and level of cooperation of each subject are
variable. Moreover, ECoG experiments are for practical reasons
performed in uncontrolled noisy environments (i.e., hospital

rooms). Furthermore, the subjects in the study suffered from
epilepsy, and thus may have some degree of functional or struc-
tural reorganization compared to healthy individuals. Despite
these limitations, the results presented in this and other ECoG
studies are usually consistent with expectations based on human
neuroanatomy.

While we controlled for important variables in this study (such
as eye gaze), the experimental setup in any ECoG study is neces-
sarily somewhat less controlled than that in the typical animal
or human neuroscientific study. However, real-world environ-
ments are typically very uncontrolled as well. This circumstance
strengthens our claim that our results may translate into benefits
in real-life scenarios.

In its present design, the onset predictor is based on ECoG
signals from the previous 1s. In other words, at least 1s of data
need to be available to make a prediction about movement onset.
In addition, the directional classifier is designed for prediction
of discrete directions at the time of movement onset. Moreover,
it takes advantage of the ±60◦ error margin to bring the cursor
closer to the target. Hence, it is unclear to what extent the infor-
mation in ECoG would generalize to reliable predictions during
continuous cursor control. Finally, real-time implementation of
the proposed system (i.e., re-positioning of the cursor) is required
for evaluating the proposed system, as unpredicted jumps in the
cursor, whether closer to or farther from the target, might affect
the performance of the user.

5.5. FUTURE DIRECTIONS
The work presented in this paper focused on detecting the onset
and direction of movements using ECoG signals. The methodolo-
gies for initiation detection presented in this paper may also be
extended to the detection of inhibition of a movement. Volitional
inhibition is the process of adapting to sudden changes in the
surrounding environment by stopping or modifying an action.
Thus, future work may include testing countermanding of initi-
ated motor responses, e.g.,using a stop-signal paradigm (Logan
et al., 1984). Inhibiting a response has been suggested to recruit a
fronto-basal ganglia-thalamic network, including the right infe-
rior frontal gyrus (Aron et al., 2003, 2007; Rubia et al., 2003;
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Chambers et al., 2006) and pre-supplementary motor corti-
cal areas (Sumner et al., 2007; Chen et al., 2010; Scangos and
Stuphorn, 2010). These areas are thought to influence the cor-
tical areas underlying limb movement preparation and initiation,
i.e., dorsal premotor (Mirabella et al., 2012) and primary motor
cortices (Coxon et al., 2006; Swann et al., 2009), through the sub-
thalamic nucleus (Aron and Poldrack, 2006; van den Wildenberg
et al., 2006; Mirabella et al., 2011). Applying the methodological
framework described in this study to ECoG signals collected over
the right inferior gyrus, motor and pre-supplementary motor
cortices during a countermanding task may thus allow for the
detection of the onset of corresponding inhibitory processes.

Using such an approach, it may be possible for stopping the cursor
from moving in the wrong direction in cases when the directional
classifier failed.
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APPENDIX

A B

FIGURE A1 | Example of an implanted subdural grid (Subject A).

(A) Lateral radiograph indicating grid position. (B) Subdural grid placed over
left fronto-parietal and temporal lobes.

FIGURE A2 | The experimental setup at Albany Medical College.

Joystick control mostly entailed wrist movements.
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Future neuroprosthetic devices, in particular upper limb, will require decoding and
executing not only the user’s intended movement type, but also when the user intends
to execute the movement. This work investigates the potential use of brain signals
recorded non-invasively for detecting the time before a self-paced reaching movement is
initiated which could contribute to the design of practical upper limb neuroprosthetics.
In particular, we show the detection of self-paced reaching movement intention in
single trials using the readiness potential, an electroencephalography (EEG) slow cortical
potential (SCP) computed in a narrow frequency range (0.1–1 Hz). Our experiments with
12 human volunteers, two of them stroke subjects, yield high detection rates prior to the
movement onset and low detection rates during the non-movement intention period. With
the proposed approach, movement intention was detected around 500 ms before actual
onset, which clearly matches previous literature on readiness potentials. Interestingly, the
result obtained with one of the stroke subjects is coherent with those achieved in healthy
subjects, with single-trial performance of up to 92% for the paretic arm. These results
suggest that, apart from contributing to our understanding of voluntary motor control for
designing more advanced neuroprostheses, our work could also have a direct impact on
advancing robot-assisted neurorehabilitation.

Keywords: BCI, EEG, rehabilitation, self-paced protocol, stroke, voluntary movements

1. INTRODUCTION
Human movements are usually volitional, where we sponta-
neously decide when to initiate it and commit to a particular
course of action to accomplish a daily task (Haggard, 2008).
This is the reason why uncovering the neural correlates of vol-
untary movement is important for implementing practical Brain
Computer Interface (BCI) technology that people can use over
long periods of time in a natural way. Current non-invasive BCI
allows its user to deliver mental commands to a robot controller
that transforms them into appropriate motor actions—e.g., left,
right, and forward decoded from electroencephalography (EEG)
signals while the user imagines different limb movements (Galán
et al., 2008; Millán et al., 2009). However, most brain-actuated
robots assume that the user wants to operate the neuroprosthesis
in well-defined periods of time, in contrast to daily experiences of
motor control, where movements are executed sporadically in a
self-paced manner.

In this paper, we investigate the feasibility of detecting the
intention to perform a reaching movement in single trials before
actual execution from human EEG. Intention has been described
as doing something purposefully (Schall, 2004). In this paper, we
defined intention as the time of awareness of wanting to perform a
reaching task. This definition is not to be confused with the work
of Congedo et al. (2006), Gonzalez et al. (2006), and Bai et al.
(2007) where movement intention was defined as the problem
of classifying the intention to move the left hand or right hand.

To study movement intention, we follow a self-paced paradigm
where subjects can execute a reaching movement at any time they
wish. This is a more natural and ecological experimental setup
than the classical reaction task paradigm, where subjects perform
movements in response to a cue.

A number of recent studies have found neural correlates of
when subjects decide to initiate a movement. Through invasive
methods, Fried et al. (2011) have reported progressive neu-
ronal recruitment in the supplementary motor area (SMA) over
1500 ms before subjects made the decision to move. In another
study with human electrocorticography (ECoG), Ball et al. (2009)
reported the existence peri-movement activity as early as 200 ms
before movement onset. With regard to non-invasive EEG stud-
ies, the earliest evidence of the neural correlates of voluntary
movement intention was discovered by Kornhuber and Deecke
(1965), who identified a slow, negative potential as early as 1.5 s
before the execution of movement. This slow cortical potential
(SCP) was initially named as Bereitschaftspotential. This readi-
ness potential has two main components. The first one is a slow
negative potential starting 1.5 s before voluntary movement. This
negativity is more prominent over the central-medial scalp. The
late component occurs 400 ms before movement, with a steeper
slope over the contralateral primary motor area (Shibasaki and
Hallett, 2006). The slow potentials originate in depolarizations of
the apical dendritic tree in the upper cortical layers that are caused
by synchronous firing, mainly from thalamocortical afferents,
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showing local excitatory mobilization for negative slow potentials
(Birbaumer, 1999). The presence of this readiness potential was
further analyzed in a series of famous studies by Libet et al. (1982,
1983) who showed that there is an unconscious preparatory brain
activity that begins 1 s or more before movement, preceding
the conscious awareness to act. Similar negativity components
have been observed in patients with brain lesions (Deecke et al.,
1987).

Nevertheless, being a SCP close to DC, the presence of the
readiness potential in single trials seems to be elusive. Another
EEG correlate of movement preparation and execution is the
event-related desynchronization (ERD; Pfurtscheller and Lopes
da Silva, 1999), a decrease in mu and beta power (8–30 Hz)
over the contralateral primary motor cortex. Bai et al. (2011)
showed that self-paced wrist extension movement onset can be
detected on average 0.62 ± 0.25 s before actual movement from
the analysis of ERD. Finally, Awwad Shiekh Hasan and Gan (2010,
2011) studied the EEG activity in the mu, beta and lower gamma
bands (8–45 Hz) to detect movement onset also during self-
paced wrist extension movements. They achieved good results,
but with a poor temporal resolution (from 2 s before to 2 s after
the movement).

Here we show for the first time the detection of self-paced
reaching movement intention in single trials from the analysis
of the readiness potential in 12 human volunteers, two of them
stroke subjects. In this study, we used EEG signals filtered in a
narrow frequency range of [0.1–1] Hz, which is reported to bet-
ter capture anticipatory-related SCPs (Garipelli et al., 2011). We
explicitly focus on the readiness potential for two reasons. Firstly,
as mentioned above, it is a well-known correlate of voluntary
movement intention. Secondly, it is a promising non-invasive
method for localization of motor control after hemispheric
lesions (Green, 2003), which could be useful for understanding
motor functional improvements following rehabilitation.

In this respect, apart from contributing to our understanding
of voluntary motor control and to the design of more advanced
neuroprostheses, our work could also have a direct impact on
advancing robot-assisted neurorehabilitation (Riener et al., 2005;
Johnson, 2006). Indeed, robot-assisted therapy for stroke patients
with moderate-to-severe upper-limb deficits has shown promis-
ing results in terms of improving motor functional recovery
compared to traditional therapy (Kwakkel et al., 2008; Masiero
et al., 2009; Staubli et al., 2009; Lo et al., 2010; Hogan and
Krebs, 2011). Still this kind of neurorehabilitation therapy could
be improved, as earlier detection of movement intention can
minimize the delays in device activation and, thus, allow tighter
coupling between the initial formation of the motor plan in the
cortex and its execution at the periphery through movement-
assisted devices, thus better promoting brain plasticity after stroke
(Muralidharan et al., 2011). It is for this reason that, in one of the
experiments, we have involved stroke patients in order to carry
out a first feasibility study.

Single-trial classification of SCP has already been used in BCI,
most notably by Birbaumer et al. (1999). Recently, Bradberry et al.
(2010) showed the possibility of decoding arm trajectories from
SCPs. Garipelli et al. (2009) has also analyzed the SCP for studying
and classifying anticipatory behavior. Bai et al. (2007) explored

the use of SCP, computed with a low-pass filter at 10 Hz, for clas-
sifying a right vs. left hand movement. In this work, the focus
is on identifying the intention to execute a self-paced reaching
action before the movement starts, irrespective of the movement
direction or laterality. It is also worth noting that the readiness
potentials have a similar shape to SCP associated to anticipatory
behavior, in particular the contingent negative variation (Walter
et al., 1964). However, as discussed in Rektor (2003), while both
kinds of SCP are readily confounded in scalp recordings, more
invasive techniques (Ikeda et al., 1994; Lamarche et al., 1995)
or clever experimental designs (Ruchkin et al., 1986; Brunia and
Damen, 1988) demonstrate differences.

The experiments and the proposed methods are detailed in
section 2. In section 3, we report the experimental results where,
in particular, we compare the effect of using manually and auto-
matically selected channels. We also report on the classification of
movement onset using electromyograph (EMG) signals as well as
on the classification of non-movement intention period. Finally,
we discuss the implications of our results in section 4.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL PROTOCOLS
We have designed two experiments: (1) EEG recordings of free
arm reaching movements to a target button from healthy subjects
using only their dominant arms, and (2) EEG measurements of a
high-precision arm reaching task from stroke patients and healthy
subjects as a control group. The reason why, after the promising
results achieved in the first experiment, we have run a second
experiment with a small stroke cohort is to make a preliminary
study on the feasibility to detect movement intention in single tri-
als as a potential tool for rehabilitation. This experiment was done
in a clinical setting. In this later experiment, subjects performed
the task with both arms in order to analyze possible differences in
performance between the paretic and healthy arms of patients.

2.1.1. Experiment 1
Eight subjects (three female, age 29.33 ± 2.06) participated in the
experiment. They were informed about the experimental pro-
cedures and gave their consent. All subjects were healthy with
no known history of neurological abnormalities or musculo-
skeletical disorders. Seven out of the eight subjects in this experi-
ment were right-handed.

The experimental workspace consisted of four targets (up,
down, left, and right), which correspond to buttons on the hori-
zontal plane located with respect to the mid-sagittal plane of the
subjects as shown in Figure 1 (left). Despite the center-out reach-
ing task, it is important to highlight that the decoding of reaching
directions is not within the scope of this paper as, here, we
are interested in studying the common initiation of movement,
irrespective of the movement type. The dimension of the hori-
zontal plane was 47.0 × 48.5 cm (length × width). The distance
from the home position to each target positions was approx-
imately 20 cm. The target and home position buttons were a
disc with a diameter of 27 mm. The design of the targets and
home position consisted of microswitch buttons with direct con-
nection to the input trigger of the ActiveTwo (EEG recording
device) USB2 receiver. The buttons act as the event marker for
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FIGURE 1 | Experimental setup for Experiment 1(left) and Experiment 2 (right).

the movement onset. This design provides a high temporal resolu-
tion in marking the movement onset events (releasing the buttons
from the center rest position). The recordings were conducted in
a normal office environment, with people working and speaking
around, to mimic as close as possible a realistic scenario.

Subjects were instructed to perform natural self-paced center-
out and center-in arm reaching tasks with their dominant arm.
They were asked to fixate their eyes on a cross in the middle
of the vertical plane as shown in Figure 1 (left), thus mini-
mizing eye movement-related artifacts in the recording. Each
trial began with the subject placing their dominant hand on
the center position. While at this position, subjects were asked
to relax their hand, forearm, elbow, and arm in order not to
induce any muscular tension which could possibly effect the out-
come of the analysis. After 500 ms, an auditory cue informed
the subject which target direction to reach. However, subjects
were not supposed to react immediately (i.e., reaction task) or
wait a fixed period of time (i.e., memory task) after the pre-
sentation of the cue. In contrast, they initiated the movement
whenever they wish, but not before 2 s after the presentation of the
auditory cue.

The role of the auditory cue was to ensure equal distribution
of targets to be reached. There were a total of 200 trials recorded
for each subject. Nevertheless, not all trials were kept for analysis.
We discarded trials where the subject moved earlier than 2 s. We
also removed trials if subjects reached to the wrong target. Finally,
we discarded trials contaminated with strong artifacts or noise.

After that, it remained an average of 188 trials across all sub-
jects, where the average preparation time (Tonset ) is 5.03 ± 1.77 s
as shown in Figure 2.

The design of this experiment allows voluntary initiation of
movement by the subjects, in contrast with most cue-based reac-
tion time task experimental protocols where there is a go cue that
instructs the subject when to start the movement. It has been
shown that the brain areas involved in a spontaneous task differ
from those of an instructed task (Thut et al., 2000). In partic-
ular, they found longer lasting activity in the SMA during the
spontaneous task and in the premotor area (PMA) during the
instructed condition. Lu et al. (2011) also reported different brain
areas responsible for cued and self-initiated movements.

The reaching task in this study is a form of unconstrained,
multi-degree of freedom movement. Therefore, besides EEG, we
also recorded EMG signals from the musculus biceps branchii
(selection of location through trial and error before experiment)
to monitor that there is no muscular activity during the prepa-
ration period. This signal was also used to determine the time
onset of muscular activation with respect to the movement onset
given by the experimental apparatus (i.e., microswitch at center
position).

Before the experiment starts, subjects were asked to perform
a calibration session where they have to move their eyes toward
the targets, and to perform a 1 min natural eye blinking (Schlögl
et al., 2007). This session was used to measure the effects of eye
movements on the EEG signals (see section 2.2.2).

FIGURE 2 | The timeline of the experimental protocol. Each trial starts when the subject places their hand on the center button. Next, the auditory cue
informs the subject which direction to reach. After a delayed period of more than 2 s, he releases his hands from the home position and reaches towards the
target. In order to complete the movement, the subject returns back to the home position before starting the next trial. Only center-out reaching periods are
considered. The average Tonset across all subjects in Experiment 1 is 5.03 ± 1.77 s.

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 13 | 87

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Lew et al. Detection of self-paced movement intention

2.1.2. Experiment 2
Four subjects, recorded at the San Camillo Hospital, Venice, Italy,
participated in this experiment. There were two stroke patients
and two healthy control subjects. All procedures were approved by
the Ethics Committee of the San Camillo Hospital before exper-
imentations. All subjects were informed about the experimental
procedures and gave their consent.

Table 1 shows a summary of the subjects’ particulars. All sub-
jects were right-handed. Stroke subject dpm suffers from a left
cerebellar hemorrhagic stroke, also commonly known as intrac-
erebral bleed, where the ipsilateral body part is affected. Stroke
subject lg suffers from a left nucleo-capsular stroke caused by
lesion in a deeper brain structure, thus affecting the contralateral
limb. Table 1 also reports the Fugl-Meyer Motor Assessment score
for upper extremity (FMA-UE)—maximum score of 66—for
both stroke subjects. Both patients had preserved tactile and pro-
prioceptive sensibility of the arm with normal cognitive abilities
at the time of admission to the hospital.

The subject was seated in front of a computer screen holding
on to a haptic manipulandum (PHANTOM Premium 3.0/6DOF,
Sensable Technologies) with her arm resting on the table as shown
in Figure 1 (right). This experiment used a similar paradigm to
the previous experiment. In contrast to the previous experiment,
the reaching task was performed with both arms. The subjects
were instructed to move a manipulandum that controls the posi-
tion of a cursor (a green circle) on a computer screen. The rest
position is the condition when the green circle remains inside the
white box located in the middle of the screen. The task was to
bring the cursor to one of the center-out target box. When the
target was cued, the subject was asked to wait at least 2 s before
initiating the movement. If he failed to do so, the subject had to
move the cursor back to the rest position and wait for another
2 s before initiating the movement. The trial was discarded from
analysis and repeated until the subject successfully fulfilled the
requirement of 2 s delay period.

