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An Ensemble Prediction System
Based on Artificial Neural Networks
and Deep Learning Methods for
Deterministic and Probabilistic
Carbon Price Forecasting
Yi Yang1, Honggang Guo2*, Yu Jin2 and Aiyi Song2

1School of Information Science and Engineering, Lanzhou University, Lanzhou, China, 2School of Statistics, Dongbei University of
Finance and Economics, Dalian, China

Carbon price prediction is important for decreasing greenhouse gas emissions and coping
with climate change. At present, a variety of models are widely used to predict irregular,
nonlinear, and nonstationary carbon price series. However, these models ignore the
importance of feature extraction and the inherent defects of using a single model; thus,
accurate and stable prediction of carbon prices by relevant industry practitioners and the
government is still a huge challenge. This research proposes an ensemble prediction
system (EPS) that includes improved data feature extraction technology, three prediction
submodels (GBiLSTM, CNN, and ELM), and a multiobjective optimization algorithm
weighting strategy. At the same time, based on the best fitting distribution of the
prediction error of the EPS, the carbon price prediction interval is constructed as a
way to explore its uncertainty. More specifically, EPS integrates the advantages of various
submodels and provides more accurate point prediction results; the distribution function
based on point prediction error is used to establish the prediction interval of carbon prices
and to mine and analyze the volatility characteristics of carbon prices. Numerical simulation
of the historical data available for three carbon price markets is also conducted. The
experimental results show that the ensemble prediction system can provide more effective
and stable carbon price forecasting information and that it can provide valuable
suggestions that enterprise managers and governments can use to improve the
carbon price market.

Keywords: carbon price forecasting, ensemble prediction system, deep learning methods, error distribution
function, multiobjective optimization algorithm

INTRODUCTION

This section describes the research background, provides a literature review, and states the purpose
and innovation of this study.

Research Background
With the rapid development of the economy, the environment and the climate will inevitably change.
Climate change is clearly a common problem facing all countries. On February 16, 2005, the Kyoto
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Protocol went into effect. According to the situation in each
country, specific emission reduction plans and schedules were
formulated. In January 2005, the EU emissions trading scheme
(EU ETS), which was designed to achieve the emission reduction
targets stipulated in the Kyoto protocol, was introduced (Arouri
et al., 2012). The EU ETS allocates carbon trading quotas to
different emission entities according to its regulations, and
entities that exceed the quota must purchase emission rights
from entities that are lower than the quota through the carbon
trading market. This measure of using a market trading
mechanism provides valuable experience for solving the
problem of global climate change.

As the world’s largest carbon dioxide emitter (in 2018, its total
carbon dioxide emissions reached 10 billion tons, accounting for
approximately 30% of global carbon dioxide emissions), China
has successively established eight carbon emission trading
markets since 2013. However, this system is still in the
construction stage, and the market mechanism is not perfect
and needs further improvement. By studying the regular price
fluctuation pattern of the EU ETS and China’s carbon trading
market, analyzing the influencing factors, and forecasting the
carbon market price accordingly, we can better understand the
fluctuation law of the carbon market and obtain a reference for
formulating carbon market policies and mechanisms to improve
the ability to regulate this market.

Carbon prices have important implications for governments,
companies, and long-term investors. For governments, carbon
pricing is one of the mechanisms used to reduce carbon
emissions, and it can also be a source of revenue. Companies
can use internal carbon pricing to assess the impact of mandatory
carbon pricing on their businesses and to identify potential
climate risks and revenue opportunities. Long-term investors
are using carbon pricing to reevaluate their investment
strategies. Therefore, regardless of the point of view, it is
necessary to establish an accurate and stable carbon price
forecasting system.

Literature Review
Most of the research methods used in carbon price prediction rely
on historical data to build models to predict carbon prices.
Carbon prices display high volatility and nonlinear structure,
and many studies of carbon price prediction based on historical
data have been conducted in recent years. The prediction
methods can be divided into three categories: 1) statistical
measurement methods; 2) artificial intelligence methods; and
3) decomposition integration hybrid forecasting methods.

Statistical Measurement Method
As a classical time series forecasting method, statistical
measurement methods, including linear regression models,
autoregressive integrated moving averages (ARIMAs),
generalized autoregressive conditional heteroscedasticity
(GARCH) models, and gray model GM (1, 1) (Chevallier,
2009; Byun and Cho, 2013; Zhu and Wei, 2013) are widely
used in carbon trading price prediction and volatility analysis.
For example, Benz and Trück (2008) proposed the Markov
transition and AR-GARCH model for stochastic modeling and

analyzed the short-term price of the carbon dioxide emission
quota of the EU ETS. Through the empirical results obtained, it
was demonstrated that the prediction performance of the Markov
state transition model is better than that of the GARCH model.
Zhu and Wei (2013) combined least squares SVM with the
ARIMA model, and the results showed that the developed
model was more robust than the single-prediction model. Zhu
B et al. (2018) used grey correlation analysis to analyze the carbon
price market. The traditional statistical model has high prediction
accuracy and wide adaptability in linear and stable time series.
However, because carbon prices show strong volatility,
nonlinearity, and instability, traditional statistical measurement
methods cannot capture internal structural characteristic data
(Lu et al., 2019). Therefore, accurate forecasting of carbon prices
requires the use of a method with a strong nonlinear feature
extraction ability that enables it to take into account potential
nonlinear characteristics. In addition, the traditional statistical
measurement method is more suitable for the long-term
prediction of time series, and its short-term carbon price
prediction performance is poor (Cheng and Wang, 2020).

Owing to the shortcomings of statistical models, artificial
intelligence methods (AI) have gradually become widely used in
time series prediction; these methods are suitable for nonlinear
prediction without any assumption of data distribution (Wang
et al., 2020). Increasing evidence shows that the performance of
AI in nonlinear time series is better than that of other models
(Zhang et al., 2017). AI, including back-propagation neural
networks (BPs), multilayer perceptual neural networks (MLPs),
least squares support vector regression (LSSVR), and hybrid
prediction methods combined with optimization algorithms,
have also been widely used in carbon price forecasting.
Atsalakis (2016) combined a hybrid fuzzy controller called
PATSOS with an adaptive neuro fuzzy inference system
(ANFIS). The research shows that this method can produce
accurate and timely prediction results. Fan et al. (2015)
studied the chaotic characteristics of the EU ETS, used the
neural network model of MLP to predict carbon prices, and
found that the forecasting accuracy of the model was significantly
improved. Tian and Hao (2020) used phase space reconstruction
technology and the ELM under the multiobjective grasshopper
optimization algorithm (MOGOA-ELM) to predict the trend of
the EU ETS and China’s carbon prices. The empirical results
show that this method can be used effectively to predict carbon
prices.

In recent years, with the development of deep learning theory
(DL) in image detection, audio detection, and other fields, DL has
become the focus of many scholars (Liu et al., 2021). The unique
storage unit structure of deep learning allows it to retain past
historical data and has significant advantages for processing time
series data that feature long processing intervals and delays
(Zhang B et al., 2018). Niu et al. (2020) combined LSTM and
GRU to establish a deep learning recursive forecasting unit for
forecasting multiple financial data. Liu et al. (2020) proposed a
new wind speed prediction model based on an error correction
strategy and the LSTM algorithm to predict short-term wind
speed. The experimental results demonstrated that its
performance is better than that of other comparable models.
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However, application of deep learning frameworks to carbon
price prediction is still very limited.

In addition to the selection and optimization of prediction
methods, data preprocessing technology also plays an
indispensable role in the prediction accuracy of the
prediction model (Wang et al., 2021). Decomposition and
integration methods, including empirical mode
decomposition (EMD), singular spectrum denoising (SSA),
and variational mode decomposition (VMD) are widely used
in time series data preprocessing. These methods aim to
decompose and reconstruct the original time series data and
extract the effective features of the time series. Decomposing the
original time series into a series of simple patterns that exhibit
strong regularity can significantly improve the prediction
accuracy of time series. Wei et al. (2018) used wavelet
transform and kernel ELM to predict carbon prices. Zhu J
et al. (2018) explored an efficient prediction model based on
VMD mode reconstruction and optimal combination and
thereby greatly improved the prediction accuracy of carbon
prices. However, the above decomposition methods still have
some shortcomings. For example, in wavelet decomposition and
VMD, it is necessary to determine the wavelet basis function and
the decomposition level. Although in EMD it is not necessary to
determine the number of decomposition levels, mode aliasing
and insufficient noise separation cannot be solved (Jin et al.,
2020). Therefore, it is very important to extract the nonlinear
peculiarities of carbon prices by using appropriate data
preprocessing methods.

