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Editorial: The state-of-art
techniques of seismic imaging for
the deep and ultra-deep
hydrocarbon reservoirs

Jidong Yang* and Jianping Huang*

Geophysics Department, China University of Petroleum (East China), Qingdao, China
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Editorial on the Research Topic

The state-of- art techniques of seismic imaging for the deep and ultra-

deep hydrocarbon reservoirs

At present, oil and gas resources that are relatively simple to explore have been

extensively developed. Deep and ultra-deep hydrocarbon becomes one of the most

important exploration targets. Under high-temperature and high-pressure

conditions, deep oil and gas reservoirs have different hydrocarbon sources,

accumulation mechanisms, geophysical and geochemical characteristics from

conventional shallow-to-intermediate reservoirs. Seismic data from deep and

ultra-deep strata have weak amplitudes, low signal-to-noise ratio, and bad

resolution. These issues make it difficult for geophysicists to build accurate

subsurface velocity models and produce high-quality images.

The Research Topic “The State-of-Art Techniques of Seismic Imaging for the Deep

and Ultra-deep Hydrocarbon Reservoirs” aims to receive the Frontier research and

application for deep and ultra-deep oil/gas exploration using seismic techniques,

toward a better understanding of deep and ultra-deep petroleum systems. Twelve

manuscripts have been accepted so far, covering seismic acquisition, modeling,

imaging, inversion, and interpretation. For example, optimized acquisition

systems have been proposed to improve the quality of full-waveform inversion

and reverse-time migration for deep reservoirs. Accurate numerical modeling

methods combined with high-performance computation have been developed to

simulate seismic propagations in land exploration areas. Advanced migration

approaches, including least-squares migration, attenuation compensation,

scattering imaging and Gaussian beam migration for VSP surveys, have been

presented to improve image quality for deep targets. Robust hydrocarbon

prediction algorithms have been proposed to improve the accuracy of reservoir
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characterization for land low-signal-to-noise data. These

developments provide new ideas for deep and ultra-deep

seismic exploration.
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Simultaneous Inversion of Layered
Velocity and Density Profiles Using
Direct Waveform Inversion (DWI): 1D
Case
Zhonghan Liu*, Yingcai Zheng and Hua-Wei Zhou

Department of Earth and Atmospheric Sciences, The University of Houston, Houston, TX, United States

To better interpret the subsurface structures and characterize the reservoir, a depth model
quantifying P-wave velocity together with additional rock’s physical parameters such as
density, the S-wave velocity, and anisotropy is always preferred by geologists and
engineers. Tradeoffs among different parameters can bring extra challenges to the
seismic inversion process. In this study, we propose and test the Direct Waveform
Inversion (DWI) scheme to simultaneously invert for 1D layered velocity and density
profiles, using reflection seismic waveforms recorded on the surface. The recorded
data includes primary reflections and interbed multiples. DWI is implemented in the
time-space domain then followed by a wavefield extrapolation to downward continue
the source and receiver. By explicitly enforcing the wavefield time-space causality, DWI can
recursively determine the subsurface seismic structure in a local layer-by-layer fashion for
both sharp interfaces and the properties of the layers, from shallow to deep depths. DWI is
different from the layer stripping methods in the frequency domain. By not requiring a
global initial model, DWI also avoids many nonlinear optimization problems, such as the
local minima or the need for an accurate initial model in most waveform inversion schemes.
Two numerical tests show the validity of this DWI scheme serving as a new strategy for
multi-parameter seismic inversion.

Keywords: full waveform inversion (FWI), velocity model building, density inversion, waveform inversion, multi-
parameter inversion, modeling

INTRODUCTION

Seismic full waveform inversion (FWI), formulated originally by (Lailly, 1983; Tarantola, 1984), is a
powerful process in subsurface velocity model building. The goal of FWI is to find a model such that
the model-predicted waveforms fit the observed waveforms. Since FWI is an iterative gradient-based
method, its success depends on howmuch the initial model differs from the true model (Virieux and
Operto, 2009). The limitation of the iterative FWI scheme was recognized early on by many authors
(Gauthier et al., 1986; Tarantola, 1986; Mora, 1987; Bourgeois et al., 1989). Tarantola (2005, p.128)
pointed out that the local Fréchet gradient used in FWI was equivalent to the single scattering Born
approximation. Therefore the performance of FWI relies on an accurate and long-wavelength initial
velocity model in which case the Born approximation is more accurate. As the correspondence
between low-frequency seismic data and low-wavenumber/large-scale structures is linear in the Born
single scattering (Wu and Zheng, 2014), due to the lack of low-frequency content (<5 Hz) in most
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reflection seismic data, most developments in FWI have been
focusing on how to recover large-scale structural information
when low-frequency data are not available. These developments
include, for example, the Laplace FWI (Shin and Cha, 2008; Shin

and Ha, 2008; Kim et al., 2013), envelope inversion (Wu et al.,
2014; Luo and Wu, 2015; Chen et al., 2018), intensity inversion
(Liu et al., 2018; Liu et al., 2020), and the FWI using deep learning
techniques (Richardson, 2018).

To circumvent the challenges in FWI, we proposed an
alternative waveform inversion scheme (Liu and Zheng, 2015;
2017), called the direct waveform inversion (DWI), to invert for
subsurface models without the need for a global initial model.
DWI combines seismic imaging and velocity model building into
one single process. In order to use DWI, it is necessary for the
input seismic data to include both free-surface and inter-bed
multiples. Using surface recorded reflection seismic data, DWI is
able to deliver accurate P-wave velocity inversion results without
using a global initial model, for both 1D and 2D layered scalar
(i.e., no density variation) models (Zheng and Liu, 2020).
Without using a global model, DWI inverts the model from
shallow to deep depths. In this regard, DWI is similar to the layer-
stripping methods (Claerbout, 1976) and the approach by
Goupillaud (1961). However, there are important differences
in the methods, in particular the explicit use of the time-space
causality in DWI and local inversion in both space and time.

In the current industry, simultaneous inversion of multiple
rock physical parameters is one of the state-of-art workflows that
can much directly benefit the subsurface reservoir
characterization and improve production (Brossier et al.,
2009), using surface seismic data. To address the demand of
multi-parameter inversion, many FWI methods are developed to
invert for parameters like the P-wave velocity, S-wave velocity,
density, and seismic anisotropy (Sears et al., 2008; Brossier et al.,
2009; Jeong et al., 2012; Warner et al., 2013; Alkhalifah and
Plessix, 2014). However, for these multi-parameter inversion
methods based on FWI, the increased number of the model

FIGURE 1 | Wavefields in a 1D layered model. c0, c1, . . . are layer
velocities. ρ0 , ρ1, ρ2 are densities in layers. H1, H2 are the layer thicknesses.
Pi, vzi are pressure and vertical component of the particle velocity at the depth
zi , respectively. Ui , Di are the up-going and down-going pressure fields
respectively at depth zi , where “-” indicates the wavefields on the top side of zi ,
“+” indicates the wavefields on the bottom side of zi . Figure modified from
Zheng and Liu (2020).

FIGURE 2 | Velocity (A) and density (B) profiles of the true model.
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FIGURE 3 | Recorded waveforms of pressure (A–D) and vertical component of particle velocity (E–H) in response to four different plane waves.
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parameters means higher computational cost, and increased ill-
posedness of the inverse problem (Virieux and Operto, 2009). In
contrast, benefited from the localized inversion and explicit use of
the time-space causality, our DWI method can be implemented
for multi-parameter inversion without increasing much
computational cost and numerical instability.

In this paper, we start from a 1D acoustic layered medium to
demonstrate the ability of DWI in the simultaneous inversion of
multiple parameters. Such 1D layered examples can
fundamentally validate the feasibility of this state-of-art DWI
method. The numerical examples demonstrate that the DWI
method could play an important role in the multi-parameter
seismic inversion.

1D Scalar DWI With Constant Density
Throughout the Model
In this section, we briefly summarize the scalar DWI procedure
for inverting the sound wave velocity in a horizontally stratified
layeredmedium that has a constant density throughout the model
(Figure 1), i.e., ρi � ρ0. In the next section, we will consider the
case where densities may be different in different layers.

DWI explicitly uses the time-space causality property of
the wavefield in the inversion. Starting from the source-
receiver layer near the surface, we recursively (not
iteratively) build the model downward by fitting the earliest
parts of the waveforms of pairs of source-receivers of short (or
zero) offsets. We then extrapolate the sources and receivers
downward to the bottom of the inverted region, and repeat the
process.

To illustrate the DWI process, we assume that both the
pressure waveform, P, and particle velocity, Vz, are recorded
on the surface (z0). The incident plane wave is vertical or at zero
incident angle. We further assume that c0, the velocity of the first
layer, is known. We decompose the wavefields (P and Vz) into
up-going,U, and down-going,D, pressure wavefields, respectively
(Liu and Zheng, 2015) as follows

D + U � P (1)

D − U � ρcVz (2)

where ρ and c are density and wave velocity, respectively.
Conversely, if we know U and D, we can compose P and Vz.
In this section, we assume a constant density profile ρ.

DWI consists of four steps:

• Step 1. At the acquisition plane depth z0, we use the recorded
waveforms, P0(t) and Vz0(t), and the first layer’s velocity c0
(assumed to be known), to calculate the up-going and down-
going pressure fields at depth z+0 , denoted as U+

0 and D+
0 ,

respectively, using Eq. 1. From the point of view of the input/
output system, we can view the medium below z0 as a linear
system. D+

0 is the incident wave (or input), and U+
0 is the

reflection response (or output) of the system. Following the
time-space causality of the wavefield, the earliest up-going
impulse in U+

0 must be generated from the first (earliest)
down-going impulse in D+

0 , reflected by the reflector at
depth z1 to be determined. A causal time-domain
deconvolution between D+

0 and U+
0 can generate a response

consisting of a series of impulses. The time of the first impulse
gives a time difference, 2τ. Hence the depth of the reflector z1,
or the thickness of the first layer H1, can be calculated by
multiplying c0 with the one-way traveltime τ.

FIGURE 4 | Comparisons between DWI inversion result and true model
for both velocity (A) and density (B) structure.

TABLE 1 | The misfit of velocities and densities between the inverted model and
true model (the velocity and density information of the first layer are known).

Misfit of velocity Misfit of density

Layer 2 0.28(%) 0.32(%)
Layer 3 0.26(%) 0.29(%)
Layer 4 0.34(%) 0.23(%)
Layer 5 0.54(%) 0.47(%)
Layer 6 1.33(%) 0.44(%)
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• Step 2. We then extrapolate fields U+
0 and D+

0 to the bottom of
the first layer (depth z−1 ) in the frequency (ω) domain

U−
1 � U+

0exp(−iωτ) (3)

D−
1 � D+

0exp(+iωτ) (4)

This wavefield extrapolation can be done by many different
methods. In 1d, we choose the phase shift approach shown here
because it is easy to implement.

• Step 3. After extrapolation, the first impulse in U−
0 and the first

impulse inD−
0 should be time-shifted to the same time as if the

incidence and reflection occur right above z1. We use their
amplitude ratio, R0, which is the reflectivity in a constant-
density medium

R0 � c1 − c0
c1 + c0

(5)

To determine the velocity, c1, of the next (or the second) layer
since c0 is known.

• Step 4. Finally, we can use c1, U−
1 , and D−

1 , to obtain the
pressure and particle velocity fields, P1 and vz1, respectively
at depth z−1 , using Eqs 1, 2. Because the pressure and the
particle velocity fields should be continuous across a
boundary, we can get their values at z+1 in layer 2. At this
point, we also know c1, so our situation is the same as in
Step 1.

The aforementioned process, using the recorded fields, P0 and
Vz0, and c0, to obtain the other parameters of the second layer (z1,
P1, Vz1, and c1), can be recursively repeated downward layer by
layer. As the inversion process goes deeper, there will be fewer
and fewer remaining seismic events in both the up-going data.
Eventually, DWI stops when there are no seismic events in the
extrapolated upgoing fields due to finite recording time of the
seismic traces. At this point, all the layers have been inverted or
the inverted model has expanded downward to its maximum
extent and converged to the final model. In this sense, DWI
always converges, unconditionally.

Simultaneous DWI for Both Velocity and
Density
In the previous 1D DWI scheme, we assume the density is
constant throughout the model. For the 1D inversion on
models of depth dependent density profiles, there were some
relevant work by Coen in 1980s (Coen, 1981a; Coen, 1981b; Coen,
1981c). In Coen’s work, the density and velocity are inverted
separately using a dataset from oblique incident plane waves
based on the Gel’fand-Levitan-Marchenko (GLM) theory
(Agranovich and Marchenko, 1963; Berryman and Greene,
1980). In our study, instead of applying the GLM theory, we
directly use the incident angle (θ)-dependence of the reflectivity,
R(θ), to invert for both velocities and densities of a layeredmodel.
To achieve simultaneous inversion of velocities and densities, we
show how to modify the steps in the previous section respectively.

FIGURE 5 | Comparisons of the recorded data (red) and synthetics (black) modeled using the DWI inverted model. (A) pressure waveforms; (B) particle velocity
waveforms at the 0-degree incidence. Note the waveform amplitudes of the multiples in the red dashed box are amplified by 300 times.
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Assuming the wave is incident from medium-1 (ρ1, c1) at an
angle θ to medium-2 (ρ2, c2), we have the angle-dependent
reflectivity

R(θ) � ρ2c2cosθ − ρ1
����������
c21 − c22sin

2θ
√

ρ2c2cosθ + ρ1
������
c21 − c22

√
sin2θ

(6)

If we have two plane waves of two different incident angles θ1
and θ2 and two measured amplitudes, R1 � R(θ1) and
R2 � R(θ2), we can in principle determine c2, and ρ2,
simultaneously.

To increase robustness of the inversion, we can make use of
waves of multiple incident angles (n≥ 2), and minimize the
objective function

J[c2, ρ2] � ∑
n

i�1

∣∣∣∣R(θi; ρ2, c2) − ri
∣∣∣∣2 (7)

In Eq. 7, for a plane wave at the incident angle θi, R(θi) is
theoretically modeled reflectivity using Eq. 6, and ri is the
measured reflectivity. As we only have two unknowns (c2 and
ρ2), using a grid search method can quickly get the results.

Assuming the incident wave angle is θ and in order to invert
for the density profile, the steps of the scalar DWI need to be
modified as follows:
In Step 1, Eq. 2, the relationship between the pressure and vertical
component of the particle velocity, should be changed to

D − U � ρcVz/cosθ (8)

In Step 2, the extrapolation of up-going and down-going pressure
fields should be modified as

U−
2 � U+

1exp(−iωτcosθ) (9)

D−
2 � D+

1exp(+iωτcosθ) (10)

In Step 3, using the amplitude ratio R(θi) and the measured data,
ri, from multiple incident angles, θi, we can obtain c2 and ρ2 by
either solving Eq. 6 directly or fitting Eq. 7.
In Step 4, we need to use Eqs 1, 8 to compose P and Vz from the
up-going and the down-going fields.

Numerical Examples
In this section, we will present two synthetic examples to
demonstrate the effectiveness of our proposed method: a
simple layered model with six layers, and a more complex
layered model with thirty-one layers. Both models are
horizontally stratified. Within each layer, the velocity and
density are constant. However, different layers have different
properties. Both the top and bottom boundaries of the model are
set up as half-space boundary conditions.

The synthetic data (pressure and particle velocity) in both
examples are generated by a propagator matrix method (e.g.,
Eftekhar et al., 2018). The plane wave is injected at a depth of 0 m
and propagated downward into the model. The receivers are
placed at the same depth. Both the pressure and particle velocity
wavefields are recorded at a time sampling interval of 1 ms.

Example 1.
In the first example, there are six layers (Figure 2) and the
velocity contrast is up to 200%. Here we use a 15 Hz Ricker
wavelet as the incident plane wave for the model (Figure 2). We
conduct the modeling for four plane wave sources at different
incident angles: 0, 5, 10, and 15°. The waveform records of the
pressure and the vertical component of particle velocity are
shown in Figure 3. In Figure 3, the recorded waveforms
contain full information of the wavefields, including the
primary reflections and multiples.

Using the recorded data shown in Figure 3 and following the
DWI steps in the previous section, we inverted for both the
velocity and density profiles, shown in Figure 4. We also
calculated the misfits in velocities and densities between the
DWI results and the true models shown in Table 1, where
most of them are less than 1%, except the velocity in the last
layer (layer 6).

FIGURE 6 | The velocity (A) and density (B) profiles of the true model.
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FIGURE 7 | Recorded waveforms of pressure (A–D) and vertical component of particle velocity (E–H) in response to four different plane waves.
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To check the validity of the inverted model in the data space,
we conduct a forward synthetic modeling using the DWI inverted
model (Figure 4). The modeled waveforms fit the data very well
(Figure 5). Both the primary reflections and the internal
multiples can be reproduced by the DWI inverted model.

Example 2.
In the second example, we build a model with 31 velocity and
density layers (Figure 6). An 80 Hz Ricker wavelet was used as the
incident plane wave source wavelet and we modeled the data for
four plane waves at angles: 0, 5, 9, and 16°. The recorded
waveform data of the pressure and the vertical particle velocity
are shown in Figure 7.

Compared with the recorded waveforms in the first example
(Figure 3), both the primary reflections and the internal multiples
(Figure 7) are much more complicated. Using these recorded
data, we applied our DWI scheme and obtained the inversion
results of velocity, density, and impedance models shown in
Figure 8.

From Figure 8we can see that the DWI scheme almost exactly
recovers the impedance model. For the velocity and density
models, although there are some small misfits (less than 2%),
the inverted models still agree well with the true model. To
further examine the influences of these modeled misfits, here we
also conduct a forward synthetic modeling based on the inverted
model (Figure 8). The results are shown in Figure 9. The
modeled waveforms using the DWI model fit the data very
well including not only the primary reflections but also the
internal multiples.

DISCUSSION

We remark on limitations of DWI. DWI depends on reflection
events in data to invert for the subsurface model. If the true model
is smooth and does not have many reflectors, DWI may fail to
find the true model. If the incident angle is too large and the total
reflection occurs, DWI is not able to invert for model parameters
below the total reflection depth.

The performance of the recursive DWI scheme may
suffer from the accumulation of errors as the inversion
process goes from shallow to deep depths. Data
redundancy can help. In order to resolve reflectivities into
P-wave velocity contrast and density contrast, respectively, we
need to use several distinct incident angles. If the range of
incident angles is narrow, DWI may not be able to resolve Vp
and density correctly.

It is also worthwhile to provide some general remarks on the
differences between DWI and FWI. Based on the single-scattering
approximation (Tarantola, 2005), FWI linearizes the global non-
linear seismic inversion problem by iteratively minimizing the
misfit between the recorded data and the model predicted data.
For FWI, if the intial model is far from the true model, the FWI
convergence can be a problem (Sirgue and Pratt, 2004). Different

FIGURE 8 | Comparisons between DWI inversion result and true model
on velocity (A), density (B), and impedance (C) models.
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from FWI, DWI does not rely on an initial global model to start
the waveform inversion process. It only needs the local velocity
around the surface receivers. The DWI scheme converts the FWI
global optimization problem into many localized reflectivity
inversions by explicitly invoking the causality principle. Hence
it reduces the nonlinearity significantly which is a strength over
the FWI method. Another advantage for DWI is that it does not
need low-frequency data as seen in our example 2. On the other
hand, if the true model is smooth and data have only a few
reflection events, FWI may perform better. In cases where DWI
can be applicable, DWI can be significantly faster numerically to
obtain a model.

There are also marked differences between DWI and the
1D inversion using the GLM theory. Most developments of

the GLM theory are aiming at imaging and redatuming
methods (e.g., Broggini et al., 2014; Wapenaar et al., 2014;
van der Neut et al., 2015; Nowack and Kiraz, 2018). Recently,
Wu and He (2020) used the GLM theory to invert for 1D
impedance profile. For 1D GLM problem, a time to depth
conversion is needed and is usually carried out by the Liouville
transform. But for 2D and 3D spatial problems, a macro-
velocity model need to be used and should be obtained a prior.
However, for DWI, the inversion is localized in a shallow to
deep fashion and the inverted model is automatically obtained
in the depth domain and there is no need to use a global
velocity model. In future we will show 2D inversion results in
which the wavefield extrapolation is much more involved
using integral equations.

FIGURE 9 | Comparisons of data (red) and synthetics (black) modeled using the DWI inverted model for pressure at the 0-degree incidence (A), the events in the
red dashed box are amplified by 10 times. A zoom-in view of the events in the red dashed box in (A) is shown in (B).
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CONCLUSION

We extend the scalar DWI scheme to invert for
the subsurface density and velocity simultaneously,
using multiple plane waves. Using recorded seismic
data on the surface, our method inverts for the model
parameters locally by explicitly employing time-space
causality principle of the wavefield and recursively from
shallow to deep depths. The new DWI scheme makes use
of the angle dependent property of the reflectivity to solve
for density and velocity simultaneously. The input seismic
data to DWI must include all types of data including
multiples. Numerical examples demonstrate the feasibility
of the DWI approach to invert for both velocity and density
using four plane wave sources. We find that the acoustic
impedance profile is better resolved than the P-wave velocity

or density owing to slight tradeoff (<1%) between the two
parameters.
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Trapezoid-Grid Finite-Difference
Time-Domain Method for 3D Seismic
Wavefield Modeling Using CPML
Absorbing Boundary Condition
Bangyu Wu1,2, Wenzhuo Tan1,2, Wenhao Xu3* and Bo Li 2

1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China, 2Sinopec Geophysical Research Institute , Nanjing,
China, 3School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an, China

The large computational memory requirement is an important issue in 3D large-scale
wave modeling, especially for GPU calculation. Based on the observation that wave
propagation velocity tends to gradually increase with depth, we propose a 3D trapezoid-
grid finite-difference time-domain (FDTD) method to achieve the reduction of memory
usage without a significant increase of computational time or a decrease of modeling
accuracy. It adopts the size-increasing trapezoid-grid mesh to fit the increasing trend of
seismic wave velocity in depth, which can significantly reduce the oversampling in the
high-velocity region. The trapezoid coordinate transformation is used to alleviate the
difficulty of processing ununiform grids. We derive the 3D acoustic equation in the new
trapezoid coordinate system and adopt the corresponding trapezoid-grid convolutional
perfectly matched layer (CPML) absorbing boundary condition to eliminate the artificial
boundary reflection. Stability analysis is given to generate stable modeling results.
Numerical tests on the 3D homogenous model verify the effectiveness of our method
and the trapezoid-grid CPML absorbing boundary condition, while numerical tests on the
SEG/EAGE overthrust model indicate that for comparable computational time and
accuracy, our method can achieve about 50% reduction on memory usage
compared with those on the uniform-grid FDTD method.

Keywords: finite difference, trapezoid-grid method, seismic wave simulation, 3D, time-domain method

1 INTRODUCTION

Reverse time migration (RTM) (Baysal et al., 1983; Xuan et al., 2014; Qu et al., 2015; Xu et al., 2021a; Du
et al., 2021) and full-waveform inversion (FWI) (Tarantola, 1984; Virieux and Operto, 2009; Cai and
Zhang, 2015; Xia et al., 2017; Jia et al., 2019) play a fundamental role in geophysical exploration. Since
forward modeling of the wave equation consumes most computational time in the RTM and FWI
processes (Jing et al., 2019; Xu et al., 2021b; Liu et al., 2021), how to achieve the improvement of efficiency
and the reduction of memory usage without a significant decrease of accuracy for 3D large-scale modeling
is a key problem of seismic modeling. The finite-difference (FD) method has been regarded as one of the
most popular wave modeling methods for its easy implementation and high-computational efficiency
(Antunes et al., 2014; Abreu et al., 2015; Xu and Gao, 2018; Robertsson and Blanch, 2020). However, the
numerical dispersion of the traditional FD method leads to the use of fine grids or high-order operators
(Dablain, 1986; Liu and Sen, 2011b), which inevitably affects the efficiency of simulation.
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The conventional FD method literally adopts a weighted
summation of neighboring grid points’ values to estimate the
derivative for a designated grid point (Zhou et al., 2021),
where the grid size (h) is fixed and the FD coefficients are
calculated by Taylor expansion. In this way, the
approximation error ϵ can be expressed as (Liu and Sen,
2011a; Wu et al., 2019b) follows:

ϵ � O
hf

v
( )

2M

, (1)

where 2M is the length of the FD operator, h is the spatial
interval, f is the frequency, and v is the seismic wave velocity.
Considering that λ � v/f is the wavelength and G � λ/h is the
number of grid points per wavelength (NPPW), we can rewrite
Eq. 1 as follows:

ϵ � O
h

λ
( )

2M

� O
1
G

( )
2M

. (2)

Eq. 2 indicates that the modeling accuracy of the conventional
FD method is proportional to G andM. Because the seismic wave
velocity is varying in different positions, the wavelength is short
in low-velocity regions and long in high-velocity regions (Liu,
2020). Therefore, a part of computing resources is wasted in the
high-velocity regions for the fixed spatial interval and FD order.
With respect to this problem, there are two kinds of techniques
corresponding to the different understanding of Eq. 2. The first
one is the variable-operator FD method (Liu and Sen, 2011a),
which adopts the long and short FD stencils in the low- and high-
velocity region, respectively. For the scheme in Liu and Sen
(2011a), the variable-length FD stencils are designed by
approaching the dispersion relation in the time–space domain,
and Liu (2020) subsequently optimizes their FD coefficients.

The second one is the variable-grid FD method, which adopts
different gird sizes in different regions and can efficiently reduce
the oversampling in the high-velocity region. The key problem of

FIGURE 1 | Schematic of the 3D trapezoid coordinate transformation: (A) the trapezoid-grid mesh in the Cartesian coordinate system; (B) the uniform grid mesh in
the transformed trapezoid coordinate system. The two gray regions in A and B represent the same physical region.

FIGURE 2 | Schematic of the rotation transformation in the trapezoid
coordinate system for transforming mixed spatial derivatives into non-mixed
spatial derivatives.

FIGURE 3 | Schematic of the grid discretization in the 3D trapezoid-grid
CPML area.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7772002

Wu et al. 3D Trapezoid-Grid Seismic Wavefield Modeling

18

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the variable-grid FD method is the processing of the transition
area between the fine grids and the coarse grids. The variable-grid
FD method based on interpolation (Hayashi and Burns, 2005;
Pasalic and McGarry, 2010) is the easiest one, in which the
lacking information in the transition area is completed by
interpolation. However, the resulting artificial reflection in the
transition area and the possible instability make it inefficient for
high-accuracy seismic wave simulation. Another variable-grid FD
method adopts irregular FD coefficients to process the transition
region (Huang and Dong, 2009; Liu et al., 2014), which can
significantly avoid the artificial reflection and improve the
stability. The disadvantage of this type of variable-grid method

is the additional computing cost brought by calculating irregular
FD coefficients.

The trapezoid-grid FD method (Chen and Xu, 2012; Gao
et al., 2018; Wu et al., 2018, Wu et al., 2019a, Wu et al., 2019b) is
one of the practical variable-grid methods. It uses the
trapezoid-grid mesh to fit the trend of velocity increasing
with depth, which can effectively reduce the number of
required grid points. Meanwhile, the use of trapezoid
coordinate transformation can avoid the difficulty of
processing ununiform grids in the physical Cartesian
coordinate system. On the other hand, the significant
reduction of memory requirement of trapezoid-grid FDTD
can improve the easy implementation of GPU calculation
(Fujii et al., 2013; Li et al., 2016). The existing research on
trapezoid-grid FDTD methods mainly focuses on 2D wavefield
modeling. Therefore, it is essential to expand trapezoid-grid
FDTD from 2D to 3D for realistic seismic exploration research.

In this article, we propose a 3D trapezoid-grid FDTD method
for acoustic wave modeling. First, we design the 3D trapezoid
coordinate transformation and derive the 3D acoustic equation in
the trapezoid coordinate system. Second, to reduce the artificial
boundary reflection (Ma et al., 2018, Ma et al., 2019), we apply the
corresponding trapezoid-grid convolutional perfectly matched
layer (CPML) absorbing boundary condition. Third, stability
analysis is given to generate stable modeling results. We then
test our proposed method on the 3D homogenous model and the
SEG/EAGE overthrust model and compare the efficiency and
accuracy of the trapezoid-grid FDTD method with the uniform-
grid FDTD method. Finally, conclusions are shown in the last
section.

2 METHODS

2.1 3D Trapezoid Coordinate System
In this article, the 3D trapezoid coordinate transformation is
defined as

FIGURE 4 | Snapshots obtained by the trapezoid-grid FDTD for the homogenous model (A) with CPML and (B) without CPML.

FIGURE 5 | Comparison of seismograms obtained by the uniform-grid
FDTD and the trapezoid-grid FDTD for the homogenous model at (x0, y0, z0) �
(600 m, 600 m, 0 m). The black solid line represents the uniform-grid FDTD
result, and the red dash line represents the trapezoid-grid FDTD result.
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FIGURE 6 | (A) SEG/EAGE overthrust model; (B) SEG/EAGE overthrust model in the trapezoid coordinate system; (C) actual simulating area for the trapezoid-grid
FDTD in the Cartesian coordinate system.

FIGURE 7 | (A) Vertical sampling function g(z); (B) variation of Δz0 for the trapezoid-grid FDTD.
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x � x0 − α

1 + γz0
; (3a)

y � y0 − β

1 + γz0
; (3b)

z0 � g z( ), (3c)

where (x0, y0, z0) is the Cartesian coordinate system, and (x, y, z) is
the defined trapezoid coordinate system. In Eq. 3, α and β are
central horizontal positions of the 3D trapezoid mesh, and γ is
the scaling parameter for lateral coordinates. The velocity-
related function g(z) is the sampling function for z0-axis,
which should be first- and second-order continuous for
deriving 3D wave equations in the trapezoid coordinate
system. The discrete points of g(z) are given by the following
recursion:

g 0( ) � 0; (4a)

g z + Δz( ) � g z( ) + vmin g z( )( )
f0N0

, (4b)

where f0 is the dominant frequency of the source term, N0 is the
preferred NPPW and is related to the accuracy of the adopted FD
scheme, and vmin(g(z)) is the selected minimum velocity at depth
g(z) in the physical Cartesian coordinate system and is smoothed
by solving a local polynomial fitting problem with the constraint
that vmin(g(z)) should not be greater than the model minimum
velocity at depth g(z). The central value of each local polynomial
corresponds to a value of vmin(g(z)). In particular, we usually set
the order of the local polynomial as three. Such vmin(g(z)) can lead
to a smooth sampling function g(z) for discontinuous velocity
variation while satisfying the required number of points per
wavelength in the z0-direction.

If the grid sizes for the trapezoid-grid FDTD in the trapezoid
coordinate system are defined as Δx, Δy, and Δz, then the
corresponding grid sizes in the physical Cartesian system can
be described as

Δx0 z( ) � 1 + γg z( )( )Δx; (5a)

Δy0 z( ) � 1 + γg z( )( )Δy; (5b)

FIGURE 8 | Snapshots for the SEG/EAGE overthrust model at 2.5 s: (A) uniform-grid FDTD result; (B) trapezoid-grid FDTD result in the trapezoid coordinate
system; (C) trapezoid-grid FDTD result in the Cartesian coordinate system.
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Δz0 z( ) � vmin g z( )( )
f0N0

. (5c)

In our work, γ and g(z) are determined adaptively according to
the model velocity. By selecting γ such that Δx0(z) and Δy0(z) are
always smaller than or equal to Δz0(z), and a variable-grid mesh
adaptive to the velocity model can be achieved in the physical
Cartesian coordinate system. Figure 1 shows the schematic of the
3D trapezoid coordinate transform. Figure 1A shows the
trapezoid-grid mesh in the Cartesian coordinate system, while
Figure 1B shows the corresponding uniform grid mesh in the
transformed trapezoid coordinate system. In particular, the
two gray regions in Figure 1 represent the same physical region.

2.2 3D Acoustic Equation with CPML
Absorbing Boundary Condition in the
Trapezoid Coordinate System
According to the theory of Pasalic and McGarry (2010), the time-
domain-discretization form of the 3D isotropic acoustic equation
with the CPML absorbing boundary condition in the Cartesian
coordinate system can be described as

1

v2
uj+1 − 2uj + uj−1

Δt2 − z2uj

zx2
0

− z2uj

zy2
0

− z2uj

zz20
− zψj

x0

zx0
− zψj

y0

zy0
− zψj

z0

zz0

− ζ jx0 − ζjy0 − ζ jz0

� f tj( )δ x0 − xs
0( )δ y0 − ys

0( )δ z0 − zs0( );
(6a)

ψj+1
τ0

� aτ0ψ
j
τ0
+ bτ0

zuj+1

zτ0
; (6b)

ζ j+1τ0
� aτ0ζ

j
τ0
+ bτ0

z2uj+1

zτ20
+ zψj+1

τ0

zτ0
( ); (6c)

aτ0 � e− στ0+ατ0( )Δt; (6d)

bτ0 �
στ0

στ0 + ατ0
aτ0 − 1( ), τ0 ∈ x0, y0, z0{ }, (6e)

where uj � u(x0, y0, z0, tj) represents the scalar wavefield at the jth
time step in the Cartesian coordinate system; v is the velocity; Δt
is the time interval; f(t) is the source term; (xs0, ys

0, z
s
0) is the

position of source; στ0 � 3vmax

2Lτ0
( �τ0
Lτ0
)2ln1

R, where R denotes the
designated theoretical boundary reflection coefficient, vmax is
the maximum velocity of the model, Lτ0 is the thickness of
CPML absorbing boundary along the τ0 direction, and �τ0
denotes the distance to the inner area in the τ0 direction; ατ0 �
αmax(1 − �τ0

Lτ0
) and αmax � πf0.

In order to derive the acoustic equation in the trapezoid
coordinate system, we first need to transform the
derivatives in the Cartesian coordinate system into the
derivatives in the trapezoid coordinate system. Based on the
definition of the trapezoid coordinate system in Eq. 3 and the
derivation rule of the composite function, the relationships of
first- and second-order derivatives in the two coordinate
systems can be given as

z

zx0
� 1
1 + γg z( )

z

zx
; (7a)

FIGURE 9 | Single-trace seismograms for the SEG/EAGE overthrust model at the receiver position of (A) (7.5, 10, 0 km); (B) (10, 10, 0 km); and (C) (12.5, 10,
0 km). The black solid lines represent the uniform-grid FDTD results, and the red dash lines represent the trapezoid-grid FDTD results.
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z

zy0
� 1
1 + γg z( )

z

zy
; (7b)

z

zz0
� − γx

1 + γg z( )
z

zx
− γy

1 + γg z( )
z

zy
+ 1
g′ z( )

z

zz
; (7c)

z2

zx2
0

� 1

1 + γg z( )[ ]2
z2

zx2
; (7d)

z2

zy2
0

� 1

1 + γg z( )[ ]2
z2

zy2
; (7e)

z2

zz20
� 2γ2x

1 + γg z( )[ ]2
z

zx
+ γ2x2

1 + γg z( )[ ]2
z2

zx2 +
2γ2xy

1 + γg z( )[ ]2
z2

zxzy

− 2γx
1 + γg z( )[ ]g′ z( )

z2

zxzz
+ 2γ2y

1 + γg z( )[ ]2
z

zy

+ γ2y2

1 + γg z( )[ ]2
z2

zy2 −
2γy

1 + γg z( )[ ]g′ z( )
z2

zyzz

− g″ z( )
g′ z( )[ ]3

z

zz
+ 1

g′ z( )[ ]2
z2

zz2
.

(7f)

Since the mixed spatial derivatives in Eq. 7f are hard to discrete
directly with the FD method, to transform the mixed spatial
derivatives into non-mixed spatial derivatives, we define three
rotation transformations in the trapezoid coordinate system as

x
z

[ ] � cosθ1 −sinθ1
sinθ1 cosθ1

[ ] x̂
ẑ

[ ]; (8a)

y
z

[ ] � cosθ2 −sinθ2
sinθ2 cosθ2

[ ] ~y
~z

[ ]; (8b)

x
y

[ ] � cosθ3 −sinθ3
sinθ3 cosθ3

[ ] �x
�y

[ ], (8c)

where x̂ and ẑ are axes along diagonals in the (x, z) planes, ~y and ~z are
axes along diagonals in the (y, z) planes, and �x and �y are axes along
diagonals in the (x, y) planes. θ1 is the angle between x and x̂ axes, θ2 is
the angle between y and ~y axes, and θ3 is the angle between x and �x axes.
A schematic of the coordinate transform inEq. 8a is shown inFigure 2.

By using Eqs. 8a–c, the mixed spatial derivatives in Eq. 7f can
be transformed as

z2

zxzz
� 1
2sin 2θ1( )

z2

zx̂2 −
z2

zẑ2
( ); (9a)

z2

zyzz
� 1
2sin 2θ2( )

z2

z~y2 −
z2

z~z2
( ); (9b)

z2

zxzy
� 1
2sin 2θ3( )

z2

z�x2 −
z2

z�y2( ). (9c)

For simplicity, we usually use equal grid sizes in the trapezoid
coordinate system (Δx�Δy�Δz�Δ), whichmeans θ1 � θ2 � θ3 � π

4.
By substituting Eq. 7 and Eq. 9 into Eq. 6, we get the time-domain-
discretization form of the 3D acoustic equation with the CPML
absorbing boundary condition in the trapezoid coordinate system as

1

v2
uj+1 − 2uj + uj−1

Δt2 − γ2x2 + 1

1 + γg z( )[ ]2
z2uj

zx2 − γ2y2 + 1

1 + γg z( )[ ]2
z2uj

zy2

− 2γ2x

1 + γg z( )[ ]2
zuj

zx
− 2γ2y

1 + γg z( )[ ]2
zuj

zy

+ γx

1 + γg z( )[ ]g′ z( )
z2uj

zx̂2 − z2uj

zẑ2
( )

+ γy

1 + γg z( )[ ]g′ z( )
z2uj

z~y2 − z2uj

z~z2
( )

− γ2xy

1 + γg z( )[ ]2
z2uj

z�x2 − z2uj

z�y2( ) + g″ z( )
g′ z( )[ ]3

zuj

zz
− 1

g′ z( )[ ]2
z2uj

zz2

− 1
1 + γg z( )

zψj
x

zx
− 1
1 + γg z( )

zψj
y

zy
+ γx

1 + γg z( )
zψj

z

zz

+ γy

1 + γg z( )
zψj

z

zy
− 1
g′ z( )

zψj
z

zz
− ζ jx − ζjy − ζjz

� f tj( ) x − xs( ) y − ys( ) z − zs( );
(10a)

ψj+1
x � axψ

j
x + bx

1
1 + γg z( )

zuj+1

zx
; (10b)

ψj+1
y � ayψ

j
y + by

1
1 + γg z( )

zuj+1

zy
; (10c)

ψj+1
z � azψ

j
z + bz − γx

1 + γg z( )
zuj+1

zx
− γy

1 + γg z( )
zuj+1

zy
+ 1
g′ z( )

zuj+1

zz
( );

(10d)

ζ j+1x � axζ
j
x + bx

1

1 + γg z( )[ ]2
z2uj+1

zx2
+ 1
1 + γg z( )

zψj+1
x

zx
( );

(10e)

ζj+1y � ayζ
j
y + by

1

1 + γg z( )[ ]2
z2uj+1

zy2
+ 1
1 + γg z( )

zψj+1
y

zy
( );

(10f)

ζ j+1z � azζ
j
z + bz

γ2x2

1 + γg z( )[ ]2
z2uj+1

zx2 + γ2y2

1 + γg z( )[ ]2
z2uj+1

zy2[

+ 2γ2x

1 + γg z( )[ ]2
zuj+1

zx
+ 2γ2y

1 + γg z( )[ ]2
zuj+1

zy

− γx

1 + γg z( )[ ]g′ z( )
z2uj+1

zx̂2 − z2uj+1

zẑ2
( )

− γy

1 + γg z( )[ ]g′ z( )
z2uj+1

z~y2 − z2uj+1

z~z2
( )

+ γ2xy

1 + γg z( )[ ]2
z2uj+1

z�x2 − z2uj+1

z�y2( )

− g″ z( )
g′ z( )[ ]3

zuj+1

zz
+ 1

g′ z( )[ ]2
z2uj+1

zz2
− γx

1 + γg z( )
zψj+1

z

zx

− γy

1 + γg z( )
zψj+1

z

zy
+ 1
g′ z( )

zψj+1
z

zz
], (10g)
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where uj � u(x, y, z, tj) represents the scalar wavefield at the jth
time step in the trapezoid coordinate system; (xs, ys, zs) is the
position of the source in the trapezoid coordinate system;
στ � 3vmax

2Lτ
( �τ
Lτ
)2ln1

R, where Lτ is the thickness of CPML
absorbing boundary along the τ direction, �τ denotes the
distance to the inner area in the τ direction; and
ατ � αmax(1 − �τ

Lτ
), τ ∈ {x, y, z}.

A schematic of the grid discretization in the 3D trapezoid-grid
CPML area is shown in Figure 3. In this work, 30 and 20
absorbing boundary layers are usually used for the trapezoid-
grid CPML area in the horizontal and vertical directions,
respectively.

