About this Research Topic
This collection aims to explore the frontiers of methods and applications in computational wind engineering. The high flow Reynolds numbers, the complexity and variability of the boundary conditions and geometries, and the multi-scale and multi-physics nature of wind engineering flows all pose challenges towards accurate and efficient numerical modeling. These challenges should be addressed by proposing and evaluating novel methods and modeling frameworks that aim to improve the predictive capability and efficiency of computational wind engineering. Simultaneously, novel applications should be explored to continue to advance the field and contribute towards realizing the full potential of the virtual wind tunnel concept.
Specific topics of interest include, but are not limited to:
• advances in numerical methods;
• advances in (subgrid) turbulence and wall models;
• advances in data-driven modeling, uncertainty quantification and sensitivity analysis;
• advances in the definition of inlet conditions, including modeling non-synoptic and non-neutral wind conditions;
• multi-scale modeling, including coupling of models at the building to regional scale;
• validation studies and applications for assessing wind comfort, pollutant dispersion, building ventilation and cooling, urban heat island effects and flows in complex topography.
Authors are also encouraged to identify future research needs and directions for the computational wind engineering community.
Keywords: Computational Wind Engineering, Computational Fluid Dynamics, Turbulence Modeling, Uncertainty Quantification, Wind Comfort, Pollutant Dispersion, Natural Ventilation, Urban Heat Island Effects
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.