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Editorial on the Research Topic

Breast milk and passive immunity during the COVID-19 pandemic

Neonates are born with an immature immune system, including a lack of IgG and

secretory IgA (SIgA) production by plasma cells. Thus, newborns rely on the passive

transfer of antibodies via the placenta (only IgG) and breast milk (80–90% SIgA/IgA,

5% IgG, and 10–15% IgM) to protect them against severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection during the first 2 to 6 months of postnatal age. This

editorial presents 10 contributing articles on the Research Topic “Breast Milk and Passive

Immunity during the COVID-19 Pandemic.” First, we describe the passive immunity from

the placenta to the fetus after mRNA COVID-19 vaccination. Second, we evaluate the risk of

transplacental transmission of SARS-CoV-2 to the fetus. Third, we elucidate that breast milk

is not a vector of viral SARS-CoV-2 that can infect breastfed infants. Fourth, we discuss the

maternal antibody response specific to SARS-CoV-2 after the twomRNACOVID-19 vaccine

and the booster dose. Fifth, we report the safety of themRNACOVID-19 vaccine and booster

shot during breastfeeding. Lastly, we describe the relationship between maternal stress and

antibody response in lactating mothers.

Passive immunity from the placenta to the fetus after
mRNA COVID-19 vaccination

IgG is the only isotype passively transferred from the placenta to the fetus during

pregnancy. Anti-SARS-CoV-2 IgG was present in cord blood and infants’ blood from

mothers vaccinated while pregnant, confirming the transfer of anti-SARS-CoV-2 IgG via

the placenta to the fetal bloodstream (Hunagund et al.; Figure 1A). In contrast, serum anti-

SARS-CoV-2 IgG was absent in infants born from mothers vaccinated after pregnancy,

which could reduce their protection against COVID-19 infection.
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FIGURE 1

Mechanisms of antibody transfer during pregnancy and

breastfeeding after mRNA COVID-19 vaccine. (A) Anti-SARS-CoV-2

IgG is transferred from the placenta to the fetus and is present in

cord blood and infant blood from mothers vaccinated while

pregnant. (B) Breast milk contains anti-SARS-CoV-2 IgG, IgA, and

IgM after the first and second mRNA COVID-19 vaccines.

Neutralizing activity and titer of anti-SARS-CoV-2 antibodies are

higher after the booster (third dose) than after the second dose of

the mRNA COVID-19 vaccine in breast milk, while only one dose

has the lowest neutralizing capacity and antibody titers. (C)

Anti-SARS-CoV-2 antibodies bind to the spike protein of

SARS-CoV-2, which block the viral attachment to the

angiotensin-converting enzyme (ACE) receptor and provide

protection against COVID-19 infection in mothers and their

breastfed infants.

Low risk of transplacental transmission
of SARS-CoV-2 to the fetus

Most neonates born from COVID-19-infected mothers did not

test positive for COVID-19, while few cases of newborns tested

positive and presented early-onset symptoms (Rad et al.). Whether

newborns with positive COVID-19 are due to the transplacental

transmission of SARS-CoV-2 or infection after delivery is still not

well-understood. The placenta provides a protective barrier to the

fetus against maternal infections. However, vertical transmission of

SARS-CoV-2 from the placenta to the fetus can happen when the

virus-induce apoptosis and vascular damage in the placenta. SARS-

CoV-2 can spread inmaternal endothelium into fetal capillaries and

then be aspirated through amniotic fluids. The presence of SARS-

CoV-2 in blood samples from newborns was ∼1%, suggesting the

risk of transplacental transmission of COVID-19 to the fetus is low.

Breast milk is not a vector of viral
SARS-CoV-2 that can infect breastfed
infants

A few articles have reported the detection of low titers of viral

SARS-CoV-2 RNA in breast milk samples. Lactating mothers and

health professionals have been worried about the potential transfer

of viral SARS-CoV-2 from breast milk to the infant. To confirm

the safety of breastfeeding during maternal COVID-19 infection,

breast milk was collected before and after washing the breast skin

in lactating mothers with COVID-19 infection. Some breast skin

swabs collected before washing the breast detected SARS-CoV-2

RNA in milk samples, while SARS-CoV-2 RNA was absent in all

milk samples after washing the breast skin (Pace et al.). Breast skin

contaminated with SARS-CoV-2 was associated with the presence

of maternal caught and other family members in the household

with COVID-19 infection. These findings explain why some breast

milk samples in previous studies have detected positive results

for SARS-CoV-2 RNA using RT-qPCR. Breast milk is likely not

a potential source of viral RNA SARS-CoV-2 when mothers wash

their breast skin before breastfeeding.

Maternal antibody response specific to
SARS-CoV-2 during COVID-19 vaccine

After two mRNA COVID-19 vaccine doses, lactating mothers

had detectable anti-SARS-CoV-2 IgG1, IgA, and IgM in serum

samples, with an increase in all three isotypes after the second

dose, especially IgG1 levels (Yeo et al.). After the second vaccine,

all mothers had detectable anti-SARS-CoV-2 IgG1 and IgA in

breast milk, whereas IgM was present in 87% of milk samples.

Neutralizing antibodies increased after the second dose in serum

and breast milk compared to the first dose (Figure 1B). The rapid

increase of IgG after the second dose correlated with the specific

B lymphocyte memory that prime a faster response with higher

antibody levels. In contrast, IgA levels remained constant between

the two first doses of the COVID-19 vaccine. Infants breastfed from

vaccinated mothers did not have detectable neutralizing antibodies

or vaccine mRNA in their serum.

The mRNA COVID-19 booster (total of three doses of mRNA

vaccine) elevated antibody secretion in lactating mothers. The titers

of IgG and IgA specific to SARS-CoV-2 were higher in breast milk

after a third booster dose of mRNA COVID-19 than the peak

after the first and second vaccines (Bender et al.; Figure 1B). The

neutralizing capacity of breast milk antibodies produced during the

third mRNA COVID-19 booster shot was higher than those with

the second COVID-19 vaccine (pre-booster sample). Neutralizing

activity of breast milk antibodies correlated with serum antibodies

in mothers with the booster dose. These findings support the

current guidance that all pregnant or lactating mothers should

receive the mRNA COVID-19 booster dose to provide an optimal

mucosal response to the mothers. Increased antibody secretion

in vaccinated mothers during lactation could promote neonatal

mucosal immunity via ingestion of breast milk IgA, IgG, and

IgM. Anti-SARS-CoV-2 antibodies bind to the spike protein of

SARS-CoV-2, which block the viral attachment to the angiotensin-

converting enzyme (ACE) receptor and provide protection against

COVID-19 infection (Figure 1C).

Like the mRNA vaccine, vector-based vaccines stimulated

antibody response in lactating mothers. Paired longitudinal

samples taken at 45 and 120 days after the second dose of COVID-

19 vector-based vaccines showed that IgG levels waned over time

in breast milk, while IgA levels remained stable in 100% of lactating

women (Longueira et al.). A slight reduction of IgA titers in serum
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relative to paired breast milk samples was detected 120 days after

the second vector vaccine dose, suggesting a more sustained IgA

production in mucosal secretion. In contrast, IgG levels in serum

and breast milk (paired samples) decreased from 45 to 120 days

after the second vaccine.

The mRNA COVID-19 vaccine is safe
during breastfeeding

Some lactating mothers are hesitant to receive a COVID-19

vaccine due to the lack of knowledge on the immunogenicity of

mRNA-based vaccines on nursing infants, as lactating mothers

were excluded from initial clinical trials of mRNA vaccination.

Paired blood and milk samples from lactating mothers and their

infants were collected after the maternal mRNA vaccine (2 doses)

to evaluate the immunogenicity of the mRNAmolecule. Severe side

effects were absent in infants breastfed from mothers vaccinated

with mRNA COVID-19 (Golan et al.). Vaccine-related PEGylated

protein concentrations did not increase in breast milk after

COVID-19 vaccination. These results suggest that the mRNA-

COVID-19 vaccine administered in lactating women did not lead

to detectable immunogenicity in the infant’s blood. In addition, low

levels of intact mRNA vaccine were detected in maternal serum and

breast milk samples, while infants’ serum had no trace of mRNA

molecule or serological evidence of infant sensitization (Yeo et

al.). These findings confirm the safety of continuing breastfeeding

during maternal mRNA COVID-19 vaccination.

A systemic review article demonstrated that lactating women

receiving 2 doses of the mRNA COVID-19 vaccine are safe for

them and their breastfed infants (Muyldermans et al.). Another

mini-review article assessed that the safety and efficacy of the

developed mRNA COVID-19 vaccines were comparable between

pregnant, lactating, and non-pregnant women (Laguila Altoé et

al.). The administration of mRNA COVID-19 vaccination in these

groups promoted the production of neutralizing antibodies against

SARS-CoV-2 in mothers and passive immunity in their infants.

Maternal stress and antibody response
in lactating mothers

Antibody response is influenced by several factors related

to maternal background and confounding factors, including

psychological stress. Maternal stress could be elevated by stressful

events, including the COVID-19 pandemic. Interestingly, the

stress levels of lactating women were comparable between pre-

pandemic and during the pandemic COVID-19 (Juncker et al.).

However, maternal lifetime stressors were negatively correlated

with breast milk IgA specific to SARS-CoV-2. Breastfed infants of

mothers with high chronic stress levels might ingest lower breast

milk SIgA/IgA.

Conclusion and perspective

This Research Topic in Frontiers in Nutritional Immunology

provided new knowledge on the activation of antibody

response during mRNA COVID-19 vaccine and booster dose

in pregnant and lactating mothers and confirmed its safety

for their infants. Additional investigations are required to

identify the mechanisms of antibody protection when infants

ingest breast milk with neutralizing antibodies against SARS-

CoV-2. Finally, more studies are needed to reveal which

maternal factors (including genetics, nutrition, preexisting

immunity, and health conditions) enhance antibody responses

during vaccination.
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The Effects of COVID-19 on the
Placenta During Pregnancy
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Sajad Razavi Bazaz4, Majid E. Warkiani 4, Fernando S. F. Guimaraes5, Vicki L. Clifton6

and Arutha Kulasinghe1,5*

1 School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia, 2 School of Chemical
Engineering, University of Queensland, St Lucia, QLD, Australia, 3 Centre for Biomedical Technologies, School of Mechanical,
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Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has caused a global pandemic. The virus primarily affects the
lungs where it induces respiratory distress syndrome ranging frommild to acute, however,
there is a growing body of evidence supporting its negative effects on other system organs
that also carry the ACE2 receptor, such as the placenta. The majority of newborns
delivered from SARS-CoV-2 positive mothers test negative following delivery, suggesting
that there are protective mechanisms within the placenta. There appears to be a higher
incidence of pregnancy-related complications in SARS-CoV-2 positive mothers, such as
miscarriage, restricted fetal growth, or still-birth. In this review, we discuss the
pathobiology of COVID-19 maternal infection and the potential adverse effects
associated with viral infection, and the possibility of transplacental transmission.

Keywords: COVID-19, placenta, SARS-CoV-2, transplacental infection, pregnancy
INTRODUCTION

The World Health Organization (WHO) declared a global pandemic of coronavirus disease 2019
(COVID-19) in March 2020, caused by the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) (1). As of August 2021, the number of total cases surpassed 200 million and resulted
in more than 4 million deaths. There is an ongoing effort to understand transmission, incidence,
disease pathogenesis and the short- and long-term impacts following infection. In particular, the
impact of SARS-CoV-2 infection on mothers and their babies (2). Evidence suggests that pregnant
women with COVID-19 are more susceptible to severe disease with a higher risk of preterm birth
(3–5), as well as higher risk of maternal and/or fetal death (6, 7). These findings are reminiscent of
the dire outcomes from other similar respiratory viral infections, such as influenza A/H1N1 (8–11),
severe acute respiratory syndrome (SARS) (12), and Middle East Respiratory Syndrome (MERS)
(13, 14), where infected pregnant women are at increased risk of severe morbidity and mortality to
both themselves and their infants (2). While most neonates born to SARS-CoV-2 positive mothers
test negative and do not present with virus-induced disease, there have been some cases of newborns
testing positive and presenting with early-onset symptoms (15). Whether this is due to the trans-
placental transmission of SARS-CoV-2, or infection following delivery is still not well
org September 2021 | Volume 12 | Article 74302218
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understood (16–18). Examination of the placentas from SARS-
CoV-2 positive mothers have mixed reports on viral positivity,
and not all neonates born from mothers with a SARS-CoV-2
positive placenta test positive for the virus (19). This suggests
that there is a protective mechanism/barrier within the placenta,
where its success may rely on the presence or absence of certain
receptors/pathways. Fortunately, SARS-CoV-2 positive neonates
are yet to present with any congenital defects (20). In this review,
we provide an overview of the literature of SARS-CoV-2
infection during pregnancy, as well as the pathobiology of the
placenta which may protect the growing fetus.
IMMUNE SYSTEM ALTERATIONS DURING
SARS-CoV-2 INFECTION

The immune system changes during pregnancy in such a way
that it adapts to the growth of a semi-allogeneic fetus in the body
of the mother, resulting in a distinct immune response to
different infections during pregnancy (21–23). It has been well
documented that in patients with COVID-19, particularly those
with severe disease, have profound immune dysregulation (24).
Studies have revealed an increase in blood leukocytes
(leukocytosis), which was characterized by a decrease in
lymphocytes (lymphopenia) and an increase in neutrophil-to-
lymphocyte ratio (NLR) (25, 26). Using immunophenotyping
analyses, researchers discovered that patients with severe
COVID-19 had fewer natural killer (NK), CD3+, CD4+, and
CD8+ T cells than those with the non-severe disease (27). NK
cells were also found to be functionally exhausted during SARS-
CoV-2 infection (28–30). Moreover, a reduction in circulating
NK cell population has been reported during gestation (31). NK
cells have key roles in the innate immune response by killing
transformed cells, as consequence of viral infections or
oncogenesis; NK cells are also major sources of pro-
inflammatory cytokines such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interferon gamma
(IFN-g), which can restore or activate the antiviral property of
the myeloid compartment; thus, any decrease in these cell
populations may alter the ability to clear viruses (32). Evidence
has shown that lymphopenia and enhanced NLR can be further
amplified by COVID-19 disease severity (33). Compared to
patients with moderate COVID-19, individuals with severe
disease had lower numbers of cytotoxic T lymphocytes (CTLs)
(33). Studies investigating COVID-19 patients’ lung tissue and
bronchoalveolar lavage fluid (BALF) samples found T cell
hyperactivation and/or upregulation of pro-apoptotic factors,
including first apoptosis signal receptor (FAS), TNF‐related
apoptosis‐inducing ligand (TRAIL), and caspase 3, as the main
causes of T cell depletion (34–36). Alterations in CD4+ T cell
population toward T helper-2 (Th)-2 phenotypes rather than
Th1 phenotypes have been found during pregnancy, which
contributes to the promotion of humoral immune responses
over cellular immune responses (37). There is also a balance
between regulatory T cell (Treg) and Th17 cells during
pregnancy; with a shift towards Tregs to ensure fetal-maternal
immune tolerance and to prevent fetal allograft rejection (38). In
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terms of innate immune cells, evidence suggests that, while
absolute peripheral blood monocyte counts are not
significantly different between patients with severe COVID-19
and those with moderate disease, the activation status of the
monocyte/macrophage system is significantly altered (39). It was
shown that monocyte/macrophage alterations caused by SARS-
CoV-2 infection are similar to a condition known as familial
hemophagocytic lymphohistiocytosis (HLH), a systemic
inflammatory disorder involving cytokine production and
cytopenia (40–42). HLH can be triggered either by
abnormalities in genes regulating NK and cytotoxic CD8+ T
cell degranulation or by conditions such as autoimmune disease,
malignancy, and viral infection (40, 41). It was found that
patients with H1N1 influenza who experienced the ‘cytokine
storm,’ characterized by the extreme and excessive immune and
inflammatory response (43), had mutations in genes associated
with HLH (44). Many studies, however, do not support the link
between HLH and COVID-19 (45–47). Wood et al., found that
only three of 40 COVID-19 patients had Hscores >169, the cut-
off used to identify HLH (47). Several studies have reported
widespread infiltration of monocytes/macrophages in the lung
tissue samples taken from COVID-19 patients (35, 48, 49).
Single-cell studies revealed that monocyte-derived FCN1+
macrophages were the most abundant macrophage subset
found in BALF samples from severe COVID-19 patients (35).
Furthermore, it was discovered that peripheral monocyte
trafficking and subsequent differentiation into macrophages in
the lungs of COVID-19 patients contributes to pro-
inflammatory responses and further activation of innate
immune cells (49). Changes in the innate immune system
during pregnancy, also, involve the pattern recognition
receptors Toll-like receptors (TLRs), in particular TLR4 (50,
51). There are three different levels of TLR4 activation during
pregnancy. First, TLR4 activation and the inflammatory response
rise during the first trimester, allowing blastocyst implantation.
Following that, a decrease in TLR4 activation happens during the
second trimester in order to create an anti-inflammatory
response for fetal growth. Eventually, TLR4 activation and the
inflammatory response increase again in the third trimester to
support labor and delivery (52). Infection with COVID-19 leads
to pyroptosis of host cells and the release of danger associated
molecular patterns (DAMPs) that can act as ligands for TLR
molecules and trigger a greater inflammatory response (31).
Studies are needed to determine whether such changes in the
immune system result in higher susceptibility or are protective
against COVID-19 during pregnancy (31).

Expression of ACE2 and TMPRSS2 in
Placental and Fetal Cells
SARS-CoV-2 enters the body through the nasal passage and
infects pulmonary cells by binding to the receptor angiotensin-
converting enzyme 2 (ACE2) (31, 53–55). It has been found that
ACE2 expresses in respiratory and intestinal track, placenta,
ovaries, vagina, and uterus (56). Cell entry is further facilitated by
viral spike (S) protein priming induced by trans-membrane
serine protease 2 (TMPRSS2) (53–55). Cells co-expressing both
ACE2 and TMPRSS2 have been found to have a higher
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susceptibility to SARS-CoV-2 entry (57) (Figure 1). In addition,
furin, trypsin, and cathepsins B and L have been reported to be
capable of cleaving the spike glycoprotein binding at the S1/S2
site, allowing the virus to enter (53, 58, 59). ACE2 has been
shown to be expressed by fetal kidney, ilium, and rectal cells from
as early as 15 weeks, barely detectable at 15 weeks in the lungs
with undetected expression thereafter, and undetectable in the
cerebral ependymal, parenchymal and cardiac cells (60). It has
been found that only a proportion of cells which are located in
the fetal adrenal gland and the kidney co-expressed ACE2 and
TMPRSS2. It was discovered that placental cytotrophoblasts and
syncytiotrophoblasts (STBs) express ACE2 from 7 weeks
onward, suggesting that SARS-CoV-2 could cross into the
placenta at any gestational age (60). Investigation of ACE2 and
TMPRSS2 co-expression in the developing embryo up to day 14
(from surplus IVF human embryos) has revealed the co-
localization of these genes, raising concern to increased
susceptibility to SARS-CoV-2 fetal infection in the early stages
of embryonic development (61). To date, cohort studies of SARS-
CoV-2 positive mothers with mild symptoms or asymptomatic,
have reported no adverse effects to the mother or neonate
regardless of the timing of the infection (i.e. first versus third
trimester) (62, 63). However, women with severe SARS-CoV-2
infection that required critical care had higher odds of
complications, particularly a higher incidence of iatrogenic
pre-term delivery mostly due to fear of sudden maternal
decompensation (64).
TRANSPLACENTAL VIRAL
TRANSMISSION

The placenta offers a protective barrier that does not allow the
fetus to become exposed to maternal infections (31). The human
placenta primarily consists of a number of specific fetal-derived
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cells called trophoblasts, of which there are three main types.
These include terminally differentiated multinuclear
syncytiotrophoblast cells, which are in direct contact with the
maternal blood and line the villus tree, progenitor villous
cytotrophoblast cells, which underlie the syncytiotrophoblast,
and invasive extravillous trophoblast (EVT) cells, which anchor
the chorionic villi to the uterus and modify its vasculature
(Figure 2) (31). Various potential causes may play a role in the
vertical transmission of the virus from the mother to the fetus.
These include direct damage to the villous tree with a break in the
protective syncytiotrophoblast layer, which could be caused by
virus-induced apoptosis and vascular damage in the placenta,
spread through the virus-infected maternal endothelium to the
extravillous trophoblast, trafficking of infected maternal immune
cells throughout the syncytiotrophoblast, paracellular or
transcellular transport (for example, immunoglobulin-mediated
transcytosis) into fetal capillaries, transmission via swallowed or
aspirated amniotic fluid (65, 66), as well as ascending infection
from the vagina (Figure 3) (31). To define the possibility of
vertical transmission of SARS-CoV-2 infection in different
studies, a classification system has been proposed by a
multidisciplinary team of the WHO (68). Given the timing of
vertical transmission, in utero, intrapartum, and early postnatal
period, four possibilities exist: confirmed, possible, unlikely, and
indeterminate (68). Vertical transmission is considered
“possible” if evidence suggests it but cannot confirm infection.
However, if there is poor support of diagnosis, but vertical
transmission cannot be completely ruled out, this is considered
as “unlikely”. The “indeterminate” possibility is when the tests
required to define the classification have not been performed
(68). Recent findings confirming the presence of SARS-CoV-2
mRNA or virions in syncytiotrophoblasts have strongly
suggested transplacental infection caused by the SARS-CoV-2
(69, 70). Nonetheless, given that the presence of SARS-CoV-2 in
the blood sample of COVID-19 patients is reported to be around
FIGURE 1 | Features, entry methods, and replication of SARS-CoV-2.
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1%, therefore the likelihood of SARS-CoV-2 being able to
directly infect syncytiotrophoblasts is low (71). Another
alternative way of transmitting SARS-CoV-2 infection to the
neonate is through the vagina during childbirth (72, 73).

Whilst the possibility of transmitting SARS-CoV-2 from
mother to fetus during pregnancy is suggested, the role of the
placenta in infection with the virus has not yet been fully
understood. However, evidence suggests that pathogens can
overcome this barrier, infect the fetus, and even cause serious
complications in newborns, such as microcephaly and ocular
abnormalities (74). Such pathogens include Cytomegalovirus
(CMV), herpes simplex virus (HSV), varicella-zoster virus, and
Zika virus (ZIKV) (20, 75–77). It is currently unclear whether
neonates who tested positive for SARS-CoV-2 have been infected
with the virus from their mothers during pregnancy or have been
infected during labor or after birth. (Table 1). Evidence based on
infant antibody tests suggests vertical transmission of the virus
Frontiers in Immunology | www.frontiersin.org 411
may be possible. It was discovered that infants born to women
infected with SARS-CoV-2 had higher immunoglobulin (Ig)G
and IgM levels for SARS-CoV-2 (31, 89, 90). The presence of IgG
in the fetus may indicate the transfer of this immunoglobulin
from the mother to the fetus during pregnancy, but the presence
of IgM indicates that the fetus has produced and secreted this
immunoglobulin in response to viral infection because in
contrast to IgG, IgM is unable to cross the placenta due to its
higher molecular weight (89, 90).
BIOMARKERS OF SARS-CoV-2
INFECTION

Several studies have employed single cell RNA sequencing
(scRNA-seq) to gain an understanding of the molecular
features of SARS-CoV-2 infection (91–95). In a study by
FIGURE 2 | The maternal-fetal interface.
FIGURE 3 | Possible mechanisms of transplacental transmission. There are several potential mechanisms involved in the virus’s vertical transmission from mother to
fetus. (1) Infection caused by direct villous tree damage. (2) Infection through the maternal endothelium to the extravillous trophoblast. (3) Infection caused by maternal
immune cell trafficking and transcellular transport. (4) Infection through the vagina. Adapted from (67).
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TABLE 1 | Systematic review and meta-analysis studies on COVID-19 infection during pregnancy.

Publication name Number of
pregnant

women with
COVID-19

Findings Conclusion

Vertical transmission of coronavirus disease
2019: a systematic review and meta-
analysis (78)

NM • SARS-CoV-2 RNA positivity was as
follows

• 0% (0/51) in amniotic fluid
• 0% (0/17) in urine
• 3.6% (1/28) in the cord blood
• 7.7% (2/26) by placental sample analysis
• 9.7% (3/31) by rectal or anal swab

• Vertical transmission of SARS-CoV-2 is possible but the
likelihood of its occurrence is low

• The rate of SARS-CoV-2 infection is almost similar to
other pathogens causing congenital infections

Clinical outcomes of 201 neonates born to
mothers with COVID-19: a systematic
review (79)

223 • Fetal death was reported in two cases
• Preterm birth was reported in 48 of

185 newborns
• Birth asphyxia was reported in 1.8% of

neonates
• Respiratory distress syndrome

was reported in 6.4% of neonates

• SARS-CoV-2 infection during pregnancy rarely affects
fetal and neonatal mortality

• SARS-CoV-2 infection during pregnancy can affect the
fetal and neonatal morbidity

Maternal clinical characteristics and
perinatal outcomes among pregnant
women with coronavirus disease 2019. A
systematic review (80)

322 • Premature birth was reported as the
main adverse obstetric outcome in
pregnant women

• SARS-CoV-2 infection was not reported
in samples, including breast milk,
amniotic fluid, placenta or umbilical cord
blood

• The study did not support the possibility of vertical
transmission of SARS-CoV-2 in the third trimester

Clinical characteristics and outcomes of
pregnant women with COVID-19 and the
risk of vertical transmission: a systematic
review (81)

230 • Premature birth was reported in 24.74%
(24 out of 97) of newborns

• SARS-CoV-2 infection was not reported
in samples, including vaginal secretions,
breast milk, amniotic fluid, placental
blood, and placental tissues

• 3.9% (5 out of 128) of newborns tested
positive for SARS-CoV-2 RNA

• The main adverse event for newborn was premature
delivery

Clinical characteristics and outcomes of
pregnant women with COVID-19 and
comparison with control patients: A
systematic review and meta-analysis (82)

10,000 • Preterm birth was more common in
pregnant women with COVID-19 than
pregnant women without COVID-19

• The rate of vertical transmission was
5.3%

• The rate of SARS-CoV-2 infection in
neonates born to mothers with COVID-
19 was 8%

• The higher likelihood of preterm birth in pregnant
women with COVID-19 compared to pregnant women
without COVID-19 may suggest a possible link between
COVID-19 infection and pregnancy complications

Clinical Characteristics and Neonatal
Outcomes of Pregnant Patients With
COVID-19: A Systematic Review (83)

235 • SARS-CoV-2 infection was not reported
in samples, including breast milk,
amniotic fluid, and neonatal throat swab

• Preeclampsia and premature delivery
were reported as the major
complications in pregnant women with
COVID-19

• The study did not support the possibility of vertical
transmission of SARS-CoV-2 infection, however it
mentioned that the vertical transmission cannot be
ignored

Pregnancy and Breastfeeding During
COVID-19 Pandemic: A Systematic Review
of Published Pregnancy Cases (84)

3,985 • Preterm birth was recorder in 23% of
cases

• SARS-CoV-2 infection was reported in
samples, including amniotic fluid,
breast milk, placenta, and cord blood,
from pregnant women with COVID-19

• 61 newborns were found to be tested
positive for SARS-CoV-2

• The study suggested that vertical transmission of SARS-
CoV-2 is possible

COVID-19 (SARS-CoV-2) Infection in
Pregnancy: A Systematic Review (85)

156 • Intrauterine/fetal distress and premature
rupture of membranes were reported as
the most common maternal/fetal
complications

• The study suggested that COVID-19 infection may
increase the risk of preterm birth and maternal death

• The study did not support the possibility of vertical
transmission of SARS-CoV-2 infection

Maternal and perinatal outcomes with
COVID-19: A systematic review of 108
pregnancies (17)

108 • Maternal intensive care unit
(ICU) admission was reported

• The study mentioned that the vertical transmission
cannot be ruled out

(Continued)
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Lu et al., which compared ACE2 and TMPRSS2 gene expression
between fetal, placental tissues and adult tissues, a small
proportion of trophoblast cells, as well as various fetal organs
such as the heart, kidney, stomach, and adrenal glands, had
ACE2 expression. The study showed that only the kidney and
adrenal gland expressed TMPRSS2 (96). Pique-Regi et al.
discovered that very few cells during any of the three
trimesters expressed both ACE2 and TMPRSS2. Using single-
nuclear RNAseq (snRNA-seq), it has been shown that the
placenta is unlikely to express ACE2 and TMPRSS2, and thus
be infected by SARS-CoV-2 (59). Using scRNA-seq data, Ashary
et al., identified only a small proportion of STB in the first trimester
and EVT in the second trimester had ACE2 and TMPRSS2
expression. The ACE2+TMPRSS2+STBs were highly differentiated
and expressed genes engaged in mitochondrial metabolism and
glucose transport. In addition, the ACE2+TMPRSS2+EVTs were
found to have endovascular trophoblast markers. The researchers
found that these cells could be the targets of SARS-CoV-2 entry
(97). Moreover, robust immune responses at the maternal-fetal
Frontiers in Immunology | www.frontiersin.org 613
interface of SARS-CoV-2-infected women was discovered (98).
Researchers found overexpression of interferon-related genes, and
increased activation of NK cells and T cells (98–100). Also, it was
found that there was an association between SARS-CoV-2 infection
and local immune responses at the maternal-fetal interface (98). in a
study by Nagy et al, the impact of mutations in SARS-CoV-2 viral
genes on clinical outcomes was explored. The study found that
mutations in the nucleocapsid phosphoprotein-N, nonstructural
proteins-4 (NSP4), NSP6, Open Reading Frame-3a (ORF3a), and
ORF8 were associated with mild outcome, while mutations in NSP7
were linked to severe disease (101).

The identification of new biomarkers and prevention
strategies requires the fundamental understanding and control
of how SARS-CoV-2 spreads to the lungs and elicits a multi-
organ inflammatory response. (Table 2). These infection
processes rely on their location and spatial context: which cells
in which tissue locations are most susceptible to infection (105),
infected cell-to-uninfected cell associations, and biochemical
factor release of different cell types in response to infection
TABLE 1 | Continued

Publication name Number of
pregnant

women with
COVID-19

Findings Conclusion

• One case of intrauterine fetal death
and one case of neonatal case was
reported

COVID-19 in Pregnant Women and
Neonates: A Systematic Review of the
Literature with Quality Assessment of the
Studies (86)

275 • Preterm birth was recorded in 28% of
cases

• 2 stillbirths were reported
• 16 out of 248 neonates were tested

positive for SARS-CoV-2 RNA, of
which 9 of them were born to mothers
with COVID-19

• SARS-CoV-2 infection was not reported
in samples, including amniotic fluid,
vaginal/cervical fluids, breast milk, and
placental tissue

• The study mentioned that the vertical transmission is
unlikely but it cannot be ruled out

Maternal Coronavirus Infections and
Neonates Born to Mothers with SARS-CoV-
2: A Systematic Review (87)

1457 • 64 cases of premature birth
were reported

• 16 cases of intrauterine fetal death or
neonatal death were reported

• 15 cases of maternal death were reported
• 7 cases of miscarriage were reported
• 19 cases of decreased fetal movements

were reported
• 5 cases of severe neonatal asphyxia

were reported
• 39 out of 1042 newborns were tested

positive for SARS-CoV-2 infection
• SARS-CoV-2 infection was reported in

samples, including breast milk and
placenta

• The study suggested that COVID-19 infection can be
associated with maternal, fetal, and neonatal
complications

• The study mentioned that the vertical transmission
cannot be ruled out

Vertical transmission of SARS CoV-2: a
systematic review (88)

714 • 17 out of 606 neonates were tested
positive for SARS-CoV-2 RNA

• SARS-CoV-2 infection was reported in
samples, including amniotic fluid,
placenta and breast milk

• Possible vertical transmission of SARS-CoV-2 has been
reported in some studies
NM, not mentioned; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; COVID-19, coronavirus disease 2019.
September 2021 | Volume 12 | Article 743022

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rad et al. Effects of COVID-19 on Placenta
(106). These spatiotemporal relationships in the inflammatory
cascade give rise to positive or negative prognoses, and their
understanding can triage patients at greater or lesser risks of
infection, of response to infection, and inform new therapeutics
and treatment regimens (107). Spatial immunoprofiling is
rapidly advancing due to several recent technologies: advanced
instrumentation, molecular barcoding and immunolabelling,
providing a much richer portrait of the immune landscape
(108), and recent approaches in biostatics and theoretical
biology are incorporating imaging data to deconstruct the
relationships between cells and disease within their tissue
context (109–111). Spatial resolved transcriptomics are
changing the ways in which we interrogate complex tissues
and were voted the ‘Method of the Year 2020’ by the journal
Nature Methods (112). These technologies combine the benefits
in advancements in microscopy and advanced imaging, with
simultaneous read out of transcript and proteomic data, thereby
alleviating the challenges associated with single cell or bulk
profiling. The maintenance of spatial context is key in
understanding the underlying cellular profiles, biology,
specialization and tissue organization and has begun shedding
light into consortia studies such as the Human Cell Atlas. A
number of technologies currently exist for RNA applications:
Nanostring GeoMX Digital Spatial Profiler (DSP), 10x Genomics
Visium, MERFISH and proteomic: Nanostring GeoMX DSP,
Akoya Biosciences CODEX, Imaging Mass spectrometry (IMC)
(113). Recent application of these methodologies to COVID-19
autopsy tissue studies from lungs, kidney, liver and heart tissue
has provided deep insights into cell types and genes implicated
with severe COVID-19 disease severity (114).

Once region- or cell-specific spatial information is derived
from histology sections, statistical relationships between cells and
tissues and mathematical predictions of their future behavior
with or without treatment are often sought. There exist
numerous tools to detect and segment single cell locations
from this spatial information. While open-source ImageJ,
developed in 1987, remains popular for microscopic image
analysis (115–117), more recent software such as CellProfiler,
Icy, ilastik, and QuPath provide user-friendly interfaces for the
development of bioimage analysis macroscripts (118, 119). Once
single-cell data can be derived, spatial relationships can be
determined. The most common of which is intercellular
clustering or associations, often calculated as cell density
within concentric circles away from each cell’s center and
averaged across all imaged cells (120). For instance, to
characterize the distribution of SARS-CoV-2 bodies from
macrophages or monocytes or tissue structures to estimate
inflammatory progression (121).
Frontiers in Immunology | www.frontiersin.org 714
CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Taking into account the changing physiology and immune responses
during gestation, pregnant women are more susceptible to
developing severe COVID-19, which can lead to pregnancy-related
complications. There is limited information for the association of
COVID-19 and its direct complications to the growing fetus during
pregnancy. These may include preterm birth, stillbirth, or long-term
complications for the newborn (122). A study conducted on 827
pregnant women, who have been given the COVID-19 mRNA
vaccine, found that the proportion of adverse pregnancy and
neonatal outcomes were similar to incidence reported in similar
studies conducted prior to the pandemic (123). Furthermore,
vaccination of pregnant women has been shown to result in
maternal IgG production 5 days after the first dose of vaccination,
aswell as the transplacental transfer of IgG 16 days after thefirst dose
of vaccination (124). However, longitudinal follow-up is needed to
monitor those who are vaccinated, especially during the first
trimester, in order to be informed about maternal, pregnancy, and
neonatal outcomes. Another important consideration with COVID-
19 infection during pregnancy is that current diagnostic tests such as
X-ray andCT scans cannot be performed in pregnant women due to
potential risks to the growing fetus (125). These factorsmay therefore
delay the diagnosis and treatment of pregnant women, particularly
those with more severe symptoms.

These factors may therefore delay the diagnosis and treatment
of pregnant women, particularly those with more severe
symptoms. Screening tests may be helpful in this respect
because of the possibility of transmitting the virus from the
mother to the fetus. Understanding the disease progression and
its relationship to manifestation severity is necessary to
therapeutically intervene and reduce the associated morbidity.
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Background: Data regarding symptoms in the lactating mother-infant dyad and their
immune response to COVID-19 mRNA vaccination during lactation are needed to inform
vaccination guidelines.

Methods: From a prospective cohort of 50 lactating individuals who received mRNA-
based vaccines for COVID-19 (mRNA-1273 and BNT162b2), blood and milk samples
were collected prior to first vaccination dose, immediately prior to 2nd dose, and 4-10
weeks after 2nd dose. Symptoms in mother and infant were assessed by detailed
questionnaires. Anti-SARS-CoV-2 antibody levels in blood and milk were measured by
Pylon 3D automated immunoassay and ELISA. In addition, vaccine-related PEGylated
proteins in milk were measured by ELISA. Blood samples were collected from a subset of
infants whose mothers received the vaccine during lactation (4-15 weeks after mothers’
2nd dose).

Results: No severe maternal or infant adverse events were reported in this cohort. Two
mothers and two infants were diagnosed with COVID-19 during the study period before
achieving full immune response. PEGylated proteins were not found at significant levels in
milk after vaccination. After vaccination, levels of anti-SARS-CoV-2 IgG and IgM
significantly increased in maternal plasma and there was significant transfer of anti-
SARS-CoV-2-Receptor Binding Domain (anti-RBD) IgA and IgG antibodies to milk. Milk
IgA levels after the 2nd dose were negatively associated with infant age. Anti-SARS-CoV-2
org November 2021 | Volume 12 | Article 777103119

https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Stephanie.Gaw@ucsf.edu
https://doi.org/10.3389/fimmu.2021.777103
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.777103
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.777103&domain=pdf&date_stamp=2021-11-03


Golan et al. COVID-19 mRNA Vaccination in Lactation

Frontiers in Immunology | www.frontiersin.
IgG antibodies were not detected in the plasma of infants whose mothers were vaccinated
during lactation.

