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Editorial on the Research Topic

Machine learning for peptide structure, function, and design

Peptides with a length from 2 to 50 amino acids play important roles in the

biological process and functions. Because of their wonderful variety of biological

properties, peptide-based therapy has been a potential treatment for many diseases

for decades. Meanwhile, peptide sequence, structure, and function are closely related,

especially the relationship between structure and function. However, obtaining the

structure or function of the peptides with wet experiments is costly, laborious, and

time-consuming. In recent years, because of the obvious advantages of traditional

machine learning and deep learning technology, these methods have been widely

used in various protein or peptide structure and function predictions such as many

kinds of site prediction, various interactions prediction, drug-targets prediction, and

so on.

This Research Topic explores the new technologies and applications of machine

learning on peptide structure and function prediction. We are pleased to see that the

authors of the 12 accepted papers introduce the research progress and application of the

latest machine learning techniques in peptide-related problems. They are related to

peptide treatment of disease, inter-residue distance or contact, binding site prediction,

drug targets, community-specific function landscape for peptides, and related

discussions.

Peptide-based therapy has become a new potential method of disease treatment in

recent decades years. Compared with traditional disease treatments, such as radiation

therapy and chemotherapy, therapeutic peptides could avoid the obvious side effects of

traditional disease treatments to guarantee precise treatment. Furthermore, most

therapeutic peptides have the characteristics of high specificity, low production

cost, low toxicity, easy synthesis, modification, etc. In this topic, three tools are
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proposed to predict therapeutic peptides, which are blood-

brain barrier penetrating peptides (BBPpredict),

antihypertensive peptides (Ensemble-AHTPpred),

antiparasitic peptides (i2APP). Comparing with the

experimental results of nine classifiers on the five-fold cross-

validation and independent testing datasets, Chen et al.

(BBPpredict) use a random forest method with optimal

features selected by three feature scoring methods to predict

the blood-brain barrier penetrating peptides (BBPs). In

addition, they construct an online web service of BBPpredict

to help researchers predict and find novel BBPs to accelerate

the development of new drugs to treat central nervous system

(CNS) diseases. Furthermore, Lertampaiporn et al. propose a

robust ensemble machine learning model to identify

antihypertensive peptides (Ensemble-AHTPpred). Ensemble-

AHTPpred integrates various computed features and optimally

weighted classifiers to improve the performance of the model.

Moreover, i2APP proposed by Jiang et al. employs a two-step

machine learning framework to identify antiparasitic peptides

(APPs). It utilizes multi-feature extraction, feature selection

with maximum information coefficient, and random down-

sampling technology to improve the performance of models to

identify APPs efficiently.

In addition, six papers pay attention to the inter-residue

relationship, interaction, and binding sites. Zhang et al. propose

DueDis to predict the inter-residue distance with duet deep

learning models. DuetDis use the 1D and 2D complementary

feature sets and high-quality multiple sequence alignment

(MSA) to improve the prediction performance in the fused

features. Peptide inter-residue contact maps determine its

topological structure. Gu et al. utilize graph convolutional

neural networks (GCN) and two different dimensional

residual neural network architectures (1D ResNet and 2D

ResNet) to capture global and local information, respectively.

The compared experiments demonstrate its effectiveness on

four different test datasets exceptionally on the long-range

contact types. Furthermore, drug–target interactions (DTIs)

are a hot topic in new drug discovery. Zheng et al. develop DTI-

BERT to predict DTIs based on pre-trained Bidirectional

Encoder Representations from Transformers (BERT) and

deep learning methods. In the DTI-BERT model, sequence

features are extracted by the pre-trained BERT for the

proteins. And drug information is generated by Discrete

Wavelet Transform (DWT) from drug molecular

fingerprints. Then, a deep learning network is employed to

judge the interaction using contrastive loss and cross-entropy

loss in a few target families. In addition, Zhou et al. develop

SSH2.0 to predict the hydrophobic interaction risk of

monoclonal antibodies. SSH2.0 trains a new support vector

machine-based ensemble model with the selected CKSAAGP

features. Compared to the previous SSH, SSH2.0 performs

better and may be a good web tool for researchers. In

addition, protein post-translational modifications (PTMs)

play crucial roles in diverse biological processes, affecting the

protein’s function. Nowadays, various computational tools are

developed to identify disease-associated PTM sites. In this issue,

Indriani et al. propose ProtTrans-Glutar model to predict

whether a protein sequence includes a glutarylation site.

ProtTrans-Glutar extracts several kinds of feature sets such

as the distribution feature, enhanced amino acid composition

(EAAC), and ProtT5-XL-UniRef50, a pre-trained transformer-

based model. Meanwhile, random under-sampling and

XGBoost classifiers are used to train the model. Besides, Xu

et al. propose AttnTAP to predict the binding of T cell receptor

(TCR) and peptide with a dual-input deep learning framework

to precisely predict the TCR-peptide binding. For AttnTAP,

a bi-directional long short-term memory model (BiLSTM)

model and attention mechanism with different weights for

amino acids are employed to predict TCR-peptide binding

effectively.

The remaining three articles analyze and discuss peptide-

related problems from a relatively broad perspective. Vajjala

et al. develop a metaBP toolkit to construct a community-

specific function landscape for bacterial peptides from meta-

genomic samples. The toolkit metaBP and metaBP-ML can

discover and annotate bacterial peptides from a natural

microbial community. It may give us a new research

perspective to better understand the characteristics of

bacterial peptides. For another research work, Liu et al.

reveal and verify that traditional peptide quantitative

structure-activity relationship (pQSAR) strategies only model

the genome-wide domain–peptide interaction (DPI)

qualitatively or semi-quantitatively because of disordered

peptide conformation and potential interactions between

peptide residues. For the last work, Wang et al. design a

three-step pipeline to discover drug targets using cinnamon

in cardiovascular diseases and metabolic syndrome. Through

pathway filter, combined network construction, and biomarker

prediction and validation to quantitative analysis of the effects

of peptide-protein complexes as drug targets, 17 peptide-

protein complexes are identified as the cinnamon targets in

6 peptides and 4 proteins. The pipeline based on network

analyses using machine learning may foster new drug

discovery based on peptides.

In conclusion, this special issue involves several hot topics

in solving peptide-related problems using currently popular

machine learning techniques. These efforts will help

accelerate the development of vaccines and new drugs.

Additionally, we hope these works can attract more

researchers to focus on the related fields. Moreover, we

thank all the reviewers and authors for their efforts and

contributions to this special issue.
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Network Analyses Based on Machine
Learning Methods to Quantify Effects
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Metabolic Syndrome as a Case Study
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Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China, 3Fuwai Hospital Chinese Academy of
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Peptide–protein complexes play important roles in multiple diseases such as
cardiovascular diseases (CVDs) and metabolic syndrome (MetS). The peptides may
be the key molecules in the designing of inhibitors or drug targets. Many Chinese
traditional drugs are shown to play various roles in different diseases, and
comprehensive analyses should be performed using networks which could offer
more information than results generated from a single level. In this study, a network
analysis pipeline was designed based on machine learning methods to quantify the
effects of peptide–protein complexes as drug targets. Three steps, namely, pathway
filter, combined network construction, and biomarker prediction and validation based
on peptides, were performed using cinnamon (CA) in CVDs and MetS as a case.
Results showed that 17 peptide–protein complexes including six peptides and four
proteins were identified as CA targets. The expressions of AKT1, AKT2, and ENOS
were tested using qRT-PCR in a mouse model that was constructed. AKT2 was shown
to be a CA-indicating biomarker, while E2F1 and ENOS were CA treatment targets.
AKT1 was considered a diabetic responsive biomarker because it was down-regulated
in diabetic but not related to CA. Taken together, the pipeline could identify new drug
targets based on biological function analyses. This may provide a deep understanding
of the drugs’ roles in different diseases which may foster the development of
peptide–protein complex–based therapeutic approaches.

Keywords: peptide-protein complexes, network analyses, metabolic syndrome, cardiovascular, cinnamon

INTRODUCTION

Peptide–protein complexes are the key components of protein–protein interaction (PPI) networks.
Nearly 15–40% PPIs are mediated by these short linear peptides (Neduva et al., 2005). The
peptide–protein complexes are proven to play important roles predominantly in both signaling
and regulatory pathways, implicating that the peptides are involved in many human diseases
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(Pawson and Nash, 2003). As a result, the peptides are attracting
more attention in drug research fields since they may be the key
molecules in the designing of inhibitors or drug targets
(Parthasarathi et al., 2008; London et al., 2010).

Due to the characters of peptide–protein interactions, it is
reasonable to perform network analyses based on machine
learning methods since the relationships between those
peptides and proteins could be illustrated clearly in the
form of graphs (Zhu et al., 2020; Ji et al., 2021; Yingying
et al., 2021). Similarly, some complex diseases are found to be
similar based on network analyses, indicating that more
relationships between different diseases could be predicted
using bioinformatics pipelines (Wang et al., 2019). Many
Chinese traditional drugs are shown to play various roles in
different diseases, and comprehensive analyses should be
performed using networks which may offer more
information than results generated from a single level.
However, no pipeline aiming to predict the peptide–protein
complex as drug targets in different diseases had been
proposed. In this study, a network analysis pipeline was
designed based on machine learning methods to quantify
the effects of peptide–protein complexes as drug targets.

In this pipeline, diseases with at least 20 related genes and
drugs with at least one related biological functional term could be
used as analysis objects. Diseases that are similar to each other on
at least one level (such as medical or biological level) are
recommended. The candidate drugs do not need to be proven
useful in the diseases analyzed since predicting new roles of the
candidate drugs is also one application of the pipeline. Based on
the abovementioned concerns, two types of diseases
(cardiovascular diseases (CVDs) and metabolic syndrome
(MetS)) and a Chinese traditional drug (cinnamon) as a case
were chosen.

Cinnamon (Cinnamomum zeylanicum and Cinnamon
cassia, CA) is one of the most important spices used daily
(Hariri and Ghiasvand, 2016). Cinnamaldehyde is one of the
main resinous ingredients found in CA, which is commonly
used as a Chinese medicine for blood circulation disturbance
and inflammation (Sheng et al., 2008; Cao et al., 2010; Yang
et al., 2015). It was shown that cinnamaldehyde played
important roles in both CVDs and MetS (patients suffering
from type 2 diabetes (T2D), and glucose/insulin metabolism
disturbance or insulin resistance, and was involved with at
least two of the following four items: hypertension,
dyslipidemia, obesity, and microalbuminuria defined by the
WHO criteria) (Mollazadeh and Hosseinzadeh, 2016). CVDs
and MetS are not independent since MetS is one of the most
undeniable reasons of CVDs. Besides, there are multiple types
of biomarkers identified as common features of CVDs and
MetS, such as non-coding RNAs, proteins, and metabolites
(Das et al., 2020).

It is of great importance to explore the mechanism of CA
since this drug could participate in both of the disease types at
the same time (Sheng et al., 2008; Yang et al., 2015). One
possible reason may be its antidiabetic action by modulating
the insulin and insulin-like growth factor (IGF1) signaling
pathways (Schriner et al., 2014) since insulin resistance was

proven to play a fundamental key role for MetS complications
(Khan et al., 1990). Besides, CA was shown to retard the
progression of cardiac hypertrophy and fibrosis via blocking
the ERK signaling pathway (Zhang et al., 2015; Xiao et al.,
2017). However, functional analysis for CA in a system way,
especially based on biological pathways, is still lacking.

As an integration of molecular interaction; genetic, cellular,
and environmental information processing; and metabolism
reactions, biological pathways are often used in systematic
analyses of complex diseases such as CVDs, T2D, and cancers
(Salt and Hardie, 2017; Kakiuchi-Kiyota et al., 2019; Kaku,
2019). Peptide–protein complexes were also proven to be the
key components in pathways. It was postulated that there may
be associations between the common pathways shared by
CVD/MetS and CA which could be detected based on
peptide–protein complex analyses. In this study, a new
network analysis pipeline was proposed based on machine
learning methods to identify common drug targets in different
diseases.

MATERIALS AND METHODS

The analyses were performed using the following three steps: (as
shown in Figure 1).

Step1: Pathway filter. The similarity between any two selected
diseases was calculated and used to filter the disease pairs.
Enrichment analyses were performed for the related genes of
the disease pairs. Meanwhile, the CA-related pathways were
found through literature searching. Common pathways were
then filtered and used as the inputs for step 2.

Step2: Combined network construction. All the common
pathways were then converted into networks. The network
structure similarities were calculated using two types of
machine learning methods, and an integrate score was
designed to measure the similarity between any two
common pathways on the structural level in order to
explore the potential correlations of these pathways. The
pathways were then merged into a combined pathway
network. Proteins in the pathways were merged into a
combined protein network.

Step3: Biomarker prediction and validation based on
peptides. The nodes in the combined protein network were
first ranked according to the network topological characters.
Then protein–peptide complexes containing these top proteins
as receptors were selected, and the peptides were then
clustered. The top genes with peptides clustered into the
same clusters were selected as candidate biomarkers and
validated using qRT-PCR in a mouse diabetic model that
was constructed.

Disease Similarity Calculation
Methods that can calculate the distances between any two
diseases based on any biological or medical level could be
used. In this case, a module-based method (Menche et al.,
2015) was used. The similarity Sij between two diseases i and j
was calculated as follows:
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Sij ≡ 〈dij〉 − 〈dii〉 + 〈djj〉
2

.

Of which, <dii> and <djj>represented the average shortest
distances inside diseases i and j, respectively, while
<djj>represented the pairwise average shortest distance
between disease i and j. The shortest distances were calculated
for any protein pairs inside/between diseases using the
relationships integrated from multiple molecular interaction
levels including protein, regulatory, and metabolic pathways,
and kinase substrate.

A z-score was calculated based on the random control
networks by 1000 permutations of disease lists preserving
randomization. A p-value for each Sij score was calculated
using the Mann–Whitney U test. Then FDR was used to
obtain the q-values.

Information Converting
From Genes to Biological Pathways
The information conversions from genes to biological
pathways were performed using the DAVID EASE score
(Huang et al., 2009a; Huang et al., 2009b), which was a
modified Fisher exact p-value. For any disease-related gene
list li and biological pathway wa, the EASE score was calculated
as follows:

e(li, wa) � 1 − ∑GH−1

i�0

(OH
i

)(OT − OH
GT − i

)
( OT
GT − 1

) .

Of which, the calculation methods of GH (gene hits), GT (gene
total), OH (genome hits), and OT (genome total) are shown in the
following 2*2 table:

An e-value not above the threshold supported the alternative
hypothesis that the probability of the first cell in the 2*2 table
was actually greater than that expected under the null
hypothesis that the two variables were independent. The
conclusion was that there was an association between the
row and the column variables in the table, which meant the
proportions of those genes falling into each category were
different among groups.

From Biological Pathways to Graphs
The information conversions from biological pathways to
protein–protein networks were performed using the R package
“graphite” (Sales et al., 2012). The algorithm in this package kept
the information of protein complexes, gene families, and

removing chemical compounds from the final graphs, which was
especially important in the peptide complex analyses of this study.

Network Structure Similarity Calculation
The network structure similarity calculation algorithms could be
divided into two types: alignment-free and alignment-based
network comparison (Frigo et al., 2021). In this pipeline, it
was recommended to use at least one alignment-free algorithm
and one alignment-based algorithm to compare the different
networks and combine the scores together.

Alignment-Free Algorithm Based on
Graphlet Degree Distribution Agreement
The alignment-free network comparison algorithms performed the
network similarity analyses by quantifying the overall topological
similarity between networks, irrespective of node mappings between
the networks, and without any conserved edges or subgraph
identification. In this pipeline, the algorithm named GDD
agreement was chosen, which performed the structural similarity
(SS) between networks based on the graphlet degree distribution as
follows (Przulj, 2007):

The similarity between any two networks G and W was
calculated as follows:

SGDD(G,W) � 1
n
∑n−1
j�0

SjGDD(G,W).

Of which,

SjGDD(G,W) � 1 −⎛⎜⎜⎜⎜⎝∑∞
k�1

⎡⎢⎢⎢⎢⎢⎢⎢⎣dj
G(k)
k /∑∞

k�1
dj
G(k)
k

− dj
W(k)
k /∑∞

k�1
dj
W(k)
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦2⎞⎟⎟⎟⎟⎠1
2

.

Of which, djG(k) is the sample distribution of the number of
nodes in network G touching the appropriate graphlet k times.
The range of SGDD is [0,1]; a higher score meant the two networks
compared were more similar to each other.

Alignment-Based Algorithm Based on the
Hungarian Method
The alignment-based network comparison methods referred to a
series of algorithms aiming to find a mapping between the nodes
of at least two networks that preserved edges and a large subgraph
between the networks. In this pipeline, an alignment-based
algorithm was chosen based on a Hungarian method as follows:

Number of genes in li Number of genes in the genome

Number of genes in wa GH-1 OH-GH+1
Number of genes not in wa GT-GH OT-GT-(OH-GH)
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The network alignment scores, that is, SAE (G, W) (between
any two networks G and W), were performed using the
Hungarian method (Kuhn, 1955) on a square distance matrix
C (if the sizes of the two networks were different, the larger
number of nodes was used), which was calculated as follows:

Cab �
����������������∑
t∈T

(MGa,t −MWb,t)2√
.

Of which, MGa,t �
−∑NG

j�1 A
(t)
Ga,j

ln(A(t)
Ga,j

)
H(ING ) , where A(t)

Ga,j
is a transition

matrix of network G, which was constructed by converting the
raw square transition matrix into Markov processes by
normalizing each row sum to unity. A(t)

G contained
probabilities of edges transferring information from the ith to
the jth member of the system in exactly t units of time. For
t ∈ {2y}∀y ∈ N, tmax ≥ 2D and tmax−1 < 2D, where D is the max
diameter of the two networks G and W being compared, and the
R packages “igraph” and “netcom” were used to perform the
calculation.

Integrated Network Similarity Score
The integrated network similarity scores between the two
networks G and W were calculated as follows:

S(G,W) � SGDD(G,W) + SAE(G,W).
A higher S score indicated that the two networks compared

were more similar to each other on the structural level.

Biomarker Prediction and Validation
The prediction and validation of the biomarkers were performed
using the following steps:

1) The proteins in the combined protein network were ranked
according to the network topological characters. For each
node, degree and node betweenness were calculated. The edge
betweenness was calculated for each edge using the R package
“igraph.”

2) The protein–peptide complexes containing these top proteins
as receptors were selected, and the peptides were then
clustered. The high-resolution structures of protein–peptide
complexes containing genes in the combined network as
receptors were downloaded from the Protein Data
Bank (PDB).

3) The top proteins with peptides clustered into the same clusters
were selected as candidate biomarkers. The peptide sequences
of these complexes were then classified using Hammock
(1.2.0) (Krejci et al., 2016), which used hidden Markov
model profiles for peptide sequence clustering. The
consensus sequence for each cluster was generated using
ClustalW (Thompson et al., 1994) and WebLogo (Crooks
et al., 2004).

4) The candidate biomarkers were validated using qRT-PCR in a
mouse diabetic model constructed as follows:

Fifty-nine male C57 mice (14–16g/28–35 days) were
purchased from Guangdong Medical Experimental Animal

Center (Certificate No.: 44007200062167, License No.: scxk
(Guangdong) 2018-0002, SPF clean grade).

The mice were divided into four groups as follows: 1) Group A
(Control + vehicle): 5 mice were given solvent control (0.5%
carboxymethyl cellulose solution (CMC)) by gavage; 2) Group B
(Control + CA): 6 mice were given CA by gavage (the dose was
20 mg/ kg/ BW); 3) Group C (T2D + vehicle): 24 diabetic mice
were given solvent by gavage; 4) Group D (T2D + CA): 24
diabetic mice were given CA by gavage.

Of which, the models of 48 diabetic mice were constructed
using streptozotocin (STZ) using the following steps: 1)
pretreatment: all the mice were made to starve 12 h before
modeling; 2) model construction: STZ was intraperitoneally
injected at a dose of 150 mg/ kg/ BW; 3) model test: the blood
glucose value was measured continuously after 3 days of STZ
injection. If the random blood glucose was >16.7 mmol/ L, the
model was considered successful. Otherwise, another injection of
STZ was administered until the random blood glucose was
>16.7 mmol/ L.

Drug treatment (Groups C and D) was started 5 weeks after
modeling. After 7 weeks of administration, all animals were
killed, and the hearts of mice were treated with TRIzol and
stored at −80°C. Then qRT-PCR was performed for the
candidate genes (the top proteins were mapped to their
coding genes). The animal experiment was approved and
recognized by the experimental Animal Ethics Committee
of Shenzhen Sun Yat sen Cardiovascular Hospital (Approval
No.: rye2019102806).

RESULTS

Pathway Filtrations
CVD (such as coronary disease) and MetS (such as diabetes
mellitus) lists were extracted from Medical Subject Heading
(MeSH) ontology with at least 20 disease-related genes from
either OMIM or GWAS (listed in Supplementary Table S1). 553
disease pairs were shown to be similar with each other with a
z-score ≥ 1.6 and q-value ≤ 0.001. The 19 CVDs and 18 MetS
comprising the 553 disease pairs were selected as HM
(HeartMetS) datasets. As shown in Figure 2A, the average
numbers of genes related to MetS (179.0556) were 2-fold of
CVDs (86.42105). This indicated that MetS may be more
complex than CVDs since these diseases involve the
abnormality of multiple systems, such as endocrine, digestive,
and immune systems.

The gene lists of each disease were then used as inputs of the
information converting calculation. 179 pathways in KEGG
(Kanehisa et al., 2017) and Biocarta with at least one e-value
not above 0.05 were selected as HM-enriched pathways (see
Supplementary Table S2). The common pathways in the two
databases were named using KEGG ID. Otherwise, if there exists
any difference between the two pathways, both of the pathways
were kept.

CA was shown to play important roles through biological
pathways in reducing metabolic syndrome complications and
CVDs as reviewed in the former research (Yang et al., 2015;
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Mollazadeh and Hosseinzadeh, 2016). The words “cinnamon”
and “cinnamaldehyde” were used for literature searching through
the NCBI PubMed to find the related pathways since 32 CA-
related pathways were selected and binned into two groups
according to their effects on diseases types: antidiabetic
(including 28 pathways) and antihypertensive (including four
pathways).

Combined Pathway Network Analyses
As shown in Figure 2B, there were 12 common pathways
between the 179 HM-enriched pathways and 32 CA-related
pathways. This indicated the dynamical roles CA played in
different diseases or disease stages, including diabetes mellitus,
obesity, MetS, and CVDs. The combined pathway network was
built using the 12 common pathways as nodes. Sixty-seven
connections were built if the two pathways shared at least one
gene/protein.

The 12 common pathways were enriched by different
numbers of diseases in the HM datasets. Of which, the
insulin signaling pathway (hsa04910, marked as “Insulin

signaling-1”) was enriched by 12 diseases, while the
following three pathways were only enriched by one
disease: IL-2 receptor beta chain in T-cell activation
(h_il2rbPathway, marked as “Cardiac Remodeling”), the
IGF-1 receptor and longevity (h_longevityPathway, marked
as “Insulin secretion-1”), multiple antiapoptotic pathways
from IGF-1r signaling lead to bad phosphorylation
(h_igf1rPathway, marked as “Insulin secretion-3”), and
sprouty regulation of tyrosine kinase signals (hsa04911,
marked as “Insulin signaling-2”).

The 12 common pathways could be divided into three types
according to their contributions to CVD and MetS (as shown in
Figure 2C).

1) Insulin signaling: CA could enhance the insulin signaling
pathway in the skeletal muscle by increasing the tyrosine
phosphorylation level (Qin et al., 2003). Three pathways
were involved in this stage, including the insulin signaling
pathway (enriched by MetS and CVDs), tyrosine
metabolism (enriched by MetS), and sprout regulation of

FIGURE 1 | Flowchart of this study. This pipeline consists of three steps, namely, “pathway filter,” “combined network construction,” and “biomarker prediction and
validation based on peptides.”
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tyrosine kinase signals (enriched by CVD). It was interesting
to see that the “insulin signaling pathway” was closely
connected not only to MetS such as diabetes mellitus but
also to CVDs, such as heart diseases. This may be explained
by the fact that insulin signaling was an integral pathway

regulating the life span of laboratory organisms (Schriner
et al., 2014).

2) Insulin secretion and obesity: Since impaired insulin secretion
was one of the pathophysiological abnormalities in type 2
diabetes, IGF (insulin-like growth factors)-I, which was

FIGURE 2 | (A)Distribution of genes in CVDs andMetS. (B)Common pathways enriched by HM datasets. The diameter of each bubble represented the number of
diseases significantly enriched in this pathway. (C) Relationships between common pathways and diseases. (D) Network similarity of common pathways.
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shown to inhibit insulin secretion, would play a key role in
the process (Leahy and Vandekerkhove, 1990; Pørksen
et al., 1997). CA could increase the phosphorylation
levels of the IGF-I receptor and its downstream signaling
molecules (Takasao et al., 2012). It was interesting
that binding IGF-I to its receptor could cause the
activation of the tyrosine kinase, leading to
autophosphorylation of the intrinsic tyrosines, which
transduced the IGF-I signal to a complex network that
was ultimately responsible for cell proliferation,
modulation of tissue differentiation, and protection from
apoptosis (Laviola et al., 2007).

3) Insulin resistance and CVD: The study showed that the
insulin action on cAMP was severely impaired in insulin-
resistant patients (Laviola et al., 2007). The cyclic-AMP
signaling pathway was shown to be modulated by CA to
exhibit antidiabetic action (Schriner et al., 2014). “Regulation
of lipolysis in adipocytes” (marked as “Obesity”) was closely linked
to MetS since the variations of insulin resistance severity may be
related to the regulation of lipolysis in adipocytes (Guilherme et al.,
2008). The “AMPK signaling pathway”was proven to be a master
regulator of key molecular effectors involved in both metabolic
processes and cardiovascular homeostasis by modulating the
mTOR signaling and IGF-1 pathway (Salminen andKaarniranta,
2012). The pathway “Il-2 receptor beta chain in T-cell activation”
was proven to significantly attenuate ventricular remodeling by
reducing infarct size and improving left ventricular (LV) function
(Zeng et al., 2016).

The SGDD and SAE were calculated for all the 32 CA-related
pathways and the 179 HM-enriched pathways. Overall, the
average intra-similarity (pathways of the same types including
“insulin signaling,” “insulin secretion and obesity,” and
“insulin resistance and CVD” as illustrated above) in either
CA-related or HM-enriched pathways was similar: higher
SGDD score and lower SAE scores (see Table 1 for details). This
indicated that these pathways may have small similar structures
instead of the whole network. Each pathway may be an up or
downstream event in a disease since the biological processes
inducing diseases were complex. There may be local similar

structures between two pathways, especially the adjacent ones,
that may help transform the information quickly.

The combined pathway network similarity scores between the 12
common pathways are shown in Figure 2D. Of which, the pathway
“Regulation of lipolysis in adipocytes (hsa04923)” (marked as
“Obesity” in Figure 2D) got the highest average combined
network similarity score (0.438) in the 12 common pathways. As
illustrated above, this pathway was involved in the “Insulin resistance
and CVD” processes of CVD and MetS, which was the downstream
event of CVD and MetS, indicating that more cross-talks may exist
between this pathway and the upstream events through the similarity
network structures. Compared with this, the pathway “Insulin
signaling pathway (hsa04910/h_insulinPathway)” (marked as
“Insulin signaling-1” in Figure 2D) got the smallest average
combined network similarity score (0.218). Interestingly, this
pathway was the node with the highest degree 15 in the
combined pathway network. Considering the biological character
of this pathway, these indicated that this upstream event inMetS and
CVD may play a triggering role regardless of structure similarities to
other downstream pathways.

Peptide–Protein–Based Drug Targets
Selection
The combined protein network was built using all the proteins of
the 12 common pathways. The network comprised 335 nodes and
1793 edges. The proteins with top 10 degree, node betweenness,
and edge betweenness are listed in Table 2 and selected as raw
candidate biomarkers. The degree of a node indicated the
importance of a node in the network. A higher degree meant
more connections with other nodes; thus, the proteins with
higher degree may be the key targets of CA. Five of the top 10
degree proteins had been proven to be regulated by CA, including
IRS1, AMPK1, AMPK2, PRKAB1, and PRKAB2. The other five
proteins could be divided into two groups: monoamine oxidase
(MAOA and MAOB) and protein kinase AMP-activated non-
catalytic subunit gamma (PRKAG1, PRKAG2, and PRKAG3)
which may be the candidate targets of CA. Cinnamon extracts
(CEs) were shown to increase insulin sensitivity by increasing the
mRNA expression of INSR (insulin receptor) (Anderson et al.,

TABLE 1 | Pathway similarity results of different pathways.

Type of pathway sets Number of pathways SGDD SAE

Common 12 0.257095099 0.047247541
CA-related 32 0.355600743 0.091677581
HM-related 179 0.324632623 0.061221968

TABLE 2 | List of top 10 nodes and edges in the combined protein network.

Topological character Protein symbols/protein–protein pairs

Degree IRS1, MAOA, MAOB, AMPK1, AMPK2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, and PRKAG3
Node betweenness IRS1, OGT, AKT2, INS, AKT1, RAPGEF4, INSR, PDE3B, PTPA, and GNAS
Edge betweenness PTPA-AKT2, IRS1-IGF1R, PPARGC1A-OGT, AKT1-E2F1, IGF1R-RAF1, AKT2-PDE3B, OGT-AKT1, E2F1-IL2RA, PRKCE-

INSR, and NOS3-IRS1
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2013), promoting IRS1 (insulin receptor substrate 1)
phosphorylation (Liu et al., 2016), and activating AMPK1/2
(protein kinase AMP-activated catalytic subunit alpha 1/2) (Hu

et al., 2013). On the contrary, CE was shown to decrease the
expression of genes encoding insulin signaling pathway proteins,
including IGF1R (Cao et al., 2010). INS-encoded insulin and trimer

TABLE 3 | Peptide in the CA-related cluster.

PDB Peptide
chain

Peptide
size

Peptide
sequence

Peptide
description

Peptide
molecular
weight

Peptide
aromaticity

Peptide
instability

Peptide
isoelectric

point

6buu F 11 GRPRTTXFAEX GLY-ARG-PRO-ARG-THR-THR-ZXW-PHE-
ALA-GLU

− 0.09 − 9.6

6buu G 11 GRPRTTXFAEX GLY-ARG-PRO-ARG-THR-THR-ZXW-PHE-
ALA-GLU

− 0.09 − 9.6

6npz F 11 GRPRTTXFAEX Bisubstrate − 0.09 − 9.6
6npz G 11 GRPRTTXFAEX Bisubstrate − 0.09 − 9.6
2jdo C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
2jdr C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
2uw9 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
3e87 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e87 D 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e88 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e88 D 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
6g0p B 9 PGXGVXSPG Transcription factor E2F1 - 0 - 5.96
2ll7 B 17 KKTFKEVANAVKISASL Nitric oxide synthase, endothelial 1834.16 0.06 1.14 10

FIGURE 3 | (A) Structure of clustered peptides, (B) sequence alignment of clustered peptides, and (c) structure of filtered peptide–protein complexes.
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procyanidins in CE were shown to contribute to the INS-1
pancreatic β-cell protection (Sun et al., 2016).

Compared with degree, the measure “betweenness” reflected
the importance of proteins/protein–protein pairs in the interplays
between different pathways/diseases. Three of the top 10
betweenness proteins, including IRS1, INS, and INSR, were
validated to be regulated by CA. Six of the 10 betweenness edges
contained at least one validated CA target. It was found that the two
nodes forming the edge IRS1-IGF1Rwere CA targets; however, IRS1
was upregulated, while IGF1R was downregulated, indicating there
may exist complex interactions between CA targets.

A total of 67 protein–peptide complexes containing these top
proteins as receptors were selected, and the peptides in these were
then aligned and clustered. In total, 13 peptides were grouped in
the CA-related cluster, their characters are listed in Table 3, and
the structures are shown in Figure 3A,B. In total, 17
peptide–protein complexes were then filtered (see Figure 3C
for the complexes’ structures), see Figure 4A for the relationships
between these peptides and proteins.

Four of the raw candidate biomarkers (AKT1, AKT2, E2F1, and
ENOS) were receptors of the abovementioned 17 peptide–protein
complexes. qRT-PCR was performed on the four genes (see
Supplementary Table S2 for details).

The candidate biomarkers were divided into three groups
according to their expression changing pattern in the qRT-PCR
results as follows: see Figure 4B for details 1) The genes differentially
expressed between Group A (Control + vehicle) and Group B
(Control + CA) were named as CA-indicating biomarkers since
the two groups were under normal condition, while the only

difference between the two groups was the drug CA. 2) The genes
differentially expressed between Group A (Control + vehicle) and
Group C (T2D + vehicle) were named as T2D responsive biomarkers
since these genes were significantly differentially expressed between
T2DMand controls butwere not related to the drugCA. 3) The genes
differentially expressed betweenGroupC (T2D + vehicle) andGroup
D (T2D+CA)were named as CA treatment targets since the samples
of the two groups were all T2D, while the only difference between
themwas the treatment of CA. Of which, AKT2 was a CA-indicating
biomarker and AKT1 was a T2D responsive biomarker, while E2F1
and ENOS were CA treatment targets. E2F1 and ENOS were shown
to cooperate with each other in the treatment of hypertension (Li
et al., 2019). Combined with results from this study, the two genes
might also cooperate with each other in T2D and become the targets
of CA. Besides, the two genes were found to be targeted by SARS-
CoV-2–encoded miRNAs in recent research (Aydemir et al., 2021).
As a result, CA may be a potential candidate drug to help reduce or
prevent the complications since CVDswere one of themost common
complications in COVID-19 patients.

DISCUSSION

The analysis pipeline that was proposed in this studywas based on the
related genes of multiple diseases. In this study, these genes were
collected from OMIM and GWAS results; however, the updates of
the gene lists might only influence the results slightly since the
analyses were performed on pathway levels. The information
conversion from genes to pathways could capture most of the

FIGURE 4 | (A) Relationships between peptides and proteins, and (B) qRT-PCR results of AKT1, AKT2, E2F1, and ENOS.
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functional characters of the disease, which may not be changed by
adding or deleting a small number of genes. CA was shown to play
roles in a wide disease spectrum, which was the character of many
Chinese traditional medicines. Thus, the drug targets of these
diseases may share some similar characters reflected by
peptide clusters. The pipeline proposed in this study could be
applied to other diseases and drugs. Pathways were commonly
used in biological and medical analyses which could gain deep
understanding of diseases. However, other biological terms that
could be converted into networks could also be used in this
pipeline.

The portability of the pipeline was shown in all the three steps.
In step 1 (pathway filter), the similarity calculation methods
between different disease pairs could be replaced by any
suitable distance measures. The disease-related and drug-
related pathways could be selected using any suitable scores or
ways. Other functional resources and transcriptional information
such as GO terms, transcriptional factors–targets, or miRNA targets
could also be used. However, pathways were recommended as the
primary choice because the biological pathways were widely used in
biological andmedical analyses since they could reflect themolecular
connections in the form of graphs, which could be analyzed using
multiple computational methods. Besides, the correlations between
pathways and peptides were closer than those between other types of
functional resources. In step 2 (combined network construction), the
network structure similarities could be measured using one
alignment-free and one alignment-based algorithms. In step 3
(biomarker prediction and validation based on peptides), the
peptide clustering algorithms could be replaced by any other
suitable alignment method.

CONCLUSION

In this study, a new pipeline was proposed to discover drug targets
based on peptides. The network analyses based on machine learning
methods could quantify the effects of peptide–protein complexes
with similar structures as drug targets in multiple diseases.
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the Peptide QSAR Methodology?
Qian Liu1, Jing Lin1, Li Wen1, Shaozhou Wang1, Peng Zhou1*, Li Mei2* and Shuyong Shang3

1Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of
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The protein–protein association in cellular signaling networks (CSNs) often acts as weak,
transient, and reversible domain–peptide interaction (DPI), in which a flexible peptide segment
on the surface of one protein is recognized and bound by a rigid peptide-recognition domain
from another. Reliablemodeling and accurate prediction of DPI binding affinities would help to
ascertain the diverse biological events involved in CSNs and benefit our understanding of
various biological implications underlying DPIs. Traditionally, peptide quantitative structure-
activity relationship (pQSAR) has been widely used to model and predict the biological activity
of oligopeptides, which employs amino acid descriptors (AADs) to characterize peptide
structures at sequence level and then statistically correlate the resulting descriptor vector with
observed activity data via regression. However, the QSAR has not yet been widely applied to
treat the direct binding behavior of large-scale peptide ligands to their protein receptors. In this
work, we attempted to clarify whether the pQSAR methodology can work effectively for
modeling and predicting DPI affinities in a high-throughput manner? Over twenty thousand
short linear motif (SLiM)-containing peptide segments involved in SH3, PDZ and 14-3-
3 domain-medicated CSNswere compiled to define a comprehensive sequence-based data
set of DPI affinities, which were represented by the Boehringer light units (BLUs) derived from
previous arbitrary light intensity assays following SPOT peptide synthesis. Four sophisticated
MLMs (MLMs) were then utilized to perform pQSAR modeling on the set described with
different AADs to systematically create a variety of linear and nonlinear predictors, and then
verified by rigorous statistical test. It is revealed that the genome-wide DPI events can only be
modeled qualitatively or semiquantitatively with traditional pQSAR strategy due to the intrinsic
disorder of peptide conformation and the potential interplay between different peptide
residues. In addition, the arbitrary BLUs used to characterize DPI affinity values were
measured via an indirect approach, which may not very reliable and may involve strong
noise, thus leading to a considerable bias in the modeling. The Rprd

2 � 0.7 can be considered
as the upper limit of external generalization ability of the pQSAR methodology working on
large-scale DPI affinity data.

Keywords: computational peptidology, peptide quantitative structure-activity relationship, domain-peptide
interaction, amino acid descriptor, statistical modeling, machine learning
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1 INTRODUCTION

Protein–protein interactions play a key role in cell life. Through
formation of the functionally complicated complexes between
two or more interacting protein partners, they participate in a
variety of signal cascades in cells, thereby regulating the life
activities of cells and individuals (Slater et al., 2020). In cell
signaling network, intrinsically disordered proteins (IDP) often
interacts specifically with the peptide-recognition domain of
target protein through a flexible peptide segment on its own
surface (Dyson and Wright 2005). In this way, flexible peptides
tend to spontaneously fold into regular secondary structures, and
then the specific recognition and interaction between peptide-
recognition domains (PRDs) and flexible peptides were created in
a folding-on-binding or binding-on-folding manner (Dyson and
Wright 2002). Different from the permanent and stable
complexes that are commonly formed by binding with global
rigid globulins, the domain–peptide complexes are generally
transient and reversible due to the limited number of residues
and small contact area involved in the complex interfaces. This
feature makes domain–peptide interactions (DPIs) very suitable
to serve as molecular switches in biological signaling pathways
that require exquisitely dynamic regulation and are closely related
to various cellular processes and major diseases.

Although the high-throughput synthesis techniques such as
combinatorial library, phage display and peptide microarray have
considerably promoted DPI discovery over the past decades
(Engelmann et al., 2014; Gray and Brown 2014; Zambrano-Mila
et al., 2020), it is still time-consuming and expensive to practice full
systematic screening against all potential peptide segment candidates
in the human genome. In addition, a variety of peptide-recognition
domains existed in cells also largely intensify the challenge of
systematic screening. To tackle this issue, we previously suggested
the computational peptidology as a new and attractive area to
rationally investigate and design bioactive peptides or peptidic
agents with in silico assistance (Zhou et al., 2013), in which the
peptide quantitative structure-activity relationship (pQSAR) is one
of the most widely used strategies to model the statistical correlation
between peptide structure and biological activity (or toxicity, efficacy
and potency) at sequence level (Zhou et al., 2008a). Machine
learning has been widely used to perform the pQSAR modeling,
but most of previous studies were focused on specific domains and/
or limited samples, and thus unable to systematically evaluate the
feasibility and applicability of pQSAR methodology in predicting
DPI affinities. For example, Hou et al. deployed a series of works to
characterize the 3D-structurally physiochemical properties of
peptide binding to SH3 domain by using dynamics simulation,
molecular field analysis and interaction energy component
decomposition, and then they employed support vector machine
(SVM) to create the pQSAR relationship between the characterized
property parameters and measured DPI affinities (Hou et al., 2006;
Hou et al., 2008; Hou et al., 2009). Jin et al. used random forest (RF)
to perform structure-based pQSAR study of DPI binding behavior
by dissecting residue interaction profile at the complex interface of
PDZ domain with its peptide ligands (Jin et al., 2013). We also
proposed the Gaussian process (GP) as a promising machine
learning approach to predict the binding affinities and biological

activities of diverse peptides against different proteins and domains
(Zhou et al., 2008b; Zhou et al., 2010).

The key to the development of rapid pQSAR virtual screening
technology for genome-wide DPIs is the characterization of
interaction binding behavior and the construction of multivariate
statistical model. The former parameterizes the sequence, structural,
physicochemical and/or energetic properties of DPIs into a set of
multidimensional numerical vectors that can be readily processed in
computer, and the latter generates a regression relationship by
statistically associating the vector set with corresponding DPI
affinities with supervised machine learning approach. Recently, we
have given a systematic review on the application of machine
learning methods (MLMs) to quantitative DPI affinity prediction
and its implications for therapeutic peptide design (Li et al., 2019), in
which we pointed out that, although a number of pQSARworks have
been reported to address the DPI affinity prediction problem, there
was no comprehensive evaluation and systematic comparison of the
pQSAR modeling performance between the different combinations
of peptide-recognition domain types, MLMs and structural
characterization strategies, thus lacking a general conclusion for
the applicability of pQSAR methodology in DPI affinity modeling
and prediction. In this study, we attempted to create, examine and
compare a variety of pQSAR predictors built with PLS, SVM, RF and
GP on >20,000 SLiM peptides involved in SH3, PDZ and 14-3-
3 domain-medicated cell signaling networks. These peptide
structures were characterized at traditional sequence level using
classical amino acid descriptors (AADs) and their affinities were
determined consistently by SPOT peptide syntheses and arbitrary
light intensity assays. This work would shed light on the general
purpose of pQSAR-based DPI affinity modeling and prediction.

2 MATERIALS AND METHODS

2.1 Four Machine Learning Methods That
Have Ever Been Applied in Peptide
Quantitative Structure-Activity Relationship
Four sophisticated MLMs that have ever been applied in the
pQSAR study of DPIs and other protein–peptide binding
phenomena were considered in this work, including one linear
partial least squares (PLS) and three nonlinear support vector
machine (SVM), random forest (RF) and Gaussian process (GP)
(Geladi and Kowalski 1986; Cortes and Vapnik 1995; Breiman
2001; Obrezanova et al., 2007). The PLS is a widely used
multivariate statistical technique in the QSAR community,
which has been intrinsically integrated into the famous 3D-
QSAR methods of comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices
(CoMSIA) as standard modeling tool to perform pQSAR
analysis of SH3–peptide interactions at molecular field level
(Hou et al., 2006). The method provides a multi-dependent
variable to multi-independent variable regression, which can
better deal with the problems difficult to be solved by least
square regression. The SVM has also been successfully
employed to characterize the SH3- and PDZ-mediated DPIs
involved in the human genome (Hou et al., 2008, Hou et al.,
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2009; Li et al., 2011). The method converts quadratic convex
programming problem into the corresponding duality problem
for solving by Lagrange multiplier method, and constructs a series
of kernel functions by using Mercer theorem to realize the high-
dimensional inner product operation in the original space (Cortes
and Vapnik 1995). In addition, the RF and GP were also
introduced previously by our group to investigate DPIs (Zhou
et al., 2008b) and other peptide-related issues such as enzyme-
inhibitory activity (Zhou et al., 2010) and chromatographic
retention behavior (Tian et al., 2009; Zhou et al., 2009). The
former is an ensemble learning algorithm based on decision tree
proposed by Breiman (2001), which also provides additional
features such as variable importance and out-of-bag (OOB)
validation that increase its utility for statistical modeling. The
latter is based on the Bayesian non-parametric model that has a
strict statistical learning theory basis and a strong generalization
ability to adjust the model’s flexibility and achieve a certain
transparency through so-call “hyperparameters” rather than
conventional parameters to avoid fixed basis function in the
traditional sense (Obrezanova et al., 2007).

The details of these machine learning modeling processes can
be found in our previous publications (Rasmussen and Williams
2006). Briefly, the input variables were standardized by autoscaling
for PLS and RF or [–1, +1] scaling for SVM and GP. The model
parameters such as the number of latent variables (NLV) for PLS,
and the ε-insensitive loss function, penalty factor (C) and kernel
radial (σ2) for SVM, the number of trees (ntree) and the optimal
size of the variable subset (mtry) for RF and the hyperparameter set
(Θ) for GP need to be determined before modeling, and we
employed consistent strategies as summarized in Table 1 to
optimize these parameters. Here, the PLS, SVM, RF and GP
modeling and parameter optimization were carried out with in-
house Matlab tool box ZP-explore (Zhou et al., 2009). In addition,
the SVM regression was also carried out using the sophisticated
LibSVM program (Chang and Lin 2011) for comparison purpose.

2.2 Curation of Comprehensive
Sequence-Based Domain–Peptide
Interaction Data Set With a Consistent
Affinity Expression
A variety of peptide-recognition domains that can specifically
recognize and interact with diverse short linear motifs (SLiMs) on

their partner protein surfaces have been discovered over the past
decades (Kuriyan and Cowburn 1997), including but not limited
to SH3, SH2, WW, PDZ, PTB, 14-3-3, EH, GYF, PH, EVH1,
UEV, VHS, FHA, WD40 and so on. Here, we mainly selected
three most common domain categories with considerably
different SLiM properties but highly consistent affinity data
for this study, namely, SH3, PDZ and 14-3-3; they can be
further divided into different subtypes in terms of their parent
proteins. The SH3 domain was first identified in the non-receptor
tyrosine kinase c-Src and can specifically binds PxxP-containing
polyproline-II (PPII) helix peptide segments (Li et al., 2005). The
PDZ domain targets the C-terminal free peptide segments of
substrate proteins with a plastic pattern (Ivarsson 2012). The 14-
3-3 domain has been widely found in hundreds of signaling
proteins to mediate protein–protein interactions by recognizing
peptide segments of phosphoserine or phosphothreonine
residues (Aitken et al., 1995).

Here, we curated totally 21,704 SLiM-containing peptides that
separately target ten SH3 domains, seven PDZ domains and one
14-3-3 domain from previous reports (Boisguerin et al., 2004;
Landgraf et al., 2004; Vouilleme et al., 2010; Panni et al., 2011) to
define a comprehensive sequence-based DPI affinity data set
consisting of 18 panels. These peptides were produced using
SPOT peptide synthesis technology on cellulose membranes and
then their binding affinities to different domains were consistently
indicated by Boehringer light units (BLUs) derived from arbitrary
light intensity assays (Volkmer et al., 2012). This protocol can fast
yield various peptide candidates in a short time scale and test their
domain binding in a high-throughput manner, and thus have been
widely used to measure DPI affinities. By further excluding few
invalid samples such as no binders or no affinity values, we
consequently obtained 21,399 valid peptides; their information
are summarized in Table 2, and their sequences and BLU values
are tabulated in Supplementary Tables S1–S3.

2.3 Statistical Verification of Peptide
Quantitative Structure-Activity Relationship
Models With Internal and External
Validations
The built pQSAR predictive models should pass rigorous
statistical test before practical applications to examine their
effectiveness, illness and generalization ability. Here, we used a

TABLE 1 | Four MLMs used in this study.

MLM Type Variable standardization Model parameter

Parameter Optimization

PLS Linear Autoscaling NLV: number of latent variables Increase of cumulative
cross-validation q2 is below 0.097

SVM Nonlinear [–1, +1] scaling ε: ε-insensitive loss function Systematic grid search for minimizing
cross-validation RMSEcvC: penalty factor

σ2: kernel radial
RF Nonlinear [–1, +1] scaling ntree: number of trees Systematic grid search for minimizing

cross-validation RMSEcvmtry: size of descriptor
subset

GP Linear/nonlinear Autoscaling Θ: hyperparameter set Automatic determination
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combination of internal and external validations to verify the
statistical stability and predictive power of the models. Internal
validation includes goodness-of-fit and 10-fold cross-
validation on training set, while for the external validation
we randomly divided each sample panel into ∼2/3 as a training
set for building pQSAR model, and the remaining ∼1/3 as a test
set for blind testing of the built model. In a highly cited paper,
Golbraikh and Alexander (2002) pointed out that the internal
validation is only a necessary but not sufficient condition to
measure the reliability of a QSAR model, and the model
predictability must be confirmed further through external
validation.

2.4 Structural Characterization of Peptide
Sequences Using Amino Acid Descriptors
Amino acid descriptors (AADs) are a classical approach to
characterize peptide structure at sequence level, which utilize a
n-dimensional vector to represent each of 20 amino acids and are
commonly derived from a large number of original amino acid
properties such as topological, physicochemical, 3D-structural and
quantum-chemical, by using multivariate statistical techniques
such as principal components analysis (PCA) and factor analysis
(FA) (Zhou et al., 2008a). An n-mer peptide can be parameterized
by in turn replacing its each amino acid residue to a corresponding
m-dimensional AAD array, consequently resulting in n × m
descriptors for the peptide, which define the independent
variable space X and can be further correlated statistically with
independent variable y (affinity) usingmachine learning regression.
Recently, we have systematically evaluated totally 80 AADs in
pQSAR modeling and identified a number of AADs with good
performance (Zhou et al., 2021), from which we herein selected
four different types of AADs to characterize the 21,399 SLiM-
containing peptides listed inTable 2, includingMolSurf (quantum-
chemical) (Norinder and Svensson 1998), ST_scale (topological)
(Yang et al., 2010), VHSE (physicochemical) (Mei et al., 2005) and

VSGETAWAY (3D-structural) (Tong and Zhang 2007). Their
values are tabulated in Supplementary Tables S4–S7.

