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Editorial on the Research Topic

Graph learning for brain imaging

Unprecedented collections of large-scale brain imaging data, such as MRI, PET,

fMRI, M/EEG, DTI, etc. provide a unique opportunity to deepen our understanding of

the brain working mechanisms, improve prognostic predictions for mental disorders,

and tailor personalized treatment plans for brain diseases. Recent advances in machine

learning and large-scale brain imaging data collection, storage, and sharing lead to a

series of novel interdisciplinary approaches in the fields of computational neuroscience,

signal processing, deep learning, brain imaging, cognitive science, and computational

psychiatry, among which graph learning provides a valuable means to address important

questions in brain imaging.

Graph learning refers to designing effective machine learning and deep learning

methods to extract important information from graphs or exploiting the graph structure

in the data to guide knowledge discovery. Given the complex data structure in different

imaging modalities as well as the networked organizational structure of the human

brain, novel learning methods based on graphs inferred from imaging data, graph

regularizations for the data, and graph embedding of the recorded data, have shown

great promise in modeling the interactions of multiple brain regions, information fusion

among networks derived from different brain imaging modalities, latent space modeling

of the high dimensional brain networks, and quantifying topological neurobiomarkers.

This Research Topic synergizes the state-of-the-art discoveries in terms of new

computational brain imaging models and insights into brain mechanisms through the

lens of brain networks and graph learning.

We accepted 10 manuscripts recommended by the reviewers after evaluating the

novelty and quality of the contributions. In order to introduce these works inmore detail,
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we highlight three domains in this Editorial that emerge from

the 10 contributions to this Research Topic.

(1) Leveraging graph theory and network analysis to identify

the biomarkers of brain disorders. Specifically, Cui et al.

used graph theory analysis based on fMRI to investigate

alterations of brain functional networks in profound

bilateral congenital sensorineural hearing loss (SNHL)

in infants, and this study also provided novel insights

into functional network alterations in the early stage

of profound bilateral congenital SNHL. Zhu et al.

explored the aberrant functional connectivity of sensory

motor networks in BD-I (bipolar disorder type I)

patients and its associations with executive dysfunction.

The authors found a significant relationship between

the abnormal intranetwork and internetwork functional

connectivity values, clinical symptoms and executive

function, which provides new information for exploring

the neural physiopathology of executive dysfunction in

BD-I patients. Chen Y. et al. proposed an invertible

dynamic Graph Convolutional Network (GCN) model to

identify Autism Spectrum Disorder (ASD) and investigate

the alterations of connectivity patterns associated with

the disorder. Their proposed method achieves superior

classification performance, which provides an interpretable

deep learning model for brain connectivity analysis and is

of great potential in studying other brain-related disorders.

(2) Using new machine learning frameworks to understand the

functional and structural brain maps, and an integration

of both functional and structural brain networks. In this

category, Jon Albers et al. presented a novel approach

for quantifying the relationship between brain function

and structure and the integration of these in terms of

processing units. Their proposed framework naturally can

be extended to a general multimodal modeling framework.

Eschenburg et al. proposed a cortical segmentation

method that, given resting-state connectivity features

readily computed during conventional MRI pre-processing

and a set of corresponding training labels, can generate

cortical parcellations for new MRI data. They found

that, in all cases, graph neural networks consistently and

significantly outperformed a baseline neural network. Qiu

et al. proposed an individualized cortical parcellation

based on graph neural networks to learn the reliable

functional characteristics of each brain parcel on a

large fMRI dataset and to infer the areal probability

of each vertex on unseen subjects. This study provides

new avenues for precise mapping of cortical areas onto

individual brains, and shows potential applications in

locating personalized functional areas in the diagnosis and

treatment of neurological disorders.

(3) Methodology oriented papers for data augmentation,

multimodal fusion, and graph signal processing. For

example, Zhang et al. proposed a novel approach to

generate a fused cognitive network with the optimal

performance in discriminating cognitive states by using

graph learning. Their findings suggest that the fused

cognitive network provides the potential to develop new

mind decoding approaches. Chen X. et al. proposed to use

a data augmentation method by adding artificial samples

generated using graph empirical mode decomposition,

which can improve the average classification performance.

Furthermore, their augmentation method can be extended

to other similar small datasets. Jiao et al. proposed to

use the low-frequency components to approximate the

extended source activation after graph Fourier transform

(GFT) and built a bidirectional long-short term memory

(BiLSTM) neural network to solve the Electrophysiological

source imaging problem. Chan et al. proposed a new

framework called Joining Omics and Imaging Networks via

Graph Convolutional Layers and Attention (JOIN-GCLA),

which consists of multiple graph convolution layers and

an attention mechanism to combine multi-modal imaging

data and multi-omics datasets for the prediction of PD.

The JOIN-GCLA architecture makes it possible to analyze

multi-modal imaging data along with multi-omics datasets.

These collected articles have made outstanding

contributions to the field of brain science and brain

imaging. The research can make a broader impact on

the brain disorder diagnostic and prognostic analysis

by using network theory, deep learning, and graph

signal processing.
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Learning Cortical Parcellations Using
Graph Neural Networks
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Deep learning has been applied to magnetic resonance imaging (MRI) for a variety of

purposes, ranging from the acceleration of image acquisition and image denoising to

tissue segmentation and disease diagnosis. Convolutional neural networks have been

particularly useful for analyzing MRI data due to the regularly sampled spatial and

temporal nature of the data. However, advances in the field of brain imaging have led

to network- and surface-based analyses that are often better represented in the graph

domain. In this analysis, we propose a general purpose cortical segmentation method

that, given resting-state connectivity features readily computed during conventional

MRI pre-processing and a set of corresponding training labels, can generate cortical

parcellations for new MRI data. We applied recent advances in the field of graph

neural networks to the problem of cortical surface segmentation, using resting-state

connectivity to learn discrete maps of the human neocortex. We found that graph

neural networks accurately learn low-dimensional representations of functional brain

connectivity that can be naturally extended to map the cortices of new datasets.

After optimizing over algorithm type, network architecture, and training features, our

approach yielded mean classification accuracies of 79.91% relative to a previously

published parcellation. We describe how some hyperparameter choices including

training and testing data duration, network architecture, and algorithm choice affect

model performance.

Keywords: graph neural network, parcellation, functional connectivity, representation learning, segmentation,

brain, human

1. INTRODUCTION

Neural network approaches such as multi-layer feed-forward networks have been applied to a wide
variety of tasks in medical imaging, ranging from disease classification to tissue segmentation.
However, these networks do not always take into account the true spatial relationships between
data points. Convolutional neural network approaches, such as those applied to static images or
dynamic video streams, learn translationally-invariant, multidimensional kernel filters over the
data domain. Both these methods assume that the data is sampled regularly in space, allowing
convolution and pooling of information from fixed neighborhood topologies. However, real-world
data, such as graph-structured data, is often sampled on irregular domains. Data sampled from
graph domains often contains non-uniform topology—individual data points can vary in their
neighborhood structure, and notions of direction (e.g., up, down, left, right) do not generalize
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well to graphs. This makes learning filters to process graph-
structured data very difficult with conventional neural network
approaches.

Graph neural networks are a class of neural network models
that operate on data distributed over a graph domain. Data are
sampled from a graph with an explicit structure defined by a
set of nodes and edges. These models have been shown to be
useful for graph and node classification tasks, along with learning
generative models of data distributed over graphs (Kipf and
Welling, 2016b; Hamilton et al., 2017; Zhao et al., 2019; Zeng
et al., 2020). Graph convolution networks (GCN), proposed in
Defferrard et al. (2016), generalized the idea of convolutional
networks on grid-like data to data distributed over irregular
domains by applying Chebyshev polynomial approximations of
spectral filters to graph data. Graph attention networks (GAT)
are based on the idea of an attention function, a learned global
function that selectively aggregates information across node
neighborhoods. The attention function maps a query and set of
key-value pairs to an output (Vaswani et al., 2017). The output
is defined as a weighted sum of the values, where weights are
computed using some similarity or kernel function of the key-
value pairs.

It is believed that biological signals distributed over the
cortical manifold are locally stationary. Given a small cortical
patch, voxels sampled from the patch will display similar
functional and structural connectivity patterns, cortical thickness
and myelin density measures, and gene expression profiles,
among various other signals (Glasser and van Essen, 2011;
Amunts et al., 2020; Wagstyl et al., 2020). Prior studies have
attempted to delineate and map the cortex by identifying
contiguous cortical subregions that are characterized by relative
uniformity of these signals (Blumensath et al., 2013; Arslan et al.,
2015; Baldassano et al., 2015; Gordon et al., 2016). This work is
based on the fundamental idea that contiguous regions of the
cortex with similar connectivity and histological properties will
tend to function as coherent units. Biological signals distributed
over the cortex exhibit local but not global stationarity, so
any attempt to parcellate the cortex must take both properties
into account.

Most brain imaging studies utilize cortical atlases—template
maps of the cortex that can be deformed and mapped to
individual subjects’ brains—to discretize the cortical manifold
and simplify downstream analyses (Fischl et al., 2004; Bullmore
and Sporns, 2012). However, it remains an open question how
to “apply” existing cortical maps to unmapped data. A recent
study identified considerable variability in the size, topological
organization, and existence of cortical areas defined by functional
connectivity across individuals, raising the question of how best
to utilize the biological properties of any given unmapped dataset
to drive the application of a cortical atlas to this new data
(Glasser et al., 2016).

Here, we developed an approach to perform cortical
segmentation—a node classification problem—using graph
neural networks. The cerebral cortex is often represented as
a folded sheet, and a usable parcellation approach must be
applicable to this sort of data. Neural networks can be extended
to account for non-stationarity in MRI volumes by incorporating

3D-volumetric convolution kernels. However, these approaches
are not easily applied to data distributed over 2-D manifolds like
the cortical surface. Additionally, more recent large-scale studies
interpolate neurological signals, like cortical activation patterns
or various histological scalarmeasures, onto the cortical manifold
to mitigate the potential for mixing signals from anatomically
close yet geodesically distant cortical regions, e.g., across sulci
(Yeo et al., 2011; Glasser et al., 2013). These studies could also
benefit from methods that operate directly on graphs.

With the growth of large-scale open-source brain imaging
databases [ADNI (Petersen et al., 2010), ABCD (Hagler et al.,
2019), HCP (Glasser et al., 2013)], neuroscientists now have
access to high-quality data that can be used for training models
that can then be applied to new datasets. We leveraged the
statistical properties of these high-quality datasets to inform
the segmentation of new data using multiple variants of graph
neural networks. We considered graph convolution networks
and two variants of graph attention networks: standard attention
networks (Velickovic et al., 2018), and attention networks with
adaptive network depth weighting (a.k.a. jumping-knowledge
networks, Xu et al., 2018). We examined how algorithm
choice and network parameterization affect cortical segmentation
performance. We trained our classification models on high-
quality open-source imaging data, and tested them on two
datasets with unique spatial and temporal resolutions and
different pre-processing pipelines. Other methods have been
proposed for delineating the cortex using various registration
(Fischl et al., 2004; Robinson et al., 2018), neural network
(Hacker et al., 2013; Glasser et al., 2016), label fusion (Asman
and Landman, 2012, 2014; Liu et al., 2016), and even graph
neural network approaches (Cucurull et al., 2018; Gopinath et al.,
2019). To the best of our knowledge, this is the first attempt to
examine the performance of common variants of graph neural
networks in a whole-brain cortical classification setting and
explore their ability to generalize to new datasets using functional
magnetic resonance imaging (fMRI). While other studies have
proposed the use of graph neural networks to delineate cortical
areas, these studies did not perform in-depth analyses on how
network architecture, algorithm parameter choices, feature type,
and training and testing data parameters impact the predicted
cortical maps (Cucurull et al., 2018; Gopinath et al., 2019). To
this end, we studied how each of these different variables impacts
model performance and prediction reliability.

2. BACKGROUND

2.1. Graph Convolution Networks
Convolution filters over graphs using spectral graph theory were
introduced by Defferrard et al. (2016). For a graph G = (V ,E)
with N nodes and symmetric normalized graph Laplacian, L,
define the eigendecomposition of L = U3UT , where the
columns of U are the spectral eigenfunctions of G. Given a graph
signal x ∈ R

N distributed over G, the graph Fourier transform of
x is defined as x̃ = UTx, and its inverse graph Fourier transform
as x = Ux̃. Graph filtering of x is then defined as gθ (L)x =
Ugθ (3)UTx, where gθ is an arbitrary function of the eigenvalues.
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FIGURE 1 | Each layer, l, implicitly aggregates more distant neighborhood

signals into a node update. The first layer aggregates information over

immediately adjacent neighbors, while the second, third, etc. layers

incorporate signals from increasingly larger neighborhoods.

Because these filters are not localized in space, Defferrard et al.
(2016) proposed to use a Chebyshev polynomial approximation
to learn spatially localized filters directly from the Laplacian,
reducing the filtering operation of a x to

gθ (L)x =

K−1
∑

k=0

θkTk(L)x (1)

where Tk(L) and is the k-th polynomial and θk the k-th learnable
Chebyshev coefficient. The polynomial order, K, determines the
local spatial extent of the filter. If two nodes i and j are more than
K hops apart, the filter value gθ (L)i,j = 0.

In Kipf and Welling (2016a), the polynomial order is set
to K = 1 so that the spatial extent of the filter is limited
to directly adjacent nodes and only one coefficient weight is
learned per feature component in each layer of the network.
GivenHl ∈ R

N×kl , the input feature matrix for layer l, the model
learns kl Chebyshev coefficients, in addition to any additional
mixing weights. The model incorporates signals from the l-ring
neighborhood into the update of a node—each layer implicitly
aggregates over a larger neighborhood than the previous layer
(Figure 1).

2.2. Graph Attention Networks
Whereas graph convolution networks uniformly aggregate
local neighborhood signals, attention networks learn optimized
weights for each node neighbor using an attention mechanism.
Assume we have data distributed over a graph with N nodes.
Inputs to the network are characterized by matrix X ∈ R

N×F ,
where F is the number of features. Assume that at any given layer,
the inputs to layer l are represented as Hl ∈ R

N×kl , where H0 =
X. We define the immediate neighborhood of node i as Ni. For
two vectors En, Ep ∈ Rk, we define their feature-wise concatenation
as n||p ∈ R2k. In Velickovic et al. (2018), the attention paid by
node i to node j ∈ Ni at layer l is computed using a single-layer
perceptron as

αi,j = σ (EaT(Wl Ehli||W
l Ehlj)) (2)

where σ is a fixed non-linearity, Wl ∈ R
kl+1×kl is a learned

layer-specific global linear projection matrix and Ea, the attention
function, is also learned. The attention weights for j ∈ Ni are

then normalized by a softmax operation. To update the features
of node i at the (l + 1)-st layer, we compute the weighted
sum over the neighborhood Ni with weights defined by the
normalized attentions.

Velickovic et al. (2018) propose an ensemble (“multi-head”)
attention mechanism, such that, for each layer, M different
attention functions are learned, eachwith their ownweight vector
Ealm. The outputs of each attention head are concatenated feature-
wise. In the last layer, the number of hidden channels is the
number of output classes, C—rather than concatenating across
attention heads, the outputs of all attention heads are averaged to
generate the final network output.

2.3. Jumping-Knowledge Networks
While graph neural networks have been instrumental in applying
principles of deep learning to graph-structured domains, they
are not without pitfalls (Kipf and Welling, 2016a; Velickovic
et al., 2018; Xu et al., 2018; Wang et al., 2019). Graph neural
networks are prone to over-fitting of model parameters and over-
smoothing of learned embeddings as network depth increases
(Wang et al., 2019). One approach to alleviate this over-
smoothing is to adaptively learn optimized network depths for
each node in the graph, a method (Xu et al., 2018) describe as
“jumping-knowledge networks.”

Suppose we have a network with L layers, such that the l-
th layer embedding hli for node i is learned by incorporating
signals from up to l hops away from node i. The layer aggregation
function described by Xu et al. (2018) learns a unique output
embedding by optimally combining the embeddings of each
hidden layer as

yi = σ (g(h1i , h
2
i , . . . , h

L
i )) (3)

Xu et al. (2018) propose three permutation-invariant aggregation
functions for g(x): concatenation, max-pooling, and long-short
term memory (LSTM) (Hochreiter and Schmidhuber, 1997).
The output, y, is then passed through a linear feed-forward
layer to generate the network probabilities. Concatenation is
a global aggregator (i.e., the same function is applied to all
graph nodes) whereas max-pooling and LSTM both learn node-
specific aggregations. Further, by utilizing a bi-directional LSTM
layer, jumping-knowledge networks learn layer-specific attention
weights for each node which can then be interrogated post-
hoc (Figure 2). In this analysis, we incorporated the jumping-
knowledge mechanism into an attention network framework
and examine cortical segmentation performance using both the
LSTM and the concatenation functions.

Given a sequence of samples x1, x2, . . . xt , an LSTM layer
maintains a memory of previously observed samples in the
sequence in order to learn dependencies between elements.
Here, the “sequence” consists of the embeddings learned
at each consecutive hidden layer, h1, h2 . . . hL, representing
increasingly-abstract representations of functional connectivity.
We hypothesized that, because the jumping knowledge networks
learn optimized node-specific network depths, these networks
would be able to more-accurately segment the cortex of new data.
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FIGURE 2 | Graph attention network employing a jumping-knowledge mechanism. The network takes as input the graph adjacency structure and the nodewise

feature matrix, and outputs a node-by-label logit matrix. Each GATConv block is composed of multiple attention heads. Arrows indicate the direction of processing.

Aggregation function, g(x), which takes as input the embeddings from each GATConv block, learns a convex combination of the layer-wise embeddings.

3. DATA

The data used in this study come from the Human Connectome
Project (HCP) (Glasser et al., 2013, 2016) and from the Midnight
Scan Club (MSC) (Gordon et al., 2017). We were specifically
interested in examining how models trained on one dataset
would perform on another dataset. Specifically, we trained
models on data from the HCP (Glasser et al., 2013), one of
the highest quality MRI datasets to date in terms of spatial and
temporal sampling of brain signals. We then tested our models
on images from both the HCP and MSC datasets.

3.1. HCP Dataset
The HCP consortium collected data on a set of 1,200 young
adult subjects 21–35 years of age. We utilized a subset of 268
of these datasets (22–35 years; 153 female) from the S500 data
release. The HCP acquired high-resolution 0.7 mm isotropic T1w
(TI = 1,000 ms, TR = 2,400 ms, TE = 2.14 ms, FA = 8◦, FOV
= 224 mm, matrix = 320, 256 saggital slices) and T2w images
(TR = 3,200 ms, TE = 565 ms, FOV = 224 mm, matrix = 320).
T1w and T2w data were pre-processed using a custom pipeline
developed by the HCP (Glasser et al., 2013) using FreeSurfer
(Fischl et al., 2004) to generate highly refined cortical surface
meshes at the white/gray and pial/CSF interfaces. The surface
meshes were spatially normalized to Montreal Neurological
Institute (MNI) space and resampled to have 32k vertices. The
pipeline also generated four surface-based scalar maps: cortical
thickness, Gaussian curvature along the cortical manifold, sulcal
depth of the cortical gyri and sulci, and a myelin density map
characterizing the spatially-varying myelin content of the gray
matter (Glasser and van Essen, 2011).

For each subject, the HCP acquired four resting-state
functional MRI (rs-fMRI) images: TR = 0.720 s, TE = 33 ms,
multi-band factor = 8, FA = 52◦, FOV = 208 × 180 mm, Matrix
= 104 × 90 × 72, voxel size: 2 × 2 × 2 mm. The authors refer to
these four acquisitions as: REST1_LR, REST1_RL, REST2_LR,
REST2_RL. The images were acquired over two separate
days, such that REST1_LR / REST1_RL were acquired on 1
day, and REST2_LR / REST2_RL were acquired on another.
Each session acquired 1,200 time-points, such that each BOLD

session was roughly 15-min in length. These images were pre-
processed using a custom pipeline developed by theHCP (Glasser
et al., 2013). BOLD images were denoised using subject-ICA
(Beckmann et al., 2005) and FIX (Salimi-Khorshidi et al., 2014)
to automatically identify and remove spurious noise components,
and motion parameters were regressed out. No additional global
signal regression, tissue regression, temporal filtering, or motion
scrubbing were performed. Denoised voxel time series were
interpolated onto the fsaverage_LR32k surface mesh using a
barycentric averaging algorithm, and then smoothed at FWHM=
2 mm to avoid the mixing of signals across gyri. Surface-mapped
BOLD signals were brought into register across subjects using a
multi-modal surface matching algorithm (Robinson et al., 2014)
to the fsaverage_LR32 space and vectorized to CIFTI format,
mapping each surface vertex to an index in a vector (toward the
end of this work, we learned that different HCP data releases were
processed using different versions of this surface registration
algorithm; we discuss this in more depth in section 5.5). CIFTI
vector indices, referred to as “grayordinates” by the HCP, are in
spatial correspondence across subjects (i.e., index i in subjects
s and t correspond to roughly the same anatomical location),
such that each subject shares the same mesh topology and
adjacency structure. Time-series for each session were demeaned
and temporally concatenated.

The HCP consortium developed a pipeline to generate high-
resolution multi-modal cortical parcellations (MMP) with 180
cortical areas using a spatial derivative based algorithm (Glasser
et al., 2016) computed from resting and task-based fMRI
signals, cortical thickness, myelin content, and cortical curvature.
Manual editing was performed on the group-average gradient-
based parcellation to ensure that boundaries conformed across
feature types. Using a set of 210 independent subjects as training
data, the authors trained a 3-layer neural network model to
learn these boundary-based regions. The authors trained 180
classifiers, one for each cortical area, to distinguish a single
cortical area from its immediately adjacent neighborhood (using
a 30 mm radius neighborhood size) in a binary classification
setting. At test time, the authors compared the probabilities of
the predicted areal class across all classifiers in a single find-the-
biggest operation. Label predictions were regularized tominimize
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spurious predictions and “holes” in the final parcellation.
Apart from the 30 mm radius around each group-level area,
the classifiers did not incorporate any spatial information at
training or test time. Predictions generated from subjects in the
training set were used to compute a group-average multi-modal
parcellation which can be freely downloaded here: https://balsa.
wustl.edu/DLabel/show/nn6K. The individual parcellations and
the classifier itself have not yet been publically released.

We utilized the subject-level cortical parcellations generated
by the HCP as the training set for our models. Subject-level
parcellations for a subset of 449 subjects were made available by
an HCP investigator (see Acknowledgements).

3.2. Midnight Scan Club Dataset
The Midnight Scan Club dataset consists of MRI data acquired
on ten individual subjects (5 female) ranging in age from 24
to 34 years of age: https://openneuro.org/datasets/ds000224/
versions/1.0.3 (Gordon et al., 2017). The MCP study acquired
5 h of resting-state data on each participant in ten 30-min
acquisitions, with the goal being to develop high-precision,
individual-specific functional connectomes to yield deeper
insight into the reproducibility and inter-subject differences in
functional connectivity.

The MSC dataset preprocessing followed a roughly similar
pipeline to that of the HCP dataset. Four 0.8 mm isotropic T1w
images (TI = 1,000 ms, TR = 2,400 ms, TE = 3.74 ms, FA = 8◦,
matrix = 224, saggital) and four 0.8 mm isotropic T2w images
(TR = 3,200 ms, TE = 479 ms, matrix = 224 slices, saggital)
were acquired. T1w images were processed using FreeSurfer to
generate refined cortical mesh representations of the white/gray
and pial/CSF tissue interfaces, which were subsequently warped
to the fsaverage_LR brain surface using the FreeSurfer shape-
based spherical registration method, and resampled to 164K and
32k vertex resolutions. The authors performed myelin mapping
by computing the volumetric T1/T2 ratio and interpolating the
voxel-wise myelin densities onto the 32k surface mesh.

MSC resting-state data were acquired using gradient-echo
EPI sequences with the following parameters: TR = 2.2 s, TE
= 27 ms, FA = 90◦, voxel size = 4 × 4 × 4 mm. The MSC
applied slice timing correction, and distortion correction using
subject-specific mean field maps. Images were demeaned and
detrended, and global, ventricular, and white matter signals
were regressed out. Images were interpolated using least squares
spectral estimation and band-pass filtered (0.009 Hz < f <

0.08 Hz), and then scrubbed of high-motion volumes. Denoised
volumetric resting-state data were then interpolated onto the
midthickness 32k vertex mesh. The MSC study did not perform
subject-ICA and FIX to remove spurious noise components from
the temporal signals.

4. METHODS

Here, we describe processing steps applied to the HCP and MSC
fMRI datasets for this analysis. We begin with the minimally
pre-processed BOLD and scalar data interpolated onto the 32k
surface mesh.

4.1. Regional Functional Connectivity
As mentioned above in sections 3.1 and 3.2, the MSC and
HCP studies aligned cortical surfaces to the fsaverage_LR surface
space. The result is such that, given two meshes S and T, the
anatomical location of grayordinate i in mesh S corresponds
to generally the same anatomical location as grayordinate i in
mesh T, allowing for direct comparisons between the same
grayordinates across individual surfaces.

In cases where spatial normalization of surfaces has not been
performed, it would be incorrect to assume that two grayordinate
indices correspond to the same anatomical locations across
subjects. In order to alleviate the requirement of explicit vertex-
wise correspondence across training, validation, and testing
datasets, we assume that most imaging studies will first run
FreeSurfer to generate subject-specific folding-based cortical
parcellations (Desikan et al., 2006; Destrieux et al., 2010). We can
then aggregate the high-dimensional vertex-wise connectivity
features over one of these cortical atlases, as in Eschenburg
et al. (2018), and simultaneously reduce the feature vector
dimension. This guarantees that column indices of feature
vectors represent anatomically comparable variables across
individuals corresponding to connectivity to whole cortical
areas rather than explicit vertex-vertex connections. These low-
dimensional vectors are agnostic to the original mesh resolution
and degree of spatial normalization. As long as resting-state
data are collected for a given study, and that good spatial
correspondence between the T1w and BOLD image can be
achieved, we can apply our processing steps to this data.

Given a BOLD time series matrix T ∈ R
32k×t and cortical atlas

with k regions, we consider the set of vertices assigned to region
k and compute the mean time-series of region k as:

T̂k,t =
1

|k|

∑

i∈k

Ti,t (4)

where T̂ ∈ R
K×t is the matrix of mean regional time-series. We

compute R ∈ R
32k×K , the Pearson cross-correlation between T

and T̂, where Ri,k represents the temporal correlation between a
vertex i and cortical region k. These cross-correlation vectors are
used as features to train our models.

In this analysis, we generated connectivity features using
the Destrieux atlas (Destrieux et al., 2010) with 75 regions per
hemisphere, as it is computed by FreeSurfer and represents a
reasonably high-resolution partition of the cortical surface that
we hypothesize captures vertex-to-vertex functional variability
well. In section 5.5, we show how classification performance
depends on which cortical atlas we regionalize over, and on which
representation of functional connectivity models are trained on.

We also examined segmentation performance when models
were trained on continuous representations of functional
connectivity, computed by group-ICA and dual regression. As
part of their preprocessing, the HCP applied group-ICA to
a set of 1,003 subjects using MELODIC’s Incremental Group
PCA (MIGP) algorithm to compute group-ICA components
of dimensions 15, 25, 50, and 100 (Smith et al., 2014). We
dual-regressed these group-level components onto each subject’s
resting-state data to generate subject-level ICA components.
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These subject-level regression coefficients were fed into our
models as alternative representations of functional connectivity.

4.2. Markers of Global Spatial Position
We also included measures of position in grayordinate space
(global spatial position) as model features (Cucurull et al., 2018;
Gopinath et al., 2019). Surface mesh Laplacian eigenvectors
represent a spatial variance decomposition of the cortical
mesh into orthogonal bases along the cortical manifold. We
retained the first three eigenvectors corresponding to eigenvalues
λ1, λ2, λ3. The eigenfunctions represent an intrinsic coordinate
system of the surface that is invariant to rotations and
translations of the surface mesh.

The eigendecomposition computes eigenvectors up to a sign
flip (that is, the positive/negative direction of an eigenvector
is arbitrary), and eigenvector ordering is not guaranteed to be
equivalent across individuals. We chose a template subject and
flipped (multiplied by −1) and reordered the eigenvectors of all
remaining subjects with respect to this template subject via the
Hungarian algorithm, to identify the lowest cost vector matching
for every template-test pair (here, we minimized the Pearson
correlation distance).

4.3. Incorporating a Spatial Prior
The models trained in this analysis represent multi-class
classifiers. By default, each vertex considers every label (out of a
total of 180 possible labels) as a viable candidate. This approach,
however, does not take advantage of the fact that training and
testing data are in spatial correspondence with one another. For
example, if we know a vertex is likely to be assigned a label in
the occipital lobe, we can restrict the set of candidate labels for
this vertex to a subset of the possible 180 areas e.g., only those
areas in the primary and higher-order visual areas. We restricted
the label search space of a test vertex to only those labels with
non-zero probabilities in the training set. If a given vertex i is
never assigned label k in the training data, we set the estimated
network probability of label k for vertex i to 0, such that it is never
assigned label k in the test set.We implemented the application of
the spatial prior by multiplying the network logits with a binary
masking matrix at test time (e.g., the prior is not included in the
model training phase).

Applying the spatial prior is only feasible if the test image
surfacemesh has been spatially normalized to the fsaverage_LR32
space. Given that many studies will be interested in performing
multi-subject inference over surface-based maps, we believe this
is a reasonable assumption to make. We examine classification
performance when excluding and including a spatial prior.

4.4. Regional Homogeneity
We examined whether our models learned parcellations in
which the features of each parcel were homogenous. We defined
homogeneity for a given parcellation as in Gordon et al. (2016).
Assume we are given a resting-state fMRI BOLD time series
matrix T ∈ R

32k×t and precomputed cortical parcellation with
L cortical areas. For each parcel l ∈ L with nl vertices, we
computed the Pearson correlation matrix, Rl ∈ R

nl×32k, between
the parcel BOLD signals with the BOLD signals of the entire

cortex. We then applied the singular value decomposition as
R = USVT , where S is the diagonal matrix of singular values
σ1, σ2 . . . σN . Gordon et al. (2016) defined homogeneity as ρl =

100 ∗ (σ 2
1

/

∑k
i=1 σ 2

i ), the percent of variance explained by

the first principal component. The variance captured by the
first component describes how well a single vector explains
the functional connectivity profiles of a given cortical parcel—
the larger the variance explained, the more homogeneous the
parcel connectivity. We computed an estimate of functional
homogeneity for each parcel and averaged the estimates across
all parcels.

For scalar features (e.g., myelin density), we estimated
homogeneity as the ratio of within-parcel variance to between-
parcel variance. For each parcel l ∈ L and feature F ∈
R
32k, we computed the mean, µl, and variance, σ 2

l
of the

parcel-wise features. Homogeneity is estimated as
∑L

i=1(σ
2
l
−

σ̄ 2)
/

∑L
i=1(µl − µ̄)2, where σ̄ 2 and µ̄ are the average variance

and average mean estimates across all parcels. A smaller
value represents more homogeneous parcels. This measure of
homogeneity is a dimensionless quantity that allows for the
comparison of estimates across datasets and features.

4.5. Model Training and Parameter
Selection
We implemented each graph neural network model using
the Python package Deep Graph Library (DGL) and PyTorch
(Wang et al., 2020). Code developed for this analysis for
training these models can be found here: https://github.com/
kristianeschenburg/parcellearning/.

We split the 268 HCP subjects into 100 training samples,
20 validation samples, and 148 test samples. For parameter
optimization, we trained models on three types of datasets:
(1) 100 15-min images (REST1_LR session for each subject),
(2) 100 60-min images (temporal concatenation of all four
rfMRI sessions), and (3), 400 15-min images (four independent
rfMRI sessions per subject). We used a validation dataset of 20
subjects of the same scanning duration as the training data to
determine when to stop training. We examined the performance
of each model on test hold-out test set of different scanning
durations: 15-min (four independent rfMRI sessions), 30-min
(concatenation of two 15-min rfMRI sessions acquired on the
same day), and 60-min (temporal concatenation of all four 15-
min rfMRI sessions). The outcome variable to be predicted
was the subject-level parcellation provided to us by MG. We
performed similar temporal concatenation of the MSC data,
concatenating the original ten 30-min sessions into five 60-min
sessions, two 150-min sessions, and one 300-min session.

The features used for parameter optimization were the
regionalized functional correlations between each cortical vertex
and all regions in the Destrieux atlas, the first three Laplacian
eigenvector embeddings capturing global location information,
and four scalar maps corresponding to sulcal depth, Gaussian
curvature, myelin density, and cortical thickness for a total of 81
features at each vertex. We concatenated these features column-
wise into a matrix for each subject.
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We refer to the graph convolution network, graph attention
network, and jumping knowledge network as “GCN,” “GAT,” and
“JKGAT,” respectively. We compared the performance of these
algorithm variants to a simple linear feed-forward neural network
(“baseline”) where only the features at each vertex were used to
classify cortical nodes (no adjacency information is incorporated
into the learning process). We optimized model performance
over network depth, number of hidden channels per layer, feature
dropout rate, number of attention heads (GAT and JKGAT
only), and aggregation function (JKGAT only). The “default”
parameters are 3 layers, a dropout rate of 0.1, 32 hidden channels,
4 attention heads per layer, and an LSTM aggregation function.
We varied one parameter at a time: for example, when comparing
networks with 3 layers vs. 6 layers, all other parameters are fixed
to the default values.

For training, we used the cross entropy loss implemented
in Pytorch, a LeakyReLU activation function with a negative
slope of 0.2, and Adam optimization with a weight decay rate of
0.0005 and L2 weight regularization of 0.005.We trained in mini-
batches of size s = 10 graphs and accumulated the gradients for
each batch before computing the gradient update. We trained for
1,000 epochs using an early stopping criteria evaluated on the
validation loss. At each iteration, we retained the model if the
current validation loss was lower than the previous validation
loss. If validation loss did not decrease for 150 epochs, training
was terminated and the best performing model was saved. In
practice, we found that few of the models trained for more than
1,000 epochs.

5. RESULTS

We first examine the best performing model of those we
considered in our analysis, and discuss the classification accuracy
and reproducibility of parcellations predicted by this model in
relation to parcellations computed by Glasser et al. (2016), which
we call “ground truth” in what follows. We define classification
accuracy as the percentage of correctly predicted vertex labels
relative to the ground truth maps. We then show broadly how
algorithm choice, network architecture, and training and testing
image scan duration affect overall model performance. Finally,
we illustrate how classification performance is related to the
features used during model training and testing.

5.1. Prediction Accuracy in the Best
Performing Model
Network optimization was performed using labels provided by
Matthew Glasser (see section Acknowledgments) using subject
data from the S500 HCP release. As mentioned in section 3.1, the
S1200 data release uses a different surface registration algorithm,
producing subject-level resting-state data that is better aligned
with the labels provided by Glasser. Final model evaluation was
performed using this S1200 data. The best performing model
was the 6-layer graph attention network (GAT), with 4 attention
heads per layer, 32 hidden channels per layer, and a dropout
rate of 0.1, and incorporated a spatial prior at test time. When
trained on features computed using ICA, this model achieved

FIGURE 3 | Subject-level (A) and group-level (B) predictions generated by the

optimal model in the MSC (left) and HCP (middle) datasets.

a mean classification accuracy of 79.91% on the S1200 subjects.
We henceforth refer to this model as the “optimal” model, and
discuss results associated with this model below.

In Figure 3A, we show predicted parcellations computed
using this model for exemplar HCP and MSC test subjects.
Predicted subject-level parcellations closely resemble the
“ground truth” maps generated by Glasser et al. (2016) (see
Supplementary Material for additional examples of predictions
generated by each model). No specific contiguity constraint was
imposed on the parcellations; it is inherent in the graph neural
network models. Subjects from the MSC dataset do not have
corresponding ground truth maps against which to compare
their predictions. In Figure 3B, we show consensus predictions
for each dataset, compared against the publicly released HCP-
MMP atlas. Consensus predictions were computed by assigning
a vertex to the label most frequently assigned to that vertex
across the individual test subject predictions. We see that
both consensus predictions closely resemble the HCP-MMP
atlas—however, the consensus map derived from the MSC
subjects shows noisy parcel boundaries and disconnected areal
components (lateral and medial prefrontal areas).

Figure 4 shows the spatial distribution of classification
accuracy rates averaged across all subjects in the HCP test
set. Average accuracy is shown as a map distributed over the
cortex, with values ranging between 0 (blue; vertex incorrectly
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FIGURE 4 | Average accuracy maps for the HCP test set using the optimal

model, computed by averaging the classification error maps across all HCP

dataset test subjects. (A) Blue (0.0) = vertex incorrectly classified in all test

subjects; Red (1.0) = vertex correctly classified in all test subjects. Areas in the

lateral prefrontal and ventral/dorsal occipital areas showed the highest error

rates. (B) Errors occur most frequently at the boundaries of cortical regions.

Black lines represent areal boundaries of the consensus prediction parcellation.

classified in all subjects) and 1 (red; vertex classified correctly
in all subjects). Vertices near the centers of cortical regions
were classified correctly more frequently, while prediction errors
tended to be distributed near the boundaries of cortical regions.
To some degree, this effect can be attributed to the idea that
boundaries between putative cortical areas represent segments of
the cortex with changing biological properties. In developing a
statistical model to assign a vertex to one cortical area or another,
vertices at region boundaries will have more ambiguous label
assignments simply due to the fact that their feature vectors
are sampled from a space with greater distributional overlap
across various cortical areas. However, another explanation is
that MRI resolution is low with respect to cortical functional
features like cell columns. Consequently, this means that voxel-
wise measurements reflect mixtures of connectivity patterns
due to partial volume effects, thereby reducing the ability of
a statistical model to distinguish between two cortical areas at
parcel boundaries.

While errors globally tended to be concentrated at region
boundaries, some cortical areas showed higher error rates than
others. Of note are higher error rates for cortical areas in the

superior temporal areas in the fundus and medial superior
temporal regions (FST, MST, MT, and V4t), and lateral higher-
order visual areas (LO1, LO2, LO3). In the lateral prefrontal
area, we found that the premotor eye field (PEF) shows higher
error rates relative to adjacent regions (55b and frontal eye field,
FEF). Glasser et al. (2016) identified three unique topologies
(typical, shifted, and split) for area 55b that varied across subjects,
which might to some degree explain the higher error rates in
area PEF.

We quantified the relationship between the spatial
distribution of errors and their distance to cortical areal
boundaries. We computed the fraction of misclassified
vertices that occurred at a geodesic distance of k edges
(geodesic hops) from any cortical areal boundary. Using
the default model parameters and regionalized features, we
examined this distribution of errors as function of distance
(Supplementary Material). Over 50% of misclassified vertices
occurred at the region boundaries i.e., those vertices in the
ground-truth parcellations that are directly adjacent to different
regions, and roughly 30 and 12% of misclassified vertices were 1
and 2 edges away from areal boundaries, respectively. The simple
feed-forward network misclassified vertices further away from
region boundaries, while the three graph neural networks tended
to misclassify only vertices close to the boundary.

Although the MSC subjects do not have corresponding
ground truth maps, the data is in spatial correspondence with
the fsaverage_LR32 map. We computed the correspondence of
maps predicted on the MSC subjects with the HCP-MMP atlas
in order to gain insight into the accuracy of these predictions.
Mean correspondence of predictions computed on the MSC and
HCP datasets with the HCP-MMP atlas was 70.04 and 84.35%,
respectively (Supplementary Material).

Mean model probabilities computed by the optimal model for
a set of cortical areas are illustrated in Figure 5, showing that
areal probabilities are local in nature and restricted to precise
anatomical locations. Individual areal probabilities computed by
Glasser et al. (2016) and Coalson et al. (2018) using their binary
classifier are shown in the bottom row. Probability estimates in
the HCP dataset mirror those estimated by the original HCP
classifier (Glasser et al., 2016), indicating that ourmodel faithfully
learns the proper spatial extent of each cortical areal. Estimates in
theMSC dataset were slightly more diffuse and less confident (see
areas V1 and 46), such that probability mass was assigned tomore
disparate areas of the cortex, relative to probabilities estimated in
the HCP dataset.

5.2. Model Predictions Are Reproducible
Across Scanning Sessions
The HCP acquired four 15-min resting-state acquisitions per
subject, while the MSC acquired ten 30-min resting-state
acquisitions per subject. We examined how reliable predictions
generated from each resting-state session were within subjects,
and how this reliability related to the scanning duration. For a
given subject, we estimated session-specific reproducibility using
datasets of the same scan duration. We defined reproducibility
using the Dice coefficient, which measures the similarity of two
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FIGURE 5 | Mean model probabilities for a subset of cortical areas for the HCP (top) and MSC (middle) datasets computed using the optimal model, and the MMP

binary class probabilities from Glasser et al. (2016) and Coalson et al. (2018) (bottom). Probabilistic maps are illustrated for areas V1, 46, TE1a, LIPv, MT, RSC, and

10r. These maps are thresholded at a minimum probability value of 0.005, the probability of randomly assigning a vertex to one of the 180 cortical areas.

images. The Dice coefficient between sets J and K is defined as

Dice(J,K) =
2 ∗ |J ∩ K|

|J| + |K|
(5)

Figure 6 shows the mean areal Dice coefficients for each dataset
from predictions computed using the optimal model. Predictions
made on the HCP dataset were more reproducible across
the entire cortex than predictions on the MSC dataset. In
both datasets, sensory/motor and areas near the angular and
supramarginal gyri were most reproducible. The visual cortex
showed high reproducibility in area V1, while areas V2-V4 were
less reproducible.

Figure 7A, shows mean reproducibility estimates computed
on the HCP and MSC datasets. Predictions for both datasets
were highly reproducible across repeated scanning sessions, and
reproducibility increased with increasing scan duration. Mean
Dice coefficient estimates in the HCP dataset were 0.81 and
0.86 for the 15- and 30-min durations. In the MSC dataset, the
mean Dice coefficients were 0.69, 0.76, and 0.82 for the 30-, 60-,
and 150-min durations. When fixing scan duration (e.g., 30-min
durations), HCP data were more reproducible than the MSC
data. One feature that we could not evaluate directly was the
reproducibility of the ground truth maps. Glasser et al. (2016)
reported maximum andmedian Dice coefficient estimates of 0.75
and 0.72 for repeated scans on HCP participants, indicating that
our classifier learned parcellations that were more reproducible
than those generated by the binary classifier.

Figure 7B illustrates subject-level reproducibility estimates
in the MSC dataset. Predictions for subject MSC08 were
significantly less reliable, relative to the other subjects. Gordon
et al. (2017) also identified MSC08 as having low reproducibility
with respect to various graph theoretical metrics computed
from the functional connectivity matrices. They noted that

subjectMSC08 reported restlessness, displayed considerable head
motion, and repeatedly fell asleep during the scanning sessions.

Area-level topologies were also reproducible across scanning
sessions (Supplementary Material). Glasser et al. (2016)
identified three unique topologies of area 55b, corresponding to
a “typical,” “shifted,” or “split” organization pattern, relative to
the group-average cortical map. We were able to identify these
same unique topologies in individual subjects, indicating that
graph neural networks are identifying the unique connectivity
fingerprints of each cortical area, and not simply learning where
the parcel is. When we examined the predictions generated by
the optimal model on the four independent 15-min scanning
sessions, we found that, within a given subject, the topological
organization of area 55b was reproducible. Allowing for
some variability in prediction boundaries and location due to
resampling of the connectivity data and partial volume effects,
this indicates that the graph neural networks are learning
subject-specific topological layouts that incorporate their unique
connectivity and histology patterns.

5.3. Parcellations Learned by GNNs Are
Homogeneous in Their Scalar and
Connectivity Measures
If a model is in fact learning unique, discrete areas, the
distribution of biological features in these areas should
be relatively homogeneous. Unsupervised learning clustering
algorithms designed to parcellate the cortex often incorporate
objective functions that attempt to maximize within-parcel
similarity and minimize between-parcel similarity. On the other
hand, gradient-based approaches, like those proposed in Gordon
et al. (2016), Wig et al. (2014), and Schaefer et al. (2018), do not
directlymaximize an objective function in thismanner, but rather
identify putative areal boundaries by identifying where biological
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FIGURE 6 | Mean areal Dice coefficient estimates, computed using the optimal model on 15-min HCP data (4 repeated sessions) and 30-min MSC data (10 repeated

sessions), normalized with the same color map. Estimates are computed for each area, and averaged across all subjects.

FIGURE 7 | Reproducibility of predicted maps generated by the optimal model, as measured using the Dice coefficient. We show mean reproducibility estimates for

each dataset (A), and subject-level estimates in the Midnight Scan Club (B). Estimates for 60 min (HCP) and 300 min (MSC) durations are not shown in (A) because

there is only one image per subject for these durations. Similarly, estimates for 150 min durations are not shown in (B) because there is only a single scalar estimate

per subject.

properties change dramatically in a small local neighborhood. It
is assumed that this biological gradient captures differences in
homogeneity between adjacent cortical areas. In order to group
cortical voxels together, these voxels must inherently share some
physical or biological traits.

We computed homogeneity estimates as described in
section 4.4. In order to compare the homogeneity and variance
estimates between predicted parcellations, we fixed the features
used to compute these estimates. For a given subject, we
computed functional homogeneity using that subject’s 60-min
BOLD signal (HCP), or the 300-min BOLD signal (MSC). In
this way, the only variable that changed with respect to the
homogeneity estimate is the cortical map itself. We could then
make meaningful quantitative comparisons between estimates
for different maps, with respect to a given dataset.

Cortical maps predicted in the HCP dataset explained,
on average, 67.03% of the functional variation while MSC
predictions explained 72.90% (t: −3.137, p: 0.007) (Figure 8).
We hypothesized that parcellations predicted in the HCP dataset
would be more homogeneous, relative to those learned in the
MSC dataset, due to the fact that the MSC imaging data were
acquired with lower spatial resolution than that acquired by
the HCP and therefore subject to greater partial volume effects.
Homogeneity of myelin (t: −0.910, p: 0.377) and sulcal depth
(t: 1.043, p: 0.320) was not statistically different between the two
datasets, while curvature was less variable in the HCP dataset (t:
−2.423, p: 0.029). Contrary to our hypothesis, cortical thickness
was less variable in the MSC dataset (t: 11.562, p: 0.000). This
is likely a consequence of using a dimensionless representation
of homogeneity, which is internally normalized for each dataset
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FIGURE 8 | Homogeneity of predicted parcellations in the HCP and MSC datasets using the optimal model. (A) Predicted parcels in the HCP test set explained as

much variability in the functional connectivity as the ground truth parcels. (B–E) Predictions in the MSC had more variable myelin content and less variable cortical

thickness estimates, relative to the HCP predictions.

as a ratio of the within-to-between parcel variances. This metric
allows for the direct comparison of homogeneity estimates across
datasets, instead of representing the raw variance estimates.

We compared homogeneity estimates in the predicated HCP
parcellations to estimates computed for the ground truth maps
using paired t-tests. Predicted and ground truth maps both
explained roughly 67% of the functional variation (t: −0.305, p:
0.761). Myelin (t: 0.176, p: 0.860) and curvature: (t: −1.746, p:
0.083) variation were not statistically different between the two
groups. However, predictions were more homogeneous than the
ground truth maps with respect to sulcal depth (t: −4.442, p:
0.000) and cortical thickness: (t:−2.553, p: 0.012).

5.4. Network Architecture Impacts Model
Performance
As noted in section 5, we first optimized over network algorithms
and architectures using the S500 dataset, and then utilized
the S1200 dataset for model evaluation. We fixed the features
used for network optimization to the regionalized connectivity
features. We examined how varying each network parameter
impacted model classification accuracy (Table 1). As mentioned
in section 5.1, the best performing model was the GAT network
with 6 layers with a classification accuracy of 67.60% on the S500
dataset (significantly inferior to the performance of the same
network on S1200 data, with an accuracy of 79.91%). We found
that optimal performance for the GAT and GCN networks was
achieved with 6 layers, 9 layers for the JKGAT, and 3 layers for the
baseline model. In general, classification accuracy increased with
the number of attention heads, and number of hidden channels,
while classification accuracy decreased with increasing feature
dropout rates. Using an LSTM aggregation function rather

than a simple concatenation marginally decreased classification
accuracy for the jumping-knowledge networks. In contrast to
our predictions, we found that the GAT networks slightly
outperformed the more flexible JKGAT networks for most
parameterizations.

We used a fixed validation dataset of 20 subjects to determine
when to stop model training and evaluated the performance of
our models using a fixed test dataset of 148 subjects. In order to
determine the reliability of our accuracy estimates, we computed
the standard error of classification accuracy for each model
using a bootstrapped approach (Supplementary Material). We
randomly sampled 100 test subjects, with replacement, out of
the 148, and computed the mean accuracy for each sample, for
each model. We repeated this process 1,000 times, and computed
the variability of these bootstrapped estimates. Standard error
estimates were less than 0.5%, indicating that test set accuracy
estimates are robust with respect to resampling of the test dataset.

We examined how classification accuracy in the HCP
dataset was related to the scanning duration of training and
testing datasets using the default model parameters (as defined
in section 5). When fixing test scan duration, classification
accuracy improved as the training dataset size increased for
all model types, with maximum accuracy achieved by graph
attention network models trained on 400 15-min duration
datasets (Supplementary Material). When training dataset size
and training scan duration were fixed, longer test image
duration yielded more accurate predictions across the board.
Predictions on 60-min test data were more accurate than
those computed on 30-min images, which in turn were
more accurate than those generated from 15-min images
(Supplementary Material). However, models trained on 15-min
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TABLE 1 | Model classification accuracy as a function of network architecture and parameterization.

Model

Parameter Value Baseline (%) GCN (%) GAT (%) JKGAT (%)

Network depth

3 62.64 64.93 67.02 66.71

6 61.13 65.14 67.60 67.33

9 57.72 64.76 67.36 67.42

Hidden channels

16 60.54 62.60 66.37 66.12

32 62.64 64.93 67.02 66.71

64 63.84 66.24 67.15 67.15

Dropout rate

0.1 62.64 64.93 67.02 66.71

0.3 60.74 63.94 66.72 66.58

0.5 58.34 63.10 65.45 65.39

0.7 55.63 61.18 62.70 62.60

Attention heads

4 67.02 66.71

8 67.39 67.30

12 67.56 67.29

Aggregation function
concat 66.85

lstm 66.71

Models were trained on 400 15-min datasets, and tested on 60-min test data using the S500 dataset. Boxed values indicate the default parameter values. The best performing model

was the GAT network with 6 layers, achieving a mean classification accuracy of 67.60%. Values in bold are the mean classification accuracy of the best model, trained on resting-state

connectivity features computed by regionalizing time-series over the Destrieux cortical atlas (see Section 4.1).

data performed best when tested on 15-min data, and models
trained on 60-min data performed best when tested on
60-min data (Supplementary Material) indicating an interaction
between training and testing scan duration. Similarly, when
fixing training and testing scan duration, we found that including
the spatial prior significantly improved classification accuracy in
all architectures.

5.5. Incorporating Functional Connectivity
Improves Model Performance Beyond
Spatial Location and Scalar Metrics
After identifying the optimal network architecture, we examined
how model performance varied as a function of which
features the model was trained on. Briefly, we delineated
three broad feature types: (1) scalar features corresponding to
myelin, cortical thickness, sulcal depth, and cortical curvature
(2) global location features corresponding to the spectral
coordinates computed from the graph Laplacian and (3)
connectivity features computed from the resting-state signal.
In our primary analysis, we utilized connectivity features
computed by regionalizing over the Destrieux atlas (75 folding-
based cortical areas). We compared these features against
those computed using the Desikan-Killiany atlas (35 folding-
based cortical areas) and the Yeo-17 resting-state network
atlas (Yeo et al., 2011). The Yeo-17 atlas is a functional
atlas of discretized resting-state networks, computed via

independent component analysis. We identified the connected
components of each of the 17 resting-state networks and
excluded component regions with sizes smaller than 10
vertices, resulting in a map of 55 discrete functionally-derived
subregions of the cortex. We also examined the performance of
models trained on continuous, overlapping connectivity features
representing resting-state networks computed using group-ICA
and dual regression.