Conclusions: COVID-19 mRNA vaccines generate robust immune responses in plasma
and milk of lactating individuals without severe adverse events reported.
Keywords: COVID-19, SARS-CoV-2, lactation, antibodies, breastfeeding, human milk, mRNA vaccine,
passive immunity
INTRODUCTION

An important benefit of human milk is the presence of IgA and
IgG antibodies that provide passive immunity to the infant (1, 2).
Anti-SARS-CoV-2 antibodies are present in milk from lactating
women who were infected with SARS-CoV-2 (3, 4) or who
received COVID-19 mRNA vaccines (5–14). Specifically, high
titers of anti-SARS-CoV-2 IgG were reported after vaccination
(6). In addition, IgG levels in milk were higher after vaccination
compared to convalescent samples after SARS-CoV-2 infection
(6, 14). The function of these antibodies in protection of infants
against COVID-19 is not fully understood. In addition, it has
recently been shown in a few studies that vaccines mRNA
components are not present in milk samples after vaccination
(15, 16), or were only detected in very low levels in some cases
(14), providing reassurance that risks of exposure to the breastfed
infant are minimal. Even though the infant receives passive
immune protection from milk antibodies after vaccination,
there is still significant hesitancy in the lactating population.
Much of the concern is due to the lack of knowledge about the
effect of mRNA-based vaccines on the nursing infant, as lactating
mothers were excluded from initial clinical trials of mRNA
vaccination (17). More studies that follow up on breastfeeding
individuals and their infants after vaccination are needed to
address concerns regarding the potential effects on infants, in
order to prevent further delays in vaccination or early cessation
of breastfeeding (18). In this study, we examined blood and milk
samples from lactating mothers who received a COVID-19
mRNA vaccine, and their infants for the presence of anti-
SARS-CoV2 antibodies and milk samples for the presence of
PEGylated proteins which are part of the mRNA-based vaccines
lipid nano-particles. In addition, we examine self-reported
vaccine-related symptoms in order to address the gap of
knowledge regarding vaccination efficacy and safety
during lactation.
METHODS

Study Approval and Study Population
The institutional review board of the University of California San
Francisco approved the study. Written, informed consent was
obtained from all study volunteers in the COVID-19 Vaccine in
Pregnancy and Lactation (COVIPAL) cohort study from
December 2020 to June 2021. Eligible participants were
org 220
actively lactating, planning to receive any COVID-19 vaccine,
and willing to donate blood and/or milk samples.

Clinical Data Collection
Clinical data on vaccine side effects were collected through an
online questionnaire that was sent to participants 21 days or
more after each vaccine administration. Questionnaires were
distributed using REDCap.

Sample Collection
Maternal blood and milk samples were collected at three time
points: 1) up to 1 day before the 1st dose (pre-vaccine); 2) on the
day of and prior to administration of the 2nd dose (after 1st
dose); and between 4-10 weeks after the 2nd dose (after 2nd
dose). In some cases, additional milk samples were collected up
to 31 days before the 1st dose, 24 hours after each dose, and
weekly for up to 4 weeks after the 2nd dose. Infant blood was
collected by heel stick by trained study staff at 5-15 weeks after
2nd maternal vaccination.

Milk Processing
Fresh human milk samples were self-collected by participants
into sterile containers at several time points before, during, and
after vaccination. Milk samples were either collected immediately
by the study staff or frozen by mothers in their home freezer as
soon as possible after pumping. Samples were kept on ice during
transport from home to the lab for processing. Milk was
aliquoted and stored in -80°C until analyzed.

Measurement of SARS-CoV-2 Specific
IgM and IgG in Plasma Samples
Whole blood was collected into tubes containing EDTA. Plasma
was isolated from whole blood by centrifugation and
immediately cryopreserved at -80°C until analysis. Anti-SARS-
CoV-2 plasma IgM and IgG antibodies were measured using the
Pylon 3D automated immunoassay system (19) (ET Healthcare,
Palo Alto, CA). In brief, quartz glass probes pre-coated with
either affinity-purified goat anti-human IgM (IgM capture) or
Protein G (IgG capture) were dipped into diluted plasma
samples, washed, and then dipped into the assay reagent
containing both biotinylated, recombinant spike protein
receptor binding domain (RBD) and nucleocapsid protein
(NP). After washing, the probes were incubated with Cy®5-
streptavidin (Cy5-SA) polysaccharide conjugate reagent,
allowing for cyclic amplification of the fluorescence signal. The
background-corrected signal of SARS-CoV-2 specific antibodies
November 2021 | Volume 12 | Article 777103
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was reported as relative fluorescent units (RFU). IgM and IgG
measurements greater than 50 RFU were considered
positive RFUs.

Measurement of IgA and IgG by ELISA
Assay in Milk
After thawing, milk fat was separated by cold centrifugation
(10,000g for 10 min, 4°C). Milk supernatant samples were
diluted 1:2 in sample diluent buffer and were plated in
duplicate on a 96-well plate containing S1 spike protein RBD
(Ray-Biotech, GA, USA, IEQ-CoVS1RBD-IgG-1 and IEQ-
CoVS1RBD-IgA-1). For monomeric IgA assays, samples were
also plated in duplicate on a second 96-well plate coated with
human albumin to account for non-specific binding. OD values
for albumin were subtracted from the OD values for RBD. Each
plate contained seven wells of serial dilutions (1:3) of a positive
control from an inactivated serum sample which contains SARS-
COV-2 S1 RBD protein human IgA antibody (provided with the
kit) and one blank negative control. The mean absorbance of
each sample was captured on an ELISA plate reader at 450 nm.
Background values (blank negative control) were subtracted
from the albumin and RBD plates. Standard controls were
used to create a standard curve and determine the level of
anti-RBD IgA and IgG in unit/ml.

Measurement of Polyethylene Glycol (PEGylated) proteins in
human milk by ELISA.Milk supernatant was diluted 1:8 with the
provided sample buffer and analyzed by PEGylated protein
ELISA kit (Enzo, Farmingdale, NY, USA). Seven wells of each
plate were loaded with serial dilutions (1:2) of mRNA-1273 or
BNT162b2 to generate the standard curve for each vaccine
(Figure S1A). The PEGylated Protein ELISA kit is a
competitive assay specific to the backbone of PEG. Samples
and controls were loaded on plates pre-coated with
monoclonal antibody to PEG which binds in a competitive
manner the PEG or PEGylated protein in the sample, or the
PEG covalently linked to biotin which is mixed and incubated
together with the tested samples. Due to the competitive assay,
the amount of signal (OD) is inversely proportional to the
concentration of PEG in the sample (Figure S1A). To ensure
the ability of the kit to detect the vaccine PEGylated components
in milk samples, mRNA-1273 or BNT162b2 vaccines were
separately inoculated into human milk samples at three
different concentrations (33µl/ml, 3.3µl/ml and 0.33µl/ml) and
were analyzed separately (Figure S1B). Prism 9 (v 9.1.2) was
used to interpolate PEGylated proteins concentration in the
samples based on OD values, using a sigmoidal, four
parameters logistic curve. Standard curve for mRNA-1273 or
BNT162b2 were used to analyze participant milk samples based
on the vaccine received. Of note, the assay measures all types of
PEGylated proteins (if present in the sample), and not only the
vaccine PEGylated proteins.

Statistics
All data analyses were conducted using Stata statistical software
(v14, College Station, TX). Descriptive statistics included
frequencies for categorical variables, and means, standard
Frontiers in Immunology | www.frontiersin.org 321
deviations, medians, and ranges for continuous variables.
Group differences in categorical variables were analyzed using
Fisher’s exact test, and group differences in continuous variables
were analyzed using Mann-Whiney U tests. McNemar tests were
used to evaluate differences in symptom frequencies after each
vaccine dose. Spearman correlation was used to assess the
magnitude of associations between continuous variables. Non-
parametric tests were used to accommodate non-normal
distributions and small group sizes.
RESULTS

Participant Characteristics
During the study period, 50 participants answered all study
questionnaires, provided blood and/or milk samples, had an
infant up to 18 months old were included in this analysis. Two
infants were diagnosed with COVID-19 during this study (Table
S1, infant of participants 1 and 2). One mother reported that her
infant had mild symptoms 1 week after the 2nd dose (not
exclusively breastfed); this infant’s vaccinated mother had a
negative test at the time of the infant’s positive PCR test. A
second infant (exclusively breastfed) had positive plasma anti-
SARS-CoV-2 IgG and IgA, despite the mother receiving the
vaccine postpartum and reported no known prior COVID-19
infection. The mother’s plasma was subsequently found to be
positive to antibodies against SARS-CoV-2 nucleocapsid protein,
indicating a likely natural asymptomatic SARS-CoV-2 infection
(further details in Table S1). Two mothers were positive for
COVID-19 and are presented in Table S1 (participants 2 and 3);
they were excluded from further analysis of symptomatology.
Cohort characteristics are presented in Table 1. Twenty-seven
female participants [mean age 35.7 years (± 3.9)] received the
BNT162b2 vaccine (Pfizer, 56%), and 21 received the mRNA-
1237 (Moderna, 44%). The mean infant age at mother’s 1st dose
was 5 months (± 3.9). All mothers continued to feed their infants
with milk at the time of the 2nd vaccination, and all except one
continued up to the time of follow up sample collection (4-10
weeks after 2nd dose). There were no significant differences in
maternal or infant characteristics by vaccine manufacturer.

Post Vaccination Symptoms
Self-reported symptoms after each vaccine dose are presented in
Table 2. Fever, chills, headache, joint pain, muscle aches or body
aches, and fatigue or tiredness were reported by significantly
more participants after the 2nd dose than after the 1st dose
(Table 2). All 21 participants (100%) who received the mRNA-
1237 vaccine reported injection site symptoms, while only 21
(78%) of 27 BNT-162b2 recipients reported injection site
symptoms (p=0.02) (Table 2). Two mothers reported slightly
less milk production in the first 24-72 hours after vaccine doses
(Table 2). With respect to infant symptoms, 12% of mothers
reported at least one symptom after the 1st maternal vaccine
dose (primarily gastrointestinal symptoms and sleep changes),
and none reported an infant symptom after the 2nd dose
November 2021 | Volume 12 | Article 777103
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(Table 3). In summary, no severe adverse events (death, life
threatening, hospitalization, disability) for mothers or nursing
infants were reported in this cohort after vaccination, and
reported symptoms resolved up to 72 hours after vaccination.

PEG Detection in Human Milk
Polyethylene glycol (PEG) is present in the lipid nanoparticles of
the mRNA-based vaccines, and was reported to cause allergic
reaction after vaccination in rare cases (20, 21). To address
concerns about vaccine components passing to milk after
vaccination, we performed ELISA assays to measure PEGylated
proteins levels in milk after vaccination from 13 participants.
PEGylated proteins were measured in milk samples collected
before the vaccine, and at various time points post-vaccination
(from 24 hours after 1st dose to 2 weeks after 2nd dose). Pre-
Frontiers in Immunology | www.frontiersin.org 422
vaccine PEGylated proteins concentration did not significantly
differ from PEGylated proteins levels at any post-vaccine time
point in either paired or unpaired comparisons (Figure 1).

Anti-SARS-CoV-2 Antibody Levels in
Blood and Milk Samples After Vaccination
We analyzed blood and milk samples from lactating individuals for
anti-SARS-CoV-2 antibodies to measure immune response after
vaccination. Maternal blood anti-SARS-CoV-2 IgM and IgG
antibodies increased significantly after the 1st dose (Figure 2).
Anti-SARS-CoV-2 IgM levels were not significantly higher 4-10
weeks after the 2nd dose compared to samples collected after dose 1
(on the day of the 2nd dose) (Figures 2A, B). In contrast, anti-
SARS-CoV-2 IgG levels increased significantly after the 2nd dose
(P value <0.0001) when compared to samples collected
TABLE 1 | Sample characteristics overall and by vaccine manufacturer.

Sample Characteristics Full Cohort (n = 48, 100%) BNT162b2 (n = 27, 56%) mRNA-1237 (n = 21, 44%)

Maternal characteristics
Maternal age, years
Median (min, max) 35 (27, 46) 35 (30, 45) 35 (27, 46)

Race/ethnicity, % (n)
Asian 31% (15) 30% (8) 33% (7)
Black or African American 2% (1) 4% (1) 0% (0)
White/Caucasian 59% (28) 55% (15) 62% (13)
Other (Middle Eastern) 2% (1) 0% (0) 5% (1)
More than 1 race/ethnicity (White+Latina/Asian/Middle Eastern) 6% (3) 11% (3) 0% (0)

Highest level of education completed
Some college 2% (1) 0% (0) 5% (1)
College graduate 17% (8) 19% (5) 14% (3)
Advanced degree 81% (39) 81% (22) 81% (17)

Work in health care?
Yes, providing direct patient care 58% (28) 52% (14) 67% (14)
Yes, but not in direct patient care 19% (9) 15% (4) 24% (5)
No 23% (11) 33% (9) 9% (2)

Pre-Pregnancy Body Mass Index
Median (min, max) 23.4 (19.1, 37.5) 23.4 (19.1, 35.9) 22.8 (19.6, 37.5)

Number of children
1 40% (19) 41% (11) 38% (8)
2 46% (22) 41% (11) 52% (11)
3 12% (6) 15% (4) 10% (2)
4 2% (1) 3% (1) 0% (0)

Duration of most recent pregnancy, weeks
Median (min, max) 39.0 (33.9, 41.1) 39.1 (33.9, 41.0) 39.0 (37.4, 41.1)

Infant characteristics
Infant age at maternal 1st dose, months
Median (min, max) 4.7 (0.1, 17.2) 4.8 (0.2, 15.2) 4.6 (0.1, 17.2)

Sex, % (n)
Male 60% (29) 67% (18) 52% (11)
Female 40% (19) 33% (9) 48% (10)

Exclusively breastfeeding (and no solids)
Yes 23% (11) 22% (6) 24% (5)
No 77% (37) 78% (21) 76% (16)

Days after vaccine that symptoms were assessed
Dose 1
Mean (SD) 78.7 (31.8) 78.3 (35.4) 79.2 (27.4)
Median (min, max) 81 (18, 154] 78 (18, 154) 86 (26, 117)

Dose 2
Mean (SD) 59.6 (25.1) 62.6 (28.3) 55.8 (20.2)
Median (min, max) 58.5 (28, 133) 57 (29, 133) 60 (28, 89)
November 2021 |
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immediately prior to the 2nd dose (Figures 2C, D). There was no
significant difference in blood antibody levels between participants
who received the mRNA-1237 compared to the BNT-162b2
vaccine after dose 2 (determined by unpaired Mann-Whitney test).

We found significantly higher levels of IgA antibodies specific
to SARS-CoV-2 RBD protein in human milk samples collected
after the 1st dose of both BNT-162b2 and mRNA-1237 vaccines
(Figures 3A, B). There was no significant increase in milk anti-
RBD IgA after the 2nd vaccination as compared to after dose 1
(Figures 3A, B). Twelve individuals (25%, BNT-162b2 n=7;
Frontiers in Immunology | www.frontiersin.org 523
mRNA-1237 n=5) did not have detectable levels of anti-RBD
IgA after either the 1st or 2nd dose (infants age at 1st dose range
1-11 months). Milk anti-RBD IgG levels increased after the 1st
dose of vaccine and increased further after the 2nd dose
(Figures 3C, D). There were no significant differences in milk
anti-RBD IgG levels between women who received BNT-162b2
(Figure 3C) and mRNA-1237 (Figure 3D). These findings
suggest that mRNA vaccine results in a robust immune
response leading to increased anti SARS-CoV-2 antibody levels
in blood, but also in milk during lactation.
TABLE 3 | Infant symptoms reported after maternal vaccination (write-in only).

INFANT SYMPTOMS % (n) Vaccine

After 1st vaccine dose
None/no changes/blank 88% (42)
“My baby seemed a little tired.” 2% (1) BNT162b2
“He started pooping a lot! And it was more sour smelling diarrhea like poops. I don’t know if there is any correlation” 2% (1) BNT162b2
“It could have been a fluke, but both my infant and I slept through the night for the first time the night after I received the 1st dose of the
vaccine.”

2% (1) BNT162b2

“He had some diaper rash, but likely unrelated” 2% (1) BNT162b2
“Rash on the face/worsening of baby acne” 2% (1) mRNA-

1237
“Disrupted sleep, waking at night when he usually doesn’t. More fussy than normal.” 2% (1) mRNA-

1237
After 2nd vaccine dose
None/no changes/blank 100%

(48)
November 2021 | Volu
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TABLE 2 | Symptoms after each vaccine dose.

Symptoms Full Cohort: After 1st dose After 2nd dose

1st dose 2nd dose p-valuea BNT162b2 mRNA-1237 p-valueb BNT162b2 mRNA-1237 p-valueb

n = 48 n = 27 n = 21 n = 27 n = 21

Injection site symptoms, % (n)
Any injection site symptoms 88% (42) 88% (42) >0.99 78% (21) 100% (21) 0.02 78% (21) 100% (21) .02
Pain 88% (42) 85% (41) 0.71 78% (21) 100% (21) 0.02 78% (21) 95% (20) 0.12
Redness 4% (2) 10% (5) 0.08 0% (0) 10% (2) 0.19 4% (1) 19% (4) 0.15
Swelling 17% (8) 17% (8) >0.99 7% (2) 29% (6) 0.12 11% (3) 24% (5) 0.27
Itching 4% (2) 4% (2) >0.99 4% (1) 5% (1) >.99 4% (1) 5% (1) >.99
Rash around injection site 2% (1) 4% (2) 0.32 0% (0) 5% (1) 0.44 0% (0) 10% (2) 0.19

Generalized symptoms, % (n)
Any general symptoms 48% (23) 92% (44) <0.001 44% (12) 52% (11) 0.77 85% (23) 100% (21) 0.12
Fever 12% (6) 62% (30) <0.001 19% (5) 5% (1) 0.21 52% (14) 76% (16) 0.13
Chills 8% (4) 48% (23) <0.001 11% (3) 5% (1) 0.62 37% (10) 62% (13) 0.14
Headache 21% (10) 67% (32) <0.001 11% (3) 33% (7) 0.08 56% (15) 81% (17) 0.07
Joint pain 8% (4) 31% (15) 0.002 7% (2) 10% (2) >0.99 30% (8) 33% (7) >0.99
Muscle/body aches 21% (10) 69% (33) <0.001 30% (8) 10% (2) 0.15 59% (16) 81% (17) 0.13
Fatigue or tiredness 44% (21) 81% (39) <0.001 41% (11) 48% (10) 0.77 67% (18) 100% (21) 0.003
Nausea 4% (2) 12% (6) 0.10 4% (1) 5% (1) >0.99 7% (2) 19% (4) 0.38
Vomiting 0% (0) 0% (0) — 0% (0) 0% (0) — 0% (0) 0% (0) —

Diarrhea 4% (2) 4% (2) >0.99 4% (1) 5% (1) >0.99 0% (0) 10% (2) 0.19
Abdominal pain 2% (1) 0% (0) 0.32 0% (0) 5% (1) 0.44 0% (0) 0% (0) —

Rash not near injection site 0% (0) 0% (0) — 0% (0) 0% (0) — 0% (0) 0% (0) —

Lump/swelling in breast (same side as injection) 0% (0) 2% (1) 0.32 0% (0) 0% (0) — 4% (1) 0% (0) >0.99
Lump/swelling in breast (opposite side as injection) 0% (0) 0% (0) — 0% (0) 0% (0) — 0% (0) 0% (0) —

Mastitis 2% (1) 0% (0) 0.32 0% (0) 5% (1) 0.44 0% (0) 0% (0) —

Decrease in milk supply 2% (1) 2% (1) >0.99 0% (0) 5% (1) 0.44 0% (0) 5% (1) 0.44
tic
aMcNemar’s test.
bFisher’s Exact test. Statistically significant values (p<0.05) are indicated in bold.
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FIGURE 1 | Detection of vaccine PEG in human milk samples. PEGylated protein concentration in each sample were interpolated based on vaccine standard curves
(Figure S1). No significant differences were observed between samples collected at any of the post vaccine (PV) time points and the pre-vaccine samples (paired
and unpaired two-tailed t-tests). Y axes represent time of sample collection, as hours (h) or weeks (w) Post vaccine 1 (PV 1), or Post vaccine 2 (PV 2).
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FIGURE 2 | Elevated levels of plasma anti-SARS-CoV2 antibodies in COVID-19 mRNA vaccinated lactating individuals. Anti-SARS-CoV2 IgM levels in plasma of
lactating individuals receiving BNT-162b2 (n=19) (A) and mRNA-1273 (n=13) (B) COVID-19 vaccines (RFU- relative fluorescent units, dashed line represents positive
cut-off >50 RFU). Anti-SARS-CoV2 IgG levels in plasma of lactating individuals receiving BNT-162b2 (C) and mRNA-1273 (D) COVID-19 vaccines. After 1st dose
samples were collected on the day of the second vaccine, and after 2nd dose samples were collect 4-10 weeks post 2nd dose. Asterisks represent p-values: *= p-
value <0.05, **= p-value <0.01, ***= <0.001, ****= <0.0001 as determined by unpaired Mann-Whitney test.
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Correlations Between Antibody
Levels, Participant Characteristics,
and Symptoms
To better understand the differences in antibody responses
between individuals in our cohort, we performed multiple
correlation tests to determine whether IgG and IgA antibodies
levels correlated with timing of sample collection after
vaccination (range 4-10 weeks after 2nd dose), infant age at
time of vaccination, or maternal BMI (Table S2). Milk IgA (but
not IgG) levels measured after the second dose declined
significantly as the infant age at time of vaccination increased
(Figures 4A, B). There was no significant correlation between
IgG and IgA levels and either the length of time after 2nd dose or
maternal BMI (Tables S2, S3). The levels of IgG and IgA
antibodies induced in milk were significantly correlated after
1st dose (Figure 4C), but not after the 2nd dose (Figure 4D).
There was no correlation between the anti-SARS-CoV-2 IgG
levels in blood and milk after 1st dose (Figure 4E), but there was
a positive correlation between levels at 4-10 weeks after 2nd
dose (Figure 4F).
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Plasma Levels of Anti-SARS-CoV-2 IgG
Are Not Detectable in Infants After
Maternal Vaccination During Lactation
Although maternal IgG antibodies have been shown in multiple
studies to transfer to the infant in utero, existing data suggests
that milk-derived antibodies are not transferred to the infant
blood circulation during breastfeeding (22, 23). To investigate
whether maternal vaccination during lactation triggers infant
immune responses, we analyzed infant blood samples from a
subset of infants in our cohort (n=8). Blood samples were
collected from these 8 infants (4 male, 4 female) at 68 days to
1 year of age (Table S4). Plasma was tested for the presence of
anti-SARS-CoV-2 IgG and IgM and anti-RBD IgA. We evaluated
infant blood samples collected at time frame of 4-10 weeks after
2nd dose as this time point corresponded to high anti-SARS-
CoV-2 IgG levels in mothers’ blood and milk (Figures 2, 3). No
antibodies were detected in the blood of nursing infants born to
mothers who were vaccinated postpartum (Figure 5), despite
high IgG levels in maternal blood and milk. In contrast, infants
born to mothers who received both doses of vaccine during
A B
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FIGURE 3 | Elevated levels of milk anti-SARS-CoV2 IgA antibodies in COVID-19 mRNA vaccinated lactating individuals. Milk samples from individuals receiving
BNT-162b2 (n=27) (A) and mRNA-1273 (n=21) (B) COVID-19 vaccines were analyzed for anti-SARS-CoV2 IgA antibodies using ELISA at various time points as
indicated on the X axis. After 1st dose samples were collected on the day of the second vaccine, and after 2nd dose samples were collect 4-10 weeks post 2nd
dose. Milk anti-SARS-CoV2 IgG levels were measured using ELISA in milk samples from individuals receiving BNT-162b2 (n=27) (C) or mRNA-1273 (n=21) (D).
Asterisks represent p-values: *= p-value <0.05, **= p-value <0.01, ***= <0.001, ****= <0.0001 as determined by unpaired Mann-Whitney test. Dashed line represents
positive cut-off >100 U/ml.
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pregnancy had detectable plasma anti-SARS-CoV-2 IgG levels at
birth (24) and at follow-up (data not showed). None of the
follow-up infant blood samples had detectable levels of anti-RBD
IgA antibodies. These results demonstrate that vaccination
during lactation induces anti-SARS-CoV-2 antibodies in
human milk but does not lead to detectable immunity in the
infant, and does not provide additional transfer (or production)
of anti-SARS-CoV-2 antibodies to the infant blood, in contrast to
vaccination during pregnancy. Furthermore, maternal
vaccination does not appear to stimulate an immune response
in lactating infants, as expected.
Frontiers in Immunology | www.frontiersin.org 826
CONCLUSION

Our study provides a detailed report on patient symptoms and
antibody responses of the COVID-19 mRNA vaccines in
lactating mothers. We found that the rates of reported
symptoms were similar to the CDC report from the V-Safe
registry (25) but higher than described in the clinical trials (26,
27), although we do not have a non-lactating comparison group.
Comparing the mRNA vaccines made by current manufacturers,
we found that lactating individuals may experience more
vaccine-related side effects after mRNA-1237 compared to
A B
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FIGURE 4 | Correlations between milk antibodies, blood antibodies and infant age. Two-tailed Spearman correlation was used to correlate milk IgA (A) and IgG
(B) levels (Y axis) and infant age (X axis) 4-10 weeks after the 2nd dose administration (n=30). In addition, two-tailed Spearman correlation was used to correlate milk
IgG (Y axis) and milk IgA levels (X axis) on the day of 2nd dose administration (C), 21-28 days after 1st dose (n=35) and 4-10 weeks after 2nd dose (D). We also
tested correlation between milk (Y axis) and maternal plasma (X axis) IgG levels at day of 2nd dose (E) and 4-10 weeks after the 2nd dose administration (F) (n=30).
Semi-partial correlations were used to assess relationships between variables while controlling for the effects of other relevant variables.
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BNT-162b2 vaccine. These findings were in line with a report
from another survey-based cohort study (28). Although in some
studies, mRNA-1237 vaccine was shown to induce higher Spike
and RBD-specific IgA titters in blood (8), in our cohort we found
no significant differences in immune response between
those vaccines.

Importantly, no severe side effects were reported in the infants
of mothers vaccinated during breastfeeding. The reported
symptoms (primarily gastrointestinal symptoms, rash, and
sleep changes) were also reported in a larger cohort of
vaccinated lactation mothers in a relatively similar low
frequencies (28). However, both our study and the study by
McLaurin-Jiang et al, are missing a non-vaccinated control
group. The reported symptoms are common in lactating
infants and might not be directly related to vaccine
administration but to viral infection of other factors. For
example, a mother in our study (Table S1), mother 2 and her
baby were diagnosed with COVID-19 (based on serologic
testing), and she reported that the infant was “Less active.
Feverish” after the 2nd dose, but she didn’t report the SARS-
CoV-2 infection. Of note, we were able to confirm COVID-19
infection using anti-nucleocapsid antibody assay in this study;
however, in other survey-based studies cases of infection cannot
be ruled out, which may confound infant symptomatology
reporting and assessments of associations with vaccination,
rather than other mild viral infections. Further studies that
compare symptoms in infants of vaccinated and non-
vaccinated women are needed.

Our study found no significant increase in milk PEGylated
protein concentrations at various time points after vaccine
administration in a subset of samples analyzed in our cohort.
We did observe one sample with higher concentration of
PEGylated proteins 24 hours after 1st dose, compared to pre-
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vaccine sample (Figure 1, patient 9). This sample had PEGylated
protein levels equivalent to 2.8µl/ml vaccine. However, we
cannot confirm that the increased PEG in this single sample
was from the COVID-19 vaccine, as PEG exposure may also be
from other sources, such laxatives or ibuprofen. There was no
increase in protein PEGylation concentration after 2nd dose in
the same individual, and no unusual symptoms were reported in
either the mother or her infant. These results demonstrate in a
small cohort, that there is no significant increase in milk PEG
levels after the first or second vaccination. Larger studies are
needed to increase our understanding of the presence of PEG in
human milk, and the biological relevance of these components
after ingestion by the infant. Although expert consensus states
there is minimal or no potential risk for the infant from maternal
COVID-19 vaccination (29, 30), the minor symptoms that were
reported (sleep changes and gastrointestinal symptoms) could be
further investigated in future studies to determine if they are
related to vaccination. Our findings also suggest that
administration of maternal mRNA-based vaccine during
lactation did not lead to a detectable immune response in the
infant blood. These results further suggest that maternal
vaccination during lactation cannot trigger infant immune
responses to a degree that generates infant immunity.

We also demonstrate that COVID-19 mRNA vaccination
induces significant increases in anti-SARS-CoV-2 IgM and IgG
levels in lactating mothers’ blood. Consistent with previous
studies that showed IgM levels plateaued 28 days after
COVID-19 infection (31), our results also demonstrated that
2nd dose did not induce significantly higher levels of IgM than
was observed after 1st dose. In contrast, maternal blood IgG
levels increased by 6-fold after the 2nd dose (compare to the
levels after the 1st dose), highlighting the importance of the 2nd
dose to boost the antibody response (27). We also observed a
FIGURE 5 | Infants anti-SARS-CoV2 IgG levels after maternal vaccination during lactation. IgG levels were measured in blood samples of infants and mothers 61
days to 1 year postpartum, 61-129 days after 1st maternal vaccine administration. Maternal and infant samples were collected in the same week (except in one case
in which the maternal sample was collected 18 days prior to the infant sample). (RFU- relative fluorescent units, dashed line represents positive cut-off >50 RFU).
Sample characteristics and individual antibodies levels are presented in Table S4.
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similar pattern of increase in anti-RBD IgG levels in milk after
the 2nd dose and positive correlation of blood and milk IgG
levels. These findings stand in line with previous publications
(32, 33) and strengthen our knowledge about the transport of
milk IgG antibodies from the blood to the milk (34). In contrast,
milk anti-RBD IgA levels measured 4-10 weeks after 2nd dose,
were not significantly higher compared to their levels after the 1st
dose. Spike-SIgA as well as IgA S2 titters in milk were previously
reported to remain unaffected by 2nd vaccine dose (8) or to reach
peak levels one week after the 2nd dose (5).

Twenty-five percent of women in our cohort had no
detectable levels of anti-RBD IgA in their milk after
vaccination. Similar findings were reported in other studies (5,
6), suggesting that production and transfer efficiency vary
between individuals. Our analysis showed a weak but
significant negative correlation between infant age and milk
anti-RBD IgA levels, which might explain some of the
variation in milk IgA levels observed between different
individuals. Ten out of the 12 participants who had no
detectable anti-RBD IgA, had infants older than 5.5 months at
the time of sample collection. These findings are different from
other publications that showed positive correlation of milk IgA
levels (measured 2 weeks after 2nd dose) and baby age (32) or
another study that didn’t show correlation between these
antibodies titters in milk and infant age (10 days after 2nd
dose) (35). In our study IgA levels in milk were measured 4-10
weeks post 2nd dose and based on other publications we expect
that milk IgA levels will be relatively lower at this stage in
compared to 10-14 days after 2nd dose. These differences in the
timing of measurements might explain the differences in our
findings, compared to other studies (32, 35). Although we did not
measure maternal blood IgA, other studies have shown that
blood and milk IgA levels correlate when measured 7-10 days
after the 2nd dose (13, 36). The relationship between infant age,
breastfeeding exclusivity, milk IgA antibodies, and optimal
timing of vaccination during lactation remains to be studied
in detail.

Due to the lack of data about vaccination during pregnancy,
many pregnant individuals were initially denied access to,
declined, or were recommended to delay vaccination until after
pregnancy. As such, many mothers have waited until after
delivery to receive the vaccine. Although mothers vaccinated
during lactation transferred antibodies to their infant through
milk, which is an important component of mucosal immunity
for the baby, there was no passive transfer of antibodies to the
infant bloodstream (Figure 5), as occurs if the mother is
vaccinated during pregnancy (8). Correlates of infant immune
protection to COVID-19 are not yet well understood, however
passive in utero transfer of IgG to the infant is important in the
prevention of a number of infections including pertussis and
influenza (37–39). Passively-transferred milk-derived IgA and
IgG likely provide partial mucosal immune protection in infants,
as breastfeeding is associated with lower risk of infections
associated with mucosal defense, especially against respiratory
infections (40–42). Two nursing infants in our cohort were
infected with COVID-19 during the study (one a week post
Frontiers in Immunology | www.frontiersin.org 1028
maternal 2nd dose, and the second one between 1st and 2nd
maternal vaccine), indicating that at the time before full immune
response is achieved in the vaccinated mother, typically 2-3
weeks after the 2nd dose milk antibodies cannot fully protect
against SARS-CoV-2 infection (Figure 2D) and especially if the
infant is not exclusively breastfed. Further studies are needed to
determine the degree of protection conferred by IgA and IgG
anti-SARS-CoV-2 antibodies that are present in milk. In
addition, studies evaluating the additive benefit of both
transplacentally-derived maternal IgG, as well as milk-derived
IgA and IgG are needed to determine protection against COVID-
19 in early infancy. Our findings underscore the importance of
determining the optimal timing of vaccine administration to
confer maximal protection against COVID-19 in infancy.

Strengths of our study include the prospective design and
comprehensive symptom reporting by the vaccinated
participants. We also report on longitudinal follow-up of
infant immune responses, which has not been previously
described. Furthermore, we included both BNT162b2 and
mRNA-1273 vaccines and compared responses between the
two vaccine manufacturers. Limitations include the small
sample size, and that not all samples were able to be collected
from all infant participants.

In summary, our study reports that no severe adverse events
were noted in lactating individuals or their breastfeeding infants
after COVID-19 mRNA vaccination. We demonstrated that
human milk confers passive immunity to the infants, primarily
through mucosal immunity in the gastrointestinal tract provided
by IgA and IgG in milk. These results are important evidence to
aid in counseling lactating individuals on the safety and efficacy
of the COVID-19 mRNA vaccines, and the potential benefits to
both the mother and infant.
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Rukasz D, et al. Immune Response to Vaccination Against COVID-19 in
Breastfeeding Health Workers. Vaccines (2021) 9:663. doi: 10.3390/
VACCINES9060663

14. Low JM, Gu Y, Ng MSF, Amin Z, Lee LY, Ng YPM, et al. Codominant Igg and
Iga Expression With Minimal Vaccine mRNA in Milk of BNT162b2
Vaccinees. NPJ Vaccines (2021) 6:1–8. doi: 10.1038/s41541-021-00370-z. 61.

15. Mattar CN, Koh W, Seow Y, Hoon S, Venkatesh A, Dashraath P, et al. Title
Page Addressing Anti-Syncytin Antibody Levels, and Fertility and
Breastfeeding Concerns, Following BNT162B2 COVID-19 mRNA
Vaccination. medRxiv (2021) 2021. doi: 10.1101/2021.05.23.21257686.
05.23.21257686.

16. Golan Y, Prahl M, Cassidy A, Lin CY, Ahituv N, Flaherman VJ, et al.
Evaluation of Messenger RNA From COVID-19 BTN162b2 and mRNA-
1273 Vaccines in Human Milk. JAMA Pediatr (2021) 175(10):1069–71.
doi: 10.1001/jamapediatrics.2021.1929

17. Krause PR, Gruber MF. Emergency Use Authorization of Covid Vaccines —
Safety and Efficacy Follow-Up Considerations. N Engl J Med (2020) 383:e107.
doi: 10.1056/nejmp2031373

18. Hall S. COVID Vaccines and Breastfeeding: What the Data Say. Nature (2021)
594:492–4. doi: 10.1038/D41586-021-01680-X

19. Lynch KL, Whitman JD, Lacanienta NP, Beckerdite EW, Kastner SA, Shy BR,
et al. Magnitude and Kinetics of Anti-Severe Acute Respiratory Syndrome
Coronavirus 2 Antibody Responses and Their Relationship to Disease
Severity. Clin Infect Dis (2021) 72:301–8. doi: 10.1093/cid/ciaa979

20. Sellaturay P, Nasser S, Ewan P. Polyethylene Glycol–Induced Systemic
Allergic Reactions (Anaphylaxis). J Allergy Clin Immunol Pract (2021)
9:670–5. doi: 10.1016/J.JAIP.2020.09.029

21. Garvey LH, Nasser S. Anaphylaxis to the First COVID-19 Vaccine: Is
Polyethylene Glycol (PEG) the Culprit? BJA Br J Anaesth (2021) 126:e106.
doi: 10.1016/J.BJA.2020.12.020

22. Albrecht M, Arck PC. Vertically Transferred Immunity in Neonates: Mothers,
Mechanisms and Mediators. Front Immunol (2020) 11:555. doi: 10.3389/
FIMMU.2020.00555

23. de Perre PV. Transfer of Antibody via Mother’s Milk. Vaccine (2003)
21:3374–6. doi: 10.1016/S0264-410X(03)00336-0

24. Beharier O, Plitman Mayo R, Raz T, Nahum Sacks K, Schreiber L, Suissa-
Cohen Y, et al. Efficient Maternal to Neonatal Transfer of Antibodies Against
SARS-CoV-2 and BNT162b2 mRNA COVID-19 Vaccine. J Clin Invest (2021)
131(13):e150319. doi: 10.1172/JCI150319

25. Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T,
Panagiotakopoulos L, et al. Preliminary Findings of mRNA Covid-19
Vaccine Safety in Pregnant Persons. N Engl J Med (2021) 384:2273–82.
doi: 10.1056/nejmoa2104983

26. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy
and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med (2020)
384:403–16. doi: 10.1056/NEJMoa2035389

27. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med
(2020) 383:2603–15. doi: 10.1056/NEJMoa2034577
November 2021 | Volume 12 | Article 777103

https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.777103/full#supplementary-material
https://doi.org/10.1016/j.eclinm.2020.100561
https://doi.org/10.1542/peds.2006-0780
https://doi.org/10.1016/j.isci.2020.101735
https://doi.org/10.1038/s41372-020-00805-w
https://doi.org/10.1001/jama.2021.5782
https://doi.org/10.1101/2021.03.22.21253831
https://doi.org/10.1016/j.ajog.2021.03.031
https://doi.org/10.1016/J.AJOG.2021.03.023
https://doi.org/10.1177/08903344211027112
https://doi.org/10.3390/VACCINES9070785
https://doi.org/10.3390/VACCINES9070785
https://doi.org/10.1186/S12884-021-04051-6
https://doi.org/10.1177/08903344211030168
https://doi.org/10.3390/VACCINES9060663
https://doi.org/10.3390/VACCINES9060663
https://doi.org/10.1038/s41541-021-00370-z
https://doi.org/10.1101/2021.05.23.21257686
https://doi.org/10.1001/jamapediatrics.2021.1929
https://doi.org/10.1056/nejmp2031373
https://doi.org/10.1038/D41586-021-01680-X
https://doi.org/10.1093/cid/ciaa979
https://doi.org/10.1016/J.JAIP.2020.09.029
https://doi.org/10.1016/J.BJA.2020.12.020
https://doi.org/10.3389/FIMMU.2020.00555
https://doi.org/10.3389/FIMMU.2020.00555
https://doi.org/10.1016/S0264-410X(03)00336-0
https://doi.org/10.1172/JCI150319
https://doi.org/10.1056/nejmoa2104983
https://doi.org/10.1056/NEJMoa2035389
https://doi.org/10.1056/NEJMoa2034577
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Golan et al. COVID-19 mRNA Vaccination in Lactation
28. McLaurin-Jiang S, Garner CD, Krutsch K, Hale TW. Maternal and Child
Symptoms Following COVID-19 Vaccination Among Breastfeeding Mothers.
Breastfeed Med (2021) 16:702–9. doi: 10.1089/BFM.2021.0079

29. Stafford IA, Parchem JG, Sibai BM. The COVID-19 Vaccine in Pregnancy:
Risks Benefits and Recommendations. Am J Obstet Gynecol (2021) 224
(5):484–95. doi: 10.1016/j.ajog.2021.01.022

30. Craig AM, Hughes BL, Swamy GK. Coronavirus Disease 2019 Vaccines in
Pregnancy. Am J Obstet Gynecol MFM (2021) 3:100295. doi: 10.1016/
j.ajogmf.2020.100295

31. Liu X, Wang J, Xu X, Liao G, Chen Y, Hu CH. Patterns of Igg and Igm
Antibody Response in COVID-19 Patients. Emerg Microbes Infect (2020)
9:1269–74. doi: 10.1080/22221751.2020.1773324
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Background: Limited data are available regarding the balance of risks and benefits from
human milk and/or breastfeeding during and following maternal infection with severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Objective: To investigate whether SARS-CoV-2 can be detected in milk and on the
breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize
concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike
glycoprotein receptor binding domain (RBD) during the 2 months after onset of
symptoms or positive diagnostic test.