Subjects were asked to minimize their eye movements, in par-
ticular, before starting the arm movement. In this experiment,
there was also a calibration session to record the baseline eye
movement activity as in Experiment 1. The subject was asked to
blink for 5 s, then, he had to look back and forth between the
home position and the different targets as they appear on the
screen where each target appeared five times. The recordings from
the calibration session have been used for studying the effects of
eye movements on the EEG channels (see section 2.2.2).

For each subject, we performed 3 recordings of 80 trials (tar-
gets are randomly cued), thus resulting in a total of 240 trials for

each arm movement. After discarding early starts and artifacts, it
remains an average of 229 trials for the left hand and 230 trials
for the right hand across all subjects. For the stroke patients, the
unaffected arm was tested first. The whole experiment lasted from
3 to 4 h, including the electrodes placement time. Each recording
lasted from 6 to 15 min. Both stroke subjects were able to achieve
the reaching task without much difficulty, but with longer average
reaching time (as shown in Table 1) in comparison with the con-
trol subjects. Previous analysis with stroke subjects has reported
that goal-directed arm movements are slower and more variable
than healthy subjects’ (Levin, 1996; Cirstea and Levin, 2000).

2.2. METHODS
2.2.1. EEG and EMG recordings
We acquired EEG potentials with a portable ActiveTwo measure-
ment system from BioSemi (http://www.biosemi.com) using 64
electrodes arranged in the modified 10/20 International System.
This system was also used to record the electrooculograph (EOG)
signal. In Experiment 1, the Biosemi ActiveTwo measurement sys-
tem was also used to record the EMG signals from the arm. As
for the second experiment, the EMG signals were recorded with a
Biopac System (http://www.biopac.com).

The signals were recorded at a sampling rate of 2048 Hz and
downsampled to 256 Hz. To analyze EEG, we first applied the
Common Average Referencing (CAR) procedure (Offner, 1950;
Osselton, 1965), where, at each time step, the average poten-
tial over all the channels is subtracted from each channel. The
re-referencing procedure removes the global background activ-
ity, keeping activity from local sources beneath the electrodes.
The most intuitive implementation of a CAR is to use all the
recorded channels (Bertrand et al., 1985). However, the EEG
channels could be contaminated by noise, in particular by EOG
and muscular artifacts, that may propagate to all other unaf-
fected channels. In the next section we identify the EEG channels
that are affected by EOG artifacts, which are the most promi-
nent potential source of noise given the nature of the task and
the frequency band to be analyzed. These channels are then
removed from the analysis and, in particular, for computation
of the CAR.

2.2.2. Ocular artifacts
EOG signals were acquired from three electrodes positioned
above the nasion, and below the outer canthi of the eyes (Schlögl
et al., 2007). The bipolar EOG channels in the left-central and
central-right positions were able to capture both the horizontal
and the vertical EOG components.

Table 1 | Details of subjects who participated in the Experiment 2.

Subject Age Medical condition Paretic arm Time since stroke FMA-UE Left hand MT Right hand MT

cg 25 Healthy – – – 0.61 ± 0.19 0.58 ± 0.15

gc 26 Healthy – – – 0.70 ± 0.17 0.66 ± 0.16

dpm 50 Stroke left 55 days 56/66 3.53 ± 1.63 1.67 ± 0.73

lg 61 Stroke right 658 days 43/66 1.59 ± 0.35 2.34 ± 0.36

MT refers to the time needed to complete a reaching movement. Values in bold show the performance with the paretic arm.
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Besides manual removal of noisy trials, we used a regression
analysis method to assess the influence of EOG artifacts on each
EEG channel (Schlögl et al., 2007). Briefly, channels having a large
correlation with the EOG components are discarded from the
montage before performing the CAR.

Figure 3 illustrates the regression coefficients of the horizontal
and vertical EOG components with the EEG channels computed
in the calibration session for one of the subjects. The EEG signals
are re-referenced using CAR with all 64 channels recorded from
the experiment. This figure illustrates high contributions of eye
movement artifacts in the frontal and temporal electrodes.

We first remove the peripheral electrodes, filter the signals
with CAR using the remaining 41 electrodes, and recomputed
the coefficients. As shown in Figure 4 (top panel), the effects of
vertical EOG is still high on the frontal electrodes. We further
remove electrodes for which the coefficients were above 0.3. Thus,
re-referencing the signals with a total of 34 channels can mini-
mize the effects of eye movements on the scalp EEG as shown in
Figure 4 (bottom).

Similar results were obtained for all other subjects in both
experiments. Therefore, in this paper, we performed the analysis
with only 34 channels as shown in Figure 5.

2.2.3. Pre-processing
The EEG signals were processed with a narrow band zero-phase
non-causal IIR filter with cutoff frequencies of 0.1 and 1 Hz which
has been reported to better capture anticipatory-related SCPs
(Garipelli et al., 2011). The EOG signals were also preprocessed
with the same method as the EEG signals.

EMG signals were acquired bipolarly over the musculus
biceps brachii of the subject’s arm, and high-pass-filtered with a
Butterworth filter (8th order, cutoff of 50 Hz) to remove motion
artifacts. The signals were then rectified, low-pass-filtered (8th
order, cutoff of 20 Hz) and integrated over 25 ms to obtain
envelopes of EMG activity (Cheung et al., 2009). The purpose
of recording the EMG is to monitor that there is no muscu-
lar activity during the reaching preparation phase and to ensure
that the movement intention detected is not due to the muscu-
lar activity of the arm through classification of the EMG activity
(see section 3.3).

2.2.4. Channel selection
We compare the classification performance using manually and
automatically selected channels. In the first case, channels were
selected on the basis of the grand-average SCP. In the case of

FIGURE 3 | Regression coefficients of EOG components plotted on a topographical map, showing the effect of eye movement on scalp electrodes

using signal re-referenced with all 64-channels recorded from one of the subjects. The rightmost figure shows the sum of the contributions of both
vertical EOG and horizontal EOG.

FIGURE 4 | (Top) The weights of EOG artifacts by re-referencing the signals with 41-channels and (bottom) 34-channels. This figure shows the EOG
coefficients from the calibration session of one of the subjects participating in the experiments.
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FIGURE 5 | Grand averages of SCPs for all the right-handed subjects participating in Experiment 1. EEG signals are filtered between 0.1 and 1 Hz.
t = 0 corresponds to the movement onset.

automatic selection, the channels are ranked according to their
discriminant power (DP; see below).

For computing the grand averages of SCPs, each epoch was
baseline corrected with the average activity between [2 2.25] s
before the movement onset. Figure 5 shows the grand averages of
SCPs over all right-handed subjects participating in Experiment
1 for each of the 34 channels. The SCPs in stroke subjects
obtained from Experiment 2 exhibit a similar trend in the devel-
opment of the negativity prior to the movement onset, as shown
in Figure 6. However, the negativity peaked after 1 s of move-
ment onset, when for control subjects the peak was roughly at
movement onset (see also Figure 5). This is in agreement with
Jankelowitz and Colebatch (2005), who recorded a larger and
longer readiness potential when the stroke subjects moved the

affected limb. The channels chosen manually for classification
were C1, Cz, C2, CP1, CPz, CP2 as they exhibit prominent neg-
ative slopes in the grand average and are also consistent with
previous literature (Kornhuber and Deecke, 1965; Libet et al.,
1982).

Alternatively, we performed automatic channel selection using
the Canonical Variant Analysis (CVA) (also commonly known
as Multivariate Discriminant Analysis; Galán et al., 2007). This
technique estimates the DP of each channel by comparing the
movement preparation period to the non-movement related
period. Figure 7 shows the DP value of each channel in the form
of a topographic map for EEG signals in the frequency range
[0.1–1] Hz for all eight subjects in Experiment 1. It is observed
that the channels with high DP for movement preparation are

FIGURE 6 | Grand averages of SCPs, filtered between 0.1 and 1 Hz, for the paretic arm of stroke patient lg (right arm) from Experiment 2.

t = 0 corresponds to the movement onset.
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FIGURE 7 | Each topoplot shows the normalized discriminant power index of each channel for a single healthy subject in Experiment 1.

different for each subject, suggesting subject-specific brain pat-
terns in preparing reaching movement. With the exception of
subject a5 (where four out of six of the predefined channels
match the most discriminant channels selected by CVA), the
topoplots for the rest of the subjects showed high DP index in
the frontal and parietal regions. According to Andersen and Cui
(2009), the posterior parietal and frontal cortical areas are respon-
sible for planning and decision making of movement intent.
In this respect, it has also been reported that the frontal and
parietal cortex region of the human brain carried considerable
information to predict the outcome of a motor decision the
subject had not yet consciously made (Soon et al., 2008). For
subjects f1, b5, e7, and e8, CVA did not show any similarity
with the pre-defined channels. Finally, we can observe that the
topographic map for subject d6, the only left-handed subject in
this study, showed high DP on the contralateral channels (right
hemisphere).

As for Experiment 2, Figure 8 shows the DP value for each
channel using the amplitudes of EEG signals filtered between
[0.1–1] Hz for control subjects and stroke subjects (both left
and right hand data). The regions showing the highest DP for
healthy controls were similar to the observations in Experiment 1.
Comparison between the pre-defined channels and the six most
discriminant channels selected using the CVA method showed
that four out of six channels were similar for stroke subject lg
with data from both hands and for control subject cg only for
the right hand. The topographic maps for stroke subject lg shows
very consistent DP between left and right hand, and most impor-
tantly, the focus area is similar to the pre-defined channels set. As
in Experiment 1, this central region is where the SCPs show high
negativity prior to movement onset.

In section 3, we will show the performance differences between
using pre-defined and CVA-selected channels.

2.2.5. Classification
To detect the movement intention, we categorized the signals
into two different time periods, namely the baseline period (idle
period) and the movement preparation (active period). During
the idle period, we assume that there is no on-going movement
preparation activity. This period was taken 500 ms before the
auditory target cue at each trial. The second part is the move-
ment preparation period, which we termed as the active period,
defined at [–750 –250] ms before the movement onset. Figure 9
depicts the selection of the EEG samples to train the movement
intention classifier. Training data for the classifier consists of
the baseline period (yellow box) as class idle and the movement
preparation period (green box) as class active. As a classifier, we
relied on Linear Discriminant Analysis (LDA), whose input was
a vector with the EEG amplitude of the selected channels in a
500 ms window to capture the negative slope occurring 400 ms
before start of movement. The EEG signals were subsampled
from 256 to 8 Hz (four data points per window) before classifi-
cation, resulting in a total of 24 features. To test the performance
of our classifier, we used 500 ms windows shifted every 10 ms
starting from 2500 ms before movement onset until 1000 ms
after movement onset. We report below the results of a fivefold
cross-validation. It is worth noting that the data used for fea-
ture selection is only based on the training data. Furthermore, we
employed a cross-validation method which maintain the chrono-
logical order of the data (Millán, 2004; Bourdaud et al., 2008)
which yields a better, and less optimistic, estimation of accuracy
in comparison with the traditional method.
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FIGURE 8 | The topographic maps show the normalized discriminant power index of each channel for the left and right hand for the control subjects

(cg and gc) and the stroke subjects (dpm and lg). Plots highlighted with a blue frame refers to the paretic arm of the patients.

FIGURE 9 | Selected EEG samples to build the training set of the movement intention classifier.

3. RESULTS
3.1. EXPERIMENT 1
Figure 10 shows the results of movement intention detection
where each plot represents the performance of a single sub-
ject in Experiment 1. Each plot reports the average sensitivity
rate, or True Positive Rate (TPR), across the five test folds in
the time window [−2, 1] s with respect to the actual movement
onset. This can also be interpreted as the percentage of trials
being detected as movement intention at time t. This time in
the plot (X-axis) corresponds to the last sample of the analysis
window analyzed by the classifier. The shaded region bound-
ing the average TPR illustrates the standard deviation at each
point. The magenta line refers to the onset of biceps branchii
muscular activation. This is defined as the time when the EMG
activity exceeds a threshold equal to μ + 3σ, where μ and σ

are the mean and standard deviation of EMG signals of a one-
second window after the target cue (Abbink et al., 1998). On
average, all subjects exhibit an early arm muscular activity at
263 ± 40 ms. Similar EMG timing has been observed by Flanders
(1991) and Hong et al. (1994) who studied the temporal patterns
of muscles activation for unconstrained arm reaching movement
in three dimensional space. The chance level line (in red) was
calculated by shuffling the labels of the training data and per-
forming 10 times fivefold cross validation. To test whether the
sensitivity rate is significantly above the chance level with 95%

confidence interval, we used the Wilcoxon rank sum test. The
line in green depicts the first time a group of five consecutive
samples has a true positive rate significantly above chance level
(p < 0.05).

Movement intention can be detected above chance level across
healthy subjects on average at 460 ± 85 ms before actual onset.
The detection of movement intention is before arm muscular
activation with the exception of subject b5. As reported in Table 2,
the average maximum TPR was 0.76 ± 0.07, peaking on average
167 ms before movement onset. As we will see in section 3.3,
although this peak performance is achieved slightly after EMG
onset, using only EMG is a less reliable predictor for movement
intention.

As described in section 2.2.4, we performed another anal-
ysis using the six best selected channels yielded by the CVA
method. Figure 11 shows an earlier detection of movement inten-
tion with the features selected automatically, except for subject
a5, b5, and e7. Unsurprisingly, for subject a5 time differences
are only 50 ms, since the CVA-selected channels highly overlap
with the pre-selected set. The left-handed subject, d6, with high
discriminability on the right lateral brain area, showed an ear-
lier detection time of 360 ms using channels selected with CVA
feature selection method. All subjects showed TPR above 70%,
except for subject e8 whose DP topographic map did not show a
strong discriminative area.
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FIGURE 10 | Single trial performances of movement intention

detection for all subjects in Experiment 1 using SCPs in the frequency

range [0.1–1] Hz during the time interval (−2, 1) s with respect to the

actual movement onset. Y-axis of the plots represents the movement
intention detection rate. The magenta line depicts the onset from arm
muscular activation (−263 ± 40 ms on average across all subjects).

The green line depicts the first time a group of five consecutive samples
has a TPR significantly above chance level (p < 0.05), which is shown
as a red line. The gray and red shaded regions bounding the performance
curves indicates their standard deviation at each point. Note that the variance
of the random performance is so small that the red shaded area is barely
visible.

Table 2 | Maximum TPR for each subject and the time point (in ms)

when this value is reached.

Subject ID TPR Time (ms)

a5 0.85 −110

a8 0.70 −240

b5 0.83 −150

c2 0.84 −100

d6 0.72 −120

e7 0.80 −140

e8 0.71 −190

f1 0.69 −290

Average ± std 0.76 ± 0.07 −167 ± 68

3.2. EXPERIMENT 2
Figure 12 shows the results of movement intention detection for
both the left and right hand reaching movement of all subjects
(the upper graphs correspond to the healthy control subjects,
followed by the two stroke patients). For all subjects, move-
ment intention can be detected more than 400 ms before the
recorded onset with their left hand and right hand. Movement
intention can also be detected before the onset of EMG activity
(magenta line, see previous section for details) for all subjects and

conditions, except the non-paretic arm (right) of stroke subject
dpm. The false positive rate prior to the detection of movement
intention was also low (between 0.1 and 0.2 for both hands) for
all subjects except stroke subject dpm. It is worthy to note that
stroke subject dpm was a recent stroke patient (see Table 1) and,
probably, the neural reorganization processes were still ongoing
at the time of the experiment, which took place only 1.5 month
after the stroke.

The result for stroke subject lg in Figure 12 (last row) exhibits
a different performance curve as compared with the results of
healthy controls. In particular, a high detection rate sustained
up to 1 s after onset of movement. This difference could be due
to the slower speed of reaching (c.f. Table 1) of stroke subject
lg is 2.34 ± 0.36 s using his paretic arm compared to a faster
speed of 0.5–0.6 s for healthy controls. The longer sustained high
performance could also be due to the fact that the readiness
potential of the affected limb in stroke subjects has higher ampli-
tude over a longer period of time (Jankelowitz and Colebatch,
2005).

As reported in Table 3, the average maximum TPR obtained
in this experiment was 0.81 for the left hand, peaking on average
140 ms before movement onset, while for the right hand the aver-
age maximum TPR is 0.79 at 162 ms before movement onset. It
is interesting to note that for the two conditions where the peak
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FIGURE 11 | Time of movement intention detection comparison between pre-selected channels set and best selected channel using CVA techniques.

FIGURE 12 | Single trial performances of movement intention detection for all subjects in Experiment 2 (both left and right arm reaching movement)

using SCPs in the frequency range [0.1–1] Hz during the time interval (−2, 1) s with respect to the actual movement onset. This figure has a similar
format to Figure 10. Plots highlighted with a blue frame refers to the paretic arm of the stroke subjects.
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Table 3 | Maximum TPR for each subject and hand, and the time

point (in ms) when the TPR reaches maximum value.

Subject ID Left hand Right hand

TPR Time (ms) TPR Time (ms)

cg 0.84 −200 0.79 −310

gc 0.90 −30 0.80 −140

dpm 0.66 −100 0.63 −140

lg 0.85 −230 0.92 −60

Average ± std 0.81 ± 0.11 −140 ± 92 0.79 ± 0.12 −162 ± 105

performance is closer to movement onset (left hand of healthy
subject gc and right hand of stroke subject dpm), performance
stabilizes soon after EMG onset (in between −300 and −200 ms
before movement onset) and slowly reaches its maximum value,
which is 0.9 or higher. Altogether, these results are in agree-
ment with those of Experiment 1 carried out with a larger set of
subjects.

We also compared the earliest time of onset detection using
either the pre-selected channels or the channels chosen with the
CVA data driven approach. Stroke subject dpm was excluded
from the comparison because of the random results, to avoid mis-
leading conclusion from the earlier detected intention. Figure 13
shows the earliest time when movement intention was detected
for the two control subjects and stroke subject lg. Differences
in time and performance between the two approaches are not
significant.