2.3 Stability Analysis
Stability condition is usually required for the FD scheme to give a
stable time step. From Eq. 10a, we use a local frozen coefficients
technique in each discrete point and can get the full-discretization
form of the 3D trapezoid coordinate system acoustic equation
without the CPML boundary condition and source function:

1

v2
uj+1
m,n,l − 2uj

m,n,l + uj−1
m,n,l

Δt2 − γ2x2
m + 1

1 + γg zl( )[ ]2
1

Δ2 ∑
Nx

p�1
ηxp uj

m−p,n,l − 2uj
m,n,l + uj

m+p,n,l( )

− γ2y2
n + 1

1 + γg zl( )[ ]2
1

Δ2 ∑
Ny

p�1
ηyp uj

m,n−p,l − 2uj
m,n,l + uj

m,n+p,l( )

− 2γ2xm

1 + γg zl( )[ ]2
1
Δ ∑

Nx

p�1
cxp uj

m+p,n,l − uj
m−p,n,l( )

− 2γ2yn

1 + γg zl( )[ ]2
1
Δ ∑

Ny

p�1
cyp uj

m,n+p,l − uj
m,n−p,l( )

+ γxm

1 + γg zl( )[ ]g′ zl( )
1

2Δ2 ∑
Nxz

p�1
ηxzp uj

m−p,n,l−p + uj
m+p,n,l+p − uj

m−p,n,l+p − uj
m+p,n,l−p( )

+ γyn

1 + γg zl( )[ ]g′ zl( )
1

2Δ2 ∑
Nyz

p�1
ηyzp uj

m,n−p,l−p + uj
m,n+p,l+p − uj

m,n−p,l+p − uj
m,n+p,l−p( )

− γ2xmyn

1 + γg zl( )[ ]2
1

2Δ2 ∑
Nxy

p�1
ηxyp uj

m−p,n−p,l + uj
m+p,n+p,l − uj

m−p,n+p,l − uj
m+p,n−p,l( )

+ g″ zl( )
g′ zl( )[ ]3

1
Δ ∑

Nz

p�1
czp uj

m,n,l+p − uj
m,n,l−p( )

− 1

g′ zl( )[ ]2
1

Δ2 ∑
Nz

p�1
ηzp uj

m,n,l−p − 2uj
m,n,l + uj

m,n,l+p( )

� 0,

(11)

where ujm,n,l is the wavefield at (xm, yn, zl, tj), xm � x0 + (m − 1)Δx,
yn � y0 + (n − 1)Δy, zl � z0 + (l − 1)Δz, tj � t0 + (j − 1)Δt,Nx,Ny,Nz,
Nxy, Nxz, Nyz are half-of-spatial FD orders, ηx, ηy, ηz, ηxy, ηxz, ηyz

are corresponding FD coefficients of the second-order derivative,
and cx, cy, cz, cxy, cxz, cyz are corresponding FD coefficients of the
first-order derivative.

To derive the stability condition, we use the plane wave
solution that is defined as

u x, y, z, t( ) � u0*e
iωt−ikxx−ikyy−ikzz, (12)

where u0* is the amplitude of the plane wave, i is the imaginary
unit, ω is the angular frequency, and kx, ky, kz are wavenumbers in
the x-, y- and z-directions, respectively. Similar to stability
analysis of Kosloff and Baysal (1982), by substituting Eq. 12

into Eq. 11 and only considering the maximum wavenumber, the
stability condition of the 3D acoustic equation in the trapezoid
coordinate system can be expressed as

Δt< Δ
vmax max

m,n,l

γ2x2
m + 1

1 + γg zl( )[ ]2 ∑
Nx

p�1
mod p, 2( )ηxp⎛⎝

+ γ2y2
n + 1

1 + γg zl( )[ ]2 ∑
Ny

p�1
mod p, 2( )ηyp + 1

g′ zl( )[ ]2 ∑
Nz

p�1
mod p, 2( )ηzp⎞⎠

−1
2

,

(13)

where mod is the function for the getting remainder, and max
m,n,lrepresents the maximum value of the objective function at those

discrete points (xm, yn, zl).

3 NUMERICAL RESULTS

In the following numerical examples, Eq. 10 is discretized by the
eighth-order FD in the space, and conventional Taylor-
expansion–based high-order FD coefficients (Dablain, 1986)
are adopted.

3.1 Homogenous Model
First, we use a 3D homogenous model with a constant velocity of
2000 m/s to verify the effectiveness of our trapezoid-grid FDTD
method and corresponding CPML absorbing boundary
condition. A Ricker wavelet with a dominant frequency of
20 Hz is located at the center of the model as the source. The
FD time step is taken as 1.6 ms. The scaling parameter γ is set as
2.78 × 10–4, the sampling function g(z) � z, and the lateral grid
sizes in the Cartesian coordinate system increase from 7.5 to 10
from top to bottom. Figure 4A shows the snapshot obtained by
the trapezoid-grid FDTD with CPML at 0.45 s, while Figure 4B
shows the corresponding snapshot without CPML. Figure 5
shows the comparison between the recorded seismograms
computed by the uniform-grid FDTD and the trapezoid-grid
FDTD at (x0, y0, z0) � (600, 600, 0 m). The comparison between
Figures 4A,B demonstrates that trapezoid-grid CPML can
effectively reduce boundary reflections, while Figure 5
demonstrates the accuracy of the trapezoid-grid FDTD
method for the homogenous model.

3.2 Overthrust Model
Then, we apply our method to the SEG/EAGE overthrust model
(Figure 6A), which is based on the real overthrusts of South
America. Figures 6B,C show themodeling area of the SEG/EAGE
overthrust model in the trapezoid coordinate system and the
Cartesian coordinate system, respectively. A Ricker wavelet with
the dominate frequency of 4.2 Hz is located at (10 km, 10 km,
0.5 km) as the source. The grid sizes for the uniform-grid FDTD
are 50 m × 50 m × 50 m, which means the minimum NPPW in
each direction is close to 10. We therefore set the minimum
NPPW in x0-, y0-, and z0-direction as 10 for the trapezoid-grid
FDTD method, and get the scaling parameter as γ � 2.07 × 10–4.
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Figure 7A shows the vertical sampling function g(z) used for this
model, and the vertical grid sizes in the Cartesian coordinate
system increase from 51.8 m in the shallow region to a maximum
value of 142.6 m in the deep region, as shown in Figure 7B. Based
on the stability analysis, the time step for the trapezoid-grid
FDTD and the uniform-grid FDTD are 3.697 and 3.585 ms,
respectively. Receivers are located on the surface along y0 �
10 km. Figure 8A shows the snapshot at 2.5 s computed by
the uniform-grid FDTD, and Figure 8B is the snapshot at
2.5 s in the trapezoid coordinate system computed by our
trapezoid-grid method. Using coordinate transformation and
cubic spline interpolation, we can get the corresponding
snapshot in the Cartesian coordinate system, as shown in
Figure 8C. Figures 8A,C show good agreement. To give more
detailed comparisons, single-trace seismograms at (7.5, 10, 0 km),
(10, 10, 0 km), and (12.5, 10, 0 km) for both the uniform-grid
(black solid line) and the trapezoid-grid (red dash line) FDTD are
shown in Figure 9. Figure 9 also shows good agreement between
the uniform-gird FDTD and the trapezoid-grid FDTD. On our
computing platform (Intel(R) Xeon(R) Sliver 4216 CPU @
2.10GHz, 256GB of memory, and C++ codes), using 16-
threads computation and similar code optimization
techniques, the running time for the trapezoid-grid FDTD and
the uniform-grid FDTD is calculated as 2203 s and 2925 s,
respectively, which shows a calculation efficiency improvement
of 24.7%. The memories for the trapezoid-grid FDTD and the
uniform-grid FDTD are about 336 and 1213 MB, respectively,
which shows a memory reduction of 72.3%. Considering that the
simulation area of our trapezoid-grid method is almost 60% of
that of the uniform-grid method, for the common simulation
area, we can achieve about 50% reduction on memory usage.

4 CONCLUSION

In this article, we propose a 3D trapezoid-grid FDTD seismic
wave modeling method based on the increasing trend of seismic
wave velocity with depth. The trapezoid-grid mesh in the physical
Cartesian system can effectively reduce the oversampling in the
high-velocity region compared with the uniform-grid method,
and the design of 3D trapezoid coordinate transform greatly
avoids the difficulty of processing an irregular grid. We derive the
3D acoustic equation in the trapezoid coordinate system. The

corresponding CPML boundary condition is also given to
decrease artificial boundary reflection. To obtain a stable and
efficient wave modeling result, we combine the plane wave theory
and frozen coefficients technique and provide an effective
stability condition for the 3D trapezoid-grid FDTD method.
The discretization of the 3D acoustic equation in the trapezoid
coordinate system is completed by the eighth order and second
order finite-difference method in the space and time domain,
respectively. The 3D homogenous model is given to verify the
effectiveness of trapezoid-grid FDTD and the performance of the
CPML boundary. Numerical tests on the SEG/EAGE overthrust
model indicate the accuracy and the significant memory
reduction of our method compared with uniform-grid FDTD.
The key idea of our method is the combination of the trapezoid
coordinate transformation and the FD stencils. Such idea can be
generalized tomany other wave equations such as elastic equation
(Zhan et al., 2017) and Maxwell’s equations (Zhan et al., 2021).
Besides, our method is actually dealing with the regular grids in
the trapezoid coordinate system, which means that we can
combine other methods to treat the irregular surface (Li et al.,
2020) or curved interfaces (Zhan et al., 2020).
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High-Resolution Imaging: An
Approach by Compensating
Absorption and Dispersion in Prestack
Time Migration With Effective Q
Estimation and Fresnel Zone
Identification Based on Deep Learning
Jizhong Wu1*, Ying Shi1, Aihua Guo2, Pengfei Lu2 and Qianqian Yang1

1Bohai Rim Energy Research Institute, Northeast PetroleumUniversity, Daqing, China, 2Institute of Computer Science, East China
University of Technology, Nanchang, China

We have developed a migration scheme that can compensate absorption and dispersion
with effectiveQ estimation and Fresnel zone identification based on deep learning. We use
the U-Net neural network technology in deep learning to automatically identify Fresnel
zones from compensated migrated dip-angle gathers and obtain the optimal aperture for
migration, avoiding the tedious task of manually modifying the boundaries of Fresnel
zones. Instead of the interval Q factor, we used an effective Q parameter to compensate
absorption and dispersion. The effective Q is estimated using VSP well data and surface
seismic velocity data. The proposed scheme can be incorporated into conventional
seismic data processing workflow. A field data set was employed to validate the
proposed scheme. Higher resolution imaging results with low noise levels are obtained.

Keywords: Q, deep learning, high-resolution, attenuation, PSTM

1 INTRODUCTION

The dissipation of seismic energy is caused by the anelasticity of the subsurface medium, which will
decrease the amplitude andmodify the phase. In this dissipative medium, as the propagation distance
of the seismic wave increases, the attenuation of the seismic wave becomes more serious. Therefore,
seismic waves in deep and ultra-deep stratums face the problem of lower resolution due to
dissipation. It is crucial to find an appropriate method to eliminate the absorption and
dispersion effects of seismic waves for higher resolution. We commonly use the quality factor
Q-related methods to compensate absorption and dispersion in seismic data processing, and most of
them can be divided into two categories: one is the inverse Q filtering (Hargreaves and Calvert, 1991;
Wang, 2002; Ferber, 2005; Cavalca et al., 2011; Chen et al., 2014; Zhang et al., 2014; Dai et al., 2018;
Shi et al., 2019; Sangwan and Kumar, 2021), and the other is the anelastic prestack migration based
on the viscoacoustic wave equation (Zhang and Wapenaar, 2002; Xie et al., 2009; Zhang et al., 2013;
Guo et al., 2016;Wang et al., 2018; Zhang et al., 2021). In the first category, inverseQ filtering is based
on the theory of 1-D wave backpropagation and cannot calculate the seismic wave propagation path
accurately. In the second category, anelastic prestack depth migration (PSDM) utilizes the
viscoacoustic wave equation to simulate wave propagation with dissipation in the wavefield
extrapolation, which is a more accurate and consistent way; however, the calculation load is
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huge, and the interval Q model is difficult to obtain. Because of
the effectiveness of prestack time migration (PSTM) in imaging
complex structures without strong velocity variations, various
Q-compensated methods based on the PSTM structure have been
developed (Zhang et al., 2013; Zhang et al., 2016; Wu et,al., 2019).
These methods employ effective Q parameters, rather than the
interval Q model used in the depth migration approach, and the
estimation of an effectiveQmodel is easier to achieve than that of
an interval Q model.

An optimal migration aperture can improve the signal-to-
noise ratio (S/N) of imaging results. Schleicher et al. (1997)
pointed out that the Fresnel zone is an optimal migration
aperture. The signal outside the Fresnel zone does not
contribute to imaging but brings noise and artifacts, which
reduces the quality of the imaging results (Chen 2004; Marfurt
2006; Klokov and Fomel 2012a; Yu et al., 2013). However, the low
S/N of field data and underground complex structures make an
accurate Fresnel zone estimation challenging. In recent years,
some articles have realized the estimation of Fresnel zones in a
simple domain, by constructing a migrated dip-angle gather in
the time or depth domains (Zhang et al., 2016; Li et al., 2018;
Cheng et al., 2020). Zhang et al. (2016) has applied conventional
PSTM to generate migrated dip-angle gathers for Fresnel zone
estimation during deabsorption of the PSTM process. Cheng et al.
(2020) used a modified VGGNet (A convolutional neural
network was developed by the University of Oxford’s Visual
Geometry Group and Google DeepMind in 2014) to extract
Fresnel zones from migrated dip-angle gathers, which is a
useful attempt at deep learning for Fresnel zone estimation.
However, these Fresnel zone estimation methods are all
suitable for dip-angle gathers generated by conventional
migration methods, and little research has been carried out on
that using compensated dip-angle gathers with a high resolution
generated by compensated migration methods.

The quality factorQ is closely related to the rock properties of
the formation, water saturation, seismic wave amplitude and
frequency, and other factors; therefore, calculating the Q value
accurately is very difficult. To meet the demand for Q in seismic
data processing, many methods have been developed to estimate
Q. The Q estimation method was initially proposed using a
vertical seismic profile (VSP) (Tonn, 1991) and crosswell data
(Neep et al., 1996). These methods can obtain a small amount of
Q values because VSP and cross-well data are not always
available in the field, and we prefer to estimate the Q value
from surface reflection seismic data. A variety of methods have
been proposed to estimate theQ value from surface seismic data,
and most of them can be divided into two categories: one is the
wavelet information–based method (Quan and Harris, 1997;
Dasgupta and Clark, 1998; Zhang et al., 2013; Bettinelli Pet al.,
2014), which is employed in the time or frequency domain (e.g.,
the frequency shift method and spectral-ratio method) and
demonstrates good performance for estimation of the Q
value, whereas often suffers from noise and wavelet
interferences, and the other one is the tomography
inversion–based method (Brzostowski and McMechan, 1992;
Shen et al., 2018). In the first category, Zhang et al. (2013)
estimated the Q value using surface seismic data by constant Q

migration scanning; however, the implementation complexity
of this method limits its broader application. In the second
category, the widely used ray-based tomography can estimate
the Q value for the dominant frequency with expensive
calculation cost and local instability (Cavalca et al., 2011;
Shen and Zhu, 2015; Dutta and Schuster, 2016). Full-
waveform inversion (FWI) is another popular inversion
approach using waveform rather than travel-time, but it
requires an accurate initial model and burdens a huge
computational expense (Kamei and Pratt, 2008).

This article takes the estimations of the optimal aperture and
effective Q model as the research focus in the compensated
PSTM, which is arranged as follows: first, we introduce a
modified PSTM scheme with compensation based on the
effective Q; second, we propose a Fresnel zone identification
scheme based on compensated migrated dip-angle gathers using
deep learning; third, we present an estimation approach of the
effective Q model for the compensated PSTM. Finally, we
demonstrate our scheme with a field data set.

2 PSTM WITH COMPENSATION BASED ON
EFFECTIVE Q

By following Zhang et al. (2013), a modified PSTM with
compensation based on the effective Q model is expressed as

IQ(x, T) � ∑
n

p�1
Ω(x, TS, T0) τs

τg
∫fp(ω) ��

ω
√

exp(−iπ
4
)

exp[iω(τs + τg)(1 − 1
πQeff

ln
ω

ω0
)]

exp⎡⎣ω(τs + τg)
2Qeff

⎤⎦dω,

(1)

where fp(ω) is the Fourier transform of the pth prestack trace, τs
and τg represent the travel times from the shot and receiver to the
imaging point, respectively, T0 is the two-way vertical travel time,
Ω(x, TS, T0) represents the whole migration aperture, Ts

represents the starting travel time of the migration aperture,
and Qeff is the effective Q parameter. Eq. 1 denotes a
compensated migration impulse response of a seismic trace.
Summation of the impulse responses of all seismic traces
yields a compensated migration result. The two Qeff -related
terms in Eq. 1 are the frequency-dependent dispersion and
amplitude attenuation correction terms, respectively, which are
different from the conventional PSTM. In Eq. 1, the size of the
migration aperture has an important influence on the signal-to-
noise ratio of the imaging result, and the accuracy of effective Q
determines the quality of the compensation result. In view of
these two aspects, this article proposes a method of using deep
learning to pick up the optimal aperture and a method of quickly
obtaining the effective Q model using VSP data and seismic
velocity data. These two methods, together with the modified
PSTMwith compensation, form a seismic data imaging workflow
that is specifically used for high-resolution imaging of prestack
seismic data.
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3 IDENTIFICATION OF FRESNEL ZONES
USING DEEP LEARNING

Three separate sections are considered to introduce the theory of
deep learning–based automated Fresnel zone extraction. The first
section makes a review of migrated dip-angle gathers.

The second section introduces the architecture of the deep
neural network adopted, including the design of U-Net input and
output patterns and different types of layers in the network. The
final section gives the loss function and training details in seeking
optimal weights and biases of the network.

3.1 Review of Migrated Dip-Angle Gathers
Summing the migrated traces within Fresnel zones can produce a
high S/N imaging profile. The migrated dip-angle gather supplies
a simple domain that makes a visual pickup of Fresnel zones
possible, which are constructed by sorting and summing the
migrated results in the time or depth domains according to the
dip angle (Zhang et al., 2016; Cheng et al., 2020). Different from
the conventional migrated dip-angle gather, the compensated
migrated dip-angle gather has the characteristics of high
resolution and thin events. Therefore, the label data and
training parameters of the trained network for conventional
migrated dip-angle gathers must be relabeled and trained
respectively when the neural network is applied to identify
Fresnel zones using compensated migrated dip-angle gathers.
In the next section, we will discuss how to use compensated dip-
angle gathers to determine Fresnel zones of 2D seismic data.
Figure 1 shows the geometrical relationship about the dip angle
(Zhang et al., 2016). The angle can be expressed as follows:

tan θ � [(xs − x)τg + (xg − x)τs]/[TVrms(τs + τg)], (2)

where θ denotes the dip-angle related to travel time at the imaging
point I; Vrms is the root mean-square velocity at the imaging
point; τs and τg represent the travel times from the shot (xs) and
receiver (xg) to the imaging point I, respectively; and T represents
the one-way vertical travel time. We obtained a 1D dip-angle
gather by summing the migrated traces with dip angles (θ) over
the 2D imaging result. This process can be expressed as

I(x, T, θ) � ∑
n

i�1
N

τ2s
τ2g

f̃i(τs + τg, xs, xg)λi(τs + τg, Q), (3)

where n denotes the number of seismic traces, f̃i denotes a half-
derivative of the ith prestack seismic trace, and λi is the
corresponding compensation factor.

The dip-angle gather shows a curved reflected event (Klokov
and Fomel 2012b), and its vertex is the stationary-phase point
(Cheng et al., 2020). The Fresnel zone is within half a wavelength
near the stationary-phase point. Since the Fresnel zone is easy to
identify in the dip-angle gather, we can pick it up through the dip-
angle gather and obtain a high S/N migrated result by summing
the Fresnel zones, but in practice, estimating Fresnel zones
through dip-angle gathers will become challenging because
dip-angle gathers will become correspondingly more
complicated due to the low S/N of field data and underground
complex structures, especially for imaging results with

compensating absorption and dispersion since their dip-angle
gathers differ in S/N and resolution from those generated by
conventional migration, which add additional complexity. Many
manual modifications to the Fresnel zone boundaries are
required, which is a time-consuming and difficult task.

3.2 U-Net Architecture
Deep learning can think and process data just like the human
brain, showing its superior capability in many fields in recent
years (LeCun et al., 2015). It has multi-layer nonlinear activation
function, which can discover hidden features in complex high-
dimensional data by simulating signal transformation.
Convolutional neural networks (CNNs) are currently the most
successful and extensive application in deep learning, which
connect input and output through multi-layer convolution.
U-Net, a special type of CNN, was originally an auto-
encoder–decoder network designed for medical image
segmentation (Ronneberger, et al., 2015; A. Sevastopolsky,
2017; Wu et al., 2019; Zhang et al., 2021). We use U-Net to
identify the left and right boundaries in the dip-angle gathers as
the boundaries of Fresnel zones because one important reason is
that U-Net can deliver a satisfactory performance even if the size
of the training set is not very large. As shown in Figure 2, the
main structure of the network includes two parts, down (encoder)
and up (decoder), presenting a symmetrical form. Different levels
of networks have different functions. The shallow layer is
employed to solve the pixel positioning problem, while the
deep layer is used to classify pixels. In the contraction path on
the left, each step consists of two 3 × 3 convolution layers,
followed by a rectified linear unit (ReLU) (Nair and Hinton,
2010; Krizhevsky et al., 2012) and a 2 × 2 max-pooling operation
with stride 2 for downsampling. Symmetrically, each step on the
right expansive path consists of a 2 × 2 upsampling operation
with the same stride and two convolutional layers to halve feature
channels. The sigmoid activation function is applied to the last
channel feature vectors to produce a probability map of the
output with the same size as the input. The skip connection is
used in each upsampling operation, instead of directly

FIGURE 1 | Illustration of the generation of a dip-angle gather. Points s
and g denote the shot and receiver, respectively, and point I is the imaging
point. θ represents the travel time–related dip-angle at the imaging point I.
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monitoring and loss back-transmission on high-level semantic
features, to integrate more low-level features into the finally
recovered feature map. After building the network, we feed
small volumes of seismic images generated by PSTM with
compensation, together with corresponding labels. Each data
volume contains 128 2D images with a size of 128 × 128. In
order to avoid the odd-sized feature map encountered by the
pooling layer, the same-padding convolution process was
adopted in each step of the network.

3.3 Loss Function and Training
Network training uses a loss function to represent the
difference between the true Fresnel zones and the
predictions. The update of the parameters in the network is
realized via the loss backpropagation (Rumelhart et al., 1986;
Hecht-Nielsen, 1989), which is commonly used in the
gradient descent optimization algorithm to iteratively
adjust weights and biases of the neurons by calculating the
gradient of the loss function. We consider the Fresnel zone
identification problem as a binary segmentation problem; in
other words, the output of the network is a probability
distribution of 0–1, and the binary cross-entropy loss
function is generally adopted:

Loss � −∑
n

i�1
(bi × ln ai + (1 − bi) × ln(1 − ai)), (4)

where n is the number of pixels, bi denotes the true binary labels
(0 or 1), and ai is the prediction probabilities (0 < ai < 1)
computed from the sigmoid activation in the last
convolutional layer. The boundary occupies a relatively small
proportion of the entire imaging region, resulting in a high
imbalance between zero (no boundary) and one (boundary).
To overcome this issue, we apply a class-balanced binary
cross-entropy loss function (Xie and Tu, 2015; Wu et al.,
2021) to adjust the imbalance so that the network is not
trained or converged to predicted only zeros.

Loss � −∑
n

i�1
(ε × bi × ln ai + (1 − ε) × (1 − bi) × ln(1 − ai)), (5)

where ε � χ0/χ and 1 − ε � χ1/χ, χ0 and χ1 represent the number
of pixels of boundaries and non-boundaries in the label data sets,
respectively. χ denotes the total number of pixels in the label data
sets. The class-balanced binary cross-entropy loss can help the
network converge in the correct direction by introducing the
class-balancing weight ε on a per-pixel term basis.

Given one thousand images of dip-angle gathers for training
and the corresponding true segmentations as labels, training a
givenmodel and optimizing the parameters is the goal of training.
The labels here are established by manual interpretation and
labeling, with labeling ones on true boundaries and zeros
elsewhere. Figure 3 shows three randomly seismic images of
different dip angle gathers with their corresponding labels. We
prepared another 400 dip-angle gathers for validation and testing,
of which 60% are used for validation and 40% for testing. In
general, a validation set is used to evaluate the model during the
training process, fine-tune hyperparameters, and perform model
selection, while the testing set is used to evaluate the model. The
network takes in the images and outputs 2D boundary
distribution probability maps. Cheng et al. (2020) used a
modified VGGNet to identify the Fresnel boundary, and the
output of his network is a one-dimensional probability
distribution map. In our research, we employ the U-net to
identify the Fresnel boundary, and its output is a two-
dimensional probability distribution map. The U-Net is
essentially a fully convolutional network, and its output is
different from the VGGNet’s (Wu et al., 2021). Although
Cheng’s method is suitable for dip-angle gathers generated by
conventional migration methods and the U-net proposed is
carried out on compensated dip-angle gathers with high
resolution, the steps of the two methods in learning and
training are roughly the same, and both need to pre-process
the data, and both use training to optimize network parameters.

FIGURE 2 | Simplified U-Net architecture. The black number describes the number of channels in feature maps. The purple arrow represents convolution-ReLU
operation. The red arrow indicates themax-pooling operation which downsamples featuremaps while the green arrowmeans the upsampling process. The blue arrow is
the shortcut concatenating feature maps from shallow to deep layers.
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In order to improve the convergence of U-Net training and
balance the numerical difference between training data and
prediction data, the input image needs to be normalized.
Adam method (Kingma and Ba, 2014) was adopted to
optimize network parameters, and the default learning rate
was set to 0.001. The Adam method is designed to combine
the advantages of two methods: AdaGrad (Duchi et al., 2011),
which works well with sparse gradients, and RMSProp (Tieleman
and Hinton, 2012), which works well in online and non-
stationary settings. We can also pick up a proper learning rate
manually (Smith L, 2017). We used 60 epochs to train the
network, and each epoch processed 1,000 training images. As
shown in Figure 4, after 60 training epochs of approximately
22 h, the accuracy of training and validation gradually increases
to 95%, while the training and validation loss converges to 0.01. It
shows that our network has been trained.

4 ESTIMATION OF EFFECTIVE Q

Zhang et al. (2013) introduced the definition of effectiveQ , which
is related to the spatial location of the imaging point with no
knowledge of velocities, and proposed a constant Q migration
scanning method to obtain the effective Q parameters. However,
this method of obtaining Q is complicated in calculation, and the
quality of seismic data has a great influence on the accuracy of Q.
We need a method that is more suitable for practical applications,
taking into account both accuracy and efficiency. To address
these issues, we develop an effective Q-model estimation scheme,
and the specific implementation steps are as follows:

1) use VSP data to obtain initial Q , expressed as Qvsp. The
number of VSP wells should be as many as possible, and the
distribution should be as even as possible.

FIGURE 3 | Three randomly seismic images (red lines, the boundaries manually picked) with their corresponding labels (with labeling ones, white line of Fresnel
zones and zeros elsewhere) generated by manual interpretation.

FIGURE 4 | (A) The training and validation accuracy both will increase with epochs, whereas (B) the training and validation loss decreases with epochs.
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2) generate a synthetic trace without attenuation and different
migrated traces with compensation. Q is selected according to
the match between the synthetic trace and their corresponding
migrated traces and is denoted as Qwell.

3) use Lee’s empirical formula Q � 14v2.2 to get Q from seismic
data. The Q is marked as Qseismic. Lee’s empirical formula can
quickly establish a Q model of the entire work area by using
seismic velocity (Tian, 1990).

4) Use all Qwells to calibrate Qseismic and get a Q model of the
whole work area.

In step 1, we use the centroid frequency shift method (Quan
and Harris, 1997) to estimate Q that reads

Q � πτσ2
fshot − fgeo

, (6)

where σ2 is the variance of the source wavelet; τ is the travel
time in the layers; and fshot and fgeo are the centroid frequencies
of the shot point and detection point, respectively. Since this
method is sensitive to layering effects and background noise, it
is necessary to preprocess the VSP data such as denoising. In
addition, try to avoid thin layers, and select some large layers
for Q calculation.

In step 2, we use a Rick wavelet to generate a synthetic trace
without attenuation at the location of this VSP well, first. Because
the attenuation of shallow seismic data is weak, its dominant
frequency can be used as the dominant frequency of the Rick
wavelet. Next, we get different migrated imaging traces
corresponding to the synthetic trace using PSTM with
compensation under a set of regular variable Q. Based on Qvsp

and multiplied by different weight coefficients, the variable Q was
obtained as 0.5, 0.6, 0.7, 0.8, 0.9,1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 times of
Qvsp. The optimal Q is selected according to the similarity between
the synthetic trace and its corresponding seismic imaging traces.

In step 3, the unit of the parameter v in Lee’s empirical formula
is km/s, and it is a root mean square velocity. Lee’s formula uses
velocity information to estimate the Q value, which has the
characteristics of high efficiency and easy realization in
practical application. However, its estimation accuracy is low,
and it needs to be corrected by well information.

In the last step, we use allQwells to calibrateQseismic and get aQ
model of the whole work area.Qwell is derived fromVSP data, and
its accuracy is higher than that of Q calculated from Lee’s
formula. Using all Qwells to calibrate Qseismic can improve the
overall accuracy of the Q model.

5 RESULT

5.1 Field Data Example
In this section, we directly use a 2D field data line to analyze and
discuss the effective Q estimation, the identification of Fresnel
zones using deep learning, and the imaging with compensation.
This line consists of 1,000 CDPs (common depth point) with a
CDP spacing of 12.5 m. The data are sampled at 1 ms with a
length of 2.5 s.

Figure 5 shows how an optimal Q value is obtained from the
compensated imaging traces. The specific implementation
process is as follows: we get the synthetic seismic trace
without attenuation, and then use VSP data to estimate the Q
value, which is denoted as Qvsp. Next, we get different migrated
traces corresponding to the synthetic trace by PSTM with
compensation using Qvsp with different weight coefficients.
There are eleven weight coefficients used, which are 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5. Multiply Qvsp by
different weight coefficients to obtain the waveforms of
compensated imaging traces under different Q, and then,
compare them with their corresponding synthetic seismic trace
without attenuation. When the two waveforms are similar, the
corresponding Q value is the optimal Q. In Figure 5, trace 0
represents a synthetic seismic trace without attenuation, which
exists as a reference trace during Q picking. Trace 1 to trace 11

FIGURE 5 | Q picking of real data.

FIGURE 6 | Q model of real data.
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represent the compensated imaging traces under different Q. For
example, trace 1 is when Qvsp is multiplied by 1.5, and trace 2 is
when Qvsp is multiplied by 1.4, and so on; trace 11 is when Qvsp is
multiplied by 0.5. On trace 0, six black typical crests are selected,
and each crest is surrounded by a set of red dashed lines. The
amplitude of the intersection of two red dashed lines with the
wave curve is zero. These six crests represent six events. For each
wave crest, two red dashed lines that envelop it extend from trace
0 to trace 11. We judge whether Q is optimal according to
whether the two red dashed lines intersect the wave curve at

amplitude zero. The principle of picking Q here is that when Q is
optimal, the waveform of its compensated imaging trace should
be closest to that of its corresponding synthetic seismic trace
without attenuation. The six red boxes in Figure 5 are the best
Q-labeled. Figure 6 shows the final Qmodel of real data, and the
value is displayed as the reciprocal of Q.

Figure 7 shows part of the prediction results, which are the
Fresnel zones predicted from the dip-angle gathers at three CDPs
(400, 600, and 800). In order to solve the problem of local
unsmoothness of Fresnel zones predicted by deep learning, the

FIGURE 7 | Prediction of the boundaries of the Fresnel zones from the dip-angle gathers at three CDPs (400, 600, and 800). The red lines are the boundaries
manually picked, while the green points on yellow lines are the exact points predicted by U-Net. The predicted boundaries of the Fresnel zones are similar to the manually
picked ones.

FIGURE 8 |Comparison between the compensatedmigrated result with different apertures. Panel (A) represents the compensatedmigrated result with a constant
aperture ranging from −17 to 17°, while panel (B) represents the result with the U-Net predicted optimal aperture. The result with the U-Net predicted optimal aperture
has a higher S/N than the result with a constant aperture.
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prediction results were sparsely processed and only twelve
pairs of equally spaced sample points were retained. The
Fresnel zones predicted by deep learning was obtained by
connecting the sample points with smooth curves. In
Figure 7, the red lines are the boundaries manually picked,
while the green points on yellow lines are the sample points
predicted by U-Net. The predicted boundaries of the Fresnel
zones are similar to the manually picked ones, with a
smoother curve. After superimposing the Fresnel zones at
each CDP within the predicted boundaries, a migrated result
with a higher S/N can be obtained. Figure 8 shows the
compensated imaging results with different apertures.
While Figure 9 shows the detailed comparison of two
white boxes in Figure 8. The result with U-Net predicted
an optimal aperture has a higher S/N than the result with a
constant aperture. The prediction of each dip-angle gather by

the trained U-Net requires approximately 0.6 s when using six
TITAN Xp GPUs, which is much more efficient than manual
picking. Figure 10 shows the comparison between the
migration results obtained using conventional PSTM and
the PSTM with compensation. The conventional PSTM
used a constant aperture, and the compensated PSTM used
an optimal aperture predicted by deep learning. Figure 11
shows the detailed comparison of two white boxes in
Figure 10. We see the overlay events are well separated by
the PSTM with compensation. Figure 12 shows the
comparison of dB spectra between the migration sections
obtained using conventional PSTM and the PSTM with
compensation. The white boxes in Figure 10 are the time
windows of the frequency spectrum. Observe that the high
frequencies have been recovered well by the PSTM with
compensation.

FIGURE 9 | Comparison of the enlarged details inside the boxes of Figure 8. Panel (A) is the enlarged detail of the compensated migrated result with a constant
aperture ranging from −17 to 17°, while panel (B) is that with the U-Net predicted optimal aperture.

FIGURE 10 | Comparison between the result obtained using conventional PSTM (A) and the result obtained using PSTMwith compensating absorption and dispersion
(B). Panel (A) represents the migrated result with a constant aperture ranging from −17 to 17°, while panel (B) represents the result with the U-Net predicted optimal aperture.
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6 CONCLUSION

We have presented a PSTM scheme that can compensate
absorption and dispersion with effective Q estimation and
Fresnel zone identification based on deep learning. Using U-Net
to estimate Fresnel zones from compensated migrated dip-angle
gathers, we obtain an optimal migration aperture. The predicted
boundaries of the Fresnel zones were similar to the manually
picked ones, and the migrated result obtained by applying the
predicted Fresnel zones exhibited a higher S/N. The effective Q
model is constructed using surface seismic velocity data and VSP
well data. The optimal Q is selected according to the similarity
between the synthetic trace and its corresponding seismic imaging
traces, which is a quick and effective method. Since the proposed
migration scheme can compensate absorption and dispersion, the
real data have been imaged with a higher resolution. Here, we
discussed how to obtain 1D Fresnel zones from 1D dip-angle
gathers for 2D seismic data using deep learning. Because of the high

computation cost and memory requirement for 2D dip-angle
gathers, it is difficult to directly estimate 2D Fresnel zones from
2D dip-angle gathers for 3Dmigration. Although 2D Fresnel zones
can be represented by incorporating the inline and crossline 1D
Fresnel zones from 1D dip-angle gathers obtained from 3D data,
this simplified strategy will bring about inaccuracy of migration
apertures in other directions except the inline and crossline
directions. Therefore, it will be the next research focus to use
deep learning to obtain 2D Fresnel zones from 3D data (Aki and
Richards, 1980; Bleistein, 1984; Tian, 1990; Xu and Zhang, 2017;
Wu and Zuo, 2019).
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FIGURE 11 | Comparison of the enlarged details in-side the boxes of Figure 10. Panel (A) is the enlarged detail of the conventional migrated result with a constant
aperture ranging from −17 to 17°, while panel (B) is that of the compensated migrated result with the U-Net predicted optimal aperture.

FIGURE 12 | Comparison of amplitude spectra between the migration
sections obtained using conventional PSTM (blue) and the PSTM with
compensation (red).
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Effect of Velocity Anisotropy in Shale
on the Acoustic Emission Events
Matching and Location
Peng Wang, Feng Zhang* and Xiang-Yang Li

China University of Petroleum, Beijing, China

Accurate source event location is important in fracturing monitoring and characterization.
Velocity anisotropy has a great influence on both events matching and events location.
Failure to take into account the velocity anisotropy can lead to huge errors in locating
events. In this article, we have presented an experimental study on lower Silurian shale
from the Sichuan Basin. The experimental observations include ultrasonic measurements,
acoustic emissions (AEs) in a three-point bend experiment, and CT scanning of the original
sample and the fractured sample. The ultrasonic measurements show that the shale
sample has strong velocity anisotropy. Initially, AEs are analyzed using the conventional
event-matching method and event location method (Geiger’s method), and the detected
events are compared to the X-ray image of the fracture. Event-matching aims to obtain AE
signals from the same source event and thus assists in selecting valid AE signals that come
from the same source and are received by at least four sensors, to determine the location
of the source. Although many reliable signals are obtained by isotropic event-matching,
fewer sources were located than expected, and the event location results did not match
the fracture distribution. To address this problem, an improved event-matching method is
proposed using a stricter matching threshold based on directional velocity rather than a
single threshold same for all directions. In addition, we propose an improved Geiger’s
method using the anisotropic velocity model. The newmethods located more sources that
better match fracture distribution than the results of the isotropic method. We have
concluded that both event-matching and the source location of the fracturing are largely
influenced by velocity anisotropy, and thus in practice, the velocity anisotropy information
obtained from various measurements (e.g., laboratory measurements, well logs, VSP, and
velocity analysis of reflected seismic surveys) should be involved in both processing
procedures. This study can be useful to provide some background for monitoring and
predicting dynamic geo-hazards in relation to the AE method.

Keywords: acoustic emission, microseismic, shale, anisotropy, event-matching, source location

1 INTRODUCTION

Seismic source location is important in earthquake research, fracturing monitoring, and acoustic
emission (AE) experiment. Triggering events can be located by minimizing an objective function in
terms of the difference between observed and theoretical arrival times (Geiger, 1912; Ge, 2013;
Wuestefeld et al., 2018). The reliable location of an event depends on an accurate velocity model.
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Current source location methods assume homogenous and
isotropic velocity models (King and Talebi, 2007; Zhou et al.,
2017). However, shale is observed to have strong anisotropy
caused by preferentially orientated clay platelets and other
integrated factors on a small scale (Vernik and Nur, 1992;

Lonardelli et al., 2007; Zhang, 2017; Zhang et al., 2017).
Anisotropic shale can be modeled as a VTI (vertical transverse
isotropy) medium in which the velocity of the acoustic wave
perpendicular to the shale bedding is less than the velocity parallel
to the shale bedding. Themagnitude of shale anisotropy can be up
to 40%, and thus the effect of anisotropy must be taken into
account in source location and event-matching.

Event-matching obtaining valid AE signals is a necessary
procedure to locate the source. Valid AE signals mean those
signals are from the same source and are received by at least four
receivers because four unknown source parameters including the
location coordinates (x0, y0, z0) and the origin time (t0) need to be
determined. Accurate events matching can be difficult since

FIGURE 1 | (A) Shale samples collected from Wulong, southeast of Sichuan Basin. (B) Silurian Longmaxi shale outcrops. (C) Cores are cut in three different
directions.

TABLE 1 | Mineral composition of the Silurian Longmaxi shale sample (measured using an X-ray fluorescence spectrometer).

Mineral Quartz K-feldspar Plagioclase Calcite Dolomite Pyrite Clay

Fraction (%) 58.6 1.9 5.5 2.3 6.9 3.9 20.9

TABLE 2 | Velocities of P- and S-waves measured in three directions.

Angle to bedding (°) 0 45 90

Vp (km/s) 3.54 3.96 4.51
Vs (km/s) 2.24 2.74 2.60
ρ (g/cm3) 2.51 2.52 2.53
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signals contain false AE detections, electronic noise,
anthropogenic noise, and other signals (López Comino et
al.,2017). In addition, AE signals can be mixed with boundary
reflections or signals from other sources. The cross-correlation
event-matching method uses the similarity of signals received by
each channel from the same source (Gibbons and Ringdal, 2006;
Song et al., 2010). Another effective method for event-matching is
based on the maximum time difference between the earliest and
latest arrivals (Feng et al., 2019). The maximum time acts as a
threshold and is usually calculated in terms of isotropy. However,
sensors are placed in geometries with a wide range of directions,
and therefore the presence of anisotropy can have a large impact
on the results of event-matching.

An inaccurate velocity model is another factor that leads to
uncertainty in locating an event. Current AE and microseismic
methods for determining the location of the source often assume
that acoustic waves propagate in straight lines at a constant
velocity for all sensors, and the location of the source is
determined by the average wave velocity or vertical velocity
determined from well-logging data (King and Talebi, 2007;
Zhou et al., 2017). Thus, the effect of anisotropy must also be
included in the source location. The importance of including VTI
corrections, when detecting microseismic events, was shown by
King and Talebi (2007) and Maxwell et al. (2010). A variable
velocity method is proposed to address the location problem of a
complex multilayer velocity model (Li and Qi, 2009). Van Dok et
al. (2011) discussed some of the fundamental elements of how
HTI (horizontal transverse isotropic) and VTI affect the correct
location of microseismic imaging points. However, these methods
allow obtaining anisotropic parameters using control

measurements, cross-well measurement using three-
component sensors, and advanced dipole sonic, which is
mainly applicable to field microseismic data and makes it
difficult to obtain anisotropic parameters in AE experiments in
the laboratory; therefore, we use a core measurement method to
obtain an anisotropic velocity model. An improved Geiger’s
method is proposed that corrects the anisotropic velocity
instead of using a constant velocity during each iteration.

In this article, we first perform ultrasonic measurements on
a shale sample from the lower Silurian shale formation in the
southern Sichuan Basin to investigate its elastic properties. An
acoustic emission experiment is then carried out on a shale
sample. The number of located sources using traditional
event-matching and Geiger’s method is incompatible with
the X-ray image of the fracture. To address this issue, we study
the effect of anisotropy on event-matching and propose an
improved event-matching method based on a triangulation
method considering velocity anisotropy. The newly proposed
matching method greatly improves data-processing efficiency
by reducing invalid redundant AE events. Finally, we propose
an improved Geiger’s method by taking into account velocity
anisotropy and verify the accuracy of the location results
based on a CT scan.

2 ULTRASONIC MEASUREMENTS OF A
SHALE SAMPLE

Shale samples are collected from an outcrop of the Longmaxi
formation in Wulong County, Chongqing City (Figure 1A,B).

FIGURE 2 | Variation of velocity with an angle to the axis of symmetry. FIGURE 3 | Workflow for events matching and location based on
ultrasonic measurements and AE experiment.
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The density and porosity of the shale sample are measured as
2.52 g/cm3 and 3.83%, respectively. Themineral grades are shown
in Table 1. Although the shale contains a large volume of quartz,
the alignment of the clay mineral is considered to be the
determining factor in causing the anisotropy of seismic
velocities (Liu et al., 2019; Zhang, 2019). We used the method
proposed by Vernik and Nur (1992) to measure P- and S-wave
velocities for three cylindrical plugs cut in three directions
(normal to bedding, 45° to bedding, and parallel to bedding)
from the sample (Figure 1C).