Methods: Using a longitudinal study design, we collected milk and breast skin swabs one
to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning
as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2
RNA, and milk was tested for anti-RBD IgA.

Results: SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs.
Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested
org December 2021 | Volume 12 | Article 801797131
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negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with
maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316)
milk samples contained anti-RBD IgA, and concentrations increased (P=.02) during the
first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-
RBD IgA persisted for at least two months in 77% of women.

Conclusion: Milk produced by women with COVID-19 does not contain SARS-CoV-2
and is likely a lasting source of passive immunity via anti-RBD IgA. These results support
recommendations encouraging lactating women to continue breastfeeding during and
after COVID-19 illness.
Keywords: antibodies, breastfeeding, COVID-19, human milk, immunoglobulins, IgA, passive immunity, SARS-CoV-2
INTRODUCTION

Most studies examining milk produced by women with
coronavirus disease 2019 (COVID-19) have demonstrated that
it is an unlikely source of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) maternal-to-child transmission (1–
4). Nonetheless, SARS-CoV-2 has been detected in a fraction of
milk samples in some studies (5–7). The reasons for these
disparate findings are unknown, but it is likely that sample
collection and/or analysis methodology might play a role.
Additionally, several studies have shown that milk antibody
titers correlate with the milk’s ability to neutralize SARS-CoV-2
infectivity (3, 8–11), thus likely offering immunological protection
to the infant. Together, these findings support epidemiological
evidence that breastfeeding while using appropriate hand and
respiratory hygiene does not increase risk of infant SARS-CoV-2
infection (12, 13).

Individuals infected with SARS-CoV-2 typically develop a
robust serum antibody response against the spike (S)
glycoprotein within 2 weeks of illness onset. While early
studies demonstrated that circulating levels waned by 2
months (14, 15), more recent research suggests more moderate
declines with continued seropositivity at 6 to 8 months (16).
Similarly, milk produced by women with COVID-19 contains
substantial immunoglobulin A (IgA) targeting the S glycoprotein
receptor binding domain (RBD) in the first month following
infection (3, 9). However, little is known about the persistence of
milk anti-SARS-CoV-2 IgA following maternal infection.

The presence of virus and anti-viral antibodies in milk
contribute to the balance of risks and benefits that
breastfeeding provides to infants of mothers with SARS-CoV-2
infection. The primary objective of this study was to use validated
analytical methods and optimized longitudinal sampling to
analyze milk produced after maternal COVID-19 diagnosis for
the presence of SARS-CoV-2, as well as levels and duration of
milk-borne anti-RBD IgA for up to 2 months after diagnosis. To
further understand whether breast skin could be a possible
source of viral RNA contamination in milk and/or represent a
potential route of exposure to the infant, we also assessed the
prevalence of SARS-CoV-2 on breast skin swabs collected before
and after cleaning the breast.
org 232
MATERIAL AND METHODS

Experimental Design and Clinical Data/
Sample Collection
This multicenter study was carried out from April to December
2020 using a repeated-measures, longitudinal design. Maternal-
infant dyads were recruited through participating institutions
(University of Idaho; Washington State University; University of
Rochester Medical Center; University of California, San
Francisco; Brigham and Women’s Hospital; University of
Arkansas for Medical Sciences; Tulane University), and
national social media advertising. To participate, women
needed to be ≥18 years of age, lactating, have an infant less
than 24 months old, and diagnosed with or tested for COVID-19
in the last seven days. No SARS-CoV-2 vaccine was available
during the study period. Milk, breast skin swabs, and telephone
surveys were ideally collected on three separate days during the
first week post-diagnosis and again at 2-, 3-, 4-, and 8-weeks
post-diagnosis. Participants self-collected milk and breast swab
samples using provided collection kits, which were assembled
aseptically by study personnel wearing masks and gloves.
Mothers were instructed in clean techniques to obtain samples,
including use of gloves and masks. Surveys included questions
about COVID-19 testing results for all household members and
maternal and infant COVID-19 symptoms. This multi-
institutional study was reviewed and approved by the
institutional review boards of the University of Idaho (20–056,
20–060), University of Rochester Medical Center (1507),
University of California, San Francisco (20–30410), Brigham
and Women’s Hospital (2020P000804), University of Arkansas
for Medical Sciences (260939), and Tulane University (2020–
602). All participants gave written informed consent.

We previously reported (3) on 37 milk samples collected from
18 women in the first week post-diagnosis; of these women, 11
were recruited to provide additional longitudinal samples up to 2
months post-diagnosis for this study. In addition, we recruited
63 additional participants for this study (Supplementary
Figure 1). No sample size calculation was performed due to
logistical considerations and lack of preliminary data. Due to the
nature of conducting this research during a pandemic and
because test results were often not available soon after testing,
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some women were recruited after being tested but prior to
receiving the results for their COVID-19 tests. Because of this,
women receiving a negative COVID-19 result after enrollment
and were subsequently deemed ineligible to participate in the
study and were not included in the total number of participants.
Milk and swabs of the nipple/areola (“breast skin swabs”) were
collected as previously described (3). COVID-19 signs and
symptoms (e.g., cough, fever, congestion, fatigue, malaise,
difficulty breathing, chest pain, loss of smell and/or taste, and
diarrhea) were recorded at study enrollment and at each sample
collection. Milk samples collected prior to December 2019 from
5 healthy women located in the greater Rochester, NY area for
general assay development were used as prepandemic
control samples.

Laboratory Analysis
Total RNA was extracted from the first three milk samples
collected from 47 women not previously reported on and
extraction controls using the Quick-DNA/RNA Viral MagBead
kit (Zymo Research, Irving, CA). Briefly, 200 µL of whole milk
were mixed with 200 µL of 2X DNA/RNA Shield (Zymo
Research) and incubated for 10 min prior to extraction
following manufacturer’s instructions. Total RNA was then
used as the input for the CDC-designed SARS-CoV-2 reverse
transcription quantitative polymerase chain reaction (RT-qPCR)
assay targeting two regions of the SARS-CoV-2 nucleocapsid
gene, validated for use with human milk and replicated across
two laboratories (University of Idaho and University of
Rochester) as previously described (3). Per the CDC protocol,
samples with Ct values <40 were considered positive. It is
noteworthy that we did not reanalyze samples reported
previously (3) for SARS-CoV-2 RNA because assay parameters
had not changed. Total RNA was also extracted from swabs
collected prior to the first three milk collections of 35 women not
previously reported on and analyzed using the same RT-qPCR
assay used for human milk with analysis only occurring at the
University of Idaho. For breast swabs, swab heads were
immersed in 400 µL 1X DNA/RNA Shield (Zymo Research),
pulse vortexed for 20 seconds, incubated for 10 min, centrifuged
at 500 x g for 1 min at 22°C, and then up to 400 mL of the liquid
were used as input for RNA isolation. For extraction negative
controls, 400 mL 1X DNA/RNA Shield were used as the input.

Concentrations of milk-borne anti-RBD IgA were determined
in duplicate from delipidated milk using an enzyme-linked
immunoassay (ELISA) as previously described (17) with the
following modifications. Microtiter plates (Nunc Maxisorb,
ThermoFisher Scientific) were coated with SARS-CoV-2 spike
glycoprotein RBD (Sino Biological, Beijing, China) and blocked
with 1% human serum albumin (HSA) (Millipore, Burlington,
MA) in phosphate buffered saline containing 0.05% Tween-20
(PBS-T). Serum with known high anti-RBD IgA concentration
(Ray Biotech, Peachtree Corners, GA) was used as a standard
with dilution series ranging from 1:100 to 1:1,000,000 and milk
samples were diluted 1:2 with 1% HSA and incubated in coated
wells overnight at 4°C. After washing with PBS-T, bound
antigen-specific antibodies were detected by incubating wells
with horseradish peroxidase-conjugated polyclonal goat anti-
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human IgA antibody (Bethyl Laboratories, TX, USA), followed
by washing with PBS-T and developing color with BD OptEIA
reagent kit (Becton Dickinson). The color reaction was stopped
after 10 min by adding 0.18 N sulfuric acid, and absorbance was
read at 450 nm using a 96-well plate reader (BioTek, VT, USA).
A standard curve was generated by fitting a 5PL equation to
standard dilution series absorbances using plate reader software
(Take5, BioTek, VT, USA), and sample concentrations were back
calculated. Specific antibody concentrations are expressed based
on standard serum (1 AU corresponds to the amount of specific
IgA in 1:10,000 dilution of the standard serum). A positive cutoff
threshold for positivity/antigen-specific binding was set as the
sum of the mean and 2 times the standard deviation of RBD-
specific IgA in prepandemic milk samples. SARS-CoV-2 RBD-
specific IgA concentration for some of the samples were included
in a previous study but were measured again in the present study
for consistency. One participant’s milk sample was not tested for
IgA due to insufficient volume.

Statistical Analysis
R version 3.6.1 (18) and GraphPad Prism 9 were used for data
analyses. The exact binomial test was used to calculate
confidence intervals. The R package lmer (19) was used to
perform univariate logistic regression to assess the
relationships between the detection of viral RNA on breast
skin swabs and the incidence of maternal respiratory
symptoms or household COVID-19 symptoms/diagnosis with
individual included as a random effect. Wilcoxon signed-rank
test was used to assess the difference in anti-RBD IgA
concentration between the first and second week of illness.
Statistical significance was declared at P<.05.
RESULTS

Cohort Characteristics
Samples were collected from 64 women diagnosed with COVID-
19 (Supplementary Figures 1, 2). Participant characteristics are
presented in Table 1. Briefly, median age was 33 years
(interquartile range [IQR], 30-36), and median time
postpartum was 18 weeks (IQR, 2-32). Symptomatic and
asymptomatic COVID-19 was reported in 83 (n=53) and 17%
(n=11) of participants, respectively. Overall, relative to the day of
diagnostic testing, we collected 78 milk samples from 40 women
within the first week; 120 samples from 58 women between days
8 and 21; 89 samples from 47 women between days 22 and 56;
and 29 samples from 29 women between days 57 and 106. In
total, 316 milk samples were collected from 64 women. It is
noteworthy that we have previously reported selected results
from 37 milk samples produced by 17 of these women (3).

Evaluation of Milk and Breast Skin Swabs
for the Presence of SARS-CoV-2 RNA
Here, we analyzed the first three milk samples (n=141) collected
from 47 women and the first three breast skin swabs (n=99)
collected prior to milk collection from 35 women not described
in our previous report (3) for SARS-CoV-2 RNA (range, 0-37
December 2021 | Volume 12 | Article 801797
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days from diagnostic test). As with our prior report, all milk
samples tested negative for SARS-CoV-2 in both laboratories. In
contrast, while 71% (70/99; 95% CI, 61-79%) of the swabs
collected before breast washing tested negative for SARS-CoV-
2, 29% (29/99) generated Ct values that varied in degree of
positivity (Supplementary Table 1). However, 27/29 (95% CI,
77-99%) of the companion swabs collected after breast washing
tested negative for SARS-CoV-2. The two swabs that retained
some degree of positivity after washing had a 70-80% reduction
in the estimated viral load.

Using these swab data combined with our previously
published swab data (3), we evaluated whether maternal
respiratory symptoms of COVID-19 (cough, dyspnea,
rhinorrhea/nasal congestion, and sneezing) or presence of
household COVID-19 were related to the detection of SARS-
CoV-2 RNA on the breast skin. Among the four maternal
respiratory symptoms examined, only cough was related to the
detection of viral RNA (odds ratio, OR, 4.78; 95% CI, 1.59-14.38;
P<.01; 51% of swabs with cough versus 19% without cough)
(Table 2). The presence of at least one other household member
with COVID-19 was also associated with increased likelihood of
detection of viral RNA on breast skin swabs (OR, 6.67; 95% CI,
1.79-24.92; P<.01; 53% of swabs with household COVID-19
versus 18% without household COVID-19).

Longitudinal Assessment of Milk
Specific IgA
Assays for detecting IgA specific to the S glycoprotein RBD were
conducted on 316 milk samples collected from all 64 women;
75% (95% CI, 70-79%) of these samples contained detectable
anti-RBD IgA. The maximum concentration of anti-RBD IgA
was two-fold higher in symptomatic women in comparison to
asymptomatic women, although this difference was not
Frontiers in Immunology | www.frontiersin.org 434
statistically significant (P=.0610; symptomatic - 22.8 ± 27.1
AU, average ± standard deviation; asymptomatic - 11.2 ± 15.7
AU). Longitudinal analysis of samples collected from women
who provided repeated samples for at least 2 months following
onset of symptoms (n=24) or positive test (for asymptomatic
women, n=2) demonstrated an increase (P=.02) in the
concentration of anti-RBD IgA from the first to second week
following onset of symptoms/positive test; 92% (24/26) of these
women produced milk containing anti-RBD IgA by day 19
(Figure 1A). Of these 26 women, 77% (n=20) produced milk
with anti-RBD IgA for 2 months or longer (“persistent IgA”),
whereas 15% (n=4) produced milk without persistent levels of
detectable anti-RBD IgA (“transient IgA”; Figure 1B). Of the two
asymptomatic women with longitudinal data, one displayed
persistent IgA while the other was IgA negative.
DISCUSSION

Consistent with the preponderance of available evidence, we
found no indication of SARS-CoV-2 in milk produced by women
with COVID-19. Some breast skin swabs were found to contain
detectable SARS-CoV-2 RNA, almost all of which were collected
prior to washing the breast. Detection of SARS-CoV-2 RNA on
the unwashed breast was related to the presence of maternal
cough and others in the household with COVID-19.

Importantly, we detected a rapid, robust, and durable anti-
RBD specific IgA response in the majority of mothers’ milk. Our
longitudinal study substantially extends prior knowledge by
demonstrating: (I) the vast majority (92%) of women with
COVID-19 have anti-RBD IgA in their milk; (II) concentrations
of anti-RBD IgA increase during the first weeks following onset of
symptoms or, if asymptomatic, following the day of diagnostic
test; and (III) anti-RBD IgA is present in milk produced by most
infected women for at least 2 months.

Our finding of a persistent antibody response in milk produced
by women with COVID-19 is reassuring as it suggests passive
immunity is likely conferred to recipient infants for at least 2
months after maternal infection. Passive immunity via milk is
particularly important for breastfeeding children, including infants
and neonates, as COVID-19 vaccines have yet to be approved for
these populations. Further, our results showing a sustained anti-
RBD antibody response in milk may have implications for the
durability of vaccine-induced milk antibodies. Indeed, similar to
SARS-CoV-2 infection and maternal vaccination against other
respiratory pathogens (20, 21), recent data demonstrate that in the
TABLE 2 | Association of respiratory signs/symptoms and viral RNA presence
on the breast skin.

Sign/symptom OR (95% CI)

Cough 4.78 (1.59-14.38)**
Dyspnea 0.91 (0.15-5.52)
Rhinorrhea/nasal congestion 2.94 (0.86-10.07)
Sneeze 0.22 (0.01-3.26)
December 2021 | Volume
**P<.01; n=116 breast skin swabs from 43 participants;OR, odds ratio; CI, confidence interval.
TABLE 1 | Selected characteristics and behaviors of study participants.

Characteristic No. (% or IQR)

Participants 64
Age,a median, y 33 (30-36)
Race
Asian 1 (2)
Black 3 (5)
White 49 (77)
Other 8 (12)
Not reported 3 (5)
BMI,b median, kg/m2 27 (23-31)
Parity,a median 2 (1-3)
Time postpartum,a median, wk 18 (2-32)
Breastfeeding statusc

Exclusively breastfeeding 19 (37)
Mixed feeding 33 (63)
COVID-19 symptoms
Symptomatic 53 (83)
Asymptomatic 11 (17)
Infants tested for COVID-19d 20 (38)
Positive diagnosis 7 (35)
IQR, interquartile range; BMI, body mass index; COVID-19, coronavirus disease 2019.
a, Missing data from 1 participant; b, Missing data from 4 participants; c, Missing data from
12 participants; d, Missing data from 11 participants; Percentages may not sum to 100
due to rounding.
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days and weeks following maternal COVID-19 vaccination, a
robust IgG-dominant milk antibody response is induced (22–
25), although the longer-term durability of the milk-borne
antibody response remains to be elucidated. Similarly, the
mechanisms underlying the persistence or lack of specific
antibodies in human milk are not well understood, but may be
related to differences in the course of the infection, recurrent
exposures and/or the migration of long-lived plasma cells from
mucosal sites to the mammary gland (26–28)

Our previous (3) and current findings on the detection of
SARS-CoV-2 RNA on the breast skin of a small number of
participants prior to cleaning may provide an explanation as to
why some milk samples in prior studies have yielded positive
results for SARS-CoV-2 RNA via RT-qPCR. It is worth noting
that only low titers of viral RNA were detected on the positive
breast skin swab samples (Supplementary Table 1). Washing of
the breast appeared effective in removing the RNA in almost all
cases examined. Unfortunately, since the breast skin swabs
utilized for viral RNA detection were inactivated prior to RT-
qPCR, we were unable to examine whether the RNA represented
viable virus or remnants of viral RNA and poses a potential risk
of maternal-to-child transmission. However, it is notable that
numerous studies examining neonatal outcomes during
maternal SARS-CoV-2 infection have not found evidence of
SARS-CoV-2 transmission via breastfeeding (12, 13, 29–33).

We recognize that this study was limited by self-reported
COVID-19 diagnostic test results for most women, self-
collection of samples, and lack of individuals with severe
COVID-19 that required hospitalization, and an inability to
assess functional immunity or virus neutralization. However,
strengths of the study include a relatively large sample size,
longitudinal sampling, collection methodology employing best
Frontiers in Immunology | www.frontiersin.org 535
practices for human milk research (34), and use of assays
validated for human milk (3) to detect SARS-CoV-2 RNA and
profile the dynamics of milk-specific IgA.

In summary, we found no evidence of SARS-CoV-2 in milk
and documented the presence of anti-RBD IgA that persisted for
at least 2 months in milk produced by most study participants.
Beyond the health impacts of human milk as a source of
nutrition, these data suggest that, on balance, human milk is
not a source of SARS-CoV-2 transmission and may provide
lasting passive immunity. Our findings also provide additional
support for recommendations that lactating women with
COVID-19 continue to breastfeed while they and others in the
household take precautions, such as hand and respiratory
hygiene, to prevent transmission via respiratory droplets (35).
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Vaccine mRNA Persistence in Serum
and Breastmilk After BNT162b2
Vaccination in Lactating Women
Kee Thai Yeo1,2,3†, Wan Ni Chia4†, Chee Wah Tan4†, Chengsi Ong3,5,
Joo Guan Yeo2,3,6, Jinyan Zhang4, Su Li Poh2, Amanda Jin Mei Lim2,
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1 Department of Neonatology, KK Women’s & Children’s Hospital, Singapore, Singapore, 2 Translational Immunology
Institute, Singhealth Duke-NUS Academic Medical Centre, Singapore, Singapore, 3 Paediatrics Academic Clinical
Programme, Duke-NUS Medical School, Singapore, Singapore, 4 Programme in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore, Singapore, 5 KK Human Milk Bank, KK Women’s & Children’s Hospital, Singapore, Singapore,
6 Department of Paediatrics, KK Women’s & Children’s Hospital, Singapore, Singapore, 7 Singhealth Duke-NUS Global
Health Institute, Singhealth Duke-NUS Academic Medical Centre, Singapore, Singapore, 8 Lee Kong Chian School of
Medicine, Singapore, Singapore

Background: There is limited information on the functional neutralizing capabilities of
breastmilk SARS-CoV-2-specific antibodies and the potential adulteration of breastmilk
with vaccine mRNA after SARS-CoV-2 mRNA vaccination.

Methods:We conducted a prospective cohort study of lactating healthcare workers who
received the BNT162b2 vaccine and their infants. The presence of SARS-CoV-2
neutralizing antibodies, antibody isotypes (IgG, IgA, IgM) and intact mRNA in serum
and breastmilk was evaluated at multiple time points using a surrogate neutralizing assay,
ELISA, and PCR, over a 6 week period of the two-dose vaccination given 21 days apart.

Results: Thirty-five lactating mothers, median age 34 years (IQR 32-36), were included. All
had detectable neutralizing antibodies in the serum immediately before dose 2, with
significant increase in neutralizing antibody levels 7 days after this dose [median 168.4
IU/ml (IQR 100.7-288.5) compared to 2753.0 IU/ml (IQR 1627.0-4712.0), p <0.001].
Through the two vaccine doses, all mothers had detectable IgG1, IgA and IgM isotypes in
their serum, with a notable increase in all three antibody isotypes after dose 2, especially
IgG1 levels. Neutralizing antibodies were detected in majority of breastmilk samples a week
after dose 2 [median 13.4 IU/ml (IQR 7.0-28.7)], with persistence of these antibodies up to
3 weeks after. Post the second vaccine dose, all (35/35, 100%) mothers had detectable
breastmilk SARS-CoV-2 spike RBD-specific IgG1 and IgA antibody and 32/35 (88.6%)
mothers with IgM. Transient, low intact vaccine mRNA levels was detected in 20/74 (27%)
serum samples from 21mothers, and 5/309 (2%) breastmilk samples from 4mothers within
1 weeks of vaccine dose. Five infants, median age 8 months (IQR 7-16), were also recruited
- none had detectable neutralizing antibodies or vaccine mRNA in their serum.
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Conclusion: Majority of lactating mothers had detectable SARS-CoV-2 antibody isotypes
and neutralizing antibodies in serum and breastmilk, especially after dose 2 of BNT162b2
vaccination. Transient, low levels of vaccine mRNA were detected in the serum of
vaccinated mothers with occasional transfer to their breastmilk, but we did not detect
evidence of infant sensitization. Importantly, the presence of breastmilk neutralising
antibodies likely provides a foundation for passive immunisation of the breastmilk-fed infant.
Keywords: SARS-CoV-2 vaccine, mRNA vaccine, BNT162 vaccine, neutralizing antibodies, COVID-19, COVID-19
serological testing, breast feeding, breast milk expression
INTRODUCTION

Coronavirus disease 2019 (COVID-19) messenger RNA
(mRNA) vaccines have been increasingly deployed in many
countries as a means of controlling infectious spread and
severity of the disease (1–4). Even so, the initial clinical trials
evaluating these novel mRNA vaccines, encoding the spike
protein of the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), excluded breastfeeding and lactating women (4,
5). There is limited current data on the efficacy and safety of these
SARS-CoV-2 vaccines in this group of mothers and their
breastmilk-fed infants (6–8).

Emerging evidence from several cohort studies on lactating
women have demonstrated the immunogenicity of the currently
available mRNA vaccines (BNT162b2, mRNA-1273) among
lactating women, with the induction of SARS-CoV-2-specific
antibodies in the breastmilk post-vaccination (9–14). However,
there is paucity of information on the functional neutralizing
capabilities of SARS-CoV-2-specific antibodies in breastmilk and
their dynamic and temporal relationship to serum levels after
mRNA vaccination. Additionally, the potential adulteration of
breastmilk with vaccine mRNA is currently unknown and raises
safety concerns relating to the potential exposure of breastmilk-fed
infant to the mRNA. Several international organizations including
the World Health Organization (15) have recommended the
continuation of breastmilk feeding following vaccination, while
acknowledging the lack of safety data for mother and child.

To address these issues, we investigated the dynamics of
SARS-CoV-2-specific immunoglobulin subtypes and their
temporal relationship with SARS-CoV-2 neutralizing activity
in the serum and breastmilk of lactating mothers through the
2-dose BNT162b2 mRNA vaccine, and the post-vaccination
persistence of vaccine mRNA in the serum and breastmilk of
these vaccinated mothers. We also examined serum of
breastmilk-fed infants from vaccinated mothers to determine
the presence of SARS-CoV-2 neutralizing antibodies and
vaccine mRNA.
MATERIALS AND METHODS

Study Population
We evaluated the humoral responses of a cohort of healthcare
workers who were lactating mothers working at a tertiary level
women’s and children’s hospital in Singapore and had received
org 239
the BNT162b2 COVID-19 vaccine (Pfizer/BioNTech) between
15 January and 31 May 2021. These front-line healthcare
workers, were eligible if they consented to blood and
breastmilk collection at specific timepoints after vaccination.
All participants received both vaccine doses (30 mg/0.3 ml) 21
days apart. Breastmilk-fed infants from these lactating mothers
were also recruited for the collection of a single serum sample
with informed consent. At enrolment, maternal and infant
demographic and clinical information were collected, including
any significant symptoms after any of the two vaccine doses. The
study was approved by the Singhealth Institutional Review Board
and all participants provided written informed consent (CIRB
Ref. No 2019/2906 & CIRB Ref. No. 2016/2791).

Biological Samples
Breastmilk samples (10mls each) were collected on day of
vaccination (day 0) followed by days 1, 3, 7, 14, and 21 post-
vaccination for both doses. Breastmilk sample on day 21 after
dose 1 was collected before receipt of dose 2. All mothers were
advised to express breastmilk into sterile containers and to
immediately store them in their own freezers before
transportation to the laboratory in coolers containing frozen
cold packs. For the initial processing of these breastmilk samples,
they were thawed and centrifuged twice at 2383g for 15minutes
at 4°C. The fat layer was removed after each spin cycle and the
resultant skim milk was transferred to a cryovial and frozen at -
80°C until analysis.

Maternal serum samples were obtained at days 0 and 3 for
dose 1 and days 0 and 7 for dose 2. Samples on day 0 of dose 2
was obtained before vaccine was administered. Infant serum
samples were collected >3 weeks post maternal second dose. All
serum samples (0.5ml to 1ml) were collected in serum separation
blood collection tubes (Sarstedt AG & Co, Germany) and
transported to the laboratory on the same day. These samples
were centrifuged at 1300g for 10 minutes before serum was
aliquoted into cryovials and stored at -80°C until analysis.

SARS-CoV-2 Surrogate Viral
Neutralization Assay
We utilized a SARS-CoV-2 surrogate virus neutralization assay
(cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit,
GenScript Inc., USA) that detects the total immunodominant
neutralizing antibodies targeting the viral spike protein receptor
binding domain (RBD) in an isotype and species independent
manner (16). This validated and commercialized test developed
January 2022 | Volume 12 | Article 783975
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with the D614 SARS-CoV-2 strain, measures the magnitude of
antibody-mediated blockage of the interaction between
angiotensin-converting enzyme 2 (ACE2) receptor protein and
the RBD of SARS-CoV-2 which is required for viral entry into
susceptible cells (17). Prior studies have documented that RBD-
targeting neutralizing antibodies are immunodominant with
SARS-CoV-2 infections (18, 19). The cPass kit results have
shown 95.7% positive predictive agreement (95%CI 85.8-
98.8%) and 97.8% negative predictive agreement (95%CI 92.5 –
99.4%) with 50% viral neutralization by plaque reduction
neutralization tests (PRNT) in clinical studies (16, 20).

For serum samples, a final dilution of 1:20 was used according
to manufacturer’s recommendations. As the test was only
validated on serum/plasma by the manufacturer, an
optimization was performed and adapted for breastmilk
samples. A final dilution of 1:5 was used as it gave no false
positive background on pre-vaccinated breastmilk samples and
allowed maximum volume of breastmilk to be tested. Apart from
the sample amount used for testing, the rest of the assay was
performed per manufacturer’s instructions. The percent signal
inhibition was calculated = [1-(Optical Density (OD) of sample/
OD of negative control)]x100%. An inhibition signal of ≥30%
was used as the cutoff for positive detection of SARS-CoV-2
neutralizing antibodies in all sample types (20).

Inhibition signal from individual samples from the cPass
assay was converted to the World Health Organization (WHO)
International Units (IU) based on previous calibration of this
neutralization assay against the WHO International Standard
(IS) for SARS-CoV-2 neutralization assays (21, 22), using a
Excel-based conversion tool available online (https://github.
com/Lelouchzhu/cPass-to-IU_Conversion). Based on recent
studies using biological replicates from different international
groups, cPass readings (% inhibition) were shown to be highly
reproducible to International Units (IU)/ml of the WHO
International Standard, with a pseudo R2 at 0.978. cPass
inhibition signal of 30% corresponds to a cut-off of 28 IU/ml
for serum samples and 7 IU/ml for breastmilk samples based on
the conversion to WHO International Standard and dilution
factor for sample type.

Enzyme-Linked Immunosorbent
Assay for Detection of SARS-CoV-2
Antibody Isotype
To determine the relative abundance of SARS-CoV-2 antibody
isotypes and compare their temporal dynamics with
neutralization activity, we performed semi-quantitative
evaluations of the SARS-CoV-2 spike protein receptor binding
domain (RBD)-specific antibody isotypes in serum and milk by
enzyme-linked immunosorbent assay (ELISA). The 96-well
plates were coated with 2mg/mL of SARS-CoV-2 RBD protein
(RBD-His tag, expressed in HD293F cells from Genscript, USA)
(100ng protein/well) diluted in bicarbonate buffer at 50ml/well in
4°C overnight. Plates were washed with wash buffer (0.05%
Tween 20 in 1×DPBS) and blocked with 150mL of blocking
buffer (BD OptEIA Assay Diluent, BD Pharmingen, USA). Block
solution was discarded and plates were blotted dry. Serum
diluted 1:100 in blocking buffer or neat breastmilk were added
Frontiers in Immunology | www.frontiersin.org 340
(50ml per well) and incubated for 2 hours at room temperature.
Naïve human serum samples were added to each plate as
negative controls.

This was followed by 5 more washes with wash buffer and
incubated for 1-hour at room temperature with 50ml per well
of 1mg/ml mouse anti-human IgG1 to IgG4 (Southern Biotech,
USA), mouse anti-human IgM (GenScript Inc., USA) and goat
anti-human IgA (Southern Biotech, USA). Plates were washed
5 times with wash buffer and underwent 1-hour incubation at
room temperature with 50ml per well of 1:10000 anti-mouse
IgG horseradish peroxidase (HRP) (Biolegend, USA) for
detection of IgG1 to IgG4 and IgM isotypes, and 1:10000
anti-goat IgG-HRP (Biolegend, USA) for detection of IgA.
Plates were washed 5 times with wash buffer and 50ml of TMB
ELISA substrate (Life Technologies, USA) were added per well.
Plate development was stopped by addition of 50ml KPL TMB
Stop Solution (Sera Care, USA). Absorbance on the BioTek
Cytation5 plate reader (Fisher Healthcare, USA) at 450nm and
a reference background of 570nm was recorded. Corrected
absorbance value was calculated (450nm-570nm). Corrected
Optical Density at 450nm (OD450) values for individual
sample and isotypes was obtained by subtracting value of
negative control of each isotype from each individual plate.
BNT162b2 mRNA Detection
RNA from breastmilk and serum samples was extracted using
the E.Z.N.A Total RNA extraction kit (Omega Bio-tek Inc., USA)
according to manufacturer’s instructions. Briefly, samples were
treated with lysis buffer and ethanol before binding of RNA to
the HiBind RNA Mini Column. After several washes with wash
buffer, RNA was eluted into nuclease-free water and immediately
stored at -80°C before analysis. Synthesis of complementary
DNA was performed using QuantiTect Reverse Transcription
kit (Qiagen NV, Germany) and Real-time PCR was performed
using SensiFAST SYBR No-ROX kit (Meridian Bioscience,
USA). Primers were designed using the published BNT162b2
mRNA sequence (23). The following forward primer 5’
TTCGCCCAAGTGAAGCAGAT 3’ and reverse primer 5’
CGGCCAGTGTCACTTTGTTG 3’ with annealing temperature
of 60°C was used. All samples were run in triplicates and
repeated for result confirmation. Purified BNT162b2 mRNA
was used as standard for quantification. Standard curves were
generated for individual runs using spiked vaccine mRNA into
non-vaccinated samples (see Supplemental Figure 1).

Statistical Analysis
Data generated are presented as median with interquartile range
(IQR). Comparisons of median values of samples were performed
using Mann Whitney U test. Correlation analysis was performed
with Pearson correlation coefficients. Comparison of antibody
isotype levels from pre-vaccination to the multiple post-
vaccination timepoints were assessed using repeated measures
mixed-effects model followed by post hoc Tukey’s multiple
comparisons test. Statistical significance was defined as p<0.05
and was two tailed. All statistical analysis was performed using
GraphPad Prism 9 (GraphPad Software, USA).
January 2022 | Volume 12 | Article 783975
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RESULTS

Study Population
We enrolled 35 lactating mothers who were frontline healthcare
workers and received the two-dose BNT162b2 vaccine. Thirty-
one women were recruited before their first dose and 4 were
included just before their second dose. All participants
completed the 2-dose course within 21 days. These mothers
had a median age of 34 years (IQR 32-36), were predominantly
of Chinese ethnicity (74%) and all had full-term deliveries
(Table 1). The median age of their child and the length of
lactation at the first vaccine dose was 7 months (IQR 5-14). All
mothers were breastfeeding and/or feeding expressed breastmilk
to their child. Five infants, with median age 8 months (IQR 7-
16), were recruited into this study and provided serum samples.
No participants were diagnosed with COVID-19 before or
during the study period and none reported significant allergic
symptoms with the vaccination.

Neutralizing Antibody Level
Serum of Vaccinated Mothers
To evaluate the neutralizing antibody responses from the 2-dose
vaccination schedule in lactating women, a total of 21 mothers
provided serum samples – 16 women provided 4 serum samples
over 2 doses and 5 women provided 2 serum samples with the
second dose. All women tested had detectable neutralizing
antibody present in the serum just prior to the second dose
(day 21) based on the 28 IU/ml cut-off (Figure 1). Median
neutralizing antibody level at day 0-10 after the second dose
(704.6 IU/ml, IQR 163.1-2784.0) was significantly higher than at
day 0–3 after the first dose (6.4 IU/ml, IQR 3.4-8.9) (p<0.001).
The median neutralizing antibody increased from dose 1 to dose
Frontiers in Immunology | www.frontiersin.org 441
2 – with a rapid and significant increase in levels from day 0 to
day 7-10 after vaccine dose 2 [median 168.4 IU/ml (IQR 100.7-
288.5) vs 2753.0 IU/ml (IQR 1627.0-4712.0), p <0.001].

Breastmilk of Vaccinated Mothers
To determine the presence of neutralizing antibodies in
breastmilk, 11 breastmilk samples per participant were collected
from 31 women over the 2-dose vaccination and 6 samples per
participant from 4 women with dose 2 of the vaccination schedule.
There were minimal SARS-CoV-2 neutralizing antibodies present
in the breastmilk (based on the 7 IU/ml cut-off) from day 0 of dose
1 up to day 3 post-dose 2 (Figures 2A, B). The neutralizing
antibody levels increased significantly to a median of 13.4 (IQR
7.0-28.7) at 28 days (day 7 dose 2) from a median of 4.0 (IQR
2.7-4.9) at day 22-24 (p<0.001) (Figure 2A). Of those who
provided breastmilk samples over 2 doses, only samples from
3 mothers did not have detectable neutralizing antibodies at any of
the sampling timepoints up to 42 days [median 2.6 IU/ml (IQR
1.9-3.4)], in spite of these 3 mothers having detectable serum
neutralizing antibodies.