3 RESULTS AND DISCUSSION

There are several indicators that can be used to represent the
binding affinity of DPIs, such as the Kd that can be determined by
fluorescence polarization (FP) and surface plasmon resonance
(SPR) to indicate the apparent dissociation constant for
domain–peptide complex formation, and the ΔG that can be
measured using isothermal titration calorimetry (ITC) to denote
free energy change upon the complex binding. However, neither
Kd nor ΔG can be obtained in a high-throughput manner, and
thus they are not feasible for characterizing the large-scale DPI
affinity data. In recent years, the SPOT peptide synthesis in
conjunction with light intensity assays has been used to
rapidly screen effective domain binders against massive
peptide candidates, where peptides matching the defined
patterns were synthesized at high density on cellulose
membranes by SPOT synthesis technology and the membranes
were probed with GST-fused domain protein, which were then
revealed by an anti-GST antibody and by a secondary anti-IgG
antibody coupled to horseradish peroxidase (POD) to derive the
intensity of each SPOT quantitatively in Boehringer light unit
(BLU) as an arbitrary light intensity unit (Landgraf et al., 2004).
In this study, all DPI affinity data were expressed consistently as
the BLU values collected from Refs (Boisguerin et al., 2004;
Landgraf et al., 2004; Vouilleme et al., 2010; Panni et al., 2011).

3.1 Effect of Machine Learning Methods on
Peptide Quantitative Structure-Activity
Relationship Modeling
The PLSR, GP, RF, SVM and LibSVM regressions were employed
to create three types of DPI affinity predictors for 18 DPI panels

TABLE 2 | Summary of 21,704 SLiM-containing peptide samples binding to ten SH3, seven PDZ and one 14-3-3 domains.

Panel Domain Parent protein Domain Number Species Peptide number

1 SH3 Amphiphysin 1/1 Human 884 Landgraf et al. (2004)
2 Amphyphisin 1/1 Yeast 2032 Landgraf et al. (2004)
3 Boi1 1/1 Yeast 1336 Landgraf et al. (2004)
4 Boi2 1/1 Yeast 1312 Landgraf et al. (2004)
5 Endophilin 1/1 Yeast 1998 Landgraf et al. (2004)
6 Myosin5 1/1 Yeast 1139 Landgraf et al. (2004)
7 Rvs167 1/1 Yeast 1369 Landgraf et al. (2004)
8 Sho1 1/1 Yeast 1015 Landgraf et al. (2004)
9 Yfr024 1/1 Yeast 1282 Landgraf et al. (2004)
10 Yhr016c 1/1 Yeast 1348 Landgraf et al. (2004)

11 PDZ CALP 1/1 Human 80 Vouilleme et al. (2010)
12 NHERF1 1/2 Human 77 Vouilleme et al. (2010)
13 NHERF1 2/2 Human 80 Vouilleme et al. (2010)
14 NHERF2 1/2 Human 80 Vouilleme et al. (2010)
15 NHERF2 2/2 Human 80 Vouilleme et al. (2010)
16 SYNA1 1/1 Human 56 Vouilleme et al. (2010)
17 PSD95 1/1 Human 6068 Boisguerin et al. (2004)

18 14-3-3 14-3-3 1/1 Yeast 1163 Panni et al. (2011)
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based on training samples, which were then used to blindly
predict test samples (all resulting statistics are tabulated in the
Supplementary Tables S8–S10). In order to compare different
MLMs in the modeling and prediction of DPI affinities, we
selected three kinds of samples binding separately to human
amphyphisin SH3 (1/1), human SYNA1 PDZ (1/1) and yeast 14-
3-3 (1/1) domains, and compared their fitting determination
coefficient Rfit

2 on the training set, cross-validation
determination coefficient Rcv

2 on the training set and
predictive determination coefficient Rprd

2 on test set. As can be
in Table 3, the performance of obtained pQSAR models varies
considerably over MLMs and domain types. These models have
high internal fitting ability but generally exhibit moderate or
modest internal stability and external predictability, with Rfit

2 >
0.6 but Rcv

2 < 0.6 and Rprd
2 < 0.5. Among the three types of DPI

affinity predictors the predictive power Rprd
2 of nonlinear GP, RF,

SVM and LibSVM is generally better than that of linear PLS,
suggesting that the DPI events are complicated dynamic process
that involve many nonlinear factors, which can be better handled
by nonlinear than linear methods. Even so, the modeling
performance of both the linear and nonlinear methods is
generally moderately, indicated by the high internal fitting
ability but relatively low internal stability and predictability,
imparting an overfitting phenomenon may exist in these
regression models.

The optimal models were built on human amphyphisin SH3
(1/1)-binding peptide panel with MolSurf characterization. Here,
the scatter plots of fitted/predictive against experimental LogBLU
values over 884 peptide samples using different MLMs are shown
in Figure 1. As can be seen, the resulting external predictive Rprd

2

values are generally larger than 0.5, indicating a good
generalization ability on this panel. In addition, the internal
fitting Rfit

2 values of all these MLMs (except LibSVM) are

significantly higher than 0.65, in which the RF and SVM
perform much better than others. However, there are no
essential difference between the predictive powers of RF and
SVM with PLS and GP (Rprd

2 > 0.6), but are moderately better
than LibSVM (Rprd

2 < 0.6). The nonlinear GP, RF and SVM seem
to have a good generalization ability relative linear PLS, albeit the
difference is not very significant, suggesting that both the linear
and nonlinear approaches exhibit similar predictability on test
set, although the nonlinear methods can give stronger fitting on
training set than linear one. This is also explain why the linear
PLS has been successfully used in previous pQSAR modeling of
DPI affinities, which can perform similarly but are easier to
operate and more readily interpretable than those nonlinear
modeling.

By comparing the SVM regressions modeled by in-house ZP-
explore toolbox (Zhou et al., 2009) and sophisticated LibSVM
program (Chang and Lin 2011), it is revealed that the former can
perform considerably better than the latter, although both of
them used the same machine learning method (SVM), worked
on the same data panel (human amphyphisin SH3 (1/1)-binding
peptides) and characterized the same AAD (MolSurf). This
finding suggested that the pQSAR modeling of DPI affinities
are sensitive to not only the data sets measured, but also the
software used. This issue is usually neglected by the pQSAR
community and previous works have no systematic examination
of different tools/programs/software used in modeling.
Therefore, we herein further compared the external
predictive powers (Rprd

2) of SVM regressions modeled by
ZP-explore and LibSVM on all the 18 DPI sample panels in
Figure 2. It is revealed that the prediction can achieve a
generally consistent power for some panels (e.g., human
amphyphisin SH3 (1/1)- and human Biol1 SH3-binding
peptides), but varies considerably for some others (e.g.,

TABLE 3 | Comparison of different MLMs on different DPI samplesa.

MLM DPIb Training set Test set

Rfit
2c RMSEfit

d Rcv
2c RMSEcv

d Rprd
2c RMSEprd

d

PLS SH3 0.8641 0.4765 0.8335 0.5275 0.3072 0.5851
PDZ 0.9312 0.1062 0.1077 0.3823 0.2263 0.3276
14-3-3 0.4344 0.7048 0.3341 0.7687 0.3625 0.7446

GP SH3 0.8668 0.4719 0.8349 0.5252 0.3147 0.5808
PDZ 0.6984 0.2223 0.1953 0.3631 0.3391 0.3028
14-3-3 0.4334 0.7091 0.3548 0.7566 0.3669 0.7420

RF SH3 0.9470 0.2975 0.2074 1.1509 0.4973 0.4987
PDZ 0.8191 0.1722 0.4005 0.3134 0.3824 0.2928
14-3-3 0.8116 0.4088 0.2562 0.8124 0.3456 0.7715

SVM SH3 0.8772 0.4530 0.8352 0.5248 0.3091 0.5843
PDZ 0.7242 0.2126 0.1880 0.3647 0.2689 0.3594
14-3-3 0.5211 0.6519 0.3614 0.7527 0.3886 0.7279

LibSVM SH3 0.7008 0.2971 0.6817 0.3144 0.4254 0.3693
PDZ 0.8778 0.0813 0.1295 0.1528 0.2766 0.1189
14-3-3 0.4003 0.6085 0.3097 0.6702 0.3025 0.6342

aVHSE, descriptor was used to characterize peptide sequences.
bHuman amphyphisin SH3 (1/1), human SYNA1 PDZ (1/1) and yeast 14-3-3 (1/1) are selected as case analysis.
cRfit

2, Rcv
2 and Rprd

2 are the determination coefficients of internal fitting in training set, internal cross-validation on training set, and external blind prediction on test set, respectively.
dRMSEfit, RMSEcv, and RMSEprd, are the root-mean-square errors of internal fitting in training set, internal cross-validation on training set, and external blind prediction on test set,
respectively.
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FIGURE 1 | Scatter plots of fitted/predictive against experimental LogBLU values over 884 human amphyphisin SH3 (1/1)-binding peptides with MolSurf
characterization and using different MLMs (A,B), PLSR, (C,D), GP; (E,F), RF, (G,H), SVM and (I,J), LibSVM.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8008576

Liu et al. QSAR Modeling of Domain–Peptide Affinities

24

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


human NHERF1 PDZ (1/2)- and human SYNA1 PDZ (1/1)-
binding peptides). It is worth noting that, although the ZP-
explore can yield a better prediction on certain panels than
LibSVM, the latter appears to be more stable than the former, as
characterized by the ZP-explore predictive outliers for three
PDZ panels in Figure 2, although for most panels the two tools
can work similarly in their predictive behavior.

3.2 Effect of Amino Acid Descriptors on
Peptide Quantitative Structure-Activity
Relationship Modeling
Four amino acid descriptors characterizing different properties of
amino acids, namely MolSurf (quantum-chemical), ST_scales
(topological), VHSE (physicochemical) and VSGETAWAY
(3D-structural), were used to parameterize peptide sequences,
which were then correlated with experimental LogBLU values
with GP modeling on three selected DPI sample panels: human
14-3-3 (1/1), human SYNA1 PDZ (1/1), and yeast endophilin
SH3 (1/1), and the resulting scatter plots of calculated against
experimental LogBLU values over these panels are shown in
Figure 3. It is evident that the calculated results, including
internal fitting ability Rfit

2 on training set, internal cross-
validation stability Rcv

2 on training set, and external
predictability Rprd

2 on test set, vary considerably over pQSAR
models built with different AADs. For the 56 human SYNA1 PDZ
(1/1)-binding peptides, the Rfit

2, Rcv
2 and Rprd

2 all exhibit
considerable illness, indicating that the pQSAR models cannot
work effectively on this panel, no mater which AADs were used.
In contrast, pQSAR modeling seems to have a moderate or good
performance on the 1193 human 14-3-3 (1/1)- and 2025 yeast

FIGURE 2 | Comparison between the external predictive powers (Rprd
2)

of SVM-based pQSAR modeling on different DPI sample panels with ZP-
explore and LibSVM.

FIGURE 3 | Scatter plots of calculated against experimental LogBLU
values over 1193 human amphyphisin SH3 (1/1)-binding peptides (A-D), 56
human SYNA1 PDZ (1/1)-binding peptides (E-H) and 2025 yeast endophilin
SH3 (1/1)-binding peptides (I-L) with GP modeling and using different
AADs.
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endophilin SH3 (1/1)-binding peptides, with a satisfactory profile
of internal fitting ability and cross-validation stability (Rfit

2 > 0.6
and Rcv

2 > 0.5), albeit many have only a moderate or modest
external predictive power (Rprd

2 < 0.4). In addition, for the same
sample panels characterized using different AADs, the pQSAR
models generally exhibit a similar performance on both training
and test sets, suggesting that the descriptor types would not have
significant effect on modeling performance. However, the change
in sample panels can lead to a considerable variation on the
performance, suggesting that the AADs are not primarily
responsible for pQSAR modeling; instead, the sample panels are.

Effects of four AADs on the external predictive powers (Rprd
2) of

PLS-/GP-based pQSARmodels are compared in Figure 4. As can be
seen, the linear PLS (A) and nonlinear GP (B) have a similar profile
of Rprd

2 values over these panels, in which the prediction on human
NHERF1 PDZ (1/2) and Yeast Sho1 SH3 (1/1) vary significantly and
moderately over the four AADs, respectively, while these descriptors
exhibit a generally consistent performance for predicting other
sample panels. For human NHERF1 PDZ (1/2) panel, the
quantum-chemical MolSurf performs much worse, and secondly
the physiochemical VHSE, whereas other two descriptors can work
normally on this panel. For Yeast Sho1 SH3 (1/1) panel, only the
quantum-chemical MolSurf has a particularly low performance as
compared to other three descriptors. Besides, the four AADs seem to
have a consistent performance on other panels. Even so, the pQSAR
Rprd

2 values obtained with different descriptors on these panels
mainly range between 0 and 0.6, imparting that the models have
only a moderate or modest predictive power onmost sample panels,

and the Rprd
2 variation is primarily influenced by sample panels but

not descriptor types.

3.3 Effect of Sample Size on Peptide
Quantitative Structure-Activity Relationship
Modeling
By systematically examining the influence of MLMs and AADs
on pQSARmodeling of different DPI sample panels, it is revealed
that the these models can perform fairly well on the human
PSD95 PDZ (1/1) panel, which contains totally 6,068 peptide
samples. Here, the MolSurf was employed to characterize the
structure of these peptides at sequence level and then we carried
out pQSAR modeling on all the 6,068 samples and two subsets
with PLS, GP, RF, SVM and LibSVM regressions. The two subsets
separately contain 1,000 and 3,000 sample data extracted
randomly from the intact panel. The modeling resulted in 15
pQSAR models, which represent the systematic combination
between five MLMs and three subsets with different sample
sizes. The external predictive power (Rprd

2) of these models on
test set is listed in Table 4. It is seen that the models with fullset-
6068 can generally obtain a consistent predictability for most
MLMs as compared to other two subsets, except the RF modeling
on the subset-3000, which yielded the highest Rprd

2 than subset-
1000 and fullset-6068. In contrast, the pQSAR modeling on
subset-1000 can only obtain a marginal prediction. However,
the Rprd

2 difference is not very significant between different
subsets for the same MLMs, but different MLMs can lead to a

FIGURE 4 | Comparison between the external predictive powers (Rprd
2) of PLS-/GP-based pQSAR modeling on different DPI sample panels with MolSurf,

ST_scale, VHSE and VSGETAWAY.
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considerable variation in the Rprd
2 value. In addition, all the five

MLMs can reach the highest fitting ability (Rfit
2) with the fullset-

6068 relative to subset-1000 and subset-3000. Therefore, it is
revealed that the pQSAR performance is primarily determined by
MLMs used and, secondarily, sample size. The larger the size is,
the higher the performance is. Even so, the Rprd

2 values of pQSAR
modeling on the fullset-6068 are all not above the 0.5, indicating
that the absolute predictive power of different MLMs is improved
with sample size increase, but the increase is quite limited.

4 CONCLUSION

More than 20,000 SLiM-containing peptides as the binders of
3 peptide-recognition domains (PDZ, SH3 and 14-3-3) and 18
domain subtypes were comprehensively collected to perform an
investigation of the applicability of pQSAR methodology in
peptide affinity prediction. With a systematic combination of
five widely used MLMs and four informatively diverse AADs to
perform the pQSAR modeling on these peptide samples it is
revealed that the domains and MLMs have significant effects on
modeling performance, whereas the AADs and sample size can
only influence the performance moderately and modestly.
However, at most conditions the predictive power of pQSAR
models is generally below 0.5 and only very few can be above 0.6,
no matter what the combinations of domains, MLMs, AADs and
sample size are adopted. This can be attributed to the fact that the
high-throughput detection of arbitrary light intensity is a very
indirect approach to characterize DPI affinity and the obtained
BLU can only give a qualitative or semi-quantitative measure of

the affinity values, thus causing a considerable bias in the pQSAR
modeling and prediction. Instead, although some other affinity
indicators such as Kd and ΔG are quantitative and more reliable,
they cannot be tested in a high-through manner and thus are
normally unavailable for large-scale DPI samples. Therefore, it is
suggested that only focus on pQSAR modeling by optimizing
AADs and MLMs is not an essential solution to improve the
modeling performance of DPI affinity. Instead, the source of
affinity data used to perform the modeling is the current
bottleneck to restrict the feasibility and applicability of pQSAR
methodology in DPI affinity prediction.
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SSH2.0: A Better Tool for Predicting
the Hydrophobic Interaction Risk of
Monoclonal Antibody
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Hamza Bukari Abagna1,2, Lin Ning3* and Jian Huang1,2*

1Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China, 2School of Life
Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 3School of Healthcare
Technology, Chengdu Neusoft University, Chengdu, China

Therapeutic antibodies play a crucial role in the treatment of various diseases. However,
the success rate of antibody drug development is low partially because of unfavourable
biophysical properties of antibody drug candidates such as the high aggregation
tendency, which is mainly driven by hydrophobic interactions of antibody molecules.
Therefore, early screening of the risk of hydrophobic interaction of antibody drug
candidates is crucial. Experimental screening is laborious, time-consuming, and costly,
warranting the development of efficient and high-throughput computational tools for
prediction of hydrophobic interactions of therapeutic antibodies. In the present study,
131 antibodies with hydrophobic interaction experiment data were used to train a new
support vector machine-based ensemble model, termed SSH2.0, to predict the
hydrophobic interactions of antibodies. Feature selection was performed against
CKSAAGP by using the graph-based algorithm MRMD2.0. Based on the antibody
sequence, SSH2.0 achieved the sensitivity and accuracy of 100.00 and 83.97%,
respectively. This approach eliminates the need of three-dimensional structure of
antibodies and enables rapid screening of therapeutic antibody candidates in the early
developmental stage, thereby saving time and cost. In addition, a web server was
constructed that is freely available at http://i.uestc.edu.cn/SSH2/.

Keywords: therapeutic antibody, developability, hydrophobic interactions, support vector machine, prediction
model

INTRODUCTION

Antibodies play an indispensable role in the vertebrate immune defence system (Kapingidza et al.,
2020). They also serve as essential agents in biomedical research and clinical diagnostic assays such as
enzyme-linked immunosorbent assay, immunohistochemical assay, and immunoprecipitation assay.
Furthermore, antibodies have been extensively used in clinical treatment of many types of cancers,
autoimmune diseases, and infectious diseases including the coronavirus disease 2019, which is
caused by the severe acute respiratory syndrome coronavirus 2 (Ning et al., 2021). Rapid
development of the monoclonal antibody (mAb) technology has revolutionised pharmaceutical
science and industry. Many proteins that cannot interact with small chemical molecules or are
undruggable due to self-tolerance are considered efficient targets for antibody drugs. More than 550
therapeutic mAbs have been tested in phase I/II clinical trials worldwide, of which 79 mAbs have
entered the final stage of development (Kaplon et al., 2020). Antibody drugs account for a large
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market share in the pharmaceutical industry. In 2018, the
therapeutic antibodies had a global value of United States
$115.2 billion, which is expected to reach $300 billion by the
end of 2025 (Lu et al., 2020). Moreover, the large-scale application
of antibody phage display, single B-cell antibody, and next-
generation sequencing technologies has resulted in the
development of tens of thousands of preclinical therapeutic
antibody drug candidates. However, the probability of a
human or humanised antibody drug candidate, which is under
clinical trials, being approved is low (approximately 15%) (Carter
and Lazar, 2018). Many mAbs fail due to unfavourable
physicochemical properties such as high viscosity, increased
aggregation tendency, and susceptibility to chemical
degradation (Jain et al., 2017b).

Protein aggregation has been considered as one of the major
challenges in biological drug development. It poses challenges during
different developmental processes from fermentation and
purification to storage (Obrezanova et al., 2015). It not only
reduces the effectiveness of a drug but also induces adverse
immune responses in patients (Martinez Morales et al., 2019).
Thus, identifying therapeutic antibody candidates with high
aggregation tendency at the early developmental stage is essential.
The factors that affect protein aggregation are either intrinsic (e.g.,
interaction between hydrophobic patches, van der Waals forces and
electrostatic interactions) or extrinsic (e.g., pH, salt concentration,
buffer type, and storage conditions). Among these factors, the
presence of hydrophobic moieties on the protein surface is the
strongest determinant (Hebditch et al., 2019). A few tools to
predict the hydrophobicity of proteins including mAbs have been
reported (Lienqueo et al., 2006; Mahn et al., 2009; Hanke et al., 2016;
Jain et al., 2017a). However, most of these tools rely on protein
structures and do not provide freeweb services. In our previous study,
we developed a tool called SSH, which can predict the hydrophobic
interaction risk of mAbs solely by using the mAb sequences (Dzisoo
et al., 2020). The SSH tool was trained with the tripeptide
composition (TPC), and the prediction accuracy of 91.226% was
achieved through the voting strategy. However, the number of
features used to build the SSH model is extremely higher than the
number of its samples, causing concerns with overfitting and weak
generalisation.

In the present study, we combined the experimental assay data to
construct a novel in silico tool called SSH2.0 for the prediction of
hydrophobic interaction risk of mAbs. The tool developed in this
study predicted hydrophobic interaction risk of mAbs by using only
the amino acid sequence. Compared with the previous version,
SSH2.0 was trained with new features that were optimised using a
new feature selection method. Overall, SSH2.0 was superior to the
previous version in terms of performance.

DATASET AND METHOD

Dataset
The antibody dataset used in a study by Jain et al. (2017b) was
selected in the present study. We linked the variable region in the
form of “heavy chain−light chain” as the antibody sequences. The
dataset comprised 137 antibody sequences (48 from approved

antibodies and 89 from clinical II/III trials) and data of 12
biophysical and binding assays. Six antibody sequences with
conflicting records were eliminated, resulting in inclusion of
131 antibody sequences. The assays, namely stand-up
monolayer adsorption chromatography (SMAC), salt-gradient
affinity-capture self-interaction nanoparticle spectroscopy
(SGAC-SINS), and hydrophobic interaction chromatography
(HIC), were used to determine the risk of hydrophobic
interaction. A threshold of 10% was employed according to a
study by Jain et al. (2017b) (Table 1). The antibody was labelled
with a fault flag if one of the aforementioned three assay values
exceeded the set threshold. We obtained 94 negative samples (0
flag) and 37 positive samples (25 with one flag, 8 with two flags,
and four antibodies with exactly three flags). Figure 1 shows the
detailed labelling of each antibody. To solve the problem of the
dataset imbalance, 94 negative samples were randomly divided
into three groups, with each group containing 31, 31, and 32
antibodies. Each sub-dataset (Group 1, Group 2, Group 3) was
combined with positive samples to train three sub-models
(SSH_a,SSH_b,SSH_c). Then, the results of the three sub-
models was integrated, and an ensemble predictor was
constructed using a voting strategy.

Feature Extraction and Selection
To construct an efficient prediction tool, appropriate feature
extraction methods for transforming sequence data into
numerical expressions (ideally, without distortion), in addition
to a reliable benchmark data set, are crucial. Features based on
sequence information such as the amino acid composition and
pseudo amino acid components (He et al., 2019; Dzisoo et al.,
2020; Wang et al., 2020), displayed good performance in protein
and peptide classification (He et al., 2016; Li et al., 2017; Kang
et al., 2019). Based on a large number of experimental results, the
CKSAAGP (composition of k-spaced amino acid group pairs)
(Chen et al., 2009; Chen et al., 2018) demonstrated the best
performance in the present study. In the CKSAAGP encoding
scheme, 20 amino acids were divided into the following five
groups according to their physicochemical properties: g1:
aliphatic group (GAVLMI); g2: aromatic group (FYW); g3:
positive charge group (KRH); g4: negative charged group
(DE); g5: uncharged group (STCPNQ) (Chen et al., 2018).
Then, the frequency of amino acid group pairs separated by k
residues was calculated (the default maximum value of k was set
as 5). CKSAAGP can be defined as follows:

(Ng1g1gap0

Ntotal
,
Ng1g2gap0

Ntotal
,
Ng1g3gap0

Ntotal
, . . . ,

Ng5g4gap5

Ntotal
,
Ng5g5gap5

Ntotal
)

where Ng1g1gap0 represents the number of times that the
composition of the residue pair g1g1 is separated by 0 amino
acids in the whole protein sequence; Ntotal represents the total
number of k-spaced amino acid pairs. For a protein of length P, k
= 0, 1, 2, 3, 4, and 5, and the values ofNtotal are P-1, P-2, P-3, P-4,
P-5, and P-6, respectively. CKSAAGP can be used to encode
unequal length sequences.

To compare the influence of different feature extraction
algorithms, we used 19 feature extraction methods on the same
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dataset and constructed 19 models. The feature extraction methods
tested in this study are AAC, DPC, TPC, CKSAAP, DDE, GAAC,
GDPC, GTPC, Moran, Geary, NMBroto, CTDC, CTDT, CTDD,
CTriad, KSCTriad, SOCNumber, QSOrder, and PAAC. All feature
extraction processes were performed using the iFeature (Chen et al.,
2018) python package, which can be obtained from github (https://
github.com/Superzchen/iFeature/).

High-dimensional small sample data usually cause the problem
such as overfitting, longer training time and redundant features. In
this study, an integrated method MRMD2.0 developed by He et al.
(2020) was used for feature sorting and dimension reduction.
MRMD2.0 represents different feature ranking with directed
graph. Then the PageRank algorithm was used to obtain the new
ranking. Finally, sequential forward selection (SFS) was used to select
the optimal feature subset.

Support Vector Machine Model
Establishment
Owing to a high prediction accuracy and simple parameter
optimisation, support vector machine (SVM) has been applied
extensively in many fields such as protein−protein interactions
(Romero-Molina et al., 2019), drug discovery (Patel et al., 2020),

and medical image processing (Yang et al., 2019). The basic idea of
SVM is to determine the hyperplane with the largest interval in the
space, which can divide positive and negative samples effectively and
accurately. We employed LIBSVM (Chang and Lin., 2011) to
construct the SVM sub-models. Among the given four kernel
functions, we chose the radial basis function (RBF) kernel to
obtain the optimal kernel parameter γ and penalty parameter C.
Three sub-models were integrated through the voting strategy. The
results of the three sub-models were integrated, and an antibody was
predicted to have high risk of hydrophobic interaction if it was
predicted as a positive sample by at least two models.

Performance Evaluation
Leave-one-out cross-validation (LOOCV) was adopted to assess
the performance of each sub-model. One sample in the sub-
dataset was used as the test set, whereas the remaining samples
constituted the training set. This process was repeated N times
(where N is the number of samples). Eventually, the average
prediction accuracy was considered as the final accuracy of the
sub-model. The performance of the prediction models was
evaluated using the common indicators, namely sensitivity
(Sn), specificity (Sp), accuracy (ACC), and Matthews
correlation coefficient (MCC). MCC is a relatively balanced

TABLE 1 | Three experimental thresholds for evaluating the hydrophobic interaction of antibodies (Jain et al., 2017b).

Assay Worst 10% threshold Units (flag)

Standup monolayer adsorption chromatography (SMAC) 12.8 Retention time (min) (>)
Salt-gradient affinity-capture self-interaction nanoparticle spectroscopy (SGAC-SINS) 370 Salt concentration (mM) (<)
Hydrophobic interaction chromatography (HIC) 11.7 Retention time (min) (>)

FIGURE 1 | The number of hydrophobic interaction flags and the classification of antibodies.
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indicator for prediction that is mainly used to measure
dichotomy. It comprehensively considers TP, TN, FP, and FN,
which can avoid sample imbalance deviation. These indicators
can be expressed as follows:

Sn � TP

TP + FN

Sp � TN

TN + FP

ACC � TN + TP

TP + FN + TN + FP

MCC � TN × TP − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
where TP and TN represent the number of positive data and negative
data, respectively, that were predicted correctly, whereas FP and FN
represent the number of positive data and negative data, respectively,
that were erroneously predicted. In addition, AUC (area under the
ROC curve) was used to illustrate the performance of the model.
ROC curve is a TPR vs FPR plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied.
AUC value ranges from 0 to 1. Amodel whose prediction efficiency is
100% has an AUC value of 1.

Developability Index (DI) Calculation
The developability index (DI) of each antibody in a study by Jain
et al. (2017b) was computed using BIOVIA Discovery Studio
2019 (BIOINFORMATICS SOCIETY OF SICHUAN
PROVINCE) with the default parameters pH = 6 and β =
0.05. The crystal structure of each antibody, if available, was
downloaded from the PDB database. For the antibodies whose
crystal structure was not available, we performed homology
modelling to build their structure. Spearman rank correlation
was used to explore the correlation between DI and 12
experiment assays (Jain et al., 2017b). Statistical analysis was
performed with R4.1.0.

Online Web Service
To facilitate the use of researchers, a user-friendly web server was
developed. We used HTML, CSS, PHP, JavaScript to write the
interface script for web service. The data processing process script
was written using Python.

RESULTS

Feature Selection Based on CKSAAGP
From a total of 150 features, the optimal feature was selected
using MRMD2.0. Finally, the three sub-datasets were respectively
composed of 29, 31, and 35 features. Figure 2 shows the variation
of ACC with feature number during the sequential forward
selection process. After feature selection, AUC was increased
by at least 12% (Group 3) compared with the previous value. The
prediction accuracy of the model increased with a decrease in the
number of features. The small number of features also reduced
the computational cost, model complexity, and the risk of
overfitting. The feature dimensions of the sub-datasets were all

reduced by more than 70%, which demonstrated that the
performance of MRMD2.0 was excellent.

Model Evaluation
We trained three SVM sub-models based on LOOCV using the
optimal features. As shown in Table 2, the accuracy rates of
SSH_a, SSH_b and SSH_c for the prediction of antibody
hydrophobic interaction were 80.88, 77.94 and 75.36%
respectively. By considering all samples as input of each sub-
model, we obtained three prediction results. To visually
demonstrate the ability of each sub-model to predict the
hydrophobic interaction, a receiver operating characteristics
(ROC) curve was drawn (Figure 3). The AUC value of SSH_a,
SSH_b and SSH_c reached 0.8583, 0.8956, and 0.8726,
respectively. According to the aforementioned analysis, an
ensemble model called SSH2.0 was constructed based on
voting strategy. The sensitivity of the ensemble model was
100.00%, indicating that SSH2.0 can correctly identify all
antibodies with a risk of hydrophobic interaction (Table 2).

Comparison of Different Feature Extraction
Methods
To comprehensively evaluate the effect of the CKSAAGP
algorithm, we compared it with the other 19 feature extraction
algorithms. Figure 4 shows the feature dimension and dimension
decline percentage obtained using all 20 algorithms after the
reduction of MRMD2.0. The dimensions of multiple methods
were reduced by more than 70%; however, the number of features
varied among the three sub-datasets. For example, the number of
TPC features decreased from 8,000 to 71 and 75 in Group 1 and
Group 2, respectively, whereas that in Group 3 was 231. These
results indicated that all feature extraction algorithms were
affected by the samples, whereas CKSAAGP had smaller
feature dimensions in all three sub-datasets with smaller
variance, which was relatively robust. Furthermore, we
assessed the ensemble model based on all 20 algorithms. As
shown in Table 3, although the sensitivity of multiple features
had reached 100%, CKSAAGP showed the highest specificity,
accuracy, MCC and AUC of 77.66%, 83.97%, 0.7093, and 0.8883,
respectively. Taken together, CKSAAGP was the most proper
feature type for this problem, considering feature dimensions and
the performance of sub-models and ensemble model.

CKSAAGP Features That Closely Related to
the Hydrophobic Interaction
The properties of amino acid side chains are closely related to the
structure and function of proteins. The nonpolar amino acids
(aliphatic, and aromatic amino acids) are usually hydrophobic.
Conversely, the polar amino acids (positively and negatively
charged and uncharged amino acids) are hydrophilic. Among
all the features in models, aliphatic. aliphatic.gap5, aromatic.
aliphatic.gap3, negativecharger. aliphatic.gap1 were present in
all sub-models, and only one of these features, namely aromatic.
aliphatic.gap3, was in the top 10 features (Table 4). The binding
of nonpolar amino acids with strong hydrophobicity increases the
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hydrophobicity of the protein. Interestingly, as shown in Table 4,
the combination “polar + nonpolar” appeared frequently, which
indicated that a polar amino acid and a nonpolar amino acid are

separated by several amino acids in space that probably enhances
the hydrophobicity of the protein, although a single polar amino
acid is hydrophilic. In summary, if the CKSAAGP features listed
in Table 4 appear frequently in an antibody sequence, the
antibody should be excluded from early development.

FIGURE 2 | The ACC of different feature numbers during the sequential forward selection process of three sub-datasets (Group 1, Group 2, Group 3).

TABLE 2 | The prediction performance of three sub-models evaluated through
leave-one-out cross-validation and that of the ensemble model evaluated
through voting strategy.

Model Sn(%) Sp (%) ACC(%) MCC AUC

SSH_a 81.08 80.64 80.88 0.6159 0.8086
SSH_b 81.08 74.19 77.94 0.5544 0.7763
SSH_c 78.37 71.87 75.36 0.5038 0.7513
SSH2.0 100.00 77.66 83.97 0.7039 0.8883

FIGURE 3 | The ROC curves of three sub-models for predicting all 131
antibodies.

FIGURE 4 | Analysis of MEMD2.0 dimensionality reduction results. (A)
The reduced ratio and (B) the number of features in the dimension of three
sub-datasets. The numbers in parentheses are the original feature numbers of
various feature extraction algorithm.
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Comparison Between the Previously
Constructed SSH Model and DI
Computational Tool
In our previous study, Dzisoo et al. (2020) provided a web-server
named SSH based on TPC features to predict the hydrophobic
interaction risk of mAbs. However, the number of features in SSH
was far more than the number of samples, which indicated the
probability of overfitting. In this study, we optimized the feature
extraction algorithm and feature selection method to maintain the
prediction accuracy with fewer features. We uniformly defined
sensitivity as the ability to identify samples with hydrophobic
interaction risk. As shown in Table 5, the number of each SSH
sub-model features was more than 300, whereas the number of
samples used for trainingwas< 70. After using theCKSAAGP feature
scheme and MRMD2.0 feature selection algorithm, the number of
features in SSH2.0 reduced to one-tenth that of SSH. Although the
ACC and AUC of the ensemble model decreased by 7.26% and
0.0737, respectively, we paid more attention to the performance to
identify defective samples. The sensitivity of SSH2.0 reached 100.00%,
which was 16.70% higher than that of SSH.

DI is another widely employed tool for assessing the
aggregation propensity of proteins (Lauer et al., 2012). We
performed the Spearman rank correlation test to explore the
correlation between DI and 12 experimental assays. Surprisingly,
the three most relevant assays were SMAC, SGAC-SINS and HIC
(Figure 5), which we used to assess the hydrophobic interaction
risk of mAbs in the current study. The result confirmed that
protein aggregation is mainly driven by hydrophobic interactions
(Hebditch et al., 2019). According to the methods based on the
experimental data presented by Jain et al. (2017b), 37 antibodies were
flagged with hydrophobic interaction warnings. We used this as the
gold standard. Because high DI values correspond to low
developability (Lauer et al., 2012), we sorted all the antibodies

according to the descending order of their DI values. The top 37
antibodies with high DI values were predicted to have the
hydrophobic interaction risk. However, the prediction performance
of the DImethod was inferior to that of SSH2.0. The accuracy rates of
SSH2.0 and DI were 83.97 and 61.83%, respectively. The results
suggest that owing to the low prediction accuracy, the application of
DI to a screening platformwould lead tomany antibodies with a high
aggregation risk being incorrectly selected.

Web-Server Guidance
To serve the relevant researchers, we established a user-friendly
web server for the prediction of hydrophobic interaction risk of
mAbs. The server is freely accessible at http://i.uestc.edu.cn/
SSH2/. The homepage of SSH2.0 is shown in Figure 6A. The
variable region sequences of heavy chains and light chains were
input separately. Because some antibodies only have one chain,
the input consisting of single heavy or light chain were allowed.
The submitted antibody sequences were in the FASTA format.
The AbRSA tool can help in antibody numbering and CDR
(complementarity-determining region) delimiting (Li et al.,
2019). SSH2.0 allowed the detection of illegal characters, and
only 20 common amino acids were found to be legal for sequence
input. Illegal characters such as B, J, O, U, X, Z and the numbers
1–9 were forbidden (Figure 6B). Figure 6C shows the prediction
results.

DISCUSSION

The developability assessment is performed mainly to evaluate
the biochemical and biophysical properties of mAbs and to select
the lead antibody with ideal efficacy, safety, pharmacokinetic
characteristics, and physicochemical characteristics to meet the
technical requirements of the production and preparation
processes (Xu et al., 2019). Various experimental strategies
have been used to identify the unfavourable physicochemical
properties of mAbs. However, experimental assays are time-
consuming, expensive, and laborious. Computational methods
can provide rapid and highly economic evaluation results and
thus are expected to promote the development of antibodies
(Krawczyk et al., 2017). DI is a well-known in silico tool for
assessing the aggregation propensity of therapeutic antibodies

TABLE 3 | The prediction performance of the ensemble model based on 20
feature extraction algorithms.

Feature Sn (%) Sp(%) ACC(%) MCC AUC

CKSAAGP 100.00 77.66 83.97 0.7039 0.8883
CTriad 100.00 75.53 82.44 0.6825 0.8777
DPC 100.00 72.34 80.15 0.6518 0.8617
TPC 100.00 71.28 79.39 0.6419 0.8564
AAC 100.00 70.21 78.63 0.6322 0.8511
CKSAAP 100.00 69.15 77.86 0.6226 0.8457
NMBroto 97.30 69.15 77.10 0.5983 0.8322
DDE 100.00 65.96 75.57 0.5947 0.8298
GTPC 100.00 63.83 74.05 0.5767 0.8191
CTDC 97.30 65.96 74.81 0.5699 0.8163
CTDT 91.89 63.83 71.76 0.5021 0.7786
CTDD 97.30 56.38 67.94 0.4910 0.7684
Geary 100.00 53.19 66.41 0.4929 0.7660
SOCNumber 100.00 52.13 65.65 0.4850 0.7606
Moran 100.00 50.00 64.12 0.4693 0.7500
QSOrder 83.78 60.64 67.18 0.4003 0.7221
KSCTriad 100.00 40.43 57.25 0.4010 0.7021
GAAC 75.68 62.77 66.41 0.3464 0.6922
GDPC 100.00 30.85 50.38 0.3345 0.6543
PAAC 100.00 0.00 28.24 0.0000 0.5000

TABLE 4 | The top 10 CKSAAGP features of three sub-models. The features
marked in red indicate that they exist in at least two sub-models (neg: negative
charged group; pos: positive charge group).

SSH_a SSH_b SSH_c

aromatic.uncharge.gap0 aromatic.aliphatic.gap1 aliphatic.pos.gap0
uncharge.uncharge.gap0 aliphatic.neg.gap3 uncharge.aliphatic.gap4
aromatic.aliphatic.gap3 pos.aliphatic.gap2 uncharge.aromatic.gap2
pos.neg.gap0 uncharge.uncharge.gap2 neg.aromatic.gap5
aliphatic.aromatic.gap5 aliphatic.pos.gap0 pos.uncharge.gap5
uncharge.uncharge.gap2 neg.uncharge.gap4 aliphatic.uncharge.gap5
pos.uncharge.gap0 aliphatic.aromatic.gap5 aromatic.aliphatic.gap3
pos.uncharge.gap4 neg.aliphatic.gap2 aliphatic.uncharge.gap1
neg.pos.gap2 aromatic.uncharge.gap2 aliphatic.aliphatic.gap2
aliphatic.uncharge.gap5 aromatic.pos.gap1 neg.neg.gap3
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and it is based on the principles that protein aggregation is mainly
driven by hydrophobic interactions. Regretfully, this tool relies on
the antibody structure and runs slowly. Moreover, it is an
expensive tool, which makes its application limited for high-
throughput screening of mAbs at the early developmental stage.

Currently, data mining and machine learning are widely applied in
antibody development research (Dzisoo et al., 2021). Lecerf et al. (2019)
confirmed that the sequence characteristics of the antibody variable
region can determine the physicochemical properties of therapeutic
antibodies. Obrezanova et al. (2015) constructed amodel to predict the
aggregation propensity based on the antibody sequence, and the AUC
of the best AdaBoost model reached 0.76. Furthermore, Jain et al.
(2017a) constructed a model to predict the solvent-accessible surface
area of each amino acid residue in the variable region based on the
amino acid sequence of the antibody and predicted the hydrophobic
interaction of antibodies through simple logistic regression. However,
aforementioned tools do not provide available model or sever.

The hydrophobic interaction prediction model constructed in
the present study was trained on sequence only and eliminated

the requirement of 3D protein structure, thereby saving the
computation resources. The high sensitivity usually
corresponds to the low specificity. The sensitivity of SSH2.0
reached 100.00%, which indicated that the SSH2.0 prediction
result may have more false positives. However, the high
sensitivity of SSH2.0 is acceptable or even preferred because
the main purpose of this tool is to exclude antibodies with a
risk of unfavourable hydrophobic interactions. In addition, after
the step of modern mAb discovery, usually tens of thousands of
therapeutic antibody candidates remain to be evaluated, and the
presence of even more false positives in SSH2.0 prediction results
is affordable. In summary, we propose that SSH2.0 is an efficient
model for predicting the hydrophobic interaction risk of mAbs.

The hydrophobic interaction risk predictor SSH2.0
constructed in this study for therapeutic mAb development is
a powerful tool for selection of the antibody drug candidates with
a high risk of hydrophobic interaction. This free tool based on the
antibody sequence might be a better and faster alternative to the
existing DI computational tool. We expect that the newer version

TABLE 5 | Comparison of the feature and performance between SSH2.0 and SSH.

Model Feature Feature extraction method Feature
number of sub-models

Sn(%) Sp(%) ACC(%) AUC

SSH TPC f -scores 313,315,315 84.30 96.39 91.23 0.9620
SSH2.0 CKSAAGP MRMD2.0 29,31,35 100.00 77.66 83.97 0.8883

FIGURE 5 | Correlation coefficient matrix of DI and 12 experimental assays. The lower triangle shows the spearman correlation coefficients, and the upper triangle
represents the corresponding correlation values. The radius of the circles is proportional to the magnitude of the correlation coefficient. Red represents a positive
correlation, and blue represents a negative correlation.
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of this tool can be used to identify reasonable mutants with a
decreased risk of hydrophobic interaction. Because the number of
proven therapeutic antibodies is limited, and the experiment
assays vary across batches, we also expect the tool can be
assessed by an independent dataset in future.

CONCLUSION

In this study, we developed SSH2.0, a SVM-based ensemble
model trained with CKSAAGP features, for predicting the
hydrophobic interaction risk of therapeutic mAbs. Compared
with our previous model SSH and the widely used DI tool, SSH2.0
may be a better and robust predictor that achieved the maximum
sensitivity of 100.00%, and ACC and AUC of 83.97 and 88.83%,
respectively. We also developed a user-friendly web server, which
is freely available at http://i.uestc.edu.cn/SSH2/. This tool offers a
high-throughput and efficient assessment of the developability of
antibodies from the perspective of hydrophobic interaction risk.
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FIGURE 6 | Screenshots of the SSH2.0 web server. (A)Homepage of the SSH2.0 web server. (B) If illegal characters appear in the input sequence, click “predict”
bottom and a prompt page will pop up, The prompt page showing “There is the illegal character!”. Users can click “submit another job.” to return to the home page and
resubmit the sequence. (C) Result display page. “1” in the “Result” column denotes that the submitted antibody candidate exhibits a high risk of hydrophobic interaction
and should be excluded from the development pipeline. The “Probability” column represents the probability of the risk of hydrophobic interaction. The antibody will
be predicted to have a high risk of hydrophobic interaction if the probability is 0.5 or higher. The result table can be sorted according to each column, and a custom
display box allows users to select and display specific information as needed.
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Parasites can cause enormous damage to their hosts. Studies have shown that
antiparasitic peptides can inhibit the growth and development of parasites and even
kill them. Because traditional biological methods to determine the activity of
antiparasitic peptides are time-consuming and costly, a method for large-scale
prediction of antiparasitic peptides is urgently needed. We propose a
computational approach called i2APP that can efficiently identify APPs using a
two-step machine learning (ML) framework. First, in order to solve the imbalance
of positive and negative samples in the training set, a random under sampling method
is used to generate a balanced training data set. Then, the physical and chemical
features and terminus-based features are extracted, and the first classification is
performed by Light Gradient Boosting Machine (LGBM) and Support Vector Machine
(SVM) to obtain 264-dimensional higher level features. These features are selected by
Maximal Information Coefficient (MIC) and the features with the big MIC values are
retained. Finally, the SVM algorithm is used for the second classification in the
optimized feature space. Thus the prediction model i2APP is fully constructed. On
independent datasets, the accuracy and AUC of i2APP are 0.913 and 0.935,
respectively, which are better than the state-of-arts methods. The key idea of the
proposed method is that multi-level features are extracted from peptide sequences
and the higher-level features can distinguish well the APPs and non-APPs.

Keywords: antiparasitic peptides, feature representation, maximum information coefficient, feature selection,
T-distributed stochastic neighbor embedding

INTRODUCTION

Parasites are a very common source of disease. Parasitic diseases can affect almost all living things,
including plants and mammals. The effects of parasitic diseases can range from mild discomfort to
death (Momčilović et al., 2019). It is estimated that one billion people worldwide are infected with
ascariasis, although it is usually harmless. Necator americanus and Ancylostoma duodenale can
cause hookworm infections in humans, resulting in anemia, malnutrition, shortness of breath and
weakness. This infection affects about 740 million people in the developing countries, including
children and adults (Diemert et al., 2018). Malaria is very harmful to humans. It causes 300 to 500
million illnesses and about 2 million deaths each year, with about half of those deaths occurring in
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children under the age of 5 (Barber et al., 2017). Themainmethod
of treating parasitic diseases today is the use of antibiotics
(Zahedifard and Rafati, 2018). However, frequent use of
antibiotics can increase parasite resistance and even have some
undetected side effects (Ertabaklar et al., 2020). Studies have
found that anti-parasite peptide (APP) can effectively inhibit the
growth of parasites and even kill them (Lacerda et al., 2016). Anti-
parasite peptides are usually composed of 5–50 amino acids and
are relatively short in length. They are usually changed by
antimicrobial peptides (AMPs) (Mehta et al., 2014). APPs can
kill parasites by destroying the cell membrane of the parasite or
inhibiting the reductase in the parasite (Bell, 2011; Torrent et al.,
2012). Therefore, it is very important to be able to identify APPs.

In the past few years, many methods for predicting
functional peptides based on machine learning have been
proposed, such as AAPred-CNN (Lin et al., 2022) for anti-
angiogenic peptides, mAHTPred (Manavalan et al., 2019) for
anti-hypertensive peptides, AVPIden (Pang et al., 2021) for
anti-viral peptides. PredictFP2 can predict fusion peptide
domains in all retroviruses (Wu et al., 2019). AMPfun
(Chung et al., 2020) and PredAPP (Zhang et al., 2021) are
proposed for antiparasitic peptides identifiction. Based on
random forests, the AMPfun tool can be used to identify
anticancer peptides, APP, and antiviral peptides. AMPfun can
be used to characterize and identify antimicrobial peptides
with different functional activities, but the prediction results
for APPs are not very good. In 2021, (Zhang et al., 2021)
proposed PredAPP, a model for predicting antiparasitic
peptides using an under sampling and ensemble approach.
A variety of data under sampling methods are proposed for
data balance. This model adopts an ensemble approach,
combining 9 feature groups and 6 machine learning
algorithms, and finally achieves good results, but there is
still room for improvement.

In this work, we propose a new model named i2APP for
identifying APPs, which uses a two-stage machine learning
framework. In the first stage, we extract dozens of feature groups
for each peptide sequence, and then build the first-layer classifiers with
these feature groups. The outputs of the first-layer classifiers are used
as the higher-level features. What’s more, MIC (Kinney and Atwal,
2014; Ge et al., 2016) is used here to filter out the insignificant features.
In the second stage, with the higher-level features, we build the second-
layer classifier, whose outputs are the final results of identifying APPs.
Through independent test, we will find that the proposed model is
better than the state-of-arts methods in most metrics. The tool i2APP
is available at https://github.com/greyspring/i2APP.

MATERIALS AND METHODS

Datasets
Abenchmark dataset is the premise for an effective and reliablemodel.
To train our model and compare it with others, the dataset studied by
(Zhang et al., 2021) were used in this work, in which 301 APPs were
used as positive samples and 1909 non-APPs were negative ones. For
the positive samples, 301 APPs were taken out as positive training
samples, and the remaining 46 APPs were used as positive testing

samples. 46 non-APPs were randomly selected from the negative
samples as negative testing samples, and the remaining 1863 non-
APPs were used as negative training samples. In this way, 255 APPs
and 1863 non-APPs constituted the original training set, and 46 APPs
and 46 non-APPs constituted the testing set. Since the samples in the
training set are very unbalanced, we use random under sampling
(Tahir et al., 2012; Stilianoudakis et al., 2021) on the training set and
get 255 APPs and 255 non-APPs to constitute the final training set.
For the sake of simplicity, thefinal training dataset ismarked as T255p
+ 255n, and the testing dataset is marked as V46p + 46n.

We take out the 5 amino acids at the N-terminus and
C-terminus of each peptide sequence to compare the
differences between positive and negative samples by Two
Sample Logo application (Schneider and Stephens, 1990;
Crooks et al., 2004), which calculates and visualizes the
differences between two sets of aligned samples of amino acids
or nucleotides. At each position in the aligned groups of
sequences, statistically significant amino acid symbols are
plotted using the size of the symbol that is proportional to the
difference between the two samples. It can be seen from the
comparison in Figure 1 that the amino acid composition at both
ends of the APPs and non-APPs sequences have some differences,
so it can be considered to extract features from both ends of
peptide sequence to distinguish the two types of samples.

Features Representation
Good features are beneficial to the training of machine learning
models and obtain good prediction performance. The
classification of peptides mainly depends on the feature set
constructed by the structural and functional properties.
Extracting features from peptide sequences that effectively
reflect their sequence pattern information is a challenging
problem. In this study, we extract 18 kinds of physicochemical
features from the peptide sequences, some of which contain very
important information, such as functional domains, gene
ontology and sequential evolution, etc (Liu et al., 2015; Liu
et al., 2017). Thus 18 groups of sequence-based features will
be obtained for each peptide sequence.

In addition, the N-terminus and C-terminus of a protein or
peptide often have very important biological function, so we also
extract features from the both ends of peptide sequence. In this
study, we take out a fragment with three or five amino acids at the
N-terminus or C-terminus of a peptide sequence, and use 12
types of feature extraction method for this fragment (Jing et al.,
2019). In such a way, 48 groups of terminus-based features will be
obtained for each peptide sequence.

All these feature extraction methods are listed in Table 1.