An ultrasonic pulse testing system is used to measure the
velocities of P- and S-waves (SH-wave) in a shale sample. The
measurements were carried out at room temperature and
pressure, the main frequencies of P- and S-wave transducers
were 1 and 0.5 MHz, respectively, and the test error was less than
1%. The measured velocities are shown in Table 2. The quantities
VP(0+) and VSH(0+) represent the velocities of the P- and SH-
waves along the normal to the bedding, respectively. The
quantities VP(45+) and VSH(45+) represent the velocities of
P- and S-waves at an angle of 45° to the bedding, respectively.
The quantities VP(90+) and VSH(90+) represent the velocities of
the P- and S-waves parallel to the bedding, respectively. It is seen

that VP(0+)<VP(45+)<VP(90+) and
VSH(0+)<VSH(45+)<VSH(90+). Thus, a shale sample has an
equivalent VTI property and five independent elastic stiffness
coefficients Cij, which can be calculated using the measured
velocity and density ρ as (Wang, 2002; Mavko et al.,2003)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c11 � ρV 2
P (90°), c12 � c11 − 2ρV 2

SH (90°),
c33 � ρV 2

P (0°), c44 � ρV 2
SH (0°), c66 � 1

2
(c11 − c12),

c13 � −c44 +
�����������������������������������������������������
4ρ2V 4

P (45°) + (c11 + c44)(c33 + c44) − 2ρV 2
P (45°)(c11 + c33 + 2c44)

√
.

(1)

The P-wave velocity as a function of angle is calculated using
the following equation:

VP(α) � (c11 sin2 α + c33 cos
2 α + c44 +

��
M

√ )1/2(2ρ)−1/2, (2)

where α is the phase angle to the bedding normal and
M � [(c11 − c44)sin2 α − (c33 − c44)cos2 α]2 + (c13 + c44)2 sin22α.
The velocity of P-wave, which varies depending on the
direction, is shown in Figure 2 and is used for further
event-matching and location using data from the AE
experiment (Figure 3). Since in subsequent AE experiments
the sensors have only one component, only the P-wave
velocity is used to locate events. The kinematics of P-wave
in the TI medium weakly depends on the S-wave phase
velocity (Alkhalifah, 1998; Jin and Stovas, 2018; Jin and
Stovas, 2020). The magnitude of shale anisotropy can be
represented by the P-wave velocity anisotropy parameter ε �
(C11 − C33)/2C33 (Thomsen, 1986). The measured shale
sample has strong P-wave anisotropy, since its ε is 0.27.
The densities of the three samples are almost the same, and
slight deviations can be caused by heterogeneity.

FIGURE 4 | (A) Notched semicircular bend (NSCB) shale sample after unaxial loading. (B) The front view of sample geometry and eight AE sensors. The distance
between the two supporting(S) is 55mm and a 10mm notch is made in the middle of the lower part of the sample to cause a directed rupture. (C) The side view of sample
geometry and four sensors are glued on the z = 25mmplane (blue point) and the rest are on the z = −2 5mmplane(blue asterisk).X-ray images of CT scanning (D) and (E)
after fracturing.

TABLE 3 | Basic parameters of the AE experiment.

Design parameter Value

Sample frequency 5,000 kHz
Sample point 4,000
Pre-sampling time 150 μs
Waveform threshold 35 dB
Preamplifiers 40 dB
Filter 100 kHz–400 kHz
Loading rate 0.01 mm/min
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3 ACOUSTIC EMISSION EXPERIMENTS

A three-point bend acoustic emission experiment is carried out
on a semicylindrical shale sample that is 50 mm thick and has a
radius of 50 mm (Figures 4A,B). The sample before fracturing
did not contain natural fractures. Its axial direction is
perpendicular to the bedding. Compressive loads are applied
to three points with a ratio of 0.01 mm/min for 1 hour until the
destruction of the sample. The AE signals are received by eight
resonance-type sensors (SR150S) placed on the surface of the
sample (Figure 4C). The sensors have a frequency range of
70~280 kHz and a resonance frequency of 150 kHz. The main
parameters of the AE experiment are shown in Table 3. The AE
signal sampling frequency is 5,000 kHz with a sampling interval
of 0.2 µs, a waveform threshold of 35 dB, a pre-sampling time of
150 µs, a sampling length of 4,000 points, and a total recording
length of 800 μs for each acquisition segment. The eight AE
sensors and 40-dB preamplifiers were used in the tests, and AE
signals exceeding 40 dB were captured during fracturing. CT
scans are performed before and after rock breakdown to
determine fracture distribution. The results of the CT X-ray
images are shown in Figures 4D,E. These results will be used
as the true fracture distribution for comparing source locations.

4 EVENT-MATCHING FOR ANISOTROPIC
MEDIA

Event-matching aims to obtain AE signals from the same
source event. It is carried out after the acquisition of the first
arrivals (Figure 3). Ideally, an AE event is received and
recorded by all eight sensors (Figure 5A). However, many
AE events are received and recorded by only a few sensors
(Figure 5B). This may be because these events are not strong
enough to trigger all sensors for recording. To determine the
location of the AE source, it is necessary to solve four
unknown parameters, including the coordinates of the
location (x0, y0, z0) and the origin time (t0). Therefore,
valid AE signals are signals from the same source received
by at least four sensors. Hence, reliable AE event-matching is
crucial to locate the source.

Event-matching can be achieved using a triangulation rule
as shown in Figure 6. The difference between the AE arrival
times from the two sensors is compared with the time
threshold Δt to confirm if they are valid. The time
threshold is usually constant and is expressed as the
difference in travel time between the two farthest points or
sensors in the sample (Feng et al., 2019). The arrival times of
AE signals received by two sensors (t1 and t2) correspond to
two sides of the triangle. Knowing the coordinates of two
sensors, it is possible to calculate the travel time from one
sensor to the other as a “third side” using a known velocity
model. The signals can be identified as from the same source
event, if the following matching condition is met:

|t1 − t2|≤Δt. (3)

In this three-point bending experiment, assuming the
sample is isotropic, Δt is calculated as 30 μs using a
constant velocity 3.54 km/s. As shown in Figure 7A,
signals are received by four sensors, but the differences in
arrival times between them are much greater than Δt, so this
set of signals is recognized as invalid based on the formula
Eq. 3. In this article, the Akaike information criterion (AIC)
(Maeda, 1985) is used to determine the time of the first

FIGURE 5 | (A) AE event recorded by eight sensors. The red line represents the selected arrival times. (B) AE event received by only three sensors (Sensor 2, 4,
and 5).

FIGURE 6 | Principle of the triangulation method of event-matching.
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FIGURE 7 | (A) Signals received by four sensors are considered invalid. Red lines represent first arrivals, and the red ellipse in the sensor 5 represents the boundary
reflection. (B) Event No. 4 and (C) Event No. 12 received by all eight sensors before event-matching. (D) Event No. 4 and (E) Event No. 12 after event-matching using the
constant Δt as 30 µs. (F) Event No. 4 and (G) Event No. 12 after event-matching using Δt calculated using anisotropic velocity.
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arrival of AE events. Although this method is convenient and
highly effective, it can match redundant signals because
received signals are mixed with boundary reflections or
signals from other sources. As shown in Figures 7B,C,
events No.4 and No.12 contain signals received by all
eight sensors. If Δt is used as 30 µs, eight signals and six
signals can be matched for events No.4 and No. 12,
respectively, and thus both events are considered valid.

However, neither of these two events can complete the
subsequent location. Either the location result is outside
the sample, or an unreliable solution is obtained. This is
because redundant invalid events are matched as valid using
a constant Δt, ignoring directional velocity variation.

To solve this problem, an improved matching condition is
proposed, including the impact of anisotropy. In this AE
experiment, sensors are arranged in a semicircle, and their

FIGURE 8 | (A) Relationship between the distances between two sensors and the angle from the Z direction in a three-point bend experiment. (B) Directions
between either of the two sensors. (C) Velocity variation between either of the two sensors. (D)Differences in travel time between either of the two sensors. It is noted that
the time differences (Δtii) between the same sensors are equal to 0, and the propagation velocity is infinite.

FIGURE 9 | (A) Total number of valid events matched using isotropic (ISO) and anisotropic (ANI) methods. (B) Number of valid events from each sensor, matched
using ISO and ANI event-matching methods.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 9 | Article 8105787

Wang et al. AE Event-Matching and Location

44

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


angles are in a wide range (Figure 8A). As discussed in Eq. 2, the
velocity of propagation of signals Vp(α) depends on the phase
angle. Directional sines and cosines of the ith sensor relative to
the jth sensor are respectively equal,

sin α �
�������������������
(xi − xj)2 + (yi − yj)2

√
/Rij and cos α � (zi − zj)/Rij,

(4)

where (xi, yi, zi) and (xj, yj, zj) are the coordinates of the ith
and the jth sensor, respectively, and Rij represents the linear
distance between any of the two sensors. Figure 8B shows the
calculated value of α of either of two sensors using Eq. 4.
Figure 8C shows calculated VP(α) using the formula Eq. 2
based on ultrasonic measurements. The time threshold Δt is
now updated as

Δtij � Rij/Vp(α), (5)

and the new matching condition is
∣∣∣∣ti − tj

∣∣∣∣≤Δtij. (6)

The calculated value of Δtij between any of two sensors is
shown in Figure 8D. The time differences between the two
sensors range from 0 to 20 µs, which are less than the
isotropic Δt (30 µs).

Compared to the initial results, using the improved
matching condition that takes into account the impact of
anisotropy, fewer signals are matched (Figures 7F,G).
Six signals are matched for event No. 4, which is still
recognized as a valid AE event, while only three signals
are matched for event No. 12 and thus cannot be used for
locating since the number of signals is less than four. In
general, the results of anisotropic matching remove
redundant events and thus reduce the total number of
effective events (Figure 9A). A total of 179 valid events
were obtained using event-matching without taking into
account the anisotropy effect, and a total of 153 valid
events are obtained using the new event-matching method
taking into account velocity anisotropy. In particular, the
number of events received by the four sensors is significantly
reduced (Figure 9B). The reason is because that the

FIGURE 10 | Source location results (3D display) using (A) an isotropic matching and isotropic location (ISO+ISO) method and (B) an anisotropic matching and
anisotropic location (ANI+ANI) method. Comparison of fracture and location results (Front view) using (C) isotropic matching and isotropic location (ISO + ISO), (D)
anisotropic matching and anisotropic location (ANI + ANI), (E) isotropic matching and anisotropic location (ISO + ANI), and (F) anisotropic matching and isotropic location
(ANI + ISO). The gray dashed lines represent the fracture, and the magnitude of source events is displayed using dots of various sizes.
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anisotropic method uses a stricter threshold (Δt has a lower
value) than the isotropic method since the latter’s time
threshold is calculated using a constant and relatively low
velocity measured normal to the layer (0o as shown in
Figure 2), while the former’s time threshold calculated
using higher velocity depending on the direction.

5 SOURCE LOCATION INCLUDING
VELOCITY ANISOTROPY

The source location can be determined by the source
parameters inversion based on the known observational
data. Source parameters, including coordinates and time of
fracture initiation, can be estimated by resolving an
inconsistent linear system (Geiger, 1912). As for an
anisotropic medium, the function of the arrival time of the
kth sensor fk is expressed as

fk(m) � t + 1
V(αk)

���������������������������
(xk − x)2 + (yk − y)2 + (zk − z)2

√
, (7)

wherem � (t, x, y, z)T is the vector of the source parameters in
terms of the origin time t and source coordinates (x, y, z) to be
inverted, V (αk) is the calculated velocity based on ultrasonic
measurements, and αk is the angle of the kth sensor to the Z axis
(Figure 8A), which can be expressed as

sin αk �
������������������
(xk − x)2 + (yk − y)2

√
/l and cos αk � (zk − z)/l, (8)

where l �
���������������������������
(xk − x)2 + (yk − y)2 + (zk − z)2

√
. Given a certain

point m0 � (t0, x0, y0, z0)T , fk(m) can be expanded using
the first-order Taylor series as

fk(m) ≈ fk(m0) + A(m −m0), (9)

where A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zf1

zx

zf1

zy

zf1

zz

zf1

zt

..

. ..
. ..

. ..
.

zfk

zx

zfk

zy

zfk

zz

zfk

zt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The source parameter

update Δm � m −m0 can be recovered as

Δm � (ATA)−1ATΔfk, (10)

where Δfk � fk(m) − fk(m0), and k is greater than or equal
to 4. The vector of the source parameters is solved iteratively
using the formula Eq. 11 until the specified error criterion
is met

mn+1 � mn + Δmn, (11)

where n stands for the number of iteration.
This method is applied to experimental AE data. We compare

the location results using isotropic velocity and anisotropic
velocity, as shown in Figures 10A,B. These results are also
calibrated with the actual fracture distribution from CT
scanning as shown in Figures 10C,D, in which the amplitude
of source events is displayed using varied size of dots. The valid
location results must satisfy in the spatial domain
−50mm≤x≤ 50mm, 0≤y≤ 50mm and −25mm≤ z≤ 25mm.
Although 179 events are matched using the isotropic
condition, only 40 sources are located using the isotropic
location method, in which 31 sources are within the valid
spatial domain (Figures 10A,C); while for 153 events matched

FIGURE 11 | Located AE events at different fracturing times (A) 5600–5800s, (B) 6460–6500s, (C) 6500–6520s, (D) 6520–6600s.
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using the anisotropic condition, 99 sources are located using the
anisotropic location method, in which 71 sources are inside the
valid spatial domain (Figures 10B,D). The number of located
sources using the isotropic method is much less than that using the
anisotropic method. In addition, the located sources using
anisotropic velocity are better aligned with the fracture
distribution, and the strong source events (displayed with larger
dots) are more focused on the starting position of the fractures. To
further demonstrate the result, we show four results using different
processes (Figures 10C–F): isotropic matching and isotropic
location (ISO + ISO), anisotropic matching and anisotropic
location (ANI + ANI), isotropic matching and anisotropic
location (ISO + ANI), and anisotropic matching and isotropic
location (ANI + ISO). The located sources of anisotropic matching
and anisotropic location show the best agreement with the CT
scanning results in terms of fracture distribution and starting
position. Therefore, it is very important to take into account the
influence of anisotropy on the velocity for both AE event location
and event-matching. Although there are several sources of weak-
amplitude located outside the semicircle sample (Figures 10B,D),
this could be improved bymore accurate arrival times selection and
more receivers with wider geometry (receivers are placed only on
planes Z = −25mm and Z = 25mm in this study).

Finally, we analyze the located AE events at different stages of
fracture, as shown in Figure 11. The first AE event is detected at
5800s after loading (Figure 11A). After a quiet period of about 10
min, several acoustic emission events occurred during the
6460–6500s period (Figure 11B). These events appear around
the fracture, but their distribution does not follow the strike of the
fracture. In the period of 6500–6600s (Figures 11C,D), a large
number of acoustic emission events are detected that developed
along the fracture.

6 CONCLUSION

Event-matching is a necessary process for pinpointing a location.
Traditional methods of event-matching and location can be
affected by velocity anisotropy, leading to further unreliable
source location results. In the event-matching process, if
velocity anisotropy is ignored, many redundant events or false

AE events will be matched. Most of the source points detected by
these false events are outside the sample, and the location results
are incompatible with fracture distribution. In this article, we
analyze the effect of anisotropy on the results of event-matching
and location based on the three-point bend AE experiment. We
achieve the event-matching and location taking into account the
correction for anisotropic velocity, increasing the ratio of the
number of detected sources to valid events, which may better help
us in determining fracture characteristics. Real acoustic emission
data applications show a clear improvement in location results over
isotropic Geiger’s results. The location results are also calibrated by
CT scanning results, which show good consistency and confirm the
improvement in fracture characteristics. In fact, both the velocity
model and the sensor geometry have a large impact on the location
results. If the sensors are distributed over a wide range of directions,
we must not only take into account the anisotropy of the velocity
model but also consider the anisotropy of velocity in event-
matching.
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Diffraction Extraction and
Least-Squares Reverse Time
Migration Imaging for the Fault-Karst
Structure With Adaptive Sampling
Strategy
Liang Chen, Jianping Huang*, Cheng Song and Jiale Han

Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China

The ultra-deep fault-karst structure discovered in the Tarim Basin in Western China is a
fractured-vuggy carbonate reservoir with great potential for development. The diffraction
generated by fractures, small-scale caves and vugs is often used for reservoir identification
and seismic interpretation. Since the diffraction is much weaker than the reflection, it is
difficult to separate the diffraction from the full wavefield. We use a plane-wave destruction
(PWD) filter to extract the diffraction from the full data. In order to obtain a high-accuracy
and amplitude-preserving imaging profile, we use the least-squares reverse time migration
(LSRTM) method to image the separated diffraction. The large amount of calculation is the
most challenging problem of the LSRTM algorithm. In view of this, we develop an adaptive
sampling strategy to improve computing efficiency and reduce memory requirement. We
use a fault model, a vugs-fractures model, and a fault-karst model to demonstrate the
effectiveness and practicability of the proposed method. The numerical examples show
that the proposed method can enhance the imaging resolution of the fault-karst structure
and save computing cost without losing accuracy. In addition, a test on field data
processing demonstrates the advantages of our algorithm.

Keywords: fault-karst structure, ultra-deep reservoir, least-squares reverse time migration, diffraction separation,
adaptive sampling

INTRODUCTION

The marine carbonate reservoirs have produced abundant oil and gas resources globally (Loucks and
Anderson, 1985; Soudet et al., 1994; Tian et al., 2016). Their formation is related to faulting and
dissolution. Different from conventional fractured carbonate reservoirs, the ultra-deep fault-karst
reservoirs discovered in the Shunbei area of the Tarim Basin are controlled by large-scale faults,
karstification and deep hydrothermal reforming (Li et al., 2019). The reservoirs are dominated by
various irregular vugs and fractures occurring along the large-scale strike-slip faults or the associated
secondary faults. According to structural features and controlling factors, Lu et al. (2015) first
proposed the theoretical concept of fault-karst traps, and divided the fault-karst reservoirs into three
categories. Ma et al. (2019) summarized the reflection characteristics of the fault-karst structure using
forward modeling, which provides guidance for its identification. However, due to deep burial depth
and complex inner structure, the diffraction generated by vugs or fractures is much weaker than the
reflection, making it difficult to obtain high-resolution seismic imaging profile (Khaidukov et al.,
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2004; Kong et al., 2017). Furthermore, the large amount of
computational cost caused by large-scale and high-precision
imaging process is inevitable. In view of the above, a more
accurate and efficient imaging method is needed to support
the exploration and development of the ultra-deep fault-karst
reservoirs.

Separating the diffraction from full wavefield is very important
for the high-resolution imaging of the fault-karst structure. The
differences between reflected waves and diffracted waves in
kinematics are substantial in the common-shot gathers, which
allows us to extract the diffraction from the shot records (Landa
et al., 1987). Dip filtering (Bansal and Imhof, 2005), focusing and
defocusing (Khaidukov et al., 2004) hybrid Radon transform
(Klokov et al., 2010), and PWD filtering (Fomel, 2002; Taner
et al., 2006) have been developed for separating diffraction. These
methods utilized the fact that the travel time curve of the
diffracted wave is quasi-parabolic in the common-shot gathers
while the reflected wave is quasi-linear. The PWD filtering
method can effectively eliminate artifacts and retain more
diffraction energy. Therefore, it has been successfully applied
to several 3D field datasets (Burnett et al., 2015; Tyiasning et al.,
2016). Another advantage of the PWD filtering method is that the
separated diffraction can be directly used for pre-stack migration,
avoiding complex data processing.

Reverse time migration (RTM), which is based on two-way
wave equation, can effectively migrate reflection data and
describe subsurface geological structures (Baysal et al., 1983;
Sun and McMechan, 1986). LSRTM can be regarded as the
optimization algorithm of RTM. It employs the least-squares
inversion theory that continuously fits the error between the
linear demigration data and the observed data (Tarantola, 1984;
Nemeth et al., 1999; Dai et al., 2012). Compared to RTM, LSRTM
can improve migration resolution, balance imaging amplitude,
and reduce image artifacts (Dutta and Schuster, 2014; Yang et al.,
2019). Nevertheless, this algorithm requires a huge amount of
storage space and computational effort. Some researchers have
tried to use different acceleration algorithms to improve LSRTM,
such as multi-source and plane-wave encoding methods (Dai
et al., 2012; Huang and Schuster, 2012; Dai and Schuster 2013).
However, the crosstalk noise caused by different sources is hard to
be eliminated.

Variable-grid methods, which are implemented by decreasing
the grid points of a model, can reduce memory costs and improve
computational efficiency (Moczo, 1989; Jastram and Behle, 1992;
Fan et al., 2015; Huang et al., 2015). Several variable-grid methods
have shown their potential in imaging. Li et al. (2014) developed a
dual-variable grid algorithm and applied it to RTM. Li et al.
(2017) introduced the idea of pseudo-time domain (Alkhalifah,
2003; Ma and Alkhalifah, 2013) into LSRTM, which improves
imaging efficiency by reducing vertical grid points (Wang et al.,
2020). Proposed an adaptive grid discretization strategy and
applied it to 3D LSRTM. Most variable-grid methods always
resample a local region. Due to the inherent difficulty of
automatically discretizing spatial grid, local variable-grid
methods have not been widely used in seismic data processing.

Diffraction extraction, high-resolution imaging, and cost
control are key to accurate exploration of the ultra-deep

fault-karst reservoirs. In this paper, we first apply the PWD
filter method (Taner et al., 2006) to extract the diffraction
from the full wavefield. Then, the diffraction-based LSRTM
(D-LSRTM) algorithm are used to image the diffraction. In
order to improve the computing efficiency, we develop an
efficient variable-grid D-LSRTM method based on a globally
adaptive sampling strategy (AS-D-LSRTM). Finally, four
numerical tests are used to prove the effectiveness and
robustness of the proposed method.

The complete workflow of the AS-D-LSRTM method is
divided into the following steps: 1) separating the diffraction
from the full wavefield by PWD filter method; 2) performing
irregular grid discretization applying adaptive sampling; 3)
imaging the diffraction using LSRTM.

The Principle of Diffraction Separation
In the common-shot gathers, the reflection and the diffraction
generated by a point source share similar kinematic
characteristics, which are difficult to be distinguished (Landa
et al., 1987). While when the incident wave is a plane wave, the
travel time curve of the reflected wave can be written as:

tR � cos θ sin(θ − 2ϕ)
v cos(θ − ϕ) · x + 2h

v
[cos θ cos(θ − ϕ)

− cosϕ cos(θ − ϕ) − cos θ
cos(θ − ϕ) ] (1)

where tR denotes the travel time and v denotes the medium
velocity. The specific meaning of θ and ϕ is shown in Figure 1.

The travel time curve of the diffracted wave can be
expressed as:

(tD − h/v)2
h2 cos2 θ/v2 −

(x − h sin θ)2
h2 cos2 θ

� 1 (2)

FIGURE 1 | Comparison of the reflection and the diffraction. As
illuminated by the plane wave source, the seismic response of the reflection is
linear while the response of the diffraction is hyperbolic.
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According to Eqs. 1, 2 and Figure 1, the seismic response of
the reflection is linear while the response of the diffraction is
hyperbolic. Therefore, we can separate the reflection and the
diffraction based on the difference of kinematic properties in
plane-wave gathers. Firstly, we convert the common-shot
gathers into common ray-parameter gathers using tau-p
transform (Kappus et al., 1990; Zhang et al., 2005). The
tau-p transform equation can be expressed as:

P(τ, p) � ∫ d(t, x)dx � ∫ d(τ + px, x)dx (3)

where d(t, x) denotes the seismic shot records in the time-offset
t − x domain, and P(τ, p) is the so-called plane-wave gathers
with ray parameter p and time axis τ. Then we use the PWDwave
filter proposed by Fomel (2002) to estimate the local dip angle of
the diffracted wave and separate it in the tau-p domain. After that,
we use the inverse tau-p transform to get the diffraction wavefield
in the time-offset domain. The inverse tau-p transform equation
is expressed as:

dD(t, x) � ∫P(τ, p)dp � ∫P(τ � t − px, p)dp (4)

where dD(t, x) denotes the shot records of the diffracted wave.

Adaptive Sampling Strategy
In Tarim Basin, where the fractured-vuggy carbonate
reservoirs are extensively developed, the surface is often
covered by desert and gravel layers with low velocity. In
forward modeling and migration, a fine spatial grid must be
used to avoid numerical dispersion. However, for the deep
region with high velocity, using fine grid is a waste of
computing resources. We use an adaptive sampling strategy
to solve the above problem.

As shown in Figure 2, the horizontal axis denotes depth and
the vertical axis represents vertical grid interval. The black dots on
the x-axis denote initial vertical grid points. The black solid line
denotes initial vertical grid interval, which is fixed. According to
the medium velocity and the dominant frequency of the source,
we use Eq. 5 to recalculate the optimal vertical grid interval (The
red solid line in Figure 2):

dz(z) � vmin(z)
10fm

(5)

where vmin(z) denotes the minimum velocity along the depth axis
z, fm is the dominant frequency of the source wavelet, and dz(z)
denotes the optimal vertical grid spacing.

We use a rectangular sampling method (Wang et al., 2020)
to resample the initial migration model. Firstly, we set a small
trial step from z � 0 and increase it continuously to get the first
grid point η1, where η1 � dz(η1). Then we repeat the previous
step to get the second grid point η2, where
η2 − η1 � dz(η2) − dz(η1). Finally, we repeat the above
process to the max depth and obtain a new model. The
vertical grid interval of the new model is irregular and it
varies with velocity. Note that there is a mapping
relationship between the initial model and the new model,
we use two different coordinate systems to express it:

x � x(ξ, η) (6)
z � z(ξ, η) (7)

where x and z are the coordinate variables in coordinate system
A(x, z), ξ and η are the coordinate variables in coordinate system
B(ξ, η). The initial model is located inA(x, z) and the newmodel
is located in B(ξ, η). The derivation process of the mapping
relationship is shown in Supplementary Appendix SA.

The acoustic wave equation in 2D heterogeneous isotropic
medium in coordinate system A(x, z) can be written as:

1
v2

z2u

zt2
� ρ(z

2u

zx2
+ z2u

zz2
) + fs(t) (8)

where u denotes acoustic pressure field, t denotes time, ρ denotes
medium density, v denotes acoustic velocity, and fs(t) denotes
source function.

Substitute Eq. A-9 and A-10 into Eq. 8, we get the expression
of Eq. 8 in coordinate system B(ξ, η):

1
v2

z2u

zt2
� ρ⎛⎝z2u

zξ2
+ z2u

zη2
1
z2η

− zu

zη

zηη
z3η

⎞⎠ + fs(t) (9)

where zη � zz/zη and zηη � z2z/zη2 they can be solved by finite-
difference method.

Compared to Eq. 8, one term is added to Eq. 9, which
increases the computational cost for one grid point. In fact,
the omission of the extra term has little effect on the final
imaging results. Therefore, Eq. 9 is further simplified as:

1
v2

z2u

zt2
� ρ⎛⎝z2u

zξ2
+ z2u

zη2
1
z2η
⎞⎠ + fs(t) (10)

Review of the Principle of LSRTM
LSRTM is considered to be a true amplitude imaging method,
which can improve imaging resolution, reduce artifacts, and meet
the demand for lithological interpretation.

As shown in Eq. 11, the seismic wavefield satisfies the
superposition principle:

FIGURE 2 | Diagrammatic sketch of the adaptive sampling method.
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u � u0 + us (11)
where u denotes total wavefield, u0 denotes background
wavefield, and us denotes perturbation wavefield.

Similarly, the velocity model can be regarded as the superposition
of a perturbation model and a smoothed background model,

1
v2

� 1
v20

+ 1
Δv2

(12)

u0 obeys Eq. 10:

1
v2

z2u0

zt2
� ρ⎛⎝z2u0

zξ2
+ z2u0

zη2
1
z2η
⎞⎠ + fs(t) (13)

Substitute Eq. 11 and Eq. 12 into Eq. 10, subtract Eq. 13, and
apply Born approximation (Dai et al., 2012), we can obtain the
control equation of

1
v20

z2us

zt2
� ρ⎛⎝z2us

zξ2
+ z2us

zη2
1
z2η
⎞⎠ − 1

Δv2
z2u0

zt2
(14)

FIGURE 3 | Workflow of AS-D-LSRTM.

FIGURE 4 | Fault model (A) and the resampled model (B).
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Eq. 14 is the Born (linearized) forwarding modeling equation,
and it can be rewritten as a matrix:

ds � Lm (15)
where L is the Born forwarding modeling operator, m denotes
model parameter, and ds denotes the Born-modeled data. We can
get the migration image by using the the RTM operator:

mmig � LTds (16)
where mmig represents the imaging result. LT denotes the RTM
operator, which is the conjugate transpose of L.

The goal of LSM theory is to minimize the objective function,
which is defined as:

J(m) � 1
2
‖Lm − dobs‖22 (17)FIGURE 5 | Comparison of vertical grid interval.

FIGURE 6 | Time sections of the fault model with ray parameter p � 0 ms/m. (A) plane-wave section for the full wavefield, (B) estimated dip angle field, and (C)
plane-wave section for the separated diffraction.

FIGURE 7 | Response of the point source. (A) full wavefield, and (B) diffraction wavefield.
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FIGURE 8 | LSRTM images after 30 iterations using different methods. (A) F-LSRTM, (B) D-LSRTM, (C) AS-D-LSRTM, and (D) AS-D-LSRTM with linear
interpolation.

FIGURE 9 | Normalized residual convergence curves of the three
methods.

FIGURE 10 | Computing time and memory requirement of the three
methods.
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FIGURE 11 | Fractures-vugs model (A) and the resampled model (B).

FIGURE 12 |Migration images using different methods after 30 iterations. (A) F-LSRTM, (B) D-LSRTM, (C) AS-F-LSRTM with linear interpolation, and (D) AS-D-
LSRTM with linear interpolation.
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where J(m) is the objective function, dobs denotes the observed
data, and ‖ · ‖22 is the L2-norm of a vector.

We use a conjugate-gradient algorithm (Dai et al., 2012) to
solve the model parameter m, which is formulated as:

gk+1 � Lp[Lmk − dobs]

βk+1 � [gk+1]p[Cgk+1]
[gk][Cgk]

zk+1 � Cgk+1 + βk+1zk

ak+1 � [zk+1]p[gk+1]
[Lzk+1]p[Lzk+1]

mk+1 � mk − ak+1zk+1

(18)

where k and * denote iteration index and conjugate transpose of a
matrix, gk and βk represent gradient and correction coefficient, zk

and αk denote conjugate gradient direction and step length, andC
denotes precondition operator.

In summary, the implementation of the AS-D-LSRTM
method contains four main steps. The first step is to separate
diffraction. The second step is to resample the initial model. The
third step is to obtain the image after several iterations by LSRTM.
Finally, we use linear interpolation to convert the final image
from the coordinate system B(ξ, η) to coordinate system A(x, z).
Figure 3 shows the complete workflow of AS-D-LSRTM.

NUMERICAL EXAMPLES

In this section, three synthetic examples are used to test the
effectiveness of the proposed AS-D-LSRTM in high-resolution
imaging. Furthermore, numerical tests on land field data confirm
its adaptability for complex structure.

Fault Model
The initial fault model is shown in Figure 4A, which has a low-
velocity surface layer with velocity of 2000 m/s. It is discretized on
a 801 × 301 grid a with grid spacing dx � dz � 8 m. The time
sampling interval is 0.5 ms and the recording time is 1.5 s. A total
of 51 sources are distributed laterally from 2.4 to 4 km. The shot
interval is 32 m. There are 601 receivers of each shot and the
receiver interval is 8 m.We use a Ricker wavelet as the source, and
its dominant frequency is 25 Hz. To improve the computational
efficiency, we resample the initial model using the adaptive
sampling method. Figure 4B shows the resampled model with
151 vertical grid points. From Figure 4B we can see that the deep
layers with high velocity are compressed. Figure 5 shows the grid
interval comparison of the two models. The black line in Figure 5
denotes initial vertical grid interval, the blue line denotes
theoretical value calculated by Eq. 5, and the red line shows
the vertical grid interval of the resampled model.

We use the tau-p transform to produce 501 plane-wave time
sections with ray parameters ranging from −0.5 to 0.5 ms/m.
Figure 6A displays a section with ray parameter p � 0 ms/m. In
Figure 6A, the reflection is linear (see the black arrows) and the
diffraction is hyperbolic (see the red arrows). Figure 6B shows the
estimated dip field of Figure 6A. Based on the dip angle field
shown in Figure 6B, we use the PWD filter method to separate
the diffraction. Figure 6C shows the separated diffraction with
ray parameter p � 0 ms/m. We can see from Figure 6C that the

FIGURE 13 | Normalized residual convergence curves of the four methods.

FIGURE 14 | Computing time and memory requirement of the four
methods.

FIGURE 15 | Distribution characteristics of the fault-karst carbonate
reservoirs.
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reflection is removed while the diffraction is preserved. Figure 7A
shows the point source response of the full wavefield. In
Figure 7A, the diffraction energy generated by the inclined
faults (the red arrow) is much weaker than that of the layer
interface (the black arrow). Figure 7B shows the response of the
diffraction wavefield. In Figure 7B, the reflection is suppressed
and the diffraction (the blue arrow) is preserved.

Figures 8A, 8B show the images of full wavefield LSRTM
(F-LSRTM) and D-LSRTM after 30 iterations, respectively. In
Figure 8B, we can see that the acquisition footprints (the red
arrow) and the reflection generated by the surface layer (the blue

arrow) are almost eliminated. Moreover, the resolution of the
fault in Figure 8B is higher than that in Figure 8A (see the black
arrows). Figure 8C shows the AS-D-LSRTM image after 30
iterations, and Figure 8D shows the final result after linear
interpolation. In Figure 8B, the artifacts and the diffraction
are enhanced simultaneously when the reflection is removed.
Nevertheless, the diffraction-based LSRTM results are still
focused. Figure 9 displays the normalized residual
convergence curves of F-LSRTM, D-LSRTM, and AS-D-
LSRTM. The curves show that the convergence rate of
D-LSRTM and AS-D-LSRTM is faster than that of F-LSRTM.

FIGURE 16 | Ultra-deep fault-karst carbonate reservoir model (A) and the resampled model (B).

FIGURE 17 | LSRTM images after 20 iterations. (A) AS-F-LSRTM and (B) AS-D-LSRTM.
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FIGURE 18 | Initial migration velocity model (A) and (B) the resampled model.

FIGURE 19 | Field shot record. (A) full wavefield, and (B) diffraction wavefield.

FIGURE 20 | Migration images after 5 iterations using AS-F-LSRTM (A) and AS-D-LSRTM (B).
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Moreover, the normalized residual of D-LSRTM and AS-D-
LSRTM decreases quickly before the 5th iterations and
gradually converges to a same value. Figure 10 shows the
normalized computing time and memory footprint of these
methods. Compared with D-LSRTM, AS-D-LSRTM can save
44% of computing cost and half of memory requirement
without losing accuracy. From the above analysis, we conclude
that AS-D-LSRTM is superior to F-LSRTM and D-LSRTM.

Layered Model With Vugs and Fractures
We use a layered model to further verify the effectiveness of the
proposed method. Figure 11A shows the initial model, which is
discretized on a 801 × 401 grid with a grid interval of dx � dz �
5 m. Themodel has two layers with velocity of 2.5 km/s and 4 km/
s, respectively. There are three small-scale vugs and four fractures
distributed at the layer interface with velocity of 3 km/s. The vugs
are square with side lengths of 20, 40, and 60 m, respectively. The
width of the fractures is 20 m and the lengths of them are 100,
200, 300, and 400 m, respectively. Figure 11B shows the
resampled model (fm in Eq. 5 is 30), which has 221 vertical
grid points in total. In total, 41 sources are distributed laterally
from 1.5 to 2.5 km. Each shot has 601 receivers. The shot interval
is 25 m and the receiver interval is 5 m. The time step is 0.3 ms
and the recording time is 1.5 s.

In this tests, we apply the adaptive sampling method to
F-LSRTM (denoted by AS-F-LSRTM) and D-LSRTM.
Figure 12 shows the images after 30 iterations using different
LSRTM methods. In Figures 12A,C, the vugs and fractures are
imaged successfully, and the bottom of the fractures is shown as a
string of beads (Lu et al., 2015). In Figures 12B,D, the reflection
are restrained and the energy of the diffraction is enhanced.

Figure 13 displays the normalized residual convergence
curves of the four methods. The result shows that the
convergence rate of D-LSRTM and AS-D-LSRTM is faster
than that of F-LSRTM and F-AS-LSRTM. We can see that the
convergence curves of D-LSRTM and AS-D-LSRTM are almost
coincident after the 16th iteration. Figure 14 shows the
normalized computing cost and storage requirement of the
four methods. From Figures 12–14, we conclude that the AS-
D-LSRTM algorithm is helpful to identify small-scale caves and
fractures, and it can greatly save computing resources.

Ultra-Deep Fault-Karst Carbonate
Reservoir Model
The fault-karst carbonate reservoirs are usually stripped
distribution along the strike-slip fault zone, especially in South
Tahe area of Tarim Basin (Ding et al., 2020). According to stress
state, the strike-slip fault can be divided into three structural
styles, which are translation, extrusion and extension. The oil and
gas resources are more abundant in the extension and extrusion
section (Cheng et al., 2020). Figure 15 shows the distribution
characteristics of the fault-karst reservoirs. In the extension
section (left), large-scale caves are developed near the trunk
fracture zone and small-scale vugs are distributed along the
branch fracture. In the extrusion section (right), the caves and
vugs are mainly distributed along the trunk fracture. According to

the characteristics of the fault-karst carbonate reservoirs formed
by strike-slip extension, we build an ultra-deep fault-karst model,
as shown in Figure 16A. The model includes 1101 × 1101 grid
points with grid spacing of 8 m. The maximum depth of the fault-
karst structure is more than 8 km. Figure 16B shows the new
model after adaptive sampling. The number of vertical grid points
reduces from 1101 to 510.

In numerical tests, a total of 61 sources are distributed
laterally from 3.2 to 5.6 km. Each shot has 801 receivers. The
shot interval is 40 m and the receiver interval is 8 m. The time
step is 0.5 ms and the record time is 4 s. The source is a Ricker
wavelet and its dominant frequency is 25 Hz. Figures 17A,B
show AS-F-LSRTM and AS-D-LSRTM images after 20
iterations, respectively. In Figure 17A, some small-scale
caves and vugs are shown as strong reflection spots (see the
red arrows). However, the reflection energy generated by large-
scale caves near the trunk fracture is much weaker (see the black
arrows). In addition, the reflection-based LSRTM images cannot
correctly describe the distribution and the structural
characteristics of the fault-karst reservoirs. For example, the
reflection energy of the top of the reservoirs is extremely weak
(see the blue arrows in Figure 17A). This phenomenon can
mislead the prospectors and lead them to miss productive
reservoirs. In Figure 17B, the diffraction of the trunk
fracture is much stronger than that in Figure 17A (see the
black arrows). Moreover, the top of the reservoirs is easier to
identify in Figure 17B (see the blue arrows). We conclude that
AS-D-LSRTM can enhance the diffraction and improve the
imaging resolution of the fault-karst carbonate reservoirs.

Field Data Test
The LSRTM algorithms relies heavily on accurate migration
velocity model and high-quality data. In this paper, the
proposed AS-D-LSRTM method is also tested on a 2D field
dataset to further verify its effectiveness. Figure 18A shows
the initial migration velocity model, which includes 2001 ×
401 grid points with a grid spacing of 10 m. Figure 18B shows
the variable-grid model after adaptive sampling (n in Eq. 5 is
10), which is discretized on a 401 × 284 grid. We use the
Ricker wavelet with dominant frequency of 20 Hz as the
source. Total shots are 100 with irregular distribution and
the record time is 4 s. Each shot has 204 receivers and the
receiver interval is 50 m. The time sampling interval is 0.5 ms.

Figure 19A shows a single shot record. We apply the PWD
filter method to the full-wavefield data and obtain its
diffraction component, as shown in Figure 19B. Figures
20A,B show the AS-F-LSRTM and AS-D-LSRTM images
after 5 iterations, respectively. In Figure 20A, the
diffraction generated by the fault (see the red arrow) is
muck weaker than the reflection produced by the horizontal
layers (see the black arrow). From the image result of AS-D-
LSRTM (Figure 20B), we can see that the reflection energy (see
the red arrow) is almost eliminated while the diffraction is
enhanced (see the black arrow). In addition, about 74% of
computing time and 71% of memory space are saved after
using the adaptive sampling method. We conclude that our
method is still effective for field data.
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CONCLUSION

We propose a high-accuracy and high-efficiency AS-D-
LSRTM method, which contains three main parts. Firstly,
we use the PWD filter to extract the diffraction from the
full wavefield. Then we resample the initial migration
model using the adaptive sampling strategy. Finally, we
image the diffraction and obtain high-resolution migration
results after multiple iterations. LSRTM is known to be
limited by huge amount of computation when tens of
iterations and hundreds of shots are required to be carried
out. Numerical tests on synthetic data and field data
demonstrate that the proposed AS-D-LSRTM method
greatly improves computing efficiency and reduces memory
requirement. In addition, our method can effectively image
the diffraction produced by faults, fractures, caves and
vugs. In summary, AS-D-LSRTM is a potential imaging
approach for the interpretation and depiction of the fault-
karst carbonate reservoirs in the Tarim Basin in Western
China.
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A New Fluid Mobility Calculation
Method Based on
Frequency-Dependent AVO Inversion
Xin Luo1,2*, Xuehua Chen2,3, Yinghao Duan4, Shizhen Chen1, Yingkai Qi3 and Fei Huo1*

1Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, China, 2State Key Laboratory of Oil and Gas
Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China, 3College of Geophysics, Chengdu
University of Technology, Chengdu, China, 4No. 2 Oil Production Plant, Petrochina Dagang Oilfield Company, Tianjin, China

Fluid mobility (i.e., permeability to viscosity ratio) is a key parameter that can evaluate the
reservoir permeability and delineate the fluid characteristic in hydrocarbon-saturated
reservoirs. Based on the asymptotic representation for the frequency-dependent
reflections in the fluid-saturated pore-elastic media and frequency-dependent AVO
inversion, we propose a novel method for estimating fluid mobility from poststack
seismic data. First, we establish the relationship between fluid mobility and frequency-
dependent AVO analysis. Then, the fluid mobility is estimated using the theory of
frequency-dependent AVO inversion. Tests on synthetic data reveal that the fluid
mobility shows excellent imageability for the fluid-saturated reservoirs and can
accurately delineate the spatial distribution shape of the gas-saturated reservoir. The
application of field data examples demonstrates that the fluid mobility calculated by the
proposed method produces less background interferences caused by elastic layers
compared with the conventional frequency-dependent fluid indicator. The frequency-
dependent fluid mobility takes into account the dispersion features associated with
hydrocarbon reservoirs, and it provides a new way to detect the location of
hydrocarbon reservoirs and characterize their spatial distribution.