3.3. EFFECTS OF MUSCULAR ARTIFACTS
In this section, we are interested in studying how and when
movement intention can be detected from the arm muscular
activity. To model the movement class, we take the window ended
at 0 s (between −500 and 0 ms) because the grand averages of
EMG activity showed no movement on average 250 ms before the
movement onset.

Figure 14 shows the EMG classification results using the same
technique as in the case of EEG for the subjects in Experiment 1.
The results show that movement intention can be detected from
EMG activity at a time point close to the actual onset derived from
the button release. Interestingly, the EMG classifier detects move-
ment intention after the thresholding method (magenta line in
Figure 14) and significantly later than the EEG classifier. We can
thus conclude that detection of movement intention from EEG
signals is not due to muscular artifacts.

Similarly, in Experiment 2 (Figure 15) movement intention
can be detected significantly above chance level only after the
time obtained from the thresholding method (magenta line in
Figure 15) for the control subjects, which is in agreement with
the results from Experiment 1. The EMG signal classification for
both stroke patients, however, yielded random level classification,
showing that these signals cannot be used to detect reliably move-
ment intention or onset. Further analysis of other muscles, such
as triceps and deltoid, yielded similar results. The reason for this
is that, given the precision and spatial accuracy required in this
task, agonist and antagonist muscles are activated synergistically
to achieve a fine control of the forearm.

Altogether, these results show that detection of movement
intention from EEG signals occurs before the muscular activation,
showing high probability that preparation for movement happens
before the peripheral system reacts and this information could be
exploit for detecting the intent to move. This result is also in line
with the behavioral study of Libet et al. (1983), where participants
in the experiment reported the conscious intention to act 206 ms
before the onset of muscle activity.

3.4. ANALYSIS OF THE NON-MOVEMENT INTENTION PERIOD
Up to now, we have studied the performance of the EEG classifier
to detect movement intention during the preparation period. The
results show a quite high sensitivity rate of the EEG decoder. In
this section, we analyze the specificity of such an EEG classifier.
To do so, we examine the performance of the proposed method
during the non-movement intention period—i.e., the time where

FIGURE 13 | Comparison of detected movement intention when TPR is above chance level (p < 0.05) between using pre-selected channel set and

best selected channel from the data using CVA technique.
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FIGURE 14 | Single trial detection of movement intention from EMG activity for all subjects in Experiment 1. Y-axis of the plots represents movement
intention detection rate.

FIGURE 15 | Single trial detection of movement intention from EMG activity for all subjects and hands in Experiment 2. Plots highlighted with a blue
frame refers to the paretic arm of the patients. Y-axis of the plots represents movement intention detection rate.
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subjects should not engage in preparing the movement. Figure 16
shows the rate of trials detected as movement intention during
such a period lasting from –1000 ms before the auditory target cue
until 2000 ms afterwards for all subjects in Experiment 1. Since
windows for classification are 500 ms long, the first decision point
is at −500 ms before the target cue. Interestingly, the detection
of movement intention remains significantly below random level
over the whole period preceding the target cue. And, remarkably,
this is also the case during the first 2 s after the target cue (when
the subjects should not move) for five out of eight subjects. The
remaining three subjects (b5, d6, and f1) reached detection rates
significantly above random, but only for a short period of time
(less than 250 ms for all three subjects, starting at 750 ms after
the target cue for b5 and d6, and at 1000 ms for f1) before they
decreased rapidly below chance level again. This may reflect some
form of movement preparation after the subjects were informed
of the target that they suppressed afterwards.

Regarding Experiment 2, Figure 17 shows lower (false) detec-
tion rates, at approximately 10%, for both control subjects and
one of the stroke subject, lg. Detection rates started rising approx-
imately 1.5 s after the target cue, with the exception of stroke
subject dpm, who showed constant random level performance
throughout the entire period. A plausible explanation for this
increase is that, in this experiment, subjects had a large number of
trials where the movement onset was between 2 and 3 s after the
target cue, in particular stroke subject lg.

As a conclusion, our approach demonstrates to have a high
sensitivity and a reasonably good specificity (below random
detection level during the non-movement period) to allow robust
single trial detection of movement intention from human EEG.

4. DISCUSSION
Our experiments, involving healthy subjects and stroke subjects,
demonstrate successful single-trial detection of movement inten-
tion from EEG prior to the actual movement in a self-paced reach-
ing protocol. In particular, we show the detection of self-paced
reaching movement intention in single trials from the analysis of
the readiness potential, an EEG slow potentials that we compute
in a narrow frequency range between 0.1 and 1 Hz. In these exper-
iments, SCPs seem to carry most of the relevant information for
the detection of movement intention as performance is higher
than other frequency bands, as shown in Figure 18. In future
work we will explore whether coherence among different EEG
frequencies and channels, reflecting the rather complex brain net-
work involved in this task, could offer further insight into the
underlying mechanism of self-paced movement preparation and
improve the performance of the detection.

Our SCP approach yields high detection rates close to the
movement onset (sensitivity) and below random detection level
during the non-movement period (specificity). Also, movement
intention was detected around 500 ms before actual onset, in
agreement with previous studies on readiness potentials using

FIGURE 16 | Detection of movement intention during the non-movement intention period for all subjects in Experiment 1. Time 0 s refers to the
delivery of the auditory target cue. Y-axis of the plots represents movement intention detection rate.
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FIGURE 17 | Detection of movement intention during the non-movement intention period for all subjects and hands in Experiment 2. Time 0 s refers
to the delivery of the visual target cue. Plots highlighted with a blue frame refers to the paretic arm of the patients. Y-axis of the plots represents movement
intention detection rate.

grand average activity (Kornhuber and Deecke, 1965; Libet et al.,
1982). To further increase the performance of our method, in par-
ticular its specificity, we could improve our experimental protocol
in order to better model the non-movement intention period. It
would suffice to incorporate null trials (i.e., no movement trials).
We will also explore the use of an evidence accumulation frame-
work (Perdikis et al., 2011) that have proven beneficial in BCI as it
only issues commands with high probability of confidence levels.

Previous works on movement onset have focused on
hand/wrist flexion only (Awwad Shiekh Hasan and Gan, 2010,
2011; Bai et al., 2011), without reaching to a definite goal. Cortical
activity is different in both cases. Readiness potentials, and their
associated topography, have been found to be modulated by the
consequence of movement, complexity of the movement, level
of skill, sequence of hand movements; as well as the part of the
body performing the movement, force, speed, and precision of
a movement (Lang, 2003). In particular, Simonetta et al. (1991)
reported larger amplitudes of the readiness potential in sequen-
tial motor tasks than in simple movements. There is also a larger
late BP in self-paced movement of the proximal than the dis-
tal part of the upper extremities (Jankelowitz and Colebatch,
2002). Finally, different studies have reported that the atten-
tional level has an influence on the neural correlates of movement
onset. Libet et al. (1982) showed differences in the shape of
the readiness potential depending on subjects’ strategies, either
involvement of general preplanning to act in the near future

or direct movement when subjects were aware of the need to
move. The former showed earlier onset (about 1 s). Keller and
Heckhausen (1990) compared the readiness potentials between
consciously and unconsciously performed motor actions, and
found larger amplitudes in Cz, FCz, and Fz with consciously
performed movements.

A previous study with four stroke subjects (Muralidharan
et al., 2011) reported that attempted finger extension could be
detected in stroke subjects with accuracy rates varying across
subjects with a maximum true positive rate of 70% through
combinations of PSD in the range of [2–30] Hz. These results,
however, were obtained in a reaction task paradigm where sub-
jects performed the movement or relaxed in response to a
cue. In our study, the average maximum true positive rate was
0.81 ± 0.11 across both groups, controls and stroke subjects. The
performance for one of the stroke subjects, dpm, was slightly
above random, with maximum TPR of 0.66, while for another
stroke subject, lg, the maximum TPR was 0.92 for reaching trials
executed with his paretic hand. Although promising, the results
achieved with stroke patients can only be taken as a prelimi-
nary feasibility study because of the limited number of subjects
involved in the study. Nevertheless, it is worth noting that one of
the patients achieved similar performance to the healthy subjects
with the paretic arm.

In this work we have explored the use of EEG readiness poten-
tials to decode a key aspect of voluntary movement behavior,
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FIGURE 18 | Each pixel refers to the single trial performance of movement intention detection for all subjects in Experiment 1 using signals filtered in

various frequency ranges (Y-axis). The dotted line in magenta refers to the EMG activation for each subject.

namely self-paced onset. But it could also be related to another
critical aspects of voluntary behavior, in particular volitional
inhibition—stopping or changing a planned motor action that is
not any more appropriate to the current context. In fact, Chen
et al. (2010) have found that SMA is involved in both, movement
preparation and movement inhibition. It would be interesting to
detect the onset of an inhibitory process in a reaching version
of the countermanding paradigm proposed by Mirabella et al.
(2006, 2008, 2011). In particular, Mirabella et al. (2011) shows
the existence of neurons in the dorsal premotor cortex exhibiting
a pattern of activity compatible with the control of reaching arm
movement initiation and suppression, thus suggesting that motor
cortices are the final target of the inhibitory command elabo-
rated elsewhere. The identification of the inhibitory process onset,
in conjunction with detection of voluntary self-paced movement
onset, may lead to more efficient and natural neuroprosthet-
ics as well as more effective post-stroke motor rehabilitation
training.

Detection of voluntary movement intention prior to its actual
execution is a new capability that may advance the current state
of the art in BCI and neurorehabilitation. For motor recovery,
triggering the robotic-assistive device before EMG activation can
largely improve the outcome of therapy (Muralidharan et al.,
2011). In this case, decoding readiness potentials suits naturally
in the design of goal-directed protocols where patients need to
execute purposeful actions, which have been shown to produce
significantly smoother, faster, and more forceful movement than

repetitive routine movement (Trombly and Wu, 1999). In the case
of motor substitution, it will provide a natural signal to enable
usual brain control of wheelchairs and upper limb neuropros-
theses while blocking their operation until the subject wishes to
do so. The results reported here are certainly encouraging and
can be extended in a couple of ways for its practical applica-
tion in a neuroprosthesis. Future work will be devoted to test the
proposed method in an online implementation and perform the
analysis with more disabled users. In particular, subjects could
learn to control a robotic arm. It will be interesting to analyze
the learning effects and the stability of the signals during such
closed-loop real-time control applications. Regarding neuroreha-
bilitation, as discussed in the Introduction, it would be extremely
exciting to try our approach in combination with rehabilitation
robotics for motor recovery of spinal cord injury and stroke
patients.
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The ability to inhibit unwanted movements and change motor plans is essential for
behaviors of advanced organisms. The neural mechanisms by which the primate motor
system rejects undesired actions have received much attention during the last decade,
but it is not well understood how this neural function could be utilized to improve
the efficiency of brain-machine interfaces (BMIs). Here we employed linear discriminant
analysis (LDA) and a Wiener filter to extract motor plan transitions from the activity of
ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted
with multielectrode arrays in primary motor (M1) and primary sensory (S1) cortices, were
overtrained to produce reaching movements with a joystick toward visual targets upon
their presentation. Then, the behavioral task was modified to include a distracting target
that flashed for 50, 150, or 250 ms (25% of trials each) followed by the true target that
appeared at a different screen location. In the remaining 25% of trials, the initial target
stayed on the screen and was the target to be approached. M1 and S1 neuronal activity
represented both the true and distracting targets, even for the shortest duration of the
distracting event. This dual representation persisted both when the monkey initiated
movements toward the distracting target and then made corrections and when they
moved directly toward the second, true target. The Wiener filter effectively decoded
the location of the true target, whereas the LDA classifier extracted the location of
both targets from ensembles of 50–250 neurons. Based on these results, we suggest
developing real-time BMIs that inhibit unwanted movements represented by brain activity
while enacting the desired motor outcome concomitantly.

Keywords: motor cortex, sensorimotor transformation, volitional inhibition, neurophysiology, decision making,
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INTRODUCTION
Neurophysiological studies conducted during the last two decades
have revealed a complex representation of spatial information
in the brain, including the representation of multiple motor
targets (Cisek and Kalaska, 2002, 2005), sequences (Mushiake
et al., 1990; Isoda and Tanji, 2004), spatial attention (Lebedev
and Wise, 2001; Lebedev et al., 2004; Ikkai and Curtis, 2011),
and gaze (Boussaoud et al., 1993; Baker et al., 1999; Boussaoud
and Bremmer, 1999; Balan and Ferrera, 2003)—all in differ-
ent reference frames, depending from which brain area neural
activity was sampled (Lacquaniti and Caminiti, 1998; Cohen and
Andersen, 2002; McGuire and Sabes, 2009). These representations
underlie rich behavioral repertoires of advanced organisms, pri-
mates in particular, that can flexibly control their attention and
motor processing to meet demanding challenges of their envi-
ronments (Wise et al., 1996; Wise and Murray, 2000; Lebedev
and Wise, 2002). In particular, advanced organisms can inhibit

and reprogram movements once the corresponding neural plan-
ning or even the movement itself have been initiated (Matsuzaka
and Tanji, 1996; Band and van Boxtel, 1999; Schall et al., 2002;
Mostofsky and Simmonds, 2008; Verbruggen and Logan, 2008;
Stinear et al., 2009; Mirabella et al., 2011).

An adaptive neural framework can enable the planning stages
of potential movements to begin in parallel with preparations for
an alternative motor plan (Resulaj et al., 2009; Cisek and Kalaska,
2010). As a result, neural representations of distinct motor plans
may compete prior to movement onset in behavioral tasks with
several potential targets of movement (Cisek and Kalaska, 2005;
Rickert et al., 2009; Mirabella et al., 2011). Studies of reaching
movements have identified populations of neurons that represent
multiple potential motor plans throughout the dorsal premotor
(Cisek and Kalaska, 2005; Pesaran et al., 2008; Mirabella et al.,
2011), supplementary motor (Chen et al., 2010), and posterior
parietal cortices (Snyder et al., 1998; Scherberger and Andersen,
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2007). A bounded-accumulation model (Resulaj et al., 2009) pro-
poses that when multiple motor outcomes are presented, neural
networks prepare for the most likely upcoming movement. The
network accumulates noisy evidence over time until a bound
threshold is reached, at which point an initial decision is reached,
which is then either reversed or reaffirmed.

In the present study, we investigated the representation of
multiple potential movement targets and the specification of a
change in motor plan by neuronal ensembles simultaneously
recorded in primary motor (M1) and sensory (S1) cortical areas.
We approached neural representation of motor plan transitions
from a brain-machine interface (BMI) perspective. BMIs extract
motor commands from the brain and convert them into move-
ments of external actuators, such as computer cursors and robotic
devices (Andersen et al., 2004; Lebedev and Nicolelis, 2006; Fetz,
2007; Birbaumer et al., 2008; Nicolelis and Lebedev, 2009; Chase
and Schwartz, 2011; Lebedev and Nicolelis, 2011; Lebedev et al.,
2011). At the current stage of the BMI field, up to several hun-
dred neurons in the brain can be recorded simultaneously by
chronically implanted multielectrode arrays (Nicolelis et al., 2003;
Chapin, 2004; Churchland et al., 2007; Miller and Wilson, 2008;
Lebedev and Nicolelis, 2011; Lebedev et al., 2011; Stevenson and
Kording, 2011). Recording from large neuronal populations is
essential because the range of information extracted from neu-
ral activity and accuracy of extraction improves with the number
of recorded neurons (Wessberg et al., 2000; Carmena et al., 2003;
Lebedev et al., 2005; Lebedev and Nicolelis, 2006; Fitzsimmons
et al., 2009; Nicolelis and Lebedev, 2009). Notwithstanding the
successes of the BMI field, signals extracted from the brain are
typically noisy (Lebedev and Nicolelis, 2006; Tonet et al., 2008).
BMI algorithms are usually trained to reproduce one particu-
lar behavior and do not generalize well when a transition to
a new set of rules and conditions is needed (Santucci et al.,
2005; Fitzsimmons et al., 2009). This is why many improve-
ments are needed: from a significant increase of the number of
simultaneously recorded neurons to the development of better
extraction algorithms capable of approximating natural behav-
iors.

Although some work has been done on the extraction of
behavioral parameters during delay intervals, during which mon-
keys prepare movements but withhold their execution (Musallam
et al., 2004; Lebedev et al., 2008; Afshar et al., 2011), the prob-
lem of motor plan transitions has not yet been fully investigated
from a BMI perspective. We examined cortical representation of
motor programming in a reaction-time task in which monkeys
had to rapidly reprogram their center-out reaching movements.
The monkeys had been previously overtrained to move a hand-
held joystick toward computer screen targets. In this study, we
introduced distracting targets that flashed on the screen for a
short period (50–250 ms) and triggered motor preparation on
75% of the trials. This motor preparation had to be canceled when
a true target appeared at a new screen location. Both the distract-
ing and the true targets were represented by neuronal ensemble
activity recorded in the M1 and S1 cortices. We used ensemble
modulations to extract target locations using a linear discrimi-
nant analysis (LDA) classifier. In addition, a Wiener filter was used
to make continuous extractions offline.

METHODS
CORTICAL IMPLANTS
All studies were conducted with approved protocols from the
Duke University Institutional Animal Care and Use Committee
and were in accordance with the NIH guidelines for the Care
and Use of Laboratory Animals (National Research Council et al.,
2011).

Two rhesus monkeys (one male and one female, monkeys M
and N, respectively) were chronically implanted with multielec-
trode arrays in M1 and S1 of both right and left hemispheres using
previously described surgical methods (Nicolelis et al., 2003).
Within each hemisphere, two 96 channel microelectrode arrays
were placed in cortical areas corresponding to cortical repre-
sentations of the arm and leg (Figure 1B), but in this study,
neural activity was recorded only in the arm representation area
of right hemisphere M1 (in both monkeys) and S1 (only in
monkey M). Each array consisted of two 4 by 4 grids of inde-
pendently movable electrode triplets. Triplets were comprised
of electrodes of different lengths, in 0.3 mm intervals, which
allowed us to sample neuronal activity from different depths in
the cortical tissue. Recorded signals were amplified, digitized, and
filtered by a multichannel recording system (Plexon Inc, Dallas,
TX, USA). Neuronal spikes were sorted using waveform tem-
plate matching algorithm built into the real-time spike-sorting
software.