Computing connectivity features over the Destrieux atlas
yielded increased classification accuracy over the Desikan-
Killiany atlas (72.01 vs. 70.08%; paired t: 25.197, p: 0.000;
see models “Full-DX” and “Full-DK”). We hypothesized that
computing connectivity features over a functionally-aware
parcellation (Yeo-17) would yield a significant improvement
in classification accuracy, relative to the Destrieux atlas,
but this was not the case (see “Full-DX” vs. “Full-YEO”
in Figure 9). Models trained on the Yeo-17 features had a
mean classification accuracy of 71.58% (paired t: 1.916, p:
0.057). Training on spatial location or histological features
alone yielded mean classification accuracies of 44.10 and
54.45%, respectively (Figure 9A). However, training on
features defined by resting-state ICA components had clear
performance benefits. Models trained on ICA dimensions
of 15, 25, 50, and 100 generated mean classification
accuracies of 75.34, 77.79, 79.68, and 79.91%, respectively
(Figure 9C). Similarly, incorporating the prior mask also
improved model performance. However, the mask added
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FIGURE 9 | Classification accuracy as a function of model features, using the optimal model architecture for (A) single feature types, (B) regionalization over different

cortical atlases, and (C) independent component analysis features. Refer to Table 2 for a description of each feature set.

TABLE 2 | Feature combinations tested by our optimal model.

Feature sets

Full feature sets Connectivity Scalar Location

DK (F) DX (F) YEO (F) ICA (F) DX Hist. Spect.

Thickness + + + + +

Curvature + + + + +

Myelin + + + + +

Sulcal depth + + + + +

Laplacian + + + + +

Desikan (DK) +

Destrieux (DX) + +

Yeo-17 (YEO) +

ICA-RSN +

Features included in a model are marked by a “+.” “Full” models include histological features, global position information, and functional connectivity signals.

diminishing returns, with the better-performing models
benefiting less from its inclusion. Models trained on higher-
dimensional ICA resting-state networks (50 and 100 networks),
performed almost as well without the spatial prior as they
did with it.

Late into our analysis, we learned of differences in
the preprocessing steps used to generate the minimally-
preprocessed HCP resting-state data, and to generate the
subject- and group-level HCP-MMP parcellations. Specifically,

the S500 and S1200 data releases were preprocessed using
different surface registration algorithms: MSMSulc and
MSMAll (Robinson et al., 2014, 2018). A consequence
of these preprocessing differences is that data from the
S1200 release is better aligned with the subject-level
labels provided by Glasser. After performing network
optimization using the S500 data, we evaluated final model
performance on the S1200 dataset. Figure 10 illustrates model
performance after training on each independent dataset. We
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FIGURE 10 | Classification accuracy as a function of HCP data release and corresponding multi-modal surface matching algorithm. S500: MSMSulc (Robinson et al.,

2014), S1200: MSMAll (Robinson et al., 2018).

found that utilizing the S1200 dataset showed significant
improvements in mean classification accuracy by upwards 5%,
relative to the S500 dataset. This indicates that the surface
registration algorithm choice plays a critical role in cortical
segmentation quality.

6. DISCUSSION

In this analysis, we presented a general cortical segmentation
approach that, given functional connectivity information and
a set of corresponding training labels, can generate cortical
parcellations for individual participants. This approach to
segmenting the cortex requires accessible MRI acquisition
sequences and standard morphological parcellations as inputs.
We compared three different graph neural network variants
to a baseline fully-connected network. We found that, in
all cases, graph neural networks consistently and significantly
outperformed a baseline neural network that excluded adjacency
information. We identified the best performing model and
explored its performance with respect to various metrics
like segmentation accuracy, prediction reliability, and areal
homogeneity in two independent datasets.

Predictions generated for both the HCP and MSC datasets
were highly reproducible. However, we found that nearly twice
as much resting-state data was required in MSC subjects to
achieve the same reproducibility estimates as in the HCP
data. Predictions generated on the HCP dataset were more
reproducible than the ground truth maps themselves (Glasser
et al., 2016), while predictions in the MSC data were roughly as
reproducible as the ground-truth parcellations. This may in part
be due to the way we trained our models. Models were trained

on repeated samples of BOLD images, such that for a given
training subject, models were shown four BOLD datasets. This
likely enabled the models to better learn the mapping between
a given subject’s unique BOLD signature, and its cortical map.
Another possible explanation is that the ground truth maps
were generated using a linear perceptron model, which does not
take into account any spatial relationships between data points,
while graph neural networks do take this spatial structure into
account. It is likely the case that the perceptron model could not
adapt to utilize spatial dependencies in the BOLD signal in local
neighborhoods and thereby failed to fully learn unique subject-
specific connectivity fingerprints, and consequently learnedmore
variable parcellations.

The optimal model predicted parcellations that were as
homogeneous as the ground truth maps when considering
multidimensional connectivity features and univariate scalar
features. Though the models considered in this analysis
are capable of learning parcels that capture inter-areal
variation of functional brain connectivity and other cortical
features, it is worth noting that homogeneity as a measure
of parcellation quality is an imperfect metric and should be
used judiciously. For example, the primary sensory areas
can be further divided into five somatotopic subregions
corresponding to the upper and lower limbs, trunk, ocular,
and face areas (Glasser et al., 2013). These subdivisions
correspond well with task-based fMRI activity and gradients in
myelin content, indicating that the parcels learned by GNNs
in our analysis still incorporate significant variability due
to the aggregation of signals from different somatosensory
areas. While learning homogeneous regions is important
in order to effectively capture spatial biological variation,
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maximizing homogeneity was not the training criterion for
this analysis.

As noted in section 3, the MSC study applied different
preprocessing steps than the HCP. Specifically, the MSC did
not perform FIX-ICA to remove noise components from the
BOLD images and utilized the FreeSurfer spherical surface
registration to bring surfaces into spatial correspondence with
one another instead of the multi-modal surface matching
algorithm (Robinson et al., 2014, 2018). Given that the MSC
dataset did not have “ground truth” labels against which we
could compare predictions made on the MSC data, we compared
predictions against the HCP-MMP atlas (Glasser et al., 2016). As
expected, predictions generated on the HCP dataset more closely
resembled the HCP-MMP atlas than predictions made from the
MSC dataset (the HCP-MMP atlas was derived as a group-
average of individual ground truth parcellations). Nevertheless,
we found that correspondence of MSC predictions with the
atlas followed similar trends with respect to testing image
duration. We believe some discrepancy in results between the
HCP and MSC datasets can be attributed to the differences in
dataset-specific preprocessing choices noted above, although the
relationship between methodological choices and parcellation
outcome requires future analyses. Performance differences across
the two datasets are also possibly a result of the models
learning characteristics inherent to the training (HCP) dataset,
and thereby performing better on hold out subjects from that
same dataset.

Our optimal model was the 6-layer graph attention network,
trained and tested on resting-state network components
computed using a 50-dimensional ICA. This model performed
as well with the spatial prior as it did without. However, models
trained on regionalized connectivity features benefited from
including the spatial prior. We believe it would be prudent for
future studies to include a spatial prior of some form into their
classification frameworks. Interestingly, predictions on HCP test
subjects resembled the HCP-MMP atlas more closely than they
resembled their ground truth counterparts, which might in part
be driven by the specific form of the prior. We made the
assumption that cortical map topology is relatively conserved
across individuals. This assumption may be too conservative and
may reduce model sensitivity to atypical cortical connectivity
patterns. Nevertheless, there is evidence our GNN models learn
subject-specific topologies of cortical areas, rather than simply
learning where a cortical parcel usually is. Importantly, we
found that the optimal GAT model could identify three unique
topologies for area 55b (typical, shifted, and split) and that
predictions generated by our model replicated, with high fidelity,
the same spatial organization patterns as identified in Glasser
et al. (2016). This indicates that the model is capable of learning
unique connectivity fingerprints of each cortical area on a
subject-by-subject basis, rather than simply learning the group
average fingerprint. As such, we do not believe that including the
spatial prior in its current form inhibits the ability of the graph
neural network models used in this analysis to identify atypical
cortical topologies.

We compared three different graph neural networks: graph
convolution networks, standard attention networks, and
jumping-knowledge networks. We hypothesized that JKGAT

networks would significantly outperform GAT networks due
to the increased flexibility to learn optimized node-specific
network depths. In their original formulation of the jumping-
knowledge network architecture, Xu et al. (2018) found that
including the jumping-knowledge mechanism improved
model performance relative to the GAT in almost all of their
comparisons. However, we found this not to be the case. This
may be a consequence of the increased number of estimated
parameters in the JKGAT networks, relative to the GAT—the
jumping-knowledge aggregation layer learns the parameters for
the aggregation function cells in addition to the attention head
and projection matrix weights learned in the GAT networks. The
lower classification accuracy at test time is possibly the result
of model over-fitting, necessitating a larger training dataset. It
is possible that the jumping-knowledge mechanism is generally
more useful in the case where graph topologies vary considerably
across a network, as opposed to more regular graphs such as
cortical surface data.

As expected, network performance was dependent on both
the size and duration of the training set, and duration of the
testing data. Classification accuracy increased when models were
trained on larger datasets consisting of shorter-duration images.
Conversely, accuracy increased when models were deployed
on longer-duration test data. It is important to note that we
examined performance of our models on images of long scanning
durations by concatenating multiple sessions together (30/60-
min in theHCP, and 60/150/300-min in theMSC). It is unrealistic
to expect study participants to be able to lay in anMRI scanner for
single sessions of these lengths. However, it is useful to examine
how model performance is impacted by tunable parameters
like scan duration in order to best guide image acquisition
in future studies. We found that utilizing repeated scans on
individual subjects as independent training examples, rather
than concatenating repeated scans together into single datasets,
significantly improved our classification frameworks. This likely
speaks to the ability of neural network models to generalize
better to noise in the datasets. Training models on multiple
samples of shorter-duration images more accurately captures
the individual variability in the resting-state signal than fewer
longer-duration images, thereby allowing the networks to more
accurately learn a mapping between functional connectivity and
cortical areal assignments.

Our methodology could be improved in a variety of ways.
We chose not to perform intensive hyperparameter optimization,
and instead focused our efforts on overall performance of
the various network architectures as a function of network
parameters and data parameters, and the applicability of
trained models to new datasets. However, in the case where a
classification model is meant to be distributed to the research
community for open-source use, it would be prudent to perform
a more extensive search over the best possible parameter choices.

The utility of functional connectivity has been shown in a
variety of studies for delineating cortices (Blumensath et al.,
2013; Arslan et al., 2015; Baldassano et al., 2015; Gordon et al.,
2016). However, in recent years, using diffusion tractography
for learning whole-brain cortical maps has been underutilized,
relative to functional connectivity (Gorbach et al., 2011; Parisot
et al., 2015; Bajada et al., 2017). Given cortical maps defined
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independently by tractography and functional connectivity, it
is difficult to “match” cortical areas across maps to compare
biological properties, so heuristics are often applied. Few
studies have simultaneously combined functional connectivity
and tractography to better inform the prediction of cortical
maps. Recent work has extended the idea of variational auto-
encoders to the case of multi-modal data by training coupled
auto-encoders to jointly learn embeddings of multiple data
types. In Gala et al. (2021), the authors apply this approach
to jointly learn embeddings defined by transcriptomics and
electrophysiology that allow them to identify cell clusters with
both similar transcriptomic and electrophysiology properties.
Future work could apply similar ideas to aggregate functional and
diffusion-based connectivity signals.

The majority of recent studies have approached the cortical
mapping problem from the perspective of generating new
parcellations from underlying neurobiological data using
unsupervised clustering or spatial gradient methods. These
approaches attempt to delineate areal boundaries by grouping
cortical voxels together on the basis of similarity between their
features. Spatial gradient-based methods explicitly define areal
boundaries, while clustering methods define these boundaries
implicitly. However, both approaches are distinct from methods
that utilize pre-existing or pre-computed parcellations as
templates for mapping new data. In the current analysis, we were
concerned with the latter problem.

Clustering and spatial gradient approaches are often interested
in relating newly-generated cortical maps to underlying in vitro
measures, such as transcriptomics or cytoarchitectural results.
Clearly, it is impossible to acquire this data in human subjects
simultaneously with in vivo data. Various projects have attempted
to build cytoarchitectural datasets from post-mortem subjects to
use as a basis of comparisons for maps generated in vivo (Amunts
et al., 2020). While some cortical areas have been recapitulated
using both in vitro and in vivo features, this is not a general
rule across the cortex. As such, cross-modal verification is often
difficult, and leaves room for methods and datasets than can
improve upon the validation of cortical mapping studies.

One limitation of our analysis concerns the use of different

versions of the multi-modal surface matching for cortical surface

alignment for the S500 HCP data release (Glasser et al., 2013;
Robinson et al., 2014), the S1200 release (Robinson et al.,
2018), and for the subject-level HCP-MMP parcellations (Glasser

et al., 2016), which used a different regularization term. These
differences between the three registration methods result in a
slight spatial misalignment between the training labels and the
cortical features. While the S500 data release utilized MSMSulc, a
spherical surface registration driven by cortical folding patterns,
the S1200 release utilized MSMAll, and incorporated functional
connectivity into the spatial resampling step. Glasser et al.
(2016) used a prototypical version of MSMAll in addition to
MSMSulc, and thereby incorporated additional features derived
from resting-state networks to drive the surface matching
process. Importantly, this discrepancy between the training labels
and training features is not a flaw in our methodology itself,
and correcting for this difference in the registration approach
would only improve the results of our analysis. As we showed

in Figure 10, incorporating MSMAll-processed data from the
S1200 dataset, instead of MSMSulc-processed data from the S500
dataset, improved model classification accuracy by nearly 5%.
We hypothesize that this improvement would only increase if we
had access to the data processed with the prototypical version of
MSMAll. Based on the comparisons of subject-level predictions
with the subject-level ground truth MMP maps, our models
performed well in spite of these registration discrepancies. Our
results lend evidence to the robustness of graph neural networks
for learning cortical maps from functional connectivity.

Finally, participants in both the HCP and MSC studies were
healthy young adults, and the datasets had been extensively
quality controlled. Little to no work has been done on extending
connectivity-based classifiers to atypical populations, such as to
individuals with neurodegeneration. It is unknown how a model
trained on connectivity properties from healthy individuals
would perform in populations where connectivity is known
to degrade. While our model (and that developed by Glasser
et al., 2016) predict maps based on healthy individuals, it is
possible that some studies would need to train population-
specific models.
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Functional magnetic resonance imaging (fMRI) studies have suggested that there is
a functional reorganization of brain areas in patients with sensorineural hearing loss
(SNHL). Recently, graph theory analysis has brought a new understanding of the
functional connectome and topological features in central neural system diseases.
However, little is known about the functional network topology changes in SNHL
patients, especially in infants. In this study, 34 infants with profound bilateral congenital
SNHL and 28 infants with normal hearing aged 11–36 months were recruited. No
difference was found in small-world parameters and network efficiency parameters.
Differences in global and nodal topologic organization, hub distribution, and whole-brain
functional connectivity were explored using graph theory analysis. Both normal-hearing
infants and SNHL infants exhibited small-world topology. Furthermore, the SNHL group
showed a decreased nodal degree in the bilateral thalamus. Six hubs in the SNHL
group and seven hubs in the normal-hearing group were identified. The left middle
temporal gyrus was a hub only in the SNHL group, while the right parahippocampal
gyrus and bilateral temporal pole were hubs only in the normal-hearing group. Functional
connectivity between auditory regions and motor regions, between auditory regions
and default-mode-network (DMN) regions, and within DMN regions was found to be
decreased in the SNHL group. These results indicate a functional reorganization of
brain functional networks as a result of hearing loss. This study provides evidence that
functional reorganization occurs in the early stage of life in infants with profound bilateral
congenital SNHL from the perspective of complex networks.

Keywords: functional connectivity, graph theory, hub, infants, resting-state functional magnetic resonance
imaging, sensorineural hearing loss

INTRODUCTION

Sensorineural hearing loss (SNHL) is caused by lesions in the hair cells, vestibulocochlear nerve,
or auditory cortex of the brain. In children, the causes of SNHL are not completely understood,
but genetic factors may play a part (Kvestad et al., 2014). Cochlear implantation (CI) is an
important procedure for the restoration of hearing for children with severe-to-profound SNHL.
The United States Food and Drug Administration (FDA)’s recommended age of CI is at least
12 months (Purcell et al., 2021). One study found that children with congenital SNHL benefit more
if they receive CI at the age of 1–3 years (Zwolan et al., 2004). Another study suggested that children
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with congenital SNHL who receive CI before the age of 3.5
benefit more than those who receive it after the age of seven
(Sharma and Campbell, 2011). In humans, there is a rapid
microstructural white matter development during the first 3 years
of life (Lebel and Deoni, 2018). Therefore, the age before 3.5 years
is considered as the sensitive or critical period, and the age of
7 as the end of this period (Sharma et al., 2015; Patton et al.,
2019). During this period, the auditory cortex has maximum
plasticity, and children with congenital hearing loss can benefit
the most from CI.

Patients with SNHL need to undergo magnetic resonance
imaging (MRI) examinations before CI to confirm whether there
are lesions in the central neural system or malformations in
the inner ear. In recent years, functional magnetic resonance
imaging (fMRI) has been used to estimate the functional
changes in the brain in SNHL patients. Task-based fMRI
studies found that the auditory areas of SNHL patients can
be activated by visual and somatosensory stimuli due to
long-term hearing deprivation, which is usually called cross-
modal reorganization (Finney et al., 2001; Cardon and Sharma,
2018). Seed-based functional connectivity studies also found
alterations in auditory, visual, and language areas (Heggdal et al.,
2016; Shi et al., 2016). Furthermore, independent component
analysis (ICA) based on resting-state functional magnetic
resonance imaging (rs-fMRI) research showed dysconnectivity
within and between multiple resting-state networks of executive
control, higher-order cognition, and attention (Luan et al.,
2019), indicating that the effects of SNHL are not limited
to only several systems and resting-state networks but may
result in changes in the whole brain network. The study of
Stolzberg et al. on neonatal deaf cats using ICA method also
found widely altered functional connectivity in both auditory
and non-auditory regions (Stolzberg et al., 2018). However,
evidence also showed different cross-modal reorganization
pattern in primary and high-order auditory cortex (Kral
et al., 2003; Berger et al., 2017).Therefore, the changes
in the whole-brain functional network in SNHL patients
are worth studying.

Complex network analysis, which originates from graph
theory, has been used to characterize the functional connectomes
within the whole-brain network (Benito-León et al., 2019). This
approach provides a topological method to describe network
properties (Rubinov and Sporns, 2010) and could be a good
complement to seed-based functional connectivity. In recent
years, the brain structural and functional network has been
found to be changed in many neurological and psychological
disorders (Suo et al., 2017a,b, 2019; Benito-León et al., 2019;
Openneer et al., 2020; Radetz et al., 2020). Therefore, complex
network analysis may be a new approach to evaluating brain
functional plasticity in SNHL. Using graph theory analysis, Bonna
et al. (2021) found reduced modularity and disrupted functional
connectivity in adults who became deaf in childhood when
compared with normal hearing siblings. Li et al. (2016) found
altered functional connectivity and hub distribution in SNHL
adolescents. However, the changes in topological properties and
whole-brain functional connectivity in congenital SNHL infants
within the developing critical period remain unknown.

In the present study, we used graph theory analysis to
compare the alterations in the functional connectome in bilateral
congenital SNHL infants and normal-hearing infants within
the critical period. Based on previous evidence from both
neuroimaging and clinical studies, we hypothesized that the
functional network topology of SNHL infants would have similar
alterations to that in adults, compared to normal-hearing siblings.
We also hoped that this study could provide a new understanding
of neuroplasticity in bilateral congenital SNHL infants within the
critical period. The University of North Carolina (UNC) 2-year-
old infant atlas (Shi et al., 2011) based on Automated Anatomical
Labeling (AAL) was used to improve the accuracy of the analysis
of infant brain images.

MATERIALS AND METHODS

Participants
This study included 38 infants with congenital bilateral SNHL
and 31 with normal hearing. All SNHL infants failed to pass
the newborn hearing screening examinations after birth. The
auditory brainstem response (ABR) results were symmetrically
greater than 90 dB, indicating profound hearing loss. These
infants were candidates for cochlear implant surgery, and an MRI
scan was used as a presurgical evaluation. None of the patients
indicated a history of head surgery, ototoxic drug use, trauma,
or any central nervous system disease. The participants of SNHL
group had no history of wearing hearing aids. In addition,
high-resolution computed tomography (HRCT) scans showed
no inner ear malformation. In the normal-hearing (NH) group,
participants underwent MRI examinations for non-hearing
indications, and MRI scans showed no central nervous system
lesions. Infants in the NH group had no history of neurological
disease, head injury, surgery, or hearing problems. The data
of two SNHL infants and one NH infant were excluded from
the analysis due to excessive head movement during scanning.
Another two SNHL infants were excluded because they did not
finish the scan. Consequently, 34 infants with congenital bilateral
SNHL (16 males and 18 females; mean age 23.41 ± 8.26 months;
age range 11–36 months) and 30 infants with normal hearing (16
males and 14 females, mean age 24.03 ± 7.18 months; age range
11–36 months) were included in this study. The SNHL group
and NH group were matched in age (p = 0.089) and gender (chi-
squared p = 0.616). All the examinations were approved by the
ethics committee of the hospital. Informed consent was obtained
from every subject’s parent.

Data Acquisition
MR images were collected on a Siemens Verio Tim 3.0 T MR
scanner (Siemens Medical Solutions, Erlangen, Germany) with a
16-channel head coil. To acquire resting-state fMRI data, all the
subjects were sedated with 50–60 mg/kg of 10% chloral hydrate
orally 15 min before scanning. Earplugs and headphones were
used to protect hearing and reduce the impact of scanner noise.
Infants were observed closely by a pediatrician during the scans.
Anatomical MRI and fMRI acquisitions were obtained from all
infants using the protocol detailed below.
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Routine MRI scans consisted of axial and sagittal T1-
weighted images (T1WI) and axial and coronal T2-weighted
images (T2WI) to observe whether there were lesions and/or
abnormalities in the brain. After that, the echo-planar imaging
sequence was used to acquire resting-state fMRI data. The
parameters were as follows: repetition time (TR), 2000 ms; echo
time (TE), 30 ms; field of view (FOV), 220 mm × 220 mm; flip
angle, 90◦; slice thickness, 4 mm; matrix, 70 × 70; voxel size,
3.1 mm × 3.1 mm × 4 mm; 30 slices were acquired covering
the whole brain, and the total volume was 190. High-resolution
T1-weighted structural brain images were collected using a 3D
SPGR sequence with the following parameters: TR, 2400 ms; TE,
3.16 ms; inversion time (TI), 900 ms; FOV, 220 mm × 220 mm;
flip angle, 9◦; slice thickness, 1 mm; matrix, 224 × 256; voxel size,
1.0 mm × 1.0 mm × 1.0 mm; 144 sagittal slices were acquired
covering the whole brain.

Data Preprocessing and Network
Construction
Data were preprocessed using the DPARSF toolbox (Yan and
Zang, 2010) in SPM121. The first 10 functional volumes
of each subject were removed from analysis because of the
instability of the equipment and the subjects’ adaptation to the
environment. Then, images were corrected for section timing
and head movement. Infants were excluded with a threshold
of 2.0 mm in translation or 2.0◦ in rotation. Subsequently, the
functional images of each subject were coregistered to their
corresponding T1WI high-resolution image, and T1WI images
were segmented with UNC 2-year-old tissue probability maps
(Shi et al., 2011). After that, images were normalized to the
2-year-old brain template (Shi et al., 2011) and resampled to
3 mm × 3 mm × 3 mm. Further steps were performed, including
temporal band-pass filtering (0.01–0.08 Hz), linear detrending,
and regression of the cerebrospinal fluid signal, white matter
signal, whole-brain averaged signal, and head motion parameters
in 24 directions.

The functional network was constructed and analyzed using
GRETNA2. The functional images were parcellated into 90 brain
regions based on the UNC 2-year-old infant atlas (Shi et al., 2011).
Each region was considered as a node of the network. Then, the
mean time series of each region were acquired, and Pearson’s
correlation coefficients of the mean time series between each
pair of nodes were calculated, resulting in a 90 × 90 correlation
matrix. Fisher’s R-to-Z transformation was performed for the
graph theory analysis. The group-averaged matrix of the two
groups were showed in Figure 1.

Global and Nodal Topological Properties
We used a wide range of sparsity thresholds (0.1 to 0.4, step 0.01)
to avoid deviations from using a single-sparsity threshold. The
area under the curve (AUC) of both global and nodal network
metrics was calculated and compared. Global parameters
included small-world parameters (clustering coefficient Cp,
characteristic path length Lp, normalized clustering coefficient

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://www.nitrc.org/projects/gretna/

FIGURE 1 | The group-averaged functional connectivity matrix of
normal-hearing (NH) group (A) and sensorineural hearing loss (SNHL)
group (B).

γ, normalized characteristic path length λ, and small-worldness
σ) and network efficiency parameters (local efficiency Eloc and
global efficiency Eglob). Cp, γ, and Eloc were used to measure
segregation, while Lp, λ, and Eglob were used to measure
integration (Rubinov and Sporns, 2010). A network with high
Cp and γ, as well as low Lp and λ, was considered to have
a small-word organization (Suo et al., 2019). A network was
defined as a small-world network when the small-worldness
(σ = γ/λ) > 1, which reflects an economic model to transform
information efficiently (Achard and Bullmore, 2007). Nodal
parameters included nodal degree, nodal efficiency, and nodal
betweenness. The details and interpretations of global and nodal
parameters mentioned above were explained in a previous study
(Rubinov and Sporns, 2010). Hubs are important for information
transmission, which is variably defined in the literature. In this
study, a node was considered to be a hub in a network if its nodal
degree, nodal efficiency, and nodal betweenness were at least 1
standard deviation greater than the mean value (Xu et al., 2016).
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Edge-Wise Connectivity Strength
Analysis
The edge-wise connectivity strength difference was evaluated
using the network-based statistic (NBS) (Zalesky et al., 2010)
by looking for different clusters of connections between the two
groups. The initial threshold was set to be a p-value less than
0.001. Then, the non-parametric permutation method (5,000
permutations) was used to estimate the statistical significance.
Subnetworks with corrected p-values less than 0.05 were
considered to be significant.

Statistical Analysis
Demographic data were compared using the Statistical Package
for the Social Sciences (SPSS), version 22.0 (IBM Corp., Armonk,
NY, United States). Graph theory properties were compared
using GRETNA software. Between-group differences in the AUC
of global and nodal network metrics were tested using two-
sample t-test. A p-value less than 0.05 was identified as significant.
When comparing nodal parameters, the Bonferroni correction
was applied to correct for multiple comparisons with a significant
p < 0.05.

RESULTS

Demographic and Clinical
Characteristics
Demographic and clinical data for the subjects in the NH group
and SNHL group are shown in Table 1. No significant differences
were found in age and gender.

Global and Nodal Topologic Organization
of the Functional Network
We found λ > 1, γ > 1, and σ > 1 across all the sparsities
in both the SNHL group and the NH group (Figure 2). There
was no significant difference in the global parameters (Cp, Lp,
γ, λ, σ, Eg, and Eloc) of the functional network (Table 2). After
Bonferroni correction, compared with the NH group, the SNHL
group showed an increased nodal degree in the left inferior
marginal angular gyrus and a decreased nodal degree in the
bilateral thalamus (Table 3). There was no significant difference

TABLE 1 | Summary of the demographic and clinical data.

NH group SNHL group p-value

Number (n) 30 34 –

Age (months)a (mean ± SD) 24.03 ± 7.18 23.41 ± 8.26 0.089

Age range (months) 11-36 11-36 –

Gender (male/female)b 16/14 16/18 0.616

ABR of left ear (dB HL) >90 – –

ABR of right ear (dB HL) >90 – –

ABR, auditory brainstem response; NH, normal hearing; SNHL, sensorineural
hearing loss; SD, standard deviation.
aStatistical analyses for comparisons between groups were carried out with t-tests.
bStatistical analyses for comparisons between groups were carried out with
χ2 tests.

in nodal betweenness and nodal efficiency. The receiver operating
characteristic (ROC) curve based on binary logistic regression
using the nodal degree of the left inferior marginal angular gyrus
and the bilateral thalamus was showed in Figure 3.

Hubs in the Brain Network
We found six hubs in the SNHL group and seven hubs in the
NH group. As shown in Figure 4, the left medial superior frontal
gyrus and right inferior temporal gyrus were hubs in both the
SNHL group and NH group. The right dorsolateral superior
frontal gyrus, bilateral orbital part of the inferior frontal gyrus,
and left middle temporal gyrus were hubs only in the SNHL
group, while the left medial orbital superior frontal gyrus, right
parahippocampal gyrus, bilateral temporal pole of the superior
temporal gyrus, and left temporal pole of the middle temporal
gyrus were hubs only in the NH group.

Functional Connectivity
Compared with the NH group, the SNHL group presented
a significantly decreased subnetwork component in the NBS
analysis results (p < 0.001, NBS corrected). As shown in
Figure 5, the subnetwork consisted of seven nodes and six edges.
The involved regions included the bilateral median cingulate
and paracingulate gyri, left precuneus, right paracentral lobule,
bilateral middle temporal gyrus, and right temporal pole of the
middle temporal gyrus.

DISCUSSION

This study investigated the complex brain network organization
in infants with profound bilateral congenital SNHL within a
critical period of development based on rs-fMRI using graph
theory analysis. We found differences between the SNHL
group and NH group in nodal degree, hub distribution, and
whole-brain functional connectivity. These results indicated that
functional reorganization occurred in the first few years of
hearing deprivation.

Topological Parameter Alterations
The human brain network exhibits small-world topology from
the fetal stage (Turk et al., 2019). In this study, both the
SNHL group and NH group showed small-word organization,
with no significant differences. This result was consistent with
previous studies on sudden unilateral sensorineural hearing
loss in adults and prelingually deaf adolescents (Li et al.,
2016; Xu et al., 2016), indicating that the efficiency of
information transmission in the brain was not affected by
hearing deprivation.

However, compared with normal-hearing infants, SNHL
infants showed no significant difference in global topological
parameters, which was consistent with the study of Zhang
et al. (2018) on long-term unilateral hearing loss but different
from the study of Xu et al. (2016) on sudden unilateral
sensorineural hearing loss. Alteration of functional network
global topological parameters has been observed in many
neurological disorders, including epilepsy (Zhang et al., 2011;
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FIGURE 2 | The small-world parameters of functional networks as a function of sparsity threshold from 0.1 to 0.4. Both the NH group and SNHL group exhibited γ,
λ, and σ larger than 1, which indicates that both groups exhibited the small-word organization. (NH, normal hearing; SNHL, sensorineural hearing loss; γ, normalized
clustering coefficient; λ, normalized characteristic path length; σ, small-worldness).

Li et al., 2020), Alzheimer’s disease (Pereira et al., 2016),
Parkinson’s disease (Suo et al., 2017b), and essential tremor
(Benito-León et al., 2019). These patients usually have obvious
neurologic symptoms, including cognitive impairment or
motor disorder, with a long duration. The duration of sudden
sensorineural hearing loss is less than 3 days, which was
significantly shorter than that of patients in Xu et al.’s study

TABLE 2 | Global network parameters in NH group and SNHL group.

Global network
measures

NH group
(n = 34)

SNHL group
(n = 30)

t-value p-value

Cp 0.17 ± 0.009 0.17 ± 0.011 −1.332 0.190

Lp 0.53 ± 0.009 0.53 ± 0.018 −1.563 0.125

γ 0.59 ± 0.068 0.60 ± 0.075 −0.466 0.643

λ 0.32 ± 0.004 0.32 ± 0.008 −2.096 0.052

σ 0.55 ± 0.061 0.55 ± 0.072 −0.111 0.912

Eglob 0.17 ± 0.002 0.17 ± 0.004 1.510 0.138

Eloc 0.23 ± 0.005 0.23 ± 0.006 −1.384 0.173

NH, normal hearing; SNHL, sensorineural hearing loss; Cp, clustering coefficient;
Lp, characteristic path length; γ, normalized clustering coefficient; λ, normalized
characteristic path length; σ, small-worldness; Eglob, global efficiency; Eloc,
local efficiency.

(at least 2 months) and infants with congenital hearing
loss in our study. Furthermore, SNHL patients usually do
not have neurological symptoms as severe as those with
neurological disorders. Based on the above analysis, we
speculate that the sudden loss of sensory import could
change the pattern of information transmission of the
functional network, but the brain will adjust to adapt and
compensate for the loss of sensory in order to maintain
the topological organization if the situation persists over a
long period of time. This may be a result of neuroplasticity.
Moreover, considering the special age of our participants, the
maintenance of global topological organization may be the

TABLE 3 | Regions of altered nodal degree in NH group and SNHL group
(p < 0.05, Bonferroni corrected).

Brain regions NH group SNHL group t-value p-value

THA.L 5.24 ± 1.799 3.37 ± 1.138 4.207 0.00013

THA.R 5.25 ± 1.667 3.55 ± 1.152 3.993 0.00024

IPL.L 6.07 ± 1.390 7.81 ± 1.470 −3.860 0.00037

NH, normal hearing; SNHL, sensorineural hearing loss; THA.L, left thalamus;
THA.R, right thalamus; IPL.L, left inferior marginal angular gyrus.
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FIGURE 3 | The receiver operating characteristic (ROC) curve based on
binary logistic regression using the nodal degree of the left inferior marginal
angular gyrus and the bilateral thalamus. The module reached the highest
area under the curve of 0.87.

basement of the maximal plasticity in the critical period, which
leads to the rapid reconstruction of hearing and speaking
ability after CI.

In the bilateral thalamus, a decreased nodal degree was
observed in the functional network of SNHL infants, which
means less or decreased functional connectivity with other
regions. This finding likely underlies the key role of the
thalamus in auditory information transfer. The thalamus, which
consists of many nuclei, is the relaying nucleus of the sensory
pathway and receives input from the cortex (Hwang et al.,
2017; Martini et al., 2021). It also mediates important functions
including memory, emotion, and attention (Arend et al.,
2015; Geier et al., 2020). Imaging evidence has also shown
decreased thalamic functional connectivity with both auditory
and non-auditory regions in long-term SNHL patients (Xu
et al., 2019). Our finding was consistent with Xu et al.’s (2019)
result. Moreover, we found an increased nodal degree in the
left inferior marginal angular gyrus, which was included in
the inferior parietal lobule. The inferior parietal lobule was
associated with sensory integration, body image, self-concept,
and executive function (Torrey, 2007). The ICA method has
also found the inferior parietal lobule to be included in the
DMN, the frontoparietal control network, and the cingulo-
opercular network (Igelström and Graziano, 2017). In the
study of Luan et al. (2019), the right inferior parietal lobule
showed increased intra-network connectivity within the right
frontoparietal network, and this alteration was correlated with
the Symbol Digit Modalities Test scores of SNHL patients.
The increased nodal degree in the inferior marginal angular
gyrus might be related to the alteration of high-order congenital
functions in SNHL infants.

Hub Distribution Differences
In a brain network, regions that are more interconnected with
other regions and possess a high nodal degree are considered
as hubs (Xu et al., 2016; Medaglia, 2017; Zhao et al., 2019).
Hub changes are considered to be related to neurological and
psychological diseases (Tian et al., 2016; Lin et al., 2018). We
found fewer hubs in infants than a previous study in adults
using the same method to identify hubs (Xu et al., 2016), which
may be due to the fact that the number of hubs increases
with age (Cao et al., 2017). In this study, the hubs of both
the SNHL group and NH group were located in the prefrontal
lobe and temporal lobe. This distribution was consistent with
previous studies on the early developing brain (Grayson and
Fair, 2017; Oldham and Fornito, 2019; Turk et al., 2019;
Wen et al., 2019).

The middle temporal gyrus is involved in both auditory and
visual processes, namely word processing and action observation
(Van Essen et al., 1986; Papeo et al., 2019). The middle
temporal gyrus acting as a hub in the SNHL group in our
study might be a result of deaf infants relying more on visual
information. However, the functional connectivity between the
thalamus and middle temporal gyrus was previously found to
be decreased in SNHL adults (Xu et al., 2019). The cortical
thickness of the middle temporal gyrus was found to be increased
in postlingually deaf adults (Pereira-Jorge et al., 2018) but
decreased in prelingually profound SNHL children (Qu et al.,
2020) and postlingually deaf adults (Sun et al., 2021). Thus,
we speculated that the functional and structural changes in the
middle temporal gyrus in SNHL patients will differ between
children and adults, and between prelingually deaf patients and
postlingually deaf patients. The mechanism of the alterations in
the middle temporal gyrus in different conditions needs to be
studied further. The parahippocampal gyrus is a key region of
memory formation (Düzel et al., 2003). The parahippocampal
gyrus and temporal pole are involved in auditory memory
(Muñoz-López et al., 2015; Córcoles-Parada et al., 2019). In the
study of Rönnberg et al. (2011), hearing loss patients showed
impaired episodic memory. Accordingly, in another study, the
gray matter volume of the right parahippocampal gyrus was
found to be decreased in unilateral hearing loss patients (Yang
et al., 2014). In our study, the parahippocampal gyrus and
temporal pole were hubs only in the NH group. The absence of
these two regions as hubs in the SNHL group suggested weakened
auditory memory ability, which could be a consequence of
hearing deprivation.

Functional Connectivity Differences
The main regions involved in the decreased subnetwork of the
SNHL group were the DMN, auditory network, and sensorimotor
network. Decreased functional connectivity between the auditory
and motor regions in hearing loss patients has been reported
by previous studies, which was considered a result of failure
in imitating speech sounds due to hearing deprivation (Shi
et al., 2016; Bonna et al., 2021). In our study, we detected
a weaker connection between the middle temporal gyrus and
paracentral lobule. The middle temporal gyrus is a key region of
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FIGURE 4 | Hubs for brain functional networks in normal-hearing (NH) group (A) and sensorineural hearing loss (SNHL) group (B). The hubs identified in both groups
are shown in green color. While the hubs for the SNHL group only are present with red color, the hubs for the NH group only are shown in blue color.

auditory perception and is involved in word processing (Papeo
et al., 2019; Feng et al., 2021). Clinical studies also found poor
balance and gait performance of SNHL children (Melo, 2017;
Melo et al., 2018; Sokolov et al., 2019). Decreased functional
connectivity between the middle temporal gyrus and paracentral
lobe may reflect the separation of auditory and motor function in
SNHL infants.

We also found decreased functional connectivity between
the DMN and auditory regions. Similar changes were also

found in a previous study of Li et al. on congenital severe
sensorineural hearing loss infants under 2 years old (Li et al.,
2019). The DMN is identified in infancy and becomes similar
to that in adults at 2 years of age (Gao et al., 2009, 2015).
The functional connectivity between DMN regions was found
to increase with age during childhood and adolescence (Fan
et al., 2021). The DMN consists of brain regions that are
more active when there are no external tasks (Anticevic et al.,
2012). It is involved in multiple high-order cognitive functions,
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FIGURE 5 | Decreased functional connections in sensorineural hearing loss (SNHL) group when compared with the normal-hearing (NH) group (p < 0.001, NBS
corrected). The subnetwork is consisted with seven nodes and six edges.

including self-related cognition, working memory, and emotion
processing (Buckner et al., 2008; Anticevic et al., 2012; Chai
et al., 2014). Moreover, the development of theory of mind, which
is considered to be correlated with the functional connectivity
strength of DMN regions, was found to be affected by the
loss of linguistic experience caused by hearing loss (Hughes
et al., 2019; Richardson et al., 2020). Decreased functional
connectivity within the DMN was found in a previous ICA study
by our team (Wang et al., 2021). Combined with the findings
of Wang et al. (2021), this suggests that decreased functional
connectivity between DMN regions and auditory regions and
within DMN regions may suggest impaired high-order cognitive
functions caused by hearing deprivation in the developing brain
of SNHL infants.

Limitations
There are several limitations to the present study. First,
the small sample size may decrease the statistical power
of the results. Second, the human brain develops rapidly
in the first few years of life, and there may be individual
differences in brain development due to the impact of living
environment. Third, there is no universal infant atlas, and
using different templates can affect the accuracy of the results.
These factors may reduce the detection power. Furthermore,
infants who participated in the present study were sedated
with chloral hydrate, which is usually thought to affect the
resting-state functional connectivity compared with natural
sleep. However, previous studies in SNHL infants using rs-
fMRI under sedation have delivered meaningful results, which
showed the feasibility of the use of sedation (Xia et al.,
2017; Li et al., 2019; Wang et al., 2019). Moreover, Fransson
et al. (2007) showed that there was no significant effect on
functional connectivity in infants and children under sedation
during scanning. Another factor which must be considered is
that although we have used the hearing protection measure,
the NH group was still exposed to a greater level of

scanner noise than the SNHL group due to massive threshold
shifts in the SNHL sample. This may bring some inevitable
confounding factors. Finally, the results drawn from graph
theory analysis are often not intuitive and may be difficult
to interpret (Lv et al., 2018). In future studies, the sample
size should be increased and further grouped according to
age. Combined studies using other methods are needed as a
complementary. Long-term follow-up should be conducted to
explore the value of complex network analysis as a biomarker for
predicting CI outcomes.

CONCLUSION

This study used graph theory analysis based on fMRI to
investigate alterations of brain functional networks in profound
bilateral congenital SNHL in infants in a critical period of
development. We found that the functional brain network of
SNHL infants within the critical period still maintains the
balance of integration and segregation. Compared with NH
infants, we found an increased nodal degree in the left inferior
marginal angular gyrus and decreased nodal degree in the
bilateral thalamus in SNHL infants. We also found a different
hub distribution and functional connectivity in both auditory
regions and high-order cognitive regions in SNHL infants.
These changes reflect a functional network reorganization and
potential changes in high-order cognitive function in SNHL
infants. This study also provided novel insights into functional
network alterations in the early stage of profound bilateral
congenital SNHL.
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Autism Spectrum Disorder (ASD) is one common developmental disorder with great

variations in symptoms and severity, making the diagnosis of ASD a challenging task.

Existing deep learning models using brain connectivity features to classify ASD still suffer

from degraded performance for multi-center data due to limited feature representation

ability and insufficient interpretability. Given that Graph Convolutional Network (GCN) has

demonstrated superiority in learning discriminative representations of brain connectivity

networks, in this paper, we propose an invertible dynamic GCNmodel to identify ASD and

investigate the alterations of connectivity patterns associated with the disease. In order to

select explainable features from the model, invertible blocks are introduced in the whole

network, and we are able to reconstruct the input dynamic features from the network’s

output. A pre-screening of connectivity features is adopted to reduce the redundancy of

the input information, and a fully-connected layer is added to perform classification. The

experimental results on 867 subjects show that our proposed method achieves superior

disease classification performance. It provides an interpretable deep learning model for

brain connectivity analysis and is of great potential in studying brain-related disorders.

Keywords: fMRI, graph convolutional networks, invertible networks, brain connectivity networks, autism spectrum

disorder, disease classification

1. INTRODUCTION

As one of the most common neurodevelopmental disorders, the exact etiology of Autism Spectrum
Disorder (ASD) remains unknown. In the past 50 years, ASD has gone from a narrowly defined,
rare disorder of childhood to a well-publicized disease, and recognized as a very common and
heritable brain disorder. The major characteristic of ASD is being deficit in social interaction and
social communication with repetitive and unusual behaviors and activities (Lord et al., 2018).
Despite medical progress, the diagnosis of ASD still depends on the symptom-based clinical
criteria with complex diagnostic steps. However, with increasing recognition of the importance
of early diagnosis for effective intervention, more effort has been made on exploring other possible
modalities and biomarkers for ASD identification.

With the development of neuroimaging technologies, resting-state functional Magnetic
Resonance Imaging (rs-fMRI) has attracted increasing interest in ASD studies, which enjoys
advantages of superior spatial resolution to accurately locate the active areas in the whole
brain, overcoming the limitations of earlier tools such as positron emission tomography (PET),
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electroencephalography (EEG), and magnetoencephalography
(MEG). By computing the correlation between fMRI time series
of different regions of interests (ROIs), we can construct a
functional connectivity network and many disorders may lead to
the alterations in it (Li et al., 2016; Miller et al., 2016; Bachmann
et al., 2018; Chandra et al., 2019; Zhang et al., 2020). For example,
a widespread decrease of functional connectivity strengths was
reported in patients with Alzheimer’s Disease (AD) (Demirtaş
et al., 2017). Studies showed that regional connectivity changes
(both increase and decrease) of dopaminergic cortico-striatal
and mesolimbic-striatal loops have been found in PD subjects
(Filippi et al., 2018). ASD has also been suggested to be related
to altered brain connectivity in the development of disease and
has been extensively investigated (Kleinhans et al., 2008; Monk
et al., 2009; Yerys et al., 2015; Dajani and Uddin, 2016; Xu
et al., 2020). While a wide range of connectivity changes are
reported, inconsistent conclusions have been observed in studies
of functional connectivity in ASD, indicating the importance
to thoroughly investigate the connectivity patterns with a large
population of ASD.

Based on brain connectivity networks, machine learning,
especially deep learning methods have further provided powerful
tools to extract representative features associated with ASD and
have greatly deepened our understanding of the disease (Chan
et al., 2020). The classical machine learning techniques such as
Support VectorMachines (SVM) are most widely used to identify
patients from healthy controls in various studies (Subbaraju
et al., 2017). For instance, Abraham et al. (2017) achieved 66.8%
classification accuracy on 871 subjects obtained from ABIDE
dataset.

Neural networks and deep learning methods such as
autoencoder, Deep Neural Network (DNN) (Guo et al., 2017),
Long Short Term Memory (LSTM) (Dvornek et al., 2018), and
Convolutional Neural Network (CNN) (Haweel et al., 2021)
have generated better performance in ASD classification. For
instance, Yin et al. (2021) applied a DNNmodel and achieved the
classification accuracy of 76.2% on 871 subjects of ABIDE dataset,
and further improved the performance to an accuracy of 79.2%
by combining DNN with an autoencoder.

Compared with traditional deep learning models, Graph
Convolutional Network (GCN) can deal with data of non-
Euclidean structure, which may be more suitable, and more
interpretable for brain connectivity graph generated by fMRI.
GCN has been used to classify ASD and select biomarkers
from typical developing subjects (Ktena et al., 2018; Parisot
et al., 2018). Recently, with a connectivity-based GCN model,
70.7% accuracy for classifying 1057 subjects (525 ASD and 532
healthy controls) has been reported (Wang et al., 2021). It’s
worth noting that when integrating information from more
modalities, we may obtain higher classification accuracy. For
instance, 85.06% of accuracy in ASD classification has been
reported in Rakić et al. (2020) based on both structural MRI
(sMRI) and fMRI features of 368 ASD and 449 healthy control
subjects using an autoencoder model. While more modalities
are beneficial to disease identification, it requires extra resources
on data collection. In this paper, we are more interested in

resting-state fMRI and focus on the ASD classification using
brain connectivity features based on fMRI signals.

However, most deep learning models are limited in
interpretation because of their black box representation.
Although the classification performances of most deep learning
networks are superior to those of traditional or interpretable
methods, the features they finally generate can hardly be
corresponded to the inputs, challenging the selection of helpful
biomarkers. To overcome this shortcoming, Jacobsen et al. (2018)
proposed an invertible network using a fully-connected layer
as an inner trainable network, which can accurately reconstruct
the inputs to a layer from its outputs without any degradation
of classification accuracy. Given its superiority, Zhuang et al.
(2019) proposed an invertible network for ASD classification,
and gained 71% accuracy on the whole ABIDE dataset.

To improve the model interpretability and to better
utilize structural, spatial, and temporal characteristics of brain
connectivity networks, in this paper, we propose an invertible
dynamic GCN (ID-GCN) model for ASD classification. More
specifically, invertible blocks are utilized in the whole network,
capable of reconstructing the input features from the output
of the network, followed by a fully-connected layer to perform
classification. Additionally, we select the connectivity features
with a pre-screening operation to reduce the redundancy of
the input information. The proposed method is verified on
multi-center ABIDE datasets and the results demonstrate its
effectiveness for disease classification and potential for studying
the disease-related connectivity features. The contributions of
this paper are summarized as:

• An invertible graph convolutional network is designed for
disease classification based on brain connectivity networks.
It is capable of generating disease-related interpretable
connectivity features and improving classification accuracy.

• The proposed model integrates the structural, spatial, and
dynamic information of the brain connectivity networks, and
a prior selection of the features is adopted to reduce the
redundancy of the input features.

• The proposed method has been validated on ABIDE dataset
with superior performance.

2. METHODS

In this section, we first provide the notations and their definitions
used in this paper, then we introduce our proposed invertible
dynamic GCN model in detail.

2.1. Notations and Definitions
In this paper, we use G(V ,E) to represent a graph, where V =
{v1, v2, ..., vn} is the set of nodes, and E = {eij} is the set
of edges. In the spatial connectivity graph, eij represents the
Euclidean distance of two connected nodes, and in the functional
connectivity graph, eij represents their connectivity strength.
Additionally, let A denote the adjacency matrix of the graph and
X denote the correlation matrix, in which every row represents a
node’s features.
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2.2. Graph Convolutional Network
Graph Convolutional Network is a deep learning architecture,
which can not only use the data itself but also the relationship
between data represented as a graph. Through the adjacency
matrix A of the graph, we can first calculate the normalized
Laplacian matrix of X, which calculation formula is:

L = I − D− 1
2AD− 1

2 (1)

Where I is an identity matrix and D is the diagonal degree
matrix ofX. Then, we get an eigendecomposition of the Laplacian
matrix, L = U3UT , where U is a set of orthonormal
eigenvectors, and 3 = diag(λ0, ..., λn−1) is the matrix’s non-
negative eigenvalues. Based on these formulas, we get the
propagation rule of graph convolution layers is:

Xl = σ (U2(3)UTXl−1) (2)

Where σ is the activation function of the layer, and 2(·) is the
GCN convolution kernel. To simplify the calculation, we then
fit the kernel by Chebyshev polynomials of order k (Hammond
et al., 2011), which can be derived from:

Tk(c) = 2cTk−1(c)− Tk−2(c) (3)

T0(c) = I,T1(c) = c (4)

And the fitting formula is:

2(3) =

K−1
∑

k=0

βkTk(3̃) (5)

3̃ =
2

λmax
3 − I (6)

Where βk is the weight coefficient of the kth Chebyshev
polynomial, and λmax is the max eigenvalue of the Laplacian
matrix. Since the calculation of Chebyshev polynomials is
performed only on eigenvectors3, it does not affect other matrix
operations like doing eigendecomposition. So the Equation (2)
can be expressed as:

Xl = σ ((

K−1
∑

k=0

βkTk(L̃))X
l−1) (7)

Where L̃ is defined as L̃ = 2
λmax

L − I. Then we substitute the
trainable weight matrix W for βk, and get the final propagation
rule of graph convolution layers as:

Xl = σ (

K−1
∑

k=0

Tk(L̃)(X
l−1)W) (8)

2.3. Invertible Block
The architecture of the invertible block is shown in Figure 1,
where the inputs are x1 and x2, and the outputs are denoted as z1
and z2. Those feature maps have the same shape, and ϕ andω can
be defined as any functions. In this model, we define ϕ and ω as
independent GCNmodules using different graphs as their inputs,
which will be introduced in detail in the next section. In order to
fully blend the advantages of the two GCN modules, the outputs
of the first block y1 and y2, are then calculated to their average
and half of their difference as z1 and z2. This invertible block can
reconstruct the input from its output, where the forward pass and
inverse are:

{

y1 = x1 + ϕ(x2)

y2 = x2 + ω(y1)

{

z1 = 0.5(y1 + y2)

z2 = 0.5(y2 − y1)
(9)

{

x2 = y2 − ω(y1)

x1 = y1 − ϕ(x2)

{

y1 = z1 − z2

y2 = z1 + z2
(10)

2.4. Invertible Dynamic GCN
In order to incorporate additional spatial and temporal
characteristics of the brain functional connectivity network
constructed by rs-fMRI data with better interpretability, we
propose an invertible dynamic GCN (ID-GCN) model, which
uses two different GCN as the function ϕ and ω in the invertible
blocks to encode the functional connectivity graph and spatial
connectivity graph of samples, respectively. The functional GCN,
i.e., ω in the invertible block, uses the functional graph of
each subject obtained by the correlation matrix. Meanwhile, the
skeleton of the spatial graph is calculated directly according to
the spatial distance between ROIs, and the connection weights
are their correlation values. It is represented as ϕ for spatial
GCN. The whole model includes three invertible blocks to extract
explainable high dimensional features, and the inputs x1 and x2 of

FIGURE 1 | Structure of the invertible block.
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the first block are the same features that we send into the model.
The proposed ID-GCN architecture for disease classification in
this work is demonstrated in Figure 2.