Keywords: fluid mobility, frequency-dependent inversion, time-frequency decomposition, reservoir delineation,
dispersion

INTRODUCTION

The reservoir permeability is a key parameter for measuring the capacity of fluid flow in porous rock
and it is commonly measured through laboratory experiments. The poroelasticity theory indicates
that permeability is significantly related to the seismic attenuation induced by the fluid flow when
seismic waves penetrate the hydrocarbon-bearing reservoirs (Biot, 1956a; Biot, 1956b). Many studies
have demonstrated that the seismic response of reservoirs is closely dependent on permeability
(Pride et al., 2003; Kozlov, 2007; Goloshubin et al., 2008; Rubino et al., 2012). However, estimating
permeability from real seismic data is a challenge for reservoir geophysicists until now, especially for
the data without well data constraints. Fluid mobility (i.e., permeability to viscosity ratio) can reflect
the reservoir permeability and fluid flow behaviors in a porous rock simultaneously and can be
extracted from the surface seismic data, which provides an indirect factor to evaluate the percolation
properties of a porous media (Rusakov et al., 2016). The measurement and numerical simulation
illustrate that fluid mobility is a key parameter that can directly affect the seismic responses
associated with the hydrocarbon-saturated reservoirs (Batzle et al., 2006; Goloshubin et al., 2008;
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Chen et al., 2013a; Ren et al., 2013). The seismic reflection
coefficient obtained by the theory of asymptotic representation
for the reflection of a seismic wave from a fluid-saturated porous
medium provides a basic theory for estimating fluid mobility
(Silin et al., 2006; Silin and Goloshubin, 2010). Based on this
asymptotic analysis theory, the fluid mobility calculation method
using the low-frequency information of the seismic spectrum is
proposed by Chen et al. (2012). Further, Chen et al. (2013a)
delineated the gas reservoirs and their spatial distribution by
integrating the low-frequency shadow and fluid mobility, which
greatly reduced the uncertainty of reservoir prediction. In recent
years this technology has emerged as a particularly attractive
candidate for reservoir prediction. Luo et al. (2018) proposed an
integrated prediction strategy for reservoir prediction using the
seismic inversion and fluid mobility attribute. Because the fluid
mobility calculation is dependent on the time-frequency analysis
method, the arrival of new time-frequency transform methods
has shown an improvement in spatial resolution of the fluid
mobility. Xue et al. (2018) employed the synchrosqueezed wavelet
transforms to improve the estimation precision of fluid mobility.
Zhang et al. (2020) further use fluid mobility to predict the high-
quality reservoir based on a modified high-precision time-
frequency transform. These studies illustrate that reservoir-
related fluid mobility is a key attribute for reservoir
delineation. However, the calculation of these methods
mentioned above only uses the seismic information of a single
frequency in a low-frequency range and ignores frequency-
dependent behaviors associated with the hydrocarbon
reservoirs. In the paper, these methods that use the low-
frequency information of seismic data for calculating fluid
mobility are uniformly defined as the LF-FM. The fluid
mobility extracted by the LF-FM commonly indicates the
location of the reservoir interface. Therefore, this study is
focused on further extracting the fluid mobility from
frequency-dependent seismic data to obtain the fluid mobility
between the reservoir interfaces.

It is commonly known that the calculation formula of fluid
mobility proposed by Chen et al. (2012) is frequency-dependent.
So extracting the fluid mobility using frequency-dependent
information of seismic data is of great importance for
reservoir delineation. Evidence from several studies indicated
that the frequency-dependent seismic responses induced by the
velocity dispersion and amplitude attenuation occur when the
seismic waves pass through the hydrocarbon saturated porous
rocks (Chapman et al., 2003; Batzle et al., 2006; Chapman et al.,
2006; Gurevich et al., 2010; Dupuy and Stovas, 2013; Chen et al.,
2016; Qin et al., 2018). Frequency-dependent effects associated
with hydrocarbon-bearing reservoirs provide theoretical supports
for computing reservoir-related attributes using seismic data. The
frequency-dependent AVO (FDAVO) inversion method
provides an approach to estimate the dispersion attribute for
reservoir delineation (Wilson et al., 2009; Wu et al., 2012; Chen
et al., 2014; Liu et al., 2019; Wang et al., 2019; Luo et al., 2020; Jin
et al., 2021). Therefore, the FDAVO inversion is being explored to
extract fluid mobility using the frequency-dependent information
of seismic data.

In this paper, based on the theory of asymptotic representation
of frequency-dependent reflection in the fluid-saturated medium
and FDAVO inversion method, we first established the
relationship between fluid mobility and FDAVO. And then,
the fluid mobility calculation method using frequency-
dependent information of post-stack seismic data is proposed.
Next, a synthetic data test is used to verify the effectiveness of the
proposed approach. Finally, field data examples are further
analyzed to illustrate the feasibility of the proposed method.

THEORY AND METHOD

Based on the low-frequency asymptotic analysis theory, Chen
et al. (2012) derived the expression of reservoir fluid mobility:

F � κ

η
� 1
C2

(dR
dω

)
2

ω (1)

where k is the reservoir permeability, η denotes the fluid
viscosity, R is the reflection coefficient of a planar
compression wave from the interface between elastic and
fluid-saturated porous media, ω denotes the angular
frequency, parameter C is a function of the bulk density
and can be regarded as a constant.

Wilson et al. (2009) and Wu et al. 2010, Wu et al., 2012)
extended the two-term AVO linear approximation proposed by
Smith and Gidlow (1987) to frequency domain. The frequency-
dependent reflection coefficient has the following form

R(θ,ω) ≈ A(θ)Δvp
vp

(ω) + B(θ)Δvs
vs

(ω) (2)

where θ is incident angle, vp and vs with the units of m/s represent
P-wave velocity and S-wave velocity, respectively. The
expressions of A(θ) and B(θ) are as follows:

A(θ) � 5
8
− 1
2
v2s
v2p
sin2 θ + 1

2
tan2 θ, B(θ) � −4 v

2
s

v2p
sin2 θ (3)

Due to the reflection coefficient R in Eq. 1 is the normal
reflection of a compression wave, we let θ � 0 to pursue a
simplified version of Eq. 2 that is an approximation of the
normal reflection coefficient. Then, we obtain

R(ω) ≈ 5
8

Δvp
vp

(ω) (4)

Taking the derivative of Eq. 4 with respect to the angular
frequency ω, we obtain

dR

dω
≈
5
8

d

dω
(Δvp
vp

) (5)

By virtue of Eqs 1, 5, we can get the new frequency-dependent
expression of the fluid mobility:

F(ω) ≈ P2[ d

dω
(Δvp
vp

)]
2

ω (6)
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where P is a new constant with P � 5
8C. Here, the parameter P can

be regarded as a scale factor. Therefore, the Eq. 6 can be further
rewritten as:

F(ω) ≈ ω[ d

dω
(Δvp
vp

)]
2

(7)

Expanding Eq. 4 as first-order Taylor series at a reference
frequency ω0 without considering the higher-order terms, we
can get:

R(ω) ≈ 5
8

Δvp
vp

(ω0) + (ω − ω0) 58
d

dω
(Δvp
vp

) (8)

In general, the value of ω0 is determined by the spectral
decomposition and the dominant frequency of the seismic
signal is usually selected as the reference frequency.

By virtue of Eqs 7, 8, we can obtain a new expression of
frequency-dependent reflection coefficient relating to the fluid
mobility, that is:

R(ω) ≈ 5
8

Δvp
vp

(ω0) + 5
8
(ω − ω0)

ω

1
Dp

F(ω) (9)

where, Dp represents the derivatives of frequency-dependent
velocity of P-wave and its expression is Dp � d

dω (Δvpvp
).

Eq. 8 can be further rewritten as:

R(ω) − 5
8

Δvp
vp

(ω0) ≈ 5
8
(ω − ω0)

ω

1
Dp

F(ω) (10)

Considering m angular frequencies [ω1, ω2, . . ., ωm], the
vectors r and e can be expressed in matrix form:

r �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(t,ω1) − 5
8

Δvp
vp

(ω0)

..

.

R(t,ωm) − 5
8

Δvp
vp

(ω0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

e �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
8
(ω1 − ω0)

ω1

1
Dp

..

.

5
8
(ωm − ω0)

ωm

1
Dp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Then, we obtain:

r � eF (13)
At last, the least-squares inversion method can be used to

estimate the frequency-dependent fluid mobility F:

F � (eΤe)−1eΤr (14)
where the T indicates the transpose of the matrix.

In the Eq. 10, the Dp is also calculated by the least-squares
inversion method:

Dp � (dΤd)−1dΤr (15)
where, the form of vector d is:

d �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
8
(ω1 − ω0)

..

.

5
8
(ωm − ω0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

To extract the frequency-dependent information from the
reflected seismic waves, the time-frequency decomposition
method is used in the fluid mobility inversion. The seismic
reflection amplitude R(t) can be transformed into data sets
S(t, f) at different frequencies using generalized S-transform
(GST) (Chen et al., 2009), that is

R(t) �→GST S(t, f) (17)
where, the expression of GST is:

S(f, τ) � ∫
+∞

−∞
x(t) |λ|

∣∣∣∣f∣∣∣∣p���
2π

√ exp[ − λ2(t − τ)2f2p

2
] exp(−i2πft)dt

(18)
where x(t) is the original seismic signal, τ is the time shift
parameter, λ and p are the adjustable parameters and control
the Gaussian window, S(f, τ) is the expression of a 2D time-
frequency variable with regard to f and τ.

THE APPLICATION TO SYNTHETIC AND
FIELD DATA EXAMPLES

Synthetic Data Test
To illustrate the effectiveness of the proposed method, we design a
simple gas-saturated permeable reservoir model (Figure 1A) to test
the feasibility of the frequency-dependent fluid mobility to delineate
reservoirs. In the model, the gas-saturated reservoir is marked with
③, and other layers are dry strata. The black curve indicates the
reservoir location. The model parameters are given in Table 1. We
perform the forward modeling and migration to produce the
synthetic seismic records (Figure 1B) by employing the DVWE
(diffusive and viscous wave equation)-basedmethod (He et al., 2008;
Chen et al., 2013b; Chen et al., 2016). In themodeling, the frequency-
dependent velocity of the gas-saturated reservoir is calculated by the
theory proposed by Chapman et al. (2003). The synthetic seismic
records were generated using a Ricker wavelet with the dominant
frequency of 40 Hz. The seismic records shown in Figure 1B
indicate that the top interface of gas-saturated reservoir show
strong seismic reflection anomalies. However, the seismic
reflections of the reservoir bottom interface show obviously time
delay and phase distortion. Besides, the seismic reflections at the
bottom of the gas-saturated sand reservoir show noticeable
amplitude attenuation and phase delay due to the seismic effects
of velocity dispersion.
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Then, we calculate the frequency-dependent fluid mobility
of the model using the proposed method and compare it with
the result of LF-FM, and the estimation results are shown in
Figure 2. As shown in Figure 2A, the high value of fluid
mobility calculated by the LF-FM indicates the top interface
rather than the actual spatial distribution shape of the gas-
saturated reservoir. However, in Figure 2B, the fluid mobility
estimated using our method shows clear anomalies in the
reservoir region and the gas storage space correlates well
with the reservoir shape. The test for the synthetic data
illustrates that the fluid mobility calculated by the
frequency-dependent inversion method can accurately
delineate the location of the gas-saturated reservoir.

To further analyze the influence of the tuning effect on the
fluid mobility calculation, we also make a model (Figure 3A) with
thickness of the gas-saturated reservoir less than a quarter
wavelength. In the new model, the reservoir thickness is 20 m,
and other parameters are the same to the model shown in
Figure 1A. The synthetic seismic record (Figure 3B) indicates
that the reflection interfaces of the thin reservoir are difficult to
distinguish from the seismic events due to the tuning effect. As
can be seen in Figures 3C,D, the fluid mobility calculated by the
LF-FM and our method can both accurately delineate the
reservoir location and its shape.

Field Data Applications
In this section, we apply the proposed method to field seismic
data to further demonstrate the performance of the proposed
method. The reservoirs in the study area are mainly marine
sandstone reservoirs with different gas saturations. Figure 4
shows the two well-logs through the sandstone reservoirs,
including water saturation (Sw), P-wave, S-wave, density and
porosity curves. As shown in Figure 4, the velocities of S-wave
show high values in the third column and the porosity in the
reservoir zones is about 18%. However, compared to the non-
reservoir zones, the velocity curves of P-wave in the second

FIGURE 1 | (A) The gas-saturated permeable sand reservoir model and (B) its synthetic seismic section.

TABLE 1 | Physical parameters used in the modeling.

Layer VP/(m·s−1) Thickness/(m)

① 3,500 170
② 3,700 50
③ 3,600 50
④ 3,900 150
⑤ 4,100 230

FIGURE 2 | The fluid mobility sections calculated by (A) the LF-FM method and (B) our method.
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column and the density curves in the fourth column are both
show a change to lower values. The reservoirs with high gas
saturation are outlined by cyan rectangles. We choose two seismic
profiles across the two wells for analysis. The seismic profile
shown in Figure 5A intersecting well-1 is extracted from the line
marked withM toM’ in a three-dimensional (3D) area. Figure 5B
is the seismic trace extracted at the well-1 location (CDP No.178)
and Figure 5C is its time-frequency spectrum after the GST. In
the Figure 5C, we can observe strong energy at the reservoir zone.
The section shown in Figure 5D intersecting well-2 is extracted
from the line marked with N to N’. Figure 5E is the seismic trace
extracted at the well-2 location (CDPNo.146) and Figure 5F is its
time-frequency spectrum after the GST. In Figure 5F, there are
two strong energy clusters in the reservoir zone. The amplitude
spectra shown in Figures 5G,H of the two seismic traces (Figures
5B,E) illustrate that the frequency band is approximately
5–50 Hz, and the dominant frequency is about 20 Hz.

To evaluate the ability for imaging the reservoirs, we calculated
the fluid mobility of the two seismic sections and compared it
with the dispersion attribute of P-wave obtained by frequency-
dependent AVO inversion (Wilson et al., 2009; Wu et al., 2012;
Chen et al., 2014; Luo et al., 2020). The comparison results are
shown in Figure 6. For the results of the section across theWell-1,
the dispersion attribute (Figure 6A) delineates the reservoir zone
while the results are greatly affected by the other anomalies.
However, the fluid mobility result in Figure 6B shows a high
value at the location of the reservoir zone and the background

interference unrelated to the reservoirs are very weak. For the
results of the section across the Well-2, the result of dispersion
attribute (Figure 6C) of P-wave is also affected by the other
interference, which results in difficulty for accurately
discriminating the reservoirs. As shown in Figure 6D, the
fluid mobility calculated by our method can exhibit the
location of the gas reservoirs and degrades the background
interference of elastic layers to the most extent. Meanwhile,
the result has a high resolution for delineating reservoirs. The
two sets of reservoirs shown in Figure 4B are both identified from
the fluid mobility section (Figure 6D).

To further illustrate the accuracy of the method, we choose the
dispersion and fluid mobility curves at the location of the Well to
compare with the log curve. Figure 7A is the seismic trace chosen
from the location ofWell-1. Figure 7B shows the water saturation
curve, which can significantly distinguish the reservoir (outlined
by the yellow shadow) with high gas saturation. Figures 7C,D
show the comparison result of the dispersion curve and fluid
mobility curve. Both the curves show significant anomalies in the
gas-saturated reservoir. However, the dispersion curve is greatly
affected by the other anomalies (indicated by black arrows)
unrelated to reservoirs. The fluid mobility curve obtained by
our method only shows significant anomalies in the gas-saturated
zone, whereas the background interference of the other layers is
very weak. Similarly, Figure 8 shows the analysis result of the
curves chosen from the location of Well-2. The Sw curve in
Figure 8B illustrates that there develop two sets of reservoirs with

FIGURE 3 | (A) The gas-saturated reservoir model with the reservoir thickness is 20 m and (B) its synthetic seismic record. The fluid mobility calculated by (C) LF-
FM and (D) our method.
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high gas saturation in the vertical direction. As shown in
Figure 8C, the dispersion curve shows the strongest anomalies
at the lower reservoir while the dispersion anomalies of the upper
reservoir are not evident. Meanwhile, the dispersion curve is also

affected by the other anomalies (indicated by the black arrows)
unrelated to reservoirs. However, both reservoirs show strong
anomalies in the fluid mobility curve (Figure 8D) and correlate
well with the reservoir location. In addition, the anomalies of

FIGURE 4 | Well logs of the sandstone reservoir for (A) well-1 and (B) well-2. The reservoir in the study area is gas-saturated sandstone and the cyan rectangle
outlines the fluid-saturated reservoirs saturated with high gas saturation (Sg ≥ 0.4).
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background interference are suppressed to the greatest extent.
The analysis in Figure 7 and Figure 8 illustrates that the fluid
mobility calculated by our method can accurately delineate the
location of the reservoir and degrade the background interference
of other layers unrelated to reservoirs to the most extent.

Finally, we use the proposed method to calculate the fluid
mobility for 3D seismic data volume. The target interval slices
extracted from the data volume are shown in Figure 9. Figure 9A
is the seismic amplitude slice and Figure 9B is the fluid mobility
slice corresponding to the Figure 9A. As shown in Figure 9B,
both wells in the zone show strong anomalies that correlate well

with the known production according to the logging
interpretation results. Moreover, the fluid mobility slice clearly
delineates the spatial distribution and the edge of the gas-
saturated reservoirs.

DISCUSSION AND CONCLUSION

Based on the calculation formula of fluid mobility and frequency-
dependent AVO inversion theory, a methodology for calculating
frequency-dependent fluid mobility using post-stacked seismic

FIGURE 5 | (A) The stacked section across the Well-1. (B) The seismic trace extracted at the Well-1 location and (C) its time-frequency spectrum calculated by
GST. (D) The stacked section across the Well-2. (E) The seismic trace extracted at the Well-2 location and (F) its time-frequency spectrum calculated by GST. (G) and
(H) are the amplitude spectra of Figures 5B,E, respectively. In the two sections, the reservoir zones are indicated with the yellow arrows.
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FIGURE 6 | The comparison of the dispersion attribute section of P-wave and the fluid mobility. (A) and (C) are the dispersion attribute sections of P-wave. (B) and
(D) are the fluid mobility sections calculated by the proposed method. The results of (A) and (B) correspond to the stacked section in Figure 5A, and the results of (C)
and (D) correspond to the stacked section in Figure 5D.

FIGURE 7 | The analysis of the single trace at the location of well-1. (A) The seismic trace. (B) The log curve of water saturation. (C) The dispersion curve and (D) the
fluid mobility curve correspond to the (A).
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data is proposed. In comparison with the LF-FM method, the
fluid mobility calculated by the proposed method can better
delineate the spatial distribution shape. Furthermore,
compared with the prestack dispersion attribute inversion
method (Wilson et al., 2009; Wu et al., 2012; Chen et al.,
2014; Luo et al., 2020), the computation time is significantly
reduced. For the seismic data corresponding to Figure 5A, it
needs 41.28 s to get the results of dispersion parameters using

prestack dispersion AVO inversion. However, the computation
time only costs 5.92 s when obtaining the fluid mobility result.
This illustrates that the proposed method is advantageous if we
need to compute the large-scale seismic data volume to delineate
reservoirs in a 3D area. In addition to significant computation
time reductions, the fluid mobility calculated by the proposed
method has a higher accuracy for reservoir characteristics
compared with the dispersion attribute, which can better

FIGURE 8 | The analysis of the single trace at the location of well-2. (A) The seismic trace. (B) The log curve of water saturation. (C) The dispersion curve and (D) the
fluid mobility curve correspond to the (A).

FIGURE 9 | (A) Seismic slice extracted through the gas reservoir in the target interval and (B) its fluidmobility slice calculated by the proposedmethod. TheM,M’, N
and N’ donate the location of the seismic sections in the study.
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delineate the reservoir location. However, the prestack data
contains more abundant information related to the reservoirs.
If the frequency-dependent fluid mobility attribute can be
extracted from the prestack seismic data, the accuracy of
reservoir prediction and fluid identification will be further
improved. It is worth further studying to deduce the AVO
approximation related to reservoir fluid mobility from the
theory of fluid-saturated porous media.

In addition, the time-frequency analysis method can directly
affect the spatial resolution of the calculation result. In the
proposed method, the time-frequency decomposition is
conducted by the generalized S-transform proposed by Chen
et al. (2009). Combining the high-precision time-frequency
transform methods with the proposed method to improve the
resolution and accuracy of calculation requires further
investigations.

Synthetic and field data examples illustrate that the fluid
mobility attribute calculated by the proposed method shows
excellent imaging quality for gas-saturated reservoirs and is
less affected by the anomalies unrelated to the reservoirs,
which can accurately delineate the spatial distribution of
hydrocarbon reservoirs. This methodology provides a new
approach to extract frequency-dependent information related
to the hydrocarbon reservoirs from seismic data. The
calculation results can provide technical support for
subsequent high-precision exploration such as fine reservoir
evaluation and drilling deployment. It is noteworthy that the

proposed method for calculating fluid mobility is not constrained
by the well data, which also provides a new way for reservoir
characterization in the case of no drilling.
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The Inverse Fresnel Beam XSP-CDP
Stack Imaging in Crosswell Seismic
Fei-Long Yang1,2,3,4*, Guang-Ying Ren1, Feng-Ming Yao1 and Chong Zhao1

1School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an, China, 2State Key Laboratory of Oil and Gas Reservoir
Geology and Exploitation, Chengdu University of Technology, Chengdu, China, 3Academician and Expert Workstation, Xi’an
Shiyou University, Xi’an, China, 4Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an, China

In order to overcome the shortcomings of serious arc drawing and low computational
efficiency in the crosswell seismic migration method and the problems of the inaccurate
velocity model and sparse distribution of reflection points in the traditional stack imaging
method, the article proposes an inverse Fresnel beam XSP-CDP stack imaging method
based on first-arrival wave velocity tomography combined with the characteristics of
crosswell seismic wave field. Firstly, an accurate crosswell velocity model is established by
the first-arrival wave tomography inversion method based on the characteristics of high
energy and easy pick-up of the first-arrival wave in crosswell seismic. Secondly, the
velocity model is optimized, and the energy contribution weights of effective rays to the
receiver point are calculated through the crosswell seismic Fresnel beam wave field
forward numerical simulation method. Then, the reflected wave field is dynamically
migrated to the reflection points within the first Fresnel zone according to the weight
function, and the intensive common reflection point (CRP) gather after normal moveout
(NMO) correction is generated. Finally, an appropriate bin is selected for stacking. In this
article, the inverse Fresnel beammethod is used to decompose the single-channel seismic
wave field into the effective reflection points in the Fresnel zone, which makes the fold of the
reflection point more uniform and improves the imaging accuracy. The model test and
actual data processing results proved the validity and robustness of this method.

Keywords: crosswell seismic, inverse Fresnel beam, weight function, tomography, stack imaging

INTRODUCTION

The field of oil and gas exploration is extending to complex reservoirs, complex structures, deep
layers, unconventionality, and oceans. It is facing exploration and development problems such as
complex surface, complex underground structures, changeable sedimentary facies, strong reservoir
heterogeneity, thin thickness, deep burial, and small trap scale. Seismic imaging needs to further
broaden the frequency band urgently to improve spatial resolution, identify thinner reservoirs
(2–10 m) and smaller faults (less than 5 m), improve the imaging accuracy of complex structures, and
serve new areas of oil and gas exploration (Zhao et al., 2017). As a high-resolution seismic
exploration method, crosswell seismic technology has become a bridge and link connecting
multidisciplinary oil and gas exploration methods (Cai, 2021). With the continuous innovation
of the distributed optical fiber sensing instrument and the continuous progress of the optical fiber
data processing method, the optical fiber borehole seismic technology has achieved good application
effect in the fine exploration of the complex structure area, thin layer oil and gas exploration area,
complex surface structure area, and carbonate reservoir area (Ma et al., 2020). Crosswell seismic
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plays a role in resolution compensation, fine horizon calibration,
and logging curve correction between drilling and seismic
exploration. In the exploration method of time domain and
depth domain, it plays a role of well-controlled time-depth
conversion and formation depth prediction. In the process of
extending from seismic exploration to fine reservoir
development, it plays the role of seismic geological guidance,
fine structure interpretation, and reservoir fracturing monitoring.
At the same time, it builds a bridge between static reservoir
description and dynamic monitoring (Cai et al., 2022).

The imaging methods of crosswell seismic mainly include
migration based on the numerical solution of the wave equation
and stack imaging based on the ray theory. Gaussian beammigration
(GBM), the most important seismic data imaging method, is a
flexible, accurate, and robust imaging technique (Hill, 1990, 2001;
Hale, 1992; Gray, 2005; Nowack et al., 2005; Gray and Bleistein,
2009; Yue et al., 2012, 2019a, 2019b, 2019c). It not only solves the
problems of multiple arrivals and imaging in caustic zones but also
preserves high efficiency. Nevertheless, GBM produces numerous
swing noises and migration artifacts when the signal-to-noise ratio
and fold number of seismic data are low. Therefore, many new beam
methods have been proposed, such as focused beam (Nowack, 2008;
Wang and Yang, 2015; Yang J.-D. et al., 2015), complex beam (Zhu,
2013), fast beam (Gao et al., 2006), and Fresnel beam (Yang J. D.
et al., 2015; Huang et al., 2016). A traditional method to reduce the
artifacts is to limit the imaging zones in which reflection events are
smeared either in a model-driven or a data-driven way (Chauris and
Salomons, 2004). The model-driven method strongly depends on a
priori information and is inaccurate when the prior information is
unreliable (Koren et al., 2008). The data-driven approach does not
need a priori information and is more reliable (Hua andMcMechan,
2001, 2003; Sun and Schuster, 2001, 2003; Buske et al., 2009). In
order to suppress migration artifacts, Hu and Stoffa (2009) designed
a Fresnel-weighted function to control the contributions of each
beam to the final migration results, which ensures that the beams
adjacent to the specular rays have dominant smearing energies. Han
et al. (2018) introduced a wavelength-dependent Fresnel beam
propagator, which is constructed based on the frequency-
dependent travel times and provides accurate wave-propagating
directions. The crosswell seismic stack imaging method based on
the ray theory can effectively avoid the migration artifacts and has
higher computational efficiency. Its theoretical basis is the VSP-CDP
conversion theory proposed by Wyatt (1981). This technology was
first developed based on the horizontal layer. Therefore, the
traditional stacking method is only suitable for simple geological
structures. In order to overcome the complex structure and lithology
imaging problems, different ray tracingmethods are applied to VSP-
CDP wave field conversion. Yan et al. (2000) combined ray-tracing
algorithm for heterogenous media with VSP-CDP conversion to
solve the imaging problem of crosswell seismic reflection in
anisotropic media. Li and Qiang (2016) optimized the complex
structures by using the block iterative segment by the segment
method first and then carried out VSP-CDP conversion based on
the ray tracing results to solve the reflection wave imaging problem
of the complex structures betweenwells. Kong et al. (2007) sorted the
reflected waves in the CDP gather according to the incident angle,
calculated the critical angle by using the logging acoustic velocity,

and determined the effective stack imaging angle by angle scanning.
This method solves the imaging problem of the wide angle reflection
of crosswell seismic. Yang et al. (2015, 2016, 2020b) introduced the
Gaussian beam method into VSP-CDP conversion, calculated the
coordinate of the reflection point and energy weight of the effective
ray by Gaussian beam wave field forward modeling, and performed
inverse Gaussian beam decomposition on crosswell seismic wave
field during imaging. This method is not only suitable for the
imaging of complex structures but also can increase the fold
numbers of reflection points based on the effective proximate
wave field approximation theory, which effectively improves the
imaging effect of crosswell seismic-reflected wave field. Yang et al.
(2020a) found that the energy distribution of Gaussian beam wave
field stacking meets the normal distribution law and proposed the
Gaussian beam stack imaging method based on normal distribution
by comparing Gaussian beam operator and normal distribution
function.

This article presents a crosswell seismic XSP-CDP stack
imaging method using the Fresnel beam propagator for
common shot records. Crosswell seismic first-arrival wave
tomography and the method of wave field interaction analysis
are used to establish the velocity model. Based on the theory of
wave approximation in the vicinity of central rays (Červený and
Pšenčík, 1984), we use the Fresnel beam forward modeling
method to calculate the coordinate of the reflection point and
energy weight of effective rays in the first Fresnel zone. Then, the
Fresnel beam weight function is used to extract intensive CRP
gathers in inverse Fresnel beam XSP-CDP conversion.

This article is organized as follows: First, the representation of
first-arrival wave travel-time tomography is presented. Next, the
Fresnel beam ray operator is deduced by comparing the Gaussian
beam propagation method, and the energy weight function of the
effective ray is calculated based on the Fresnel–Huygens
propagation theory. Then, we apply the inverse Fresnel beam
XSP-CDP stack method to convert the CSG gather into intense
CRP gather. Finally, synthetic and field data examples are used to
illustrate the performance of the proposed method.

METHODS

The First-Arrival Wave Travel-Time
Tomography
Accurate velocity is the key to imaging. Considering that the
energy of the crosswell seismic first-arrival wave field is
prominent and easy to pick up, the initial velocity model is
obtained by using the crosswell seismic first-arrival wave
tomography (compared with the full waveform inversion, first-
arrival velocity tomography is easy to realize and its accuracy can
meet the requirements of imaging), and the velocity field is
adjusted by the interactive velocity analysis method based on
wave field forward modeling, which provides an accurate velocity
model for crosswell seismic wave field imaging. The first step of
tomography is to establish an initial velocity model according to
the geological model range. The model is discretized, andN pixels
are obtained by arranging the first and last columns of the
rectangular grid. We assume that the slowness in each grid
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cell is a constant and can be illustrated as sj (j = 1.2,. . .,N). An
imaging base function for each j is defined as,

gj(x, z) � { 1, (x, z) ∈ The jth pixel
0, (x, z) ∉ The jth pixel

. (1)

The seismic wave slowness s (x,z) of underground media can be
represented by the linear combination of sj and gj, namely,

s(x, z) � ∑
N

j�1
sjgj(x, z) (j � 1, 2, ..., N) . (2)

It is assumed that the number of the first-arrival ray path is I, each
ray can be expressed as I (i = 1.2,. . .,I), and it also corresponds to a
first-arrival travel time and is represented by bi (i = 1.2,. . .,I). bi is
equal to the curve integral of s (x,z) along the ith ray. Therefore, bi
can be regarded as the generalized Radon positive transformation
of s (x,z), namely,

bi � ∫
Li

∑
N

j�1
sjgj(x, z)ds � ∑

N

j�1
sj∫

Li

gj(x, z)ds (i � 1, 2, ..., I) . (3)

According to the definition of gj (x,z), ∫Li
gj(x, z)ds is the length

of first-arrival ray in the ith trace and in the j grid, which is
represented by aij (i = 1.2, . . . ,I,j = 1.2, . . . ,N). Thus, the first-
arrival wave travel-time tomography equations can be
illustrated as,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 / a1j / a1N
a21 a22 / a2j / a2N

..

. ..
.

/ ..
.

/ ..
.

ai1 ai2 / aij / aiN

..

. ..
.

/ ..
.

/ ..
.

aI1 aI2 / aIj / aIN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
..
.

sj

..

.

sN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
..
.

bj

..

.

bI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Noted as,

As � b, (5)

where A � [aij] is the length of every ray of the first-arrival wave
in each grid and is obtained by LTI linear interpolation in
inversion. s is a vector composed of reciprocals of seismic
wave velocity in each grid, which is the result of tomography
and can be expressed as s � (s1, s2,/, sN)T. b is a vector of the
first-arrival time of each ray and can be expressed as b �
(b1, b2,/, bI)T.

The process of crosswell seismic first-arrival wave
tomography is to solve Eq. 5, which is a large sparse
matrix. In this article, the damped LSQR method with the
advantages of fast convergence, memory saving, and small
calculation amount is used for solving the equation.
Coefficient matrix A is any coefficient matrix with I line
and N column, that is, A � AI×N, s ∈ RN, b ∈ RI. First, the
coefficient matrix A is converted into a set of equations whose
coefficient matrix is a square matrix. Then, the Lanczos
method and QR decomposition method are used to solve
the equations. The least squares problem of As = b can be
illustrated as,

min‖As − b‖2. (6)
By adding the damping factor (λ), it becomes a damped LSQR
problem,

min
�������[

A
λI

]s − [ b
0
]
�������
2

. (7)

The solution satisfies the symmetric equation system,

[ I A
AT −λ2I][

r
0
] � [ b

0
], (8)

where I is the unit matrix, and r is the residual vector and can be
expressed as r = b-AS. As the number of iterations increases, the
solution obtained by iteration does not change significantly, that
is, the solution xm after the mth iteration satisfies ‖Asm − b‖< ε,
and the iteration stops. ε is the estimation of the minimum travel
time b, which indicates that the data obtained by iteration are in
good agreement with the actual data.

FIGURE 1 | Comparison diagram of beam propagation in the constant velocity model. (A) Gaussian beam and (B) Fresnel beam.
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FIGURE 2 | Schematic diagram of XSP-CDP wave field conversion.

FIGURE 3 | Schematic diagram of inverse Fresnel beam XSP-CDP wave field conversion.
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Fresnel Beam Operator
Based on the Huygens–Fresnel wave field propagation theory, the
wave field at the receiver point is the Gaussian-weighted stacking
of the effective ray energy in the first Fresnel zone. The weight
function can be used to describe the contribution weight of the
effective ray to the energy of the receiver point. The Fresnel beam
method is an improvement of the Gaussian beam method, which
limits the effective half width of the Gaussian beam in the first
Fresnel zone. Thus, in order to make the energy of seismic beam
conform to the Huygens–Fresnel principle, the Gaussian beam
method is constrained to make the finite half width of the
Gaussian beam equal to the first Fresnel zone radius. It can be
expressed as,

[ω
2
Im(ε(s)p1(s) + p2(s)

ε(s)q1(s) + q2(s))]
−1/2

�
������������
π

ω

q2(s)
p2(s) +

λ2ave
16

√
. (9)

The initial parameters ε(s) can be obtained by solving Eq. 9 and
expressed as,

ε(s) � −i ξ +
�������������
ξ2 − 4q21(s)q22(s)

√

2q21(s)
, (10)

where ξ � (πq2(s)/p2(s) + π2vave/(4ωref))/2. p and q are the ray
parameters in the dynamic ray tracing equation, vave is the
average velocity, and ωref is the reference frequency.

It can be seen from Eq. 10 that the initial parameter of the ray
constrained by the Fresnel zone is no longer a constant but a
function dynamically changing with the ray arc length. It is a
dynamic selection method, which can constrain the main energy
of the seismic beam in the first Fresnel zone (Yang, 2016).
Therefore, based on the expression of Gaussian beam seismic

wave field propagation, the calculation formula of Fresnel beam
seismic wave field can be obtained as,

U(s, n) �
��������������

v(s)
ε(s)q1(s) + q2(s)

√
exp{iω[τ(s)

+ 1
2
ε(s)p1(s) + p2(s)
ε(s)q1(s) + q2(s) n

2]}, (11)

where v(s) is the velocity of the central ray, n is the component of
the ray central coordinate system, and τ(s) is the travel time of
the seismic wave.

Therefore, the 2D Green’s function of any point M can be
expressed as the stacking of Fresnel beams in different emission
directions. It can be expressed as,

G(M) � ∫
2π

0

ϕ(φ, s)Uφ(s, n)dφ, (12)

where φ is the exit angle of the central ray, Uφ(s, n) is the wave
field of the Fresnel beam, and ϕ(φ, s) is the Fresnel beam weight
function.

The Green’s function in a two-dimensional homogenous
medium can be expressed as,

G ≈
exp[iωr/v0 + isgn(ω)π/4]

2
��������
2π|ω|r/v0

√ , (13)

where v0 is the velocity of the homogenous medium.
The Fresnel beam weight function can be obtained by

comparing the analytical solution of the Green’s function and
the approximate solution represented by the Fresnel beam in the
homogenous medium. It can be illustrated as,

ϕ(φ, s) � i

4π
[ε(s)
v0

]
1/2

. (14)

The propagation of the real part of the amplitude in an isotropic
medium is shown in Figure 1. Figure 1A is the Gaussian beam,
and Figure 1B is the Fresnel beam. They have the same
parameters, such as the starting point of the ray beam is
located at (500 m, 0 m), the initial direction of the ray beam is
0°, the frequency of the ray beam is 20 Hz, the reference frequency
is 30 Hz, the propagation velocity is 1500 m/s, and the initial
beam width is 40 m. It can be found from Figure 1 that the
Gaussian beam width increases rapidly with the increase of the
distance, while the Fresnel beam can control the beam width
very well.

The Inverse Fresnel Beam XSP-CDP Stack
Imaging
The traditional crosswell seismic reflection XSP-CDP stack
imaging method is to transform the sample value of the
record in each CSG (or CRG) from the depth-time domain to
the reflection point depth-offset domain. Each sample point in
CSG can only be converted into one sample point in CRP gather.
In this article, the wave field energy of each receiver is derived

FIGURE 4 | Workflow of the inverse Fresnel beam XSP-CDP stack
imaging method.
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from the Fresnel beam energy weight of the effective rays in its
Fresnel zone. Therefore, based on the Huygens–Fresnel wave field
theory, the single channel record in CSG (or CRG) is converted
and decomposed into multichannel CRP wave field records in the
Fresnel zone under the constraint of the wave theory, and the
number of reflection points is adaptively increased to improve the
imaging accuracy.

The process of XSP-CDP wave field conversion is similar to
NMO correction, that is, each sample point of the CSG is

converted to the corresponding CRP gather. In the CSG data,
ΔT1 is the travel time difference of the reflection wave from
adjacent strata. The XSP-CDP conversion is to convert the wave
field of ΔT1 into the wave field of ΔT2 in the adjacent strata of
CRP gather, as shown in Figure 2. In order to eliminate the time
difference between ΔT1 and ΔT2, ΔT1 is corrected according to
the coordinates of reflection points and the depth of strata, and
the corresponding wave field is converted into the wave field with
the time difference of ΔT2.

TABLE 1 | Geometry parameters.

Shot parameter Receiver parameter

Total shot number 11 Total trace (1shot) 101
Shot interval (m) 100 Trace interval (m) 10
First shot coordinate (m) (100,0) First trace coordinate (m) (700,0)
Last shot coordinate (m) (100,1,000) Last trace coordinate (m) (700,1,000)
Sample interval (ms) 1 Sample number 1,000
Left well coordinate X(m) Y(m) Z(m) Right well coordinate X(m) Y(m) Z(m)
Well top 100 0 0 Well top 700 0 0
Well bottom 100 0 1,000 Well bottom 700 0 1,000

FIGURE 5 | Original field seismic data.

FIGURE 6 | Velocity model. (A) Initial velocity model and (B) velocity of first-arrival wave tomography.
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FIGURE 7 | Ray path diagram and comparison diagram of wave field interaction. (A) Ray path and (B) wave field interaction comparison diagram of the 1st shot.

FIGURE 8 | Section of crosswell seismic inverse Fresnel beam stack imaging.
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As shown in Figure 3, TRN is the sample point time when the
R-channel receives the reflected wave field from the n-set
stratigraphic interface, and ARN is its wave field size. The
inverse Fresnel beam XSP-CDP wave field conversion is to
migrate the wave field at TRN time into the reflection points
belonging to the first Fresnel zone by preserving amplitude. The
coordinates and weight functions of the effective rays that
contribute to the ARN can be obtained through the wave field
forward modeling. If the coordinate of a reflection point is (Xref,
Zref), the inverse Fresnel beam XSP-CDP transformation can be
expressed as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

TNMO � 2 · Zref

�V
� 2 ·∑

n

i�1

Zi

Vi

NCDP � Xref −Xmin

ΔX
A(Xref, Zref) � ϕ(Xref, Zref)ARn

, (15)

whereTNMO is the two-way travel time of the reflection point relative
to the surface after the inverse Fresnel beam XSP-CDP wave field
conversion. ΔX is the CDP bin size. NCDP is the CDP value of the
reflection point. A is the amplitude of the sample point. ϕ is the
Fresnel beamweight function. Zi andVi are the depth and velocity of
every stratum corresponding to the reflection point, respectively.

The crosswell seismic inverse Fresnel beam XSP-CDP stack
imaging calculation steps are as follows: First, the spatial position
of CRP, which belongs to the first Fresnel zone corresponding to the
receiver point, and its Fresnel beam weight functions are calculated
through the Fresnel beam forwardmodelingmethod combined with
the velocity model established by the first-arrival wave tomography.

The Second step is carried out by calculating the NMO time based
on theVSP-CDP conversion idea andmigrating the amplitude of input
trace to the imaging grid points of the output channel in thefirst Fresnel
zone adaptively. This process decomposes and converts the single trace
wave field of CSG (or CRG) into multichannel CRP wave field records
in the Fresnel zone under the constraint of the wave theory.

Finally, the bins are divided according to a certain interval
(including in X and t directions). If the sample point (x, t) after
the inverse Fresnel beam XSP-CDP conversion falls into a CDP
bin, then the sample point belongs to the CDP. All samples are
migrated as mentioned previously, and the number of samples
falling into each bin is counted, and their amplitudes are stacked
as the output samples of the CDP point. Until all samples are
completed, the final stack imaging profile is obtained.

The workflow of the inverse Fresnel beam XSP-CDP stack
imaging method in crosswell seismic is shown in Figure 4.