BEHAVIORAL TASK
Each monkey was trained to move a hand-held joystick to control
the two-dimensional location of a computer cursor on a screen
(Figure 1A). X(left-right) and Y(forward-backward) position of
the joystick were translated to X(left-right) and Y(up-down) cur-
sor position on the screen. The joystick was affixed to the chair at
the waist level of the monkey on the side of the working hand (left
hand in both monkeys). During the task, the display screen was
positioned in front of the monkey, at 45 cm from the monkey’s
eyes. The cursor diameter was 0.5 cm.

To begin each trial, the monkey placed its left hand on the
top of the joystick, causing a cursor to appear on the screen.
A trial was immediately canceled if the monkey removed its
hand from the joystick at any time. Next, a 5 cm diameter circle
appeared at the center of the screen. The monkey moved the cur-
sor inside this circle and held it for a random interval between
1 and 2 s. After this hold period, the center target disappeared
and a single peripheral target became visible. The peripheral
target appeared as a thickened 40◦ arc on a thin boundary cir-
cle aligned on the center of the screen (Figure 1C). Reaching
the target required the cursor to pass over the thickened arc
from the inside of the circle, moving outwards (Figure 1D). If
the cursor crossed the circle, but missed the target, trial was
terminated without reward delivery. Both monkeys had been pre-
viously overtrained to perform center-out movements toward
the targets, triggered by target appearance and characterized by
reaction times (RTs) of 0.49 ± 0.17 s (mean ± standard devia-
tion) in monkey M and 0.44 ± 0.18 s in monkey N (Ifft et al.,
2011).

In this study we introduced target switches to produce dual tar-
get representation in the sensorimotor cortex. This design was to
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FIGURE 1 | Experiment and location of neural recordings. (A) Rhesus
monkey controlled joystick with left hand which translated to movements
on computer screen. (B) Electrode arrays in arm representation regions of
M1 and S1 cortex were implanted prior to data collection. (C) During task,
peripheral targets appeared at one of four potential locations on the screen:
0, 90, 180, 270◦. Workspace was divided into four quadrants, centered on
each target location as divided by dashed diagonal lines. (D) Typical task
sequence begins with cursor inside central target. After a random hold
time, the target appears an as an arc on the gray boundary circle. On 25%
of trials, this target persists and the cursor must be move through the
target for reward. On the remaining trials, the target moves after a brief
delay and the cursor must be move toward the new target to obtain a
reward. (E) Shown are timelines of the presence of each target and joystick
position. SSD is defined to be the time between when the first target
appears and when the target is switched to the second location.

mimic the momentary preparations followed by changes in motor
plans. In switch trials, initial targets served as distractors. They
appeared on the screen and were then replaced by a second target
at different locations after a short interval, termed the switch sig-
nal delay (SSD). A similar switching task was previously reported
(Georgopoulos et al., 1981, 1983) with a difference that monkeys
were overtrained in those studies and M1 neurons were recorded
serially. Our distracting and true targets always appeared at one

of four locations on the screen, at angles 0, 90, 180, or 270◦ rela-
tive to the center of the screen (Figure 1C). Initial targets switched
in 75% of trials. The SSD for a given trial was either 50, 150, or
250 ms, with each occurring with equal probability. When the dis-
tracting target disappeared, a second target appeared at one of
the remaining three potential locations. We call this second tar-
get the true target because a juice reward was obtained only by
moving the cursor through this target. In the remaining 25% of
trials, the first target remained on the screen throughout the trial
and a reward was obtained by passing the cursor through this
target location. Once the true target appeared, the monkey had
2.5 s to complete each trial before timing out. The experiment was
repeated over two daily recording sessions in both monkey M and
monkey N.

Single trial trajectories were categorized depending on the
degree of deviation made toward the distracting target. For switch
trials, a threshold distance was set at 1.5 cm along the axis between
the center target and the distractor. Joystick movements which
surpassed this threshold in the direction of the distractor were
categorized as distracted trials. Remaining trials were categorized
as direct if, in addition to not moving toward the distractor, the
path to the true target deviated less than 1.5 cm in the direction
orthogonal to the ideal trajectory. Strict criteria were enforced for
direct trials to ensure that the only movement made was to the
true target, isolating the role of movements with a singular goal
from the onset. Direct trials could, however, be unrewarded if
they were near misses and the cursor did not move toward the
distractor. Violation of these criteria on a given trial resulted into
classification as a distracted trial and later analyses evaluated these
two trial groupings separately. Furthermore, trials where the ini-
tial center target was held but no movement was made to any
target (beyond the 1.5 cm threshold distance) were not consid-
ered in the present analysis. Trial movement onset was computed
using a previously implemented algorithm where movement ini-
tiation was detected based on the analysis of specific patterns in
velocity and acceleration (Ifft et al., 2011). To perform statistical
testing on performance accuracy measured as proportion of tri-
als, such as fraction direct trials (Figure 2C) or fraction correct
for different target location, trials were subdivided into groups of
15 trials. Number of outcomes of each type per 15 trials was com-
puted for each group, and their statistical sample for all groups
was entered in an appropriate statistical test (e.g., unpaired t-test
that could be used either directly to compare two outcomes,
or post-hoc following analysis of variance for comparing several
outcomes).

RT was defined as the time from either the distractor or true
target onset until movement onset. The RT measured from dis-
tractor onset was elongated by the SSD during which an initial,
false, target was presented. At the same time, it could be addi-
tionally shortened for some SSDs because the distractor primed
the appearance of the true target. That is, when the true tar-
get was presented, a shorter response latency could indicate that
the transient distractor presence expedited pre-movement pro-
cesses with respect to the true target. For the RT measured from
true target onset (Figure 1E), the priming effect of the distrac-
tor is more clearly demonstrated. Each definition yields its own
interpretation thus we included both in our analysis.
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POPULATION RESPONSES
All neural analyses were performed using recordings from
Monkey M M1 and S1 neurons, and Monkey N M1 neurons.
Population-level analyses were conducted separately for each of
these three cortical areas. Neural activity was analyzed using
peri-event time histograms (PETHs) (Awiszus, 1997) aligned on
distractor target onset. Recorded timestamps of action poten-
tials were counted in bins of 50 ms width. The PETH from 0.5 s
before to 1.0 s after distractor target onset (true target onset
in the case of no-switch trials) for each neuron was computed
separately for each combination of distractor and true target loca-
tion (four no-switch combinations and 12 switch combinations),
for each of the four SSD conditions. For single neuron analy-
sis (Figures 4, 5), single trial spike rasters were constructed over
the same 1.5 s epoch aligned on distractor onset. Corresponding
PETHs represent the bin counts of total spikes that occurred
within each of the 50 ms bins, summed across trials in the same
SSD category as well as matching the same combination of dis-
tractor and true target locations. Bin counts were then divided
by the fixed 50 ms bin width to represent firing rate in units of
spikes/second.

To analyze population-level modulations, the average modu-
lation profile for each neuron was normalized by subtracting the
mean bin count of the neuron (over all conditions) and dividing
by the standard deviation of the neuron’s bin count. This normal-
ized quantity represented modulations as a fraction of the overall
modulations, or statistically, the z-score. The directional tuning of
each neuron was computed from normalized PETH data on trials
where there was no switching of the peripheral target. The mean
normalized firing rate was computed within the 750 ms window
following target onset for each target direction. The four direc-
tions were then ranked from most preferred to least preferred in
subsequent analyses reflecting the directional preference of the
each neuron (Figure 6A). Next the mean PETH over the entire
population of neurons was computed for each of the sixteen dis-
tractor/true target configurations and for each of the three SSD
groups (Figure 6B).

To further understand the neural representation of the dis-
tractor target and the true target, the population mean firing
rate (MFR) was computed during different epochs for each of
the 12 distractor-true target combinations, and four no-switch
trial categories (Figure 7). Furthermore, we separated the trials
by SSD to elucidate the effect of an elongated distractor presence
(Figures 7A–C). For each neuron, the MFR was computed for
each of the 16 positions on a 4 × 4 grid, with rows representing
preference ranking of the true target location (ranks 1 through 4)
and columns representing the preference ranking of the distrac-
tor target (ranks 1 through 4). The layout is clarified in Figure 7D.
Firing rate was normalized and the directional preferences of each
neuron were determined from most to least preferred direction
as in Figure 6. Population MFR was obtained by averaging the
MFR across all neurons in the given area. This procedure was
repeated for six temporal epochs: the epoch when the distrac-
tor was present, and five consecutive 100 ms epochs following
true target appearance. To evaluate the specific contribution of
the distractor and true target neural representations on MFR, we
fit MFR as a linear function of the preference ranking of each

target preference combination (1–4) for each 4 × 4 grid, show in
Equation 1 (Lebedev and Wise, 2001; Lebedev et al., 2004):

MFR = A · PDtrue + B · PDdistractor + C (1)

Coefficients A and B represent the contribution of the true target
and the distractor target, respectively.

We also separated trials depending on whether the monkey
correctly switched to the true target (Figure 8). In this analysis,
trials were separated into two groups depending on the monkey
behavior: (1) trials where the true target was reached (rewarded
trials) and (2) trials where the monkey was distracted (as defined
earlier) and failed to reach the true target. Trials outside of these
two categories were not included in the Figure 8 analysis.

To evaluate the variation in neural activity profile between the
different SSD groups, single neuron normalized PETH data from
each of the 12 switch conditions were subtracted from the PETH
data from the corresponding no-switch condition and this value
was squared. The mean of the 12 difference-squared terms was
computed over the −0.5 to 1 s trial epoch for each neuron and
for each SSD group, and the square root of this value was com-
puted, yielding a root-mean-square (RMS) difference, shown by
Equation 2:

RMScell =

√√√√√mean

⎧
⎨

⎩
∑

i �=j

(
PETHjj − PETHij

)2

⎫
⎬

⎭ (2)

where PETHij represents the normalized neural activity profile
for a single neuron when the distractor is at position i and the true
target is at position j. PETHjj represents the normalized activity
profile of the same neuron on a no-switch trial. Both i and j have
four possible values resulting in 12 differences to be computed for
each neuron. This procedure was repeated for data collected in
each of the four SSD groups.

The difference profile across the population was thus com-
puted by taking the mean difference across neurons, while main-
taining temporal information (Figure 9A). Lastly, the population
average for each of the SSD groups was compared to identify the
relevant interval during the trial where modulations reflect the
transient distractor representation (Figure 9B).

To assure that the differences arose as a result of the distrac-
tor, and not due to increased variance during elevated neural
activity during movement, trials were shuffled amongst distractor
location groups and the analysis was repeated, however, the SSD
categorization remained intact. Once shuffled, the single neu-
ron and population RMS differences were computed in the exact
method as performed for the unshuffled data. The shuffled RMS
difference profile for each SSD was generated five times and the
average of these profiles was subtracted from the unshuffled pop-
ulation RMS difference profile, thus reflecting the true difference
accounted for by the distractor presence.

CLASSIFIER
To extract the location of both the first (distractor) target loca-
tion and the second (true) target locations, LDA (Fisher, 1936)

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 16 | 105

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Ifft et al. Reprogramming movements by cortical ensembles

was used to decode neural activity offline and make categorical
predictions of each target location (Figures 9–11) (Ifft et al.,
2011). In no-switch trials, the locations of the distractor and
true targets were considered the same. Neural activity aligned
on distractor onset was used to train the classifier on 60% of
randomly selected trials. Training data for each time point was
provided by neural discharges within a 150 ms window slid across
the task interval from 0.5 s before to 1 s after distractor target
onset. Predictions of both target locations were made using sam-
ple data from the remaining 40% of trials. The same 150 ms
sliding window was used to obtain predictions. For each ses-
sion, sliding LDA predictions were computed five times, each with
randomly redrawn training and sample subsets. Overall reported
predictions represent the average of these five runs per session.
Neural activity used to train the decoder was separated into exclu-
sively M1 or S1 recorded neurons in the case of monkey M, and
just M1 neurons in monkey N. LDA predictions were also made
with shuffled data; that is, when the group information is ran-
domly permutated prior to training the LDA classifier. For each
LDA figure (Figures 10–12), we computed the fraction correct
prediction of each parameter minus fraction correct of the LDA
predictions from shuffled data. The chance level performance
(0.25 because of four potential targets) was then added to this
amount to again return to the conventional [0, 1] scale. The y-
axis thus becomes fraction correct with unrelated modulations
removed. For each analysis, confidence intervals were computed
using the 1-proportion z-test from Equation 3:

z = p̂ − p0√
p0(1 − p0)

√
n (3)

where p0 is 0.25 (four potential targets) and n is the number of
trials used for testing (40% of total trials). All confidence intervals
were constructed at α = 0.05.

Trial types were then divided according whether the movement
was direct to the true target or revealed a deviation toward the
distractor (see Behavioral Task section above) as a way to test
whether the transient representation of the distractor target is
explained by motor movements. LDA was trained on both trial
types combined and was then utilized to make predictions of
the first and second target location separately for each trial type
(Figure 11).

A separate analysis was performed using LDA to decode the
presence of the switching of target location (Figure 12A). Again,
a 150 ms sliding window of neural activity trained the decoder. At
each time step, LDA made a prediction of whether the trial was a
switch or no-switch trial. Data were again aligned on the time of
distractor onset and all switch-trials were grouped together. First
target in this case means distractor target in the case of switch
trials, or true target (only target) in the case of no-switch trials.
The 150 ms sliding window was incremented along the time axis
in 25 ms steps from 0.5 s before to 1 s after first target onset. The
fraction of correct predictions was computed at each time step as
described for previous sliding window LDA analyses. As this anal-
ysis involves a binary classification procedure, a second metric
was used to quantify extraction of event information from neu-
ral activity (Figure 12B). The Matthews correlation coefficient

(MCC) is a common measure of classifiers for binary outcomes
(Matthews, 1975; Baldi et al., 2000). MCC is computed as shown
in Equation 4:

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(4)

where TP is the count for true positives predictions, TN for true
negatives, FP for false positives, and FN for false negatives. Similar
to the conventional correlation coefficient, the values of MCC
range from −1 to 1 depending on the strength and directionality
of the prediction. At each shift, the MCC was computed five times
as a result of randomly redrawing the training and sample data,
as was done in each LDA analysis. With two sessions per monkey,
MCC at each time step of the sliding window represents the mean
of 10 values.

Concurrent to prediction of trial type (switch or no-switch)
at each time step, location of the first and second targets was
also decoded. Although the training data included both switch
and no-switch trials, LDA performance in terms of fraction cor-
rect locations only included prediction data from switch trials.
This was necessary because if the no-switch target was identified
as the distractor, the LDA predictions may have been artificially
improved due to the prolonged presence of that target on the
screen. If it was identified as the true target, the prediction may
have also been improved because of the absence of interference
from a distractor.

CONTINUOUS OFFLINE PREDICTIONS USING WIENER FILTER
To mimic continuous, real-time BMI predictions, we used a sim-
ple Wiener filter with six 100 ms taps of neural data to predict
cursor X and Y coordinates, and true target X and Y coordinates
at a 10 Hz output rate (Figure 13). For monkey M, both M1 and
S1 neurons were used to improve predictions of these parameters
(Figures 13A–E). To reject noisy neurons and reduce overfitting,
we computed weights that reflected each neuron’s contribution
toward kinematic predictions. We selected the 80% of all neurons
which had the highest weights.

The Wiener filter weights were fit using 60% of the session
length and predictions were made using the remaining 40%. Due
to variable durations of all targets in the session, we inflated the
true target duration to 1000 ms to ensure targets could be repre-
sented despite a low 10 Hz rate of prediction. To reduce the effect
of noisy predictions, the predicted radius of movement, r, was
computed at each time as shown in Equation 5:

r =
√

X2
p + Y2

p (5)

where Xp and Yp are the predicted X and Y position of the cursor
at a given time (Figure 13B). A threshold for r was chosen at 5 cm
(screen coordinates) such that when r surpassed this threshold,
a reach had been predicted. Time of threshold crossing was thus
recorded and predictions of target locations relative to this time
were made. At each time from when r exceeded rthreshold, predic-
tions of cursor and true target position were made and compared
to actual. To quantify performance in terms of fraction correct,
the screen was divided into four (90◦) quadrants surrounding
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each target (see Figure 1C). For example, quadrant 1 would occur
from −45◦ to 45◦ relative to the center of the screen. A prediction
of cursor X and Y was correct if the Wiener prediction was in the
correct quadrant as the actual cursor (X, Y). True target location
predictions were evaluated in the same way. Predicted true target
quadrant was compared with the target locations. The fraction
correct was computed at each time step beginning at threshold
crossing until 800 ms after threshold crossing, during all thresh-
old crossings in the last 40% of each session. If during this 800 ms
window, r became less than rthreshold, predictions were no longer
made. If r was greater than rthreshold, but the true target was not
on the screen (with all durations fixed at 1 s, as stated before), this
was counted as incorrect.

RESULTS
BEHAVIOR
While the monkeys had been previously overtrained in the sin-
gle target task, no prior training was performed in the task with
switching targets. We chose to avoid excessive training on the
two target sequence because we wanted to obtain the maximum
effect of the switching target and avoid the monkeys developing
alternative behavioral strategies, such as timing their responses
in a way such that the initially presented target is wholly ignored.
We suppose that previous overtraining in reaction-time responses
toward single targets helped to enhance the representation of
the distractor target because that was the target toward which
monkeys were accustomed to moving in a RT manner. However,
neither the contribution of prior training nor the effect of con-
tinued training with switching targets were examined in this
study.