To improve the computational efficiency and simplify the
training process, for each node, the k connected nodes with the
largest Pearson correlation coefficients in the functional graph or
the smallest distance in the spatial graph are retained to construct
a k-nearest graph. The correlation coefficients between each node
and all other nodes are used as the sample’s features which serve
as input into the ID-GCN model. A fully connected layer with
softmax is applied to perform the classification and the source
of the collection site is included as an additional covariate. The
cross-entropy is adopted in this model as loss function as:

L =
1

N

∑

i

−yi ∗ log(ŷi)− (1− yi) ∗ log(1− ŷi) (11)

where yi is the label of the ith subject, ŷi is the output of the
network, and N is the number of subjects we use.

While there are usually hundreds of ROIs defined from the
atlas, for a certain disease, it usually involves the changes of a
portion of brain regions. Additionally, with a great individual
variance of connectivity patterns, a large number of connectivity
features may be easily disturbed by noise, affecting subsequent
analysis and interpretation. However, reducing the number of
ROIs in the input model may inevitably cause the loss of
information. Therefore, rather than reducing the entire number
of ROIs, we reduce the dimension of the input features of each
ROI individually by selecting the M most important features for
disease classification using random forest.

As our brains are a dynamic system, time-varying connectivity
features have been suggested to be related to the functioning of
our brain. Thus, in this model, we further utilize the dynamics
of connectivity as additional features for ASD classification. The
time sliding window is applied to sample the time-dependent
signals and get the correlation matrix Xt of each time window.
The temporal variations of dynamic connectivity are then

calculated as the auxiliary feature represented as Ft, which is
concatenated with other connectivity features. After the pre-
selection of random forest, the reserved feature matrix {Ft} is
combined with the selected feature F of the original correlation
matrixX as the final input features. The overview of the proposed
model is shown in Figure 3.

3. EXPERIMENTS AND RESULTS

3.1. Real Dataset and Experimental Setting
We validated the proposed method on the publicly available
ABIDE dataset (Martino et al., 2014), and chose 416 ASD
subjects and 451 healthy controls (HC) from 13 acquisition sites.
The phenotypical information of each acquisition site can refer
to Table 1. The dataset was preprocessed with the Configurable
Pipeline for the Analysis of Connectomes (C-PAC) (Sikka et al.,
2013), which includes skull striping, slice timing correction,
motion correction, global mean intensity normalization,
nuisance signal regression, and band-pass filtering (0.01–0.1 Hz).
The fMRI images were registered to the standard anatomical
space (MNI152). To define brain areas, the Harvard Oxford
(HO) atlas was chosen, consisting of 110 ROIs. More details of
the dataset may refer to ABIDE Preprocessed.

We implemented the proposed model in a 5-fold cross-
validation setting, using 80% of the data for training and
20% for testing. We set the pre-selected feature number M
as 48, combined with J = 10 auxiliary dynamic features.
Additionally, the Chebyshev polynomial order was chosen
as 3, and k = 3 nearest nodes were selected to generate
our graphs.

To test the proposed method, we compared it with other
methods including siamese GCN (Ktena et al., 2018), Random
Forest, SVM, and GCN, evaluating its performance improvement
induced by the combination of spatial and dynamic connectivity
features, and testing the effectiveness of pre-screening on the
features. In these models for comparison, features input in
siamese GCN is the paired subject features as implemented

FIGURE 2 | The proposed ID-GCN architecture. The selected features are trained in three invertible blocks. A fully connected (FC) layer is finally used to obtain the

output scores for ASD classification. The whole network is reversible before the FC layer, meaning that we can reconstruct the informative disease-related brain

connectivity patterns by selecting important output features of the network.
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FIGURE 3 | Overview of the proposed framework. The brain connectivity features inferred from the fMRI time series and brain parcellation are fed to the model. After

training using the ID-GCN model, we obtain the predictions for ASD classification, and important brain connectivity features are selected accordingly.

TABLE 1 | Phenotypical information summary of ABIDE data.

Site ASD HC Gender Total Age

(M/F) (mean±std)

PITT 30 27 49/8 57 18.9±6.8

TRINITY 24 25 49/0 49 17.2±3.6

UM_1 55 55 84/26 110 13.4±2.9

UM_2 13 22 33/2 35 16±3.3

USM 58 43 101/0 101 22.1±7.6

YALE 28 28 40/16 56 12.7±2.9

LEUVEN_1 14 15 29/0 29 22.6±3.5

LEUVEN_2 15 20 27/8 35 14.2±1.4

KKI 22 33 42/13 55 10.1±1.3

NYU 79 105 147/37 184 15.3±6.6

UCLA_1 41 32 63/10 73 13.2±2.4

UCLA_2 13 13 24/2 26 12.5±1.5

MAX_MUN 24 33 50/7 57 26.2±11.9

TOTAL 416 451 738/129 867 16.4±7.1

in the study (Ktena et al., 2018), while the other models use
the whole connectivity matrix of a single subject as inputs. All
the methods were evaluated in terms of accuracy, AUC value,
precision, recall, and F1-score. The definitions of them are
as follows:

Accuracy = (TP + TN)/n (12)

Precision = TP/(TP + FP) (13)

Recall = TP/(TP + FN) (14)

F1− score = 2 ∗ Precision ∗ Recall/(Precision+ Recall) (15)

where n is the total number of our subject, TP is true positive
subject’s number, TN is true negative, FP is false positive, FN
denotes false negative, and AUC means the area under the
ROC curve. We additionally performed ablation experiments to
demonstrate the effects of each step of our method, including (1)
GCN using the functional graph as input (GCN); (2) GCN using
the spatial and functional graph in different layers (GCN adding
spatial information); (3) ID-GCN with principal component
analysis (PCA) for feature selection (ID-GCNwith PCA); and (4)
ID-GCN without dynamic features.

4. RESULTS

The classification results are shown in Figure 4 and Table 2.
It’s noted that our proposed model, ID-GCN achieves the
highest classification accuracy as 76.3%. Specifically, our model
demonstrates great improvement in all the evaluation metrics
compared with traditional SVM and Random Forest models
and obtains 3.1% gains in accuracy compared with GCN
using the same hyperparameters. Siamese GCN used paired
subject features as input and generated classification results
by multiplying two feature matrices from shared weight GCN.
However, it’s noticed that siamese GCN demonstrated worse
performance on the given dataset where the paired features didn’t
successfully distinguish the subjects in this case.

Considering that the classification performance depends on
the number of subjects, in order to have a fair comparison, we
have tested our algorithm on the different number of subjects
and show comparison with other state-of-the-art methods in
Table 3. More specifically, we chose the number of subjects as
95, 459, 867, and 1,066, respectively. As they were examined on a
different number of subjects, we didn’t repeat their experiments
but reported their datasets and results, only using same order of
magnitude of subjects to run our model for better comparison.
It can be seen that our results outperform other methods on the
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FIGURE 4 | Comparison with traditional and GCN models including siamese GCN (Ktena et al., 2018), Random Forest, SVM, and GCN.

TABLE 2 | Comparisons of different methods.

Model Accuracy AUC Precision Recall F1-score

SVM 66.0±3.7% 65.9±3.7% 65.9±3.9% 65.9±3.7% 65.9±3.9%

Random forest 65.3±2.4% 65.1±2.4% 65.7±2.4% 65.1±2.4% 65.0±2.5%

GCN 73.2±2.7% 78.7±3.0% 75.8±4.0% 71.7±6.5% 73.4±3.2%

Siamises GCN 59.4±1.7% 58.6±1.9% 60.7±1.2% 62.3±12.0% 61.3±6.9%

ID-GCN(our model) 76.3±3.7% 77.5±4.9% 75±5.9% 81.0±5.5% 77.6±2.8%

TABLE 3 | Comparison with other SOTA methods.

Model Number of subjects Accuracy

DNN (Li et al., 2018) 95 85.3%

Combined MCNNEs (Aghdam et al., 2019) 459 70.45%

CNN-EW (Xing et al., 2018) 1096 66.88%

ASD-DiagNet (Eslami et al., 2019) 1035 70.1%

cGCN (Wang et al., 2021) 1057 70.7%

3D CNN (Thomas et al., 2020) 1162 64%

ID-GCN(our model)

95 87.38%

459 77.42%

867 76.3%

1066 71.44%

same order of magnitude of data. It’s worth noting that with data
from different centers, the accuracy may vary. As demonstrated
in Table 3, we can notice that more subjects do not guarantee
better performance which is partially due to the great inter-center
and inter-subject variability. When using 95 subjects from the
same acquisition center, both (Li et al., 2018) and our method
achieve high classification accuracy, and our proposed method

obtains better classification performance compared with that of
Li et al. (2018). Furthermore, the model performance of every
single center is provided in Table 4 that we train all the subjects
and test the proposed method for each center separately. It
shows that the classification accuracy varies across the centers,
indicating great inter-center variability.

Additionally, the studies with multimodality data often
demonstrate better performances using the same method. For
example, Rakić et al. (2020) gained 85.06% of accuracy using
both sMRI and fMRI features in the classification of 817
subjects. However, in this paper, we focus on the functional
connectivity features. Although the proposed method has
improved the classification accuracy compared with other GCN
models and has interpretability, it still has several limitations.
The temporal variations of brain connectivity have been utilized
to represent the dynamics of brain connectivity. However, it’s
unable to fully delineate the time-varying connectivity. The
classification accuracy of our interpretable model is limited
compared with some networks without interpretability. For
better performance, RNN model with temporal connectivity
networks will be explored in our future work. Additionally, the
biological interpretation of the biomarkers selected from our
invertible network has been limited investigated. The effective
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center-invariant biomarkers with sufficient biological meanings
are warranted in future studies.

The results of ablation experiments are demonstrated in
Table 5. It can be seen from the table that after adding
spatial information as graph input, the accuracy of the model
increased by over 1%, indicating the importance of the spatial
information. As the number of connectivity features is large,
great individual variation and noise may disturb the robust
feature learning and degrade the classification performance.
The feature selection, therefore, contributed to a significant
improvement in the classification accuracy. We also evaluated
other dimension reduction approach, i.e., Principal Component
Analysis, for feature selection. As shown in Table 5, PCA led to
less improvement in the classification accuracy. It may be due to
the difficulty in the alignment of principal components across the

TABLE 4 | Model performance in each single center.

Site Number of subjects Accuracy

PITT 57 71.7±6.7%

TRINITY 49 72.0±11.7%

UM_1 110 75.5±3.6%

UM_2 35 82.9±10.7%

USM 101 84.8±7.0%

YALE 56 80.0±6.7%

LEUVEN_1 29 73.3±8.3%

LEUVEN_2 35 74.3±10.7%

KKI 55 74.5±8.9%

NYU 184 76.2±5.2%

UCLA_1 73 74.7±8.8%

UCLA_2 26 83.3±18.2%

MAX_MUN 57 66.6±11.9%

TOTAL 867 76.3±3.7%

TABLE 5 | Ablation study on the effects of different components.

Model Accuracy

GCN 73.2%

GCN adding spatial information 74.5%

ID-GCN with PCA 74.2%

ID-GCN without dynamic features 76.1%

ID-GCN(our model) 76.3%

subjects. Moreover, the temporal dynamics benefited the GCN
model with a small accuracy gain.

In order to better understand ASD, we further identified
the disease-related features by sorting the importance of each
node’s features extracted under the 5-fold cross-validation. The
top 10% important connectivity edges were reconstructed as
demonstrated in Figure 5 and Table 6. It’s noted that the
connections between Right Pallidum and Right Inferior Frontal
Gyrus, Left Frontal Orbital Cortex and Left Central Opercular
Cortex, and connections involving Left Supramarginal Gyrus
and Right Inferior Temporal Gyrus greatly contributed to the
classification accuracy. Additionally, we evaluated the impacts
of nodes by excluding each node and examining its influence
on classification performance. With such lesion operation, we
were able to assess the importance of each node. As shown
in Figure 6, the highly-rated ROIs include Right Pallidum,
Right Inferior Frontal Gyrus (triangle part), Right Inferior
Temporal Gyrus (anterior division), Left Frontal Orbital Cortex,
Left Temporal Fusiform Cortex (posterior division), and Right
Temporal Occipital Fusiform Cortex, indicating their potential
ROIs for ASD.

5. DISCUSSION AND CONCLUSION

The early diagnosis of ASD is a challenging task as great
variations exist in the symptoms. In addition to the clinical
criterion, researchers have tried to identify the effective
neuroimaging biomarkers for the better diagnosis of ASD.
Brain connectivity features are promising for studying ASD as

TABLE 6 | Important connectivity edges selected by feature reconstruction.

ROI1 ROI2

Right Pallidum Right Inferior Frontal Gyrus

Left Frontal Orbital Cortex Left Central Opercular Cortex

Left Temporal Fusiform Cortex

(posterior division)

Left Heschl’s Gyrus (includes H1

and H2)

Left Supramarginal Gyrus

(anterior division)

Right Temporal Occipital

Fusiform Cortex

Left Supramarginal Gyrus

(posterior division)

Left Frontal Orbital Cortex

Right Inferior Temporal Gyrus

(anterior division)

Left Supramarginal Gyrus

(anterior division)

Right Inferior Temporal Gyrus

(anterior division)

Left Lateral Occipital Cortex

(inferior division)

FIGURE 5 | Selected key connectivity features for ASD classification.
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FIGURE 6 | Selected key ROIs for ASD classification, including Right Pallidum (red), Right Inferior Frontal Gyrus (triangle part) (orange), Right Inferior Temporal Gyrus

(anterior division) (yellow), Left Frontal Orbital Cortex (green), Left Temporal Fusiform Cortex (posterior division) (cyan), and Right Temporal Occipital Fusiform Cortex

(blue).

TABLE 7 | The classification accuracy with different k.

The value of k 2 3 4 5 6 8 10 15 20

Accuracy 73.7% 76.3% 75.1% 76.0% 75.0% 75.0% 75.8% 74.7% 75.3%

TABLE 8 | The classification accuracy with different M.

The value of M 10 30 48 50 70 90 110

Accuracy 72.1% 73.6% 76.3% 76.0% 75.7% 74.6% 73.9%

widespread connectivity changes have been observed in ASD.
With various statistical and machine learning methods, we have
largely expanded our understanding of the disease. However, the
classification performance based on brain connectivity features
is still limited, partially due to the insufficient representation
ability for multi-center ASD data. It’s, therefore, critical to
learn the robust connectivity features for better representing the
disease population. While the deep learning-based methods are
promising, mos of them are designed in a black-box principle,
challenging their biological interpretability.

In this study, we propose an explainable graph convolutional
network, namely ID-GCN for multi-center ASD data
classification and investigation by incorporating the functional,
spatial and temporal information of the connectivity networks
and using the invertible network to select interpretable
biomarkers. The use of GCN aims to integrate the high-
dimensional features of each node, and the invertible network is
capable of reconstructing the extracted disease-related features
back to the original connectivity graph. The proposed model
contains two different GCN for brain functional connectivity
and spatial connectivity, respectively. A random forest is adopted
to narrow the feature space and reduce the redundancy of the
data. We further integrate the dynamics of brain connectivity
as important features for ASD classification. The experimental
results on ABIDE dataset suggest the efficacy of our model. It
is a potential classifier for large multi-center datasets despite
their variations.

When classifying the ASD subjects, several connectivity
features reconstructed by the model are assigned with higher
importance. Those connections involve Right Pallidum, Right
Inferior Frontal Gyrus, Left Frontal Orbital Cortex, Left

Central Opercular Cortex, Left Temporal Fusiform Cortex,
Right Temporal Occipital Fusiform Cortex, Left Supramarginal
Gyrus and Right Inferior Temporal Gyrus, which are mostly
consistent with the prior studies. For instance, the altered
connectivity of Temporal Pole, Pallidum, and Frontal Orbital
Cortex in ASD has been reported in Yerys et al. (2015);
Dajani and Uddin (2016); Monk et al. (2009). In another line
of studies, the changes of connectivity patterns in Fusiform
Gyrus and Inferior Frontal Gyrus have been investigated
for ASD subjects (Kleinhans et al., 2008; Xu et al., 2020).
We additionally performed lesion analysis that sequentially
removed each ROI and examined its impact on the classification
accuracy. According to their contributions to the classification
performance, eight ROIs including Right Superior Temporal
Gyrus, Right Superior Frontal Gyrus, Right Pallidum, Right
Inferior Frontal Gyrus (triangle part), Right Inferior Temporal
Gyrus (anterior division), Left Frontal Orbital Cortex, Left
Temporal Fusiform Cortex (posterior division), and Right
Temporal Occipital Fusiform Cortex were chosen which are
mostly involved in the connectivity features reconstructed by ID-
GCN. It further substantiates the explainable features learned by
the proposed method.

There are several parameters that need to be determined
in the proposed model, and we have evaluated the impacts
of different parameters on classification performance. Table 7
demonstrates the classification accuracy as a function of
the numbers of neighbors. It’s observed that classification
performance depends on the values of k, and when k=3,
we obtained the highest classification accuracy. It indicates
that there may be only a few connected areas that are most
robust across the subjects. We have also chosen the number of
features M using the grid search in Table 8, and when M=48,
it achieved the best performance. If the number of M is too
small or too large, the performance of the model will decline
greatly.

While the proposed method is capable to identify the
disease-related features and achieves a competitive classification
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performance, it still has several limitations. The temporal
variations of brain connectivity have been utilized to represent
the dynamics of brain connectivity. However, it’s unable to
fully delineate the time-varying connectivity patterns, which
can be further extended in our future work. The classification
accuracy of our interpretable model is limited compared
with some recent networks without interpretable modules.
To further improve the performance, RNN models with
temporal connectivity networks can be potential. Additionally,
the biological interpretation of the biomarkers selected from our
invertible network has been limited investigated. The effective
center-invariant biomarkers with sufficient biological meanings
are warranted in future studies.
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Background: The key pathophysiological mechanism of executive dysfunction in
patients with bipolar disorder type I (BD-I) is still unclear. Previous studies have
demonstrated that it may be related to the disbalance of the sensory motor network
(SMN).

Objective: This study was designed to explore the aberrant functional connectivity (FC)
of SMN in BD-I patients and its potential associations with executive dysfunction.

Methods: Eighteen BD-I patients and 20 healthy controls (HCs) underwent resting-
state fMRI scans. The intranetwork and internetwork functional connectivities of SMN
were extracted by independent component analysis (ICA). Clinical symptoms were
assessed by the Bech–Rafaelsen Mania Rating Scale (BRMS) and Positive and Negative
Syndrome Scale (PANSS). Executive function was measured by digit span tasks and
a verbal fluency test. Finally, linear regression and correlation analyses were applied
to measure the potential associations between clinical symptoms, intranetwork and
internetwork functional connectivities, and executive function performance.

Results: (1) Patients with BD-I showed increased connectivity in the right paracentral
lobule and the right postcentral gyrus within the SMN, and the increased connectivity
value was positively correlated with the BRMS score (P < 0.05) but negatively correlated
with digit span forward scores (P < 0.05). (2) Compared with HC, the connectivity value
increased between the SMN and dorsal attention network (DAN) (P < 0.01) and between
the default mode network (DMN) and DAN (P < 0.05) but decreased between the DAN
and auditory network (AN) (P < 0.05) and between the SMN and DMN (P < 0.01) in
patients with BD-I. (3) Digit span forward scores and education of all participants were
negatively correlated with FC between SMN and DAN. Age of all subjects was positively
correlated with FC between SMN and DMN.
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Conclusion: Our findings suggest that the sensorimotor network of BD-I has abnormal
functional connections within and between networks, and the abnormal FC value
correlated with clinical symptoms and executive function, which provide new information
for exploring the neural physiopathology of executive dysfunction in BD-I patients.

Keywords: bipolar disorder, executive function, resting-state fMRI, sensorimotor network, functional connectivity

INTRODUCTION

Bipolar disorder (BD) is a type of mood disorder characterized
by the core feature of recurrence of mania (BD type I, BD-
I) or hypomania (BD type II, BD-II) and depressive episodes
with high disability and high burden (Hahn et al., 2014). Most
of the findings show that BD, especially bipolar disorder type
I (BD-I), is associated with deficits in cognitive functions,
particularly in executive function, which correlated with the
ability to integrate various skills to prepare for and execute
complex behaviors (Ozonoff et al., 2004; Elshahawi et al., 2011;
Liu et al., 2011; Peters et al., 2014; Drakopoulos et al., 2020).
Interestingly, even modest executive dysfunction can lead to
noticeable disturbance of behaviors, including deficiency in
planning, organization, problem solving, and decision making,
and it can persist throughout the course of the disease (Sole
et al., 2016; Garcia-Laredo et al., 2021). However, the neural
mechanism of executive dysfunction in patients with BD-I is still
largely unclear.

Resting-state fMRI (rs-fMRI) is the spontaneous regulation
of BOLD signals in the brain under the non-task state, which
can reflect the process of promoting the integration of internal
and external environmental neural signals. rs-fMRI is widely
used in the research of a variety of mental and nervous system
diseases (Dong et al., 2016; Breukelaar et al., 2020; Dimick
et al., 2020; Waller et al., 2021). Many studies indicate that
the brain is a complex system consisting of multiple functional
networks subserving different functions, which consist of several
brain regions with similar patterns of signal change over the
course of rs-fMRI (Damoiseaux et al., 2006; De Luca et al.,
2006; Maalouf et al., 2010; Power et al., 2011). The results of
functional connectivity between and within functional networks
could improve our understanding of the large-scale functional
organization in executive dysfunction of patients with BD. For
example, Amy Peters and his team investigated the cognitive-
affective task-oriented engagement of the cognitive control
network (CCN) and default mode network (DMN) may support
real-world cognitive function in BD (Liu et al., 2015). Peters
et al. (2020) probed the network of major depressive disorder and
BD, and the results showed that memory impairment displays a
central role in the cognitive impairment of patients with unipolar
depression, whereas executive dysfunction appears to be more
central in bipolar depression. Kristen K. Ellard investigated that
impaired functional connectivity between the anterior insula
and the inferior parietal lobule of the executive control network
(ECN) distinguishes patients with bipolar depression from those
with unipolar depression and healthy control (HC) subjects
(Galimberti et al., 2020). However, there have been few studies
focusing on the brain networks of patients with BD-I, and also

few studies detailing how brain network abnormalities participate
in the executive dysfunction of this type of patients.

An increasing number of research have shown that the
DMN and sensory motor network (SMN) have a major role
in emotional and cognitive processing, with the sensorimotor
networks having become a focus of research on brain networks
in BD in recent years (Ellard et al., 2018; Kebets et al., 2019;
Magioncalda et al., 2020). The relevant research suggested that
abnormality activities in SMN are the basis of emotion processing
dysfunction and executive dysfunction in patients with BD.
Meanwhile, the interaction between SMN and other brain
networks including DMN has been shown to be dysfunctional
(Martino et al., 2020). Nevertheless, how intranetwork and
internetwork functional connectivities changed in the SMN of
patients with BD-I, which in turn impacted human behaviors,
especially executive dysfunction, has yet to be determined.

The aim of the present study is to measure the aberrant
intranetwork and internetwork functional connectivities of SMN
in patients with BD-I using the independent component analysis
(ICA). Simultaneously, we also evaluated the patients’ clinical
symptoms and executive function. Finally, we measured the
potential associations between functional connectivity, clinical
symptoms, and executive function in both the BD-I group and
normal group. We hypothesized that the patients of BD-I have
abnormal functional connections within SMN and between SMN
with other networks and that the abnormal FC correlates with
clinical symptoms and executive function at the same time. The
functional network connectivity of SMN was involved in the
executive dysfunction of BD-I patients.

MATERIALS AND METHODS

Participants and Clinical Assessment
This study was consistent with the Declaration of Helsinki
and was approved by the Hangzhou Seventh People’s Hospital
Ethics Committee, and written informed consent was obtained
from all participants after they had been given a complete
description of the study.

Nineteen subjects with BD-I (10 males and 9 females) were
recruited from the outpatient or inpatient department of the
Hangzhou Seventh People’s Hospital; all subjects were medicated
(with drugs including lithium carbonate, valproate, and second-
generation antipsychotics). Diagnosis of BD-I was in accordance
with the Diagnostic and Statistical Manual of Mental Disorders,
fourth edition (DSM-IV). The diagnosis was conducted based on
structured clinical interviews by two independent psychiatrists
who had more than 10 years of clinical experience. The exclusion
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criteria included (1) age below 15 or above 65 years; (2) current
or previous diagnosis of substance dependence, schizoaffective
disorder, or schizophrenia; (3) history of brain injury, previous
loss of consciousness greater than 10 min, or self-reported
serious medical conditions; (4) electroconvulsive therapy history
during the last 6 months; (5) any contraindications of MRI;
(6) too large head motion (> 2 mm in translation or 2◦

in rotation). One patient was excluded because of large head
motion, and the remaining 18 patients were enrolled in the
research. Twenty gender-, age-, and education-matched HC
volunteers (12 males and 8 females) were recruited from
the community as controls via local advertisements. All the
controls also need to accept a standard medical examination by
psychiatrists to rule out the presence of current or past psychiatric
illness, neurological illness, or head injury causing concussion,
as well as any history of psychiatric illness in first-degree
relatives. Table 1 shows the demographic and characteristic
data, including neuropsychological scales, clinical characteristics,
drugs of the subjects.

Cognition and Clinical Assessment
The digit span task is a part of the executive function, which
is adopted to evaluate attention (Chenji et al., 2016). All
participants completed a digit span forward task followed by a
digit span backward task. The digit span forward task required
the participant to remember a series of numbers from two digits

TABLE 1 | Demographic and behavioral characteristic of participants.

BD-I HC bT-value/χ2 P-value

Gender (male/female)a 10/8 12/8 0.08 0.78

Age 30.83 ± 10.28 33.30 ± 11.16 −0.71 0.49

Educational years 15.12 ± 3.22 15.56 ± 3.75 −0.51 0.67

Age of onset 22.56 ± 8.99

Duration of illness
(years)

11.45 ± 9.55

Number of
hospitalizations

5.56 ± 4.94

Lithium (n) 8

Anticonvulsant (n) 12

Antipsychotic (n) 18

Antipsychotic
medication, day/mgc,d

605.56 ± 207.16

BRMS 25.06 ± 6.25

PANSS 60.11 ± 9.61

Digit span forward 6.67 ± 1.65 8.20 ± 1.01 −3.42 0.002

Digit span backward 4.56 ± 0.78 6.90 ± 1.83 −5.22 0.001

VFT 18.72 ± 4.71 22.55 ± 5.57 −0.91 0.020

FD value 0.14 ± 0.09 0.11 ± 0.23 2.39 0.282

BD-I, bipolar disorder type I; HC, healthy control; BRMS, Bech–Rafaelsen Mania
Rating Scale; PANSS, Positive and Negative Syndrome Scale; VFT, verbal fluency
test; FD, framewise displacement, used to evaluate head motion during scanning.
aData are presented as mean ± standard deviation except gender.
bComparisons were performed with a chi-square test for the variable of gender and
independent-samples t-tests for other variables.
cAll participants were taking atypical antipsychotics.
dChlorpromazine equivalent doses were calculated.

continuing to a maximum of 13 digits, which are presented orally.
Then the participants try to verbally repeat the digits. There
were two trials per digit series. All participants began with the
first two digit series; if repeated correctly, they continued to
the next one; otherwise, they performed the second trial at the
same digit series. The task was terminated when the participant
failed in the second trial. The span is defined as the maximum
number of digits repeated by the participant. The digit span
backward task followed the same procedure, except the order
of the digits verbally repeated by the participants was reversed.
During the verbal fluency test (VFT), participants were required
to say as many words as possible describing an animal or a
vegetable within 1 min. When the participants correctly described
the animal or vegetable, 1 point was awarded. Each participant
was assessed with standardized clinical instruments, including
the Bech–Rafaelsen Mania Rating Scale (BRMS) and the Positive
and Negative Syndrome Scale (PANSS), which were used to
evaluate clinical symptoms for all patients during the 7-day
period prior to the scan.

MRI Data Acquisition
Brain structural and resting-state functional images of all subjects
were acquired from the Hangzhou Seventh People’s Hospital.
All participants were instructed before scanning to keep their
eyes closed, relax, move as little as possible, think of nothing
in particular, and not fall asleep during the scans. Resting-state
MRI scans were conducted under a 1.5-T MRI scanner (Signa
HDxt 1.5T, GE Healthcare, Buckinghamshire, United Kingdom)
composed of 180 echo-planar imaging volumes with the
following parameters: TR = 2,000 ms; TE = 40 ms; flip angle = 85◦;
matrix size = 64 × 64; field of view = 240 × 240 mm; slice
thickness = 3 mm; and 28 continuous slices. The acquisition time
is 6 min. A T1-weighted structural image was also acquired for
each patient to further elucidate and discard gross radiological
alterations (TR = 9.5 ms; TE = 3.1 ms; flip angle = 20◦; field of
view = 240 mm × 240 mm; slice thickness = 1.2 mm).

Functional MRI Data Processing
Functional MRI data were preprocessed using the Statistical
Parametric Mapping software (SPM12)1 and Data Processing and
Analysis for Brain Imaging (DPABI)2 (Groth-Marnat and Baker,
2003). The data preprocessing includes the following steps:

(1) Discarding of the first five volumes to achieve equilibrium
and a steady state.

(2) Slice timing correction.
(3) Realignment (head motion parameters were computed by

estimating the translation in each direction and the angular
rotation on each axis for each volume; we required the
translational or rotational motion parameters to be less
than 2 mm or 2◦; the framewise displacement (FD), which
indexes the volume-to-volume changes in head position
was also calculated).

1http://www.fil.ion.ucl.ac.uk/spm
2http://rfmri.org/dpabi
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(4) These images were then spatially normalized by the
following steps: individual structural images were co-
registered with the mean functional image, firstly. Then
the transformed structural images were segmented and
normalized to the Montreal Neurological Institute (MNI)
space using a high-level non-linear warping algorithm
which uses the exponentiated Lie algebra (DARTEL)
technique to acquire the diffeomorphic anatomical
registration (Yan et al., 2016). Finally, each functional
volume was spatially normalized to the MNI space using
the deformation parameters estimated during the above
step and resampled into a 3-mm cubic voxel.

(5) Spatial smoothing with a Gaussian kernel of
6 mm × 6 mm × 6 mm.

Independent Component Analysis
This research applied the group ICA tool named GIFT (version
3.0b)3 to perform group spatial ICA. We analyzed a mean of
16 components for each subject by the minimum description
length criteria. Spatial ICA decomposes the participant data
into linear mixtures of spatially independent components that
exhibit a unique time course profile. Two data reduction steps
can achieve this goal: Firstly, applying principal component
analysis to reduce the subject-specific data into 24 principal
components; and secondly, concatenating reduced data of all
participants across time and using the infomax algorithm to
decompose the data into 16 independent components. To ensure
estimation stability, the infomax algorithm was repeated 20 times
in ICASSO,4 and the most central run was selected and analyzed
further. Finally, the GICA back-reconstruction approach was
used to find the individual time courses and spatial maps of
the participants.

We applied several independent components that had
peak activations in gray matter; showed low spatial overlap
with heartbeat, motion, and susceptibility artifacts; and
exhibited low frequency power primarily to identified functional
networks; then we used the methods of visual inspection
and spatial network template to acquire the target brain
network. In the step of visual inspection, the SMN includes
the somatosensory and motor cortices (Ashburner, 2007).
Finally, this research procedure resulted in six functional
networks out of the 16 independent components obtained
(Figure 1): DMN, right frontoparietal network (rFPN), dorsal
attention network (DAN), SMN, auditory network (AN), and
visual network (VN).

The following were performed in the intranetwork
functional connectivity calculation. First, a one-sample t-test
was carried out to determine anatomical regions within
SMN at a threshold of P < 0.05, FEW corrected. Second,
a two-sample t-test was performed for SMN masked by
the regions identified in one-sample t-tests with age and
gender as a nuisance covariate to identify the significantly
different regions between HC and BD subjects (FEW-corrected
P < 0.001).

3mialab.mrn.org/software/gift/
4http://research.ics.tkk.fi/ica/icasso/

In the internetwork functional connectivity calculation, the
value of function connectivity was estimated by Pearson
correlation coefficients between pairs of time courses
of the functional networks, resulting in a symmetric
9 × 9 correlation matrix for each participant. Finally, we
used Fisher’s transformation to transform correlations to
z-scores, which can improve the normality. Intranetwork
connectivity was examined via the spatial maps, indexing the
contribution of the time course to each voxel comprising a
given component.

Statistical Analysis
The statistical descriptive analyses of demographic and
behavioral data were conducted using the SPSS 17.0
software package. We performed multiple regression
analyses to investigate the relationships between
intranetwork and internetwork functional connectivity
of SMN with age, education years, and behavioral
performance (e.g., BRMS, PANSS, and cognitive function).
Significance was determined by p < 0.05 (two-tailed),
with no correction.

RESULTS

Demographic and Behavioral
Performance
Table 1 describes the demographic, behavioral performance, and
head motion data of 18 patients with BD-I and 20 HCs. There
was no significant difference between two groups in terms of age,
gender, and head motion. Compared with the HCs, patients with
BD-I presented greater scores in BRMS and PANSS and lower
scores in digit span and VFT.

Connectivity Within Sensory Motor
Network
Based on previous studies and the highest ranked correlation
values calculated by the spatial network template in this study,
components 8 and 13 were found to match with the SMN. The
other seven components were separately identified as the DMN,
rFPN, DAN, AN, and VN. Figure 1 shows the results of identified
spatial network maps.

A two-sample t-test was performed when analyzing the
within-network connectivity for SMN, and we found the
brain areas with significant differences in the network
between the two groups. Significantly increased within-
network connectivity was found in the right paracentral lobule
(voxel size = 26; peak coordinate = 8, −32, 68; T = 4.86,
P < 0.001) and the right postcentral gyrus (voxel size = 20;
peak coordinate = 41, −26, 53; T = 3.33, P < 0.001)
in the SMN of the BD-I group (Figure 2A), and there
were no clusters of reduced connectivity in BD-I patients
compared to HCs.

The increased within-network connectivity value in the SMN
was positively correlated with the BRMS score (P < 0.05) and
negatively correlated with the digit span forward score (P < 0.05).
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FIGURE 1 | Spatial distribution of the nine independent components for all HC and BD-I subjects. Components 8 and 13 were found to match with the SMN. DMN,
default mode network; rFPN, right frontoparietal network; DAN, dorsal attention network; SMN, sensorimotor network; AN, auditory network; VN, visual network.

FIGURE 2 | The within-network connectivity of SMN. (A) Patients BD-I showed increased within-network connectivity in the right paracentral lobule and the right
postcentral gyrus in the SMN compared with HCs. (B) The correlation between the within-network connectivity value of SMN in patients and the BRMS score.
(C) The correlation between the within-network connectivity value of SMN in all subjects and digit span forward scores.

There was no significant correlation in the rest (all P > 0.05, see
Figures 2B,C).

Connectivity Between Sensory Motor
Network and Other Networks
The results of connectivity differences between networks in BD-
I patients vs. HCs are shown in Figure 3A. Both positive and
negative internetwork functional connectivities were observed.

As observed from Figures 3B,C, compared with those in
HCs, the functional connectivity value increased between SMN
and DAN and decreased between SMN and DMN in BD-I
subjects (P < 0.01, FDR corrected). Moreover, as observed from
Figures 4A–C, digit span forward scores and education years
of all participants were negatively correlated with FC between
SMN and DAN (P < 0.05). The age of all subjects was positively
correlated with FC between SMN and DMN (P < 0.05).
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FIGURE 3 | (A) Internetwork functional connectivity in BD-I and HCs. (B) Comparison of functional connectivity between SMN and DAN in the two groups.
(C) Comparison of functional connectivity between SMN and DMN in the two groups. *p < 0.05; **p < 0.01.

FIGURE 4 | Pearson correlation analysis of internetwork functional connectivity value and clinical information. (A) Digit span forward scores of all participants were
negatively correlated with FC between SMN and DAN (P < 0.05). (B) Education years of all participants were negatively correlated with FC between SMN and DAN
(P < 0.05). (C) Age of all subjects was positively correlated with FC between SMN and DMN (P < 0.05).

DISCUSSION

Main Findings
Our main findings are as follows. (1) compared with HC, patients
with BD-I showed increased within-network connectivity in
the right paracentral lobule and the right postcentral gyrus in
the SMN, and the connectivity value was positively correlated
with BRMS score but negatively correlated with digit span
forward scores. (2) The between-network connectivity of BD-
I increased between SMN and DAN and between DMN and
DAN but decreased between DAN and AN and between SMN
and DMN when compared to HC. (3) Digit span forward scores

and education of all participants were negatively correlated
with FC between SMN and DAN. Age of all subjects was
positively correlated with FC between SMN and DMN. Aberrant
intranetwork and internetwork functional connectivities of
sensorimotor network may be the neural mechanism of
interaction between clinical symptoms and executive dysfunction
in patients of BD-I.

Executive Dysfunction of Bipolar
Disorder Type-I
The two main impaired elements in individuals with BD are
emotional processing and cognitive functions (Wessa and Linke,
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2009; Wang C. et al., 2020). Failing in using cognitive functions to
regulate and maintain emotional states can lead to a dysfunction
in their emotional processing and emotion regulation (Torrent
et al., 2006). The present study applied the digit span tasks and
VFT to investigate executive function. The result shows that
valuations of digit span tasks and VFT of BD-I patients were
lower than those of HCs at baseline, and it is consistent with
previous related researches (Phillips and Vieta, 2007; Kosger et al.,
2015). However, the digit span tasks and VFT are just parts of the
executive function, and we need more research with multiple tests
to support our results.

Intranetwork Connectivity in Bipolar
Disorder Type-I
Our research found increased within-network connectivity
in the right paracentral lobule and the right postcentral
gyrus in the SMN, and the connectivity value was positively
correlated with the BRMS score. The results agreed with
those of Erol et al. (2013) and Khadka et al. (2013).
Kahdka reported that BD-I patients with psychosis episodes
showed increased FC in the superior frontal gyrus and
medial frontal gyrus in the SMN compared with HCs.
Ishida et al. (2017) and Kazemi et al. (2018) found within-
network connectivity in the right premotor region in the
SMN was positively correlated with the total score of YMRS
for BD subjects. As known from previous studies, the
SMN mainly regulates sensory and motor functions, and the
abnormal connection of this network function corresponds
well to the patients’ clinical symptoms. The anterior part
of the paracentral lobule is located in the primary motor
cortex, which regulates voluntary movement of the body.
The concentration of norepinephrine in patients with BD-I is
increased, accompanied by abnormalities of dopamine (DA)
and γ-aminobutyric acid (GABA), which leads to the increased
function of the primary motor cortex. The central posterior
gyrus belongs to the primary sensory cortex and receives
various sensory stimuli. The patients’ right central posterior
gyrus functional connection is abnormal, which may be related
to the patients’ increased motor function and compensation
of adjacent sensory cortex. More importantly, different from
previous SMN studies, we found that the increased connectivity
of SMN was negatively correlated with digit span forward
scores. In the pre-language stage of individual development,
the occurrence of cognition mainly depends on sense and
kinesthesia. Even if the individual gradually relies on language for
learning and communication with development, sensorimotor
ability is still a basic ability for the individual to recognize
external things (Supekar et al., 2019). Furthermore, patients
with BD-I often suffer from the inability of the brain to
filter and screen irrelevant information, and the inhibitory
function is impaired, leading to excessive information flooding
into the consciousness and then various abnormal sensory
experiences, which ultimately affect cognitive function. All
these researches show that the SMN plays an important role
in emotional dis-regulation and cognitive dysfunction of BD-
I patients.

Internetwork Connectivity in Bipolar
Disorder Type-I
The results of the second part of this study show that the between-
network connectivity value of BD-I increased between SMN and
DAN but decreased between SMN and DMN when compared to
HC. The brain is a complex brain network, which is composed
of multiple functionally interacting sub-networks (Mochizuki-
Kawai et al., 2004). Previous studies have shown that the SMN is
the core network that is vulnerable to dysfunction in emotional
functions, emotion recognition, and cognitive functions of
BD (Wood et al., 2016; Wang J. et al., 2020). So advanced
CCNs related to sensorimotor functions, such as the DMN,
ECN, and DAN, may also experience functional impairment
or compensation, the so-called functional reorganization (Davis
et al., 2017). Wang et al. (2014) found that the functions of
the medial prefrontal lobe and the cingulate gyrus of DMN are
related to the planning, preparation, and execution of exercise.
Damage to this area will affect the intentional purpose and rough
planning of the motor cortex during exercise. Roelcke et al. (1997)
revealed that an imbalance was observed in the DMN/SMN
activity of bipolar patients, and a low ratio of DMN/SMN activity
was reported in the manic phase while the opposite happened
in the depression phase. Our results are consistent with these
conclusions and also show that age was positively correlated with
FC between SMN and DMN, which suggests that different age
groups of BD-I patients have different degrees of imbalance in
DMN/SMN (Fox et al., 2006; Chen et al., 2020; Manza et al.,
2020). The relationship between DMN and SMN was considered
as a diagnostic marker for BD. The DAN mainly includes the
bilateral parietal internal sulcus and the joint cortical area of
the superior frontal gyrus and the central anterior gyrus. It is
related to the active attention process in the task and is obviously
activated in tasks where attention cues such as target, position,
and time appear. The upper leaflet of DAN is responsible for
receiving the input of visual information and plays a role of visual
control in motor tasks. Patients with BD-I have the characteristics
of increased active attention and shifting attention with the
environment. The functional connection between DAN and SMN
is enhanced, and intriguingly, it is negatively correlated with
digit span forward scores and education years of all participants,
which may be consistent with the clinical features of increased
volitional activity in patients with BD-I and also suggests that
high years of education may be a protective factor for the disease.
The results of the study confirm that the patients’ proprioceptive
perception and visual information are impaired by the top-down
and bottom-up two-way adjustment and control effects during
the completion of motor coordination, which also affects the
patients’ executive function accordingly. The two-way regulation
and control function of DAN/SMN gives us a new understanding
of the imbalance between DAN and SMN networks.

CONCLUSION

In conclusion, we got valuable information about aberrant
intranetwork and internetwork functional connectivities of SMN
in patients with BD-I, compared with HCs. Furthermore,
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we found a significant relationship between the abnormal
intranetwork and internetwork functional connectivity values
and clinical symptoms and executive function, which provides
new information for exploring the neural physiopathology of
executive dysfunction in BD-I patients.

Limitations
Some limitations in this study should be addressed. First, our
study enrolled a small-sized sample. Larger samples in the future
are needed to confirm current findings. Second, all patients
included in this study were administrated with drugs, which
made the interpretation of results complex and difficult, but it is
also a high risk in the image acquisition of untreated patients with
manic episodes. After the sample size is expanded, interfering
factors such as the duration of illness, the number of years of
therapy, and the number of hospitalizations can be analyzed by
comparing patient groups. Third, this study only included BD-
I patients during manic episodes but not depressive episodes,
which will make the attribution of executive dysfunction in BD-I
patients incomplete.
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Brain parcellation helps to understand the structural and functional organization of
the cerebral cortex. Resting-state functional magnetic resonance imaging (fMRI) and
connectivity analysis provide useful information to delineate individual brain parcels
in vivo. We proposed an individualized cortical parcellation based on graph neural
networks (GNN) to learn the reliable functional characteristics of each brain parcel
on a large fMRI dataset and to infer the areal probability of each vertex on unseen
subjects. A subject-specific confidence mask was implemented in the GNN model
to account for the tradeoff between the topographic alignment across subjects and
functional homogeneity of brain parcels on individual brains. The individualized brain
parcellation achieved better functional homogeneity at rest and during cognitive tasks
compared with the group-registered atlas (p-values < 0.05). In addition, highly reliable
and replicable parcellation maps were generated on multiple sessions of the same
subject (intrasubject similarity = 0.89), while notable variations in the topographic
organization were captured across subjects (intersubject similarity = 0.81). Moreover, the
intersubject variability of brain parcellation indicated large variations in the association
cortices while keeping a stable parcellation on the primary cortex. Such topographic
variability was strongly associated with the functional connectivity variability, significantly
predicted cognitive behaviors, and generally followed the myelination, cytoarchitecture,
and functional organization of the human brain. This study provides new avenues
to the precise individualized mapping of the cortical areas through deep learning
and shows high potentials in the personalized localization diagnosis and treatment of
neurological disorders.

Keywords: functional connectivity, cortical parcellation, intersubject variability, topographic variability, resting-
state fMRI (rfMRI), test–retest reliability, graph neural network

INTRODUCTION

Brain atlas has been an important tool to understand the neural basis of human cognition and
to study the functional organization of the human brain (Ungerleider and Desimone, 1986;
Felleman and Van Essen, 1991; Amunts and Zilles, 2015). Neuroanatomists have built a variety
of brain atlases to depict cyto-, myelo-, and receptor architectures using postmortem brains
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(Brodmann, 1909; Zilles and Amunts, 2010; Amunts et al., 2020).
Recent advances in noninvasive neuroimaging techniques, such
as functional magnetic resonance imaging (fMRI), provide an
opportunity to explore the functional organization of the living
human brain. There has been a rich and fast-growing literature
on the functional brain parcellation using either spontaneous
low-frequency fluctuations of fMRI activity or the aggregation
of activation maps across different cognitive tasks (Blumensath
et al., 2013; Eickhoff et al., 2015; Eickhoff et al., 2018a,b).
The majority of current approaches focused on the group
representative functional mapping of the cerebral cortex, which
may provide useful insights into the intrinsic organizational
principles of the human brain (Buckner et al., 2013; Wig, 2017),
but ignore the variability of individual brains in areal size,
location, spatial arrangement, and connectivity patterns (Mueller
et al., 2013; Zuo and Xing, 2014). The precise mapping of
individualized functional areas is a critical step toward better
understanding of the structural–functional relationship of the
human brain that underlying cognition and behavior (Wang
et al., 2015; Kong et al., 2019, 2021) as well as for personalized
localization diagnosis and treatment of neurological disorders
(Mueller et al., 2015; Wang et al., 2020).

Traditional individualized mapping of brain atlas has relied
on the linear and nonlinear registration based on the structural
images in the volume space or cortical surfaces. Modern machine
learning algorithms provide analytic tools to align cortical
areas using neuroimaging data across multiple modalities,
including myelin maps and functional localizers (Robinson et al.,
2018), as well as anatomical (Ma et al., 2021) and functional
connectivity fingerprints (Wang et al., 2015). As one of the
most commonly used features for individualized brain mapping,
functional connectivity has been shown to reveal individual-
specific topographic organization that better predicted cognitive
functions and behaviors (Wang et al., 2015; Cui et al., 2019; Kong
et al., 2019; Li et al., 2019). However, the reliability and validity
of such topographic variability has been one major concern
considering that the fMRI signals are highly contaminated by
noises of various physiological processes and head motions. By
explicitly separating actual intersubject variability from noise
components (evaluated by multiple sessions of the same subject),
studies have shown that the individualized parcellation not
only exhibited better functional homogeneity at rest and during
cognitive tasks (Kong et al., 2021), but also captured reliable
and inheritable variability in the topographic organization
of the human brain (Anderson et al., 2021), demonstrated
by the genetic effects of topographic variability. Yet, this
multisession hierarchical Bayesian model (MS-HBM) used a
global concentration parameter to model the heterogeneity of
functional connectivity for different brain parcels, and resulted
in similar levels of topographic variability and heritability among
the primary and association cortices by treating each area equally,
which is in congruence with the well-known sensory-fugal
gradient in the myelination, cytoarchitecture, and functional
organization of human brain.

In this study, we proposed a masked graph neural network
(GNN) architecture to learn the reliable functional characteristics
of each brain parcel using fMRI data from a large population

and to apply such information to infer the areal probability of
each vertex on unseen subjects. Specifically, we constructed a
vertex-level brain graph for each subject and embed the whole-
brain functional connectivity profiles as signals on the graph.
Then we used high-order graph convolution to integrate the local
connectivity context of each vertex such that the fluctuations in
functional connectivity profiles were evaluated among a small
neighboring area in the cortical surface rather than on each
vertex individually, largely suppressing the noise effects from
individual fMRI runs. Besides, we trained hundreds of graph
convolutional kernels at each graph convolution layer to encode
the variational organizational principles among cortical areas.
Moreover, we implemented subject-specific confidence masks in
the GNN model to maintain a consistent global topographic
organization among subjects while preserving the intersubject
variability in brain parcellation especially for vertices around the
areal borders. Compared with the baseline approaches including
the group-registered atlas and MS-HBM, our model generated
highly consistent and replicable parcellation maps on individual
brains, along with better functional homogeneity at rest and
during cognitive tasks. Moreover, the topographic variability
generally followed a sensory-fugal gradient from primary and
unimodal areas to heteromodal areas, with high variations in
the association cortices while keeping a stable parcellation on
the primary cortex. More importantly, the topographic variability
was strongly associated with individual variability in functional
connectivity profiles and cognitive behaviors.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
We used two independent datasets acquired from the Human
Connectome Project (HCP) dataset, consisting of T1-weighted
(T1w) data, resting-state functional MRI (rs-fMRI), as well as
task-fMRI data for each subject. The individualized parcellation
model was first trained and evaluated on a large dataset consisting
of 1,022 subjects acquired from the Human Connectome Project
S1200 release1. We then evaluated the test–retest reliability of
the model on the second dataset, consisting of 44 subjects
acquired from the HCP test–retest datasets. Whole-brain echo-
planar imaging (EPI) acquisitions were acquired with a 32-
channel head coil on a modified 3T Siemens Skyra with
TR = 720 ms, 2.0-mm isotropic voxels, using a multiband
sequence. Each subject underwent two fMRI sessions on separate
days, including two runs of 14-min resting-state and seven task
fMRI scans (we only used fMRI data with the left to right (LR)
phase encoding in the current study). The task-fMRI database
includes seven cognitive domains, which are emotion, gambling,
language, motor, relational, social, and working memory. The
detailed description of data collection and task paradigms can be
found in Barch et al. (2013).