A single prediction model cannot achieve good performance
on every dataset. Therefore, researchers began to focus on
combination forecasting models. In essence, combination
forecasting models combine different hybrid forecasting
methods or single forecasting methods using weighting. In
many experimental studies, it is found that the use of a
combination of prediction methods produces better
predictions than the use of a method that is based on a
single-prediction model. The advantage of using combination
models is that different time series may have different
information sets, information features, and modeling
structures, and the use of a combination of prediction
methods can result in good performance in the case of such
structure mutations. Although the use of a combination
forecasting method to forecast time series is very common,
use of a combination forecasting model to forecast carbon prices
is still in its infancy.

The above analysis indicates that most research on carbon
prices is driven by single or hybrid forecasting models and that it
tends to emphasize prediction strategies that are based on
certainty and to largely ignore the importance of uncertainty
analysis of carbon prices. Regardless of the type of prediction
model used, there are inherent and irreducible uncertainties in
each prediction that will greatly increase the possibility of
miscalculation (Du et al., 2020). Therefore, quantification of
the uncertainty of carbon price prediction plays an
indispensable role in exploring the complexity of the carbon
price market and strengthening the ability to conduct effective
market anti-risk management.

Objectives and Contributions
To supplement the existing research on carbon price prediction,
an ensemble prediction system (EPS) based on the ICEEMDAN
data preprocessing method, the deep learning algorithm (DL), the
extreme learning machine (ELM), and the multiobjective
dragonfly optimization algorithm (MODA) is developed and
used to analyze the certainty and uncertainty of carbon prices.
Specifically, ICEEMDAN is employed to decompose and
reconstruct the original carbon price data and extract the
effective features of the data, and the results are transferred
into the submodels of EPS as training data (the submodels are
ICEEMDAN-GBiLSTM, ICEEMDAN-CNN, and ICEEMDSAN-
ELM). Using the MODA, the final carbon price point forecast
results are then obtained through a weighted combination of the
submodel prediction results. For interval prediction, the upper
and lower bounds of the prediction interval are constructed based
on the prediction value of ESP and the best fit distribution
function of error, namely, the T location-scale (TLS)
distribution. The main innovations presented in this study are
as follows:

1) An effective ensemble prediction system of carbon prices is
developed. Two hybrid prediction models based on a deep
learning algorithm (ICEEMDAN-GBiLSTM and
ICEEMDAN-CNN) and a feedforward neural network
(ICEEMDAN-ELM) are combined to overcome the
inherent defects of a single hybrid prediction model.

2) A deep learning recurrent neural network, GBiLSTM, is first
proposed as a prediction submodel of the EPS. GBiLSTM
combines two recursive deep learning algorithms; it can
effectively deal with time series with long memory and
increase the accuracy of carbon price forecasting.

3) The MODA is employed as an effective method of weighting
the ensemble prediction system. It optimizes the weight
coefficient of the ensemble model from the perspective of
prediction accuracy and prediction stability, thereby
overcoming the obvious defect that single objective
optimization can only select one objective function.

4) To overcome the nonlinearity and strong volatility of the
original carbon price data, an effective time series
preprocessing technique is developed. ICEEMDAN
sequence decomposition technology is employed to
decompose and reconstruct the original carbon price data,
extract the salient features of the data, and improve the
prediction accuracy of the EPS.

5) By fitting the best error distribution, the uncertainty of the
carbon price is mined. In the past, the error distribution of a
prediction was usually assumed to be a Gaussian distribution.
In this study, five types of parameter distribution functions
are used to fit the prediction error, the best error distribution
function is found, and the ranges of carbon price interval
prediction are constructed.

The remainder of the study is organized as follows. In Section
Model Theory and Related Work and Section Ensemble Prediction
System and its Interval Forecasting Framework, we introduce the
theoretical method and the framework used in the proposed EPS.
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Section Experiment and Analysis describes the experimental data
and the prediction performance evaluation index. The point
prediction and interval prediction of the carbon price are then
simulated. Section Discussion is a further discussion of EPS, and a
summary of the study is presented in Section Conclusion.

MODEL THEORY AND RELATED WORK

This section introduces the corresponding theories and describes
the functions of the data preprocessing module, the combination
prediction module, and the uncertainty mining module of the
EPS prediction system.

Data Preprocessing
The data processing module includes the data feature extraction
method, which is based on improved complex ensemble
empirical mode decomposition with adaptive noise
(ICEEMDAN), and the data feature selection method, which is
based on the partial autocorrelation function (PACF).

Data Feature Extraction
To improve the problem of mode aliasing in the traditional noise
reduction method EMD and the slight residual noise in
CEEMDAN, the ICEEMDAN technology is improved. The
CEEMDAN method adds Gaussian white noise during the
decomposition process, while the ICEEMDAN method adds a
special type of white noise, Ek(ω(i)), that is, the k-th IMF
component of the Gaussian white noise (M.E. Torres et al.,
2011; M.A. Colominas et al., 2014). The local mean value of
the added noise is calculated for each modal component, and the
IMF is defined as the difference between the residual signal and
the local mean.

1) The definition operator Ek(·) represents the k-th IMF after
EMD decomposition, and M(·) represents the local mean
value of the signal. There is E1(x) � x −M(x). Operator
means taking the mean value, and x represents the original
data of the study, and then the local average value is calculated
by EMD:

x(i) � x + α0E1(ω(i)) (1)

where ω(i) is the ith white noise added and α0 is the standard
deviation of the noise. The first residual component r1 � 〈M(xi)〉
is obtained by taking the local mean value. The first intrinsic
mode function IMF1 value d̃1 � x − r1 is calculated.

2) The value d̃2 of the second mode component IMF2 is
calculated:

d̃2 � r1 − r2 � r1 − 〈M(r1 + α1E2(ω(i)))〉 (2)

3) The k-th residual is calculated:

rk � 〈M(rk−1 + αk−1Ek(ω(i)))〉, k � 2, 3,/, N (3)

4) The value of the k-thmode component IMFk:d̃k � rk−1 − rk,
is calculated, and Eq. 3 is repeated until the residual satisfies the
iteration termination condition, which is Cauchy convergence.
The standard deviation between two adjacent IMF components
χ � ����d̃k − d̃k−1

����2/����d̃k−1����2 is less than a specified value.
In this study, ICEEMDAN is used to decompose the original

carbon price data into several intrinsic mode functions (IMFs).
The IMF with the highest frequency is removed, and the
remaining IMFs are included. Through this method of
deconstruction and reorganization, the problem of strong
volatility and randomness of the original data is solved. The
data features are effectively extracted, and the prediction veracity
of the model is increased.

Data Feature Selection
The partial autocorrelation function (PACF) is an effective method
for distinguishing the structural features of sequences (Jiang et al.,
2020). It can be used to calculate the partial correlation between the
time series and its lag term. IfΦkj is employed to represent the j-th
regression coefficient in the k-order autoregressive equation, the
model can be expressed as follows:

xt � Φk1xt−1 +Φk2xt−2 + · · · +Φkkxt−k + μt (4)

where xt is the time series and Φkk is the last coefficient. If Φkk is
defined as a function of lag time k, then Φkk, k � 1,2... is named
partial autocorrelation function.

In this study, PACF is used to find the lag terms that have the
strongest correlation with the time series; these are then used as
the input characteristics of the forecast model.

Ensemble Prediction Module
The prediction value calculated by the ensemble prediction
system is obtained using an ensemble of the prediction
results of different single-prediction components through the
weighting strategy. In this section, the three submodes of the
proposed EPS and the MODA weighting optimization strategy
are introduced.

Convolutional Neural Network
A CNN is an incompletely connected DL network structure
that is composed of two special neural networks: a convolution
layer and a down sampling layer (Wang, 2020). The neurons in
each layer of the CNN are locally connected, enabling them to
realize hierarchical feature extraction and transformation of
the input. Neurons with the same connection weight are
connected to different regions of the upper neural network;
in this way, a translation-invariant neural network is obtained
(Wang, 2018).

1) The training of the Convolution Layer. The CNN is
connected to the local region of the feature surface by a
convolution kernel. The output characteristic surface size of
each convolution layer must meet the following requirement:

oMapN � ((iMapn − CWindow)
CInterval

+ 1) (5)
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In Eq. 5, oMapN is the number of output feature surfaces of each
convolution layer, iMapN is the number of input feature surfaces,
CWindow is the size of the convolution kernel, and CInterval is
the sliding step size of the convolution kernel.

In general, to ensure integral division in the above formula, it is
necessary to train the number of parameters for each convolution
layer of the CNN so as to satisfy the following condition:

CParams � (iMap × CWindow + 1) × oMap (6)

where CParams is the number of parameters, iMap is the input
feature surface, and oMap is the output feature surface.