Computational Models
As shown in Figure 2, the overall framework of i2APP includes
four main steps. As a first step, the benchmark datasets are
collected from various databases and literates, and then
divided into training dataset and testing dataset. To get a
balanced training dataset, the random under sampling
procedure is performed on the negative training samples. In
the second step, we adopt 18 types of feature extraction
methods on the whole peptide sequence to get 18 groups of
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sequence-based features, and 12 types of feature extraction
methods on the N-terminus and C-terminus of peptide
sequence. Considering that all peptide sequences are at least 5
residues in length, we take 3 and 5 residues at both ends of the
sequence. So, a total of 48 groups of terminal-based features are
extracted. For each feature group, SVM and LGBM are trained
respectively, and 132 probability outputs are got for each peptide
sequence. These probabilities can be seemed as higher-level
features for further classification. What’s more, the probability

greater than 0.5 is recorded as 1, and the probability less than 0.5
is recorded as 0. These binarized values help remove noise from
the model. Stacking the probabilities and their binarized values, a
total of 264 higher-level features are obtained. However, these
higher-level features may have information redundancy, so a
feature selection method is needed here to filter out the
superfluous ones. In this study, the maximum information
coefficient (MIC) is calculated for each feature, and the
threshold is set to 0.4, that is, only the feature with the MIC

FIGURE 1 | Different distribution between APP and non-APP sequences. (A) V46p+46n (B) T255p+1863n.

TABLE 1 | Peptide sequence features.

Features

Sequence-based Basic Kmer (kmer)
Distance-based Residue (DR)
Distance Pair (DP)
Auto covariance (feature-AC)
Auto-cross covariance (ACC)
Cross covariance (feature-CC)
Physicochemical distance transformation (PDT)
Parallel correlation pseudo amino acid composition (PC-PseAAC)
Series correlation pseudo amino acid composition (SC-PseAAC)
General parallel correlation pseudo amino acid composition (PC-PseAAC-General)
General series correlation pseudo amino acid composition (SC-PseAAC-General)
Select and combine the nmost frequenct aminoacids according to their frequencies (Top-n-gram)
Profile-based Physicochemical distance transformation (PDT-Profile)
Distance-based Top-n-gram (DT)
Profile-based Auto covariance (AC-PSSM)
Profile-based Cross covariance (CC-PSSM)
Profile-based Distance-based Top-n-gram (PSSM-DT)
Profile-based Auto-cross covariance (ACC-PSSM)

Terminus-based One_hot
One_hot_6_bit
Binary_5_bit
Hydrophobicity_matrix
Meiler_parameters
Acthely_factors
PAM250
BLOSUM62
Miyazawa_energies
Micheletti_potentials
AESNN3
ANN4D
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value greater than 0.4 is retained. The third step is to use ten-fold
cross-validation to select the best classifier based on the reduced
higher-level feature set. The candidate include the popular
classifiers, such as SVM, Bayes (Jahromi and Taheri, 2017),
Decision Tree (DT) (Wang et al., 2019), K-Nearest Neighbor
(KNN) (Wang et al., 2017), Random Forest (RF), Adaboost (Ada)
and so on. In the fourth step, we test the effect of the proposed
model on an independent test dataset, and compare its
performance with other models. In this work, we used the
scikit-learn package (Pedregosa et al., 2011) to implement all
classifiers.

Evaluation
In order to evaluate the results of the final classification and
facilitate comparison with other models, we used five commonly
used indicators in bioinformatics research (Luo et al., 2019; Yang
et al., 2021), including specificity (SP), sensitivity (SN), F1 score
(F1), Matthew correlation coefficient (MCC) and accuracy
(ACC). The specific calculation formula of these measured
values is as follows:

Sp � TN

TN + FP

FIGURE 2 | The whole model consists of four parts. The first part is the collection, division and down sampling of the dataset. The second part is feature extraction
and feature selection for each peptide sequence. The third part is to analyze the effect of different classifiers through 10-fold cross-validation. In the fourth part, the
proposed model is evaluated through independent test.
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Sn � TP

TP + FN

F1 � 2TP
2TP + FP + FN

Acc � TP + TN

TP + TN + FP + FN

MCC � TP · TN − FP · FN�����������������������������������������(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)√
Where TP means the number of APPs correctly predicted by the
model; TN means the number of non-APPs that the model
correctly predicts; FP means the number of non-APPs that the
model mispredicts; FNmeans the number of APPs that the model
mispredicts. In addition, we also use other metrics to evaluate the
performance of i2APP, including receiver operating characteristic
(ROC) curve (Fawcett, 2006), the area under the ROC curve
(AUC) (Lobo et al., 2008), precision-recall (PR) curve (Davis and
Goadrich, 2006), and the area under the PR curve (AUPR).

RESULTS

Effects of Different Classifiers
First, we fix the classifier of the second layer as SVMbecause it is very
effective in small sample learning, and then compare the different
classification models in the first layer. Through cross-validation
experiments, it is found that the effects of SVM and LGBM are
better, so we use these two classification models in the first layer.
Now we can compare different classifiers in the second layer. As can
be seen from Table 2, different classifiers are tested on the training
dataset T255p + 255n through ten-fold cross-validation, and the
final result is the average of ten evaluations. After parameter tuning,
SVM is higher than other classifiers in most metrics, and reaches

90.0%, 0.952, 93.2%, 86.9%, 0.803, and 0.900% in ACC, AUC, SN,
SP, MCC, and F1, respectively. Among all classifiers, ACC, AUC,
SN,MCC, and F1 obtained by SVMachieved the first position. Sowe
also focused on using SVM as a classifier for the independent test set.

As can be seen from Table 3, SVM has a huge advantage over
other classifiers on the independent test set V46p + 46n. The
values of ACC, AUC, SN, SP, MCC, and F1 are 91.3%, 0.935,
97.8%, 84.8%, 0.833, and 0.918%, respectively. The values of ACC,
AUC, SN, MCC, and F1 obtained by SVM all rank first among all
classifiers. Especially MCC and AUC by SVM is 0.033 and 0.025
higher than the second-ranked classifier. The comparison of these
results shows that SVM is the most suitable classifier in our work.

Figure 3 shows the ROC curves and PR curves of different
classifiers on the independent test set. The ROC curve of SVM is
closest to the upper left corner, surpassing other classifiers. The
AUC value of SVM is 0.935, which is the highest and 0.025 higher
than the second-ranked classifier KNN. Although the AUPR
value of SVM is not the largest, when the recall rate is 1, the
precision rate of SVM reaches 0.836, which is the highest.

Comparison With Other Methods
Our model is compared with others through ten-fold cross-
validation on the training dataset, and the results are shown in
Table 4. NM-BD and RUS-BD are both proposed in (Zhang
et al., 2021), and the imbalanced training set was down
sampled using NearMiss method (Mani and Zhang, 2003;
Li et al., 2021) for the former, while the random under
sampling method was used for the latter, which is also
adopted in this study. Compared with RUS-BD, our model
outperforms it on all metrics, with improvement of 1.8% on
ACC, 0.7% on SN, 3% on SP, 1.8% on SP, 0.013 on F1, and
0.035 on MCC. When compared with NM-BD, our model is
also the winner on nearly all metrics except SP. These results
show that the performance of our model on the training set is
better than the others on the whole.

To further verify the validity of the proposed model, we
compare it with other models on an independent test dataset,
and the results are shown in Table 5, from which we can see
that the metrics of i2APP are nearly all better than that of other
models. The values of ACC, SN, MCC and F1 are 17.4, 45.6,
0.302 and 0.251% higher than AMPfun, and the values of ACC,
MCC, F1, and SP are 178 3.3, 0.107, 0.027, and 6.5% higher
than PredAPP. All these results show that the proposed model
has better generalization ability than the state-of-the-art
models for APP prediction.

TABLE 2 | The results of cross-validation on the training set with different classifiers.

Model ACC (%) SN (%) SP (%) AUC MCC F1

Training Set SVM 90.0 93.2 86.9 0.952 0.803 0.900
Bayes 86.5 83.2 87.9 0.865 0.729 0.838
Knn 86.3 93.0 80.5 0.893 0.736 0.867
DT 82.7 82.0 84.5 0.833 0.660 0.824
RF 87.5 91.9 83.7 0.951 0.753 0.877
Ada 82.2 84.8 79.8 0.823 0.645 0.822

The bold values indicate the best performance.

TABLE 3 | The results of independent test on the testing set with different
classifiers.

Model ACC (%) SN (%) SP (%) AUC MCC F1

Testing Set SVM 91.3 97.8 84.8 0.935 0.833 0.918
Bayes 85.9 84.8 87.0 0.868 0.718 0.857
Knn 89.1 97.8 80.4 0.910 0.800 0.900
DT 82.6 80.4 84.8 0.826 0.653 0.822
RF 88.0 93.5 82.6 0.931 0.765 0.887
Ada 88.0 91.3 84.8 0.880 0.762 0.884

The bold values indicate the best performance.
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Impact of Dataset Balancing
We performed 10-fold cross-validation on the original dataset
containing 255 APPs and 1863 non-APPs, and the results
were listed in Table 6. It can be found that compared with the
balanced dataset, the SP, MCC and ACC metrics have a
greater improvement on the unbalanced dataset. However,

because there are too few positive samples, the SE metric
decreases a lot. In addition, our model achieves large
improvements in various metrics compared to the model
PredAPP (IMBD) (Zhang et al., 2021) using the same
unbalanced dataset.

With the unbalanced dataset as the training set, we tested the
proposed model on the independent test set including 46 APPs
and 46 non-APPs and listed the results in Table 7, from which we
can see that whether using balanced or unbalanced training sets,
i2APP has good generalization ability.

Impact of Shuffled Sequence
After shuffling the sequence of negative samples in the
training set, we randomly sampled 255 new negative
samples to form the training set together with 255 positive
samples. The results of independent test are shown in
Figure 4. It can be seen that the performance of the model
decreases after using the shuffled negative samples, probably
because the effect of the terminus-based features is reduced
after the sequence is shuffled.

Interpretability Analysis
T-distributed stochastic neighbor embedding (t-SNE) (Van
der Maaten and Hinton, 2008) is a very popular data
visualization tool that can reduce high-dimensional data to
2-3 dimensions, so as to draw samples on a plane or 3D space
and observe the sample distribution. Figure 5 shows the

FIGURE 3 | The performance of different classifiers through cross-validation on the training set.

TABLE 4 | Comparison of our model with the existing methods through cross-
validation on the training set.

Method ACC (%) SN (%) SP (%) MCC F1

NM-BD 88.8 85.5 92.2 0.778 0.884
RUS-BD 88.2 92.5 83.9 0.768 0.887
i2APP 90.0 93.2 86.9 0.803 0.900

The bold values indicate the best performance.

TABLE 5 | Comparison of our model with the existing methods through
independent test on the testing set.

Method ACC (%) SN (%) SP (%) MCC F1

AMPfun 73.9 52.2 95.7 0.531 0.667
PredAPP 88.0 97.8 78.3 0.776 0.891
i2APP 91.3 97.8 84.8 0.833 0.918

The bold values indicate the best performance.

TABLE 6 | The results of ten-fold cross-validation on the balanced or unbalanced
datasets.

Method ACC (%) SN (%) SP (%) MCC F1

PredAPP (unbalanced) 91.9 52.5 97.3 0.574 0.609
i2APP (balanced) 90.0 93.2 86.9 0.803 0.900
i2APP (unbalanced) 96.5 76.7 99.3 0.826 0.839

TABLE 7 | The results of independent test using the balanced or unbalanced
datasets as the training set.

Method ACC (%) SN (%) SP (%) MCC F1

i2APP (balanced) 91.3 97.8 84.8 0.833 0.918
i2APP (unbalanced) 93.5 100.0 87.0 0.877 0.939
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visualization results of the test dataset V46p + 46n after
dimensionality reduction on the higher-level features,
which are the outputs of the first layer classification. The
orange points in the figure are APPs, and the blue points are
non-APPs. As can be seen from the figure, the two types of
samples can be well distinguished with the higher-level
features, so that our model can achieve better performance.
What’s more, it can be found that the aggregation degree of

APPs is higher than that of non-APPs, indicating that it is
easier to identify APPs than non-APPs, so the metric SN in
our model will be higher than SP.

CONCLUSION

In this study, we propose a novel model named i2APP to
identify APPs efficiently. The main structure of this work
consists of four steps. Firstly, the random under sampling
method is used to balance the training set. Secondly, a variety
of sequence-based and terminus-based features are extracted
from any peptide sequence, and then enter these raw features
into the first layer classifiers, SVM and LGBM, to get the
higher-level features. The maximum information coefficient
(MIC) is calculated for each higher-level feature, and only the
significant features are retained. Thirdly, based on the optimal
feature subset, several popular classifiers are evaluated
through cross-validation on the training dataset, and SVM
is chosen as the second layer classifier. Finally, independent
test is performed on the proposed model and the others, and
we can see that i2APP has better generalization ability than
the state-of-the-art models for APP prediction. The sequence
features used in this paper are all extracted by hand, and some
of them are quite complex. Although we simplify the model by
two-step learning and feature selection, the overall model still
looks complicated. In the future, as the amount of data
increases, the RNN or Transformer model can be used for
automatic feature learning, which may further improve the
accuracy of APP recognition.

FIGURE 4 | The effect of shuffling the sequence.

FIGURE 5 | t-SNE visualization results of the testing set after
dimensionality reduction of the higher-level features.
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Predicting peptide inter-residue contact maps plays an important role in computational
biology, which determines the topology of the peptide structure. However, due to the
limited number of known homologous structures, there is still much room for inter-residue
contact map prediction. Current models are not sufficient for capturing the high accuracy
relationship between the residues, especially for those with a long-range distance. In this
article, we developed a novel deep neural network framework to refine the rough contact
map produced by the existing methods. The rough contact map is used to construct the
residue graph that is processed by the graph convolutional neural network (GCN). GCN
can better capture the global information and is therefore used to grasp the long-range
contact relationship. The residual convolutional neural network is also applied in the
framework for learning local information. We conducted the experiments on four different
test datasets, and the inter-residue long-range contact map prediction accuracy
demonstrates the effectiveness of our proposed method.

Keywords: peptide inter-residue contact map prediction, deep learning, graph convolutional network, residual
convolutional neural network, multiple sequence alignment

1 INTRODUCTION

Peptides play an important role in computational and experimental biology (Torrisi et al., 2020),
which motivates the development of accurate methods to predict their native conformations from
the sequences. As a special kind of peptide, protein-related predictions from its amino acid sequence
remain an open problem in the field of computational biology. Using biological experiments to
determine the protein structure is very cumbersome and expensive. Therefore, it is very effective to
use machine learning methods or deep learning methods to obtain a universal law from the amino
acid sequence to the prediction of a protein’s three-dimensional structure. The inter-residue contact
map (Lena et al., 2012) is a two-dimensional representation of a protein’s three-dimensional
structure. The contact map constrains the conformation of protein structures; as a result,
accurate prediction of the contact map can facilitate ab initio structure modeling, and the
accuracy of the contact map affects the accuracy of the three-dimensional structure of the
protein. Furthermore, contact maps have been widely used for model assessment and structure
alignment.

The current contact map prediction methods are mainly based on direct coupling analysis (DCA)
methods, machine learning methods, and deep learning methods. DCA-based methods mainly use
multiple sequence alignment methods to determine the relationships between amino acid pairs.
However, DCA-based methods assume that pairs of contacted residues are more likely to mutate
simultaneously as the protein structure or function evolves and mainly use the multiple sequence

Edited by:
Juexin Wang,

University of Missouri, United States

Reviewed by:
Yi Xiong,

Shanghai Jiao Tong University, China
Yang Liu,

Dana–Farber Cancer Institute,
United States

*Correspondence:
Xiaohu Shi

shixh@jlu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 21 January 2022
Accepted: 23 March 2022
Published: 27 April 2022

Citation:
Gu J, Zhang T,Wu C, Liang Y and Shi X
(2022) Refined Contact Map Prediction

of Peptides Based on GCN
and ResNet.

Front. Genet. 13:859626.
doi: 10.3389/fgene.2022.859626

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8596261

ORIGINAL RESEARCH
published: 27 April 2022

doi: 10.3389/fgene.2022.859626

47

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.859626&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/articles/10.3389/fgene.2022.859626/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.859626/full
http://creativecommons.org/licenses/by/4.0/
mailto:shixh@jlu.edu.cn
https://doi.org/10.3389/fgene.2022.859626
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.859626


alignment (MSA) to determine the relationships between the
amino acid pairs. Therefore, the accuracy of the DCA-based
method depends on the number of homologous protein
sequences in the protein sequence library. On the other
hand, due to the existence of indirect evolutionary coupling
information, the generated coupling information from the DCA
might include “noise signal.” The commonDCA-based methods
include CCMpred (Seemayer et al., 2014), PSICOV (Jones et al.,
2012), and GREMLIN (Kamisetty et al., 2013). CCMpred
mainly uses Markov random field pseudo-likelihood
maximization to learn the contacts between the protein inter-
residues. When there are a large number of homologous
proteins in the protein sequence, the accuracy of the contact
prediction results is higher; however, when the sequences of the
homologous protein are fewer, the accuracy is lower. On the
other hand, machine learning-based and deep learning-based
methods use a set of input features derived from multiple
sequence alignments (MSAs) to predict the protein inter-
residue contact map, including position-specific scoring
matrices (PSSMs), secondary structure (SS) predictions, and
solvent accessibility (SA) information. Machine learning-based
methods are mainly based on support vector machines (SVMs)
(Hearst et al., 1998) to learn the abovementioned features and
common support vector machine (SVM) methods including
SVMCon (Cheng and Baldi, 2007) and R2C (Yang et al., 2016).
SVMCon used support vector machines (SVMs) and yields good

performance on medium- to long-range contact predictions. In
recent years, deep learning methods have been mainly used to
predict the contact map between the protein inter-residues and
are mainly based on the structure of the convolutional neural
network (CNN) and residual neural network (ResNet) (He et al.,
2016). The ResNet structure further improves the CNN
structure and solves the problem of reduced accuracy when
there are too many convolutional layers through the skip
connection mechanism. RaptorX-Contact (Wang et al., 2017)
was the first model that used the ResNet structure for protein
inter-residue contact map prediction tasks. Zhong Li et al. (Li
et al., 2020) used ResNet and DenseNet (Huang et al., 2017)
structures and a new protein sequence feature (PSFM) to
improve the contact map prediction accuracy. DeepCov
(Jones and Kandathil, 2018) applied the CNN to predict
contact maps when limited evolutionary information is
available, which has been trained on a very limited set of
input features: pair frequencies and covariance. It is noticed
that there are several similar studies predicting the distance
matrix instead of the contact map, such as RaptorX structure
prediction (Xu, 2018), PG-GNN (Xia and Ku, 2020), and
AlphaFold (Senior et al., 2020).

However, there are two main difficulties in obtaining accurate
contact predictions. First, many amino acid sequences lack a large
number of homologous sequences, which limits the level of accuracy
of predictions. On the contrary, the target sequences with many

FIGURE 1 | Framework of the RCMPM.
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homologous sequences might generate “noise signals” from the
evolutionary coupling information. Second, most methods use
convolutional neural network (CNN)-based models for inter-
residue contact map prediction, leading to over-learning of the
local information, but under-learning of the long-range
information, which is reflected by a low long-range accuracy.

Therefore, eliminating “noise signals” is necessary to
improve the residue contact prediction. Improving the inter-
residue contact prediction has been of interest for many years
due to its critical importance in structure bioinformatics, with
either the sequence or structure template information. R2C
(Yang et al., 2016) used SVM and PSICOV methods and
used a dynamic fusion strategy to predict the contact map
between amino acids and applied Gaussian noise filters for
further denoising. Amelia Villegas-Morcillo et al. (Villegas-
Morcillo et al., 2018) applied K-SVD (Aharon et al., 2006)
and deep convolutional neural network (DCNN) methods
specially designed for image denoising to solve the problem
of Gaussian noise. DNCON2 (Adhikari et al., 2017) adopted the
structure of the two-stage convolutional neural networks
(CNNs) to improve the contact map prediction, which
divides the prediction into two parts. The first part trains five
CNNs to predict the contact map between the distances of 6, 7.5,
8, 8.5, and 10, respectively. The second part takes the input
feature as the output of the first part and then utilizes a CNN
structure for further prediction.

In the past few years, the graph neural network (Zhou et al.,
2018) was raised to represent the protein structure in various deep
learning-based methods and had succeeded in the computational
biology area, such as protein interface prediction, protein
solubility prediction, and protein function prediction. Fout
et al., (2017) proposed a type of architecture for the task of
predicting protein interfaces between the pairs of proteins using a
graph representation of the underlying protein structure.
GraphSol (Chen et al., 2020) was used to predict the protein
residue solubility by combining the predicted contact maps,
graph neural networks, and attention mechanisms. DeepFRI
(Gligorijević et al., 2021) used an LSTM (Hochreiter and
Schmidhuber, 1997) and a graph convolutional network to
predict protein functions. PG-GNN (Xia and Ku, 2020) used a
new convolution kernel to perform deep convolution to obtain
the distance map, which was used to construct an inter-residue
graph between the residues for obtaining the dihedral
information between residues, and finally constructed a three-
dimensional protein structure.

Here, to focus on getting more accurate contact maps,
especially on the long-range level, we developed a novel
refined contact map prediction model (RCMPM) to refine the
rough contact map produced by the existing methods, which
combines a graph convolution network (GCN) (Kipf and
Welling, 2016) and residual convolution neural networks
(ResNet) (He et al., 2016). The main contributions of the
article are summarized as follows:

• The peptide contact map refinement task is modeled as a
geometric 2D graph improvement, with nodes representing
the amino acid residues and edges representing contacts

between the residues. The rough results of other models
such as CCMpred and RaptorX-Contact are used to
construct the inter-residue contact graph.

• Aiming at the challenges previously mentioned, a novel
deep neural network framework is proposed for the inter-
residue contact prediction by combining a graph
convolution network (GCN) and residual convolution
neural networks (1D ResNet and 2D ResNet), of which
the GCN has a strong global information extraction ability,
and hence can better capture the long-range contact
relationships among the complex sequence inter-residues.

• The experiments are conducted on four different test
datasets, and the inter-residue long-range contact map
prediction accuracy demonstrates the effectiveness of our
proposed method due to the new network architecture.

The rest of the article is organized as follows. Section 2 details
the materials and methods, including contact definition, graph
construction, feature selection, and the proposed prediction
model. Section 3 reports the datasets used in our method,
evaluation metrics, and experiments on four test datasets.
Section 4 concludes the article and discusses the directions for
the future work.

2 MATERIALS AND METHODS

2.1 Contact Definition
In general, two residues are considered to be in contact if certain
atoms are close enough to form a molecular interaction. In the
Critical Assessment of protein Structure Prediction (CASP)
experiment (Moult et al., 2014, 2016, 2018), the contact
definition is based on the spatial distance of Cβ atoms. For
instance, assuming that v � v1, v2, . . . , vi, . . . , vj, . . . , vL{ } is the
residue sequence, where L is the sequence length, and
(xvi, yvi, zvi) is the three-dimensional coordinates of amino
acid residue vi, then the equation for the distance between
the residues vi and vj is

Distance i, j( ) � Distance Cβi , Cβj( )
�

�������������������������������
xvi − xvj( )2 + yvi − yvj( )2 + zvi − zvj( )2√ . (1)

If the Euclidean distance between theCβ atoms (Cα for GLY) of
two amino acids is less than a given threshold γ, then the two
residues are said to be in contact.

2.2 Graph Construction
As mentioned in Section 2.1, we can use the other contact map
prediction models, such as CCMpred (Seemayer et al., 2014) and
RaptorX-Contact (Wang et al., 2017), to obtain a contact matrix
CM. Assuming that the length of the peptide is L, then CM is an
L×L matrix, whose element CMij denotes whether the pair of
residues i and j is contacted or not (1 or 0). Denote G � N,E{ } is
the contact graph of the peptide, whereN is the node set including
L amino acids, and E is the edge set. Then, the contact graph could
be constructed as follows:
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Algorithm 1. Graph construction.

where lij is the edge between node i and node j, and the
threshold γ is set as 8Å in this article.

2.3 Feature Selection
2.3.1 Sequence Features
We devised three groups of sequence features to train our model,
namely, the position-specific scoring matrix (PSSM), secondary
structure (SS), and solvent accessibility (SA). The PSSM is a
widely used sequence feature, which is produced by executing
PSI-BLAST (Altschul et al., 1997) on the UniRef90 database
(Suzek et al., 2015) with 0.001 e-value after the three iterations,
which is a 20-dimensional profile feature for each residue. The
secondary structure and solvent accessibility describe the
arrangement of the protein backbone, which are also very
important for the contact prediction. The secondary structure and
solvent accessibility are predicted by the RaptorX-Property (Wang
et al., 2016) program (http://raptorx.uchicago.edu/
StructurePropertyPred/predict/). The secondary structure is
divided into three categories, namely, helix (H), strand (E), and
coil (C), and the solvent accessibility is also classified into three types,
namely, buried, medium, and exposed. The PSSM is represented as a
two-dimensional matrix of L × 20, while both the secondary structure
and solvent accessibility are represented as a two-dimensional matrix
of L× 3; therefore, the concatenation sequence embedding vectorXseq

is obtained with the L × 26 dimension, where the order of the splicing
input is [PSSM, secondary structure, and solvent accessibility].

2.3.2 Pairwise Features
Pairwise features are the information that characterizes the
relationship between the pairs of residues, including the co-
evolutionary information, statistical information, and so on.
Four groups of pairwise features are used to train our model,
namely, RaptorX-Contact prediction, CCMpred prediction,
mutual information (Dunn et al., 2008), and contact potential
(Betancourt and Thirumalai, 1999), which provide the co-
evolutionary information for each pair of alignment columns.
RaptorX-Contact and CCMpred prediction are mainly used as
inter-residue scores. RaptorX-Contact prediction results can be
obtained by model training, the source code of which can be
downloaded from https://github.com/j3xugit/RaptorX-Contact.
CCMpred prediction results can be obtained by the CCMpred
program, which could be accessed at https://github.com/
soedinglab/CCMpred. However, CCMpred requires the
homologous sequence result of the multiple sequence
alignment (MSA) as the input, which is produced by executing
the HHblits program (Remmert et al., 2012) on the Uniclust30

database (Mirdita et al., 2017) with 0.001 e-value after three
iterations. Both RaptorX-Contact and CCMpred output an inter-
residue score for each residue pair. After the MSA profile is
obtained, the mutual information could be defined by

MIij � ∑
x,y∈R

pij x, y( )ln pij x, y( )
pi x( )pj y( ), (2)

where R is the set of amino acid types, x and y are the elements in
column i and column j, respectively, pi(x) and pj(y) indicate the
probabilities of residue x in column i and residue y in column j, and
pij(x, y) is the probability that residue x is in column i and residue y
is in column j, respectively. Normalized mutual information,
namely, average product correction (APC) mutual information
is also used in our method, which is defined by

MIAPCij � MIij − APCij, (3)

APCij �
∑
j≠i

MIij ∑
i≠j

MIij∑
i,j i≠j( )

MIij
. (4)

The contact potential is computed by averaging the contact
potential terms across the two alignment columns. Mutual
information and contact potential are generated by alnstats in
the MetaPSICOV (Jones et al., 2015) program, which also
requires the homologous sequence as the input. For RaptorX-
Contact prediction, CCMpred prediction, mutual information,
APC mutual information, and contact potential, all are
represented as a three-dimensional matrix of L × L × 1;
therefore, the concatenation pair-wise embedding features Xpair

are obtained with the L × L × 5 dimension, where the order of the
splicing input is [RaptorX-Contact prediction, CCMpred
prediction, MI, APC MI, and contact potential].

2.4 Prediction Model
2.4.1 The Framework of the RCMPM Model
Residual networks (ResNets) are very helpful for accurate peptide
contact map prediction, which has been demonstrated in the
RaptorX-Contact model (Wang et al., 2017). Therefore, ResNet
architecture is retained in our proposed refined contact map
prediction model (RCMPM). On the other hand, the rough
contact map obtained by the other methods could be well utilized
by transferring it into an amino acid graph, and therefore, the graph
convolution network (GCN) could handle the graph topology very
well. Hence, the proposed RCMPMmodel includes a GCN module,
a 1D ResNet module, and a 2D ResNet module, respectively.

Figure 1 shows the framework of the RCMPMmodel, which
has two types of features, namely, sequence features and pair-
wise features. The GCN module is used to learn the global
structural features of the inter-residue contact graphs, whose
input is the node representation of the sequence features, and
the output is a dense global structural embedding vector for
each amino acid node. 1D ResNet module is used to handle the
one-dimensional sequence feature and output a sequence
embedding vector for each amino acid. 2D ResNet module
integrates the above two modules’ outputs and the pair-wise
features as well and finally generates the refined contact map.
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The following part of this section will describe these three
modules in detail.

2.4.2 GCN Module
Given a sequence with L residues, the residue graph can be
represented by a contact map, that is, the nodes of the graph
are the residues of the peptide, and the features of the nodes are
represented by the attributes of the residues. The edges of the
contact graph indicate whether there are connections between the
amino acid nodes, and the weight of the edge represents the
probability of contact. We used the graph convolution network
(GCN) to obtain the global structural features of the graph.

The graph convolutional layer in the predictionmodel uses the
following equation:

H l+1( ) � σ ~AH l( )W l( )( ), (5)
where ~A � A + IL is the variant of the adjacency matrix by adding
the self-loop identity matrix IL on the original adjacencymatrixA,
and H(l) is the hidden matrix learned by the lth layer, initial of
which is the hidden matrix H(0) = Xseq.W

(l) is a weight matrix of
the layer-specific trainable parameters and is used to map the
iterations to a low-dimensional rich information space, and σ is a
nonlinear activation function, which is taken as the ReLU
function in our model. We also use normalization to map the
input feature of each layer H(l) to [0,1] to improve the data
performance and reduce errors. Finally, we used a 2-layer graph
convolutional network to learn the global structural features of
the contact graph containing amino acid node features. Hence,
the final output of the GCN module in the RCMPM model uses
the following equation:

XGCN � RELU ~AReLU ~AXseqW
0( )( )W 1( )( ). (6)

2.4.3 1D ResNet Module
A 1D ResNet module is used to handle the one-dimensional
sequence feature and outputs a sequence embedding vector for
each residue, which is stitched together by the residual blocks. A
residual block consists of two convolutional layers and two
activation layers, which can be defined as follows:

Xl+1 � F Xl,Wl( ) +Xl, (7)
where Xl and Xl+1 are the input and output vectors of the residual
block, respectively, and the initial hidden matrix X0 = Xseq. Here,
Wl is the weight matrix in convolutional layers of the lth block,
and F(Xl, Wl) represents the result after the action of the
convolutional layer and activation function layer. Here, the
operation of the convolutional layer is implemented by the
conv1d function of the tensorflow framework. Here, we used
the ReLU function as the activation function of our method and
also used normalization to map the data to [0,1] to improve data
performance and reduce errors. We kept the dimension of Xl+1

larger than Xl because the higher dimension can carry more
information. For a residual block, the F(Xl, Wl) function can be
expressed as shown in Figure 2.

Finally, the output of the 1D ResNet module in the RCMPM
model could be described as follows:

X1DResNet � ∑n
l�0

F Xl,Wl( ) +Xl. (8)

In our 1D ResNet module, the number of residual blocks is
selected as 3.

2.4.4 2D ResNet Module
The 2D ResNet module is used to learn the final contact relationship
for each residue pair by integrating the aforementioned two
modules, namely, that it takes the input of the output feature
XGCN of the GCN module and the output feature X1DResNet of the
1D ResNet module and the pairwise feature Xpair as well. Different
with the 1D ResNet module, the 2D ResNet module is dealing with
two-dimensional feature maps. The pairwise features Xpair is of L ×
L × 5 dimension, as described in section 2.3.2, while the output
features XGCN and X1DResNet are the one-dimensional feature map
with the same dimension L × n, which should be converted to a two-
dimensional feature map. Similarly with the method used in (Wang
et al., 2017), XGCN and X1DResNet are first concatenated on the second
dimension, obtaining an L × 2n feature map X1DFinal:

X1DFinal � X1DResNet ⊕ XGCN. (9)
Then, it is converted to a 2-dimensional feature map.

Redefined X1DFinal from L × 2n to L × 1 × 2n dimension by
adding a second-order dimension with 1, then duplicate X1DFinal

L times to extend the second order from 1 to L, getting an L × L ×
2n tensor TXGCN1D. TXGCN′ is denoted as the transpose of
TXGCN1D on the first two orders; XGCN and X1DResNet are
finally integrated as IntegrateGCN:

IntegrateGCN � TXGCN1D ⊕ TXGCN1D′ , (10)

FIGURE 2 | Structure of the residual block.
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where ⊕ represents concatenation on the third-order dimension;
therefore IntegrateGCN1D is of L × L × 4n dimension. Afterward, it
should be combined with the pairwise features Xpair by

X2DInput � IntegrateGCN ⊕ Xpair, (11)
where X2DInput is of L × L × (4n + 5) dimension finally.

We also used the same residual network block structure with
that of the 1D ResNet (Figure 2) module to stack the 2D ResNet
module. The difference is that the 2D ResNet module is dealing
with 2D feature maps and utilizing conv2d function of the
tensorflow framework for the convolution operation. The final
output X2DResNet of the 2D ResNet module could be expressed by

X2DResNet � ∑n
l�0

F Xl,Wl( ) +Xl, (12)

whereXl is the input feature of the lth residual block, being initialized
by X0 = X2DInput,Wl is the weight matrix in the convolutional layers
of the lth block, F() is the mapping function with the same meaning
of that in the 1D ResNet block, and n is the block number, which is
set as 30 in the 2D ResNet module. Hence, the output of the 2D
ResNet X2DResNet will go through the softmax layer and obtain the
inter-residue contact label:

y � Softmax X2DResNet( ), (13)
where y ∈ 0, 1{ }L×L, the element yij means whether the pair of
residue i and residue j is contacted according to the model (1 for
contacted and 0 for uncontacted).

To train the model, the cross-entropy function averaged over
all the residue pairs is used as the loss function:

E t, y( ) � − 1
L2

∑
i

∑
j

tij logyij, (14)

where tij is the true contact label, and yij is the predicted contact
label between residues i and j, and L is the length of the peptide.
For the training process, stochastic gradient descent optimization
is utilized, and the learning rate is set as 0.01.

3 RESULTS

3.1 Training and Test Datasets
In our experiment, we used one training dataset to train our
proposed RCMPM model and four different testing datasets to
test its performance.

The training dataset is a subset of PDB25 extracted from the
PDB database (http://www.rcsb.org/pdb/home/home.do) with
homology reduction at 25% level of sequence identity,
resulting in 6767 non-homologous protein sequences. The
number of amino acids of each training protein ranges from
26 to 300. To avoid overfitting, 400 proteins are randomly chosen
for validation and the remaining others for training.

To evaluate the performance of our model, it is applied to four
testing datasets. The first testing dataset is the PDB25 dataset, which
contains 500 nonhomologous protein sequences. The training set,
validation dataset, and testing dataset of the abovementioned
PDB25 dataset can be downloaded from http://raptorx.uchicago.
edu/ContactMap/. The other three datasets were obtained from
three CASP (Critical Assessment of Structure Prediction)
competitions (CASP10 (Moult et al., 2014), CASP11 (Moult
et al., 2016), and CASP12 (Moult et al., 2018)). For the three
CASP datasets, we used the same screening method as that used
in the R2C method (Yang et al., 2016). For the CASP10 dataset, the
sequence data could be accessed on the website of https://
predictioncenter.org/download_area/CASP10/targets/. The total
number of the sequences is 123. However, seven short sequences
are removed (T0651-D3, T0675-D1, T0675-D2, T0677-D1, T0700-
D1, T0709-D1, and T0711-D1), and the constructed CASP10 test
dataset size is 116. CASP11 and CASP12 datasets are also publicly
available on the websites of https://predictioncenter.org/download_

TABLE 1 | Contact map results by four different methods on the PDB25 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.528 0.475 0.361 0.257 0.456 0.356 0.222 0.148 0.356 0.275 0.175 0.121
R2C 0.666 0.667 0.648 0.449 0.591 0.590 0.322 0.176 0.597 0.408 0.201 0.119
RaptorX-Contact 0.774 0.739 0.633 0.497 0.758 0.675 0.469 0.300 0.756 0.641 0.404 0.241
RCMPM (CCMpred) 0.718 0.685 0.582 0.446 0.707 0.622 0.421 0.262 0.685 0.576 0.355 0.208
RCMPM (RaptorX-Contact) 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

FIGURE 3 | Comparison of method accuracy for the long-range contact
on the PDB25 testing dataset.
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area/CASP11/targets/ and https://predictioncenter.org/download_
area/CASP12/targets/, with 105 and 55 sizes, respectively. After
removing the three short sequences from CASP11 (T0759-D1,
T0820-D1, and T0820-D2), the final sizes of CASP11 and
CASP12 datasets are 102 and 55, respectively.

3.2 Evaluation Metrics
By using the same evaluation criteria as the CASP competition,
we evaluated the accuracies of the top L/k (k = 10, 5, 2, 1)
predicted contacts, where L is the protein sequence length.
Accuracy is the proportion of true positive samples in the
total number of predicted positive samples, which is defined by

Accuracy � TP

TP + FP
, (15)

where TP is the number of predicted contacted pairs being
actually contacted, and FP is the number of predicted
contacted pairs not being actually contacted, respectively.
Residue–residue contacts are categorized into three types
according to the residue distances in sequence: short-range,
medium-range, and long-range corresponding to the distances
between 6 and 11, 12 and 23, and at least 24 residues, respectively.
It should be noted that a long-range contact places strong
constraints on the conformation of peptides and is particularly
important for the peptide structure and function study, which is
also the main focus of this article.

3.3 Performance on PDB25 Testing
Datasets and CASP Testing Datasets
In our experiment, we used top L/k (k = 10, 5, 2, 1) in the long-
range contact to evaluate the prediction accuracy of contact maps.
Here, L is the length of the sequence, and the prediction accuracy
rates are given in three kinds of contact, namely, long-range,
medium-range, and short-range.

The datasets used in our experiment are PDB25, CASP10,
CASP11, and CASP12 datasets. To examine the performance of
our proposed RCMPM model, three state-of-the-art methods are
used for comparison, namely, CCMpred (based on Markov random
field pseudo-likelihood maximization, MSA), R2C (based on SVM),
and RaptorX-Contact (based on ResNet), respectively. We have
realized CCMpred and RaptorX-Contact models and trained them
under the same environments with that of the RCMPM and hence
obtained the experiment results of the two models by ourselves. The
results of R2C on CASP10 and CASP11 datasets are cited from the
reference (Villegas-Morcillo et al., 2018), while the results on the other
two datasets are calculated through its webserver (http://www.csbio.
sjtu.edu.cn/bioinf/R2C/). For comparison, two rough contact maps,
produced by CCMpred and RaptorX-Contact models, are used to
construct the amino acid graph in the proposed RCMPM,
respectively.

Table 1 shows the comparison results on the PDB25 dataset.
For the long-range contact type prediction, the results of the
RCMPM by using the CCMpred outputs as the rough contact
map (RCMPM (CCMpred)) are significantly better than those of
CCMpred, with 19.9%, 22.2%, 38.0%, and 73.5% improvements on
top L/10, L/5, L/2, and L levels, respectively. Compared to R2C, it
improves by 7.8% and 2.7% on the top L/10 and L/5 levels,
respectively, and decreased by 10.2% and 0.7% on the top L/2
and L levels, respectively. RaptorX-Contact is an excellent
algorithm, the results of which are better than those of RCMPM
(CCMpred). However, when the RCMPMmodel uses the output of
RaptorX-Contact as the rough contact map (RCMPM (RaptorX-
Contact)), it outperforms RaptorX-Contact on all the four top
levels with 1.3%, 1.2%, 2.1%, and 2.2% improvements, respectively.
The results of RCMPM (RaptorX-Contact) are also significantly
better than CCMpred, R2C, and RCMPM (CCMpred), with the
only exception being slightly below R2C at the top L/2 level.
Figure 3 shows the comparison results of five methods on the
long-range contact type prediction. For the medium-range contact
type, both RCMPM (CCMpred)) and RCMPM (RaptorX-Contact)
are significantly superior to CCMpred and RaptorX-Contact, both
outperforming their opponents at the four top levels. Among all the
five comparison methods, RCMPM (RaptorX-Contact) performs

TABLE 2 | Contact map results by four different methods on the CASP10 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.533 0.477 0.355 0.242 0.512 0.417 0.272 0.185 0.418 0.313 0.197 0.137
R2C 0.413 0.306 0.198 0.143 0.540 0.425 0.278 0.191 0.571 0.511 0.373 0.264
RaptorX-Contact 0.674 0.625 0.490 0.372 0.699 0.629 0.458 0.318 0.638 0.540 0.368 0.233
RCMPM (CCMpred) 0.639 0.583 0.455 0.342 0.646 0.593 0.426 0.290 0.571 0.486 0.316 0.198
RCMPM (RaptorX-Contact) 0.673 0.611 0.495 0.371 0.681 0.612 0.452 0.312 0.630 0.530 0.360 0.225

FIGURE 4 | Comparison of method accuracy for the long-range contact
on the CASP10 testing dataset.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8596267

Gu et al. Refined Contact Map Prediction

53

https://predictioncenter.org/download_area/CASP11/targets/
https://predictioncenter.org/download_area/CASP12/targets/
https://predictioncenter.org/download_area/CASP12/targets/
http://www.csbio.sjtu.edu.cn/bioinf/R2C/
http://www.csbio.sjtu.edu.cn/bioinf/R2C/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


best at all the four levels. For the short-range contact type, RCMPM
(CCMpred)) is greatly better than CCMpred, while RCMPM
(RaptorX-Contact) performs similarly with RaptorX-Contact,
both significantly outperforming the other three methods.

Table 2 shows the comparison results on the CASP10 dataset.
For the long-range contact type prediction, the results of RCMPM
by using CCMpred outputs as the rough contact map (RCMPM
(CCMpred)) are significantly better than those of CCMpred, with
19.8%, 22.2%, 28.2%, and 41.3% improvements on top L/10, L/5, L/
2 and L levels, respectively. Compared to R2C, it improved by
54.7%, 90.5%, 129.8%, and 139.2% at the four top levels,
respectively. When the RCMPM uses the RaptorX-Contact
outputs as the rough contact map (RCMPM (RaptorX-
Contact)), it performs similarly with the RaptorX-Contact, with
−0.1%, 1.0%, −2.2% and −0.2% variations at the top levels,
respectively. Both of them significantly outperform CCMpred
and R2C, and a little better than RCMPM (CCMpred).
RCMPM (RaptorX-Contact) increases by 26.3%, 28.1%, 39.4%,
and 53.3% compared to CCMpred and increases by 63.0%, 99.7%,
150.0%, and 159.4% compared to R2C at the four top levels, while
compared to RCMPM (CCMpred), the improvements are 5.3%,
4.8%, 8.8%, and 8.5%, respectively. Figure 4 shows the comparison
results of the five methods on the long-range contact type
prediction. The results are similar for both the medium-range
contact and short-range contact types, with RCMPM (CCMpred)

being significantly superior to CCMpred, while RCMPM
(RaptorX-Contact), despite its lower performance than
RaptorX-Contact, had a weak gap.

Table 3 shows the comparison results on the CASP11 dataset.
For the long-range contact type prediction, the results of the
RCMPM by using the CCMpred outputs as the rough contact
map (RCMPM (CCMpred)) are significantly better than those of
CCMpred, with 40.8%, 50.9%, 72.1%, and 86.9% improvements at
the four top levels. Compared to R2C, it outperforms at all the
four top levels with 26.2%, 39.5%, 62.5%, and 72.6%. RaptorX-
Contact is better than RCMPM (CCMpred). However, when the
RCMPM uses the output of RaptorX-Contact as the rough
contact map (RCMPM (RaptorX-Contact)), it improves by
0.8%, 1.8%, 1.4%, and 1.5% on the four top levels, respectively.
The results of RCMPM (RaptorX-Contact) are also significantly
better than CCMpred and R2C. The results are similar for both
the medium-range contact and short-range contact types, with
RCMPM (CCMpred) being significantly superior to CCMpred,
while RCMPM (RaptorX-Contact), despite its lower performance
than RaptorX-Contact, had a weak gap. Figure 5 shows the
comparison results of the five methods on the long-range
contact type prediction. For both the medium-range contact
and short-range contact types’ results, we can draw the
following conclusions: among the three existing state-of-the-art
(SOTA) methods, RaptorX-Contact performs the best; RCMPM

TABLE 3 | Contact map results by four different methods on the CASP11 testing dataset.

Long-range Medium-range Short-range

Method L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.448 0.393 0.290 0.206 0.376 0.298 0.187 0.132 0.318 0.251 0.162 0.118
R2C 0.500 0.425 0.307 0.223 0.397 0.296 0.192 0.138 0.314 0.228 0.146 0.115
RaptorX 0.659 0.608 0.512 0.396 0.677 0.608 0.447 0.296 0.683 0.598 0.405 0.249
RCMPM (CCMpred) 0.631 0.593 0.499 0.385 0.644 0.593 0.431 0.277 0.646 0.577 0.380 0.224
RCMPM (RaptorX-Contact) 0.664 0.619 0.519 0.402 0.670 0.608 0.450 0.299 0.682 0.601 0.406 0.245

FIGURE 5 | Comparison of method accuracy for the long-range contact
on the CASP11 testing dataset.

FIGURE 6 | Comparison of method accuracy for the long-range contact
on the CASP12 testing dataset.
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(CCMpred) is significantly superior to CCMpred; RCMPM
(RaptorX-Contact) obtains similar results with RaptorX-
Contact, while CCMpred is much lower than RaptorX-
Contact; and RCMPM (CCMpred) has yielded results
comparable to RCMPM (RaptorX-Contact).

Table 4 shows the comparison results on the CASP12 dataset.
For the long-range contact type prediction, the results of the
RCMPM by RCMPM (CCMpred) are significantly better than
those of CCMpred, with 24.8%, 28.1%, 36.1%, and 41.5%
improvements at the top L/10, L/5, L/2, and L levels, while
RCMPM (RaptorX-Contact) outperforms RaptorX-Contact with
4.3%, 3.8%, 1.6%, and 0.6% improvements on the four top levels,
respectively. The results of RCMPM (RaptorX-Contact) are also
significantly better than those of CCMpred and RCMPM
(CCMpred). Figure 6 shows the comparison results of the
five methods on the long-range contact type prediction. For
both the medium-range contact and short-range contact types’

results, we can draw the following conclusions: among the three
existing SOTA methods, R2C performs the best; RCMPM
(CCMpred) is significantly superior to CCMpred; RCMPM
(RaptorX-Contact) obtains similar results with RaptorX-
Contact; CCMpred is much lower than RaptorX-Contact, but
the gap between RCMPM (CCMpred) and RCMPM (RaptorX-
Contact) is greatly reduced.

To summarize the long-range results of the four datasets, it
could be found that our proposed RCMPM method is
significantly superior to the other methods on PDB25 and
CASP11. For CASP10, RCMPM performs much better than
CCMpred and R2C, and although it does not perform as well
as RaptorX, the gap is very small. For CASP12, the accuracy of
RCMPM is higher than that of CCMpred and RaptorX, and is
slightly lower than that of R2C. Therefore, it can be concluded
that our proposed method performs best overall on the four
datasets and is the most stable one as well.

TABLE 4 | Contact map results by four different methods on the CASP12 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.447 0.406 0.296 0.205 0.421 0.339 0.205 0.136 0.355 0.256 0.165 0.119
R2C 0.615 0.601 0.524 0.407 0.622 0.545 0.399 0.259 0.584 0.502 0.323 0.205
RaptorX 0.583 0.552 0.438 0.323 0.616 0.545 0.371 0.247 0.581 0.488 0.331 0.222
RCMPM (CCMpred) 0.558 0.520 0.403 0.290 0.586 0.492 0.329 0.213 0.525 0.438 0.278 0.177
RCMPM (RaptorX-Contact) 0.608 0.573 0.445 0.325 0.606 0.530 0.372 0.245 0.591 0.484 0.333 0.215

TABLE 5 | Contact map results by the comparison between our network structures.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (without GCN) 0.775 0.741 0.635 0.498 0.761 0.676 0.471 0.299 0.755 0.642 0.402 0.238
RCMPM 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

TABLE 6 | Comparison results for feature combinations by using the rough RaptorX-Contact contact map.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (PSSM) 0.772 0.741 0.639 0.502 0.760 0.674 0.467 0.297 0.761 0.642 0.403 0.238
RCMPM (PSSM+SS) 0.777 0.742 0.639 0.505 0.760 0.673 0.469 0.298 0.756 0.643 0.401 0.237
RCMPM (PSSM+SS+SA) 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

TABLE 7 | Comparison results for feature combinations by using the rough CCMpred contact map.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (PSSM) 0.657 0.604 0.461 0.308 0.614 0.499 0.299 0.180 0.581 0.438 0.238 0.138
RCMPM (PSSM+SS) 0.712 0.670 0.570 0.437 0.692 0.609 0.411 0.254 0.680 0.569 0.346 0.201
RCMPM (PSSM+SS+SA) 0.718 0.685 0.582 0.446 0.707 0.622 0.421 0.262 0.685 0.576 0.355 0.208
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3.4 Ablation Study
3.4.1 Evaluation of the GCN Module of the Model
Structure
In order to examine the effectiveness of our proposed method, we
used two network structures to construct different network
structures, the original RCMPM and the RCMPM removal
GCN module (RCMPM (without GCN)). Table 5 shows the
comparison results on the PDB25 dataset. Compared to the
RCMPM (without GCN), the RCMPM improves by 1.2%,
0.9%, 1.7%, and 2% on the top L/10, L/5, L/2, and L levels,
respectively, while the RCMPM performs much similar with the
RCMPM (without GCN) on both the short-range and medium-
range levels. This is because the graph neural networkmodule can
utilize the output of the existing methods, especially on the global
information level, and therefore reflected by improvements on
the long-range level contact prediction.