As it would be expected, the introduction of switching targets
resulted in erroneous responses on a portion of trials (Figure 2),
more so for monkey N. We consider reaching movements that
crossed into the true target to be correct trials. Incorrect trials
consisted of movements that crossed distracting targets, move-
ments that missed both targets, canceled and time-out trials
(Figure 2B). The overall proportion of correct trials was higher
in monkey M than in monkey N: 88% in monkey M and
only 27% in monkey N (p < 0.001; Wilcoxon rank sum test)
(Figures 2B,C). Monkey N compensated for this inaccuracy by
making many more trials per recording session (1519 and 1072 in
each of two sessions, respectively) than monkey M (594 and 418
trials). This difference in accuracy is seen in the example trajec-
tories for a particular target configuration (Figure 2A). Monkey
M produced straight and carefully targeted reaching trajecto-
ries, whereas monkey N’s trajectories were less accurately directed
and often missed the target. Monkey M made errors only for
the longest, 250 ms, SSD (Figure 2C). Another observation was
that 90◦ switch trials were less frequently direct, compared to
180◦ switch trials (78.4% vs. 90.3% of trials for monkey M and
55.9% vs. 70.2% of trials for monkey N, p < 0.01, unpaired
t-test). In other words, the distractor had a stronger effect on the
cursor trajectory when it was closer to the true target.

To separate accurate and inaccurate reaches toward the true
target, trials were divided into two groups consisting of direct
trials and distracted trials. Classification of trials is described in
detail within Methods. In the separation of all monkey M’s trials,

505 trials were classified as direct, 145 classified as distracted,
compared against a total of 214 no-switch trials. Joystick trajec-
tories for these types of trials are shown in Figure 3 for monkey
M. Trials are grouped by target configuration: with 90◦ separa-
tion between the initial and true targets (left panels), and with
180◦ separation (right panels). Our data show reach trajectories
that deviate toward the distractor on the infrequent distracted
trials. Inaccurately performed trials for long presentations of dis-
tracting targets can be also seen in the examples of Figure 2A.
The trial-averaged traces reveal the largest deviation during the
longest, 250 ms, SSD (Figure 3E). In both monkeys, the frac-
tion of trials categorized as “direct” decreased with longer SSDs
(Figure 2C, P < 0.001, Kruskal–Wallis test). More precisely, there
was a decrease in fraction direct trials for 150 ms and 250 ms dura-
tions for monkey N (p < 0.05; post-hoc unpaired t-test) and for
250 ms duration for monkey M (p < 0.05) in comparison with
no-switch trials. Previous studies of an overtrained switching task
reported mostly distracted trials where monkeys initiated move-
ments toward the distractor and then curved the trajectory toward
the true target (Georgopoulos et al., 1981, 1983).

The effect of SSD on RT was dependent on how RT was defined
(see Methods). When defined from distractor target appearance
until movement onset, longer SSDs caused a lengthening in RT
in both monkeys (p < 0.001, One-Way Kruskal–Wallis test). This
is somewhat expected because with longer SSDs, the longer the
monkey must wait for the true target, thus inflating the RT.
However, when RT was defined relative to true target appearance
(Figure 2D), longer SSD caused shorter RTs (p < 0.001, One-
Way Kruskal–Wallis test). Thus, the appearance of the distractor
on the screen primed the response to the true target, even though
the directional information that it provided was incorrect. Post-
hoc analysis revealed significant differences from no-switch trial
RT among both the 150 and 250 ms SSD groups for monkey N
(p < 0.001; Wilcoxon rank sum test) and among all three SSD
groups in monkey M (p < 0.001). Mean RTs for monkey N (0.52
± 0.24 s; mean ± sd) were significantly longer than the RTs for
the single target task (0.44 ± 0.18 s; p < 0.001; Wilcoxon rank
sum test), however, monkey M performance was similar in both
experiments (two-target sequence RT: 0.46 ± 0.10 s; single target
task 0.49 ± 0.17 s for monkey M). Overall, monkey N behavior
was more erratic in the present experiment, as evidence by cur-
sor trajectories (Figure 2A) and RT standard deviation more than
twice that of monkey M. In the previously overtrained reaches to
single targets both monkeys performed well (e.g., 84% and 74%
correctly performed trials in monkeys M and N, respectively) (Ifft
et al., 2011). Note that data from the previous study represents
center-out movements to a target less than half the size of the
target used in the present study.

NEURONAL RESPONSES
The initial distracting targets were represented by M1 and S1
modulations even when they appeared for a brief 50 ms inter-
val. This representation became more pronounced with longer
presentations of distracting targets.

Figure 4 shows a representative M1 neuron recorded in mon-
key M that had a clear directional preference for the 90◦ and
180◦ target location and was modulated in response to both the
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FIGURE 2 | Behavioral results from both monkeys. (A) Typical movement
traces from one combination of distractor and true target locations. The
columns show different cursor trajectories on trials with different SSDs. The
first row is data from monkey N and the second row from monkey M. (B) Pie
chart shows the breakdown in trial outcomes by monkey. (C) The fraction of
direct trials shown for each SSD group in both monkey M (left) and N (right).

One-Way Kruskal–Wallis test followed by post-hoc unpaired t-tests were
performed. ∗denotes p < 0.001 relative to no-switch group. (D) Mean
reaction time shown for both monkeys for each SSD group with error bars
that represent standard error. Reaction time is defined as the time from
true target appearance to movement onset. Same statistical procedure
as (C).

distractor and true targets. Data are arranged in a 4 by 4 matrix
representation (Lebedev and Wise, 2001; Lebedev et al., 2004)
where columns of panels correspond to the distractor target loca-
tion and rows correspond to the true target location. The panels
on the diagonal (shaded in gray) correspond to trials where the
first target did not disappear and was the true target to which
the monkey had to move. Modulations reflecting the distractor
location can be appreciated from the comparison of the responses

within the same rows of panels, but for different columns.
Modulations reflecting the true target location are seen within
the same columns, but for different rows. With the exception
of the diagonals, which are identical in both Figures 4A and B,
Figure 4A shows data for the 50 ms duration of the distractor, and
Figure 4B shows data for the 150 ms duration. The responses to
the distractor target are mostly clear in Figure 4B where bursts
of activity are seen in response to that target appearing at the
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FIGURE 3 | Raw cursor trajectories for two sessions (1018 total trials)

from monkey M. (A) X and Y position of cursor versus time during
no-switch trials. Offline, all targets were moved to (X,Y) position (5,0) and
the associated coordinate transform was made to all kinematic data. Y
indicates movement orthogonal to the ideal trajectory. (B) For switch trials,
two categories of trials shown separately for clarity: trials with a 90◦ switch
(left) and trials with a 180◦ switch (right). The coordinate systems for a
given trial were rotated such that the true target was in the positive X
direction and the Y direction was orthogonal to this axis. (C) X and Y cursor
positions versus time for direct trials among 90◦ switch (left) trials and 180◦
switch trials (right). (D) Same as (C) except looking at only distracted trials.
(E) Average X and Y trajectory of cursor separated by SSD (see Legend)
and by switch angle (columns same as C,D).

preferred location (90◦, less clear for 180◦). Responses to the dis-
tractor target are not as clear in Figure 4A, but it still can be
noticed that this neuron’s rate was higher following the distrac-
tor target appearance at the preferred locations (90◦ and 180◦)
compared to the non-preferred locations (0◦ and 270◦).

Figure 5 illustrates, using the same neuron as shown in
Figure 4, that the distractor target influenced neuronal pat-
terns even when the monkey moved directly to the true tar-
get (Figures 5B,C, left panels) as it did in the no-switch trials
(Figure 5A).

Figure 6 shows neuronal activity patterns for the entire pop-
ulation of M1 neurons recorded in monkey M. The format is
similar to Figure 4 with the difference being that target locations
were ranked for each neuron according to the firing rate exhibited
for each location. Trials without distracting targets (no-switch tri-
als) were used to rank directions into the first preferred direction
(Pref 1), second preferred direction (Pref 2) and so on for each
neuron. As in Figure 4, no-switch trials are shown on the diag-
onal (denoted by gray boxes). The off-diagonal panels show the
switch trials with 250 ms SSDs. Figure 6B shows average PETHs
for each SSD. Population PETHs (Figure 6A) and their averages
(Figure 6B) indicate that M1 firing rates reflected both the dis-
tractor (modulations for different columns of panels with the
same row) and the true (different rows within the same column)
target locations. It can be also seen that each configuration of the
distractor and true target locations was associated with a unique
pattern of population activity. Here, as in Figure 4, the initial
component of the response is modulated across panel columns
(i.e., representation of the distractor target), and the late compo-
nent is modulated across panel rows (representation of the true
target). Average PETHs of Figure 6B indicate that the duration
of the distractor was clearly reflected by the population activity—
both as the average PETH shape and (e.g., bottom row of panels)
and its amplitude (e.g., top row of panels). One can also notice the
location of the true target was clearly reflected as average PETH
amplitude for all conditions, and the location of the true target
was better reflected by average PETHs for longer SSDs—both as
PETH shape and amplitude. Because of these differences between
PETHs for different conditions, we were able to extract informa-
tion about target locations from neuronal ensemble activity using
a discrete classifier.

The results from Figure 6 are additionally clarified in Figure 7
that shows the evolution of neuronal rates using 4 × 4 dia-
grams. In the diagrams, vertical and horizontal bands correspond
to neuronal tuning to the distractor and true target location,
respectively. The diagrams are shown for different time with
respect to true target onset (left to right) and for different SSDs
(Figures 7A–C). The most prominent result seen in all SSD
groups is the emergence of the true target location (bottom hor-
izontal band of the 4 × 4 grid) as the strongest modulator of
population MFR. The effect of the distractor is weaker. Early in
the trial, most clearly in the 0 to 200 ms epochs, the distrac-
tor location is the primary modulator of neural activity. This is
especially prominent when following a long SSD (Figure 7C).
Notably, the effect of the distractor continues well into the true
target presentation epoch. This is clear from the regression coeffi-
cients shown above each panel indicating the strength of the role
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FIGURE 4 | Representative M1 neuron from Monkey M. (A) PETH
aligned on distractor target onset from trials with SSD of 50 ms.
Position within the 4 × 4 grid determined by the position of the distractor
and true target. Along the diagonal (shaded), these PETHs are generated
from no-switch trials. Units are in terms of firing rate, where the bin count

is divided by the bin width (50 ms in each case). Spike rasters below
each histogram indicate time stamps of spikes from all trials of this
particular combination. (B) Same cell and analysis as (A), with
only difference being that data collected from trials with SSD of
150 ms.
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FIGURE 5 | PETH of a single M1 neuron during specific transitions

after 250 ms SSD. (A) Neural activity from no-switch trials separated
by target location shows directional preferences with PETH and
single-trial raster plots (below PETH) aligned on distractor target onset.
Inset shows cursor trajectory from trials to the specified target.
(B) Among switch trials, PETH and raster plots generated from trials

with distractor in one of the neuron’s preferred direction (90◦ ) and
the true target in a non-preferred direction (0◦). Data from both direct
(left) and distracted (right) shown, with inset showing cursor traces.
(C) Same as (B) except data drawn from trials where both the distractor
and true target are in preferred directions (90◦ and 180◦,
respectively).

of true target and distractor target preference ranking on MFR
(see Methods). At short SSDs (Figure 7A), the distractor coeffi-
cient never reaches the level of significance (p > 0.05), however,
the true target is strongly represented. At both 150 ms and 250 ms

SSDs (Figures 7B,C), the distractor contributes a smaller, but still
significant amount to the MFR. The MFR, even 400 ms after the
distractor disappears, is still influenced by both targets as seen
by the lower left corner triangle seen in the 400–500 ms epoch in
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FIGURE 6 | Population activity from M1 neurons in Monkey M

aligned on distractor target onset. (A) Normalized firing rate for each
cell and each pairwise combination of distractor and true targets
shown for the SSD of 250 ms condition. Amplitude of firing shown by
color scale (on right) interpreted as the z-score. Position within the
4 × 4 grid for each cell determined separately according to directional

preference order. Data along the diagonal is from no-switch trials.
(B) Population mean PETH for each of the three SSD conditions.
Time-series data averaged across neurons within a specific condition
(within one box on the 4 × 4 grid) organized by neuron directional
preference ranking. Along the diagonal is mean population PETH for
no-switch trials.

Figures 7B,C. More generally, a transition occurs from distractor
representation to true target representation.

Average PETHs were also used to analyze the difference in
neuronal patterns between correctly and incorrectly performed

switch trials. The strategy for separating trials into these two
groups is described in the Methods. Average PETHs were calcu-
lated in the following steps. First, PETHs for each neuron were
computed for each of 12 possible combinations of distractor and
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FIGURE 7 | Mean population firing rate as a function of distractor

and true target locations. 4 × 4 grids showing population MFR for
each target combination. Targets for each cell were ranked in terms of
preferred direction as shown in Figure 6. 4 × 4 grids were computed
for epochs throughout the trial, beginning with presence of the
distractor. Six epochs are reflected by six time columns proceeding from

left to right. Data from each of the SSD conditions was shown separately
for 50 ms (A), 150 ms (B), and 250 ms (C). MFR within each 4 × 4 grid was
fit by a linear function of true and distractor preference ranking. Coefficients
for true target and distractor target, respectively, are shown above
each panel. (D) Layout of 4 × 4 grid, color scale, and linear regression
equation.

true target locations. This computation was performed separately
for correctly and incorrectly performed trials. Then, PETHs for
correct trials were grouped together for all combinations and all
neurons, and an overall average PETH was calculated. An average
PETH for incorrect trials was calculated, as well. This computa-
tion assured that the averages were not biased by the proportions
of correct and incorrect trials for different conditions. We chose
to average across all conditions because the differences for such
averages were not specific to certain combinations of target direc-
tions. As seen in Figure 8, the average PETHs differed depending
on whether the monkeys successfully switched to the true target.
More specifically, trials where the monkeys switched to the true
target had lower initial slopes of firing rates than trials where the

monkeys failed to reach to the true target. This effect was observed
in both monkeys, both in M1 and S1 neurons. In monkey M,
the neural activity in both M1 and S1 clearly rose before the tar-
get switch and more steeply in trials where the monkey failed to
switch to the true target. In monkey N, the difference in FR slopes
was more subtle and occurred later than in monkey M, which
was likely related to the more variable behavior of that monkey
(Figure 2).

Among rewarded trials, we analyzed neuronal representation
of the target switch (Figure 9). To do this, the trial-averaged
PETH for switch trials was directly compared with the PETH of
no-switch trials (see Methods). As the metric for the neuronal
representation of the switch, we used RMS differences between
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FIGURE 8 | Average population PETH differs depending on

whether a switch is successfully made. Single neuron activity was
averaged across all trials where the distractor was presented. Each such
trial was categorized as either a successful switch (solid line), where the
true target was reached, or unsuccessful (dashed line) when the monkey

failed to reach the target and the trial was categorized as distracted
(see Methods). Single neuron PETHs aligned on the true target onset,
for both behavioral categories were then normalized to z-score and
averaged across the population of monkey M M1 (A), monkey M S1
(B), and monkey N M1 (C).

PETHs for the trials with no target switches (diagonal data in
Figures 4 and 6) and the trials with target switches. Figure 9A
shows RMS differences averaged across all possible locations of
the distractor and true targets for each individual neuron, and
Figure 9B shows the result of additional averaging across neurons
in particular cortical areas. These averages depict the intervals
when neuronal activity started to reflect the target switch from
its initial position.

It is clear from Figures 9A and B that neurons represented
target switch in M1 and S1 of both monkeys. Monkey M M1 pop-
ulation represented the timing of target switch for all tested SSDs,
as evident from the latencies of the average curves (Figure 9B,
left). S1 population of monkey M resolved the timing of the
switch at 250 ms from the switches at 50 and 150 ms. The dif-
ference in switch timing was less clear in monkey N. Because of
these representations of both the distracting and true targets by
M1 and S1 neurons, we were able to extract target information
from neuronal population activity.

EXTRACTION OF TARGET POSITION WITH LDA CLASSIFIER
An LDA classifier extracted the position of distractor
(Figure 10A) and true (Figure 10B) targets from ensemble
activity of M1 and S1 neurons. In the analysis depicted in
Figure 10, predictions of target position were obtained from a
short (150 ms) window slid along the task epoch. Behavioral
trials were aligned on the distractor target onset in this analysis,
and the LDA classifier was trained anew for each window
position. Prediction accuracy was calculated as a fraction of
correctly predicted target locations. The analysis was performed
separately for 50, 150, 250 ms SSDs (red, green, and cyan traces,
respectively) and no-switch trials (black trace). The LDA classifier
revealed the changes in the representation of the distractor and
true target locations as a function time. Note that the true target

could be decoded with high accuracy despite the appearance of
a distracting target. This accuracy approached 90% correct in
monkey M and could be decoded nearly as fast with a distractor
as without a distractor (Figure 10B). With longer SSDs, the
ability to decode the true target remained similar but occurred
at a longer latency. Such good decoding of the true target is
not surprising given that the monkeys’ overt behavior consisted
of reaching movements to the true target. Future work should
probe this decoding under real-time BMI control without overt
behavior. The LDA model used for Figure 10 included training
data from all SSD conditions, as described in the Methods.
We found that limiting training data to only no-switch trials
reduced the fraction correct over all SSD groups and predicted
parameters in monkey M M1 by 19.9% (p < 0.01, paired t-test),
monkey M S1 by 6.8% (p < 0.01), and monkey N M1 by 4.2%
(p < 0.01).