The output value xoutnk can be obtained by the convolution layer;
the formula is as follows:

xoutnk � fcov(xin1h × w1(h)n(k) + xin1(h+1) × w1(h+1)n(k) + xin1(h+2)

× w1(h+2)n(k) +/ + bn) (7)

where xinmk is the input value, bn is the offset value of the output
characteristic surface n, andfcov(·) is the excitation function. The
excitation function is usually the ReLU function, and the formula
for its calculation is as follows:

fcov(x) � MAX(0, x) (8)

2) The output of the Pooling Layer. The pooling layer is also
composed of several feature surfaces, and the number of
feature surfaces does not change. The output value of the
pooling layer is

toutnl � f sub(tinnq, tinn(q+1)) (9)

where tinnq is the output value of the q-th neuron on the n-th input
characteristic surface of the pooling layer and fsub(·) is a function
that takes either the maximum value or the mean value. The size
DoMapN of each output feature surface of the pooling layer is

DoPapN � ( oMapN
DWindow

) (10)

3) Full connection layer output. In the CNN structure, one or
more fully connected layers are connected after the multiple
convolution layers and the pooling layers are obtained. The
ReLU function is also used in the excitation function of the
whole connected layer.

In this study, CNN, as a component of the combined
forecasting system, forecasts the carbon price.

Deep Learning Recursive Network Structure
(GBiLSTM)
In this study, we developed a deep learning recurrent network
structure, which is a hybrid of BiLSTM and GRU. The structure
diagram is shown in Figure 1.

Bidirectional Long Short Term Memory Neural Network
BiLSTM is an improved network of LSTM. LSTM cannot capture
information from back to front; however, BiLSTM can solve this

problem. When bidirectional sequence information is captured,
the time series can be predicted more accurately (Hochreiter and
Schmidhuber, 1997).

1) The LSTM mechanism consists of three memory gates: an
input gate (it), a forgetting gate (ft), and an output gate (Ot).
The specific expression is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

it � σ(ωiXt + RiHt−1 + Bi)
f t � σ(ωfXt + RfHt−1 + Bf)
ot � σ(ωoXt + RoHt−1 + Bo)
c̃ � f t ⊗ ct−1
Ht � ot⊗tanh(ct)

(11)

where xt, σ, and ct represent the input sample, the sigmoid
activation function, and the storage unit of time t, respectively,
and (Bf, Bi, Bo) and (ωf, ωi, ωo) represent the deviation and the
weight matrix, respectively, of each gate. The symbol ⊗ represents
the corresponding multiplication of elements. First, Ht−1, ct−1,
and Xt transmit input information to the LSTM unit. The LSTM
gate then interacts withXt. After a new cell state ct−1 is established.
In this stage, f t determines which information needs to be stored
or deleted and then updates the cell status.

2) Because BiLSTM transmits time series data to LSTM from
both the forward and backward directions, it has two output
layers: a forward layer Hf

t � oft ⊗ tanh(cft ) and a backward
layer Hb

t � obt ⊗ tanh(cbt ).
3) The final predicted output value ŷt is obtained by integrating

the forward layer and the backward layer; in Eq. 12, αand βare
numerical factors that satisfy the equation α + β � 1 (Shi et al.,
2015).

{H t � αH f
t + βHb

t

ŷt � σ(Ht) (12)

Gated Recurrent Unit
GRU is an effective variant of LSTM; its structure is simpler than
that of LSTM, and it can well capture the nonlinear relationship
between sequence data, thereby effectively alleviating the
problems of traditional RNN gradient disappearance (Chung
et al., 2014).

1) The GRU model has two gating units: an update gate zt and a
reset gate rt. An update gate is employed to equilibrate the
historical information. The smaller the value of the update
gate is, the more concentrated the output of the model on the
information of the previous hidden layer ht is

Zt � σ(Wz.[ht−1,xt]) (13)

rt � σ(Wr.[ht−1, xt]) (14)

In Eqs 13, 14, Wis the model weight, and σ is the activation
function.

2) By resetting the gate rt, the candidate vector
h̃t � tanh(W.[rtpht−1, xt]) can be calculated. Taking the
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value of the update gate as the weight, h̃t to be added and the
state of the hidden layer at the previous time step are recorded
as the output of the GRU network at time step t, as follows:

ht � (1 − Zt)pht−1 + Ztph̃t (15)

4) A set of training samples is input into the GRU; finally, the
final output o is obtained by adding the fully connected layer
after the GRU layer.

{ hend � GRU(xt−1, xx−2, ..., xt−w)
o � V .hend

(17)

In this study, a deep learning recursive network structure
(GBiLSTM) based on BiLSTM and GRU is constructed. To
reduce fitting error, the time series are trained by the BiLSTM
layer and then transferred to the GRU network. Through this
double deep learning layer network structure, we can better fit the
carbon price data and reduce the prediction error.

Extreme Learning Machine
ELM is a type of feedforward neural network. On the premise of
randomly selecting the input layer weight and the hidden layer
neuron threshold, the output weight of the ELM can be obtained
through a one-step calculation. ELM has the advantages of higher
network generalization ability and strong nonlinear fitting ability
(G B Huang et al., 2006; Jiang et al., 2021a; Jiang et al., 2021b).

1) ForN different inputs (xi, ti) andxi ∈ Rp, ti ∈ Rp, i � 1, 2, ...., N,
the ELM with L nodes and the excitation function f (x) can
be expressed as

∑N
i�1

βi f (wi.xj + bi) � yj i � 1, ...., N (19)

where wi � [wi1, wi2, ..., win]T is the weight connecting the i-th
hidden layer node and the input node, βi is the connection weight
vector, and yj is the output value of the j-th node. The training of

the network is equivalent to approximating N training samples
with zero error; that is, ŵi, b̂, β̂make

∑L
i�1

β̂i f (ŵi.xj + b̂i) � tj, j � 1, . . . , N (20)

Hβ � T; (21)

H � ⎡⎢⎢⎢⎢⎢⎣ f (w1x1 + b1) ... f (wLx1 + bL)
« «

f (w1xN + b1) ... f (wLxN + bL)
⎤⎥⎥⎥⎥⎥⎦
N×L

(22)

In Eq. 20 through Eq. 22, β�[βT1 , ...,βTL]L×m;T�[tT1 , ... ,tTN]N×m,
and the i-th column of H represents the output vector of the
i-th hidden layer node corresponding to the i-th hidden layer
neuron of the input x1,x2, ...,xN.

2) The input connection weight W and the hidden layer node
bias b can be randomly selected at the beginning of training,
and the output connection weight β̂ can be solved by solving
the linear Eq. 23.

minβ

����Hβ − T
���� (23)

3) The solution is β̂� H†T;H† is the Moore-Penrose generalized
inverse of the hidden layer output matrix H.

In this study, ELM is used as an excellent traditional neural
network prediction component of the combined forecasting
system to predict carbon prices.

Combination Strategy
It is generally believed that no single prediction model can
achieve the best prediction performance for all datasets.
Combining the values predicted by different prediction models
usually reduces the overall risk of incorrect model selection. It is
hoped that the diversity of models can help improve the final
prediction results. However, the previously developed average
weighting and weighted weighting methods cannot guarantee the

FIGURE 1 | Flowchart of the proposed bidirectional long short-term memory-gated recurrent unit (GBiLSTM) model.
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global optimality of the results (Wang, Y et al., 2018), and it is
necessary to find an adaptive variable weight combination
strategy.

In this study, the MODA algorithm is used to weigh the three
prediction components. For the weighting strategy, we
formulated the MODA algorithm as a linear programming
(LP) problem to minimize the loss function. These theories
are introduced in detail below:

Ensemble Method
Owing to the different weights given to each individual
component of the ensemble prediction system, the formula
used in the ensemble forecasting method is as follows:

f (x̂c,t) � ∑m
j�1
ωj f (x̂j,t), t � 1, 2, ... (24)

where f(x̂c,t) is the final output, f (x̂j,t) is the prediction
component of the EPS, m is the number of submodels, and ωj

is the weight of the component models. The experimental results
demonstrate that the ensemble model can obtain ideal results
when these weights are in the range of [−2, 2].

Multiobjective Dragonfly Optimization algorithm
The dragonfly algorithm is a population-based heuristic
intelligent algorithm that is easy to understand and
implement (Mirjalili, 2016). The dragonfly algorithm is
inspired by the static and dynamic group behaviors of
dragonflies. In the static group behavior, the group preys; in
the dynamic group behavior, the group migrates. These two
behaviors are very similar to the two important stages in
heuristic optimization algorithms: exploration and
development. In this research, the MODA is applied to
increase the accuracy and stability of the prediction system
(Song and Li, 2017).

The mathematical expression methods are as follows:

1) The degree of separation refers to avoiding collisions between
dragonflies and adjacent individuals.

Si � ∑N
j�1

X − Xj (25)

2) Alignment means that the trends in movement speed are the
same in adjacent individuals.