Just prior to vaccine dose 2 (day 21), only 6/35(17.1%)
mothers had detectable breastmilk neutralizing antibodies in
spite of all mothers having detectable levels in their serum.
After the second dose, there was moderate correlation between
serum and breastmilk neutralizing antibody levels at day 7 dose 2
(r=0.39, p=0.08) (Figure 3). This was the timepoint with peak
levels of breastmilk neutralizing antibodies detected for majority
of mothers in this study.

Infant Serum
Five infants from the cohort of vaccinated mothers were recruited
into the study and a single serum sample was collected from them.
These samples were collected at a median of 48 days (IQR 44-57)
after the second maternal vaccine dose. The age of these infants at
the point of maternal vaccination ranged from 3 to 20 months.
None had detectable neutralizing antibodies in their serum.

SARS-CoV-2 Spike RBD-Specific
Antibody Isotypes
Serum of Vaccinated Mothers
Through the two vaccine doses, all mothers had detectable IgG,
IgA and IgM isotypes in their serum with a notable progressive
increase in all three antibody isotypes observed over the 4 study
timepoints. There was significant boosting of the IgG1 levels 1
week after the second vaccine dose, with a 15-fold increase
compared to day 21 after the first dose (median OD450 0.02
(IQR 0.01-0.05) vs 0.35 (IQR0.33-0.40), P<0.0001) (Figure 4A).
There was a lesser increment in the IgG3, IgA and IgM levels over
the same timepoints (median OD450 0.009 (IQR 0.008-0.014) vs
0.028 (IQR 0.02-0.04), p<0.0001), (median OD450 0.05 (IQR 0.04-
0.1) vs 0.22 (IQR 0.16-0.30), p<0.0001), and (median 0.04 (IQR
0.03-0.06) vs 0.07 (IQR 0.05-0.09), p<0.0001) (Figures 4B–D).
IgG2 and IgG4 were not detected in the serum samples.

Breastmilk of Vaccinated Mothers
Up to day 21 of the first vaccine dose, SARS-CoV-2 spike RBD-
specific IgG1 antibody were detected in the breastmilk of 23/31
TABLE 1 | Clinical characteristics of the lactating mothers.

Characteristics Total (n=35)

Median maternal age at first dose, years (IQR) 34 (32 – 36)
Maternal ethnicity, n (%)
Chinese 26 (74)
Malay 5 (14)
Indian 1 (3)
Other 3 (9)

Median child gestation at birth, weeks (IQR) 39 (38 – 39)
Female child, (%) 22 (63)
Median age of child at maternal first dose, months (IQR) 7 (5 – 14)
Predominant mode of feeding, n (%)
Breastfeeding 12 (34)
Expressed breast milk 17 (49)
Both breastfeeding + expressed breast milk 6 (17)

Estimated average volume of breastmilk per day, ml
(range)

550 (190 – 1000)

Reported side effects after vaccine doses, n (%):
Nil side effects 10 (29)
Myalgia 15 (43)
Fever 4 (11)
Rhinorrhea/Cough 3 (9)
Mastitis 1 (3)
Headache 1 (3)
Joint pain 1(3)
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FIGURE 1 | Neutralizing antibody levels detected in serum of lactating women over 2 vaccine doses expressed as WHO SARS-CoV-2 International Standard (n=21).
Serum samples on day 21 is taken prior to receipt of Dose 2. A level >28 IU/ml was used as the cutoff for positive detection of neutralizing antibodies. Neutralizing
antibody levels are presented as median (interquartile range), IU/ml.
A B

FIGURE 2 | (A) Neutralizing antibody levels and the (B) dynamics of neutralizing antibodies detected in the breastmilk over the 2-dose BNT162b2 mRNA
vaccination expressed as WHO SARS-CoV-2 International Standard (n=35). Breastmilk samples on day 21 is taken prior to receipt of Dose 2. A level >7 IU/ml
(dotted red line) was used as the cutoff for positive detection of neutralizing antibodies. Neutralizing antibody levels are shown as median (interquartile range), IU/ml.
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(74.2%) mothers; IgA in 31/31 (100%) and IgM in 26/31
(83.9%) mothers. Post the second vaccine dose, all (35/35,
100%) mothers had detectable SARS-CoV-2 spike RBD-
specific IgG1 and IgA antibody and 32/35 (88.6%) mothers
with IgM.

Breastmilk IgG1 rose significantly 7 days after the second
vaccine dose with continued persistence and elevated levels 21
days after (Day of dose 2: median OD450 0.001 (IQR 0-0.002); 7
days after dose 2: 0.08 (IQR 0.004-0.3); day 14 after dose 2: 0.11
(IQR 0.05,0.2); day 21 after dose 2: 0.06 (IQR 0.03-0.2)
(Figures 5A, D). IgA and IgM in breastmilk (Figures 5B, C)
increased gradually to peak levels at day 7 post dose 2 (peak
median IgA OD450 0.4 (IQR 0.3-0.7), peak median IgM 0.02
(IQR 0.01-0.07). Levels of these IgA and IgM antibodies
subsequently decrease to pre-dose 2 levels after 3 weeks
(Figures 5E, F). IgG2, IgG3 and IgG4 subclasses were not
detected in breastmilk samples.
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Infant Serum
None of the five infant serum analysed had detectable SARS-
CoV-2 spike RBD-specific IgG, IgM and IgA antibodies.

BNT162b2 mRNA Detection in Serum
and Breastmilk
Vaccine mRNA was detected in 20 serum samples from 15
mothers, out of 74 samples from 21 mothers tested. A total of 10/
16 (63%) and 10/25 (40%) mothers had detectable vaccine
mRNA at day 1-3 of dose 1 and day 7-10 of dose 2
respectively (Figure 6A). Five mothers had positive serum
samples at both time points. The median vaccine mRNA
amount (ng/100ml) were not different between the two
timepoints – 16 (IQR 9-24) compared to 12 (IQR 9-18)
(p=0.6) (Supplemental Table 1). None of the samples on days
0 and 21 post-dose 1 had detectable vaccine mRNA.

Five breastmilk samples from 4 mothers had detectable vaccine
mRNA, out of 309 samples from 31mothers tested (Supplemental
Table 2). All positive samples were collected within 3 days of the
vaccine doses - two samples from days 1 and 3 of dose 1
(Figure 6B) and another three from days 1 and 3 post dose 2.
One mother had detectable vaccine mRNA in both breastmilk and
serum samples. The median vaccine mRNA amount in both
sample types were comparable: 14ng/100ml (IQR 8-23) in
serum compared to 7ng/100ml (IQR 6-7) in breastmilk (p=0.2).

None of the serum samples from the five infants tested had
detectable vaccine mRNA. Of the five, one infant was from a
mother with detectable vaccine mRNA in the both breastmilk
and serum and another three were from mothers with vaccine
mRNA in the serum.
DISCUSSION

In this study, we described the dynamics of SARS-CoV-2-specific
antibody isotype production and the associated inhibitory
FIGURE 3 | Correlation between serum and breastmilk neutralizing at day 7
after dose 2 (n=21).
A B C D

FIGURE 4 | SARS-CoV-2 spike RBD-specific antibody responses in serum over the 2-dose BNT162b2 mRNA vaccination. Median serum corrected OD450 values
over the different time points for (A) SARS-CoV-2 RBD-specific IgG1, (B) IgG3, (C) IgA and (D) IgM isotypes. Violin plots with included boxplots showing kernel
probability density of corrected OD450 with the dashed and dotted black lines representing the median and 25th/75th quartiles respectively. Comparisons of
differences between time points were assessed using repeated measures mixed-effects model followed by post hoc Tukey’s multiple comparisons test. The asterisk
indicates P<0.05, double asterisk indicates P<0.001, the triple asterisk indicates P<0.0001.
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activity in the serum and breastmilk of women vaccinated with
the 2-dose BNT162b2 vaccine, over a 6-week period. As
expected, there was detection of neutralizing antibodies and
robust inhibitory responses in the serum just prior to and after
the second vaccine dose, with all samples achieving significantly
elevated neutralizing antibody levels by day 7 of this dose. The
neutralization antibody levels and the associated SARS-CoV-2
RBD-specific antibody isotypes in the serum of these lactating
women corresponds to previous reports of a rise in IgG, IgM and
IgA specific to the spike and RBD segments of the SARS-CoV-2
virus after the first dose, and boosting of selected antibody
isotypes by the second dose (10, 11). We similarly documented
elevation in RBD-specific IgG1 and IgG3 levels in the serum of
all mothers after the second vaccine dose. Recent studies have
described the dominance of IgG1 and IgG3 response over IgG2
and IgG4 following SARS-CoV-2 mRNA vaccination and with
natural infection (24–26). The lower IgM levels after the second
vaccine dose may be related to enhanced class switching to IgG
and IgA isotypes after this dose.

In the breastmilk, detection of neutralizing antibody and
increase in inhibitory capability was notable 7 days after dose 2,
corresponding with the peak levels of SARS-CoV-2 RBD-specific
antibody isotypes, especially IgG1, and IgA levels at this point.
These findings are concordant with previously reported increases
in breastmilk SARS-CoV-2-specific IgA and IgG levels within a
Frontiers in Immunology | www.frontiersin.org 744
week after the second vaccine dose (10, 11, 27, 28). SARS-CoV-2
specific IgA in the breastmilk reportedly achieved maximal levels a
week after the second dose, where SARS-CoV-2-specific IgG was
only evident 1 week after the second dose (12, 14, 28–31). The
persistence of neutralizing activity up to 3 weeks post dose 2
corresponds to the continued elevation in SARS-CoV-2 RBD-
specific IgG1 but not IgA levels. In agreement with recent data,
our study highlights the dominance of breastmilk SARS-CoV-2
IgG1 responses post-vaccination, as compared to higher IgA
responses reported in natural infection (11, 30, 32, 33). The
potential for therapeutic application of these antibodies for
protection against COVID-19, especially neonatal infection,
remains to be elucidated.

We noted one lactating mother who had detectable
SARS-CoV-2-specific neutralizing antibodies in her breastmilk
sample prior to and immediately after the first dose of BNT162b2
vaccination. There was no detectable neutralizing antibodies in
her serum samples prior to and after the first vaccine dose (days 0
and 3), but with similar increases in the neutralizing antibodies
after the second dose as the rest of the cohort. As this participant
reported no significant COVID-19 exposure and the low
community transmission of SARS-CoV-2 during the course of
this study (34), this finding is likely due to cross-reactivity to
antibodies from recent/past infection with non-SARS-CoV-2
coronavirus strains.
A B C

D E F

FIGURE 5 | SARS-CoV-2 spike RBD-specific antibody responses in breastmilk over the 2-dose BNT162b2 mRNA vaccination. Median breastmilk corrected OD450

values over the different time points for (A) SARS-CoV-2 RBD-specific IgG1, (B) IgA and (C) IgM isotypes. Violin plots with included boxplots showing kernel
probability density of corrected OD450 with the dashed and dotted black lines representing the median and 25th/75th quartiles respectively. Comparisons of
differences between time points were assessed using repeated measures mixed-effects model followed by post hoc Tukey’s multiple comparisons test. Line graph
depicting the dynamics of breastmilk (median with 95% CI as error bars) (D) IgG1, (E) IgA and (F) IgM isotypes over the time points. The asterisk indicates P<0.05,
double asterisk indicates P<0.001.
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The neutralizing antibody levels in the serum and the
breastmilk levels were poorly correlated prior to the second
vaccine dose, with moderate positive correlation noted at a
week after dose 2. This is likely a reflection of the boosting of
antibody responses in the serum post the second dose and the
enhanced excretion of antibodies into the breastmilk.

We also report the detection of low quantities of intact
BNT162b2 mRNA in the serum and breastmilk samples – in 71%
and 13% of the mothers investigated respectively. Several recent
reports have inconsistently documented the presence of vaccine
mRNA in the serum and breastmilk of women after BTN162b2
vaccination (13, 35, 36). The presence of intact vaccine mRNA in
both sample types in our study highlights the stability and
persistence of the vaccine mRNA nanoparticle within the
bloodstream which may lead to infrequent transfer into
breastmilk. The systemic spread of intramuscular delivery of lipid
nanoparticle encapsulated-mRNA have been previously
demonstrated in animal models (37). Importantly, our results
were complemented by the lack of neutralizing antibodies and
vaccine mRNA in the serum of breastmilk-fed infants from
vaccinated mothers, suggesting the likely lack of significant
exposure or sensitization of infant to the low levels of mRNA
present in breastmilk. The concentration of mRNA detected in the
serum and breastmilk are comparable, but the levels are still a small
fraction of the vaccine dose given. The median concentration
detected is 0.02% and 0.05% of the vaccine dose in 100ml of milk
or serum respectively.

These results provide additional evidence on the immunogenicity
of BNT162b2 mRNA vaccination among lactating women through
the demonstration of robust SARS-CoV-2 neutralizing activity in the
serum and breastmilk. Importantly, the presence of SARS-CoV-2-
specific antibody isotypes and neutralizing antibodies in the
breastmilk underscores the potential passive protection afforded to
the breastmilk-fed infants. While we detected transient, low levels of
intact vaccinemRNA in the serum and breastmilk, we did not detect
any serological evidence of infant sensitization. These data provide
additional support to the safety of current recommendations
Frontiers in Immunology | www.frontiersin.org 845
for continuing breastfeeding with maternal BTN162b2
mRNA vaccination.

The strengths of our study include the comprehensive,
paired collection of serum and breastmilk samples at
multiple collection timepoints over the 2-dose vaccine course
which allowed us to investigate the presence and importantly,
track the neutralizing ability of the antibodies present in both
sample types. We utilized a rigorous detection method for the
confirmation of the presence of low levels of intact vaccine
mRNA in the serum and breastmilk. This study is limited by
the convenience cohort of front-line healthcare workers and a
small number of infants, which may limit generalizability to
the general population. The positive detection of the vaccine
mRNA in serum and breastmilk did not extend beyond 1 week
after vaccination, although we were limited by the number of
serum collection timepoints. Due to the self-collection and
storage of breastmilk in the participants freezers prior to
transport to the laboratory, this may have led to variation in
sample quality which in turn could have led to degradation in
the vaccine mRNA prior to detection (38).

Larger population-based study should be performed to
confirm the persistence of intact vaccine mRNA in the serum
and breastmilk of lactating women who received the SARS-CoV-
2 vaccination and the possible sensitization of breastmilk-fed
infants towards the intact mRNA. This will contribute additional
evidence to support the safety of current and future
recommendations for infant feeding with mRNA vaccination.
Future studies should also further examine the SARS-CoV-2
inhibition activity of specific antibody isotypes present in
breastmilk through mRNA vaccination, and the potential for
infant protection against COVID-19 through the passive transfer
of breastmilk-derived SARS-CoV-2-specific antibodies.

BNT162b2 mRNA vaccination was associated with the
generation of robust SARS-CoV-2 neutralizing responses in the
serum and breastmilk of lactating women. While we detected low
levels of vaccine mRNA in the serum of vaccinated mothers and
their breastmilk, we did not detect any serological evidence of
A B

FIGURE 6 | The BNT162b2 mRNA amount detected in maternal serum and breastmilk across the different timepoints. Amount of BNT162b2 mRNA (ng/100ml) in
(A) serum and (B) breastmilk across the different sampling timepoints. Only positive samples are plotted and specific shapes in the plots denote samples from
individual mothers across both sample types types (median and 25th/75th quartiles plotted). Intact vaccine mRNA was detected in 20/74 serum samples tested from
21 mothers and 5/309 breastmilk samples tested from 31 mothers. Only 1 mother had detectable vaccine mRNA in serum and breastmilk samples (denoted by
black filled square).
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sensitization of the infant towards the mRNA, providing
additional support to the safety of current recommendations
for continuing breastfeeding with maternal BTN162b2
mRNA vaccination.
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29. Gonçalves J, Juliano AM, Charepe N, Alenquer M, Athayde D, Ferreira F, et al.
Non-Neutralizing Secretory IgA and T Cells Targeting SARS-CoV-2 Spike
Protein Are Transferred to the Breastmilk Upon BNT162b2 Vaccination.
medRxiv (2021) 2021.05.03.21256416. doi: 10.1101/2021.05.03.21256416

30. Baird JK, Jensen SM, Urba WJ, Fox BA, Baird JR. SARS-CoV-2 Antibodies
Detected in Mother’s Milk Post-Vaccination. J Hum Lact (2021) 37(3):492–8.
doi: 10.1177/08903344211030168

31. Selma-Royo M, Bäuerl C, Mena-Tudela D, Aguilar-Camprubı ́ L, Pérez-Cano
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Objectives: The availability of new vaccines against COVID-19 urges for guidance about
vaccination during lactation. We aimed to review the literature to get an insight into the
effects of COVID-19 vaccination on lactating women.

Design: Systematic review.

Data Sources: We searched Ovid Embase Classic+Embase, PubMed and BioMed
Central for articles published between December 1st 2020 and December 31st 2021.

Review Methods: The search strategy contained terms and combinations related to
COVID-19 vaccination during lactation, including the MeSH terms “COVID-19”, “COVID-
19 Vaccines”, “SARS-CoV-2”, “Lactation”, “Breast Feeding”, “Pregnancy” and
“Postpartum period”. The database search was completed with a manual search of the
reference lists of included articles. Data concerning country, study period, number of
participants, type of applied vaccine, time points of sampling and outcome measures
were collected from the selected manuscripts. The data are summarized and synthesized
in a descriptive way.

Results: 30 manuscripts were included in this review. Data on safety of COVID-19
vaccination during lactation indicate no severe vaccine-related local and systemic
reactions, both after first and second dose, neither in the mother nor the nursing child.
No significant amount of vaccine components seems to appear in breast milk. Milk supply
data after vaccination are inconclusive as there are no quantitative data available. Some
women however observe a temporary increase or reduction in milk supply, without long-
term effects. All prospective cohort studies demonstrated the presence of SARS-CoV-2-
specific antibodies in breast milk of nursing mothers vaccinated against SARS-CoV-2.
Nearly all studies were conducted with mRNA vaccines.

Conclusion: There is evidence that the administration of a COVID-19 vaccine is safe and
poses no additional risk to the breastfeeding woman or the breastfed baby. After
vaccination of the mother during the lactation period, antibodies appear in the milk,
which could protect the infant against COVID-19. Professional associations and
org April 2022 | Volume 13 | Article 852928148
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government health authorities should therefore recommend offering COVID-19 vaccines
to breastfeeding women, as the potential benefits of maternal vaccination while
breastfeeding outweigh the risks.
Keywords: COVID-19, obstetrics, immunology, breastfeeding, vaccination, lactation
HIGHLIGHTS

What is already known on this topic

- Healthcare professionals are at greater risk to get a COVID-
19 infection

- It was recommended to prioritize healthcare professionals for
vaccination with the new vaccines against COVID-19

- Many healthcare professionals are women and at fertile age,
who are possibly breastfeeding

- Exclusively breastfeeding for six months and after that for
two years in combination with complementary foods is
recommended

- None of the COVID-19 vaccines currently authorized or in
phase 3 have been trialed for women who are breastfeeding

What this study adds

- COVID-19 vaccines during breastfeeding pose no risk to the
woman and infant

- The presence of antibodies in breast milk of nursing mothers
after COVID-19 vaccination was demonstrated

- No significant amounts of COVID-19 vaccine components
were found in breast milk after vaccination

- Some women report a temporary milk supply change after
COVID-19 vaccination
INTRODUCTION

The COVID-19 outbreak was characterized as a pandemic in
March 2020 by the World Health Organization (WHO) (1).
SARS-CoV-2, the virus that causes COVID-19, appears with a
variety of clinical manifestations. In most cases, the disease starts
with influenza-like symptoms and evolves in some patients
towards acute respiratory distress syndrome (ARDS) and
pneumonia. However, other symptoms like, gastrointestinal,
dermatological, neurological, cardiovascular, and renal
manifestations have also been reported (2). Breastfeeding
women can, similar to other populations, get infected by the
SARS-CoV-2-virus.

In October 2020, the European Commission listed a number
of key steps for effective vaccination strategies ensuring access to
safe vaccines across Europe (3). By the end of 2020, a worldwide
vaccination strategy deployed. In multiple countries, people in
residential centers, along with health care providers (HCPs) were
prioritized for vaccination. At the start of the vaccination
strategy, mRNA-based, adenovector-based vaccines, inactivated
whole virus and subunit vaccines were approved and used (4, 5).
org 249
The availability of new vaccines against COVID-19 and the
recommendation to prioritize HCPs for vaccination, urged for
guidance about vaccination during lactation as many of these
HCPs are of fertile age. Initially, multiple governmental
guidelines advised against vaccination during the lactation
period, disregarding a breastfeeding woman’s likelihood of
developing a severe form of the COVID-19 after exposure to
the virus. At a later stage, the vaccination campaign was extended
to the general population, including women of fertile age. This
led to discontent and a firm counter reaction in the scientific
literature (5, 6). The Center for Disease Control and Prevention
(CDC) (7), the European Medicines Agency (EMA) (8) and the
Royal College of Obstetricians and Gynaecologists (RCOG) (9)
have since reversed their stand and now advise to offer the
vaccine to breastfeeding women (10). Although the currently
marketed COVID-19 vaccines are non-replicating vaccines and
therefore theoretically pose no risk (9, 11, 12), several institutions
still mention that robust safety and immunogenicity data in this
population of women is lacking.

Indeed, none of the COVID-19 vaccines currently authorized
or in phase 3 have been trialed for women who are breastfeeding.
Some of these vaccines are now being tested in an academic
setting. As vaccination in the postpartum period and during
lactation could however result in clinically relevant immunologic
factors in breast milk that are protecting the child in early life, it
is of importance that women have this information to decide
whether to take the vaccine. Exclusively breastfeeding for the first
six months, and after six months in combination with
complementary foods, is recommended by the World Health
Organization (13) and UNICEF (14), given the many physically
and psychologically benefits of breastfeeding, for both mother
and child. Risking a mother to stop breastfeeding earlier than
intended because of vaccination, should be regarded as a threat
to the health of both. On the other hand, refusing vaccination
also entails risks for the mother, with an increased risk of
infection and development of (severe) COVID-19.

We aim to review the literature to get an insight in the effects
of vaccination with COVID-19 vaccines during the lactation
period. This entails the safety of vaccination during lactation, the
immune response in lactating women and the excretion of
immunological factors in breast milk. Neonates rely on the
transfer of immunity via the placenta and breast milk, since
they are born with an immature immune system. The role of
immunoglobulin G (IgG) transferred via the placenta is well
established, but less is known about the transfer of antibodies
and the mechanisms by which these antibodies provide
protection to the neonate via breast milk (15). It is therefore
plausible that the immune response triggered by vaccinating
lactating women may be different from the general population.
April 2022 | Volume 13 | Article 852928
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The conclusions will contribute to the knowledge on COVID-19
vaccination and the results will benefit the population with
respect to public health.
METHODS

Study Design and Searches
We searched Ovid Embase Classic+Embase, PubMed and
BioMed Central for articles published between December 1st

2020 and December 31st 2021. The search strategy contained
terms and combinations related to COVID-19 vaccination
during lactation, including the MeSH terms “COVID-19”,
“COVID-19 Vaccines”, “SARS-CoV-2”, “Lactation”, “Breast
Feeding”, “Pregnancy” and “Postpartum Period”. The final
literature search was performed on the 31st of December 2021.
The database search was completed with a manual search of the
reference lists of included articles (i.e. “snowballing”). The
quality of reporting was supported by the use of the PRISMA
guidelines (16). The detailed overview of the search strategy is
provided in Appendix 1.

Eligibility Criteria and Study Selection
Manuscripts were eligible for inclusion if (1) study participants
were women vaccinated with a COVID-19 vaccine during the
lactation period and (2) the results reported on the safety of
vaccination during lactation OR on the excretion of COVID-19
vaccine components in breast milk OR the excretion of
immunological factors in breast milk after COVID-19
vaccination OR on the impact of COVID-19 vaccination on
the breast milk production. Manuscripts published in English,
French, Dutch, German or Spanish were included. Studies that
focused on women with specific pathologies (e.g. transplant
patients) were excluded. JM and ET independently screened
titles, abstracts and full-texts of the retrieved manuscripts for
eligibility. Each manuscript showing uncertainty regarding
inclusion criteria was discussed with the other authors until
consensus about inclusion.

Data Collection, Synthesis and Analysis
Data concerning country, study period, number of participants,
type of applied vaccine, time points of sampling and outcome
measures were collected from the selected manuscripts. The
datasets were summarized and synthesized in a descriptive way.
RESULTS

Included Studies
In Total, 2,373 manuscripts were identified. We screened 2,163
titles and 60 abstracts for eligibility. We screened the full text of
26 manuscripts and excluded 7. Eleven manuscripts were added
via manual search of the references (Figure 1). We included
manuscripts reporting on women that were vaccinated with the
messenger RNA (mRNA) mRNA-1273 (Moderna) and vaccines
BNT162b2 (Pfizer–BioNTech), the adenoviral vector vaccines
Frontiers in Immunology | www.frontiersin.org 350
ChAdOx1 nCoV-19 (Oxford - AstraZeneca) and JNJ-78436735
(Johnson & Johnson) and the inactivated whole-virus SARS-
CoV-2 vaccine by Sinovac Biotech Ltd.

Of the 30 included references, 1 study reports on the excretion
of COVID-19 components in breast milk (17), 20 studies report
on the excretion of antibodies in breast milk (18–36), 1 study
report on the excretion of other immunological factors (37) and
1 study reports on the impact of vaccination on breast milk
production (38). Two studies report on both side effects and the
excretion of COVID-19 antibodies (39, 40), 1 study reports on
the excretion of COVID-19 antibodies and the excretion of
vaccine components (41), 3 studies report on side effects and
the impact of vaccination on breast milk production (42–44) and
1 study reports on side effects, the impact of vaccination on
breast milk production and on breast milk production (45).

Side-Effects in the Mother After COVID-19
Vaccination During Lactation
Six publications report on side-effects of COVID-19 vaccination
during lactation in a total of 7,241 women, of which 4,509
vaccinated with the BNT162b2 vaccine, 2,669 with the mRNA-
1273 vaccine and 23 with the JNJ-78436735 vaccine (39, 42–45).

In a first study (42), data from 17,525 women vaccinated
with a COVID-19 vaccine were included of which 6,815 were
lactating women. The other women were either pregnant women
(n = 7,809) or women from fertile age planning to get pregnant at
the moment of the first vaccine dose (n = 2,901). Of the
vaccinated lactating women, 4,156 received the BNT162b2
vaccine, 2,596 received the mRNA-1273 vaccine, 23 received
the JNJ-78436735 vaccine and from 40 women it was not known
which vaccine they received. The most common adverse
reactions in all participating women after a first vaccine dose
were pain at the injection site (16,019/17,525; 91.4%) and fatigue
(5,489/17,525; 31.3%). Fatigue was more reported after the
second dose (10,399/17,525; 69.2%). No difference in the rate
of adverse events by vaccine-type was reported across all
groups (42).

Another study (43) (n = 180, of which 128 lactating women
received the BNT162b2 vaccine and 52 the mRNA-1273)
reported similar proportions of general side-effects for both the
BNT162b2 (89.4%) and mRNA-1273 (98.1%) vaccine after the
first dose in lactating women. The most common reactions in
lactating women after a first dose were pain at the injection site
(105/126; 86.8% BNT162b; 50/52, 96.2% mRNA-1273) fatigue
(31/126; 26.3% BNT162b2; 12/52; 23.1% mRNA-1273) and
headache (28/126; 23.7% BNT162b;13/52; 25.0% mRNA-1273).
Following the second dose, lactating women receiving the mRNA-
1273 vaccine reported significantly more side-effects like chills
(36/52 vs. 55/123, 75.0% vs.47.8%), muscle/body aches (41/52 vs.
71/123, 83.7% vs.61.7%), fever (23/52 vs. 28/123, 46.9% vs. 24.3%)
and vomiting (4/32 vs. 1/123, 8.5% vs. 0.9%) (p<0.05) in
comparison with women receiving the BNT162b2 vaccine.
Local symptoms including redness at injection site (15/52 vs. 3/
123, 31.9% vs. 2.6%), swelling at injection site (14/52 vs. 8/123,
29.8% vs. 6.1%) and itching at injection site (8/52 vs. 5/123, 17.4%
vs. 4.4%) were more common after the second dose with the
April 2022 | Volume 13 | Article 852928
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mRNA-1273 vaccine (p<0.05) then after the BNT162b2
vaccine (43).

In a third study (45), (n = 48), fever, chills, muscle or body
aches, fatigue and/or tiredness and joint pain were significantly
less reported by lactating women after the first dose than after the
second dose. All 21 participants (100%) who received the
mRNA-1237 vaccine reported symptoms at injection, while
only 21 (78%) of 27 BNT162b2 participants reported
symptoms at injection site (p=0.02). During the study, two
infants were diagnosed with COVID-19. One week after the
second dose, mild symptoms by one infant were reported, while
the infant’s PCR test was positive, the mother who was
vaccinated had a negative test. A positive plasma anti-SARS-
CoV-2 IgG (immunoglobulin G) and IgA (immunoglobulin A)
was found in another infant, despite the mother reported no
Frontiers in Immunology | www.frontiersin.org 451
known prior SARS-CoV-2 infection and receiving the vaccine
postpartum. A likely natural asymptomatic COVID-19 infection
could be indicated, since antibodies against SARS-CoV-2
nucleocapsid protein were found in the mother’s plasma (45).

A fourth study (39) (n = 84) reported similar adverse
reactions after the first and second dose in lactating women.
Forty-seven women (55.9%) reported one or more vaccine-
related side effect after the first dose of which 40 local pain at
injection site (47.6%), and 8 fatigue (9.5%). After the second
dose, 52 women (61.9%) reported side-effects, of which 34 local
pain at injection site (40.5%), 28 fatigue (33.3%) and 10 fever
(11.9%) (39). In the final included study (44), local reactions at
the injection site (redness, pain or swelling) were reported by 57
of 88 women (64.8%), headache, muscle pain or joint pain was
reported by 52/88 (59.1%) and fatigue by 54/88 (61.4%). Five out
FIGURE 1 | Flow diagram of literature search and manuscript selection.
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of 88 (5.7%) lactating women reported neck or axillary lymph
node swelling after their second dose of the BNT162b2 vaccine.
Mastitis was reported by three (3.4%) women and breast
engorgement which resolved after 24 hours was reported by
one woman (44).

In a fifth study (40) (n = 26) one or more side effects were
reported by 57% of the participants after the first dose. After the
second dose, one or more side effects were reported by 81% of the
participants. After the first dose, the most reported side effects
were local pain or swelling (6/26, 28.6%) and muscles aches (5/
26, 23.8%). After the second dose fatigue (7/26, 33.3%), local pain
or swelling (6/26, 28.6%), fever (5/26, 23.8%) and headache (5/
26, 23.8%) were the most frequently reported side effects (40).

Overall, we can conclude that side-effects in lactating mothers
after COVID-19 vaccination are similar to other individuals like
pregnant women and women who are planning to get pregnant
(42). The most common side-effects shown in these studies were
fatigue, fever, headache, chills, muscle pain and pain at injection
site. These side-effects are mild and similar to side-effects
described in the general population (46). Studies showed
increased reactions following the second dose of BNT162b2
and mRNA-1237 vaccines compared to the first dose (39, 42,
43, 45).

Side-Effects in the Infant After COVID-19
Vaccination During Lactation
Three studies evaluated side-effects in the infant after a COVID-
19 vaccination to the mother, including a total of 7,043 infants
(4,311 of whom the mother was vaccinated with the BNT162b2
vaccine, 2,669 with the mRNA-1273 vaccine, 23 with the JNJ-
78436735 vaccine, 40 of which the vaccine type was not
specified) (42, 43, 45).

In the first study (n = 6,815) 208 breastfeeding mothers
reported to have concerns about the infant after the first dose
(3.0%) and concerns were reported by 267 breastfeeding mothers
after the second dose (4.4%) (42). In another study (n = 180) the
most common side-effects seen in the nursing children were
similar for both mRNA vaccines following the first dose (poor
sleep: 4/129, 3.4% BNT162b2; 3/53, 5.9% mRNA-1273 and
irritability: 2/129, 1.7% BNT162b2; 2/53, 3.9% mRNA-1273)
and second dose (poor sleep: 7.8% BNT162b2; 8.3% mRNA-
1273 and irritability: 12/126, 10.3% BNT162b2; 5/53, 10.4%
mRNA-1273). The only side-effect showing a significant
difference between the mRNA-1273 and BNT162b2 vaccine
after the second dose was drowsiness after the second vaccine
dose. Mothers who received the mRNA-1273 vaccine reported
significantly more drowsiness in the infant after the second dose
in comparison to mothers who received the BNT162b2 vaccine
(3/53 vs. 0/129; 6.4% vs. 0.0%; p=0.02) (43). In another study
with 48 participants (27 BNT162b2 and 21 mRNA-1273), 12%
(6/48) of mothers reported to have seen at least one symptom
after the first vaccine in their infants. These included
gastrointestinal (2/48; 4.0%; BNT162b2), sleep changes (3/48;
6.0%; 2 BNT162b2, 1 mRNA-1273) and rash/baby acne (1/48;
2.0%; mRNA-1273). No mothers reported an infant symptom
after the second vaccine dose (45).
Frontiers in Immunology | www.frontiersin.org 552
Excretion of COVID-19-Vaccine
Components in Breast Milk
Two manuscripts report on the excretion of COVID-19 vaccine
particles in breast milk, including a total of 16 women (15
vaccinated with the BNT162b2 vaccine and 1 with the mRNA-
1273 vaccine) (17, 41).

The first study included 6 women receiving a COVID-19
vaccine of which 5 women were vaccinated with the BNT162b2
vaccine, and 1 with the mRNA-1273 vaccine. When testing
breast milk samples, no mRNA was found in their milk 4-48
hours post-vaccination (17). The second study included 10
women receiving the BNT162b2 vaccine of which milk
samples were analyzed at four timepoints (pre-vaccination, 1-3
days after the first dose, 7-days after the first dose and 3-7 days
after the second dose). Across all timepoints, a minimal transfer
of BNT162b2 mRNA in human milk was found. Very low levels
of vaccine mRNA were only found on rare occasions (4/40) and
this within the first week after the first dose or second dose.
Detectable levels of vaccine mRNA were not shown in 90% (36/
40 samples) of the samples. The highest concentration of
BNT162b2 mRNA found was 2 ng/mL. In the worst-case
scenario, this would mean 0.67% of the given vaccine dose
being transferred to the infant in 100 mL of breast milk (41).

mRNA vaccines contain a part of the genetic code of the
SARS-Cov-2 virus, more specifically that of the SARS-Cov-2 S
spike or “S” protein. They are encapsulated in very small
specialized particles consisting of fats, cholesterol and
polyethylene glycol. The small amount of polyethylene glycol-
2000 in the BNT162b2 vaccine was also not found in breast
milk (45).

Excretion of Antibodies in Breast Milk
The eventual list of included manuscripts covering the excretion
of antibodies in breast milk is presented in Tables 1, 2. It covers
an overview of the number of participants, applied vaccines,
timepoints of breast milk collection and IgG and IgA responses
in breast milk for every study. Our final sample comprised of 18
published (18, 19, 21–33, 39, 40) manuscripts reporting on 716
women receiving a COVID-19 vaccine during the lactation
period and 6 preprints (20, 35, 36, 41, 45, 48) on 151 women
receiving a COVID-19 vaccine during the lactation period. In
total, 665 women were vaccinated with the BNT162b2 vaccine,
125 with the mRNA-1273, 13 with the JNJ-78436735, 44 with the
ChAdOx1 nCoV-19 and 20 with the Sinovac Biotech Ltd. The
studies were performed in 9 different countries (i.e. USA, Israel,
Spain, Brazil, Italy, Poland, Portugal, Singapore and
The Netherlands).

The presence of antibodies in breast milk (mainly IgA and
IgG) after vaccination against SARS-CoV-2 during lactation,
have been demonstrated by several prospective cohort studies.
Nearly all studies were conducted with mRNA vaccines (See
Tables 1, 2). Only one study included participants vaccinated
with the JNJ-78436735 vaccine (48), one study included
participants vaccinated with the Sinovac Biotech Ltd. Vaccine
(22) and two studies included participants vaccinated with the
ChAdOx1-S vaccine (19, 32).
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TABLE 1 | Overview of vaccination studies in breastfeeding women with data on antibody secretion in breast milk.

IgG response in BM

vels of IgG after 1st dose, beginning at day 7, with an
ant response. The level of IgG decreased prior to 2nd

levels sharply increased after 2nd dose.

able

etected in breast milk was detected after vaccine
tion. After the 1st dose, IgG was present in 7.1% (1/
esence increased to 42.9% (6/14) after the 2nd dose.

n IgG titer was 97 after vaccination.

levels for breast milk were found at each time point:
U/mL for T1, 78 (33.7-128) AU/mL for T2, and 50.4
AU/mL for T3.
T3 IgG rose significantly (3.44-3.50; p=0.002), but not
T2 (3.44-3.45, p=0.7).

-CoV-2 S antibodies were detected in two (40%) milk
ith a low concentration (1.2 +/- 0.3 U/mL) at T1. In all
es anti-SARS-CoV-2 S antibodies were detected at T2
7.5 U/mL).
lute values, there were no differences observed on
4/28 (50%) positive IgG samples were observed on
in all women on days 29 and 43. On day 29 after the
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Baird et al. (21) (USA) 6 BNT162b2 (n = 3) Before vaccination (BV) +
day 1, 4, 7, 11, 14 after
1st dose + 1 day before
2nd dose + day 1, 4, 7, 11
and 14 after 2nd dose

Elevated levels of IgA beginning at day 7 after 1st dose.
Prior to the 2nd dose, levels of IgA decreased. Levels
of IgA increased sharply after 2nd dose.