We used the minimal preprocessed fMRI data from the
HCP pipelines2: (1) fMRIVolume pipeline generates “minimally

1https://db.humanconnectome.org/data/projects/HCP_1200
2https://github.com/Washington-University/HCPpipelines
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preprocessed” 4D time series (i.e., “.nii.gz” file) that includes
gradient unwarping, motion correction, fieldmap-based EPI
distortion correction, brain-boundary-based registration of EPI
to structural T1-weighted scan, nonlinear (FNIRT) registration
into MNI152 space, and grand-mean intensity normalization.
(2) fMRISurface pipeline projects fMRI data from the cortical
gray matter ribbon onto the individual brain surface (fs_LR32K
surface space) and then onto template surface meshes (i.e.,
“dtseries.nii” file), followed by surface-based smoothing using
a geodesic Gaussian algorithm. Additional preprocessing steps
were applied on rs-fMRI data before the calculation of
functional connectivity, including regressing out the signals from
white matter and csf, and the bandpass temporal filtering on
frequencies between 0.01 and 0.1 Hz. Further details on fMRI
data acquisition and preprocessing can be found in Glasser et al.
(2013) and Barch et al. (2013).

Construction of Individual Brain Graph
The preprocessed fMRI data were mapped onto the standard
surface template with 32k vertices per hemisphere. After
removing confounding vertices on the medial surfaces, the
cortical mask consists of 59,412 cortical vertices. Then an
adjacency matrix A was generated from the surface mesh files,
with Aij = 1 indicating that the two vertices i and j are shared
in a common triangle in the cortical mesh. Since all subjects have
already been registered onto the standard surface template during
data preprocessing, the adjacency matrix A was also shared
across all subjects. As such, a binary brain graph G = (V, E) was
constructed for each individual brain, with the node V indicating
each vertex in the cortical mesh, and the edge E specified by the
adjacency matrix indicating whether two nodes are connected or
not. The resulting brain graph is sparsely connected and highly
localized in space, with each vertex only connecting with two to
six nearest vertices on average.

Functional Connectivity Profile as Graph
Signals
For each vertex in the cortical mask, we calculated its functional
connectivity profile by calculating Pearson correlations on
preprocessed fMRI signals and treated it as a feature vector on
each node of the graph. In order to save the computational
cost and complexity, we did not use the vertex-wise functional
connectivity maps but instead calculated the connectivity
fingerprints evaluated on hundreds of functional region of
interest (ROIs) from a group atlas, e.g., Schaefer400 (Schaefer
et al., 2018). The connectivity fingerprint of each cortical vertex
x represents the probability of assigning the seed vertex to the
same label of each functional ROI. These connectivity profiles
were then concatenated and embedded in the individual brain
graph as graph X ∈ RN=F , where N indicates the number of
cortical vertices, and F indicates the number of features in the
connectivity profiles.

ChebNet Convolution on the Brain Graph
After defining the graph G = (V, E) with signals X ∈ RN=F for
each subject, a GNN architecture was applied on the combined
graph data G̃ = (V, E,X) with the aim of integrating the context

information of functional connectivity profiles at each vertex
from its spatial neighbors by using graph convolutions. Graph
convolution relies on the graph Laplacian, which is a smoothing
operator characterizing the magnitude of signal changes between
adjacent nodes. The normalized graph Laplacian is defined as:

L = I − D−1/2AD−1/2 (1)

where D is a diagonal matrix of node degrees, I is the
identity matrix, and A is the adjacent matrix of the graph.
The eigen decomposition of Laplacian matrix is defined as L =
U4UT , where U = (u0, u1, · · · uN−1) is the matrix of Laplacian
eigenvectors and is also called graph Fourier modes, and
4 = diag (λ0, λ1, · · ·λN−1) is a diagonal matrix of eigenvalues,
specifying the frequency of the graph modes. The convolution
between the graph signals X ∈ RN=F and a graph filter gθ ∈
RN=F based on graph G, is defined as their element-wise
Hadamard product in the spectral domain:

x ∗G gθ = U
(
UTgθ

)
�

(
UTx

)
= UGθUTx (2)

where Gθ = diag
(
UTgθ

)
and θ indicate a parametric model for

graph convolution gθ, UTx projects the graph signals onto the
full spectrum of graph modes. To avoid calculating the spectral
decomposition of the graph Laplacian, ChebNet convolution
(Defferrard et al., 2016) uses a truncated expansion of the
Chebyshev polynomials, which are defined recursively by:

Tk (x) = 2xTk−1 (x)− Tk−2 (x) , T0 (x) = 1, T1 (x) = x (3)

Consequently, the ChebNet graph convolution is defined as:

x∗G gθ =
K∑

k=0

θkTk
(
L̃
)
x (4)

where L̃ = 2L/λmax − I is a normalized version of graph
Laplacian with λmax being the largest eigenvalue, θk is the
model parameter to be learned at each order of the Chebychev
polynomials. It has been proven that the ChebNet graph
convolution was naturally K-localized in space by taking up
to Kth order Chebyshev polynomials (Defferrard et al., 2016),
which means that each ChebNet convolutional layer integrates
the context of brain activity within a K-step neighborhood. We
found that high-order graph convolutions might introduce over
smoothing issues and result in decreased functional homogeneity
in fMRI signals (Supplementary Figure 3). In this study, we used
the third-order graph convolutions in our GNN architecture.

Masked Semi-Supervised Graph
Convolutional Neural Network for
Individualized Cortical Parcellation
The GNN model takes the constructed brain graph G̃ =
(V, E,X) as inputs, where V is the set of 32k vertices in the
cortical surface, E is the set of edges indicating whether two
vertices share a common triangle in the surface, and X ∈ RN=F

is the set of feature vectors indicating the functional connectivity
profiles of each vertex. A series of third-order graph convolution
were then applied on the graph signals, with 64 kernels in the
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first graph convolutional layer and 201 kernels in the second
layer. The learned graph representations of the last layer were
transformed to a 201-dimensional probability vector using the
SoftMax function. The loss function of the proposed model was
defined as follows:

Loss =
∑
n

∑
v

wn,v
∑
k

yn,v,klog(pv,k) (5)

We used the K–L divergence to compute the difference between
the group prior yn,v,k and the predicted probability pv,k at each
vertex v for each region k. The weight of uncertainty wn,v
was evaluated for each vertex, inferred by a subject-specific
confidence mask. The confidence mask was generated as follows
(Supplementary Figure 1): (1) initial parcellation: assigning each
vertex in the cortical mask to the corresponding parcel with the
highest similarity in functional connectivity profiles; (2) group-
level alignment: excluding vertices in the initial parcellation
with different parcel labels as the group atlas; (3) subject-level
alignment: overlapping parcellation maps across all available
sessions of a single subject. The resulting confidence map
contains around half of the cortical mask (56% of vertices) that
contributed to the final loss function in all subjects. The benefits
of using the above loss function include: (1) high contributions
from the vertices near the center of brain parcels, preserving
a consistent global topographic organization across subjects;
and (2) small contributions from the vertices around the areal
borders, retaining the intersubject variability to some degree by
introducing mismatching labels across subjects.

The proposed pipeline of individualized brain parcellation (as
shown in Supplementary Figure 5) was trained on 50 subjects
with two sessions for 100 epochs with the batch size set to 1
(processing one subject at a time), evaluated on all other subjects
in the HCP S1200 dataset as well as the test–retest dataset. To
avoid overfitting, an early stopping of 10 epochs was used, along
with an additional l2 regularizations of 0.0005 on model weights
and a dropout rate of 0.5 on each graph convolutional layer.
The best model over 100 training epochs was saved and further
evaluated on the independent test sets from HCP S1200 and
test–retest datasets.

Comparison With Alternative Machine
Learning Approaches
Many approaches of individualized brain parcellation have been
proposed in the literature, for instance, by using an iterative
clustering of fMRI signals (Wang et al., 2015) or hierarchical
inference through a multilevel Bayesian model (Kong et al.,
2021). We included two individualized methods as baseline
approaches in the current study. The first approach aligned
the group atlas into individual brains using the multimodal
alignment protocol (Robinson et al., 2018), which utilized myelin
maps, resting state network maps, and visuotopic maps to align
cortical areas. The second approach modified the individual
mapping of brain atlas using a multisession hierarchical Bayesian
model (Kong et al., 2019, 2021), by explicitly modeling the
variability in functional connectivity at the levels of intra- and
intersubject. The preprocessed HCP fMRI dataset has already

included the copies of the first approach (i.e., the MSMALL
version), for which we compared the functional homogeneity
between our individualized brain parcellation and group-
registered brain atlas (see section “Resting State Functional
Homogeneity of Brain Parcels”). For fair comparisons with the
second approach, we reran the MS-HBM approach on the same
group of subjects along with the same preprocessing steps as
in our model and compared the distribution of topographic
variability between the two approaches (see section “The
Intersubject Reliability and Variability of Individual Properties”).
We chose the Schaefer400 atlas (Schaefer et al., 2018) as
the referenced group atlas for all approaches and used the
author-suggested model parameters for rerunning the MS-HBM
approach (Kong et al., 2021), including priors of group spatial
(100), markov random field (MRF) smoothing (50), and gradient-
based spatial localization (50).

The Intersubject Reliability and
Variability of Individual Properties
The reliability of individual parcellation and its intersubject
variability were evaluated on both HCP S1200 and test–retest
datasets. Each subject underwent two (HCP S1200 dataset)
or four (test–retest dataset) fMRI sessions. The reliability of
individual parcellation was evaluated by the averaged Dice
coefficients among all possible pairs. The Dice coefficient
was first evaluated on each brain parcel using the equation
(2 × A∩B)/(A + B), where A and B indicate two different
parcellation schemes, and then averaged across the whole cortex.
The effect size of the intersubject variability was measured by
Cohen’s d, representing the standardized difference between the
mean values of two distributions, defined as follows:

Cohen′s d =
µinter − µintra√
σ2
inter + σ2

intra

(6)

where µinter and σinter represent the mean and standard
deviation of the variabilities between each pair of subjects, while
µintra and σintra represent the mean and standard deviation
of the variabilities between different fMRI scans of the same
subject. We used different indices to measure the variability
of parcellation maps and connectivity profiles. Specifically,
the variability in brain parcellation (i.e., areal topographic
variability) was measured by the Dice coefficient between
two parcellation maps. The variability of connectivity profiles
(i.e., functional connectivity variability) was measured by the
correlation coefficients of the functional connectivity profiles
between two fMRI runs.

For further validation of the biological basis of the intersubject
variability in brain parcellation, additional association analyses
were conducted for the areal topographic variability, including
the variability of connectivity profiles, distribution of T1w/T2w
myelin ratio, as well as the sensory-fugal map of laminar
differentiation. As a quantitative measure of the myelin content
of cerebral cortex, the myelin ratio map was defined as the
ratio of T1w and T2w structural images on each subject and
then averaged across all subjects on the HCP S1200 release
(Glasser and Van Essen, 2011). The cortical myelin map was then
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mapped onto the chosen group atlas by averaging the T1w/T2w
ratio within each ROI. The laminar differentiation map identifies
four different cortical types based on their cytoarchitectonic
organization, namely, paralimbic, heteromodal, unimodal, and
idiotypic areas (Mesulam, 1998). A cortical mapping of laminar
differentiation was generated by assigning each ROI in the chosen
group atlas to one of the four types.

Resting State Functional Homogeneity of
Brain Parcels
Functional homogeneity in resting-state fMRI was defined as
the averaged Pearson’s correlations of fMRI signals between
all pairs of vertices within each parcel, adjusted for the parcel
size (Kong et al., 2019, 2021). Higher functional homogeneity
indicates similar brain dynamics of fMRI activity within the
same parcel. The functional homogeneity was evaluated on the
test set from the HCP S1200 (in a total of 928 subjects, after
excluding the training data, subjects included in the test–retest
data, and some abnormal data with missing functional scans) for
both group-registered parcellation and masked semi-supervised
graph convolutional neural network (MSGCN) individualized
brain parcellation. A two-sided paired t-test was applied to test
the significant differences of functional homogeneity between
the two approaches.

Regional Variability and Homogeneity in
Task Activation
We chose one representative task contrast from each of the
seven cognitive domains: right-hand movement for the motor
task, two back conditions on tool images for working memory,
math vs. story for language processing, faces vs. shapes for
emotional processing, theory of mind vs. random motion for
social cognition, reward for the gambling task, and relational
processing vs. pattern match for relational processing. For
each task contrast, we evaluated the regional variability and
homogeneity in the task activations from the test subjects of
the HCP S1200 dataset. Regional variability in task activation
was evaluated by calculating the standard deviation of brain
activation within each parcel by using the beta maps derived
from the generalized linear model (GLM) analysis. Lower task
variability indicates small variations of task activations within
each brain parcel and large variations along the areal boundaries.
Regional homogeneity in task activation was evaluated by the
mean activation strength in each brain parcel. Higher task
homogeneity indicates better functional alignment in the task
activations across different subjects.

Prediction Cognitive Behaviors Using
Individualized Parcellation
To further validate that individualized parcellation improves
the intersubject functional alignment in brain organization and
captures meaningful aspects of human cognition, we performed
another experiment to predict cognitive behaviors using the
intersubject variability in brain parcellation. A kernel regression
method was used to predict the behavioral score of the test
subject based on the assumption that similar topography in brain

parcellation induced similar performance in behavior, defined as
follows:

y ≈
∑
i

Dice(l, li)yi

where yi represents the behavioral score of the i-th subject in
the training set, li represents the parcellation map of the subject
i, Dice(l, li) represents the Dice coefficient of parcellation maps
between the test subject and the subject i, and y represents
the behavioral score of the test subject. An additional l2-
regularization term was used to prevent overfitting issues, with
the regularization parameter determined by a fivefold cross-
validation procedure.

For each of the 58 cognitive behaviors, a prediction model was
trained and evaluated on 928 individualized brain parcellations.
Specifically, we trained the prediction model on 200 subjects and
evaluated it on the rest of the 728 subjects. First, we used a five-
fold cross-validation strategy to determine the optimal prediction
model (including model parameters and the l2-regularization
parameter). The model was then used to predict the behavioral
scores on the test subjects. Finally, the performance of the
prediction model was evaluated by calculating the Pearson
correlation of predicted and measured behavioral scores.

RESULTS

Masked Semi-Supervised Graph
Convolutional Neural Network Model for
Individualized Brain Parcellation
The MSGCN model (as shown in Supplementary Figure 5)
was evaluated using 1,022 subjects from HCP S1200 dataset
with two fMRI sessions for each subject, among which 40
subjects were randomly chosen for model training, 10 subjects
for validation, and the rest of the datasets used for model
testing. During model training, a vertex-level brain graph was
first constructed from individual T1-weighted brain images,
indicating the spatial adjacency between any two vertices in
the cortical surface. The functional connectivity profiles of each
vertex were then embedded in the brain graph as graph signals.
Finally, the areal probability of each vertex was inferred by using
a two-layer graph convolution architecture with a subject-specific
confidence mask. As a result, the MSGCN model extracted
reliable functional characteristics of each brain parcel inferred
from a large population and generalized over data of unseen
subjects by revealing reliable parcellation maps for each of
the test subjects.

Topographic Organization of Individual
Parcellation and Its Test–Retest
Reliability
The cortical parcellation maps on individual brains followed
a similar global topographic organization as the group atlas
(e.g., Schafer400 atlas), indicating a relatively high similarity
[dice = 0.847 ± 0.013 (mean ± std)] among all fMRI sessions
of 1,022 HCP subjects. First, a stable brain parcellation scheme
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FIGURE 1 | Topographic organization of individual parcellation and its reliability measured on the HCP S1200 dataset. (A) Reliability of individual parcellation. The
masked semi-supervised graph convolutional neural network (MSGCN) individualized parcellation showed significantly higher similarity for intrasubject
(0.889 ± 0.025) than intersubject (0.810 ± 0.021), detected by a paired t-test (p < 0.001). (B) Cortical mapping of the group atlas. We used a similar color scheme
as the Yeo-7 networks for the Scaefer400 atlas, while the areal borders were delineated by the gray line. (C) Probability map of individualized parcellation maps. The
parcellation maps on all subjects were summarized into a population probability map, indicating the probability of assigning the vertex to the same parcel among the
HCP population. A population threshold of 60% was applied to the probability map. (D) Distribution of intersubject variability in brain parcellation among functional
networks. We used Cohen’s d to evaluate the effect size of variability in individualized parcellation generated by MSGCN (orange line) and multisession hierarchical
Bayesian model (MS-HBM) (purple line), both of which showed large variations in the association cortex including “Ffontal,” “parietal,” and “2ndSen” regions and low
variability in the motor and sensory cortices. However, the MSGCN model detected higher variability in high-order cognitive areas, especially in the frontal and parietal
regions. (E) Cortical mapping of intersubject variability for the MSGCN model. (F) Cortical mapping of intersubject variability for the MS-HBM. ∗∗p-value < 0.01.

was revealed such that the majority of vertices showed consistent
parcel labels across subjects, with over 75% of cortical vertices
showing a high population probability >0.6. We observed
near-perfect alignment at the center of brain parcels along
with notable variability around the areal borders (Figure 1C).
Second, the reliability of individual parcellation, measured by
the intra- and intersubject similarity (Figure 1A), showed
significantly higher consistency among multiple sessions of the
same subject (dice = 0.889 ± 0.025) than between different

subjects (dice = 0.810 ± 0.021), as revealed by a paired t-test
(p < 0.001). Moreover, the intersubject variability in brain
parcellation (i.e., areal topographic variability), evaluated by
the Cohen’s d effect size among individualized parcellation
maps, was not uniformly distributed in the cerebral cortex,
but rather followed the functional organizational principles
(Figure 1E). After mapping the areal topographic variability
onto the seven functional networks (Ito, 2018), we found
consistent parcellation schemes for the motor and sensory
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cortices (i.e., low variability) and divergent brain parcels for
the association cortices (i.e., high variability) including frontal,
parietal, and temporal areas (Figure 1D). Compared with
another individualized parcellation approach, e.g., the MS-
HBM, our MSGCN model revealed higher areal topographic
variably, in general (Supplementary Figure 4), with a similar
level of areal topographic variability in the primary cortex
but detecting much higher variability in the secondary and
association cortices (Figure 1D).

The reliability of the MSGCN parcellation was further
validated on the test–retest datasets, by revealing reliable cortical
parcellation on the same subject and detecting notable variations
in the areal topographic organization between subjects. We
also found much higher similarity in the parcellation maps
among multiple sessions of the same subject compared with
similarity between different subjects (dice = 0.9122 ± 0.011
and 0.8370 ± 0.012, respectively). The cortical parcellation
maps on two exemplar subjects are shown in Figure 2.
Individual-specific areal topography was revealed, for instance,
in the inferior parietal lobe (the marked region in Figure 2),
indicating a similar topographic pattern across the four test–
retest sessions of the same subject but largely different areal
topography between subjects. Our findings suggest that the
MSGCN individualized parcellation detects reliable individual
differences in the areal topography.

Interpretability of Intersubject Variability
in Brain Parcellation
The intersubject variability of MSGCN parcellation was
biologically meaningful and followed the myelination and
cytoarchitectonic organizational principles of the human
brain. We observed a significant association between the areal
topographic variability and the variability of connectivity
profiles (r = 0.42, p < 0.001, Figure 3B), both of which showed
high variations in the heteromodal and unimodal regions,
along with low variability in the idiotypic and paralimibic
regions, regions specified by an independent atlas of laminar
differentiation (Figure 3D), generally following a sensory-
fugal gradient from sensory–motor and unimodal areas to
heteromodal areas (Mesulam, 1998). By contrast, although
exhibiting a strong association with the functional connectivity
variability as well (r = 0.30, p < 0.001, Figure 3B), the MS-
HBM parcellation showed a very different distribution of areal
topographic variability that weakly aligned with the laminar
differentiation map. For instance, much higher variability
was detected in the idiotypic and unimodal regions rather
than in the heteromodal regions (Figure 3D). Moreover,
the areal topographic variability of the MSGCN parcellation
was significantly associated with the T1w/T2w myelin ratios
as well (r = −0.27, p < 0.001), indicating low variability
in the primary motor and visual cortex, which are heavily
myelinated, and high variability in the association cortices,
which are more lightly myelinated (Glasser and Van Essen,
2011). Such association with the myelination organization was
missing in the MS-HBM parcellation (r = 0.005, p = 0.09).
Our results suggest that the intersubject variability revealed

by the MSGCN model follows the global distribution of
myelo- and cytoarchitecture, as well as the variability in
functional brain organization.

Improved Functional Homogeneity With
Reduced Task Variability
The functional homogeneity at rest measures the internal
functional consistency of brain parcels. As shown in Figure 4A,
the global functional homogeneity on the validation dataset was
gradually improved during the model training process. Besides,
the individualized brain parcellation on the unseen test subjects
also exhibited higher functional homogeneity than the initial
parcellation derived from the group atlas (see Supplementary
Figure 1 for an example), as detected by a paired t-test
(p = 0.0006). The averaged functional homogeneity of the
MSGCN parcellation was 0.137 ± 0.001 (mean ± se), evaluated
on all 928 test subjects from the HCP S1200 dataset, with a
4% improvement at the whole-brain level compared with the
group-registered atlas (Figure 4B).

On the other hand, the regional variability in task activations
(task variability) measures the functional alignment between
the intrinsic brain organization at rest and task-evoked brain
activation during cognitive tasks. Our results showed that the
MSGCN parcellation captured more homogenously distributed
task activations. Overall, MSGCN parcellation showed better
functional alignment at the whole-brain level for the seven tasks
in HCP data, namely, language (math–story), emotion (faces–
shapes), gambling (reward), relational (rel–match), social (tom–
random), motor (rh-avg), and working memory (2BK-tool) tasks,
with significantly reduced task variability compared with the
group atlas [False Discovery Rate (FDR) corrected p-value < 0.05,
as shown in Supplementary Table 1]. For instance, the changes in
the subject-specific activation map of language task followed the
areal borders identified by the MSGCN parcellation (Figure 5B),
e.g., lower regional variability and higher homogeneity in the
inferior parietal regions (Figure 5C). Compared with the group-
registered Schaefer400 atlas, the MSGCN parcellation showed
smaller variability in task activation within the detected region
(p = 0.02) along with higher functional consistency across
subjects (p = 0.04). Moreover, the MSGCN parcellation detected
lower variability in task activations for all seven tasks at the
whole-brain level (Figure 5A). Our findings indicate that the
MSGCN parcellation reveals a better functional alignment across
subjects in both resting state and task activation.

Prediction Cognitive Behaviors Using
Masked Semi-Supervised Graph
Convolutional Neural Network Brain
Parcellation
For each of the 58 cognitive behaviors, we trained a prediction
model based on the parcellation maps of 200 subjects and
evaluated the model on the rest of the 728 subjects. The
models achieved significant predictions (p-value < 0.05) on
25 behavioral scores (as shown in Figure 6A), including
motor (Strength_Unadj, Endurance_Unadj), cognition
(PicVocab_Unadj), language (ReadEng_Unadj), and others (see
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FIGURE 2 | Individualized brain parcellation on two exemplar subjects and four test–retest sessions. The inferior parietal lobe (zoomed-in areas within the red
rectangle) showed a similar topographic pattern across the four sessions of each subject, but detected significantly different areal topography between two subjects.

Supplementary Table 2 for a full list of 25 behavioral measures).
For instance, we found significant associations between predicted
and measured behavioral scores for motor (Strength_Unadj,
r = 0.398, p = 7e-30) and cognition (PicVocab_Unadj, r = 0.1979,
p = 5e-8), as shown in Figures 6B,C. These findings indicated
that the individualized parcellation maps captured meaningful
aspects of individual variability in brain topography and
human cognition.

DISCUSSION

In this study, we propose an individualized cortical parcellation
method that projects the group atlas onto individual brains

by taking into account the variations in brain topography
and functional connectivity. The proposed MSGCN parcellation
generated highly consistent parcellation maps on multiple
sessions of the same subject (intrasubject similarity = 0.89) while
capturing reasonable topographic variations between subjects
(intersubject similarity = 0.81). Compared with other baseline
approaches including the group-registered atlas and MS-HBM,
our method generated more homogeneous parcels on individual
brains that strongly aligned with the intrinsic brain organization
at rest and task-evoked brain activation of cognitive tasks.
Moreover, the MSGCN parcellation revealed higher intersubject
variability in the association cortices while keeping a stable
parcellation on the primary cortex, indicating a sensory-fugal
gradient from primary and unimodal areas to heteromodal
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FIGURE 3 | Distribution of intersubject variability in the masked semi-supervised graph convolutional neural network (MSGCN) parcellation and its association with
functional, myelination, and cytoarchitecture organization. (A) Cortical mapping of intersubject variability in the functional connectivity profiles, with the red colors
indicating high variability among subjects and blue indicating low variability. (B) Associations of the areal topographic variability with the variability of functional
connectivity profiles. We found a strong association in the MSGCN model (r = 0.42, p < 0.001), which was much higher than multisession hierarchical Bayesian
model (MS-HBM) (r = 0.30, p < 0.001). (C) Cortical mapping of the T1w/T2w myelin ratio map, with the red colors indicating high myelination content in the areas.
(D) Associations of the areal topographic variability with the distribution of the myelin ratio map. We found a significant negative association in the MSGCN model
(r = −0.27, p < 0.001), but not in MS-HBM (r = 0.005, p = 0.09). (E) Cortical mapping of laminar differentiation, with different colors representing one of the four
cortical types, namely, paralimbic, heteromodal, unimodal, and idiotypic areas. (F) Distribution of the intersubject variability in both functional connectivity profiles and
individual parcellation. The intersubject variability was evaluated by using Cohen’s d. Both functional connectivity profiles and MSGCN individualized parcellation
showed relatively higher variability in the heteromodal and unimodal areas than the paralimbic and idiotypic areas. By contrast, the MS-HBM parcellation identified
much higher variability in the idiotypic areas.
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FIGURE 4 | Functional homogeneity of individualized brain parcels in the masked semi-supervised graph convolutional neural network (MSGCN) parcellation.
(A) The changes in functional homogeneity were evaluated in the validation dataset during the training processes. (B) Significantly higher functional homogeneity was
detected in the MSGCN model (0.137 ± 0.001) than the group-registered Schaefer400 atlas (0.132 ± 0.001), as revealed by a paired t-test (p = 0.0006).
∗∗∗p-value < 0.001.

FIGURE 5 | Functional alignment of the masked semi-supervised graph convolutional neural network (MSGCN) parcellation with task activations in the Human
Connectome Project (HCP) tasks. (A) Task variability of MSGCN parcellation and Schaefer400 atlas on the seven tasks. We observed significantly lower (FDR
corrected p-values < 0.01) regional variability in task activations by using the MSGCN parcellation (in orange) compared with the Schaefer400 atlas (in blue).
(B) Representative activation map of the language task on a single subject, with the areal borders identified by the group-registered Schaefer400 atlas and MSGCN
individualized brain parcellation, respectively. The visual assessment suggested that the fluctuations in the subject-specific task activation map went along the areal
borders identified by the MSGCN parcellation but not the Schaefer400 atlas. (C) Task variability and homogeneity of the rectangular area marked in panel (B).
Quantitative comparisons suggested significantly lower variability and higher homogeneity of task activation in the detected region by using the MSGCN parcellation
compared with the Schaefer400 atlas, as detected by paired t-tests (p-value = 0.02 and 0.04, respectively). ∗p-value < 0.05; ∗∗p-value < 0.01.

areas. Such topographic variability in individualized parcellation
strongly associated with the variability of functional connectivity
profiles and cognitive behaviors, and generally followed the
myelination, cytoarchitecture, and functional organization of
the human brain.

Individualized brain parcellation has played a more and
more important part in neuroscience research and clinical
studies, which not only better predicted human cognition,
behaviors, personality, and emotion (Kong et al., 2021), but also
captured reliable and inheritable variability in the topographic

organization of the human brain (Anderson et al., 2021), as
well as more precise diagnosis and treatment of neurological
disorders (Mueller et al., 2015; Wang et al., 2020). Yet, due to the
inevitable contamination of fMRI signals by physiological noises
and head motions, the traditional individualized parcellation
approaches usually suffer from low generalizability on new
datasets and low consistency among repeated scans. To address
this issue, we applied a high-order graph convolution along
with a multilayer deep learning architecture in this study. As
a generalization of the conventional convolutional operations
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FIGURE 6 | Prediction cognitive behaviors using masked semi-supervised graph convolutional neural network (MSGCN) individualized brain parcellation.
(A) Prediction accuracies on 25 behavioral scores measured by the Pearson correlation of predicted and measured behavioral scores, with accuracy ranging from
0.07 to 0.4 (p-values < 0.05). (B) Significant associations between the predicted and measured behavioral scores for motor (Strength_Unadj, r = 0.398, p = 7e-30)
and (C) cognition (PicVocab_Unadj, r = 0.1979, p = 5e-8), as indicated by red triangles in (A).

onto nongrid structures, graph convolution applies a series of
low-frequency filters on the graph modes, also known as using
multiple smoothing kernels on the cortical surface, and detects
low fluctuations of functional connectivity along the vertex-level
brain graph. The smoothing effect was controlled by the order
of ChebNet graph convolution. Using this graph convolution
architecture, the model generated very stable parcellations on
a large population with over 75% of cortical vertices following
the global topographic organization by assigning them to
the same parcels among different subjects. Besides, highly
consistent parcellation maps (Figures 1, 2) were generated on
the multiple sessions of the same subject (dice = 0.89), along

with lower consistency between subjects (dice = 0.81). Yet,
high-order kernels and deep architectures may introduce over-
smoothing issues in GNN, which tends to generate identical
parcellation maps on all subjects. We have also observed
such over-smoothing effect in our MSGCN model such that
the functional homogeneity of individualized brain parcels
gradually reduced when using higher-order graph convolutions
(K > 3 in Supplementary Figure 3). Considering the tradeoff
between the intersubject variability and intrasubject reliability
in individualized brain parcellation, we used the third-order
graph convolution along with two layers in our model, which
not only revealed high consistency among test–retest sessions
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but also captured notable variability of brain parcellation
between subjects.

The separation of intersubject variability from the randomly
appearing noise components have also been considered in
previous individualized parcellation models, for instance, using
a hierarchical Bayesian model to quantify the variability
of functional connectivity at multiple levels (Kong et al.,
2021). However, by treating each area equally through a
global concentration parameter on all regions, the MS-HBM
approach revealed similar levels of topographic variability
and heritability among the primary and association cortices
(Anderson et al., 2021), which is in congruence with the
well-known sensory-fugal gradient in brain organization. To
avoid this effect, we chose a data-driven approach to learn
the functional characteristics of each brain parcel inferred
from a large group of subjects and to encode the intra- and
inter-region heterogeneity of functional connectivity through a
large set of graph convolutional kernels. The detected region-
specific connectivity fingerprints have been proven to be highly
generalizable and reliable when inferring the areal probability
on unseen subjects (Figures 1, 2). The main reasons that drive
this effect include (1) integrating the local connectivity context
of each vertex instead of treating each vertex independently,
(2) detecting the fluctuations in functional connectivity profiles
within a small neighboring area in the cortical surface, and
(3) indicating the areal borders on individual brains by using
the gradients of function connectivity fluctuations at multiple
levels. As a result, the model revealed large intersubject variability
in brain parcellation, and such topographic variability was not
randomly or uniformly distributed across the cerebral cortex,
but rather followed the global distribution of myelination,
cytoarchitecture, and functional organization of the human brain
(Figure 3). The model demonstrated low variability in the
primary and unimodal cortices that are heavily myelinated and
large variations in the heteromodal and association cortices that
are lightly myelinated. Similar associations with the myelination
and cytoarchitecture organization have also been reported in both
brain anatomy and function (Huntenburg et al., 2018; Demirta
et al., 2019), suggesting a sensory-fugal gradient in the individual
developmental and evolutionary expansion of the cerebral cortex
(Glasser and Van Essen, 2011).

There are two main goals for the individualized brain
parcellation, including (1) functional homogeneity of brain
parcels on individual brains, and (2) consistent topographic
organization across multiple sessions and different subjects. The
tradeoff between these two goals was addressed by using a semi-
supervised learning framework with subject-specific confidence
masks. Specifically, during model training, a subject-specific
confidence mask was used for the guidance of topographic
alignment across subjects, indicating the true labels for a small
portion of cortical vertices, i.e., the labels extracted from the
group atlas (see Supplementary Figure 1 for an example). These
true labels were then used to learn the association between brain
topography and functional connectivity profiles and to predict
the parcellation of unlabeled data in the training subjects as
well as for unseen test subjects. Similar to previous approaches
(Wang et al., 2015), we started from an initial parcellation

(see Supplementary Figure 1 for an example) that had the
highest functional homogeneity by grouping cortical vertices
according to their functional connectivity profiles to ensure
the functional homogeneity of brain parcels (Supplementary
Figure 2). Additional modifications on this parcellation map, i.e.,
excluding vertices that were misaligned across sessions of the
same subject or with the group atlas, introduced the important
features of topographic alignment in individualized parcellation.
By implementing the resulting confidence map with the semi-
supervised learning, the model captured homogenous parcels
on individual subjects that also followed the global topographic
organization of the group atlas. It is worth noting that the
MSGCN parcellation not only generated the full parcellation
of half-labeled training subjects but also made predictions over
unseen test subjects where no labeled data were included. The
generalizability of the model barely impacts by the size of training
set such that labeling all subjects from the dataset, i.e., both
training and testing data were drawn from the same sets of
subjects, only achieved 2% of improvement on the functional
homogeneity but showed much lower intra- and intersubject
reliability (Supplementary Figure 2).

The MSGCN individualized brain parcellation not only
generated replicable parcels on individual brains but also
captured meaningful individual variability in brain topography
and human cognition. The topographic variability generally
followed a sensory-fugal gradient from primary and unimodal
areas to heteromodal areas, with high variations in the association
cortices while keeping a stable parcellation on the primary
cortex. Such topographic variability strongly associated with
the variability of functional connectivity profiles, and generally
followed the myelination, cytoarchitecture, and functional
organization of the human brain. More importantly, the
topographic variability was highly predictive to individual
variability of cognitive behaviors ranging from motor to language
to cognition. However, not all behavioral scores showed a
strong association with the predicted scores (only 25 out of 58
behaviors with p-value < 0.05). This is probably due to the
implementation of the Dice coefficient as the kernel function in
the prediction model, which was a global measure of similarity in
brain parcellation and had limited power to detect the variability
in specific brain regions and networks. Other kernel functions,
for instance, resting-state functional connectivity and regional
morphological statistics, as well as other prediction models, could
be explored in the future.

LIMITATIONS

In the current study, we used the Schaefer cortical parcellation
with 400 regions as the referenced group atlas. Yet, the proposed
model is not limited to a specific atlas or specific resolutions per
se, but rather easily generalized to other parcellation schemes
including functional, anatomical, or multimodal atlases. It is
worth noting that, in order to balance between the internal
homogeneity in connectivity profiles and consistent topographic
organization across subjects, the optimal setting of the graph
convolution architecture should be tested when applying to new
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datasets and atlases, including the order of graph convolution, the
number of convolutional layers, as well as the confidence masks.

CONCLUSION

We proposed a masked semi-supervised GNN model for
individualized brain parcellation taking into account the
homogeneity of functional connectivity profiles, alignment of
topographic organization across subjects, as well as the reliability
of test–retest data on individual brains. Compared with other
individualized approaches, the MSGCN parcellation generated
more homogenous brain parcels at rest and during cognitive
tasks. The model captured high topographic variability that
was mainly distributed in the associated cortices while keeping
a stable parcellation in the primary and unimodal areas,
and generally followed the myelination, cytoarchitecture, and
functional organization of the human brain. Moreover, the
topographic variability strongly associated with the functional
connectivity variability and significantly predicted a series of
cognitive behaviors ranging from motor to language to cognition.
This study provides new avenues for precise mapping of cortical
areas onto individual brains, and shows potential applications
in locating personalized functional areas in the diagnosis and
treatment of neurological disorders.
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Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide

non-invasive high-resolution images from which multi-layered networks of whole-brain

structural and functional connectivity can be derived. Unfortunately, the lack of observed

correspondence between the connectivity profiles of the two modalities challenges the

understanding of the relationship between the functional and structural connectome.

Rather than focusing on correspondence at the level of connections we presently

investigate correspondence in terms of modular organization according to shared

canonical processing units. We use a stochastic block-model (SBM) as a data-driven

approach for clustering high-resolution multi-layer whole-brain connectivity networks

and use prediction to quantify the extent to which a given clustering accounts for

the connectome within a modality. The employed SBM assumes a single underlying

parcellation exists across modalities whilst permitting each modality to possess an

independent connectivity structure between parcels thereby imposing concurrent

functional and structural units but different structural and functional connectivity profiles.

We contrast the joint processing units to their modality specific counterparts and find

that even though data-driven structural and functional parcellations exhibit substantial

differences, attributed to modality specific biases, the joint model is able to achieve

a consensus representation that well accounts for both the functional and structural

connectome providing improved representations of functional connectivity compared to

using functional data alone. This implies that a representation persists in the consensus

model that is shared by the individual modalities. We find additional support for

this viewpoint when the anatomical correspondence between modalities is removed

from the joint modeling. The resultant drop in predictive performance is in general

substantial, confirming that the anatomical correspondence of processing units is indeed

present between the two modalities. Our findings illustrate how multi-modal integration

admits consensus representations well-characterizing each individual modality despite

their biases and points to the importance of multi-layered connectomes as providing

supplementary information regarding the brain’s canonical processing units.

Keywords: multi-layered connectomes, dMRI, fMRI, stochastic block model, brain parcellation
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1. INTRODUCTION

The prominent approach of viewing the organization of the
brain at the macro scale needs to reconcile two fundamental
aspects: while the cortex is segregated into specialized neuronal
regions, the cognitive functions emerge from integration of these
regions by coordinated activation (Tononi et al., 1994). Network
science provides a convenient way to model complex relational

systems, such as the behavior of the human brain, which does
not emerge solely from the properties of the individual units,
but from the complex interactions between these. Here, both
aspects of brain organization can be summarized as networks,

reflecting the structural and functional connectivity respectively,
thereby permitting network science to provide the statistical
foundation and methodology for investigating and quantifying
the organization of brain connectivity (Bullmore and Sporns,
2009; Van Den Heuvel and Pol, 2010). Recent proposals aim
at jointly modeling multiple modalities of brain connectivity
using multi-layer networks (Battiston et al., 2017; Buldú and
Porter, 2017; De Domenico, 2017), where the connections
from different modalities are encoded within different layers,
sharing the same network nodes (Betzel and Bassett, 2016),
see also Vaiana and Muldoon (2020) for a recent review.
Such multi-layer investigations allow neuroscience to integrate

the complementary aspects of structural and functional data.
However, the implications of multimodal integration, the extent
to which it is interpretable, and the correspondence between the
modalities remain unclear (Battiston et al., 2017; De Domenico,
2017).

Direct comparisons of structural and functional connectivity
derived from diffusion and functional magnetic resonance
imaging (dMRI/fMRI) have shown that structure to some degree
reflects function (Koch et al., 2002; Greicius et al., 2009; Sporns,
2014). This suggests that a relationship does exist between the
two modalities, indicated by measures of network properties,
e.g., functional connectivity networks exhibiting various small-
world attributes (Achard et al., 2006), which could be
reflected by an evolutionarily-sound and economically-efficient
structure (Bullmore and Sporns, 2009). However, the time scales
of structural and functional connectivity derived from MRI are
orders of magnitude apart. As such, the blood-oxygen-level-
dependent (BOLD) hemodynamics quantified by fMRI are in the
order of seconds with observed responses to stimuli delayed by
at least a second and peaking after 4–8 s (Kim and Bandettini,
2012). Structural connections on the other hand operate in the
order of milliseconds (Innocenti et al., 2014) which can thus not
be directly probed by fMRI. Notably, the low temporal resolution
of fMRI can be overcome by other functional neuroimaging
methods such as electroencephalography (Deslauriers-Gauthier
et al., 2019) but at the cost of low spatial resolution. At
the whole-brain scale, previous studies suggest that functional
connectivity quantified by fMRI to some extent emerges from
the structural organization (Greicius et al., 2009; Sporns, 2014;
Becker et al., 2015), but BOLD derived functional connectivity
has also been observed between cortical regions that are not
directly anatomically connected (Koch et al., 2002; Vincent
et al., 2007; Skudlarski et al., 2008; Honey et al., 2009). In

particular, stronger prevalence of functional connections linking
right and left hemispheres have been observed (Koch et al., 2002;
Vincent et al., 2007; Skudlarski et al., 2008). Additionally, various
neurological disorders have been shown to cause alterations
in both functional and structural connectivity (Fornito and
Bullmore, 2012; Tost et al., 2012; Kaiser, 2013; van Dellen
et al., 2013), though the extent to which any relation between
functional and structural connectivity affects brain disease still
needs further investigation (Vega Pons et al., 2016). Thus,
although BOLD functional connectivity to some extent has been
found to correlate with the strength of the direct anatomical
connections as quantified by the number of streamlines between
regions (Honey et al., 2009; Hermundstad et al., 2013), structural
and BOLD functional connectivity operate on vastly different
time-scales. As a consequence, the direct structural connections
are not found to be very predictive of functional connections
but moreso when integrating multiple steps in the structural
connectome (Røge et al., 2017).

Existing attempts at jointly modeling functional and structural
connectomes have primarily focused on how structure can
inform function (Hinne et al., 2014) or function enhance
recovery of structural connections (Chu et al., 2018). In Zhang
et al. (2021), canonical correlation analysis (CCA) was used
to identify optimal projections maximizing the correlation
between structural and functional connections, and in Becker
et al. (2018) spectral methods were used to relate structural
connections and paths along the structural graph to functional
connectivity. Structural and functional connectomes have further
been jointly modeled using independent component analysis
(ICA) combining structural and functional connections as
features for the ICA (Amico and Goñi, 2018). Recently, deep
learning autoencoders (Banka et al., 2020) and graph neural
networks (see also Bessadok et al., 2021 for an overview) have
been proposed for multimodal integration providing non-linear
mappings between structural and functional connectivity (Li
et al., 2021) as well as joint learning of connectivity fingerprints
predictive of phenotypic traits (Filip et al., 2020; Dsouza et al.,
2021). In the context of connectivity based parcellations the most
prominent approaches have been to use k-means, hierarchical,
or spectral clustering (Eickhoff et al., 2015; Reuter et al., 2020)
to parcellate functional and structural connectivity. Whereas
these frameworks can provide joint parcellations as a post
processing step, joint parcellations using generic heterogeneous
data clustering tools (Liu et al., 2020) based on Gabasova et al.
(2017) have also been considered.

In this article, we approach the assessment of concurrence
between functional connectivity (FC) and structural
connectivity (SC) of high-resolution multi-layered connectomes,
hypothesizing that correspondence occurs not at the level of
connectivity but organization of latent processing units. We
therefore assume that both the structural and functional
connectome express different connectional fingerprints of the
brain’s canonical processing units. This assumption is formalized
in the multi-layered network by assuming that measurements
from differing modalities (i.e., network-layers) originate from
the same processing units (i.e., group of network nodes) but
with substantial differences in how the connectivity profiles
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between these processing units are expressed across modalities.
As a result, even though the elicited networks of SC and FC
are different, we hypothesize that they both reflect the same
underlying organization, that would emerge if neurobiological
atoms of the cortex were to form aggregated regions which
are shared across both modalities (Eickhoff et al., 2017). In
particular, focusing on the consensus representation obtained
by combining modalities may better reveal these regions, by
providing a representation that is less polluted by modality
specific biases.

Figure 1 illustrates the conceptual steps of the data-driven
approach for exploring the organization of the brain, based on
network modeling of structural and functional neuroimaging
data. We presently consider data obtained from the publicly
released Human Connectome Project (HCP) (Feinberg et al.,
2010; Moeller et al., 2010; Setsompop et al., 2012; Xu et al.,
2012; Van Essen et al., 2013) database, from which we generated
in vivo whole-brain resting state FC and SC networks for a
large population of 250 healthy subjects. The networks were
inferred from functional and diffusion recordings in the full
image resolution supported by modern MRI. The graphs for
each subject were binarized and thresholded at one percent
density, ignoring the sub-cortical voxels, and hence each contain
59,412 vertices. These graphs were then randomly split into
five populations of 50 subjects, aggregated into single functional
and structural networks for each group, and finally binarized to
one percent link-density. Figure 2 illustrates how the profiles of
structural and functional connectivity substantially differ both
in terms of strength within anatomical regions and in their
whole brain connectional fingerprint, whilst relatively exhibiting
limited variation within each modality across populations of
50 subjects. In particular, functional connectivity shows a high
degree of inter-hemispheric connections when compared to
the structural connectivity that is mainly ipsi-lateral. Apart
from time-scale differences, the lack of inter-hemispheric
structural connections can be attributed to limitations of current
tractography methods (Maier-Hein et al., 2017). As such, the
average area under curve (AUC) of the receiver operator
characteristic directly predicting the connectivity of one group
of subjects from another group of subjects (i.e., considering the
total number of 0–0 matches, 0–1 matches, 1–0 matches, and 1–1
matches; Ambrosen et al., 2014; Røge et al., 2017) across the FC
graphs is 0.901 whereas it is 0.935 for the SC graphs and 0.618
predicting FC from SC for the same group of subjects.

This lack of concurrence at the modality-specific connectivity
level both within and between parcels does not rule out
concurrence at the level of the underlying processing units. If
the processing units resolved by both modalities are in perfect
agreement, the inter-population variability of these units within
each modality would be comparable to their inter-modality
variability within populations. However, observed differences
in network properties can be due to differing sources, such
as noise in the data and measurement procedure including
scanning parameters (Ambrosen et al., 2020), as well as inherent
differences in the signals measured by the modalities including
time scales as discussed above. For example, fMRI is known
to suffer from motion artifacts (Diedrichsen and Shadmehr,

2005), whereas diffusion MRI is known to exhibit biases such
as preference of tractography methods to terminate at gyral
crowns (Schilling et al., 2018). We thus expect that modality
specific biases are present and that they will drive parcellations
in disagreeing directions. To investigate this we provide both a
qualitative characterization as well as a quantitative predictive
assessment of the differences of data driven structural and
functional parcellations and contrast this to the consensus
representation obtained by joint modeling of the structural and
functional connectome.

We use a stochastic block model (SBM) (Nowicki and
Snijders, 2001) which allows us to infer a single parcellation
based upon multiple networks (see Figure 3). An SBM type
of framework has previously been used for functional (Mørup
et al., 2010; Andersen et al., 2014; Baldassano et al., 2015) and
structural parcellation (Ambrosen et al., 2014; Baldassano et al.,
2015) as well as joint modeling of functional and structural
connectivity in low resolution (116 network nodes; Andersen
et al., 2012a). We provide statistical evaluation of the predictive
performance of the inferred parcellations following a similar
framework to the one proposed in Albers et al. (2021) (see
Figure 4). We compare the results of joint modeling with the
comprehensive HCP_MMP1.0 atlas which is constructed using
multiple modalities, including neuroanatomy (Glasser et al.,
2016). We further contrast the results to a non-trivial (block
permuted) null hypothesis of non-correspondence between the
structural and functional regions. We exploit that the HCP vertex
order is spatially contiguous and that a simple permutation in
which the non-predicted modality is permuted according to a
parcellation learned on the modality thereby preserves spatial
contiguous network blocks with similar size distribution in both
modalities while breaking any anatomical correspondence. In
summary, we test the hypothesis that structural and functional
connectomes derived from dMRI and fMRI support shared
canonical processing units by:

(A) Characterizing differences of modality specific and multi-
modal data-driven parcellations.

(B) Contrasting the predictive performance of parcellations
trained on the same modality, different modality, or trained
jointly using both modalities.

(C) Contrasting the predictive performance to the performance
obtained when permuting the connectome of one modality
thereby enforcing non-correspondence.

The novelty of this work lies both in the characterization of
the multimodal concurrence identified in the high-resolution
HCP data, despite the substantial differences in the observed
connectivity profiles, and in the application of a quantitative
predictive framework to assessing the validity of canonical
processing units.

2. MATERIALS AND METHODS

2.1. Data
Magnetic Resonance Imaging (MRI) techniques provide
non-invasive means from which functional and structural
connectivity networks can be constructed. Structural

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 83625970

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Albers et al. Cortical Units From Multi-Layered Connectomes

FIGURE 1 | Concept of data-driven multi-layer network modeling. (A) Based on functional and structural MRI, graphs of structural and functional connectivity are

generated, (B) such that vertices are defined on the same standard surface mesh. (C) From these graphs data-driven parcellations can be inferred and compared,

when modeling structure or function either individually or jointly.

connectivity can be derived from diffusion MRI (Gong
et al., 2009) by tracking white matter streamlines across
the cortex such that structural networks are obtained
based on the anatomy of the brain. Functional MRI
captures images of functional whole brain connectivity
by indirectly measuring the time-dependent neural
activity within small regions of the brain (i.e., voxels) by
monitoring the blood oxygenation level dependent (BOLD)
response (Ogawa et al., 1990). Networks of functional
connectivity can be obtained, for instance as mapped by
the correlated activation of brain regions (Bullmore and Sporns,
2009).

Networks of functional and structural brain connectivity
were obtained using independent high-resolution data from
the Human Connectome Project (HCP) (Feinberg et al., 2010;
Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2012;
Van Essen et al., 2013) database available from the MGH-USC
Human Connectome Project (HCP) database (https://ida.loni.
usc.edu/login.jsp). Ignoring the sub-cortical information, the
networks contained 59,412 vertices covering the neocortex. We
split the 250 subjects into populations, such that we obtained
five non-overlapping groups of 50 subjects. For each group
we created a single functional and structural training network
based on the group average. The MRI data for all the subjects
in each population were aggregated before the networks were
constructed and thresholded in order to obtain a single functional
and structural network representative for the group.

The fMRI networks were estimated from the preprocessed and
structurally denoised ICA-FIX cleaned version of the resting state
fMRI data, for further reference see Smith et al. (2013), Griffanti
et al. (2014), and Salimi-Khorshidi et al. (2014). We formed the
networks by averaging the Pearson correlation matrix estimated
from the two sessions using both the left-right and right-left
phase encoding directions for each subject (i.e., averaging four
correlograms per subject each estimated from 1,200 time frames).

The structural connectivity networks were derived from
the dMRI data preprocessed using the HCP pipeline (Glasser
et al., 2013). The fiber orientation estimation was done using
FSL’s BedpostX for multi-shell data (Jbabdi et al., 2012) and
the networks were constructed by performing probabilistic
tractography using FSL’s Probtrackx2 (Behrens et al., 2003, 2007)
run in “matrix3” mode. One thousand streamlines were initiated
in each white matter voxel, and a resulting streamline was kept
if it reached two vertices of the white matter surface, resulting
in weighted graphs of streamline counts between vertices. The
adjacency matrices for all subjects in the group were added and
binarized by thresholding the graph at 1% density keeping only
the strongest links.