Ai �
∑N

j�1Vi

N
(26)

3) Cohesion refers to the tendency of dragonflies to gather near
the center of adjacent individuals.

Ci �
∑N

j�1Xj

N
− X (27)

4) Food attraction is the degree of attraction of dragonflies
to food.

Fi � X+ − X (28)

5) The repulsive force of natural enemies refers to the repellence
of the group to natural enemies when dragonflies encounter
natural enemies.

Ei � X− + X (29)

In Eq. 25 through Eq. 29, X is the position of the current
dragonfly individual, Xj represents the position of the j-th
adjacent dragonfly, Vj represents the speed of the j-th adjacent
dragonfly, N represents the number of individuals adjacent to the
i-th dragonfly individual, X+ indicates the location of the food
source, and X− indicates the position of the natural enemy.

Based on the above five behaviors, the step length and the
position of the next generation of dragonflies are calculated as
follows:

ΔXt+1 � (sSi + aAi + cCi + fFi + eEi) + ωΔXt (30)

Xt+1 � Xt + ΔXt+1 (31)

Whether dragonflies are adjacent to each other can be judged
by the Euclidean distance, which is similar to a circle with a radius
of r around each dragonfly, and all individuals in the circle are
adjacent. To speed up the convergence, the radius r should
gradually increase during the iterative process and should
finally include the entire search space (Sun et al., 2018). At the
beginning of the iteration, the radius r is very small, and some
individuals may have no adjacent individuals. To enhance the
search power of the algorithm, the random walk is adopted to
replace the step update formula, as shown below.

Levy(x) � 0.01 × r1 × σ

|r2|1β
(32)

In Eq. 32, r1 and r2 represent random numbers between [0,1], β is
a constant (here, 3/2), and σis calculated as follows:

σ � ⎡⎢⎢⎢⎣Γ(1 + β) sin(πβ2 )
Γ(1+β2 )β2[β−1

2 ] ⎤⎥⎥⎥⎦
1
β

(33)

The corresponding position update formula can be derived as
shown in the following formula:

Xt+1 � Xt + Levy(d) × Xt (34)

In Eq. 34, d represents the dimension of the position vector. In
MODA, the nondominated Pareto optimal solution that is obtained
in the optimization process is stored and retrieved through the
storage unit of the external archive. More importantly, to improve
the distribution of solutions in the document and maintain the
diversity of Pareto solution sets, the algorithmuses a roulettemethod
with probability Pi � c/Ni to keep the nondominated solution sets
well distributed. Ni represents the number of solutions near the i-th
solution, and c is a constant.

Objective Function of MODA
Generally, the multiobjective optimization problem can be
regarded as the solution of the constraint problem. The
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constraint problem with J inequalities and K equations can be
written as follows:

MinF(x) � (obf1(x), obf2(x), · · ·, obfs(x))T (35)

s.t. g j(x)≥ 0, j � 1, 2, ..., J,

hk(x) � 0, k � 1, 2, ..., K,
x ∈ Ω (36)

where (obf1(x), obf2(x), · · ·, obfs(x))T is the decision vector.
In this study, the objective of the optimization algorithm is to

determine the weight of each single-prediction componentωj to
minimize the error between the final combined forecast value
f(x̂c,t) and the real value of the carbon price Y. The optimization
algorithm can be expressed as follows:

Min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
obf 1 � std(f(x̂c,t), Y) � std⎛⎝∑m

j�1
ωjf(x̂j,t) − Yj

⎞⎠
obf 2 � MAPE(f(x̂c,t), Y) � MAPE⎛⎝∑m

j�1
ωjf(x̂j,t) − Yj

⎞⎠
(37)

s.t. − 2≤ ∑J
j�1

ωj ≤ 2

Therefore, we can solve the component weight ωj:

ωj � argMin{ Std(f(x̂c,t), Y)
MAPE(f(x̂c,t), Y) (38)

s.t. − 2≤ ∑J
j�1

ωj ≤ 2

Through continuous iteration of the MODA optimization
algorithm, the weight vector ω � (ω1,ω2, ...,ωj) that minimizes
the error between the combination forecast value f(x̂c,t) and the
real value of carbon price Y is obtained. In this study, m � 3.

Uncertainty Mining Module
The uncertainty information of point prediction results can be
used to more deeply analyze the characteristics of carbon prices.
In this article, an innovative interval prediction scheme based on
prediction error distribution modeling in the training stage is
proposed. Unlike previous research in which it is assumed that
the prediction error follows a Gaussian distribution, this article
uses maximum likelihood estimation (MLE) to conduct statistical
research on carbon price error data and to explore its distribution.
Among the five distribution functions developed, the function
that best fits the distribution of carbon price prediction error is
found. Based on its probability distribution function (PDF), the
upper and lower bounds of the carbon price prediction interval
are constructed. The details of the five distribution functions and
interval prediction methods are given below.

Distribution Function
The probability distribution function plays a very important role
in resource evaluation and interval prediction. This study
attempts to use different DFSs to fit the distribution function

of prediction error, hoping to analyze the time series in a new way
and to mine its uncertainty characteristics. In this section, five
types of model prediction error distribution functions (stable,
extreme value, normal, logistic, and t location-scale (TLS)
functions) are introduced. The relevant probability density
functions are shown in Table 1.

Interval Prediction Theory
Under the significance level α, for the limit of the model prediction
error interval (Imin and Imax), the probability formula of the
prediction model error value ŷerr and the prediction error true
value Yerr can be expressed as follows (Song et al., 2015):

P(Imin ≤Y err ≤ Imax) � 1 − 2α (39)

Since the error value of the prediction model is a random
variable, Eq. 50 can also be written as follows:

P{Imin ≤Y err ≤ Imax

∣∣∣∣E(Yerr) � ŷerr} � 1 − 2α (40)

In addition, we assume that the prediction error of the future
prediction model has the same distribution function as that of the
historical prediction model. Therefore, the probability
distribution function (PDF) based on the historical error data
of the prediction system can be regarded as a distribution
function of future prediction error (Chen and Liu, 2021).
Thus, the upper and lower bounds of the function at a certain
confidence level can be calculated.

⎧⎪⎨⎪⎩(Imin, Imax)
∣∣∣∣Imin ≤Y err ≤ Imax,∫Imax

Imin

f(x∣∣∣∣Θ̂)dx � 1 − 2α
⎫⎪⎬⎪⎭
(41)

The above equation can also be written as

[Îmin, Îmax] � [Îmin, ŷerr] [ŷerr, Îmax] (42)

∫ŷerr

Imin

f(x∣∣∣∣Θ̂)dx � F(ŷerr) − α (43)

∫Îmax

ŷerr

f(x∣∣∣∣Θ̂)dx � 1 − F(ŷerr) − α (44)

After the optimal statistical distribution of the prediction error
is determined, the upper Ûand lower L̂ bounds of the carbon price
prediction interval can be constructed.

[L̂, Û] � [ŷforecast + Îmin, ŷforecast + Îmax] (45)

In Eq. 45, ŷforecast is the carbon price predicted by the carbon
price prediction model.

ENSEMBLE PREDICTION SYSTEM AND ITS
INTERVAL FORECASTING FRAMEWORK

This section introduces in detail the specific process used in this
study. A brief overview of EPS and its uncertainty exploration is
shown in Figure 2.
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TABLE 1 | Probability distribution function (PDF) of the five distribution functions used in the study.

Distribution functions PDF Parameters

Extreme value f(x;μ; σ) � σ−1 exp − (x−μ
σ )exp(−exp(x−μ

σ )),x > 0
μ>0location parameter
σ >0scale parameter

Logistic f(x;μ; σ) � exp{x−μσ }
σ(1+exp[−(x−μ)σ ])2 μ>0location parameter

σ >0scale parameter
Normal

f(x;μ;σ) � 1
σ

))
2π

√ exp[−(x−μ)
2

2σ2 ] μ>0location parameter
σ >0scale parameter

Stable

f(x; c; α; β; δ) � exp( − cα|x|
α +δx)[ 0< α<2;−1≤ β≤1 shape parameter

0< c<∞;−∞< δ <∞ scale parameter

T Location-Scale f(x;μ,σ,υ) � Γ (υ+1
2 )

σ
)))))
υπΓ(υ

2)
√ (1+1

υ(x−μ
σ )2)−υ+12

υ>0 shape parameter
μ>0location parameter
σ >0scale parameter

FIGURE 2 | EPS system and its interval prediction model framework.
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Step 1: Data Preprocessing and Feature
Selection Module
In this article, ICEEMDAN technology is employed to
decompose and reconstruct the original carbon price data.
ICEEMDAN decomposes the original carbon price into several
IMFs and residual terms. The IMF with the highest frequency is
then eliminated, and the remaining IMFs are reorganized to
extract the effective features of the data. For multivariate time
series, effective feature selection is also very important. In this
study, partial autocorrelation analysis (PACF) is employed to
determine the input feature length of carbon price prediction to
achieve feature selection.