3.4.2 Evaluation of Different Feature Combinations
In order to verify the effectiveness of the sequence features on the
long-range contact map prediction, we used three different feature
combinations as the input of the 1D ResNet module and GCN
module, including PSSM, PSSM, and secondary structure
(PSSM+SS), including the PSSM, secondary structure, and
solvent accessibility (PSSM+SS+SA), a total of L×26 dimensional
features. Table 6 shows the comparison results by using the
RaptorX-Contact outputs as the rough contact map on the
PDB25 dataset. From Table 6, it could be found that on the
long-range contact type, RCMPM (PSSM+SS+SA) is improved
by 0.9%, 0.8%, 1.7%, and 0.6% at the four top levels compared
to RCMPM (PSSM+SS) and 1.6%, 0.9%, 1.1%, and 1.2% on the four
top levels compared to RCMPM (PSSM). Meanwhile, on the
medium-range contact type, although the trend is the same as
the long-range type, the increase is very small. On the short-range
contact type, the results of the three methods are even very close.
Table 7 shows the comparison results by using the CCMpred
outputs as the rough contact map on the PDB25 dataset. From
Table 7, it could be found that on the long-range contact type,
RCMPM (PSSM+SS+SA) is improved by 0.8%, 2.2%, 2.1%, and
2.1% at the four top levels compared to RCMPM (PSSM+SS) and
9.3%, 13.4%, 26.2%, and 44.8% at the four top levels compared to
RCMPM (PSSM). On the medium-range and short-range contact
types, the results of the RCMPM (PSSM+SS+SA) are also better
than the other two types’ results. The results show that the PSSM is a
very important feature for the contact prediction, and the secondary
structure and solvent accessibility are also beneficial. When the
initial contact map is used as RaptorX-Contact, the secondary
structure and solvent accessibility have a limited effect on the
medium- and short-range contact type predictions, in part
because the RCMPM uses the output of RaptorX-Contact, which
already contains the secondary structure and solvent accessibility
information.

4 DISCUSSION

In this article, we formulated the peptide contact map refinement
task as a geometric 2D graph improvement and proposed a novel

refined contact map prediction model (RCMPM) to refine the
protein inter-residue contact map predictions using graph
convolutional neural networks (GCNNs) and one-dimensional
and two-dimensional residual neural network (1D ResNet and
2D ResNet) architectures. Our method combines the residual
neural networks for learning the local information with the graph
convolutional neural networks for learning the global
information, which can better capture the long-range contact
relationship between the complex sequence inter-residues. The
experimental results show that our method can refine the contact
map greatly for the long-range contact type, that is to say, by
using CCMpred outputs as the rough contact map, the RCMPM
is significantly better than CCMpred, and by using the RaptorX-
Contact outputs as the rough contact map, the RCMPM is
significantly better than RaptorX-Contact as well. For the
medium-range contact prediction, the degree of
improvement is significantly reduced, and for the short-
range contact prediction, there is not even a significant
improvement. The main reason is that the GCN module of
the RCMPM can utilize the outputs of the existing methods,
which are highly reflected on the global information level, and
therefore, the RCMPMmodel makes improvements mainly on
the long-range contact types. By using a larger protein
database in HHblits or PSI-BLAST to calculate the
homology features of protein sequences and combining
more effective features as inputs, we can expect to further
improve the precision.
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Ensemble-AHTPpred: A Robust
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Integrated With a New Composite
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Technology Thonburi, Bangkok, Thailand

Hypertension or elevated blood pressure is a serious medical condition that significantly
increases the risks of cardiovascular disease, heart disease, diabetes, stroke, kidney
disease, and other health problems, that affect people worldwide. Thus, hypertension is
one of the major global causes of premature death. Regarding the prevention and
treatment of hypertension with no or few side effects, antihypertensive peptides
(AHTPs) obtained from natural sources might be useful as nutraceuticals. Therefore,
the search for alternative/novel AHTPs in food or natural sources has received much
attention, as AHTPs may be functional agents for human health. AHTPs have been
observed in diverse organisms, although many of them remain underinvestigated. The
identification of peptides with antihypertensive activity in the laboratory is time- and
resource-consuming. Alternatively, computational methods based on robust machine
learning can identify or screen potential AHTP candidates prior to experimental verification.
In this paper, we propose Ensemble-AHTPpred, an ensemble machine learning algorithm
composed of a random forest (RF), a support vector machine (SVM), and extreme gradient
boosting (XGB), with the aim of integrating diverse heterogeneous algorithms to enhance
the robustness of the final predictive model. The selected feature set includes various
computed features, such as various physicochemical properties, amino acid compositions
(AACs), transitions, n-grams, and secondary structure-related information; these features
are able to learn more information in terms of analyzing or explaining the characteristics of
the predicted peptide. In addition, the tool is integrated with a newly proposed composite
feature (generated based on a logistic regression function) that combines various feature
aspects to enable improved AHTP characterization. Our tool, Ensemble-AHTPpred,
achieved an overall accuracy above 90% on independent test data. Additionally, the
approach was applied to novel experimentally validated AHTPs, obtained from recent
studies, which did not overlap with the training and test datasets, and the tool could
precisely predict these AHTPs.
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INTRODUCTION

Hypertension is a global health issue due to its worldwide
incidence and association with increased mortality and
morbidity (Mills et al., 2020). Chronic hypertension is a
substantial risk factor for heart diseases, stroke, cardiovascular
diseases, congestive heart failure, glomerulonephritis,
arteriosclerosis, and other diseases (Zhou et al., 2021).

The renin-angiotensin system (RAS) or the renin-angiotensin-
aldosterone system (RAAS) is responsible for blood pressure
regulation. The RAS regulates blood pressure and cardiac
output by controlling the flow of blood through the heart (Wu
et al., 2018).

One of the most important enzymes in the RAS system,
angiotensin-converting enzyme (ACE), regulates blood
pressure and fluid/salt homeostasis (He et al., 2014; Balgir and
Sharma 2017). In the RAS, renin transforms angiotensinogen into
angiotensin-I (ANG I), and subsequently, ACE transforms the
inactive decapeptide angiotensin-I (ANG I) into the
vasoconstrictor octapeptide angiotensin-II (ANG II). Excessive
ACE activity results in the production of excessive amounts of
angiotensin II and, as a result, an increase in blood pressure (i.e., it
upregulates blood pressure) (Zhu et al., 2021).

ACE inhibition is a well-established technique for developing
pharmaceuticals for the treatment of hypertension. Synthetic
ACE inhibitors such as captopril, enalapril, cilazapril,
benazepril, and lisinopril are typically used in clinical
hypertension treatments (Daskaya-Dikmen, et al., 2017).
However, the long-term treatment of hypertension with these
drugs is accompanied by severe or mild adverse effects, such as
cough, headache, diarrhea, dizziness, fatigue, angioedema,
hyperkalemia, hypotension, or, in rare cases, renal impairment
(De Leo et al., 2009; Nguyen et al., 2010; Norris and FitzGerald,
2013; Daskaya-Dikmen et al., 2017; Abachi et al., 2019; Festa
et al., 2020).

Antihypertensive peptides (AHTPs) are bioactive peptides
obtained from natural foods that have the effects/activities of
ACE inhibitors against hypertension and are considered safe for
consumption, with fewer adverse side effects than synthetic ACE
inhibitor drugs or even no side effects. These natural ACE
inhibitory bioactive peptides are highly desired for the
development of functional foods, nutraceuticals and
pharmaceuticals for the prevention and treatment of
hypertension (Norris and FitzGerald, 2013; de Castro and
Sato, 2015; Kumar et al., 2015; Abachi et al., 2019; Pujiastuti
et al., 2019; Jiang et al., 2021; Zaky et al., 2022). Peptides are often
multifunctional and may exhibit several health-promoting
bioactivities, such as antioxidative, antihypertensive, anti-
inflammatory, cytoprotective, and antimicrobial effects (He
et al., 2019; Jakubczyk et al., 2020). Emerging evidence
indicates that AHTPs may mediate antihypertensive effects by
interacting with RAS-related renin, AT-II receptors,
arginine–nitric oxide pathway, endothelin system, or Ca2+

channels in addition to ACE inhibition (Udenigwe and
Mohan, 2014; Aluko 2015). AHTPs have major potential as
functional ingredients (dietary compounds) in a daily diet
aimed at helping prevent and safely manage hypertension and
enhancing human health (Norris and FitzGerald, 2013;
Jakubczyk et al., 2020). Therefore, the identification of new,
nontoxic bioactive peptides derived from food or natural
sources has received significant attention. As a consequence,
an increasing number of food-derived antihypertensive
peptides have been studied and reported (Martínez-Maqueda
et al., 2012; Kumar et al., 2014; Abachi et al., 2019; Lee and Hur
2019; Pujiastuti et al., 2019; Lu et al., 2021). Finding new AHTPs
in various organisms is currently a significant research topic.
However, large-scale identification through wet laboratory
experiments is a costly, time consuming, and labor-intensive
approach (Li-Chan 2015; Pujiastuti et al., 2019; Festa et al.,
2020). The use of bioinformatics and in silico methods for the
identification of potential candidate AHTPs for subsequent
experimental assays is necessary to shorten the process. The
development of efficient computational approaches will
facilitate the processes of discovery and screening, allowing
potential novel AHTP candidates to be identified in a cost-,
resource- and time-effective manner.

A few existing machine learning-based computational
approaches are available for predicting AHTPs. mAHTPred is
a meta-predictor that employs a two-step feature selection
methodology (Manavalan et al., 2019). PAAP is an RF
classification model approach based on varied combinations of
amino acids, dipeptides, and pseudo amino acid composition
descriptors (Win et al., 2018). AHTpin was developed to screen,
predict, and design AHTPs by using an SVM-based regression
model for tiny peptides and SVM-based classification models for
small, medium and large peptides (Kumar et al., 2015).
Additionally, an SVM prediction tool was recently built by
using convolutional neural network (CNN) deep learning-
based encoding features derived from amino acid
compositions (AACs) and dipeptide composition features
(Rauf et al., 2021).

Although certain tools for AHTP prediction are available, the
development of our ensemble method is different from that of the
existing approaches in several ways. First, we developed a
weighted voting method for integrating the strengths of three
independent machine learning models, each of which has high
levels of performance in different aspects. Second, a new
composite feature called comF2 was developed based on a
logistic regression statistical framework. In both the RF and
extreme gradient boosting (XGB) feature importance plots,
this feature was ranked as the most significant. In addition, a
Shapley additive explanations (SHAP) analysis revealed
consistent results, showing that comF2 was the top-ranked
feature and was capable of explaining large samples in the
model; therefore, it could capture characteristics for most of
the AHTPs in the training data. Third, our ensemble method
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outperformed previously developed methods in terms of
robustness and accuracy when predicting independent testing
datasets, with an enhanced accuracy of 90.4%. Last, the technique
could also correctly classify many novel unseen, and experimental
AHTPs collected from recent studies.

MATERIALS AND METHODS

Workflow
The workflow of Ensemble-AHTPpred is shown in Figure 1.

Datasets
In this study, we employed two nonredundant datasets from
mAHTPred (Manavalan et al., 2019): a benchmarking dataset
and an independent testing dataset. The balanced benchmarking
dataset contained 913 unique AHTPs and 913 unique non-
AHTPs. The 913 AHTPs were experimentally validated on the
publicly available AHTPDB (Kumar et al., 2015) and BIOPEP
(Minkiewicz et al., 2008; Iwaniak et al., 2016) databases. Note that
experimentally validated non-AHTPs were not available as a
public non-AHTP database. Therefore, the non-AHTPs were
random peptides generated from Swiss-Prot proteins.
Considering random sequences as a negative dataset is a
routinely used standard procedure in many peptide-based
prediction methods (Sharma et al., 2013; Kumar et al., 2015;
Chen et al., 2016; Usmani et al., 2018; Manavalan et al., 2019) with
the assumption that the probability of finding a random sequence

to be positive is very low. Positive and negative training datasets
have similar length distributions. The AHTPs in the
benchmarking dataset have a length between 5 and 81 amino
acids, with an average length of 7.7 amino acids. The non-AHTPs
in the benchmarking dataset have a length between 5 and 45, with
an average length of eight amino acids.

Another dataset, an independent dataset, was composed of 386
nonredundant, experimentally validated AHTPs (Win et al.,
2018; Yi et al., 2018) and 386 random peptides generated from
Swiss-Prot as negative samples. The AHTPs in the independent
testing dataset have a length between 5 and 24 amino acids, with
an average length of 6.48 amino acids. The non-AHTPs in the
independent testing dataset have a length between 5 and 29, with
an average length of 15.42 amino acids.

Features
The peptide properties that were relevant for predicting AHTPs
were determined and encoded as a vector of 431 numerical
features. The features can be grouped into seven main types as
follows.

1) AAC descriptors: These descriptors were used as the fractions
of each amino acid type within a protein sequence. The
fractions of all 20 natural amino acids {A, C, D, E, F, G, H,
I, K, L, M, N, P, Q, R, S, T, V, W, Y}, were calculated. (AAC1-
AAC20: 20 dimensions).

2) Chou’s pseudo amino acid composition (PseAAC) was
generated in various modes: Chou’s PseAAC (Chou, 2005)

FIGURE 1 | Workflow of the proposed approach.
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has been widely used to convert complicated protein
sequences with various lengths to fixed-length numerical
feature vectors that incorporate sequence-order
information. In comparison with an AAC, a PseAAC is
more informative and capable of representing a protein
sequence and incorporating information about its
sequence order. Hence, it has been widely used for
diverse amino acid sequence-based prediction problems
(Chou, 2011). The PseAACs were calculated by using
parameters of lambda = 3 and weight = 0.05 (PAAC1-
PAAC23: 23 dimensions). PseAACs in parallel
correlations (Pse_PC1-Pse_PC22: 22 dimensions),
PseAACs in series correlations (Pse_SC1-Pse_SC26: 26
dimensions), and amphiphilic pseudo AACs with
hydrophobicity correlation functions (APAAC1_1-
APAAC1_23: 23 dimensions) and hydrophilicity
correlation functions (APAAC2_1-APAAC2_23: 23
dimensions) were also calculated.

3) Composition/transition/distribution (C/T/D): The three
descriptors based on the grouped AACs (Dubchak et al.,
1995) [composition (CTDC1-CTDC21: 21 dimensions),
transition (CTDT1-CTDT21: 21 dimensions) and
distribution (CTDD1-CTDD105: 105 dimensions)
descriptors] were calculated. C/T/D was calculated using
the protr R package (Xiao et al., 2015). All amino acid
residues were divided into three groups according to seven
types of physicochemical properties, as defined in Dubchak
et al. (1999). The seven physicochemical properties used for
calculating these features were hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge,
secondary structures, and solvent accessibility.

4) Quasi-sequence-order descriptors: The quasi-sequence-order
descriptors were derived from the distance matrix of the 20
amino acids (Chou 2000). Quasi-sequence-order descriptors
(QSO1-QSO46: 46 dimensions) and sequence-order-
coupling numbers (SOCN1-SOCN6: 6 dimensions) (lag =
3, w = 0.1) were calculated.

5) Various physicochemical and topological property-based
features: The Crucian properties covariance index
(Crucian1-Crucian3: 3 dimensions) (Cruciani et al., 2004),
Z-scales based on physicochemical properties (zscales1-
zscales5: 5 dimensions) (Sandberg et al., 1998), factor
analysis scales of generalized amino acid information
(fasgai1-fasgai6: 6 dimensions) (Liang and Li 2007),
T-scales based on physicochemical properties (tScales1-
tScales5: 5 dimensions) (Tian et al., 2007), VHSE-scales
(principal component score vectors of hydrophobic, steric,
and electronic properties) (vhsescales1-vhsescales8: 8
dimensions) (Mei et al., 2005), protFPs (protFP1-protFP8:
8 dimensions) (van Westen et al., 2013), ST-scales based on
physicochemical properties (stscales1-stscales8: 8
dimensions) (Yang et al., 2010), MS-WHIM scores
(mswhimscore1-mswhimscore3: 3 dimensions) (Zaliani
and Gancia 1999), aliphatic indices of proteins (aIndex: 1
dimension) (Ikai, 1980), Geary autocorrelations (geary1-
geary12: 12 dimensions), the autocovariance index
(autocov: 1 dimensions) (Ikai, 1980), the potential protein

interaction index (Boman: 1 dimension) (Boman, 2003), the
net charge (Charge: 1 dimension), cross-covariance indices
(Crosscov1-Crosscov2: 2 dimensions), instability indices
(Instaindex: 1 dimension) (Guruprasad et al., 1990), the
hmoment alpha helix (Hmoment1: 1 dimensions), the
hmoment beta sheet (Hmoment2: 1 dimensions),
BLOSUM matrix-derived descriptors (Blosum1-8: 8
dimensions), and the isoelectric point (pI: 1 dimension)
were calculated by using the peptide R package (Osorio
et al., 2015).

6) Occurrence of selected k-mer motifs: The YP, HLP, IYP, LHL,
LPP, LRP, VPP, PEV, PFP, QTP, VLP, VYP, and YPF motifs
(13 dimensions) were determined. First, we generated all 2-
mers (400 dimensions) and all 3-mers (8000 dimensions).
Then, we searched for the k-mer that was overrepresented in
the positive and underrepresented in the negative datasets by
calculating the log odds ratio score of the frequency of each
k-mers in the positive versus negative datasets. Next, we
ranked the discriminant k-mers based on the calculated
log-odds score. Finally, we retained the top 2-mer and the
top 12 3-mers as selected k-mermotif features that still need to
be determined (the heatmap of log odds scores of 2-mers is
shown in Figure 5).

7) Secondary structure conformation-related features: The
aggregation, amyloid, turn, alpha-helix, helical aggregation,
and beta-strand conformation secondary structure
propensities were calculated using the Tango program
(tango1-tango6: 6 dimensions) (Fernandez-Escamilla
et al., 2004).

To further improve the prediction process with new
informative features, we proposed a composite feature
generation method via the fusion of the various selected
features by using a logistic regression model. Various
composite features based on various combinations of
informative selected features were built by using logistic
regression based on the benchmarking data and then
compared through a 10-fold cross-validation process. The
detailed process of building composite features is described
in the hybrid feature section of ensemble-AMPPred
(Lertampaiporn et al., 2021). A combination of features was
used to fit a logistic regression model, which is represented by
the following equation:

Prob. (Y � AHTPs|x) � logistic(x)
� (eβ0+β1 X1+β2X2+β3X3+/+βnXn/(1 + e β0+β1X1+β2X2+β3X3+/+βnXn))

Logit transformation (the logarithm of the odds ratio that Y is
in the AHTP category) was applied to link a function with the
logistic regression. The logit function is defined as

Logit(x) � log ( P(Y � AHTP|X � X)
P(Y � nonAHTP|X � X))

� β0 + β1X1 + β2X2 + β3X3 +/ + βnXn

Therefore, the composite feature was defined by the following
equation:
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Composite feature � β0 + β1 feature 1 + β2feature 2

+ β3feature 3 + . . . + βn feature n

where β0 is the intercept; β1, β2, β3, and βn represent the
regression coefficients for each selected feature in the equation;
and feature_1, feature_2, . . ., and feature_n are the component
features in the composite feature.

Feature Selection
A feature selection procedure based on ReliefF (Kononenko, 1994)
scores was used as a preprocessing step to filter irrelevant features
with a cutoff score. The ReliefF score for a feature was calculated
based on how well the feature could distinguish between instances
that were near each other. The ReliefF evaluation criterion selected
features that aided in the separation of the samples from different
classes and gave higher weights to the features that discriminated
the samples from the neighborhoods of different classes.

Recursive feature elimination (RFE) (Tolosi and Lengauer, 2011)
is a wrapper-type feature selection algorithm. RFE starts with all
features in the training dataset and then searches for a subset of
features by removing features through recursive elimination to
eliminate the least relevant features one by one and refitting the
model. This process is repeated until the optimal number of features
is reached, ensuring that the classifier can achieve high performance.

Models
To select base classifiers for constructing an ensemble, seven
machine learning algorithms were considered in our algorithm
selection experiment—a naïve Bayes (NB) model, a neural
network (NN), a support vector machine (SVM), k-nearest
neighbors (kNN), a decision tree (DT), a random forest (RF)
and an extreme gradient boost (XGB). Each algorithm has a
different inductive bias and different learning hypotheses that can
provide a potentially more independent and diverse set of
predictions through the ensemble. For the hyperparameters,
we used a grid search to find the optimal parameters.

The NB classifier is a simple probabilistic classifier based on
Bayes’ theorem and substantial independence assumptions
between the features.

The NN was a multilayer perceptron (MLP). An MLP is a
neural network with at least three layers: an input layer, a hidden
layer, and an output layer (parameters: number of epochs: 500;
learning rate: 0.3; and momentum for updating weights: 0.2).

The SVM model is a supervised learning model with
associated learning algorithms for data classification and
regression analysis. The SVM assigns training examples to
coordinates in a high-dimensional space to widen the distance
between the two classes and separates the two classes with a
simple hyperplane (parameters: C = 36.0; kernel = ‘Radial Basis
Function’; and gamma = 0.119).

The KNN method is a well-known nonparametric technique
used in statistical pattern classification due to its simplicity,
intuitiveness, and effectiveness. The essential principle is that
an unclassified object is assigned to the class to which the majority
of its k nearest neighbors belong (parameters: k = 7 and distance =
inverse weight).

The DT is another nonparametric supervised learning method
used for classification and regression. It develops a model that
accurately predicts the value of a target variable by inferring basic
decision rules from data attributes. A tree can be thought of as an
approximation to a piecewise constant (parameter: confidence
factor = 0.25).

The RF algorithm is one of the most commonly used bagging
ensemble algorithms because of its flexibility and ease of use. This
algorithm can produce good results without hyperparameter
tuning. The RF approach is an ensemble technique with the
ability to achieve high accuracy and prevent overfitting bymaking
use of voting with multiple decision trees (parameters: no.
estimators = 350 and max_depth = 12).

The XGB algorithm is a gradient boosting ensemble algorithm.
The boosting algorithm adjusts the model weights according to a
differential loss function and then uses the adjusted weights in the
next training iteration [parameters: no. estimators (nrounds) =
800; max_depth = 10; eta = 0.01; and subsample = 0.8].

The proposed method was implemented by using Perl,
Python, and R scripts. The program was run on a Fedora
Linux-based machine. All the data, the trained models and the
standalone program are available to download at http://ncrna-
pred.com/Ensemble_AHTPpred.htm.

We adopted 10-fold cross-validation to investigate the
classification performance of the various models on the
benchmarking dataset. Based on the 10-fold cross validation
results, model selection processes were performed. Then, the
best-performing models were selected based on their diverse
measurements and later used as the base classifiers of the
ensemble model. Thereafter, the individual base classifiers
were iteratively trained to find the optimal weight for each
class of each classifier. The probability weight set (w1, w2, w3,
w4, w5, w6) was estimated by using the level of confidence in
predicting each class (AHTP or non-AHTP), which fluctuated
among the classes. The probabilities acquired from the base
classifiers were aggregated through weighted voting to obtain
the final prediction of the ensemble model.

Probability-weighted voting = (W1
pProb. (RF class=AHTP)) +

(W2
pProb. (RF class=non-AHTP)) + (W3

pProb. (XGB class = AHTP))
+ (W4

pProb. (XGB class=non-AHTP)) + (W5
pProb (SVM class=AHTP))

+ (W6
pProb (SVM class=non-AHTP)).

To evaluate the classification performance of the model, the
following metrics were used:

ACC � TP + TN

(TP + TN + FP + FN)
Sn � TP

(TP + FN)
Sp � TN

(TN + FP)
MCC � TP × TN − FP × FN��������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
where ACC, Sn, Sp, andMCC are accuracy, sensitivity, specificity,
and Matthew’s coefficient correlation, respectively. These
measurements were calculated based on the numbers of true
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positives (TPs), true negatives (TNs), false positives (FPs) and
false negatives (FNs). The area under the receiver operating
characteristic (ROC) curve (AUC) was calculated to assess the
tradeoff between the sensitivity and specificity performance of the
different methods. The ROC curve is a plot of the TP vs. FP rates
at different thresholds. For a perfect predictor, the AUC is
equal to 1.

RESULTS AND DISCUSSION

Amino Acid Composition and Positional
Residue Analysis
The activity of peptides depends on their structure and amino
acid composition. To understand the relation between the

composition and antihypertensive function of a peptide, the
composition of AHTPs and non-AHTPs were analyzed/
investigated. Generally, most antihypertensive peptides are
relatively short peptide residues with lengths that vary from 2
amino acids to 20 amino acids. The amino acid composition is a
quantitative measure of the fraction of each amino acid type
within a protein. The percent amino acid composition based on
the physicochemical properties of amino acids (whole peptides)
was computed and calculated using COPid (Kumar et al., 2008)
and includes the composition of charged (DEKHR), aliphatic
(ILV), aromatic (FHWY), polar (DERKQN), neutral
(AGHPSTY), hydrophobic (CVLIMFW), positively charged
(HKR), negatively charged (DE), tiny (ACDGST), small
(EHILKMNPQV) and large (FRWY) residues, as summarized
in Table 1 (a category with higher composition is shown in bold).

TABLE 1 | Physicochemical property-based composition of amino acids.

Physicochemical property-based composition
of amino acids

Positive dataset (AHTPs) Negative dataset (non-AHTPs)

Molecular weight of the peptide (Da) 888.2 912.5
Number of amino acids in the sequence 7.75 8.05
% Composition of charged residues (DEKHR) 19.91 24.94
% Composition of aliphatic residues (ILV) 22.34 22.04
% Composition of aromatic residues (FHWY) 14.42 10.32
% Composition of polar residues (DERKQN) 25.81 31.49
% Composition of neutral residues (AGHPSTY) 43.44 37.68
% Composition of hydrophobic residues (CVLIMFW) 30.75 30.83
% Composition of positively charged residues (HKR) 12.75 12.96
% Composition of negatively charged residues (DE) 7.16 11.98
% Composition of tiny residues (ACDGST) 22.65 34.97
% Composition of small residues (EHILKMNPQV) 61.94 51
% Composition of large residues (FRWY) 15.41 14.03

The higher values, between the two datasets, are shown in bold.

FIGURE 2 | Percent average composition of amino acid residues present in the positive and negative datasets.
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When comparing positive and negative of benchmarking
datasets, we can see that AHTPs include more aliphatic (ILV),
aromatic (FHWY), and neutral (AGHPSTY) amino acid residues
than non-AHTP sequences.

Amino acid residues present in AHTPs and non-AHTPs were
compared, as shown in Figure 2. Histidine (H), proline (P),
glutamine (Q), valine (V), tryptophan (W) and tyrosine (Y) more
frequently occurred in AHTPs than in non-AHTPs, especially
proline (P), which is highly abundant in AHTPs. In contrast,
certain residues such as cysteine (C), aspartic acid (D),
methionine (M), and tryptophan (W) occurred rarely in
AHTPs. Certain types of residues occured frequently in both
AHTPs and non-AHTPs, such as leucine (L) and valine (V).
Amino acids such as alanine (A), aspartic Acid (D), and serine (S)
were less frequent in AHTPs than in non-AHTPs.

C-terminal and N-terminal positional residue analysis was
also performed by calculating the average amino acid
composition of position one to position five of the N- and
C-termini in AHTPs (positive) and non-AHTPs (negative).
The log odds ratios between positive and negative N- and
C-termini were calculated. The log-odds ratios of positive
versus negative termini were calculated as [log2 (Pa/Na)],

where Pa and Na are the observed frequencies of amino acid a
in the positive and negative training datasets, respectively.
Heatmaps of log odds ratios were plotted for the N-terminal
and C-terminal regions, as shown in Figures 3A, 4A. The
sequence logos of positions one to five of the N- or
C-terminus were generated by using Seq2Logo (Thomsen and
Nielsen, 2012). Figures 3B,C display N-terminal positional
sequence logos of AHTPs and non-AHTPs, respectively. (In
sequence logos, specific colors were assigned to amino acids as
follows, purple represents nonpolar sidechains
(G A V L I M FW P), blue represents basic amino acid
(K R H), Red represents acidic amino acid (D E), and green
represents polar sidechains (S T C Y N Q); the height of the
amino acids is proportional to their frequency at that
position.) The most abundant amino acids in the N-terminus
of AHTPs were Leu (9.069%), Pro (14.896%), Tyr (5.214%) and
Val (8.697%). The most abundant amino acids in the C-terminus
of AHTPs were Leu (9.003%), Pro (16.605%), and Val (7.338%).
The most abundant amino acids in the N- and C-termini of non-
AHTPs were Leu, Ala, Gly, and Val. The most abundant 2-mers
in the N-terminus of AHTPs were YP, LP, PF, PP, and VP, while
the most abundant 2-mers in the C-terminus of AHTPs were IP,

FIGURE 3 |N-terminal features of AHTP positive data and non-AHTP negative data: (A)Heatmap of log odds ratios, where a lighter color denotes overrepresented
amino acid residues in AHTPs compared to non-AHTPs (positive log odds score) and, a darker color denotes underrepresented amino acid residues in AHTPs
compared to non-AHTPs (negative log odds score). (B) Sequence logos of positions one to five of the AHTP positive dataset. (C) Sequence logos of positions one to five
of the non-AHTP negative dataset.
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FP, PL, PP, PV, QP and VP. The most abundant 2-mers in the
N- and C-termini of non-AHTPs were AA, LA, AL, LG, LE,
and AR.

In addition, a heatmap of the log odds score of occurrences
of the 2-mer motif in the whole sequence of AHTPs vs. in the
whole sequence of non-AHTPs was also plotted, as shown in
Figure 5. TyrPro (log odds = 4.393), ProPhe (log odds = 3.896)
and ProHis (log odds = 3.340) were overrepresented in AHTP
positive data compared to non-AHTP negative data. In
contrast, AspSer (log odds = −5.708), MetThr (log odds =
−4.292) and CysLeu (log odds = −4.070) were overrepresented
2-mers in non-AHTP negative data relative to AHTP
positive data.

Performance Evaluation Based on the
Benchmarking Dataset to Select the Base
Models for the Ensemble
Before training a prediction model, feature extraction and
feature selection are two important steps for extracting
various numerical features to represent biological sequences
and then selecting relevant and discriminative features so that a

machine learning model can further analyze and detect the
generalized pattern of the data of interest. In this work, we
extracted a total of 431 numerical features to represent peptide
sequences.

Since we collected as many features that could explain the
peptides as possible, these 431 extracted features may have
contained irrelevant and noninformative features with respect
to explaining the AHTPs. Feature selection is required to
eliminate irrelevant and redundant features that do not
explain the target class. Furthermore, feature selection
mitigates the curse of dimensionality (by reducing the
number of dimensions) and prevents overfitting. Filter,
wrapper, and embedding techniques are the three primary
feature selection methods. Both the wrapper and embedding
methods are tightly coupled with specific classification
algorithms. The wrapper requires one predetermined
classification algorithm and relies on its performance to
evaluate and select the feature subset. This approach seeks
the features that are best suited to the predetermined
algorithm. As a result, these methods first necessitated
determining the classification algorithm to be used. However,
we intended to create an ensemble consisting of multiple

FIGURE 4 |C-terminal analysis of AHTP positive data and non-AHTP negative data: (A)Heatmap of log odds ratios, where a lighter color denotes overrepresented
amino acid residues in AHTPs compared to non-AHTPs (positive log odds score) and a darker color denotes underrepresented amino acid residues in AHTPs compared
to non-AHTPs (negative log odds score). (B) Sequence logos of positions one to five of the AHTP positive dataset. (C) Sequence logos of C-terminal positions one to five
of the non-AHTP negative dataset.
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classification algorithms. Therefore, the filtering procedure was
used initially to remove irrelevant features during this step. Note
that the filtering method may not eliminate redundant features.
We applied the filtering method based on ReliefF scores. After
applying the filtering method, a total of 379 features had scores
that were higher than the cutoff score. The vector containing
these 379 numerical features was then used to train the 7
algorithms.

The training process was carried out via 10-fold cross-validation
on a benchmarking dataset to investigate the classification
performance of different trained models. Table 2 shows the
performance of the individual trained models. Different
algorithms were able to take advantage of different characteristics
and relationships contained in a given dataset. In this process, we

detected and combined the strengths of distinct algorithms to form a
resilient and stable ensemble. The findings support the “no free
lunch” theorem, which states that there is no single best algorithm
that is superior in terms of every metric. The ROC curves of
individual classification model performance are plotted in Figure 6.

Based on the performance obtained during the training process,
Table 2 shows that XGB had the highest sensitivity (0.789),
followed by the SVM (0.758). The AUC provides a measure for
evaluating which models are better on average by weighing the
tradeoff between sensitivity and specificity. For the AUC metric,
the SVMmodel achieved the highest score of 0.878, followed by the
RFmodel (0.877), indicating that these twomodels achieved a good
balance between positive and negative prediction. The RF model
had the highest classification accuracy of 80.668% among the seven

FIGURE 5 |Heatmap of the log odds scores of 2-mers abundant in the positive versus negative datasets. In the heatmap, a red color (high log odds score) denotes
2-mers overrepresented in AHTPs compared to non-AHTPs, and a white color (low log odds score) denotes 2-mers underrepresented in AHTPs compared to non-
AHTPs.

TABLE 2 | Classification performance of different trained models.

DT NB KNN NN SVM XGB RF

ACC (%) 73.494% 74.465% 74.918% 76.177% 80.504% 78.925% 80.668%
Sn 0.714 0.696 0.690 0.721 0.758 0.789 0.752
Sp 0.756 0.814 0.808 0.803 0.852 0.791 0.861
AUC 0.766 0.793 0.791 0.831 0.878 0.861 0.877

The highest values are in bold.
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trainedmodels. Accordingly, based on the evaluation, we chose the
SVM, the RF, and XGB as the ensemble members because of their
superior performance in terms of different metrics.

Note that the input vectors for the SVM model were drawn
from a separate collection of features. Because the RF and XGB
have built-in feature selection, we used the complete 379-feature
vector as the input feed. However, for the SVM-based model, we
used RFE as an additional wrapper feature selection step to
remove redundant features and reduce the computational time
and memory. As a result, the feature subset used as the input
vector for the SVMmodel was reduced from 379 to 256 attributes.

Each model was assigned a weight, which was proportional to
the model classification accuracy across all classes. In addition,
the capacities for classification and prediction on different classes
may have been unequal. Therefore, the classifier with the highest
prediction confidence was given greater weight for that class.
Subsequently, the training process was conducted via 10-fold
cross validation to find the optimal class weights for each
classifier/predictor in the ensemble. Thereafter, the individual
classifiers (SVM, RF, and XGB) were aggregated through
weighted voting to obtain the final probability and prediction.

The New Composite Feature is Significant
for Improving the Sensitivity of the Method
We propose utilizing a logistic regression equation to create
additional composite features, based on the fusion of two or
more existing features. In contrast to sophisticated black-box
classification models, regression is a powerful way to determine
the unique relationships between a large number of features and a
target class. In this work, we created a number of composite
features and selected the two with the highest sensitivity, which

we refer to as comF and comF2. These features were merged into
the feature vector as the input of the ensemble model.

The comF feature is defined as

comF � 0.8634 − 0.157tscales4 − 0.154CTDC19 − 0.135protFP6
+0.133CTDC21 − 0.132fasgai4 + 0.122mswhimscore1

− 0.12hydrophobicity

The comF2 feature is defined as

comF2 � 0.1786 + 0.1522APAAC1 15 − 2.2951CTDC10
−0.6069CTDC19 − 0.0065CTDD49+ 0.2176QSO19

+ 0.9747fasgai4 + 0.3691ProtFP3

+ 2.0823Pse PC13

where APAAC1_15 denotes the amphiphilic PseAAC of
amino acid R (the sequence-order coupling mode was used
along a protein sequence via a hydrophobicity correlation
function; the hydrophobic properties of amino acids were
taken into account) and CTDC10 denotes the percentage of a
particular amino acid in the polarizability group 1
(polarization between 0 and 1.08: amino acids G, A, S, D,
and T) relative to protein length. CTDC19 is the percentage
of a particular amino acid in solvent access group 1 (buried:
amino acids A, L, F, C, G, I, V, and W) relative to the protein
length. CTDD49 is the percentage of a particular amino acid
in polarization group 1 (polarization between 0 and 1.08:
amino acids G, A, S, D, and T) located in 75% of the residues
of the protein chain. QSO19 is the quasi-sequence order of
the normalized occurrence of amino acid Y, fasgai4 is a
descriptor that reflects compositional characteristics,
ProtFP3 is the scales-based descriptor derived from the
amino acid properties of all AA indices (protein
fingerprint 3), and Pse_PC13 is the parallel correlation
PseAAC of amino acid P.

Interestingly, we discovered some intriguing aspects within the
comF2 composite feature. Particular component properties of
comF2, such as the distant locations of certain amino acids Y, R,
and P, had beneficial impacts on the equation; this is consistent
with the results of many research papers demonstrating that
certain residues are dominant in the C-termini or N-termini of
potent AHTPs. Hydrophobic residues with aliphatic side chains
at the C-terminus promoted ACE inhibitory activity
(Nimalaratne et al., 2015; Asoodeh et al., 2016; Jiang et al.,
2021; Wang et al., 2021). Other studies have demonstrated
that the positively charged lysine and arginine amino acids (K
and R) contribute to the strong potency of ACE inhibitory
peptides (Wei et al., 2019; Maky and Zendo, 2021). The
richness of proline (P) and its number of occurrences in a
sequence positively influenced the potency of ACE inhibition
(Abachi et al., 2019; Festa et al., 2020; Pavlicevic et al., 2020). The
presence of a polar amino acid at the C-terminus along with
hydrophobic amino acids at the N-terminus may have
contributed to the activity (Ryan et al., 2011; Udenigwe et al.,
2012; de Castro and Sato, 2015). Moreover, the equation was
adversely affected (according to the minus sign) by component

FIGURE 6 | ROC curves of individual machine learning models.
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properties involving low-polarization amino acids (CTDC10 and
CTDD49) and those with restricted solvent access (CTDC19;
buried structure).

Because the RF and XGB have built-in feature importance
analysis mechanisms, we discovered that the composite feature
comF2 was the highest-ranking feature in both models based on

FIGURE 7 | Importance plots and SHAP plot: (A) Importance plots yield by the RF (left: permutation importance; right: Gini importance). (B) Importance plot yielded
by the XGB model. (C) SHAP summary plot of the top 15 features; (D) dependence plot of composite feature comF2 for the AHTP class. (E) Density distribution of the
SHAP plot’s top six features (sample) by class in the training data.
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their importance plots (as shown in Figures 7A,B). It is well
known that the value of a feature (as measured by information
gain) varies depending on how frequently it is employed at the

leaf nodes. We also conducted SHAP (Shapley Additive
exPlanations) analysis as a follow-up to our initial
investigation. SHAP is a game-theoretic framework for

FIGURE 7 | (Continued).

TABLE 3 | Performance evaluation of the proposed method using benchmarking
dataset.

Method ACC Sn Sp MCC AUC

CNN + SVM (Rauf et al., 2021) 0.958 0.996 0.920 0.920 0.958
mAHTPred (Manavalan et al., 2019) 0.848 0.821 0.874 0.697 0.903
PAAP (Win et al., 2018) 0.791 0.865 0.780 0.585 NA
AHTpin_AAC (Kumar et al., 2015) 0.785 0.777 0.793 0.567 NA
AHTpin_ATC (Kumar et al., 2015) 0.785 0.783 0.787 0.573 NA
Our ensemble 0.858 0.832 0.885 0.718 0.926

TABLE 4 | Performance evaluation of the proposed method using independence
testing dataset.

Method ACC Sn Sp MCC AUC

CNN + SVM (Rauf et al., 2021) 0.895 0.948 0.841 0.795 0.895
mAHTPred (Manavalan et al., 2019) 0.883 0.894 0.873 0.767 0.951
PAAP (Win et al., 2018) NA NA NA NA NA
AHTpin_AAC (Kumar et al., 2015) 0.800 0.821 0.780 0.601 0.852
AHTpin_ATC (Kumar et al., 2015) 0.820 0.798 0.842 0.641 0.888
Our ensemble 0.904 0.920 0.889 0.809 0.965
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explaining the output of any machine learning model. It
correlates optimal credit allocation with local explanations by
using classic Shapley values (Lundberg and Lee 2017). Since it
averages the marginal contributions across all permutations,
the performance of SHAP is notably more consistent than that
of the information gain technique. The SHAP summary plot
in Figure 7C is somewhat consistent with the information
gain-based importance plot, which shows that comF2 was the
most significant feature, followed by Pse_SC13 and QSO35.
According to the SHAP plot, the comF2 feature had an effect
on the likelihoods for a larger model sample. Every dot in the
SHAP plot represents a sample from the data. For each
sample, the color of the corresponding dot refers to the
value of the associated feature. The x-axis represents the
feature’s influence on the model’s prediction. The high
spread of comF2 indicates that it could capture and
provide more useful information to the model to predict/
identify the classes. Moreover, the partial dependence plot
(PDP) of comF2 presents the impact of this feature on the
predicted outcome, as shown in Figure 7D, allowing for a
better understanding of the feature’s interdependence with
the target class (AHTP). According to the comF2 PDP
illustrated in Figure 7D, the higher the value of the comF2
feature is, the higher the chance of the sample being classified
into the AHTP class by the model (comF2 greater than two
likelihoods of being in the AHTP class). Additionally,
Figure 7E depicts the distribution of the top six features. A
substantial distribution difference was observed between the
AHTP and non-AHTP classes in the histogram of the comF2
feature. However, some overlap occurred between the two

classes’ territories. The functionality of comF2 can be
enhanced, resulting in an increase in prediction performance.

Comparison With Existing Prediction
Methods
To evaluate the performance of the proposedmethod, we used the
benchmarking dataset and the independence testing dataset (as
shown in Tables 3, 4, respectively), and then we compared and
evaluated our ensemble method with the available prediction
tools based on the results reported in (Manavalan et al., 2019;
Rauf et al., 2021). As shown in Table 3, our technique achieved
85.8% accuracy on the benchmarking dataset or training dataset,
outperforming most of the other methods. However, while the
CNN + SVM technique surpassed our ensemble for the training
dataset, our ensemble performed substantially better on the
independent dataset.

When testing was performed on the independent data,
accuracies of 90.4% were achieved, as shown in Table 4,
and our method significantly outperformed the other
methods.

Performance Evaluation of Our Model With
Novel Antihypertensive Peptides From
Recent Studies
Novel AHTPs derived from food or natural sources are
receiving significant attention. Therefore, an increasing
number of food-derived or natural sources AHTPs have
been researched and reported. To further assess the

TABLE 5 | Performance evaluation of the proposed method using recently reported novel AHTPs.

Peptide sequence IC50 Source References Correctly identify by
our method (Yes/No)

YLYELR 9.37 μM Scorpion venom Setayesh-Mehr et al. (2021) Yes
AFPYYGHHLG 17.22 μM Scorpion venom Setayesh-Mehr et al. (2021) Yes
LVLPGE 13.5 μM Broccoli protein Pei et al. (2021) Yes
IPPAYTK 23.5 μM Broccoli protein Dang et al. (2019) Yes
LVLPGELAK 184 μM Broccoli protein Dang et al. (2019) Yes
TFQGPPHGIQVER 3.4 μM Broccoli protein Dang et al. (2019) Yes
LIIPQH 120.1 μM Rice wine lees He et al. (2021) Yes
LIPPEH 60.49 μM Rice wine lees He et al. (2021) Yes
QTDEYGNPPR 210.03 μM Black tea Lu et al. (2021) Yes
AGFAGDDAPR 178.91 μM Black tea Lu et al. (2021) No
IDESLR 196.31 μM Black tea Lu et al. (2021) No
IQDKEGIPPDQQR 121.11 μM Black tea Lu et al. (2021) Yes
DAFGSFLYEYSE - Ricotta cheese Pontonio et al. (2021) No
RHPYFYAPELLYYANK - Ricotta cheese Pontonio et al. (2021) Yes
VERGRRITSV 6.82 μM Walnut Glutelin-1 Wang et al. (2021) No
FVIEPNITPA 6.36 μM Walnut Glutelin-1 Wang et al. (2021) Yes
LSGYGP 2.57 μM Tilapia Chen et al. (2020) Yes
LVPPHA 414.88 μM Radix Astragali Wu et al. (2020) Yes
SAGGYIW 0.002 μM Wheat gluten Zhang et al. (2020) Yes
APATPSFW 0.875 μM Wheat gluten Zhang et al. (2020) Yes
PPNNNPASPDFSSS - Soy protein Daliri et al. (2019) Yes
GPKALPII - Soy Protein Daliri et al. (2019) Yes
IIRCTGC - Soy protein Daliri et al. (2019) No
IGPGPFSR 47.22 μM Mussel lamellidens Ankhi et al. (2022) Yes
FHAPWK 16.83 μM Cassia obtusifolia seeds Shih et al. (2019) Yes
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generalization performance and robustness of the proposed
method on new unseen data, we collected various experimental
AHTPs from recent studies. These published AHTPs have
been validated by in vitro or in vivo experimental assays. The
results are summarized in Table 5. Note that these peptides did
not overlap with our training data. Our ensemble model
correctly classified these novel AHTPs from different
sources with an accuracy of 80%.

CONCLUSION

In this work, an ensemble model with a combination of XGB, RF,
and SVM machine learning algorithms integrated by weighted
voting was developed to achieve improved sensitivity and reduce
the false positive rate in terms of predicting AHTPs. A new
composite feature for AHTPs, comF2, was proposed and
incorporated to improve the sensitivity of the developed
method. The components of the comF2 feature were selected
by a machine learning process based solely on a single training
dataset (benchmarking dataset). However, we hypothesize that
this new feature can be improved and adjusted to be more
sensitive by combining novel knowledge or the information
contained in the structure-function relationships (structure-
activity relationships) of AHTPs reported in recent studies or
by experts/biologists in the field. This knowledge can be expanded
by incorporating more recent information or new significant
features found in the future to further improve the proposed
approach.

Currently, deep learning (DL) has become very prominence
because of its ability to identify patterns in large volumes of raw
data (scalability) and its ability in perform automatic feature
extraction from raw data (feature encoding/learning). However,
DL does not have an explicit feature engineering step because it
has automated feature extraction. We are interested in feature
engineering, extraction, and selection; therefore, we apply
machine learning, including DL-related algorithms so called

neural nets. We exploited various features that are more
explainable in terms of biological meaning, and we tried to
capture an explainable relationship in the hybrid feature that
may be an advantage in AHTP design in the future. We used the
ensemble method, which is well-known to ensure generalization
and to reduce the problem of overfitting of individual models. For
precision of classification tools, both positive and negative dataset
are important for model training. Availability of experimentally
validated negative datasets, particularly sequences with similar
amino acid compositions to those of AHTPs, will be beneficial for
further improvement. Moreover, additional negative datasets
containing other classes of peptides, for example, antioxidant,
antimicrobial, and anticancer peptides and neuropeptides, which
have been experimentally confirmed for their activities and do not
show any antihypertensive activity will be more advantageous. To
make this tool more useful, implementation as a webserver will be
more accessible to bioactive peptide research communities.
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Inter-Residue Distance Prediction
From Duet Deep Learning Models
Huiling Zhang1,2, Ying Huang1,2, Zhendong Bei1,2, Zhen Ju1,2, Jintao Meng1,2, Min Hao3,
Jingjing Zhang1,2, Haiping Zhang2 and Wenhui Xi1,2*

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2University of Chinese Academy
of Sciences, Beijing, China, 3College of Electronic and Information Engineering, Southwest University, Chongqing, China

Residue distance prediction from the sequence is critical for many biological applications
such as protein structure reconstruction, protein–protein interaction prediction, and
protein design. However, prediction of fine-grained distances between residues with
long sequence separations still remains challenging. In this study, we propose DuetDis, a
method based on duet feature sets and deep residual network with squeeze-and-
excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the
ability to learn and fuse features directly or indirectly extracted from the whole-
genome/metagenomic databases and, therefore, minimize the information loss through
ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely
used peer methods on a large-scale test set (610 proteins chains). The experimental
results suggest that 1) prediction results from different feature sets show obvious
differences; 2) ensembling different feature sets can improve the prediction
performance; 3) high-quality multiple sequence alignment (MSA) used for both training
and testing can greatly improve the prediction performance; and 4) DuetDis is more
accurate than peer methods for the overall prediction, more reliable in terms of model
prediction score, and more robust against shallow multiple sequence alignment (MSA).

Keywords: residue distance prediction, protein structure reconstruction, deep learning, residual network, multiple
sequence alignment

INTRODUCTION

Knowing the structure of a protein helps to understand the role of the protein, reveals how the
protein performs its biological function, and also, sets the foundation for the protein’s interaction
with other molecules. Therefore, the knowledge of a protein’s structure is very important for biology
as well as for medicine and pharmacy. Since Anfinsen suggested that the advanced spatial structure of
a protein is determined by its amino acid sequence (Anfinsen, 1973), it has been a “holy grail” for the
computational biology community to develop an algorithm that can accurately predict a protein’s
structure from its amino acid sequence. Sequence-based residue contact/distance prediction plays a
crucial role in protein structure reconstruction.

Residue–residue contacts refer to the residue pairs that are close within a specific distance
threshold in the three-dimensional protein structure. The contact map of a protein tells the
constraints between residues in a binary form. Unlike the contact map, the distance map of a
protein contains fine-grained information and, thus, provides more physical constraints of a protein
structure. Protein contact/distance maps are 2D representations of the 3D protein structure and are
being considered as one of the most important components in modern protein structure prediction
packages. The application of predicted contacts/distances has been extended to intrinsic disorder
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region recognition (Schlessinger et al., 2007; Shimomura et al.,
2019), protein–protein interaction prediction (Vangone and
Bonvin, 2015; Du et al., 2016; Cong et al., 2019), protein
design (Anishchenko et al., 2021), etc.