Elevated le
IgG domin
dose. IgG

mRNA-1273 (n = 3)

Calil et al. (22) (Brazil) 20 Sinovac Biotech Ltd.
(inactivated whole-virus
SARS-CoV-2 vaccine)

BV + Weekly after 2nd

dose for 3 weeks + until 4
months after 1st dose
(n=10)

After the 1st dose, mean levels of IgA increased in the
first two weeks. At week 5 and 6, significantly higher
mean values were obtained compared to week 1, 2, 3
and 4. At week 7, specific IgA antibody levels above
the seroconversion were found in milk samples of 10
mothers. IgA levels were above the seroconversion in
milk samples 4 months after the 1st dose (n=10).

Not Applic

Charepe et al. (23)
(Portugal))

14 BNT162b2 1-3 weeks after 1st dose +
1-3 weeks after 2nd dose

IgA was detected in breast milk after vaccine
administration. In 35.7% (5/14) of milk samples, IgA
was present after the 1st dose. IgA was present in
21.4% (3/14) after the 2nd dose.

IgG was d
administra
14). IgG p

Collier et al. (24) (USA) 16 mRNA-1273 (n = 5) Close to each vaccine
dose and between 2-8
weeks after 2nd dose

The median IgA titer was 25 after vaccination. The media
BNT162b2 (n = 11)

Esteve-Palau et al. (25)
(Spain)

33 BNT162b2 Around 2 weeks after 1st

dose (T1) + 2 (T2) and 4
weeks (T3) after 2nd dose

Not Applicable Median Ig
1 (0-2.9) A
(24.3-104

Gray et al. (26) (USA) 31 mRNA-1273 (n = 15) BV (T1) + Day of 2nd dose
(T2) + between 2-6 weeks
after 2nd dose (T3)

in milk samples after mRNA-1273 vaccination, higher
S- and RBD-specific IgA responses were found
compared to the BNT162b2 vaccine. There was no
significant rise in IgA after either dose.

from T1 to
from T1 toBNT162b2 (n = 16)

Guida et al. (27) (Italy) 10 BNT162b2 20 days after 1st dose (T1)
(before 2nd dose) + 7 days
after 2nd dose (T2)

Not Applicable Anti-SARS
samples w
milk samp
(41.5 +/- 4

Jakuszko et al. (28)
(Poland)

28 BNT162b2 Day 8 and 21 after 1st

dose (day 21 prior to 2nd

dose) + Day 29, 43 after
2nd dose

No differences in the absolute values were observed
on day 8. On day 29 after the 2nd dose, the highest
concentrations of IgA were observed, with a decrease
on day 43.

In the abs
day 8. In 1
day 22 an
2nd dose t
decrease

Juncker et al. (40) (The
Netherlands)

26 BNT162b2 (6 one
dose, 20 2 doses)

BV + Day 3, 5, 7, 9, 11,
13 and 15-17 after 1st

dose + before 2nd dose +
Day 3, 5, 7, 9, 11, 13 and
15-17 after 2nd dose

After vaccination, a higher inter-individual variability in
IgA was observed. IgA started rising 5 to 7 days after
1st dose, with an increase of 12% per day. On day
15 a three-fold increase was seen, compared to
baseline. From day 15 after 1st dose and just before
2nd dose, IgA levels decreased by 43%. IgA levels
stabilized at 50% of peak level. At 2nd dose peak level
was 1.3 times higher compared to peak level 7 days
after 1st dose. After the 2nd dose IgA gradually
declined, decreasing by 33% until the end of sample
collection 35 days after 1st dose IgA increased by 2.4
times.

Not Applic
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TABLE 1 | Continued

IgG response in BM

all samples, IgG levels were elevated relative compared to pre-
accine baseline. Starting at 20 days after 1st dose, IgG remained
ustained at an elevation through final milk sample.

ccording to the type of vaccine, the mean IgG titers observed
ere different. Mothers who received the BNT162b2 vaccine had
mean of 0.41 (AU), for mRNA-1273 the mean was 0.45 (AU)
nd for ChAdOx1-S (one dose) the mean was 0.09 (AU).
omparing mean of IgG in mother milk from mothers vaccinated
ith BNT162b2 or mRNA-1273 vs. ChAdOx1-S (Sidakmethod),
ere were significant differences found. No differences in mean
G could be found between those mothers vaccinated with
NT162b2 vs. mRNA-1273.
t 3-7 days after the 2nd dose (T4) the median concentrations of
nti-spike and anti-RBD IgG were 392 and 188 pM (picomolar).
all mother milk samples an increase in IgG was observed at
4. At 4-6 weeks after the 2nd dose (T5) the IgG levels remained
igh, with median concentrations of 657 pM anti-spike IgG and
84 pM anti-RBD IgG. Compared to the IgG concentration the
vels at after the 2nd dose (T4, T5) were significantly higher
ompared to the concentration before vaccination (p < 0.001).
ARS-CoV-2 IgG was found in all breast milk samples.

he first 3 weeks after vaccination IgG remained low. An increase
as seen at week 4 (20.5 U/mL; p = 0.004). At that point 91.7%
f samples tested positive, even more increasing to 97% at
eeks 5 and 6.

nti- SARS-CoV-2 RBD-S1 IgG in all milk samples of vaccinated
others. The mean IgG level was 12.19 ± 11.74 BAUs per mL
5% CI: 9.77–14.60; p <.001). The mean IgG levels were
ignificantly higher than the levels from the control group (no
accination, no previous infection) (0.02 ± 0.05 BAUs per mL
5% CI: 0.01–0.05; p<0.001]).
median igG concentration of 6.3 S/Co (IQR, 5.1e 7.4). was
und in all mother milk samples.
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Kelly et al. (18) (USA) 5 BNT162b2 BV + Day of 1st dose +
weekly following until
between 40-90 days after
1st dose

In all samples, IgA levels were elevated compared to
pre-vaccine baseline. Two weeks after the 1st dose,
IgA remained sustained. Following the 2nd dose
gradual decline in IgA over time was seen.

I
v
s

Lechosa-Muñiz et al.
(19) (Spain)

110 BNT162b2 (n = 70) 30 days after 2nd dose for
BNT162b2 and mRNA-
1273

According to the type of vaccine, the mean IgA titers
observed were different. Mothers who receveid the
BNT162b2 vaccine had a mean of 0.11 (AU), for
mRNA-1273 the mean was 0.10 (AU) and for
ChAdOx1-S (one dose) the mean was 0.04 (AU).
Comparing mean of IgA in mother milk from mothers
vaccinated with BNT162b2 vs. ChAdOx1-S, there
were significant differences found.

A
w
a
a
C
w
t
I
B

mRNA-1273 (n = 20) 30 days after 1st dose for
ChAdOx1-SChAdOx1-S (n = 20)

(only one dose was
administrated from
ChAdOx1-S)

Low et al. (29)
(Singapore)

14 BNT162b2 BV (T1) + 1-3 days after
1st dose (T2) + 7-10 days
after 1st dose (T3) + 3-7
days after 2nd dose (T4) +
4-6 weeks after 2nd dose

A strong IgA response at 3-7 days after the 2nd dose
(T4) was induced by vaccination. From T4 mother milk
samples showed medians of 827 pM of anti-spike and
282 pM of anti-RBD IgA, a significantly higher level
compared to the concentrations from earlier time
points (p < 0.001). A reduction was observed 4-6
weeks after 2nd dose in the anti-spike (median: 499
pM) and the anti-RBD (median: 0 pM) IgA response.

A
a
I
T
h
1
l
c

Nir et al. (30) (Israël) 64 BNT162b2 During postpartum
hospitalization, mean time
interval between 2nd dose
and delivery was 21.7 (+/-
11.0)

Not Applicable S

Perl et al. (39) (Israël) 84 BNT162b2 BV + Weekly for 6 weeks
beginning 2 weeks after
1st dose

Mean levels of IgA increased rapidly. At 2 weeks after
the 1st dose, mean levels of IgA were significantly
elevated, compared to mean levels before vaccination
(2.05 ratio; p < 0.001). An increase from 61.8%
positive tested samples to 86.1% 1 week after the 2nd

dose. Until the last sample, mean levels remained
elevated. At 6 weeks, 65.7% of samples tested
positive.

T
w
o
w

Romero Ramirez et al.
(31) (Spain)

98 BNT162b2 (n = 92) 14 days after 2nd dose IgA was found in 89% of the samples (95% CI: 81–95). A
m
(
s
v
[

mRNA-1273 (n = 6)

Schwartz et al. (47)
(Israël)

61 BNT162b2 Time of sample collection
according to vaccination
was not mentioned in the
article

In 15% of mother milk samples IgA was detected in
secretory form. A median of 0.4 S/Co (IQR, 0.3e 0.7)
was found.
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In total, 17 published and 6 preprint studies researched the
presence of IgA in breast milk after COVID-19 vaccination (18–
24, 26, 28, 29, 31–33, 35, 36, 39, 40, 45, 47, 48). In general, the
included studies show particularly an increase of antibody titers
in breast milk after the second dose and that this is highly
correlate with the levels present in the mother’s blood. An
increase of anti-SARS-CoV-2 specific IgA was found in most
studies one week after the first dose. In the different studies, the
interval between the first and second dose of mRNA vaccines was
between 21 and 35 days, however, the participants of the two
studies using the adenovector-based vaccines ChAdOx1 nCoV-1,
did not receive a second dose. After the intermediate timepoint
between the first and second vaccine dose, a decrease of IgA was
reported towards the second dose. In most studies, the highest
concentrations were observed one week after the second dose
(18, 20–23, 28, 29, 32, 33, 36, 39, 40, 45). Three studies compared
IgA between the mRNA-based vaccines (BNT162b2, n=123, and
mRNA-1273, n=45) and the adenovector-based vaccines
ChAdOx1 nCoV-19 (n=44) or JNJ-78436735 (n=13) (19, 32,
48). A first study found a significant difference in the mean IgA
titers in breast milk of mothers vaccinated with BNT162b2 vs.
ChAdOx1 nCoV-19 (p=0.02). For mothers who received the
mRNA-1273 vaccine, the BNT162b2 vaccine and the ChAdOx1
nCoV-19 vaccine (one dose) respectively, the mean antibody
titers observed in milk were 0.10 (± SD 0.07), 0.11 (± SD 0.12)
and 0.04 (± SD 0.07) (AU, Arbitrary Units) (19). Another study
found that IgA levels were higher after the first dose mRNA-1273
vaccinated women compared to ChAdOx1 nCoV-19 (one dose)
(p<0.0001) and BNT162b2 (p=0.002). After the second dose, no
differences were observed between the mRNA-based vaccines.
After the notification of severe episodes of immune thrombotic
thrombocytopenia after vaccination with ChAdOx1 nCoV-19,
participants did not receive a second dose. Therefore there is no
information on antibody responses in breast milk available after
the second dose of ChAdOx1 nCoV-19 (32). A third study
compared the mRNA-based vaccines with the JNJ-78436735
vaccine. Positive levels of Spike-specific IgA, exhibiting a mean
endpoint titer of 15, was found in 23% of the JNJ-78436735
recipient milk samples. Comparing to the mRNA-1273 vaccine
group, this was significantly lower (p=0.025) (48).

In total, the presence of IgG in breast milk after vaccination
against SARS-CoV-2 in the lactation period was researched in 17
published and 4 preprint studies (18, 19, 21, 23–26, 28–33, 35, 36,
39, 47, 48). In some milk samples, an increase of anti-SARS-
CoV-2 specific IgG was found one week after the first dose and
increasing towards 2 weeks after the first dose. After the second
dose, also an increase of IgG antibodies was seen (18, 21, 23, 25–
29, 32, 33, 36, 39). Three studies compared ant-SARS CoV-2
RDB-S1 IgG between the mRNA-based vaccines (mRNA-1273
and BNT162b2) and the adenovector-based vaccines ChAdOx1
nCoV-19 or JNJ-78436735 (19, 32, 48). In a first study, according
to the type of vaccine, the mean IgG titers were different, being
0.41 (± SD 0.10) for mothers who received BNT162b2, 0.45 ((±
SD 0.08) for mRNA-1273, and 0.09 (± SD 0.08) (AU)
ChAdOx1-S (one dose).

Comparing mean of IgG of lactating women vaccinated with
mRNA-1273 or BNT162b2 vs. ChAdOx1-S significant
T
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TABLE 2 | Overview of vaccination studies in breastfeeding women with data on antibody secretion in breast milk, published as preprint.
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differences were found (p=0.01), but there were no differences
found between those mothers vaccinated with mRNA-1273 vs.
BNT162b2 (19). In another study, higher levels of IgG were
induced by the mRNA-1273 vaccine and BNT162b2 vaccine
compared to the ChAdOx1-S vaccine after the first dose.
Compared to the ChAdOx1-S vaccine 2 weeks after the first
dose, a higher percentage of samples frommRNA-based vaccines
remained positive for anti-SARS-CoV-2 IgG (p<0.0001) (32). In
a third study, positive levels of Spike-specific IgG were found in
100% of mRNA-1273 and 87% of BNT162b2 post-vaccine milk
samples. Of these mRNA vaccine groups, there were no
significant differences in mean IgG titers. Both groups, of the
mRNA-1273 vaccine and BNT162b2 vaccine, exhibited
significantly higher specific milk IgG compared to milk
samples from mothers vaccinated with the JNJ-78436735
vaccine. Only 38% of JNJ-78436735 samples contained positive
levels of specific IgG (mean endpoint titer = 10; p < 0.0001) (48).

In addition, the presence of binding neutralizing antibodies
was revealed in two studies evaluating the immunogenicity of
mRNA-based vaccines (24, 36). These data may indicate that
breast milk has the potential to add to infant protection by
passively transferred antibodies through breast milk.

Excretion of Other Immunological Factors
in Breast Milk
Only one manuscript reported on the excretion of other
immunological factors than antibodies. The study included 14
women, all receiving the BNT162b2 vaccine. The study showed
that vaccination is not only able to increase the amount of
antibodies in breast milk, but also induces spike-reactive CD4+
T cells in breast milk, especially after the second dose of the
BNT162b2 vaccine. These spike-reactive CD4+ T cells may have a
protective function in the upper respiratory tract of infants (37).

Impact of Vaccination on Breast
Milk Production
Five manuscripts report on the impact of vaccination on breast
milk production and included a total of 11,586 lactating women
receiving a COVID-19 vaccine (38, 42, 43, 45). These studies
report on 4,399 women vaccinated with the BNT162b2 vaccine,
2,669 with the mRNA-1273, 23 with the JNJ-78436735 and for
40 the vaccine type was not specified (42, 43, 45). One of these
studies vaccinated 4,445 women with either the mRNA-1273 or
the BNT162b2 vaccine. This was not specified (38).

In a first study (n = 180), a temporary reduction in breast milk
supply was reported by some women after vaccination with a
COVID-19 mRNA vaccine (71% BNT162b2, 29% mRNA-1273).
A decrease in milk production after the BNT162b2 vaccine was
reported by 7.3% (9/126) and 8.0% (9/123) women after the first
and second dose, respectively. The percentage of women
reporting a decrease in milk production after the mRNA-1273
vaccine was 11.5% (6/52) after the first dose and 23.4% (11/52)
after the second dose. The difference between the BNT162b2
vaccine and the mRNA-1273 was statistically significant
(p<0.05). Milk supply returned to normal within three days in
all cases. In contrast, an increase in milk supply was reported by
Frontiers in Immunology | www.frontiersin.org 1057
some women. More production was reported after the first dose
by 3.3% (4/126) of mothers who received the BNT162b2 vaccine,
but was not reported by mothers receiving a first dose of the
mRNA-1273 vaccine. After the second dose, 3.6% (4/123) of
mothers who received the BNT162b2 vaccine reported an
increase in milk supply, and 6.4% (3/52) of mothers who
received the mRNA-1273 vaccine. Finally, a milk color change
to blue-green color was reported by 3 mothers after vaccine
administration (2/126, 8.0%, BNT162b2; 1/52, 7.1%, mRNA-
1273) after the administration of the first dose and by 2 mothers
(1/123, 4.0%, BNT162b2; 1/52, 6.2%, mRNA-1273) after the
second dose (43).

In a second study, 4,455 breastfeeding mothers who received
either the BNT162b2 vaccine or the mRNA-1273 vaccine filled in
an online survey. An increase in milk supply was reported by
3.9% of mothers and a decrease was reported by 6.0% of mothers
(38). In a third study of 6,815 lactating women, 339 participants
reported a decreased milk supply no longer than 24 hours after
the first dose (5.0%) and 434 participants after the second dose
(7.2%) (42). In another, relatively small study with 48 mothers, 2
mothers reported a slight decrease in milk production in the first
24-72 hours after the first and second dose (45).

An interruption of breastfeeding after the first dose by 155 of
6,815 participants (2.3%) and 130 of 6,056 individuals after the
second dose (2.2%) was reported by Kachikis et al. (2021).
Whether the breastfeeding interruption was a deliberate choice
of the mother, imposed upon from the health care provider or a
consequence of decreased production was not specified (42).

One study looked at milk production after receiving the
BNT162b2 vaccine (n = 88). A change in milk supply was
reported by one woman, increase or decrease was not specified.
One woman reported a transient bluish-green color of her breast
milk after her first vaccine dose. This was not reported after her
second dose (44).
DISCUSSION

Main Findings of the Review
We reviewed the literature on the safety of COVID-19 vaccination
during lactation in women and neonates. Subsequently, we
summarized the effects of COVID-19 vaccination during
lactation on the excretion of COVID-19 vaccine components in
breast milk, the excretion of immunologic factors in breast milk
and on the production of breast milk. In general, currently
available data point towards a reassuring safety profile of
COVID-19 vaccination during lactation with comparable side-
effects in lactating compared to pregnant, non-pregnant and non-
lactating women of childbearing age. While vaccine components
are barely or not detectable in breast milk, most studies report the
presence of anti-SARS-CoV-2 IgA and IgG in breast milk at
several timepoints post vaccination, up to 8 weeks after the second
vaccine dose. Additionally, a large proportion of the antibodies in
breast milk exhibits neutralizing capacity against the virus offering
potential additional protection to the nursing infant. The impact
on milk supply appears to remain very limited.
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Combining the Reported Study Outcomes
Since neonates are born with an immature immune system, they
rely on the transfer of antibodies via the placenta and breast milk
for their protection during the first vulnerable months and years
of life. The mechanisms by which the antibodies in breast milk
provide protection to the neonate still remain unclear (15). At
the moment of publication, worldwide, 47 out of 224 countries
recommend COVID-19 vaccination for some or all lactating
women whereas 77 countries state that lactating women can
receive, may receive or can choose to receive the vaccine. In 8
countries, only certain groups of lactating people (e.g. health care
professionals, women with underlying conditions) can or may
choose to receive the vaccine. One country state that lactating
women should not receive the vaccine, with certain exceptions
and 23 countries do not recommend COVID-19 vaccination for
lactating women. For 68 countries, there is currently no
information on their policy regarding COVID-19 vaccination
during lactation (10).

Despite the fact that the strategy of vaccinating lactating
women with COVID-19 vaccines is frequently recommended
on a global level, none of the COVID-19 vaccines currently
authorized or in phase 3 have been trialed for women who are
breastfeeding. Since COVID-19 is a new disease, it is important
to consider whether vaccination during lactation is safe and
effective. The safety of administrating inactivated vaccines to
lactating women was already shown for other vaccine-
preventable infectious diseases (49) and also sIgA and IgG
after postpartum vaccination against pertussis and influenza
are proven to be secreted into breast milk (15).

Three studies, all using mRNA-based vaccines, focused on the
safety and side-effects of COVID-19-vaccination in lactating
women (42, 43, 45). Among all participants, the most common
described side-effects were pain at the injection site, fatigue, chills,
headache, muscle/body aches, fever and vomiting. These side-
effects are similar to the ones seen in the general population (46).

The excretion of COVID-19 vaccine components in breast
milk was investigated in two studies (17, 41). Although these
studies were small, it is reassuring that no or very low
concentrations of mRNA were detected (17, 41). If low
concentrations of mRNA reach the breastfed infant through
breast milk, it is very likely that there will be no uptake by the
gastrointestinal system. The small amount of polyethylene glycol-
2000 (PEG-2000) in the BNT162b2 vaccine is not found in breast
milk. This is important to know, since PEG-2000 can cause
anaphylaxis in very rare cases (45). No studies were performed
on the excretion of COVID-19-vaccine components in breast
milk after vaccination with any other type of COVID-19 vaccine.

Multiple studies showed that sIgA and IgG against the SARS-
CoV-2 spike protein are present in breast milk after COVID-19
mRNA vaccination (20, 21, 26, 37, 50, 51). These studies show
that the antibody titers (sIgA and IgG) in breast milk mainly
increase after a second dose and that they are strongly correlated
with the antibody levels present in the mother’s blood. In most
published studies, antibody levels are measured relatively shortly
after vaccination, i.e. within 2 to 8 weeks after the second dose.
At the time of publication, most studies focused on measuring
Frontiers in Immunology | www.frontiersin.org 1158
antibody levels until 2 to 8 weeks after the second dose. Long-term
results on antibody levels after vaccination are not published yet.

Nearly all studies were conducted with mRNA vaccines. Only
one study was conducted with the JNJ-78436735 vaccine (48),
one study was conducted with the Sinovac Biotech Ltd. vaccine
(22) and two studies were conducted with the ChAdOx1-S
vaccine (19, 32).

Five studies looked at the effect of COVID-19 vaccination on
milk production (38, 42–45). Only a few women reported a
temporary reduction in breast milk supply. Milk supply returned
to normal within one to three days. Some women reported an
increase in milk supply.

Strengths and Limitations of the Review
To the best of our knowledge, this is the most complete and
extensive review on the effects of COVID-19 vaccines when
administered to lactating women. The insights of this review are
important for policy makers that can adapt guidelines and
inform women on whether to take the vaccine or not during
lactation as vaccination during lactation could result in clinically
relevant immunological factors in breast milk and therefore offer
additional protection to the infant.

Despite specific selection criteria of the studies included in
this review, differences in vaccine schedules, sample collection
timepoints, sample processing and data monitoring complicated
head-to-head comparisons between studies and performing a
meta-analysis was not possible. This also means that at this
point, it is not possible to compare the different vaccine
platforms used in lactating women. Also, since COVID-19
vaccination is a rapidly evolving field, pre-prints or
publications might have been missed when published between
submission and publication of the manuscript.

The review did not include studies on COVID-19 vaccination
of pregnant women and the effect of antibodies in their
breast milk.

Recommendations for Future Practice
and Research
Side-effects for both mother and infant were researched in only
four studies. Sample sizes were however large enough to provide
a first indication of safety. However, the effect of vaccination on
the milk production was studied based on (retrospective)
reporting by the mother, which could have led to a recall bias.
Quantitative research into the effect on milk supply could give
more insights and could be used for further recommendations
about vaccination during lactation. Additionally, it is essential
that research on specific breastfeeding related side-effects is
performed. This includes for example breast engorgement or
the development of mastitis. These are currently often not taken
into account. It would also be of interest to know whether
changing the vaccine administration place (i.e. leg instead of
arm) would lead to less breastfeeding related side-effects.

At this point, most studies researched the excretion of
antibodies after COVID-19 vaccination with an mRNA-based
vaccine. The two studies that used the adenovector-based vaccine
ChadOx1-S were stopped after administration of the first dose.
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At the moment, in most countries, adenovector-based vaccines
are no longer used in women of childbearing age, but there are
other vaccines developed with this platform for other diseases,
such as Ebola. The information on the effect of adenovector-
based vaccines in lactating women could be interesting to
extrapolate to other vaccines in development that have the
potential to be used in women of fertile age. Research on the
safety, side-effects and excretion of antibodies after a full vaccine
schedule including booster vaccination is therefore adamant.
Worldwide the booster vaccination (a third vaccination after
mRNA-based vaccines or the ChadOx1-S vaccine or a second
vaccination after the JNJ-78436735 vaccine), is being
recommended (52, 53). At the moment there are no published
studies on the effects of COVID-19 booster vaccination in
lactating women. Finally, a qualitative analysis of the subclass,
glycosylation profile and functional properties of vaccine-
induced antibodies would be of interest to enlighten the
immunology during breastfeeding. This could be completed
along more research into cellular and humoral immune
responses during lactation. Lastly, one of the main questions
are whether these immunological factors excreted into breast
milk also have protective effects for the infant.

Additionally, as the WHO and UNICEF recommend 6
months exclusive breastfeeding and afterwards until the age of
2 years in combination with complementary foods (13, 14), more
knowledge on the effects of vaccination on the long term is
indispensable. Most studies focused on breast milk analysis up to
2 or 8 weeks after the second dose. Therefore, there is a need for
follow-up studies taking samples with longer time intervals and
longer follow-up.

Safety of vaccination during lactating period need to be
assessed at early stages of product development. In order to
achieve this, vaccine manufacturers and regulators must work
closely with specialists in lactation, infectious diseases and public
health experts in order to improve maternal and infant health
and to build confidence in vaccines. Breastfeeding women
therefore need to be included in clinical trials and the need for
appropriate safety data is critical.
CONCLUSION

There is no evidence that the administration of a COVID-19
vaccine poses an additional risk to the breastfeeding woman or
Frontiers in Immunology | www.frontiersin.org 1259
the breastfed infant. Data on safety of vaccines against SARS-
CoV-2 virus indicate no severe vaccine-related local and systemic
reactions, both after first and second dose. Milk supply data after
vaccination indicate that some women report a temporary
reduction in milk supply, without a long-term effect and milk
supply returned to normal within a few days whereas other
women reported a stimulation of breast milk production. All
prospective cohort studies have demonstrated the presence of
antibodies (mainly sIgA and IgG) in breast milk of nursing
mothers vaccinated against SARS-CoV-2. Nearly all studies were
conducted with mRNA vaccines. These studies mainly showed
that the antibody titers in breast milk mainly increase after the
second dose and are associated with the levels present in the
mother’s blood.

After vaccination of the mother, antibodies appear in the
milk, which could better protect the infant against COVID-19.
Professional associations and government health authorities
should recommend offering COVID-19 vaccines to
breastfeeding women, as the potential benefits of maternal
vaccination while breastfeeding outweigh the theoretical risks.
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APPENDIX 1: DETAILED SEARCH
STRATEGY OF THE SYSTEMATIC REVIEW

A. Define text words & synonyms for the text words

1. (COVID-19* or SARS-CoV-2* or corona disease* or
COVID*).af.

2. (breastfeeding* or lactation* or breast milk*).af.
3. (postpartum* or postnatal period* or puerperium*).af.
4. (pregnancy*).af.

B. Perform test searches – I

5. 1 AND 2
6. 1 AND 3
7. 1 AND 4
8. Limit to following languages: German, Dutch, English,

French & Spanish
9. 5, 6, 7 AND 8 AND 2020/12/01 to 2021/12.31.date
Frontiers in Immunology | www.frontiersin.org 1562
C. Identify “controlled vocabulary” (keywords) used for the
indexing of databases (MeSH)

10. “COVID-19 Vaccines” or “COVID-19” or “SARS-CoV-2”
(Mesh)

11. “Lactation” or “Breast Feeding” (Mesh)
12. “Postpartum Period” (Mesh)
13. “Pregnancy” (Mesh)

D. Perform test searches – II

14. 10 AND 11
15. 10 AND 12
16. 10 AND 13
17. Limit to following languages: German, Dutch, English,

French & Spanish
18. 14, 15 AND 16 AND 2020/12/01 to 2021/12/31.date

E. Remove duplicates
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Infants remain at high risk for severe coronavirus disease 2019 (COVID-19). Human

milk contains high levels of protective SARS CoV-2 specific antibodies post-infection

and primary vaccine series, but levels decline over time. We hypothesized that the

COVID-19 booster vaccine augment antibody production and the protection afforded

to human milk-fed infants. We prospectively enrolled pregnant or lactating mothers

planning to receive COVID-19 vaccination. We measured human milk IgG, IgA, and IgM

antibodies targeting the SARS CoV-2 receptor binding domain within the spike protein

and human milk neutralization activity against SARS CoV-2 in 10 lactating mothers from

pre-COVID-19 primary series vaccine to post-booster dose. Human milk SARS CoV-2

specific IgG increased significantly from pre- to post-booster levels (median OD 0.33

vs. 2.02, P = 0.002). The IgG levels post-booster were even higher than the peak level

after the primary series (2.02 vs. 0.95, P = 0.03). The increase in SARS CoV-2 specific

IgA levels was not significant (0.10 vs. 0.33, P = 0.23). There was a strong correlation

between paired maternal blood and milk IgG and IgA levels (IgG rho 0.52, P < 0.001,

IgA rho 0.31, P = 0.05). Post-booster neutralizing activity was elevated compared to

pre-booster levels (66% vs. 12% inhibition, P= 0.002). COVID-19 vaccine booster elicits

SARS CoV-2 specific antibodies in human milk at higher levels compared to the initial

primary series. This finding suggests that three doses of COVID-19 mRNA vaccination

leads to improved mucosal response in human milk and reinforces current guidance

recommending all pregnant or lactating mothers receive full COVID-19 vaccine courses

with a booster dose.

Keywords: breastmilk, breastfeeding, serology, IgA, pregnancy, infant, COVID-19, immunization

INTRODUCTION

As with many other viral illnesses in infants, breastfeeding remains one of the most important
ways by which families may protect their newborn children from infection with severe acute
respiratory syndrome coronavirus 2 (SARS CoV-2) (1). Epidemiologic surveys initially showed a
disproportionate low impact of associated coronavirus disease 2019 (COVID-19) on infants and
young children (2–5). The reason for this is likely multifactorial. Maternal transfer of protective
SARS CoV-2 specific antibodies is thought to be a major contributor to this natural protection.
Numerous studies have demonstrated that SARS CoV-2 infection of mothers during pregnancy
leads to transplacental transfer of neutralizing IgG and production of IgA in breastmilk (6–9).
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Unfortunately, this relative protection is not complete. Infants
with COVID-19 have now been shown to be at risk for increased
morbidity and mortality and hospitalization rates have increased
worldwide (10–14).

Now as the pandemic continues, efforts to vaccinate pregnant
and breastfeeding mothers against SARS CoV-2 are critical to
further protect them and their infants. As in natural infection,
vaccines appear to provide some level of transferred antibodies
from mother to infant both through transplacental transport and
breastmilk (6, 15–22). Most USA studies thus far have focused
on the standard 2 dose series of the messenger ribonucleic
acid (mRNA) COVID-19 vaccines (BNT162b2, Pfizer-BioNTech;
mRNA-1273, Moderna) or single dose of the adenovirus
based COVID-19 vaccine (Ad26.COV2.S, Janssen/Johnson and
Johnson). In November 2021, the Centers for Disease Control
and Prevention (CDC) recommended that all adults over the
age of 18 receive a booster dose of mRNA COVID-19 vaccines
6 months after completing their primary vaccine regimen (1).
We hypothesized that this booster COVID-19 vaccine dose
would lead to further antibody production and augment the
protection afforded to human milk fed infants. Through this
brief report, we demonstrate the subsequent maternal antibody
response after booster mRNA COVID-19 vaccine dose in
breastfeeding mothers.

METHODS

Study Design/Participants
We prospectively consented and enrolled pregnant or lactating
mothers who planned to receive COVID-19 vaccination.
Demographic data including pre-existing conditions and prior
infection with SARS CoV-2 was obtained at time of enrollment.
Participants with known prior infection with SARS CoV-2 were
excluded and confirmed in participating subjects by evaluating
pre-vaccine blood and breastmilk for antibody response. This
study was reviewed and approved by the institutional review
board at Children’s Hospital Los Angeles.

Sample Collection
We collected blood and human milk samples at the following
time points: pre-vaccination; 1-, 3-, 6-, and 9-months post-
initial vaccine dose, and 1-month post-booster vaccine dose.
The pre-booster sample collection was defined as the last
timepoint prior to the booster vaccination at 6 or 9 months.
Individuals received booster doses following emergency use
authorization; this occurred between 6 and 9 months for the
individuals in our study. Human milk was collected at each
time point until the participant stopped lactating. Post booster
milk samples were collected between 26-38 days after booster
dose. Human milk samples were self-collected at home just
prior to each visit in sterile containers or collection bags using
electrical ormanual pumps.Milk samples were then stored at−80
degrees Celsius (◦C) until antibody testing was performed. Blood
samples (3-4mL) were drawn during each visit in red top tubes.
Blood samples were transported to the laboratory within 2 h of
collection where serum was extracted from coagulated blood

via centrifugation and stored overnight at−20◦C for next day
serology testing.

SARS CoV-2 Specific Serology Testing in
Human Milk
Measurement of human milk IgG, IgA, and IgM antibodies
targeting the SARS CoV-2 receptor binding domain (RBD)
within the spike protein was performed using amodified enzyme-
linked immunosorbent assay (ELISA) technique (6, 23). In
brief, to remove cells and fat, thawed human milk samples
were centrifuged at 1,000G for 10min twice. The separated
supernatant was then diluted to 1:10 and placed in high binding
96-well plates that were previously coated with recombinant
SARS CoV-2 RBD protein. These plates were then incubated
for 2 h at room temperature. Plates were then washed with
PBS-1% Tween20 (PBS-T). Next, diluted (1:3000) secondary
enzyme labeled antibodies for IgG, IgA, and IgM (Rockland)
were added and incubated for 1 h. We then added 100 uL of
O-phenylenediamine dihydrochloric marker substrate (Sigma-
Aldrich) to each well and incubated for 20min prior to
quenching with 50 uL of 3 molar hydrochloric acid. Optical
density values were measured at 490 nm (OD490). We established
positive cutoff values based on the mean plus three standard
deviations of 20 archived negative control human milk samples
collected before 2020 (IgG 0.20, IgA 0.21, and IgM 0.14). The
assays were performed in duplicate.

SARS CoV-2 Specific Serology Testing in
Blood
Serum IgG and IgA antibodies targeting the SARS CoV-2 RBD
were also measured using a previously described technique (23).
All samples were analyzed on the same plate for each isotype
assay. We further tested the level of IgG against SARS CoV-2
nucleocapsid protein (GenScript) in pre- and post-booster blood
samples of each participant to determine if any SARS CoV-2
infection occurred in the subjects before or during the study.

Neutralizing Antibody
We measured human milk neutralization activity against SARS
CoV-2 using a surrogate virus neutralization assay (sVNT,
GenScript). This assay has been previously shown to correlate
with the SARS CoV-2 90% plaque reduction neutralization test
titer assay (24). We modified this assay as described previously
to work with human milk (6). In brief, human milk was mixed
with an equal volume of horseradish peroxidase conjugated
to recombinant SARS CoV-2 RBD protein and incubated at
37◦C for 30min. Next, 100 uL of each mixture was then added
to microtiter plate wells coated with angiotensin-converting
enzyme-2 and incubated at 37◦C for 15min. We then added
100 uL of indicator solution (3,3′,5,5′-tetramethylbenzidine) to
each well. The plates were then incubated in the dark at 22–
25◦C for 15min. Lastly, we added 50 uL of the stop solution and
immediately measured the light absorbance at 450 nm. A simple
percent inhibition was calculated using negative control values.
Using the mean percent inhibition plus three standard deviations
of 20 archived negative control human milk samples collected
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before 2020, we established a cutoff value for neutralization at
≥25% inhibition. The assay was performed in duplicate.

Data Analysis
Statistical analysis was performed using R Studio v4.0.3 (R
Studio). Standard descriptive statistics of median, range, and
percent positive based on established cutoffs for each assay
at all time points was calculated. Non-parametric variables
were then analyzed using Wilcoxon matched-pairs signed-
rank tests. Spearman correlation coefficient was used to
calculate correlations between serum and human milk values.
All tests were designed to be 2-tailed with P < 0.05
considered significant.

RESULTS

Participants
We identified 10 lactatingmothers whowe followed and obtained
blood and human milk samples pre-vaccine all the way through
third booster dose of the COVID vaccine between December
2020 and January 2022 (Table 1). The average age of participating
mothers was 35.1 years (range 30.9-42.8). There were few
comorbid conditions identified in this cohort with the most
common being allergies and obesity. Three were pregnant at
time of enrollment and initial vaccination and thus do not
have pre-vaccine milk samples. The average gestational age
at time of delivery was 38 weeks. Seven of the 10 infants
born were female. All mothers reported exclusive breastfeeding
at enrollment with the age appropriate introduction of solids
as the infants developed. Nine mothers received a full three
dose vaccine series with BNT162b2 (Pfizer-BioNTech). One
mother was given a single dose Ad26.COV2.S (Janssen/Johnson
and Johnson) boosted with a single dose of mRNA-1273
(Moderna). The Ad26.COV2.S individual was included in
the primary analysis of pre- vs. post-booster comparisons;
she was excluded from the post-primary series analysis to
minimize heterogeneity.

SARS CoV-2 Specific Antibodies Increased
After Booster Dose in Human Milk
We evaluated the SARS CoV-2 RBD specific antibodies in a
total of 48 human milk samples from the 10 lactating mothers
(Figures 1A–C, Supplementary Table 1). Pre-COVID vaccine
SARS CoV-2 specific IgG, IgA, and IgM levels were all low,
suggesting that all participants were immunologically naïve to
SARS-CoV-2. Two mothers enrolled at time of first vaccine
and one was vaccinated during pregnancy; thus, these three
subjects did not provide pre-COVID vaccine milk samples.
After the primary vaccine series, SARS CoV-2 specific antibodies
increased, peaked at 1 month, and then waned over time.
After the booster, human milk SARS CoV-2 specific IgG levels
were shown to increase from pre-booster levels (median OD490:
pre-booster 0.33, post-booster 2.02, P = 0.002). The post-
booster IgG levels were higher than the initial post primary
vaccine series peak (post-primary 0.95, post-booster 2.02, P =

0.03). SARS-CoV-2 specific IgA levels showed non-significant

TABLE 1 | Participant characteristics of 10 lactating mothers receiving the primary

series and booster vaccination against COVID-19.