Step 2: EPS of Model Components
Owing to the high randomness, volatility, and instability of
carbon price data, it is not easy to find its rules of motion,
and the single hybrid prediction model has inherent defects.
Therefore, the use of a combination of hybrid forecasting models
is an effective means of obtaining satisfactory prediction
performance and improving prediction accuracy. In this study,
two deep learning hybrid models (ICEEMDAN-GBiLSTM and
ICEEMDAN-CNN) and a feedforward neural network
(ICEEMDAN-ELM) are used as the prediction components of
the EPS. They have high prediction accuracy and good learning
ability for time series.

Step 3: Component Ensemble Strategy
Given the advantages and disadvantages of different hybrid
models, it is very important to select a weight combination
strategy with strong adaptability and good fusion effect to
compensate for the defects of the individual hybrid models
and improve the performance and accuracy of carbon price
prediction. Therefore, the MODA is selected to determine the
fusion weight among the three prediction model components.

Step 4: Exploring Uncertainty
Quantifying the uncertainty associated with carbon price
prediction is a considerable challenge. In this study, a new
interval prediction scheme based on forecasting error
distribution modeling in the model training stage is
proposed. Unlike previous research based on the
assumption that the prediction error follows a Gaussian
distribution, this article uses MLE to conduct statistical
research on carbon price error data and to explore its
distribution. Among the five DFs developed, the function
that best fits the distribution of carbon price prediction
error is found. After confirming that the optimal fit to the
distribution of forecast error is provided by the t location-
scale, the upper and lower bounds of the carbon price
prediction interval are constructed based on its PDF.

EXPERIMENT AND ANALYSIS

This section will introduce the experimental setup and analysis in
detail, including the simulation experiment dataset and three

different groups of empirical experiments that are used to verify
the prediction performance of EPS.

Data Selection and Analysis
In this article, three datasets based on the carbon price market
(the EU Emission Trading System (EU ETS), the Shenzhen (SZ),
and the Beijing (BJ) datasets) are used as experimental data. The
dataset can be downloaded from the wind database (http://www.
wind.com.cn/). The first 80% of each dataset is used as the
training set, and the last 20% is used as the test set.
Specifically, for the EU emission trading system dataset, a total
of 1,000 daily quota settlement prices from July 10, 2013 toMay 3,
2017 are selected. For the Shenzhen and Beijing datasets, this
study used daily spot carbon price data collected from January 14,
2014 to February 7, 2017, including 800 data points. Detailed
statistical descriptions of the three datasets are given in Table 2.
In addition, in constructing the model input vector, we adopted a
rolling acquisition mechanism.

Model Parameter Setting
The model parameters determine the performance of the
prediction system to a large extent. The different parameters
of the EPS proposed in this study are obtained by referring to the
literature and to the results of the experiments conducted in this
study. The parameter settings for each component of the
ensemble system are listed in Table 3; this information is
valuable and useful because it provides a reference for future
research.

Evaluation Index System
To quantify the performance of the developed system, this study
constructs an evaluation system using a variety of error
evaluation criteria. The system is evaluated and analyzed based
on the deterministic point estimation evaluation index and the
probabilistic interval estimation evaluation index (Wang R. et al.,
2018; Jiang et al., 2021). In the deterministic prediction part, four
evaluation indicators, MAE, RMSE, MAPE, and IA, are used.
MAE can better express the prediction error under actual
conditions. RMSE reflects the deviation between the prediction
value and the true value. MAPE expresses the accuracy of
prediction using the ratio of error to true value. IA is applied
to measure the concordance between the predicted value and the
actual value. During interval prediction and evaluation, the three
general indicators FICP, FINAW, and AWD are employed to
evaluate the quality of the prediction interval. FICP reflects the
possibility that the original value falls within the forecast period.
FINAW measures the width of the prediction interval. AWD
represents the degree of deviation between the observed value and
the prediction interval. For FICP, unlike other indicators, a larger
value indicates better performance of the model. Table 4 lists the
details of the above evaluation indicators.

Experiment 1:Comparison of Different Data
Processing Methods
In this experiment, the original carbon price series and the data
based on ICEEMDAN, EEMD, and singular spectrum
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decomposition (SSA) are used as the training input for different
prediction models. The purpose of this experiment is to explore
the effect of using different signal decomposition techniques on
the prediction accuracy of prediction models. Table 6 compares
the results obtained using the corresponding models.

Feature Selection Analysis
The prediction performance of both machine learning and deep
learning methods is closely related to the input variables. The
PACF method is used to select appropriate features as the best
input of the prediction model. The best input characteristics

obtained from the PACF results of each subsequence are shown in
Table 5. (In the follow-up experiments, the input units of each
prediction model were obtained according to the PACF results.)

Prediction Results Obtained Using the Different Data
Preprocessing Methods
To verify the effectiveness of the ICEEMDAN data preprocessing
method in data feature extraction, in this experiment the
performance of ICEEMDAN is compared with that of the
classical feature extraction methods EEMD and SSA. The
detailed results are described below.

TABLE 2 | : Statistical description of the carbon prices reported at three sites.

Statistical Indicators Number Max Min Mean Std

Equation — — — Mean =∑N
i= 1xi/N S=

))))))
1
N ∑N

i= 1

√
(xi − x)2

EU ETS Total 1,000 8.67 3.93 6.01 1.24
Training 800 8.67 4.02 6.24 1.26
Testing 200 6.54 3.93 5.08 0.57

BJ Total 800 77 30.63 49.56 7.08
Training 640 77 30.63 48.96 7.65
Testing 160 69 39.45 51.98 3.02

SZ Total 800 88.45 17.83 43.13 16.05
Training 640 88.45 18.98 46.92 15.58
Testing 160 42.81 17.83 28.01 5.39

TABLE 3 | Model parameters.

Model Parameters Default value

MODA Maximum number of iterations 50
Maximum number of archives 500
Dragonfly number 30
Upper and lower limits of the weight coefficient [−2,2]
Objective functions

Min{obf1 � Std(f (x̂c,t ),Y )
obf2 � MAPE(f (x̂c,t ),Y )

ICEEMDAN Noise standard deviation 0.05
Number of realizations 50
Maximum number of sifting iterations 500

ELM Input nodes number Based on PAC
Output nodes number 1
Hidden nodes number 5
Learning rate 0.001
Iterations number 200

GBiLSTM Number of inputs Based on PAC
Number of hidden units 200
Number of outputs 1
Maximum iteration 250
Initial learning rate 0.01
Training algorithm Adam

CNN Number of inputs Based on PAC
Number of outputs 1
The kernel sizes 2 × 2
The activation function Relu
The max pooling layer size 2
Training algorithm Adam
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From the results in Table 6, it can be seen that the use of data
preprocessing technology can effectively ameliorate the
prediction ability of the prediction model. MAPE, MAE,
RMSE, and IA were adopted to evaluate the prediction ability
of the model based on the prediction accuracy and the fitting
situation. For the data on the three carbon trading markets, the
MAPE, the MAE, and the RMSE of the prediction model are
significantly lower than those of the model that was directly
trained on the original dataset, regardless of which data
preprocessing technology is adopted. When the original
dataset is used directly, the MAPEactual of the prediction
model under the EU ETS, SZ, and BJ datasets is between 3
and 14%, while theMAPEICEEof the prediction model is reduced
to 1–5% when ICEEMDAN noise reduction technology is used.
This is sufficient to indicate the necessity for data preprocessing.

In addition, for the three components of EPS, different data
preprocessing methods are used as model inputs. The
experimental results show that ICCEEMDAN is more effective
than the other methods. For the EU ETS dataset, the prediction
system using ICEEMDAN noise reduction technology has the
highest prediction accuracy, and the average RMSE value of the
three component models, RMSE

EUETS
ICEE � 0.1081, is the best; the

prediction performance of the model based on EEMD is the
worst: RMSE

EUETS
EEMD � 0.1313 in the SZ dataset,MAE

SZ
ICEE � 1.2518,

RMSE
SZ
ICEE � 1.9671, andMAPE

SZ
ICEE � 4.8261%. In the BJ dataset,

the average values of these three indicators are 0.5573, 1.2169, and
1.0573%, obviously better than those obtained using other data
processing technologies.

