About this Research Topic
This Research Topic aims to provide a current overview of the complex interplay between biophysical environment and cell mechanobiology in physiology and pathology, highlighting novel insights across all scales from the protein through the cell to the tissue and organ.
The general aim of the Research Topic is to promote awareness of multidisciplinary approaches focused to investigate cellular mechanosensing and mechanotransduction bridging the gap among biology, biomechanics, bioengineering, material sciences, pharmacy and medicine.
Researchers are invited to contribute with their original evidence-based articles and critical literature review manuscripts, summarizing the most recent and innovative developments in the growing research field of cellular mechanosensing and mechanotransduction, afforded by advances in biological analysis, imaging, in vitro model systems, experimental mechanics, computational modeling, etc.
Potential topics include, but are not limited to:
· Mechanosensing and mechanotransduction mechanisms in wound healing and tissue repair
· Mechanosensing and mechanotransduction mechanisms in tissue development and homeostasis, in the evolution of disease (e.g., fibrosis, cancer), in control of cell function and differentiation
· Mechanotransduction in tissue engineering and regenerative medicine
· Biomaterials and biofabrication techniques for mimicking the biophysical cues
· Bioreactors and microfluidic platforms mimicking the biophysical environment
· In vitro models for investigating biophysical forces and their impact on healthy and pathological cells/tissues
· Mechanical characterization of cells, tissues, and substrates (microfabricated substrates, traction force microscopy, nanoindentation, AFM, stretching machines, etc.)
· Multiscale computational modeling
· Mechanotransduction mechanisms inhibited/promoted by molecules and drugs
Keywords: Mechanosensing, Mechanotransduction, Biophysical Stimuli, Biomechanics, Multiscale Mechanical Characterization
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.