Consistent with the results of Figure 7, we observed that the
representations of both the distractor and true targets outlasted
the duration of target presence on the screen. In particular, the
representation of the distractor lasted much longer than SSD
(Figure 10A). Monkey M M1 ensemble provided the best predic-
tions of the distractor target location, as it detected SSDs as short
as 50 ms. SSDs of 150 and 250 ms were clearly represented by the
M1 and S1 ensembles in monkey M and the M1 ensemble in
monkey N. The duration of the distractor location representation
increased with the increased SSD, and for all SSDs it extended well
into the true target epoch when the distractor target was turned
off. The onset of the representation of the true target matched
the true target onset, and the prediction accuracy was higher for
the true target than for the distractor target in all cases. The peak
LDA predictions for distractor location from the monkey M M1
ensemble were 20.2% more accurate than those for monkey N
M1 and 34.3% more accurate when predicting the true target.
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FIGURE 9 | Effect of a target switch on the firing rate in each of the three

neuronal populations. (A) RMS difference computed for each cell (see
Methods) at each time step from 0.75 s before to 1.0 s after distractor target
onset. Data shown separately for three SSD groups, with rows 1–3 the cell
RMS difference for trials SSD of 50, 150, and 250 ms, respectively. Within

each panel, the rows of the color plot indicate one single cell and the row
height was fixed in all three cell groups (the three columns). The panel
size is thus a reflection of the number of neurons in this population.
(B) The population average RMS difference was computed from each
panel in (A).

To clarify whether this was the effect of different ensemble sizes,
we repeated the analysis of Figures 10A,B for monkey M and
N M1 populations using equally-sized subsets of each (n = 35
neurons; not shown in figure). We found that the prediction
performance disparity in Figure 10A between the two monkeys
became less pronounced (monkey M M1 now only 9.9% more
accurate in predicting distractor location), but still existed, when
using n = 35 neurons for both. The difference between the two
groups in Figure 10B remained approximately the same (monkey
M M1 now 33.1% more accurate than monkey N M1 in pre-
dicting true target location). From this we conclude that the size
of the neuronal population was one contributing factor to LDA
performance, but there were other factors as well, such as more
erratic performance of monkey N and characteristics of recorded
neuronal populations.

Since the predictions of the distractor target location by M1
and S1 ensembles could simply reflect the fact that in a portion

of trials monkeys initiated movements to that target, we sepa-
rately analyzed the trials in which the monkeys moved directly
toward the true target (direct trials; Figures 11A,C,D) and those
in which the presence of the distractor affected the movement tra-
jectory (distracted trials; Figures 11B,E,F). After the direct trials
were separated, the predictions remained similar to those shown
in Figure 10, indicating that cortical populations represented
the distractor target even when the monkey did not produce
movements toward that target. Curiously, monkey M M1 and
S1 ensembles predicted the distractor target location even better
when that monkey made straight movements to the true target.
This was likely related to the predominance of such direct trials
in the training data, resulting in a better prediction model. An
opposite effect was observed for monkey N, presumably because
it produced less direct movements. The predictions of the true
target were similar for direct and distracted trials, and similar to
the predictions shown in Figure 10. Note that the predictions of
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FIGURE 10 | Prediction of distractor and true target locations using

neural activity and LDA classification over all trials. (A) Prediction of
distractor location for each of the three neuronal populations (columns).
Within each panel, fraction correct data represents LDA fraction correct
minus the same predictions with the trial data shuffled, then again adding
chance level performance (0.25) (see Methods). (B) Prediction of true target

location, which is the second target in the case of switch trials but the first in
no-switch trials. In addition to three SSD groups, the no-switch prediction is
shown for comparison. Gray horizontal bands indicate the 95% confidence
intervals as determined by the 1-proportion z-test. On x-axis are four ticks
representing the distractor onset (largest tick) and the three SSDs
(50, 150, 250 ms).

the distractor location for the shortest, 50 ms, SSD were much
less accurate compared to the difference plots of Figure 9. This
was because the LDA training data, unlike the Figure 9 data,
included all possible SSDs, as well as no-switch trials. The model
had to generalize to all these conditions, which led to less accu-
rate predictions for less represented cases. When 50 ms SSDs were
analyzed separately by an LDA, the predictions improved (not
shown).

In addition to the distractor and true target location, we
trained an LDA classifier to predict the target switch signal as a
binary variable (Figure 12). Along the task interval, predictions
of the distractor and true target locations were made concur-
rently to serve as a temporal reference. As shown in Figure 12A,
the strongest predictions made by LDA were for the true target
in each case. Both monkey N and M M1 populations repre-
sented the distracting target with approximately equal facility
relative to the true target representation. Overall, the predictions
were less robust that those predicted when separated by SSD
(Figure 10) and behavior (Figure 11). This was a result of com-
puting the fraction correct of all three SSD groups collectively,
rather than separately. This caused the less strongly predicted
50 ms SSD trials to reduce the classifier performance overall.
As shown in Figure 9, the temporal profile of neural activity is
strongly dependent on the SSD of a given trial. Target switch was

moderately decoded in all three populations, each time with the
peak occurring in the span between distractor and true target
representations. The exact timing of the switch signal represen-
tation is dependent on the SSD and thus the peaks that are
present in Figure 12 represent approximate event epochs. The
variation on when the target switch occurs relative to the dis-
tractor onset—the time which all data is aligned to—is likely a
contributing factor to the low fraction correct. If a single SSD
were to be used, the switch event detection would likely occur in
the SSD-dependent windows found in Figure 9B. The strongest
representation of both the distractor and the switch event (note
the scale difference) were obtained from monkey M M1 neurons.
This is consistent with our previous data and strongly correlates
with the higher number of quality recorded neural units in the
Monkey M M1 population. Furthermore, the binary classifica-
tion of switch vs. no-switch trial was evaluated in terms of the
MCC (Figure 12B). In all three neuronal populations, the peak
MCC for the switch detection occurred within 700 ms of the dis-
tractor onset, although MCC begins to rise as early as 300 ms in
monkey M M1. The performance of detecting the switch event
was strongest among M1 cells, with peak MCC of 0.19 (monkey
M) and 0.23 (monkey N), respectively. Thus, the neural basis for
motor plan switching can itself be decoded from ensembles of M1
and S1 neurons.
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FIGURE 11 | LDA prediction of distractor and true target separated

by movement type. (A) Example of a direct trial. (B) Example of a
distracted trial—see Methods for more details. For (C–F), the prediction
methods and display are the same as Figure 10. All reported data is actual
fraction correct minus fraction correct from shuffled data, plus chance
level fraction correct (0.25). (C,D) Predictions of distractor (C) and true (D)

target location made using data only drawn from direct trials for
monkey M M1, monkey M S1, and monkey N M1 (left to right).
Different SSD groups denoted by colors, see Legend. (E,F) Same as (C,D)

except data reflects only predictions made for distracted trials.
Horizontal gray bands indicate 95% confidence intervals generated by
1-proportion z-test.

DECODING OF CURSOR AND TARGET POSITION USING WIENER FILTER
We next utilized a continuous linear decoding algorithm, the
Wiener filter, to predict cursor and true target position at a 10 Hz
output rate throughout the session (Figure 13). A representative

25 s window of predicted parameters, along with actual parameter
values is shown in Figures 13A–D for Monkey M. Cursor X and
Y were predicted with high correlation to actual movements in
monkey M (X: R = 0.84; Y: R = 0.86) and moderate correlation
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FIGURE 12 | Decoding of target location and switch/no-switch

occurrence from neural activity during task interval, not separated by

SSD. (A) Linear discriminant analysis predictions of location of distractor
target (black) and second target (cyan) as well as switch/no-switch (red). Data
aligned on distractor onset shown with vertical black line. Values shown are
fraction correct prediction at each time step of the sliding window. Gray

horizontal band is the 95% confidence interval generated using the
1 proportion z-test. (B) Matthews correlation coefficient shown over the task
interval. Data are aligned on the distractor appearance. Confidence interval
generated from mean ± 2 standard deviations obtained from distribution
of MCC from data with shuffled group information prior to LDA
predictions.

in monkey N (X: R = 0.49; Y: R = 0.33). Computing the pre-
dicted radial movement, r, resulted in clear peaks indicating
predicted reach events (Figure 13B). True target location was
decoded very effectively (Figure 13C). To quantify this, predic-
tions aligned on threshold crossing of r were made (see Methods).
We found that the threshold crossing event occurred often
within 700 ms after the true target appeared in both monkeys
(Figures 13D,E). Performance of cursor and true target location
predictions remained consistent for approximately 500 ms after
threshold crossing, before declining. (Figures 13D,E, insets). In
both monkeys, the cursor position was predicted highly effec-
tively (up to 99%, monkey M; 59% monkey N). Prediction of
true target position was strong from Monkey M (up to 59%),
but was much weaker for monkey N (up to 26%). Chance level
prediction in this case was 20% due to four potential target loca-
tions and one condition where the target was not on the screen.
The results from this continuous approach agree with the find-
ings using a discrete LDA classifier. Furthermore, the analysis of
Figure 13 provides evidence that the results of this study could be
implemented into BMI systems to continuously extract intended
reach locations.

DISCUSSION
In this study we examined M1 and S1 ensemble activity recorded
in a motor task that required reprogramming of center-out reach-
ing movements to visual targets. This was achieved by changing
the target location in the midst of the RT period (Georgopoulos
et al., 1981, 1983). We hypothesized that BMI decoding algo-
rithms could dissociate representations of potential and selected
motor targets from the activity of sensorimotor cortex ensembles.

We found that locations of distracting targets presented shortly
before the true targets of movements were indeed represented
by M1 and S1 ensembles and could be extracted by an LDA
classifier. The LDA results were recapitulated using a contin-
uous Wiener filter which extracted cursor and target location.
These results suggest that real-time BMI decoders could be
implemented in the future to decode motor programming and
decision making under the conditions of multiple potential
choices.

Despite the behavioral differences between the two monkeys
in this study, as is common in primate studies, both helped
to elucidate behavioral responses and the neural basis for tran-
sient distractors. In our previous study (Ifft et al., 2011) we
overtrained these monkeys to perform center-out movements
with high accuracy when no distractor was used. In monkey N,
the distractor markedly changed movement trajectories. Thus
the distractor and true target locations were represented by both
the overt behavior and cortical modulations. Monkey M was less
distracted and the cortical effect of a change in motor plan could
be studied, even when movements to the first target were wholly
absent.

SENSORIMOTOR CORTEX AND REPROGRAMMING MOVEMENTS
Neural processes of motor program selection and cancellation has
received much attention during the last two decades of research.
The summary of this body of work suggests that different aspects
of sensorimotor transformations that involve multiple potential
choices are processed by multiple cortical and subcortical areas
(Crammond and Kalaska, 1994; Shen and Alexander, 1997; Lee
and Assad, 2003). Here we recorded ensemble activity in M1
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FIGURE 13 | Offline Wiener filter predictions of cursor and

target locations. (A–D) A 25 s epoch of trials during a session with
monkey M. (A) Cursor X and Y positions (black) and corresponding
Wiener predictions (red) during selected epoch. (B) The radial
distance of the predicted cursor location was computed and
plotted versus time. Reach threshold level of 5 cm is shown as

horizontal gray line. (C) True target X and Y position during selected
epoch (black) and Wiener predictions (red). (D,E) Probability distribution
of the time of true target onset relative to threshold crossings from
monkey M (D) and monkey N (E). Inset: fraction correct predictions of
cursor and true target location during the 0 to 0.8 s epoch beginning
with threshold crossing.

and S1—the areas most closely reflecting the final motor out-
put that results from decision making. Consistent with previous
work (Alexander and Crutcher, 1990) we observed M1 activity
that represented potential motor targets even when no movement
was initiated toward those targets. This representation persisted
well beyond distractor disappearance and the termination of this
encoding coincided with the onset of the robust second (true) tar-
get representation. Somewhat surprisingly, we observed moderate
movement and pre-movement modulation in S1—an area whose
primary function is commonly assumed to be related with sen-
sory processing, but also known to be activated in advance of
movements (Soso and Fetz, 1980; Nelson et al., 1991; Lebedev
et al., 1994) and encode information about potential reach targets
(Ifft et al., 2011).

Here we cannot resolve whether representation of potential
targets that we observed in M1 and S1 merely reflected inputs
from associative areas that were the primary players in target
selection (Thaler and Goodale, 2011) or M1 and S1 consti-
tuted an integral part of a distributed network with less clearly
defined hierarchy (Shen and Alexander, 1997; Hernandez et al.,
2010). Visuomotor information has been shown to be encoded
by cortial visual processing networks in parietal (Kertzman
et al., 1997; Wise et al., 1997; Baumann et al., 2009), premo-
tor (Crammond and Kalaska, 1994; Lebedev and Wise, 2000;
Cisek and Kalaska, 2002), and prefrontal (Genovesio et al., 2005;

Lebedev et al., 2005) areas. These associative areas could act as
filters of sensory information that is subsequently signaled to M1
output areas. The exact mechanisms of interactions between non-
primary and primary areas will have to be elucidated by future
investigations.

Our previous unpublished observations indicate that certain
initial stages of target selection for a movement goal have to take
place for target information to start to be represented in M1 and
S1. In that experiment, animals had to deal with two targets that
appeared on the screen simultaneously instead of in rapid succes-
sion. One of the targets was large, and the other was small. The
monkeys would be rewarded for reaching to either of the targets,
but they typically selected the larger target because it was easier
to hit with the cursor. In contrast to the results from our distrac-
tor experiments reported here, in the unpublished study M1 and
S1 neurons represented the non-chosen target in a much more
subtle way, with less than 10% of recorded cells exhibiting any
significant directional tuning to its location. This observation, in
the context of the results of the present study, suggests that M1
and S1 representation of movement direction is much stronger
when the motor goal is chosen, even if only for several hundred
milliseconds.

Serial activation of M1 during motor sequences has been well-
studied (Fu et al., 1995; Tanji, 2001) and the results of our study
suggest that the manifestation of change-of-decision in the motor
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cortex is a sequential, but somewhat overlapped representation of
distinct motor plans. In other words, sensorimotor cortex repre-
sents selected motor targets, but movements to those targets can
still be canceled. Such movement cannot be canceled if M1 activ-
ity is already elevated and has reached a certain motor initiation
threshold (Figure 8) (Hanes and Schall, 1996; Wong-Lin et al.,
2010).

A prominent model to describe the change-of-decision is a
bounded form of the accumulator model (Vickers and Smith,
1985), drift-diffusion model, or race model with criterion bound-
aries for both initial decision and change of decision events
(Resulaj et al., 2009). Applying this model to neurophysiology
of sensorimotor neurons, one hypothesis would be that the fir-
ing rate of a single neuron or entire neuronal populations would
encode the degree of commitment to the specific motor plan.
Lower levels of activity would elongate the decision window while
additional evidence is accumulated, even if a different move-
ment had been initiated. To address this hypothesis our study
compared population activity between a subset of trials where
the true target was successfully reached versus trials where an
error in behavioral outcome was caused by the transient distrac-
tor presence. Whether this lower population activity is causal
to the behavioral differences is beyond the scope of this study.
However, our results reinforce this model by showing lower
initial population activity and more gradual FR slope between
distractor target presentation and movement initiation on tri-
als where the switch was successfully made (Figure 8). Such
differences in population activity may provide intuitive under-
standing for the ability to detect the switch/no-switch event
using neural activity from single trials (Figure 12B) with high
fidelity.

DECODING MOTOR REPROGRAMMING
Here we used a rather simple LDA decoder that extracted tar-
get and target switch information from both cortical activity and
the timing of the distractor target onset. This decoder was use-
ful to describe the representation of targets by neuronal activity
as a function of time. A practical decoder will have to extract
target onset, as well. Our BMI approach added an interesting
twist to our experiments because information extracted from dif-
ferent parts of sensorimotor hierarchy could be used to retrain
brain circuitry. For instance, learning a BMI task that involves
extraction of target information may result in an enhanced repre-
sentation of such information in M1. Additionally, non-primary
areas should be considered as sources of information about mul-
tiple potentials targets (Snyder et al., 1998; Cisek and Kalaska,
2002, 2005) for a practical real-time decoder. With the cur-
rent approach, we were able to extract the location of distractor
targets from the primary sensorimotor cortical activity even if
those targets were presented for a brief period of time (as short
as 50 ms) and if no movement was initiated to that target. It
is important to emphasize that under this same condition, the
true target to which the monkeys moved was also decoded very
accurately.

As the BMI field advances, practical, versatile neuroprosthet-
ics based on BMI technology become a real possibility (Lebedev
and Nicolelis, 2006; Nicolelis and Lebedev, 2009; Gilja et al.,

2011; Jackson and Fetz, 2011; Lebedev et al., 2011). The need
for practical clinical applications that provide higher degree of
freedom control (Velliste et al., 2008) and expanded decod-
ing strategies (Zacksenhouse and Nemets, 2008) will drive BMI
research to expand into more complex motor programs. Naturally
enacted movements require the flexibility to rapidly modify
upcoming motor plans. Such a behavior capability was reflected
in the neuronal data we collected in the present study. The
ability to decode such changes has critical implications for
not only accuracy but also safety in the execution of every-
day movements by a prosthetic device controlled by brain
activity.

Our present experimental approach, based on a discrete rather
than continuous decoder, adds to previous literature where sim-
ilar ideas were evaluated under the framework of a potential
cognitive neuroprosthetic (Musallam et al., 2004; Pesaran et al.,
2006). A cognitive neuroprosthetic extracts from brain activ-
ity information that is different from motor execution signals
and utilizes it to improve the performance. For example, a
high-performance BMI proposed by Santhanam et al. (2006)
extracted target location from delay-period activity recorded in
dorsal premotor cortex and thereby obtained information trans-
fer rate of up to 6.5 bits per second. Additional improvements
may come from hybrid BMI designs that utilize both single-unit
recordings and local field potentials (LFPs). Thus, Hwang and
Andersen (Hwang and Andersen, 2009) decoded movement onset
from LFPs while decoding movement direction from single-unit
activity.