2.2. The HCP_MMP1.0 Atlas
To ground results, we contrasted the performance obtained
using stochastic block modeling to the performance using a
prominent existing parcellation, i.e., the HCP_MMP1.0 (Glasser
et al., 2016) atlas. The HCP_MMP1.0 atlas (Glasser et al., 2016)
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FIGURE 2 | Examination of functional connectivity (left) and structural connectivity (right) using the HCP_MMP1.0 atlas parcellation (Glasser et al., 2016). The

cortical surface and flatmaps show the link-density within each of the 360 atlas parcels whereas the adjacency matrices outline the whole brain functional and

structural connectivity graphs, based on the average of different populations of 50 subjects.

is based on multi-modal MRI data from the HCP and describes
a total of 360 parcels split equally across both hemispheres. It
was created in a combined data-driven and manual approach

to obtain a single parcellation of cortical regions, based on
multiple neurobiological properties including both functional
information and brain anatomy obtained from 210 healthy
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FIGURE 3 | The Stochastic Block Model (SBM) is a generative model capable of discovering a single group-structure from multiple complex networks, i.e., functional

connectome A(f ) and structural connectome A(s). Based on such a shared parcellation z, the model assumes links are independently generated from a Bernoulli

distribution such that the probability of observing a link between any two vertices only depends on the modality specific probability of observing a link between the two

parcels that the vertices belong to given by the inter parcel (off diagonal elements) and intra parcel (diagonal elements) of the link density matrices η
(f ) and η

(s) for the

functional and structural connectomes, respectively. Under this assumption, the model hence allows a single parcellation to be inferred from multiple networks while

accounting for differences in connectivity profiles. Let Z denote a matrix of the clustering z using a one-hot encoding. Notably, the SBM can be considered a lossy

compressed representation of the connectomes such that A(f ) ≈ Z⊤
η
(f )Z and A(s) ≈ Z⊤

η
(s)Z.

subjects.We have previously found this atlas to perform relatively
well when predicting single subject structural and functional
connectivity networks and therefore include it presently as a
baseline (Albers et al., 2021).

2.3. Joint Integration Using the Stochastic
Block Model
Both in terms of its structural organization and functional
activity the brain can be studied as a network. One approach
of quantifying the latent structure in connectivity networks
is to partition the nodes into groups that share a similar
connectivity pattern within the network. The stochastic block
model (SBM) (Nowicki and Snijders, 2001) is a data-driven
Bayesian clustering approach, which, coupled with Markov
Chain Monte Carlo (MCMC) sampling, has proven a valid
tool for clustering and investigating structure in complex
networks (Zhu et al., 2008; Schmidt and Mørup, 2013). Notably,
a non-parametric SBM modeling framework [denoted the
infinite relational model (IRM)] (Kemp et al., 2006; Xu et al.,
2006) has previously been used for the separate modeling of
functional (Mørup et al., 2010; Andersen et al., 2012b, 2014) and
structural connectivity (Ambrosen et al., 2013, 2014) whereas
joint modeling of structural and functional connectivity has been
considered in Andersen et al. (2012a). Notably, the approach
of Andersen et al. (2012a) was based on low resolution networks
of 116 nodes defined by the AAL atlas (Tzourio-Mazoyer et al.,
2002) with the ability to impose shared and individual segregated
units of the two modalities.

The stochastic block model (SBM) (Nowicki and Snijders,
2001) partitions network nodes into clusters with similar
connectivity patterns. For modeling symmetric binary networks,
the model can be defined by the following generative process,

wherem is used to index modality:

Links in network: A
(m)
ij ∼ Bernoulli(η(m)

zizj
), (1)

Cluster-link densities: η
(m)
ℓh

∼ Beta(β+,β−), (2)

Clustering: zi ∼ Categorical(π), (3)

Cluster proportions: π ∼ Dirichlet(α). (4)

The probability of observing a link between two nodes i and j
in the network follows a Bernoulli distribution only depending
on the probability of observing links between the clusters zi
and zj that the nodes belong to. The probability of observing
links between two clusters is considered independent given the
assignment to clusters and follows a Beta distribution. Finally, the
nodes are partitioned into K clusters, and the cluster proportions
follow a Dirichlet distribution.

The stochastic block model when used for multimodal
integration is outlined in Figure 3. The observed functional and
structural connectomesA(f ) andA(s) are assumed to be generated
according to a shared functional and structural parcellation z

such that zi = ℓ indicates that vertex i belongs to parcel ℓ.
Whereas, the parcellation is shared, the manner in which the
different regions integrate is assumed to be modality specific
and parameterized respectively for the functional and structural

connectomes by η
(f )

ℓh
and η

(s)
ℓh

providing the extent (i.e., the
probability) that nodes in parcel ℓ connect to nodes in parcel
h. As a result, the observed connectomes can have substantially
different within and between parcel connectivity structures η

(f )

and η
(s) while being defined in terms of the same underlying units

of processing z. As parcels may differ in size, π is used to account
for size-heterogeneity.

Due to the conjugacy between the Dirichlet and Categorical
distribution, π can be analytically marginalized (see Schmidt and
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FIGURE 4 | The steps that defines the flow of the investigations. Based on high-resolution functional and structural MRI obtained from publicly released data of the

Human Connectome Project, independent networks of structural and functional connectivity are generated. The networks are based on population averages, resulting

in a total of five networks for each modality, based on five populations of 50 subjects. The networks are binarized by thresholding at 1% link density. Stochastic

Blockmodeling is utilized to infer data-driven parcellations, based on modeling structure or function individually or jointly modeling both modalities for the five

populations. The benefits of multimodal integration are hence evaluated by comparing the performance of predicting hold-out population networks using inferred

single and multimodal parcellations, contrasted with that of using networks that have been spatially permuted whilst preserving the size of the parcels.

Mørup, 2013 for details). By imposing an equal concentration
parameter for all K clusters α = α

K 1K×1 the following effective
prior for the clustering can be obtained:

P(z|α) =
Ŵ(α)

Ŵ(α + N)

K
∏

l=1

Ŵ( αK + nk)

Ŵ( αK )
, (5)

where N is the number of nodes, nk is the number of nodes
in cluster k, and Ŵ(x) is the gamma function. Notably, we use
the SBM to obtain a single parcellation based on either a single
network from one modality (either functional or structural) or
two networks, one for each modality when jointly modeling
structure and function. Let A represent the set of M networks,
containing either M = 1 or M = 2 modalities. The beta
prior is conjugate to the Bernoulli likelihood, which allows

us to obtain the following joint distribution as η can be
analytically marginalized:

P(A, z|β+,β−,α) = P(z|α)

M
∏

m

∏

ℓ≤h

B(N
(m)+
ℓh

+ β+,N
(m)−
ℓh

+ β−)

B(β+,β−)
,

(6)

where N
(m)+
ℓh

=
∑

1≤i<j≤N δzi ,ℓδzj ,hA
(m)
ij and N

(m)−
ℓh

=
∑

1≤i<j≤N δzi ,ℓδzj ,h(1−A
(m)
ij ) respectively represent the number of

links and non-links between cluster ℓ and h according to network

A(m), while B(a, b) = Ŵ(a)Ŵ(b)
Ŵ(a+b)

is the beta function.

2.4. Model Inference
We infer the model parameters using a Markov Chain Monte
Carlo (MCMC) procedure. The parcellation is inferred by Gibbs
sampling, where the assignment zi for each node i in turn is
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processed, based on the posterior distribution for the assignment
of i to each of the K clusters ℓ. Using Bayes’ theorem this can
be obtained from Equation 6, where z\i = (zj)j 6=i are the cluster
assignments for all nodes ignoring node i:

P(zi = ℓ|A, z\i,β+,β−,α) =
P(A, z\i, zi = ℓ|β+,β−,α)
K
∑

h=1

P(A, z\i, zi = h|β+,β−,α)

.

(7)
For inferring the hyper-parameters, β+, β−, and α, we use
a simple Metropolis-Hastings procedure, where new proposals
are drawn from a Gaussian distribution centered at the current
parameter value with variance 1.

For all experiments the model parameters are inferred by
sampling 100 iterations of the following sampling procedure:
z is updated by one complete Gibbs sweep over all nodes
followed by 1,000 MH-proposals for updating each hyper-
parameter β+,β−,α. Due to the size of the networks, it is not
computationally feasible to reach convergence. However, the
Gibbs sampler quickly reach a stable cluster assignment with
high posterior likelihood which is treated as a point estimate
of the parameters (Albers et al., 2013). We hence treat the last
sampled state as the inferred parameters. All experiments are
performed with K = 360 clusters which limits SBM to the same
complexity as the HCP_MMP1.0 atlas. For the HCP MMP1.0
the hyperparameters, β+ and β−, are inferred for each of the
training networks, using theMetropolis-Hastings procedure with
the parcellation fixed to the HCP atlas. Code for the SBM
modeling framework is provided at brainconnectivity.compute.
dtu.dk.

2.5. Predictive Performance
To assess and compare the quality of parcellations we use the
predictive framework established in Ambrosen et al. (2013) and
Albers et al. (2021). The quality of a parcellation is evaluated by
how well it can be used to predict unseen held-out networks.

2.5.1. Predictive Likelihood

LetA(m)train denote the training network andA(m)test the network
used for evaluating the learned parcellation z and how these
segregated units integrate in terms of their intra and inter
connectivity densities defined by the matrix η

(m). The expected
predictive log-likelihood is then given by:

〈log p(A(m),test|A(m),train, z,β+,β−,α)〉p(η(m)|A(m),train ,z) =
∑

i>j

A
(m),test
ij 〈+ log (η(m)

zizj
)〉p(η(m)|A(m),train ,z)

(1− A
(m),test
ij )〈log (1− ηzizj )〉p(η(m)|A(m),train ,z), (8)

where the expectations are given with respect to the distribution
p(η(m)|A(m),train, z) as:

〈log (η
(m)
ℓh

)〉p(η(m)|A(m),train ,z) = ψ(N
(m)+
ℓh

+ β+)

−ψ(N
(m)+
ℓh

+ N
(m)−
ℓh

+ β+ + β−) (9)

〈log (1− η
(m)
ℓh

)〉p(η(m)|A(m),train ,z) = ψ(N
(m)−
ℓh

+ β−)

−ψ(N
(m)+
ℓh

+ N
(m)−
ℓh

+ β+ + β−), (10)

with ψ being the digamma function ψ(x) = d
dx

log[Ŵ(x)]. In
Albers et al. (2021), the log of the expected predictive likelihood
was also considered but found to provide similar performance
to the expected predictive log-likelihood and therefore not
included herein.

2.5.2. Area Under Curve

An alternative measure is to describe how the probabilities of
generating links inferred by SBM from the training network
can be used to separate between links and non-links in the
test network. We quantify this performance by the area under
curve (AUC) of the Receiver Operator Characteristics curve
(ROC) (Clauset et al., 2008), scored by the expected link
probability between clusters as observed from the training graph

〈η(m)
zizj

〉 =
N

(m)+
zizj + β+

N
(m)+
zizj + N

(m)−
zizj + β+ + β−

. (11)

These scores are then evaluated in terms of how well they,

for the corresponding entries A
(m),test
ij in the test graph, are

able to separate links (considered the positive class) from non-

links (considered the negative class). Let R
(m),test
ij = 〈η

(m)
zizj 〉 be

the reconstructed test connectome for modality m and vecU(B)
return the upper triangular part of the matrix BI×I as the vector
bI·(I−1)/2×1. The score vector ŷ = vecU[R

(m),test] and true labels
y = vecU[A

(m),test] can then be considered as inputs to the
standard receiver operator characteristic function for calculating
the area under curve (AUC).

2.6. Parcellation Comparison by Mutual
Information
The similarity of different parcellations can be quantified
using Mutual Information (MI). This constitutes a permutation
invariant measure for the shared clustering information between
two parcellations z and z′ given by:

MI(z, z′) =
∑

cc′

P(c, c′) log

(

P(c, c′)

P(c)P(c′)

)

, (12)

where P(c) =
∑K

c′ P(c, c
′) is the probability of observing a node

in cluster c while P(c, c′) = 1
N

∑N
i=1 δzi ,cδz′i ,c

′ is the probability of

jointly observing a node in cluster c in z and a node in cluster c′

in z′. We use the normalized mutual information (NMI) to get a
value between zero and one:

NMI(z, z′) =
2 MI(z, z′)

MI(z, z)+MI(z′, z′)
, (13)
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such that a value of one indicates that the parcellations
are identical.

2.7. Blocked Permutation Procedure
To probe the correspondence of the extracted structural and
functional units and their joint integration we contrast the
performance to a null hypothesis assuming no correspondence.
To achieve this, we use a permutation procedure that accounts for
size distribution and to some extent for spatial contiguity, while
upholding the assumption that the parcels do not correspond
in the two modalities. The permutation procedure re-organizes
all vertices of the non-predicted modality according to a
clustering structure learned on the non-predicted modality
in which clusters are ordered in random order. (That is,
when predicting the functional connectome the vertices of the
structural connectome are re-organized and vice versa). Thereby,
the non-predicted modality is ordered in terms of modality
specific units such that the vertices of these units correspond
to different spatial contiguous regions defined through the HCP
vertex traversal order in the predictedmodality. The permutation
procedure is illustrated in Figure 5. This procedure preserves
size distribution and spatial contiguity as defined by the HCP
vertex traversal order but does not account for anatomy nor
spatial shape.

3. RESULTS

3.1. Data-Driven Parcellations
Figure 6 shows flatmap representations of the inferred
parcellations (based on the extraction of 360 parcels as
used in the HCP MMP1.0 atlas), for each of the five 50-subject
populations. There is a clear similarity between the parcellations
of various training populations within each modality, while
there are clear characteristic differences across modalities. The
functional parcellations (left column) show a high density of
small, elongated parcels seemingly located in the posterior cortex,
while the majority of vertices are located in few very large parcels
covering the remainder of the cortex. In contrast, the structural
parcellations (middle column) show spatial compactness with
the majority of clusters being of a similar size. The multimodal
parcellations (right column) appear to inherit features from
both modalities, showing a variance of cluster sizes and shapes.
Compared to the functional parcellations, the posterior cortex
is segregated into fewer parcels, though still many more than in
the structural parcellations. The parcels in the rest of the cortex
have also inherited the spatial compactness of the structural
parcellations. Although they are slightly larger, they represent
a finer segregation of the cortex. The multimodal parcellations
are therefore more detailed in the posterior cortex than the
structural parcellations and more detailed in the rest of the
cortex than the functional parcellations.

Figure 6 (lower panel) shows histograms for the distribution
of cluster sizes averaged across the parcellations for all five
50-subject populations. For the functional parcellations most
parcels are very small (<100 vertices) while the majority of
nodes are located in extremely large parcels (larger than 1,000
nodes). In contrast, the structural populations are homogeneous,

such that the majority of nodes are located in medium sized
clusters (between 100 and 1,000 parcels) which is also the most
common parcel size. Once again, the multimodal parcellations
seem to inherit features from both modalities. Compared to the
functional populations, the cluster size distribution is shifted
toward larger parcels, with the concurrent removal of the few
extremely large parcels, such that the majority of vertices are
now located in the medium sized parcels. Furthermore, the
panel shows the extent to which parcels are common to both
hemispheres. This is shown both as the number of bilateral
parcels and as an index, representing how evenly the nodes of
the individual parcels are split across hemispheres. This laterality

index for a parcel is computed as
max(Nleft ,Nright)

Nleft+Nright
, where Nleft and

Nright is the number of nodes within the parcel, that, respectively
belongs to the left and right hemisphere. An average laterality
index of 0.5 would indicate that all parcels are equally split across
the two hemispheres, while an average index of 1 would indicate
that all parcels are unilateral. The functional parcellations are
significantly more bilateral (273 parcels out of 360) than both the
structural (6 parcels) and multimodal (63 parcels). The average
laterality index further indicates that the individual functional
parcels tend to be bilateral, whilst this is uncommon for both
structural and multimodal parcels.

Figure 7 indicates the similarity of the inferred parcellations,
as measured by Normalized Mutual Information (NMI),
between and within modalities (see also section 2). Functional
parcellations are inherently noisy, as evidenced by their mutual
information being far lower than those of the structural
parcellations. Furthermore, the multimodal parcellations are not
penalized by the noise of the functional data, as they retain an
NMI almost on par with the NMI within structural parcellations.
The figure further indicates that the multimodal parcellations
are more in agreement with the structural parcellations than
with the functional, though the functional parcellations are
more in agreement with the multimodal parcellation than with
the structural. This implies that the multimodal model has
determined a consensus to which both the functional and
structural parcellations are more in agreement than they are with
each other.

3.2. Predictive Performance
Figure 8 shows the results of predicting functional and structural
hold-out networks using the following inferred parcellations:

• Data-driven parcellations for a single modality, inferred from
either the same modality as the hold-out networks, the other
modality, or the permuted version of the other modality
(enforcing non-correspondence).

• Data-driven parcellations for the multimodal model, inferred
from both modalities where the non-predicted modality is
considered both with and without permutation (enforcing
non-correspondence).

• The fixed multi-modal HCP MMP1.0 atlas.

Both the area under curve of the receiver operator characteristic
(AUC) and expected predictive likelihood scores (for details
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FIGURE 5 | (Top) Flatmap of each vertex in the HCP data color-coded according to the vertex traversal order of the network adjacency matrices. (Middle) Example

of parcellation structure learned from the non-predicted modality. (Bottom) The random permutation of the non-predicted modality obtained by re-ordering the vertex

traversal according to the learned parcellation structure in which the clusters are ordered in random order. Color-code indicates the original vertex position.

see section 2) are individually computed and averaged for the
parcellations inferred for the five 50-subject populations.

Predicting both modalities, the figure shows that predicting
the same modality as that from which the parcellation was
inferred provides good predictions according to both predictive
metrics. While structural parcellations predict function on par
with the HCP atlas, functional parcellations are comparably poor
predictors of structure. However, the consensus parcellations
of joint modeling provide good predictions of both modalities,
though slightly better for predicting function than structure.

As expected, breaking the consensus in the joint model,
by using a permuted modality, decreases the predictive
performance, but not to the same extent as training on
the permuted data alone. In predicting functional networks,
structural parcellations perform well, and far better than
parcellations inferred from permuted structure. Functional
parcellations on the other hand are very poor predictors of
structural networks, to such a degree that parcellations inferred
from the permuted functional networks actually predict better.

4. DISCUSSION

Herein we have introduced a method for quantifying multimodal
integration, which assumes that structure and function are
independent realizations of the same underlying processing
units. While a lot of effort has recently focused on developing

multilayered networks of brain connectivity, data-driven
quantifications of these remains challenging and mostly limited
to comparisons between modalities (Koch et al., 2002; Vincent
et al., 2007; Skudlarski et al., 2008; Greicius et al., 2009; Honey
et al., 2009; Sporns, 2014; Becker et al., 2015; Røge et al.,
2017). By representing SC and FC graphs over the same set of
network nodes, the framework proposed utilizes a stochastic
blockmodel (SBM) to obtain a unified parcellation while
admitting modality-specific connectivity profiles. A benefit of
the considered approach, integrating connectomes using the
stochastic block model is that it naturally accounts for modality
specific connectivity structure between the extracted units
of processing while enforcing consistency across modalities
in terms of the extracted parcels thereby providing a simple
computationally tractable data-driven approach. As such, the
SBM can be considered a data driven approach to network
compression in terms of shared learned parcels z and how the
connectivity structure between these parcels form modality
specific networks at the level of parcels with link densities (i.e.,
connectivity strengths) η

(m). This facilitates direct interpretation
of large connectomes at the level of connectivity structure
between the extracted parcels. As opposed to other connectivity
based clustering approaches such as k-means, hierarchical,
and spectral clustering that are generic clustering procedures
designed for feature data (Eickhoff et al., 2015; Gabasova
et al., 2017; Liu et al., 2020; Reuter et al., 2020) a benefit of
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FIGURE 6 | Flatmaps of the inferred parcellations for the five populations of 50 subjects, using the different modalities. Parcels are separated into three groups based

on their size: small (<100 vertices), medium (between 100 and 1,000 vertices) and big (more than 1,000 vertices). Also shown, for the per-modality averages of the

five parcellations, is the number of parcels that contain nodes from both hemispheres and how evenly these nodes are split across the two hemispheres. Errorbars

and ± indicate the standard deviation over the five parcellations.
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FIGURE 7 | Averaged Normalized Mutual Information (NMI) for the inferred parcellations between and within modalities, showing the average NMI from 10

comparisons of parcellations between populations and five comparisons within populations. The standard deviations are shown in parenthesis. The flatmaps illustrate

one of the five parcellations for a single 50-subject population, showing only the left hemisphere.

the SBM is that it provides a statistically grounded generative
model of networks. Thereby, the quantification of these unified
parcellations by the SBM naturally follows the predictive
framework outlined in Figure 4 that assesses the performance of
predicting independent held-out test graphs as a substitute in the
absence of ground truth (Albers et al., 2021).

4.1. Qualitative Differences in Functional,
Structural, and Joint Parcellations
We observe that the characteristics of the inferred parcellations
heavily depend on the modality. In particular, we observe that
functional parcels are much more bilateral and have a wider
distribution of unit sizes. This can be attributed to the bilateral
co-activation of similar functional units across both hemispheres
as also observed from seed based and independent component
analysis (ICA) of the HCP resting state data (Smith et al.,
2013). In contrast, structural connectivity generates much more
unilateral units with no parcels having more than 1,000 voxels.
We attribute the unilaterality to limitations in tractography in
terms of delineating inter-hemispheric structural connections
and long-distance pathways (Van Essen et al., 2014; Knösche
et al., 2015; Maier-Hein et al., 2017). The joint modeling also
exhibits substantial differences to both the modality-specific
parcellations. As such, the identified consensus representation is
reduced of modality specific biases as observed from both the size
distribution and laterality index being in between the structural

and functional parcellations. This joint representation possesses
substantial agreement with both modalities, in so much that we
find that the normalized mutual information (NMI) between the
joint parcellation and the functional and structural parcellations
are in higher agreement than the NMI between the functional
and structural parcellations. These results demonstrate that both
modalities each contribute unique information about the brain’s
underlying organization influencing the joint representation
of parcels.

4.2. Statistical Evidence for Canonical
Processing Units
Predicting the organization of each modality based on a data-
driven parcellation of the other we found that structural
parcellations predicted almost on par with functional
parcellations and much better than prediction when enforcing
non-correspondence. However, for structural data we found that
the functional parcellation was a poor predictor to the extent
that the permutation procedure, which broke correspondence
yet both preserved size distribution and enforced spatial
homogeneity, was a better predictor of function. We attribute
this to the parcels of the permuted functional data preserving
spatial homogeneity which more favorably accounts for structure
than the highly bilateral parcels extracted by function as observed
in Figure 2. Notably, this supports the benefit of imposing spatial
constraints when modeling structural connectomes, as proposed
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FIGURE 8 | AUC and expected predictive log-likelihood when predicting structural and functional hold-out network. The bars show the average score as obtained

using the following different parcellations: (1) SBM on the same modality as the test networks, (2) SBM on the other modality, (3) SBM on the permuted networks for

the other modality, (4) jointly modeling both modalities, (5) jointly modeling both modalities with the network for the other modality permuted, and (6) using the

parcellation defined by the HCP atlas. For each of the five training populations, four evaluations are computed for each modality configuration, when respectively

predicting from the training graph to each of the other four graphs of the same modality (providing a total of 20 predictions). The mean value is shown for each bar

while the whiskers indicate the standard deviation of the mean correcting by the five independently acquired networks (± std /
√
5).

in Baldassano et al. (2015) in which parcels are constrained to be
spatially connected, and emphasizes that the modality-specific
parcellations are heavily influenced by modality-specific biases.
The consensus representation here provides a representation
reduced of the modality-specific biases. Interestingly, we find
that the predictions of the more noisy functional connectome
are improved using the consensus representation, whereas the
structural connectivity predictions are only mildly reduced
when compared to using the modality-specific parcellations. In
particular, integrating both modalities results in a consensus
representation that has better predictive performance than
permuting one modality thereby enforcing non-correspondence.

Our results points to modality-specific biases and differences
in the representation of functional and structural units. We
thus do not find a direct correspondence at the level of
modality-specific processing units in the brain. However, we do
find that imposing canonical processing units forms a useful,
practical representation of structural and functional data in high
resolution that well characterize both modalities. In particular,
we observe that the noisier functional modality benefits from
the integration of structural information. Whereas the structural
network is expected to be constant, i.e., it is a static structure,
the functional connectivity estimates derived from fMRI vary
and are related to activations that only use some parts of the
structural network. As such, functional connectomes derived

from fMRI exhibit a high degree of inter- and intra-subject
variability (Poldrack et al., 2015; Zuo et al., 2019; Albers et al.,
2021) and the joint modeling with structural connectivity can
help here by regularizing the extracted representation despite the
variability of the fMRI source.

4.3. Limitations
The inter-subject alignment is based on surface morphometry,
according to the standard HCP processing pipeline (Glasser
et al., 2013) which could conceivably bias toward one modality
more than the other. Furthermore, we arbitrarily threshold the
networks at 1% density. Further studies should investigate if these
findings are reproducible to change in registration methods and
methods for functional and structural network construction.

We considered K = 360 parcels as employed by the HCP-
MMP1.0 atlas (Glasser et al., 2016) enabling a direct comparison
in terms of the same number of extracted units of processing.
However, as we saw, the structural and functional data provide
fine grained resolutions in different parts of the cortex and thus
have differing preferences in terms of regions using coarse and
fine grained parcels. As the joint modeling provides more data
upon which parcellations can be learned it may be that better
joint representations can be achieved utilizing more than the
considered parcels admitting fine-grained resolutions both where
it is most supported by structure and function. Future work
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should explore the impact of resolution employed in terms of
numbers of parcels invoked and whether the joint modeling can
provide support for the use of more parcels.

In this study, we attempted to generate a random control by
permuting the network for one modality. This, however, is not
straightforward, as it requires a permutation that preserves the
spatial homogeneity, shape, and size of the parcel along with
the modality specific distribution of parcels. We approximated
this using the inherent vertex adjacency ordering of the HCP
data format, which results in a tendency to define contiguous yet
elongated parcels. Future work should develop more advanced
permutation procedures that accounts for parcel shape.

The model employed herein is based on the assumption that
the connectivity profiles of the two modalities are independent,
yet originating from the same underlying processing units. This
assumption is a simplification of the expected true underlying
organization of the brain (where at least at the neuronal level we
would expect a strong structure-function relationship; Innocenti
et al., 2014; Andersson et al., 2020), and is generally not expected
to be the case (Eickhoff et al., 2017). It is thus widely believed
that the connectivity structures are related although representing
substantially different time scales. As such, structural paths
have been observed predictive of functional connections (Røge
et al., 2017; Becker et al., 2018) which is not accounted for by
the SBM. Future work should consider more advanced non-
linear modeling approaches inspired by recent deep learning
approaches (Banka et al., 2020; Bessadok et al., 2021) that
potentially can leverage the presently considered SBM to learn
such dependencies of η(m).

The model assumes that the modalities contribute equally
and share similar properties in regards to resolution, spatial
homogeneity, level of noise, and that both modalities are equally
informative. Despite these constraints, our findings illustrate that
the joint model allows for the identification of shared units
that are useful in practice. However, even when multimodal
integration allows for good predictions, care must be taken
regarding the inference of the purported underlying organization
that would account for such findings. This is because a perceived
agreement between the modalities does not necessarily mean that
the spatial extent of the brain regions, and the borders between
them, are in fact located in themanner implied by the data-driven
parcellation (Eickhoff et al., 2017).

The joint modeling of functional and structural connectivity
extracts a consensus representation that can be reduced of
modality specific biases. However, as we have no ground truth
information in regards to the true optimal units of processing, the
presented evaluation can be considered a qualitative assessment
demonstrating concurrence beyond a rather simple block-
permuted null model. Arguably, an average representation
should be a better predictor than a representation based only
on the complementary modality. In general, we expect the
joint modeling to provide consensus representations superior
to the representations provided by each modality when both
modalities exhibit similar degrees of noise. However, if one
modality is substantially less biased from the true (unknown)
underlying representation the joint modeling may be driven
undesirably by themore biasedmodality. In circumstances where

a priori knowledge are available of the validity of the connectivity
structures of the considered modalities the joint modeling can
potentially be advanced to provide more emphasis to more
accurate modalities.

In the present study, we considered the perhaps most simple
approach to extract functional connectivity based on zero lag
Pearson correlation (Bullmore and Sporns, 2009; Smith et al.,
2011; Richiardi et al., 2013). Notably, it is unclear how functional
connectivity is best quantified and several approaches exist,
including mutual information (Bullmore and Sporns, 2009;
Mørup et al., 2010; Smith et al., 2011), wavelet correlation
(Achard et al., 2006), lagged correlation and partial correlation,
as well as approaches quantifying directionality (see also Smith
et al., 2011; Richiardi et al., 2013 for reviews). Herein we
considered only positive correlation, while negative functional
correlations arguably also relate to structure. Note also that
the examined HCP fMRI data has a high temporal and spatial
resolution, which might give a poorer signal-to-noise ratio than
other protocols.

The quantified water diffusion by dMRI is a noisy and indirect
measure of fiber-orientation, making structural connectivity
inference based on dMRI inherently uncertain. In particular, the
relative low image resolution of diffusion MRI often results in
partial volume regions resulting in crossing fibers needing to
be disentangled (Schilling et al., 2017; Ambrosen et al., 2020).
Furthermore, as different tract systems contain different numbers
of axons, and hence tract volumes, structural connectivity
is expected to be volume-weighted toward the major tracts,
also typically explored with tracers (Innocenti et al., 2014,
2017; Van Essen et al., 2014; Jbabdi et al., 2015). Herein we
extracted the structural connectivity networks using probabilistic
tractography (Behrens et al., 2003, 2007). However, tractography
methods are known to suffer from systematic biases, such as
a preference to terminate at gyral crowns (Van Essen et al.,
2014; Schilling et al., 2018), issues characterizing multiple fiber
directions in the face of limited data resolution (Jbabdi et al.,
2015), and difficulties tracking long distance pathways (Van Essen
et al., 2014).

5. CONCLUSION

The work presented herein is a novel approach for quantifying
the relation between the function and structure of the brain
and the integration of these in terms of processing units.
Herein we considered joint network modeling of structural and
functional connectivity data, however the proposed framework
naturally extends to general multimodal modeling, including
additional modalities.

Using high quality data from the Human Connectome
Project, we find that shared canonical processing units cannot
be discredited, despite the lack of observed correspondence
between the modality-specific connectivity profiles. As such,
we find that integrating both modalities allows for reasonable
predictions of the individual modalities, as quantified by two
separate predictive metrics remaining on par or better than
using either the individual modalities or the HCP_MMP1.0
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atlas. This finding supports that both modalities reflect different
aspects of the same underlying processing units, which allows
the joint model to infer a consensus that is a mild compromise
between both modalities. At this point it is unclear whether
the differences and similarities of the parcellations supported by
structural and functional connectome are caused by systematic
biases in the derived connectomes of the two modalities due
to the current limitations extracting functional and structural
connectivity networks. It will thus be interesting to re-apply
the presented analysis framework as the quality of extracted
functional and structural connectomes in the future improve.

The presented approach is likely to benefit studies of
individuals, or populations where the data quality cannot match
that of the HCP, as the integration of multiple modalities
would overcome noise issues if these are more disruptive than
modality specific biases. Furthermore, the similarity of inferred
parcellations suggests that the consensus reduces modality-
specific biases, and as such the consensus representation, if
evaluated on a third modality, would likely better characterize
that modality than each of the training modalities separately. If
there exists an underlying truth of shared processing units, that
truth may come closer to be recovered the more modalities are
combined, and the presented framework provides a data-driven
approach to achieve this.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. Data
used in this article were taken from the Human Connectome
Project and can be accessed from db.humanconnectome.org. The
generated connectomes from the HCP can be provided from the
authors upon request and requires acceptance of the terms of use
given at: https://www.humanconnectome.org/study/hcp-young-
adult/data-use-terms.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for

participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

KAl and ML contributed to conceptualization, methodology,
software, formal analysis, investigation, data curation, and
writing of the original draft. KAm, RR, TD, and KM contributed
to conceptualization, methodology, and data curation. MS
contributed to conceptualization, methodology, and software.
TH, KAn, HS, and LH contributed to conceptualization,
and methodology. MM contributed to conceptualization,
methodology, software, formal analysis, investigation,
writing of the original draft, project administration, and
funding acquisition. All authors reviewed and approved the
submitted version.

FUNDING

This project was funded by the Lundbeck Foundation, Grant
Nr. R105-9813. HS holds a 5-year professorship in precision
medicine at the Faculty of Health Sciences and Medicine,
University of Copenhagen which is sponsored by the Lundbeck
Foundation (Grant Nr. R186-2015-2138).

ACKNOWLEDGMENTS

The MRI data used in this work were obtained from the
MGHUSCHuman Connectome Project (HCP) database (https://
ida.loni.usc.edu/login.jsp) in the 500 subjects release. Data were
provided [in part] by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University. A Tesla K40
general-purpose GPU, used for processing the structural graphs,
was donated by NVIDIA (NVIDEA Corporation, Santa Clara,
CA, USA).

REFERENCES

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006).

A resilient, low-frequency, small-world human brain functional network

with highly connected association cortical hubs. J. Neurosci. 26, 63–72.

doi: 10.1523/JNEUROSCI.3874-05.2006

Albers, K. J., Ambrosen, K. S., Liptrot, M. G., Dyrby, T. B., Schmidt, M. N.,

and Mørup, M. (2021). Using connectomics for predictive assessment of

brain parcellations. NeuroImage 238, 118170. doi: 10.1016/j.neuroimage.2021.

118170

Albers, K. J., Moth, A. L. A., Mørup, M., and Schmidt, M. N. (2013).

“Large scale inference in the infinite relational model: gibbs sampling

is not enough,” in 2013 IEEE International Workshop on Machine

Learning for Signal Processing (MLSP), 1–6. doi: 10.1109/MLSP.2013.66

61904

Ambrosen, K. S., Albers, K. J., Dyrby, T. B., Schmidt, M. N., andMorup, M. (2014).

“Nonparametric bayesian clustering of structural whole brain connectivity in

full image resolution,” in 2014 International Workshop on Pattern Recognition

in Neuroimaging, 1–4. doi: 10.1109/PRNI.2014.6858507

Ambrosen, K. S., Eskildsen, S. F., Hinne, M., Krug, K., Lundell, H.,

Schmidt, M. N., et al. (2020). Validation of structural brain connectivity

networks: the impact of scanning parameters. NeuroImage 204, 116207.

doi: 10.1016/j.neuroimage.2019.116207

Ambrosen, K. S., Herlau, T., Dyrby, T., Schmidt, M. N., and Mørup, M. (2013).

“Comparing structural brain connectivity by the infinite relational model,” in

2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI),

50–53. doi: 10.1109/PRNI.2013.22

Amico, E., and Go ni, J. (2018). Mapping hybrid functional-structural

connectivity traits in the human connectome. Netw. Neurosci. 2, 306–322.

doi: 10.1162/netn_a_00049

Frontiers in Neuroscience | www.frontiersin.org 15 March 2022 | Volume 16 | Article 83625982

https://db.humanconnectome.org/
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1016/j.neuroimage.2021.118170
https://doi.org/10.1109/MLSP.2013.6661904
https://doi.org/10.1109/PRNI.2014.6858507
https://doi.org/10.1016/j.neuroimage.2019.116207
https://doi.org/10.1109/PRNI.2013.22
https://doi.org/10.1162/netn_a_00049
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Albers et al. Cortical Units From Multi-Layered Connectomes

Andersen, K. W., Herlau, T., Mørup, M., Schmidt, M. N., Madsen, K. H.,

Lyksborg, M., et al. (2012a). “Joint modelling of structural and functional brain

networks,” in 2nd NIPS Workshop on Machine Learning and Interpretation in

NeuroImaging (MLINI 2012) (Lake Tahoe).

Andersen, K. W., Madsen, K. H., Siebner, H. R., Schmidt, M. N., Mørup,

M., and Hansen, L. K. (2014). Non-parametric bayesian graph models

reveal community structure in resting state fMRI. NeuroImage 100, 301–315.

doi: 10.1016/j.neuroimage.2014.05.083

Andersen, K. W., Mørup, M., Siebner, H., Madsen, K. H., and Hansen, L.

K. (2012b). “Identifying modular relations in complex brain networks,” in

2012 IEEE International Workshop on Machine Learning for Signal Processing

(Santander), 1–6. doi: 10.1109/MLSP.2012.6349739

Andersson, M., Kjer, H. M., Rafael-Patino, J., Pacureanu, A., Pakkenberg, B.,

Thiran, J.-P., et al. (2020). Axon morphology is modulated by the local

environment and impacts the noninvasive investigation of its structure-

function relationship. Proc. Natl. Acad. Sci. U.S.A. 117, 33649–33659.

doi: 10.1073/pnas.2012533117

Baldassano, C., Beck, D. M., and Fei-Fei, L. (2015). Parcellating connectivity in

spatial maps. PeerJ 3, e784 doi: 10.7717/peerj.784

Banka, A., Buzi, I., and Rekik, I. (2020). “Multi-view brain hyperconnectome

autoencoder for brain state classification,” in International Workshop

on PRedictive Intelligence in MEdicine (Lima: Springer), 101–110.

doi: 10.1007/978-3-030-59354-4_10

Battiston, F., Nicosia, V., Chavez, M., and Latora, V. (2017). Multilayer

motif analysis of brain networks. Chaos 27, 047404 doi: 10.1063/1.49

79282

Becker, C. O., Pequito, S., Pappas, G. J., Miller, M. B., Grafton, S. T., Bassett, D.

S., et al. (2015). Accurately predicting functional connectivity from diffusion

imaging. arXiv preprint arXiv:1512.02602.

Becker, C. O., Pequito, S., Pappas, G. J., Miller, M. B., Grafton, S. T., Bassett, D. S.,

et al. (2018). Spectral mapping of brain functional connectivity from diffusion

imaging. Sci. Rep. 8, 1–15. doi: 10.1038/s41598-017-18769-x

Behrens, T., Berg, H. J., Jbabdi, S., Rushworth, M., and Woolrich, M. (2007).

Probabilistic diffusion tractography with multiple fibre orientations: what

can we gain? Neuroimage 34, 144–155. doi: 10.1016/j.neuroimage.2006.

09.018

Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R.,

Clare, S., et al. (2003). Characterization and propagation of uncertainty

in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088.

doi: 10.1002/mrm.10609

Bessadok, A., Mahjoub, M. A., and Rekik, I. (2021). Graph neural networks in

network neuroscience. arXiv preprint arXiv:2106.03535.

Betzel, R. F., and Bassett, D. S. (2016). Multi-scale brain networks.Neuroimage 160,

73–83. doi: 10.1016/j.neuroimage.2016.11.006

Buldú, J. M., and Porter, M. A. (2017). Frequency-based brain networks: from

a multiplex framework to a full multilayer description. Netw. Neurosci. 2,

418–441. doi: 10.1162/netn_a_00033

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Chu, S.-H., Parhi, K. K., and Lenglet, C. (2018). Function-specific and

enhanced brain structural connectivity mapping via joint modeling of

diffusion and functional MRI. Sci. Rep. 8, 1–19. doi: 10.1038/s41598-018-

23051-9

Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure

and the prediction of missing links in networks. Nature 453, 98–101.

doi: 10.1038/nature06830

De Domenico, M. (2017). Multilayer modeling and analysis of human brain

networks. Giga Sci. 6, 1–8. doi: 10.1093/gigascience/gix004

Deslauriers-Gauthier, S., Lina, J.-M., Butler, R., Whittingstall, K., Gilbert,

G., Bernier, P.-M., et al. (2019). White matter information flow

mapping from diffusion MRI and EEG. NeuroImage 201, 116017

doi: 10.1016/j.neuroimage.2019.116017

Diedrichsen, J., and Shadmehr, R. (2005). Detecting and adjusting

for artifacts in fMRI time series data. Neuroimage 27, 624–634.

doi: 10.1016/j.neuroimage.2005.04.039

Dsouza, N. S., Nebel, M. B., Crocetti, D., Robinson, J., Mostofsky, S., and

Venkataraman, A. (2021). “M-GCN: A multimodal graph convolutional

network to integrate functional and structural connectomics data to predict

multidimensional phenotypic characterizations,” inMedical ImagingWith Deep

Learning (Lübeck).

Eickhoff, S. B., Constable, R. T., and Yeo, B. T. (2017). Topographic organization

of the cerebral cortex and brain cartography. NeuroImage 170, 332–347.

doi: 10.1016/j.neuroimage.2017.02.018

Eickhoff, S. B., Thirion, B., Varoquaux, G., and Bzdok, D. (2015). Connectivity-

based parcellation: critique and implications.Hum. BrainMapp. 36, 4771–4792.

doi: 10.1002/hbm.22933

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S.,

Glasser, M. F., et al. (2010). Multiplexed echo planar imaging for sub-

second whole brain fmri and fast diffusion imaging. PLoS ONE 5, e15710

doi: 10.1371/journal.pone.0015710

Filip, A.-C., Azevedo, T., Passamonti, L., Toschi, N., and Lio, P. (2020). “A

novel graph attention network architecture for modeling multimodal brain

connectivity,” in 2020 42nd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC) (Montréal), 1071–1074.

doi: 10.1109/EMBC44109.2020.9176613

Fornito, A., and Bullmore, E. T. (2012). Connectomic intermediate phenotypes

for psychiatric disorders. Front. Psychiatry 3:32. doi: 10.3389/fpsyt.2012.

00032

Gabasova, E., Reid, J., andWernisch, L. (2017). Clusternomics: Integrative context-

dependent clustering for heterogeneous datasets. PLoS Comput. Biol. 13,

e1005781 doi: 10.1371/journal.pcbi.1005781

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub,

E., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature

536, 171–178. doi: 10.1038/nature18933

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl,

B., Andersson, J. L., et al. (2013). The minimal preprocessing

pipelines for the human connectome project. Neuroimage 80, 105–124.

doi: 10.1016/j.neuroimage.2013.04.127

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009).

Mapping anatomical connectivity patterns of human cerebral cortex using

in vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536.

doi: 10.1093/cercor/bhn102

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009).

Resting-state functional connectivity reflects structural connectivity in the

default mode network. Cereb. Cortex 19, 72–78. doi: 10.1093/cercor/

bhn059

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud,

G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated

fMRI acquisition for improved resting state network imaging. NeuroImage 95,

232–247. doi: 10.1016/j.neuroimage.2014.03.034

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D.,

Freeman, S., et al. (2013). Structural foundations of resting-state and task-based

functional connectivity in the human brain. Proc. Natl. Acad. Sci. U.S.A. 110,

6169–6174. doi: 10.1073/pnas.1219562110

Hinne,M., Ambrogioni, L., Janssen, R. J., Heskes, T., and vanGerven,M. A. (2014).

Structurally-informed bayesian functional connectivity analysis. NeuroImage

86, 294–305. doi: 10.1016/j.neuroimage.2013.09.075

Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli,

R., et al. (2009). Predicting human resting-state functional connectivity

from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.

doi: 10.1073/pnas.0811168106

Innocenti, G. M., Dyrby, T. B., Andersen, K. W., Rouiller, E. M., and Caminiti,

R. (2017). The crossed projection to the striatum in two species of monkey

and in humans: behavioral and evolutionary significance. Cereb. Cortex 27,

3217–3230. doi: 10.1093/cercor/bhw161

Innocenti, G. M., Vercelli, A., and Caminiti, R. (2014). The diameter of cortical

axons depends both on the area of origin and target. Cereb. Cortex 24,

2178–2188. doi: 10.1093/cercor/bht070

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., and Behrens, T. E.

(2015). Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18,

1546 doi: 10.1038/nn.4134

Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Gra na, M., and Behrens, T. E.

(2012). Model-based analysis of multishell diffusion MR data for tractography:

how to get over fitting problems. Magn. Reson. Med. 68, 1846–1855.

doi: 10.1002/mrm.24204

Frontiers in Neuroscience | www.frontiersin.org 16 March 2022 | Volume 16 | Article 83625983

https://doi.org/10.1016/j.neuroimage.2014.05.083
https://doi.org/10.1109/MLSP.2012.6349739
https://doi.org/10.1073/pnas.2012533117
https://doi.org/10.7717/peerj.784
https://doi.org/10.1007/978-3-030-59354-4_10
https://doi.org/10.1063/1.4979282
https://doi.org/10.1038/s41598-017-18769-x
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1016/j.neuroimage.2016.11.006
https://doi.org/10.1162/netn_a_00033
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/s41598-018-23051-9
https://doi.org/10.1038/nature06830
https://doi.org/10.1093/gigascience/gix004
https://doi.org/10.1016/j.neuroimage.2019.116017
https://doi.org/10.1016/j.neuroimage.2005.04.039
https://doi.org/10.1016/j.neuroimage.2017.02.018
https://doi.org/10.1002/hbm.22933
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1109/EMBC44109.2020.9176613
https://doi.org/10.3389/fpsyt.2012.00032
https://doi.org/10.1371/journal.pcbi.1005781
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1093/cercor/bhn102
https://doi.org/10.1093/cercor/bhn059
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1073/pnas.1219562110
https://doi.org/10.1016/j.neuroimage.2013.09.075
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1093/cercor/bhw161
https://doi.org/10.1093/cercor/bht070
https://doi.org/10.1038/nn.4134
https://doi.org/10.1002/mrm.24204
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Albers et al. Cortical Units From Multi-Layered Connectomes

Kaiser, M. (2013). The potential of the human connectome as a biomarker of brain

disease. Front. Hum. Neurosci. 7, 484 doi: 10.3389/fnhum.2013.00484

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., and Ueda, N. (2006).

“Learning systems of concepts with an infinite relational model,” in AAAI, Vol.

3, 5 (Boston, MA).

Kim, S.-G., and Bandettini, P. A. (2012). Principles of BOLD Functional

MRI. Boston, MA: Springer US, 293–303. doi: 10.1007/978-1-4419-

0345-7_16

Knösche, T. R., Anwander, A., Liptrot, M., and Dyrby, T. B. (2015). Validation

of tractography: comparison with manganese tracing. Hum. Brain Mapp. 36,

4116–4134. doi: 10.1002/hbm.22902

Koch, M. A., Norris, D. G., and Hund-Georgiadis, M. (2002). An investigation

of functional and anatomical connectivity using magnetic resonance imaging.

Neuroimage 16, 241–250. doi: 10.1006/nimg.2001.1052

Li, Y., Mateos, G., and Zhang, Z. (2021). Learning to model the relationship

between brain structural and functional connectomes. arXiv preprint

arXiv:2112.09906. doi: 10.48550/arXiv.2112.09906

Liu, X., Eickhoff, S. B., Hoffstaedter, F., Genon, S., Caspers, S., Reetz, K.,

et al. (2020). Joint multi-modal parcellation of the human striatum:

functions and clinical relevance. Neurosci. Bull. 36, 1123–1136.

doi: 10.1007/s12264-020-00543-1

Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis,

E., Zhong, J., et al. (2017). The challenge of mapping the human

connectome based on diffusion tractography. Nat. Commun. 8, 1–13.

doi: 10.1038/s41467-017-01285-x

Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., et al.

(2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration

using partial parallel imaging with application to high spatial and temporal

whole-brain fMRI.Magn. Reson. Med. 63, 1144–1153. doi: 10.1002/mrm.22361

Mørup, M., Madsen, K., Dogonowski, A.-M., Siebner, H., and Hansen, L. K.

(2010). “Infinite relational modeling of functional connectivity in resting state

fMRI,” in Advances in Neural Information Processing Systems (Vancouver, BC),

1750–1758.

Nowicki, K., and Snijders, T. A. B. (2001). Estimation and prediction

for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087.

doi: 10.1198/016214501753208735

Ogawa, S., Lee, T.-M., Kay, A. R., and Tank, D. W. (1990). Brain magnetic

resonance imaging with contrast dependent on blood oxygenation. Proc. Natl.

Acad. Sci. U.S.A. 87, 9868–9872. doi: 10.1073/pnas.87.24.9868

Poldrack, R. A., Laumann, T. O., Koyejo, O., Gregory, B., Hover, A., Chen, M.-

Y., et al. (2015). Long-term neural and physiological phenotyping of a single

human. Nat. Commun. 6, 1–15. doi: 10.1038/ncomms9885

Reuter, N., Genon, S., Masouleh, S. K., Hoffstaedter, F., Liu, X.,

Kalenscher, T., et al. (2020). Cbptools: a python package for regional

connectivity-based parcellation. Brain Struct. Funct. 225, 1261–1275.

doi: 10.1007/s00429-020-02046-1

Richiardi, J., Achard, S., Bunke, H., and Van De Ville, D. (2013). Machine

learning with brain graphs: predictive modeling approaches for functional

imaging in systems neuroscience. IEEE Signal Process. Mag. 30, 58–70.

doi: 10.1109/MSP.2012.2233865

Røge, R., Ambrosen, K. S., Albers, K. J., Eriksen, C. T., Liptrot, M. G., Schmidt,

M. N., et al. (2017). “Whole brain functional connectivity predicted by indirect

structural connections,” in 2017 International Workshop on Pattern Recognition

in Neuroimaging (PRNI) (Toronto, ON), 1–4. doi: 10.1109/PRNI.2017.7981496

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti,

L., and Smith, S. M. (2014). Automatic denoising of functional MRI

data: combining independent component analysis and hierarchical fusion of

classifiers. NeuroImage 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046

Schilling, K., Gao, Y., Janve, V., Stepniewska, I., Landman, B. A., and Anderson, A.

W. (2017). Can increased spatial resolution solve the crossing fiber problem for

diffusion MRI? NMR Biomed. 30, e3787 doi: 10.1002/nbm.3787

Schilling, K., Gao, Y., Janve, V., Stepniewska, I., Landman, B. A., and Anderson,

A. W. (2018). Confirmation of a gyral bias in diffusion MRI fiber tractography.

Hum. Brain Mapp. 39, 1449–1466. doi: 10.1002/hbm.23936

Schmidt, M. N., and Mørup, M. (2013). Nonparametric Bayesian modeling

of complex networks: an introduction. Signal Process. Mag. 30, 110–128.

doi: 10.1109/MSP.2012.2235191

Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., andWald,

L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous

multislice echo planar imaging with reduced G-factor penalty. Magn. Reson.

Med. 67, 1210–1224. doi: 10.1002/mrm.23097

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B.

A., and Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor

imaging validates resting state temporal correlations. Neuroimage 43, 554–561.

doi: 10.1016/j.neuroimage.2008.07.063

Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J.,

Douaud, G., et al. (2013). Resting-state fMRI in the human connectome

project. Neuroimage 80, 144–168. doi: 10.1016/j.neuroimage.2013.

05.039

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Network modelling methods for fMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Sporns, O. (2014). Contributions and challenges for network models in cognitive

neuroscience. Nat. Neurosci. 17, 652–660. doi: 10.1038/nn.3690

Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for

brain complexity: relating functional segregation and integration in

the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033–5037.

doi: 10.1073/pnas.91.11.5033

Tost, H., Bilek, E., and Meyer-Lindenberg, A. (2012). Brain connectivity

in psychiatric imaging genetics. Neuroimage 62, 2250–2260.

doi: 10.1016/j.neuroimage.2011.11.007

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. NeuroImage 15, 273–289. doi: 10.1006/nimg.2001.0978

Vaiana, M., and Muldoon, S. F. (2020). Multilayer brain networks. J. Nonlin. Sci.

30, 2147–2169. doi: 10.1007/s00332-017-9436-8

van Dellen, E., Hillebrand, A., Douw, L., Heimans, J. J., Reijneveld, J. C.,

and Stam, C. J. (2013). Local polymorphic delta activity in cortical lesions

causes global decreases in functional connectivity. Neuroimage 83, 524–532.

doi: 10.1016/j.neuroimage.2013.06.009

Van Den Heuvel, M. P., and Pol, H. E. H. (2010). Exploring the brain

network: a review on resting-state fmri functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.

03.008

Van Essen, D. C., Jbabdi, S., Sotiropoulos, S. N., Chen, C., Dikranian, K., Coalson,

T., et al. (2014). “Mapping connections in humans and non-human primates:

aspirations and challenges for diffusion imaging,” in Diffusion MRI, 2nd Edn,

eds H. Johansen-Berg and T. E. J. Behrens (San Diego, CA: Elsevier), 337–358.

doi: 10.1016/B978-0-12-396460-1.00016-0

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil,

K., et al. (2013). The wu-minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Vega Pons, S., Olivetti, E., Avesani, P., Dodero, L., Gozzi, A., and Bifone, A. (2016).