Contact predictionmethods in the early stage are mainly based
on mutual information (MI) (Pollock and Taylor, 1997; Dunn
et al., 2007; Lee and Kim, 2009), integer linear programming
(ILP) techniques (McAllister and Floudas, 2008; Rajgaria et al.,
2009; Rajgaria et al., 2010; Wei and Floudas, 2011), traditional
machine learning (ML) algorithms (Cheng and Baldi, 2007; Wu
and Zhang, 2008; Tegge et al., 2009), or techniques combining
ILP with ML (Wang and Xu, 2013; Zhang et al., 2016). These
methods are generally considered as local strategies since a
residue pair is treated statistically independent of others
(Zhang et al., 2020). Breakthroughs were achieved by
capturing the correlated pattern of coevolved residues by
global statistical inference methods such as direct coupling
analysis (DCA) (Weigt et al., 2009) and sparse inverse
covariance estimation (PSICOV) (Jones et al., 2012). Methods
developed based on the ideas of DCA include EVfold (mfDCA)
(Morcos et al., 2011), plmDCA (Ekeberg et al., 2013), GREMLIN
(Kamisetty et al., 2013), CCMpred (Seemayer et al., 2014), gDCA
(Baldassi et al., 2014), and Freecontact (Kaján et al., 2014). These
methods emphasize the importance of distinguishing between
directly and indirectly correlated residues. Consensus-predictors
like PconsC (Skwark et al., 2013), MetaPSICOV (Jones et al.,
2014), and NeBcon (He et al., 2017) combine the output of
different DCA-based or ML-based contact predictors to create
consensus predictions. In recent years, the introduction of deep
learning (DL) techniques has made tremendous progress for
residue contact prediction. The DL-based contact map
prediction algorithms are mainly based on convolutional
neural networks (CNN) (such as DeepCov (Jones and
Kandathil, 2018), DeepContact (Liu et al., 2018), and
DNCON2 (Adhikari et al., 2018)), Unet [such as PconsC4
(Michel et al., 2019)], residual networks (ResNet) [such as
DeepConPred2 (Ding et al., 2018), ResPRE (Li et al., 2019),
MapPred (Wu et al., 2020) and TripletRes (Li et al., 2021)],
ResNet combined with long short-termmemory (LSTM) [such as
SPOT-Contact (Hanson et al., 2018)] and transformers [such as
ESM (Malinin and Gales, 2021) and SPOT-Contact-LM (Singh
et al., 2022)]. COMTOP (Reza et al., 2021) uses the mixed ILP
technique to combine different contact predictors (including
several DL predictors) to further improve the prediction
performance.

Although the predicted contacts have been successfully
applied to the protein structure prediction packages (Marks
et al., 2012; Michel et al., 2014; Adhikari et al., 2015; Gao
et al., 2019), contact maps are still insufficient for accurate
structure prediction. The reason is twofold. Most contact
prediction methods use a cutoff of 8�A between Cβ-Cβ atoms
to determine whether two residues are in contact or not, resulting
a contact/non-contact ratio of less than 0.1 for globular proteins
and a ratio of around 0.02 for alpha-helical transmembrane
proteins (Zhang et al., 2016). The definition of contacts means
that the native distance information is insufficiently being
distinguished. Furthermore, contact-assisted conformation

sampling may be misguided by several wrongly predicted
contacts and needs a long time to generate good
conformations for large proteins (Xu, 2019). In this context,
inter-residue distance maps are more informative than
residue–residue contact maps since distances are fine-grained
or real numbers, while contacts are binary values.

The methods for inter-residue distance prediction can be
roughly categorized into two groups, those based on multiclass
classification with discrete values and those based on regression
with continuous values. Early distance maps are mainly predicted
from homologous proteins (Aszódi and Taylor, 1996) or from
traditional machine learning techniques (Walsh et al., 2009; Zhao
and Xu, 2012; Kukic et al., 2014). The introduction of deep
learning technology has injected new life into distance prediction.
Wang et al. (2017) pioneered the study of introducing residual
network to multiclass distance prediction. The success of this
approach can be partially attributed to the ability of deep learning
to simultaneously consider the global set of pair-wise interactions
instead of considering only one interaction at a time, thereby
leading to more accurate discrimination between direct and
indirect contacts. TripletRes (Li et al., 2021), which uses a
similar deep learning architecture but with a unique set of
features that include multiple coevolutionary coupling matrices
directly deduced from deep multiple sequence alignment (MSA)
without post-processing. GANProDist (Ding and Gong, 2020)
predicts real value distance as a regression problem by generative
adversarial network. PDNET (Adhikari, 2020), DeepDist (Wu
et al., 2021), SDP (Rahman et al., 2022), and Li et al. (2021) (Li
and Xu, 2021) predict both real-valued and binned distances from
residual networks. DL-based distance prediction has recently
demonstrated unprecedented ability to assist protein structure
reconstruction such as DMPFold (Greener et al., 2019), RaptorX
(Xu, 2019), trRosetta (Yang et al., 2020), and AlhpaFold (Senior
et al., 2020). However, further progress needs more accurate
inter-residue distance prediction since the quality of a predicted
protein structure highly depends on the accuracy of the distance
prediction.

Shimomura et al. (2019) introduced a technique for predicting
structurally disordered regions in proteins through average
distance maps (AMD) based on statistics of average distances
between residues. AMD first divides the residue pairs into
different ranges according to their sequence separations, and
calculates the distances of residue pairs within each range. AMD
contact density maps were plotted against distance thresholds in
different ranges. AMD technology detects the boundaries of
structurally compact regions and finally predicts structurally
disordered regions by calculating differences in density maps.
The accuracy of AMD technology is comparable to the leading
methods in the CASP competition such as PrDOS, DISOPRED,
and Biomine. Protein domains are subunits that can fold and
function independently. Therefore, correct domain boundary
assignment is a critical step to achieve accurate protein
structure and function analysis. Zheng et al. (2020) proposed
FUPred to detect protein domains based on contact maps
predicted by deep learning. The core idea of this method is to
retrieve domain boundary locations by maximizing the number
of intra-domain contacts while minimizing the number of inter-
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domain contacts from the contact map. FUpred was tested on a
large-scale dataset consisting of 2,549 proteins and achieved a
Matthews correlation coefficient (MCC) of 0.799 for single
domain and multi-domain classification, which is 19.1%
higher than the best machine learning-based method. For
proteins with discontinuous domains, FUPred domain
boundary detection and normalized domain overlap scores
were 0.788 and 0.521, which were 17.3% and 23.8% higher
than the best peer method. The results demonstrate that
residue contact prediction provides a new way to accurately
detect domains, especially discontinuous multi-domains. Cong
et al. (2019) first compared the contact prediction methods based
on mutual information, evolutionary coupling analysis, and deep
learning in the prediction of residue contacts between protein
complex chains and found that although the deep learning
methods are outstanding for monomer contact prediction,
they fail to outperform methods based on mutual information
and evolutionary coupling analysis in inter-chain contact
prediction. By identifying coevolving residue pairs between
protein chains based on mutual information and evolutionary
coupling analysis methods, 1,618 protein interactions (682 of
which were unexpected) in Escherichia coli, and 911 protein
interactions in M. tuberculosis (most of which were not
identified in previous studies) were detected. The expected
false positive rate for this study is between 10% and 20%, and
the predicted interactions and networks provide a good starting
point for further research. Anishchenko et al. (2021) investigated
whether the residue distance information captured by deep neural
networks is rich enough to generate new folded proteins. The
study generated random amino acid sequences that were
completely unrelated to the sequences of the native proteins
used in the trRosetta training model, and fed them into the
trRosetta structure prediction network to predict the starting
residue distance map. Monte Carlo sampling is then performed in
the amino acid sequence space to optimize the contrast between
the network-predicted distribution of inter-residue distances and
the background distribution averaged across all proteins.
Optimization from different random starting points yields
novel proteins spanning a broad range of sequences and
predicted structures. Synthetic genes encoding 129 of the
‘network-hallucinated’ sequences were obtained, and the
proteins were expressed and purified in E. coli; 27 of the
proteins yielded monodisperse species with circular dichroism
spectra consistent with the hallucinated structures. Three of the
three-dimensional structures of the hallucinated proteins were
determined by experiments, and these closely matched the
hallucinated models. We can see that residue distance-assisted
protein structure prediction methods can be inverted to de novo
protein design.

In this study, we develop a method based on deep residual
convolutional neural network, named DuetDis, to predict the
full-length multiclass distance map from a sequence. DuetDis
uses a modified ResNet module to build the network, and adopts
two sets of complementary feature sets to further improve the
prediction accuracy. The results by DuetDis suggest that
prediction results from different feature sets show obvious
differences and ensembles of different feature sets can improve

the prediction performance. DuetDis is also evaluated together
with 11 widely used contact/distance prediction methods, and the
results show that DuetDis is more accurate for the overall
prediction, more reliable in terms of model prediction score,
and more robust against shallow MSA. DuetDis is available at
http://hpcc.siat.ac.cn/hlzhang/DuetDis/.

MATERIALS AND METHODS

Datasets
The test set is obtained from our previous work, containing
610 highly non-redundant protein chains (Zhang et al., 2021).
The training set is obtained through culling from the whole
PDB with the following criteria: 1) with maximum sequence
identity of 30% against each chain in the training set and test
set; 3) with structure resolutions better than 2.5 Å; 4) released
before 1 May 2018 (before the beginning of CASP13). Finally,
we get a non-redundant training set with 13,069 protein
chains.

Definition of Contact and Distance
In this study, the definition of contacts is directly taken from
the CASP experiments. A pair of residues in the experimental
structure is considered to be in contact if the distance
between their Cβ atoms (Cɑ for Gly) is less than or equal
to 8 Å. For direct comparison, the multiclass distance
definition is taken directly from trRosetta (Adhikari,
2020). The Cβ–Cβ distance of every pair of residues in a
target protein is treated as a vector of probabilities. The
distance range (2–20 Å) is binned into 36 equally spaced
segments, 0.5 Å each, and one bin indicating that residues are
not in contact, generating a distance vector of 37 bins for each
residue pair.

Depending on the separation of two residues along the
sequence (seq_sep), the contacts are classified into four classes:
all-range (seq_sep ≥6), short-range (6≤ seq_sep <12), medium-
range (12≤ seq_sep <24), and long-range (seq_sep >24).

Multiple Sequence Alignment Generation
for Training and Test
Generating high-quality MSA is the first step for protein
structure prediction based on the fact that interacting
residue pairs are under evolutionary pressure to maintain
the structure. The MSA used for model training is obtained
as indicated in Figure 1. The target sequence in the training set
is searched against NCBI-nr (Jackhmmer), MetaClust
(Jackhmmer), and BFD (HHblits) respectively, with E-
values of 1e−10 and 1e−3. The search will stop if the target
MSA has Nseq> 25*L (L is the sequence length) and Neff > 8*L,
where Nseq is the number of sequences (with sequence coverage
>50%) and Neff [defined in (Zhang et al., 2021)] is the number
of effective sequences in the MSA. After the search, the final
MSA is obtained through sequence clustering (with sequence
identity of 95%) using our in-house software nGIA (Ju et al.,
2021).
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The MSA used for testing is obtained through searching
JackHMMER (Johnson et al., 2010) against the NCBI-nr
database with iteration = 3 and E-value = 0.0001.

Input Features
We used two subsets of features as the inputs for the deep residual
network of DuetDis. The first feature set contains 526 feature

channels: one-hot-encoder of the target sequence (1D features,
20*2 channels); position-specific frequency matrix (1D features,
21*2 channels, considering gap) and positional entropy (Yang
et al., 2020) (1D features, 1*2 channels); and coupling features
(Yang et al., 2020) (2D features, 441 channels) derived from the
inverse of the shrunk covariance matrix of MSA. The second
feature set contains 151 feature channels: one-hot-encoder of the

FIGURE 1 | The flowchart of MSA generation for the training set.
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target sequence (1D features, 20*2 channels), position-specific
scoring matrix (Altschul et al., 1997) (1D features; 20*2 channels;
not considering gap), HMM profile (Remmert et al., 2012) (1D
features, 30*2 channels), secondary structure from SPOT-1D
(Hanson et al., 2019) (1D features, 3*2 channels), solvent
accessible surface area from SPOT-1D (Hanson et al., 2019)
(1D features, 1*2 channels), CCMPRED score (Seemayer et al.,
2014) (2D features, 1 channel), mutual information (Zhang et al.,
2022) (2D feature, 1 channel), and statistical pair-wise contact
potential (Betancourt and Thirumalai, 1999) (2D feature, 1

channel). The first feature set, indicated as FeatSet1, is mainly
composed of 2D direct coupling features (441 out of 526 total
features) from the MSA, while the second feature set, indicated as
FeatSet2, is mainly composed of 1D sequence-based features (148
out of 151 total features). Most of the features except the one-hot-
encoder features in FeatSet1 and FeatSet2 are different, so the
prediction results from the two feature sets can be
complementary in a duet way (as indicated in the results).

Both FeatSet1 and FeatSet2 are widely used by previous works
(Hanson et al., 2018; Yang et al., 2020; Jain et al., 2021; Su et al.,

FIGURE 2 | The network architecture used in this work. (A) The network used by DuetDis; (B) the reference network; (C) basic modules used in the networks;
dilated convolution.
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2021), showing their great efficacy in contact/distance prediction.
The aim of DuetDis is not to design new feature types, but to
evaluate the performance of previously widely used feature sets
under the situation of unified input and identical network, as well
to study how to complement the advantages of different types of
features for better prediction performance.

Deep Network Architectures and Model
Training for Distance Prediction
The proposed method DuetDis implements residual neural
networks (ResNet) (He et al., 2016) as the deep learning model.
Compared to traditional convolutional networks, ResNet adds
feedforward neural networks to an identity map of input, which
helps enable the efficient training of extremely deep neural
networks. ResNet has shown its power in successful residue
contact/distance prediction (Xu, 2019; Li et al., 2021). The deep
residual network of DuetDis is shown in Figure 2A. The basic
module of DuetDis network is a combination of squeeze-and-
excitation and ResNet (SEResNet). The DuetDis network is
composed of 33 SEResNet modules. In order to observe the
impact of different networks and features on the prediction
performance, we also designed another reference network
(Figure 2B), which has very different basic modules and
backbones from Figure 2A. The reference network is composed
of 16 Res2Net modules. In this work, both SEResNet and Res2Net
use dilation convolutions, while SEResNet use gelu and Res2Net
use relu as the activation functions. The networks in Figures 2A
and B are indicated as Net1 and Net2, respectively. The final MSA
obtained in Figure 1 is indicated asMSA_All, and a subset with top
10 L sequences (ranked with sequence identity against the target
sequence) selected from MSA_All is indicated as MSA_Top, and
two disjoint subsets with each containing 10 L sequences randomly
selected from MSA_All are indicated as MSA_1 and MSA_2,
respectively. As described in Table 1, 10 sub-models are trained
based on Net1 (the DuetDis network) and Net2 (the reference
network) with different feature sets from different MSAs. “MSA
Shuffle” in Table 1 means that the MSA are constructed through
randomly selecting 10 L sequences in MSA_All. For each epoch,
N1_M1/N2_M1 are trained through “MSA Shuffle” strategy,
N1_M2/N1_M3/N2_M2/N2_M3 are trained with MSA_Top,
N1_M4/N2_M4 are trained with MSA_1, and N1_M5/N2_M5

are trained with MSA_2. The outputs of five sub-models are
averaged to produce the final distance map, indicated as
“DuetAverage” in Figures 2A,B.

The sub-models are generated by independent training
branches. AdamW optimizer is performed with an initial
learning rate of 0.0001 (multi-step decay is adopted as the
learning rate decay strategy). Cross-entropy is used as the loss-
function, and L2 regularization is used during the training process
to correct overfitting. The training set is split into two parts: 600
protein chains are used as the validation set and the rest are used
for training. The precision of top-L long-range contact
predictions (multiclass distance map is converted to the binary
contact map according to the definition in Section 2.2) on the
validation dataset is calculated at each epoch, and the training
process will stop when there is no update of the validation
precision for 10 epochs. The training processes are
implemented in Pytorch on TeslaV100 SMX2, and each
independent training generally takes 5–10 days.

Evaluation Metrics
1) The predicted distance map is a matrix of probability

estimates. We analyze the performance of predictors on
reduced lists of distances/contacts (sorted by the
probability estimates) selected by either the probability
threshold or the top-L/n (L is the sequence length, and n =
1, 2, 5) criteria. The prediction performance is assessed using
precision (accuracy in some references), coverage (recall in
some references), and Matthew’s Correlation Coefficient
(MCC), defined as follows:

Precision � TP

TP + FP
, (1)

Coverage � TP

TP + FN
, (2)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (3)

where TP, FP, TN, and FN are the number of true positive, false
positive, true negative, and false negative contacts, respectively.

2) Standard deviation reflects the degree of dispersion among
individuals within the group, which is defined as

STD �
��������������
1
N

∑N

i�1(xi − �x)2
√

, (4)

where �x is the mean of the variable x. The standard deviation can
be used to evaluate the dispersion of Precision, Coverage,
and MCC.

3) Jaccard index (Jaccard similarity coefficient) measures the
similarities between sets. It is defined as the size of the
intersection divided by the size of the union of two sets.

J(X,Y) � |X ∩ Y|/|X ∪ Y|, (5)
where X and Y are the set of predicted contacts from two different
predictors, |X ∩ Y| is the number of elements in the intersection
of X and Y and the |X ∪ Y| represents the number of elements in

TABLE 1 | The strategies used for the training of sub-models (N1_M1/N1_M2/
N1_M3/N1_M4/N1_M5 are used for DuetDis).

Sub-models Network Feature set MSA MSA shuffle

N1_M1 Net1 FeatSet1 MSA_All Yes
N1_M2 Net1 FeatSet1 MSA_Top No
N1_M3 Net1 FeatSet2 MSA_Top No
N1_M4 Net1 FeatSet2 MSA_1 No
N1_M5 Net1 FeatSet2 MSA_2 No
N2_M1 Net2 FeatSet1 MSA_All Yes
N2_M2 Net2 FeatSet1 MSA_Top No
N2_M3 Net2 FeatSet2 MSA_Top No
N2_M4 Net2 FeatSet2 MSA_1 No
N2_M5 Net2 FeatSet2 MSA_2 No
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the union of X and Y. The Jaccard index has values in the range of
[0,1], with the value of 0 for completely dissimilar ones and 1 for
identical predictors.

RESULTS

In this section, we assess the performance of DuetDis from
different perspectives. Section 3.1, 3.2 study the performance
of sub-models, while Section 3.3–3.5 focus on the comparison
between DuetDis and peer methods. The peer methods used in
this work are 4 DCA-based contact predictors (EVfold,
FreeContact, gDCA, and CCMpred), 4 DL-based contact
predictors (DeepCov, PconsC4, DNCON2, and SPOT-

Contact), and 3 DL-based distance predictors (TripletRes,
trRosetta, and RaptorX). Section 3.1–3.3 and Section 3.5 use
the results of top-L/n (n = 1, 2, 5) predictions, while Section 3.4
considers the results given by specific probability/score threshold.
All sub-models and peer-methods use the same MSA as input.

Prediction Results From Different Feature
Sets Show Obvious Differences
We use the Jaccard indices of prediction results from 10 sub-
models (as described in Table 1) to study their prediction
similarities. Figure 3 shows the dendrogram heatmap of
Jaccard indices using Ward’s hierarchical clustering method on
the independent test set. The Jaccard index between two methods

FIGURE 3 | Prediction similarities between different sub-models for (A) all-range, (B) short-range, (C) mid-range, and (D) long-range contacts/distances.
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is calculated by averaging the Jaccard index value of each protein
on the whole test set. According to the clustering results, these
10 sub-models can be roughly divided into two categories, and
each category contains two sub-categories. N1_M1/ N1_M2 and
N2_M1/ N2_M2 trained by FeatSet1 are clustered into one
category (Category_1), while N1_M3/ N1_M4/ N1_M5 and
N2_M3/ N2_M4/ N2_M5 trained by FeatSet2 form another
category (Category_2). N1_M1/ N1_M2 trained by Net1 and
N2_M1/ N2_M1 trained by Net2 form two sub-categories in
Category_1, while N1_M3/ N1_M4/ N1_M5 trained by Net1 and
N2_M3/ N2_M4/ N2_M5 trained by Net2 form two sub-
categories in Category_2. So, we can draw the conclusion that
prediction results from different feature sets show obvious
differences, and the conclusion is true for all-range, short-
range, mid-range, and long-range contacts/distances. The
feature set decides the similarity between models for typical
architectures of networks.

Ensembling Different Feature Sets
Improves Prediction Performance
The prediction accuracies of N1_M1/ N1_M2/ N1_M3/ N1_M4/
N1_M5/ N1_Ensemble (obtained by averaging the five Net1 sub-
models) and N2_M1/ N2_M2/ N2_M3/ N2_M4/ N2_M5/
N2_Ensemble (obtained by averaging the five Net2 sub-
models) are listed in Tables 2, 3, respectively.

As we can see from Table 2, N1_M1 trained through randomly
shufflingMSA_All can obtain the best performance, which is 1.8%/
0.3%/ 0.9%/ 1.8%, 2.8%/ 0.1%/ 0.9%/ 3.0%, 5.1%/ 1%/ 2.1%/ 5.5%,
and 4.5%/ 0.1%/ 2.1%/ 5% higher than N2_M2/ N2_M3/ N2_M4/
N2_M5 for top-L all-/ short-/ medium-/ long-range predictions.

Although using the same network and feature set, N1_M1 shows
superior prediction precisions than N1_M2, implying that
randomly shuffling MSA_All in each epoch enables
augmentation of the training set and thus, a better model can
be obtained. N1_M3 uses the same network and feature set as
N1_M4 and N1_M5, but the prediction precisions of N1_M3 are
higher thanN1_M4 andN1_M5, indicating that high-qualityMSA
used for training helps to boost the model performance.
N1_Ensemble outperforms the individual sub-models N1_M1/
N1_M2/ N1_M3/ N1_M4/ N1_M5 by 1.3%/ 3.1%/ 4.0%/ 6.4%/
5.8%, 0.3%/ 0.6%/ 0.4%/ 1.6%/ 0.4%, 0.3%/ 1.2%/ 1.2%/ 2.3%/ 1.7%,
and 1.7%/ 3.5%/ 4.8%/ 7.2%/ 6.7% for top-L all-/ short-/ medium-/
long-range predictions, suggesting that ensembles of models
trained on different feature sets can improve the overall
prediction performance. Similar phenomenon can be observed
and consistent conclusions can be drawn from the results in
Table 3.

The Overall Performance of DuetDis
The prediction precisions of all-/ short-/ medium-/ long-range
contacts for DuetDis and other 11 peer methods on the
independent test set are shown in Figure 4. In general, DL
methods, which can capture the higher-order residue
correlations and use nonlinear models with fewer parameters
to be estimated from thousands of protein families (Rajgaria et al.,
2010), significantly outperform DCA methods. Specifically,
DuetDis shows the best overall performance. Compared with
DeepCov/ PconsC4/ DNCON2/ SPOT/ TripletRes/ trRosetta/
RaptorX, DuetDis obtains 22.1%/ 18.8%/ 17.2%/ 3.5%/ 6.3%/
3.8%/ 2.4%, 5.2%/ 5.2%/ 3.9%/ 1.0%/ 1.4%/ 0.8%/ 2.2%, 8.7%/
7.5%/ 6.2%/ 1.4%/ 1.8%/ 1.4%/ 1.4%, and 2.4%/ 1.9%/ 3.8%/

TABLE 2 | The prediction precisions of N1_M1/N1_M2/N1_M3/N1_M4/N1_M5/
N1_Ensemble for different sequence separations.

Range Method Top-L Top-L/2 Top-L/5

All N1_M1 0.7769 0.8717 0.9206
N1_M2 0.7587 0.8475 0.8941
N1_M3 0.7491 0.846 0.9027
N1_M4 0.7256 0.8266 0.8888
N1_M5 0.7319 0.8328 0.8942
N1_Ensemble 0.7896 0.8786 0.9266

Short N1_M1 0.2955 0.481 0.7389
N1_M2 0.2928 0.4754 0.7287
N1_M3 0.2948 0.4757 0.7374
N1_M4 0.2824 0.4588 0.7109
N1_M5 0.2947 0.473 0.7219
N1_Ensemble 0.2988 0.4918 0.7633

Medium N1_M1 0.3512 0.5477 0.7725
N1_M2 0.3422 0.5336 0.7514
N1_M3 0.342 0.5329 0.7533
N1_M4 0.3306 0.5135 0.7275
N1_M5 0.3371 0.5209 0.7352
N1_Ensemble 0.3537 0.5592 0.7895

Long N1_M1 0.6245 0.7696 0.865
N1_M2 0.6062 0.7411 0.8273
N1_M3 0.594 0.7308 0.8246
N1_M4 0.5695 0.7091 0.8088
N1_M5 0.5742 0.712 0.8121
N1_Ensemble 0.6416 0.7797 0.8626

TABLE 3 | The prediction precisions of N2_M1/N2_M2/N2_M3/N2_M4/N2_M5/
N2_Ensemble for different sequence separations. -80

Range Method Top-L Top-L/2 Top-L/5

All N2_M1 0.7532 0.8562 0.9103
N2_M2 0.7435 0.839 0.8938
N2_M3 0.7148 0.8188 0.8828
N2_M4 0.7091 0.8119 0.8768
N2_M5 0.7071 0.8121 0.879
N2_Ensemble 0.7590 0.8579 0.9153

Short N2_M1 0.2864 0.4654 0.7172
N2_M2 0.2901 0.4647 0.71
N2_M3 0.2852 0.4583 0.7014
N2_M4 0.2831 0.4547 0.6982
N2_M5 0.2825 0.4548 0.7002
N2_Ensemble 0.3449 0.5396 0.7367

Medium N2_M1 0.3413 0.5325 0.755
N2_M2 0.3428 0.5267 0.7395
N2_M3 0.3298 0.5082 0.7206
N2_M4 0.3281 0.5042 0.7152
N2_M5 0.3283 0.5057 0.7159
N2_Ensemble 0.3449 0.5396 0.7602

Long N2_M1 0.6035 0.746 0.8473
N2_M2 0.5997 0.7361 0.828
N2_M3 0.5638 0.7022 0.8066
N2_M4 0.5525 0.6877 0.7913
N2_M5 0.5548 0.6917 0.7941
N2_Ensemble 0.6136 0.7508 0.8473
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6.2%/ 3.8%/ 1.8% higher precisions for all-range, short-range,
medium-range, and long-range top-L predictions, as well as
12.5%/ 13.3%/ 9.5%/ 1.9%/ 4.2%/ 2.7%/ 1.9%, and 17.6%/ 16.3%/
13.1%/ 2.6%/ 6.6%/ 4.3%/ 3.4% higher precisions for all-range, short-
range, medium-range, and long-range top-L/5 predictions,
respectively. The better performance of DuetDis is probably due
to the high-quality MSAs used for training, the delicately designed
deep residual network, and the effective integration of different
features.

DuetDis Embraces High Model Reliability in
Terms of Prediction Score
The confidence of the probability (score) given by a DCA or DL
model can greatly reflect the reliability of the corresponding model.
The prediction probabilities (scores) given by EVfold, FreeContact,

gDCA, CCMpred, DeepCov, PconsC4, DNCON2, SPOT,
TripletRes, trRosetta, RaptorX, and DuetDis are distributed at
(0.000,1.309), (−2.537,17.931), (−1.243, 6.564), (0.000, 5.270), (0.0,
1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), and
(0.0, 1.0), respectively. For machine learning (both traditional and
deep learning) applications, people usually use 0.5 as a threshold for
classification. However, the threshold may be inaccurate for a
complex problem like contact/distance prediction. Therefore,
studying the scoring trend and the reliability of the model is of
great benefit to understand the model performance.

Figure 5 illustrates the prediction performance in terms of
precision/ coverage/ MCC with the increase in probability (score)
threshold given by DuetDis and the peer methods. With the
increase of the probability (score) threshold, the prediction
coverages decrease monotonically for all methods. As the
threshold increases, their precision curves go down at some

FIGURE 4 | The overall prediction precisions for (A) all-range, (B) short-range, (C) medium-range, and (D) long-range contacts/distances.
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probability (score) value. The prediction precisions of all DL
methods (DeepCov/ PconsC4/ DNCON2/ SPOT/ TripletRes/
trRosetta/ RaptorX) increase monotonically with the
probability (score) threshold. However, the precision curves of
DCA methods (EVfold/ FreeContact/ gDCA/ CCMpred) show
turning points at some probability (score) values. Meanwhile,
DCA methods also show much larger STDs on precisions and
relatively lower coverages/MCCs compared with DL methods.
The numbers under the precision curve in Figure 4 are the
numbers of proteins with predictions returned using the
corresponding probability (score) threshold on the x-axis. It is

obvious that, as the probability (score) threshold increases, there
are more proteins being predicted by DL methods than by DCA
methods. Specifically, DuetDis achieves prediction precisions/
coverages/ MCCs of 98.1%/ 15.0%/ 0.352 (calculated on the 523
proteins with prediction scores higher than 0.95) at the (score)
threshold of 0.95, which are higher than that by DeepCov (94.7%/
7.4%/ 0.240: 431 proteins), PconsC4 (96.3%/ 6.5%/ 0.228: 448
proteins), DNCON2 (96.8%/ 4.4%/ 0.173: 396 proteins), SPOT
(97.5%/ 12.3%/ 0.318: 544 proteins), TripletRes (93.0%/ 19.6%/
0.399: 557 proteins), trRosetta (96.5%/ 9.4%/ 0.276: 513 proteins),
and RaptorX (97.2%/ 14.5%/ 0.352: 497 proteins). In summary,

FIGURE 5 | Prediction performance in terms of precision, coverage, MCC, and the corresponding standard deviation (the shaded area around the curves) with the
increasing probability (score) threshold given by the predictors. The numbers under the precision curve (blue) are the numbers of proteins with predictions returned using
the corresponding (score) threshold on the x-axis.
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DuetDis shows higher reliability in model probability (score)
compared with peer methods.

DuetDis Is Robust Against Shallow Multiple
Sequence Alignment
Coevolutionary coupling signals extracted fromMSA play central
role in most modern contact/distance prediction methods. In this
study, the independent test set is divided into six groups
according to Neff (<5, 5–0.2 L, 0.2 L–L, L–5 L, 5–8 L, and
>8 L). The performance of different methods on these sub-
groups of the test set is shown in Figure 6. DuetDis achieves
prediction precisions of 64.4% for Neff <5, 85.1% for Nef = 5–0.2 L
(2.5% higher than the second), 92.5% for Neff = 0.2 L–L (0.5%
higher than the second), 97.5% for Neff = L–5 L (0.8% higher than
the second), 96.9% forNeff = 5–8 L (0.2% higher than the second),
and 95.6% for Neff = 5–8 L (0.9% higher than the second). For Neff

<5 L, DuetDis ranks the second in prediction precision; while for
Neff = 5–0.2 L, 0.2 L–L, L–5 L, 5–8 L and >8 L, DuetDis is in the
leading position of prediction precision. For Neff <5 L, PconsC4
shows a STD of 0.125 which is smaller than DuetDis, however, the
smaller STD is because of lower overall precision by PconsC4 (the
average prediction precisions are 8.7% for PconsC4 and 64.4% for
DuetDis). Hence, DuetDis obtains the least STD among all DL
methods for all sub-groups of the test set. In general, DuetDis
shows leading precisions and the smallest STD for most ranges of
Neff, especially highlights its robustness in shallow MSA-based
distance prediction.

CONCLUSION

Proteins are considered as the molecular machines and performmany
important functions of life (Zhang et al., 2017). Knowing the structure
of a protein helps to understand the role of the protein, how the protein
performs its biological function, and the interaction between the
protein and the protein (or other molecules), which is very
important for biology as well as for medicine and pharmacy.
Residue distance prediction from the sequence is critical for many
biological applications such as protein structure reconstruction.
However, prediction of large distances and distances between
residues with long sequence separation length still remains challenging.

In this paper, we propose DuetDis, which uses duet deep learning
models for distance prediction. DuetDis adopts two complementary
feature sets, one set is mainly composed of 2D coevolutionary
couplings, and another set contains mainly 1D sequence-based
features. We trained 10 sub-models using two different networks
(Net1 and Net2), two different sets of features (FeatSet1 and
FeatSet2), and four different MSAs (MSA_All, MSA_Top, MSA_1,
MSA_2). By evaluating 10 sub-models based on the large-scale test set,
we found that: 1) prediction results from different feature sets show
obvious differences; 2) ensembling different feature sets can improve
the prediction performance; and 3) high-quality MSA used for both
training and testing can greatly improve the prediction performance.
DuetDis is also compared with 11 widely used contact/distance
predictors. The experimental results show that DuetDis outperforms
the peer methods in terms of overall prediction precisions, model
reliability, and robustness against shallow MSA.

FIGURE 6 | Prediction precisions of different methods for all-range, top-L, and top-L/5 predictions with the variation ofNeff. The error bar is the standard deviation of
all precisions (for top L/5 predictions) in each sub-test set.
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BBPpredict: A Web Service for
Identifying Blood-Brain Barrier
Penetrating Peptides
Xue Chen1, Qianyue Zhang1, Bowen Li1, Chunying Lu1, Shanshan Yang1, Jinjin Long1,
Bifang He1*, Heng Chen1* and Jian Huang2*

1Medical College, Guizhou University, Guiyang, China, 2School of Life Science and Technology, University of Electronic Science
and Technology of China, Chengdu, China

Blood-brain barrier (BBB) is a major barrier to drug delivery into the brain in the treatment of
central nervous system (CNS) diseases. Blood-brain barrier penetrating peptides (BBPs), a
class of peptides that can cross BBB through various mechanisms without damaging
BBB, are effective drug candidates for CNS diseases. However, identification of BBPs by
experimental methods is time-consuming and laborious. To discover more BBPs as drugs
for CNS disease, it is urgent to develop computational methods that can quickly and
accurately identify BBPs and non-BBPs. In the present study, we created a training
dataset that consists of 326 BBPs derived from previous databases and published
manuscripts and 326 non-BBPs collected from UniProt, to construct a BBP predictor
based on sequence information. We also constructed an independent testing dataset with
99 BBPs and 99 non-BBPs. Multiple machine learning methods were compared based on
the training dataset via a nested cross-validation. The final BBP predictor was constructed
based on the training dataset and the results showed that random forest (RF) method
outperformed other classification algorithms on the training and independent testing
dataset. Compared with previous BBP prediction tools, the RF-based predictor,
named BBPpredict, performs considerably better than state-of-the-art BBP predictors.
BBPpredict is expected to contribute to the discovery of novel BBPs, or at least can be a
useful complement to the existing methods in this area. BBPpredict is freely available at
http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl.

Keywords: blood-brain barrier, random forest (RF), nested cross-validation, computational method, blood-brain
barrier penetrating peptides (BBPs)

1 INTRODUCTION

Blood-brain barrier (BBB) highly protects the central nervous system (CNS) (Nance et al., 2022),
preventing 98% of small molecules and 100% of large molecules from entering the brain (Sánchez-
Navarro et al., 2017). It is the main obstacle for drug delivery into the brain (Banks, 2016). Therefore,
exploring methods for drugs to penetrate BBB is a research hotpot in the development of drugs for
CNS disorders (Terstappen et al., 2021).

Blood-brain barrier penetrating peptides (BBPs) can cross the BBB through various mechanisms
without destroying the integrity of BBB (Van Dorpe et al., 2012; Oller-Salvia et al., 2016). It has been
reported that partial BBPs can transfer drugs into the brain, which provides a new avenue for the
development of drugs for CNS diseases (Zhou et al., 2021). Furthermore, because of their
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characteristics of easy synthesis, satisfactory effect, low toxicity
and wide selectivity (Muttenthaler et al., 2021), BBPs show broad
application prospects as carriers or therapeutic agents for CSN
diseases treatment (Zhou et al., 2021). Nonaka et al. reported that
IF7, an annexin A1-binding peptide, could overcome BBB and
deliver chemotherapeutics to target brain tumors (Nonaka et al.,
2020). Xie and coworkers demonstrated that d-peptide ligand of
angiopep-2 modified nanoprobes could cross BBB and locate
glioma sites (Xie et al., 2021). Lim and collaborators found that
dNP2 peptide could penetrate BBB and deliver ctCTLA-4 protein
to ameliorate autoimmune encephalomyelitis in mouse models
(Lim et al., 2015). Kurzrock and Drappatz et al. showed that
ANG1005 or GRN1005, a conjugate of angiopep-2 and paclitaxel,
has reached clinical study for the treatment of glioma (Kurzrock
et al., 2012; Drappatz et al., 2013).

There have been two BBP databases published to date,
Brainpeps (Van Dorpe et al., 2012) and B3Pdb (Kumar et al.,
2021b), since BBPs became candidates for developing peptide
agents for managing CNS disorders. These studies are
undoubtedly a strong boost to the development of
medications for CNS diseases. However, the discovery of
BBPs by wet-lab experiment is time-consuming and
complex, and only hundreds of BBPs have been identified
experimentally to date. Construction of computational
methods for the identification of BBPs is very valuable for
developing therapeutics for CSN diseases. Machine learning
methods have been successfully applied to the classification of
various peptides, such as cell-penetrating peptides (Wei et al.,
2017a; Wei et al., 2017b; Kumar et al., 2018), antimicrobial
peptides (Bhadra et al., 2018), anticancer peptides (Li and
Wang, 2016). There are also two BBP predictors, BBPpred (Dai
et al., 2021) and B3Pred (Kumar et al., 2021a), have published
successively for identifying BBPs. BBPpred is based on logistic
regression to identify BBPs, while B3Pred uses random forest
(RF) to predict BBPs. Considering the low sample complexity
of these two classifiers, the performance of computational
models for identifying BBPs can be improved.

In this work, we collected more BBPs from existing databases
(Van Dorpe et al., 2012; Kumar et al., 2021b) and published
literatures to construct a new BBP predictor named BBPpredict,
which is an online web service and freely available at http://i.
uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl. By comparing
the results of the nested five-fold cross-validation and
independent testing dataset of various machine learning
predictors, the RF-based model showed the best prediction
performance. Thus, BBPpredict was implemented by using RF.
We expect BBPpredict will help researchers find more
novel BBPs.

2 MATERIALS AND METHODS

2.1 Datasets
In this work, we selected experimentally validated BBPs as
candidate positive samples that were collected from Brainpeps
(Van Dorpe et al., 2012), B3Pdb(Kumar et al., 2021b), public
datasets of BBPpred (Dai et al., 2021) and B3Pred (Kumar et al.,

2021a), and other published literatures from PubMed with query
“(((Brain [Title/Abstract]) OR (blood–brain barrier [Title/
Abstract])) AND peptide [Title/Abstract]) AND (transport
[Title/Abstract] OR transfer [Title/Abstract] OR permeation
[Title/Abstract] OR permeability [Title/Abstract])”, covering
the period 2011–2021. BBPs were then preprocessed as
follows: 1) the repetitive sequences were eliminated; 2) peptide
sequences with ambiguous residues (“X”, “B” and “Z”, etc.) were
deleted (He et al., 2016). Finally, 425 BBPs were remained as
positive samples. We also collected 1,304 non-BBPs that were
obtained by the following three steps: 1) collect initial sequences
from UniProt with the query “peptides length: [5 TO 50] NOT
blood brain barrier NOT brain NOT brainpeps NOT b3pdb NOT
permeation NOT permeability NOT venom NOT toxin NOT
transmembrane NOT transport NOT transfer NOT membrane
NOT neuro NOT hemolysis AND reviewed: yes” (Dai et al.,
2021), 2) remove redundant sequences by using CD-HIT
(sequence identity cut-off of 10%) (Dai et al., 2021), 3)
exclude the peptide sequences with ambiguous residues (“X”,
“B,” and “Z”, etc.).

2.2 Training and Independent Testing
Datasets
To evaluate the performance of our predictor and existing
predictors (BBPpred and B3Pred), 99 BBPs that collected
through published literatures and 99 non-BBPs randomly
selected from candidate negative samples construct an
independent testing dataset that was completely
independent of the training dataset of the three predictor
models (BBPpred, B3Pred and our proposed BBPpredict)
(Table 1). The remaining 326 BBPs were used as the
positive training dataset. To balance the sample size for
training, we randomly selected 326 non-BBPs as the
negative training dataset (Table 1), whose length
distribution is the same as the positive training dataset. All
datasets are available for download from http://i.uestc.edu.cn/
BBPpredict/download.html.

2.3 Feature Extraction
Feature extraction refers to the transformation of peptide
sequences into fixed-length feature vectors, which is an
indispensable step for the construction of predictors. In this
study, we selected five feature encoding methods, including
amino acid composition (AAC), dipeptide composition (DPC),
composition of k-spaced amino acid group pairs (CKSAAGP, k =
3), pseudo-amino acid composition (PAAC) and grouped amino
acid composition (GAAC) to extract the characteristics of peptide
sequence. Here we set the length of a peptide to be N, and all
feature extraction methods are based on 20 natural amino acids

TABLE 1 | List of training dataset and independent testing dataset.

Dataset Number of BBPs Number of Non-BBPs

Training dataset 326 326
Independent testing dataset 99 99
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(i.e., “ACDEFGHIKLMNPQRSTVWY”). Feature extraction was
implemented by an in-house script.

2.3.1 Amino Acid Composition
AAC calculates the frequency of each amino acid in the peptide
sequence (Bhasin and Raghava, 2004). It can be calculated as:

f(i) � N(i)
N

, i ∈ {A,C,D, ...Y} (1)

where N(i) is the number of the amino acid type i.

2.3.2 Dipeptide Composition
DPC gives 400 descriptors (i.e.“AA,AC,AD, . . .YY ”)
(Saravanan and Gautham, 2015). It is defined as:

D(r, s) � Nrs

N − 1
, r, s ∈ {A,C,D, ...Y} (2)

where Nrs is the number of the dipeptide consisting of amino
acids r and s in the peptide sequence.

2.3.3 Grouped Amino Acid Composition
For the GAAC encoding, 20 natural amino acids are firstly
divided into five categories according to their
physicochemical properties: amino acid groups g1
(GAVLMI), g2 (FYW), g3 (KRH), g4 (DE) and g5
(STCPNQ). Group g1 belongs to the aliphatic group, g2
aromatic group, g3 positive charge group, g4 negative
charged group and g5 uncharged group, respectively.
GAAC represents the frequency of each amino acid group
(Lee et al., 2011) and can be described as:

f(g) � N(gi)
N

, i ∈ {g1, g2, g3, g4, g5}
N(gi) � ∑N(i), i ∈ {g1, g2, g3, g4, g5} (3)

whereN(gi) is the number of amino acids in group g, N(i) is the
number of the amino acid type i.

2.3.4 Composition of K-Spaced Amino Acid Group
Pairs
CKSAAGP is based on CKSAAP (Chen et al., 2007a; Chen et al.,
2007b, 2008; Chen et al., 2009) descriptor and GAAC descriptor,
which calculates the frequency of k-spaced group pairs. And the
detailed calculation of CKSAAGP can refer to (Chen et al., 2018).
In this study, we set k as three by default. And when k = 0,
CKSAAGP can be calculated as:

(Ng1g1

Ntotal
,
Ng1g2

Ntotal
,
Ng1g3

Ntotal
, ...

Ng1g5

Ntotal
)25 (4)

Where Ntotal describes N-1, Ngg is the number of 0-spaced
group pairs.

2.3.5 Pseudo-Amino Acid Composition
PAAC describes the information of two residues order and
properties in the peptide sequence. The computation of PAAC
is available in (Chou, 2001; 2005).

After feature extraction, each peptide was encoded by a 550-
dimensional feature vector, which was generated by
concatenating five types of feature vector.

2.4 Feature Scoring and Selection
Generally, not all features make contribution to the model
construction. Partial features make remarkable contributions,
while some others make slight contributions (He et al., 2019).
Therefore, feature selection is a very vital step for accomplishing a
classifier model with promising classification performance (Zhao
et al., 2016). In this study, F-score method was employed to
estimate each feature’s contribution. The feature with a greater
F-score implies its larger contribution for prediction model. We
conducted the following procedures to select more informative
features from the 550 features that were extracted from the
training dataset. In the first stage, we evaluated the five-fold
cross-validation performance of top 92, 184, 275, 367, 458, 550
features for various classification algorithms. In the five-fold
cross-validation, the training dataset was equally divided into
five subsets, among these five subsets, a subset was used as the
testing-set and the other four subsets as the training-set. The
division of top 92, 184, 275, 367, 458, 550 features based on the
training-set was determined by making (count_max-
count_min)/6 as the cut-off point of feature division, where
“count_max” represents the maximum dimension of feature
(550 features), and “count_min” is the minimum dimension of
feature (1 feature). In the second stage, according to the five-fold
cross-validation results of different classification algorithms, we
obtained the number of features n with the highest accuracy. In
the third stage, we selected top n features from the 550 features
extracted from the training dataset and ranked by F-score in
descending order to construct the final model.

2.5 Classification Model Construction
Eight traditional machine learning algorithms, including decision
tree (DT), RF, k-nearest neighbors (KNN), adaptive boosting
(AdaBoost), gentle adaptive boosting (GentleBoost), adaptive
logistic regression (LogitBoost), linear support vector machine
(linearSVM) and radial basis function (RBF) kernel SVM
(rbfSVM) were used to build the predictive models based on
the features selected by feature selection (see in Supplementary
Table S3), respectively. LIBSVM 3.24 (http://www.csie.ntu.edu.
tw/~cjlin/libsvm/) was utilized to accomplish linearSVM and
rbfSVM (Chang and Lin, 2011). DT, RF, KNN, AdaBoost,
GentleBoost and LogitBoost are respectively implemented by
MATLAB R2021a built-in functions fitcTree, TreeBagger,
fitcknn and fitcEnmbles. To compare with deep learning
method, a long-short term memory (LSTM) network that
realized based on Keras 2.3.1 (tensorflow 2.1.0 as backend)
package of python 3.6 was also utilized to construct the
classification model (Hochreiter and Schmidhuber, 1997). The
LSTM classification model consisted of one LSTM layer with
eight hidden neurons. The non-linear activation function
hyperbolic tangent (tanh) was applied to LSTM layer. It
should be noted that for LSTM, the vectored sequence of
peptide was utilized as classification features and no feature
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selection was applied. The pseudo code for final model
construction can be found in the Supplementary Material.

2.6 Prediction Assessment
Five evaluation indexes, including accuracy (ACC), sensitivity (SN),
specificity (SP), Matthews correlation coefficient (MCC) and the
area under the receiver operating characteristic (ROC) curve
(AUC), were utilized to quantify the performance of each
predictive model. The first four indicators are calculated as follows:

SN � TP

TP + FN
(5)

SP � TN

TN + FP
(6)

ACC � TP + TN

TP + FN + FP + TN
(7)

MCC � TP × TN − FP × FN																																					(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (8)

where TP describes the number of genuine BBPs which are
predicted as BBPs. FN represents the number of genuine BBPs
that are identified as non-BBPs. Denote TN as the number of true
non-BBPs classified as non-BBPs and FP the number of true non-
BBPs identified as BBPs. SN and SP primarily assess the ability of

a predictive model to identify positive and negative samples
respectively, while ACC and MCC investigate the
comprehensive capacity of a prediction model to classify both
positive and negative samples (Wang et al., 2019). The AUC score
is often utilized to judge the merits and demerits of classifiers. In
this study, we selected the optimal predictive model according to
the AUC value. The model construction and evaluation were
performed at a computational server (Sugon I840-G20, Dawning
Information Industry Co., LTD., Beijing, China).

2.7 Reproducible Analysis
Data analysis reproducibility plays a vital role for achieving an
independent verification of the analysis results (Walzer and
Vizcaíno, 2020). In this work, we constructed 100 testing
datasets and corresponding training datasets to verify the
robustness of the construction method of the BBP predictor. To
avoid high similarity between the independent testing dataset and
the testing dataset of the reproducible analysis, here each testing
dataset consisted of 50 BBPs randomly selected from candidate
positive samples (114 BBPs) that are independent of the training
datasets of BBPpred and B3Pred and 50 non-BBPs with the same
selection rules with BBPs. Themodel building process based on 100
reconstructed datasets for different classification algorithms (RF,
rbfSVM, linearSVM, etc.) is consistent with the above method. The

FIGURE 1 | The framework of BBPpredict. (A). Dataset Construction. (B). Feature extraction. (C). Feature selection. (D). Model construction. (E). Model evaluation.
(F). Web service.
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result of the reproducibility analysis can be found in the
Supplementary Material.

3 RESULT

3.1 Overall Workflow
The framework of this study is depicted in Figure 1. In the first
stage, two benchmark datasets, including a training dataset and
an independent testing dataset, were constructed. In the second
stage, five feature extraction methods were utilized to encode each
peptide sequence, and then a 550-dimensional feature vector was
generated. In the third stage, feature scoring methods and grid
search with five-fold cross-validation strategy was used for feature
selection. In the fourth stage, multiple machine learning methods
were employed to build different models. In the fifth stage, we
evaluated the predictive performance of the nine models by using
a nested five-fold cross-validation and an independent testing
dataset, respectively. Finally, the RF model outperformed other

models was selected as the final model, which was implemented
into a web server.

3.2 Performance of Nine Classifiers in
Nested Five-Fold Cross-Validation
The performance of the nine predictive models in the nested five-fold
cross-validation is shown in Table 2, and the ROC curves are
illustrated in Figure 2A. For a detailed description of nested five-
validation cross-validation, please refer to the Supplementary
Material. In Table 2, RF model outperformed the other eight
machine learning models. All five evaluation metrics reached the
highest level. It has an AUC score of 0.9030, ACC value of 81.90%,
MCCvalue of 0.6390, SN value of 79.14% and SP value of 84.66% (see
Table 2). Moreover, compared with the eight conventional machine
learning classifiers, the performance of LSTM is not satisfactory.
Except for SP, the values of the other four evaluationmetrics of LSTM
model were the lowest. The overall performance of traditional
machine learning algorithms is generally better than LSTM.

TABLE 2 | The prediction performances of different classifiers in nested five-fold cross-validation.

Scoring Method Classifier SN(%) SP(%) ACC(%) MCC AUC

F-score RF 79.14 84.66 81.90 0.6390 0.9030
KNN 76.69 80.98 78.83 0.5772 0.7883
rbfSVM 78.83 83.13 80.98 0.6202 0.8872
linearSVM 75.77 83.13 79.45 0.5906 0.8690
DT 71.78 74.54 73.16 0.4634 0.7357
LSTM 65.23 75.38 70.31 0.4083 0.7313
AdaBoost 77.91 80.67 79.29 0.5861 0.8615
GentleBoost 77.30 80.06 78.68 0.5738 0.8582
LogitBoost 79.14 82.21 80.67 0.6138 0.8680

FIGURE 2 | Performance evaluation of different predictors in five-fold cross-validation and independent testing dataset. (A) ROC curves of the five-fold cross-
validation. (B) ROC curves of the independent testing dataset.
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3.3 Performance of Nine Classifiers on the
Independent Testing Dataset
To determine the final model for constructing BBPpredict,
performance evaluation on the independent testing dataset is
much more convincing than five-fold cross-validation.
According to the steps in the method section, nine
classification models are established by using the training
dataset. The independent testing dataset was then utilized
to test the performance of these models. As depicted in
Table 3 and Figure 2B, in term of AUC score, the RF
model also performed best, with a score of 0.8332, higher
than rbfSVM, linearSVM, KNN, DT, GentleBoost, AdaBoost,
LogitBoost and LSTM classifiers by 0.0091, 0.0676, 0.1463,
0.1758, 0.0501, 0.0943, 0.0534 and 0.2291 respectively. In
terms of accuracy and MCC, the RF classifier also achieved
impressive values, with scores of 77.27% and 0.5455, which are
better than other eight classifier algorithm predictors.
Furthermore, the LSTM classifier had the weakest
generalization ability. In addition, results of the
reproducibility analysis for nine classifiers are highly
consistent with the above results (see Supplementary
Table S9).