IA is an effective index that can be used to measure the
correlation and consistency between the predicted values and

the original data. The higher the index value is, the better the
fitting effect of the model is. The ICEEMDAN feature extraction
technology proposed in this article achieves the highest IA of all
the models tested under the three carbon price datasets. In the SZ
dataset, the IA values are IASZ

ICEE−ELM � 0.9644,
IASZ

ICEE−CNN � 0.9529, and IASZ
ICEE−BiLSTM � 0.9696. These

values are 0.0138, 0.0025, and 0.0173 units higher than
IASZ

SSA−ELM, IASZ
SSA−CNN, and IASZ

SSA−GBiLSTM, respectively, and
0.0628, 0.0504 and 0.0657 units higher than IASZ

EEMD−ELM,
IASZ

EEMD−CNN和IASZ
EEMD−GBiLSTM, respectively. In summary,

compared with other data preprocessing technologies,
ICEEMDAN data preprocessing is more effective for data
feature extraction and has incomparable advantages in
improving the performance of the prediction model.

Key Finding: Compared with the original carbon price series
and other classical data preprocessing techniques, ICEEMDAN
preprocessing technology can extract the data characteristics of
carbon prices more effectively, significantly enhances the
prediction accuracy of the prediction model, and is a more
reliable data preprocessing tool.

Experiment 2: Point Forecasting:
Comparison of the EPS With Reference
Models
To verify the effectiveness of EPS in carbon price prediction,
the traditional single forecast model and the classical hybrid
prediction model are compared with EPS. These models
include the traditional statistical models ARIMA and
ICEEMDAN-ARIMA, the traditional single neural network
models BP, ELM, GRNN, the deep learning models LSTM,
CNN, and the classical hybrid prediction models GWO-BP
and ICEEMDAN-GWO-BP. In addition, to explore the
expansibility of the model, the experimental content of
multistep point prediction is included in the experiment. In
the multistep prediction, rolling prediction is adopted. The
specific method used to perform multistep prediction is
shown in Figure 3. The experimental results are shown in

TABLE 4 | Basic evaluation metrics.

Metric Definition Equation

MAE The mean absolute error MAE � 1
N∑N

i�1
∣∣∣∣yPRE(i) − yACT(i)

∣∣∣∣
RMSE Root mean squared error RMSE �

))))))))))))))))))))
1
N∑N

i�1(yPRE(i) − yACT(i))2
√

MAPE The mean absolute percentage error
MAPE � 1

N∑N
i�1

∣∣∣∣∣∣∣∣∣yPRE(i)−yACT(i)yACT(i)

∣∣∣∣∣∣∣∣∣ × 100%

IA Concordance index
IA � 1 − ∑N

i�1(yPRE(i)−yACT(i) )2∑N

l�1(|yPRE(i)−yACT |+|yACT(i)−yACT |)2
FICP Forecast interval coverage probability FICP � ∑N

i�1ci × 100%/N
FINAW Forecast interval normalized average width FINAW � ∑N

i�1(Ui − Li ) × 100%

AWD � ∑N
i�1AWDi/N

AWD Accumulated width deviation of testing dataset
AWDi �

⎧⎪⎨⎪⎩
Li − yACT(i)/Ui − Li , yACT(i) < Li
0, Li ≤ yACT(i) ≤Ui

yACT(i) − Ui/Ui − Li , yACT(i) >Ui

Note: This table lists the full names and calculation methods of the evaluation indices included in the evaluation system. N is the size of the test sample, y is the average value ofy, yACT(i) is
the i-th actual value, and yPRE(i) is the i-th forecast value. Ui and Li represent the upper and lower limits, respectively, of the prediction interval. Ci represents the number of true values
contained in the construction interval [Ui , Li] and is the i-th prediction interval.

TABLE 5 | Optimal input characteristics based on the PACF.

Site Input combination

EU ETS xt−1, xt−2, xt−3 , xt−4 , xt−5 , xt−6 , xt−7 , xt−8 , xt−9
SZ xt−1 , xt−2 , xt−3 , xt−4 , xt−5 , xt−6 , xt−7, xt−8, xt−9, xt−10
BJ xt−1 , xt−2 , xt−3 , xt−4 , xt−5 , xt−6 , xt−7, xt−8, xt−9, xt−10
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Table 7. The detailed experimental analysis is described
below.

1) In comparison with the traditional single prediction model,
we find that EPS displays incomparable advantages in the four
indicators in both one-step and multiple-step prediction.
This shows that the EPS developed by us is effective in
predicting carbon prices. In addition, the MAPE values of
GBiLSTM in the three datasets are MAPEEUETS

GBiLSTM � 3.3159,

MAPESZ
GBiLSTM � 13.1740, andMAPEBJ

GBiLSTM � 3.7406; these
values are better than those obtained using a single LSTM,
proving the effectiveness of the GBiLSTM. The other two
prediction components, ELM and CNN, have outstanding
prediction performance in all single prediction models, so it is
reasonable to choose them as the submodes of the EPS. In
addition, we can see that for the traditional statistical model
ARIMA, the average value of MAPE of the three stations is
MAPEARIMA � 11.0072in one-step prediction; this is not as
high as the prediction accuracy achieved using other
prediction models, indicating that the traditional linear
statistical model is not suitable for the prediction of carbon
price series with high volatility and complexity.

2) We can observe that under different datasets, different
prediction models have different prediction performances.
Under the EU ETS dataset, the neural network ELM
performs best, yielding RMSEEUETS

ELM � 0.2148; this is better
than the RMSE values of the deep learning algorithms CNN
and GBiLSTM, which are RMSEEUETS

CNN � 0.2218 and
RMSEEUETS

BiLSTM � 0.2241, respectively. However, under the
SZ and BJ datasets, the deep learning algorithms CNN
and GBiLSTM achieve better prediction results than ELM.
The same phenomenon occurs inmultistep forecasting, and there
the forecast advantage of the deep learning framework is more
obvious. However, the prediction accuracy of EPS remains the
highest under any of the tested datasets. The RMSE values in the
one-step forecast are RMSEEUETS

EPS � 0.0904, RMSESZ
EPS � 1.6096,

and RMSEBJ
EPS � 1.2046. The RMSE values in the two-step

forecast are RMSEEUETS
EPS � 0.1829, RMSESZ

EPS � 3.3244, and
RMSEBJ

EPS � 1.7567. This shows that the combination strategy

retains the forecasting advantages obtained by using different
forecasting components and that it compensates for each model’s
defects; as a result, EPS has strong robustness and wide
adaptability.

In comparison with the classic hybrid forecasting models
ICEE-GWO-BP, SSA-GRNN, and GWO-BP, several sets of
hybrid forecasting methods have achieved good forecasting
performance; however, because the index values used in these
models are very similar, it is not easy to intuitively present the
predictive ability of the model. In this case, we measure the
percentage of improvement in the evaluation index to make
the analysis more intuitive. The percentage of improvement in
the evaluation index is a measure of the degree of
improvement achieved by EPS compared with the index
value of the comparison model; it can be expressed as follows:

Pmodel
Index �

∣∣∣∣∣∣∣Indexmodel − IndexEPS
Indexmodel

∣∣∣∣∣∣∣ × 100% (46)

wherePmodel
Index is the percentage of improvement indicators,

Indexmodel stands for the index value of the comparison
model, and IndexEPSis the index value of the EPS.

In the EU ETS dataset, the improved MAPE values for one-
step prediction of the three hybrid models are
PICEE−GWO−BP
MAPE � 1.9673%, PSSA−GRNN

MAPE � 60.4950%, and
PGWO−BP
MAPE � 59.5377%. The improved MAPE values of the two-

step prediction are PICEE−GWO−BP
MAPE � 9.2410%, PSSA−GRNN

MAPE �
30.7285% and PGWO−BP

MAPE � 51.8867%. Under the BJ dataset,
the improved IA values predicted for the three hybrid models
using the one-step method are PICEE−GWO−BP

IA � 0.9064%,
PSSA−GRNN
IA � 48.1563%, and PGWO−BP

IA � 33.3896%. The
improved IA values obtained by two-step prediction are
PICEE−GWO−BP
MAPE � 1.4313%, PSSA−GRNN

MAPE � 97.2385%, and
PGWO−BP
MAPE � 104.3018%. The index improvement percentage

more intuitively shows the improvement in prediction
performance obtained using EPS. Compared with the classical
hybrid prediction model, the EPS shows significant improvement
in both prediction accuracy and fitting consistency.

TABLE 6 | Comparison of the performances of prediction models based on different data feature extraction techniques.