Characteristics (n = 10) N (%)

Age, years [mean(range)] 35.1 (30.9–42.8)

Race

Asian 2 (20)

White 8 (80)

Ethnicity

Non-hispanic 10 (100)

Highest level of education

College, Bachelor’s degree 4 (40)

Post-graduate degree 6 (60)

Co-morbid condition

Allergies 4 (40)

Cancer (past) 1 (10)

Gestational diabetes with last pregnancy, resolved 1 (10)

Other endocrine 1 (10)

Obese (BMI > 30) 3 (30)

Pregnant at enrollment 3 (30)

Gestational age at delivery, weeks [mean, (range)] 38.6 (37.0–39.9)

Infant gender, female 7 (70)

Exclusive breastfeeding at enrollment 10 (100)

increases post-booster compared to pre-booster (pre-booster
0.10, post-booster 0.33, P=0.23) and post-primary vaccine series
(post-primary 0.23, post- booster 0.33, P = 0.09). IgM levels
demonstrated little change over the study period.

COVID Vaccine Booster Led to an Increase
in Neutralizing Activity in Human Milk
As seen with SARS CoV-2 specific antibody levels, the
percent inhibition peaked in human milk 1 month after
initial COVID vaccine and waned with time approaching the
booster vaccine dose (Figure 1D, Supplementary Table 1). Post-
booster neutralizing activity increased compared to pre-booster
levels (median pre-booster 12%, post-booster 66%, P = 0.002).
The booster vaccine dose led to a non-significant increased
neutralizing effect over the peak 1-month post-primary vaccine
peak (post-primary 41%, post- booster 66%, P = 0.09). All 10
samples collected post-booster demonstrated neutralization with
>25% inhibition.

SARS CoV-2 Specific Antibodies in Human
Milk Correlated With Paired Blood Samples
In comparing blood SARS CoV-2 RBD specific antibodies to
those found in human milk collected at the same time point,
we found a moderate correlation (IgG correlation coefficient ρ

0.52, P < 0.001; IgA ρ 0.31, P = 0.05; Figure 2). As blood
levels rose with initial vaccine, both IgG and IgA were similarly
elevated. That pattern persisted during the subsequent waning
of antibody and post-booster spike. No participants tested
positive for COVID-19 during the study period. Furthermore,
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FIGURE 1 | Human milk SARS-CoV-2-specific IgG, IgA, and IgM of antibody levels and neutralizing activity at pre-vaccination: 1-, 3-, 6-, and 9-months post-primary

initial vaccine and 1-month post-booster vaccine dose. The median level of SARS-CoV-2-specific IgG, IgA, and IgM and neutralization activity at the 1-month

post-booster time point was compared to the peak post-primary vaccination and pre-booster time points in human milk (A–D), respectively]. Dotted lines in y-axis

indicate the positive cut-off OD490 values of 0.20, 0.21, and 0.13 for IgG, IgA, IgM, respectively. Dotted line in y-axis of (D) indicate the positive cut-off of 25%

neutralizing activity. Wilcoxon matched pairs signed rank tests were used for statistical analysis. Error bars indicate 95% confidence intervals.

we confirmed that all pre- and post-booster blood samples
were IgG negative against SARS CoV-2 nucleocapsid protein.
Therefore, we ensured that all responses observed were due
to vaccination.

DISCUSSION

Through this study, we described that COVID-19 vaccine
booster elicits human milk antibody response. SARS CoV-2
specific antibodies (IgG and IgA) increase in human milk after
booster dose of mRNA COVID-19 vaccine to levels even higher
than the peak after the initial vaccine series. Human milk
antibodies boosted with COVID-19 vaccines were further found
to have increased neutralizing activity compared to the waning
pre-booster activity. The responses correlated with the paired
serological blood samples from the lactating mothers. All these
findings reinforce current guidance recommending all pregnant

or lactating mothers receive full COVID-19 vaccine courses with
a booster dose.

Most respiratory infections disproportionately affect infants
with a developing immune system (25). Although initial
data suggested that infants and children were less likely to
acquire SARS-CoV-2 (3–5), increasing rates of pediatric SARS-
CoV-2 infections and hospitalizations have been observed
worldwide (12–14). Maternal vaccination during pregnancy
leads to transplacental antibody transfer (6–9). Breastfeeding
may be another important strategy to protect infants. We and
others have demonstrated that SARS-CoV-2 specific antibody in
human milk following maternal vaccination with the primary
series was followed by a slow wane in antibody levels as
is seen in natural infection (6, 15–22). Through this study,
we observe a clear increase in human milk IgG, IgA, and
neutralizing antibody following COVID-19 booster vaccination.
To our surprise, the booster dose induced antibody levels
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FIGURE 2 | Correlation between paired human milk and blood SARS-CoV-2-specific antibody. Forty-one paired human milk and blood samples collected at the same

time point were included in the correlation analysis. Each color point represents each visit. The level of SARS-CoV-2-specific IgG (A) and IgA (B) in breastmilk showed

positive correlations with the same isotypes in blood. Correlations were computed using Spearman correlation coefficient labeled ρ.

even greater than levels generated by the initial vaccination
series. This suggests that three doses of mRNA vaccination
may provide the optimal mucosal response. Larger studies
on how antibody production in lactating mothers may be
augmented with multiple doses of COVID-19 vaccine are needed
moving forward.

The ability of human milk antibodies to neutralize potential
pathogens provides a barrier of protection for infants as they
develop. Secretory IgA and IgG can neutralize viruses at the
mucosal surface before infection of epithelial cells occurs (26,
27). Previous studies looking at antenatal influenza vaccine in
pregnant mothers have demonstrated subsequent production
of influenza specific neutralizing antibodies in human milk
(28). Neutralizing antibodies induced by COVID-19 vaccines
appear to be the key correlate of protection from COVID-
19 in animal and human studies (29, 30). Previous studies
have demonstrated this neutralization property of human milk
SARS-CoV-2 specific antibodies post-primary vaccine series
(6, 15, 18, 21). Through this study, we further observe an
increase in the ability of these human milk antibodies to
neutralize SARS CoV-2 after the COVID vaccine booster dose.
Neutralization appeared to be stronger than the peak seen after
initial vaccine series, but the difference was not statistically
significant likely due to our small numbers. This emphasizes the
importance of not only vaccinating lactating mothers to protect
their infants but making sure they receive their booster dose
as well.

This study has some limitations. The most important
limitation is that this is a real-world observational cohort
with a small sample size. Though relatively small, this was
a unique opportunity to examine 10 COVID naïve mothers
who continued to breastfeed through initial and booster doses
of vaccine. Despite the small size, we were able to provide

statistically significant evidence of antibody response post-
COVID-19 booster vaccine. We observed a higher SARS-CoV-
2 specific IgG level post-booster compared with the peak
post-primary series level. A larger sample size is needed to
determine if differences in IgA and neutralizing activity would
reach significance. Second, we acknowledge heterogeneity in
the study participants. Some received the primary series while
pregnant while others were post-partum. The study primarily
included mothers vaccinated using the BNT162b2, Pfizer-
BioNTech mRNA COVID vaccine. One mother received the
Ad26.COV2.S, Janssen/Johnson and Johnson vaccine boosted by
a dose of the mRNA-1273, Moderna vaccine. As more vaccine
platforms become available, variability around human milk
antibody production and protection will need to be evaluated.
Furthermore, changing SARSCoV-2 variants and variant-specific
boosters may require re-evaluation. Third, despite showing the
neutralizing effect of the stimulated antibody after COVID
booster vaccine dose, epidemiological studies will be needed
to demonstrate protection in infants. A recent study showed
that maternal vaccination with mRNA COVID-19 vaccine
during pregnancy is effective against COVID-19 hospitalization
among infants <6 months of age (31). How much protection
was from transplacental transfer vs. from breastfeeding is
not clear.

With the ongoing global pandemic, the CDC has strongly
recommended all pregnant and lactating mothers to receive a
full course of COVID vaccinations including a booster dose (1).
Unfortunately, this remains an at-risk population, and vaccine
hesitancy has hampered efforts to immunize and protect these
mothers and their infants. Our data provides additional evidence
to support maternal COVID-19 booster vaccination, as milk-
delivered antibodies could offer breastfed infants additional
protection against COVID-19.
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State University of Campinas, Campinas, Campinas, Brazil

The coronavirus disease 2019 (COVID-19) pandemic has turned pregnant women’s
healthcare into a worldwide public health challenge. Although initial data did not
demonstrate pregnancy as a more susceptible period to severe outcomes of acute
severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection, there
are an increasing number of reports showing that not only pregnant women might be at
significantly higher risk than non-pregnant women by COVID-19 but also the fetus. These
findings may be related to adaptive changes that occur during pregnancy, such as the
reduction in the residual respiratory capacity, the decrease in viral immune responses, and
the increased risk for thromboembolic events. Additionally, despite the SARS-CoV-2
vertical transmission evidence being uncommon, maternal illness severity might reflect
serious perinatal and neonatal outcomes. Thus, protecting the maternal–fetal dyad
against COVID-19 is critical. Even though pregnant women initially were excluded from
vaccine trials, several studies have provided safety and efficacy of the overall vaccine
COVID-19 platforms. Vaccination during pregnancy becomes a priority and can generate
benefits for both the mother and newborn: maternal neutralizing antibodies are
transmitted through the placenta and breastfeeding. Moreover, regarding passive
immunization, human milk contains other bioactive molecules and cells able to
modulate the newborn’s immune response, which can be amplified after the vaccine.
Nonetheless, many issues remain to be elucidated, considering the magnitude of the
protective immunity transferred, the duration of the induced immunity, and the optimal
interval for pregnant immunization. In this review, we assessed these unmet topics
supported by literature evidence regarding the vaccine’s immunogenicity, pregnancy
immune heterogeneity, and the unique human milk antiviral features.
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INTRODUCTION

In December 2019, a virus called severe acute respiratory
syndrome-related coronavirus 2 (SARS-CoV-2) was identified
in China (1). This new respiratory disease was named
coronavirus disease 2019 (COVID-19) by the WHO, and in
March 2020, it was declared a pandemic (2). The case fatality rate
(CFR) of COVID-19 was estimated at 2.3% (3, 4), which is
reflected in more than 475 million cases and 6.1 million deaths
registered worldwide to date (5). This remarkable ability to
spread is explained by the high viral transmissibility added to
characteristics such as long incubation period, infectivity
capacity before the beginning of symptoms, and a large
number of asymptomatic cases and/or mild diseases (6). In
fact, it is estimated that approximately 55%–60% of infected
individuals present some symptom, and the majority of them
(81%) develop mild disease (fever, cough, fatigue, dyspnea,
myalgia, headache, and diarrhea); of the other infected
individuals, 14% evolve to severe disease, and 5% develop the
critical disease, frequently needing to stay in an intensive care
unit (ICU) (3, 5). However, these statistics may be different in
some risk groups such as frontline healthcare professionals;
elderly people; patients with heart, pulmonary, or neurologic
diseases; patients with diabetes mellitus, obesity, or
immunosuppression; and pregnant/postpartum women (6).

Concerning pregnancy and lactation, although the initial
studies involving pregnant women were not conclusive (7), a
series of severe complications in pregnant women and their
newborns have been associated with SARS-CoV-2 infection (8).
Frontiers in Immunology | www.frontiersin.org 271
This outbreak was expected as previous coronavirus pandemic
diseases such as SARS and Middle East respiratory syndrome
(MERS) had already presented similar risks for mother and child
(5, 7, 9, 10). Thus, although early studies have shown that pregnant
women have milder symptoms than non-pregnant women in
SARS-CoV-2 infection (5, 11–13) and a lower incidence of
gestational and neonatal complications (5, 14–16), growing
evidence suggests that pregnant women diagnosed with
COVID-19 are at increased risk for ICU admission and need for
invasive ventilation/extracorporeal membrane oxygenation
(ECMO), higher morbidity and mortality, and higher odds of
maternal–fetal complications (such as preterm birth and
miscarriage), thrombosis, intrauterine fetal growth, intrauterine
transmission, congenital anomalies, and neurologic abnormalities)
when compared to those without COVID-19 (8, 14–20).

In this mini-review, we summarize the last information about
COVID-19 vaccines in use by pregnant women, with an
emphasis on its immunogenicity in this particular group and
on the transmission of the acquired immunity to the fetus and
the newborns (Figure 1).
PECULIARITY OF IMMUNE SYSTEM
DURING PREGNANCY

Pregnant women are usually considered at high risk for infectious
diseases; it happens due to physiologic, cardiopulmonary, and
immunologic changes in their bodies during pregnancy (3, 21). In
FIGURE 1 | COVID-19 vaccine in pregnancy and lactation. (A) Two pathways of maternal–fetal protection against SARS-CoV-2 after COVID-19 vaccination.
(B) After receiving the COVID-19 vaccine, pregnant women start to develop antibodies against the virus (IgG). Thus, immunized women are able to transmit anti-
SARS-CoV-2 IgG molecules from their blood to the fetus. This process occurs passively through the placenta, and it is confirmed by the presence of these
antibodies in cord blood or the newborn serum after birth. (C) Passive immunization of the newborn also happens through breastfeeding, which can be
demonstrated by the presence of anti-SARS-CoV-specific IgA, IgM, IgG, and T cells in breast milk. These findings reinforce the importance of pregnant and lactating
women to complete the vaccination schedule, protecting themselves and their infants from the severe manifestations of COVID-19. Created with BioRender.com.
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this period, the diaphragm is pushed to a higher position as the
uterus expands; this can create an obstacle for the lungs to expand,
additionally the upper respiratory tract swells, and the oxygen
demand increases. Thus, the intolerance to hypoxemia makes
pregnant women more likely to develop respiratory disease
complications, including COVID-19 (22, 23). In this period,
marked by significant hormonal changes, a shift in the balance
between T helper 1 (Th1)-mediated and T helper 2 (Th2)-
mediated immunity can be observed: a decrease in Th1 response
leads to a dominant Th2 humoral immune response, which results
in a lower secretion of proinflammatory cytokines, such as
interleukin-2 (IL-2), interferon-gamma (IFN-g), and tumor
necrosis factor-alpha (TNF-a) and an increase in anti-
inflammatory cytokines (IL-4, IL-10, and IL-13), respectively
(24, 25). Indeed, a decrease in NK cells and plasmacytoid
dendritic cells (which compromises the production of type 1
IFN) and a decrease in phagocytic activity were observed. This
scenario creates an immune tolerance for the fetus but increases
the susceptibility of pregnant women to SARS-CoV-2
infection (26).

Despite this period of women’s life being marked mainly by
an immunotolerant profile, actually pregnancy involves a
triphasic immune modulation, characterized by an alternation
between proinflammatory, anti-inflammatory, and a second
proinflammatory state, in that order, over the three trimesters
(22). Thus, women in the first and third trimester of pregnancy
have a proinflammatory profile, and for this reason, when
infected with SARS-CoV-2, they are more likely to develop the
cytokine storm, leading to bad maternal and fetal prognoses
(21, 23).
PREGNANT COVID-19 VACCINATION:
STATE OF THE ART

Fortunately, different kinds of COVID-19 vaccines are now
available to the global population, and the evolution of
epidemiological data has shown that they are essential for the
control of SARS-CoV-2 spread and, especially, for the decrease of
COVID-19 morbidity–mortality worldwide (27, 28). All the
COVID-19 vaccines approved for use in the population are
allowed during pregnancy if the benefits outweigh the possible
risks (15, 16, 29, 30). Initially, two anti-COVID-19 vaccines,
which use mRNA technology, were authorized: Pfizer/BioNTech
(Germany and USA) and Moderna (USA) (31). The first one is
administered in 2 doses, with 3 weeks of interval between them,
and the second one also involves 2 doses, but with 4 weeks of
interval. Both vaccines have about the same effectiveness,
approximately 94.1% to 95% (32). Other than that, mRNA
technology was also approved for three viral vector vaccines:
Oxford-AstraZeneca (UK and Sweden), Sputnik (Russia), and
Janssen (Belgium) (13, 32). The recommended administration is
2 doses for AstraZeneca, with an interval of <6 or >12 weeks
between first and second doses (effectiveness from 55.1% to
81.3%); Sputnik uses 2 doses administered 3 weeks apart
(effectiveness of 91.6%); Janssen was proposed as a single-dose
Frontiers in Immunology | www.frontiersin.org 372
vaccine (effectiveness of 66% against moderate to severe to
critical COVID-19 and 76.7% to 85.4% against critical disease)
(32). A sixth approved vaccine called Sinovac-CoronaVac
(China, and lately produced by Instituto Butantan in Brazil)
uses inactivated SARS-CoV-2 virus antigen and is administered
in 2 doses (2–4 weeks apart between then; effectiveness of 83.7%
against moderate disease to 100% against severe disease) (32, 33).

None of the approved COVID-19 vaccines contain a replicant
virus; thus, they cannot cause the disease. Studies with animals
did not demonstrate dangerous effects related to Pfizer,
Moderna, AstraZeneca, Sputnik, and Janssen vaccines in
pregnancy (13). In general, the side effects of vaccination are
similar in pregnant and other groups, with non-specific side
effects due to activation of the immune system being the most
worrying (34). Although rare, some immune-mediated
complications were already described, such as myocarditis/
pericarditis after immunization with mRNA vaccines and
Guillain–Barré syndrome and thrombotic events after viral
vector vaccines (35–37). It is important to note the rare cases
of post-COVID-19 vaccine thrombosis with thrombocytopenia
syndrome (TTS) occur by a mechanism distinct from
thromboembolic events that usually happen during pregnancy
and post-childbirth (38–40). Moreover, according to a systematic
review and meta-analysis recently published, there are no class-
wide effects of adenovirus-based vaccines on thrombocytopenia
or coagulopathy in pregnancy or the general population (41).
Thus, after several investigations, authorities determined that
adenovirus vector vaccines could be used by pregnant women,
and the TTS occurrence probability is similar to that in the
general population (42). The decision about the better choice
between the abovementioned vaccine platforms should be
discussed between the health professional and the pregnant/
lactating woman, considering the effectiveness, security, and
other parameters (43, 44). Still, there are few published data on
the COVID-19 vaccine in pregnant women, mainly because they
are not usually included in vaccine clinical trials due to safety and
responsibility concerns (45); nevertheless, several studies support
its safety and effectiveness (46, 47).
HUMORAL IMMUNE RESPONSE
POST-COVID-19 VACCINE IN
PREGNANT WOMEN

Prospective cohorts revealed that anti-SARS-CoV-2 humoral
and cellular responses are similar between immunized
pregnant and non-pregnant women and more robust when
compared to infected and unvaccinated individuals (43, 48–
50); this proves that vaccination gives higher immunity than
natural infection by SARS-CoV-2 (51). A study performed by
Collier et al. showed that after receiving COVID-19 mRNA
vaccine, both pregnant and non-pregnant women had their
titers of IgG and IgA against the receptor-binding domain
(RBD) from spike protein of SARS-CoV-2, and the titers of the
pseudovirus neutralizing antibody (NT50) similarly increased
(52). Another study that compared anti-SARS-CoV-2 IgG levels
June 2022 | Volume 13 | Article 910138
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between mRNA COVID-19 vaccinated pregnant women and
SARS-CoV-2 diagnosed pregnant women found that while
vaccination increased levels of anti-S1 and anti-RBD IgG
antibodies, the infection was associated with higher levels of
anti-S2 and IgG neutralizing antibodies (46).

Additionally, Golan et al. demonstrated that serum levels of
anti-SARS-CoV-2 IgM and IgG antibodies were significantly
higher after the first dose of the mRNA vaccine; furthermore,
the second dose significantly increased anti-SARS-CoV-2 IgG
serum levels, but not anti-SARS-CoV IgM serum levels,
characterizing a secondary immune response against the virus
(53). These findings are in agreement with those found by Leik
et al., who showed that the anti-spike IgG and anti-RBD IgG
titers increased after the first dose of the vaccine but were much
higher when pregnant women received the second dose (46).
These results highlight the importance of the second dose to the
development of higher titers of protective antibodies in
pregnant women.

Another important topic related to vaccination is the
durability of conferred protection. In this regard, studies
demonstrated that approximately 5 to 6 months after taking
the second dose of the SARS-CoV-2 vaccine, its effectiveness
naturally starts to decrease (54–57). Thus, in order to recover the
immune response against the virus, a booster dose has been
recommended for some high-risk groups, including pregnant
women (58). A recent study demonstrated that women who
received the third dose in the last trimester of pregnancy
presented higher levels of anti-spike IgG in maternal and cord
blood (59), which suggests that women with a complete
vaccination schedule (two initial doses followed by a booster
dose) transmit a higher concentration of antibodies to the infant
than those who only received the first and second doses. These
findings indicate the benefits of early COVID-19 immunization
protocol in pregnant women, which are sustained by results that
demonstrate that COVID-19 vaccination during early pregnancy
is not associated with an increased risk of fetal structural
anomalies (60).

Maternal–Fetal Anti-SARS-CoV-2
Antibody Transmission
The transmission of humoral immunity from mother to fetus or
newborn throughout the placenta or human milk is well
established. As explored below and summarized in Table 1,
studies that investigated if it also occurs for anti-SARS-CoV-2
antibodies found that pregnant women who had COVID-19
active infection or received the COVID-19 vaccine developed
anti-SARS-CoV-2 IgM, IgG, and IgA, and these antibodies were
transferred to the fetus via placental transport or breastfeeding
(48, 51, 53, 70–73).

Regarding the transplacental route of infant’s passive
immunization, Leik et al. reviewed studies that demonstrated anti-
spike IgG, anti-RBD IgG, and neutralizing IgG in blood samples of
newborns of vaccinated women; furthermore, these antibody levels
were higher among those whose mothers had received two doses of
vaccine (46). Additionally, a recent paper showed that after a third
dose, the levels of neutralizing antibodies against SARS-CoV-2 were
Frontiers in Immunology | www.frontiersin.org 473
higher in both mother blood and cord blood, strengthening the
importance of a boost dose to increase humoral immune transfer to
the newborn (59). Importantly, it was demonstrated that the
majority of maternal IgG is transferred to the fetus in the last 4
weeks of gestation (70, 74). This information is crucial to better
determine the administration period for this specific public, to
ensure the protection of the newborns from possible infections.
Thus, the seroprotection during the beginning of the infant’s life can
be enhanced by a booster dose of the COVID-19 vaccine at the
beginning of the third trimester of pregnancy, once the magnitude
of the maternofetal transfer is increased in this period.

There are many studies showing the presence of neutralizing
anti-SARS-CoV-2 IgA, IgM, and IgG antibodies in breast milk of
vaccinated women and women previously infected by COVID-19
(48, 51, 53, 65–67). An interesting study developed by Gray et al.
addressed the magnitude of generated immunity post-vaccine
(Pfizer or Moderna) in lactating women, which showed an
increased level of virus-specific IgG after the vaccination and a
high antibody level transferred to the neonate through
breastfeeding, although the levels of IgA did not increase in breast
milk, as expected, after the boost. In this context, these researchers
concluded that IgG titers dominate in the breast milk of women
who received the COVID-19 vaccine, whereas IgA titers dominate
in the breast milk of women with previous SARS-CoV-2 infection
(48). These results are in consonance with a prospective cohort
study in Spain, which also found specific anti-SARS-CoV-2 IgG
antibodies in breast milk after Pfizer vaccination (with levels even
higher after the second dose) (65), but contrasts with a study by
Valcarce et al., who demonstrated that after mRNA COVID-19
vaccination (Pfizer or Moderna), there was a predominance of
SARS-CoV-2 IgA in human milk when compared to SARS-CoV-2
IgG levels (68).

To evaluate the duration of vaccine immunity, Perl et al.
performed a cohort study including 84 lactating women and
analyzed a total of 504 samples of breast milk collected before
administration of the Pfizer vaccine and then, once a week—
starting 2 weeks after the administration of the first dose—for 6
weeks. They found elevated levels of anti-SARS-CoV specific IgA
during the follow-up: 61.8% of antibody positivity in the breast
milk samples 2 weeks after the first dose; more than 85% positivity
of these antibodies after week 4 (1 week after administration of the
second dose of vaccine) and about 65.7% positivity at week 6 (67).
Additionally, this same study analyzed anti-SARS-CoV IgG in the
samples after vaccination and observed that the antibody levels
remained low during the first 3 weeks, started to increase at week 4
(91.7% of samples testing positive for anti-SARS-CoV-2 IgG), and
reached the peak at weeks 5 and 6 (97% of positivity). Therefore,
considering the vigorous secretion of SARS-CoV-2-specific IgA
and IgG in breast milk for at last 6 weeks after mRNA vaccination,
these authors suggested that vaccination of lactating women
offered protective effects against COVID-19 in the newborn
(67). Similar findings were found by a recent Brazilian study
that evaluated the presence of anti-SARS-CoV-2 IgA antibodies in
human milk samples of women who received the CoronaVac
vaccine, with the two doses of the vaccine administered 4 weeks
apart. It was observed that the levels of anti-SARS-CoV-2 IgA
June 2022 | Volume 13 | Article 910138
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TABLE 1 | Anti-SARS-CoV-2 antibodies production and maternal–fetal transfer after COVID-19 vaccination.
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started to increase in the first 2 weeks after the first dose of the
vaccine, and they were significantly higher 5–6 weeks after
vaccination (66).

Another study, developed by Perez et al., analyzed human
milk samples from 27 women collected three times at 1, 3, and 6
months after they received the BNT162b2 (Pfizer) vaccine (25 of
27 women) or mRNA-1273 (Moderna) vaccine (2 of 27 women)
(69). Concerning IgM antibodies, 7 of 24 (29.1%) women were
positive after 1 month, 6 of 27 (22.2%) were positive after 3
months, and after 6 months post-vaccination, these antibodies
were not detectable in breast milk. IgG antibodies were positive
in breast milk samples from 24 of 24 (100%) lactating women in
the first month, 25 of 27 (92.6%) in the third month, and 9 of 12
(75.0%) in the sixth month. On the other hand, 12 of 24 (50%)
lactating mothers were positive for SARS-CoV-2-specific IgA 1
month after vaccination, 7 of 27 (25.9%) were positive at 3
months, and at 6 months’ IgA levels were not detected at
significant levels above the baseline. The authors also evaluated
the neutralizing activity of the cited antibodies and found that 20
of 24 (83.3%) breast milk samples showed neutralizing capacity
at 1 month; 19 of 27 (70.4%) had neutralization activity at 3
months; only 3 of 12 (25.0%) maintained this neutralizing
activity by month 6. In other words, they concluded that
COVID-19 mRNA vaccination induced the production of
SARS-CoV-2-specific antibodies for at least 6 months after
vaccination, and neutralizing antibodies persisted for at least 3
months (69).

There is a lack of research that evaluates the efficiency of anti-
SARS-CoV-2-specific IgM, IgG, and IgA transfer from breast
milk to the infant’s serum (62, 75). A study by Yeo et al. analyzed
the serum of 5 infants (age 3 to 20 months) of vaccinated women
that were breastfeeding; a single serum sample was collected at a
median of 48 days after their mothers received the second dose of
BNT162b2 vaccine, and the researchers observed that there were
no neutralizing antibodies detected in their serum (76). These
results were also observed by Golan et al. in a study that did not
identify anti-SARS-CoV-2 IgG antibodies in the plasma of
infants whose mothers were vaccinated with mRNA-based
vaccines for COVID-19 (mRNA-1273 and BNT162b2) during
lactation (53). Additionally, a longitudinal cohort study by
Schwartz et al. detected SARS-CoV-2 IgG in the oral mucosa
of 3 of 5 (60%) breastfed infants of lactating women who were
vaccinated against COVID-19 with the BNT162b2 messenger
RNA vaccine but also did not find these antibodies in the infants’
serum (77). Therefore, further studies are needed to better
understand these points.
CELLULAR IMMUNE RESPONSE
POST-COVID-19 VACCINE
IN PREGNANT WOMEN

Besides humoral response, it is known that cellular immune
response mediated by T cells is crucial for the combat of SARS-
CoV-2 infection: while CD4+ T cells are important to develop
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specific antibodies against the virus, CD8+ T cells have a role in
the identification and destruction of infected cells (62). A study
that evaluated the participation of cellular immunity in the
lactation of women vaccinated against COVID-19 revealed that
after vaccination with COVID-19 mRNA, non-pregnant,
pregnant, and lactating women had an increase in anti-SARS-
CoV-2 CD4+ and CD8+ T cell counts, and this immune response
was more robust to vaccine than to natural infection (52). In this
context, another study with pregnant women who received the
Pfizer vaccine showed that although the concentration of their
antibodies against the virus decreased after several months of
vaccination, their memory CD4+ and CD8+ cells continued to
express proinflammatory cytokines (such as IFN-g, TNF-a, and
IL-2), which indicates that vaccination in pregnant women, as in
other individuals, provides long-term protection against SARS-
CoV-2 (78).
Maternal Immune Cells in Human Milk and
Cellular Immunity Transmission
The development of the newborn immune system starts in utero
and is highly boosted by passive immunization through
breastfeeding (79). Faced with an immature adaptive immune
system that has not had the time to build up the necessary
repertoires of cell clones and memory to permit the neonatal
defense, the newborn takes into account immune cells and other
defense components coming from breast milk. Of these
components, we can highlight the high amounts of antibodies
(mainly IgA), cytokines and other proteins (primarily
lactoferrin) transferred from mother to child, and components
of maternal cellular immunity such as macrophages,
polymorphonuclear neutrophils, and lymphocytes (composed
by approximately 83% of T cells and 4%–6% of B cells) (80–
83). Breast milk lymphocytes are very abundant at delivery,
decline over the first month postpartum to a steady state, and
persist for up to 2 years (84–87). This was confirmed by a flow
cytometry study that identified and quantified the CD45+

leukocyte populations in human breast milk and found cells
like myeloid precursors, neutrophils, immature granulocytes,
CD16+ and CD16− monocytes, non-cytotoxic T cells, cytotoxic
T and NK cells, eosinophils, basophils, B-cell precursors, and B
cells (87). It is already known that the leukocytes are able to
survive in the environment of the child’s digestive tract; reach the
blood, lymph nodes, spleen, and other tissues/organs; and
phagocytize and fight against pathogens (81, 82). Therefore,
the properties offered by this group of cells provide active
immunity to the infants, besides stimulating the achievement
of their own immunocompetence (83).

Additionally, evidence shows that there are a few differences
between breast milk and blood leukocytes: breast milk T cells and
macrophages have more motility than those in blood, and
colostrum lymphocytes have effector functions that can be
transferred through breast milk and benefit the infant to respond
against threats (82). Therefore, the properties offered by this group
of cells provide active immunity to the infants, besides stimulating
the achievement of their own immunocompetence (83).
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The presence of memory T cells in human milk suggests that
these cells were transferred from the mother to the infant to provide
a rapid response against specific pathogens until their immune
system becomes fully operative. In fact, studies demonstrated
transferred breast milk memory CD4+ and CD8+ T cells in
infants’ Peyer’s patches, spleen, and bone marrow; it is known
that T lymphocytes in the intestine of neonates are recent thymic
emigrants (progenitors of mature naive T lymphocytes) (80, 83);
therefore, these specific memory T cells probably originated from
their mothers through lactation. Sabbaj et al. analyzed a group of
virus-infected lactating women and demonstrated that
cytomegalovirus (CMV), influenza virus, Epstein–Barr virus
(EBV), and HIV-specific CD8+ T cells were found in the breast
milk. This suggests that an effector memory phenotype of CD8+ T
cells is passed through breastfeeding to the newborns (88). Although
studies about memory T cells against SARS-CoV-2 in human milk
are scarce, Armistead et al. observed that the lactating breast
contains a distinct T-cell population that can be modulated by
maternal vaccination with potential implications for infant passive
protection. These researchers have identified SARS-CoV-2 spike-
specific T cells in mRNA vaccinated in lactating women (89).
Another study conducted by Gonçalves et al. involving lactating
women who received mRNA vaccination found a combination of
spike-reactive T cells and anti-SARS-CoV-2 secreted IgA in their
milk, which shows that immune transfer to the infant could linger
even after weaning, especially because of long-lived memory T cells
transferred (64). Such evidence points to the great importance of
maternal vaccination, especially for the SARS-CoV-2 virus, as a
cellular immunization strategy for the newborn through lactation.
OTHER BIOACTIVE COMPOUNDS IN
HUMAN MILK

Human milk has a list of maternal immunomodulatory, antiviral,
and anti-inflammatory elements that helps in the development of
the newborn’s immune response (79). Recent research has
shown that the risk of severe viral respiratory infections in
infants is negatively associated with the duration of
breastfeeding (90). Therefore, a crucial role in human milk is
played by other components in addition to IgA, such as
oligosaccharides, proteins (such as lactoferrin), lipids, and pro-
and anti-inflammatory factors (TNF-a, interleukin-1 [IL-1],
interleukin-10 [IL-10], prostaglandins E2 [PGE2], etc.) (91–93).

There is a lack of studies on the antivirals’ effects of breast milk
against SARS-CoV-2, but some authors suggest that newborns can
be protected from COVID-19 by milk proteins like lactoferrin,
casein, and immunoglobulins, which have antiviral effects (94). It
has already been reported that lactoferrin enhances NK cell
activity, promotes neutrophil aggregation and adhesion, and
blocks the SARS-CoV from entering host cells during the
infection (93); it is likely that these findings could also be
applied to SARS-CoV-2. Indeed, these breast milk bioactive
molecules can have their immune response amplified after
women’s vaccination, as has already been evidenced in the
immunization against human rotavirus (95).
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CONCLUSION

The peculiarities of the immune system during pregnancy are one of
the reasons pregnant women are included in a higher risk group for
respiratory infections. With the emergence of the COVID-19
pandemic and the uncertainties around it, the concerns around
pregnant women increased, mainly due to the possibility of
maternal–fetal transmission of the virus. In this review, we assessed
that the safety and efficacy of the developed COVID-19 vaccines did
not differ between pregnant, lactating, and non-pregnant women.
Furthermore, besides reducing the risks of post-COVID-19
complications, the benefits of vaccinating these groups are not
restricted to them, since the production of neutralizing antibodies
against SARS-CoV-2 by the mother can be transmitted to the fetus.
Several studies showed that immunized women can transmit anti-
SARS-CoV-2 IgG through the placenta, as has been confirmedby the
presenceof these antibodies in cordbloodor thenewbornserumafter
birth. Additionally, the seroprotection during the beginning of the
infant’s life can be boosted by early third-trimester vaccination of
their mothers, seeing that the magnitude of the maternal–fetal
transfer is increased in this period. The passive immunization of
the newborn also happens through breastfeeding; studies
demonstrated the presence of anti-SARS-CoV-2 specific IgA, IgM,
IgG, and T cells in the breast milk some weeks after a mother’s
vaccination. These findings add evenmore benefits to breastfeeding,
which naturally confers protection to infants due to the
immunomodulatory, antiviral, and anti-inflammatory molecules
that compose the human milk. Therefore, more studies involving
pregnant and lactating women are needed to better characterize the
vaccine immunogenicityamong thesepopulations.These resultsmay
help to create public health policies and to optimize the vaccine
schedule, considering the durability of post-vaccine immunity, to
ensure maternal–fetal protection against COVID-19.
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Importance: SARS-CoV-2-specific antibodies in humanmilk might protect the breastfed

infant against COVID-19. One of the factors that may influence human milk antibodies is

psychological stress, which is suggested to be increased in lactating women during the

COVID-19 pandemic.

Objective: To determine whether psychological stress is increased in lactating women

during the COVID-19 pandemic, and if maternal stress is associated with the level of

SARS-CoV-2-specific antibodies in human milk.

Design: Population-based prospective cohort study.

Setting: Data collection took place in the Netherlands between October 2020 and

February 2021.

Participants: Lactating women living in the Netherlands were eligible to participate in

this study. In total, 2310 women were included.

Exposures: Stress exposure during the COVID-19 pandemic was determined using the

Perceived Stress Scale (PSS) questionnaire and maternal lifetime stress was determined

by the Life Stressor Checklist – revised (LSC-r) questionnaire.

Main Outcome(s) andMeasure(s): Stress experience during the COVID-19 pandemic

was compared with a pre-pandemic cohort. SARS-CoV-2-specific antibodies in human

milk were measured using an Enzyme-Linked Immunosorbent Assay (ELISA) with the

Spike protein of SARS-CoV-2. The association between maternal stress and human milk

antibodies was determined using a multiple regression model.

Results: The PSS score of lactating mothers was not increased during the pandemic

compared to the PSS score in the prepandemic cohort. Six hundred ninety-one

participants had SARS-CoV-2-specific antibodies and were included in the regression

models to assess the association between maternal stress and human milk antibodies.

No association was found between PSS scores and human milk antibodies. In contrast,

the LSC-r score was negatively associated with SARS-CoV-2-specific IgA in human milk

(β = 0.98, 95% CI: 0.96–0.997, p = 0.03).

80

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.923501
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.923501&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:h.vangoudoever@amsterdamumc.nl
https://doi.org/10.3389/fnut.2022.923501
https://www.frontiersin.org/articles/10.3389/fnut.2022.923501/full


Juncker et al. Maternal Stress and Milk Antibodies

Conclusions and Relevance: Our results suggest that lactating women in the

Netherlands did not experience higher stress levels during the COVID-19 pandemic.

Breastfed infants of mothers with high chronic stress levels receive lower amounts

of antibodies through human milk, which possibly makes them more vulnerable to

respiratory infections. This emphasizes the importance of psychological wellbeing

during lactation.