3.4 Performance of the Predictions Under
the Combinations of RF With Three Feature
Scoring Methods
We also used the RF algorithm with optimal features selected by
Pearson and Lasso feature scoring methods to construct
prediction model. As shown in Supplementary Tables S4,5,
the model under the combination of RF and F-score achieved
the second highest AUC value in the nested five-fold cross-

validation and the highest AUC value in the independent
testing dataset. Therefore, we finally chose the combination of
RF and F-score to build the final model based on 184 features and
tree depth of 63.

3.5 Prediction Performance of Existing
Predictors
There are two published predictors for identifying BBPs, B3Pred
and BBPpred. These predictors and our predictor are based on
peptide sequence information. The comparison of datasets of
existing predictors and our proposed predictor can be seen in
Table 4 (Detailed comparison can be found in Supplementary
Table S8). To be fair, an independent testing dataset, which is
completely independent of three predictors’ training datasets, was
used to compare their performance. As shown in Table 5,
compared with the existing BBPs predictors, our predictor
achieved a promising performance (ACC = 77.27%, SN =
76.77%, SP = 77.78% and MCC = 0.5455), it outperformed
BBPpred and B3Pred, higher than them by 10.6% and 9.59%
in accuracy, severally, with MCC increasing 0.2121 and 0.1913,
respectively. There were remarkable improvements in sensitivity
and specificity (see Table 5). The above results demonstrate that
BBPpredict is more capable of distinguishing between BBPs and
non-BBPs than BBPpred and B3Pred.

TABLE 3 | The prediction performances of different classifiers in the independent testing dataset.

Scoring Method Classifier SN(%) SP(%) ACC(%) MCC AUC

F-score RF 76.77 77.78 77.27 0.5455 0.8332
rbfSVM 78.79 73.74 76.26 0.5259 0.8241
KNN 70.71 66.67 68.69 0.3740 0.6869
DT 69.70 61.62 65.66 0.3142 0.6574
linearSVM 64.65 74.75 69.70 0.3960 0.7656
LSTM 58.59 63.64 61.11 0.2225 0.6041
AdaBoost 64.65 68.69 66.67 0.3336 0.7389
GentleBoost 74.75 66.67 70.71 0.4155 0.7831
LogitBoost 67.68 77.78 72.73 0.4569 0.7798

TABLE 4 | Comparison of datasets for three predictors.

BBPpred B3Pred BBPpredict

Data source Positive: Brainpeps, PepBank, articles, SATPdb Positive: B3Pdb Positive: Brainpeps, B3Pdb, BBPpred, B3Pred, articles
Negative: UniProt Negative: UniProt Negative: UniProt

Article search deadline 22 July 2020 Nov. 2021
Article number 7 271 300
Positive sample number 119 (training:100, testing: 19) 269 (training:215, testing: 54) 425 (training:326, testing: 99)
Negative sample number 119 (training:100, testing: 19) 2,690 (training: 2,152, testing:538) 425 (training:326, testing: 99)
Peptide length 5–50 6–30 5–50

TABLE 5 | The prediction performances of different predictors.

Predictor SN(%) SP(%) ACC(%) MCC

BBPpredict 76.77 77.78 77.27 0.5455
BBPpred 67.68 65.66 66.67 0.3334
B3Pred 70.71 64.65 67.68 0.3542
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3.6 Web Server Implementation
To facilitate users to identify BBPs, we established an online web
service named BBPpredict that was implemented based on
optimized features and the RF model. BBPpredict can be
accessed at http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.
pl, conveniently. The web service of BBPpredict was developed by
using Perl and Html, Python and Matlab. Users can paste peptide
sequences or upload a sequence file to predict BBPs, as illustrated
in Figure 3A. Then click the “Predict” button to make
predictions, and the predictive results are depicted in Figure 3B.

BBPpredict allows users to adjust the threshold of the
probability value (tp) to distinguish between predicted positives
and negatives, which can range from 0 to 1. As shown in Table 6,

FIGURE 3 |Web interface of BBPpredict. (A) The query sequences and threshold of the probability value (tp) are required to be submitted in the input interface. (B)
The result page returned from BBPpredict.

TABLE 6 | Performance of BBPpredict in the independent testing dataset when tp
changes.

tp SN (%) SP (%) ACC (%) MCC

0.1 100 11.11 55.56 0.2425
0.2 98.99 29.29 64.14 0.3944
0.3 94.95 44.44 69.70 0.4564
0.4 86.87 64.65 75.76 0.5284
0.5 76.77 77.78 77.27 0.5455
0.6 58.59 82.83 70.71 0.4269
0.7 45.45 90.91 68.18 0.4082
0.8 36.36 96.97 66.67 0.4191
0.9 13.13 97.98 55.56 0.2100
0.95 5.05 97.98 51.51 0.0820
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with the increase of tp, the value of SN decreases, and the SP
increases. When tp is 0.5, ACC achieves the highest score of
77.27%, MCC reaches the highest value of 0.5455.

4 DISCUSSION

In the past 30 years, many studies have demonstrated that BBPs
are promising for the treatment of CNS diseases. BBPs can pass
through the BBB and enter brain parenchyma without destroying
BBB. Them can be used as transport carriers of DNA, RNA and
protein as well as drug-assisted treatment and diagnosis of CNS
diseases. However, the discovery of BBPs is still a thorny problem.
Only a few hundreds of peptides have been experimentally
confirmed as BBPs so far, since BBPs were discovered in 1996
(Banks and Kastin, 1996). Therefore, to facilitate the treatment of
CNS diseases, it is necessary to employ computational methods to
rapidly discover and identify more novel BBPs.

At present, two BBPs predictors, BBPpred (Dai et al., 2021)
and B3Pred (Kumar et al., 2021a), have been proposed.
Compared with these two predictors, our developed
BBPpredict tool was based on a larger training dataset (as
shown in Table 4). Besides the difference of the training
dataset, a nested cross-validation strategy was utilized in the
construction of BBPpredict. For common cross-validation, the
model parameters were determined manually, and the accuracy
based on the cross-validation would be affected by the artificial
selection of model parameters, which usually overestimate the
accuracy based on the cross-validation. For nested cross-
validation, the model parameters were determined
automatically. We speculated that this might be a reason why
the previous two predictors had better performance in the cross-
validation but had poor performance in our independent testing
dataset. BBPpredict showed a large improvement in performance
with nearly 6% sensitivity, 12% specificity, 10% accuracy and 0.20
MCC increase, compared with BBPpred and B3Pred. The
elevated performance can save cost for researchers to identify
BBPs and speed up the discovery of BBPs.

The BBPpredict website allows users to set the tp value.We tested
the performance of BBPpredict in the independent testing dataset
and provided sensitivity and specificity values under different tp
values, which can serve as reference for users and increases the
confidence they can have about the positive predictions.

We also reconstructed the BBPs/non-BBPs classification
models with different machine learning methods using the
new feature vectors that were generated from 16 feature
extraction methods, including AAC, DPC, CKSAAGP, PAAC,
GAAC, Grouped Di-Peptide Composition (GDPC) (Chen et al.,
2018; Chen et al., 2020), Dipeptide Deviation from Expected
Mean (DDE) (Chen et al., 2020), Composition (CTDC)
(Dubchak et al., 1995; Dubchak et al., 1999; Chen et al., 2020),
Transition (CTDT) (Dubchak et al., 1995; Dubchak et al., 1999;
Chen et al., 2020), Distribution (CTDD) (Chen et al., 2020),
Amphiphilic Pseudo-Amino Acid Composition (APAAC)
(Chou, 2005; Jiao and Du, 2016), Quasi-sequence-order
(QSOrder) (Chen et al., 2020), Normalized Moreau-Broto
Autocorrelation (NMBroto) (Chen et al., 2018), Geary

correlation (Geary) (Chen et al., 2020), Moran correlation
(Moran) (Feng and Zhang, 2000; Chen et al., 2020) and
Sequence-Order-Coupling Number (SOCNumber) (Lim et al.,
2015). The detailed description of the last 11 feature encoding
approaches can be found in the Supplementary Materials.
F-score was used for feature sorting, grid search with five-fold
cross-validation was utilized to select the best feature parameters
and the best classifier parameters for different classifiers.
Supplementary Tables S6,7 illustrated the detailed results of
five-fold cross-validation and independent testing dataset of
reconstructed classification models, respectively. However, the
addition of feature encoding methods did not improve the
classification performance of the model. We speculate that it is
caused by the high correlation between the extracted features
based on different feature extracting methods, which might
induce highly correlated features in the final feature subset. As
the feature number is limited, the highly correlated features might
reduce useful information for model construction. Another
possible reason might be the limited sample size, which might
cause high false positive rate during the process of feature
selection. The increase of feature size would lead to the
increase of false positive features, which would affect the
robustness of the predictive model.

BBPs pass through BBB via six penetration mechanisms,
including diffusion transport, carrier-mediated transcytosis,
efflux transporter, receptor-mediated transcytosis, adsorptive-
mediated transcytosis and cell-mediated transcytosis (Zhou
et al., 2021). The abilities of BBPs to penetrate BBB vary
depending on their penetration mechanisms (Sánchez-Navarro
et al., 2017). Therefore, we speculate the differences in their
penetration mechanisms may affect the reliability of screening in
the procession of model construction. However, BBPs of distinct
penetration mechanisms were not further divided when
constructing the positive sample of BBPpred, B3Pred and
BBPpredict, because the number of BBPs for a specific
transport mechanism is insufficient to construct a BBP predictor.

In the present work, we utilized RF algorithm to construct BBP
predictor. The RF is an ensemble algorithm which is composed of
several weak classifiers (decision trees). Our constructed model
contains 63 decision trees. We speculate that these different
decision trees might cover different penetration mechanisms
and it might be the reason why the RF algorithm is superior
to other machine learning algorithms. In the future, if the number
of BBPs with a certain transport mechanism increase, it is possible
and preferable to construct new BBP predictors using BBPs with
the same penetrating mechanism.

5 CONCLUSION

In this study, we proposed an RF-based predictor for identifying
BBPs, called BBPpredict, which is available for free at http://i.uestc.
edu.cn/BBPpredict/cgi-bin/BBPpredict.pl. To find the optimal
classifier, eight traditional machine learning algorithms and one
deep learning algorithm were used for developing models. The RF
algorithm was selected to construct BBPpredict after comparing the
results of nine classifiers in the five-fold cross-validation and
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independent test. The RF-based model reached an AUC of 0.9030
with an accuracy of 81.90% and an AUC of 0.8332 with an accuracy
of 77.27% in the nested five-fold cross-validation and independent
testing dataset, respectively. We also compared BBPpredict with two
existing BBPs predictors, BBPpred and B3Pred. The results showed
that BBPpredict was remarkably higher in accuracy, MCC,
sensitivity and specificity than these two predictors. BBPpredict is
a promising classification model, and we expect it to play a positive
role in the discovery of BBPs to facilitate the development of drugs
for CNS diseases.
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ProtTrans-Glutar: Incorporating
Features From Pre-trained
Transformer-Based Models for
Predicting Glutarylation Sites
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Lysine glutarylation is a post-translational modification (PTM) that plays a regulatory
role in various physiological and biological processes. Identifying glutarylated peptides
using proteomic techniques is expensive and time-consuming. Therefore, developing
computational models and predictors can prove useful for rapid identification of
glutarylation. In this study, we propose a model called ProtTrans-Glutar to classify
a protein sequence into positive or negative glutarylation site by combining traditional
sequence-based features with features derived from a pre-trained transformer-based
protein model. The features of the model were constructed by combining several
feature sets, namely the distribution feature (from composition/transition/distribution
encoding), enhanced amino acid composition (EAAC), and features derived from the
ProtT5-XL-UniRef50 model. Combined with random under-sampling and XGBoost
classification method, our model obtained recall, specificity, and AUC scores of
0.7864, 0.6286, and 0.7075 respectively on an independent test set. The recall
and AUC scores were notably higher than those of the previous glutarylation
prediction models using the same dataset. This high recall score suggests that our
method has the potential to identify new glutarylation sites and facilitate further
research on the glutarylation process.

Keywords: lysine glutarylation, protein sequence, transformer-basedmodels, protein embedding,machine learning,
binary classification, imbalanced data classification, post-translation modification

1 INTRODUCTION

Similar to the epigenetic modification of histones and nucleic acids, the post-translational
modification (PTM) of amino acids dynamically changes the function of proteins and is actively
studied in the field of molecular biology. Among various kinds of PTMs, lysine glutarylation is
defined as an attachment of a glutaryl group to a lysine residue of a protein (Lee et al., 2014). This
modification was first detected via immunoblotting and mass spectrometry analysis and later
validated using chemical and biochemical methods. It is suggested that this PTMmay be a biomarker
of aging and cellular stress (Harmel and Fiedler, 2018). Dysregulation of glutarylation is related to
some metabolic diseases, including type 1 glutaric aciduria, diabetes, cancer, and neurodegenerative
diseases (Tan et al., 2014; Osborne et al., 2016; Carrico et al., 2018). Since the identification of
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glutarylated peptides using proteomics techniques is expensive
and time-consuming, it is important to investigate computational
models and predictors to rapidly identify glutarylation.

Based on a survey of previous research, various prediction
models have been proposed to distinguish glutarylation sites. The
earliest one, GlutPred (Ju and He, 2018), constructs features from
amino acid factors (AAF), binary encoding (BE), and the
composition of k-spaced amino acid pairs (CKSAAP). The
authors selected 300 features using the mRMR method. To
overcome the problem of imbalance in this dataset, a biased
version of support vector machine (SVM) was employed to build
the prediction model. Another predictor, iGlu-Lys (Xu et al.,
2018), investigated four different feature sets, physicochemical
properties (AAIndex), K-Space, Position-Special Amino Acid
Propensity (PSAAP), and Position-Specific Propensity Matrix
(PSPM), in conjunction with SVM classifier. The feature set
PSPM performed best in the 10-fold cross-validation and was
therefore applied to the model. iGlu-Lys performed better than
GlutPred in terms of accuracy and specificity scores. However,
their sensitivity scores were lower. The next model proposed,
MDDGlutar (Huang et al., 2019), divided the training set into six
subsets using maximal dependence decomposition (MDD).
Three feature sets were evaluated separately using SVM:
amino acid composition (AAC), amino acid pair composition
(AAPC), and CKSAAP. The best cross-validation score was the
AAC feature set. The results of independent testing yielded a
balanced score of 65.2% sensitivity and 79.3% specificity, but it
had lower specificity and accuracy than those of the
GlutPred model.

The next two predictors included the addition of new
glutarylated proteins from Escherichia coli and HeLa cells for
their training and test sets. RF-GlutarySite (Al-barakati et al.,
2019) utilizes features constructed from 14 feature sets, reduced
with XGBoost. The model’s reported performance for
independent testing was balanced, with 71.3% accuracy, 74.1%
sensitivity, and 68.5% specificity. However, it is interesting to note
that the test data was balanced by under-sampling, which did not
represent a real-world scenario. iGlu_Adaboost (Dou et al., 2021)
sought to fill this gap by using test data with no resampling. This
model utilizes features from 188D, enhanced amino acid
composition (EAAC), and CKSAAP. With the help of Chi2
feature selection, 37 features were selected to build the model
using SMOTE-Tomek re-sampling and the Adaboost classifier.
The test result had good performance for recall, specificity, and
accuracy metrics, but a lower Area Under the Curve (AUC) score
than that of previous models.

Although many models have been built to distinguish between
positive and negative glutarylation sites, the performance of these
methods remains limited. One challenge to this problem is
finding a set of features to represent the protein subsequence,
which enables a correct classification of glutarylation site. BERT
models (Devlin et al., 2019), and other transformer-based
language models from natural language processing (NLP)
research, show excellent performance for NLP tasks. These
language models, having been adapted to biological sequences
by treating them as sentences and then trained using large-scale

protein corpora (Elnaggar et al., 2021), also show promise for
various machine learning tasks in the bioinformatics domain.

Previous studies have investigated the use of pre-trained
language models from BERT and BERT-like models to show
its effectiveness as protein sequence representation for protein
classification. For example, Ho et al. (2021) proposed a new
approach to predict flavin adenine dinucleotide (FAD) binding
sites from transport proteins based on pre-training BERT,
position-specific scoring matrix profiles (PSSM), and an amino
acid index database (AAIndex). Their approach showed an
accuracy score of 85.14%, which is an improvement over the
scores of the previous methods. Another study (Shah et al., 2021)
extracted features using pre-trained BERTmodels to discriminate
between three families of glucose transporters. This method,
compared to two well-known feature extraction methods, AAC
and DPC, showed an improved performance of more than 4% in
average sensitivity and Matthews correlation coefficient (MCC).
In another study, Liu built a predictor for protein lysine glycation
sites using features extracted from pre-trained BERT models,
which showed improved performance in terms of accuracy and
AUC score compared to previous methods (Liu et al., 2022).
These studies demonstrate the suitability of utilizing BERT
models to improve various protein classification tasks.
Therefore, using embeddings from pre-trained BERT and
BERT-like models has the potential to build an improved
glutarylation prediction model.

In this study, we proposed a new prediction model to predict
glutarylation sites (Figure 1) by incorporating features extracted
from pre-trained protein models combined with features from
handcrafted sequence-based features. A public dataset provided
from Al-barakati et al. (2019) was used in this study. It was an
imbalanced dataset with 444 positive sites and 1906 negative sites,
and already separated into two sets for use in model building and
independent testing. First, various feature sets were extracted
from the dataset, consisting of two types of features. The first type
consists of seven classic sequence-based features, and the second
type consists of six embeddings from pre-trained protein
language models. We evaluated the classifiers using a 10-fold
cross-validation for the individual feature set. The next step was
to combine two or more feature sets to evaluate further models,
such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert. For this,
we limited the embedding features to a maximum of one in the
combination. Five classification algorithms were included in the
experiments: Adaboost, XGBoost, SVM (with RBF kernel),
random forest (RF), and multilayer perceptron (MLP). Our
best model combines the features of CTDD, AAC, and
ProtT5-XL-UniRef50 with the XGBoost classification
algorithm. This model, with the model of the best feature set
from sequence-based feature groups and the model of the best
feature set from the protein embedding feature group, was then
evaluated with an independent dataset. For independent testing,
the entire training set was used to develop a model. In both model
building and independent testing, a random under-sampling
method was used to balance the training dataset, while the
testing dataset was not resampled to reflect performance in the
real-world unbalanced scenario.
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2 MATERIALS AND METHODS

2.1 Dataset
This study utilized unbalanced benchmark datasets compiled by
Al-barakati et al. (2019) to build their predictor, RF-GlutarySite.
This dataset collected positive glutarylation sites from various
sources, including PLMD (Xu et al., 2017) and (Tan et al., 2014)
and consisted of four different species (Mus musculus,
Mycobacterium tuberculosis, E. coli, and HeLa cells), for a total
of 749 sites from 234 proteins. Homologous sequences that
showed ≥40% sequence identity were removed using the CD-
HIT tool. The remaining proteins were converted into peptides
with a fixed length of 23, with glutarylated lysine as the central
residue, and 11 residues each upstream and downstream.

Negative sites were generated in the same way, but the central
lysine residue was not glutarylated. After removing homologous
sequences, the final dataset consisted of 453 positive and 2043
negative sites. The distributions of the training and testing
datasets are listed in Table 1. This dataset was also used by
Dou et al. (2021) to build the proposed predictor model
iGlu_Adaboost (Dou et al., 2021).

2.2 Feature Extraction
The extraction of numerical features from protein sequences or
peptides is an important step before they can be utilized by
machine learning algorithms. In this study, we investigated two
types of features: classic sequence-based features and features
derived from pre-trained transformer-based protein embeddings.
Classic sequence-based features were extracted using the iFeature
Python package (Chen et al., 2018). After preliminary
experiments, seven feature groups were chosen for further
investigation: AAC, EAAC, Composition/Transition/
Distribution (CTD), pseudo-amino acid composition (PAAC),
and amphiphilic pseudo-amino acid composition (APAAC). The
second type of feature, embeddings from pre-trained
transformer-based models, was extracted using models trained

FIGURE 1 | Workflow strategy for the development of ProTrans-Glutar model.

TABLE 1 | Number of positive and negative sites in training and test set.

Training set Test set

Positive sites 400 44 444
Negative sites 1703 203 1906

2103 247
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and provided by Elnaggar et al. (2021). It consists of six feature
sets from six protein models: ProtBERT, ProtBert-BFD,
ProtAlbert, ProtT5-XL-UniRef50, ProtT5-XL-BFD, and
ProtXLNet. The data for all extracted features are provided in
the Supplementary Material.

2.2.1 Amino Acid Composition and Enhanced Amino
Acid Composition
The AAC method encodes a protein sequence-based on the
frequency of each amino acid (Bhasin and Raghava, 2004). For
this type of feature, we used two variants.

The first variant is the basic AAC, in which the protein
sequence is converted into a vector of length 20, representing
the frequency of the 20 amino acids
(“ACDEFGHIKLMNPQRSTVWY”). Each element is calculated
according to Eq. 1, as follows:

f(t) � N(t)
N

(1)

where t is the amino acid type, N(t) is the total number of amino
acids t appearing in the sequence, andN is the length of the sequence.

The second variant is EAAC, introduced by Chen et al. (2018). In
this encoding, the EAAC was calculated using sliding windows, that
is, from a fixed window size, moving from left to right. To calculate
the frequency of each amino acid in each window, see Eq. 2:

f(t, win) � N(t, win)
N(win) (2)

where N(t,win) represents the number of amino acids t that
appear in the windowwin andN(win) represents the length of the
window. To develop our model, a default window size of five was
used. How these methods are applied to a protein sequence are
provided in Supplementary File S1.

2.2.2 Composition/Transition/Distribution
The CTD method encodes a protein sequence-based on various
structural and physicochemical properties (Dubchak et al.,

1995; Cai, 2003). Thirteen properties were used to build the
features. Each property was divided into three groups (see
Table 2). For example, the attribute
“Hydrophobicity_PRAM900101” divides the amino acids into
polar, neutral, and hydrophobic groups.

The CTD feature comprises three parts: composition (CTDC),
transition (CTDT), and distribution (CTDD). For composition,
an attribute contributes to three values, representing the global
distribution (frequency) of the amino acids in each of the three
groups of attributes. The composition is computed as follows:

C(r) � N(r)
N

(3)

where N(r) is the number of occurrences of type r amino acids in
the sequence and N is the length of the sequence.

For transition, an attribute also contributes to three values,
each representing the number of transitions between any pair of
groups. The transition is calculated as follows:

T(r, s) � N(r, s) +N(s, r)
N − 1

(4)

where N(r,s) represents the number of occurrences amino acid
type r transit to type s (i.e., it appeared as “rs” in the sequence),
andN is the length of the sequence. Similarly,N(s,r) is the reverse,
that is, the number of “sr” occurrences in the sequence.

The distribution feature consists of five values per attribute
group, each of which corresponds to the fraction of the sequence
length at five different positions in the group: first occurrence,
25%, 50%, 75%, and 100%.

2.2.3 Pseudo Amino Acid Composition
Pseudo amino acid composition feature was proposed by Chou
(2001). For protein sequence P with L amino acid residues P =
(R1R2R3. . .RL), the PAAC features can be formulated as

P � [p1, p2, . . . , p20, p20+1, . . . , p20+λ]T, (λ< L) (5)
where

TABLE 2 | Physicochemical attributes and its division of the amino acids.

Attribute Division

Hydrophobicity_PRAM900101 Polar: RKEDQN Neutral: GASTPHY Hydrophobicity: CLVIMFW
Hydrophobicity_ARGP820101 Polar: QSTNGDE Neutral: RAHCKMV Hydrophobicity: LYPFIW
Hydrophobicity_ZIMJ680101 Polar: QNGSWTDERA Neutral: HMCKV Hydrophobicity: LPFYI
Hydrophobicity_PONP930101 Polar: KPDESNQT Neutral: GRHA Hydrophobicity: YMFWLCVI
Hydrophobicity_CASG920101 Polar: KDEQPSRNTG Neutral: AHYMLV Hydrophobicity: FIWC
Hydrophobicity_ENGD860101 Polar: RDKENQHYP Neutral:SGTAW Hydrophobicity: CVLIMF
Hydrophobicity_FASG890101 Polar: KERSQD Neutral: NTPG Hydrophobicity: AYHWVMFLIC
Normalized van der Waals volume Volume range: 0–2.78 Volume range: 2.95–94.0 Volume range: 4.03–8.08

GASTPD NVEQIL MHKFRYW
Polarity Polarity value: 4.9–6.2 Polarity value: 8.0–9.2 Polarity value: 10.4–13.0

LIFWCMVY PATGS HQRKNED
Polarizability Polarizability value: 0–1.08 Polarizability value: 0.128–120.186 Polarizability value: 0.219–0.409

GASDT GPNVEQIL KMHFRYW
Charge Positive: KR Neutral: ANCQGHILMFPSTWYV Negative: DE
Secondary structure Helix: EALMQKRH Strand: VIYCWFT Coil: GNPSD
Solvent accessibility Buried: ALFCGIVW Exposed: PKQEND Intermediate: MPSTHY
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pu �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fu∑20

i�1fi + w∑λ

k�1τk
, (1≤ u≤ 20)

wτu−20∑20

i�1fi + w∑λ

k�1τk
, (20 + 1≤ u≤ 20 + λ)

(6)

w is the weight factor and τk is the k-the tier correlation factor,
defined as

τk � 1
L − k

∑L−K
i�1 Ji,i+k, (k< L) (7)

and

Ji,i+k � 1
Γ
∑Γ

q�1[ΦqRi+k − ΦqRi]2 (8)

where Vq(Ri) is the q-th function of the amino acid Ri, and Γ the
total number of functions. In here Γ = 3 and the functions used are
hydrophobicity value, hydrophilicity value, and side chain mass
of amino acid Ri.

A variant of PAAC called amphiphilic pseudo amino acid
composition (APAAC) proposed in Chou (2005). A protein
sample P with L amino acid residues P = (R1R2R3. . .RL), is
formulated as

P � [p1, p2, . . . , p20, p20+1, . . . , p20+λ, p20+λ, . . . , p2λ]T, (λ< L)
(9)

where

pu �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
fu∑20

i�1fi + w∑2λ

j�1τj
, (1≤ u≤ 20)

wτu−20∑20

i�1fi + w∑2λ

j�1τj
, (20 + 1≤ u≤ 20 + 2λ)

(10)

τj is the j-tier sequence-correlation factor calculated using the
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 � 1
L − 1

∑L−1
i�1 H

1
i,i+1

τ2 � 1
L − 1

∑L−1
i�1 H

2
i,i+1

τ3 � 1
L − 2

∑L−2
i�1 H

1
i,i+2

τ4 � 1
L − 2

∑L−2
i�1 H

2
i,i+2, λ< L

/

τ2λ−1 � 1
L − 1

∑L−λ
i�1 H

1
i,i+λ

τ2λ � 1
L − 1

∑L−λ
i�1 H

1
i,i+λ

(11)

whereHi,j
1 andHi,j

2 are hydrophobicity and hydrophilicity values
of the i-th amino acid, described by the following equation:

H1
i,j � h1(Ri) · h1(Rj)

H2
i,j � h2(Ri) · h2(Rj) (12)

2.2.4 Pre-Trained Transformer Protein Embeddings
Protein language models has been trained from large protein
corpora, using the state-of-the-art transformer models from the
latest NLP research (Elnaggar et al., 2021). Six of the models were
applied to extract features for our task of predicting glutarylation
sites.

• ProtBERT and ProtBert-BFD are derived from the BERT
model (Devlin et al., 2019), trained on UniRef100 and BFD
corpora, respectively.

• ProtT5-XL-UniRef50 and ProtT5-XL-BFD are derived from
the T5 model (Raffel et al., 2020), trained on UniRef50 and
BFD corpora, respectively.

• ProtAlbert is derived from the Albert model (Lan et al.,
2020) trained on UniRef100 corpora.

• ProtXLNet is derived from the XLNet model (Yang et al.,
2020), trained on UniRef100 corpora.

Protein embeddings (features) were extracted from the last
layer of this protein language model to be used for subsequent
supervised training. This layer is a 2-dimensional array with a size
of 1024 × length of sequence, except for the ProtAlbert model
with an array size of 4096 × length of sequence. For the
glutarylation prediction problem, this feature is simplified by
summing the vectors along the length of the sequence; hence,
each feature group is now one-dimensional, with a length of 4,096
for ProtAlbert and 1,024 for the rest.

2.2.5 The Feature Space
The features collected were of different lengths, as summarized in
Table 3. These feature groups are evaluated either individually or
using various combinations of two or more feature groups. As an
example, for the combined feature group AAC-EAAC, a training
sample will have 20 + 380 = 400-dimensional features.

2.3 Imbalanced Data Handling
A class imbalance occurs when the number of samples is
unevenly distributed. The class with a higher number of
samples is called the majority class or the negative class,
whereas the class with a smaller number is called the minority
class. In the glutarylation dataset, the number of negative samples
was nearly four times that of positive samples. This imbalance
may affect the performance of classifiers because they are more
likely to predict a positive sample as a negative sample (He and
Garcia, 2009). A common strategy to solve this problem is by data
re-sampling, either adding minority samples (over-sampling) or
reducing majority samples (under-sampling). In this study, we
implemented a random under-sampling strategy (He and Ma,
2013) after preliminary experiments with various re-sampling
methods.

2.4 Machine Learning Methods
In this study, we used the XGBoost classifier (Chen and Guestrin,
2016) from the XGBoost package on the Python language
platform (https://xgboost.ai). This is an implementation of a
gradient-boosted tree classifier (Friedman, 2001). Gradient-
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boosted trees are an ensemble classifier built from multiple
decision trees, constructed one by one. XGBoost has been
successfully used in various classification tasks, including
bioinformatics (Mahmud et al., 2019; Chien et al., 2020;
Zhang et al., 2020). In our experiments, several other popular
classifiers are also compared and evaluated, including SVM, RF,
MLP, and Adaboost, provided by the scikit-learn package
(https://scikit-learn.org).

2.5 Model Evaluation
To achieve the model with the best prediction performance,
the model was evaluated using 10-fold cross-validation and an
independent test. For cross-validation, the training dataset was
randomly split into 10 folds of nearly equal size. Nine folds
were combined and then randomly under-sampled for
training, and the 10th fold was used for evaluation. This
process was performed with the other combination of folds
(nine for training and one for testing). To remove sampling
bias, the cross-validation process was repeated three times, and
the mean performance was reported as the CV result. For
independent testing, the entire training data were randomly
under-sampled, then used to build the model, and later
evaluated using the independent test set. Since the
randomness in the under-sampling may affect to the
performance result, this testing was repeated five times, and
the mean performance was reported as an independent test
result.

The performance of the cross-validation and independent test
results was evaluated using seven performance metrics: recall
(Rec), specificity (Spe), precision (Pre), accuracy (Acc), MCC, F1-
score (F1), and area under the ROC curve (AUC). These metrics
were calculated as follows:

Rec � TP

TP + FN

Spe � TN

TN + FP

Pre � TP

TP + FP

Acc � TP + TN

TP + TN + FP + FN

MCC � TP.TN − FP.FN(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
F1 � 2 ×

Rec.Pre
Rec + Pre

(13)

where TP is True Positive, TN is True Negative, FP is False
Positive, and FN is False Negative.

The AUC metric is obtained by plotting recall against
(1—specificity) for every threshold and then calculating the
area under the curve.

3 RESULTS

3.1 Models Based on Sequence-Based
Feature Set
We calculated the cross-validation performance for each
sequence-based feature set using five supervised classifiers:
AdaBoost, MLP, RF, SVM, and XGBoost. The performances of
these classifiers are shown in Table 4. It can be observed that no
classifier is the best for all feature groups. For example, using
AAC features, MLP performs the best based on the AUC score.
However, using EAAC features, the RF model has the best
performance, whereas MLP has the poorest. Among the six
different feature sets, the best model achieved was using
EAAC features combined with RF, with an AUC score of
0.6999. This model also had the best specificity, precision, and
accuracy compared to the other models.

3.2 Models Based on Embeddings From
Pre-trained Transformer Models
Based on the embeddings extracted from the pre-trained
transformer models, we evaluated the same five supervised
classifiers. The performance results of the models are
presented in Table 5. The combination of the ProtBERT
model and SVM can match the recall score with the classic
sequence-based feature result. However, all other metrics were
lower. In this experiment, the best model with respect to the AUC
score was a combination of features from the ProtAlbert model
and SVM classifier (AUC = 0.6744). This model also had the

TABLE 3 | Features investigated for method development.

Group Feature set Length of features

Amino acid composition AAC 20
EAAC 380

C/T/D CTDC 39
CTDT 39
CTDD 195

Pseudo amino acid composition PAAC 35
APAAC 50

Embeddings from pretrained transformer-based model ProtBERT 1,024
ProtBert-BFD 1,024
ProtAlbert 4,096
ProtT5-XL-UniRef50 1,024
ProtT5-XL-BFD 1,024
ProtXLNet 1,024
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highest cross-validation scores for precision, MCC, and F1-score.
It can also be noted that out of the six models, SVM performed
best on four of them compared to the other machine learning
algorithms.

3.3 Models Based on Combination of
Sequence-Based Feature and Pre-trained
Transformer Models Feature Set
To obtain the best model, we tested various combinations of two
or more feature sets to evaluate further models, such as AAC-
EAAC, AAC-CTDC, and AAC-ProtBert. For this, we limited the
embedding features to a maximum of one set in the combination.
Similar to previous experiments, five classification algorithms
were used: AdaBoost, XGBoost, SVM (RBF kernel), RF, andMLP.

Our best model, ProtTrans-Glutar, uses a combination of the
features CTDD, EAAC, and ProtT5-XL-UniRef50 with the
XGBoost classification algorithm. The performance of this
model is shown in Table 6, with comparison to the best
model from sequence-based features (EAAC with RF classifier)
and the best model from embeddings of the protein model
(ProtAlbert with SVM classifier). According to the cross-
validation performance on training data, this model has the
best AUC and recall compared with models with features
from only one group. These three models were then evaluated
using an independent dataset (Figure 2). This test result shows
that ProtTrans-Glutar outperformed the other two models in
terms of AUC, recall, precision, MCC, and F1-score. However, it
is severely worse in terms of specificity and slightly worse in terms
of accuracy compared to the EAAC + RF model.

TABLE 4 | Cross validation result of models from sequence-based features.

Feature
groups

Classifier Rec Spe Pre Acc MCC F1 AUC

AAC Adaboost 0.6120 0.6013 0.2654 0.6033 0.1690 0.3700 0.6433
MLP 0.6520 0.6192 0.2864 0.6255 0.2150 0.3977 0.6864
Random
Forest

0.6190 0.5809 0.2575 0.5881 0.1576 0.3635 0.6378

SVM 0.6395 0.5969 0.2714 0.6050 0.1868 0.3808 0.6651
XGBoost 0.5917 0.5482 0.2353 0.5565 0.1102 0.3362 0.6101

EAAC Adaboost 0.5983 0.6015 0.2608 0.6009 0.1584 0.3629 0.6384
MLP 0.5850 0.5946 0.2530 0.5928 0.1422 0.3529 0.6323
Random
Forest

0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999

SVM 0.5967 0.6434 0.2821 0.6345 0.1923 0.3827 0.6571
XGBoost 0.6408 0.6385 0.2945 0.6389 0.2230 0.4030 0.6834

CTDC Adaboost 0.7050 0.5518 0.2699 0.5809 0.2019 0.3901 0.6641
MLP 0.6867 0.6034 0.2905 0.6193 0.2300 0.4073 0.6912
Random
Forest

0.6408 0.5676 0.2579 0.5815 0.1639 0.3676 0.6556

SVM 0.6842 0.5657 0.2705 0.5882 0.1966 0.3874 0.6765
XGBoost 0.6367 0.5754 0.2605 0.5871 0.1672 0.3693 0.6450

CTDT Adaboost 0.6208 0.5762 0.2566 0.5847 0.1556 0.3627 0.6261
MLP 0.6408 0.5756 0.2622 0.5880 0.1708 0.3717 0.6439
Random
Forest

0.6025 0.5982 0.2603 0.5990 0.1588 0.3633 0.6241

SVM 0.6425 0.5841 0.2661 0.5952 0.1787 0.3760 0.6493
XGBoost 0.5783 0.5668 0.2390 0.5690 0.1147 0.3378 0.6015

CTDD Adaboost 0.6358 0.6046 0.2744 0.6106 0.1904 0.3831 0.6531
MLP 0.5942 0.5365 0.2434 0.5475 0.1120 0.3297 0.6065
Random
Forest

0.6967 0.6164 0.2994 0.6316 0.2476 0.4185 0.6987

SVM 0.6675 0.6111 0.2877 0.6218 0.2206 0.4017 0.6794
XGBoost 0.6675 0.6201 0.2927 0.6291 0.2282 0.4064 0.6847

PAAC Adaboost 0.5942 0.6052 0.2611 0.6031 0.1581 0.3626 0.6253
MLP 0.5958 0.5717 0.2462 0.5763 0.1321 0.3482 0.6261
Random
Forest

0.6375 0.5809 0.2633 0.5917 0.1723 0.3723 0.6413

SVM 0.6617 0.5905 0.2752 0.6041 0.1990 0.3885 0.6745
XGBoost 0.6217 0.5731 0.2554 0.5823 0.1537 0.3615 0.6375

APAAC Adaboost 0.6125 0.5976 0.2634 0.6004 0.1662 0.3682 0.6367
MLP 0.5658 0.5904 0.2450 0.5857 0.1237 0.3416 0.6162
Random
Forest

0.6458 0.5831 0.2671 0.5950 0.1805 0.3776 0.6464

SVM 0.6650 0.5970 0.2794 0.6099 0.2069 0.3932 0.6777
XGBoost 0.6425 0.5694 0.2596 0.5833 0.1668 0.3695 0.6375
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As shown in the ROC curves of the three models (Figure 3),
EAAC + RF performed better for low values of FPR, but for larger
values, ProtTrans-Glutar performed better. It is also noted that
ProtAlbert + SVM performed worse for most values of FPR.
Overall, ProtTrans-Glutarwas the bestmodel with anAUCof 0.7075.

4 DISCUSSION

From our study, it was shown that building prediction models
from traditional sequence-based features only provided limited
performance (Table 4). It was also shown that using only
embeddings from pre-trained protein models gave slightly
worse results, except that the recall performance was almost

the same (Table 5). When we combined the features from
these two groups, we found that the best performance was
achieved by the combination of the features CTDD, EAAC,
and ProtT5-XL-UniRef50 with the XGBoost classifier
(independent test AUC = 0.7075). This indicated that ProtT5-
XL-UniRef50 features on their own are not the best embedding
model during the individual feature evaluation (see Table 5), but
combined with CTDD and EAAC, it outperformed the other
models. It is worth mentioning that Elnaggar et al. (2021), who
developed and trained protein models, revealed that ProtT5
models outperformed state-of-the-art models in protein
classification tasks, namely in prediction of localization (10-
class classification) and prediction of membrane/other (binary
classification), compared to other embedding models.

TABLE 5 | Cross validation result of models from pre-trained transformer models.

Feature
groups

Classifier Rec Spe Pre Acc MCC F1 AUC

ProtBERT Adaboost 0.5767 0.5680 0.2389 0.5697 0.1142 0.3374 0.5996
MLP 0.5892 0.5608 0.2395 0.5662 0.1187 0.3396 0.6128
Random Forest 0.5567 0.6426 0.2681 0.6262 0.1602 0.3616 0.6415
SVM 0.7042 0.4775 0.2420 0.5207 0.1475 0.3578 0.6275
XGBoost 0.6033 0.6007 0.2619 0.6012 0.1616 0.3649 0.6398

ProtBert-BFD Adaboost 0.5433 0.5547 0.2231 0.5525 0.0773 0.3162 0.5776
MLP 0.5900 0.5645 0.2420 0.5694 0.1218 0.3430 0.6076
Random Forest 0.5383 0.6230 0.2510 0.6069 0.1289 0.3421 0.6122
SVM 0.6242 0.5819 0.2595 0.5899 0.1626 0.3662 0.6420
XGBoost 0.5908 0.5733 0.2453 0.5766 0.1295 0.3464 0.6142

ProtAlbert Adaboost 0.5875 0.5753 0.2450 0.5776 0.1284 0.3456 0.6193
MLP 0.5858 0.6189 0.2657 0.6126 0.1646 0.3615 0.6407
Random Forest 0.5808 0.6316 0.2703 0.6220 0.1697 0.3687 0.6535
SVM 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744
XGBoost 0.6092 0.5927 0.2604 0.5958 0.1597 0.3646 0.6477

ProtT5-XL-UniRef50 Adaboost 0.5533 0.5655 0.2306 0.5632 0.0938 0.3254 0.5897
MLP 0.6192 0.5633 0.2501 0.5739 0.1439 0.3558 0.6296
Random Forest 0.5608 0.6171 0.2562 0.6064 0.1419 0.3515 0.6237
SVM 0.6583 0.5710 0.2653 0.5876 0.1807 0.3777 0.6600
XGBoost 0.5933 0.5807 0.2497 0.5831 0.1377 0.3509 0.6183

ProtT5-XL-BFD Adaboost 0.5892 0.5600 0.2395 0.5656 0.1175 0.3405 0.5959
MLP 0.6000 0.5768 0.2502 0.5812 0.1396 0.3529 0.6188
Random Forest 0.5392 0.6163 0.2485 0.6017 0.1242 0.3399 0.6145
SVM 0.6550 0.5625 0.2604 0.5801 0.1711 0.3724 0.6548
XGBoost 0.5858 0.5862 0.2490 0.5862 0.1361 0.3489 0.6224

ProtXLNet Adaboost 0.5125 0.5343 0.2057 0.5302 0.0369 0.2934 0.5421
MLP 0.5325 0.5248 0.2081 0.5262 0.0450 0.2991 0.5463
Random Forest 0.5050 0.5668 0.2152 0.5551 0.0568 0.3015 0.5511
SVM 0.4742 0.5770 0.2103 0.5575 0.0408 0.2900 0.5460
XGBoost 0.5642 0.5504 0.2274 0.5530 0.0902 0.3238 0.5652

TABLE 6 | Performance comparison of the best models in each group.

Evaluation Models Length Rec Spe Pre Acc MCC F1 AUC

10-fold CV on Training Data ProtTrans-Glutara 1,599 0.6783 0.6277 0.3004 0.6374 0.2433 0.4158 0.7093
ProtAlbert + SVM 4,096 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744
EAAC + RF 380 0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999

Independent Test Set ProtTrans-Glutara 1,599 0.7864 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075
ProtAlbert + SVM 4,096 0.6500 0.6286 0.2753 0.6324 0.2161 0.3866 0.6393
EAAC + RF 380 0.6409 0.6739 0.2989 0.6680 0.2479 0.4076 0.6574

aModel uses combined features CTDD-EAAC-ProtT5XLUniRef50 with XGBoost classifier.
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FIGURE 2 | Independent test evaluation of the best models from each group.

FIGURE 3 | ROC-Curve plot of best models in each group.

TABLE 7 | Performance comparison of existing models.

Models Resources Rec Spe Pre Acc MCC F1 AUC

GlutPred PLMD 0.5179 0.7850 0.2397 0.7541 0.2238 n/a 0.7663
iGlu-Lys PLMD 0.5143 0.9531 n/a 0.8853 0.52 n/a 0.8842
MDDGlutar PLMD 0.652 0.739 n/a 0.71 0.38 n/a n/a
iGlu_AdaBoost PLMD, NCBI, Swiss-Prot 0.7273 0.7192 0.3596 0.7207 0.36 0.48 0.6300
ProtTrans-Glutar PLMD, NCBI, Swiss-Prot 0.7822 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075
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For further evaluation, we compared our model with previous
glutarylation site prediction models (Table 7). The first three
models, GlutPred, iGlu-Lys, and MDDGlutar, used datasets that
were different from our model and are shown for reference. The
other model, iGlu_Adaboost, utilized the same public dataset as
for our model and contained glutarylation sites from the same
four species. ProtTrans-Glutar outperformed the other models in
terms of the recall performance (Rec = 0.7864 for unbalanced
data). This high recall suggests that this model can be useful for
uncovering new and potential glutarylation sites.

Furthermore, we also evaluated our model by using a balanced
training and testing dataset using random under-sampling for
comparison with the RF-GlutarySite model (Table 8), which uses
the same dataset but is balanced before evaluating performance.
Because the authors of RF-GlutarySite did not provide their data
after the resampling process, we performed the experiments
10 times to handle variance from the under-sampling. The
ProtTrans-Glutar model showed a higher recall score of
0.7864 compared to RF-GlutarySite (0.7410), in addition to a
slightly higher accuracy, MCC, and F1-score. However, the
specificity and precision scores were lower.

In summary, the model improved the recall score compared to
the existing models but did not improve other metrics. However,
we would like to point out that GlutPred, iGlu-Lys, and
MDDGlutar based their glutarylation datasets on less diverse
sources (two species only), whereas ProtTrans-Glutar with RF-
GlutarySite and iGlu_Adaboost utilized newer datasets (four
species). The more diverse source of glutarylation sites in the
data may present more difficulty in improving performance,
especially in terms of specificity and accuracy. Compared with
iGlu_Adaboost, which used the same dataset, our model
improved their recall and AUC scores. Despite this, the
specificity is worse and will be a challenge for future research.

5 SUMMARY

In this study, we presented a new glutarylation site predictor by
incorporating embeddings from pretrained protein models as
features. This method, which is termed ProtTrans-Glutar,
combines three feature sets: EAAC, CTDD, and ProtT5-XL-
UniRef50. Random under-sampling was used in conjunction
with the XGBoost classifier to train the model. The
performance evaluations obtained from this model for recall,
specificity, and AUC are 0.7864, 0.6286, and 0.7075, respectively.

Compared to other models using the same dataset of more diverse
sources of glutarylation sites, this model outperformed the
existing model in terms of recall and AUC score and could
potentially be used to complement previous models to reveal
new glutarylated sites. In the future, refinements can be expected
through further experiments, such as applying other feature
selection methods, feature processing, and investigating deep
learning models.
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TABLE 8 | Performance comparison with RF-GlutarySite using balanced train and test data.

Models Resources Rec Spe Pre Acc MCC F1 AUC
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aRF-GlutarySite model balanced the training and testing dataset using undersampling.
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DTI-BERT: Identifying Drug-Target
Interactions in Cellular Networking
Based on BERT and Deep Learning
Method
Jie Zheng, Xuan Xiao* and Wang-Ren Qiu*

Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China

Drug–target interactions (DTIs) are regarded as an essential part of genomic drug
discovery, and computational prediction of DTIs can accelerate to find the lead drug
for the target, which can make up for the lack of time-consuming and expensive wet-lab
techniques. Currently, many computational methods predict DTIs based on sequential
composition or physicochemical properties of drug and target, but further efforts are
needed to improve them. In this article, we proposed a new sequence-based method for
accurately identifying DTIs. For target protein, we explore using pre-trained Bidirectional
Encoder Representations from Transformers (BERT) to extract sequence features, which
can provide unique and valuable pattern information. For drugmolecules, DiscreteWavelet
Transform (DWT) is employed to generate information from drug molecular fingerprints.
Then we concatenate the feature vectors of the DTIs, and input them into a feature
extraction module consisting of a batch-norm layer, rectified linear activation layer and
linear layer, called BRL block and a Convolutional Neural Networks module to extract DTIs
features further. Subsequently, a BRL block is used as the prediction engine. After
optimizing the model based on contrastive loss and cross-entropy loss, it gave
prediction accuracies of the target families of G Protein-coupled receptors, ion
channels, enzymes, and nuclear receptors up to 90.1, 94.7, 94.9, and 89%, which
indicated that the proposed method can outperform the existing predictors. To make it as
convenient as possible for researchers, the web server for the new predictor is freely
accessible at: https://bioinfo.jcu.edu.cn/dtibert or http://121.36.221.79/dtibert/. The
proposed method may also be a potential option for other DITs.

Keywords: drug-target interactions, bidirectional encoder representations from transformers, BRL block,
convolutional neural network, computational methods

1 INTRODUCTION

In the process of drug development, there are many important drug-related interaction directions,
including drug-protein, drug-miRNA, drug-disease, drug-drug, etc. Small molecule therapeutic
drugs typically exert their effects through binding to one or a few protein targets (Dubach et al., 2014;
Lim et al., 2021), therefore identifying drug-protein interaction is an important part of genomic drug
discovery (Yamanishi et al., 2014). Besides, several studies have indicated that although ncRNAs lack
the potential to encode proteins, they play important roles in cellular functions, and their
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deregulation heavily contributes to various pathological
conditions. Among them, miRNAs are promising therapeutic
targets for complex diseases (Wang and Chen, 2019; Yin et al.,
2019; Zhou et al., 2020), it thus becomes important to understand
the relationship between ncRNAs and drug targets, what’s more,
several databases and studies are actively promoting development
(Chen et al., 2017). Drug-disease and drug-drug interaction play a
crucial role in drug relocation, often serving as important
information other than drug-target protein pairing and mainly
based on a processing framework called a heterogeneous network.
Qu et al. developed a novel computational model of HeteSim-
based inference for SM-miRNA Association prediction by
implementing a path-based measurement method of HeteSim
on a heterogeneous network combined with known miRNA-SM
associations, integrated miRNA similarity, and integrated SM
similarity (Qu et al., 2019). Jin et al. combine drug features from
multiple drug-related networks, and disease features from
biomedical corpora with the known drug-disease association’s
network to predict the correlation scores between drug and
disease (Qu et al., 2019). Drug-protein interactions play a key
role in the field of biochemistry due to their scientific significance
in drug discovery. This paper focuses on the identification of
drug-protein interactions.