Model EU ETS SZ BJ

— MAPE RMSE MAE IA MAPE RMSE MAE IA MAPE RMSE MAE IA

ELM 3.1190 0.2148 0.1583 0.9574 13.3955 4.4118 3.5126 0.7965 3.9351 4.0281 2.5107 0.7225
CNN 3.1581 0.1659 0.1659 0.9544 12.5333 4.4030 3.3666 0.8007 3.7483 3.8029 2.4362 0.7236
GBiLSTM 3.3159 0.2241 0.1744 0.9523 13.1742 4.3402 3.4707 0.7955 3.7406 3.7846 2.4355 0.7239
EEMD-ELM 1.8531 0.1235 0.0942 0.9857 7.8973 2.8796 2.2638 0.9016 2.9211 2.2281 1.5135 0.8443
EEMD-CNN 1.8892 0.1249 0.0962 0.9880 7.8426 2.9683 2.2237 0.9025 2.9058 2.2111 1.5042 0.8483
EEMD-GBiLSTM 2.2015 0.1456 0.1117 0.9829 7.6835 2.5719 2.0024 0.9029 2.8966 2.2051 1.4991 0.8495
SSA-ELM 1.4597 0.1021 0.0734 0.9922 5.8985 2.2233 1.6648 0.9506 1.5922 1.4362 0.8198 0.9318
SSA-CNN 1.5684 0.1100 0.0795 0.9905 5.9112 2.2256 1.6727 0.9504 1.5435 1.4568 0.8079 0.9139
SSA-GBiLSTM 2.0231 0.1293 0.1009 0.9861 5.8622 2.2085 1.6519 0.9513 1.5479 1.4577 0.8085 0.9137
ICEE-ELM 1.2806 0.0915 0.0647 0.9934 4.5032 1.7141 1.2424 0.9644 1.0571 1.2013 0.5561 0.9397
ICEE-CNN 1.5162 0.1075 0.0771 0.9910 5.6835 2.5719 1.3624 0.9529 1.0624 1.2485 0.5596 0.9359
ICEE-GBiLSTM 1.8746 0.1253 0.0941 0.9878 4.2916 1.6153 1.1508 0.9686 1.0525 1.2008 0.5561 0.9399
EPS 1.2657 0.0904 0.0640 0.9936 4.0156 1.6096 1.1372 0.9687 1.0064 1.2049 0.5312 0.9402

Note: The best indicator values are shown in bold type.
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Figure 3 shows a comparison of the prediction results
obtained using EPS and the comparison model when different
numbers of prediction steps are used.

Key finding: The difference in the prediction results between
the EPS system and other prediction models is significant.
Specifically, under each dataset and for each prediction step,

FIGURE 3 | Prediction results obtained using EPS and comparison models under different prediction steps.
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the EPS has better prediction performance. Therefore, it is
concluded that the advanced ensemble prediction system has
better carbon price forecasting ability and potential than the
traditional single models and classical hybrid models.

Experiment 3: Interval Forecasting:
Uncertainty Analysis of Carbon Price
In Experiment 2, the accuracy and stability of the prediction
systemwere discussed through the predictionmethod of certainty
point estimation. However, the point prediction results do not
reflect the uncertainty in the dataset. To further prove that the
ESP system has a wider range of adaptability than other predictive
models, this section uses the interval prediction method to mine
the uncertainty of carbon prices. Unlike point prediction, interval
prediction can provide the upper and lower bounds of the
observed value, making it possible to construct the prediction
interval under a given significance level. It can provide additional

information for carbon price market policymakers and can help
them analyze the carbon price market.

Distribution Function of Prediction Error
In previous studies, most of the prediction errors of the prediction
model defaulted to obey the normal distribution. However, the
normal distribution function does not effectively reflect the
distribution of forecast model errors. Therefore, this research
develops five fitting distribution functions and uses the MLE
method to conduct an in-depth investigation of the prediction
error to obtain a distribution function (DF) with better fitting
performance. The most suitable probability distribution for
further interval prediction is selected.

In this section, five DFs, namely, extreme value, normal,
logistic, stable, and t location-scale, are used to represent the
distribution of carbon price prediction errors. Table 1 shows the
relative PDF of these DFs. Table 8 lists the five DF parameters
estimated by the MLE method. These parameters can be used to

TABLE 7 | Comparison of the prediction ability of the proposed system with those of some traditional benchmark models and classic hybrid models.

Dataset Model ONE-STEP TWO-STEP

MAPE RMSE MAE IA MAPE RMSE MAE IA

EU ETS ELM 3.119 0.2148 0.1583 0.9574 4.2962 0.2842 0.2169 0.9386
CNN 3.1581 0.2218 0.1659 0.9544 4.1304 0.2805 0.2112 0.9392
GBiLSTM 3.3159 0.2241 0.1744 0.9523 4.1862 0.2794 0.2133 0.9390
LSTM 3.5642 0.2470 0.1815 0.9407 4.2575 0.2827 0.2164 0.9388
GRNN 3.5405 0.2432 0.1799 0.9418 4.7743 0.3232 0.2432 0.9341
BP 3.2941 0.2235 0.1704 0.9516 4.3052 0.2903 0.2193 0.9380
ARIMA 5.8692 0.3789 0.2947 0.9327 7.6365 0.4814 0.3011 0.9036
ICEE-ARIMA 1.9758 0.1323 0.1000 0.9862 3.6109 0.2401 0.1839 0.9403
GWO-BP 3.1281 0.2149 0.1584 0.9571 5.5972 0.3500 0.2828 0.9322
SSA-GRNN 3.2039 0.2170 0.1621 0.9548 3.8876 0.2632 0.1986 0.9385
ICEE-GWO-BP 1.2911 0.0891 0.0644 0.9862 2.9672 0.1988 0.1506 0.9617
EPS 1.2657 0.0904 0.0640 0.9936 2.6930 0.1829 0.1378 0.9674

SZ ELM 13.3955 4.4118 3.5126 0.7965 22.4148 6.6057 6.6813 0.4538
CNN 12.5333 4.4030 3.3666 0.8007 21.8746 6.2643 5.3190 0.4686
GBiLSTM 13.1740 4.3402 3.4707 0.7955 22.034 6.5272 5.5683 0.4617
LSTM 15.1983 6.8455 4.5637 0.7514 25.9514 7.3299 6.4834 0.4352
GRNN 13.7152 5.1715 3.8576 0.7654 33.0502 9.8132 8.2422 0.2973
BP 14.1428 5.8032 4.2144 0.7608 22.8251 6.5453 5.7117 0.5004
ARIMA 21.8403 7.8476 5.9355 0.6595 35.1742 10.0714 8.7415 0.4211
ICEE-ARIMA 8.9814 3.2795 2.5983 0.8943 12.8818 4.2559 3.3362 0.7351
GWO-BP 12.3461 4.1508 3.2907 0.8017 18.0382 5.3858 4.5591 0.5993
SSA-GRNN 5.9875 2.2372 1.6791 0.9494 14.3684 4.5285 3.6886 0.6773
ICEE-GWO-BP 4.6025 1.8286 1.3027 0.9631 11.1825 3.7085 2.9526 0.8039
EPS 4.0156 1.6096 1.1372 0.9687 9.7600 3.3244 2.5621 0.8701

BJ ELM 3.9351 4.0281 2.5107 0.7225 4.8978 4.4902 3.5380 0.4689
CNN 3.7483 3.8029 2.4362 0.7236 4.8724 4.4065 3.5240 0.4410
GBiLSTM 3.7406 3.7846 2.4355 0.7239 4.6629 4.3132 3.2137 0.4852
LSTM 3.8462 3.9033 2.4871 0.7231 4.8787 4.4753 3.5231 0.4749
GRNN 4.1345 4.3247 2.9737 0.6273 5.0379 4.5516 3.6191 0.4416
BP 4.0350 4.2179 2.8450 0.6355 5.9108 4.9031 3.8741 0.4379
ARIMA 5.3120 4.6312 3.7397 0.5627 8.1714 6.4412 4.7140 0.4058
ICEE-ARIMA 2.4705 2.0481 1.2635 0.9045 2.9320 2.5669 1.5213 0.6763
GWO-BP 2.9202 3.0563 1.5062 0.7113 4.0738 3.6183 2.1437 0.4440
SSA-GRNN 3.0901 2.6153 1.5929 0.6346 3.9989 3.4553 2.0979 0.4599
ICEE-GWO-BP 1.1544 1.2383 0.5966 0.9488 2.4931 2.1482 1.3095 0.8943
EPS 1.0064 1.2049 0.5312 0.9402 2.1558 1.7567 1.1272 0.9071

Note: ICEE is an abbreviation for ICEEMDAN. The best indicator values are shown in bold type.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 74009315

Yang et al. Carbon Price Forecasting

19

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


describe the scale and location of these DFs. In addition, the
coefficient of determination (0 ≤ R2 ≤ 1) and RMSE are used to
determine the degree of fit of these DFs. The larger the R2 value is,
the lower the RMSE value is, and the better is the fitting ability of
the DFs. The index values reflecting the fitting abilities of the five
DFs are shown in Table 9 and Figure 4.