Differential effects of brain disorders on structural and functional connectivity.

Front. Neurosci. 10, 605 doi: 10.3389/fnins.2016.00605

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D.

C., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey

brain. Nature 447, 83–86. doi: 10.1038/nature05758

Xu, J., Moeller, S., Strupp, J., Auerbach, E., Chen, L., Feinberg, D., et al. (2012).

“Highly accelerated whole brain imaging using aligned-blipped-controlled-

aliasing multiband EPI,” in Proceedings of the 20th Annual Meeting of ISMRM,

Vol. 2306 (Melbourne, VIC).

Xu, Z., Tresp, V., Yu, K., Kriegel, H.-P., et al. (2006). “Learning infinite

hidden relational models,” in Uncertainity in Artificial Intelligence (UAI2006)

(Cambridge), 2.

Zhang, S., He, Z., Du, L., Zhang, Y., Yu, S., Wang, R., et al. (2021). Joint analysis of

functional and structural connectomes between preterm and term infant brains

via canonical correlation analysis with locality preserving projection. Front.

Neurosci. 15, 724391 doi: 10.3389/fnins.2021.724391

Zhu, S., Yu, K., and Gong, Y. (2008). “Stochastic relational models for large-

scale dyadic data using MCMC,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 1993–2000. Available online at: https://papers.nips.

cc/paper/2008/file/2291d2ec3b3048d1a6f86c2c4591b7e0-Paper.pdf

Frontiers in Neuroscience | www.frontiersin.org 17 March 2022 | Volume 16 | Article 83625984

https://doi.org/10.3389/fnhum.2013.00484
https://doi.org/10.1007/978-1-4419-0345-7_16
https://doi.org/10.1002/hbm.22902
https://doi.org/10.1006/nimg.2001.1052
https://doi.org/10.48550/arXiv.2112.09906
https://doi.org/10.1007/s12264-020-00543-1
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1038/ncomms9885
https://doi.org/10.1007/s00429-020-02046-1
https://doi.org/10.1109/MSP.2012.2233865
https://doi.org/10.1109/PRNI.2017.7981496
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1002/nbm.3787
https://doi.org/10.1002/hbm.23936
https://doi.org/10.1109/MSP.2012.2235191
https://doi.org/10.1002/mrm.23097
https://doi.org/10.1016/j.neuroimage.2008.07.063
https://doi.org/10.1016/j.neuroimage.2013.05.039
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1038/nn.3690
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1016/j.neuroimage.2011.11.007
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1007/s00332-017-9436-8
https://doi.org/10.1016/j.neuroimage.2013.06.009
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/B978-0-12-396460-1.00016-0
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.3389/fnins.2016.00605
https://doi.org/10.1038/nature05758
https://doi.org/10.3389/fnins.2021.724391
https://papers.nips.cc/paper/2008/file/2291d2ec3b3048d1a6f86c2c4591b7e0-Paper.pdf
https://papers.nips.cc/paper/2008/file/2291d2ec3b3048d1a6f86c2c4591b7e0-Paper.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Albers et al. Cortical Units From Multi-Layered Connectomes

Zuo, X.-N., Biswal, B. B., and Poldrack, R. A. (2019). Editorial: Reliability

and reproducibility in functional connectomics. Front. Neurosci. 13, 117

doi: 10.3389/fnins.2019.00117

Conflict of Interest: HS has received honoraria as speaker from Sanofi Genzyme,

Denmark, and Novartis, Denmark, as consultant from Sanofi Genzyme,

Denmark, Lophora, Denmark, and Lundbeck AS, Denmark, and as editor-

in-chief (Neuroimage Clinical) and senior editor (NeuroImage) from Elsevier

Publishers, Amsterdam, The Netherlands. He has received royalties as book editor

from Springer Publishers, Stuttgart, Germany and from Gyldendal Publishers,

Copenhagen, Denmark.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Albers, Liptrot, Ambrosen, Røge, Herlau, Andersen, Siebner,

Hansen, Dyrby, Madsen, Schmidt and Mørup. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 March 2022 | Volume 16 | Article 83625985

https://doi.org/10.3389/fnins.2019.00117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-867466 April 7, 2022 Time: 14:24 # 1

ORIGINAL RESEARCH
published: 13 April 2022

doi: 10.3389/fnins.2022.867466

Edited by:
Tolga Cukur,

Bilkent University, Turkey

Reviewed by:
Guang Ling,

Wuhan University of Technology,
China

Boyu Wang,
Western University, Canada

*Correspondence:
Feng Liu

fliu22@stevens.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 01 February 2022
Accepted: 14 March 2022

Published: 13 April 2022

Citation:
Jiao M, Wan G, Guo Y, Wang D,

Liu H, Xiang J and Liu F (2022) A
Graph Fourier Transform Based

Bidirectional Long Short-Term
Memory Neural Network

for Electrophysiological Source
Imaging. Front. Neurosci. 16:867466.

doi: 10.3389/fnins.2022.867466

A Graph Fourier Transform Based
Bidirectional Long Short-Term
Memory Neural Network for
Electrophysiological Source Imaging
Meng Jiao1,2, Guihong Wan3,4, Yaxin Guo1, Dongqing Wang2, Hang Liu5, Jing Xiang6 and
Feng Liu1*

1 School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States, 2 College of Electrical
Engineering, Qingdao University, Qingdao, China, 3 Department of Dermatology, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, United States, 4 Department of Biomedical Informatics, Harvard Medical School, Boston, MA,
United States, 5 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ,
United States, 6 MEG Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,
United States

Electrophysiological source imaging (ESI) refers to the process of reconstructing
underlying activated sources on the cortex given the brain signal measured by
Electroencephalography (EEG) or Magnetoencephalography (MEG). Due to the ill-
posed nature of ESI, solving ESI requires the design of neurophysiologically plausible
regularization or priors to guarantee a unique solution. Recovering focally extended
sources is more challenging, and traditionally uses a total variation regularization to
promote spatial continuity of the activated sources. In this paper, we propose to use
graph Fourier transform (GFT) based bidirectional long-short term memory (BiLSTM)
neural network to solve the ESI problem. The GFT delineates the 3D source space
into spatially high, medium and low frequency subspaces spanned by corresponding
eigenvectors. The low frequency components can naturally serve as a spatially low-band
pass filter to reconstruct extended areas of source activation. The BiLSTM is adopted
to learn the mapping relationship between the projection of low-frequency graph space
and the recorded EEG. Numerical results show the proposed GFT-BiLSTM outperforms
other benchmark algorithms in synthetic data under varied signal-to-noise ratios (SNRs).
Real data experiments also demonstrate its capability of localizing the epileptogenic
zone of epilepsy patients with good accuracy.

Keywords: electroencephalography, source localization, inverse problem, graph Fourier transform, BiLSTM

INTRODUCTION

EEG/MEG source imaging (ESI), also known as EEG/MEG source localization, is a non-invasive
neuroimaging technology that infers the location, direction, and distribution of the corresponding
brain sources from the EEG or MEG data (He et al., 2018). Compared with the invasive modalities,
the recording of EEG/MEG signals imposes minimum risks of blooding and inflammation of the
brain (Portillo-Lara et al., 2021). Compared to other non-invasive brain imaging modalities, like

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 86746686

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.867466
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.867466
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.867466&domain=pdf&date_stamp=2022-04-13
https://www.frontiersin.org/articles/10.3389/fnins.2022.867466/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-867466 April 7, 2022 Time: 14:24 # 2

Jiao et al. Graph Signal Processing for ESI

computed tomography (CT), positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), and
functional near-infrared spectroscopy (fNIRS), the temporal
resolution of EEG is up to a millisecond (He et al., 2018),
which allows it to track the electrical activity of neurons in
smaller temporal granularity (Numata et al., 2019). The study
of ESI is of great significance in both neuroscience and clinical
applications (Congedo and Sherlin, 2011). Accurate estimation
of brain sources can not only help neuroscientists to better
understand the brain mechanism (Liu et al., 2019) and the
pathological characteristics of brain injury or mental disorders
(da Silva, 2013), but also help doctors to identify the lesion
areas of brain diseases such as epilepsy focal regions, which can
contribute to the improvement of the accuracy of presurgical
evaluations (Sanei and Chambers, 2013).

However, the inverse problem of ESI is highly ill-posed (Qin
et al., 2017; He et al., 2018; Cui et al., 2019), and there can
be infinite numbers of source configurations that explain the
EEG recording since the number of EEG sensors on the scalp
is far less than the number of brain sources (Liu et al., 2017;
Hecker et al., 2021). Consequently, numerous methods have been
proposed to solve the ESI problem by incorporating different
regularizations or prior information to seek a unique solution, as
further discussed in see section “Related Work.” In recent years,
deep learning has achieved great success in the fields of computer
vision (Voulodimos et al., 2018), natural language processing
(Young et al., 2018), bioinformatics (Min et al., 2017), etc., by
employing its end-to-end feature extraction and representation
capability (Deng and Yu, 2014; LeCun et al., 2015). Solving
the inverse problems in the computer vision domain such as
image reconstruction (Schlemper et al., 2017), super resolution
(Dong et al., 2015), etc., has achieved great success by using a
variety of artificial neural network (ANN) architectures such as
the convolutional neural network (CNN) (LeCun and Bengio,
1995), the recurrent neural network (RNN) (Rodriguez et al.,
1999), and the RNN with long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997).

To solve the ESI problem, deep learning frameworks have also
been proposed in the past years, but with only a few existing
works available. For example, Bore et al. (2021) introduced an
RNN with LSTM units for spatiotemporal EEG source imaging
and the proposed approach achieved good performance against
the benchmark algorithms. Hecker et al. (2021) constructed a
novel CNN-based structure, named ConvDip, to detect multiple
sources, and this architecture is shown to outperform state-of-
the-art methods. Wei et al. (2021) proposed an edge sparse
basis network to learn the mapping between edge sparse source
activation and recorded EEG signal.

As the source signal is defined on an irregular source space,
where each source is defined as a vertex in a 3D source space (Liu
et al., 2018), there exists a spatially connected graph structure
among sources that have not been fully explored in the existing
literature, especially with the recent advance of graph signal
processing (Huang et al., 2016). In this work, we propose
to employ the spatial-temporal structure of EEG source signal
and come up with a new framework based on spatial graph
Fourier transform (GFT) (Sandryhaila and Moura, 2013), and

bidirectional LSTM (BiLSTM) neural network (Schuster and
Paliwal, 1997), termed as GFT-BiLSTM to solve the ESI inverse
problem. The main contributions of this paper are as follows:

(i) We propose to use the GFT on the 3D source space,
and delineate the source space into spatially high, medium
and low frequency subspaces spanned by corresponding
eigenvectors, and the low frequency components naturally
serve as a basis to estimate an extended areas of
source activation.
(ii) By projecting the original source signal into a reduced
dimensional subspace with low frequency eigenvectors,
the dimension of output layer of BiLSTM can be
greatly reduced.
(iii) The numerical experiments show that the proposed
GFT-BiLSTM outperforms the benchmark algorithms
based on area under the curve (AUC) and the
localization error (LE).

RELATED WORK

Given the ill-posedness nature of ESI, traditional methods
typically adopt parsimonious models to get a unique solution by
introducing priors or regularizations based on the assumptions
from neural physiology, brain anatomy, etc. (Scherg and Berg,
1991). The first category of ESI approaches is the equivalent
current dipole (ECD) source localization (Cover et al., 2007).
This method treats the neural electrical activity of the cerebral
cortex as one of several ECDs. With such a constraint, the spatial
location and orientation of each ECD can be optimized to best
interpret the measured EEG signals. The ECD model has played
a certain role in the localization of focal brain activity. However,
the real brain sources can have multiple source activations (Sanei
and Chambers, 2013), while the ECD method can only locate
a single source point which makes it unable to reconstruct the
distributed pattern of activated sources (Zumer et al., 2007).
Another category of ESI methods, namely distributed source
localization framework, has become more widely used in recent
years. The current density distribution (CDD) model-based
approach does not make any prior assumptions on the number of
dipoles but divides the cerebral cortex into numerous triangular
grids (Liao et al., 2012). The neural electrical activity on the brain
voxels is represented by brain sources defined on the 3D mesh
grid. Since the location of each source in the CDD model is fixed,
the distributed source imaging only needs to solve a linear inverse
problem (Astolfi et al., 2004). Over the past few decades, many
distributed source imaging algorithms have been developed. The
most popular ones are based on L2 norm constraints such as
the minimum norm estimate (MNE) (Koles, 1998), the dynamic
statistical parametric mapping (dSPM) (Tanaka et al., 2009), the
low-resolution electromagnetic tomography analysis (LORETA),
and the exact LORETA (eLORETA), (Jatoi et al., 2014), etc.
The computation of these methods is simple, but the resulting
solutions can be overdiffuse (Ou et al., 2009). Consequently, the
sparsity constraints-based source imaging algorithms have been
proposed by many researchers, such as the minimum current
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estimate (MCE) (Wen et al., 1998), the focal underdetermined
system solver (FOCUSS) (Murray and Kreutz-Delgado, 2001),
etc. Another class of methods for the ESI inverse problem is
the data-driven method, which mainly includes the subspace-
based classic Multiple Signal Classification (MUSIC) (Vergallo
and Lay-Ekuakille, 2013) and the beamforming approaches,
such as the linearly constrained minimum variance (LCMV)
beamformer (Lin et al., 2008). MUSIC is the version of the
Spatio-temporal approach. Multiple dipoles can be found in
this technique via scanning potential locations through one
dipole model (Mosher et al., 1992). The LCMV beamformer
is a type of adaptive spatial filter that localizes activity sources
by minimizing the contributions of other uncorrelated sources
(Wong and Gordon, 2009). Recent developments on ESI include
some interesting works such as utilizing more sophisticated edge-
sparse regularization (Sohrabpour et al., 2020), or multitask
framework for source localization among multiple subjects
(Janati et al., 2020), or employing manifold graph structure in
the EEG source space (Liu et al., 2021), source localization using
multimodality of fMRI and EEG (Nguyen et al., 2018). However,
the graph structure of the spatially connected sources is not
fully explored in the literature, as the graph signal processing
technique (Ortega et al., 2018) can have a principled way
to decompose the spatial graph signal into components with
different spatial frequencies. In this work, we come up with a
new framework based on spatial graph Fourier transform and
bidirectional LSTM (BiLSTM) neural network to efficiently solve
the brain source extents reconstruction problem.

MATERIALS AND METHODS

In this section, we first give a brief introduction of the forward
problem, then the spatial graph signal processing technique is
explained, followed by structure of the BiLSTM neural network
and finally, the GFT-BiLSTM model is introduced.

Forward Problem
The relationship between the scalp potential measured by the
electrodes and the brain source distribution can be expressed as
follows:

x (t) = Hs (t)+ ε(t) (1)

where t represents the time, vector x (t) ∈ Rn × 1 represents the
EEG or MEG signal measured by n electrodes, matrix H ∈ Rn × m

represents the lead field, vector s (t) ∈ Rm × 1 represents the
source signal generated by m brain sources, and vector ε(t) ∈
Rn × 1 represents the additive noise from observation.

The forward model models the linear mapping between scalp
potential measured by the electrodes and the brain source signal
(Birot et al., 2014). The solution to the forward problem relies
on the establishment of the head model, which is determined
by the geometry and corresponding electrical conductivity of
different head tissues such as brain, skull, scalp, etc. (Acar and
Makeig, 2010). In the early days, the mainly used head models
are the spherical model and the ellipsoid model (Gutiérrez et al.,
2005). With the development of brain imaging technology, real

head models, which can be calculated by the boundary element
method (BEM), the finite elements method (FEM), and the finite
difference method (FDM) are increasingly used (Akalin-Acar and
Gençer, 2004). Once the head model is established, the lead field
matrix can be determined.

Graph Signal Processing in the Brain
Source Space
The connectivity relationship between m sources can be
represented by an undirected graph, which can be defined as
follows:

G = (V,A) (2)

where V ∈ Rm × 1 is a set of m nodes, A ∈ Rm × m is the
corresponding adjacency matrix. If there is no edge connecting
nodes i and j, then aij = 0; otherwise, aij > 0, and its value
represents the weight of the edge between the two nodes. In
addition, since G is an undirected graph, then aij = aji, which
means the adjacency matrix A is symmetric. In the EEG source
space, all the potential source locations are represented by the
nodes defined on a 3D mesh as is illustrated in Figure 1. When
the source locations i and j are neighbors on the 3D mesh, then
we set aij > 0.

The graph signal is defined on the set of graph nodes V,
which is represented by a vector, and each element represents the
signal value at the corresponding node. The brain source signal
s = [s1, s2, . . . , sm]T , in which each element si represents the
signal value of the i-th source voxel, is defined on the nodes
of graph G. The traditional Fourier transform calculates the
projection of a function f (t) on the basis function e−iwt , and the
projected value of a time series signal using Fourier transform
F (w) represents its magnitude at the basis of a specific frequency.
Different from the traditional Fourier transform defined in the
temporal domain, for signals defined on a graph, the eigenvectors
of the Laplacian matrix L of the graph can be used as the
basis vectors of the GFT, where the Laplacian matrix L can be
calculated as follows:

L = D− A (3)

where L ∈ Rm × m, and D ∈ Rm × m is a diagonal matrix called
the degree matrix, in which the diagonal elements satisfy
dii =

∑m
j aij, that is, the sum of elements in the i-th row of

A. Since A and L is real and symmetric, therefore, L can be
decomposed as follows:

L = U3UT (4)

FIGURE 1 | Illustration of brain mesh and brain source extent activation.
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where3 ∈ Rm × m is a diagonal matrix and the diagonal elements
λi, ( i = 1, 2, . . . ,m) are the eigenvalues of L and satisfy
λ1 ≤ λ2 ≤ . . . ≤ λm, U ∈ Rm × m is the eigenvector matrix,
which is also an orthogonal matrix satisfying UUT

= I, each
column in U is an eigenvector of L and corresponds to the
eigenvalue in 3. With the eigenvectors of the Laplacian matrix
L as the Fourier basis vectors, each eigenvector can be regarded
as a graph basis with a certain frequency, and this frequency
corresponds to the eigenvalue. The smaller the eigenvalue, the
lower the frequency of the corresponding eigenvector, which is
manifested as a small difference between the signals of adjacent
nodes on the graph; on the contrary, a larger variation among
neighboring signals. The value of a graph Fourier coefficient
can measure the amplitude of the graph signal at different
frequencies. With the eigenvectors as the Fourier basis vectors,
the GFT of a given graph signal s can be defined as follows:

s̃ = UTs (5)

where vector s̃ ∈ Rm × 1 is the graph Fourier coefficient. Further,
the inverse graph Fourier transform (IGFT) of s can be defined
as:

s = Ũs (6)

The above two formulas show that a graph signal can be
decomposed into components with different frequencies through
the GFT, and can also be recovered through the IGFT.

To characterize the graph frequency, we introduce the
following definition:

Definition 1: Graph Frequency (GF): GF, denoted as fG, is a
function of ui which represents the total number of sign flips of
ui between any two connected nodes on G, it is defined as follows:

fG (ui) =
m∑

j = 1

∑
p∈�(j)

I(ui
(
j
)
ui
(
p
)

< 0)/2 (7)

where �
(
j
)

represents all neighbors of node j, and I (·) is an
indicator function to check whether the values of ui at nodes
j and p have a sign flip. The number of sign flips is analogous
to counting the number of zero crossings of the basis signal
within a given window for a time series data. We constructed the
Laplacian matrices within first-order neighbors and second-order
neighbors, and the associated GF spectrum is shown in Figure 2.
It can be seen that the GF value of the eigenvector increases as the
eigenvalue increases.

Similar to the counterpart in the time domain,
the spatial frequency basis matrix U can be similarly
decomposed into different spatial frequency bands, such as
U = [U low,Umedium,Uhigh]. The graph signal s can be projected
into a subspace of U . For example, s̃ = UT

lows is the projection
of s into a space spanned by low frequency eigenvectors. In our
work, we use the spatially low frequency components as a filter
to reconstruct the focally extended sources.

Bidirectional Long-Short Term Memory
Neural Network
Bidirectional long-short term memory neural network is an
extension of the traditional RNN (Schuster and Paliwal, 1997).

FIGURE 2 | Graph frequency of the eigenvectors.

For the time series, it is recognized that RNN can effectively
estimate the information at the future moment based on the
previous states. However, for the time series with a long sequence
of states, the estimation performance of RNN will be greatly
discounted, because the future information in a long time
series usually depends on the information from distant history
moments, which is the long-term dependence. However, the
superior structure of the LSTM unit equips the network with
the ability to solve long-term dependence. The RNN with LSTM
units can filter the information by a unique structure called
“gate” and store the valid information by the so-called “memory
cell.” The elements in a gate vector have values in the interval
[0,1]. When preceding time series information arrives at the gate,
it will be multiplied with the gate vector element-wise, if the
element value in the gate vector is 1, then the timing information
multiplied with it will be retained, and if the element value is 0,
the information will be discarded after a multiplication with 0.
In this way, the filtering of information propagated in the LSTM
unit is achieved. The valid information obtained after filtering is
then stored in the memory cell and passed on to the next moment
to prevent being lost over time, thus effectively addressing the
long-term dependence existing in traditional RNNs.

The structure of a standard LSTM unit is shown in Figure 3A,
where xt , ht−1, and ct−1, respectively, represent the input sample
at the current moment, the unit output and the memory state
at the previous moment. The information contained in xt and
ht−1 is first activated by σ(·) function and got the forget gate
f t , the input gate it , and the output gate ot . At the same
time, xt and ht−1 are also activated by tanh(·) function and
got a temporary state c̃t . On the one hand, the information
passed from the previous moment which contained in ct−1 is
filtered by the forget gate f t . On the other hand, the newly
input information contained in c̃t is filtered by the input gate
it . Then, the valid information retained by the above two
filtering processes is integrated together as a new memory state
ct . This newly updated memory state is passed along time to
the next moment, and simultaneously, it is also filtered by
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the output gate ot . Finally, the new output of the LSTM unit
ht is obtained.

This propagation process can be formulated as follows:

f t = σ
(
W f [ht−1, xt]+ bf

)
(8)

it = σ (W i [ht−1, xt]+ bi) (9)

ct = tanh (Wc [ht−1, xt]+ bc) (10)

ct = f t ∗ ct−1 + it ∗ c̃t (11)

ot = σ (Wo [ht−1, xt]+ bo) (12)

ht = ot ∗ tanh (ct) (13)

where W f , W i, Wc, Wo are weight matrices; bf , bi, bc, bo are bias
vectors; the symbol ∗ stands for the element-wise multiplication.

The hidden layer of the BiLSTM neural network is composed
of two layers of LSTM units that are reversely connected, and
its structure is shown in Figure 3B. In a BiLSTM layer, the
time series performs both forward propagation and backward

FIGURE 3 | (A) The LSTM unit, (B) The BiLSTM network.

FIGURE 4 | The flowchart for the proposed method.

TABLE 1 | The evaluation metrics corresponding to different ESI inverse solutions with a single activated area.

AUC LE

SNR = 20 SNR = 30 SNR = 40 SNR = 20 SNR = 30 SNR = 40

GFT-BiLSTM 0.9668 0.9821 0.9844 15.5683 13.2668 13.2067

dSPM 0.7733 0.8769 0.9237 58.1761 45.4715 40.3180

MNE 0.7020 0.8192 0.8954 94.8286 69.2218 48.5848

sLORETA 0.7637 0.8784 0.9339 83.3185 46.3218 25.1723
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propagation. Therefore, both the information at the previous
moments and that at the future moments can be fully utilized.

The output of the BiLSTM neural network can be calculated as
follows:

yt = σ
(
Ws

[
ht
⊕

h′t
]
+ bs

)
(14)

where yt is the final output, h′t is the unit output of the backward
propagation, Ws and bs are the weight matrix and the bias vector
of the output layer, respectively, and the symbol

⊕
stands for the

vector concatenation.

Graph Fourier Transform-Bidirectional
Long-Short Term Memory for
Electrophysiological Source Imaging
Graph Fourier Transform-Bidirectional Long-Short
Term Memory Training Procedure
Generally, the brain is divided into smaller voxels, and each voxel
can be activated and regarded as a source. Therefore, when a
BiLSTM network is adopted to solve the inverse problem of ESI
with the recorded EEG signal as the inputs and the source signal
as the outputs, the number of nodes in the output layer of the
network equals to the number of sources. This will lead to a
significant number of parameters in the network. In order to
improve the training speed of the BiLSTM network, in this paper,
we reduce its output nodes by using projected coefficients as the
output dimension based on low frequency eigenvectors, given the

extended source activation pattern mainly contains signal from
the low frequency subspace. With the training dataset {xi, si}, the
training setup procedure is as follows:

Step 1: Perform the GFT on the original brain source signal s according to (5),
then the Fourier coefficient s̃ is obtained.

Step 2: With the eigenvectors in U as the Fourier basis vectors, and the
corresponding eigenvalues in Λ. Then, set the eigenvalue threshold as Tf , and
the number of eigenvalues less than Tf is k.

Step 3: Take the first k columns of eigenvectors in U, denoted as Uk and the
first k elements in the Fourier coefficients s̃ as s̃′.

Step 4: Set the number of the input nodes in the BiLSTM network as n, the
number of the output nodes as k, and the number of the BiLSTM units in the
hidden layer as l. Then take the EEG signal x as the input, s̃′ as the output to
train the BiLSTM network.

The mean square error (MSE) is chosen as the loss function:

MSE =
1
N

N∑
i = 1

(̃s′i − ŝ′i)
2 (15)

where N is the number of data points, s̃′i is the true values, and ŝ′i
is the estimated values by the network. The Nadam optimizer is
adopted during the training process.

In general, we take the projections of the brain source signal on
the basis spanned by the low frequency eigenvectors instead of the

FIGURE 5 | The performance comparison of different ESI inverse solutions with a single activated area. (A) The comparison of AUC at different SNR levels. (B) The
comparison of LE at different SNR levels.

FIGURE 6 | Brain source activations estimated by different ESI algorithms with a single activated area.
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brain source signal itself as the output of the BiLSTM network.
By doing this, the number of output nodes in the network can
be reduced from m to k, which can make the parameters in the
network significantly decrease and the training speed increase. In
the meanwhile, the source extent pattern is recovered better after
removing the spatial high frequency noise.

Source Signal Recovery
When the network training is completed, perform the IGFT on
the estimated values ŝ as follows:

ŝ = U k̂s′ (16)

where ŝ is the estimated source signal. The whole process is
summarized in Figure 4.

EXPERIMENTS

In this section, the proposed GFT-BiLSTM is evaluated using
both the synthetic data and the real data. The benchmark
ESI algorithms, including dSPM, MNE, and sLORETA, are
used for comparison.

In the simulated data, the number of brain sources is 2,052 and
the number of electrodes is 128, then these source regions are
activated in turn with one level neighborhood sources (sources

TABLE 2 | The evaluation metrics corresponding to different ESI inverse solutions with multiple activated areas.

AUC LE

SNR = 20 SNR = 30 SNR = 40 SNR = 20 SNR = 30 SNR = 40

GFT-BiLSTM 0.9602 0.9796 0.9818 11.3105 6.1145 5.6589

dSPM 0.7130 0.8214 0.8743 67.4522 52.6055 47.9739

MNE 0.6523 0.7640 0.8415 103.3403 79.0106 58.2711

sLORETA 0.7045 0.8253 0.8892 93.6530 60.1024 39.0890

FIGURE 7 | The performance metrics comparison of different ESI inverse solutions with multiple activated areas. (A) The comparison of AUC at different SNR levels.
(B) The comparison of LE at different SNR levels.

FIGURE 8 | Brain source activation reconstructed by different ESI algorithms with multiple activated areas. The upper figures correspond to the activated area in the
left side of the brain, the bottom figures correspond to the activated area in the right side of the brain.
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FIGURE 9 | Average EEG time series plot around the inter-ictal spike.

that are directly connected to activated source in 3D mesh)
activated at the same time, and the source signal time series
is generated based on the 5th-order autoregressive (AR) model
(Haufe and Ewald, 2019), with 100 Hz sampling rate and 1 s of
length, and the simulated source signal s is obtained. Given the
lead field matrix H, by using the forward model, the EEG data x
can be calculated according to Eq. (1), in which the sensor noise ε

is generated based on different signal-to-noise ratio (SNR) levels
(20 dB, 30 dB, and 40 dB), where SNR is defined based on the
ratio of the power of signal Psignal to the power of noise Pnoise, as
prescribed below:

SNR = 10log(
Psignal
Pnoise

) (17)

The Laplacian matrix L of the brain source signal is calculated
according to Eq. 3, then decomposed according to Eq. 4 to obtain
the eigenvalue matrix 3 and the corresponding eigenvector
matrix U . Use the eigenvectors as the basis vectors of the GFT,
then the Fourier coefficient is obtained according to Eq. 5. We set
k = 615 as the number of eigenvectors, based on the frequency
spectrum illustrate in Figure 2. We use the first k values of s̃
as the model output s̃′, and the EEG data is taken as the model
input. The simulated data is divided into training, validation, and

testing datasets according to the proportion of 70%, 15%, and
15%, respectively. The number of input nodes in the BiLSTM
neural network is set to be 128, the hidden nodes is set to be 2,560,
and the number of output nodes is 615. Adopt the MSE as the
loss function and Nadam optimizer to train the BiLSTM neural
network on the training set. After training, the testing dataset is
used for model testing. The following two metrics are used as the
metrics for model evaluation:

• Localization error: LE can be quantified as the distance
between the true peak source point and estimated
peak source point.
• Area under the curve: AUC measures the area underneath

the receiver operating characteristic (ROC) curve.

Evaluation With Single Source
To render source extents activation, the adjacent sources along
with a central source are activated at the same time. The signal
strength of the adjacent sources is set to be lower than that of the
central region. All the 2,052 potential source locations are chosen
as the central source in turn to generate the scalp EEG data. In the
first experiment, we test the proposed algorithm on the simulated
EEG data and the true source activation pattern with one source
extents activated. Apply the training and validation dataset to
train and validate the proposed GFT-BiLSTM model, and then
test it on the testing dataset. The performance of the GFT-
BiLSTM is compared with that of dSPM, MNE, and sLORETA.
The evaluation metrics of each model are shown in Table 1 and
Figure 5. The comparison between the ground truth source and
the reconstructed sources by different algorithms is shown in
Figure 6.

From Table 1 and Figure 5, it can be seen that the proposed
GFT-BiLSTM shows the better performance when compared to
other methods. For different SNR levels, the AUC corresponding
to GFT-BiLSTM is the highest while the LE is the lowest.
The brain source distribution estimated by the proposed GFT-
BiLSTM is closer to the ground truth as illustrated in Figure 6.
The numerical result demonstrates the superiority of the GFT-
BiLSTM when applied to solve the ESI inverse problem.

Evaluation With Multiple Sources
In order to study the performance of the proposed GFT-BiLSTM
when there are multiple activated sources, we randomly select
2 out of 2,052 brain source locations to be activated and the

FIGURE 10 | Reconstructed sources by different ESI algorithms for epilepsy EEG data.
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first level neighboring sources of these two source locations
are also activated with a lower signal magnitude. Apply this
simulated dataset to train and validate the GFT-BiLSTM, and
then test it on the testing dataset. The performance of the GFT-
BiLSTM is compared with that of dSPM, MNE, and sLORETA.
The evaluation metrics of each model are shown in Table 2
and Figure 7. The comparison between the real source and the
estimated source is shown in Figure 8.

From Table 2 and Figure 7, the proposed GFT-BiLSTM
demonstrates better performance when compared with other
methods. In addition, with the increased number of activated
source, the estimation performance of all methods except the
GFT-BiLSTM deteriorates significantly. This is demonstrated
as an increase in LE and a decreased AUC value. There is
also a situation for other method in which the localization
of the central region is accurate while the localization of its
adjacent regions is slightly deviated. The reason is that as the
number of activated regions increases, the distribution of the
sources is no longer concentrated, and it is more challenging
to accurately estimate the locations of all active regions. The
reduction in performance for AUC is much more pronounced for
the benchmark algorithms. In contrast, the performance of the
GFT-BiLSTM is more stable and robust when it comes to multiple
activated sources.

Evaluation With Real Epilepsy Data
In order to further evaluate the performance of the proposed
GFT-BiLSTM, we applied it on the public epilepsy EEG dataset
from the Brainstorm tutorial datasets (Tadel et al., 2011). This
dataset was recorded from a patient who suffered from focal
epilepsy. The patient underwent invasive EEG to identify the
epileptogenic area then underwent a left frontal tailored resection
and was seizure-free during a 5-year follow-up period. We
followed the Brainstorm tutorial to obtain the head model, and
the lead field matrix. Then we calculated the average spikes (as
shown in Figure 9) of the provided EEG measurements with
29 channels. Apply the averaged EEG data for brain source
localization, and the estimated sources at peak (0 ms) from
different methods are shown in Figure 10, as compared to other
methods including dSPM, MNE, sLORETA.

It can be seen from Figure 10 that the proposed GFT-BiLSTM
provides a good reconstruction of the epileptogenic zone which
was validated by the follow-up survey after resection on the
left frontal region. The source area estimated by dSPM and
sLORETA spans a wide range cortical areas and includes part of
the right frontal lobe which is not related to the epilepsy lesion.
In contrast, the source location estimated by the MNE method

and the GFT-BiLSTM proposed in this paper is more accurate.
However, compared between the two methods, the range of
sources estimated by the GFT-BiLSTM is smaller, and the source
estimated by GFT-BiLSTM shows better continuity of the spatial
signal, due to the benefit of using GFT.

CONCLUSION

The inverse problem of source extents reconstruction is
challenging due to its highly ill-posed nature. In this paper, we
present a novel ESI framework, named GFT-BiLSTM, which is
based on the delineation of spatial graph frequency using graph
Fourier transform and BiLSTM, to solve the ESI problem in
a more efficient and robust way. Our numerical results based
on the synthetic data and real data show that the proposed
GFT-BiLSTM has a superior performance compared to other
benchmark methods. The future work can further explore more
clinical applications using the proposed framework. A more
rigorous selection of the low frequency set of eigenvectors can
also be investigated.
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Both neuroimaging and genomics datasets are often gathered for the detection of

neurodegenerative diseases. Huge dimensionalities of neuroimaging data as well as

omics data pose tremendous challenge for methods integrating multiple modalities.

There are few existing solutions that can combine both multi-modal imaging and multi-

omics datasets to derive neurological insights. We propose a deep neural network

architecture that combines both structural and functional connectome data with multi-

omics data for disease classification. A graph convolution layer is used to model

functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data

simultaneously to learn compact representations of the connectome. A separate set

of graph convolution layers are then used to model multi-omics datasets, expressed

in the form of population graphs, and combine them with latent representations of

the connectome. An attention mechanism is used to fuse these outputs and provide

insights on which omics data contributed most to the model’s classification decision. We

demonstrate our methods for Parkinson’s disease (PD) classification by using datasets

from the Parkinson’s Progression Markers Initiative (PPMI). PD has been shown to be

associated with changes in the human connectome and it is also known to be influenced

by genetic factors. We combine DTI and fMRI data with multi-omics data from RNA

Expression, Single Nucleotide Polymorphism (SNP), DNA Methylation and non-coding

RNA experiments. A Matthew Correlation Coefficient of greater than 0.8 over many

combinations of multi-modal imaging data and multi-omics data was achieved with our

proposed architecture. To address the paucity of pairedmulti-modal imaging data and the

problem of imbalanced data in the PPMI dataset, we compared the use of oversampling

against using CycleGAN on structural and functional connectomes to generate missing

imaging modalities. Furthermore, we performed ablation studies that offer insights into

the importance of each imaging and omics modality for the prediction of PD. Analysis

of the generated attention matrices revealed that DNA Methylation and SNP data were

the most important omics modalities out of all the omics datasets considered. Our work

motivates further research into imaging genetics and the creation of more multi-modal

imaging and multi-omics datasets to study PD and other complex neurodegenerative

diseases.

Keywords: attention, diffusion tensor imaging, disease classification, functional magnetic resonance imaging,

Generative Adversarial Networks, graph convolutional networks, multi-omics, Parkinson’s disease
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1. INTRODUCTION

Neurodegenerative diseases such as Parkinson’s Disease (PD)
have been shown to be associated with both brain connectivity
and genetic factors. While measurements of cortical thickness
from structural Magnetic Resonance Imaging (MRI) have
produced contradictory findings about its utility to predict
PD (Yadav et al., 2016), analysis of Diffusion Tensor Imaging
(DTI) data has consistently shown that PD patients, with and
without cognitive deficits, have reduced fractional anisotropy in
prefrontal areas (Deng et al., 2013; Price et al., 2016). Studies
on functional MRI (fMRI) data have also consistently revealed
lower activity in the supplementary motor complex (Nachev
et al., 2008), reduced functional connectivity in the posterior
putamen (Herz et al., 2014), as well as changes in the activity
levels of the dopaminergic cortico-striatal (Tessitore et al., 2019)
and mesolimbic-striatal loops (Filippi et al., 2018) in PD patients.

On the genomics front, several genes (such as alpha-synuclein,
LRRK2 and PARK2) and their variants, in the form of Single
Nucleotide Polymorphism (SNP) data, have been associated with
PD (Klein andWestenberger, 2012). However, none of them have
complete penetrance and it is likely that there are multiple risk
factors involved in both familial and sporadic PD (Tran et al.,
2020), as well as influence from non-coding ribonucleic acid
(RNA) (Majidinia et al., 2016). Thus, small non-coding RNA
(sncRNA) such as micro RNA (miRNA) should be considered
as well. miRNA has been associated with PD: the mitochondrial
cascade hypothesis stems from miRNA dysregulation, which
causes oxidative stress in neurons and ultimately lead to
aggregation of alpha-synuclein and neurodegeneration (Watson
et al., 2019). With sporadic PD representing a much larger
proportion of PD cases as compared to familial PD, epigenetics
alterations (such as DNA Methylation) could be a potential
biomarker for PD (Miranda-Morales et al., 2017). Recent findings
have revealed that hypo-regulation of some PD-associated genes,
such as the SNCA promoter region, upregulates SNCA and leads
to the formation of Lewy bodies (Wang et al., 2019).

Neuroimaging and multi-omics data capture different aspects
of brain disease manifestations. Neuroimaging modalities such
as DTI and fMRI capture macroscopic differences in the
structure and function of healthy and diseased brains while
multi-omics data zoom into a microscopic view of various
molecular signatures in neurodegenerative diseases. Although
these modalities have been implicated in PD, their relative
importance over each other is less clear. Thus, integrating
imaging and omics modalities could reveal new links between
these levels of analysis and unravel the pathway of complex
neurodegenerative diseases such as PD (Antonelli et al., 2019).
However, methods to combine imaging and genetics data
are very limited. Existing studies typically study multi-modal
imaging data (Subramanian et al., 2020) and multi-omics data
(Chaudhary et al., 2018; Zhang et al., 2018; Jin et al., 2021)
separately, or combine one imaging modality with only one
omics dataset (Kim et al., 2017; Markello et al., 2021). Notably,
there have also been works that merged multi-modal imaging
data with non-imaging data such as demographic features
(Kazi et al., 2019a,b); as well as combining genetic data with

clinico-demographic data (Nalls et al., 2015). However, none
has attempted to combine both multi-modal imaging and multi-
omics data.

One reason for this is due to the very large number of
features involved in both imaging and omics datasets. Depending
on the choice of atlases, structural and functional connectivity
matrices could introduce several thousands of features, while
omics datasets are even bigger, ranging from thousands in
sncRNA to half a million in DNA Methylation data. Existing
methods to combine both data modalities are rudimentary and
often involve concatenation. This makes modeling challenging,
especially because number of data samples with both imaging and
omics data are very few. Models trained on such small datasets
overfit easily.

To overcome these issues, we propose a deep neural network
architecture that uses a combination of graph convolution layers
and the attention mechanism to model multi-modal imaging and
multi-omics datasets simultaneously. This is demonstrated on
the Parkinson’s Progression Markers Initiative (PPMI) dataset,
which has a rich collection of imaging (DTI, fMRI) and omics
datasets (SNP, sncRNA, miRNA, RNA sequencing and DNA
Methylation). However, the number of disease classification
studies based on this dataset has been limited, likely due to
the very imbalanced distribution of classes (many more PD
patients than controls). To alleviate the problem of imbalanced
data, we propose the use of CycleGAN to generate structural
and functional connectivity matrices of healthy subjects to
augment the existing dataset. Existing methods for addressing
class imbalance are not feasible for our problem—synthetic
data generation algorithms such as SMOTE and ADASYN
could generate more data but it will not be possible to
associate them to a particular set of omics data sample. Under-
sampling exacerbates the issue of having small datasets, while
over-sampling merely duplicates the existing dataset. Given a
structural connectivity matrix, CycleGAN is able to generate
a functional connectivity matrix (and vice versa) such that it
corresponds to the same subject and it is not just another repeated
data sample in the existing dataset.

With these augmented and less imbalanced datasets, we
propose an architecture named JOIN-GCLA (Joining Omics
and Imaging Networks via Graph Convolutional Layers and
Attention) to model both connectome and genomics data
simultaneously. Based on our proposed algorithm, a population
graph generated from both structural and functional connectivity
matrices is used as the graph of the graph convolution layer.
Thus, the learnt embedding of the feature vectors—which could
be arbitrarily chosen—will be influenced by the multi-modal
imaging data. The learnt representations are then passed into
multiple graph convolution layers, each based on a graph that
is built using different omics datasets. Each graph convolution
layer produces its own intermediate representations and interim
prediction. These are fused together via an attention mechanism,
leading to a final decision of the disease classification problem.

Experiment results showed that the best performing model
made use of both multi-modal imaging and multi-omics
data. Both were crucial for the good performance—model
performance fell significantly when only 1 imaging modality,
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only 1 omics or when no omics dataset were used. Data
augmentation was essential for the models to perform well—
without it, the extreme imbalance hinders proper model training
even with the use of class-weighted cost functions. JOIN-GCLA
was shown to outperform existing approaches of multi-modal
fusion (Long et al., 2012; Kazi et al., 2019b). Ablation studies
demonstrated the importance of the initial graph convolution
layer used to learn representations of the connectome data
- replacing the graph convolution layer with fully-connected
or convolution layers saw significant reduction in model
performance. The proposed attention layer was also shown to
outperform a self-attention baseline. Furthermore, JOIN-GCLA
provides improved model interpretability. With a carefully
designed attention mechanism, the resultant attention matrix
revealed that out of the omics datasets used, DNA methylation
was the most important omics data when predicting that the data
sample is a healthy control, while SNP was most important when
predicting PD patients.

In sum, we have made the following novel contributions in
this work:

• Proposed an architecture, JOIN-GCLA, that is able to
incorporate both multi-modal connectome datasets and
multi-omics datasets simultaneously.

• JOIN-GCLA provides better model interpretability from the
generated attention score matrix—it is able to identify which
omics modalities are being focused on when predicting a
certain disease class.

• Found that amongst all the multi-omics datasets used, DNA
methylation and SNP are the most important omics modalities
for PD classification.

2. METHODS

2.1. JOIN-GCLA Architecture
We propose a deep neural network architecture, named
Joining Omics and Imaging Networks via Graph Convolutional
Layers and Attention (JOIN-GCLA), that consists of multiple
graph convolution layers and an attention mechanism to
combine multi-modal imaging data and multi-omics datasets
for prediction of PD. Figure 1 illustrates the JOIN-GCLA
architecture that is made up of 3 cascaded networks: the
connectome encoder, omics networks, and an attention layer.

Fusion of multi-modal imaging data and multi-omics data is
performed within the graph convolution layer of the connectome
encoder and omics network, respectively. Thus, the inputs to the
JOIN-GCLA architecture can be arbitrarily defined, depending
on what is desired to be studied. In this work, we use features
from the connectomes derived from each imaging modality as
inputs to JOIN-GCLA. Let us assume we receive a multi-modal
imaging dataset X = {Xm}Mm=1 with connectivity feature matrix
Xm ∈ R

P×Jm where Jm is the number of connectivity features
derived from each imaging modalitym, obtained from P imaging
scans. For the omics networks, the information from N omics
data types are encoded in the graphs of N graph convolution
layers. Let O = {On}Nn=1 denote the features of omics data where
N denotes the number of omics data types and On ∈ R

P×Kn

denotes the features from the n-th omics data type. Kn is the
number of omics features from each omics data type n. Finally,
let the set of weights, biases, output and size of the l-th layer be
denoted byW(l), b(l), H(l) and L(l), respectively.

2.1.1. Population Graphs
Both the connectome encoder and the omics networks make use
of graph convolution layers that decode the information encoded
in population graphs where each node in a population graph
represents a data sample. The connectome encoder condenses
the structural and functional connectivity matrices into a small
and compact vector representation. The omics networks receive
the representation realized from imaging data and combine them
with omics data for disease classification.

The graph of the connectome encoder is built from multiple
connectome datasets derived from neuroimaging data. Formally,
we define the imaging-based population graph as a population
scan graph (PSG) where imaging scans are represented as nodes
and the similarity between each pair of scans is calculated as the
edge weight, making it a fully connected weighted graph.

Let us denote xmv as the connectivity features for imaging
modality m from an individual v and let Am = {amuv} ∈ R

P×P

denote the adjacency matrix of a PSG where u and v denote
two data samples. Each weight auv represents the similarity sim
between two samples:

amuv = sim(xmu , x
m
v ) (1)

Similarly, wemake population omics graphs (POG) from features
of each omics data type. Let onv represent the omics features for
omics data type n from an individual v and let Bn = {bnuv} ∈
R
P×P represent the adjacency matrix of a POG. Each weight buv

represents the similarity sim between two samples:

bnuv = sim(onu, o
n
v ) (2)

The similarity measure sim is chosen as the Pearson’s correlation
coefficient.

2.1.2. Connectome Encoder
The connectome encoder is made up of a linear layer and a
graph convolution layer. The input to the connectome encoder is
themodality-wise concatenation of connectivity featurematrices,
represented by Xc ∈ R

P×J , where J =
∑M

m=1 Jm. A linear layer is
first used to reduce data dimensionality. This is needed because
the connectivity matrices were built by computing correlations
between time-series from brain regions-of-interests (ROI), which
produces a large number of features. In this work, since both
fMRI and DTI data were involved, we used the AAL atlas which
defines 116 ROIs and produces 6,670 features for each imaging
modality, warranting the need for the linear layer:

H(1) = ReLU(XcW(1) + b(1)) (3)

where ReLU denotes the ReLU activation function.
The output of the linear layer is then passed to the graph

convolution layer. Additionally, the graph convolution layer
takes in a PSG as the graph A. The PSG was created by setting
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FIGURE 1 | Illustration of the JOIN-GCLA architecture. It is made up of 3 parts: a connectome encoder, omics networks and an attention layer. The connectome

encoder receives connectome features from neuroimaging modalities, omics networks embed omics data in their graphs, and the attention layer consolidates all the

outputs of the omics networks to make a single final prediction.

the edge weights between each pair of subjects as the Pearson’s
correlation of their vectorised connectivity matrices. Min-max
normalization is then performed on the PSG and each element
in the PSG is incremented by 1 to ensure that the minimum value
is 1. When there are multiple modalities involved, let the PSG of
modalitym be denoted by Am. Am is multiplied with the existing
PSG A, which is initialized as a matrix of ones. A is then used as
the graph of the graph convolution layer.

Since the PSG is fully connected, the graph convolution layer
should incorporate edge weights from the graph when improving
the feature vector. One such layer was proposed in Kipf and
Welling (2016):

H(2) = ReLU(D̂
−1/2
A ÂD̂

−1/2
A H(1)W(2)) (4)

where Â = A + I represents the PSG (of dimensions P × P)

with self-loops added, and D̂A = {d̂vv} represents the diagonal

degree matrix of A with d̂vv =
∑

u∈V d̂vu where V is the vertex

set of scans. The output of the connectome encoder, H(2), is
subsequently used as input to each omics network.

2.1.3. Omics Networks
Each omics network is made up of a graph convolution layer
and a softmax layer. Despite receiving the same output from
the connectome encoder, each omics network produces different
outputs because the POG used in each omics network is different.
Creating the POG O involves a different procedure from Parisot
et al. (2018) due to the nature of omics datasets. For example,
the population graph of DNA Methylation and miRNA data
have values very close to each other (as seen in Figure 3), which
requires further scaling. This is done via the WGCNA algorithm
(Zhang and Horvath, 2005) which re-scales the values to follow a
power law distribution. Furthermore, while one subject has only

one set of multi-omics data, a single subject can have multiple
imaging scans. Thus, a duplication step has to be introduced to
replicate the omics features when a subject has multiple imaging
scans.

In short, POGs are generated by producing an adjacency
matrix via computing the correlation between each scan’s omics
vector, followed by addition of self-loops, WGCNA scaling and
scan duplication for subjects with more than 1 imaging scan,
producing an P × P matrix. Since POGs are also always fully
connected, the model proposed in Kipf and Welling (2016) can
be used.

H(3) = D̂
−1/2
B B̂D̂

−1/2
B H(2)W(3) (5)

where B̂ = B+ I represents the POGwith self-loops added, D̂B =

{d̂vv} represents the diagonal degree matrix of B. Subsequently,
the output of the graph convolution layer is passed to a linear
layer with L(4) hidden nodes, where L(4) represents the number
of classes for the classification task.

H(4) = ReLU(ReLU(H(3))W(4) + b(4)) (6)

The above equations detail the process of generating the outputs
of a single omics network. In the case where only a single omics
data is available,H(4) can be passed to a softmax layer to produce
the final prediction. Given N different sets of omics data, we will
repeat these steps for each omics dataset, each producing their
own omics network. Then, bothH(3) andH(4) will be used by the
attention layer shown in the next section.

2.1.4. Attention Layer
When multiple omics datasets are used, not all of them will be
useful for the classification task. Thus, we introduce an attention
layer that learns which omics network to pay more attention
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to when making the final prediction. For each data sample, the
attention layer will learn an attention matrix of dimensions N ×
L(4), showing which omics network is being focused on for the
classification task. It will also produce a single prediction for the
disease classification task.

The attention mechanism, following the terminology in
Vaswani et al. (2017), involves two components: (i) the attention
weights produced from a pair of query and key matrices, and (ii)
the value matrix, i.e. the term to be weighted. The latter refers
to H(4), the logits from each omics network. Thus, let H(4c) ∈

R
P×N×L(4) be the concatenated logits from all omics networks.

For the former, since it is desirable to arrive at an attentionmatrix
of dimensionN×L(4) for better model interpretability, the query

matrix is defined as H(4m) ∈ R
P×L(4)×1, the mean of logits from

all omics networks, averaged across dimension N and transposed
so that the shape of the attentionmatrix is correct. The keymatrix

is defined as H(3c) ∈ R
P×N×L(3) , which represents the combined

outputs concatenated from the graph convolution layer in each
omics network. Since the last dimension ofH(4m),H(3c) andH(4c)

are different, H(3c) is projected via a projection matrix W(3c) ∈

R
L(3)×1. Similarly, H(4c) is projected byW(4c) ∈ R

L(4)×1.
Finally, the query matrix H(4m) and the key matrix H(3c) are

combined to compute the attention score used to weigh the value
matrix H(4c). In sum, this operation finds the best set of weights
to weigh the output of each H(4) from the omics networks,

producing H(5) ∈ R
P×L(4)×1.

H(5) = softmax
(

H(4m) (H(3c)W(3c))T) (H(4c)W(4c))
)

(7)

2.1.5. Output Layer
H(5) is then passed into a softmax layer to produce the predicted
class label y.

p(yi = yk|H
(5)) = softmax

(

H(5)
)

(8)

2.1.6. Training
Training of the JOIN-GCLA architecture is done by minimizing
the error between predicted class label y and the target class label
yd via a weighted cross-entropy cost function J to account for

data imbalance. Let wyd = 1 −
Pyd
P be the weight of the class yd,

where Pyd refers to the data subset that belongs to the class yd.