Hasegawa et al. (Hasegawa et al., 2006, 2009) implemented
decoding algorithms that served a similar purpose that we
describe here. They decoded go/no go decisions from the activ-
ity of 2–5 neurons recorded in monkey superior colliculus and
were able to extract multidimensional decisions (e.g., go/no go
for two potential movement directions). The information was
accessed approximately 150 ms after cue onset, which is consis-
tent with our present results and the results of Santhanam et al.
(2006). Given a high interest to neurophysiological mechanisms
of response inhibition (Hanes and Schall, 1995; Pare and Hanes,
2003; Chen et al., 2010; Scangos and Stuphorn, 2010; Mirabella
et al., 2011), it is reasonable to expect that BMIs that extract
response inhibition and response reprogramming information
will continue to develop.

VERSATILE BMIs OF THE FUTURE
The original conception of BMI systems strive to mimic normal
functions of the brain as closely as possible (Nicolelis, 2001). The
approach that we propose here can be generally characterized as
a BMI with impulsivity control. Impulsivity is a person’s inabil-
ity to inhibit unwanted actions (Basar et al., 2010; Kim and Lee,
2011). Prefrontal mechanisms are normally responsible for such
inhibition in primates (Miller, 2000; Krawczyk, 2002; Kim and
Lee, 2011). It is conceivable that practical BMIs of the future will
need an inhibition control module to operate properly. Moreover,
such a module may become one of the essential elements of
the design. It may not only examine potential actions and select
those that fit the context and are wanted by the user, but also
set the limits to volitional control. In the past, we have already
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proposed that such an optimal design may be based on a shared-
control BMI, i.e., one that gives the user control over higher-
order goals and delegates lower-order controls to the robotic
controller (Kim et al., 2006). A prominent role of prefrontal
cortex is executive function, such as the one required for inhi-
bition of potential actions. Future work could seek to exploit
the multiple levels of control within the brain to not only recre-
ate naturalistic movements, but at the same time streamline the
transitions and selections from the many possible behavioral
outcomes. Certainly this goal is challenging, but we remain opti-
mistic in light of recent developments in the fast growing field of
neuroprosthetics.
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Psychologists have studied the inhibitory control of voluntary movement for many years. In
particular, the countermanding of an impending action has been extensively studied. In this
work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type
model based on current findings in animal electrophysiological and human psychophysical
experiments. We then implement this model on a field-programmable gate array (FPGA)
prototyping system, using dedicated real-time hardware circuitry. Our results show that the
FPGA-based implementation can run in real-time while achieving behavioral performance
qualitatively suggestive of the animal experiments. Implementing such biological inhibitory
control in an embedded device can lead to the development of control systems that may
be used in more realistic cognitive robotics or in neural prosthetic systems aiding human
movement control.

Keywords: countermanding saccade, frontal eye fields, adaptive inhibitory control, FPGA, neural network model

INTRODUCTION
Psychological research reveals that humans can adapt to dynamic
environments using inhibitory control (Logan and Cowan, 1984;
Logan and Gordon, 2001; Emeric et al., 2007). In cognitive models
of behavior, proactive inhibition can be understood as the sup-
pression of previously activated or planned cognitive processes.
This type of inhibition is a vital part of human behavior because
it allows flexible adaptation to changing environments or rules.
Inhibitory control in countermanding tasks is studied in the motor
system, since it requires the suppression of motor outputs. In
humans, evidence of neural correlates of inhibitory control can
be revealed from neuroimaging (e.g., functional magnetic reso-
nance imaging; Curtis et al., 2005; Chikazoe et al., 2009). However,
studies such as these often do not provide sufficient temporal or
spatial information to reveal the possibly rapid neural mechanisms
underlying inhibitory behavior such as stopping an impending
(saccadic) eye movement. During the last decade, animal electro-
physiologists have begun to employ behavioral task paradigms in
psychology, such as the saccade countermanding tasks to search
for the neuronal correlates of inhibitory control behavior (Hanes
et al., 1998; Murthy et al., 2001; Sato and Schall, 2003; Schall, 2004;
Schall et al., 2004, 2011; Cohen et al., 2007; Pouget et al., 2011).

This series of electrophysiological work on behaving non-
human primates has shown that there are neurons in the frontal
eye fields (FEFs) and superior colliculus that correlate with an
impending saccadic eye movement (classified as “movement” neu-
rons) or inhibition (classified as“fixation”neurons), while neurons
in other brain regions (e.g., supplementary eye fields) seem to cor-
relate with monitoring and/or controlling voluntary movements.
These findings have inspired various computational neural mod-
els (Boucher et al., 2007; Lo et al., 2009; Wong-Lin et al., 2010),
which provide good accounts of how the interaction between go
and stop processes can be reconciled with the observation at the

neuronal and behavioral levels. More recently, Pouget et al. (2011)
interestingly shows that movement neurons can temporally shift
their activation onset times based on whether the previous trials
have a stop-signal or not, thus allowing longer term adaptation
in the inhibitory control system. This phenomenon has not been
accounted for in previous computational models.

Modern neural computational models can provide power-
ful ideas to be used in neural prosthetics and robotic devel-
opment. Specifically, implementations of these models in hard-
ware may give (especially transfemoral) prosthetics users or
cognitive/mobile robots an enhanced capability of controlling
their pre-movement acts related to the decision of whether
to move, and also the possibility of adapting to dynam-
ically changing environments (Farwell and Donchin, 1988;
Schwartz, 2004; Chestek et al., 2009; Perrin et al., 2010).
However, while many attempts to implement neuronal mod-
els in hardware have been made, neural computational mod-
els for a countermanding task are currently coded in soft-
ware and used to account for experimental findings. They have
not, as yet, been implemented in a real-time embedded field-
programmable gate array (FPGA) system for more practical
applications.

In this paper, we build on our previous computational
inhibitory control model for countermanding saccadic eye move-
ments and propose an adaptive inhibitory control mechanism
inspired by Pouget et al. (2011). We then implement the proactive
adaptive inhibitory control exploring a synthesizable HDL cod-
ing approach. The proposed framework has been evaluated on
an FPGA (Xilinx Virtex-6 LX240) platform (Xilinx Inc., 2011a).
The implementation in digital hardware provides the possibility
of creating a realistic motor control system in embedded portable
devices and is anticipated to integrate into existing neuronal
prosthetics and robotic systems.
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MATERIALS AND METHODS
As a first step toward prototyping, we shall focus only on a firing-
rate type model modified from Wong et al. (2007), Wong-Lin et al.
(2010). The model was designed in a way similar to the saccade
countermanding task in animal experiments to account for the
experimental data (Hanes et al., 1998; Boucher et al., 2007).

EXPERIMENTAL MOTIVATION
The countermanding stop-signal task is a common procedure for
investigating the control of thought and action by probing the sub-
jects’ ability to withhold a planned movement in response to an
unanticipated countermanding signal (Logan, 1981; Logan and
Cowan, 1984). This task has been used to study executive con-
trol and flexibility in behavior, since the performance of this task
demonstrates an empirical model of self-control (Lappin and Erik-
sen, 1966; Logan, 1981; Akerfelt et al., 2005; Boucher et al., 2007;
Bissett and Logan, 2011).

In the countermanding task experiment, two types of trials (no-
stop-signal trial and stop-signal trial) were designed, as shown in
Figures 1A,B. Trials with or without the stop signal are referred to

as stop-signal trials or no-stop-signal trials, respectively. As shown
in Figure 1A, in a typical experimental trial, the task started with
a black screen. In Hanes et al. (1998) a fixation point (stop signal)
was on after 1 s. Then the fixation point was then turned off while
a peripheral target (go signal) was turned on at the same time after
500 ms. The subject is instructed to make a saccadic eye move-
ment to this target. However, a fraction of the trials include a stop
signal (e.g., in the form of a reappearance of the fixation point)
shortly after target onset (Figure 1B). The subject is instructed to
withhold their gaze at the fixation point whenever a stop signal
appears. The ability of the subject to withhold his or her gaze at
the fixation point depends on the delay between the go signal and
stop signal onset times, termed the stop signal delay (SSD); the
shorter the SSD, the easier to withhold the gaze. Thus, stop-signal
trials can be further categorized into (successfully) canceled trials
and non-canceled trials (also known as “signal inhibit” and “signal
respond” respectively, in the literature; Logan and Cowan, 1984).
A trial will end after another 700 ms has elapsed.

An inhibition function describes the probability of stopping
across a range of SSD values can be easily gathered from the

FIGURE 1 | Schematic and neural activities in a saccade countermanding

task. (A,B) Schematic representation of a no-stop-signal trial type (A), and a
stop-signal trial type (B). These two trial types are randomly interleaved in a
block of trials. In both trials, a central fixation signal (also the stop signal) is
presented for a period of time, and then the peripheral target for a saccade
(go signal) turns on. In a stop-signal trial, briefly after the go signal onset, a
stop signal appears (i.e., fixation point reappears). This time interval is labeled

as the stop-signal delay (SSD). (C,D) Neural firing rates of movement (C) and
fixation (D) neurons in the frontal eye fields (FEFs) during the task. Saccades
are correlated with the movement neuronal activities reaching a certain firing
rate threshold level; successful cancelations correlated with simultaneous
reactivation of fixation neuronal activities and suppression of movement
neuronal activities (bold lines) before reaching some motor response
threshold. (C,D) Adapted from Schall et al., 2002; with permission).
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behavioral response. We would expect the probability of respond-
ing in a stop-signal trial to increase with SSD. The change in
reaction time distribution with different SSDs can also be used
to estimate the length of time needed to cancel the planned move-
ment. This time length is also called the stop signal reaction time
(SSRT). We would expect only the faster responses not to be inhib-
ited when SSD is short. Therefore, a subject’s ability to inhibit
the motor response will depend on the individual’s SSRT and the
experimentally controlled SSD.

Previously, the inhibition function and the SSRT were the only
means to deduce an individual’s responsiveness and cognitive
control abilities. However, more recent neurophysiological exper-
iments using implanted electrodes in non-human primates have
allowed measurements with better spatial and temporal resolution,
prior to a movement or no movement (Schall et al., 2002). The
behavioral and neuronal data in the classic experiments of Hanes
et al. (1998) were collected from monkeys, who were trained to
allocate their gaze to spot on the screen. One of the most interesting
findings in these experiments was that unlike previous cognitive
models such as the race model (Logan, 1981; Logan and Cowan,
1984), the movement and stopping processes could interact. That
is, neurons that encode the impeding movement ramp up their
firing rates over time after a go signal onset and suppressed to base-
line level during successful saccade or fixation cancelation. These
movement neurons were anti-correlated with the drop and rise in
firing rate of another group of neurons – the fixation neurons (as
illustrated in Figures 1C,D).

Both response time and probability of responding can also be
influenced by previous trials, depending upon whether the former
have stop signals, and less so on whether the stop trials were suc-
cessfully canceled (Emeric et al., 2007; Bissett and Logan, 2011;
Pouget et al., 2011). Variations in the fraction of stop-signal tri-
als can also influence the countermanding performance (Schall
et al., 2002). Chikazoe et al. (2009) introduced a concept of pre-
pared inhibition, in which inhibition is prepared in anticipation
of an upcoming stop cue. A more recent research finding suggests
that if the previous trials are (canceled) stop trials, the move-
ment neurons show a delay in the onset time of their stereotypical
ramping up activities (Pouget et al., 2011; Figure 5B). This is
also correlated with behavioral performance changes. For exam-
ple, Bissett and Logan, 2011 suggests that there is a small slowing
after signal-inhibit (canceled stop trial) and signal-respond trials
(non-canceled stop trial). Those results provide new insights into
the adaptive mechanisms of inhibitory control.

NEURAL NETWORK MODEL OF THE FEF
Our neural control circuit adopts the basic firing-rate type model
of Wong-Lin et al. (2010) that can perform the countermanding
task. The proposed neural network model includes two main units:
a FEF network module, and an adaptive control module.

As shown in Figure 2A, the inhibitory dynamics of the interneu-
rons is implicitly modeled by an effective direct mutual inhibition.
This is justified if the excitatory timescale is much slower than its
inhibitory counterpart (Wong and Wang, 2006; Wong-Lin et al.,
2010). In a no-stop-signal trial or unsuccessfully canceled trial, the
movement neurons successfully crossed a prescribed movement
threshold in order to make a motor (saccadic eye) movement.

However, in a stop-signal trial, the fixation neurons can be reacti-
vated in time to suppress the movement neurons from crossing the
movement threshold via a highly potent lateral inhibition, which
can successfully prevent a motor movement.

The neural activity of movement neurons (rMN) and the neural
activity of fixation neurons (rFN) can be described by Eqs 1 and 2,
respectively.

drMN =
(
−rMN + [

βMNrFN + Igo
]
+
) dt

τE
+ σ

√
dt

τE
γ (1)

drFN =
(
−rFN + [

βFNrMN + Istop
]
+
) dt

τE
+ σ

√
dt

τE
γ (2)

Here, rMN and rFN represent population firing rates of move-
ment and fixation neurons respectively; βMN and βFN are the
effective inhibitory synaptic strengths from fixation to movement
neurons and from movement to fixation neurons; σ is the magni-
tude of additive noise and γ is a random Gaussian variable with
zero mean and standard deviation of 1. [x]+ denotes a threshold-
linear function which is equal to x if x > 0, and 0 otherwise. I go

and I stop are the input currents in the presence of the go and
stop signals, respectively. During the appearance of the fixation
point prior to target onset, an input current is applied to the fix-
ation neural population to allow a high firing rate of about 80 Hz
(Hanes et al., 1998).

A NEURAL NETWORK MODEL OF FEF WITH AN ADAPTIVE CONTROL
MODEL
Previous studies have demonstrated the presence of behavioral
monitoring and control in the supplementary eye field and the
anterior cingulate cortex of macaque monkeys and their possi-
ble influence on behavioral psychophysics over trials (Chen et al.,
2010; Stuphorn et al., 2010). In particular, such studies have shown
that the onset of movement neuronal activities upon a go signal
onset can be delayed and the reaction times in the no-stop-signal
trials can be slowed down, if the immediately preceding trials
are stop-signal trials, thus, affecting the overall countermanding
performance (Emeric et al., 2007; Pouget et al., 2011).

Compared to the neural network model of FEF (Wong-Lin
et al., 2010), we have included an input-output/gating function of
adaptive inhibitory control module to account for an excitatory
control on the movement neurons. This control can be adjusted
based on whether the previous history is a stop-signal trial or not.
As the input from the control module to the movement neural
population is a non-linear threshold function, it takes a longer
time to activate the movement neurons when the control module
has a lower activation level compared to when the previous trial is
a no-stop-signal trial.

We propose a simple adaptive inhibitory control module to
gate the flow of the control signal input into the movement neural
population (Figure 2), depending on whether the previous trial is
a stop-signal trial or not. The neural activity of fixation neurons
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FIGURE 2 | (A) The proposed neural network model of inhibitory control
for the countermanding task. The schematic model architecture consists of
a population of movement neurons, a population of fixation neurons, and a
population of neurons for adaptive control. Z −1 corresponds to the delay. C
is a fixation stimulus input to set the fixation neurons to be at a high firing
rate prior to the target onset. (B) The schematic mechanism of delaying
the onset of control signal. Top: when a trial is preceded by a
no-stop-signal trial (as compared to a stop-signal trial), it takes a shorter

time to reach threshold (r0), due to a larger p value. T1 denotes
threshold-crossing time when the current trial is preceded by a
no-stop-signal trial. T2 denotes the threshold-crossing time when the
current trial is preceded by a stop-signal trial. Bottom: The corresponding
afferent inputs into the movement neural population are delayed. Gain is
turned off upon stop-signal onset at time T1/T2 plus SSD (for current
stop-signal trial) or T1/T2 plus decision time (for current no-stop-signal trial;
not shown), i.e., upon crossing saccadic/decision threshold.

(rFN) can be described by Eq. 2. The neural activity of movement
neurons (rFN) can be described by Eq. 3.

drMN =
(
−rMN + [

βMNrFN + Igo + [rc − r0]+
]
+
) dt

τE
+σ

√
dt

τE
γ

(3)

Where a threshold-linear function (denoted by []+) gates an affer-
ent input into the movement neural population. rc is the control
activity of the control neural population and is assumed to fol-
low leaky integrating dynamics with a steady state value of P that
depends on the previous trial (as described in Eq. 4). r0 is the
fixed threshold for gating the afferent input. The output from the
control neural population sends a delayed excitatory input to the
movement neurons upon receipt of a go signal onset. The spe-
cific temporal delay can be controlled by the value of P, related to
heightened urgency to respond. The neural activity of the control
neural population can be described by Eq. 4:

τc
drc

dt
= −rc + P (4)

P adopts a higher value if the previous trial is a no-stop-signal
trial compared to a stop-signal trial (Table 1). Intuitively, the
control activity can relate a higher sense of urgency signal (that
increases over time) when the previous trial is a no-stop-signal
trial. Thus a subject may anticipate the current trial to also be
a no-stop-signal trial (Bissett and Logan (2011)). This urgency-
gating signal can be related to previous work in response time
tasks in perceptual decision-making (Cisek et al., 2009; Gao et al.,
2009; Standage et al., 2011). However, when the previous trial is

Table 1 | Parameter values for the models.