Keywords: SARS-CoV-2, stress, COVID-19, lactation, passive immunity, breast milk

INTRODUCTION

COVID-19 usually has a mild course in children; however, young
infants are more susceptible to severe disease development,
which could be due to an immature immune system (1).
Human milk provides additional immunological protection for
these infants as it contains multiple immunological components.
Human milk antibodies are suggested to play an important
role in the protection against respiratory infections (2–
5). Antibodies against the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) have been found in human milk
after maternal infection and vaccination (6–12). It is very
likely that these antibodies play a critical role in protecting
the infant against COVID-19. Indeed, breastfeeding in SARS-
CoV-2 positive mothers, protects their infants from developing
symptoms of COVID-19 (13). Moreover, although SARS-
CoV-2 RNA has been detected in human milk, replication
competent SARS-CoV-2 has not been isolated and transmission
of the virus to the infant through human milk has not been
reported (14–18).

Human milk antibody titers are influenced by many
different factors, including maternal psychological stress (19–
21). However, there is still controversy on the effect of
maternal stress on the secretion of immunoglobulin A (IgA),
the most abundant antibody in human milk (19, 22–25). Most
studies point toward the view that perceived stress reduces
IgA in human milk (19). It is important to elucidate this
relationship, as it is plausible to assume that maternal stress
might be increased during the COVID-19 pandemic. Indeed,
several studies have highlighted concerns about the mental
health of postpartum women in the COVID-19 pandemic,
showing an increase in depressive symptoms, anxiety and
maternal distress (26–29). The mental state and overall
functioning of the mothers may have suffered from the
lockdown measures due to limited access to support systems,
changes in hospital policies including unaccompanied pregnancy
checkups, mother-infant separation policies, and the stress that
comes from their overall concerns about exposure to COVID-
19 (29).

The aim of this study is to investigate maternal psychological
stress during the COVID-19 pandemic and its potential
impact on SARS-CoV-2-specific antibodies in human milk.
We hypothesize that maternal psychological stress is higher
during the pandemic and that perceived stress levels are
negatively associated with IgA against SARS-CoV-2 in
human milk.

METHODOLOGY

Study Design and Population
The COVIDMILK – POWERMILK study is a prospective cohort
study, which included lactating women between October 12th
and February 23th in the Netherlands who did not yet receive
a SARS-CoV-2 vaccine. Participants were recruited via (social)
media and could sign themselves up by sending an e-mail. Ethical
approval was obtained from theMedical Ethics Committee of the
Amsterdam UMC, location VUmc. Written informed consent
was obtained from all participants.

Study Procedures and Sample Collection
To determine SARS-CoV-2 antibodies, a human milk and blood
sample were collected during a study visit. In the morning of the
appointment, participants were instructed to empty one breast
completely before the first feeding moment, either manually or
with an electric breast pump,mix themilk and subsequently store
20ml in the refrigerator until collection by the researcher. During
the study visit, 5ml of blood was collected. At the study site,
serum and milk samples were stored at −80◦C up until analysis.
After the study visit, participants received a questionnaire, which
included two validated test tools to examine the level of stress
experienced by the participants.

Perceived Stress Scale (PSS)
To investigate stress during the COVID-19 pandemic and its
influence on maternal antibodies, the PSS questionnaire was
used. The PSS is a validated 14-item questionnaire developed
by Cohen et al. (30, 31). The questionnaire aims to determine
how stressful one experiences certain situations (30, 31). For each
question the respondent is asked to indicate howmany times they
felt a certain way since the outbreak of COVID-19. Each question
is scored on a 5-point Likert Scale ranging from 0–4 (0= never; 1
= almost never; 2= sometimes; 3= fairly often; 4= very often).

Life Stressor Checklist – Revised (LSC-r)
To investigate the influence of maternal lifetime stressors on
human milk antibody levels, the LSC-r questionnaire was used.
The LSC-r evaluates the maternal lifetime history of stress. The
validated checklist is a 30-item scale to identify the exposure
to traumatic events or other stressful life events (32). For this
research, we used the questions that form a comparative baseline
for lifetime traumatic stress. We combined two scoring methods
of the questionnaire for this study. This approach combines
a score for high magnitude stressors (criteria A stressors) and
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a score for low magnitude stressors (other life stressors) (32)
resulting in an overall life stressor score ranging from 0–13, with
the highest score representing the highest level of lifetime history
of stress (32).

Determination of SARS-CoV-2 Antibody
Titers in Human Milk and Serum
Before analysis, the collected human milk and serum samples
were stored at the Amsterdam UMC, location VUmc, at −80◦C.
To assess the SARS-CoV-2-specific IgA antibodies in humanmilk
and IgG antibodies in serum, an enzyme-linked immunosorbent
assay (ELISA) with the SARS-CoV-2 spike protein was used
as described previously (33). In brief, whole human milk
and serum samples were diluted 1:10 or 1:100, respectively,
in 1% casein PBS (Thermo Scientific) and IgA or IgG were
detected using horseradish peroxidase (HRP)-labeled goat anti-
human IgA (Biolegend) or HRP-labeled goat anti-human IgG
(Jackson, Immunoresearch), respectively, which were validated
using monoclonal antibodies. A relative operating characteristic
(ROC) curve analysis was performed to determine the cut-off
value for both milk and serum samples using pre-pandemic
negative samples and polymerase chain reaction proven positive
samples. The human milk samples were considered positive at
an optical density (OD) 450 nm cut-off value of 0.502, and the
serum samples at an OD450 nm value of 0.452.With these cut-off
values, the sensitivity was 67.9% (95% confidence interval (CI):
61.0–74.1%) for IgA antibodies in human milk with a specificity
of 99.0% (95% CI: 94.7–100.0%) and for serum IgG antibodies
the sensitivity was 95.9 (95% CI: 92.9–97.6%) with a specificity of
99.1 (95% CI: 94.9–100%). For cross-comparison, negative and
positive controls were included in each run.

Statistical Analysis
The obtained data is registered in the Clinical Data Management
System “Castor Electronic Data Capture (EDC).” In order to
perform the statistical analysis, the data was transferred into
IBM Statistical Package for Social Sciences Statistics (SPSS)
for Windows version 26. Characteristics were described in
descriptive statistics including frequencies, mean values with
standard deviations (SD) or median with interquartile ranges
(IQR). Participants with missing data for stress measures or
antibody levels were excluded from further analyses.

We compared PSS scores in our cohort with a recent study
conducted in the United States before the outbreak of COVID-
19 (34). This pre-pandemic cohort consisted of 151 lactating
mothers between 18 and 40 years old who filled out the PSS
questionnaire at weeks 1 and 2 postpartum, as well as at 1-, 2-,
3-, and 6-months postpartum. This pre-pandemic cohort was
comparable with our cohort in baseline characteristics including
age, BMI and history of depression. Unpaired t-tests were
performed to compare PSS scores between this pre-pandemic
cohort and our cohort for each month postpartum.

To investigate the influence of maternal stress on human milk
antibodies, lactating mothers who tested positive for SARS-CoV-
2-specific antibodies in serum or human milk were included.
IgA values were log-transformed before analyses. Due to a non-
linear relation between PSS and IgA levels, participants were

divided in three groups: low stress (PSS 0-14.99), moderate stress
(15.00–21.99) and high stress (22.00–56.00) based on the 33.3–
66.6 percentiles. Pearson Chi square tests, one-way ANOVA
and Kruskal Wallis tests were used to assess differences in
characteristics between PSS subgroups based on the distribution.

To examine the association between PSS and LSC-r scores
and maternal antibodies, multiple regression analyses were
performed. The PSS regression model was adjusted for factors
that differed between the PSS groups. In literature, age of the
mother, BMI of the mother, parity, lactation stage and sex of the
child have shown to influence antibody levels in human milk (21,
23, 35, 36). Those variables were added to the LSC-r regression
model when they influenced the model with >10%. To correct
for the logarithmic transformation, the following formulas were
used to accurately interpret the regression coefficients: β = eβ

and 95.0% confidence interval= e(β±1.96 x standard error). For the
statistical analysis, the hypothesis was tested two-tailed and a p-
value of < 0.05 was considered statistically relevant. GraphPad
Prism for Windows (version 8.2.1.) was used to illustrate the
data distributions.

RESULTS

Stress Levels of Lactating Mothers During
the COVID-19 Pandemic
Baseline Characteristics

In total, 2310 mothers participated in the study, of whom 2,163
(94%) filled out the characteristics questionnaire (Table 1). The
participants were on average 33.2 (SD ± 3.9) years of age and
were breastfeeding their child for 38.0 (25.0–59.0) weeks.

Postpartum PSS and LSC-r Scores

The PSS questionnaire was completed by 2,162 participants
(94%). These women had a mean PSS score of 19.56 (SD± 7.97).
The PSS scores increased over the first postpartum year [r= 0.09,
95% CI: 0.12–0.40, p< 0.001,N = 1,619 (two-tailed)] (Figure 1).
We compared the PSS scores of the women in our cohort to PSS
scores in a pre-COVID-19 cohort of lactating women. The mean
PSS score in this pre-pandemic cohort of 151 lactating women
up to 6 months postpartum was 18.69 (SD ± 0.47) (34). The
women up to 6 months postpartum in our cohort had a mean
PSS score of 18.41 (SD ± 7.64) (N = 494), which did not differ
from the pre-pandemic cohort at any time postpartum (mean
difference:−0.27, 95% CI:−0.95–0.40, p= 0.43) (Figure 2). The
LSC-r questionnaire was completed by 2162 participants (94%)
and they scored a median of 1.00 (IQR: 0.0–3.0).

Maternal Stress and SARS-CoV-2-Specific
Antibodies in Human Milk
Baseline Characteristics

Of the total study population, 691 participants tested positive for
SARS-CoV-2-specific IgA in human milk or IgG in serum. These
participants were categorized into subgroups based on their PSS
scores: low (N = 182), moderate (N = 245) and high (N = 219)
PSS groups. The per subgroup characteristics are depicted in
Table 1. Women with high PSS scores had more mental illnesses
(p < 0.0001), were breastfeeding for a longer time period (p =
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TABLE 1 | Participants characteristics based on perceived stress scores (PSS) in participants with an ELISA confirmed SARS-CoV- 2 infection in serum or human milk.

Perceived Stress Scale groups

Maternal characteristics Total (N = 2,310) SARS-CoV-2 positive

(N = 691)a
Low (N = 182)a Moderate (N = 245)a High (N = 219)a p-value

Age mother – years* (± SD) 33.1 (±3.8) (N = 2,223) 33.2 (± 3.9) (N = 662) 33.5 (± 3.9) (N = 175) 33.0 (± 3.8) (N = 240) 33.3 (± 4.1) (N = 208) 0.46

Body Mass Index** (IQR) 23.3 (21.3–26.0) (N = 2,226) 23.3 (21.4–25.9) (N = 646) 23.1 (21.4–25.5) (N = 182) 23.0 (21.1–25.8) (N = 245) 23.6 (21.−26.2) (N = 219) 0.16

Chronic illness No. (%) 306/2,224 (13.8) 81/646 (12.5) 18/182 (10.0) 35/245 (14.3) 28/219 (12.8) 0.41

Autoimmune disease No. (%) 72/2,262 (3.2) 15/646 (2.3) 2/182 (1.1) 7/245 (2.9) 6/219 (2.7) 0.46

Psychological disease No. (%) 408/2,221 (18.4) 106/645 (16.4) 20/182 (11.0) 28/245 (11.4) 58/218 (26.6) 0.0001

Smoking No. (%) 42/2,196 (1.9) 12/636 (1.9) 0/179 (0) 7/242 (2.9) 5/215 (2.3) 0.048

Alcohol consumption No. (%) 1,014/2,196 (46.2) 338/636 (53.1) 96/179 (53.6) 136/242 (56.2) 106/215 (49.3) 0.33

LSC-r score** (IQR) 1.0 (0.0–3.0) (N = 2,226) 1.0 (0.0-3.0) 1.0 (0.0–2.0) (N = 182) 1.0 (0.0–3.0) (N = 245) 2.0 (1.0–4.0) (N = 219) 0.0001

Education level 0.02

- Primary and lower secondary No. (%) 31/2,263 (1.4) 7/673 (1.0) 3/182 (1.6) 3/245 (1.2) 1/219 (0.4)

- Upper secondary No. (%) 338/2,263 (14.9) 114/673 (16.9) 22/182 (12.1) 37/245 (15.1) 54/219 (24.6)

- Bachelor equivalent No. (%) 1,008/2,263 (44.5) 291/673 (43.2) 82/182 (45.1) 99/245 (40.4) 97/219 (44.3)

- Master and Doctoral equivalent No. (%) 842/2,263 (37.2) 245/673 (36.4) 73/182 (40.1) 103/245 (42.0) 65/219 (29.7)

Infant characteristics

Age child – weeks** (IQR) 34.0 (24.0–50.0) (N = 2,122) 38.0 (25.0–59.0) 37.0 (26.0–56.3) (N = 174) 35.0 (23.3–55.0) (N = 234) 42.0 (28.0–66.0) (N = 210) 0.005

GA at delivery – weeks** (IQR) 40.0 (39.0-40.9) (N = 2,164) 40.1 (39.0-40.9) 40.0 (39.0-40.9) (N = 176) 40.2 (39.3-41.0) (N = 240) 40.0 (39.0–40.9) (N = 211) 0.52

Birth Weight – grams* (± SD) 3,566 (±517) (N = 2,160) 3,582 (± 517) (N = 637) 3,579 (± 510) (N = 175) 3,605 (± 517) (N = 240) 3,562 (± 532) (N = 208) 0.72

Primipara No. (%) 865/2,185 (39.6) 244/635 (38.4) 76/179 (42.5) 92/242 (38.0) 76/214 (35.5) 0.37

Sexe- Boy No. (%) 1,071/2,233 (45.5) 318/635 (50.0) 83/179 (46.4) 122/242 (50.4) 113/214 (52.8) 0.45

Delivery

Vaginal delivery No. (%) 1,835/2,236 (82.1) 532/635 (78.1) 147/179 (82.1) 204/242 (84.3) 181/214 (84.6) 0.79

Instrumental delivery No. (%) 129/2,236 (5.8) 37/635 (5.8) 14/179 (7.8) 13/242 (5.4) 10/214 (4.7) 0.38

Caesarian section No. (%) 269/2,236 (12.0) 84/635 (13.2) 25/179 (13.9) 34/242 (14.0) 25/214 (11.7) 0.72

Data are given as number/the total of participants who answered the specific question (%), mean (± Standard Deviation) and median (interquartile range: 25th percentile- 75th percentile). Data given as mean and median are given

with the total amount of participants who filled out the specific question (N=). * = Data given as mean. ** = Data given as median. LSC-r score, life stressor checklist – revised calculated score; Education is classified according to the

International Standard Classification of Education; GA, Gestational Age.
aParticipants with SARS-CoV-2-specific antibodies who filled out the PSS questionnaire were divided into PSS subgroups (low, moderate and high). The p-value represents whether there is a significant difference between the low,

moderate and high perceived stress groups.
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0.005), smoked more often (p= 0.048), and scored higher on the
LSC-r questionnaire (p < 0.0001).

PSS Scores and Maternal SARS-CoV-2-Specific

Antibodies

To compare maternal SARS-CoV-2-specific antibodies between
the PSS groups, a multiple regression was performed. No
differences were observed in SARS-CoV-2-specific antibody levels
in human milk between the PSS groups in both the unadjusted
and adjusted model (Table 2, Figure 3).

FIGURE 1 | Perceived Stress Scale (PSS) scores up to 12 months

postpartum. This figure shows the increase in PSS scores over the first

postpartum year. The box represents the interquartile range with median PSS

scores. Whiskers present the data range (Q1/Q3 +/−1.5IQR). · = outlier.

LSC-r Scores and Maternal SARS-CoV-2-Specific

Antibodies

To investigate the relationship between LSC-r scores and
maternal SARS-CoV-2-specific antibodies, a multiple regression
was performed. After adjustment for covariates, the LSC-r score
was negatively associated with IgA in humanmilk (B= 0.98, 95%
CI: 0.96–0.997, p= 0.03) (Table 3, Figure 4).

DISCUSSION

In contrast to our hypothesis, the results of this study suggest that
lactating women did not experience higher levels of stress during
the COVID-19 pandemic compared to lactating women before
the pandemic. Interestingly, maternal lifetime stressors, but not
current perceived stress, were negatively associated with human
milk antibodies against SARS-CoV-2.

Several studies assessed stress levels in lactating women during
the COVID-19 pandemic, of which the majority showed that
stress and anxiety levels were increased, while some studies
showed similar stress levels during and before the pandemic

TABLE 2 | The association between PSS scores and SARS-CoV-2-specific

antibodies in human milk.

PSS score subgroups Unadjusted model Adjusted model

β (95% CI) P-value β (95% CI) P-value

Low - Moderate 1.04 (0.96–1.13) 0.34 1.06 (0.97–1.15) 0.23

Low - High 1.04 (0.96–1.13) 0.35 1.07 (0.98–1.17) 0.15

Moderate - High 1.00 (0.92–1.08) 0.98 1.01 (0.93–1.10) 0.76

PSS, Perceived Stress Scale.

The regression model was adjusted for LSC-r scores, psychological disease, smoking,

the age of the child and education level.

FIGURE 2 | Perceived Stress Scale (PSS) scores during and before the COVID-19 pandemic. In this figure, the PSS scores are displayed as mean (SD) of the specific

postpartum group up to six months postpartum. Mean PSS scores of a U.S. cohort before the COVID-19 pandemic are obtained in Paul et al. (34). There were no

differences between our study cohort and the pre-pandemic cohort.
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FIGURE 3 | Perceived Stress Scale (PSS) scores and SARS-CoV-2 specific

Immunoglobuline A (IgA) in human milk. The boxes represent the interquartile

range with median SARS-CoV-2 specific IgA in human milk for the different

PSS groups. Whiskers present the data range (Q1/Q3 +/−1.5IQR). The dots

indicate the individual measurements. No differences in SARS-CoV-2 specific

human milk IgA were found between groups.

TABLE 3 | The association between LSC-r scores and SARS-CoV-2-specific

antibodies in human milk.

Unadjusted model Adjusted model

β (95% CI) P-value β (95% CI) P-value

LSC-r score 0.98 (0.97–1.00) 0.08 0.98 (0.96–0.997) 0.03

LSC-r, Life Stressor Checklist – revised.

We included age child, sex infant, parity, BMI, age mother to test for potential covariates.

The age of the child was considered a confounder and was adjusted for in our model.

(26, 28, 37–43). The studies that found higher stress levels
were carried out at the onset of the pandemic. It could be
suggested that the lack of knowledge of the effects of COVID-
19 in lactating women and infants at the very beginning of
the pandemic caused stress. Considering that our study was
conducted 7 months into the pandemic, this could entail that
the women who participated in this study had potentially
already adapted to the situation and that stress levels were
normal again. Moreover, it could be suggested that lactating
women did not experience increased stress levels during the
pandemic due to other factors, such as a reduction in social
and work obligations. For example, working from home results
in reduced travel time and spending more time with family
(44, 45).

Previous literature on the relationship between stress and
human milk antibodies is controversial. Either positive, negative
and no associations between maternal stress, anxiety or
depression and human milk IgA have been reported (19,
22–25, 46). The before mentioned studies were hampered
by their relatively small samples sizes (n = 50–119) and

FIGURE 4 | Life Stressor Checklist-revised (LSC-r) scores and SARS-CoV-2

specific Immunoglobuline A (IgA) in human milk. The boxes represent the

interquartile range with median SARS-CoV-2 specific IgA in human milk for the

different LSC-r scores. Whiskers present the data range (Q1/Q3 +/−1.5IQR).

The dots indicate the individual measurements. Multiple lineair regression

models were used to determine the association between SARS-CoV-2-specific

IgA in human milk and the LSC-r scores (adjusted p-value 0.03).

differed in type and timing of stress measurement, set up
and human milk collection, hampering comparability between
studies. Most of the before mentioned literature showed a
negative association between maternal stress and human milk
antibodies (19, 23, 25, 47). In our study, perceived stress
among postpartum women showed no relation with SARS-
CoV-2-specific antibodies in human milk. However, an inverse
association between lifetime stressors and humanmilk antibodies
was observed, also after correcting for possible confounders.
This suggests that chronic stress levels may have more
pronounced consequences for the maternal immune system
compared to current stress levels. Indeed, former research
states that chronic stress diminishes the immune response
(22, 48–51).

Our study is strengthened by the large sample size, making it
possible to identify and adjust for confounding factors. Human
milk samples were collected in a standardized way, to minimize
collection bias. Moreover, both acute as well as chronic stress
was measured. Finally, the study questionnaire was completed
by 94% of our study population, which minimizes missing data
and improves the reliability and generalizability of our study
results. A limitation of our study is that the stress levels were
self-reported via questionnaires and that no biological stress
measures were included. Moreover, our cohort consisted mostly
of highly educated women. It might be that this is not entirely
representative for perceived stress levels of all lactating women.
In addition, to compare stress levels during the pandemic with
pre-pandemic stress levels, our cohort was compared to a pre-
pandemic cohort from the United States. Preferably, pre- and
during pandemic stress levels should be measured in the same
cohort. Finally, SARS-CoV-2-specific antibodies may depend on
several other factors, including time after infection and severity
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of symptoms. However, as our sample size is relatively large,
we expect that the influence of these factors on our results
is minimal.

At this point, we can only speculate what the stress-related
changes in human milk antibodies mean for the protection of
the breastfed infant. However, as infants drink this milk multiple
times a day for a long period, it can be suggested that the
protection will be affected. Large sample-sized, population-based
studies are needed to address the actual effect of decreased human
milk antibody levels on the protection of the breastfed infant
from infections. Moreover, future studies should consider adding
biological indicators of stress, for example human milk or hair
cortisol concentrations, to assess stress levels in lactating women.
Lastly, it would be valuable to measure total immunoglobulins
and/or other immunological components in human milk to be
able to investigate the effects of stress on the total immunological
properties of human milk.

CONCLUSION

The results of this study demonstrated that lactating women
in the Netherlands did not experience higher perceived stress
levels seven months into the COVID-19 pandemic compared
to stress levels of lactating women prior to the COVID-19
pandemic. Moreover, lifetime stress was associated with reduced
SARS-CoV-2-specific antibodies in human milk, while current
perceived stress was not. Our findings emphasize the importance
of psychological well-being of lactating women and the need
to identify and guide (expecting) mothers with high chronic
stress levels.
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Human milk contains three antibody classes that confer mucosal immunity to the
breastfed infant: secretory IgA (SIgA), secretory IgM (SIgM), and IgG. Influenza and
pertussis vaccines administered during pregnancy induce pathogen specific SIgA and
IgG responses in human milk that have been shown to protect the breastfed infant from
these respiratory illnesses. In addition, mRNA vaccines against the SARS-CoV-2 virus
administered during pregnancy and lactation induce anti-SARS-CoV-2 IgG and IgA
responses in human milk. This review summarizes the immunologic benefits of
influenza, pertussis, and COVID-19 vaccines conferred by human milk. Additionally,
future research direction in human milk immunity and public health needs to improve
lactational support are discussed.

Keywords: human milk, COVID - 19, influenza, pertussis, vaccination, infant health, immunization
INTRODUCTION

Human milk has been shown to have numerous benefits for infants (1–5) as well as for breastfeeding
mothers which experience short-term and long-term health benefits (5–8). The World Health
Organization recommends exclusive breastfeeding for the first six months after birth, and up to two
years with the introduction of complementary foods (9). Unfortunately, due to systemic and
structural barriers such as racism, lack of workplace accommodations, and inequitable access to
human milk feeding resources, breastfeeding disparities and inequities remain (10–12). In general,
breastfeeding initiation and duration rates are higher among Asian and White mothers and lower
among Black and Indigenous mothers in the U.S (13).
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Vaccination during pregnancy and lactation not only has
immune protection for the mother, but also provides
immunologic benefits for their child through the transfer of
immune factors in utero and through human milk. Pregnant
women and those who have recently given birth may face
increased vulnerability to infections and severe illness (14, 15).
Thus, vaccines serve as a critical component of preventative
healthcare for pregnant and lactating women and an important
public health intervention (16, 17). However, inequities and
disparities also extend to vaccinations. Presently, in the U.S.,
children, adolescents, and adults who are uninsured, living in
rural communities, have lower levels of income, and identify as a
person of color, experience lower rates of recommended
vaccination (18–20). Given the benefits and significance of
human milk, lactation, and vaccines across the life course, the
barriers need to be addressed to make certain that all mothers
and infants, especially those most marginalized, have access to
critical resources and supports during the perinatal period.

In this review, we discuss the barriers that need to be
addressed to improve equity, and summarize the literature
regarding humoral immunity in the human milk after
influenza and pertussis vaccinations, as well as the latest data
on human milk immunity conferred by the mRNA-based
COVID-19 vaccines.
ANTIBODIES IN HUMAN MILK

For the first few months of life, the infant’s immune system is
immature and they therefore rely on maternal passive immunity
for protection and to distinguish pathogenic from commensal
bacteria (21). During pregnancy, specific maternal IgG
antibodies are transferred from the mother through the
placenta to the fetal bloodstream to provide systemic immunity
that confers protection for the first few months of infancy.
Maternally-derived antibodies gradually decrease during the
first year of life while the infant builds protective immune
responses through vaccination and early life pathogen
exposure (22). After birth, lactating mothers continue to
transfer milk-derived antibodies to their newborn which
provide passive mucosal immunity. Human milk contains
protective immunologic components including immune cells,
cytokines, glycoproteins (e.g. lactoferrin), human milk
oligosaccharides, and antibodies such as maternal secretory
IgA (SIgA), secretory IgM (SIgM), and IgG (21, 23, 24). In
humans, mucosal barriers close shortly after birth, and therefore
Frontiers in Immunology | www.frontiersin.org 289
human milk antibodies are prevented from passing into the
bloodstream due to decreasing permeability of the gut. As a
result, milk antibodies predominately provide mucosal
immunity (25, 26).

Serum IgA is a monomer, whereas mucosal IgA is a dimer.
The IgA dimers in the mammary gland bind to polymeric
immunoglobulin receptor (pIgR) on the basolateral surface of
the epithelial cells and travel across the cell to the apical surface
(27). There, the external domain of the pIgR bound to the
dimeric mucosal IgA is cleaved, and the remaining compound
is secreted into the human milk as SIgA (26). SIgA provides first
line protection along mucosal surfaces including the respiratory
and digestive tracts (27). It has also been shown to be protective
against various diarrheal diseases as infants consuming human
milk with higher SIgA levels were more likely to be
asymptomatic for these diseases (24, 28–31). Pentameric
secretory IgM usually produces the primary antibody response
to an antigen and activates the complement cascade upon
antigen binding. SIgM is delivered to human milk through the
same mechanism as SIgA. IgG is the least prominent antibody in
human milk. Monomeric IgG from maternal blood is delivered
in human milk through binding of the neonatal Fc receptor
(FcRn) on epithelial cells in the mammary gland (32–35).
Human milk-derived maternal IgG binds intraluminal
pathogens in the infant’s gut and helps protect against enteric
infections (36, 37). Milk antibodies main functions are
summarized in Table 1.
ANTIBODY COMPOSITION IN
HUMAN MILK POST-INFLUENZA
AND PERTUSSIS VACCINATION

Influenza Vaccination
Influenza (flu) viruses are RNA viruses (38), that can cause
severe illness, particularly in pregnant people who are at high risk
for infectious complications leading to hospitalization (39).
Influenza vaccines are updated annually to optimize protection
against circulating influenza viruses that are predicted to be the
most common in the upcoming year (40). Currently in the U.S.,
inactivated virus quadrivalent vaccines are recommended for
pregnant individuals, which protect against four different types
of flu viruses. There is year-to-year variability in vaccine efficacy,
due to a number of factors including antigenic mismatch, pre-
existing immunity, and the limited ability to predict the
dominant viruses each year. However, the efficiency of the flu
TABLE 1 | Function and location of human milk antibodies.

Antibodies Structure Location Function

SIgA Dimer Mucosal sites including respiratory and digestive tracts -Intracellular neutralization (forming complexes with the viral proteins)
-Virus excretion through transcytosis of immune complexes to the intestine lumen.
-Immune exclusion to prevent pathogens penetration.

SIgM Pentamer Mucosal sites including respiratory and digestive tracts -Intracellular neutralization
-Ability to activate complement

IgG Monomer Primarily in blood -Pathogenic neutralization including viruses and bacteria
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vaccines typically ranges between 50-70% in pregnancy but may
be less for other populations (41, 42).

Influenza vaccination during pregnancy leads to a 40%
decreased risk of influenza-related hospitalization in pregnant
women (43), as well as a significant increase in maternal and
infant serum influenza IgG levels (44, 45). In addition, numerous
studies have shown a decrease in the incidence of influenza in
infants born to vaccinated mothers up to 6 months post-delivery
(45–48). This protection is mostly attributed to transplacentally-
derived IgG antibodies which are transferred during pregnancy,
and wanes in the infants typically three to six months after
delivery (44, 45, 49–51). However, in breastfed infants, human
milk-derived antibodies may also provide additional layer of
influenza protection in the infant during the breastfeeding
period. A recent study evaluated longitudinal levels of anti-
influenza IgA in human milk, samples were collected from
lactating individuals after administering the trivalent
inactivated influenza vaccine or a 23-valent pneumococcal
polysaccharide vaccine (control) to pregnant women in the
third trimester (52). Human milk anti-influenza IgA levels in
milk were maintained at a significantly higher level in those who
received the influenza vaccine for at least 6 months after delivery
compared to controls (52). In addition to IgA, anti-influenza IgM
and IgG are also present in milk but at lower levels (53). Human
milk also contains varying levels of immune cells including
innate cells, memory T cells, and plasma B cells (54–58), but
limited data exists on the antigen-specificity of these cells and
response to infection or vaccination. A prior study demonstrated
influenza-specific CD8 T cells in human milk (57, 59). However,
the degree of protection conferred by milk immune cells remains
unknown. Breastfeeding exclusivity is associated with lower rate
of infant febrile respiratory illness (52, 60) compared to non-
exclusively breastfed infant. Additional studies are needed to
understand the various factors in milk that confer this protection
to infants.

Pertussis Vaccination
Pertussis (also known as whooping cough) is a childhood
respiratory illness caused by the bacterium Bortadella pertussis.
Pertussis (PT) booster immunization during the late second or
third trimester of pregnancy is an important public health
strategy to reduce the morbidity and mortality from whooping
cough in neonates. Since 2010, the pertussis vaccine has been
recommended for all pregnant people between 27- and 36-weeks
of gestation in order to provide protective antibodies to the fetus
for protection against pertussis, in the critical early months of the
infant’s life when they are most at risk for serious disease (61, 62).
In the U.S., this is typically administered through the combined
Tdap vaccine, which also provides protection against tetanus,
diphtheria, in addition to pertussis (63).

Studies have demonstrated that after maternal vaccination
high levels of anti-PT IgG is present in newborn blood due to
transplacental transfer frommother to infant (64). After delivery,
pertussis-specific IgA as well as IgG are present in colostrum and
mature human milk and are detected for at least 8 weeks
postpartum after maternal vaccination during pregnancy
(65, 66).
Frontiers in Immunology | www.frontiersin.org 390
The effectiveness of maternal vaccination in infant protection
against PT infection at the first months of life ranges from 88 to
93% (67–70). Further, infants with pertussis whose mothers
received the TdaP vaccine had lower risks of hospitalization,
ICU admission, and shorter hospital stays compared to mothers
who were not vaccinated (71). In summary, vaccination with
Tdap during or shortly after pregnancy greatly increases the level
of anti-PT antibodies in human milk (64–66, 72, 73) and may
contribute to the protection provided to the infant against
pertussis infection.
IMMUNE RESPONSES IN HUMAN MILK
FOLLOWING COVID-19 VACCINATION

BNT162b2 (BioNTech and Pfizer) and mRNA-1273 (Moderna)
are mRNA-based vaccines approved by the Food and Drug
Administration (FDA) to use against COVID-19 (74, 75). In
addition, two vector-based vaccines AZD1222 (Oxford/
AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen)
are widely used worldwide (76–80). However, due to the timing
of vaccine approval, there is currently limited data on vector-
based vaccines in pregnancy and lactation, and for purposes of
this review we will focus on mRNA vaccines. BNT162b2 and
mRNA-1273 vaccines contain the mRNA sequence of the SARS-
CoV-2 Spike protein, coated by a lipid-nanoparticle envelope.
Upon administration, the lipid nanoparticles are absorbed by
cells, and the mRNA sequence is released into the cytoplasm,
where it is translated into Spike protein that is presented on the
cell surface of vaccinated cells. This Spike protein is recognized
by immune cells to generate a robust and specific immune
response against the Spike protein (81, 82). These vaccines
have been found to be highly efficient in prevention of severe
COVID-19 disease (83, 84) and to be safe for administration
during pregnancy and lactation (85–95).

For mothers that were vaccinated while pregnant, their
infants had detectable levels of anti-SARS-CoV-2 IgG
antibodies in cord blood and in infant follow up blood
samples, demonstrating transfer of these IgG antibodies via the
placenta to the fetal bloodstream (96–98). Similar to influenza
and pertussis vaccination during pregnancy (44, 46), SARS-CoV-
2 vaccination during pregnancy reduced the risk of infant
hospitalization for COVID-19 up to 4-6 months of age by 30-
70% (99, 100). In contrast, infants born to mothers vaccinated
after pregnancy did not have anti-SARS-CoV-2 IgG in their
blood (25, 101). However, COVID-19 vaccination during
pregnancy and lactation both elicited transfer of anti-SARS-
CoV-2 antibodies to human milk (25, 96, 97, 102–105).

Since SARS-CoV-2 is a novel pathogen, the implementation
of COVID-19 vaccines has provided a unique opportunity to
understand primary immune responses in humanmilk to a novel
antigen in lactating people. We have summarized multiple
studies that have evaluated mRNA vaccination during lactation
and human milk antibodies (Table 2). Most studies have found
an initial increase of milk IgG 14-21 days after the first dose of
vaccine, with further robust increased levels peaking at 7 days
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TABLE 2 | Summary of various studies evaluating vaccination during lactation and human milk antibodies with regards to the mRNA-1273 and BNT162b2 vaccines
including sample size of lactating women, timepoints measured, and mean infant age.

Author Vaccines Measured anti-
bodies (Ab) in
human milk

Sample
size

(lactating
women)

Timepoints Mean
infant
age

Findings overall Findings on milk
IgG

Findings on milk
IgA

Kelly et al.
(102)

BNT162b2 Anti-spike IgG
and IgA Ab
levels

5 1. Pre-
vaccine
2. 10-19 days
post
vaccination
3. 20-29 days
post
vaccination
4. 30-39 days
post
vaccination
5. >40 days
post
vaccination

9.8
months

-Both IgG and IgA levels were
increased post vaccination

-Anti-spike IgG
remained
significantly
increased 20 days
post dose 1 to >40
days compared to
pre-vaccine levels

-Anti-spike specific
IgA were significantly
increased 2 weeks
post dose 1 to >40
days compared to
pre-vaccine levels,
although a
decreasing level of
mean IgA was
observed at >40
days post dose 1

Perl et al.
(103)

BNT162b2 Anti-spike IgG
and IgA Ab
levels

84 Pre-vaccine
and weekly
samples up to
6 weeks after
first dose.

10.32
months

-Both IgG and IgA levels remained
elevated in human milk 6 weeks
post vaccination

-Mean anti-COVID
specific IgG levels
were low until week
3, and dramatically
increased at week
4 and remained
elevated at weeks 5
and 6

-Mean anti-COVID
specific IgA levels
increased
significantly at 2
weeks post-first
dose, decreased
before the 2nd dose,
and increased
sharply 1 week post-
second dose at
week 4.
-IgA levels remained
elevated throughout
the rest of the time
points although
steadily decreased.

Rosenberg-
Friedman
et al. (104)

BNT162b2 Anti-spike and
RBD IgG and
IgA Ab
levels compared
with a pre-
pandemic
control
population

10
healthcare
workers

1. 7 days
post-first
dose
2. 14 days
post-first
dose
3. 7 days
post-second
dose
4. 14 days
post-second
dose

5.13
months

-IgG: IgA ratios were calculated and
suggested that IgA was the greatest
at all time points, although the ratio
increased significantly at 7 and 14
days post second dose, suggesting
an increase in IgG over time post
second dose. IgG and IgA levels
increased at each time point and
stopped increasing on 14 days
post-second dose.
- IgA production rate decreased 14
days post-second dose. IgG
peaked at 14 days post-second
dose whereas IgA showed a small
decline at 14 days post-second
dose.

-Anti-spike IgG at 7
days after first dose
did not increase
significantly
compared to the
controls, although
increased
significantly on day
14. Levels peaked
on 7 days post
second dose.
-Anti-RBD IgG had
a similar trend as
above

-Anti-spike IgA
increase significantly
compared to
controls 14 days
after first dose.
Levels peaked 7
days after second
dose.
-Anti-RBD IgA had a
significant increase 7
days post second
dose compared to
controls.

Gray et al.
(96)

mRNA-
1273 and
BNT162b2

Anti-spike and
RBD IgG, IgA,
and IgM Ab
levels

31 1. Before first
dose
2. After 1st
dose: day of
and before
the 2nd dose
3. 2-6 weeks
post-second
dose

7.3
months
(median)

-A significant increase of COVID
specific IgG, IgA, and IgM was
measured after first and after
second dose compared to baseline.

-Increase in IgG
was measured after
second dose
suggesting the
boost facilitated an
increase in transfer
of IgG to human
milk.

-IgA transfer in
human milk did not
increase after
second dose
compared to IgA
levels after first dose.