J = Ex{−wydyd log(y)− (1− wyd )(1− yd) log(1− y)} (9)

The cost function J is minimized using an Adam optimiser.
Also, during model training, dropouts are added after the graph
convolution layer in both the connectome encoder and the omics
networks.

3. RESULTS

3.1. Dataset and Pre-processing
Data used in this study were obtained from the Parkinson’s
Progressive Markers Initiative (PPMI) (Marek et al., 2018). PPMI
is a clinical study that seeks to build data driven approaches

TABLE 1 | Basic statistics of subjects with DTI scans in PPMI dataset.

Healthy control (HC) Parkinson’s disease (PD)

Number of subjects (scans) 66 (178) 154 (705)

Male/Female 43/23 98/56

Age 60.9 ± 10.6 60.8 ± 9.3

for early diagnosis of PD by discovering novel biomarkers.
For this study, we have utilized both imaging and genetic
data downloaded from the website. Tables 1, 2 summarizes key
demographic information and statistics of the PPMI dataset for
imaging data, while Table 3 shows the sample and feature sizes
of the omics datasets. PD subjects included in this study are
those who either have a pathogenic genetic variant or are newly
diagnosed and have yet to commence medication for PD.

Details about the pre-processing steps are shown in the
Supplementary Materials. In brief, after pre-processing the
raw diffusion weighted imaging data to correct for motion,
eddy currents and echo planar imaging distortions via the
dwi-preprocessing-using-t1 pipeline in Clinica
(Routier et al., 2021), structural connectivity matrices were
obtained by performing probabilistic tractography using the
BedpostX GPU (Hernández et al., 2013) and ProbtrackX
GPU (Hernandez-Fernandez et al., 2019) tool from FSL
(Jenkinson et al., 2012). Since the raw connectivity matrix is not
symmetric, the average of the upper and lower triangular was
computed and was further log-transformed and standardized
to ensure that the values follow a standard normal distribution
(which will aid downstream modeling tasks). The fMRI dataset
was processed using fMRIPrep (Esteban et al., 2019) and the
AAL atlas was used to generate 116 regions of interests (ROI)
from both the cortex and subcortex. The activation of a ROI
is computed by taking the mean time series of all voxels less
than 2.5 mm away from the ROI. Pearson correlation was
used to obtain a symmetric matrix containing the functional
connectivities between pairs of ROIs for each scan.

Most of the DTI and fMRI scans in the PPMI datasets are
taken on different sessions (i.e. different days). Just relying on
scans which are taken on the same day will result in a small and
unusable dataset. Instead, for every DTI scan, we pair it up with
fMRI scans which are taken not more than 1 year away from the
date the DTI scan was performed. This produces 351 PD and 25
HC scans with paired DTI and fMRI data.

For multi-omics datasets, PPMI provides pre-processed data,
with steps such as quality control and normalization performed.
RNA-Seq data are given in format of Transcripts Per Million, and
sncRNA and miRNA data are given in Reads Per Million (RPM)
and RPM Mapped to miRNA formats. DNA Methylation (Met)
and Single Nucleotide Polymorphism (SNP) data have been
distilled with p-value detection. Based on the above processing,
we further perform noise removal and Wilcoxon Signed Rank
test to eliminate irrelevant features on the sample set required for
downstream experiments. More details about the pre-processing
steps can be found in the Supplementary Materials.
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TABLE 2 | Basic statistics of subjects with fMRI scans in PPMI dataset.

Healthy control (HC) Parkinson’s disease (PD)

Number of subjects (scans) 18 (19) 94 (194)

Male/Female 14/4 64/30

Age 61.0 ± 10.8 59.7 ± 10.2

TABLE 3 | Dataset and feature sizes of multi-omics data before and after

pre-processing.

Omics data type Dataset size Original Processed

feature size feature size

RNAseq 226 34,569 19,728

Met 152 864,067 677,506

SNP 206 267,607 239,731

sncRNA 184 29,585 4,366

miRNA 184 2,656 748

3.2. Data Augmentation
Most multi-modal imaging and multi-omics datasets are small
because not all the subjects with one imaging modality come
along with other modalities. For instance, not all subjects with
DTI scans will have a corresponding fMRI scans (and vice
versa). This is also true for the PPMI dataset. Another major
issue in the PPMI dataset is the huge class imbalance, with the
number of PD subjects about 10 times larger than the number of
healthy controls, as seen in Tables 1, 2. To address these issues,
we use CycleGAN, a type of Generative Adversarial Network
(GAN) proposed by Zhu et al. (2017), to generate functional
connectomes from structural connectomes of healthy subjects.
GANs are generative models that can generate additional data
samples with distributions similar to that of the distribution of
the training dataset. CycleGAN is made up of conditional GANs,
which are able to use images of one modality as latent variable
so as to generate images of another modality. CycleGAN goes
further to introduce a cycle consistency loss that ensures that the
source and target images are consistent with each other as the
network is able to both generate the target image from the source
image and reconstruct the source image from the generated target
image.

To train the CycleGAN architecture, functional and structural
connectivity matrices, generated from preprocessed fMRI and
DTI data from the Human Connectome Project (HCP) S1200
release (Glasser et al., 2013), was used as the training data and
the CycleGAN model was tuned and tested using data from the
Amsterdam OpenMRI Collection (AOMIC) (Snoek et al., 2021).
PIOP1 was used as validation set, while PIOP2 was the test set.
Both HCP and AOMIC datasets are made up of brain imaging
scans from healthy young adults. These were chosen, despite the
age differences from PPMI, due to the large dataset sizes available
(1062 for HCP, 189 for PIOP1 and 183 for PIOP2). To the best of
our knowledge, no publicly available datasets with such dataset
sizes exist for elderly populations. Pre-processing steps for the
HCP and AOMIC datasets are similar to Section 3.1 and more

details about the dataset and pre-processing steps are provided in
the Supplementary Materials. With a trained CycleGAN model,
structural connectivity matrices are passed into it to generate
additional fMRI scans of healthy subjects. These are used to
augment the original dataset. This results in 208 PD and 186
HC scans, a more balanced dataset (52.3% as compared to 91.6%
previously). For the paired DTI-fMRI dataset, this results in 351
PD and 364 HC scans, also resulting in a more balanced dataset
(53.3% as compared to 93.4%).

3.3. Hyperparameter Tuning
The huge number of possible omics and imaging data
combinations makes it unfeasible to tune the model for each of
them. Rather, hyperparameter tuning was performed once on
the largest dataset available for the baseline model (i.e. a graph
convolutional layer, without the omics networks, trained only
on DTI data). We first split the dataset into non-test and test
sets at a 2:1 ratio, before performing 5 fold cross-validation on
the non-test split. Once the optimal parameters are found, the
experiments are repeated over 10 seeds and the mean accuracies
(along with standard deviation) are reported in the next sections.
Importantly, synthetic data are only added to the training set–the
validation and test set always uses real data only.

Parameters tuned include dropout {0.1, 0.3, 0.5}, number of
hidden neurons in the graph convolution layers {2, 4, 8, 16, 32}
and learning rate {0.001, 0.0005, 0.0001}. Early stopping with a
patience of 20 epochs was applied during the tuning process and
the largest number of epochs taken to reach the best Matthew
Correlation Coefficient (MCC) score was used as the number
of epochs to train the model for before applying the model
on the test set. The optimal parameters are dropout of 0.1, 16
hidden neurons and learning rate of 0.001. Adam optimiser was
used to train the model. This set of parameters is consistently
used throughout all combinations of data modalities, with no
further model tuning done for the other imaging and omics
combinations. All experiments were repeated over 10 seeds.

3.4. Data Augmentation Improves Disease
Classification
The PPMI dataset is heavily imbalanced. Even when the cost
function is weighted by the classes, Table 4 showed that the
trained JOIN-GCLA model cannot classify well without data
augmentation. While the accuracy achieved is high, that is an
indication that the model is stuck at predicting the majority
class (PD) and cannot predict the minority class (HC) well.
Supplementary Table S1 shows the percentage of the dataset
represented by the majority class. It is evident that model
performance on the original dataset is often around or even
below this percentage. Additional confirmation is provided by
the MCC scores, which are very low without data augmentation.
With data augmentation, MCC increased significantly on most
omics combinations. Thus, data augmentation helps to reduce
the imbalance and it is necessary for good model performance.
Analyses in subsequent sections will use this augmented dataset.
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TABLE 4 | Comparison of model performance on DTI-fMRI data, with and without training set augmentation.

No augmentation With augmentation

Omics Accuracy MCC Accuracy MCC

None 93.09 ± 0.03 0.00 ± 0.00 93.09 ± 0.03 0.00 ± 0.00

Met 89.59 ± 0.04 0.02 ± 0.05 90.21 ± 0.04 0.13 ± 0.25

SNP 93.18 ± 0.03 0.03 ± 0.09 93.89 ± 0.03 0.08 ± 0.25

miRNA 96.16 ± 0.00 0.00 ± 0.00 96.16 ± 0.00 0.00 ± 0.00

sncRNA 96.16 ± 0.00 0.01 ± 0.01 96.16 ± 0.00 0.00 ± 0.00

RNAseq 92.82 ± 0.03 0.00 ± 0.00 92.82 ± 0.03 0.01 ± 0.04

RNAseq-Met 81.21 ± 0.20 0.17 ± 0.33 92.52 ± 0.10 0.79 ± 0.23

RNAseq-SNP 88.96 ± 0.11 0.28 ± 0.19 84.92 ± 0.13 0.38 ± 0.29

RNAseq-miRNA 87.48 ± 0.26 0.03 ± 0.05 95.65 ± 0.02 0.02 ± 0.03

RNAseq-sncRNA 92.11 ± 0.11 0.02 ± 0.05 96.10 ± 0.01 0.08 ± 0.18

Met-SNP 85.59 ± 0.14 0.39 ± 0.34 83.99 ± 0.13 0.43 ± 0.35

Met-miRNA 90.62 ± 0.20 0.03 ± 0.05 95.72 ± 0.11 0.61 ± 0.51

Met-sncRNA 85.99 ± 0.24 0.02 ± 0.05 98.16 ± 0.02 0.43 ± 0.49

SNP-miRNA 96.84 ± 0.03 0.04 ± 0.10 100.0 ± 0.00 1.00 ± 0.00

SNP-sncRNA 85.91 ± 0.29 0.02 ± 0.06 99.78 ± 0.01 0.90 ± 0.32

miRNA-sncRNA 94.87 ± 0.04 0.06 ± 0.15 96.25 ± 0.01 0.06 ± 0.18

RNAseq-Met-SNP 89.45 ± 0.04 0.37 ± 0.25 86.46 ± 0.16 0.56 ± 0.38

RNAseq-Met-miRNA 97.13 ± 0.01 0.01 ± 0.01 97.93 ± 0.01 0.29 ± 0.45

RNAseq-Met-sncRNA 97.28 ± 0.01 0.11 ± 0.25 97.80 ± 0.02 0.32 ± 0.47

RNAseq-SNP-miRNA 88.64 ± 0.30 0.01 ± 0.02 99.63 ± 0.01 0.81 ± 0.40

RNAseq-SNP-sncRNA 97.99 ± 0.00 0.02 ± 0.03 99.77 ± 0.01 0.90 ± 0.30

RNAseq-miRNA-sncRNA 90.18 ± 0.19 0.04 ± 0.06 95.60 ± 0.02 0.01 ± 0.03

Met-SNP-miRNA 96.62 ± 0.01 0.06 ± 0.20 99.68 ± 0.01 0.91 ± 0.30

Met-SNP-sncRNA 96.94 ± 0.01 0.16 ± 0.33 100.0 ± 0.00 1.00 ± 0.00

Met-miRNA-sncRNA 90.23 ± 0.22 0.00 ± 0.02 98.70 ± 0.01 0.52 ± 0.50

SNP-miRNA-sncRNA 90.77 ± 0.23 0.01 ± 0.01 99.80 ± 0.01 0.90 ± 0.32

RNAseq-Met-SNP-miRNA 87.20 ± 0.29 0.12 ± 0.31 99.72 ± 0.01 0.90 ± 0.32

RNAseq-Met-SNP-sncRNA 85.23 ± 0.29 0.05 ± 0.10 99.42 ± 0.01 0.80 ± 0.42

RNAseq-Met-miRNA-sncRNA 96.70 ± 0.01 0.03 ± 0.06 97.08 ± 0.03 0.31 ± 0.48

RNAseq-SNP-miRNA-sncRNA 98.16 ± 0.01 0.11 ± 0.31 99.36 ± 0.01 0.70 ± 0.48

Met-SNP-miRNA-sncRNA 87.39 ± 0.29 0.08 ± 0.17 93.21 ± 0.21 0.91 ± 0.29

RNAseq-Met-SNP-miRNA-sncRNA 96.78 ± 0.01 0.19 ± 0.31 89.67 ± 0.30 0.73 ± 0.44

3.5. Effects of Incorporating Different
Omics Datasets
JOIN-GCLA takes in two or more omics networks. When less
than two omics datasets are available, the attention layer can
be removed. Thus, in the case where one omics dataset is used,
the resulting architecture has 2 graph convolution layers (1 for
imaging, 1 for omics). When no omics datasets are used, the
resulting architecture has 1 graph convolution layer for themulti-
modal imaging data only. From Table 4, it is evident that almost
all the models trained without omics data or only with a single
omics data modality fared poorly, with MCC ranging from 0.00
to 0.13 as compared to the multi-omics models (bolded rows)
with MCC ranging from 0.73 to 1.00. Furthermore, it is observed
that data augmentation has greatest efficacy when multi-omics
data is involved. The increase of MCC score ranged from 0.00 to
0.11 when no or one omics data was used, while the increment
for multi-omics combinations ranged from 0.54 to 0.84.

3.6. Selection of the Optimal Omics
Combination
In Table 4, results for the power set of omics combinations were
shown for completeness. A principled way to arrive at the optimal
combination of omics data is to perform backward elimination at
the level of omics data type, based on MCC score. From the full
set of omics data (RNAseq-Met-SNP-miRNA-sncRNA), m − 1
separate models are trained independently, each with a different
subset ofm−1 omics data types obtained by removing a different
omics dataset for eachmodel. If any of the newmodels produces a
higher MCC score than the existing best model (initialized as the
original set), it is set as the best model and the process continues
recursively until it gets terminated when either no omics data is
left or the current iteration of models do not perform better than
the existing best model from the previous iteration. Following
this procedure, Met-SNP-sncRNA was determined to be the
optimal omics combination. For clearer presentation of results,
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TABLE 5 | Comparison of model performance between DTI-fMRI data and fMRI

data.

DTI-fMRI fMRI

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 97.15 ± 0.03 0.80 ± 0.27

Model 4 93.21 ± 0.21 0.91 ± 0.29 96.16 ± 0.04 0.71 ± 0.34

Model 5 89.67 ± 0.30 0.73 ± 0.44 97.43 ± 0.04 0.77 ± 0.41

subsequent analyses will focus on the rows in bold in Table 4,
which represent the best models for each number of omics
combinations considered in the process of backward elimination.
We adopt the following notation in the tables below: Model 3 =
Met-SNP-sncRNA,Model 4 =Met-SNP-miRNA-sncRNA,Model
5= RNAseq-Met-SNP-miRNA-sncRNA.

3.7. Effect of Using Multi-Modal Imaging
Data
Table 5 shows that models using multi-modal imaging data
generally results in better MCC score than models trained with
uni-modal imaging data1. In particular, Met-SNP-sncRNA is able
to achieve a MCC score of 1 across all 10 seeds, but when
DTI data was dropped, the MCC score reduced to 0.80 (p-
value of 0.04 when performing a t-test to check for identical
population means). Higher MCC score was also observed for
Met-SNP-miRNA-sncRNA when multi-modal imaging data was
involved. While the accuracies obtained when only fMRI used
seems generally higher, their lower MCC suggest that the model
still tends to predict the majority class. This issue is alleviated
when multi-modal imaging data are used.

3.8. JOIN-GCLA Outperforms Existing
Approaches for Disease Classification
To the best of our knowledge, there has been no existing work
proposed to process both multi-modal imaging and multi-omics
data in a single architecture. Early methods such as Long et al.
(2012) extracted features from structural and functional brain
images and used a support vector machine (SVM) to perform
disease classification. However, such approaches do not combine
omics features. Nevertheless, a comparison will be made between
JOIN-GCLA and machine learning models such as SVM and
logistic regression (LR) to ascertain whether JOIN-GCLA give
any advantage over these models.

Tuning of the machine learning models was performed with
Optuna (Akiba et al., 2019) and the models were implemented
in Python using Scikit-learn. For SVM, a linear SVM was used
and the regularization parameter C is randomly sampled from a
log uniform distribution ranging between 1× 10−5 and 1× 105.
For LR, besides the regularization parameter C (sampled from
1× 10−3 to 1× 102), the parameter l1_ratio is sampled from

1Data augmentation was done by using the trained CycleGAN model to generate

functional connectivity matrices only as the PPMI dataset has too few fMRI scans

to generate structural connectivity matrices from. Instead, the DTI dataset is used

to demonstrate effects of undersampling, as shown in Supplementary Table S7.

TABLE 6 | Comparison between alternative fusion approaches and JOIN-GCLA.

Model Modality Accuracy MCC

Logistic Regression DTI 45.07 ± 5.26 –0.10 ± 0.11

Logistic Regression fMRI 56.84 ± 3.74 0.20 ± 0.07

Logistic Regression DTI + fMRI 58.53 ± 4.96 0.22 ± 0.10

Support Vector Machine DTI 46.47 ± 4.96 –0.06 ± 0.12

Support Vector Machine fMRI 45.87 ± 4.73 0.16 ± 0.11

Support Vector Machine DTI + fMRI 37.05 ± 8.56 0.14 ± 0.10

JOIN-GCLA, Model 3 DTI + fMRI 100.0 ± 0.00 1.00 ± 0.00

JOIN-GCLA, Model 4 DTI + fMRI 93.21 ± 0.21 0.91 ± 0.29

JOIN-GCLA, Model 5 DTI + fMRI 89.67 ± 0.30 0.73 ± 0.44

TABLE 7 | Comparison between JOIN-GCLA with alternative fusion methods.

JOIN-GCLA Kazi et al. (2019a)

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 73.71 ± 0.22 0.32 ± 0.32

Model 4 93.21 ± 0.21 0.91 ± 0.29 82.14 ± 0.17 0.18 ± 0.18

Model 5 89.67 ± 0.30 0.73 ± 0.44 77.11 ± 0.19 0.35 ± 0.27

a uniform distribution ranging between 0 and 1. The best set
of model parameters across 10 trials are used to train the final
model. Model performance over 10 seeds is reported in Table 6.

While it is evident that the JOIN-GCLA results with multi-
omics data outperforms machine learning models, comparing
the results in Table 6 with the rows in Table 4 where no omics
datasets were used, deep learning models do not seem to perform
better than SVM nor logistic regression models. This is true for
both cases where fMRI or DTI-fMRI datasets are used. This
suggest that the good model performances seen in Table 4 are
likely contributed by the addition of omics dataset and the omics
networks, rather than just the use of deep learning models in the
connectome encoder. While the number of test samples involved
in these 3 examples (∼55) are indeed smaller than the number
of test samples used when no omics data are involved (∼115),
the difference in performance is unlikely to be attributed to
the difference in sample sizes between the experiments. This is
supported by the result from omics combination RNAseq-SNP-
miRNA-sncRNA, which still has an MCC score of 0.70 with∼ 95
test samples, much higher than what was obtained frommachine
learning models despite having a similar number of test samples.

More recent works related to JOIN-GCLA include
architectures that combine both imaging data and demographic
information in the form of population graphs (Parisot et al., 2018;
Kazi et al., 2019a). However, they do not use omics datasets. The
closest architecture to JOIN-GCLA is the multi-layered parallel
graph convolutional network presented in Kazi et al. (2019a). In
their model, separate population graphs were built based on each
demographic feature used (e.g. age, gender). Each population
graph was used as the graph for a different graph convolutional
network (GCN). Features from MRI, fMRI and cognitive tests
were used as the node vector of the GCNs. The representations
learnt by the GCNs were then fused via a weighted sum, with the
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TABLE 8 | Ablation study of the connectome encoder on DTI-fMRI dataset.

JOIN-GCLA Fully-connected layer Convolution layers

Omics Accuracy MCC Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 85.82 ± 0.11 0.42 ± 0.27 95.59 ± 0.09 0.57 ± 0.46

Model 4 93.21 ± 0.21 0.91 ± 0.29 83.69 ± 0.20 0.47 ± 0.39 88.62 ± 0.23 0.26 ± 0.34

Model 5 89.67 ± 0.30 0.73 ± 0.44 89.97 ± 0.11 0.54 ± 0.36 72.86 ± 0.32 0.23 ± 0.30

weight assigned to each GCN being a parameter learnt during
model training. JOIN-GCLA is different in two key aspects: (i)
our connectome encoder can incorporate multiple modalities of
connectome data and (ii) our proposed attention layer is used
for fusing multiple views of information. In our implementation
of Kazi et al. (2019a), instead of using demographic information,
POGs were used as the graph for the graph convolution layers
and the connectome encoder is replaced by a fully-connected
layer. Table 7 shows that JOIN-GCLA significantly outperforms
their approach of modality fusion.

3.9. Effects of Graph Convolution Layer in
the Connectome Encoder
The connectome encoder in JOIN-GCLA can also be compared
with other deep learning approaches by replacing the graph
convolution layer with alternatives such as layers in the
connectome convolutional neural network proposed by
Meszlényi et al. (2017), which uses customized horizontal and
vertical filters of dimensions 1×|ROI| and |ROI|×1, respectively.
Such a model can accept multi-modal imaging data by treating
each modality as an additional channel. Alternatively, the graph
convolution layer could be simply replaced with a linear layer.
Such a model will take in multi-modal imaging data by flattening
the original matrices into vectors and concatenating them into
one large feature vector.

From Table 8, it can be seen that both models with the fully-
connected layer and convolution layers perform rather poorly.
The connectome convolution layers does not seem to aid model
performance relative to the fully connected layers. Both model
performances are also inferior to the results obtained by JOIN-
GCLA, as shown in Figure 1. A limitation of the comparison
made inTable 8 is the significantly smaller number of parameters
involved in the model with the convolution layers (∼ 30, 000)
as compared to the model with the fully-connected layer and
JOIN-GCLA (∼ 200, 000). In view of this, another experiment
was performed where the number of parameters in the model
with convolution layers was increased by increasing the number
of filters (for the convolution layer in connectome encoder)
and hidden nodes (for the graph convolution layer in omics
networks) such that the total number of parameters is similar to
the other two models. Results shown in Supplementary Table S5

demonstrates that the larger model using convolution layers is
still outperformed by JOIN-GCLA. Thus, it is evident that the
proposed method to fuse multi-modal imaging data via PSG
helps to improve model performance.

TABLE 9 | Ablation study of the attention layer on DTI-fMRI dataset.

JOIN-GCLA Self-attention

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 99.31 ± 0.01 0.80 ± 0.42

Model 4 93.21 ± 0.21 0.91 ± 0.29 98.94 ± 0.02 0.70 ± 0.48

Model 5 89.67 ± 0.30 0.73 ± 0.44 98.46 ± 0.02 0.62 ± 0.49

3.10. Effects of Different Attention Layers
for Fusing Multi-View Data
Section 3.5 demonstrated the importance of using multi-omics
datasets and showed how the attention mechanism improves the
final disease prediction. In this section, this will be compared with
alternative approaches to fuse the representations learnt from
each omics network. One baseline for comparison is to use self-
attention, instead of the customized formulation of the attention
mechanism proposed in Section 2.1.4. Table 9 shows that our
proposed attention layer performs better than self-attention.

3.11. Model Interpretability
The performance of models with graph convolution layers is
highly dependent on the graph used (Parisot et al., 2018; Cosmo
et al., 2020). This warrants the need to analyse the PSG used in
the connectome encoder and POGs used in the omics networks.
Additionally, our proposed method to construct the attention
scores allows for greater interpretability into the models decision
from the weights assigned to the intermediate representations
produced from the omics networks when predicting HC or PD.

3.11.1. Imaging Population Scan Network

Distributions
The number of scans considered in the PSG vary according to the
omics combinations used in the JOIN-GCLA model. As seen in
Figure 2, the PSGs have similar distributions, with most values
being around 2.0 with a smaller peak around 3.0. Thus, they are
not likely to explain the difference in model performances when
the same imaging modalities are used, as shown in Table 4.

3.11.2. Omics Population Graph Distributions
Figure 3 shows the distributions of POGs. These are generated by
taking the lower triangular of the POG (which is symmetric) and
producing kernel density plots for each omics dataset. miRNA
andMet have very high values, indicating thatmost subjects share
very similar data. While sncRNA and RNAseq has a longer left
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FIGURE 2 | Distributions of various PSGs for DTI-fMRI data, used in the connectome encoder.

tail, SNP has a different distribution: most of the data range from
0.2 to 0.4, indicating very little similarity between subjects. When
WGCNA is applied, Met and SNP clearly have very different
distributions from the rest, with a majority of values being very
low (below 0.3). On the other hand, miRNA and sncRNA still
have most of the values above 0.6. RNAseq has many values close
to 0, but also a significant amount of values spread across the
range of 0 and 1.

3.11.3. Attention Weights
JOIN-GCLA provides model interpretability in the form of
attention matrices with shape N× L(4). In this regard, an existing
method (Kazi et al., 2019a) provides a scalar value for each view.
JOIN-GCLA goes further to show which view is being focused
on when predicting a certain class. Figure 4A shows the attention
matrix for the omics combination SNP-miRNA, which was one of
the omics combinations with high MCC score. SNP has a slightly
higher weight in both the cases when the model predicts HC
or PD. Thus, it could be inferred that the high performance of
SNP-miRNAwas due to the attentionmechanism’s focus on SNP.
Similarly, Figure 4B shows the attentionmatrix for SNP-miRNA-
sncRNA (i.e. sncRNA is added), which had anMCC of 0.9. While
the attention scores when predicting PD (the majority class) are
now equally spread, the attention scores when predicting HC was
heavily weighted toward SNP.

Another set of examples is presented in Figures 4C,D—with
both cases having an MCC of 0.9. Met has the highest weight
when predicting HC, but when miRNA was added, the attention
weights are slightly more distributed between Met and SNP.
Also, SNP has the highest attention score when predicting PD.
It could be inferred from these attention matrices that while SNP
is evidently themost important omics modality when performing

disease prediction, Met contributes to the high performance too
especially when predicting HC.

Overall, it can be seen that when predicting PD (majority
class), the attention scores tend to focus on SNP, but it could still
be equally distributed. However, when predicting HC (minority),
focusing on Met (or SNP, when Met is not present) helps to
improve model performance. These insights, which are more
detailed than (Kazi et al., 2019a), are only possible with the use
of JOIN-GCLA and our proposed attention layer.

4. DISCUSSION

Overall, our results demonstrated that the combination of
connectome encoder, omics networks and the customized
attention layer is essential for JOIN-GCLA to work well
and provide better model interpretability. From the above
experiments, it is evident that our proposed architecture,
JOIN-GCLA, was the best performing model. Past works
have demonstrated that is it not possible to perform disease
classification successfully by solely using DTI data (Prasuhn et al.,
2020). Our results in Table 6 support this finding and we went
further to demonstrate that disease classification can be done well
if imaging and omics datasets are used simultaneously. However,
datasets with both multi-modal imaging and multi-omics data
are typically small. Thus, deep neural network models have to be
small. JOIN-GCLA is made as lean as possible with only 1 graph
convolution layer in the connectome encoder and each omics
network. The number of hidden nodes is kept small as well. In
the case of JOIN-GCLA, the number of parameters, as seen in
Supplementary Table S4, is large in this example as the flattened
correlationmatrix from imaging data is used as the feature vector.
However, feature vectors can be any arbitrary data of interest and
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FIGURE 3 | Distributions of POGs used in omics networks (A) before WGCNA (B) after WGCNA.

thus the number of parameters could be reduced significantly,
especially when dealing with smaller datasets.

It was shown in Table 8 that PSG was essential for
better model performance. While JOIN-GCLA gave the best
performance, there are also other important considerations such
as the scalability of the model. For instance, using convolution
layers instead allows for multiple connectivity matrices to
be combined without a huge increase in the number of
parameters as additional modalities simply increases the number
of input channels. However, this comes with the limitation that
connectivity matrices of the same size have to be used (i.e. same
brain atlas). JOIN-GCLA is also able tomergemultiplemodalities
via PSG, but if the imaging data has to be used as feature
vectors (in the form of vectorised connectivity matrices), the the
number of parameters increases significantly as more modalities
are included, as seen in Supplementary Table S2. Thus, the
model with convolution layer in the connectome encoder is most
suitable for small datasets where overfitting is a concern, while
JOIN-GCLA is the best choice if low-dimensional feature vectors
are used.

We demonstrated the feasibility of incorporating multi-omics
datasets into the model via the use of omics networks. As seen
in Table 3, omics datasets often have a huge number of features,
even more than imaging data. Thus, it is not feasible to use the
entire set of omics features as feature vectors. Instead, the use
of POGs allowed information from multi-omics datasets to be
included into the modeling process. A population graph built
from an omics dataset is used as the input graph for the graph
convolution layer and fusion between the omics data and the
representations of the imaging data learnt by the connectome
encoder (in the form of feature vectors) happens in this graph
convolution layer. Such an approach scales up well with minimal
increase of parameters, as seen in Supplementary Tables S3, S4.
Notably, the best model performances were obtained when 3

multi-omics datasets were used: DNA Methylation, SNP and
sncRNA.

The attention layer performs a key role in combining the
interim predictions from each omics network and producing a
final decision. Besides performing better than baseline attention
methods such as self-attention as seen in Table 9, our proposed
approach ensures that an attention matrix of shape N × L(4) is
generated, providing greater model interpretability as seen from
Figure 4. This has highlighted the relative importance of SNP and
DNA Methylation in distinguishing PD patients from healthy
controls.

These results were only achieved after data augmentation was
introduced, as shown in Table 4. This is largely attributed
to the data imbalance that exists in the PPMI dataset,
with PD scans forming the majority of the data as seen
in Supplementary Table S1. By comparing Table 4 with
Supplementary Table S6, it is possible to observe the effects of
gradually introducing more data augmentation to the DTI-fMRI
dataset. When only 100 samples was added (majority class taking
up 74% of the dataset), model performance did not change
much as compared to the original baseline (with no augmented
data, majority class takes up 93% of the dataset). But when the
imbalance was further reduced by adding 200 samples (reducing
the imbalance to 61%), model performance started to improve,
but still significantly poorer than the performance obtained
when all 339 samples were added to the dataset (resolving
the imbalance, 53.3%). Since the best model performance was
obtained when the data imbalance is resolved, it is evident that
data augmentation is another key aspect needed to perform
disease classification on the PPMI dataset successfully.

We have used the CycleGAN architecture for producing
additional scans to be augmented to the original dataset.
The main motivation of using CycleGAN is to overcome
the limitations of the existing approaches for tackling data
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FIGURE 4 | Attention matrices from JOIN-GCLA for the omics combination of (A) SNP-miRNA, (B) SNP-miRNA-sncRNA, (C) Met-SNP-sncRNA (D)

Met-SNP-miRNA-sncRNA.

imbalance. As seen in Table 4 (without augmentation), class
weighting applied to the loss function did not improve model
performance at all, likely due to the extreme imbalance in
the dataset. Undersampling is not a viable approach when
dealing with small dataset, as demonstrated on an experiment
in Supplementary Table S7 where the DTI dataset was
undersampled—while the imbalance was well addressed (as
seen in Supplementary Table S1), model performance did not
improve significantly. On the other hand, oversampling
on the DTI-fMRI dataset did help to improve model
performance to a level similar to what was obtained from
the CycleGAN-augmented dataset (comparing Table 4 with
Supplementary Table S8).

While both oversampling and CycleGAN generates data
that can be attributed to a specific subject (hence making
it possible to link it to a genetic dataset, unlike synthetic
data generation algorithms such as SMOTE and ADASYN),
oversampling merely duplicates the existing dataset. CycleGAN-
generated data are not just another repeated data sample in
the existing dataset. However, when compared to the results
obtained from oversampling, the marginal benefit introduced by
the use of CycleGAN might not always justify the additional
complexity added. Below, we present details on the data

produced by CycleGAN to propose possible reasons for
these observations.

Examples of the data generated by the CycleGAN architecture
are shown in Supplementary Figure S1. Although generated
scans have low mean squared errors (MSE) (approximately
0.03 when compared to actual functional connectivity matrices
from the same pair ; approximately 0.5 for DTI), they do
not have the same variability. On examining all the other
generated matrices, it is evident that the synthetic connectomes
have very slight differences and seem to capture patterns that
exist across most scans, while missing out on more subtle
variations that exist in functional connectivity matrices. These
variations are visually stark (for fMRI), but it might not have
been captured by the GAN as the overall numerical significance
is not great (since the MSE achieved is rather low already).
This issue is likely to be alleviated with the introduction of
more data (Karras et al., 2020). Additionally, several architecture
changes to the original CycleGAN were attempted to improve
the variability of data generated, including adding Edge-to-edge
(E2E) layers from Kawahara et al. (2017) as the first layer of
the generator and discriminator and reducing the number of
residual blocks (from 9 to 3) and number of filters (from 256
to 32) in the CycleGAN architecture. However, from the results
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in Supplementary Table S9, the best model was still the original
CycleGAN architecture.

In this study, data augmentation was limited to healthy
controls as the goal was to resolve the data imbalance in the PPMI
dataset. Having demonstrated the feasibility of this approach,
further studies could explore the use of CycleGAN to generate
connectomes for various neurodegenerative disorders. Using
GANs to generate connectome datasets is at a nascent stage:
a recent work used GAN to generate functional connectivity
matrices for schizophrenia and major depressive disorder
patients (Zhao et al., 2020). Our work has extended the
application of GANs on connectome datasets to multi-modal
settings and the results demonstrated that using relatively large
connectome datasets (∼1,000 samples) to train CycleGAN is
still not yet sufficient to significantly outperform oversampling
as rather similar matrices are produced by the GAN. However,
since CycleGAN is capable of learning from unpaired data, this
is not an unsurmontable problem and future studies should
consider using more data when training CycleGAN architectures
to augment multi-modal connectome datasets. If obtaining more
data is not feasible, oversampling presents a limited but effective
approach for data augmentation.

5. CONCLUSION

We have proposed a new architecture, JOIN-GCLA, which
is able to model multi-modal imaging data and multi-omics
datasets simultaneously. Through the experiments, it has been
demonstrated that the best performing data combination utilizes
both multi-modal imaging data (DTI, fMRI) and multi-omics
datasets (SNP, DNA Methylation and sncRNA). While several
combinations of imaging and omics data led to very high model
performance, this must be seen in the light of the small test
dataset size available in the PPMI dataset. Our experiments
on the PPMI dataset showed that JOIN-GCLA can work
well, but this should be further tested on larger datasets that
have both multi-modal imaging data and multi-omics datasets.
Examples of such sources of data would be the Alzheimer’s
Disease Neuroimaging Initiative, UK Biobank and also future
versions of PPMI, which has recently expanded its data collection
with a few thousand more data samples to be expected by
year 2023.

One possible area of future work is to perform decoding.
Given a trained neural network model, it has been demonstrated
that saliency scores can be computed to identify important
features that contributed most to the model’s decision (Gupta
et al., 2021). While such an approach cannot be simply applied
to JOIN-GCLA due to the attention layer, novel methods could
be developed to weigh the saliency scores by the attention scores
for each view. This could be explored as a follow-up work after
this paper.

Another direction for further research on combining
neuroimaging and omics datasets is the use of transformers.
While originally proposed for natural language processing
(Vaswani et al., 2017), it has been demonstrated to work on
images too (Dosovitskiy et al., 2020), motivating recent works on
using transformer-based architectures for multi-modal settings
(Hu and Singh, 2021; Kim et al., 2021). One limitation of such

models is their reliance on pre-training from large datasets
(Dosovitskiy et al., 2020). Modifying transformers to work on
small datasets is still an open area of research (Lee et al., 2021).
This could explain the paucity of works on using transformers
for neuroimaging datasets (especially on connectivity matrices).
Recent works on the use of transformers utilizes raw fMRI signals
(Nguyen et al., 2020; Malkiel et al., 2021). Notably, one of the key
findings in Malkiel et al. (2021) is the need for pre-training for
best model performance. Addressing this issue for connectome
datasets could be possible with the use of larger datasets such as
UK Biobank.

While this paper focuses on PD classification using multi-
modal imaging data (DTI, fMRI) and multi-omics data (miRNA,
DNA methylation, RNAseq, sncRNA, SNP), JOIN-GCLA can be
easily extended to other diseases, omics modalities and imaging
modalities too. For instance, diseases such as ADHD could
benefit from the use of multi-modal imaging and multi-omics
data (Klein et al., 2017) and the problem of limited multi-modal
data could be addressed by using CycleGAN to generate more
data. However, our results suggest that such approaches will need
large amounts of data (more than 1,000 data points) to train the
CycleGAN architecture.

In sum, the JOIN-GCLA architecture makes it possible
to analyse multi-modal imaging data along with multi-
omics datasets. Our proposed architecture alleviates the
issue of high dimensionality of imaging and omics data
by incorporating them in graph convolution layers in the
form of PSG and POG, respectively. This enables multi-scale
analysis, incorporating both macro-scale imaging data with
micro-scale genomics analysis, to be conducted. The greater
interpretability provided by JOIN-GCLA’s attention matrices
gives greater insight into the relative importance of the omics
datasets taken into consideration, potentially revealing more
novel insights for complex neurodegenerative diseases in
future studies.
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Gifted children and normal controls can be distinguished by analyzing the structural

connectivity (SC) extracted from MRI data. Previous studies have improved classification

accuracy by extracting several features of the brain regions. However, the limited size

of the database may lead to degradation when training deep neural networks as

classification models. To this end, we propose to use a data augmentation method

by adding artificial samples generated using graph empirical mode decomposition

(GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode

functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial

samples. After that, we use the original training samples and the new artificial samples

to enlarge the training set. To evaluate the proposed method, we use a deep neural

network architecture called BrainNetCNN to classify the SCs of MRI data with and

without data augmentation. The results show that the data augmentation with GEMD

can improve the average classification performance from 55.7 to 78%, while we get a

state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our

results demonstrate that the proposed GEMD augmentation method can effectively

increase the limited number of samples in the gifted children dataset, improving the

classification accuracy. We also found that the classification accuracy is improved when

specific features extracted from brain regions are used, achieving 93.1% for some feature

selection methods.

Keywords: GEMD, MRI, gifted children, structural connectivity, BrainNetCNN

INTRODUCTION

Intelligence can be seen as the ability to recognize and understand reality and use knowledge and
experience to solve problems such as memory, observation, imagination, thinking, and judgment.
Gifted children are regarded to have higher intelligence and perform better in attention, language,
mathematics, verbal working memory, shifting, and social problem-solving (Bucaille et al., 2022).
At the same time, gifted children demonstrate high working memory capacity and more effective
executive attention (Aubry et al., 2021). They also have significant differences in cognitive flexibility
function and problem-solving and reasoning (Rocha et al., 2020).
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Gifted children have higher intelligence and learn faster
than others, probably due to differences in neurophysiology
(Gross, 2006). Neurological differences mean that gifted children
may experience neurodevelopmental trajectories different from
normal children, leading to a greater connection of neuronal
pathways (Navas-Sánchez et al., 2014). Gifted children have
larger subcortical structures and more robust white matter
microstructural organization between those structures in regions
associated with explicit memory (Kuhn et al., 2021). They are
also characterized by highly developed functional interactions
between the right hemisphere and excellent cognitive control
of the prefrontal cortex, enhanced frontoparietal cortex, and
posterior parietal cortex (Wei et al., 2020). Ma et al. found
that gifted children have network topological properties of high
global efficiency and high clustering with a low wiring cost and a
higher level of local connection density (Ma et al., 2017). Gifted
children’s structural brain network has a more integrated and
versatile topology than normal children (Solé-Casals et al., 2019).

Based on previous work on the brain neuroscience of gifted
children, we believe that it is significant to identify gifted children
through the structure of their brains. In the past decades, many
neuroscientists have tried to understand the brain mechanisms
and proposed many types of neuroimaging techniques, such
as magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), and diffusion tensor imaging. In
recent years, deep learning algorithms have achieved good
results in processing these types of signals. Abdelaziz Ismael
et al. proposed an enhanced deep learning approach, residual
networks, for brain cancer MRI images classification and
achieved 99% accuracy (Abdelaziz Ismael et al., 2020). Sarraf et al.
used convolutional neural network (CNN) architectures Lenet-
5 and GoogleNet to classify fMRI data of Alzheimer’s disease
subjects and normal controls, and the accuracy of the test dataset
reached 96.85% (Sarraf and Tofighi, 2016). The BrainNetCNN
is proposed to predict clinical neurodevelopmental outcomes by
brain networks (Kawahara et al., 2017). It utilizes structural brain
networks’ topological locality to create edge-to-edge (E2E), edge-
to-node (E2N), and node-to-graph (N2G) convolutional filters,
which makes it perform well on human brain data classification.
Leonardsen et al. proposed that neural network is able to identify
subject brain from its MRI (Leonardsen et al., 2022).

The deep learning technology is notable for its impressive
performance and generalization capability, but the number of
effective samples in the medical imaging dataset is usually
small, leading to performance degradation. The training model
needs large amount of data to avoid overfitting (Caiafa et al.,
2020). However, obtaining enough MRI data is not easy. The
acquisition and preprocessing of brain data are more difficult
than image and voice data, for example. It is difficult to find
gifted children in our daily life. The number of gifted children
is small, especially those whose IQ test score is higher than
140. In this work, we use a sample of 29 children, from which
the MRI was obtained. The brain was parcellated into 308
regions and from each region 7 morphometric features were
extracted. Hence, we have a total of 2,156 features per subject (7
morphological features by 308 brain regions). Training a model
in such a small and high-dimensionalMRI dataset is complicated.

Therefore, we focus on MRI data augmentation to improve
model training. Data augmentation has proven to be useful in
MRI, improving the accuracy of schizophrenia classification by
5% (7–8% relative improvement using augmentation) (Ulloa
et al., 2015). Also, Nguyen et al. proposed a data augmentation
method synthesizing a new fMRI image by performing a T1-
based coregistration to another subject’s brain in native space.
This method was tested on antidepressant treatment response
fMRI and demonstrated a 26% improvement in predicting
response using augmented images (Nguyen et al., 2020). Previous
work proves that increasing the amount of neuroimaging
data through an appropriate data augmentation method can
significantly improve the accuracy of deep learning classification.

In our MRI dataset, we propose to use a data decomposition
method, graph empirical mode decomposition (GEMD)
(Tremblay et al., 2014). GEMD is an adaptation to graph signals
of the well-known empirical modal decomposition (EMD)
(Huang et al., 1998). EMD has some variants, such as GEMD,
masking EMD, ensemble-EMD (EEMD), and multivariate EMD
(MEMD). Masking EMD, EEMD, and MEMD can primarily
alleviate the mode mixing problem, and masking EMD and
MEMD can perform spatiotemporal reconstruction of active
sources (Muñoz-Gutiérrez et al., 2018). GEMD improves
many aspects of the critical points of EMD, namely, extrema,
interpolation, and stopping criterion (Tremblay et al., 2014).
Because a parcellation of 308 brain regions is used, which
can help to build a brain region connection graph, GEMD
is the best choice for our work, as we will base our data
augmentation on the decomposition-recombination strategy
first presented in Dinarès-Ferran et al. (2018) for EEG signals. To
our knowledge, this is the first time this technique has been used
on MRI data. To compare the results of the proposed method,
we also generate artificial samples through a more classical
approach, the synthetic minority over-sampling technique
(SMOTE) (Chawla et al., 2002).

In this work, the BrainNetCNN is used as a deep learning
classifier. The main motivation for using a deep learning method
is that the MRI data can then be fed directly into the model
without the need for any feature selection method. This is an
important aspect to keep in mind as feature selection methods
are usually very database-dependent, and the results could drop
if the database is changed. We train the BrainNetCNN for
the classification task, showing that a well-trained classification
model can increase the classification accuracy from 55.7 to 78%
when using artificial data. Moreover, in Zhang et al. (2021), a
hybrid selection method of morphological features and brain
regions on the same gifted children dataset was derived. They
used a completion method, simultaneous tensor decomposition,
and completion (STDC), for outlier correction. After tensor
completion, several feature selection methods were applied to the
training set to explore which morphometric features and brain
regions could perform better in the classification step. Based on
their methodology, we used GEMD to generate artificial data on
Zhang et al.’s work to achieve an accuracy of 93.1% on the F-score
(FS), combined feature selection, and rank FS method.

The rest of the article is organized as follows. the materials and
methods and the details of the experiments are introduced. Then,
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the experimental results are discussed, followed bydiscussion.
Finally, the conclusions are summarized.

MATERIALS AND METHODS

The overall experimental process is shown in Figure 1. In this
section, we introduce the six parts in order. The details of the data
are first described. Then, we show the brain region atlas and the
morphometric features. After that, the basic algorithm principle
of GEMD will be provided. Then, the data augmentation with
GEMD is introduced. The following is the structural connectivity
(SC) analysis, which converts MRI images into a correlation
matrix. Finally, we introduce a deep learning network, the
BrainNetCNN, as a classifier.

Gifted Children MRI Dataset
The MRI dataset of gifted children contains 29 healthy, right-
handed male subjects without neurological diseases (Solé-Casals
et al., 2019). We refer to this dataset as the UVic-gifted
children dataset (UVic-GC dataset). There is no significant age
difference between the two groups. Gifted children have a high
IQ and outstanding performance in various tasks such as spatial,
numerical, reasoning, verbal, and memory (Gras et al., 2010).
The criteria for gifted group included having an IQ in the very
superior range (≥140). Gifted children also had a performance
above the 90th percentile in three of the following aptitudes,
namely, spatial, numerical, abstract reasoning, verbal reasoning,
and memory. More details on the dataset can be found in
Solé-Casals et al. (2019). Table 1 summarizes the details of
the dataset. Using similar procedure and scanning parameters,
all participants underwent examinations in a 3 T MRI scanner
(Magnetom Trio Tim, Siemens Medical Systems, Germany). The
raw (anonymized) MRI data are available in the OpenNeuro
repository (https://openneuro.org/datasets/ds001988).

Brain Region Atlas and Morphometric
Features
In our study, the brain is divided into 308 cortical regions
following previous work (Romero-Garcia et al., 2012). The
parcellation atlas is based on the Desikan-Killiany Atlas (68
cortical areas). Each area defined in the Desikan-Killiany
atlas is subdivided into spatially contiguous areas through a
backtracking algorithm available in FreeSurfer (Desikan et al.,
2006). The size of each area is approximately equal to 500 mm2.

The original feature matrix includes seven morphological
features measured in each of the 308 brain regions. Figure 2
shows the morphological features such as gray matter volume,
cortical thickness, surface area, intrinsic curvature, mean
curvature, curvature index, and fold index.

Graph Empirical Mode Decomposition
Empirical modal decomposition can decompose a signal into a
set of intrinsic mode functions (IMFs), each covering different
frequency bands by interpolating the extremes in the time series
(Huang et al., 1998). The IMFs have two characteristics, namely,
(1) the number of its zero crossings must be equal or differ up
to one compared to its number of extrema and (2) IMFs’ upper

and lower envelopes must be symmetric to zero. When all the
IMFs of the original signal are extracted, the iterative process
is terminated. GEMD is an adaptation of the classical EMD for
graph signals (Tremblay et al., 2014). It improves many aspects
of the critical points of EMD, namely, extrema, interpolation, and
stopping criterion.

For the graph creation, the set of N regions is used as nodes
for the graph. A weighted graph parameter δ is used to define
edges in the graph. Only pairs of regions (i, j) at a distance di,j,
shorter than δ, are connected by an edge, with weight wi,j =
exp(−d2i,j/2δ

2). The distance di,j is the Euclidean distance in the
features space. In that case, we get a graph G = (N, E), where E
is the set of edges. The adjacency matrix A, which contains all the
weights wi,j connecting the nodes, is also needed. We use the 3D
coordinate points of 308 brain regions to calculate the adjacency
matrix for the 308 brain regions graph.

For the definition of local extrema, a node n will be a local
minimum (or maximum) if for all its neighbors in G, x (n) <

x(m) [or x (n) > x(m), where x(n) and x(m) represent the value
of one of the features in the nth and mth brain regions]. Once
the extremes have been obtained, the graph signal is interpolated
to get the lower and upper graph envelopes needed to derive
the IMFs.

To maintain the hypothesis-free nature of the classical EMD
method, interpolation is regarded as a discrete partial differential
equation on the graph (Grady and Schwartz, 2003). As the
envelope is a slowly changing component, the interpolation

signal s needs to minimize the total graph change, s
′
Ls, where

L is the graph Laplacian matrix under the constraint that the
graph signal value of the known vertex remains unchanged. Let
K denote the set of vertices of the known graph signal, and U
denote the set of unknown vertices. Then, to calculate the new,
interpolated, graphical signals, we need to solve the following

equation minimize s
′
Ls subject to:

s (K) = x(K) (1)

Through simple rearrangement of vertices, s can be rewritten

as s
′
= [s

′

K s′U] in its equivalent vector expression, where sK
and sU are the vector representations of s (K) and s (U), and the

rearranged Laplacian matrix L =

[

LK R
R′ LU

]

. Finally, the graph

interpolation is a Dirichlet problem on the graph, and its solution
depends on the following linear equation (Kalaganis et al., 2020):

LUSU = −Rsk (2)

We refer the reader to Grady and Schwartz (2003) and Kalaganis
et al. (2020) for a detailed explanation of the graph interpolation
method. With the mentioned elements, the sifting process can be
modified easily. We set the parameter of the stopping criterion,
which was defined in Tremblay’s work (Tremblay et al., 2014), as
follows: stop the loop (steps 4–8 in the following algorithm) as
soon as the energy of the average envelope z (computed in the
step 6) is lower than the energy of the analyzed signal xi divided
by 1,000.

After defining the graph extremum and interpolation process,
the classic EMD algorithm can easily be extended to graph

Frontiers in Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 866735114

https://openneuro.org/datasets/ds001988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. GEMD Data Argumentation for Gifted Children

FIGURE 1 | Overview of the process for the data augmentation of the gifted children MRI dataset using GEMD. From left to right, the seven curves representing the

morphometric features in the 308 regions of the brain, for each subject (original MRI data). Then, the data are split into training and test sets; the training set is

augmented using GEMD; the structural connectivity of the data is calculated and used to feed the deep learning model. Finally, the structural connectivity is also

derived for the samples of the test set to demonstrate the capability of the classifier.

TABLE 1 | Membership information of gifted children MRI dataset.

Group Gifted group Control group

Average IQ 148.80 ± 2.93 122.71 ± 3.89

Average age 12.03 ± 0.54 12.53 ± 0.77

Sample size 15 14

signals. The process of data decomposition with GEMD is shown
in Figure 3. The GEMD algorithm (Tremblay et al., 2014) is
defined as follows:

• Step 1: Create the adjacency matrix A for the graph G;
• Step 2: Initializem = xi ;
• Step 3: While m does not meet the stopping criterion, repeat

step 4 to step 8;
• Step 4: Detect the local extreme ofm ;
• Step 5: Interpolate the upper and lower extremes of m and get

the envelopemaxand emin ;
• Step 6: Calculate the average envelope z = emin+ emax

2 ;
• Step 7: Subtract the average envelope from the signal: m =

m− z;
• Step 8: Set di+1 = m and xi+1 = xi − m;
• Step 9: Ifmmeets the stopping criteria: stop the decomposition

and terminate, return stored IMFs, and get [Mathtype-mtef1-
eqn-3.mtf].