Parameter Note Value

Threshold

of rMN

Fit neuronal data of Hanes et al. (1998) 90 Hz

βMN Fit behavioral data of Hanes et al. (1998) 0.69

βFN Fit behavioral data of Hanes et al. (1998) 0.08

Igo Fit neuronal data of Hanes et al. (1998) 1.4

Istop Fit neuronal data of Hanes et al. (1998) 2.7

σ Fit behavioral data of Hanes et al. (1998) 7.09

τc Synaptic decay time constant 50 ms

r0 Critical threshold for afferent input. Fit

Pouget et al. (2011)

50 Hz

P Updating currents. Fit Pouget et al. (2011)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.8(preceded

by stop−
signal trial)

2.4(preceded

by no − stop−
signal trial)

an occasional stop-signal trial, the urgency to respond is lowered,
and the current trial is anticipated to be a stop-signal trial, and a
more cautious response is required. The control (r c) is turned off
upon stop-signal onset during a current stop-signal trial or upon
decision threshold (for saccadic eye movement) during a current
no-stop-signal trial (Figure 2B). The dynamical time constant for
the control neural population is assumed to be that of the NMDA-
mediated synapses (which is prevalent in brain areas associated
with higher-order cognition and cognitive control, e.g., prefrontal
cortex; Wang, 2001).
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As shown in Figure 2B, we can see that the control activity is
generally higher if the previous trial is a no-stop-signal trial as
compared to a stop-signal trial. In both cases, the control activity
increases. As the input from the control module to the move-
ment neural population is a threshold-linear function, it will take
a longer time to activate the movement neurons when the con-
trol module has a lower activation level compared to when the
previous trial is a stop-signal trial. Consequently, the onset of the
movement neural activities due to the target signal is delayed, as
observed in Pouget et al. (2011).

The model and related behavioral data parameters were selected
to be consistent with experiment data of Hanes et al. (1998) and
Boucher et al. (2007). For instance, we choose the time constant
to be 50 ms (assumed mediated by slow receptors such as those
mediated by NMDA). The FEF network model has asymmetrical
mutual inhibitory couplings with βMN is 0.69 « βFN = 0.08, which
fit the data of Hanes et al. (1998). White Gaussian noise is included
in the model, which provides overall fluctuations in the network,
and thus creating a distribution of reaction times, and also allows
non-zero spontaneous firing rate in the network. Further details of
the model parameters are given in Table 1. Following the neuronal
activities in Hanes et al. (1998), movement neurons are assumed
to respond to a go signal onset after a delay of 100 ms and fixa-
tion neurons respond 80 ms after the stop-signal appears. In this
modeling simulation, the inter-trial interval of 1 s is assumed.

RESULTS
In this experiment, we use a rapid prototyping flow on an FPGA-
based embedded system. Parameterized electronic design entries
are defined and used as inputs to the parameterized System Gener-
ator models (.mdl files; Xilinx Inc., 2011b). These models provide
a library of pre-designed circuit blocks that can be converted into
a hardware description language for seamless integration with the
Xilinx FPGA design flow. After a successful synthesis process, an
FPGA bit stream file is generated using the ISE synthesis tools. Fol-
lowing this, the simulation is executed in real-time using the FPGA
resource, working in conjunction with a host PC. All simulation
results can be imported into Matlab for visualization (Mathworks
Inc., 2011). More FPGA implementation details are described in
the Appendix.

In this section, we shall first reproduce the essential neural and
behavioral data in the experiments. We then demonstrate that
the model can also exhibit trial-history (sequential) effects on the
movement neural activity and behavioral performance.

BEHAVIOR OF THE FEF NETWORK MODEL
The observed neural activities from FPGA simulation are shown
in Figure 3. When there is a stop-signal presented, this ramping
activity may be suppressed in time to inhibit the impending sac-
cade (as shown in Figure 3A). Neural activity of the fixation neural
population ramps back up when there is a stop-signal (as shown
in Figure 3B). This anti-correlation of activities between the two
neural populations is a manifestation of the mutual inhibitory
couplings in the FEF network.

As previously discussed, a subject’s ability to stop a pre-planned
saccade can be evaluated through the inhibition function and reac-
tion time distribution SSRT with various SSD. The proportion

FIGURE 3 |The FEF model’s neural activity time-course simulated with

the FPGA platform. (A) Time course of trial-averaged activities of
successfully canceled trials for movement neurons with various SSDs. All
data are averaged over 5000 trials. Horizontal line: decision to saccade
threshold (90 Hz). (B) Time course of trial-averaged activities of successfully
canceled trials for fixation neurons with various SSDs. SSDs of 117 ms (light
gray), 169 ms (dark gray), and 217 ms (thick black). To be compared with
Boucher et al. (2007) and Wong-Lin et al. (2010). All data are averaged over
5000 trials.

of canceled trials at each delay is referred to as the “inhibition
function.” To investigate the efficiency of an inhibitory process,
the probability of stop-signal trials with signal-response trials as
a function of SSD is plotted. As SSD increases, the probability of
non-canceled trials increases (Figure 4A). In Figure 4A, the model
demonstrates that it can capture the inhibition function rather well
(compared with Boucher et al., 2007). It should be noted that the
probability of a canceled stop trial is very low when SSD is 69 ms
(the data used in the study of Boucher et al., 2007) and is thus not
included in this study. Figure 4B shows the signal-respond reac-
tion time cumulative probability distribution from non-canceled
stop-signal trials. We can see that when SSD is short (e.g., 117 ms),
only the faster responses are not inhibited. The distribution is very
similar to in the experiments in Boucher et al. (2007). These results
confirm that our model implemented in hardware can replicate
both the essential neurophysiological and behavioral findings in
the experiments (Hanes et al., 1998).

NEURAL ACTIVITY AND BEHAVIORAL MODULATION BY THE ADAPTIVE
CONTROL SYSTEM
An important part of this study is to implement the sequential
effects due to adaptive adjustment based on the trial history. We
have proposed a simple mechanism that depends on whether
the previous trial is a stop-signal trial type. This modulation
can affect the gating onset of incoming neural signal due to the
no-stop-signal trial stimulus.

To study the effects on the dynamics of the adaptive control
system and movement neural activity, we simulated 5000 tri-
als randomly mixed with equal number of stop-signal trials and
no-stop-signal trials. The simulation was carried out using FPGA-
based embedded system platform (see Appendix for more details).
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FIGURE 4 | Model implemented in hardware replicates the

behavioral data of the monkey experiments (Hanes et al.,

1998; Boucher et al., 2007). (A) Inhibition function shows the
probability of non-canceled (signal response) in stop-signal trials as

a function of stop-signal delay (SSD). SSD: 117, 169, and 217 ms.
(B) Cumulative distribution of reaction times from non-canceled
stop-signal trials for different SSDs. To be compared with Boucher
et al. (2007).

The results are recorded in FPGA on-board SDRAM and read
back into Matlab. We subsampled the activation of the fixation
and movement neurons in a manner comparable to the sampling
of neural activity in the physiology experiments via the following
procedure. We simulated the model with 10–12 trials at each SSD
to mimic the number of trials typically obtained in the physiology
experiments. In this simulation, we mix 25% of stop-signal trials
and 75% of no-stop-signal trials randomly.

In particular, Figure 5A shows that the model produces a right-
ward shift in the reaction time distribution for no-stop-signal trials
if the previous trial is a stop-signal trial type, very similar to that
as in the experimental data (Figure 5B).This rightward shift in the
movement neural activity onset due to a previous stop-signal trial
can result in longer reaction times, and allows a better chance of
inhibiting a respond. Figure 6 confirms these predictions in our
model.

Intuitively, we can understand that the occurrence of a previ-
ous stop-signal trial triggers the need for subsequent caution, and
resulting in prolonged response time. This adaptive adjustment
has been regarded as the “goal priority hypothesis” in cognitive
psychology (Bissett and Logan, 2011), which suggests that stim-
uli that occur on stop trials become associated with stopping. If
the stimuli do not repeat, they do not retrieve associations with
stopping to slow RT. Thus the memory hypothesis predicts greater
post-stop-signal slowing when stimuli repeat after stop trials than
when stimuli do not repeat.

DISCUSSION
In this work, we have implemented in hardware a computational
neural model of the FEF with proactive inhibitory control for the
saccade countermanding task. Inspired by recent experimental
findings (Emeric et al., 2007; Pouget et al., 2011), we have pro-
posed a simple adaptive neural inhibitory control module to gate
the flow of the go signal input into the movement neural pop-
ulation, depending on whether the previous trial is a stop-signal

trial or not. Our hardware implementation is based on a FPGA
prototyping system using dedicated real-time hardware circuitry.

HARDWARE IMPLEMENTATION OF A COMPUTATIONAL MODEL OF
INHIBITORY CONTROL
The main goal of this work is to implement an adaptive proactive
inhibitory control model for voluntary movement on an FPGA
platform. Emulating biological signal processing on an FPGA plat-
form is an economical option for complex systems modeling,
prior to proceeding to fully integrated circuit design and fabri-
cation. This work is an important step toward the eventual goal
of incorporating into hardware a sufficiently biologically realis-
tic FEF model potentially for neural prosthetic or robotic devices.
We have demonstrated that a hardware implementation is feasible
using currently available technology.

Field-programmable gate arrays have been less commonly used
in bionic creativity engineering, with several exceptions. Protein
(Armstrong et al., 2007) and DNA sequencing search (Knodel
et al., 2011) are using FPGAs to reduce processing time. Real-
time processing, registration and fMRI image analyses are enabled
by FPGAs (Koo et al., 2009). Most modeling applications on
FPGAs have been limited to studying neural dynamics in low-
level simulations. Recently we have made several implementation
of spiking neural network models which include integrate-and-fire
neuronal models and conductance-based neural models (Maguire
et al., 2007; Glackin et al., 2009; Ghani et al., 2011; Yang and
McGinnity, 2011). However, each of these designs consists of a
relatively small number of neurons, and do not typically link to
behavioral data. This paper extends previous work of firing-rate
type neural models and cognitive neural models in countermand-
ing impending actions by providing fast prototyping architecture
for current software-based cognitive neural modeling into FPGA-
based embedded system. Building on this work, we should be more
confident that we will be able to build a fast inhibitory control sys-
tem that deals with more realistic neuronal spike coding (Lo et al.,
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FIGURE 5 |The model’s neural activity time course is similar to that of

the experimental data. The time course of average firing rates activity of
movement neurons response time for no-stop-signal trials preceded by either

a no-stop-signal trial or a stop-signal trial for data collected in 25% stop-signal
trials session experiment in the model with 5000 trials (A) and in the
experiment (B). (B) Adapted from Pouget et al., 2011; with permission).

FIGURE 6 | Cumulative frequency distribution of response time in the

model and experiment. (A) The cumulative frequency distribution of
response time in the model and (B) in the experiment of Pouget et al. (2011).

(A,B) Both using a 25% stop-signal trials session experiment with SSD of
217 ms. Black: Preceded by no-stop-signal trial. Gray: stop-signal trial
[canceled trial in (B)]. (B) Adapted from Pouget et al., 2011; with permission).

2009). In fact, we should expect the FPGA-based system to greatly
enhance the computational speed of the model in Lo et al. (2009).

The research presented in this work has shown that our fast
prototyping platform with hardware evaluation framework repro-
duced qualitatively the data from Pouget et al. (2011). The dis-
advantage of our FPGA model is that once the algorithm is
synthesized and programmed into the FPGA the parameters can-
not be changed without another synthesis. The design cycle is
longer than software implementation, but much shorter than for
a full-Application Specific Integrated Circuit (ASIC) design. For
fabricating a chip to be used in neural prosthetic devices, more
work for design optimization is necessary. Firstly, an efficient way
to save power consumption could be achieved using a low fre-
quency clock. Secondly, balancing between high precision and
silicon area is a key issue for implementation in a small die area.
Thirdly, the analog-to-digital converters should be integrated for
sensor inputs/control outputs. Finally, as shown in Figures A1 and
A2, in Appendix, the overall logic usage for the proactive control
design is just over 4% of that available, which is very promising
for future extensions, since it suggests that there is plenty of scope
left to add new embedded features.

ADAPTIVE INHIBITORY CONTROL MECHANISM
In this work, we have proposed a mechanism for implementing
an inhibitory control system that can adapt to previous trial type
and performance. Specifically, we have implemented a neural tran-
sit delay mechanism of the inhibitory control unit that depends
on whether the previous trial is a stop-signal trial or no-stop-
signal trial type. This may allow the system to autonomously
track the statistics in noisy, dynamic environments (e.g., there is a
stop-signal in 25% of the time) better in order to respond more
appropriately (Sugrue et al., 2004; Wong et al., 2007; Shenoy et al.,
2010). This is an extension of our previous computational model;
the results are qualitatively suggestive of the neural and behavioral
data in Hanes et al. (1998), Boucher et al. (2007), and Pouget et al.
(2011).

Our simple adaptive control mechanism has the interesting
features of incorporating previous neural mechanisms in simple
decision-making tasks; namely, the integration of the urgency-
gating mechanism (Cisek et al., 2009; Niyogi and Wong-Lin, 2010;
Standage et al., 2011) and sequential effects (Fecteau and Munoz,
2003; Gao et al., 2009). In the model, we have assumed that the
memory of the previous trial affects the current trial differently,
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depending on the previous trial type. Bissett and Logan (2011)
has shown that when the frequency of stop-signal trials increases,
the post-stop-signal slowing is greater. This can be implemented
easily in our model either by having the parameter P as a monot-
onically increasing function of the frequency of stop-signal trial
or with slightly longer memory trace (e.g., memory of two trials
back instead of one). This memory-based hypothesis may per-
haps be tested by slightly modifying the present task. For example,
by presenting a distractor stimulus during the inter-trial inter-
vals, the memory of the previous trials may be reduced (i.e., the
P values due to the two different previous trial types are closer).
As a consequence, the difference of the movement neural activity
accumulating onset times and reaction times between a previ-
ously stop-signal and no-stop-signal trial may also be reduced.
In the future, it would also be interesting to study quantita-
tively how this history-dependent mechanism is related to more
optimal performance in action countermanding in a dynamic
environment, e.g., in the form of maximizing overall reward
rates (Shenoy et al., 2010; Wong-Lin et al., 2010; Shenoy and Yu,
2011).

Although we have explored other control mechanisms which
include more realistic transient activation of the control unit
via inhibitory feedback mechanism, similar neural and behav-
ioral results can be obtained (not shown).Our simple adaptive
control mechanism with minimal biological features is sufficient
to readily account for both neural and behavioral data from
the experiments. Before we embark on a fully fledged biologi-
cal implementation of the adaptive control mechanism, it may
be worth identifying more extensive neuronal recording brain
areas responsible for such adaptive control/adjustment and also
performance monitoring. These regions may include the sup-
plementary eye fields, the inferior frontal gyrus and the dorsal
lateral prefrontal cortex, and the anterior cingulate cortical areas

(Schall, 2004). Good temporal resolution will be needed since
this control module may operate transiently within a timescale
of tens of milliseconds. Thus, techniques such as fMRI may ulti-
mately not be appropriate. However, in terms of its practical
applications (e.g., in neural prosthetics), our simple autonomous
history-based adjustment mechanism may be able to circum-
vent the need to search for sources of inhibitory controls or
performance monitoring; our efficient artificial control system
mimic the real biological system fairly well. This may also reduce
the amount of extensive surgery to be performed on motor-
impaired patients, e.g., one in FEF for eye movement (or sup-
plementary motor area for finger movement) and another in the
area(s) for monitoring, control, and adjustment (e.g., prefrontal
cortex).

GENERALIZABILITY
Although we have focused only on modeling the FEF, our model
may be generalized to other brain areas that are part of the oculo-
motor system such as the superior colliculus (e.g., Paré and Hanes,
2003) as their organization is quite similar. We further specu-
late that our model may be useful in task-switching paradigms
when to switch rapidly between different tasks (due to context
or rule changes), subjects typically have to first inhibit the pre-
vious “task set” through active inhibitory control of the previous
motor plan or action before implementing the new one (Stuphorn
et al., 2010). However, there is a limit to generalizing our current
model to inhibitory control for arm movement as there is evi-
dence that shows distinctive differences between countermanding
saccadic and arm movements (Mirabella et al., 2009, 2011). In
the future, it would be interesting to compare among multiple
modalities (e.g. finger and saccadic eye movement) and search for
common brain regions for cognitive monitoring and control in
the countermanding task paradigm.
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APPENDIX
The system generator diagrams for implementing the FEF module and the control module are shown in Figure A1.

The following describes our architecture using a Xilinx ML605 evaluation board equipped with an XC6VLX240T FPGA with
speedgrade-1 and package FF1156 (Xilinx Inc., 2011c).

FIGURE A1 | (A) System Generator diagram of the FEF module. Data ports
for the subsystems are the numbered oval blocks. Delays through the system
are expressed in the z domain where the superscript is the latency in cycles

from output back to input. The resulting data (rFM and rMN) are continuously
stored back in RAM, via the RAM1 and RAM2 connections. (B) System
Generator diagram of the adaptive control module.
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FIGURE A2 | (A) illustrates a top-level structure of the inhibitory control
prototyping system. Our prototype design includes common functions
for Ethernet interface, external memory interface, adaptive control, and
FEF module. The Ethernet interface includes an on-chip MAC module and
a packet processing engine. Every packet is sent or received using the
packet processing engine. A DDR3 memory block is used to store both
the simulation setup (stimuli) and simulation results locally on a FPGA
device. The stored stimuli are read from DDR3 SDRAM. The outputs are
stored back into a DDR3 memory bank. The control activity (rc) is an
input from the adaptive control subsystem module. With the
programmable timer, all the tasks in a trial are guaranteed to complete
before the next trial starts. (B) Illustrates a top-layer diagram of the FPGA
design of the FEF module. After circuit reset, the data are read from

SDRAM into the FEF module’s input FIFO. The design of movement and
fixation neural populations in the FEF module is generated by System
Generator. The circuitry to implement the adaptive control model
includes the memory interface (using similar modules to the FEF module
design) and the adaptive function (as descripted in Eqs 4 and 5). (C)

Summarizes the resource usage for the whole design. We divided the
design into two modules in order to analysis the adaptive control
resource usage, which will be useful for considering a potential future
Application Specific Integrated Circuit (ASIC) design. The first column
shows the type of hardware resources. The second column shows the
number of the specified logical resource used. The third column shows
the total number of logical resource usage and utilization. The extra
usage of DSP is due to the small amount of arithmetic logic utilized.
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