Drugs modulate the biological functions of proteins by
interacting with target proteins, such as ion channels, nuclear
receptors, enzymes, and G Protein-coupled receptors (GPCRs).
For an in-depth understanding of the functions of drugs, the
knowledge of their target protein is indispensable. Despite the
substantial effort, only a few DTIs have been identified so far,
since the experimental determination of drug-target interactions
remains some defects, such as expensive, time-consuming, low
accuracy, and so on (Haggarty et al., 2003). It is highly demanded
to develop powerful computational tools, which are capable of
detecting potential DTIs. Computational prediction of DTIs has
emerged for 20 years as a research hotspot, which is not only for
better understanding of the molecular mechanism of drug side
effects but also for inventing new genomic drugs and identifying
new targets for existing drugs (Wang et al., 2010; Kotlyar et al.,
2012).

Knowledge of genomic space and chemical space is
indispensable for identifying DITs. With the coming of the
post-genome era and the emergence of molecular medicine,
transcriptome, and chemical compound, the rapidly increasing
knowledge in the field of genomic space and chemical space
enables researchers to study drug-target interaction problems
(Dobson, 2004) on the basis of high-throughput experimental
projects. Several different professional databases have been
established, such as Drug Bank, which is consist of two parts
information involving drug data and drug target information
(Wishart et al., 2018); Therapeutic Target Database (TTD)
provides comprehensive information about the drug resistance
mutations, gene expressions, and target combinations data (Qin
et al., 2014); BindingDB a public database of protein-ligand
binding affinities (Liu et al., 2007); Kyoto Encyclopedia of
Genes and Genomes (KEGG) including experimental
knowledge on protein and their drug target, etc. These
resources provide important materials for researchers to

predict drug-target interactions based on computational
methods, it is time to develop more integrative approaches
capable of taking genomic space, chemical space, and the
available known drug-target network information into account
simultaneously for the issue.

The development of identifying DTIs followed four main
directions for research. Firstly, the most direct method is to
use the docking simulation (Pujadas et al., 2008; Morris et al.,
2009), which is a process of scoring favorable intermolecular
interactions, the three-dimensional (3D) structures of proteins
and chemical compounds are indispensable. With the
development of techniques (e.g., X-ray crystallography, nuclear
magnetic resonance), the rate of 3D protein structure
determination is increasing every year, however, it is still not
able to keep up with the exponential growth of sequence
discovery, such as the PDB database only covers a small
fraction of the ion channels and GPCRs, both are considered
as the most pharmaceutically useful drug targets. Some programs
and webservers provide the prediction of the protein structure, in
practice, structure prediction is still relatively immature, and
interaction prediction may be affected by the inaccurate
structure. Secondly, based on the fact that similar molecules
usually bind to similar proteins, it is most straightforward to
apply the ligand-based approach (Keiser et al., 2007), for example,
conducting Quantitative Structure-Activity Relationship (QSAR)
studies that a new ligand can be categorized and compared to
known proteins ligands. However, ligand-based approaches often
present unreliable results due to available binding ligands of
targets’ insufficient number, and difficult to scientifically set
thresholds to divide positive and negative samples (Butina
et al., 2002). Thirdly, literature text mining could be used to
extract DTIs from the related articles (Zhu et al., 2005), but this
approach could not be used for new drugs and proteins. Fourthly,
to overcome the drawbacks of the above-mentioned traditional
approaches, chemogenomic approaches are universally studied
directions. Chemogenomic approaches integrate information of
chemical space, genomic space, and known drug-target
interactions, which provide an architecture for deep learning
approaches.

Chemogenomic approaches can be classified into three
categories: graph-based approaches (Chen et al., 2012),
network-based approaches (Alaimo et al., 2013), and learning-
based approaches (Mousavian and Masoudi-Nejad, 2014). In the
graph-based approach, drugs and targets are represented with
graphs, in which nodes for chemical elements or amino acids and
adjacency matrices for edges between nodes, adjacency matrices
including atom/bond or residue/bond information (Lim et al.,
2021). Drug and target graphs can be fed into Graph Neural
Network (GNN); after a set of training iterations, information
learned by Graph Convolutional Network (GCN) can be
converted into vectors for DTIs prediction. Torng and Altman
proposed a graph-convolutional framework to determine the
interaction patterns (Torng and Altman, 2019). Karlov et al.
used the message passing neural network to overcome the
limitation of graph convolutional network by considering both
nodes and edges (Karlov et al., 2020). Furthermore, the self-
attention mechanism in Neural Networks is often coupled with
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Graph convolutional network to predict DTIs better. But some
research showed that there are difficulties in predicting the local
non-covalent interactions between drugs and proteins (Li et al.,
2020). Network-based approaches utilized the DTI network of
identified edges between drugs and targets to identify new DTIs.
Indeed, by constructing a heterogeneous network that includes
information on drugs, proteins, diseases, and side-effects, the
DTINet method can improve the accuracy of DTIs prediction
(Luo et al., 2017), but the learning model only takes relatively
simple log-bilinear functions, obtaining features may not be the
inherent representations of drugs or targets for the final DTI
prediction task (Wan et al., 2019). Supervised learning-based
approaches are classified into similarity-based approaches and
feature-based approaches (Chen et al., 2018). Similarity-based
approaches generate the similarity matrixes for drugs and targets
respectively, via various similarity measurement strategies such as
chemical-based similarity (Haggarty et al., 2003),
pharmacological-based similarity (Kim et al., 2013),
therapeutic-based similarity, and drug-drug interaction
similarity for drugs, and sequence-based similarity (Yamanishi
et al., 2008), functional-bases similarity, protein-protein
interaction similarity for targets. These similarity matrices
have been used in bipartite local models (Mei et al., 2013),
matrix factorization models (Ezzat et al., 2016), and the
nearest neighbor methods (Zhang et al., 2016) to predict DTIs.
The feature-based approaches extract more useful information
from protein sequences and drug chemical structure, via the
adequate support offered by the rapid development of algorithms.

Predicting DTIs with machine learning algorithms has
recently become the focus of research. There are 1-D, 2-D,
and 3-D representations of drugs (Rognan, 2007). Simplified
Molecular Input Line Entry System (SMILES) string is a
typical 1-D representation of the drug (Öztürk et al., 2016)
that are commonly used descriptors (Kombo et al., 2013;
Sawada et al., 2014). For targets, the sequences of protein are
encoded by the physicochemical properties of amino acids,
sequential evolution information formulation and general form
of pseudo amino acid composition (Li et al., 2020). Lastly,
machine learning algorithms are applied for decision-making.
Recently, Wang et al. used a novel bag-of-words model and
discrete Fourier transform to extract target sequence feature
and molecular fingerprint pattern information, respectively,
and then use a distance-weighted K-nearest-neighbor
algorithm as a predictor (Wang et al., 2020). This paper
motivates our work, that instead of using amino acid physic-
chemical properties to encode words and perform clustering, we
can vectorization drugs and protein by using advanced methods
such as word2vec and ProtBert(Elnaggar et al., 2021), which
could map every word (amino acids are regarded as words) into
the latent vector space where the geometric relationship can be
used to characterize the semantic relationship between the words.
And based on the present situation of identifying DTIs by the way
of investigating a series of recently published articles (Keiser et al.,
2007; Ezzat et al., 2016; Zhang et al., 2016) as well as some review
papers (Rognan, 2007; Kombo et al., 2013; Öztürk et al., 2016), we
have proposed a novel feature-based computational model for
predicting drug-target interactions to enhance prediction

performance. The novelty of this proposed work 1) Compared
with the end-to-end predictor, we treat DTIs task more flexibly.
The protein sequences are regarded as natural language and
vectorized by the state-of-art ProtBert model, and drug
molecular is transformed by DWT, which is commonly used
in signal processing. 2) Calculating the hybrid loss function
(contrastive loss and cross-entropy loss), which can make the
samples of the same interaction label closer, and the distance
between different labels as far as possible and help the predictor
achieve higher accuracy.

2 MATERIALS AND METHODS

2.1 Benchmark Dataset
Identifying DTIs can be regarded as a supervised prediction task
to predict whether a pair of counterparts interact with each other
or not in the drug-target networks. In this study, the benchmark
dataset was taken from (He et al., 2010). There are mainly two
reasons, 1) The information about the DTIs was collected from
the DrugBanks, BRENDA, SuperTarget, and KEGG BRITE
databases, which included four main drug target proteins of G
Protein-coupled receptors (GPCR), enzymes (Ezy), ion channels
(Chl), and nuclear receptors (NR). 2) In recent years, many
researchers have been proposed to predict DTIs, which are
based on this benchmark dataset, and hence will facilitate the
comparison under the same condition. It can be summarized as
follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S � SGPCR−Drug + SChl−Drug + SEzy−Drug + SNR−Drug

SGPCR−Drug � S
+
GPCR−Drug(630) + S

−
GPCR−Drug(1240)

SChl−Drug � S
+
Chl−Drug(1372) + S

−
Chl−Drug(2744)

SEzy−Drug � S
+
Ezy−Drug(2719) + S

−
Ezy−Drug(5438)

SNR−Drug � S
+
NR−Drug(82) + S

−
NR−Drug(164)

(1)

There are 4,803 drug-target pairs in positive subsets, 2,719 for
enzymes, 1,372 for ion channels, 630 for GPCRs, and 82 for
nuclear receptors. Negative samples are randomly synthesized by
separating each target and drug in S+, and none of them appear in
the corresponding positive dataset. The proportion of positive
samples and negative samples was set as 1:2. For comparison with
previously published papers, both our positive and negative
samples are consistent with He et al. (He et al., 2010)

Check390 is a dataset constructed by Hu et al. It contains 130
pairs of positive samples from the KEGG database, and 260
negative samples generated using the above method (Hu et al.,
2016). Each pair in Check390 cannot be found in S.

2.2 Framework of the Constructed Model
In this article, we construct a novel model for DTIs based on
large-scale pre-trained Bidirectional Encoder Representations
from Transformers (BERT) and the fully connected neural
network-based module called the BRL block. Figure 1 showers
an overview of the DTIs model. The model has four modules:
feature engineering, feature extraction, optimization, and
decision-making. Firstly, in the feature engineering module, we
use the auto-encoder ProtBert model, which is pre-trained on
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data from UniRef100 containing 216M protein sequences, to
generate embedding vectors for protein sequences. As a result, the
proteins can be represented via 1024-D vectors (dimensionality of
the features extracted by the ProtBert model). Drug molecular
fingerprints are represented by 128-D vectors through semi
decomposition process discrete wavelet transform (DWT).
Secondly, the 1152-D vectors (a concatenation of protein
sequence feature and drug feature) are fed into the feature
extraction model to generate interaction information through
the first BRL block and CNN Afterwarderwards, in the decision-
making module, the second BRL block is used to map interaction
features into a unified vector space. The optimization module
contains a contrastive loss and a cross-entropy loss. The
contrastive loss is used to calculate the interaction information
(generated by CNN block), which can reduce the distance
between samples with the same label, and increase the
distance between samples with different labels, while the cross-
entropy loss is computed as the loss of second BRL block, bathes
are used to adapt weights in the module during the learning
process by minimizing the total loss. At the end of model, we can
obtain the interaction score (generated by a softmax layer after
second BRL block, and range from 0-1), the pair is interaction if
the prediction score is > 0.5.

2.2.1 Feature Extraction From Protein
Recently, many word-embedding methods have been used for
protein feature extraction, for example, Zheng et al. identified the
ion channel-drug interaction using both word2vec and node2vec
as molecular representation learning methods (Zheng et al.,
2021). However, there are still imperfect, like in these word-
embedding methods may map every word with their unique
vector, therefore this representation is context-independent.
With the exponential growth of textual data, major progress
has beenmade in the pre-training language representations (Peng
et al., 2019; Bianchi et al., 2021). Bidirectional Encoder

Representations from Transformers (BERT) was the first fine-
tuning-based representation model (Devlin et al., 2018), which
can generate different representations for the same word based on
context (Devlin et al., 2018; Nozza et al., 2020).

Almost all sequence-based language models (e.g., context
ELMo (Ilić et al., 2018), BERT (Devlin et al., 2018), Xlnet
(Yang et al., 2019)) have been promoted the development of
processing natural languages successfully, but model
architectures and pre-training tasks may not be suitable for
representing proteins. The primary reason is that proteins are
more variable than sentences in length, and show many
interactions in distant positions (due to their 3D structure).
The length of English sentences is multiple, usually around
15-30 words (Brandes et al., 2022). Although the length limit
of a sentence is not an issue in sentence-level NLP tasks (Dai et al.,
2019; Brandes et al., 2022), however, many proteins are more than

FIGURE 1 | Flowchart of the DTI-BERT model.

FIGURE 2 | The distribution of protein sequence length.
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20-times longer than nature sentences, reaching an average length
of up to 600 residues in drug–the target benchmark dataset and
over 20% of the sequences are longer than 1,000. The average
length of GPCR, ion channel, enzyme and nuclear receptor are
470, 760, 570 and 540, the distribution of protein sequence length
is shown in Figure 2.

For protein sequence representation, Elnaggar et al. released a
model called ProtBert, which was trained on UniRef100 datasets
(contained 216M protein sequences) (Elnaggar et al., 2021). In
the ProtBert model, amino acids are set as single words and
protein sequences as sentences. The model can deal with protein
sequences up to 40k in length, and can download from: https://
github.com/agemagician/ProtTrans (Elnaggar et al., 2021). In the
current study, the protein sequence feature can be extracted by
ProtBert based on transfer learning (Lee et al., 2019; Noorbakhsh
et al., 2020).

The sequence expressed as an amino acid residue may be
formulated in the following format:

G � R1R2R3 . . .RL (2)
where R1 is the first residue in the protein sequence, R2 is the
second residue, . . . , RL is the L- th residue.

The framework of ProtBert is similar to the original Bert
publication, some special encoding symbols like [CLS] and [SEP]
remain in the BERT model. [CLS] means classification, is added
as the first token in the Bert sequence information. When
designing the model, [CLS] token was considered as the
representation of subsequent text classification. [SEP] means a
separator, for example, the task was sentence-pair regression, the
input for BERT consists of the two sentences, that would be
separated by a special [SEP] token.

We add a [CLS] token at the beginning of the protein sequence
marked as R0, which acts as an aggregate sequence representation
and is usually used for sequence classification tasks in the BERT
model, and the [SEP] token at the end of the sequence, marked as
RL+1.

We get protein features from the last layer of ProtBert, and
every amino acid can be converted to a 1024-dimensional vector
BRj, and the protein can be represented as a feature matrix PBERT:

BRj � [B1
Rj
B2
Rj
. . .Bi

Rj
. . .B1024

Rj
] (3)

PBERT � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ B1
R0

/ B1024
R0

..

.
1 ..

.

B1
RL+1 / B1024

RL+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

It can be seen from Eqs. 3, 4 that different protein has different
size of PBERT. To formulate the protein sequences with the same
size mathematics formulation, the matrix was averaged (mean-
pooled) over the vertical axis and a 1024-dimensional vector was
obtained to be used as a representation of protein named
BERT_Mean:

bn �
∑j�L+1

j�0 Bn
Rj

L + 2
(1≤ n≤ 1024) (5)

PPROT � [b0b2 . . . bn . . . b1024] (6)

2.2.2 Feature Extraction From Drug Molecule
A drug is saved as an MOL file (a file format that represents a
compound in the form of a graph connection table) or SMILES in
the database, both formats containing information about the
molecule structure, and can be retrieved from the KEGG
database (http://www. kegg. jp/kegg/) or ChEMBL (https://
www.ebi.ac.uk/chembl/) according to drug IDs. We can also
use the MOL file or SMILES as the input of the OpenBabel
tool (http://openbabel.org/) to generate the molecular fingerprint
file, including FP2, FP3, FP4, and MACSS. FP2 is an enumeration
of linear fragments or ring substructures of one to seven
connected atoms in a molecule, then maps them to a 256-bit
hexadecimal string through a hash function. FP3, FP4, and
MACSS use predefined structures to generate fingerprints. FP2
retains more sequence information, we use FP2 as
molecular input.

The FP2 molecular fingerprint is represented by a 256-bit
hexadecimal string, the hexadecimal char “0~F” can be converted
to the number 0–15, drug molecule is represented as SFP2 in the
following formulation:

SFP2 � [f1f2 . . .f256] (7)
In previous studies, the FP2 can be further processed using

some transposition functions, and Hu et al. (Hu et al., 2016) and
Wang et al. (Wang et al., 2020) have confirmed the effectiveness
of applying Discrete Fourier Transform (DFT). DFT can convert
molecular fingerprints into frequency-domain values, reflecting
the specific characteristics of drug molecules. DFT can freely
choose frequency domain or time domain according to the needs
of practical applications, however, it cannot obtain information in
both cases simultaneously, and we cannot know the time when a
signal occurs (in our study, it means sequence position
information). To solve the local non-stationary components
contained in the FP2, DWT was chosen to extract drug
features. Daubechies family is the wavelet basis function in
DWT, which can support discrete transformation and have
good orthogonality and symmetry compared to other wavelet
bases. In this paper, the specified wavelet basis function is used to
decompose the fingerprint vector, and the approximation
coefficients are used as the wavelet coefficients of the
fingerprint vector.

After the transformation of DWT with the Daubechies family,
128 approximation coefficients can be obtained to form a vector:

SA � [a1a2 . . . a128] (8)
To better characterize the drug, SA was subjected to a standard

conversion as described by the following equation:

di � ai∑128
j�1aj

(9)

DDWT � [d1d2 . . . d128] (10)
And DDWT a 128-dimensional vector is obtained to be used as
representation of drug. Finally, through the above several steps, a
drug-protein pair can be represented with an 1152-D vector
given by:
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Φ � [Φ1 Φ2 / Φi / Φ1152 ] (11)

2.3 CNN Block
The CNN block includes a convolution layer, a rectified linear
unit activation (ReLU), and a max-pooling layer. Instead of using
multi-channels, we applied one channel only (Peng et al., 2018).
In the convolution layer, apply a convolution kernel with a
window size of h*k to extract the DTIs features, then use the
rectified linear unit activation function and performed max-
pooling to get the most useful interaction feature from the
feature matrix subsequently. Through this block, an output of
input xis formulated as:

v � maxpool(f(w · x + b)) (12)
where w ∈ Rhk, which is applied to a window of h � 18, k � 64 to
produce a new feature; b ∈ R is a bias term and f is a non-linear
function.

2.4 BRL Block
The BRL is built as a special block in the neural network, where
data is normalized and then mapped into a specific vector space.
This block consists of three layers: a batch-norm layer (BN), a
leaky rectified linear activation layer (Leaky ReLU), and a linear
layer (Pedregosa et al., 2011).

The input data x is first Batch-normalized, which serves to
increase the learning rates further, remove the dropout layer, and
apply other modifications afforded by the batch normalization
(Ioffe and Szegedy, 2015); then input to the Leaky ReLU
activation layer, and finally linearly mapped. BRL block can
mathematically be represented as:

X � Linear (LeakyReLU(BN(x)))
� W × (LeakyReLU(BN(x))) + B (13)

where x is the input data, the BN transform is applied
independently to each dimension of x, W is the weight of the

linear layer, and B is the bias of the linear layer. The first BRL
block and CNN block are used for capturing both global and local
information to represent the drug-protein pair; the second BRL
block is used for predicting DTIs.

The BRL block was implemented with PyTorch (version
1.6.0), and a fully connected layer was used for the linear
mapping. The parameters of the first BRL block were set as:
the number of input neurons and the batch normalized
dimensions dimension were both 1,152, and the number of
output neurons was set to 128. The parameters of the second
BRL block were set as 192 (128-D from the first BRL block and
64-D from the CNN block), and two respectively. A softmax layer
is applied after the second BRL block, which is used to generate
the prediction score. Other hyperparameters used default values
in Pytorch. The source code for the related methods is available
on a GitHub repository at: https://github.com/Jane4747/DTI-
BERT.

2.5 Optimization Module
In this frame, given two vectors v1 and v2, input them into the
same network in turn, the network will map the inputs to the new
vector space where the similarity between two inputs can be
evaluated by the distance measure function. Here, Euclidean
distance was served as the distance measure, denoted
as D(v1, v2):

D(v1, v2) � ‖v1 − v22‖2 (14)
To make the samples of the same interaction label closer, and

the distance between different labels as far as possible, the
contrastive loss was applied as the loss function of the CNN
network:

L1(v1, v2, Y) � 1
2
(1 − Y)D(v1, v2)2

+ 1
2
Y{max(0, m −D(v1, v2))2} (15)

FIGURE 3 | The performance of different protein and drug descriptors on the GPCR dataset.
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where Y � 0 if sequences v1 and v2, have the same label and Y � 1
if they are different,m> 0 is a margin. In other words, the margin
defines a radius, and dissimilar pairs contribute to the loss
function only if their distance is within the radius.

In this study, the second BRL block was used to convert the
representation vector v to binary category outputs, the
backpropagation algorithm was used to update network
parameters, and the cross-entropy loss function was selected
as the loss function of the second BRL block:

L2(v, Y) � −Y log(D(v)) − (1 − Y)log(1 −D(v)) (16)
Therefore, the loss function of the DTI-BERT model is:

L(v1, v2, Y, Y1, Y2) � L1(v1, v2, Y) + L2(v1, Y1) + L2(v2, Y2)
(17)

where Y1 and Y2 are the labels of v1 and v2.

We implemented our model using Python three and Pytorch
(version 1.6.0). Optimizer, training epochs and batch size are set
with “Adam”, 70 and 64, respectively. In our work, the optimizing
function, “Adam”, use its default parameters value. All codes and
trained models can be found via https://github.com/Jane4747/
DTI-BERT.

3 RESULTS AND DISCUSSION

3.1 Performance Metrics
The determination of a pair belongs to an interactive drug-target
pair or non-interactive drug-target pair, is in the case of single-
label classification. The metrics such as accuracy (ACC),
sensitivity (Sn), Specificity (Sp), strength (str, the average of
Sn and Sp) and Matthew’s correlation coefficient (MCC) are
frequently used. The specific formulas are as follows:

FIGURE 4 | The performance of different protein and drug descriptors on the ion channel dataset.

FIGURE 5 | The performance of different protein and drug descriptors on the enzyme dataset.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Acc � TP + TN

TP + TN + FP + FN

Sn � TP

TP + FN

Sp � TP

TP + FP

Str � Sp + Sn

2

MCC � TP × TN − FP × FN���������������������������������������(TP + FP)(TP + FN) + (TN + FP)(TN + FN)√
(18)

where TP represents the true positive, FN the false negative, TN
the true negative, FP the false positive.

3.2 Comparison of Several Classic Protein
and Drug Feature Extraction Methods
On the protein representation task, auto-encoder models
(word2vec and BERT) with different model parameters scales
were tested. For the drug representation task, a variety of
algorithms in various fields, including natural language

FIGURE 6 | The performance of different protein and drug descriptors on the nuclear receptors dataset.

TABLE 1 | Results of comparison with several traditional machine learning
methods on four datasets.

Dataset Method Sn(%) Sp(%) ACC(%) Str (%) MCC

GPCR MLP 86.8 75.3 82.8 81.5 0.61
GPCR LightGBM 87.5 80.5 86.3 84.0 0.67
GPCR BRL + CNN 89.3 91.0 90.1 90.2 0.80
Ion channel MLP 93.3 83.1 89.6 88.2 0.77
Ion channel LightGBM 92.7 89.3 91.7 91.0 0.81
Ion channel BRL + CNN 95.9 91.4 94.7 93.7 0.87
Enzyme MLP 92.2 86.0 90.1 89.1 0.79
Enzyme LightGBM 92.8 90.5 92.4 91.7 0.83
Enzyme BRL + CNN 95.9 92.0 94.9 94.0 0.88
NR MLP 84.2 76.9 79.9 80.6 0.60
NR LightGBM 84.4 83.1 82.7 83.8 0.65
NR BRL + CNN 92.5 85.2 89.0 88.9 0.78

The best results for each metric are in bold.

TABLE 2 | Performance comparison on four datasets inaccuracy rate.

Method GPCRs Ion-Channels Enzymes NR

He et al. (2010) 78.5 80.8 85.5 88.4
DrugRPE Zhang et al. (2017) 85.2 89.0 90.0 91.1
Hu et al. (2019) 88.4 91.9 94.3 85.7
Our method 90.1 94.7 94.9 89.0

The best results for each metric are in bold.

TABLE 3 | Performance comparison on GPCR dataset over leave-one-out cross-validation.

Method Sn(%) Sp(%) ACC(%) Str (%) MCC

IGPCR-Drug Xiao et al. (2013) 78.3 91.4 86.9 84.9 0.71
OET-KNN Hu et al. (2016) 77.8 88.7 85.0 83.3 0.67
QuickRBF Hu et al. (2016) 74.8 92.4 86.4 83.6 0.69
SVM Hu et al. (2016) 74.2 92.7 86.4 83.6 0.69
RF Hu et al. (2016) 76.5 92.9 87.3 84.7 0.71
RF + PP Hu et al. (2016) 79.7 92.8 88.3 86.3 0.73
DWKNN(Ensemble) Wang et al. (2020) 81.1 87.1 85.1 84.1 0.67
BOW-GBDT Qiu et al. (2021) 79.8 93.1 88.5 86.3 0.74
Our method 92.2 92.0 91.9 90.1 0.84

The best results for each metric are in bold.
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processing (word2vec), graph (node2vec and GCN), and signal
processing (DWT) were tested.

We evaluated the BERT_Mean + DWT feature extraction
method and compared it with several other classic protein and
drug feature extraction methods, such as Pr ord2vec (a 64-D
vector is obtained to represent the protein, it was extracted by an
un-supervised word2vec model and implicated important
biophysical and biochemical information (Yang et al., 2018;
Zhang et al., 2020), BERT_First (the first row of PBERT is
obtained to represented protein, it is a 1024-D vector)
(Nambiar et al., 2020), FP2_Word2vec (Jaeger et al., 2018),
drug_Node2vec (Grover and Leskovec, 2016; Tetko et al.,
2020), drug_Word2vec (Zhang et al., 2020; Zheng et al., 2021),
drug_GCN (Chen et al., 2020). Figures 3–6 show the Matthews
correlation coefficient (MCC) for the datasets SGPCR−Drug,
SChl−Drug, SEzy−Drug, and SNR−Drug obtained for each approach
in CNN + BRL classifier via 10-fold cross validation.

It was found that BERT_Mean for the proteins and DWT for
drugs can improve the performance of the classifier greatly in four
datasets. The BERT_Mean + DWT increased capacity for
identifying DTIs compared to the using BERT_First,
PRO_Word2vec, drug_Node2vec, drug_Word2vec, and
drug_GCN, and BERT_Mean can find the most compact and
informative features subsets which are deeply hidden in protein
sequences. It is showed that word2vec for protein sequences and
GCN for drugs in DTIs tasks, could also obtain good prediction
results on three datasets (SGPCR−Drug, SEzy−Drug, and SNR−Drug),
which inspires us that different protein representation methods
need to consider different drug molecule representation methods,
which need to be determined experimentally.

3.3 Comparison With Some Machine
Learning Methods
In order to test the performance of the BRL + CNN and compare
it with the existing machine learning methods, we use the same
benchmark dataset (listed in Eq. 1) and the same BERT_Mean +
DWT feature as the input of the prediction model. The proposed
BRL + CNN predictor and other commonly used classifiers
provided by the Scikit-learn library, like Multi-Layer
Perceptron (MLP) with two hidden layers (Pedregosa et al.,
2011) and gradient boosting tree-based ensemble method
called LightGBM (LGB) (Ke et al., 2017), were tested via 10-

fold cross-validation, the results are listed in Table 1. It was found
that the proposed BRL + CNN predictor in this article has better
performance than other classifiers in all metrics.

3.4 Comparison With Existing Predictor
To further demonstrate the power of the DTI-BERT predictor, we
compared it with some existing methods. There are some new
models for identifying DTIs trained with the datasets established
by He et al. (He et al., 2010). For example, Hu et al. proposed a
deep learning-based method to predict DTIs by using the
information of drug structures and proteins sequences (Hu
et al., 2019), this CnnDIT predictor has better prediction
performance in predicting DTIs, and it has its own web
server. Zhang et al. proposed a random projection ensemble
approach DrugRPE to predict DTIs (Zhang et al., 2017), and
several random projections build an ensemble REPTress system.
In general, the method of fusing multiple predictors outperforms
a single predictor. To facilitate comparison, the scores of
accuracies (defined in Eq. (18)) obtained by these three
predictors (He et al., 2010; Hu et al., 2016; Zhang et al., 2017)
based on the benchmark datasets used in He et al. (He et al., 2010)
via the 10-fold cross-validation test were listed in Table 2.
Comprehensively, the comparative results showed that our
model is more accurate than other existing methods.

GPCRs have proved to be one of the most important target
families of modern drugs. Identifying the GPR-drug interaction is
an important issue in bioinformatics, and a number of
researchers have proposed effective predicted methods to
identify GPCR-drupredictedions. Our method was also
compared with the performance of different methods which
predicting GPCR-drug interaction on the training dataset
SGPCR−Drug over leave-one-out cross-validation, and validated
in independent test dataset check390 (Xiao et al., 2013; Hu et al.,
2016; Wang et al., 2020; Qiu et al., 2021). The results of the
different methods tested on SGPCR−Drug over leave-one-out cross-
validation were shown in Table 3. The results of the other eight
methods were reported in (Qiu et al., 2021). From Table 3, we can
find that the MCC values of our method were 10% higher than
others.

The generalization ability of machine learning models is
usually evaluated through an independent test. The D92M is
the GPCR-drug interaction dataset in (Wang et al., 2020), which
is applied as a training dataset, and check390 as a validation

TABLE 4 | Performance comparison on Check390.

Method Sn(%) Sp(%) ACC(%) Str (%) MCC

IGPCR-Drug Xiao et al. (2013) 80.8 66.9 71.6 73.9 0.45
OET-KNN Hu et al. (2016) 67.7 84.2 78.7 76.9 0.52
QuickRBF Hu et al. (2016) 76.2 77.7 77.2 77.6 0.52
SVM Hu et al. (2016) 76.2 78.9 78.0 77.6 0.53
RF Hu et al. (2016) 78.5 78.1 78.2 78.3 0.54
RF + PPP Hu et al. (2016) 83.1 79.6 80.8 81.3 0.60
DWKNN Wang et al. (2020) 83.9 80.0 81.3 81.9 0.61
DWKNN(Ensemble) Wang et al. (2020) 83.1 82.7 82.8 82.9 0.63
BOW-GBDT Qiu et al. (2021) 80.0 90.0 86.7 85.0 0.70
Our method 87.1 89.4 88.4 88.3 0.76

The best results for each metric are in bold.
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dataset. The results of the validation test on check390 were listed
in Table 4, which demonstrated that our method almost
outperform the others across the five metrics, except for
BOW-GBDT achieves the highest value of Sp (93.1%).
Compared with other state-of-the-art methods, the ACC value
of our method is 3.4% higher, the MCC value is 6% higher than
the second one. All these results demonstrate the effectiveness of
the proposed methods.

4 CONCLUSION

In this work, we developed a powerful predictor based on the
sequences of proteins and FP2 of drugs. We attempted to use pre-
trained BERT to present proteins in DTIs and choose a useful
representation for drugs via extensive experiments, including
several state-of-art drug descriptions like drug_Word2vec,
drug_Node2vec, drug_GCN, FP2_Word2vec, FP2_DWT. The
presenting results showed that FP2_DWT is more efficient to
present drug molecules than other descriptions. Furthermore, we
used the deep learning method to generate interaction
information and optimized the predicting network based on
contrastive loss and cross-entropy loss, which performed much
better than other common machine learning models. Moreover,
compared with other existing predictors, DTI-BERT has better
prediction performance in different target families of GPCRs, ion
channels, enzymes and nuclear receptors, without any help of
prior knowledge and handcrafted feature engineering. Overall,
DTI-BERT can predict drug-target interactions that achieved
high accuracy and we established a prediction web-server for
the convenience of the most experienced scientists.

The BERT model has very excellent general capabilities and
has very outstanding feature extraction capabilities for DNA
sequences (Le et al., 2021) and RNA sequences (Zhang et al.,
2021). The DTIs prediction framework proposed in this paper
has very good potential for predicting other drug targets
as well.
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Small proteins, encoded by small open reading frames, are only beginning to emerge with
the current advancement of omics technology and bioinformatics. There is increasing
evidence that small proteins play roles in diverse critical biological functions, such as
adjusting cellular metabolism, regulating other protein activities, controlling cell cycles, and
affecting disease physiology. In prokaryotes such as bacteria, the small proteins are largely
unexplored for their sequence space and functional groups. For most bacterial species
from a natural community, the sample cannot be easily isolated or cultured, and the
bacterial peptides must be better characterized in a metagenomic manner. The bacterial
peptides identified from metagenomic samples can not only enrich the pool of small
proteins but can also reveal the community-specific microbe ecology information from a
small protein perspective. In this study, metaBP (Bacterial Peptides for metagenomic
sample) has been developed as a comprehensive toolkit to explore the small protein
universe from metagenomic samples. It takes raw sequencing reads as input, performs
protein-level meta-assembly, and computes bacterial peptide homolog groups with
sample-specific mutations. The metaBP also integrates general protein annotation
tools as well as our small protein-specific machine learning module metaBP-ML to
construct a full landscape for bacterial peptides. The metaBP-ML shows advantages
for discovering functions of bacterial peptides in a microbial community and increases the
yields of annotations by up to five folds. The metaBP toolkit demonstrates its novelty in
adopting the protein-level assembly to discover small proteins, integrating protein-
clustering tool in a new and flexible environment of RBiotools, and presenting the first-
time small protein landscape by metaBP-ML. Taken together, metaBP (and metaBP-ML)
can profile functional bacterial peptides from metagenomic samples with potential diverse
mutations, in order to depict a unique landscape of small proteins from a microbial
community.
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1 INTRODUCTION

Small proteins or peptides, translated from short open reading frames,
largely exist in biological systems in both eukaryotes (Chen et al.,
2020) and prokaryotes (Hemm et al., 2020; Orr et al., 2021).
Historically, these small proteins were ignored or identified as
non-coding elements (Storz et al., 2014) and were considered as
“dark matter” due to the lack of genomic annotation (Garai and
Blanc-Potard, 2020). Bacteria-derived small proteins can play diverse
roles in microbial functions and host-microbe interactions, such as
innate immunity (Huan et al., 2020), cell division, signal transduction,
transporter regulation, enzymatic activity, and protein folding (Storz
et al., 2014). Some of the bacterial peptides have the potential of being
novel therapeutic candidates (Duval and Cossart, 2017).

Bacterial peptides are much harder to decompose and they
annotate in a natural community. While detecting and testing a
small gene can be difficult in a single organism, microbiome at
community level brings additional challenges in the data complexity
and sparsity for small protein detection, classification, and function
annotation. Metagenomics from short gun sequencing provides
information from the community-specific population to gene
functions, but there haven’t been many previous efforts
specifically focusing on the role of bacterial peptides from a
natural community. The lack of detection power and poor
analytical resolution indicate the limitation from both the
computation and experiment. First, the peptides detection from
mass spectrometry needs abundant input materials and suffers from
large search spaces in an unbiased and untargeted scenario. It usually
requires a confident database from reference genomes or from
metagenomes. Poor annotation of small genes in reference
genomes is also an obstacle of the direct detection from mass
spectrometry. Even by combining multiple types of omics data,
the false positives can still be high in small bacterial peptides
detection (Miravet-Verde et al., 2019). Second, the protein calling
tools for metagenomics may require high quality of the assembly
results. Especially some of them are optimized for long contigs and
scaffolds (Hyatt et al., 2012). Recently, a large-scale study for
bacterial peptides from metagenomic samples reported more than
4,000 novel small-protein families were found from human
microbiome and less than 5% of the proteins could be mapped
to known domains. However, they still used contigs as input data
from the nucleotide-level metagenomic assembly, which can lose a
large amount of original sequencing data due to the sample
complexity and sparsity. Third, for homologous searching and
function annotation (Cantalapiedra et al., 2021), there is not a
specific tool designed for exploring and mapping to the space of
small bacterial peptides.

In order to address the limitations from the nucleotide-level
metagenomic assembly and the current shortages of small protein
annotation from microbe communities, metaBP (Bacterial Peptides
for metagenomic sample) has been developed as a comprehensive
and user-friendly toolkit to explore the small protein universe in a
more thorough and detailed way. The metaBP applies protein-level
assembly from the metagenomic sequencing data to maximize the
protein recovery and search from the open reading frames
(Steinegger et al., 2019). The metaBP identifies confident small
protein sequences and mutations in diverse homologous clusters

using the most current protein sequence clustering technique
(Steinegger and Söding, 2018). The metaBP also contains a
machine learning part, metaBP-ML, to address the sequence-based
annotation integrating a natural language-based protein embedding
model (Rives et al., 2021) with amillion-sized database. Diverse small
protein sequences and functions are demonstrated in various sets of
samples, which cover mice, human, and environmental microbiome
communities. The metaBP provides the capability to explore the
small protein landscape both at themicrobial community scale and at
the base pair resolution.

2 MATERIALS AND METHODS

2.1 Toolkit Implementation Overview
The metaBP is an integrated and automated toolkit for
identifying and annotating small proteins from the
metagenomic sequencing data. MetaBP’s implementation
consists of three major modules (metaBP, metaBP-ML, and
RBiotools), and five main procedures (Figure 1): protein
meta-assembly, protein clustering, mutation calling, protein
embedding, and protein annotation. The first three procedures
to identify small proteins along with mutations are from our
major module, i.e., metaBP; the last two procedures to do protein
embedding and annotation are integrated in our machine
learning-based module metaBP-ML. The entire toolkit is
implemented by both Python and R, and the machine learning
module requires pyTorch. Themost convenient way to install and
use the metaBP, metaBP-ML and RBiotools is to configure their
individual Conda environment, which are described in our
GitHub repository (see the data availability for our GitHub link).

2.2 Input and Output
The input data for metaBP is the raw sequencing reads (paired-
end short gun sequencing) in a FASTQ format. The output data
consists of mainly three parts of the information, protein clusters
with mutations, small protein annotations, and a protein copy
number table from annotations, which will be demonstrated in
this study. For the purpose of this study, only the small protein
analysis is mentioned and emphasized. In fact, the metaBP toolkit
can also identify the entire proteome wide space of open reading
frames, other than just small proteins.

The raw FASTQ files used in this study are downloaded from
NCBI SRA by the sra-toolkit. The sample IDs and general
sequencing information are summarized in the supplementary
table (Supplementary Table S1), with different read lengths and
data volumes. This indicates our metaBP can be generalized to all
types of metagenomics from natural environments.

2.3 Small Protein Identification and
Clustering by MetaBP
2.3.1 Protein-Level Meta-Assembly
Raw sequencing reads in FASTQ files are pre-processed by
BBTools (Bushnell et al., 2017). The pre-processing includes
quality checking, read length trimming, and adaptor removal.
The cleaned reads are used in the protein level assembly by PLASS
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(Steinegger et al., 2019), which is reported to increase the protein
yields by many-folds compared to the nucleotide-level
metagenomic assembly. When an example data set from
PLASS GitHub (see the data availability) is used to do protein
level assembly, 99% identity in the sequence only yields
780 proteins, while 90% and 80% identity yield 1,217 and
1,267 proteins, respectively (Supplementary Table S2).
Specifically, 80% of the sequence identity triples the number of
non-single clusters. In order to maximize the initial protein
throughput and capture the diversity inside average protein
clusters, 80% identity in the sequence is recommended using
in the metaBP toolkit. This setting can be changed by user’s
specific needs in terms of the protein recovery volume.

2.3.2 Protein Clustering and Mutation Calling
The assembled protein sequences are used in the clustering
process. Linclust is one of the most recent protein clustering
techniques that can approach both the good accuracy and linear
time complexity (Steinegger and Söding, 2018). The metaBP has
two ways to call Linclust procedure: one is from
MMSeqs2 command line, and the other is from our
independent implementation in RBiotools. These two different
ways to call Linclust provide different flexibility to the user side.
The R version of Linclust inside the RBiotools does require
additional installation of the R environment, but it is more
flexible for user to develop new applications and change
parameters from the source code.

FIGURE 1 | Flowchart of metaBP pipeline. MetaBP’s implementation consists of three major modules (metaBP, metaBP-ML, and RBiotools), and five main
procedures (protein meta-assembly, protein clustering, mutation calling, protein embedding, and protein annotation).
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The protein clustering by Linclust has two purposes: one is to
remove the redundancy from proteins and protein fragments,
and the other is to group protein families by homology for
mutations. The protein sequences generated from the PLASS
example dataset are duplicated to test the effects of truncated
sequences. Each protein is truncated up to 50% of the total length
from either beginning or end of the sequence, mixed with their
intact versions, and then they are clustered by Linclust at different
settings. When the default parameter for Linclust is applied, the
sequences truncated to 90% of the original length can still be
clustered with its full-length version, but sequences truncated to
80% of the length cannot be clustered well. When using the
customized setting in Linclust and setting the coverage rate to
50%, most of the truncated protein can still be clustered with the
original full-length protein (Supplementary Table S3). For small
protein clustering, the default parameters in Linclust are
recommended to use the metaBP in order to make the small
protein families more specific and sensitive. The user can always
change the parameters to accommodate various protein lengths
in a cluster. After the protein clusters are generated, the protein
sequences are aligned by Clustal Omega (Sievers and Higgins,
2018), and the positions with conservative amino acids or the
positions with potential mutations can be observed and reported.
By randomly mutating the protein sequences, it is confirmed that
Linclust can capture up to 5% of the sequence mutation in the
same cluster (Supplementary Table S4). This implies that the
final small-protein clusters obtained from the samples can
represent a protein family with diverse sequences of at most
five amino acid mutations.

The strategy to isolate small proteins from metagenomics data
is as follows. First, sequences with longer than 100 amino acids
are separated. Second, short sequences clustered with long
sequences are removed so that the protein fragments can be
minimized in the final output. Third, in this study, only protein
clusters with four or more protein members are considered as
confident protein families. This means that the same small
protein should occur at least four times in a single sample. In
addition, only protein clusters with a large size can display a
meaningful sequence diversity. On average, after these criteria are
applied to the datasets, less than 5% from the metagenomics data
are small bacteria peptides, which is consistent with the study
from MAGs (metagenome-assembled genomes) or contigs
(Sberro et al., 2019).

2.4 Machine Learning-Based Annotation by
metaBP-ML
2.4.1 Database Construction
The database for small protein sequences (not more than
100 amino acids) is constructed from the sequence files in the
FASTA format downloaded from the Uniprot (Swiss-Prot and
TrEMBL, November, 2021) (Bateman et al., 2021). In total,
16,565,616 sequences are downloaded for bacteria, 785,496 for
archaea, 1,201,161 for virus, and 596,067 for metagenomics.
Among these short sequences, 8,486,746 have species or
function annotations. The rest of the 10,661,593 proteins
without any annotation (“uncharacterized” or “unannotated”)

is removed first. Among annotated small proteins, Linclust is
used to remove 80% of redundant sequences by clustering, and
3,682,960 proteins are eventually survived to form our final small
protein sequence database.

As a transformer-basedmachine learningmodel inspired from
natural language processing, ESM (Rives et al., 2021) is used to
convert the sequences in the database to numerical vectors. In
order to process 3 million of small proteins in the database,
parallel computing with multiple threads is used to speed up the
procedure. The resulted vectors for each small protein are
1,280 numerical values in length, and the principal
components are computed in order to visualize the entire
small protein database or landscape in a two-dimensional
space. To our knowledge, before our study, this small protein
landscape hasn’t ever shown nor used in the small protein
annotation.

2.4.2 Protein Embedding and Annotation
After the database is constructed with vectorized small protein
sequences, small proteins from metagenomic samples must be
processed in the same ESMmodel (Rives et al., 2021). Each of the
small protein cluster is vectorized by its representative sequence
and then it can be embedded to the entire small protein universe
spanned by the database. For downstream protein annotation,
user can select one of the two ways in metaBP-ML. The first one is
to use an HMM based tool, i.e., eggNOG (Cantalapiedra et al.,
2021), which is for general protein annotations as well as for small
proteins. The second method is to search for k nearest neighbors
(KNN) from our constructed database for each cluster
representative. Since this requires calculating all pairs of vector
distances, it can be time consuming for a larger k. From our
simple test, using a mice gut microbial sample (Morissette et al.,
2020), the newly recovered protein annotations drops to less than
10% when pursuing 10 neighbors (Supplementary Table S5). In
metaBP-ML, top ten nearest neighbors are recommended for
small protein annotations.

The final protein annotation strategy based on the ten nearest
neighbors is heuristic. First, rule of thumb is used if there is a most
frequent annotation in the neighborhood. Second, if there is no
difference between annotation frequencies, the top annotation is
always picked. Third, if useful annotation cannot be extracted
from the top ten neighbors, the protein will be left as
unannotated.

In this study, the enzyme commission (EC) number and the
taxonomy information will be provided in the small protein
annotation. For simplicity of this research, protein copy
numbers are used to quantify the abundance of every
annotation so that different samples are compared. The
protein copy numbers are added together from different
clusters with the same annotation. The protein copy numbers
can be normalized by the total number of small protein copies in
the data set. The normalized protein copy number [or counts,
denotated as c(.)] for a certain annotation A is calculated with the
following formula, where s(C) is the size of cluster C. Analogous
to transcriptome quantification, the normalized value can be
multiplied by 106 to represent the copy numbers per million
proteins.
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c(A) � ∑
C∈A

s(C) × 106/∑
C

s(C).

3 RESULTS

3.1 Small Protein Identification bymetaBP in
a Wide Range of Samples
The metaBP is applied on various metagenomic data sets,
including sixteen mice gut samples (Morissette et al., 2020),
one human gut sample (Lee et al., 2017), one human skin
sample, one saliva sample, and environmental microbe
samples in soil and marine (see Supplementary Table S1 for
NCBI Bioproject IDs). The data size varies from 5 million to
45 million of sequencing reads (Table 1; Supplementary Table
S1). The sequencing read length varies between 100 and 200 base
pairs from each end. On average, about one third of the resulted
sequences are short sequences from the protein assembly results.
However, only less than 5% of the sequences are in a cluster with
at least four sequences, which is consistent with previously
reported percentage of small open reading frames in
metagenomic samples. Thus, clusters with at least four
sequences are treated as reliable small protein families in the
sample. Overall, about 5,000–8,000 clusters with their small
representative proteins are generated within every million of
the total assembled proteins. These clusters and representative
sequences are sent to metaBP-ML (and/or eggNOG) for
annotation, so that the taxonomy and enzyme commission
(EC) information can be obtained and quantified for each sample.

The analysis from mice samples shows interesting enzyme
activities. In order to compare EC numbers across samples,
only those ECs existing in all the samples are used in this

analysis. First, the normalized counts of every EC number
from mice samples are tested by ANOVA and the top ten
important EC functions enriched in the high-fat diet of 12-
week-old mice are presented in the heatmap (Figure 2A). The
complete EC quantification table is available in the
Supplementary Table S6. These top ten ECs corresponding
to the high-fat diet mice show potential enzyme activities from
small protein families. For example, the proteins marked with
EC 1.11.1.6 belong to the catalase which is important for
radical degradation. Catalases and antioxidant enzymes are
known to increase in order to benefit the mice with a high-fat
diet (Liang et al., 2015; Piao et al., 2017). It is necessary to
mention that after the Benjamini–Hochberg p-value
correction, none of the EC numbers are significant in the
high-fat diet mice anymore. So, the EC numbers displayed in
the heatmap are simply ranked by its original p-value (less than
5%). It is noticeable that the quantification pattern of these EC
numbers from the human gut sample is more like the mice gut
samples compared with the other samples. Human saliva
samples do not have good yield of small proteins compared
to the other samples.

In this study, 29 of the known short proteins derived from
bacteria are searched from the metaBP output and only four of
those are discovered in our samples (Figure 2B). The Uniprot IDs
of these small genes are listed in the Supplementary Table S7.
The most abundant small genes, senS are discovered in 12 of the
16 mice gut samples, but not in the human gut. The other three
genes, AgrD, BacSp222, and SdaA are only recovered from the
human gut sample. Indeed these 29 small genes are all from
human associated microbes (Sberro et al., 2019) so that they may
not be easily observed in the soil and marine samples. While
metaBP-ML has discovered four of these 29 genes in our samples,

TABLE 1 | Data samples and statistics in metaBP analyses.

Sample Biosample Reads structure # of reads (m) # of assembled total
proteins

# of small
protein clusters with
4 or more members

Time for protein
assembly

(HH:MM:SS)

Time for metaBP-ML
annotation

(DD-HH:MM:SS)

1.1 Mice gut 2 × 100 bp 32.7 1847781 16475 00:56:55 01:06:28:23
1.2 Mice gut 2 × 100 bp 29.8 1969398 12725 00:59:14 23:04:32
1.3 Mice gut 2 × 100 bp 25.9 1714448 12916 00:48:12 01:00:06:49
1.4 Mice gut 2 × 100 bp 32.0 1705080 11870 00:56:49 22:07:28
1.5 Mice gut 2 × 100 bp 30.1 1662298 15140 00:49:58 16:48:22
1.6 Mice gut 2 × 100 bp 32.3 1999701 14555 01:03:55 01:15:22:07
1.7 Mice gut 2 × 100 bp 28.3 1525231 12758 00:49:56 01:00:56:54
1.8 Mice gut 2 × 100 bp 37.4 2483994 18411 01:14:25 12:58:13
1.9 Mice gut 2 × 100 bp 33.0 1948886 14380 01:00:10 01:02:03:12
1.10 Mice gut 2 × 100 bp 33.4 2808475 18745 01:23:08 01:08:10:31
1.11 Mice gut 2 × 100 bp 33.7 2167085 16087 01:02:30 01:07:40:41
1.12 Mice gut 2 × 100 bp 35.6 2376492 15779 01:12:33 01:04:21:47
1.13 Mice gut 2 × 100 bp 37.0 2974313 17935 01:39:31 01:07:51:20
1.14 Mice gut 2 × 100 bp 44.5 3626380 19818 01:53:51 12:02:22
1.15 Mice gut 2 × 100 bp 32.5 1965315 16659 01:02:31 01:05:44:15
1.16 Mice gut 2 × 100 bp 31.1 2322776 12481 01:12:24 22:28:17
2 Human gut 2 × 151 bp 37.5 29194727 171238 01:26:04.66 20:15:30:00
3 Human skin 2 × 150 bp 5.1 679115 2874 00:30:24.91 04:54:01
4 Meadowsoil 2 × 200 bp 24.7 14947269 23640 14:41:28.71 01:14:07:31
5 Marine 2 × 150 bp 13.1 4595883 23410 02:12:55.85 01:14:22:30
6 Human saliva 2 × 126 bp 26.8 133743 583 00:36:04.86 01:06:08
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the annotation from eggNOG does not show any of these
29 genes.