RESULTS

Model Test
Based on the crosswell seismic inverse Fresnel beam stack imaging
method, this section will test the correctness and robustness of the
method through theoretical data. The parameters of geometry are
shown in Table 1. The original field seismic data are shown in

FIGURE 9 | Seismic imaging section across the wells.

TABLE 2 | Geometry parameters.

Shot parameter Receiver parameter

Total shot number 60 Total trace (1shot) 120
Shot interval (m) 15 Trace interval (m) 10
First shot coordinate (m) (401.7,659) First trace coordinate (m) (293.8,612.5)
Last shot coordinate (m) (1550.4,1544) Last trace coordinate (m) (3595,1802.5)
Sample interval (ms) 1 Sample number 1,000
Left well coordinate X(m) Y(m) Z(m) Right well coordinate X(m) Y(m) Z(m)
Well top 40 0 6 Well top 40 0 6
Well bottom 1,610 0 1,580 Well bottom 3,695 0 1,850
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Figure 5. It can be seen from the figure that the first-arrival wave
energy of the crosswell seismic is prominent and easy to pick up. The
constant velocity model is used as the initial velocity (as shown in
Figure 6A), and Figure 6B is the result of tomography. The crosswell
seismic Fresnel beam forward modeling method is carried out with
geometry shown in Table 1 based on the aforementioned velocity
model, and the ray path and wave field record diagram are shown in
Figure 7. As shown in Figure 7B, the velocity field is checked and
optimized by interactively comparing the wave field records of the
forward simulation (in red color) with the seismic records collected in
the field (in black color). The crosswell seismic inverse Fresnel beam
XSP-CDPwave field conversionmethod is used to image the original
seismic data, and the CDP bin is 10m for stacking. The imaging
result is shown inFigure 8.We can see that the crosswell seismicfirst-
arrival wave velocity tomography provides an accurate velocity field
for reflection wave imaging. The Fresnel beam forward numerical
simulation method not only optimizes the velocity model but also
provides the Fresnel beam weight function of the effective ray for the
imaging, which makes the fold number of the reflection point more
uniform and improves the imaging effect.

Practical Application
This part employs practical data to test the effectiveness of the
proposed inverse Fresnel beam stacking method. We apply the

method to a crosswell seismic field data in the Bohai oilfield in
China. Figure 9 is the imaging section of the ground seismic
passing through the wells. Affected by the gas cloud, the internal
wave field energy of the imaging section is weak (as shown in the
circle in Figure 9), and the event axis is not clear, which is
difficult to reflect the structural characteristics of the gas cloud
area. Therefore, crosswell seismic exploration is carried out near
the gas cloud area. The geometry parameters of crosswell seismic
are shown in Table 2, and the original P-wave field record is
shown in Figure 10 (the 36th shot after three-component
synthesis). The travel time of the first-arrival wave is picked
up and used for velocity tomography inversion, and the crosswell
velocity model is obtained as shown in Figure 11. The geological
model was established based on the results of ground seismic
imaging and velocity tomography, and the Fresnel beam wave
field numerical simulation of the crosswell seismic was carried
out. The ray path and wave field record are shown in Figure 12.
Figure 12B is the wave field interaction diagram between the
forward modeling seismic records of the 39th shot (in red color)
and the field seismic records after wave field separation (in black
color). In the actual data processing, the crosswell seismic
Fresnel beam forward simulation can not only optimize the
velocity field and calculate the Fresnel beam weight function of
effective rays but also guide the wave field separation of crosswell
seismic. The result of crosswell seismic inverse Fresnel beam
stack imaging is shown in Figure 13A. It can be seen that the
crosswell seismic imaging results can effectively solve the
problem of unclear geological structures in the gas cloud area.
As shown in Figure 13B, the crosswell seismic imaging results
(CDP bin is 6.25 m) are embedded in the ground seismic imaging
profile (CDP bin is 25 m). We can see that the crosswell seismic
imaging results effectively compensate for the presence of
ground seismic, and the crosswell seismic imaging results
outside the gas cloud area are consistent with the ground
seismic imaging results.

FIGURE 10 | Wave field records of crosswell seismic.

FIGURE 11 | Result of first-arrival wave velocity tomography.
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DISCUSSION

Based on the Huygens–Fresnel wave field propagation theory, an
inverse Fresnel beam stack imaging method suitable for crosswell
seismic complex structures is proposed. The effectiveness and
stability of the proposed method are verified by a theoretical

model and practical data example. By studying the properties and
characteristics of the Fresnel beam, the weight function formula
based on the Fresnel beam stacking is derived, and it is applied to
crosswell seismic stack imaging, which adaptively increases the
fold number of the reflection point and improves the lateral
resolution of seismic imaging. The results of model calculation

FIGURE 12 | Ray path diagram and comparison diagram of wave field interaction. (A) Ray path and (B) wave field interaction comparison diagram.

FIGURE 13 | Imaging results. (A) Section of crosswell seismic inverse Fresnel beam stack imaging and (B) overlapping map of crosswell seismic and ground
seismic imaging.
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and actual data processing show that this method can finely
image crosswell seismic data and effectively improve the lateral
resolution of imaging. It has a potential value to become one of
the effective tools for crosswell seismic wave field imaging.
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Present land seismic surveys mainly focus on acquiring reflection data. The maximum
offset is usually 1–1.5 times the depth of targets. Limited offset results in that the acquired
diving waves only penetrate the shallow parts of the Earth model, far from targets. Thus,
the reflection data are used to build the deep part of the velocity model with migration
velocity analysis. However, two issues challenge the success of velocity model building.
First, incomplete information. Limited offsets lead to a narrow aperture of observation,
which results in an under-determined inversion system. One manifestation is the trade-off
between the depth of interfaces/reflectors and the average velocity above them. Second,
low signal-to-noise (S/N) ratios. Complex near-surface conditions and geologic structures
lead to low S/N ratios for reflection data, which fails to build velocity with reflection data.
The fundamental solution to these two issues is to acquire better data with an improved
acquisition system. In this work, we propose two types of modified geometries to enhance
the penetration depth of the diving waves, especially the first arrivals, which can be used to
build a deeper velocity model effectively. Type-I geometry adds extra sparse sources on
the extension line of the normal acquisition geometry, whereas Type-II geometry deploys
extra sparse receivers on the extension line. Consequently, the new acquisition system
includes ultra-large offsets, which acquire diving waves from the deep subsurface. These
diving waves, including waveform and first-break time, are particularly useful for recovering
deeper velocity, which has paramount significance for the exploration of deep and ultra-
deep hydrocarbon reservoirs. Synthetic and field data examples preliminarily demonstrate
the feasibility of this improved acquisition system.

Keywords: seismic acquisition geometry, diving wave, velocity model building, nodal seismometer, seismic vibrator

INTRODUCTION

Active-source seismic surveys are the main geophysical method for the exploration of subsurface
geological structures and reservoir characteristics. Current seismic surveys are often designed to
acquire the reflection waves, which are the seismic energy bounced back at the interfaces between
rock layers. Since oil/gas reservoirs are mainly found in sedimentary rocks dominated by the flat layer
feature, the seismic surveys set the maximum offset to 1–1.5 times the depth of targets (Yilmaz,
2001). As a result, the surveys are adequate for recording reflection data.

The conventional seismic data processes aim at utilizing reflections, especially primary reflections.
Other types of events, including direct arrivals and refractions, are treated as noise; therefore, they are
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suppressed during data processing (Yilmaz, 2001). The main
steps of the data processing include velocity model building and
migration. The data processing can be performed either in the
time domain or the depth domain. The time-domain data process
is still popular because of its high efficiency and robustness.
However, it suffers from low accuracy. Its migration profiles only
show the travel time from the surface to the interfaces. Thus, the
migration profiles do not provide the depth of the interfaces. In
addition, time-domain migration assumes that the rocks are
homogenous above an interface in the aperture of one
common-middle-point (CMP) gather. Consequently, time-
domain migration could produce artificial geological
structures, especially in the region where the velocity possesses
strong variation. Thus, time-domain migration results are
inappropriate for tasks requiring high accuracy imaging, for
example, bore well-drilling design.

By contrast, the depth-domain migration provides the image of
geological structures matching the real world (Zhang and Sun, 2008;
Liu et al., 2011; Li et al., 2021). Its migration profiles, therefore, are
ideal for subsequent processes and interpretation. However, depth
migration needs an accurate depth velocity. The migration velocity
does not need to contain fine details but must provide an accurate
background velocity, which gives the correct travel time and wave
paths of reflections. Therefore, building the accurate migration
velocity is crucial for depth migration. Limited by the offset,
reflections are the only information source for building velocity
reaching the depth of targets. Reflection-waveform inversion (RWI)
(Xu et al., 2012;Wu and Alkhalifah, 2015; Zhou et al., 2015; Yao and
Wu, 2017; Yao et al., 2020) and reflection-traveltime tomography
(Sherwood et al., 1986; Kosloff et al., 1996) can be used to achieve
this goal. Currently, reflection-traveltime tomography is the
mainstream tool for velocity building in the industry. The
principle is to utilize the move out residual to update the velocity
above the selected reflection interfaces.

Two factors hamper the success of velocity building based on
reflections: first, the trade-off between the depth of reflectors and
velocity above reflectors. This phenomenon is illustrated in
Figure 1: if a reflector is moved up/down by reducing/
increasing the velocity above the reflector, the travel time keeps
the same as that for the true depth and velocity. One symptom in
practical applications is that the inverted velocity has strong
fluctuation along the strata, which leads to artificial undulated

reflectors in the migration image. This undulation becomes more
severe in deep parts of themodel than its shallow parts due to fewer
data constraints as depth increases, for example, Figure 7A of Yao
et al. (2019). The fundamental reason for this phenomenon is that
inadequate information is used in the inversion. In other words, the
inversion system is under-determined. To mitigate this issue, it is
necessary to incorporate more information into the system. For
instance, structural smoothing is a common constraint used for
this purpose (Lewis et al., 2014; Yao et al., 2019).

The second factor is the low S/N ratio. This is common in land
seismic surveys. Figure 2 shows one typical shot gather with a low
S/N ratio. The reflection events are barely seen in the profile. The
low S/N ratio is caused by the near-surface complexity and
complex structures. Consequently, it is almost impossible to
build a correct velocity model using reflections in such a scenario.

These two factors lead to a paradox: time migration gives even
better migration images than depth migration in this type of
scenario, but the migration theory tells that depth migration is
more accurate than time migration. One reason why time
migration works better here is that it can build an optimal
velocity by scanning the semblance of stacking velocity,
resulting in plausible migration images.

The analysis above indicates that building an accurate velocity
model is the key to reliable depth migration. To achieve this goal,
the fundamental solution is to acquire adequate and reliable data.
The company BP set such a pioneering example for full-
waveform inversion (FWI). BP created a marine vibrator,
called WolfSpar, which can generate reliable signals as low as
about 1.6 Hz at an offset of 30 km (Dellinger et al., 2016). By
combining with ocean bottom nodes (OBN), the acquired dataset
successfully delivered much more accurate velocity models with
FWI than with reflection travel-time tomography, resulting in
stunning migration images (Shen et al., 2018; Zhang et al., 2018).

In this article, we propose an improved acquisition system for
building more reliable velocity models for deep subsurface
exploration. The basic idea is to add extra spare sources or
receivers along the extension line of the normal geometry. As a
result, this acquisition system includes ultra-large offsets, which are
the foundation to acquire diving waves from the deep subsurface.
The diving waves are refraction waves that bend back to the surface
due to the velocity gradient of the Earth (Sheriff, 2002). Their
waveform and first-arrival time are particularly useful for
recovering deeper velocity, which has paramount significance
for the exploration of deep and ultra-deep hydrocarbon reservoirs.

The rest of this article will be organized as follows: the improved
acquisition geometry will be introduced first; examples then will be
demonstrated; and finally, the discussion and conclusion will
be given.

METHODOLOGY

Currently, reflection waves are the main objective for active seismic
surveys. Thus, the maximum offset is usually about 1–1.5 times the
depth of targets. Due to the two factors, which are elaborated in the
section of introduction, it is still difficult for reflection-based travel
time tomography to build an acceptable velocity model for

FIGURE 1 | Schematic illustration for the trade-off between the depth of
interface and velocity above it. (A) The true scenario: both depth d and velocity
v are correct. (B) The trade-off scenario 1: d1 < d, v1 < v. (C) The trade-off
scenario 2: d2 >d, v2 > v. The two trade-off scenarios give the same
travel time as the true scenario.
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migration imaging. By contrast, the diving waves, which are the
transmitted waves turning back to the surface due to the velocity
increase with depth, are the more robust signals for velocity building
than the reflection waves. The reasons are two folds: first, it does not
suffer from the trade-off between the depth of reflectors and velocity
above reflectors because changing the depth of reflectors does not
alter the travel time of diving waves significantly; second, the S/N
ratio of diving waves is higher than reflection waves. There are also
two other reasons. Diving waves are concentrated on the early
arrivals in each trace so that they are not interfered with ground roll
noise, which is strong and usually masks reflection signals (Yilmaz,
2001). In addition, reflection coefficients are much smaller than
transmission coefficients (Berkhout, 1980). Consequently, the diving
waves are robust for velocity building.

There are two ways to utilize the diving waves for velocity
building. First-arrival travel time tomography is a robust way to
invert the first arrivals of diving waves. The rest of the diving waves
is the result of interference of multiple events and multi-path
events. Due to the interference, it is impossible to distinguish the
travel time of each event. Consequently, travel time tomography
cannot be used for these data. One solution for the interfered diving
waves is full-waveform inversion (FWI) (Tarantola, 1984; Virieux
and Operto, 2009; Warner et al., 2013). In this article, we use travel
time tomography (Zhou, 2003) to verify the concept of the
improved acquisition geometry, so that the travel time of first
arrivals is the information for velocity building.

Improved Acquisition Geometry
The maximum offset of the conventional acquisition geometry
usually has 1–1.5 times the depth of the target. The penetration
of diving waves is about 1/5–1/3 times the maximum offset (Zhou
et al., 2015). Simple math implies that an adequate offset is the key

for acquiring the diving waves reaching the depth of targets. Herein,
we propose twomeans to extend the offset range: 1) Type-Imodified
geometry—exciting extra shots and 2) Type-II modified
geometry—deploying extra receivers along the extension line of
the normal geometry. Figure 3 shows the schematic sketches of the
two types of modified geometries for acquiring both shallow and
deep diving waves.

The normal acquisition geometry part, that is, the red star source
and yellow receivers in Figure 3, aims to acquire reflections and
shallow diving waves. Its receiver interval is set about two times the
interval of CMPs, which is related to the horizontal resolution.
Usually, the receiver interval is small, for example, 20 m.

In Type-I modified geometry, the first extra source is set at a
distance of h1 to the nearest receiver, where h1 indicates the
maximum offset of the normal geometry part. The interval of the
rest of the extra sources is two times h1. With this setting, no
source–receiver pair repeats the survey. This is demonstrated in
Section 2.2. By contrast, in Type-II modified geometry, the extra
receivers are installed along the extension line of the normal
geometry. The extra receivers can be very sparsely positioned,
which might lead to inaccurate shallow-region updates if this
region is complex. This can be fixed by the diving waves that are
recorded by dense receivers in the normal geometry. Therefore, the
two parts of diving waves are complementary to each other for
velocity building. The maximum offset of both modified geometries
is set to acquire the diving waves from the targeted depth.

The Characteristics of the Modified
Acquisition Geometries
The two types of modified geometries have different characteristics.
Type-I modified geometry adds extra sources. The extra sources can

FIGURE 2 | A typical shot profile acquired from the foothills around the Tarim Basin. Trace equalization was applied. Reflection events are barely seen while the first
arrival is clear.
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be different from the source for acquiring reflections. In order to
acquire long-distance traveling diving waves, the source energy, for
example, the amount of dynamite or the number of seismic vibrators,
can be increased to generate stronger and lower-frequency seismic
signals. Thismodification increases the number of shots several times
compared with the normal geometry. Thus, one cost-effective way is
to apply seismic vibrators instead of dynamite.

By contrast, Type-II modified geometry adds extra receivers. It
is inconvenient to achieve this acquisition geometry with cable-
connected geophones due to the large offset. The most efficient
way to implement this geometry is to use nodal seismometers,
which do not need a cable for connection. However, this modified
geometry needs to select appropriate sources that ensure diving
waves reach the extra receivers. If the extra sources and receivers
are the same as that used in the normal geometry, then the two
modified geometries are in fact equivalent. Figure 4 illustrates this
equivalence. Type-I geometry with only two extra sources shown
in Figure 4A turns into Type-II geometry shown in Figure 4D.
However, if the sources and receivers are different, the acquired
data with the two geometries have different dynamics
characteristics, for example, amplitude and frequency, but
share similar travel time information. If the waveform is used
for velocity building, match filtering can be used to remove the
difference.

Workflow for Geometry Design
The improved geometries can be designed in three steps:

1) Determining the maximum offset and interval for acquiring
reflections.Many studies have been done for this purpose. The
general principle is that the maximum offset is set as about 1)

1.5 times the depth of targets, and the receiver interval is two
times the expected horizontal resolution.

2) Determining the maximum offset for acquiring the diving
waves. As a rule of the thumb, the maximum offset should
be about 3–5 times the depth of the target. A more elegant way
is to use ray tracing: building a background velocity model
based on existing information about the survey area and then
shooting rays into the velocity model to determine the offset
that can receive the rays from the depth of the target.

3) Determining the interval of the extra receivers or sources. For
Type-I geometry, the extra source interval is illustrated in
Figure 3A: the first extra source is set at a distance of h1
from its nearest receiver while the interval of rest of the extra
sources is two times h1. For Type-II geometry, an appropriate
receiver array setting can achieve the condition that the rays
should be dense in the shallow region but can be sparse in the
deep region. This is because the width of the first Fresnel zone is
narrow, that is, w is small, in the shallow but wide, that is, w is
large, in the deep, which is illustrated in Figure 5. The shallow
region is covered by the dense rays from the normal geometry for
recording reflections so that the intervals of the extra receivers
can be very sparse. However, it is hard to give exact criteria for the
interval of the extra receivers and sources. One practical means is
to do simulations with different parameters.

EXAMPLES

Synthetic Data Example
One synthetic model shown in Figure 6A is applied to
demonstrate the two modified acquisition geometries for

FIGURE 3 | (A) Type-I modified geometry: extra sources are added into the normal geometry, that is, the red star source and yellow receivers. h1 represents the
maximum offset of the receiver array in the normal geometry part. The first extra source is set at a distance of h1 to the nearest receiver. The interval of the rest of the extra
sources is 2h1. (B) Type-II modified geometry: extra receivers are added into the normal geometry. The interval of the extra receivers is much sparser than the receivers of
the normal geometry part. h2 and h3 indicate the maximum offset of the modified geometries for acquiring diving waves. d1, d2 and d3 represent the maximum
penetration depth of the diving waves.
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building velocity models and corresponding migration
imaging. The initial velocity model is a 1D model shown in
Figure 6B.

Since the deepest interface is at a depth of about 9 km, we set
the maximum offset for acquiring reflections as 10 km, and
choose a receiver interval of 20 m. The shot interval is set as
200 m. Then, we apply ray tracing on the initial model to
determine the maximum offset for acquiring the diving wave
that can penetrate to the depth of 9 km. The test indicates that an
offset of 50 km is required. Consequently, Type-I modified
geometry requires two extra sources at each side of the normal
geometry. Type-II modified geometry needs extra receivers to
cover 40-km extra offsets. Here, we set the extra receiver interval
as 1 km. A 10-Hz Ricker wavelet is used as the source wavelet.
One shot record is shown in Figure 7.

We picked up the first breaks from the records and then used
travel time tomography to recover the velocity model. First, we
inverted the first-arrival travel time of the record from the normal
geometry, which has a maximum offset of 10 km. The recovered
velocity model and its ray density map are shown in Figure 8. As
can be seen, the inversion only recovers the top 1 km of the model
because the diving wave only penetrates such a depth, which is
indicated by the ray coverage area in Figure 8B.

We then inverted the first breaks of the dataset from Type-I
geometry. The recovered model is depicted in Figure 9A. As
can be seen, it recovers the background velocity of the true
model and the shallow low-velocity anomalies, correctly. As
analyzed in the previous section, Type-I geometry is equivalent
to Type-II geometry with a trace interval of 20 m for extra
receivers. As a result, this recovered model can be treated as

FIGURE 4 | Equivalence between the two types of modified geometry. (A) Type-I modified geometry with only two extra sources added at two ends. This geometry
is equal to the summation of (B) and (C). Consequently, Type-I geometry is equivalent to a Type-II geometry shown in (D). h1 represents the maximum offset of the
receiver array for the normal geometry part. It also denotes the offset of the extra sources to the nearest receivers. h2 indicates themaximum offset generated by the extra
sources. d1 and d2 represent the maximum penetration depth of the diving waves recorded by the receivers in the normal geometry and extra sources and
receivers, respectively.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8507665

Liu et al. Two Improved Acquisition Systems

89

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


that of Type-I geometry with the densest trace interval for the
extra receivers.

Next, we inverted the first breaks of the dataset from Type-II
geometry, in which the receiver interval is 1 km for the extra
receivers. The recovered model is shown in Figure 10A.
Compared with the model from Type-I geometry, they share a
similar background trend. This implies that the extra receivers
can be very sparse. We also carried out tests with smaller intervals
for the extra receivers, for example, 100 and 500 m. Results show
that denser extra receivers give slightly better details but share a
similar background velocity trend.

To investigate the significance of the diving waves in the
normal geometry, that is, the first 10-km offset in this
example, we repeated the inversion but without the first 10-
km offset data. The result is shown in Figure 11A. Compared
with the model shown in Figures 9A, 10A, it is clear that the

shallow part of the model, that is, top 1 km part, was not
recovered correctly. This means that the diving wave recorded
by the normal geometry is important for recovering the shallow
region of the model.

To verify the accuracy of the recovered velocity models, we
carried out Kirchhoff pre-stack depth migration (PSDM). These
migration images are shown in Figure 12. A corresponding
common image gather (CIG) extracted at a distance of 50 km
is depicted in Figure 13. As can be seen, both modified
geometries acquired adequate diving waves resulting in

FIGURE 5 | Schematic illustration of the first Fresnel zone for one
source–receiver pair. w indicates the width of the first Fresnel zone.

FIGURE 6 | The velocity models for the numerical test. (A) The true
velocity model. (B) The initial velocity model for velocity model building.

FIGURE 7 | One shot record acquired in the middle of the model. The
maximum offset is 50 km.

FIGURE 8 | The inverted velocity model (A) with a maximum offset of
10 km and (B) its ray density map.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8507666

Liu et al. Two Improved Acquisition Systems

90

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


successfully recovering the background velocity. In addition, the
diving waves recorded by the normal geometry are crucial for the
shallow region recovery.

Field Data Example
To validate our concept, we applied Type-II geometry in a seismic
survey in East China for constructing the velocity model of a
sedimentary basin. The conventional acquisition geometry
utilizes a split spread. The shot interval is 250 m. The
maximum offset is 4.7 km with a receiver interval of 6.25 m.
The nodal seismometers were deployed every 3 km along the
whole 21-km survey line, which can give a maximum penetration
depth of about 5 km.

We carried out the first-arrival tomography to recover the
background velocity, which is shown in Figure 14B. The first-
arrival data from both conventional geometry and the sparse
nodal seismometers were used in the tomography. The ray
density map is shown in Figure 14C. Note that the small
receiver interval in the conventional geometry part provides
dense ray coverage in the shallow region, which is crucial for
correctly recovering the region’s velocity. The initial velocity
model is the stacking velocity (Figure 14A) from the
contractor company. The stacking velocity is created by depth
conversion from the NMO velocity through the semblance
velocity analysis. Although the semblance velocity analysis is
not the cutting-edge method of velocity model building, the
stacking velocity is still widely used in seismic exploration as a
good initial estimation of the underground velocity.

It shows that the tomographic velocity model constructed
by our Type-II geometry contains more details in deep
regions than the stacking velocity model constructed by
semblance velocity analysis. The tomographic velocity has

FIGURE 9 | The inverted velocity model (A) with Type-I modified
geometry and (B) its ray density map. The maximum offset of the normal
geometry part is 10 km. Two extra sources were excited at both sides of the
receiver array.

FIGURE 10 | The inverted velocity model (A) with Type-II modified
geometry and (B) its ray density map. The maximum offset of the normal
geometry part is 10 km. The interval of extra receivers is 1 km. The maximum
offset of the modified geometry is 50 km.

FIGURE 11 | The inverted velocity model (A) with Type-II modified
geometry but without the 10-km receiver arrays in the normal geometry and
(B) its ray density map. The interval of extra receivers is 1 km. The maximum
offset of the modified geometry is 50 km.
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higher values than the stacking velocity at the bottom of the
sedimentary basin. Those differences in the velocity models
lead to a noticeable improvement in the migration results
shown in Figure 15. The migration used the reflection data
recorded with the conventional geometry. The migration
profile using the tomographic velocity shows better

continuity of reflection events (green arrows) and
convergence of faults (red arrows) than that using the
stacking velocity. The results indicate that our proposed
modified geometry through the combination of nodal
seismometers and the conventional seismic cable shall be
suitable for constructing a deep velocity model.

FIGURE 12 | Kirchhoff PSDM profiles: migration velocity shown in (A) Figure 8A, (B) Figure 9A, (C) Figure 10A, and (D) Figure 11A.

FIGURE 13 | CIG profiles at a distance of 50 km. (A–D) corresponds to (A–D) in Figure 12, respectively.
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DISCUSSION

In this article, we only analyzed the modified geometries
for a 2D seismic survey. However, it is straightforward to
extend the two types of modified geometries to a 3D
seismic survey. Extra sources and extra receivers were
deployed around the 2D receiver arrays. For Type-I
geometry, extra sources were deployed not only along
inlines but also in crosslines; consequently, the number
of extra sources increases significantly compared to that
for the 2D seismic survey. According to the analysis before,
Type-I geometry is equivalent to the densest receiver
interval in Type-II geometry. Thus, two means can
mitigate this issue: the first one is to reduce the extra
source number; the second one is to use a cost-effective
seismic source, for example seismic vibrators. For Type-II
geometry, the most cost-effective way is to use nodal
seismometers for recording the large-offset diving
waves. As demonstrated by the field data example, an
interval of 3 km still delivered a good velocity model.

Thus, one nodal seismometer can cover a 9 km2 area.
The modified geometries, therefore, are practical for a
large 3D seismic survey.

CONCLUSION

Building accurate seismic velocity models is the key for
seismic migration imaging. Current seismic surveys are
mainly designed for acquiring reflections. Due to limited

FIGURE 14 | Velocity models: (A) the stacking velocity using reflection
data from the normal geometry and (B) first-arrival tomographic velocity with
Type-II geometry. (C) The ray density map.

FIGURE 15 | The Kirchhoff PSDMmigration imageswith (A) the stacking
velocity and (B) the tomographic velocity. (C) and (D) are the enlarged view of
the migration images shown in (A,B), respectively. The red arrows indicate
better-focused faults. The green arrows point out better-imaged
reflectors.
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offsets, the recorded diving waves in a normal geometry
have limited penetration depth. Consequently, the
velocity model building relies on reflections. The low
S/N ratio and incomplete information of reflection data
prevent successful velocity model building. Building
velocity models with diving waves can tackle this
problem. We, therefore, propose two types of modified
geometries to record the diving waves at a large offset,
which can penetrate to a large depth. Type-I geometry
adds extra sources along the extension line of the
receiver array, whereas Type-II geometry deploys
extra receivers along the extension line. Analysis
shows that the two geometries have different
characteristics. Seismic vibrators are a cost-effective
choice for Type-I geometry, whereas nodal
seismometers are a convenient choice for Type-II
geometry. We also provide the workflow for designing
the geometries. Both synthetic and field data examples
demonstrate that the proposed improved acquisition
geometries can record the diving waves from the deep
subsurface. Their first arrivals are used to successfully
build velocity models that are enough to imaging deep
targets. By contrast, the diving wave from conventional
geometry only recovers the shallow velocity.
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The vertical seismic profiling (VSP) Gaussian beam migration is a seismic imaging
method with both computational efficiency and imaging precision. It can get high-
resolution structural features near the well. However, the VSP migration based on
primary reflection imaging is limited by the observation system, which makes it unable
to image for the shallow structure at far offset. The free-surface multiples in VSP can
expand the illumination range for far offset effectively. Therefore, Gaussian beam
migration (GBM) for free-surface multiples imaging in VSP is proposed. Firstly, based
on the ground Gaussian beam pre-stack depth migration, the method for
decomposing the plane wave is improved and adapted into VSP geometry. We
decompose the seismic records received by the well into plane waves in different
directions according to different window centers and image the plane wave of each
direction independently. Secondly, through the mirror image of both the velocity model
and VSP receivers, the VSP free-surface multiples are converted into VSP primary
reflections which are involved in the VSP Gaussian beam migration method, and thus,
the method of the primaries is used to image the free-surface multiples. Finally, the
effectiveness and robustness of the proposed method are verified by the theoretical
model and practical data.

Keywords: vertical seismic profiling, Gaussian beammigration (GBM), velocity mirror image, far offset, free-surface
multiples

INTRODUCTION

There are many difficulties in exploration and development, such as surface-complicated, complex
underground structure, strong reservoir heterogeneity, thin reservoir thickness, and small reservoir
traps. Seismic imaging technology needs a high-precision method which can broaden the frequency
band so as to improve spatial resolution and identify thinner reservoirs and faults as well as some
complex structures. The receivers of VSP exploration are close to the geologic objects, and seismic wave
information from VSP can directly reflect the geological attributes of strata, reservoirs, or targets. The
exploration precision and detection range of VSP are between ground seismic and logging methods.
VSP is the spatial expansion and effective supplement of these two technologies, which is mainly used
to study the formation process and the spatial structure around the well. Compared with ground
seismicmigration, VSPmigration improves the resolution and provides the corresponding relationship
between the underground strata structure and subsurface measurement parameters.

For a long time, the primaries have been used in imaging and the multiples have been
suppressed as interference waves. However, the multiples also contain plentiful geological
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structure information. Reiter et al. (1991) tried to mine the
useful information from the multiples and added the first-
order water-bottom reflection operator into Kirchhoff pre-
stack time migration. The method is difficult to obtain the up-
going and down-going components of the towline data in
submarine, so it is limited to deep water data processing.
Based on this idea, many researchers have done much
research on multiples imaging. Until now, the multiples
have been regarded as effective information and applied
effectively, which are significant to the fine description of
underground structure information. Berkhout and
Verschuur (1994) proposed a method to realize multiples

imaging by using the received records as the sources and
the separated multiples as the received records. Based on
this idea, Guitton (2002) used the shot-profile method to
migrate the multiples. Shan (2003) used source–receiver
depth migration to realize multiples imaging. Shan and
Guitton (2004) used the multiples to construct a pseudo-
primary wave and realize the imaging of the multiples and
proved that this method is equivalent to the above method
which images the multiples by modifying boundary
conditions. Berkhout and Verschuur (2006) combined
surface-related multiple elimination (SRME) theory and
focal transformation theory to convert the multiples into
the primaries, and thus, multiples imaging can also be
realized indirectly by extracting the multiples in the focal
transformation domain. Lou et al. (2007) presented a new
method to perform the 3C vector Kirchhoff pre-stack depth
migration for the first-order free-surface multiples in VSP data
by the velocity mirror image and the virtual receivers. It can
accurately produce a much wider seismic image zone than the
conventional VSP migration which uses primary reflections
only. Liu et al. (2011) used the reverse time migration (RTM)
to image the multiples by separating the multiples to realize
multiples imaging through the primaries imaging method.
However, the precision of separating the primaries and the
multiples may reduce the quality of multiples imaging. Zhang
and Schuster (2014) did multiples imaging and achieved the
results based on the least square reverse time migration
(LSRTM). But it involves huge calculation cost and the

FIGURE 1 | Local plane wave decomposition.

FIGURE 2 | Ray path of VSP first-order free-surface multiples.

FIGURE 3 | Arrangement of the receivers in GBM for VSP free-surface
multiples imaging. The red star indicates the source location, orange inverted
triangles indicate the receivers in the velocity mirror image, the blue beam is
emitted from the source, the green beam is emitted from the window
center point, and the light green area is the region where the ray pairs coincide.
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elimination of the noise. Liu et al. (2018) proposed the fast
LSRTM to image the down-going free-surface multiples in
VSP, which greatly expands the imaging illumination range
of VSP.

Non-zero offset VSP imaging commonly uses VSP-CDP
transform and Kirchhoff migration. Since the VSP-CDP
transform and stack method use the ray method for model
building in the depth domain and are based on the hypothesis
of layered and uniform medium, it is difficult to image the
complex structures. The Kirchhoff migration also leads to poor
amplitude conservation and low imaging precision. To solve
these problems, wave equation pre-stack depth migration was
proposed, and it has been demonstrated effective when
imaging complex structures (Wang J et al., 2008; Fang
et al., 2016). RTM is based on the two-way wave equation
and is distinguished by its high imaging and migration homing
accuracy (Chen et al., 2018). The Gaussian beam migration
(GBM) overcomes the shortcomings of Kirchhoff migration
and retains its flexibility and efficiency at the same time. It also
leads to the results as accurate as these by RTM. In summary, it
has a fast calculation speed and high accuracy (Hill, 1990;
Huang et al., 2014; Yu et al., 2018). In order to improve the

quality of VSP imaging, Wang Y. G et al. (2008) applied the
GBM to VSP for the first time (VSP-GBM for short). VSP-
GBM not only considers both computational efficiency and
imaging accuracy but also calculates multi-arrival travel time.
Besides, it is a ray method, which has a weak dependence on
the velocity model, so it has strong imaging ability. In this
paper, VSP-GBM is used to calculate the free-surface
multiples, and this method is verified by forward seismic
data and actual seismic data.

METHODS

VSP-GBM
In a 2D scalar isotropic medium, the surface is horizontal and
the receiving well is vertical. Χs � (xs, 0) is the seismic source,
Χr � (xr, zr) is the receiver point, Χ � (x, z) is the imaging
point, ω is the angular frequency, and U(Χr,Χs,ω) is the
received seismic wave field. According to the method of
Gaussian beam characterizing Green’s function, Green’s
function of the ray beam propagating from the seismic
source to the imaging point can be described as

FIGURE 4 | Workflow of GBM for VSP imaging.
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G(X,Xs,ω) � i

4π
∫ dpx

pz
uGB(X,Xs,P,ω)

� i

4π
∫ dpx

pz
A exp(iωT), (1)

where px and pz represent the horizontal and vertical
components of initial slowness in the central ray, respectively;

P � (px, pz); and T � τ(s) + 1
2

P(s)
Q(s)n

2 and A �
������
εV(s)

V(0)Q(s)
√

represent the complex-valued travel time and amplitude,

respectively. The reverse continuation seismic wave field
U(X,Xs,ω) from the source point to the imaging point can be
shown by Rayleigh II integral as

U(X,Xs,ω) � 2iω∫ dxr
cos θr
Vr

Gp(X,Xr,ω)U(Xr,Xs,ω), (2)

where G(X,Xr,ω) is Green’s function from the receiving point Xr to
the imaging point X, θr is the emergent angle of ray,Vr is the velocity
of the receiver point, and * represents the complex conjugate.

FIGURE 5 | VSP-GBM result of the complex model: (A) complex model, (B) shot record of the numerical example, (C) migration result of the primaries, and (D)
combined migration result of the first-order free-surface multiples and the primaries.
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If we addGaussian window into the seismic records U(Xr,Xs,ω)
received from receivers, and use the emitted Gaussian beam from the
window center to represent Green’s function G(X,Xr,ω) (as shown
in Figure 1), then Eq. 2 can be transformed into

U(X,Xs,ω) ≈ ΔLωr

(2π)3/2ω0

cos θL
VL

∑
L

∫ dpLx

pLz
Ap

L exp(−iωTp
L)Ds(L, pLz,ω), (3)

where the one-dimensional (1D) Gaussian window function in
the vertical well VSP has the properties shown in

ΔL���
2π

√
ω0

���∣∣∣∣∣∣∣
ω

ωr

∣∣∣∣∣∣∣
√

∑
L

exp[ −
∣∣∣∣∣∣∣
ω

ωr

∣∣∣∣∣∣∣
(zr − L)
2ω2

0

] ≈ 1. (4)

Ds(L, pLz,ω) is the slant stacking of seismic wave field in the
Gaussian window which takes (xr, L) as its center. It is
expressed as

Ds(L, pLz,ω) �
∣∣∣∣∣∣∣
ω

ωr

∣∣∣∣∣∣∣
3/2 ∫ dzrU(Xr,Xs,ω) exp[iωpLz(zr − L)

−
∣∣∣∣∣∣∣
ω

ωr

∣∣∣∣∣∣∣
(zr − L)2

2ω2
0

]. (5)

FIGURE 6 | VSP-GBM result of the practical data: (A) velocity model, (B) shot record, (C)migration result of the primaries, and (D) combined migration result of the
first-order free-surface multiples and the primaries.
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Here, we need to use the deconvolution imaging conditions in order
to get the amplitude-preserving migration results in the shot domain:

I(X,Xs) � 1
2π ∫U(X,Xs,ω)G*(X,Xs,ω)

G(X,Xs,ω)G*(X,Xs,ω)dω, (6)

where I(X,Xs) is the imaging value of one shot and G(X,Xs,ω) is
Green’s function of the source spreading in the forward direction.
Upon substituting Eqs 1, 3 into Eq. 6, we get

I(X,Xs) � − ΔLωr

16π3
��
2π

√
ω0

∑
L

∫dω i

G(X,Xs,ω)G*(X,Xs,ω)
∫dpsx

psz
A*

s exp(−iωT*
s) ×

cos θL
VL

∑
L

∫dpLx

pLz
A*

L exp(−iωT*
L)Ds(L, pLz,ω).

(7)
Eq. 7 is the 2D VSP amplitude-preserving Gaussian beam

imaging formula in the shot domain.

Velocity Mirror
In order to solve the issue of first-order free-surface multiples
migration, we convert VSP first-order free-surface multiples into
primary reflections based on the idea of velocity mirror image. As
shown in Figure 2, the mirror point of the receiver point R is R’. The
path of first-order free-surface multiples (SABR

�����→
) can be converted to

the travel path of primary reflection (SAR’
����→

). VSP-GBM is employed in
first-order free-surfacemultiples, and thus, the beamcenter is located at
themirror point R’. First, the seismic records are divided into a series of
local regions. Then, the seismic records of local regions are decomposed
into plane waves (amount to the beam) in different directions by using
slant stacking. Finally, we map imaging the plane wave through the
travel time and amplitude of rays (as shown in Figure 3).

The workflow of the VSP-GBM algorithm is shown in Figure 4.

NUMERICAL EXAMPLE

This section employs the complex model to test the VSP-GBM in
free-surface multiples.

Figure 5A is the complex model, which is composed of a 301 (in
the x dimension) by 3,001 (in the z dimension) grid, with grid
spacings 10.0 m (in the x dimension) and 1.0 m (in the z dimension),
respectively. The well is vertical and locates at the position of
(1500m, 0m), and the triangles represent part of the receivers.
The dataset has 16 shots at intervals of 200m. The first shot locates at
the position of (0 m, 0m), and the stars represent part of the shot
points. Each shot consists of 151 traces, and the receiver interval is
20.0 m (as shown in Figure 5B). It can be found from Figures 5C,D
that the VSP free-surface multiples effectively expand the lateral
imaging range, especially in the shallow structure at the far offset.
Therefore, it not only fully utilizes VSP free-surface multiples but
also effectively compensates the deficiency of primaries imaging in
the shallow structure at the far offset.

PRACTICAL DATA TEST

This section employs the practical data to test the effectiveness
between primaries and first-order free-surface multiples in the
VSP-GBM method.

The geological model is shown in Figure 6A with a size of
10000 m × 6000 m. The grid spacing is 10.0 m in the x dimension
and 10.0 m in the z dimension. The well is not vertical, and the
black curve indicates the receivers’ distribution range. The dataset
has 110 shots, and the first shot locates at (1929 m, 0 m); note that
the shot intervals are unequal and that the explosion signs are part
of the shot points. The minimum offset is 130 m, and the
maximum offset is 3070 m. The shot consists of 171 traces,
and the receivers locate from 297 to 1967 m in depth. Note
that the receiver intervals are also unequal. The wave field is
shown in Figure 6B. The method can effectively avoid the errors
from wave field separation. Figures 6C,D show the VSP-GBM
results of primaries and first-order free-surface multiples. It can
be seen that the VSP-GBM result of first-order free-surface
multiples effectively compensates the imaging deficiency of
VSP primaries in the shallow structure at the far offset. By
comparing the VSP-GBM results shown in Figures 6C,D, the
feasibility and effectiveness of the proposed method are verified.

CONCLUSION

In this paper, the groundGBMmethod is extended to VSP geometry,
and the idea of velocity mirror image is applied to VSP-GBM. This
method can directly image the primary reflection waves and first-
order free-surface multiple waves of VSP without wave field
separation and effectively use the multiples wave field information
of VSP to improve the imaging accuracy of VSP. The results of the
theoretical model and practical data show that the first-order free-
surface multiples can expand the lateral imaging range of VSP-GBM
and effectively compensate the imaging deficiency of VSP primaries
in the shallow structure at the far offset.
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The State-of-the-Art Techniques of
Hydrocarbon Detection and Its
Application in Ultra-Deep Carbonate
Reservoir Characterization in the
Sichuan Basin, China
Junxing Cao1,2, Xudong Jiang1,2,3*, Yajuan Xue4, Renfei Tian1,2, Tao Xiang1,2 and
Ming Cheng1,2

1The State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu,
China, 2College of Geophysics, Chengdu University of Technology, Chengdu, China, 3Post Doctoral Research Station of
Geophysics, Chengdu University of Technology, Chengdu, China, 4School of Communication Engineering, Chengdu University of
Information Technology, Chengdu, China

The Sichuan Basin is one of the most important gas-bearing basins in China, and its
production accounts for more than a quarter of the country. In the past 10 years, major
natural gas exploration discoveries in the basin were in ultra-deep ancient carbonate
formations. The discovery of large marine gas fields has gone through a long period of
exploration. For example, the Anyue gas field was discovered after more than 40 years of
exploration. The main difficulty stems from deep burial, old age, and the complex
geological evolution history of the carbonate rock and the resulting difficulty in
identifying gas-bearing reservoirs. Although state-of-the-art reservoir prediction
techniques have been used, the success rate of the exploration wells is relatively low.
At present, the success rate of the ultra-deep exploration wells is about 30%. To enhance
the reliability of the hydrocarbon detection of the ultra-deep carbonate reservoirs, we have
developed a few novel methods in the last 10 years, including seismic-print analysis (SPA),
depth-domain seismic dispersion analysis (DDSDA), and deep learning seismic analysis
Applications to field data show that the results obtained by the new methods are in better
agreement with the drilling results. This article presents the methods and their applications
in the identification of the ultra-deep carbonate gas-bearing reservoirs in the Sichuan
Basin, China. Key issues in hydrocarbon detection of ultra-deep carbonate reservoirs,
which have not been solved well, are also discussed.