Data Augmentation
The MRI dataset contains P = 29 subjects. Therefore, the
training set can be regarded as a three-dimensional tensor T ∈
RBxFxP (B: number of brain regions; F: number of features; P:
number of subjects). If the number of subjects in the training set
is too small, the model will tend to be overfitted. To overcome
the overfitting problem in the UVic-GC dataset, we propose to

increase the training set through GEMD. The data augmentation
procedure is based on a decomposition-recombination strategy,
originally proposed in Dinarès-Ferran et al. (2018), and first
used in a deep learning context in Zhang et al. (2019). The data
augmentation process is shown in Figure 4. This method has the
following steps:

• Step 1: Data decomposition.

• Create the adjacency matrix A for the graph G. In our work,
A is obtained by calculating the Euclidean distance among the
308 regions.

• Organize the MRI data of all subjects and get the concatenated
tensor T ∈ RBxFxP.

• Decompose T with GEMD and get TIMF ∈ RM×B×F×P, where
M is the total number of IMFs (M = 5 in our experiments).

• Step 2: Artificial data generation.

• Randomly select M subjects from one of the groups (gifted
group or control group).

• Take one IMF from each subject so that you end up with one
IMF from each category (IMF1 to IMF5), i.e., each subject
contributes with one IMF to create the new artificial data. The
artificial data of the nth feature is the sum of theM IMFs.

Structural Connectivity Analysis
After creating artificial samples, we use the original subjects and
the artificial to perform the classification. For that purpose, we
calculate the SC between features in all the regions. The SC
matrix (one matrix per sample, i.e., original subjects and artificial
subjects created via GEMD) will be used later as the input data
for the deep learning classification system. SC represents the
data correlation between two brain regions (Qi et al., 2019).
Pearson’s correlation or coherence is usually used to compute the
correlation. We use Pearson’s correlation and z-score to obtain
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FIGURE 2 | Morphometric features extraction pipeline.

the SC in this work.We correlate the seven values (morphometric
features) of one region with the seven values (morphometric
features) of another region. We perform these correlations for
all possible pairs, obtaining a 308 × 308 matrix per subject.
Assuming two brain region data x and y, Pearson’s correlation
(Kotu and Deshpande, 2019) between x and y can be expressed
as follows:

c
(

x, y
)

=
Sxy

√

SxxSyy
(3)

where Sxy is the covariance of x and y, which is defined as,

Sxy =

n
∑

i=1

(

xi − x
) (

yi − y
)

(4)

Sxx and Syy can be calculated as the variance of x and y,
respectively. After we get the Pearson’s correlation ofMRI data, z-
score is used to standardize it. Finally, a three-dimensional tensor
of dimensions 29 × 308 × 308 is obtained.

This procedure was introduced by Seidlitz et al. (2018)
to estimate the inter-regional correlation of multiple MRI
features in a single subject instead of estimating the inter-
regional correlation of a single feature measured in multiple
subjects (which is done with the structural covariance analysis).
Therefore, we end up with an SC matrix per subject.

Neural Network Classifier
As the BrainNetCNN (Kawahara et al., 2017) outperforms lots of
othermethods on structural brain networks datasets, we choose it
as a neural network classifier in our experiments. There are three
kinds of convolutional filters in BrainNetCNN, namely, E2E,
E2N, and N2G filters. They leverage the topological locality of
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FIGURE 3 | The progress of data decomposition with GEMD. GEMD can decompose feature series (different color lines on the left) into IMFs simultaneously. Here, we

use seven morphometric features from MRI data as a decomposition example. Every feature is decomposed into four or five IMFs (different color lines on the right). If

only four IMFs are decomposed from raw data, zero-padding will be used to have a total of five IMFs in all the decompositions, so that the data augmentation can

proceed successfully.

FIGURE 4 | The generation of artificial MRI data. Here, we generate the artificial data in feature F as an example. We randomly select M subjects from the original MRI

data. Then, we obtain the IMFs, which are decomposed with GEMD. The IMFs decomposed form feature F of the M randomly selected subjects are recombined.

Then, they are added up to obtain the artificial data of the feature F.

structural brain networks. E2E filter convolves the brain network
adjacency matrix and weights edges of adjacent brain regions.
E2N filter assigns each brain region a weighted sum of its edges.
N2G assigns a single response based on all the weighted nodes.

These three filters consist of convolution kernels: kernel c1 ∈
R1×D, c2 ∈ RD×1. The kernel of the E2E filter is cE2E = c1 + c2 ∈
RD×D. D is the number of nodes in a graph, which corresponds
to the number of brain regions in this work. The kernels of the
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FIGURE 5 | Structure of the BrainNetCNN network.

FIGURE 6 | The mean of accuracy and standard deviation with GEMD augmentation for the different number of artificial samples.

E2N filter and N2G filter are cE2N = c1, cN2G = c2. In our
experiment, the structure of the BrainNetCNN can be simply
expressed as Input (308 × 308 SC matrix) -> E2E (4 channels)

-> relu -> E2N (16 channels) -> relu -> N2G (32 channels)
-> dense1 (16 channels) -> dense2 (1 channels). This structure
is shown in Figure 5. We use the adaptive moment estimation
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FIGURE 7 | Best accuracy using GEMD, SMOTE, and non-augmented case in 10 independent sessions.

FIGURE 8 | The data augmentation process on the UVic-GC dataset with GEMD and feature selection experiment.

(Adam) optimizer, with learning rate lr = 0.001, β1 = 0.9, and
β2 = 0.999. The network is trained using 300 epochs, and the
batch size is 32. Considering the size of the dataset, we applied
10-fold cross-validation and repeated the experiment 10 times to
get the average accuracy.

RESULTS

GEMD Performance on BrainNetCNN
We want to prove that the data augmentation with GEMD
can improve the performance of the BrainNetCNN in the
classification of the UVic-GC dataset. Therefore, we randomly
selected 14 subjects (7 from the gifted group and 7 from the
control group) as the original MRI data for the training set. The

training set also contains artificial MRI data generated through
GEMD from the original data of this training set. The rest of the
subjects are used as the test set, containing 15 subjects.

Aiming to study how the number of artificial subjects
affects the performance in the training set, we increase the
number of artificial samples from 0 to 400 for each group.
For each session, the original MRI data are split into the
training set and test set. The training set is used to generate
the required number of artificial samples. The model is
then trained using the original training set and the artificial
samples generated from it, and finally the model is tested
with the remaining test set. This process is repeated 10
times for each number of artificial samples to get the final
average accuracy.
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FIGURE 9 | The KNN (left) and SVM (right) accuracies obtained depending on the feature selection method used for the non-augmentation case and augmentation

with GEMD case.

FIGURE 10 | Feature map of the artificial gifted group (artificial gig), artificial control group (artificial cog), original gifted group (gig), and original control group (cog)

plotted with UMAP.

In Figure 6, we show the classification accuracy for a different

number of artificial samples. As can be seen, the performance

of the BrainNetCNN can be improved when adding artificial
samples, from 10 artificial samples to 400 artificial samples. The

improvement increases when the number of artificial samples
increases. Fitting a linear regression model gives us an idea of

the expected improvement when adding artificial samples. The
model shows a positive trend of gradient x1 = 0.00023035,
with a p-value < 0.01. This means that we should expect a
2.3% increase in the accuracy per 100 artificial samples added.
The BrainNetCNN has the best mean accuracy performance at
66.7% when the number of artificial samples is 350, while without
GEMD, the mean accuracy is only 56%. This is an increase of
10.7%, slightly better than the 8% predicted by the linear model.

The SMOTE is also used. The results are compared and
depicted in Figure 7, which presents the best accuracy with
GEMD, SMOTE, and non-augmented cases (baseline) in 10

different sessions. The accuracy is always improved, with respect
of the non-augmented case, when GEMD and SMOTE are used.
This emphasizes the importance of having more data to train the
model. Specifically, GEMD shows higher classification accuracy
than SMOTE in sessions 2, 3, 5, 6, and 8; while SMOTE has
better performance in sessions 1, 4, and 10. In sessions 7 and 9,
the accuracies of both GEMD and SMOTE methods are almost
the same. In addition, a classification performance of 93.3% is
obtained in session 2 by using GEMD, which is the best result
obtained with this database so far. The average of the 10 sessions’
best accuracy using GEMD achieves 78%, which is better than
using SMOTE (74.7%) and the baseline case (55.7%).

GEMD Performance on Feature Selection
Methods
In this section, we evaluate the performance of the GEMD using
the procedures described in Zhang et al. (2021). In summary,
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Zhang et al. proposed an outlier correction on the morphometric
features based on the STDC algorithm (Chen et al., 2013) and
explored several feature selection methods to classify MRI data
from controls and gifted groups. These methods were applied to
the UVic-GC dataset with outstanding performance.

According to Zhang et al. (2021), the NONE feature selection
method used all the features in the raw feature matrix. The
VON feature selection method used only the regions belonging
to types 2 and 3 of the von Economo atlas (van den Heuvel et al.,
2015), which corresponds to the associative areas of the brain.
Choosing the top highest features selected with a threshold, from
all the morphometric features and brain regions, was defined
as the FS feature selection method. The rank F-score (RFS)
method is a variation of the previous one in which, for each
region, the FS values are sorted by descending order, where the
morphometric features with the highest FS value are the selected
ones. Finally, the combination of VON and FS will lead the VFS
feature selection method, in which only type 2 and 3 regions
are considered when calculating the FS value for morphometric
features. Two traditional machine learning methods, KNN and
SVM, were used as classifiers (Zhang et al., 2021), with leave-one-
out as a cross-validation strategy.

The process of this experiment is shown in Figure 8. First, we
use the outlier completionmethod STDC to compute the missing
entries from the estimated latent factors. Then, we enlarge the
training set of original MRI data by using GEMD. After that, we
use feature selection methods NONE, VON, FS, VFS, and RFS to
select different features. Finally, the model is trained by KNN and
SVM for classification.

From Figure 9, we observe that using data augmentation with
GEMD generally improves the performance of feature selection
methods. For the SVN case (Figure 9, right), the GEMDmethod
always improves the accuracy regardless of the feature selection
method, while for the KNN case (Figure 9, left) only in two cases
the accuracy is lower using artificial data. Note that for both KNN
and SVM the classification accuracy reaches 93% using FS and
VFS, which is the best result with this database, to the best of
our knowledge.

DISCUSSION

In our study, we have used GEMD to enlarge the UVic-GC
dataset. The motivation for exploring a data augmentation
strategy is 2 fold. First, the UVic-GC dataset is small. Second,
there are many parameters in the deep neural network that need
to be learned from the data. Therefore, overfitting could appear
due to insufficient amount of data.

We propose the GEMD augmentation method to solve the
problems mentioned above in this work. We analyze the GEMD
augmentation result in three aspects, namely, the influence of the
number of artificial subjects, the classification accuracy between
non-augmentation and augmentation, and the feature selection
method used.

It can be seen from Figure 6 that the accuracy shows an
upward trend with the increase in the amount of artificial data.
When the number of artificial data reaches 350, the classification
accuracy achieves the maximum. Note that the result may vary
considerably from experiment to experiment. This is due to the

non-convergence of the BrainNetCNN and the random factor
added when selecting the data for each experiment. Prettier but
unfair results could be shown by discarding the non-convergent
experiments, for example, but we show the full set of results to
point out these potential problems.

To clearly illustrate the distribution of the artificial data
generated by GEMD, Figure 10 depicts the original SC matrices,
named the original gifted group (gig) and original control group
(cog), and 20 artificial SC matrices of the artificial gifted group
(artificial gig) and artificial control group (artificial cog). This
figure uses Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) and Distributed Stochastic
Neighborhood Embedding (van der Maaten and Hinton, 2008)
for dimensionality reduction. It can be seen that the artificial
data of each group are projected around the original data of the
corresponding group, which is a way of showing that the artificial
data are meaningful, i.e., the data generated by GEMD are
consistent with the distribution of the original data. Furthermore,
the two classes (control and gifted) in the two figures can be
accurately separated. There is no obvious overlap between the
two groups, explaining why the linear classifiers (SVM and KNN)
combined with feature selection methods perform very well.

Even if our proposed method can augment the dataset so
that the artificial data help improve the classification accuracy,
we must highlight that the results of the BrainNetCNN are not
stable. This is due to two main factors, the non-convergence of
the model and the overfitting that appears despite the amount
of artificial data generated. This is the main drawback of the
proposed method. We are now investigating it and other possible
neural network models with fewer parameters to improve the
classification results when using a small number of original
MRI subjects in the training dataset and artificial data generated
with them. Figure 10 shows that the artificial data created using
the GEMD method are consistent with the original (real) data,
which encourages us to use this method and improve the
classification model.

CONCLUSIONS

Medical data such as MRI are difficult to obtain, and gifted
children are rare in our society. Identifying gifted children from
a small set of MRI data is not easy. At the same time, deep
neural networks require a large amount of data to improve their
performance. They cannot exert their full performance when the
dataset is too small. In that case, our work provides a feasible
solution by data augmentation. We use the UVic-GC dataset and
artificial data generated by GEMD to train the BrainNetCNN
neural network. This avoids using a feature selection method as
we feed the model directly with the SC data. The results show
that GEMDhas a significant effect that improves the performance
of the classifier. Furthermore, the GEMD data augmentation
method can be extended to other similar small datasets. Our
future work will focus on the application of GEMD on multisite
MRI data, such as the Human Connectome Project data. Due
to different scanner settings, parameters, and operators, the
distribution of MRI data collected in various regions is different.
We expect to be able to adjust the distribution of other datasets by
domain adaptation. In that case, we can predict the classification
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results of multiple MRI datasets using the trained model after
augmentation with GEMD.
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Cognitive tasks induce fluctuations in the functional connectivity between brain regions

which constitute cognitive networks in the human brain. Although several cognitive

networks have been identified, consensus still cannot be achieved on the precise borders

and distribution of involved brain regions for each network, due to the multifarious use

of diverse brain atlases in different studies. To address the problem, the current study

proposed a novel approach to generate a fused cognitive network with the optimal

performance in discriminating cognitive states by using graph learning, following the

synthesization of one cognitive network defined by different brain atlases, and the

construction of a hierarchical framework comprised of one main version and other

supplementary versions of the specific cognitive network. As a result, the proposed

method demonstrated better results compared with other machine learning methods for

recognizing cognitive states, which was revealed by analyzing an fMRI dataset related to

themental arithmetic task. Our findings suggest that the fused cognitive network provides

the potential to develop new mind decoding approaches.

Keywords: systematic fusion, brain atlas, cognitive network, fronto-parietal network, fMRI

1. INTRODUCTION

Cognitive functions of the human brain rely on neuronal activities, as well as the intra-neural
networks and inter-neural networks. Modern neuroimaging technologies, such as functional
magnetic resonance imaging (fMRI), have provided effective approaches to revealing the patterns
of the neural network, also known as cognitive network, during the cognitive processes. Being a
vital control-type cognitive network, the fronto-parietal network (FPN) occupying brain regions
across the lateral prefrontal cortex to the posterior parietal cortex, plays a critical role in imposing
cognitive control on a variety of tasks by initiating and deploying executive control abilities. As
a result, it has always been in a flexible state full of dynamic changes while other processing-
type cognitive networks are deemed to be more comparatively modular and static (Dosenbach
et al., 2008). Previous studies on structural and functional neuroimaging have reached a general
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consensus that the FPN is responsible for intelligence, integrated
with the cognitive functions including perception, attention,
memory, language, and planning (Colom et al., 2010). Many
fMRI and PET studies on attention, working memory, and
episodic memory retrieval have reported the frequent detection
of the FPN’s activity. Moreover, the activation of the FPN was
observed in some fMRI studies for conscious visual perception
(Naghavi and Nyberg, 2005), and the FPN in the Theta band was
found to take a vital role in a mentally demanding arithmetic task
(Mizuhara and Yamaguchi, 2007). Consequently, the exploration
of the FPN can help to provide amore comprehensive and precise
understanding of the intelligence and cognitive abilities of the
human brain.

Given that the human brain is a precisely interconnected
system network, graph theory has increasingly proved to be a
popular tool for the analysis of human MRI data (Fornito, 2016).
By adopting graph analysis, it is found that the local and global
integrity of the FPN, the cingulo-opercular network (CON), and
other control-type cognitive networks, are significantly positively
associated with cognitive abilities. It suggests that greater network
efficiency supports better cognitive ability, evidenced by the
similar performance in healthy participants and patients with
schizophrenia (Sheffield et al., 2015). Under the resting state, the
functional connectivity between the critical regions of the FPN is
identified to be linked to the cognitive performance of patients
with glioma as well as their cognitive outcome after the surgery
treatment (Lang et al., 2017). The FPN and its subregions can
change the functional connectivity with nodes of other cognitive
networks on the different goals of cognitive tasks. In addition,
the functional connectivity pattern of the FPN can indicate
its involvement in specific tasks, and facilitate the novel tasks’
learning in the form of a transferable code (Zanto and Gazzaley,
2013). Therefore, the FPN can be regarded as a defined control
network, whose partial function is to interact with and change
other cognitive networks (Marek and Dosenbach, 2018).

The cognitive networks in the human brain are often defined
on the basis of anatomical or functional brain atlases. Automated
Anatomical Labeling (AAL) is a commonly used anatomy-based
structural brain atlas (Tzourio-Mazoyer et al., 2002). On the
basis of AAL, the FPN and its default mode network (DMN)
can be structurally defined, where the FPN has six regions in
the frontal lobe and four regions in the parietal lobe (Oliver
et al., 2019). The FPN can also be defined with some functional
brain atlases. For instance, Dosenbach-160 (Dosenbach et al.,
2010) is a human brain atlas consisting of 160 regions of
interest (ROIs), where each ROI is uniquely assigned to one
of its six cognitive networks. Power-264 (Power et al., 2011)
is a human brain atlas composed of 264 ROIs, of which 236
ROIs are uniquely assigned to the given part of its 13 cognitive
networks yet the remaining 28 ROIs belong to which part of the
cognitive networks remains uncertain. There are 21 ROIs and 28
ROIs identified in the FPNs of Dosenbach-160 and Power-264,
respectively.Willard-499 (Richiardi et al., 2015) is a voxel-defined
brain atlas, and its 142 regions can be identified in one of its 14
cognitive networks while the cognitive networks to which the
remaining 357 regions belong are unknown. Willard-499 does
not make an explicit definition of the FPN, yet it defines two

executive control networks (ECNs), namely, the left ECN and
the right ECN located in the two hemispheres. Given that FPN
and ECN are conceptually equivalent (Seeley et al., 2007; Vincent
et al., 2008), the FPN can be obtained by tailoring the ECN of
Willard-499. Moreover, some researchers defined a small brain
atlas manually for their own research. For example, the brain atlas
Gao-32 (Gao and Lin, 2012) consists of 32 ROIs, where each ROI
is uniquely assigned to one of its five cognitive networks. The
FPN of Gao-32 contains nine ROIs in the frontal lobe, parietal
lobe, and insula. Despite the conceptual consistency in cognitive
neuroscience, the above mentioned frameworks of FPN differ
in their structures and distributions. The differences between
the multiple FPNs bring challenges to exploring the processing
mechanisms of FPNs in human brain cognitive tasks.

The various versions of the FPN definitions result in the fact
that any exploration of the FPN from just a single perspective
may only result in one sided outcome. Given the complexity
of brain science, brain informatics (Zhong et al., 2011) claimed
the importance and necessity of a thorough exploration for the
research of human information processing system (HIPS). Thus,
a systematic fusion ofmulti-source FPNsmay provide an effective
way to address this problem by providing a comprehensive
and systematic investigation. This article aims to propose a
graph-learning-based method for fusing multi-source cognitive
networks and tends to evaluate it with its application to the
fusion of the FPNs from multiple brain atlases. Three steps are
involved to achieve this method as shown in Figure 1. The first
step is to study and adjust the FPNs defined in the multiple
brain atlases, so as to ensure the consistent boundaries between
the regions contained in all the FPNs and to spatially synthesize
the multi-source FPNs for the realization of a combined FPN.
The second step is to analyze the functional connectivity of
the combined FPN under a specific cognitive task and to
calculate the graph properties of each independent FPN in the
combined FPN. The single FPN with the optimal performance
in discriminating the graph properties under different cognitive
states is chosen as the main FPN while other FPNs are accepted
as the supplementary FPNs. In the last step, the main cognitive
network is adopted as the initial candidate fused FPN, into
which the ROIs in all the supplementary FPNs are added one
by one according to their nodal index. The iteratively fused FPN
composed of the main FPN and the added ROIs has the optimal
index and, thus, is set as the final fused FPN. The experiment
materials are the fMRI data generated by mental arithmetic task
(Yang et al., 2017) and the resulting fused FPN will be evaluated
by comparing it with other classic machine learning methods.

2. METHODOLOGY

2.1. Synthesizing Multi-Source Cognitive
Networks
Closely related to the core cognitive functions of the human
brain, the FPN has been widely discussed in the research
literature on brain atlases. However, no agreement has been
reached on the definition of the FPN and its relative descriptions,
and some obvious differences or even contradictions still exist
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FIGURE 1 | Systematic fusion of multi-source cognitive networks, (A) combined cognitive network synthesized from multiple brain atlases, (B) main and

supplementary cognitive networks obtained from graph analysis, (C) fused cognitive network computed from cognitive networks fusion algorithm.
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between different brain atlases. To better explore the fusion of
cognitive networks congruent with the FPN, this section will first
analyze several typical brain atlases that define the FPN, and then
clip some FPNs to obtain a reasonable combined FPN. Given the
FPN is just one specific type of cognitive network in the human
brain, it is necessary to generalize the definitions of cognitive
network initially.
Definition 1. CN is the concept of a cognitive network that
specializes in specific cognitive functions of the human brain,
and (CN)I refer to the set of all the concrete cognitive network
instances of CN. CNinst , the element in the set of (CN)I , is one
instance of CN and constituted by a collection of ROIs, as shown
in Equation 1.

CNinst = {ROI1,ROI2, ...,ROI|CNinst |},CNinst ∈ (CN)I (1)

where |CNinst| is the ROIs’ number of CNinst .
The ROIs in different instances of CN vary from different

reference brain atlases. If a specific CN has the instances of
CN1,CN2, ...,CN|(CN)I |, the union of all the instances constitutes
the combined cognitive network of CN, defined and shown in
Equation 2.
Definition 2. A combined cognitive network noted as CCN and
formulated in Equation 2 is the set of ROIs from all the instances
of the same specific CN. |(CN)I | is the instances’ number of the
specific CN.

CCN =

|(CN)I |
⋃

i=1

CNi,CNi ∈ (CN)I (2)

It should be noted that ROIs with equal Montreal Neurological
Institute (MNI) coordinates may come from different instances
of CN. Given that these ROIs originate from different brain
atlases or research, the ROIs with the same MNI coordinates
are still considered to be different. That is, CNi

⋂

CNj =
∅, ∀CNi,∀CNj ∈ (CN)I , i 6= j. With regards to the different
ROIs from the same instance of CN, they do not have the same
MNI coordinates.

To synthesize a combined cognitive network with the FPNs as
a specific case, the investigation of the ROIs contained in each
instance of the FPN must be initially conducted. The brain atlas
Gao-32 defines an FPNwith nine ROIs, as shown in Figure 2A, of
which seven red ROIs belong to the frontal lobe or parietal lobe,
while the two blue ROIs belong to the insula. The present study
does not define the insula as the portion of the FPN. Previous
emotion-controlling studies on the exploration of the emotion-
regulating strategies failed to prove the possible connections
between insula-active and FPN-active regions (Li et al., 2021),
which indicates that the insula may not be a part of the FPN on
the edge. Suppose these results are correct, there are only seven
ROIs left in the FPN of Gao-32 after the removal of the insula
ROIs. Moreover, very scant follow-up studies were conducted to
make a further validation of Gao-32, thus the FPN of Gao-32 is
not on the consideration list for the present study. The brain atlas
Power-264 defines an FPN with 25 ROIs, as shown in Figure 2B,
in which 24 red ROIs belong to the frontal lobe or parietal lobe,

while the only blue ROI belongs to the temporal lobe. Although
previous studies have indicated that many cognitive networks
vary among subjects, a great level of overlap can be identified
from the FPN of multiple subjects in the internal parietal sulcus,
ventral inferior temporal gyrus, and lateral prefrontal cortex
(Marek and Dosenbach, 2018). Given that one ROI in the FPN of
Power-264 belongs to the middle temporal gyrus in the temporal
lobe, it is removed from the definition of the FPNwith the Power-
264 in the present study. The brain atlas Willard-499 defines an
ECN containing 24 regions, as shown in Figure 2C, 17 of which
belong to the frontal lobe or parietal lobe. In addition, there is
one specific region in both limbic and temporal lobes and five
particular regions in the cerebellum. Considering Willard-499
is defined with numbers for different regions rather than with
specific names, only the regions located in the frontal lobe or
parietal lobe in the ECN of Willard-499 are retained, so as to
reach the congruity between the Power-264 clipping strategy and
the lobes involved in the FPN of other brain atlases. A customized
Willard-499 FPN is finally obtained as shown in Figure 2D.

Partial brain atlases defined their FPNs containing regions
or ROIs that only belong to the frontal lobe or parietal lobe,
resulting in the congruity between conceptual boundaries when
synthesizing multi-source FPNs. The FPN defined on the basis of
AAL contains 10 regions (Oliver et al., 2019), all of which belong
to the frontal lobe or parietal lobe, as shown in Figure 3A. The
FPN obtained from the central ROI of each region is shown in
Figure 3B. Dosenbach-160 defines an FPN with 21 ROIs, and all
ROIs belongs to the frontal lobe or parietal lobe exclusively, as
shown in Figure 3C. The original FPN of Power-264 is clipped to
obtain a pruned FPN with 24 ROIs, as shown in Figure 3D. An
FPN with 17 regions is obtained by clipping the original Willard-
499 ECN, and the ROIs in the new FPN ofWillard-499 are shown
in Figure 3E.

In the present study, the original or clipped FPNs with
reference to AAL, Dosenbach-160, Power-264, and Willard-499
are confined to the frontal lobe and parietal lobe, providing the
congruent lobe boundaries to synthesize multi-source FPNs. The
combined FPN contains 72 ROIs, located in the frontal lobe or
parietal lobe, and their distributions in the brain are shown in
Table 1. Of all the forty-seven frontal ROIs in the combined FPN,
six come from AAL, 13 from Dosenbach-160, 17 from Power-
264, and 11 from Willard-499. On top of that, four ROIs from
AAL, eight ROIs from Dosenbach-160, seven ROIs from Power-
264, and six ROIs from Willard-499 constitute the 25 parietal
ROIs in the combined FPN.

Taking the FPN as a specific concept of the cognitive network
as an example, if the four FPNs mentioned above make up all the
instances of the FPN, the definition of the instances set of the FPN
can be shown in Equation 3.

(FPN)I = {FPNa, FPNd, FPNp, FPNw} (3)

where FPNa, FPNd, FPNp, and FPNw represent the FPNs in the
brain atlas of AAL, Dosenbach-160, Power-264, and Willard-
499, respectively.

To arrive at a comprehensive examination of all the FPNs
defined in these human brain atlases, all the contained ROIs need
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FIGURE 2 | Definition issues of the FPNs in some brain atlases, (A) the ROIs in the FPN of Gao-32, where the blue ROIs belong to the insula, (B) the ROIs in the FPN

of Power-264, where the only blue ROI belongs to the temporal lobe, (C) the regions in the ECN of Willard-499, where some of the regions belong to limbic lobe,

temporal lobe, or cerebellum, and (D) the frontal and parietal regions in the ECN of Willard-499.

to be synthesized. And the definition of the combined FPN is
shown in Equation 4.

CombinedFPN = FPNa

⋃

FPNd

⋃

FPNp

⋃

FPNw (4)

Compared with other FPN instances, more ROIs in
CombinedFPN mean more various dimensions of the correlation

matrices for functional connectivity analysis, resulting in the
difficulty in interpreting the final results of the CombinedFPN.

Consequently, the following section will discuss how to set a

given FPN instance as the main FPN in the CombinedFPN, and
then choose some ROIs with higher priority from the remaining

supplementary FPNs to construct a fused FPN so as to ensure
a reasonable range of the dimensions, as well as the optimal
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FIGURE 3 | Multi-source FPNs for synthesizing the combined FPN, (A) the regions belong to the FPN of AAL, (B) 10 ROIs of the FPN in AAL, (C) 21 ROIs of the FPN

in Dosenbach-160, (D) 24 ROIs of the FPN in Power-264, and (E) 17 ROIs of the FPN in Willard-499.
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TABLE 1 | Combined fronto-parietal network.

Cognitive

network

Number of ROIs

Frontal Parietal Occipital Temporal Limbic Cerebellum

FPN of AAL 6 4 0 0 0 0

FPN of

Dosenbach-

160

13 8 0 0 0 0

FPN of

Power-264

17 7 0 1 0 0

ECN of

Willard-499

11 6 0 1 1 5

Combined

FPN

47 25 0 0 0 0

TABLE 2 | Fused fronto-parietal network.

Cognitive network Number of ROIs

Frontal Parietal

FPN of AAL 5 2

FPN of Dosenbach-160 13 8

FPN of Power-264 11 5

ECN of Willard-499 4 3

Fused FPN 33 18

performance in discriminating the graph properties of the FPN
under different cognitive states.

2.2. Selecting Main Cognitive Network
Although the synthesis of multi-source cognitive networks can
examine more cortical regions relevant to the cognitive task, such
an operation will contribute to the increase of computational
load during data analysis, as well as the worse performances in
discriminating the graph properties of the FPN under different
cognitive states. Alternatively, the concentration on one specific
instance of the cognitive network may help to provide a
consensus to reach a better interpretation of the analyzed results.
Consequently, there is a need to select one instance of CN as the
main cognitive network and set the remaining instances of CN as
the supplementary cognitive networks.
Definition 3. The main cognitive network noted as MCN and
formulated in Equation 5 is the instance of CN and has the
optimal performance, compared with any other instances of CN,
in discriminating the graph properties under different cognitive
states for the relative task.

MCN ∈ (CN)I , P(MCN) ≥ P(CNi),CNi ∈ (CN)I ,CNi 6= MCN
(5)

where P stands for the performance, usually set as the P-value, in
discriminating the graph properties of the FPN under different
cognitive states. The P-Value of each instance of CN is given in
Algorithm 1. The remaining instances of CN excludingMCN are
the supplementary cognitive networks.

Algorithm 1:Main cognitive network selection.

Data:MatricesConditions
Input: (CN)I ,Conditions, Subjects
Output:MainROIs, SuppROIs
begin

// Stage 1
subnetP-Values = ∅
for candidateMain ∈ (CN)I do

MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index = GraphProperty(MatricesConditionsc,s,
candidateMain)
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to subnetP-Values

MainIndex = indexOfMin(subnetP-Values)
MainROIs = (CN)I

MainIndex

// Stage 2
UnsortedSuppROIs = Union[(CN)I]−MainROIs
nodalP-Values = ∅
for roi ∈ UnsortedSuppROIs do

MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index =
GraphProperty(MatricesConditionsc,s, {roi})
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to nodalP-Values

SuppROIs = sort(UnsortedSuppROIs, nodalP-Values)

returnMainROIs, SuppROIs

Definition 4. The supplementary cognitive network noted as
SCN and formulated in Equation 6 refers to any instances of CN
excludingMCN.

SCN ∈ (CN)I − {MCN} (6)

The selection procedure of MCN and SCN is depicted in
Algorithm 1, with the manipulated dataMatricesConditions. The
input parameters include (CN)I , Conditions, and Subjects, and
the output parameters include MainROIs and SuppROIs. (CN)I

is the set of all instances of CN, while Conditions and Subjects
are arrays containing the conditions and subjects of the cognitive
task respectively. The returned MainROIs are a non-priority list
of ROIs from MCN, and SuppROIs are a prior list of ROIs from
all SCNs. Algorithm 1 can be divided into two stages as follows:
Stage 1: Select the cognitive network in (CN)I with the optimal

performance as the MCN, and append the ROIs of MCN into
a non-priority list asMainROIs.
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Stage 2: Merge the ROIs of all SCNs in (CN)I into a non-
priority list as UnsortedSuppROIs, and reorder the ROIs in
UnsortedSuppROIs into a priority list as SuppROIs according
to their nodal graph property.

The dataMatricesConditions is a four-dimensional matrix, where
the first dimension refers to the conditions of the cognitive task,
and the dimension size stands for the number of conditions. For

instance, if the mental arithmetic task only involve the conditions
of addition and subtraction, the dimension size will be set as
two. The subjects recruited for the cognitive task stand for the
second dimension, thus this dimension size is measured by the
number of subjects. In the present study, twenty-one subjects
participated in the present mental arithmetic task, and thus, the
subjects’ dimension size is 21. The third and fourth dimensions of

FIGURE 4 | The four-dimensional matrix MatricesConditions, where the first dimension represents the conditions in the cognitive task, and the second dimension

represents the subject. When the condition and subject are set, the obtained two-dimensional matrix stands for the brain functional connectivity matrix of the subject

under the current cognitive task condition, and the shape of the two-dimensional matrix is determined by the ROIs’ number of the adopted cognitive network.
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the matrix both represent the nodes contained in the CCN. Since
the combined FPN here contains a total of 72 nodes, the sizes of
the two dimensions are both 72 in the current case.

The intermediate two-dimensional matrix
MatricesConditionsc,s at both stages is the sub-matrix of
MatricesConditions where c represents the index of the cognitive
task condition in Conditions and s represents the index of the
subject in Subjects. MatricesConditionsc,s basically stands for the
functional connectivity matrix of the subject Subjectss under
the cognitive task condition Conditionsc. Since the functional
connectivity matrix of MatricesConditionsc,s is constructed
on the basis of CCN, the shape of MatricesConditionsc,s is
|CCN| × |CCN|. The relationship between MatricesConditions
and its sub-matrixMatricesConditionsc,s is shown in Figure 4.

The functional connectivity matrix of MatricesConditionsc,s
for each subject under specific cognitive conditions has been
given, yet what actually needs to be calculated is the graph
property of the candidate’s main cognitive network, noted as
candidateMain in the top loop at Stage 1, as well as the nodal
graph property of the ROI, noted as roi in the top loop at Stage
2. Since candidateMain is a proper subset of CCN, and roi is an
element of CCN, the graph property calculation implemented by
the function of GraphProperty is based on MatricesConditionsc,s
as the first parameter. The second parameter of GraphProperty is
of great significance in that its setting size can determine whether
the calculating processing is targeted at graph property or nodal
graph property. The metric choice of graph property includes
degree centrality, clustering coefficient, and network efficiency.
In the present study, degree centrality is set as the metric for its
popular application in discriminating the graph properties under
different cognitive states.

The intermediate two-dimensional matrix MatricesIndices
at the two stages is used for storing the performance of
each candidate’s main cognitive network in (CN)I or the
performance of each ROI in UnsortedSuppROIs. The shape of
MatricesIndices is |Conditions|× |Subjects|, andMatricesIndicesc,s
is the cell in the cth row and the sth column to store the
performance corresponding to subject Subjectss under cognitive
condition Conditionsc.

The function StatisticalTest at the two stages is used to conduct
the statistical test between the rows ofMatricesIndices, and return
the P-Value which represents the performance in discriminating
the graph properties under different cognitive states. The
row number, namely the number of cognitive conditions, of
MatricesIndices needs to be considered in the choice of a specific
test function. If the row number of MatricesIndices is two, the
statistical analysis of the t-test or the χ2 test can be adopted, yet
if the row number is greater than two, the statistical analysis of
variance needs to be utilized.

When the P-Value of each candidateMain at Stage 1 is
obtained, the cognitive network with the minimum P-Value is
selected as the main cognitive network, and the ROIs in the
main cognitive network are appended into the non-priority
list MainROIs. Similarly, after the acquisition of P-Value of
each roi from UnsortedSuppROIs at Stage 2, the ROIs in
UnsortedSuppROIs are reordered and appended into the prior list
SuppROIs. Finally, the MainROIs and SuppROIs are returned by
the algorithm.

Algorithm 2: Cognitive networks fusion.

Data:MatricesConditions
Input: Conditions, Subjects,MainROIs, SuppROIs
Output: FusedROIs, FusedP-Value
begin

// Stage 1
P-Values = ∅
iterFusedROIs = MainROIs
for roi ∈ SuppROIs do

add roi to iterFusedROIs
MatricesIndices = InitMatrix(|Conditions|, |Subjects|)
for c ∈ range(|Conditions|) do

for s ∈ range(|Subjects|) do
index = GraphProperty(MatricesConditionsc,s,
iterFusedROIs)
MatricesIndicesc,s = index

P-Value = StatisticalTest(MatricesIndices)
add P-Value to P-Values

// Stage 2
FusedIndex = indexOfMin(P-Values)
FusedP-Value = P-ValuesfusedIndex
FusedROIs = MainROIs
for i = 0; i ≤ fusedIndex; i++ do

add SuppROIsi to FusedROIs

return FusedROIs, FusedP-Value

2.3. Searching a Fused Cognitive Network
WhenMCN, consisting of the ROIs inMainROIs, is selected and
set as the main cognitive network, it will be utilized as the base for
fusing the ROIs, which are stored in the priority list SuppROIs,
from all the supplementary cognitive networks.
Definition 5. Fused cognitive network, noted as FCN and
formulated in Equation 7, is the union ofMCN and the set, noted
as Sub(SuppROIs, fusedIndex), constituted by the first number of
fusedIndex ROIs in SuppROIs, and has the optimal performance
in discriminating the graph properties under different cognitive
states for the relative task.

FCN = MCN
⋃

Sub(SuppROIs, fusedIndex) (7)

The second parameter in Sub operation determines how
many ROIs are chosen from the beginning of SuppROIs
to constitute the set, and its value ranges from 0 to
|SuppROIs|. Sub(SuppROIs, 0) means an empty set, and
Sub(SuppROIs, |SuppROIs|) means the set containing all the
ROIs in SuppROIs. Since FCN has the optimal performance, it
can be inferred that P(MCN

⋃

Sub(SuppROIs, fusedIndex)) ≥
P(MCN

⋃

Sub(SuppROIs, i)), where P is the same as the one
defined in Equation 5, and i 6= fusedIndex.

Therefore, the essence of searching the FCN is to find
the value of fusedIndex and to integrate the ROIs in
Sub(SuppROIs, fusedIndex) into MCN to construct the
FCN. The search process of the fusedIndex is implemented
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FIGURE 5 | Statistical comparison results of the FPNs’ topological property (degree centrality) between the addition and subtraction cognitive states. The FPN of

Dosenbach-160 has yielded the sharp differences with the biggest statistical significance between the two cognitive states of mental arithmetic, followed by the FPNs

of CCN (Combined Cognitive Network), AAL, Power-264, and Willard-499.

by Algorithm 2, which can be divided into two stages
as follows:
Stage 1: Initialize the candidate fused cognitive network,

represented as the list iterFusedROIs, with the ROIs in the non-
priority list MainROIs. Then, add the ROIs in SuppROIs into
the candidate fused cognitive network iteratively and append
the performance of the current candidate fused cognitive
network into the list of P-Values.

Stage 2: Select the minimum P-Value in P-Values and its
corresponding position, namely FusedIndex, in the list. The
ROI at the position of FusedIndex and all its leading ROIs
in SuppROIs, together with the ROIs in MainROIs, constitute
the final fused cognitive network FCN with the optimal
performance in discriminating the graph properties under
different cognitive states.

MatricesConditions, Conditions, and Subjects are the same as the
ones in Algorithm 1 and will be reused. The returnedMainROIs
and SuppROIs by Algorithm 1 are set as the input parameters
here. The output results, namely FusedROIs and FusedP-Value,

are the generated list of ROIs in the optimal fused cognitive
network FCN and its performance, respectively.

Despite the optimal performance in the entire iterative
searching process, further comparisons between the fused
cognitive network and the results obtained from other typical
machine learning methods are necessity.

3. EXPERIMENTS AND RESULTS

3.1. Experiment
The fMRI data comes from the mental arithmetic task of
simple addition and subtraction (Yang et al., 2017) designed
by the Web Intelligence Consortium (WIC). The goal of this
cognitive task is to study the regularity of brain neural activity
in simple arithmetic operations. Twenty-one subjects (12 males,
9 females) with no statistically significant differences were
recruited. Before the experiment, each subject was made clear
about the possible natural responses during the task process, and
all subjects signed an informed consent form. After obtaining
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FIGURE 6 | Results of the main FPN and supplementary FPNs, (A) the ROIs in MainROIs, i.e., the FPN in Dosenbach-160, (B) the ROIs in all the supplementary

FPNs, i.e., the FPNs in AAL, Power-264, and Willard-499. ROI with warmer colors has a higher priority in SuppROIs. Conversely, ROI with cooler color has a lower

priority in SuppROIs.

permission from the Ethics Committee of Xuanwu Hospital of
Capital Medical University, the cognitive task was implemented
and the fMRI data were collected by the WIC team in
the hospital.

The preprocessing of the fMRI data was conducted with
the software of Statistical Parameter Mapping (Friston et al.,
2007) in four steps, namely slice time correction, head motion
correction, spatial normalization, and smoothing. The Python
software package and other relative software packages were used
for the graph analysis of the fMRI data and the implementation
of the cognitive networks fusion algorithm. The NiBabel was
used for the basic manipulation of neuroimaging files like
fMRI data and the SciPy (Virtanen et al., 2020) was used for
Pearson coefficient calculation, FDR correction, and statistical
test. Topological indices in the graph analysis were calculated by
NetworkX (Hagberg et al., 2008), and the results were visualized
via NiLearn.

3.2. Results
As shown in Figure 5 all the instances of FPN, FPNd has the
optimal performance of the statistical test (P-Value = 0.00032)
between the degree centralities of the functional connectivity
matrices under the two mental arithmetic cognitive states,
followed by CombinedFPN (P-Value = 0.000328), FPNa

(P-Value = 0.000486), FPNp (P-Value = 0.000669), and FPNw

(P-Value = 0.001053), respectively. Consequently, FPNd is set as
MCN, and the remaining instances of FPN are used as SCN in the
following fusion of cognitive networks.

The result of Algorithm 1 is shown in Figure 6. FPNd is
selected as the main FPN and all the ROIs in FPNd are in
the returned non-priority list MainROIs as in Figure 6A. FPNa,
FPNp, and FPNw are all selected as the supplementary FPNs, all
the ROIs are in the returned priority list SuppROIs. As shown in
Figure 6B, the ROI with warmer color has a higher priority and
will be in closer propinquity to the head of SuppROIs, while the
ROI with cooler color has a lower priority and will be in closer
propinquity to the tail of SuppROIs. The position of the ROI in
SuppROIs determines the time when it will be added into the
candidate FPN in the iterative process of Algorithm 2.

The iterative process of Algorithm 2 is displayed in Figure 7.
FPNd is used as the initial candidate fused FPN, and the
ROIs in SuppROIs are added into the candidate fused FPN
one by one. The performance of the candidate fused FPN
in discriminating the graph properties under the two mental
arithmetic conditions is statistically tested during each iteration.
The results show that the candidate fused FPN, formed by the
ROIs of FPNd and the first 30 ROIs in SuppROIs, has the optimal
performance. The triangular part of the inferior frontal gyrus
from the right hemisphere of AAL is eventually added into the
resulting fused FPN with 51 ROIs. As shown in Table 2, the
numbers of ROIs belonging to the frontal and parietal lobes in
the fused FPN are 33 and 18, respectively. More specifically,
among the 33 ROIs in the frontal lobe, the numbers from
the FPNs in brain atlas of AAL, Dosenbach-160, Power-264,
and Willard-499 are 5, 13, 11, and and 4 respectively while
the corresponding numbers are 2, 8, 5, and 3 in the parietal
lobe respectively.
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FIGURE 7 | The iterative statistical test of the graph properties of the candidate fused FPNs in discriminating the cognitive states. When Dosenbach-160 is set as the

initial candidate fused FPN, and the top thirty of all ROIs in AAL, Power-264, and Willard-499 are added to Dosenbach-160, the candidate fused FPN can produce the

most significant statistical performance. The last ROI to be added to the fused FPN is the triangular part of the inferior frontal gyrus from the right hemisphere of AAL.

The spacial differences can be intuitively identified between
the distributions of the ROIs of the generated FPNs with a close
eye on Figure 8. Figures 8A–D display the FPNs with the top
51 ROIs chosen by ExtraTrees, AdaBoost, RandomForest, and
XGB, respectively. The fused FPN calculated by Algorithm 2

is shown in Figure 8E. The numbers of ROIs located in the
frontal lobe and parietal lobe are 31/20 (ExtraTrees), 36/15
(AdaBoost), 35/16 (RandomForest), 35/16 (XGB), and 33/18
(Algorithm 2). All these algorithms are conducted on the basis
of CombinedFPN. Since CombinedFPN yields 47 ROIs and
25 ROIs in the frontal lobe and parietal lobe, respectively,
it could be judged that the distribution ratio of ROIs in
the two lobes generated from Algorithm 2 is close to that
of CombinedFPN.

On the other hand, compared with the adopted machine
learning algorithms, Algorithm 2 has the optimal performance,
as shown in Figure 9 and Table 3, of the statistical test
(P-Value = 4.7e-05) between the degree centralities of the
functional connectivity matrices under the twomental arithmetic
cognitive states, followed by that of ExtraTrees (P-Value =
0.000291), XGB (P-Value = 0.000353), RandomForest
(P-Value = 0.000372), and AdaBoost (P-Value = 0.000453).
Such a performance is even better than that of CombinedFPN
(P-Value = 0.000328). In a word, it can be safely concluded

that Algorithm 2 can choose the FPN better representing the
cognitive states of mental arithmetic.

4. DISCUSSION

In the present study, the graph properties of the multi-source
FPNs, combined FPN, fused FPN, and the FPNs generated by
the adopted machine learning methods can be effectively used
to discriminate the graph properties under different cognitive
states in mental arithmetic task. Such a result lends support
to the previous studies about the major dependence of adults’
arithmetic ability on the FPN. To date, many research methods
have been adopted to explore the possible role of the FPN
in mental arithmetic, such as the meta-analysis of the brain
regions involved in numbers and mental arithmetic (Arsalidou
and Taylor, 2011), the pathway analysis on the brain mental
arithmetic (Dehaenea and Cohen, 1997), and the structural
connection analysis on the code model involved in mental
arithmetic (Klein et al., 2013, 2016). All these studies proved
that the mental arithmetic processing can activate the adult
brain’s FPN, which consists of the superior parietal lobule (SPL)
and inferior parietal lobule (IPL) in the parietal regions, and
inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and left
superior frontal in frontal regions.
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FIGURE 8 | FPNs with 51 ROIs calculated by different methods. ROIs with colors teal, blue, red, magenta come from AAL, Dosenbach-160, Power-264, and

Willard-499, respectively, (A) 6, 14, 17, and 14 ROIs are selected by ExtraTrees from the four brain atlases, respectively, (B) 8, 17, 13, and 13 ROIs are selected by

AdaBoost from the four brain atlases, respectively, (C) 5, 15, 18, and 13 ROIs are selected by RandomForest from the four brain atlases, respectively, (D) 7, 17, 14,

and 13 ROIs are selected by XGB from the four brain atlases, respectively, (E) 7, 21, 16, and 7 ROIs are selected by the cognitive networks fusion algorithm from the 4

brain atlases, respectively.
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FIGURE 9 | Statistical comparison results of the FPNs’ topological properties between the addition cognitive state and the subtraction cognitive state. Among them,

the fused FPN by the cognitive networks fusion algorithm has yielded the sharp differences with the biggest statistical significance between the two cognitive states of

mental arithmetic, followed by the FPNs generated by ExtraTrees, CCN (Combined Cognitive Network), XGB, RandomForest, and AdaBoost.

The FPN plays an important part in adults’ mental arithmetic
processing, and a similar network was also detected in children’s
mental arithmetic processing with experiment and retrospective
analysis (Peters and De Smedt, 2018). It is generally considered
that the FPN is in charge of perceiving the top-down activity
regulation of the cortex for attention preparation and memory
orientation. CON also plays a vital role in the cognitive control,
whose downstream effect may be attributed to the output gating
of memory. Thus, both the FPN and CON were indispensable in
controlling working memory (Wallis et al., 2015). By adopting
a functional connectivity analysis, the working memory in the
mental arithmetic tasks was also explored and the collaborative
work between the frontal lobes and parietal lobes in working
memory tasks was detected as well (Hagiwara et al., 2016).
However, the DMN was found to be passivated in the mental
arithmetic processing, which might be caused by the inhibitory
effect of functional network activation during the cognitive tasks
(Dimitriadis et al., 2010).

With regards to the big variations in the topological structure
of the FPN, it is likely to result from the significant differences in
the graph properties between the cognitive states of addition and
subtraction in performing the mental arithmetic processing. Via
the graph analysis and statistical analysis, significant differences

can be identified in the adopted metric of the FPN’s degree
centrality from different brain atlases under the two mental
arithmetic cognitive states. Such a result is consistent with the
findings of previous studies. For example, the subjects achieved
obvious improvements in their mathematics skills and the FPN
activities after attending the adaptive number-sense training. It
was found that the activation of the subjects’ bilateral parietal
lobe significantly increased, while the activation of their frontal
striatum and middle temporal lobe decreased considerably
(Kesler et al., 2011). Moreover, more activation of the FPN is
thought to be generated in the numerical inductive reasoning,
such as the mental arithmetic process, because more exchanges
might be transacted between the intermediate representations
and long-term declarative knowledge in the process of numerical
rule recognition (Liang et al., 2016). On top of that, the white
matter dispersion property of the FPN was also detected to be
effective in the prediction of children’s mental arithmetic ability
(Tsang et al., 2009).

5. CONCLUSION

Focusing on the multi-source cognitive networks, this
study takes the single-source cognitive network with the
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TABLE 3 | Performance of each method in discriminating cognitive states.

Method
Mean of degree centrality

P-Value

Addition Subtraction

Combined Cognitive Network 0.8474 0.7941 0.000328

ExtraTress 0.8384 0.7833 0.000291

AdaBoost 0.8371 0.7830 0.000453

RandomForest 0.8401 0.7845 0.000372

XGB 0.8536 0.7999 0.000353

Fused Cogntive Network 0.8536 0.7957 0.000047

optimal performance as the main cognitive network through
synthesizing the multi-source cognitive networks. The ROIs in
the supplementary cognitive networks are sorted and integrated
into the main cognitive network iteratively, so as to search for
the fused cognitive network with the optimal performance in
discriminating the graph properties under different cognitive
states. The potential advantages of the present research method
can be summarized as follows:

1. The distribution of the obtained ROIs in the fused FPN is
spatially closer to that of the combined cognitive network, and
the ROIs selected are better balanced between the frontal lobe
and parietal lobe.

2. The fused cognitive network is constructed under the
framework of the main cognitive network by integrating
the ROIs with top priority in the supplementary cognitive
networks. In the analysis of the fMRI data, the fused cognitive
network relies on the main cognitive network for the major
interpretation, together with the ROIs of supplementary
cognitive networks for the complementary explanation.

3. Compared with other typical machine learning algorithms, the
proposed method can yield better performance and the results
bear more self-consistency to those obtained in cognitive
neuroscience.

On the whole, it has proved that the proposed method can
produce a satisfactory evaluation performance and provide
a more reasonable interpretation for the related cognitive
neuroscience research. However, the potential impact of the
fused cognitive network on the cognitive computing model waits
for further explorations. Additionally, the generality of such a

proposed method also waits for further validations with diverse
brain atlases and various fMRI datasets.
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