Young
et al. (105)

mRNA-
1273 and
BNT162b2

Anti-RBD IgG
and IgA Ab
levels

30 1. pre-vaccine
2. 18 days
post-first
dose

7.5
months

-Both IgG and IgA levels were
increased post vaccination

-Large increase in
IgG 18 days post-
first dose and an
additional increase

-IgA levels increased
at 18 days post-first
dose, and didn’t

(Continued)
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after the second dose and remaining elevated for at least 6 weeks
(78, 96, 102–105). In most lactating people, 4-10 weeks after the
second dose, anti-SARS-CoV-2 IgG levels in milk were still
significantly higher compared to their levels before vaccination
(25, 105). Additionally, IgA levels generally peak at 14-18 days
after the first dose, increase slightly for one week after the second
dose, but decrease thereafter (96, 102–105). In contrast to the
significant increases in IgG levels after the second dose, studies
have shown that IgA levels in milk do not rise further when
measured > 18 days after the second dose (25, 101, 105).

Studies on the association between blood and milk levels after
SARS-CoV-2 vaccination during lactation have found a positive
correlation between serum and human milk SARS-CoV-2 IgG
levels measured at 4-10 weeks after second dose (25, 106).
Interestingly, one study measured milk IgG and IgA in
pregnant women who were vaccinated for both SARS-CoV-2
and TdaP during pregnancy and found similar levels between
anti-Spike (SARS-CoV-2) antibodies and anti-tetanus toxoid
(TT) antibodies (104). These findings further strengthen our
Frontiers in Immunology | www.frontiersin.org 592
knowledge about the mechanism and absolute level of
transferred IgG antibodies from the serum to human milk via
FcR transfer in the mammary gland (107).

Mothers who were infected with COVID-19 during
pregnancy or lactation had a universally rapid anti-SARS-CoV-
2 IgA secretion in human milk, lasting >90 days after diagnosis.
In contrast, vaccination during pregnancy or lactation results in a
robust anti-SARS-CoV-2 IgG secretion to milk with a less
dominant IgA response (97, 105, 107–109). Though antibody
functional responses may be similar after SARS-CoV-2
vaccination vs infection, as was demonstrated by comparable
levels of neutralizing antibodies (97, 105). These findings suggest
that exposure through natural infection leads to increased
secretion of mucosal related IgA antibodies in mucosal organs,
such as the mammary gland, which may be a distinct immune
response than what is generated after mRNA-based vaccines. In
animal models, additional intranasal vaccination induces
mucosal boost immunity in addition to the systemic immunity
that is induced after mRNA-based vaccines (110). Approaches
TABLE 2 | Continued

Author Vaccines Measured anti-
bodies (Ab) in
human milk

Sample
size

(lactating
women)

Timepoints Mean
infant
age

Findings overall Findings on milk
IgG

Findings on milk
IgA

3. 18 days
post-second
dose
4. 90 days
post-second
dose

18 days after the
second dose. It
was followed by a
decline at 90 days
post-second dose.

further increase
post-second dose

Golan et al.
(25)

mRNA-
1273 and
BNT162b2

Anti-RBD IgG
and IgA Ab
levels in human
milk and IgG
and IgM in
serum

50 1. Pre-
vaccine
2. After first
dose: day of
and before
the second
dose
3. 4-10
weeks after
the second
dose

4.7
months
(median)

-Both IgG and IgA levels were
increased post vaccination
-IgG levels were positively
correlated between blood and milk
between 4-10 weeks after the
second dose

-IgG levels
increased after the
first dose and had a
greater increase
after the second
dose.

- IgA levels
significantly increase
after the first dose,
with no further
increase 4-10 weeks
after second dose.

Lechosa-
Muñiz et al.
(79)

BNT162b2,
mRNA-
1273 and
ChAdOx1-S

Anti-RBD IgG
and IgA Ab
levels in human
milk and serum

110 30 days after
the second
dose of the
vaccine (or
after first dose
for ChAdOx1-
S)

15.9
months

Significantly higher levels of IgG and
IgA were found after mRNA-based
vaccine vs. ChAdOx1-S.

Selma-
Royo et al.
(80)

BNT162b2,
mRNA-
1273 and
ChAdOx1

Anti-RBD IgG
and IgA Ab
levels in human
milk

86 pre-
vaccination, 1
week, 2
weeks, and
3–4 weeks
post the
1st dose of
vaccine; 1
week, 2
weeks, and
3–4 weeks
post
2nd dose.

11-14.3
months

-Significant increase in IgA and IgG
in milk with higher levels after
second dose.
-Antibody levels depend on vaccine
type.

-IgG levels
increased after the
first dose with
greater increase
after the second
dose.

- IgA levels after
vaccination were
lower compared to
milk from COVID-19-
infected women.
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boosting mucosal immunity may be useful to increase secretion
of antibodies to human milk, however further research is needed
in this area.

Similar to other vaccinations and infections, there is limited
data on the presence SARS-CoV-2 antigen-specific human milk
immune cells on infant protection against disease (111). Using
animal models, it was shown that cells from milk can survive the
digestive tract and can traffic into infant organs (112, 113).
Interestingly two recent studies have demonstrated the
presence of SARS-CoV-2 specific Spike-reactive T cells in
human milk after vaccination (111, 114). However, it is
unknown if human milk cells provide immune protection to
the respiratory tract or gastrointestinal tract of human infants or
if they are taken up in the infant gut into systemic circulation.
The role of these antigen-specific immune cells in human milk in
regard to infant protection requires further study.

Protection of Infants
Further studies are needed to evaluate the protective effects of
breastfeeding and milk SARS-CoV-2 antibodies against COVID-
19 infection in infants. Exclusively breastfed infants usually
consume human milk every 1-3 hours, providing them with
frequent doses of milk antibodies. Upon weaning, milk
antibodies decay rapidly in the infant, and this mode of passive
immunity ends. Neonates and infants with COVID-19 often
present with gastrointestinal symptoms (115). However, there is
limited information to date on whether SARS-CoV-2 achieves
gastrointestinal viral invasion or whether SARS-CoV-2 causes
bystander mucosal inflammation that contributes to these
symptoms (116–118). Interestingly, anti-SARS-CoV-2 IgA and
IgG have been detected in one-third of 24 infant stool samples
after maternal vaccination (119). Further studies are needed to
determine the impact of local mucosal protection by human milk
derived SARS-CoV-2 antibodies in the infant gut.

COVID-19 Vaccines Safety During
Lactation
COVID-19 vaccination for lactating women is recommended by
the Centers for Disease Control and Prevention (CDC) to reduce
the risk of complications from COVID-19, and theWorld Health
Organization (WHO) recommends continuing of breastfeeding
after vaccination (120, 121). Maternal vaccination during
lactation protects the mother from severe COVID-19 disease
and as discussed above may also protect the infant. A large
survey-based study including over 10,000 lactating individuals
found minimal disruption of lactation after vaccination (around
2% of the individuals), with 6% of individuals reporting decrease
in milk supply (122). Reduction in milk supply was reported in 5-
7% of the women, which was more common after the second
dose. Most symptoms resolved within 24-72 hours after
vaccination (25, 122, 123). Symptoms in the breastfed infant in
the short term after maternal vaccination were reported in 2-7%
the cases, with sleepiness and fussiness being the most common
symptom (25, 122, 123). Other symptoms such as fever and
gastrointestinal symptoms were reported in 1-2% of the infants
(25, 122, 123). Few studies examined transfer of vaccine particles
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to human milk after vaccination (101, 124) and found minimal
transfer of vaccine mRNA to human milk in less than 2% of the
samples (out of 309 samples examined). In addition, a single
study measured polyethylene glycol (PEG) which is present in
the lipid nanoparticles of the mRNA-based vaccines in milk and
found no significant increase in PEG in milk after vaccination
(25). It is not clear whether the infant symptoms reported are
specifically related to vaccine particle transfer, and further
research is needed in this area. There is a lack of clinical trials
that carefully examine infant side effects after vaccination in this
vulnerable population of lactating dyads. Future trials should
include these populations and outcomes. However, based on the
data collected so far in multiple prospective studies, the benefits
of vaccination outweigh the risk for mother and her infant.

COVID-19, Lactation, and Equity Issues
Despite the known maternal and infant health benefits of
breastfeeding and vaccination, significant inequities persist
among the most vulnerable groups that are presented with
unique challenges to lactation support and vaccine access.
There are a lack of studies examining barriers to breastfeeding
during the COVID-19 pandemic. Access to commercial tele-
lactation companies offering online lactation support is limited
especially for those who have lost their jobs and may not be able
to afford lactation or internet services (117). It is essential to
provide resources to the communities and populations
purposively marginalized. For instance, in certain parts of large
cities with previous inequitable health care access, such as the
South Side of Chicago, the COVID-19 pandemic has exacerbated
the reduction of open hospitals (118). Hospitals are typically the
primary source of breastfeeding education and in communities
with already low rates of breastfeeding. Barriers of marginalized
populations are being aggravated rather than reduced during the
pandemic. There is also inadequate funding to lactation services
in institutions and agencies. Addressing systemic and structural
barriers and increasing funding to lower resourced communities
can begin to reduce health care disparities by providing essential
services, such as open hospitals and consistent breastfeeding
education so that families understand the short- and long-term
importance of vaccination and breastfeeding.
DISCUSSION

Future Directions
The studies presented here have demonstrated the benefits of
influenza, pertussis, and SARS-CoV-2 vaccination for pregnant
and lactating individuals and the presence of anti-pathogens
antibodies in human milk following vaccination. Further
epidemiological studies are needed to determine the level of
disease protection to infants against COVID-19 provided by
maternal vaccination through human milk. Additionally, the
quantity of human milk required to be ingested to confer a
protective effect in an infant is unknown. To address this
question, detailed study of infant feeding patterns is needed to
distinguish between various quantities and patterns of human
July 2022 | Volume 13 | Article 910383
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milk consumption. Current studies usually compare only
exclusively breastfed to nonexclusively breastfed infants as a
group. In addition, studies that measure the durability of milk
antibodies in infant mucosal surfaces, such as the oropharynx,
are necessary to better understand the protection of milk
antibodies against pathogens that are transmitted via
these organs.

Longitudinal studies to evaluate the persistence of human
milk antibodies after vaccination, and the effect of a third and
fourth mRNA-based vaccine doses on human milk are needed.
Similarly, long-term follow up on infants of COVID-19
vaccinated mothers is needed as the pandemic evolves to
provide more data on protection of these infants with
continued breastfeeding.

In summary, while the immunologic benefits of breastfeeding
have long been promoted, there is still much to learn regarding
the dynamics of immune responses during lactation. More work
is needed to understand the precise mechanisms of immune
protection seen in breastfed infants. However, the potential
benefits of breastfeeding and human milk are nullified if there
is not equitable access and support for lactation, particularly in
Frontiers in Immunology | www.frontiersin.org 794
vulnerable communities. Research and financial support for
qualitative studies and community-engaged programs are
needed to improve advocacy for education and resources in
lactating communities of color.
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SARS-CoV-2-Specific IgG and
IgA response in maternal blood
and breastmilk of vaccinated
naïve and convalescent
lactating participants

Yesica Longueira1†, Diego S. Ojeda2,3†*,
Rocio B. Antivero Battistelli 1,3, Lautaro Sanchez2,
Santiago Oviedo Rouco2, Daniel Albano4, Eleonora Guevara4,
Vanesa Valls4, Marı́a A. Pando1,3 and Andrea V. Gamarnik2*

1CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y
SIDA (INBIRS), Buenos Aires, Argentina, 2Laboratorio de Virología Molecular, Fundación Instituto
Leloir-CONICET, Buenos Aires, Argentina, 3Universidad de Buenos Aires, Facultad de Medicina,
Departamento de Microbiologı́a, Parasitologı́a e Inmunologı́a, Buenos Aires, Argentina, 4Banco de
Leche Humana – Hospital Materno Infantil Ramón Sardá, Ciudad Autónoma de Buenos
Aires, Argentina
Background: Recent studies have shown the presence of SARS-CoV-2-

specific antibodies in the milk of breastfeeding mothers vaccinated with

mRNA and convalescent. However, limited information is available in

lactating women receiving other vaccine platforms used in developing

countries, such as the inactivated SARS-CoV-2 vaccine BBIBP-CorV

(Sinopharm) and the non-replicating adenovirus vaccines Sputnik V

(Gamaleya Institute) and ChAdOx1-S (Oxford AstraZeneca).

Methods: Here, we evaluated anti-SARS-CoV-2 IgG and IgA levels in both

serum and milk samples using a longitudinal and a cross-sectional cohort of

208 breastfeeding vaccinated women from Argentina with or without previous

SARS-CoV-2 infection.

Results: The analysis showed that IgA levels remain constant in serum and milk

of breastfeeding mothers between the first and second doses of vector-based

vaccines (Sputnik V and ChAdOx1-S). After the second dose, anti-spike IgA was

found positive in 100% of the serum samples and in 66% of breastmilk samples.

In addition, no significant differences in milk IgA levels were observed in

participants receiving BBIBP-CorV, Sputnik V or ChAdOx1-S. IgG levels in

milk increased after the second dose of vector-based vaccines. Paired

longitudinal samples taken at 45 and 120 days after the second dose showed

a decrease in milk IgG levels over time. Study of IgA levels in serum and milk of

vaccinated naïve of infection and vaccinated-convalescent breastfeeding

participants showed significantly higher levels in vaccinated-convalescent

than in participants without previous infection.
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Conclusion: This study is relevant to understand the protection against SARS-

CoV-2 by passive immunity in newborns and children who are not yet eligible

to receive vaccination.
KEYWORDS

SARS-CoV-2, breastmilk, COVID-19 vaccine, immune response, Sputnik V, BBIBP-
CorV, ChAdOx1-S
Introduction

The World Health Organization recommends exclusive

breastfeeding for six months and to continue breastfeeding for

two years or more due to the great benefits on babies’ and

mothers’ health (1). Along with the transfer of enough nutrients

to satisfy growth requirements during the first months, human

milk contains both adaptive and innate immune components. In

particular, breast milk immunoglobulins are essential players

during the maturation of the newborn’s immune system and

provide protection against pathogens (2). Research studies have

shown a high concentration of immunoglobulins in breast milk

also during prolonged lactation (4 years) (3). Human milk

antibodies are derived primarily from B cells primed in the

mucosa, resulting in high concentrations of secretory antibodies

that offer a prolonged period of immune transfer to confer

immunity against mucosal pathogens such as respiratory

syncytial virus, pneumococcus, influenza, and meningococcus

(4, 5). In particular, IgA is the dominant antibody that is

transferred to infants through breast milk and is thought to

play a critical role in mucosal defense (6, 7).

During the global spread of Severe Acute Respiratory

Syndrome coronavirus 2 (SARS-CoV-2), the causative agent of

coronavirus disease 2019 (COVID-19), studies have shown that

milk produced by infected mothers contains detectable levels of

anti-SARS-CoV-2 IgA and IgG during and after acute infection

(8–12).The presence of these specific antibodies potentially

provides passive immunization to the infant (13, 14).

However, SARS-CoV-2 infection during pregnancy was

associated with an increased risk of a composite outcome of

maternal mortality or serious morbidity from obstetric

complications (15). This highlights the importance of

vaccination, since vaccines induce a strong antibodies

production by pregnant women.

Although vaccination against COVID-19 is the most

effective way to prevent SARS-CoV-2 infection and

transmission, pregnant and breastfeeding women were not

included in the original vaccine trials. However, as this group

has been associated with high rates of preterm birth and

neonatal morbidity (16, 17), pregnant and lactating women
02
99
were included in subsequent vaccination trials. Recommendations to

prioritize these groups are supported by the effectiveness (18, 19) and

safety (20–23) of different COVID-19 vaccines. Several studies

evaluated the presence of anti-SARS-CoV-2 IgA and IgG in the

breast milk of lactating mothers vaccinated with mRNA and non-

replicating adenovirus vaccines (24–30), however, scarce information is

available with inactivated virus platforms widely used in many regions

of the world (31).

Different anti-SARS-CoV-2 vaccines are currently used in

Argentina, including the non-replicating adenovirus vaccines

Sputnik V (Gamaleya Institute), ChAdOx1-S (Oxford

AstraZeneca), and Ad5-nCoV (CanSino); the mRNA vaccines

BNT162b2 (Pfizer) and mRNA-1273 (Moderna); and the

inactivated SARS-CoV-2 vaccine BBIBP-CorV (Sinopharm).

As of today, August 2022, 91% of the total population have

received at last one dose of the COVID-19 vaccine, 84% have

received two doses and 60% have received three or four doses.

The national vaccination plan included the entire population

from 3 years of age. Unfortunately, stratified data on vaccination

coverage by age is not available (32). Due to the lack of

information regarding immunogenicity in breast milk in

lactating women after the application of vaccine platforms

based on viral vectors (Sputnik V and ChAdOx1-S) or

inactivated viruses (BBIBP-CorV), we evaluated the presence

of specific IgA and IgG anti-SARS-CoV-2 in maternal blood and

breast milk of vaccinated lactating participants without prior

infection and convalescent lactating participants who were

vaccinated with diverse vaccine platforms.
Material and methods

Population

Breastfeeding mothers from the Human Milk Bank (HMB)

at the Hospital Materno-Infantil Ramón Sardá were donors in

this study. We expanded this cohort with volunteers outside the

HMB, including breastfeeding women that were enrolled by

social network advertisements. Serum and breast milk samples

were obtained from lactating mothers before and after
frontiersin.org
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vaccination against SARS-CoV-2. From February 2021 to

February 2022, samples were taken from 226 breastfeeding

women from Buenos Aires City and surroundings. During the

study period, vaccination for COVID-19 advanced substantially

in Argentina, registering two waves of contagion (May-June

2021 and January 2022). Of this, 171 naïve participants received

one or two doses of the vaccines available at that time in

Argentina (Sputnik V, ChAdOx1‐S or BBIBP‐CorV). None of

these vaccinated mothers reported clinical COVID-19 infection

before immunization. Participants were also separated as naïve

or convalescent by measuring the presence of anti-nucleocapsid

antibodies. Additionally, we evaluated the National COVID-19

Surveillance System, which includes many asymptomatic cases

tested during surveillance and as close contacts of symptomatic

cases, to identify if there were previously infected

volunteers (33).

For this longitudinal and cross-sectional study, 208

breastfeeding mothers’ serum and breast milk samples were

analyzed. We evaluated three data sets. Al first, we analyzed 44

paired serum and breast milk samples from 22 vaccinated

breastfeeding mothers without prior SARS-CoV-2 infection. In

this case, the samples were obtained longitudinally after the first

and second dose of Sputnik V and ChAdOx1‐S vaccine

application. Then, we analyzed a longitudinal cohort of 27

naïve vaccinated mothers with two doses of Sputnik,

ChAdOx1‐S or BBIBP-CorV vaccines. These samples were

collected as a function of time after the second dose, at 40 and

120-day after completing the vaccination schedule. Finally, the

third group was a cross sectional cohort composed of 122

vaccinated mothers without previous SARS-CoV-2 infection

(Sputnik V, N=32, ChAdOx1‐S, N=45 and BBIBP-CorV

N=45), in addition this group included 26 vaccinated
Frontiers in Immunology 03
100
convalescents, with SARS-CoV-2 infection confirmed by

molecular diagnosis before vaccination and 11 convalescents

non vaccinated breastfeeding mothers (Figure 1).
Clinical data collection

Inclusion criteria included women ≥ 18 years of age who

were breastfeeding at any infant age. Data collected included age

of mother and infant, vaccine type (Sputnik V, ChAdOx1-S and

BIBP‐CorV), vaccination dates and history of SARS-CoV-2

infection. Ethical approval was obtained from the Institutional

Review Board (IRB) of the Faculty of Medicine of Buenos Aires

University (Comité de Ética en Investigación Biomédica,

Instituto Alberto C. Taquini de Investigaciones en Medicina

Traslacional (IATIMET), Facultad de Medicina, Universidad de

Buenos Aires). Informed consent was obtained from all

study participants.
Sample collection and processing

Mothers were virtually instructed by study staff in clean

techniques to obtain milk samples. Women collected the milk in

sterile containers that were immediately frozen until shipment in

a cooler to INBIRS (Instituto de Investigaciones Biomédicas en

Retrovirus y Sida). Once at the laboratory, human milk samples

were stored at −20 ◦C until use. The volunteers assisted to the

laboratory were blood was drawn.

Samples consisted of 15 mL of milk and 5 mL of venous

blood without anticoagulants. Both types of samples were

collected on the same day. Blood was centrifuged at 2500
FIGURE 1

Flowchart of the study cohort. For longitudinal analysis, the geometric mean time interval for the samples obtained was 65 and 21 days after
first and second doses of Sputnik V and ChAdOx1‐S vaccines.
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revolutions per minute (rpm) for 10 min at room temperature,

and sera were aliquoted in cryogenic vials and stored at −20 ◦C
until use. Prior to processing, breast milk samples were thawed

centrifuged at 1500 rpm for 15 min, fat was removed, and

supernatant was transferred to a new tube. Centrifugation was

repeated 2× to ensure removal of all cells and fat, and the

supernatant was aliquoted into cryogenic vials and stored at −20

◦C until use. All serum and breast milk samples were tested in

parallel on two different SARS-CoV-2 antibodies testing

platforms, which are described in detail below. Evaluation of

possible previous asymptomatic SARS-CoV-2 infection was

assessed by measuring the presence of IgG anti nucleocapsid

by ELISA.
Detection of specific SARS-CoV-2-
antibodies in serum and breast milk

Antibodies to SARS-CoV-2 spike protein were detected using

an established commercially available two-step ELISA (COVIDAR)

for IgG in serum samples. We have previously described the

development of the ELISA for IgG in serum samples (34).

Modifications of the ELISA for IgA in serum and IgG/IgA in breast

milk samples are described below. Serum and breast milk samples

diluted in PBS-T containing 0.05% Tween and 0.8% casein were added

to the plate (200 ml of a 1:50 dilution for IgG and IgA determination in

serum and 200 ml of a 1:8 dilution for IgG and IgA in breast milk), and

incubated for 1 h at 37°C for serum samples and for 2h at 24°C for

breast milk samples. Following a washing step with PBS-T, 100 ml of
diluted horseradish peroxidase (HRP)-conjugated with goat anti-

human IgA (Sigma), or with mouse anti-human IgG antibodies (BD

pharmingen), was added to plates and incubated for 30min at 37°C for

serum, or 1 h at 37°C for milk. The conjugated monoclonal antibody

used for human IgG detection in the COVIDAR ELISA is G18-145,

which specifically binds to the heavy chain of all four human

immunoglobulin G subclasses: IgG1, IgG2, IgG3, and IgG4. The

conjugate employed for IgA detection in human specifically binds to

a-chain specific of human immunoglobulin A (SIGMA, Cat A0295-

1ML). Subsequently, the plates were washed with PBS-T, and the

peroxidase reaction was visualized by incubating the plates with 100 ml
of TMB solution for 30 min. at 37°C for serum samples and for 1 h at

24°C in breast milk samples. The reaction was stopped by adding 100

ml of 1M sulfuric acid, and optical densities (OD) were immediately

measured at 450 nm. Cut-off for serum and breast milk samples

resulted from the mean of OD450 values from negative controls plus 3

times the standard deviation. All the assays, IgG and IgA

determinations in serum and breast milk samples, were performed

simultaneously with the same plate batch. The IgG concentration of

serum sample, expressed in international units per milliliter (BAU/ml),

was calculated by extrapolation of the optical density at 450 nm

(OD450) on a calibration curve built using serial dilutions of the

WHO International Standard for anti-SARS-CoV-2 immunoglobulin.
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IgG antibodies against SARS-CoV-2 nucleocapsid protein were

detected using a in house two-step ELISA test. The assay uses plates

coated with 100 ng of the full-length nucleocapsid protein,

expressed in E. Coli and purified using HisTrap excel columns

and the conjugated monoclonal antibody was the same as the one

used for COVIDAR. The assay was validated using a panel of 170

healthy blood donors obtained pre-pandemic as negative control.

The cut off was set as the mean of negative control plus 3 standard

deviations and was defined to maximize specificity (Figure S1A).

We measured anti SARS-CoV-2 nucleocapsid IgG of serum

samples included in this study (Figure S1B). Samples from

individuals vaccinated with Sputnik V or ChAdOx1-S yielded

negative results. In addition, convalescent, vaccinated

convalescent and vaccinated with BBIBP-CorV groups yielded

100, 92 and 88% positive results, respectively (see Figure S1).
Quantification and statistical analysis

All statistical tests and plots were performed using

GraphPad Prism 8.0 software. Comparisons of antibody

concentration were made using two-tailed Wilcoxon matched-

pair test in Figures 2, 3. Comparison on non-paired

determinations of antibody concentration was made using the

One Way ANOVA Krustal-Wallis test in Figure 4. Statistical

significance is shown in the figure legends with the following

notations: ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05;

ns, not significant. Geometric means with 95% confidence

intervals were calculated for Figures 2–4. Spearman correlation

coefficient was used to calculate correlations between serum and

human breast milk IgG and IgA. A two-tailed p-value lower than

0.05 was considered as significant.
Results

IgA levels are constant between the 1st

and 2nd doses of adenoviral-based
vaccines in serum and breast milk of
lactating women

We evaluated SARS-CoV-2-specific IgG and IgA responses

in human serum and breast milk paired samples of 22 volunteers

without prior SARS-CoV-2 infection after one and two doses of

Sputnik V (N=15) or after one or two doses of ChAdOx1‐S

(N=7). Application of the second dose increased the IgG level in

both serum and breast milk samples (p<0.0001 and p<0.001

respectively) (Figure 2). In serum, the IgG levels (measured as

geometric means by OD at 450 nm, GMOD) were 1.1 after the

first dose, and 2.6 after the second dose (95% confidence interval

[CI], 0.8 to 1.5 and 2.1 to 3, respectively); and in breast milk, the

levels were 0.21 after the first dose and 0.61 after the second dose
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(95% CI, 0.13 to 0.33 and 0.37 to 0.98, respectively). The increase

in IgG was statistically significant (2.4- and 2.8-fold in serum

and milk, respectively). In contrast, IgA level remained constant

in serum and breast milk between the two doses (Figure 2). The

seroconversion of IgG was 100% in serum and milk after the

second dose, while the seroconversion of IgA in serum and milk

was 100 and 66%, respectively.
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Vaccination in breastfeeding women is
associated with sustained IgA level in
milk over time

We then evaluated IgG and IgA responses across both

compartments in 27 paired samples from lactating women

without prior SARS-CoV-2 infection. For this group, samples
FIGURE 3

Longitudinal antibodies measurements in fully vaccinated breastfeeding without previous infection. IgG and IgA anti-spike antibody levels
measured as geometric means by OD at 450 nm in naïve mothers receiving Sputnik V C1 and C2 vaccine (Gamaleya, N= 4), ChAdOx1-S vaccine
(AstraZeneca, N= 12) and BBIBP10 CorV vaccine (Sinopharm, N=12). Samples were obtained as a function of time at 44 (T1) and 120 (T2) days
after second doses of Sputnik V, ChAdOx1‐S and BIBP-CorV vaccines. Cut-off for serum and breast milk samples resulted from the mean of
OD450 values from negative controls plus 3 times the standard deviation and is shown as dotted line. Wilcoxon matched-pair test was used.
Statistical significance is shown with the following notations: ****, P < 0.0001; ***, P < 0.001; *, P < 0.05; ns, not significant.
FIGURE 2

Longitudinal antibodies measurements between the 1st and 2nd doses of adenoviral-based vaccines in serum and breast milk of lactating
women. Anti-spike IgG and IgA antibody levels measured as geometric means by OD at 450 nm receiving Sputnik V C1 and C2 vaccine
(Gamaleya, N= 15) and ChAdOx1-S vaccine (AstraZeneca, N= 7). Cut-off for serum and breast milk samples resulted from the mean of OD450
values from negative controls plus 3 times the standard deviation and is shown as dotted line. Samples were obtained as a function of time at
65 (95%CI: 54 to 79 days) and 21 (95%CI: 18 to 26 days) days after first and second dose of Sputnik V and ChAdOx1‐S vaccines. Wilcoxon
matched-pair test was used. Statistical significance is shown with the following notations: ****, P < 0.0001; **, P < 0.01; ns, not significant.
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were obtained as a function of time at 44 (95% CI 34 to 56 days)

and 120 (95% CI 114 to 124 days) days after second doses of

Sputnik V, ChAdOx1‐S and BIBP-CorV vaccines. For the

vaccinated participants, the IgG level waned significantly

across both serum and breast milk, showing a 2.1- and 1.6-

fold decrease over time, respectively (p<0.0001 and p<0.001).

IgA level declined slightly over time in serum, while it was

sustained in breast milk (Figure 3). In addition, the seropositive

rate declined in circulating IgG and IgA, while no significant

changes in this rate was observed in breast milk compartments

over time after the second dose (Figure 3).
Antibody responses in serum and breast
milk in vaccinated naïve, unvaccinated
convalescent and vaccinated
convalescent breastfeeding women

The IgG and IgA responses in both serum and breast milk

after the second dose of Sputnik V (N=32), ChAdOx1‐S (N=45)

and BIBP-CorV (N=45) vaccine application were compared

with those of unvaccinated convalescent (N=11) and

convalescent fully vaccinated (N=26) breastfeeding women.

IgG levels in serum and milk from participants receiving the

adenoviral-based vaccines reached higher levels than those
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observed in those vaccinated with inactivated SARS-CoV-2

Sinopharm vaccine (Figure 4). Specific-IgA response in breast

milk showed no significant differences after vaccination with

Sputnik V, ChAdOx1‐S or BIBP-CorV. The subset of vaccinated

mothers with previous SARS-CoV-2 infection showed the

highest IgG level in serum and milk. Finally, a robust IgA

response in both serum and breast milk was evidenced in

unvaccinated and vaccinated convalescent mothers, showing a

significant difference compared to vaccinated naïve

participants (Figure 4).
Correlation of SARS CoV-2 specific IgG
and IgA antibodies in paired breast milk
and serum samples

Comparison of paired SARS CoV-2 IgG antibodies in serum

and breast milk shows high correlation in the two groups analyzed:

vaccinated naïve (IgG correlation coefficient r =0.73, P < 0.0001;

Figure 5A) and convalescents volunteers (IgG correlation coefficient

r =0.66, P < 0.0001; Figure 5A). In contrast, low correlation was

observed when specific IgAs were analyzed in vaccinated naïve

volunteers (IgA correlation coefficient r =0.20, P = 0.0062;

Figure 5B) and convalescents volunteers (IgA correlation

coefficient r =0.23, P = 0.05; Figure 5B).
FIGURE 4

Cross sectional analysis of antibody responses in serum and breast milk in vaccinated naïve, vaccinated convalescent and convalescent
breastfeeding women. IgG and IgA anti-spike antibody levels measured as geometric means by OD at 450 nm. Cut-off for serum and breast
milk samples resulted from the mean of OD450 values from negative controls plus 3 times the standard deviation and is shown as dotted line.
Samples were obtained at 30 (95%CI: 23 to 47 days), 35 (95%CI: 29 to 42 days) and 52 (95%CI: 45 to 62 days) days after second dose in mothers
without previous SARS-CoV-2 infection vaccinated with Sputnik V, ChAdOx1‐Sand BIBP-CorV respectively. In addition, samples from
convalescents vaccinated and convalescents non vaccinated breastfeeding mothers were obtained at 36 (95%CI: 29 to 46 days) days after
second dose and at 163 (95%CI: 93 to 285 days) days after symptoms onset. For no paired samples analysis, Kruskal-Wallis One-Way ANOVA
was performed to compare antibody response. Statistical significance is shown with the following notations: ****, P < 0.0001; ***, P < 0.001; **,
P < 0.01; *, P < 0.05.
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Discussion

Comparison of SARS-CoV-2-specific antibodies in breast

milk and serum after vaccination has been mainly described for

mRNA and non-replicating adenovirus vaccines (24–30) used in

most developed countries. However, little information was

available on widely used inactivated virus platforms in many

regions of the world (31). This study provides data about

longitudinal antibody responses to adenoviral-based vaccines

(Sputnik V and ChAdOx1‐S) and inactivated SARS-CoV-2

vaccine (BIBP-CorV) in SARS-CoV-2 naive and previously

infected breastfeeding mothers.

We observed sustained levels of IgA between the first and

second doses of adenoviral-based vaccines Sputnik V and

ChAdOx1-S. These levels were maintained over time up to

120 days after vaccination. We also showed that the IgA

response in breast milk did not show significant differences

after vaccination with Sputnik V, ChAdOx1‐S or BIBP-CorV. In

contrast, the adenoviral-based vaccines achieved higher IgG

levels than those observed in individuals vaccinated with the

inactivated BBIBP-CorV vaccine in both serum and milk.

Regarding previously infected volunteers, convalescent and

vaccinated convalescents lactating women showed a robust
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IgA response in both serum and breast milk compared to

unvaccinated volunteers. Also, vaccinated mothers with

previous SARS-CoV-2 infection showed the highest IgG level

in serum and milk.

We observed that the IgG levels increase after the second

dose of the Sputnik V and ChAdOx1‐S, with 100% of the

participants showing IgG positivity in milk and serum. Similar

observations were previously reported for both, mRNA and

adenoviral based vaccines (27, 28). This rapid increase of IgG

after the second dose is consistent with a specific B lymphocyte

memory that will prime a faster response with higher antibodies

levels (33). In contrast, we observed that the IgA levels remained

constant between the two doses, as it was reported in previous

studies with adenoviral-based vaccines (Ad26.COV2.S and

ChAdOx1‐S) (27, 28, 35). Heterogeneous dynamics in IgG and

IgA antibody levels can be associated to their diverse functions.

IgA shows a key role dominated in the early SARS-CoV-2–

specific antibody response and IgG is predominantly important

in the secondary immune response (36).

Analysis of paired longitudinal samples taken at 45 and 120

days after second vaccination dose showed that, while IgG levels

waned over time in milk, the IgA levels were maintained and

100% of the participants displayed IgA in milk. We detected a
A

B

FIGURE 5

Correlation between paired breast milk and serum SARS-CoV-2-specific antibody in vaccinated naïve and convalescent breastfeeding women.
Correlation of IgG (quantified according to the WHO International Antibody Standard in serum) and IgA anti-spike antibody levels measured by
OD at 450 nm in vaccinated naïve (n=122) and convalescents plus vaccinated convalescents (n = 47). The specific IgG (A) and IgA (B) serum
levels are correlated to the breast milk levels. In the inset the r Spearman and p values from linear regression are shown.
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slight reduction of IgA titers in serum relative to paired breast

milk samples obtained 120 days after the second dose of Sputnik

V, ChAdOx1‐S and BBIBP-CorV vaccines, suggesting a more

sustained IgA level in mucosal secretions. Previous studies

observed that IgA antibody levels slightly decreased 70 days

after the second dose of mRNA vaccine administration (37). It is

important to mention that other studies showed a decrease in

IgA after 90 days of a second dose of the inactivated SARS-CoV-

2 vaccine (30). In contrast to that observed for IgA, a significant

decreased was observed in IgG levels both in serum and

breastmilk pared samples. These results are in agreement with

previous studies using mRNA-based vaccines that showed

increased IgG levels after the first and second doses, with a

significant reduction thereafter (35, 37, 38).

A cross sectional study with 159 samples showed that the

mean IgA levels in the milk of breastfeeding women who

received three different vaccine platforms were similar. No

significant differences were observed in IgA levels after the

application of technologies based on vectors or viruses

inactivated vaccines. When this cohort was compared to

samples from convalescent or convalescent/vaccinated

participants, a significant difference in milk IgA levels was

observed, indicating that infection results in a higher IgA

response. In agreement with previous studies, COVID-19

convalescents were associated with an elevated IgA response in

human milk and these levels were higher than those observed in

vaccinated groups (37, 39). Furthermore, the IgA response in

milk was not significantly different when convalescents

unvaccinated and convalescents vaccinated participants

were compared.

Regarding the IgG response in breast milk, vaccination of

infected volunteers resulted in a strong and long-term IgG

response. Differences in milk IgG levels were observed with all

three vaccines platforms, showing higher levels when the vector-

based vaccines were used compared to the inactivated virus

vaccine. Previous studies have demonstrated greater IgG levels

in the serum of volunteers (general population cohort)

vaccinated with adenoviral vector vaccines when compared to

that with virus inactivated vaccines (40–42). However, there are

no reports of antibody response comparing adenoviral vector-

based and inactivated virus vaccines in paired samples of milk

and serum from lactating mothers. Regarding convalescent

volunteers, significantly lower levels of IgG were detected in

milk and serum in unvaccinated convalescents compared to

vaccinated convalescents. In this regard, previous studies also

provided data showing that IgG levels in vaccinated SARS-CoV-

2 naïve and vaccinated convalescents mothers were higher than

those observed in unvaccinated convalescents (28, 43).

We also found a higher correlation with IgG than with IgA

in breast milk and serum paired samples, which demonstrates a

greater accumulation of IgA in breast milk as reported in other

studies with mRNA vaccines (7). This lack of IgA correlation

between serum and breast milk is in agreement with the results
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shown in Figures 2, 3 and with previous studies demonstrating

that the IgA response was greater in breastmilk than in serum

(44). Even more, these results are consistent with a previous

work that demonstrated that IgA in breast milk is produced by

plasma cells that are accumulated in the lactating mammary

glands (45). These plasma cells are primed in the lymph nodes

and in the Peyer’s patches of the mucosal tissues and home to the

mammary glands in lactation (46). A similar Spearman´s

correlation coefficient was observed for IgG in serum and milk

samples from vaccinated and convalescent donors.

This study includes the largest cross-sectional analysis of

human serum and breast milk samples after Sputnik V,

ChAdOx1‐S and BIBP-CorV vaccination in breastfeeding

women compared with unvaccinated-convalescent and

vaccinated-convalescent participants. Our data add to previous

information generated with mRNA vaccine platforms to support

the idea that SARS-CoV-2 vaccination in lactating women

provides passive immunity for the recipient infant against

this virus.
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