Keywords: Sichuan Basin, hydrocarbon detection, seismic-print, deep learning, carbonate reservoirs

1 INTRODUCTION

Reliable reservoir hydrocarbon detection techniques are silver bullets expected in the hydrocarbon
detection field (Fawad et al., 2020). Since the 1970s, seismic exploration experts have developed a
series of seismic-based reservoir gas detection methods. These methods and technologies can be
roughly divided into three categories (Cao et al., 2019): bright spot technology (Hammond, 1974),
AVO analysis technology (Castagna and Backus, 1993), and seismic dispersion analysis technology
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(Robinson, 1979). AVO analysis is based on the Zoeppritz
equation which is complex. Therefore, scholars obtained the
approximate simplified equation of the Zoeppritz equation by
introducing different approximate conditions (Chopra and
Castagna, 2014). From these approximate equations, we can
develop a variety of pre-stack seismic inversion methods
(Veeken et al., 2004), obtain a variety of physical parameters
(Li et al., 2008), such as P–S wave velocity and density (Jin et al.,
2000), Poisson’s ratio (Zong et al., 2013), and relative wave
impedance (Cui et al., 2010), and thus, develop a variety of
hydrocarbon detection methods. Bright spot technology is the
strong reflection on the seismic profile relative to the background.
The emergence of bright spot technology is largely due to the
invention of automatic gain technology, which highlights the
change of reflection amplitude on the seismic profile and
improves the success rate of gas layer identification from
about 12% to 60%–80% (Cao and Tian, 2019). Other methods
and technologies with various names can be regarded as
derivative methods of these methods and technologies. For
example, the fluid factor method (Smith and Sutherland, 1996;
Russell et al., 2003) can be attributed to AVO analysis technology;
PG parameter prediction (Jiang et al., 2020b) and the low-
frequency shadow phenomenon (Castagna et al., 2003) is
essentially dispersion. These methods and technologies have
both successful cases and failure lessons. The main reason for
the failure is that these methods have certain applicable
conditions, such as bright spot technology is mainly applicable
to the shallow (Hammond, 1974) unconsolidated clastic
reservoir; AVO analysis technology is mainly suitable for the
situation of relatively simple and gentle formation structure,
while dispersion analysis technology is suitable for the
situation of known lithology. When the applicability
conditions of these methods and technologies are not satisfied,
the obtained results will naturally deviate from the real situation.

This article selects the actual data of ultra-deep carbonate
reservoirs located in the Sichuan Basin as the experimental data.
The Sichuan Basin is the most important gas-bearing basin in
China, and the annual output of natural gas accounts for more
than a quarter of the total annual output of the country. In the
past 10 years, major discoveries of natural gas exploration in the
Sichuan Basin are basically concentrated in the ultra-deep ancient
carbonate strata. The discovery of ultra-deep huge marine gas
fields in the Sichuan Basin has experienced a long exploration
period. The reasons why it is difficult to identify gas-bearing
reservoirs are deep burial, old age, long history of the geological
evolution of carbonate strata in the Sichuan Basin, many control
factors of natural gas accumulation, strong reservoir
heterogeneity, and a complex gas–water relationship of gas
reservoirs. For example, the Anyue gas field was discovered
after more than 40 years of exploration. Although the most
advanced method and technology will be used for reservoir
prediction and gas detection before drilling, the success rate of
exploration wells has been increasing slowly, and the achievement
rate of ultra-deep exploration wells is only about 30% (Cao et al.,
2019). Actual demand is the main driving force of scientific
research. To meet the needs of natural gas exploration in ultra-
deep ancient carbonate formations in the Sichuan Basin, we have

continued to study and develop a variety of reservoir gas
detection methods in the past 10 years, including the
seismic-print analysis method (Cao et al., 2011b; Cao and
Tian, 2011; Cao and Tian, 2019), depth-domain dispersion
analysis method (He et al., 2018), seismic deep learning method
(Cao, 2017; Cao and Wu, 2017; Cao et al., 2017), and new
time–frequency analysis methods (Xue et al., 2013; Xue et al.,
2014) to identify ultra-deep carbonate gas reservoirs more
reliably. These methods and technologies are basically data-
driven, without petrophysics and seismic response mechanism
modeling, and have better applicability to a weak seismic
response of the ultra-deep strong inhomogeneous medium.
The practical application results also show that these
methods can more reliably identify ultra-deep carbonate gas
reservoirs. This article reviews the principle and application
effect of these new reservoir gas detection methods and
discusses the development direction of future reservoir gas
detection methods.

2 SEISMIC-PRINT ANALYSIS

Seismic-print is a new term borrowed from voiceprint around
2011 (Cao et al., 2011a). The initial concept of the seismic-print is
called seismic voiceprint (Cao et al., 2011b). Voiceprint is widely
used to identify the speaker (Kersta, 1962). Speaker identification
technology based on the voiceprint characteristic analysis was
first applied to the field of intelligence listeners approximately in
the 1970s, and it began widely used in the civil alignment system
at the end of the 20th century (Li and Zhang, 2021). A seismic
wave has an intrinsic consistency with an acoustic wave.
Therefore, in theory, the geological properties of seismic data
volume can be identified through research on seismic wave
characteristics using voiceprint analysis method, such as
judging whether the reflective layer contains hydrocarbons.
We call the seismic attributes analysis method borrowed from
voiceprint analysis as seismic voiceprint analysis, referred to as
seismic-print analysis.

Almost all of signal analysis methods, from classic to modern,
are used in the voiceprint analysis which has the sound
characteristics analysis as a target, which are also used in the
seismic signal analysis and seismic attribute extraction. People
listen to sound, and identify the “accent” of the speaker. “Accent”
is not determined on the sound signal record, but is in the ripple
of the sound. The core of the voiceprint analysis aimed at the
speaker identification is to find out the characteristic signal
parameters for the speaker’s “accent,” and such parameters are
called voiceprint parameters. After decades of exploration,
currently, only a few parameters such as MEL cepstrum
coefficient (MFCC) can effectively identify the “accent” of the
speaker (Campbell, 1997; Das and Prasanna, 2018).

The purpose of reservoir prediction is to find oil and gas
reservoirs. The hydrocarbon store in the pore/crack of rocks, and
their volume and quality only account for a very small portion of
the reservoir rock. The seismic responses of the hydrocarbon are
very weak, which can only be reflected in the fine ripple structure
of the seismic record. Similar to the “accent” signal in the sound
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record, it is difficult to intuitively identify the hydrocarbon, and it
is also difficult to use the resolving method to calculate or use the
numerical method to simulate the hydrocarbons. Based on the
intrinsic consistency of the acoustic wave and the seismic wave, it
is possible to identify the pore fluid characteristics of the reservoir
by referencing to the sound pattern of “accent” signal
characteristics.

The key to the seismic-print analysis method is to find better
seismic-print parameters which can stably identify the geological
properties such as hydrocarbon reservoirs. The intrinsic
consistency of seismic waves and acoustic waves determines the
various voiceprint analysis methods such as cepstrum. MEL
cepstrum can also be applied to the seismic data for the
seismic-print analysis. Cepstrum, MEL cepstrum, and the other
voiceprint parameters can be derived for characterizing the
seismic-print features. However, the objective difference of
seismic records and sound records determines that we are
unlikely to use the voiceprint parameters to directly characterize
reservoir fluids. The difference in seismic signals and sound signals
ismainly reflected in repetitiveness, attenuation, frequency, and the
other parameters. The source of the voice signal is the human being
and the voice signal does not decay with the change of time.
However, the source of the seismic records is the reflection signal of
the seismic source signals. It is a secondary source. With the
increase of time, the seismic signal will be decayed. Although
the formation mechanisms of the seismic records and the voice
records are the same, the physical meanings of the parameters in
the wave equation have a big difference in the details. In addition,
the frequency of the voice signal is generally in the range of
100 Hz–7 kHz while the frequency of the seismic signal ranges
from several Hz to more than one hundred Hz. The most
important feature is that the “accent” features in sound records
can be characterized by repetition while the characteristics
response of the target body such as gas-bearing formation in
the seismic records is a small section of the whole seismic
records and is often transient. The similarity between the sound
records and seismic records determines that we can borrow the
voiceprint analysis method for analyzing the seismic records. We
have adopted the voiceprint analysis method to analyze the
cepstrum coefficents’, Mel cepstrum coefficients’, and linear
prediction cepstral coefficients’ (LPCC) parameters of the
seismic Ricker wavelet, the seismic responses of the
hydrocarbon reservoir model, and the field data, and we
obtained the following conclusions (Xue et al., 2016): (1) The
seismic-print parameters of the Ricker wave have a non-linear
relationship with the change of the wavelet frequency. (2) Seismic-
print parameters are sensitive to the change of the reservoir
parameters. (3) It is initially believed that the intersection of the
low value of the first-order cepstrum coefficient and the high value
of the second-order cepstrum coefficient can be used as a seismic-
print criterion for gas-bearing reservoirs.

2.1 Hydrocarbon Detection Based on
Seismic-Print Analysis
The key to hydrocarbon detection based on the seismic-print
analysis is to find the seismic-print parameters that can identify

the gas reservoir. Therefore, we systematically tested the speaker
identification parameters used in the field of voiceprint analysis
and found that the first and second cepstrum coefficients of the
seismic records have good identifications on the gas reservoir.

Cepstrum is a kind of homogeneous transform, and the
cepstrum c(n) of a time series signal x(n) can generally be
expressed as (Cao et al., 2011b)

c n( ) � T−1 ln T x n( )[ ]{ }{ }, (1)
where T denotes the Z transform or Fourier transform. We define
the first-order cepstrum coefficient C1 as c (0), the second-order
cepstrum coefficient C2 as c (1), and the rest is the same.

Generally the seismic data are represented by the convolution
of the reflection coefficients r(t) and the seismic wavelet w(t):

s t( ) � w t( )pr t( ), (2)
in which Ricker wavelet is the generally used wavelet t = 0, 1, . . .
, N − 1.

Taking the discrete Fourier transform of Eq. 2, we obtain

S k( ) � ∑
N−1

n�0
w k( )e−j2πN nk

⎧⎨
⎩

⎫⎬
⎭ · ∑

N−1

n�0
r k( )e−j2πN nk

⎧⎨
⎩

⎫⎬
⎭, (3)

in which k = 0, 1, . . . , N − 1.
Then, taking the absolute value on both sides of Eq. 3, we

transform Eq. 3 by using a logarithmic operation into

ln S k( )| | � ln ∑
N−1

n�0
w k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
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⎩
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⎭ · ln ∑
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⎫⎬
⎭. (4)

Finally, we apply the inverse Fourier transform to Eq. 4 and
obtain the cepstrum of the seismic data:

c n( ) � F−1 ln ∑
N−1

n�0
w k( )e−j2πN nk
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∣∣∣∣∣∣∣∣∣

⎧⎨
⎩

⎫⎬
⎭ + F−1 ln ∑

N−1

n�0
r k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

⎧⎨
⎩

⎫⎬
⎭

� 1
N

∑
N−1

k�0
ln ∑

N−1

n�0
w k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN nk

⎧⎨
⎩

⎫⎬
⎭ + 1

N
∑
N�1

k�0
ln ∑

N−1

n�0
r k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN nk

⎧⎨
⎩

⎫⎬
⎭. (5)

Equation 5 is the general form of the cepstrum of the discrete
seismic data. Obviously, when n = 0, we have

C1 � ln w 0( )| | + ln r 0( )| |, (6)

C2 � 1
N

∑
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k�0
ln ∑

N−1

n�1
w k( )e−j2πN 1k
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Especially, if the seismic wavelet is assumed as

w t( ) � cos πfmt( )e−π2f2
mt

2
, (8)

Eq. 6 will turn into

C1 � ln r 0( )| |, (9)
in which fm is the dominant wavelet frequency. Equation 9
illustrates that the first-order cepstrum coefficient is the
logarithm of the reflection coefficient. Since the absolute value

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8518283

Cao et al. Ultra-Deep Carbonate Reservoir Hydrocarbon Detection

105

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


is used, the smaller reflection coefficient will lead to a larger
cepstrum coefficient. For example, when r (0) = 0.1, we get C1 =
2.3; however, when we set r (0) = 0.01, we get C1 = 4.6. This fact
shows that the first-order cepstrum coefficient is sensitive to weak
reflection. The high value anomaly of the first-order cepstrum
coefficient means a relatively weak reflection, that is, it indicates a
“dark spot.” Equation 7 shows that the second-order cepstrum
coefficient is a complex function of the high-order logarithmic
reflection coefficients and wavelet, and it reflects the strength of
the scatter wave. Similarly, the low value anomaly means a strong
scattering. Therefore, based on the symmetrical mirror symmetry

that is shown between the first-order cepstrum coefficient
abnormality and the second-order cepstrum coefficient
abnormality of the seismic response in the gas reservoir, we
introduced a new parameter C1−2 (defined as the difference
between the first-order and the second-order cepstrum
coefficients) as a reservoir gas-bearing evaluation parameter
for the seismic cepstrum feature. The workflow of
hydrocarbon detection based on the seismic-print analysis is
shown in Figure 1. In the seismic-print analysis method, the
window length N is a key factor which determines the frequency
ranges for a common cepstrum coefficient section. Generally, the

FIGURE 1 | Seismic-print analysis flow.

FIGURE 2 | The Seismic-print characteristics of two seismic sections intersecting different wells. (A) The seismic section intersecting the gas well. (B) The seismic
section intersecting the dry well. (C) The first-order cepstrum coefficient’s volume of the seismic section in (A). (D) The first-order cepstrum coefficient’s volume of the
seismic section in (B). (E) The second-order cepstrum coefficient’s volume of the seismic section in (A). (F) The second-order cepstrum coefficient’s volume of the
seismic section in (B). (G) The result of the new parameter C1−2 in (A). (H) The result of the new parameter C1−2 in (B).
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first-order cepstrum coefficient section will be in the frequency
range of (0, fs/2N), and the second-order cepstrum coefficient
section will be in the frequency range of (fs/2N, fs/N) (Xue et al.,
2016), in which fs is the sampling frequency.

Hydrocarbon detection technology based on the seismic-print
analysis directly extracts the rock’s pore–fluid information from
the seismic data, which do not explicitly involve the formation
mechanism of the seismic response, and have no approximate
problem with the numerical model. These features are the main
differences between seismic-print analysis-based hydrocarbon
detection technology and the other hydrocarbon detection
technologies based on forward modeling and the inversion of
the wave equation.

Figure 2 shows the seismic-print characteristics of two seismic
sections intersecting different wells: gas well (Figure 2A) and dry
well (Figure 2B) from marine carbonate reservoirs in Sichuan,
China. The target horizon is shown by a green line. The first- and
second-order cepstrum coefficients’ volumes of the seismic
section intersecting gas well show the mirror symmetry
relations in the reservoir area as shown by a rectangular box
in Figures 2C,E while the first- and second-order cepstrum
coefficients’ volumes of the seismic section intersecting the dry
well do not represent the similar characteristics as shown by
Figures 2D,F. And the result of the new parameter C1−2 is shown
by Figures 2G,H.

3 DEPTH-DOMAIN SEISMIC DISPERSION
ANALYSIS

Since Futterman (1962) first discussed in detail that the
absorption and attenuation of seismic waves by rocks
(frequency dispersion phenomenon) is the fundamental
characteristic of the formation, people have paid more and
more attention to the attenuation of seismic waves. Winkler
and Nur (1982) pointed out that the leading causes of seismic
wave attenuation in rocks are friction, liquid flow, viscous

relaxation, and diffusion. Different lithologies have different
absorption degrees of seismic waves. The stronger the
absorption of the stratum, the faster the attenuation of the
high-frequency component of the seismic wave (Pujol and
Smithson, 1991; Helle et al., 2003). According to the close
relationship between formation absorption properties and
lithofacies, porosity, and oil-gas composition, lithology can be
predicted, and the existence of oil and gas can be directly
predicted under favorable conditions (He et al., 2008). Dilay
and Eastwood (1995) discussed the frequency spectrum inside,
above, and below the reservoir and analyzed the influence of the
hydrocarbon property on the power spectrum. The research and
application practice shows that the frequency attenuation
gradient is an attribute that is more sensitive to hydrocarbon
reactions. According to the theory of viscoelasticity, the
amplitude of seismic waves attenuates exponentially as the
propagation distance of the seismic waves increases due to the
absorption effect generated by uniform incompletely elastic
media, that is,

A � A0e
−αx, (10)

whereA is the amplitude of the seismic wave after propagating for
a certain distance; A0 is the initial amplitude of seismic wave; α is
the absorption coefficient; and x is the propagation distance of
seismic wave.

The absorption coefficient of different lithologies shows a
colossal difference. For example, the absorption coefficient of
sandstone layers is larger than that of other rock layers (such as
limestone layers). Therefore, the spread of seismic waves in the
long-distance, its amplitude decay is severe, especially when with
the underlying cracks in filling the hydrocarbon, the amplitude
attenuation is more intense, which is the theoretical basis for
applying the frequency attenuation property to predict the
hydrocarbon properties of the formation (Berryman and
Wang, 2000).

At present, the measurement of dispersion is carried out in
the time domain, but the time-domain dispersion has the

FIGURE 3 | Model comparison diagram. (A) Depth-domain model. (B) Time-domain model.
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problem of inaccurate construction (Wu et al., 2007), and the
time profile and depth profile will not be completely
consistent. Because of the speed difference, the depth with
higher speed is greater than the depth with lower speed in the
same second and the time profile and depth profile will not be
completely consistent. Because of the speed difference, the
depth with higher speed is greater than the depth with lower
speed in the same second as shown in Figure 3, within the
same depth interval in the depth domain (e.g., 120 m, due to
different rock velocities (e.g., 5 and 4 km/s respectively), The
thickness of the form shown on the seismic profile in the time
domain can vary widely (in the case of 48 and 60 ms (two-way
travel time), a difference of 12 ms), and the dispersion
measured in the time domain can be used to estimate the
spatial distribution of the reservoir, resulting in incorrect
results.

Depth-domain seismic attributes are similar to time-
domain seismic attributes in that they derive special
measurements of geometry, kinematics, dynamics, and
statistical characteristics from seismic data. The dynamic
attributes reflect the amplitude variation of seismic data and
the variance, gradient, and energy curvature extended by the
amplitude (energy) (Singh, 2012; Zhang et al., 2017). The
meaning of the depth domain is consistent with that of the
time domain. Also, due to the more accurate positioning of
imaging points in the depth domain, the more accurate spatial
position of the measured attributes can better serve the
reservoir prediction (Zhang et al., 2017; Cavalca et al., 2015).

3.1 Time-Depth Conversion of Seismic Data
The time-depth conversion converts a two-way time-domain
seismic record to the depth domain, in effect transforming a
time-domain seismic wavelet into a depth-domain seismic

wavelet. A discrete expression for a two-way time–sine decay
wavelet in the time domain is given as

xw iΔt( ) � A0e
−aiΔt sin 2 π fm − fni/N( )iΔt i � 0, . . . , N( ) ,

(11)
where fm and fn denote the starting principal frequency and
frequency decay values of the wavelet, respectively; α is the time
decay exponents; and N is the number of wavelet points.
Similarly, we also give a discrete expression for the depth-
domain sinusoidal decay wavelet:

yw iM( ) � A0e
−βiΔh sin 2 π km − kni/N( )iAh i � 0, . . . , N( ) ,

(12)
where km and kn denote the initial main wave number and the
wave number attenuation value of the wavelet, respectively, β is
the spatial attenuation index, which is desirable for the sake of
consistency βΔh = αΔt.

Since the time domain is two-way time and the depth domain
is one-way depth, the frequency of the time domain to the wave
number of the depth-domain conversion relation should not be
the usual relation:

f � kv. (13)
Also, it should be written as

f � 1
2
kv. (14)

Here v is the time-depth velocity of logging interpretation, f is the
frequency, and k is the wave number. So, Eq. 11 can also be
written as

yw iΔh( ) � A0e
−βiΔh sin 2 π fm − fni/N( )i2Δh/v

� A0e
−aiΔt sin 2 π fm − fni/N( )iΔt . (15)

FIGURE 4 | Diagram of the EAA calculation method in the depth domain. (A) Deep seismic gathers; (B) depth time–frequency analysis diagram; (C) EAA extraction
instructions.
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From this, we get a conclusion that the sampling interval
relation satisfies

Δt � 2Δh/v. (16)
Then, after the wavelet frequency in the time domain is given,

the wavelet in the time domain and the depth domain are
numerically equal, that is,

xw iΔt( ) � yw iΔh( ). (17)

3.2 Calculation Method of Seismic
Dispersion Attenuation in the Depth Domain
Mitchell et al. (1996) proposed an analysis method for calculating
the energy attenuation of a seismic signal. The core of this
technology is to obtain the high-frequency exponential
attenuation coefficient of the signal spectrum. Due to the
attenuation of waves during propagation, seismic waves are
expressed as

A � A0e
−axei kxx±ut( ), (18)

where kr = k − iα, k is the plural; α is the attenuation coefficient of
the signal, which is also what we want to calculate. The calculation
process of the energy absorption analysis (EAA) technology is to
continuously analyze the spectrum of seismic channels with a
series of small windows and calculate the attenuation coefficient.
The guiding ideology of EAA technology is to eliminate regular
and uniform energy attenuation in the spectrum analysis to retain
the abnormal part of attenuation.

The depth-domain-specific algorithm of EAA is as follows:
first of all, for each seismic record do a depth frequency analysis
(Figure 4A), on the deep frequency section detect the maximum
energy frequency as the initial attenuation frequency (Figure 4B),
then calculate the frequency corresponding to 20 and 95% of the
seismic wave energy and the corresponding frequency in the
frequency range, according to the frequency of the corresponding
energy, fitting of the frequency and energy attenuation gradient.
The amplitude attenuation gradient factor is obtained
(Figure 4C). The process of EAA dispersion measurement
method based on the aforementioned steps is shown in
Figure 5. The main key points are the conversion of depth-
domain data and the extraction of dispersion parameters.

4 SEISMIC DEEP LEARNING

The advent of the era of artificial intelligence provides new ideas
and methods for many hydrocarbon exploration problems. Deep
learning forms more abstracted high-level attribute categories or

feature representations through a layer-by-layer combination of
low-level features, so it can deeply dig into the essential
information of data and show its unique advantages and
characteristics in recognition and classification (Goodfellow
et al., 2016). At present, the main applications of deep
learning in seismic exploration are fault recognition (Gan
et al., 2016), first arrival picking (Liao et al., 2019), noise
suppression (Liu et al., 2018), and velocity model construction
(Yang and Ma, 2019), which have good results. Gao et al. (2020)
using the transfer learning method for seismic reservoir gas
prediction, Song et al. (2022) proposed a kNN-based gas-
bearing prediction method by k nearest neighbor (kNN)
method, both having good results. Through the block
processing of seismic images and combining the respective
characteristics of supervised and unsupervised learning, it is
successfully applied in the hydrocarbon identification of 3D
seismic data. These successful examples have laid the
advantages of deep learning in establishing the non-linear
mapping relationship between two datasets. At present, there
are few applications in gas prediction, so the introduction of deep
learning to hydrocarbon detection has a long-term development
significance. Pre-stack seismic data have always been the key data
basis for hydrocarbon detection. The amplitude change
information contained in one time point of pre-stack data
includes reservoir gas and water information, which is also the
theoretical basis of AVO inversion. If the relationship between
pre-stack data and hydrocarbon is to be established directly, the
quality of pre-stack data is particularly important. To solve this
problem, we also developed a pre-stack trace set optimization
method based on bi-dimensional empirical mode decomposition
(BEMD) to improve the effective information of the trace set and
enhance the matching degree with a gas-bearing property (Jiang
et al., 2020a), and the method of removing the strong reflection
prominent effective signal (Jiang et al., 2021). The network selects
the fully-connected network to deeply mine information and
establish the non-linear mapping relationship between pre-stack
data and hydrocarbon.

4.1 Overview of Deep Neural Network
Algorithms
Establish the relationship between the labeled dataset and the
training dataset using a deep neural network algorithm (DNN) to
form a prediction network. Neural network technology originated
in the fifties and sixties of the last century, called perceptron, with
input, output, and a hidden layer. The input feature vector is
transformed to the output layer through the hidden layer, and the
classification results are obtained at the output layer. DNN can be
understood as a neural network with many hidden layers.
According to the position of the different layers, the inner

FIGURE 5 | Flow of the depth-domain seismic wave frequency dispersion analysis.
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neural network layer of DNN can be divided into three categories:
input layer, hidden layer, and output layer. Generally speaking,
the first layer is the input layer, the last layer is the output layer,
and the middle layer is the hidden layer. One layer and another
layer are fully connected, in other words, any neuron in layer i
must be connected with any neuron in layer i+1. Although DNN
looks pretty complex, it is still the same as perceptron from a
small local model, that is, a linear relationship:

z � ∑wixi + b, (19)
where z is the output layer, wi is the weight value, xi is the input
layer, b is the bias, and then the final activation function σ(z) is
added to form the basic structure of DNN. DNN is a neural
network algorithm with multiple hidden layers. In the forward
propagation phase, the hidden layer takes the output of the
former layer as the input for the latter layer:

bLk � ∑
n

i�0
wL

�i · aL−1i + dL
k, (20)

aLk � f bLk( ), (21)

where bLk represents the output before the activation of the k
neurons in the L layer of DNN, aLk represents the output after the
activation of the k neurons in the L layer of DNN, wL

ik represents
the linear transfer coefficient from aL−1i to bLk , d

L
k represents the

bias constant of the forward propagation function of bLk , and f is
the activation function. Select Relu function as activation
function. Firstly, the Relu function is one of the common
activation functions expressed as follows:

f x( ) � max 0, x( ). (22)
The Relu function is a piecewise linear function, which

changes all negative values to 0, while the positive values
remain unchanged. This operation is called a unilateral
suppression. If the input is negative, the output will be 0. The
neuron will not be activated, which means that only part of the
neurons will be started simultaneously, making the network very
sparse and efficient for computing. Taking pre-stack seismic data
as inputs and hydrocarbon as labels, a direct non-linear mapping
relationship is established through the multi-hidden full
connection network (DNN) to realize hydrocarbon detection.

FIGURE 6 | DNN network structure.

FIGURE 7 | Flow chart of DNN hydrocarbon detection method.
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Similarly, when we input AVO features as labels, we can take a
certain time window vertically and select AVO features within the
time window as input features, such as 5ms, which will help to
improve the stability and continuity of the results. The network
structure is shown in Figure 6. The number of network layers and
neurons can be set according to the complexity of the data to
improve the adaptability and accuracy of the algorithm.

4.2 The Construction Principle of the Gas
Prediction Method Based on Deep Neural
Network
The classical AVO inversion analysis theory builds a non-linear
relationship between amplitude variation with offset and gas-
bearing properties. However, due to the universality of the
mapping relationship established by the classical method and

the strong approximation of the non-linear mapping
relationship, the prediction accuracy is often low, and the
adaptability is worse under deep conditions. The continuous
development of deep neural networks in recent years has shown
a unique advantage in non-linear mapping problems. Therefore,
according to the relationship between AVO characteristics and
the gas-bearing property, the deep neural network is selected as
a bridge to build its non-linear relationship. Combined with the
traditional AVO analysis technology, the calculation accuracy
and efficiency are improved. Based on AVO characteristics, the
input layer of the deep neural network is defined as the
amplitude variation of the processed gather with offset, and
the gas-bearing and non-gas-bearing results of the output layer
are the output. A multi-layered deep neural network structure is
defined. The whole algorithm flow is shown in Figure 7. The
deep neural network algorithm greatly simplifies the screening

FIGURE 8 | Structural diagram of study area.
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process of the traditional AVO analysis method. It directly
establishes the non-linear mapping relationship between pre-
stack gather and hydrocarbon. The results obtained through the
established network reduce the interference of human factors
and improve the accuracy and reliability of the results.

5 A CASE STUDY

5.1 Area Introduction
The study area is located in the Xiaoquan–Xinchang tectonic belt
of the western Sichuan exploration area, with 150 km2 as shown

FIGURE 9 | Seismic profile of the wells in the study area.

FIGURE 10 | Profile of the drilled wells in the study area.
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FIGURE 11 | Seismic-print analysis result.

FIGURE 12 | Results of the profile after time-depth conversion.

FIGURE 13 | Prediction results of depth threshold dispersion hydrocarbon.
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in Figure 8. The Xiaoquan–Xinchang tectonic zone is mainly
zonal distribution located in the Longmenshan foreland basin.
Among them, the collision and contact area of the Qinghai–Tibet
Plateau and the Yangtze Block, two important tectonic parts of
China, is the Longmenshan thrust belt–Longmenshan foreland
basin mountain basin system. The specific shape of the
Longmenshan foreland basin is a general zonal depression
located at the core of China’s abundant natural gas resources.
It gradually appeared in the Late Triassic period. The thickness of
the continental debris deposited in the basin differed, and some
areas could be more than 5,000 m. The main target interval was
the deep carbonate rock of the Leikoupo Formation. Three wells
have been drilled in the study area, and the seismic profile of the
wells is shown in Figure 9 where T2l41 is the top of the upper
reservoir of the fourth member of the Leikou profile group, and
T2l43 is the bottom of the lower reservoir of the fourthmember of
the Leikoupo group. T2l4 is the bottom of the fourth member of
the Leikoupo Formation, and T2l3 is the bottom of the third
member of the Leikoupo Formation. The main target interval of
this study is T2l41 – T2l43. From the seismic profile, it can be seen
that the reservoir is thin, and the signal is relatively weak, and the
seismic signal difference of the three wells is small. Well A, well B,
and well C’s drilling profiles are shown in Figure 10. The drilling
section mainly shows the upper and lower reservoir information
of the upper sub-member of the fourth Leikoupo formation.
From the logging interpretation results, the reservoir location
contains many thin reservoirs, and the reservoir conditions are
good, but the drilling results showed that not all of the high
quality reservoirs contain gas. Well B had a good gas-bearing
property in the upper sub-member of the fourth Leikoupo
formation, well A was a water well, well C was a gas–water
mixed well; well C had a good gas-bearing property in the upper
and lower reservoirs of the fourth Leikoupo formation, well A was
still a water well, and well B had a relatively weak gas-bearing
property. Both seismic data and drilling profiles show the
difficulty of hydrocarbon detection, and also indicate the
demand for gas prediction.

5.2 Results
5.2.1 Seismic-Print Analysis
The seismic-print analysis method is used to calculate the profile
in the study area, and the hydrocarbon detection results are
obtained. In Figure 11, the strong amplitude anomaly area
indicates that in the hydrocarbon area, the stronger the
amplitude, the stronger the hydrocarbon. It can be seen from
the results in T2l41–T2l43 that Well A is a water well, and the
amplitude anomaly is relatively weak, which is consistent with the
results. The hydrocarbon of wells B and C shows a strong
amplitude anomaly. The strong amplitude anomaly position is
in good agreement with the hydrocarbon position, and the overall
hydrocarbon detection distribution is in good agreement with the
geological distribution characteristics, which verifies themethod’s
effectiveness.

5.2.2 Depth-Domain Seismic Dispersion Analysis
Firstly, the time-depth conversion of the seismic data is carried
out to obtain the results of Figure 12. It can be seen that after
conversion, the actual structural distribution of the three wells is
more conducive to gas distribution and migration and a more
intuitive display of reservoir distribution. The EAA algorithm is
used to calculate the dispersion based on the depth-domain data,
and the results are shown in Figure 13. The same strong
amplitude represents the gas-bearing strength. The results
further demonstrate the non-hydrocarbon nature of well A
and the hydrocarbon nature of wells B and C, which have a
higher accuracy and can measure the hydrocarbon to some extent
in the horizon from T2l41 to T2l43.

5.2.3 Seismic Deep Learning
The pre-stack seismic gathers of well B and well C are used to
establish a training dataset corresponding to the gas-bearing
property after time-depth conversion (1 is gas-bearing, 0 is
non-gas-bearing). The dataset size is 24,000 training samples
(using the whole profile data set, the profile time range is
2,400–3,600 ms, and the number of samples corresponding to

FIGURE 14 | DNN hydrocarbon detection results.
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FIGURE 15 | Three dimensional result of hydrocarbon detection. (A) Seismic-print analysis of hydrocarbon detection results for upper member 4 of the
Leikoupo Formation (T2l41). (B) Seismic-print analysis of hydrocarbon detection results for the lower reservoir section of the fourth member of the Leikoupo
Formation (T2l43). (C) Prediction results of the dispersion hydrocarbon in depth domain of upper reservoir section 4 of the Leikoupo Formation (T2l41). (D)
Prediction results of dispersion hydrocarbon in depth domain of lower member 4 of the Leikoupo Formation (T2l43). (E) Prediction results of hydrocarbon
in DNN of upper member 4 of the Leikoupo Formation (T2l41). (F) Prediction results of the hydrocarbon capacity of DNN of lower reservoir Section 4 of the
Leikoupo Formation (T2l43).
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a single well is 1200. The five pre-stack gathers before and after
the two wells are used as training data to form a training set of
10*1200 = 24,000 samples). The whole profile is used as a
prediction sample containing 340,800 prediction samples. A
deep neural network with five hidden layers is established. The
activation function selects a sigmoid function, the number of
neurons is 200, the loss rate of neurons is 0.6, the single training
batch size of training samples is 45, and the number of iterations
is 1,000. Labels 0 and 1 are the label calibrations of gas-bearing
and non-gas-bearing reservoirs. The sigmoid function is used as
the activation function to distribute the predicted results [0, 1].
Thus, the predicted results represent a probability closer to gas-
bearing and non-gas-bearing reservoirs. When drawing, all values
below 0.5 are set as non-gas-bearing, and values above 0.5 are
expressed in an increasingly red color, and the profile results of
hydrocarbon detection results are obtained, as shown in
Figure 14. It can be seen from the results that the overall
hydrocarbon prediction results are highly consistent with the
drilling results and geological laws. The test results show that well
A is a water layer in T2l41–T2l43. Well B has strong gas-bearing
characteristics in the upper section of the fourth member of the
Leikoupo section. The overall results are consistent with the
drilling results, especially well A without network training, and
the results are also consistent with the actual, indicating the
effectiveness and stability of the neural network algorithm.

5.2.4 Three-Dimensional Data Analysis
Based on the two-dimensional profile calculation results, three
methods are used to predict the slicing results of the upper
reservoir of the Leikoupo fourth section, the lower reservoir of
the Leikoupo fourth section, and the Leikoupo third section in the
three main target horizons of the whole area. Figures 15A,C, and
E are the hydrocarbon prediction results of the upper sub-
member fourth of the Leikoupo Formation, and b,d, and f are
the lower members, Figures 15A,C, and E represent the seismic-
print analysis method, depth-domain dispersion, and the DNN
network method, and Figures 15B,D, and F correspond to the
meanings of a, c, and e. The upper and lower reservoir prediction
results show the effectiveness and consistency of the three
methods. The upper reservoir results show the characteristics
of well A without gas, well B with gas, and well C with the
gas–water mixture, while the lower reservoir results show the
characteristics of well A without gas, well B with gas, and well C
with gas. The predicted results are consistent with the actual
drilling results, indicating the effectiveness of the proposed
method.

5.3 Discussion
The burial depth of the carbonate strata of the Leikoupo
Formation in the study area is more than 5,500 m, and the
thickness of a single reservoir is several meters to 10 m. The
physical properties of the gas-bearing reservoirs and water-
bearing reservoirs are small, making the detection of gas-
bearing reservoirs based on seismic data prone to errors.
Before drilling, all the wells have been used for reservoir
prediction and gas-bearing detection using the most advanced
methods and technologies, including the failed well which is low

in production. Even after drilling, the test results are still not
completely consistent with the actual drilling results of some wells
by adding the well data constraints. This shows that the existing
gas detection methods cannot meet the exploration needs in deep,
complex reservoir conditions. From the experimental results
introduced in the previous section, the detection results of our
newly developed reservoir hydrocarbon detection method are
highly consistent with the actual drilling results. The seismic deep
learning (SDL) method has higher accuracy, but the calculation
cost is high. In comparison, the seismic-print analysis (SPA)
method has higher efficiency. The depth-domain seismic
dispersion analysis (DDSDA) method has more practical
significance and can accurately predict the gas-bearing depth
and location. This shows that the new method can better adapt to
strong heterogeneity and weak seismic response of the ultra-deep
ancient carbonate reservoir medium. The main advantage of the
new methods is that they are data-driven and do not need to
model rock physics and seismic response mechanisms, so they
can naturally adapt to any complex medium. In contrast to the
DHI methods such as AVO analysis, the calculation expression of
evaluation parameters has made many assumptions in derivation.
If the actual situation does not coincide with these assumptions, it
may be wrong. At the same time, we should also see that the
evaluation standard of data-driven reservoir hydrocarbon
detection depends on the calibration of well data. When the
available well data are few, or no well data are available at all, it is
possible to make mistakes according to experience. But, we
believe that with the accumulation of practical application
data, the reliability of data-driven reservoir gas detection
methods will be higher and higher. Data-driven reservoir gas-
bearing detection results are essentially probabilistic and, in most
cases, qualitative. The success of oil and gas exploration wells
depends on quantity. Only when the product reaches the level of
economic benefits can it be called a success. Therefore, the
evaluation of reservoir hydrocarbon should develop from
qualitative detection to quantitative prediction in the future,
and the technology of reservoir hydrocarbon prediction should
be developed. The existing drilling data reveal that the ultra-deep
ancient carbonate reservoir has strong heterogeneity. At the same
time, due to deep burial and other reasons, the seismic response of
the reservoir is weak and complex, so that the prediction of
reservoir hydrocarbon based on rock physics and seismic
response analysis modeling is almost impossible. Deep
network adaptive non-linear modeling based on deep learning
can play a role, which may be the most potential breakthrough
research.

In general, this article studies and discusses the current
hydrocarbon prediction methods for deep and ultra-deep
carbonate rocks. The seismic-print method is mainly for post-
stack data, which can quickly and efficiently obtain weak gas-
bearing information, but require a relatively high signal-to-noise
ratio for post-stack data. The noise immunity is not particularly
good. The depth-domain attenuation method can detect
hydrocarbon from a depth perspective, making the prediction
results more accurate, but the accuracy of time-depth conversion
needs to be improved; the neural network hydrocarbon
prediction is based on pre-stack data, which improve the
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efficiency and accuracy of calculation, but the establishment of a
sample database is still a problem that needs to be further studied.

6 CONCLUSION

This article describes three methods for gas reservoir
identification of ultra-deep carbonate rocks in the Sichuan
Basin: seismic-print analysis method, depth-domain dispersion
analysis method, and seismic deep learning method. The seismic-
print analysis method uses cepstrum analysis to highlight the
reservoir’s weak response signal and reveal the cepstrum
characteristics of the gas-bearing reservoir. The first-order and
second-order cepstrum coefficient anomalies are a convex mirror
symmetry. The depth-domain dispersion analysis method
converts the dispersion analysis usually carried out in the time
domain to the real space domain, creating conditions for
estimating the reservoir hydrocarbon based on dispersion. The
seismic deep learning method uses the adaptive non-linear
modeling ability of a complex system of the deep network to
construct the deep network model that directly predicts reservoir
hydrocarbon from pre-stack seismic data. These three methods
can be regarded as data-driven reservoir hydrocarbon detection
methods, which do not explicitly involve establishing rock
physical and seismic response analysis models. Therefore,
compared with the existing DHI method, the applicability of
these methods to the weak seismic response of ultra-deep strong
heterogeneous reservoirs is stronger. The practical application
results also demonstrate that these methods are more effective.
Nevertheless, it is still not a silver bullet, and there is still a

situation where the prediction results are not consistent with the
actual situation, and it has not been widely applied.
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Wave Equation Numerical Simulation
and RTM With Mixed Staggered-Grid
Finite-Difference Schemes
Wei Liu1,2*, Ziduo Hu1,2, Xueshan Yong1,2, Gengxin Peng3, Zhonghua Xu1,2 and Linghe Han1,2

1Research Institute of Petroleum Exploration and Development-Northwest, PetroChina, Lanzhou, China, 2Key Laboratory of
Petroleum Resources of CNPC, Lanzhou, China, 3Tarim Oilfield Company, PetroChina, Korla, China

For the conventional staggered-grid finite-difference scheme (C-SFD), although the spatial
finite-difference (FD) operator can reach 2Mth-order accuracy, the FD discrete wave
equation is the only second-order accuracy, leading to low modeling accuracy and
poor stability. We proposed a new mixed staggered-grid finite-difference scheme
(M-SFD) by constructing the spatial FD operator using axial and off-axial grid points
jointly to approximate the first-order spatial partial derivative. This scheme is suitable for
modeling the stress–velocity acoustic and elastic wave equation. Then, based on the
time–space domain dispersion relation and the Taylor series expansion, we derived the
analytical expression of the FD coefficients. Theoretically, the FD discrete acoustic wave
equation and P- or S-wave in the FD discrete elastic wave equation given by M-SFD can
reach the arbitrary even-order accuracy. For acoustic wave modeling, with almost identical
computational costs, M-SFD can achieve higher modeling accuracy than C-SFD.
Moreover, with a larger time step used in M-SFD than that used in C-SFD, M-SFD can
achieve higher computational efficiency and reach higher modeling accuracy. For elastic
wave simulation, compared to C-SFD, M-SFD can obtain higher modeling accuracy with
almost the same computational efficiency when the FD coefficients are calculated based
on the S-wave time–space domain dispersion relation. Solving the split elastic wave
equation with M-SFD can further improve the modeling accuracy but will decrease the
efficiency and increase the memory usage as well. Stability analysis shows that M-SFD has
better stability than C-SFD for both acoustic and elastic wave simulations. ApplyingM-SFD
to reverse time migration (RTM), the imaging artifacts caused by the numerical dispersion
are effectively eliminated, which improves the imaging accuracy and resolution of deep
formation.