3.2 Small Protein Annotation by eggNOG
and metaBP-ML
Besides the search for the known 29 small genes, sixteen mice
gut samples are used to systematically compare the
annotation outcomes from eggNOG and metaBP-ML for
small protein families. As known that not many small
proteins have clear enzyme activities, EC number
annotation overall has lower yields compared with the
taxonomy (organism group) annotation, no matter by
eggNOG or metaBP-ML.

For the EC number annotation, metaBP-ML can annotate
almost five times more proteins than eggNOG (Figure 3A).
Both methods can annotate the same set of 19,283 proteins,
but 6,865 proteins have the consensus EC annotation.
Among the top 11, the most abundant EC numbers in
eggNOG and metaBP-ML (Figures 3B,C), EC2.7.7.7
(DNA-directed DNA polymerase) and EC2.7.13.3

(histidine kinase), occur in both methods. However, it is
hard to confirm if the small proteins can have these enzyme
activities or not, since the functions are assigned only by the
similarity computation.

For taxonomy annotation, metaBP-ML can annotate
almost twice of the proteins than eggNOG (Figure 3D). In
order to compare the predicted taxonomy labels directly,
taxonomy IDs from both the methods are normalized to
family IDs. This means among the same set of
15,353 proteins that gain the taxonomy annotation from
both the methods, only 4,198 proteins have exactly the
same family name from both the methods. The consensus
rate is between 1/3 to 1/4 between two approaches. Top
11 abundant taxa from eggNOG are family names, order
names or phylum names (extracted from the narrowest
annotation from eggNOG results), while top 11 taxa from
metaBP-ML, which can be as detailed as species level
annotation (Figures 3E,F). From the top taxa lists
obtained in both the methods, Lachnospiraceae,
Oscillospiraceae, and Clostridia are the consensus. Overall,
our metaBP-ML can provide more annotations with more

FIGURE 2 | Small protein quantification in each sample. (A) Normalized counts (small proteins per million) for top ten EC numbers comparing the high-fat diet mice
with the normal mice after 12 weeks. (B) Protein copy numbers for 4 known small genes recovered from the samples.
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details mainly because of a very specific small protein
database constructed.

3.3 Small Protein Landscape bymetaBP-ML
As mentioned above, the entire small protein database composed
of 3 million of short sequences are transformed into a 1,280-
dimension vector space. In order to visualize the landscape within
two dimensions, principal components analysis is performed, and
the first two principal dimensions are shown in a dot plot
(Figure 4A). The collected 29-known small genes are overlaid
on this landscape and their relative locations and gene names are
in a zoomed-in plot (Figure 4B). Surprisingly, within the first two
principal components, the small protein landscape clearly shows

three clusters: left, right, and some outliers on the top right
corner. It is hard to tell if this pattern of distribution reflects the
true biology or some artifacts in the data collection, which
requires future investigation. The known 29 small genes are
mainly located on the right side of the landscape. When the
mice samples are overlaid to this landscape (Figure 4C), there is
no observable sample effects. When more samples are overlaid
onto this landscape (Figure 4D), we can observe that the soil
sample and skin sample are more on the right side while the
human saliva sample is more located under the conjunction of the
two parts. This entire landscape built from small proteins makes
it possible to visualize the sample specific patterns from a natural
microbial community.

FIGURE 3 |Comparison of small protein annotations from eggNOG and metaBP-ML. (A)Number of proteins can be annotated with EC numbers by eggNOG and
metaBP-ML. A total of 6,865 proteins in dashed edge circle are annotated with exactly the same EC numbers. (B) Top 11 EC numbers predicted from eggNOG (C) Top
11 EC numbers predicted frommetaBP-ML. (D)Number of proteins can be annotated with taxonomy terms by eggNOG andmetaBP-ML. A total of 4,198 proteins in the
dashed edge circle are annotated with exactly the same family names. (E) Top 11 taxonomy terms predicted from eggNOG. (F) Top 11 taxonomy terms predicted
by metaBP-ML.
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3.4 Sequence Diversity in Small Protein
Clusters

To explore several interesting clusters identified in the mice gut
samples, we pull out the protein cluster sequences from metaBP
results and conduct further analyses. The clusters shown in this
section are from the 12-week-oldmice with a high-fat diet. One of
the known small genes, senS, is widely discovered in the mice gut
samples, and its sequence diversity is shown after the sequence
alignment (Figure 5A). The senS protein sequences, including the
consensus sequence and one of the mutants, are overlaid with all

small proteins (Figure 5B). This cluster is located on the right
side of the landscape (Supplementary Figure S1). By using
Alphafold2 (Jumper et al., 2021), the consensus sequence of
senS is predicted as an alpha helix structure (Figure 5C).
Having three amino acids mutations, the structure for the
mutant protein still shows a clear helix, but with a slightly
bending effect (Figure 5D).

Another interesting cluster is from catalase EC1.11.1.6. The
alignment of the sequences shows very few possible mutations are
detected in the high-fat diet mice (Supplementary Figure S2).
The structures predicted by alphafold2, as well as the display of

FIGURE 4 | Landscape for small proteins. (A) The database with 29-known small proteins overlaid. (B) The zoomed-in display for 29-known small proteins in the
two-dimensional space. (C) The different mice gut samples overlay with the database landscape. (D) The human and environmental samples overlay with the database
landscape.
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the protein landscape, show that the two amino acids substitution
with longer side chains (R vs. G, N vs. H) help to make the loop
region a little bit more structured, but not too much overall
change. The structures show an alpha helix and beta sheet motif
for this protein cluster.

4 DISCUSSION

The metaBP adopts protein level assembly by PLASS, and
therefore it is not constraint by the requirement of long
contigs or high-quality MAGs from the nucleotide level
assembly. As we know, low-abundant rare species may overall
constitute a large amount of the sequencing reads in the complex
metagenomic samples but may not yield long contigs. When the
sequencing depth is low, more than half of the data could be
wasted as unassembled sequencing reads. But for small proteins
this fragmented sequencing data should already provide sufficient

information for both the sequence and function. The metaBP
together with metaBP-ML provide users with a complete toolkit
to explore small proteins in natural metagenomic samples. For
potential extension, the metaBP-ML does allow users to build
their application specific models for protein annotation. In
addition to metaBP-ML, we still provide eggNOG in the
package to annotate proteins alternatively. In terms of the
running time, eggNOG is more efficient with their pre-built
reference database. The metaBP-ML is relatively taking more
time when annotating proteins through vectorization and nearest
neighbors. But due to our constructed small protein database,
metaBP-ML can be very specific to identify and annotate small
proteins. With the integration of both the tools, the metaBP can
be used in various kinds of metagenomic data and annotate
arbitrary protein classes.

However, there are still concerns and limitations from the current
version of metaBP. Clusters with singletons at this moment are not
used for the downstream analysis in the current metaBP. We assume

FIGURE 5 | Sequence diversity of senS gene. (A) Sequence alignment and conservation of the senS proteins. (B) The senS cluster and ten neighbors overlay onto
the database landscape. (C) The predicted structure for the consensus sequence of senS. (D) The predicted structure for a mutant of the consensus.
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that only re-occurred sequences within the same cluster can indicate
the reliability of small proteins and their mutations. Generally, high
quality metagenomic data should be sufficient in the sequence depth.
However, in many unexpected cases, metagenomic dataset can be
sparse, and the clusters with lower number of protein members can
also be informative for small proteins. Computationally, there has not
been a perfect strategy to balance the false positives and false negatives
without knowing the ground truth in the real data sets. But with the
metaBP, we can at least provide a short list for the experimental
detection through mass spectrometry and biochemical analysis.

The metaBP quantify the annotated features using the
normalized protein copy numbers. Due to the protein level
assembly, the protein copy numbers are the most
straightforward quantification obtained from the data set.
Although metaBP can recover more annotations than
eggNOG, the quantification may not be sufficient to
statistically recover significant features when comparing the
samples. One future direction is to improve the resolution of
the quantification using the original sequencing reads. The
metaBP also displays the protein diversity by homologous
protein clustering, but the current metaBP cannot quantify the
confidence level of each amino acid mutation. So, the current
metaBP is only for the discovery of the potential sequence
diversity in a protein family, not for the strict quantification of
mutation occurrence.

5 CONCLUSION

This study proposes a new and comprehensive toolkit, metaBP
(and metaBP-ML), to discover and annotate the community
specific bacterial (microbe derived) peptides from the
metagenomic samples. It is built upon a new idea of direct
protein level assembly and one of the current protein
clustering tools, as well as machine learning based approaches.
The exploration of the small protein landscape and the analyses of
peptides annotation demonstrate the efficacy of this work and the
value of machine learning.
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peptide Binding
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T-cell receptors (TCRs) are formed by random recombination of genomic

precursor elements, some of which mediate the recognition of cancer-

associated antigens. Due to the complicated process of T-cell immune

response and limited biological empirical evidence, the practical strategy for

identifying TCRs and their recognized peptides is the computational prediction

from population and/or individual TCR repertoires. In recent years, several

machine/deep learning-based approaches have been proposed for TCR-

peptide binding prediction. However, the predictive performances of these

methods can be further improved by overcoming several significant flaws in

neural network design. The interrelationship between amino acids in TCRs is

critical for TCR antigen recognition, which was not properly considered by the

existing methods. They also did not pay more attention to the amino acids that

play a significant role in antigen-binding specificity. Moreover, complex

networks tended to increase the risk of overfitting and computational costs.

In this study, we developed a dual-input deep learning framework, named

AttnTAP, to improve the TCR-peptide binding prediction. It used the bi-

directional long short-term memory model for robust feature extraction of

TCR sequences, which considered the interrelationships between amino acids

and their precursors and postcursors. We also introduced the attention

mechanism to give amino acids different weights and pay more attention to

the contributing ones. In addition, we used the multilayer perceptron model

instead of complex networks to extract peptide features to reduce overfitting

and computational costs. AttnTAP achieved high areas under the curves (AUCs)

in TCR-peptide binding prediction on both balanced and unbalanced datasets

(higher than 0.838 on McPAS-TCR and 0.908 on VDJdb). Furthermore, it had

the highest average AUCs in TPP-I and TPP-II tasks compared with the other

five popular models (TPP-I: 0.84 on McPAS-TCR and 0.894 on VDJdb; TPP-II:

0.837 on McPAS-TCR and 0.893 on VDJdb). In conclusion, AttnTAP is a

reasonable and practical framework for predicting TCR-peptide binding,

which can accelerate identifying neoantigens and activated T cells for

immunotherapy to meet urgent clinical needs.
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1 Introduction

T-cell receptor (TCR) hypervariable regions are formed by

complex recombination of genomic precursor elements that

mediate recognition of antigens presented by peptide-major

histocompatibility complex (pMHC) molecules (La Gruta

et al., 2018; Joglekar and Li, 2021). Complementary

determining region 3 (CDR3) is the key structural feature

located within the TCR variable regions, and specific CDR3-

pMHC complexes enable T cells to recognize and eliminate

evolving pathogens or malignant cells (La Gruta et al., 2018;

Joglekar and Li, 2021). Thus, the CDR3 region, derived from

quasi-random mutations of V(D)J recombination, is considered

to have a primary function in recognizing the endogenous and

exogenous antigens in the immune-dominant T-cell process and

resulting “TCR repertoire” in an individual, which defines a

unique footprint of cellular immune protection (Chiffelle et al.,

2020).

The high-throughput immune repertoire sequencing (IR-

seq) can capture millions of sequencing reads derived from

the hypervariable regions and produce detailed T-cell

repertoires for individual or population analysis, such as

epitope prediction (Warren et al., 2011; Woodsworth et al.,

2013; Glanville et al., 2017). However, identifying epitopes

from TCR repertoires by biomechanical experiments is a

time-consuming and labor-intensive task. An epitope that is

expanded in multiple T-cell clones is more likely to be

exposed to the pMHC complex and can generally serve as a

surface biomarker for immunotherapy or vaccine targets.

Fortunately, the availability of immune-related TCR/BCR

sequence databases, such as IEDB (Mahajan et al., 2018),

VDJdb (Bagaev et al., 2020), and/or McPAS-TCR (Tickotsky

et al., 2017), will serve as motivation to accelerate the

development of well-integrated epitope prediction pipelines.

As a result, it will be an ideal method that predicts an epitope

from billions of TCR sequences and validates it with a biological

experiment, greatly reducing time and cost consumption.

It is critical to introduce an appropriate prediction model to

predict an epitope, as extracting fitness features from a highly

variable and shortened amino acid chain is difficult (Bolotin

et al., 2012). The length and positional characteristics of the

subsequences are unknown, and the amino acids in the

subsequences contribute to varying degrees. Unfortunately, the

aforementioned public databases have an imbalanced epitope

distribution (a high number of unseen epitopes) as well as a lack

of high-quality labeled seen-epitope data (Moris et al., 2021).

Deep machine learning (DL) models have significantly

accelerated the epitope prediction task by automatically

learning engineering features based on domain knowledge and

extracting unknown and implicit features from unprecedented

amounts of TCR repertoire data using unprecedented scale

models (LeCun et al., 2015; Zemouri et al., 2019; Tran et al.,

2022).

Several cutting-edge TCR-peptide binding prediction

approaches based on DL frameworks have been proposed in

the last 2 years, and they were applicable to both seen and

unseen-TCR epitopes. DLpTCR used a multi-model ensemble

strategy comprised of three base classifiers in predicting the

likelihood of interaction between TCR αβ chains and peptides

(Xu et al., 2021). NetTCR-2.0 provided a 1-dimensional (1D)

convolution neural network (CNN) architecture combining

max-pooling for dealing with sequence length variations

(Montemurro et al., 2021). The input TCR αβ chains and

peptide sequences were encoded by the BLOSUM50 (Henikoff

and Henikoff, 1992) matrix before being fed into a dense layer for

prediction. ImRex used a four-layer convolution and two-layer

max-pooling CNN architecture to predict the combined

representation of CDR3 and peptide sequences, by extracting

their physicochemical properties as features (Moris et al., 2021).

ERGO employed a new multilayer perceptron (MLP) model to

predict the likelihood of TCR-peptide binding. During the study,

they provided two different encoding methods, a long short-term

memory (LSTM) network, and an auto-encoder network to

generate the corresponding models (ERGO-LSTM & ERGO-

AE) (Springer et al., 2020).

The CNN architecture is widely used to extract the features of

TCRs and make TCR-peptide prediction, such as DLpTCR,

ImRex, NetTCR-2.0 and DeepLION (Xu et al., 2022), due to

its superior capacity for image feature learning. However, the lack

of CNNmemory capability during the model process will reduce

the feature extraction performance on short sequence data,

especially TCRs. Due to the spatial folding of TCRs, amino

acids in sequences may be related not only to their adjacent

amino acids, but also to some more distant ones. When

extracting sequence features, CNN only considered

interrelationships between adjacent amino acids and ignored

those between non-adjacent amino acids, which also play a

significant role in TCR antigen-binding specificity. The LSTM

architecture, used by the ERGO model, had memory capability

and would reduce the information loss of non-adjacent amino

acids. However, the ERGO model only used the last node output

to represent the entire sequence, ignoring the contribution of

previous node outputs to the final prediction. Furthermore, the

existed start-of-art models could not pay more attention to the

amino acids in sequences that contributed significantly to TCR

antigen recognition. The complex framework would result in

overfitting on TCR-peptide binding tasks, especially under

unbalanced datasets with small labeled sample sizes. As a
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result, there were still some unresolved issues with existed models

and their predictive performances can be further improved by

overcoming several significant flaws in neural network designs.

Motivated by these, we proposed AttnTAP, a dual-input deep

learning network that included the Attn-BiLSTM and Attn-MLP

models, to improve the prediction of TCR-peptide binding

(Figure 1). The bi-directional LSTM (BiLSTM) model with an

attention mechanism was used to extract the features of TCR

sequences, as described in Section 2.2. The BiLSTM model

considered the interrelationships between amino acids and

their adjacent or non-adjacent precursors and postcursors.

Moreover, due to the attention mechanism, all node outputs

were used to represent the entire sequence after weighted

calculation, with a focus on the key amino acids. Given that

FIGURE 1
AttnTAP improved the prediction accuracy of TCR-peptide binding. (A) AttnTAP was a dual-input deep learning framework, which included the
feature extractors for TCR and peptide sequences, Attn-BiLSTM and Attn-MLP. The corresponding feature vectors extracted by the twomodels were
then concatenated for predicting the likelihood of TCR and peptide binding using the multilayer perceptron network. (B) The feature extractor for
TCR sequences, Attn-BiLSTM, was divided into four parts: the input layer, bi-directional long short termmemory (BiLSTM) layer, attention layer,
and output layer. Sequences were preprocessed and encoded into embeddings in the input layer. The embeddings were then fed into the BiLSTM
and attention layers, respectively. The BiLSTM layer extracted the sequences’ feature vectors, while the attention layer computed theweights of each
position in the sequences. Finally, the output layer outputted the weighted feature vectors.
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very few known peptides in the public databases compared to the

TCR sequences, a simple network, MLP, was used to extract

peptide features to reduce the complexity of the network

structure. A dual-input framework of CDR3 sequences and

peptides was used to combine embedding matrices, and then

the two output feature vectors were concatenated by the MLP

network to predict the likelihood of a TCR recognizing a peptide.

Finally, we evaluated the performance of AttnTAP and other

start-of-art TCR-peptide binding prediction models, in terms of

the prediction accuracy, computational cost, and space

complexity.

2 Materials and methods

AttnTAP was a dual-input deep learning framework

developed for predicting the TCR-peptide binding

(Figure 1A). TCR CDR3β sequences, as one of the inputs,

were extracted features using the BiLSTM model with an

attention mechanism, named Attn-BiLSTM. The peptide

sequences were extracted features using the MLP model,

named Attn-MLP. Then, the corresponding features from

Attn-BiLSTM and Attn-MLP models were concatenated to

form a final feature that was used to predict the likelihood of

TCR-peptide binding using the MLP network.

2.1 Data processing

The public TCR-peptide datasets used in this study were

downloaded from the VDJdb (https://vdjdb.cdr3.net/) (Bagaev

et al., 2020), IEDB (http://www.iedb.org/) (Mahajan et al., 2018),

and McPAS-TCR (http://friedmanlab.weizmann.ac.il/McPAS-

TCR/) (Tickotsky et al., 2017), respectively. The three datasets

were used to train the word vectors for AttnTAP, and the VDJdb

andMcPAS-TCR datasets were used to evaluate the performance

of binding prediction approaches. In all of the three datasets, the

standard screening sequences are as follows: 1) We removed the

duplicated sequences, too short (<6bp) or too long (>30bp)
CDR3β sequences, incomplete sequences, and tag-less

sequences; 2) The peptide sequences corresponding to less

than 50 TCR sequences were also removed; 3) We retained

only the correct sequences of the human TCRβ CDR3 and

peptide sequences. As result, we obtained amounts of

181,436 CDR3β sequences from the three public datasets

(“CA . . . F” sequences) to train the word vectors for AttnTAP

(dataset one in this study). The length of CDR3β sequences

ranges from 6 to 27 amino acids, with the majority containing

11–18 amino acids (Supplementary Figure S1).

Furthermore, after the screening process, we obtained

9,597 TCR-peptide pairs with 25 different peptide sequences

from the McPAS-TCR database and 38,134 TCR-peptide pairs

with 56 different peptide sequences from the VDJdb database as

positive samples (Table 1, dataset two in this study). We analyzed

these peptides in the datasets and their species, TCR counts, and

abundances are shown in Supplementary Table S1. Negative

samples were generated by randomly replacing the corresponding

peptide in positive samples with other peptides (Springer et al.,

2020). The procedure for generating negative samples is shown in

Supplementary Algorithm S1. The ratio of negative samples to

positive samples used in this study ranged from 1:1 to 15:1.

2.2 Attn-BiLSTM model

Attn-BiLSTM model was divided into four parts including

the input layer, BiLSTM layer, attention layer, and output layer

(Figure 1B). In the input layer, amino acid sequences were

preprocessed and encoded into embeddings. Then, the

embeddings were fed into both the BiLSTM and the attention

layers. The feature vectors of sequences were extracted in the

BiLSTM layer, while the weights of each position in the sequences

were computed in the attention layer. Finally, the weighted

feature vectors were output in the output layer.

2.2.1 Input layer
According to the previous studies (Montemurro et al., 2021) and

length-frequency statistics (Supplementary Figure S1), themaximum

input length of CDR3 was 18 amino acids and the redundant part

would be truncated to a longer sequence. For the shorter sequences,

we completed them with a placeholder “X” to the maximum length.

Random initialization vectors and pre-training word vectors

were available for Attn-BiLSTM to encode sequences. We used

the character granularity vectors and word granularity vectors as

pre-training word vectors, respectively. Each amino acid was

viewed as a basic character, resulting in a total of 20 characters.

Moreover, three consecutive amino acid residues in a sequence

were considered as one word in word granularity vectors, also

named triplet word vectors (Asgari and Mofrad, 2015). We used

Word2vec (Mikolov et al., 2013) to train these word vectors.

TABLE 1 The datasets used for approach evaluation.

Peptide type TCR-peptide pair number Positive sample size Negative sample size

McPAS-TCR 25 9,597 9,597 9,597–143,955

VDJdb 56 38,134 38,134 38,134–572,010
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2.2.2 BiLSTM layer
The LSTM model specializes in sequential data, reduces

information loss and long-term dependency problems in the

recurrent neural network, and performs well in TCR-peptide

binding prediction (Springer et al., 2020). Compared to the

LSTM, BiLSTM allows for more comprehensive and robust

feature extraction because it takes into account both precursor

and successor positions (Zhou et al., 2016). As a result, the

BiLSTM model was used to extract the features of

CDR3 sequences in this experiment. The encoded vector in

the ith position xi was fed into the forward LSTM (from left

to right) and backward LSTM (from right to left) network, and

the feature vectors hi
→

and hi
←

were output, respectively.

2.2.3 Attention mechanism
As an example, we plotted the seqlogo graphs of

CDR3 sequences corresponding to the peptide sequences

(Figures 2A,B) (Wagih, 2017), which indicated that the

CDR3 sequences corresponding to different peptide sequences

had similar patterns in upstream and downstream targets, but

extremely distinct in the middle region. The difference between

CDR3 sequences, corresponding to two different peptide

sequences at various positions using “Two Sample Logo”

(Figures 2C,D) (Schneider and Stephens, 2002; Crooks et al.,

2004), also indicated that the amino acid composition of

CDR3 sequences binding to different peptide sequences varies

widely.

As shown in the aforementioned example, due to the significant

differences in amino acid composition in the middle region of the

CDR3 sequence, the attentionmechanism could be used to focus on

the amino acids that contributed to the antigen-binding specificity

and improve the feature extraction (Vaswani et al., 2017; Bahdanau

et al., 2014). The weight of the feature vector in the ith position was

calculated as

ui � Tanh(WAhi + bA), (1)

ai � eu
T
i u∑

t
eu

T
t u
, (2)

whereWA and bA were, respectively, the weight matrix and bias,

Tanh(x) was the activation function, and ai was the

regularization of ui using the Softmax function.

2.3 Attn-MLP model

Attn-MLP for peptide sequences consisted of the input

layer and MLP layer. The input layer was the same as that in

Attn-BiLSTM, and we set the maximum length of peptide

sequences to nine in our study. We used a two-layer MLP

model, a simple neural network model used in the majority

of TCR-peptide binding prediction approaches (Springer

et al., 2020; Montemurro et al., 2021; Moris et al., 2021;

Xu et al., 2021), to extract the features of peptides. The

operation process in each layer of the MLP model was

given by

x′ � ReLU(WM · x + bM), (3)

where WM and bM were, respectively, the weight matrix and

bias, and ReLU(x) was the activation function to avoid gradient

explosion or disappearance. To avoid overfitting, we used

dropout (Srivastava et al., 2014) with a rate of 0.1.

FIGURE 2
Amino acid composition of CDR3 sequences bound to different peptide. (A,B) The seqlogo graphs of CDR3 sequences to different peptides.
(C,D) The "Two Sample Logo" graphs of CDR3 sequences to two different peptides.
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2.4 Multilayer perceptron network

The feature vectors of TCR and peptide sequences were

concatenated into a final feature vector, which was used as the

input of the latter MLP network for classification. The operation

process of the MLP network was similar to Eq. 3, and the final

prediction output was shown as

~Y � P(Y � 1|{TCRi, Peptiedj}) � ReLU(W ′
M · x′ + b′M), (4)

where ~Y denoted the probability that the ith TCR sequence binds

to the jth peptide sequence. When ~Y> 0.5, we considered the

TCR recognized the peptide and vice versa. The dropout with a

rate of 0.1was used to avoid overfitting. AttnTAP was end-to-end

trainable, and the loss function was the log-likelihood function

defined as

L � −[~Yln~Y + (1 − ~Y)ln(1 − ~Y)]. (5)

2.5 Performance evaluation approaches

We selected several state-of-the-art TCR-peptide

combination prediction methods proposed in the last 2 years,

which employed deep learning frameworks, to compare their

performance with AttnTAP. As a result, ERGO (Springer et al.,

2020), ImRex (Moris et al., 2021), DLpTCR (Xu et al., 2021), and

NetTCR-2.0 (Montemurro et al., 2021) were selected for the

comparison experiments (Table 2).

2.5.1 Two prediction tasks used for approach
validation

Two different tasks, TCR-Peptide Pairing I (TPP-I) and

TCR-Peptide Pairing II (TPP-II) as described in the previous

study (Springer et al., 2020), were selected to estimate the

performance of the binding prediction. In the TPP-I task, all

of the TCRs and peptides both belong to the training and test

sets, and TCR-peptide pairs were divided into disjoint training

and test sets (dataset 2). We performed five-fold cross-

validation (CV) for the TPP-I task. First, we sampled the

original dataset randomly and generated a new dataset

(~10,000 TCR-peptide pairs). Then, the generated dataset

was randomly divided into five equal parts, four of which

were used as the training set and the rest as the test set. Three-

quarters of the training data were used to train the model five

times independently, and the rest were used as the validation

data to select the final model.

The TPP-II was similar to TPP-I, except the TCRs

contained in the pairs belonging to the training set could

not belong to the test set. Considering that it was difficult to

divide the dataset into five equal parts as required, we

conducted independent replicate experiments 30 times to

perform an unbiased estimation. The generated dataset was

divided into a fixed ratio, the same as the five-fold CV in TPP-

I, with a 4:1 ratio of training data to test data.

2.5.2 Metrics used for performance evaluation
In this study, we used the accuracy (ACC), recall (REC),

precision (PRE), F1 score (F1), and area under the receiver

operating characteristic curve (AUC), as the criteria for the

performance evaluation of these six approaches. There were

six values in these equations, including true (T), false (F), true

positive (TP), true negative (TN), false positive (FP), and false-

negative (FN), were used. The formulas were presented as

follows:

ACC � TP + TN

P +N
� TP + TN

TP + FN + TN + FP
, (6)

REC � TP

P
� TP

TP + FN
, (7)

PRE � TP

TP + FP
, and (8)

F1 � 2 ×
PRE × REC

PRE + REC
. (9)

Computational costs are always used in computer science to

evaluate an algorithm. In this study, we considered the time

complexity and the space complexity, which could be represented

by the average running time and the requiredmemory occupancy

of the several algorithms in each model as previously described

(Zhao et al., 2020).

TABLE 2 The selected representative TCR-peptide binding prediction approaches.

Predictable TCR
chain(s)

Model complexity Input length
constraint

Proposed date Availability

ERGO-LSTM TCRβ Medium None August 2020 https://github.com/louzounlab/ERGO/

ERGO-AE TCRβ Low None August 2020 https://github.com/louzounlab/ERGO/

ImRex TCRβ High TCR: 10–20 &
Epitope: 8–11

December 2020 https://github.com/pmoris/ImRex/

DLpTCR TCRα&β High None July 2021 https://github.com/jiangBiolab/DLpTCR/

NetTCR-2.0 TCRα&β Low TCR: 8–18 &Epitope: 9 September 2021 https://github.com/mnielLab/NetTCR-2.0/
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3 Results

3.1 AttnTAP model performance

3.1.1 AttnTAP performance on different
encoding methods

Three pre-training word vectors, random initialization

vectors, amino acid word vectors, and triplet word vectors,

were tested in the Attn-BiLSTM and Attn-MLP model, to

validate their effectiveness on AttnTAP classification

(Table 3). The ACC and AUC were used to evaluate the

performance of the three different encoding methods on

the balanced McPAS-TCR and VDJdb datasets. The

random initialization vectors and amino acid word vectors

showed better performance on two datasets, while the triplet

word vector had the worst performance. The prediction

accuracies of random initialization vectors, whose

computational cost was much less, were similar to those of

amino acid word vectors. Thus, the random initialization

vectors were used for sequence encoding to improve the

prediction accuracy of AttnTAP.

3.1.2 AttnTAP performance on five different TCR
feature extraction models

To assess the ability of the feature extraction method at

predicting accuracy, we tested the five different TCR extraction

methods based on the balanced McPAS-TCR and VDJdb

datasets. The five different TCR feature extraction methods

were (I) the MLP model with the most suitable parameters by

grid search algorithm; (II) the two-layer LSTM model used in

ERGO; (III) the BiLSTM model with the same parameters as

model II; (IV) themodel II with an attentionmechanism; and (V)

Attn-BiLSTM, the model III with an attention mechanism. We

summarized their performances under the AttnTAP framework

with the TPP-I task. The five-fold CV results on McPAS-TCR

and VDJdb datasets are shown in Table 4.

The results revealed that the BiLSTM model (model III)

performed better than the MLP (model I) and LSTM (model II)

on the McPAS-TCR dataset, and their three models had similar

performance on the VDJdb dataset. The BiLSTM outperformed

other feature extraction models without attention mechanism

because it considered both precursor and successor amino acids,

which extracted information on the interrelationships between

amino acids in a more rational way. The models with attention

mechanism, especially Attn-BiLSTM (model V), outperformed the

other models without attention mechanism in terms of their ACC,

REC, PRE, recall, F1 score, and AUC, which indicated that attention

algorithms could focus on the key amino acids when processing

large amounts of CDR3 information and improve the feature

extraction. In AttnTAP, the BiLSTM layer and subsequent

attention layer formed the main part of the CDR3 feature

extraction model. The attention mechanism assigned various

weights to the amino acid features output by the BiLSTM layer,

correctly modeling the interrelationships between amino acids and

paying more attention to the amino acids that contributed to the

antigen-binding specificity (Supplementary Figure S2). As a result,

Attn-BiLSTM achieved the highest, and balanced REC (mean

0.818 and 0.829 on McPAS-TCR and VDJdb, respectively) and

PRE (mean 0.762 and 0.870 on McPAS-TCR and VDJdb,

respectively) on two datasets. Furthermore, the AUC value of

Attn-BiLSTM had reached as high as 0.869 and 0.914 on

McPAS-TCR and VDJdb. To some extent, the BiLSTM model

based on the attention mechanism could improve the

performance of TCR-peptide prediction accuracy.

3.1.3 AttnTAP performance on the unbalanced
dataset

A real TCR repertoire usually contains more negative samples

than positive samples. To validate the performance of the AttnTAP

model on an unbalanced dataset andmake it suitable for practice, we

attempted to generate 14 unbalanced datasets (the ratio of negative

to positive samples ranged from 2 to 15) using Supplementary

TABLE 3 The performance of AttnTAP with different encoding
methods.

McPAS-TCR VDJdb

ACCa AUC ACC AUC

Random initialization 0.788 0.878 0.843 0.910

Amino acid word vector 0.784 0.871 0.847 0.911

Triplet word vector 0.616 0.678 0.827 0.878

aAbbreviations: ACC: accuracy; AUC: area under the receiver operating characteristic

curve.

TABLE 4 The performance of AttnTAP under varied TCR feature
extraction models.

ACCa REC PRE F1 AUC

McPAS
-TCR

Ib 0.736 0.803 0.708 0.752 0.827

II 0.762 0.803 0.743 0.772 0.854

III 0.766 0.807 0.747 0.775 0.857

IV 0.774 0.755 0.755 0.758 0.861

V 0.781 0.818 0.762 0.789 0.869

VDJdb I 0.840 0.820 0.855 0.837 0.906

II 0.839 0.799 0.868 0.832 0.901

III 0.842 0.806 0.869 0.836 0.904

IV 0.844 0.820 0.861 0.840 0.908

V 0.847 0.829 0.870 0.844 0.914

aAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area

under the receiver operating characteristic curve.
bModel numbers: I: the multilayer perceptron model; II: the two-layer long short term

memory (LSTM) model; III: the one-layer bi-directional LSTMmodel; IV: the two-layer

LSTM model with attention mechanism; and V: Attn-BiLSTM model.
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Algorithm S1 in this section. The five-fold CV was used to evaluate

the performance of AttnTAP on different unbalanced data (Table 5

and Supplementary Figure S3).

The average AUC on the McPAS-TCR dataset had been

rising from 0.838 to 0.873 during the increased number of

negative samples, while the average AUC on the VDJdb

dataset had reached 0.9 across all the unbalanced data. The

AUC performance results indicated that AttnTAP could

consistently perform well on unbalanced datasets with an

increased number of negative samples.

3.2 Performance evaluation of
comparative approaches

3.2.1 Performance evaluation of the TPP-I task
According to the requirements of the six deep neural networks

(Table 2), we selected only the CDR3 β chains (without the α chains)

and discarded the extra amino acids of the sequences longer than the

maximum length input. We performed five-fold CVs six times to

reduce the unbiased evaluation. We trained the pre-training models

of ERGO-LSTM, ERGO-AE, NetTCR-2.0, and AttnTAP, while the

pre-training models of ImRex and DLpTCR were downloaded

directly (https://github.com/pmoris/ImRex/; https://github.com/

jiangBiolab/DLpTCR/) as previously described (Montemurro

et al., 2021; Xu et al., 2021). We calculated the scores of five

measurements for the different TCR-peptide binding prediction

approaches across the two basic datasets. The ACC, REC, PRE, F1,

and AUC values, with 95% confidence intervals, for a total of

30 validations experiments, were statistically analyzed (Table 6

and Supplementary Table S2). Briefly, among six prediction

approaches, AttnTAP had the highest mean AUC values on both

two datasets (the mean values were 0.84 on McPAS-TCR and 0.

894 on VDJdb), and the AUC values ranged from 0.824 to 0.860 on

McPAS-TCR and ranged from 0.882 to 0.905 on VDJdb

(Supplementary Table S2). Moreover, AttnTAP outperformed all

TABLE 5 The AUC of AttnTAP on unbalanced datasets.

Ratio McPAS-TCR VDJdb Ratio McPAS-TCR VDJdb

1:1a 0.838b 0.908 1:9 0.865 0.914

1:2 0.853 0.910 1:10 0.870 0.911

1:3 0.854 0.912 1:11 0.872 0.912

1:4 0.863 0.913 1:12 0.873 0.912

1:5 0.862 0.911 1:13 0.872 0.913

1:6 0.871 0.909 1:14 0.870 0.912

1:7 0.867 0.909 1:15 0.868 0.913

1:8 0.870 0.912 - - -

aIt denotes the ratio of positive samples to negative samples in the dataset.
bWe used the metric, area under the receiver operating characteristic curve, to evaluate the performance of the model.

TABLE 6 The performance evaluation of TPP-I task.

ACCa,b REC PRE F1 AUC

McPAS
-TCR

ERGO-LSTM 0.748 ± 0.004 0.747 ± 0.013 0.748 ± 0.007 0.747 ± 0.006 0.831 ± 0.005

ERGO-AE 0.734 ± 0.004 0.696 ± 0.020 0.754 ± 0.009 0.722 ± 0.008 0.808 ± 0.004

ImRex 0.631 ± 0.003 0.625 ± 0.005 0.648 ± 0.005 0.636 ± 0.004 0.694 ± 0.003

DLpTCR 0.502 ± 0.003 0.500 ± 0.004 0.861 ± 0.003 0.633 ± 0.003 0.529 ± 0.004

NetTCR-2.0 0.728 ± 0.004 0.734 ± 0.010 0.715 ± 0.018 0.722 ± 0.006 0.799 ± 0.004

AttnTAP 0.758 ± 0.003 0.769 ± 0.013 0.752 ± 0.007 0.760 ± 0.005 0.840 ± 0.003

VDJdb ERGO-LSTM 0.834 ± 0.003 0.790 ± 0.004 0.864 ± 0.004 0.825 ± 0.003 0.889 ± 0.003

ERGO-AE 0.837 ± 0.003 0.798 ± 0.006 0.864 ± 0.006 0.829 ± 0.004 0.891 ± 0.003

ImRex 0.561 ± 0.004 0.556 ± 0.005 0.571 ± 0.006 0.564 ± 0.005 0.598 ± 0.004

DLpTCR 0.482 ± 0.005 0.487 ± 0.004 0.861 ± 0.004 0.622 ± 0.004 0.503 ± 0.005

NetTCR-2.0 0.832 ± 0.003 0.851 ± 0.008 0.802 ± 0.007 0.826 ± 0.003 0.890 ± 0.002

AttnTAP 0.839 ± 0.003 0.801 ± 0.006 0.865 ± 0.004 0.831 ± 0.003 0.894 ± 0.002

aThe results show 95% confidence intervals for all the validations (totally 30 validations for each cross-validation).
bAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area under the receiver operating characteristic curve.

Frontiers in Genetics frontiersin.org08

Xu et al. 10.3389/fgene.2022.942491

139

https://github.com/pmoris/ImRex/
https://github.com/jiangBiolab/DLpTCR/
https://github.com/jiangBiolab/DLpTCR/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.942491


other methods overall with respect to the other four metrics, where,

in particular, the REC and PRE of its prediction results on the

datasets were balanced, indicating its good robustness and stability.

Therefore, the AttnTAP was an optimal framework for predicting a

TCR-peptide binding.

3.2.2 Performance evaluation of the TPP

To further validate the generalization performance of

these methods, we evaluated them in the TPP-II task and

conducted independent replicate experiments 30 times.

Similar to the TPP-I task, the AttnTAP model achieved the

highest AUC values (the mean values were 0.837 on McPAS-

TCR and 0.893 on VDJdb) (Table 7), and the AUC values

ranged from 0.810 to 0.864 on McPAS-TCR and ranged from

0.873 to 0.908 on VDJdb in the TPP-II task (Supplementary

Table S3). Moreover, it had better overall performance than

other methods in terms of the other four metrics, with a

balanced REC and PRE. As a result, compared with the

existing methods, AttnTAP had better generalization and

could perform better on new data.

3.2.3 Computational costs of approaches

In this study, the average running time was recorded 30 times

independent experiments (Figure 3A and Supplementary Table S2).

Figure 3A demonstrates that NetTCR-2.0, ERGO-AE, andAttnTAP

had similar running times, which wasmuch less than the other three

TABLE 7 The performance evaluation of TPP-II task.

ACCa,b REC PRE F1 AUC

McPAS
-TCR

ERGO-LSTM 0.735 ± 0.005 0.761 ± 0.016 0.724 ± 0.009 0.741 ± 0.006 0.818 ± 0.004

ERGO-AE 0.731 ± 0.005 0.672 ± 0.022 0.764 ± 0.012 0.712 ± 0.009 0.800 ± 0.005

ImRex 0.627 ± 0.004 0.621 ± 0.006 0.644 ± 0.007 0.632 ± 0.005 0.690 ± 0.005

DLpTCR 0.501 ± 0.003 0.499 ± 0.003 0.859 ± 0.004 0.631 ± 0.003 0.524 ± 0.004

NetTCR-2.0 0.731 ± 0.004 0.746 ± 0.008 0.699 ± 0.018 0.720 ± 0.008 0.804 ± 0.004

AttnTAP 0.755 ± 0.005 0.778 ± 0.011 0.743 ± 0.006 0.760 ± 0.006 0.837 ± 0.004

VDJdb ERGO-LSTM 0.832 ± 0.003 0.794 ± 0.007 0.860 ± 0.005 0.825 ± 0.004 0.891 ± 0.003

ERGO-AE 0.836 ± 0.003 0.800 ± 0.009 0.864 ± 0.005 0.830 ± 0.004 0.888 ± 0.004

ImRex 0.561 ± 0.005 0.560 ± 0.006 0.575 ± 0.006 0.568 ± 0.006 0.597 ± 0.006

DLpTCR 0.488 ± 0.004 0.494 ± 0.004 0.862 ± 0.004 0.628 ± 0.004 0.510 ± 0.004

NetTCR-2.0 0.832 ± 0.003 0.860 ± 0.007 0.794 ± 0.009 0.825 ± 0.004 0.891 ± 0.003

AttnTAP 0.838 ± 0.003 0.794 ± 0.006 0.872 ± 0.004 0.831 ± 0.004 0.893 ± 0.003

aThe results show 95% confidence intervals for totally 30 independent experiments.
bAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area under the receiver operating characteristic curve.

FIGURE 3
The computational costs of the approaches on theMcPAS-TCR dataset. (A) The average running time of the six approaches on theMcPAS-TCR
dataset in the TPP-I task. (B) The required memory occupancy of the six approaches on the McPAS-TCR dataset in the TPP-I task.
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approaches, while DLpTCR achieved the longest running time,

which indicated that DLpTCR had a higher complexity of model

configuration. The required memory occupancy of all the six

approaches on the McPAS-TCR datasets was also recorded and

averaged for comparison (Figure 3B and Supplementary Table S2).

The running ERGO-AE with the minimal space and followed by

AttnTAP, whereas the DLpTCR had the largest space occupancy for

its complex framework. Thus, AttnTAP improved the accuracy of

TCR-peptide binding prediction while being quite efficient in terms

of computational time and memory usage.

FIGURE 4
The performance of AttnTAPwith different hyperparameters. (A,B) Panels showed the performance of AttnTAP with different learning rates and
bi-directional long short-term (BiLSTM) layer numbers. (C–F) Panels depicted the performance of AttnTAP using LSTM/BiLSTMwith different training
epochs, dropout rates, dimensions of encoding vectors, and LSTM/BiLSTM layers, respectively.
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4 Discussion

The prediction of TCRs binding to the peptide is urgent in

a clinical, but still extremely challenging, with highly cross-

reactive TCRs and peptides, unseen peptides lack biological

verification, and limited available training samples (Rudolph

et al., 2006; Szeto et al., 2020; Moris et al., 2021). The

breakthrough of deep convolutional neural networks in

predicting TCR-peptide binding accuracy, accelerating well-

integrated human immune repertoire, and potentially

interacting peptides prediction pipelines. However, a few

remaining issues led us to design this experiment. In this

study, we designed the attention mechanism under the Attn-

BiLSTM framework, considering the various contributions of

amino acids in CDR3 sequences. Then, a dual input of

CDR3 sequences and peptides was needed to improve the

prediction accuracy, instead of separate embedding steps

ignoring the two protein molecular interactors. The

experimental results also showed the AttnTAP achieved a

good performance in TCR-peptide binding prediction.

Due to the high dimensionality, non-homogeneous, and

sparsity of TCR repertoire data, we proposed a novel and

unified architecture, which combined a bi-directional LSTM

(BiLSTM), an attention mechanism, and a convolutional

layer. The BiLSTM extracted TCR features by considering

both the preceding and succeeding amino acid representations

of a single CDR3 chain (Zhou et al., 2016). Moreover, an

attention mechanism was employed to give a different focus to

the information outputted from the hidden layers of BiLSTM.

In Supplementary Figure S2, the weight of amino acids in a

CDR3 chain varies greatly at different positions, with the color

changed from light to dark. It is a biological truism that high

weights (dark) tend to appear in the middle region of a

CDR3 chain (Robins et al., 2009), and the weighting

pattern displayed by AttnTAP on most CDR3 sequences

was consistent with this truism. However, some sequences

had special weighting patterns, showing strong weighting at

the beginning or ending amino acids (N- or C- terminus of the

CDR loop). We analyzed the attention weight condition of

1957 test samples from the VDJdb dataset in one five-fold CV

test. We found that AttnTAP exhibited strong weighting for

their beginning part only on 59 CDR3 sequences, which

represented only 0.03 of all the samples, and these

sequences corresponded to 31 different peptides.

Furthermore, some CDR3 sequences showed strong

weighting at the terminal amino acids (C- terminus) of the

shorter sequences as well as the placeholders. Given that the

attention mechanism may assign higher weights to the

boundary part, where the anterior and posterior position

features differ, AttnTAP focused on the terminal amino

acid “F” and the placeholders, taking into account the

sequence length feature. In addition, we also speculated

that some CDR3 sequences had unexpected patterns due to

the strong V or J region preferences or the dataset biases.

Although most CDR3 sequences have a similar beginning or

ending (e.g., beginning with “C” and ending with “F”), these

similar beginnings and endings may still form specific

combinations with highly variable amino acids in the

middle of the sequences, which allows the sequences to

possess antigen-binding specificity.

As is well-known, an adjustable hyperparameter,

including the learning rate, the number of BiLSTM layers,

the training epoch, and the dropout rate, could balance the

latent channel capacity and improve the prediction accuracy

(Graves et al., 2013; Zhou et al., 2016). We conducted a series

of experiments on the McPAS-TCR dataset to validate the

effect of different hyperparameters on model prediction

FIGURE 5
The prediction performance of AttnTAP and NetTCR-2.0 on
different peptides. We first selected nine peptides according to
abundance for the McPAS-TCR and VDJdb datasets, respectively,
of which three were of lowest abundance (McPAS-TCR:
HPKVSSEVHI, YSEHPTFTSQY, RPRGEVRFL; VDJdb: RPPIFIRRL,
EPLPQGQLTAY, HPKVSSEVHI), three were of intermediate
abundance (McPAS-TCR: SFHSLHLLF, ELAGIGILTV, FRCPRRFCF;
VDJdb: SFHSLHLLF, FLKEKGGL, NLSALGIFST), and three were of
highest abundance (McPAS-TCR: GLCTLVAML, GILGFVFTL,
LPRRSGAAGA; VDJdb: NLVPMVATV, GILGFVFTL, KLGGALQAK).
Then, we performed five-fold cross-validation on NetTCR-2.0 and
AttnTAP using only TCR β chain CDR3 sequences, where we used
all training data to train the models but only used the test data
containing the corresponding peptide to test the models. The
average accuracy was used to evaluate their prediction
performance.
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performances and determine the value of the hyperparameters

based on the results. We used the metric ACC to evaluate the

model prediction accuracy in the experiments (Figure 4). Four

hyperparameters, including training epoch, dropout rate,

dimension of encoding vectors, and the dimension of

LSTM/BiLSTM layers, were used to compare the

performance of Attn-LSTM and Attn-BiLSTM (Figures

4C–F). BiLSTM was an ideal model under the different

hyperparameters conditions. Thus, in this study, we set the

training epoch, the dropout rate, the dimensions of amino acid

encoding vectors, and the BiLSTM layer to 10, 0.1, 70, and

80 for AttnTAP, respectively, according to the results. The

ACC had deteriorated significantly when the learning rate was

below 0.0001, thus we set the threshold to 0.001 for

compatibility with the application in the various dataset

(Figure 4A). There was no significant improvement in

model performance as the number of BiLSTM layers

increased, we used one-layer BiLSTM to reduce model

complexity (Figure 4B).

ImRex and DLpTCR had lower prediction accuracies than

the other four approaches under TPP-I and TPP-II tasks,

maybe due to the overfitting caused by their complex model

structures. We reduced the complexity of AttnTAP by using

one-layer BiLSTM instead of multi-layer BiLSTM to extract

TCR sequences features and the MLP model instead of the

LSTM model to extract peptide features to avoid the

overfitting. The results of AttnTAP in TPP-II were similar

to those in TPP-I, which indicated that AttnTAP had a robust

and good generalization in predicting an unseen TCR

sequence binding to a peptide. Thus, the AttnTAP

presented here could serve as an unseen TCR-peptide

prediction method, for accelerating identifying neoantigens

and activated T cells for immunotherapy clinically.

In addition to the performances of AttnTAP on the entire

McPAS-TCR and VDJdb datasets, we also evaluated its

performances on different peptides, especially the peptides with

low abundance, in the TPP-I task. The abundance of peptides in the

McPAS-TCR dataset ranged from 0.005 to 0.219, and from 0.001 to

0.356 in the VDJdb dataset (Supplementary Table S1). We selected

nine peptides according to their abundances (high-, medium- and

low-abundance accounted for one-third) for the McPAS-TCR and

VDJdb datasets, respectively (Supplementary Table S1). Considering

that NetTCR-2.0 is the latest method for TCR-peptide binding

prediction and has high prediction accuracies with low

computational cost, we selected it as the baseline model. We

performed a five-fold CV on NetTCR-2.0 and AttnTAP using

only TCR β chain CDR3 sequences and compared their

performance by average ACC. In detail, we used all training data

to train the models, while only used the test data containing the

corresponding peptide to test the models (Figure 5 and

Supplementary Table S4). On the McPAS-TCR dataset, the

average ACCs of AttnTAP and NetTCR-2.0 were 0.894 and

0.720 for the lowest abundance peptides, 0.718 and 0.714 for the

intermediate abundance peptides, and 0.823 and 0.700 for the

highest abundance peptides. Moreover, on the VDJdb dataset,

their average ACCs were 0.932 and 0.800 for the lowest

abundance peptides, 0.821 and 0.793 for the intermediate

abundance peptides, and 0.916 and 0.828 for the highest

abundance peptides, respectively. The results indicated that

AttnTAP had higher ACCs than NetTCR-2.0 on most of the

peptides and had similar performances to the latter on the other

peptides (e.g., SFHSLHLLF and FRCPRRFCF in the McPAS-TCR

dataset andNLSALGIFST in the VDJdb dataset). In our opinion, the

AttnTAP framework had a good performance on TCR-peptide

binding prediction, especially the low-abundance peptides, due to its

BiLSTM model with attention mechanism in extracting

CDR3 features, which validated that AttnTAP has good stability

and robustness.

In conclusion, we successfully trained a dual-input model to

predict the interactions between seen and unseen TCRs and

peptides. Due to the limited training samples and known

peptides we had available, we tried to reduce the complexity of

themodel to avoid overfitting on the premise of prediction accuracy.

In the future, we will consider more information on TCR sequences,

such as the CDR1 and CDR2, or TCRα chain when data become

available, to train a good performance and more generalization

prediction model to be suitable for multi-types data, meeting the

urgent clinical needs.
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