Keywords: mixed staggered-grid finite-difference, numerical simulation, dispersion relation, finite-difference
coefficients, numerical dispersion

1 INTRODUCTION

Wave equation simulation is an important technique to study the characteristics of seismic waves in
complex media (Carcione, 2015; Cao and Chen, 2018), and a key kernel in reverse time migration
(RTM) (Virieux et al., 2011; Berkhout, 2014) and full waveform inversion (FWI) (Pratt et al., 1998;
Virieux and Operto, 2009). Compared to the pseudo-spectral method (Reshef et al., 1988; Mittet,
2021) and finite-element method (Marfurt, 1984; Moczo et al., 2010; Moczo et al., 2011), the finite-
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difference (FD) method has the advantage of high computational
efficiency, small memory occupation and easy implementation
(Alford et al., 1974; Mulder, 2017). Hence, the FD method has
become the most widely used numerical method for wave
propagation simulation (Alterman and Karal, 1968; Chen
et al., 2021). However, the inherent numerical dispersion in
FD methods seriously affects the modeling accuracy (Alford
et al., 1974; Dablain, 1986) and leads to an adverse impact on
RTM and FWI results (Ren et al., 2021). So suppressing the
numerical dispersion to improve the modeling accuracy is an
important issue for the FD method.

Dablain (1986) pointed out that approximating the temporal
and spatial partial derivatives with high-order FD operators can
reduce the numerical dispersion. Unfortunately, the temporal
high-order FD operator significantly increases the amount of
computation and decreases the stability. Hence, conventional FD
(C-FD) and staggered-grid FD (C-SFD) commonly adopt
temporal second-order and spatial 2Mth-order FD operators
(Fornberg, 1988). With the FD coefficients calculated based on

the space domain dispersion relation and Taylor series expansion
(TE), the spatial FD operators in C-FD and C-SFD can achieve
2Mth-order accuracy, but the FD discrete wave equations are still
only second-order accuracy (Liu and Sen, 2009). However, wave
equation simulation is implemented by solving the FD discrete
wave equation iteratively. So in order to improve the modeling
accuracy, we should try to increase the accuracy of the FD discrete
wave equation rather than improve separately the accuracy of the
temporal and spatial FD operators. Liu and Sen (2009; 2011)
proposed to calculate the FD coefficients of C-FD and C-SFD
based on the time–space domain dispersion relation and TE,
which makes the 2D and 3D FD discrete wave equations reach
2Mth-order accuracy along 8 and 48 propagation directions
respectively, but the accuracy is still second-order along with
the rest of the directions. In addition to the aforementioned TE
methods, the least squares (LS) methods are also widely adopted
for computing the FD coefficients by minimizing the error of
dispersion relation, phase velocity, or group velocity (Geller and
Takeuchi, 1998; Chu and Stoffa, 2012). The LS methods usually

FIGURE 1 | Schematic representation of the relative position of the wave-field variables and elastic parameters in (A) acoustic wave and (B) elastic wave staggered-
grid FD schemes.

FIGURE 2 | Schematic representation of the spatial FD operators of (A) C-SFD and (B–E) M-SFD (N=1, 2, 3, and 4).
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improve the accuracy of wavefield components in the medium-
high frequency band but decays some accuracy of the low-
frequency component. Liu (2013; 2014) found that by
minimizing the relative error instead of the absolute error of
space domain or time-space domain dispersion relation, the
global optimal solution can be obtained without iterations.

In addition to ameliorating the method for computing the FD
coefficients, constructing a more reasonable FD stencil is another
important way to improve the modeling accuracy. For the 2D
scalar wave equation, Liu and Sen (2013) developed a rhombus FD
scheme. The FD discrete wave equation can reach 2Mth-order
accuracy along with all propagation directions with the FD
coefficients calculated based on the time-space domain
dispersion relation. However, the length of the spatial FD
operator increases rapidly with M, which makes it very
computationally expensive. Wang et al. (2016) proposed an FD
scheme by combining the C-FD and rhombus FD schemes, which
balanced the accuracy and efficiency. Motivated by the widely used
mixed-grid FD scheme in the frequency domain (Jo et al., 1996;
Shin and Sohn, 1998), Hu et al. (2016) proposed a mixed-grid FD
scheme for 2D scalar wave equation modeling in the time–space
domain. The basic idea of Hu et al. (2016) is to express the Laplace
FD operator as the weighted mean of the Laplace FD operators
constructed in the general and rotated Cartesian coordinate
system. The resulting mixed-grid FD scheme is similar to that
of Wang et al. (2016). Hu et al. (2021) derived how to construct a
3D Laplace FD operator with the off-axial grid points and further
proposed a 3D mixed-grid FD scheme, which improved the
accuracy and stability of 3D scalar wave equation simulation.
For the stress–velocity acoustic wave equation, Tan and Huang
(2014) constructed a spatial FD operator with the axial and off-
axial grid points to approximate the first-order spatial partial
derivatives and developed a mixed staggered-grid FD scheme
(M-SFD). This M-SFD can make the FD discrete acoustic wave
equation reach fourth or sixth-order accuracy. Ren and Li (2017)
extended the method of Tan and Huang (2014) to elastic wave
simulation, and the accuracy of P- or S-wave in the FD discrete
elastic wave equation can be up to eighth-order. However, in the
M-SFD of Tan and Huang (2014) and Ren and Li (2017), two sets
of off-axial grid points with different distance to the center of the
spatial FD operator are sometimes assigned the same FD
coefficient, which is unreasonable and makes derivation of the
analytic expression of the FD coefficients too difficult.

For simulation of the stress-velocity acoustic and elastic wave
equation, we intended to develop a modified M-SFD by ensuring
the FD coefficient assigned to the grid points varies with their
distance to the center of the spatial FD operator, which will make
our M-SFD more reasonable than that of Tan and Huang (2014)
and Ren and Li (2017). Then we managed to derive the analytical
solution for calculating the FD coefficients with the time-space
domain dispersion relation and TE. We first discretized the
acoustic and elastic wave equation with our M-SFD and
derived the analytical solution of the FD coefficients. This is
followed by analysis of difference accuracy, numerical dispersion,
and stability. Then, we performed acoustic and elastic numerical
simulation on a simple three-layeredmodel and a typical complex
structural model of the Tarim Basin in Western China and

compared the results of M-SFD and C-SFD. In the end, we
carried out acoustic RTM with M-SFD for synthetic seismic data
on the complex structural model.

2 BASIC THEORY OF M-SFD

2.1 FD Discrete Acoustic and Elastic Wave
Equation Given by M-SFD
The wavefield variables and elastic parameters are defined at
staggered grid points in the staggered-grid FD scheme. Figure 1
displays the relative position of the wavefield variables and elastic
parameters in acoustic and elastic staggered-grid FD schemes.

C-SFD adopts temporal second-order and spatial 2Mth-order
FD operators. The spatial FD operator is constructed only by the
axial grid points, shown in Figure 2A. In this spatial FD operator,
M represents the number of sets of axial grid points with each set
having the same distance to the center. As we know,M sets of grid
points can ensure the spatial FD operator reaches 2Mth-order
accuracy. We can also see that the distance of these points to the
center of the operator increases with M, while the contribution
toward improving the modeling accuracy decreases.

In this article, we proposed a modifiedM-SFD by constructing
the spatial FD operator using the axial and off-axial grid points
while keeping the temporal second-order FD operator
unchanged. In the spatial FD operators, M and N represent
the number of sets of axial and off-axial grid points,
respectively, and each set of grid points is equidistant from the
center of the operator. The identical FD coefficient is assigned to
the grid points in the same set, and different FD coefficients are
assigned to different sets. Figures 2B–E show the four spatial FD
operators of our M-SFD with N=1, 2, 3, and 4. Compared to
C-SFD, M-SFD takes full use of the off-axial grid points near the
center of the spatial FD operator.

The previous M-SFD (Tan and Huang, 2014; Ren and Li, 2017)
inappropriately uses the symmetry of the off-axial grid points. Two
different sets of off-axial grid points with unequal distance to the
center are sometimes improperly regarded as one set and assigned
the same FD coefficient. For example, in Figure 2D, the two sets of
off-axial grid points labeled with② and③ have a different distance
to the center, but the assigned FD coefficients are identical. This
inappropriate assignment of the FD coefficients makes it too difficult
to derive the analytical solution of the FD coefficients.

In the following, we will take M-SFD (N=1) as an example to
derive the FD discrete acoustic and elastic wave equation and
then derive the analytical expression of FD coefficients.

2.1.1 FD Discrete Acoustic Wave Equation
The 2D stress–velocity acoustic wave equation is given by

zP

zt
+ κ(zυx

zx
+ zυz

zz
) � 0,

zυx
zt

+ 1
ρ

zP

zx
� 0,

zυz
zt

+ 1
ρ

zP

zz
� 0, (1)

where P � P(x, z, t) represents the pressure, υx � υx(x, z, t) and
υz � υz(x, z, t) are the particle velocities, ρ � ρ(x, z) represents
the density, and κ � κ(x, z) is the bulk modulus.

Temporal second-order FD operator to approximate zP/zt is
given by
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zP

zt

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
P1
1/2,1/2 − P0

1/2,1/2

Δt , (2)

where Pj
m−1/2,n−1/2 � P[x + (m − 1/2)h, z + (n − 1/2)h, jΔt], and

h and Δt represent the grid size and time step, respectively. The
spatial FD operator of M-SFD (N=1) shown in Figure 2B to
approximate zυx/zx and zυz/zz is

zυx
zx

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
1
h

⎧⎨
⎩∑

M

m�1
am[υ1/2x(m,1/2) − υ1/2x(−m+1,1/2)] + b1[υ1/2x(1,3/2) − υ1/2x(0,3/2) + υ1/2x(1,−1/2) − υ1/2x(0,−1/2)]

⎫⎬
⎭,

zυz
zz

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
1
h

⎧⎨
⎩∑

M

m�1
am[υ1/2z(1/2,m) − υ1/2z(1/2,−m+1)] + b1[υ1/2z(3/2,1) − υ1/2z(3/2,0) + υ1/2z(−1/2,1) − υ1/2z(−1/2,0)]

⎫⎬
⎭,

(3)

where a1, a2, . . . , aM; b1 are the FD coefficients,

υj−1/2x(m,n−1/2) � υx[x +mh, z + (n − 1/2)h, t + (j − 1/2)Δt], and

υj−1/2z(m−1/2,n) � υz[x + (m − 1/2)h, z + nh, t + (j − 1/2)Δt].
Similarly, we can get the FD expressions of zυx/zt, zP/zx, zυz/zt

and zP/zz. Substituting the FD expressions into Eq. 1, we have

P1
1/2,1/2 − P0

1/2,1/2

Δt ≈ − κ

h

⎧⎨
⎩∑

M

m�1
am[υ1/2x(m,1/2) − υ1/2x(−m+1,1/2)] + b1[υ1/2x(1,3/2) − υ1/2x(0,3/2) + υ1/2x(1,−1/2) − υ1/2x(0,−1/2)]

⎫⎬
⎭

−κ
h

⎧⎨
⎩∑

M

m�1
am[υ1/2z(1/2,m) − υ1/2z(1/2,−m+1)] + b1[υ1/2z(3/2,1) − υ1/2z(3/2,0) + υ1/2z(−1/2,1) − υ1/2z(−1/2,0)]

⎫⎬
⎭ ,

υ1/2x(0,1/2) − υ−1/2x(0,1/2)
Δt ≈ − 1

ρh

⎧⎨
⎩∑

M

m�1
am(P0

m−1/2,1/2 − P0
−m+1/2,1/2) + b1[P0

1/2,3/2 − P0
−1/2,3/2 + P0

1/2,−1/2 − P0
−1/2,−1/2]

⎫⎬
⎭,

υ1/2z(1/2,0) − υ−1/2z(1/2,0)
Δt ≈ − 1

ρh

⎧⎨
⎩∑

M

m�1
am(P0

1/2,m−1/2 − P0
1/2,−m+1/2) + b1[P0

3/2,1/2 − P0
3/2,−1/2 + P0

−1/2,1/2 − P0
−1/2,−1/2]

⎫⎬
⎭,

(4)

Equation 4 is the FD discrete acoustic wave equation given by
M-SFD (N=1). Similarly, the FD discrete acoustic wave equation
given by M-SFD (N=2,3,4) can be derived.

2.1.2 FD Discrete Elastic Wave Equation
The 2D stress–velocity elastic wave equation is given by

zυx
zt

� 1
ρ
(zτxx

zx
+ zτxz

zz
), zυz

zt
� 1
ρ
(zτxz

zx
+ zτzz

zz
),

zτxx
zt

� (λ + 2μ) zυx
zx

+ λ
zυz
zz

,
zτzz
zt

� λ
zυx
zx

+(λ + 2μ) zυz
zz

,
zτxz
zt

� μ(zυx
zz

+ zυz
zx
),

(5)

where υx � υx(x, z, t) and υz � υz(x, z, t) are the particle
velocities, τxx � τxx(x, z, t), τzz � τzz(x, z, t) and τxz �
τxz(x, z, t) are the stress components, λ � λ(x, z) and μ �
μ(x, z) are the Lamé constants, and ρ � ρ(x, z) is the density.

Similar to the derivation process of the FD discrete acoustic
wave equation, the FD discrete elastic wave equation given by
M-SFD (N=1) can be derived. Here, we only gave one of the five
FD equations:

υ1x(0,0) − υ0x(0,0)
Δt ≈

1
ρh
∑
M

m�1
am[(τ1/2xx(m−1/2,0) − τ1/2xx(−m+1/2,0)) + (τ1/2xz(0,m−1/2) − τ1/2xz(0,−m+1/2))]

+b1
ρh
⎡⎢⎢⎢⎢⎢⎣ (

τ1/2xx(1/2,1) − τ1/2xx(−1/2,1)) + (τ1/2xx(1/2,−1) − τ1/2xx(−1/2,−1))+
(τ1/2xz(1,1/2) − τ1/2xz(1,−1/2)) + (τ1/2xz(−1,1/2) − τ1/2xz(−1,−1/2))

⎤⎥⎥⎥⎥⎥⎦,

(6)

where a1, a2, . . . , aM; b1 are the FD coefficients.
Using the same method, the FD discrete elastic wave equation

given by M-SFD (N=2,3,4) can be derived.

2.2 FD Coefficient Calculation
2.2.1 FD Coefficient Calculation for the FD Discrete
Acoustic Wave Equation

In a homogeneous medium, Eq. 1 has the following discrete plane
wave solution

Pj
m−1/2,n−1/2 � APe

i[kx(x+(m−1/2)h)+kz(z+(n−1/2)h)−ω(t+jΔt)],
υj−1/2x(m,n−1/2) � Aυxe

i[kx(x+mh)+kz(z+(n−1/2)h)−ω(t+(j−1/2)Δt)],
υj−1/2z(m−1/2,n) � Aυze

i[kx(x+(m−1/2)h)+kz(z+nh)−ω(t+(j−1/2)Δt)],
kx � k cos θ, kz � k sin θ,

(7)

where AP, Aυx, and Aυz are the plane wave amplitude factors, k is
the wavenumber, ω is the angular frequency, and θ is the
propagation angle.

Substituting Eq. 7 into Eq. 4, we can get

AP

Δt sin(
ωΔt
2
) ≈ − κAυx

h

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

−κAυz

h

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭,

Aυx

Δt sin(
ωΔt
2
) ≈

AP

ρh

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭,

Aυz

Δt sin(
ωΔt
2
) ≈

AP

ρh

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭.

(8)

By eliminating AP, Aυx, and Aυz and considering ω � vk and
κ � ρv2, we obtain

1

(vΔt)2 sin(
rkh

2
) ≈

1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

2

+ 1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭

2

, (9)

where v represents wave velocity, and r � vΔt/h is the Courant
number.

Equation 9 represents the dispersion relation of the FD
discrete acoustic wave equation given by M-SFD (N=1), and it
is also named as a time-space domain dispersion relation.

Taking the Taylor series expansion for cosine and sine
functions in Eq. 9, we have

TABLE 1 | Number of the off-axial grid points required by our M-SFD and the
previous M-SFD to make the FD discrete acoustic wave equation reach
specified order accuracy.

FD accuracy Number of the off-axial grid points

Our M-SFD M-SFD proposed by
Tan and Huang

(2014) and Ren and Li (2017)

4th-order 4 4
6th-order 8 12
8th-order 16 24
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⎧⎨
⎩∑

∞

j�0
cjβj(kx/2)2j+1h2j + 2b1⎡⎢⎢⎣∑

∞

j�0
βj(kx/2)2j+1h2j⎤⎥⎥⎦ · ⎡⎢⎢⎣∑

∞

j�1
γjk

2j
z h

2j⎤⎥⎥⎦⎫⎬⎭
2

+⎧⎨⎩∑
∞

j�0
cjβj(kz/2)2j+1h2j + 2b1⎡⎢⎢⎣∑

∞

j�0
βj(kz/2)2j+1h2j⎤⎥⎥⎦ · ⎡⎢⎢⎣∑

∞

j�1
γjk

2j
x h

2j⎤⎥⎥⎦⎫⎬⎭
2

≈ ⎡⎢⎢⎣∑
∞

j�0
r2jβj(k/2)2j+1h2j⎤⎥⎥⎦

2

,

(10)
where the expressions of cj, βj and γj are

cj � ∑
M

m�1
(2m − 1)2j+1am + 2b1, βj �

(−1)j
(2j + 1)!, γj �

(−1)j
(2j)! .

(11)
Comparing the coefficients of k2xk

2
zh

2 on both sides of Eq. 11,
we obtain

c0b1 � r2

24
. (12)

Comparing the coefficients of k2j+2x h2j(j � 0, 1, 2, . . . ,M − 1)
on both sides of Eq. 11, we obtain

c20 � 1 (j � 0) ,
∑
j

p�0
cpcj−pβpβj−p � ∑

j

p�0
βpβj−pr

2j (j � 1, 2,/,M − 1) . (13)

Equation 13 gives c0 � ± 1, when c0 changes from 1 to -1, the
FD coefficients a1, a2, . . . , aM; b1 will become their opposite
number, which doesn’t affect the final result. Therefore, we let
c0 � 1. Then, we can obtain

cj � r2j (j � 0, 1,/,M − 1) . (14)
Substituting Eq. 14 into Eq. 11, we have

∑
M

m�1
(2m − 1)2j+1am + 2b1 � r2j (j � 0, 1,/,M − 1) . (15)

Rewriting Eq. 15 into a matrix equation, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 / 1
12 32 52 / (2M − 1)2
14 34 54 / (2M − 1)4
..
. ..

. ..
.

1 ..
.

12M−2 32M−2 52M−2 / (2M − 1)2M−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 + 2b1
3a2
5a3
..
.

(2M − 1)aM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r2

r4

..

.

r2M−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)
Equation 16 is a type of Vandermonde matrix equation.
Combining c0 � 1 and Eq. 12, we get b1 � r2/24. Then, by

solving Eq. 16, we obtain

b1 � r2

24
, a1 � ∏

2≤ k≤M
[r

2 − (2k − 1)2
1 − (2k − 1)2 ] −

r2

12
,

am � 1
2m − 1

∏
1≤ k≤M,k≠m

r2 − (2k − 1)2
(2m − 1)2 − (2k − 1)2 (m � 2, 3,/,M) .

(17)
Equation 17 gives the analytical expression of the FD

coefficients for M-SFD (N=1). Analogously, the analytical
expression for M-SFD, with N taking any positive integer
value, can be derived as well. The analytical expressions of
the FD coefficients for M-SFD (N=2,3,4) are given in the
Appendix.

2.2.2 FD Coefficient Calculation for the FD Discrete
Elastic Wave Equation

Similar to the derivation of the dispersion relation of the FD
discrete acoustic wave equation, substituting the discrete plane
wave solution into the FD discrete elastic wave equation and
eliminating the amplitude factors, we have

[sin2(ωΔt
2
) − λ + 2μ

ρ
(f2

x + f2
z)][sin2(ωΔt

2
) − μ

ρ
(f2

x + f2
z)] � 0,

fx � Δt
h

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭,

fz � Δt
h

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭.

(18)
Equation 18 is the dispersion relation of the FD discrete elastic

wave equation given by M-SFD (N=1).
From Eq. 18, we can get

1

(vpΔt)2
sin(rpkh

2
) ≈

1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

2

+ 1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭

2

,

(19)
1

(vsΔt)2 sin(
rskh

2
) ≈

1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

2

+ 1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭

2

,

(20)

where vp � ���������(λ + 2μ)/ρ√
and vs �

���
μ/ρ

√
represent the P- and

S-wave velocity, respectively, rp � vpΔt/h and rs � vsΔt/h are
the P- and S-wave Courant numbers.

Eq. 19 and 20 are the P- and S-wave time–space domain
dispersion relation. We can see that Eq. 19 and 20 have the same
format with Eq. 9, so the FD coefficients in the FD discrete elastic
wave equation given by M-SFD (N=1) can be calculated with the
same method. Equations about the FD coefficients are established
via expanding the trigonometric functions in Eq. 19 with the
Taylor series. Solving the equations, we can get
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b1(rp) �
r2p
24
, a1(rp) � ∏

2≤ k≤M

⎡⎣r
2
p − (2k − 1)2
1 − (2k − 1)2

⎤⎦ − r2p
12

,

am(rp) �
1

2m − 1
∏

1≤ k≤M,k≠m

r2p − (2k − 1)2
(2m − 1)2 − (2k − 1)2 (m � 2, 3,/,M) .

(21)
Equation 21 is one of the analytical expressions of the FD

coefficients in the FD discrete elastic wave equation given by
M-SFD (N=1), and the other analytical expression can be obtained
by substituting rp with rs, which is based on the S-wave time-space
domain dispersion relation. Using the same method, the analytical
solutions of the FD coefficients in the discrete elastic wave equations
given byM-SFD (N=2,3,4) can be worked out. They are similar to the
analytical solutions of the FD coefficients in discrete acoustic wave
equation given in the Appendix, just substituting r with rp or rs.

For simulation of the elastic wave equation, the FD coefficients
calculated based on the P-wave time-space domain dispersion
relation ensure high modeling accuracy of P-wave, whereas the
accuracy of S-wave is relatively low. On the contrary, the FD
coefficients calculated from the S-wave time-space domain
dispersion relation ensure high modeling accuracy of S-wave,
but the accuracy of P-wave is relatively low.

2.3 Accuracy Analysis of the FD Discrete
Wave Equation
According to Eq. 9, we can define the error function EM−SFD(N�1)
of the dispersion relation as

EM−SFD(N�1) � 1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

2

+ 1

h2
⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭

2

− 1

(vΔt)2 sin(
rkh

2
).

(22)

Using Eqs. 10–13, Eq. 22 can be rewritten as

EM−SFD(N�1) � ∑
∞

j�M
∑
j

p�0
(cpcj−p − r2j)βpβj−p 1

22j+2
(k2j+2x + k2j+2z )h2j

+∑
∞

j�2
∑
j−1

p�0
⎡⎢⎢⎣4b1γj−p
22p+2

∑
p

q�0
(cqβqβp−q) +

4b1γp+1
22(j−p) ∑

j−p−1

q�0
(cqβqβj−p−1−q)⎤⎥⎥⎦k2p+2x k

2(j−p)
z h2j

−∑
∞

j�2
∑
j−1

p�0
⎡⎢⎢⎣r

2jCp+1
j+1

22j+2
∑
j

q�0
(βqβj−q)⎤⎥⎥⎦k2p+2x k

2(j−p)
z h2j,

(23)
where Cp+1

j+1 � (j+1)!
(p+1)!(j−p)! is the number of combinations, and the

expressions of cj, βj, and γj are given by Eq. 11.
Equation 23 shows that the minimum power of h in the

error function EM−SFD(N�1) is 4, so the FD discrete acoustic
wave equation given by M-SFD (N=1) can reach fourth-order
accuracy. Similarly, we can demonstrate that the discrete
acoustic wave equation given by M-SFD can reach sixth,
sixth, and eighth-order accuracy when N takes 2, 3, and 4.
Theoretically, arbitrary even-order accuracy can be reached by
increasing the value of N. The FD discrete acoustic wave
equations given by C-SFD has only second-order accuracy,
so M-SFD can improve the modeling accuracy more
effectively.

For elastic wave simulation with M-SFD (N=1,2,3,4), with the
FD coefficients calculated based on the P-wave time-space
domain dispersion relation, the P-wave can reach fourth, sixth,
sixth, and eighth-order accuracy respectively, but the accuracy of
S-wave remains second-order. On the contrary, with the FD
coefficients calculated from the S-wave time–space domain
dispersion relation, the S-wave can reach fourth, sixth, sixth,
and eighth-order accuracy, but the accuracy of the P-wave
remains second-order.

Table 1 lists the number of off-axial grid points required by
our M-SFD and the previous M-SFD (Tan and Huang, 2014; Ren
and Li, 2017) to make the FD discrete acoustic wave equations

FIGURE 3 | Phase velocity dispersion curves of the acoustic staggered-grid FD schemes with r � 0.3. (A–C) C-SFD (M=2, 5, and 8); (D–F) M-SFD (M=2, 5, and
8; N=1).
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reach fourth, sixth, and eighth-order accuracy. We can find that
our M-SFD usually needs fewer off-axial grid points than that of
the previous M-SFD, to achieve the same order accuracy, which
enables our M-SFD to be more efficient.

3 ELASTIC WAVE MODELING STRATEGY
WITH HIGH ACCURACY

For elastic wave simulation with M-SFD, the FD coefficients
calculated with P- or S-wave time–space domain dispersion
relation can only ensure the P- or S-wave to achieve high
modeling accuracy respectively. In order to improve the
modeling accuracy of P- and S-wave simultaneously, the
elastic wave Equation 5 can be decomposed as (Li et al., 2007)

υx � υPx + υSx, υz � υPz + υSz , (24)

zυPx
zt

� 1
ρ

zτPxx
zx

,
zυPz
zt

� 1
ρ

zτPzz
zz

,

zτPxx
zt

� (λ + 2μ)(zυx
zx

+ zυz
zz
), zτPzz

zt
� (λ + 2μ)(zυx

zx
+ zυz

zz
) ,

(25)
zυSx
zt

� 1
ρ
(zτ

S
xx

zx
+ zτSxz

zz
), zυSz

zt
� 1
ρ
(zτ

S
xz

zx
+ zτSzz

zz
) ,

zτSxx
zt

� −2μ zυz
zz

,
zτSzz
zt

� −2μ zυx
zx

,
zτSxz
zt

� μ(zυx
zz

+ zυz
zx
) .

(26)
The workflow to solve the decomposed elastic wave equations

with M-SFD is as follows: ① the FD discrete equations for the
decomposed P-wave (equation 25) and S-wave (Equation 26)
with M-SFD are derived. ② The discrete P-wave equation is

FIGURE 4 | Phase velocity dispersion curves of the acoustic staggered-grid FD schemes with r � 0.3. (A–D)M-SFD (M=6;N=1, 2, 3, and 4), (E–H)M-SFD (M=18;
N=1, 2, 3, and 4), (I–L) M-SFD (M=30; N=1, 2, 3, and 4).
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solved with the FD coefficients computed by the P-wave time-
space domain dispersion relation. ③ The discrete S-wave
equation is solved with FD coefficients computed by the
S-wave time-space domain dispersion relation. ④ υx and υz
are updated at the current moment using Eq. 24. ⑤ Steps
②-④ are repeated until the maximum recording time is reached.

According to the aforementioned workflow, the decomposed
P- and S-wave equations are solved with the FD coefficients
calculated based on the P- and S-wave time-space domain

dispersion relation respectively, and then P- and S-wave can
reach high modeling accuracy at the same time.

4 DISPERSION AND STABILITY ANALYSES

4.1 Dispersion Analysis
According to Eq. 9 and the phase velocity formula vph � ω/k, we
define an error function εph(θ) of normalized phase velocity to

FIGURE 5 | P-wave and S-wave phase velocity dispersion curves of the elastic staggered-grid FD schemes with rp � 0.45 and rs � 0.25. (A) C-SFD (M=8) and (B)
M-SFD (M=8; N=1) with the FD coefficients calculated based on the P-wave time–space domain dispersion relation. (C) M-SFD (M=8; N=1) with the FD coefficients
calculated based on the S-wave time–space domain dispersion relation. (D) M-SFD (M=8; N=1), the P-wave, and S-wave phase velocity dispersion curves are plotted
with the FD coefficients calculated based on the P-wave and S-wave time–space domain relation, respectively.

FIGURE 6 | Stability curves of the FD discrete (A) acoustic wave and (B) elastic wave equation given by C-SFD and M-SFD (N=1, 2, 3, and 4). In (B), the FD
coefficients are calculated with the S-wave time–space domain dispersion relation for M-SFD (N=1, 2, 3, and 4).
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describe numerical dispersion for M-SFD (N=1), and εph(θ) is
given by

εph(θ) � vph
v

− 1 � 2
rkh

sin−1(r �
q

√ ) − 1,
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M
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am sin[(m − 1/2)kh cos θ] + 2b1 cos(kh sin θ) sin(kh cos θ2
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2
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am sin[(m − 1/2)kh sin θ] + 2b1 cos(kh cos θ) sin(kh sin θ2

)⎫⎬⎭
2

.

(27)

If εph(θ) equals 1, there is no dispersion, if εph(θ) is smaller
than 1, space dispersion will occur, and if εph(θ) is larger than 1,
time dispersion will occur.

Similarly, we can derive the expressions of εph(θ) for M-SFD
(N=2, 3, and 4). Furthermore, according to the P- and S-wave
time-space domain dispersion relation, the expressions of εph(θ)
for P- and S-wave can be derived.

Using the expressions of εph(θ), we can plot the phase velocity
dispersion curves of C-SFD and M-SFD (N=1, 2, 3, and 4) and
then analyze the numerical dispersion characteristics.

Figure 3 gives the phase velocity dispersion curves of C-SFD
(M=2, 5, 8) and M-SFD (M=2, 5, and 8; N=1) with r � 0.3 for
acoustic wave simulation. This figure shows several important
phenomena: i) Both C-SFD (M=2) and M-SFD (M=2; N=1) have

obvious space dispersion. ii) C-SFD (M=5,8) shows obvious time
dispersion, and the dispersion does not decrease as M increases
from 5 to 8. iii) The dispersion curves of M-SFD (M=5,8)
converge well, and the dispersion decreases further as M
increasing from 5 to 8. Based on the analyses we can infer
that when M is small (M is about 2), both M-SFD and C-SFD
cannot suppress the numerical dispersion well, and when M is
large (M is about 8) M-SFD can suppress the numerical
dispersion more effectively than C-SFD, to gain higher
accuracy for acoustic wave modeling.

Figure 4 gives the phase velocity dispersion curves of M-SFD
(M=6, 18, 30; N=1, 2, 3, and 4) with r � 0.3. This figure involves
three columns (A-D), (E-H), and (I-L); each column has its own
scale on the vertical axis. From this figure, there are some points
that deserve to be mentioned: i) When M is 6, the differences in
the numerical dispersion of M-SFD (N=1,2,3,4) are negligible. ii)
When M is 18, the dispersion curves of M-SFD are of better
convergence and display lower numerical dispersion when N
varies from one to two; nonetheless, the dispersion characteristics
of M-SFD have a high similarity even if N has been increased to
four after then. iii) WhenM is 30, the dispersion curves of M-SFD
are of better convergence asN varies from one to two, and further
increasing N up to four, the dispersion curves will exhibit much
better convergence and even lower numerical dispersion.

From the aforementioned analyses, we can infer that, for
acoustic wave simulation with M-SFD, the modeling accuracy

FIGURE 7 | Acoustic snapshots at 3.0s for the three-layered model. (A,B)C-SFD (M=10) with the time step Δt � 1.0ms and Δt � 1.5ms. (C) (D)M-SFD (M=8;N=1)
with time step Δt � 1.0ms and Δt � 1.5ms.
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is relatively high for general usage withN=1 andM being about 6,
and the modeling accuracy can meet extremely strict conditions
with N=2 and M being about 18. The modeling accuracy further
improves with N=4 and M being about 30, but it is not
recommended due to very low efficiency. So wave equation
modeling with M-SFD can balance modeling accuracy and
efficiency by taking proper values for N and M.

We can also find in Figure 4 that, increasingN from 2 to 3 while
M is fixed, the dispersion characteristics of M-SFD are unchanged.
This is due to the fact that the FD discrete acoustic wave equations
given by M-SFD (N=2,3) are both sixth-order accuracy.

Figure 5 displays the P-wave and S-wave phase velocity
dispersion curves of C-SFD (M=8) and M-SFD (M=8; N=1)
with rp � 0.45 and rs � 0.25. The dispersion curves of M-SFD
(M=8;N=1) are plotted with the FD coefficients calculated with
different methods. From this figure, four conclusions can be
deduced: i) For C-SFD (M=8), both the P-wave and S-wave have
obvious time dispersion. ii) For M-SFD (M=8;N=1), with FD
coefficients calculated based on P-wave time-space domain

dispersion relation, P-wave shows small dispersion but S-wave
shows obvious space dispersion, and with FD coefficients
calculated based on S-wave time-space domain dispersion
relation, S-wave shows small dispersion but P-wave shows
obvious time dispersion. iii) For M-SFD (M=8;N=1), with the
FD coefficients calculated based on the P- and S-wave time-space
domain dispersion relation respectively, the dispersion of both P-
and S-wave is small, i.e., solving the decomposed P- and S-wave
equation with the FD coefficients calculated based on the P- and
S-wave time-space domain dispersion relation respectively can
ensure both P- and S-wave to reach high modeling accuracy. iv)
Comparing Figures 5A, C, the numerical dispersion of both
P-wave and S-wave of M-SFD (M=8;N=1) is smaller than that of
C-SFD (M=8), when the FD coefficients of M-SFD (M=8;N=1)
are calculated based on the S-wave time-space domain dispersion
relation.

4.2 Stability Analysis
According to Eq. 9, we can get

FIGURE 8 | (A) Typical complex structural model of the Tarim Basin in Western China; (B) acoustic record modeled by M-SFD (M=8; N=1) with time step
Δt � 1.5ms; (C) (D) local parts of the acoustic record modeled by C-SFD (M=10) with Δt � 1.0ms and Δt � 1.5ms; (E,F) local parts of the acoustic record modeled by
M-SFD (M=8; N=1) with Δt � 1.0ms and Δt � 1.5ms.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 87354110

Liu et al. Mixed Staggered-Grid Finite-Difference

128

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


1

r2
sin(rkh

2
) ≈

⎧⎨
⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬
⎭

2

+⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬
⎭

2

.

(28)

Letting kx � kz � π/h and considering 0≤ sin2(rkh/2)≤ 1, we
have

r≤ S � 1
�
2

√ ∣∣∣∣∣∣∣∣∑
M
m�1(−1)m−1am − 2b1

∣∣∣∣∣∣∣∣
, (29)

where S is the stability factor.

FIGURE 9 | Elastic snapshots of υx and decomposed P- and S-wave components at 2.4 s for the three-layered model simulated with time step Δt � 1.5ms. (A–C)
C-SFD (M=10), (D–F), and (G–I)M-SFD (M=8;N=1) with the FD coefficients calculated based on the P- and S-wave time-space domain dispersion relation, respectively.
(J–L) M-SFD (M=8; N=1), solving the decomposed P- and S-wave equations.
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Equation 29 represents the stability condition of the FD
discrete acoustic wave equation given by M-SFD (N=1).
Similarly, the stability condition of C-SFD and M-SFD
(N=2,3,4) can also be derived. Furthermore, we can also derive
the P-wave and S-wave stability conditions of C-SFD and M-SFD
(N=1,2,3,4) in the same way.

Figure 6 displays the curve of maximum r limited by the
stability condition with M, which is called the stability curve.
Figure 6A shows the stability curves of the FD discrete
acoustic wave equation given by C-SFD and M-SFD

(N=1,2,3,4). In most cases rp > rs, so the stability of the FD
discrete elastic wave equation is determined by the P-wave
stability. If the FD coefficients are calculated based on the
P-wave time-space domain dispersion relation for M-SFD
(N=1,2,3,4), the P-wave stability curves of C-SFD and
M-SFD (N=1,2,3,4) are identical to Figure 6A. With the FD
coefficients calculated based on the S-wave time-space domain
dispersion relation for M-SFD (N=1,2,3,4), the P-wave
stability curves of C-SFD and M-SFD (N=1,2,3,4) are shown
in Figure 6B.

FIGURE 10 | Elastic snapshots of υz and decomposed P- and S-wave components at 2.4 s for the three-layeredmodel simulated with time step Δt � 1.5ms. (A–C)
C-SFD (M=10), (D–F), and (G–I)M-SFD (M=8;N=1) with the FD coefficients calculated based on the P- and S-wave time-space domain dispersion relation, respectively.
(J–L) M-SFD (M=8; N=1), solving the decomposed P- and S-wave equations.
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Figure 6 demonstrates that for acoustic and elastic wave
simulation, the stability of M-SFD (N=1,2,3,4) is better than
C-SFD. In addition, the stability of M-SFD with N=2 and N=3
is identical. This can be explained by the same order accuracy of
the FD discrete wave equations given by M-SFD (N=2,3).

5 NUMERICAL MODELING AND RTM

5.1 Acoustic Wave Modeling
A three-layer model is designed to test our M-SFD method. The
horizontal and vertical grid numbers of the model are both 601,
with grid size equaling 15 m. The depths of the two reflecting
interfaces are 3000 and 4950m, respectively. The acoustic
velocities of the three layers are 2400, 2700, and 3200 m/s,
respectively. A Ricker wavelet source with a dominant
frequency of 20 Hz is located at (750 m, 750 m). Acoustic
simulations are performed with C-SFD (M=10) and M-SFD
(M=8; N=1), with time step Δt � 1.0ms and Δt � 1.5ms,
respectively. Figure 7 shows the modeling snapshots at 3.0 s.

A complex structure model representative of the Tarim Basin
in Western China is shown in Figure 8A. The horizontal and
vertical grid numbers of the model are 1,201 and 526 respectively,
with grid size equaling 15 m. A Ricker wavelet with a dominant
frequency of 25 Hz is used as the source, located at (9000 m,
150 m). Acoustic numerical simulations are conducted with

C-SFD (M=10) and M-SFD (M=8; N=1), with time step Δt �
1.0ms and Δt � 1.5ms respectively. Figure 8B shows a seismic
record modeled by M-SFD (M=8; N=1) with Δt � 1.5ms. Figures
8C–F give the amplified local parts of the seismic records
modeled by C-SFD (M=10) and M-SFD (M=8; N=1) with Δt �
1.0ms and Δt � 1.5ms.

The spatial FD operators of C-SFD (M=10) and M-SFD (M=8;
N=1) are both composed of 20 grid points, so the computational
amount of one iteration for C-SFD (M=10) and M-SFD (M=8;
N=1) is almost the same. Then, C-SFD (M=10) and M-SFD
(M=8; N=1) will be almost the same computational efficiency
when the same time step is adopted.

Comparing the snapshots in Figure 7 and the amplified
regions of the seismic records in Figures 8C–F, we find that
slight time dispersion exists in the results simulated by C-SFD
(M=10) with time step Δt � 1.0ms. As the time step increasing
to Δt � 1.5ms, the time dispersion becomes more serious.
However, there is no obvious dispersion in the results
modeled by M-SFD (M=8; N=1) with time step Δt � 1.0ms
and Δt � 1.5ms. Therefore, M-SFD (M=8; N=1) can suppress
the numerical dispersion better than C-SFD (M=10), when the
same time step is adopted. That is to say, with almost the same
computational efficiency, M-SFD (M=8; N=1) can reach
higher modeling accuracy than C-SFD (M=10).
Furthermore, we find that M-SFD (M=8; N=1) with Δt �
1.5ms can suppress the numerical dispersion better than

FIGURE 11 | Local parts of the elastic record of the υz component for the complex structural model simulated with time step Δt � 1.0ms: (A) C-SFD (M=10); (B,C)
M-SFD (M=8; N=1) with the FD coefficients calculated based on the P-wave and S-wave time-space domain dispersion relation, respectively; (D) M-SFD (M=8; N=1),
solving the decomposed P-wave and S-wave equation.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 87354113

Liu et al. Mixed Staggered-Grid Finite-Difference

131

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


C-SFD (M=10) with Δt � 1.0ms, so compared to C-SFD
(M=10), M-SFD (M=8; N=1) can take larger time step to
reach higher computational efficiency and get higher
modeling accuracy at the same time.

5.2 Elastic Wave Modeling
The first elastic wave modeling is carried out on a three-layered
model. The horizontal and vertical grid numbers of the model are
both 601, with grid size equaling 10 m. The P-wave velocities of
the three layers are 2400, 2700, and 3200 m/s, and the S-wave
velocities of the three layers are 1500, 1620, and 1800 m/s
respectively. The depths of the two reflectors are 2000 and
3300 m. A Ricker wavelet source with a dominant frequency
of 20 Hz is located at (500 m, 500 m). Figures 9, 10 show the
snapshots of the υx and υz component at 2.4 s modeled by C-SFD
(M=10) and M-SFD (M=8; N=1) with Δt � 1.5ms.

Figures 9, 10 indicate that in the result modeled by C-SFD
(M=10), both P-wave and S-wave show obvious time dispersion.
In the result modeled by M-SFD (M=8; N=1) with the FD
coefficients calculated based on the P-wave time-space domain
dispersion relation, P-wave has no obvious numerical dispersion,
but obvious space dispersion exists in S-wave. In the result
modeled by M-SFD (M=8; N=1) with the FD coefficients

calculated based on the S-wave time-space domain dispersion
relation, S-wave has no obvious numerical dispersion, but slight
time dispersion exists in P-wave. In the result modeled by M-SFD
(M=8; N=1) with the decomposed P- and S-wave equation, both
P- and S-wave have no obvious numerical dispersion.

Based on the aforementioned analyses, we can infer that with
almost the same computational efficiency, M-SFD (M=8; N=1),
with the FD coefficients calculated based on the S-wave time-
space domain dispersion relation, suppresses the numerical
dispersion of both P- and S-wave more effectively to obtain
higher modeling accuracy than C-SFD (M=10). In addition,
solving the decomposed P- and S-wave equations with M-SFD
(M=8; N=1) can further improve the modeling accuracy. But it
will increase the amount of computation and the occupation of
memory. Calculating The FD coefficients based on the P-wave
time-space domain dispersion relation for M-SFD (M=8; N=1) is
not recommended, which causes serious spatial dispersion for
S-wave.

The typical complex structural model of the Tarim Basin of
Western China is used in the following simulation. The P-wave
velocity model is shown in Figure 8A. The S-wave velocity is
generated by dividing 1.8 by the P-wave velocity. The grid size is
changed to 10 m. A Ricker wavelet with a dominant frequency of
20 Hz is used as the source, located at (6000 m, 100 m).
Figure 11A–D display the amplified regions of the seismic
records of the υz component modeled by C-SFD (M=10) and
M-SFD (M=8; N=1) with time step Δt � 1.0ms.

By examining the zoomed region of the seismic records we can
see that the seismic record modeled by C-SFD (M=10) shows
obvious time dispersion. With the FD coefficients calculated
based on the P-wave time-space domain dispersion relation,
the seismic record modeled by M-SFD (M=8; N=1) shows
some space dispersion. With the FD coefficients calculated
based on the S-wave time-space domain dispersion relation,
the seismic record modeled by M-SFD (M=10; N=1) displays
no obvious dispersion. The seismic record obtained by solving the
decomposed P-wave and S-wave equation with M-SFD (M=10;
N=1) also has no obvious dispersion, but it is of high
computational expense and memory occupation.

The aforementioned analyses demonstrate that for elastic
wave simulation, with almost the same computational
efficiency, M-SFD (M=8; N=1), with the FD coefficients
calculated based on the S-wave time-space domain dispersion
relation, can suppress the numerical dispersion more effectively
to reach higher modeling accuracy than C-SFD (M=10).

5.3 Acoustic RTM
We further extend M-SFD to acoustic wave RTM and then
perform an RTM test on the complex structure model in
Figure 8A. The source wavelet is a Ricker wavelet with a
dominant frequency of 25 Hz. And 150 shot gathers without
numerical dispersion are modeled by C-SFD (M=15) with a very
small time stepΔt � 0.1ms, which is used as the input gathers for
RTM. Each shot gathered has 600 traces. The source interval is
120 m and the trace interval is 30 m.

We use C-SFD (M=10) and M-SFD (M=8; N=1) as the
wavefield propagation operator of the RTM with the time step

FIGURE 12 | Acoustic wave RTM results with (A)C-SFD (M=10) and (B)
M-SFD (M=8; N=1) for the typical complex structural model of the Tarim Basin
in Western China.
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Δt � 1.5ms. The cross-correlation imaging condition is adopted
and the Laplace filter is used to suppress the low-frequency noise
that existed in the RTM results. Figure 12 shows the final RTM
result with C-SFD (M=10) and M-SFD (M=8; N=1) respectively.
It exhibits that, there are serious imaging artifacts caused by the
numerical dispersion in the deep portion of the RTM result with
C-SFD (M=10). While the imaging artifacts are successfully
suppressed in the RTM result with M-SFD (M=8; N=1). So
M-SFD used as the wavefield propagation operator in RTM
can improve the imaging accuracy and resolution of deep
structures.

6 DISCUSSION

In this section, we discussed the stability of C-SFD andM-SFD for
elastic wave simulation on a medium with a high Poisson’s ratio.
A two-layered model shown in Figure 13 is adopted, with a grid
size equaling 10 m. The Poisson’s ratios of the layer are 0.395 and
0.306. Figure 13(B-E) displays the snapshots of the υz component
at 1.8 s simulated by C-SFD (M=10) and M-SFD (M=8; N=1).

Limited to the stability condition, the simulation by C-SFD
(M=10), with a time step Δt equaling 1.0 ms, is stable, while Δt
increasing to 1.5 ms, it becomes unstable. Similarly, with the FD
coefficients calculated based on the S-wave time-space domain
dispersion relation, the simulation by M-SFD (M=8; N=1) is stable
with Δt � 1.0ms but unstable with Δt � 1.5ms. With the FD

coefficients calculated based on the P-wave time-space domain
dispersion relation, the simulation by M-SFD (M=8; N=1) is stable
with Δt � 1.5ms, but obvious space dispersion exists in the
modeling snapshot. Solving the decomposed P- and S-wave
equations by M-SFD (M=8; N=1) with Δt � 1.5ms is also stable.

The aforementioned analyses show that both C-SFD and
M-SFD are suitable for elastic wave simulation on a model
with a high Poisson’s ratio. However, the stability of M-SFD is
better than C-SFD, when the FD coefficients are calculated based
on the P-wave time-space domain dispersion for M-SFD or the
simulation is implemented by solving the decomposed P- and
S-wave equations with M-SFD. The better stability ensures
M-SFD to adopt a larger time step.

After the comprehensive considerations of the modeling
accuracy and stability, elastic wave simulation with M-SFD by
solving the decomposed P- and S-wave equations could be a
feasible option. Nevertheless, this scheme is at the expense of
rather high computational resources, so its superiority of it should
be further evaluated thoroughly.

7 CONCLUSION

In this article, by constructing the spatial FD operator with the
axial and off-axial grid points jointly to approximate the first-
order spatial derivatives, we developed an M-SFD for acoustic
and elastic wave equation simulation. Furthermore, we

FIGURE 13 | Layered model and snapshots of the υz component simulated by different SFD schemes. (A) Two-layered model. (B) C-SFD (M=10) with Δt � 1ms.
(C) M-SFD (M=8; N=1) with Δt � 1ms, the FD coefficients calculated based on the P-wave time-space domain dispersion relation. (D) M-SFD (M=8; N=1) with
Δt � 1.5ms, the FD coefficients calculated based on the S-wave time-space domain dispersion relation. (E) M-SFD (M=8; N=1) with Δt � 1.5ms, solving the
decomposed P-wave and S-wave equations.
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successfully derived the analytical expression of the FD
coefficients based on the time-space domain dispersion
relation and TE. Then, FD accuracy analysis, dispersion
analysis, stability analysis, numerical simulation, and RTM
tests are performed. Several conclusions can be deduced:

1) The FD discrete acoustic equation given by C-SFD can only
reach the second-order accuracy, while the FD discrete
acoustic equation given by M-SFD (N=1, 2, 4) can reach
the fourth, sixth, or eighth-order accuracy, and theoretically, it
can reach arbitrary even-order accuracy with increasing N
continuously.

2) For acoustic wave simulation, compared to C-SFD, M-SFD
can suppress the numerical dispersion more effectively to
reach higher modeling accuracy with almost the same
computational efficiency. Moreover, M-SFD can achieve
higher computational efficiency by adopting a larger time
step and reach higher modeling accuracy at the same time.

3) The FD coefficients calculated based on P- or S-wave time-
space domain dispersion relation can ensure only the P- or
S-wave in the FD discrete elastic wave equation given by
M-SFD (N=1,2,4) reaches the fourth, sixth, and eighth-order
accuracy respectively. Solving the decomposed P- and S-wave
equation with M-SFD (N=1, 2, 4) can make P- and S-waves
reach the fourth, sixth, and eighth-order accuracy at the
same time.

4) For elastic wave simulation, with almost the same efficiency,
M-SFD, with its FD coefficients calculated based on the S-wave
time-space domain dispersion relation, can suppress both P- and
S-wave dispersion more effectively to achieve higher modeling
accuracy than C-SFD. By solving the decomposed P- and S-wave
equation with M-SFD, the modeling accuracy can be improved
further, but the computation efficiency degrades. The FD
coefficients calculated based on the P-wave time-space domain
dispersion relation should not be adopted for M-SFD, which
causes serious spatial dispersion for the S-wave.

5) For both acoustic and elastic wave simulations, M-SFD has
better stability than C-SFD.

6) Compared to C-SFD, M-SFD used as the wavefield
propagation operator in RTM more effectively eliminates

the imaging artifacts caused by the numerical dispersion,
which successfully improves the imaging accuracy and
resolution of the deep structure.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

WL derived the analytical expression of the FD coefficients and
performed the numerical modeling. ZH performed the numerical
dispersion analysis. XY performed the stability analysis. GP
conducted the RTM. ZX plotted some of the Figures. LH
conducted the elastic wave modeling.

FUNDING

This research is supported by the Project of Science and
Technology of CNPC under the Grant No. 2021DJ3501.

ACKNOWLEDGMENTS

We would like to thank the editor Dr. Jianping Huang and the
two reviewers for their valuable comments and suggestions,
which greatly improved the quality of our article. We also
thank Dr. Dunshi Wu and Dr. Wei Zhu for their help in
revising this English manuscript.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2022.873541/
full#supplementary-material

REFERENCES

Alford, R. M., Kelly, K. R., and Boore, D. M. (1974). Accuracy of Finite-difference
Modeling of the Acoustic Wave Equation. Geophysics 39 (6), 834–842. doi:10.
1190/1.1440470

Alterman, Z., and Karal, F. C. (1968). Propagation of Elastic Waves in
Layered Media by Finite Difference Methods. Bull. Seismol. Soc. Am. 58
(1), 367–398.

Berkhout, A. J. G. (2014). Review Paper: An Outlook on the Future of Seismic
Imaging, Part I: Forward and Reverse Modelling. Geophys. Prospect. 62 (5),
911–930. doi:10.1111/1365-2478.12161

Cao, J., and Chen, J.-B. (2018). A Parameter-Modified Method for Implementing
Surface Topography in Elastic-Wave Finite-Difference Modeling.Geophysics 83
(6), T313–T332. doi:10.1190/geo2018-0098.1

Carcione, J. M. (2015). Wave Fields in Real Media. Oxford: Elsevier.
Chen, J.-B., Cao, J., and Li, Z. (2021). A Comparative Study on the Stress Image and

Adaptive Parameter-Modified Methods for Implementing Free Surface

Boundary Conditions in Elastic Wave Numerical Modeling. Geophysics 86
(6), T451–T467. doi:10.1190/geo2020-0418.1

Chu, C., and Stoffa, P. L. (2012). Determination of Finite-DifferenceWeights Using
Scaled BinomialWindows.Geophysics 77 (3),W17–W26. doi:10.1190/geo2011-
0336.1

Dablain, M. A. (1986). The Application of High-order Differencing to the Scalar
Wave Equation. Geophysics 51 (1), 54–66. doi:10.1190/1.1442040

Fornberg, B. (1988). Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids. Math. Comp. 51, 699–706. doi:10.1090/s0025-5718-1988-
0935077-0

Geller, R. J., and Takeuchi, N. (1998). Optimally Accurate Second-Order Time-
Domain Finite Difference Scheme for the Elastic Equation of Motion: One-
Dimensional Case. Geophys. J. Int. 135 (1), 48–62. doi:10.1046/j.1365-246X.
1998.00596.x

Hu, Z. D., He, Z. H., Liu, W., Wang, Y. C., Han, L. H., Wang, S. J., et al. (2016).
Scalar Wave Equation Modeling Using the Mixed-Grid Finite-Difference
Method in the Time-Space Domain (In Chinese). Chin. J. Geophys 59 (10),
3829–3846. doi:10.6038/cjg20161027

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 87354116

Liu et al. Mixed Staggered-Grid Finite-Difference

134

https://www.frontiersin.org/articles/10.3389/feart.2022.873541/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.873541/full#supplementary-material
https://doi.org/10.1190/1.1440470
https://doi.org/10.1190/1.1440470
https://doi.org/10.1111/1365-2478.12161
https://doi.org/10.1190/geo2018-0098.1
https://doi.org/10.1190/geo2020-0418.1
https://doi.org/10.1190/geo2011-0336.1
https://doi.org/10.1190/geo2011-0336.1
https://doi.org/10.1190/1.1442040
https://doi.org/10.1090/s0025-5718-1988-0935077-0
https://doi.org/10.1090/s0025-5718-1988-0935077-0
https://doi.org/10.1046/j.1365-246X.1998.00596.x
https://doi.org/10.1046/j.1365-246X.1998.00596.x
https://doi.org/10.6038/cjg20161027
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Hu, Z. D., Liu, W., Yong, X. S., Wang, X. W., Han, L. H., and Tian, Y. C. (2021).
Mixed-grid Finite-Difference Method for Numerical Simulation of 3D Wave
Equation in the Time-Space Domain (In Chinese). Chin. J. Geophys 64 (8),
2809–2828. doi:10.6038/cjg2021O0296

Jo, C. H., Shin, C., and Suh, J. H. (1996). An Optimal 9-point, Finite-difference,
Frequency-space, 2-D Scalar Wave Extrapolator. Geophysics 61 (2), 529–537.
doi:10.1190/1.1443979

Li, Z., Zhang, H., Liu, Q., and Han, W. (2007). Numerical Simulation of Elastic
Wavefield Separation by Staggering Grid High-Order Finite-Difference
Algorithm (In Chinese). Oil Geophys. Prospect. 42 (5), 510–515.

Liu, Y. (2013). Globally Optimal Finite-Difference Schemes Based on Least
Squares. Geophysics 78 (4), T113–T132. doi:10.1190/geo2012-0480.1

Liu, Y. (2014). Optimal Staggered-Grid Finite-Difference Schemes Based on Least-
Squares for Wave Equation Modelling. Geophys. J. Int. 197 (2), 1033–1047.
doi:10.1093/gji/ggu032

Liu, Y., and Sen, M. K. (2009). A New Time-Space Domain High-Order Finite-
Difference Method for the Acoustic Wave Equation. J. Comput. Phys. 228 (23),
8779–8806. doi:10.1016/j.jcp.2009.08.027

Liu, Y., and Sen, M. K. (2011). Scalar Wave Equation Modeling with Time-
Space Domain Dispersion-Relation-Based Staggered-Grid Finite-
Difference Schemes. Bull. Seismol. Soc. Am. 101 (1), 141–159. doi:10.
1785/0120100041

Liu, Y., and Sen, M. K. (2013). Time-space Domain Dispersion-Relation-Based
Finite-Difference Method with Arbitrary Even-Order Accuracy for the 2D
Acoustic Wave Equation. J. Comput. Phys. 232 (1), 327–345. doi:10.1016/j.jcp.
2012.08.025

Marfurt, K. J. (1984). Accuracy of Finite-difference and Finite-element Modeling of
the Scalar and ElasticWave Equations.Geophysics 49 (5), 533–549. doi:10.1190/
1.1441689

Mittet, R. (2021). On the Pseudospectral Method and Spectral Accuracy.
Geophysics 86 (3), T127–T142. doi:10.1190/geo2020-0209.1

Moczo, P., Kristek, J., Galis, M., Chaljub, E., and Etienne, V. (2011). 3-D Finite-
Difference, Finite-Element, Discontinuous-Galerkin and Spectral-Element
Schemes Analysed for Their Accuracy with Respect to P-Wave to S-Wave
Speed Ratio. Geophys. J. Int. 187 (3), 1645–1667. doi:10.1111/j.1365-246X.2011.
05221.x

Moczo, P., Kristek, J., Galis, M., and Pazak, P. (2010). On Accuracy of the Finite-
Difference and Finite-Element Schemes with Respect to P-Wave to S-Wave
Speed Ratio. Geophys. J. Int. 182 (1), no. doi:10.1111/j.1365-246X.2010.
04639.x

Mulder, W. A. (2017). A Simple Finite-Difference Scheme for Handling
Topography with the Second-Order Wave Equation. Geophysics 82 (3),
T111–T120. doi:10.1190/geo2016-0212.1

Ren, Z., Dai, X., Bao, Q., Cai, X., and Liu, Y. (2021). Time and Space Dispersion in
Finite Difference and its Influence on Reverse Time Migration and Full-
Waveform Inversion (In Chinese). Chin. J. Geophys 64 (11), 4166–4180.
doi:10.6038/cjg2021P0041

Ren, Z., and Li, Z. C. (2017). Temporal High-Order Staggered-Grid Finite-
Difference Schemes for Elastic Wave Propagation. Geophysics 82 (5),
T207–T224. doi:10.1190/geo2017-0005.1

Reshef, M., Kosloff, D., Edwards, M., and Hsiung, C. (1988). Three-dimensional
Elastic Modeling by the Fourier Method. Geophysics 53 (9), 1184–1193. doi:10.
1190/1.1442558

Pratt, R. G., Shin, C., and Hicks, G. J. (1998). Gauss-Newton and Full Newton
Methods in Frequency-Space Seismic Waveform Inversion. Geophys. J. Int. 133
(2), 341–362. doi:10.1046/j.1365-246X.1998.00498.x

Shin, C., and Sohn, H. (1998). A Frequency-space 2-D Scalar Wave Extrapolator
Using Extended 25-point Finite-difference Operator. Geophysics 63 (1),
289–296. doi:10.1190/1.1444323

Tan, S., and Huang, L. (2014). An Efficient Finite-Difference Method with
High-Order Accuracy in Both Time and Space Domains for Modelling
Scalar-Wave Propagation. Geophys. J. Int. 197 (2), 1250–1267. doi:10.
1093/gji/ggu077

Virieux, J., Calandra, H., and Plessix, R.-É. (2011). A Review of the Spectral,
Pseudo-spectral, Finite-Difference and Finite-Element Modelling Techniques
for Geophysical Imaging. Geophys. Prospect. 59 (5), 794–813. doi:10.1111/j.
1365-2478.2011.00967.x

Virieux, J., and Operto, S. (2009). An Overview of Full-Waveform Inversion in
Exploration Geophysics. Geophysics 74 (6), WCC1–WCC26. doi:10.1190/1.
3238367

Wang, E., Liu, Y., and Sen, M. K. (2016). Effective Finite-Difference Modelling
Methods with 2-D Acoustic Wave Equation Using a Combination of Cross and
Rhombus Stencils. Geophys. J. Int. 206 (3), 1933–1958. doi:10.1093/gji/ggw250

Conflict of Interest: Author GP was employed by Tarim Oilfield Company,
PetroChina.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Hu, Yong, Peng, Xu and Han. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 87354117

Liu et al. Mixed Staggered-Grid Finite-Difference

135

https://doi.org/10.6038/cjg2021O0296
https://doi.org/10.1190/1.1443979
https://doi.org/10.1190/geo2012-0480.1
https://doi.org/10.1093/gji/ggu032
https://doi.org/10.1016/j.jcp.2009.08.027
https://doi.org/10.1785/0120100041
https://doi.org/10.1785/0120100041
https://doi.org/10.1016/j.jcp.2012.08.025
https://doi.org/10.1016/j.jcp.2012.08.025
https://doi.org/10.1190/1.1441689
https://doi.org/10.1190/1.1441689
https://doi.org/10.1190/geo2020-0209.1
https://doi.org/10.1111/j.1365-246X.2011.05221.x
https://doi.org/10.1111/j.1365-246X.2011.05221.x
https://doi.org/10.1111/j.1365-246X.2010.04639.x
https://doi.org/10.1111/j.1365-246X.2010.04639.x
https://doi.org/10.1190/geo2016-0212.1
https://doi.org/10.6038/cjg2021P0041
https://doi.org/10.1190/geo2017-0005.1
https://doi.org/10.1190/1.1442558
https://doi.org/10.1190/1.1442558
https://doi.org/10.1046/j.1365-246X.1998.00498.x
https://doi.org/10.1190/1.1444323
https://doi.org/10.1093/gji/ggu077
https://doi.org/10.1093/gji/ggu077
https://doi.org/10.1111/j.1365-2478.2011.00967.x
https://doi.org/10.1111/j.1365-2478.2011.00967.x
https://doi.org/10.1190/1.3238367
https://doi.org/10.1190/1.3238367
https://doi.org/10.1093/gji/ggw250
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Gradient normalized
least-squares reverse-time
migration imaging technology

Yanfeng Sun1, Xiugang Xu1,2* and Le Tang3

1College of Marine Geosciences, Ocean University of China, Qingdao, China, 2Key Lab of Submarine
Geosciences and Prospecting Techniques, College of Marine Geo Sciences, Ocean University of China
Qingdao, Qingdao, China, 3Department of Earth and Space Sciences, Southern University of Science
and Technology, Shenzhen, China

Least-squares reverse-time migration (LSRTM) can overcome the problems of

low resolution and unbalanced amplitude energy of deep formation imaging in

reverse-time migration (RTM); hence, it can obtain a more accurate imaging

profile. In the conventional conjugate gradient LSRTM, the gradient is obtained

based on cross correlation without a precondition operator, and the source has

a great influence on the gradient, causing the convergence rate to be slow. In

the framework of conventional conjugate gradient LSRTM, a normalized cross-

correlation of the source wavefield was used in this study to effectively weaken

the influence of the source effect and reduce the low-frequency noise. The idea

of normalized cross-correlation of the source wavefield was adopted to

improve the steepest descent gradient to further accelerate the iterative

convergence speed and complete the final migration imaging. Model and

field data examples verify the advantages of the proposed methods over

conventional methods in reducing source effects, improving convergence

speed, and enhancing underground deep illumination.

KEYWORDS

reverse-time migration, least-squares reverse-time migration, conjugate gradient,
normalization, cross-correlation

Introduction

Reverse-time migration (RTM) is considered the most accurate imaging technology

used in complex structure imaging (Baysal et al., 1983). It employs the numerical solution of

the two-way wave equation to reverse continuation seismic records, and it can process

imaging of strong velocity variation and steep dip angles. Because of the conventional RTM,

cross-correlation imaging is the result of migration operator transposition rather than its

inverse and limited acquisition aperture, complex underground structure, and limited

seismic bandwidth. RTM can only provide fuzzy structural information, and therefore, it

cannot obtain accurate imaging results (Claerbout, 1992), which cannot carry out fine

imaging of complex oil and gas reservoirs. Least-squares reverse-timemigration (LSRTM) is

a true-amplitude imaging method based on linear inversion theory, which was first

introduced into seismic inversion by Bamberger et al. (1982). Later, Tarantola (1984)

proposed the theoretical framework of least-squares inversion. Furthermore, many experts
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and scholars have continuously improved the LSRTM and

applied it to the field data. Nemeth et al. (1999) proposed

the least-squares Kirchhoff migration method for irregular

seismic data (such as trace missing and sampling irregular

data) to eliminate the migration artifacts caused by irregular

data. Although it has the above-mentioned advantage, the

calculation accuracy of Kirchhoff wave field propagator is

low and cannot meet the requirements of actual production.

Kuehl and Sacchi (2001a, 2003) proposed the introduction of

the least-squares migration into the wave field propagator, and

subsequent studies mainly focused on the areas such as rapid

calculation of the Hessian matrix, the improvement of imaging

resolution, regularization constraints, and the improvement of

computing efficiency. Yang and Zhang (2008) adopted Fourier

finite-difference migration and forward operator to carry out

post-stack least-squares migration, to eliminate imaging

noise to a certain extent and improve resolution. Wang et al.

(2009) developed a new iterative regularization model of

migration inversion imaging and proposed a hybrid

conjugate gradient algorithm to solve the model. Huang

et al.(2013a, 2013b) achieved good inversion results by using

least-squares Kirchhoff migration algorithm for model and

field data testing. Furthermore, Guo et al. (2015) realized

iterative LSRTM imaging by employing the research of

error functional establishment, RTM data reconstruction

algorithm, Hessian reverse regularization gradient

calculation, and established the implementation process of

LSRTM for field data. Huang et al. (2015) studied the

theoretical method and the processing process of LSRTM

based on static plane wave coding. The test results showed

that this method could effectively suppress the low-frequency

imaging noise and crosstalk noise, and compensate deep

imaging energy, which was an effective amplitude-preserved

imaging strategy.

Although the LSRTM has obvious advantages, there are still

many problems encountered when it is applied to field data. On

the one hand, the LSRTM is computationally inefficient. On the

other hand, because the actual source wavelet is difficult to

estimate, the conventional conjugate gradient method has a

great influence on obtaining the source energy, and it is

difficult to obtain the Hessian inverse, resulting in the

imbalance of underground deep illumination (Zhang et al.,

2013). To solve these problems, geophysicists began to

construct preconditioned operators to approximate the Hessian

inverse and to preprocess the gradient, including damping

constraints (Tarantola, 1984), focusing or smoothness

constraints of common imaging point gathers (Kuehl and

Sacchi, 2001b; Prucha and Biondi, 2002), dip angle constraint

condition (Prucha and Biondi, 2002), prediction operator (Wang

et al., 2003), defuzzification operator (Aoki and Schuster, 2009),

and sparse transform constraints, using the sparse distribution

characteristics of imaging results in the wavelet or curvelet

domains to constrain (Herrmann et al., 2019).

When there is no suitable precondition operator in the

gradient computation of conventional conjugate gradient

LSRTM, the source effect will lead to serious interference with

the migration result, resulting in shallow energy concentration,

insufficient illumination in deep layers, and slow convergence

rate of the iterative process. Normalization can solve the source

effect problem in RTM well. In this study, the source

normalization was introduced into the gradient optimization

process to weaken the influence of the source effect, accelerate the

convergence speed of the algorithm, and obtain the final LSRTM

imaging.

Methods

Born approximation

The constant density acoustic wave equation is

(2 − 1
v2(X)

z2

z2t
)p � δ(X − Xs)δ(t) (1)

where p is the wave field function, v(X) is the velocity at the X
position, and the Xs and X are the position of the source and the

geophone, respectively.

The actual velocity field can be composed of normal field and

disturbance:

1
v2(X) �

1
v20(X)

(1 − α(X)) (2)

By expanding Taylor’s Eq. 2 at v0 and removing the higher

order term, we obtain the following result:

1
v20

− 2Δv
v30

� 1
v20

(1 − α) (3)

where α � 2Δv
v0
, α(X) is the disturbance. After applying Eq. 2 into

(1), and transforming the equation into Fourier frequency

domain, we have

[2 + ω2

v20
(1 − α(X))]P(X,XS,ω) � δ(X − XS) (4)

where P(X,XS,ω) � ∫∞
−∞p(X,XS, t)e−jωtdt.

By expanding Eq. 4,

(2 + ω2

v20
)P(X,XS,ω) � δ(X − XS) + ω2

v20
α(X)P(X,XS,ω) (5)

The total observed wavefield is the sum of the incident field

and the scattered field:

P(X,XS,ω) � P0(X,XS,ω) + PS(X,XS,ω) (6)

Applying Eq. 6 into (5) and decomposing it into two

formulas:
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(2 + ω2

v20
)P0(X,XS,ω) � δ(X − XS) (7)

(2 + ω2

v20
)PS(X,XS,ω) � ω2

v20
α(X)P(X,XS,ω) (8)

where P0 is the background field and Ps is the scattering

disturbance field. The total wavefield can be written as

P(X,XS,ω) � P0(X,XS,ω)
+ ∫∫∫

V
P0(X,X′,ω)ω

2

v20
α(X)P(X,X′,ω)dX′

(9)
where V is the target region of velocity variation. Eq. 9 is the

Lippmann–Schwinger integral formula. Assuming α is small, the

scattering wave field under Born approximation (Liu, 2008) is

expressed by:

PS(X,XS,ω) � ∫∫∫
V
P0(X,X′,ω)ω

2

v20
α(X)P(X, X′,ω)dX′ (10)

Defining m(X) � 2Δv
v30

to replace α(X) in Eq. 10, the wavefield

in Eq. 10 can be obtained from Eqs. 11 and 12 as

(2 + ω2

v20
)P0(X,XS,ω) � δ(X,XS) (11)

(2 + ω2

v20
)PS(X,XS,ω) � ω2m(X)P0(X,XS,ω) (12)

The Born forward operator is represented by vector matrix:

d � Lm (13)

where m is the matrix form of migration profile or reflection

coefficient model, d is the matrix form of simulation data, and L

is the Born approximate forward operator matrix. The

calculation of scattering wavefield can be obtained by forward

simulation of Eqs. 11 and 12.

Conjugate gradient least-squares reverse-
time migration

Conventional RTM can be expressed as

m0(x, z) � LTD (14)

where m0 is the RTM profile, and LT is the approximate

migration operator. There are some errors when replacing

the migration operator with the transpose of the forward

modeling operator. To minimize the difference between

the simulated data and the field data, the error function is

defined as

f (m) � 1
2
‖Lm − D‖2 (15)

After taking partial derivative with respect to m,

g � zf (m)
zm

� LT(Lm − D) (16)

When the gradient g is zero, the optimal solution of the least-

squares problem is obtained:

m � (LTL)−1LTD (17)

where LTL is the Hessian matrix. Because it is so large

and difficult to obtain, the gradient is gradually close to

zero by iteration to avoid getting the inverse of Hessian

matrix.

The cross-correlation conjugate gradient method for solving

Eq. 15 can be expressed as (Huang et al., 2016):

FIGURE 1
Velocity field of the simple model: (A) real velocity model; (B) Gaussian smooth velocity model.
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g(k+1) � LT[Lm(k) − D]

β � g(k+1)g(k+1)

g(k)g(k)

z(k+1) � g(k+1) + βz(k)

α � [z(k+1)]Tg(k+1)
[Lz(k+1)]TLz(k+1)

m(k+1) � m(k) − αz(k+1)

(18)

The gradient g expansion based on the steepest descent

method can be expressed as

g � ∑
t

zSs(t, x, z)
zt

Rres(t, x, z) (19)

where β is the correction factor of the conjugate gradient

method, α is the update step, z is the conjugate gradient, g

is the steepest descent gradient, D is the field data, Ss is the

source forward wave field, and Rres is the backward wavefield of

the residual error between Born approximate forward data and

field data.

It can be seen from Eq. 18 that the difficulty of conjugate

gradient LSRTM method lies in gradient calculation and Born

approximate forward modeling.

dres � Lm(k) − D (20)

dres is the residual of Born approximate forward data and field

data. The calculation of the steepest descent gradient is similar to

the cross-correlation of conventional RTM, except that

conventional RTM is the cross-correlation of field data and

forward wavefield, while the steepest descent gradient is the

cross-correlation of the forward modeling wave field. In the

conventional cross-correlation RTM, because of the use of an

imprecise migration operator, the unbalanced wave field energy

affects the imaging results. When it is close to the source and

geophone with strong energy, the signal may become blurred

(Yang et al., 2018). To weaken the influence of energy imbalance,

the imaging conditions of source-normalized cross-correlation

RTM for compensating underground illumination were

proposed. Considering that the preconditioner in LSRTM of

conjugate gradient method is difficult to obtain and cannot

approximate the Hessian matrix well, the source effect has a

great impact on the gradient. Here, the normalization is used to

improve the calculation process of the steepest descent gradient

and weaken the influence of the source effect.

The source-normalized cross-correlation imaging condition

of the RTM source is

m0(x, z) � ∑tSs(t, x, z)Rs(t, x, z)
∑t(Ss(t, x, z))2

(21)

where RS is the reverse propagation field of seismic record.

FIGURE 2
RTM and LSRTM migration profiles of a simple model. (A) cross-correlation RTM migration result; (B) result of cross-correlation conjugate
gradient LSRTMwith 20 iterations; (C) result of conjugate gradient normalized LSRTMwith 20 iterations; (D) cross-correlation RTM following Laplace
filtering; (E) cross-correlation conjugate gradient LSRTM following Laplace filtering; (F) conjugate gradient normalized LSRTM following Laplace
filtering.
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Likewise, the source-normalized steepest descent gradient

formula of LSRTM is

~g(k+1) � ∑t
zSs(t,x,z)

zt Rres(t, x, z)
∑t(zSs(t,x,z)zt )2 (22)

zSs(t,x,z)
zt is the first-order partial derivative of source forward

propagation field, which is very important for obtaining the zero-

phase imaging profile (Yao and Wu, 2015). Eq. 18 can be

written as

~g(k+1) � LT[Lm(k) − D]����LT[Lm(k) − D]����s
~β � ~g(k+1)~g(k+1)

~g(k)~g(k)

~z(k+1) � ~g(k+1) + ~β~z(k)

~α � [~z(k+1)]T~g(k+1)
[L~z(k+1)]TL~z(k+1)

m(k+1) � m(k) − ~α~z(k+1)

(23)

FIGURE 3
Velocity field and single-shot record of the Marmousi model. (A) real velocity model; (B) Gaussian smooth velocity model; (C) single-shot
record.
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FIGURE 4
RTM and LSRTMof theMarmousi model. (A) RTMmigration results; (B) normalized cross-correlation RTMmigration results; (C) results of cross-
correlation conjugate gradient LSRTM with 15 iterations; (D) results of conjugate gradient normalized LSRTM with 15 iterations; (E) Laplace filtering
results of Figure 4 (A); (F) Laplace filtering results of Figure 4 (B); (G) Laplace filtering results of Figure 4 (C); (H) Laplace filtering results of Figure 4 (D);
(I,J) are partial enlarged views of the red rectangular boxes in Figure 4 (G,H), respectively.
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where ~β is the normalized conjugate gradient correction factor, ~α

is the update step, ~z is the normalized conjugate gradient, and
~g � LT[Lm−D]

‖LT[Lm−D]‖s is the source-normalized steepest descent

gradient. The LSRTM imaging is realized through the iterative

calculation of the above equation.

Model trial

Simple model

The real velocity model and the Gaussian smoothed velocity

model are shown in Figures 1A,B, which is used for RTM and

LSRTM background velocity field. The lateral length of the model

is 1,250 m and the depth is 1,000 m. It consisted of 250 traces

with a trace interval of 5 m and 11 shots with a shot interval of

125 m. The receivers are fixed, and the shot point moves at equal

intervals.

It can be seen that conventional cross-correlation RTM

results contain low-frequency noise (Figure 2A), coupled with

strong near-surface energy caused by the source effect, resulting

in unbalanced wave field energy, weak deep illumination, and

unclear imaging. The LSRTM can solve the problems in RTM

imaging. With an increase in the number of iterations, the data of

Born forward simulation are gradually approaching the field

data, and the migration profile is also gradually close to the

reflection coefficient profile. As can be seen from the red arrows

in Figures 2B,C, after 20 iterations, the noise in the shallow part of

the migration profile gradually disappears, and the energy of the

profile becomes more balanced, yielding clearer deep structure

imaging. Under the same iteration times, the results of LSRTM

processing by conjugate gradient normalization method are

better than that by the conventional conjugate gradient method.

To eliminate low-frequency noise, Laplace filtering is

performed on the profiles processed by RTM, cross-

correlation conjugate gradient LSRTM, and conjugate

gradient normalized LSRTM. From the comparison of red

arrows in Figures 2D–F, it can also be seen that the

amplitude of migration profile obtained by conjugate

gradient LSRTM is more balanced than that obtained by

RTM, and the imaging results of deep structure are better

than that processed by RTM, while the migration profile

obtained by conjugate gradient normalized LSRTM is better

than that processed by the cross-correlation conjugate gradient

LSRTM and RTM in both amplitude equalization and deep

illumination (yellow arrow).

Complex model

To verify the applicability of the conjugate gradient

normalized LSRTM for complex model, imaging experiments

were carried out on the Marmousi model (Figure 3). The velocity

model and the Gaussian smoothed velocity model are shown in

Figures 3A,B. The lateral length of the model is 4,000 m and the

depth is 2,495 m. It consisted of 650 traces with a trace interval of

5 m and 14 shots with a shot interval of 250 m. The receivers were

fixed, and the shot point moved at equal intervals. The seismic

records were obtained using finite-difference forward modeling

(Figure 3C shows the single-shot record).

The experimental work of the complex model was carried out

on a workstation using the Intel(R) Xeon(R) Silver 4210R CPU@

2.40 ghz, 128 GB memory, 64-bit operating system, and an X64-

based processor. The graphics card was NVIDIA GeForce

RTX3090 with 24 GB of video memory. In this computing

environment, both the conventional LSRTM and conjugate

FIGURE 5
Spectrum of LSRTM. (A) spectrum of Figure 4 (g). (B) spectrum of Figure 4 (h).
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gradient normalized LSRTM take approximately 3 min per

iteration.

The real and Gaussian smoothed velocity field of Marmousi

are shown in Figures 4A,B, which is used for the background

velocity field of the RTM and LSRTM migration. From the

migration results shown in Figures 4A,B, both cross-

correlation RTM and normalized cross-correlation RTM will

be contaminated by low-frequency noise (indicated by the yellow

arrow). The low-frequency noise in the shallow part of the cross-

correlation RTM is more serious. Normalized cross-correlation

RTM is better in suppressing the noise in the shallow part, but

there will be a small amount of low-frequency noise in the deep

part. The main reason for this is that although the source-

normalized imaging conditions suppress the shallow strong

energy and enhance the deep illumination, they also enhance

the wave field energy in the continuation process. The LSRTM

can eliminate the low-frequency noise very well. It can be seen

from Figures 4C,D (yellow arrow) that the low-frequency noise

in the shallow part is obviously eliminated by least-squares

processing, and as the number of iterations increases, the

noise will continue to weaken. By comparing the low-

frequency noise suppression results of the two imaging

conditions, under the same number of iterations, the

conjugate gradient normalized LSRTM is more significant for

low-frequency suppression. In contrast, strong shallow low-

frequency noise affects the imaging of underground structures

by RTM. Figures 4E,F (red arrow) clearly show that reverse-time

migration under different imaging conditions does not achieve

accurate imaging of underground structures, some events cannot

reflect accurate structure information well, and there are residual

low-frequency noises in shallow parts. After the LSRTM

processing, it can be seen from Figures 4G,H (red arrows)

that the LSRTM can well eliminate low-frequency noise and

realize accurate imaging of underground structures, and the

overall amplitude of the profile is more balanced. Compare

the underground illumination of the LSRTM under two

FIGURE 6
Seismic record and error curve of simple model. (A) the 6th observation seismic record; (B) the 6th simulation record of Born approximate
forward modeling after 20 iterations by the conventional conjugate gradient cross-correlation LSRTM; (C) the difference between (A,B); (D) the 6th
simulation record of Born approximate forward modeling after 20 iterations by conjugate gradient normalized LSRTM; (E) the difference between
(A,D); (F) the normalized error reduction curve of the observation record and the simulation record.
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different imaging conditions, it can be seen from the two enlarged

images Figures 4I,J (corresponding to the two red dashed

rectangular boxes in Figures 4G,H), the conjugate gradient

normalized LSRTM is significantly stronger for the deep

illumination than the result of the cross-correlation LSRTM.

From the comparison of the whole section, we can also see that

the conjugate gradient normalized LSRTM is better than the

conventional LSRTM for noise suppression in the shallow

part, illumination of the deep part, and imaging of the whole

structure.

The spectrum of Figure 4G is shown in Figure 5A, and the

spectrum of Figure 4H is shown in Figure 5B. Comparing Figures

5A,B, it can be seen that the conjugate gradient normalized

LSRTM has a wider frequency band and more information. This

also shows the superiority of conjugate gradient normalized

LSRTM in the spectrum.

Imaging efficiency comparison

To compare the convergence speed of conjugate gradient

normalized LSRTM and conventional conjugate gradient cross-

correlation LSRTM, Figure 6 shows the comparison between the

seismic records of Born approximate simulation and the

observation records under the same number of iterations for

the same shot in the simple model.

Figure 6A shows the sixth observation seismic record. The

sixth shot simulation records of Born approximate forward

modeling after 20 iterations of conventional conjugate

gradient cross-correlation LSRTM, and conjugate gradient

normalized LSRTM are shown in Figures 6B,D. We calculated

the difference between the simulation record and observation

record of the two LSRTM methods (Figures 6C,E). From the

comparison of Figures 6C,E, it can be seen that under the same

FIGURE 7
Velocity field of field seismic data and single-shot record.
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number of iterations, the Born approximate forward modeling

record using the conjugate gradient normalized LSRTM is closer

to the observation.

The normalized error reduction curve of the observation

record and the simulation is shown in Figure 6F. The abscissa is

the number of iterations of the two LSRTM methods, and the

ordinate is the relative error. The error formula can be

expressed as

Er � |Ro − Rs|
Ro

, (24)

where Er is the relative error, Ro denotes the observation record,

and Rs denotes the simulation record. Figure 6F shows that

compared to the conventional LSRTM, the conjugate gradient

normalized LSRTM converges faster, and the residual error will

eventually converge to a lower level. Therefore, it can be seen

from the above results that the conjugate gradient normalized

LSRTM converges faster than the conventional LSRTM, and its

residual error is smaller after 20 iterations.

Trial processing of field data

To test the adaptability of the method to the field data, two-

dimensional land-based real data were imaged using the conjugate

gradient normalized LSRTM. The velocitymodel of the field data and

FIGURE 8
Comparison of imaging results by different methods. (A) results of conventional normalized cross-correlation RTM filtering; (B) results of
20 iterations of conjugate gradient normalized LSRTM filtering.
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single-shot record are presented in Figures 7A,B. The velocity field of

these data has a horizontal length of 32,050 m and a depth of 7,560 m.

The data consisted of 328 shots with the shot interval of 100m. The

time sampling was 6 s with the sampling rate at 4 ms. Figure 8A

shows the result of conventional normalized cross-correlation RTM

filtering of field data, and Figure 8B shows the result of 20 iterations of

conjugate gradient normalized LSRTM filtering. The conjugate

gradient normalized LSRTM is superior to the conventional

normalized cross-correlation RTM method, in both the

suppression of shallow low-frequency noise and the illumination

of deep structures. The energy of the shallow and deep layers of the

method in this study is more balanced, and the profile imaging is

better, especially for themiddle and shallow imaging (as shown in the

red box). Thus, it is better than the conventional normalized cross-

correlation RTM method.

Conclusion and discussion

This study proposed an effective LSRTM method using the

source-normalized steepest descent gradient. Examples of the

model and field data were carried out, and the main conclusions

are as follows:

1) Compared with the conventional conjugate gradient LSRTM,

the normalized LSRTM can help to reduce shallow low-

frequency noise, enhance underground deep illumination,

and weaken the source effect, which thus improves the

imaging quality of underground structures.

2) Under the same number of iterations, the Born

approximation forward record of the gradient normalized

LSRTM method is closer to the observation record than the

conventional LSRTM method. The convergence speed of the

gradient normalized LSRTM is faster, and its residual error

eventually converges to a lower level.

3) In the present work, only P-waves were considered. The

application of converted waves will be studied in the future

(Nemeth et al., 1999; Kuehl and Scachi, 2001b; Huang et al.,

2013b; Yang et al., 2018).
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