Table 9 shows that the t location-scale function fits the EPS
prediction error best. Its R2 value is higher than 0.96, and its
RMSE value is the lowest, indicating that it can provide better
estimates in all cases, followed by stable distribution, normal
distribution, logistic distribution, and extreme value distribution.
In addition, although the stable distribution has a slightly worse
fitting effect than the t location-scale distribution, it is still better
than the normal distribution that the previous prediction error
hypothesis obeys; this further proves the necessity of fitting the
distribution of the prediction error. In addition, the motivation
for estimating the distribution function of the carbon price
dataset in this section is to prepare for further research on the
establishment of carbon price interval predictions, as discussed in
Section Interval Prediction of Carbon Price.

Interval Prediction of Carbon Price
Unlike the deterministic information given by the point forecast,
the interval forecast can provide the forecast range, a confidence
level, and other uncertain information on future values; this
information is helpful to decision-makers who are attempting
to analyze and supervise the reasonable operation of the carbon
price market. Owing to the generalization ability of the
forecasting model, the complex patterns of carbon price series
fluctuations and other factors inevitably produce forecast errors,
and the ability to effectively transform the uncertainty caused by
forecast errors into measurable features is of great significance.
Therefore, in this study, a new interval prediction scheme based
on modeling of the prediction error distribution in the model
training phase is proposed.

According to the point prediction results of the proposed
EPS system, the t location-scale distribution function, which

determines the prediction error in Section Distribution
Function of Prediction Error, and the interval prediction
method introduced in Section Interval Prediction Theory, the
prediction interval is constructed under the given significance
level α. To verify that the prediction interval constructed by the t
location-scale model has the best fit, it is compared with the
other four error distribution functions.

In addition, three evaluation indicators, FINAW, PICP, and
AWD, listed in Table 4, are introduced in this section to present
the effect of interval prediction. It is worth mentioning that the
optimal interval prediction should satisfy the following
conditions: under a given significance level α, the larger the
PICP value is (0 ≤ PICP ≤ 1), the smaller the FINAW value is,
and the better is the prediction performance of interval
prediction. However, it is obvious that there is a
contradiction between FINAW and PICP. When the PICP
value increases, the FINAW of the response average
bandwidth will certainly increase. Therefore, the AWD index
is introduced as a supplement to the evaluation index system.
Table 10 shows the prediction intervals of the EPS system as
evaluated based on the three carbon price markets using five
different error distributions.

In theory, when the PICP is greater than the significance
level, the constructed prediction interval is effective. As seen
from Table 10, the models satisfying this condition are
EPS-TLS and EPS-Extreme value; these models are effective
at the 95, 90, and 80% significance levels. However, if the value
of the PICP is the only goal, the result will become
meaningless, as increased PICP inevitably leads to a larger
FINAW. Based on different αconditions, the value of
FINAWEPS−Extreme valueis significantly higher than the
FINAW value obtained through modeling of other
distributions. At the same time, considering that in Section
Distribution Function of Prediction Error, the fitting of extreme
value distribution to EPS prediction error is very bad, it can be
considered that the prediction interval constructed by EPS-
Extreme value is not reasonable.

The PICP of EPS-TLS in the data from the three
carbon trading markets is higher than the significance levelα.
In addition, under differentα, the FINAW values of the three
markets are FINAWEUETS

EPS−TLS � 0.0542, FINAWSZ
EPS−TLS � 0.1225,

and FINAWBJ
EPS−TLS � 0.1397. The FINAW value is not

optimal in any of the five interval prediction models, but with
only a small increase in the FINAW value, the other index
values achieve better results. All things considered, this can be
accepted.

For the prediction interval constructed using a normal
distribution, in the BJ dataset, the PICP values of EPS-Normal

TABLE 8 | Parameter values of the different distribution functions determined by MLE.

Datasets Extreme value Logistic Normal Stable T Location-scale

— μ σ μ σ μ σ α1 α2 β δ μ σ υ

EU ETS 0.0197 0.0342 0.0028 0.0189 0.0030 0.0334 1.9347 −0.0264 0.0227 0.0031 0.0030 0.0314 19.0078
SZ 0.2878 0.7713 −0.0660 0.3496 −0.0542 0.6631 1.7226 0.2460 0.3768 −0.092 −0.0691 0.5031 4.7444
BJ 0.1150 0.4266 −0.0642 0.1978 −0.0839 0.4106 1.2249 −0.1238 0.1469 -0.047 −0.0531 0.1665 1.5469

TABLE 9 | R2 and RMSE values of the five distribution functions by MLE.

Datasets EU ETS SZ BJ

— R2 RMSE R2 RMSE R2 RMSE

Extreme value 0.9086 1.1897 0.8115 0.0941 0.6103 0.2913
Logistic 0.9546 0.8382 0.9685 0.0384 0.8780 0.1630
Normal 0.9760 0.6095 0.9512 0.0479 0.7207 0.2466
Stable 0.9771 0.5956 0.9507 0.0481 0.9668 0.0851
T location-scale 0.9877 0.4355 0.9791 0.0313 0.9671 0.0846
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are PICPBJ
EPS−Normal � 92.0530 and PICPBJ

EPS−Normal � 88.0795
under significance levels of 0.95 and 0.90, respectively; they
fail to meet the condition of a level of α that is greater than
significance. This also reflects the necessity of detailed research on
error distribution. For AWD indicators, although AWDEPS−TLS is
not all better than the benchmark model, there is little difference.
Considering the comprehensive performance of the three
indicators of the proposed scenario, EPS-TLS still has obvious
advantages over the four benchmark models in constructing the
prediction interval.

In addition, the carbon price prediction intervals generated by
the three proposed schemes of the three carbon trading markets
are shown in Figure 5. It can be observed that EPS-TLS has a
smaller bandwidth and is surrounded by these constructed
prediction intervals in most target values. The constructed
confidence interval is very effective.

DISCUSSION

In this section, we will discuss the robustness, application, and
further development of EPS in the carbon price market.

Robustness Discussion
Because the results of both deep learning and metaheuristic
optimization algorithms are always accompanied by randomness
and probability mechanisms, the results of each experiment will still
have deviations even when the parameters are set exactly the same. At
the same time, in the actual forecast, the actual values of the future

carbon price cannot be predicted in advance; thus, it is impossible to use
the evaluation index to verify the future value in advance. Therefore, the
stability of the EPS is also an important factor that affects the prediction.

The standard deviation is an effective measure of system

stability. It can be indicated as SD(M) �
)))))))))))))∑n

k(Mk −M)2/n
√

,
where n is the number of training iterations, MK is the
predicted value of the K-th training result, and M is the
average of the N-th results (Xiao et al., 2017). The smaller the
value of SD, the higher the stability of the model.

To evaluate the stability of the different models, the SD(M)

values of four evaluation indices were calculated in 30 prediction
experiments using three carbon price datasets.

Table 11 shows a comparison of the stability test results of
different prediction systems based on ICEEMDAN processing. In
the EU ETS dataset, ICEE-ELM has good stability
(SDICEE−ELM

(MAPE) � 0.0105), but the stability is still slightly lower
than that of the EPS prediction system (SDEPS

(MAPE) � 0.0101).
In the BJ and SZ datasets, CNN has good prediction accuracy in
previous experiments, but its robustness is not good, and the
prediction results fluctuate greatly. In contrast, EPS obtains a
smaller SD value regardless of which dataset is used. This further
shows that different single prediction systems have different
robustness when used with different datasets and indicates that
EPS with a combination weighting strategy can be considered the
prediction method that obtains the best prediction results.

It is worth mentioning that the average prediction stability of
GBiLSTM in the three prediction datasets is better than that of
the traditional LSTM model; that is, �SDGBiLSTM

(RMSE) � 0.0496, but
�SDLSTM

(RMSE) � 0.0566. The results show that the proposed

FIGURE 4 | Five distribution functions fit the distribution of EPS error.
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GBiLSTM not only has better prediction accuracy than LSTM but
also that its robustness is significantly improved.

Application of the Proposed Ensemble
Prediction System
1) A stable carbon price prediction system plays a prominent role

in the initial allocation of the carbon quota, in transaction
pricing and in effective monitoring of market risk. The

proposed EPS system not only shows accurate point
prediction performance but also reasonably analyzes and
mines the potential uncertainty of carbon prices by
constructing the carbon price prediction interval based on
error distribution fitting.

2) The proposed EPS system combines a deep learning
framework with a traditional neural network and thereby
provides a new idea for carbon price prediction and an
effective reference tool that policymakers can use to
research the volatility of the carbon market.

3) Comparing the EU ETS market data with the carbon price
markets in Shenzhen and Beijing, it is helpful for China to
analyze the evolution of the mature carbon trading market
price in the EU; this will help the regulatory authorities adjust
the policy and ensure the steady development of China’s
carbon market.

4) EPS has high practical value and strong expansibility and can
easily fit highly volatile nonlinear time series. It thus provides
a new intelligent supervision scheme for building a sound
global carbon trading market in the future. At the same time,
the use of a deep learning integrated forecasting system with
high accuracy and strong stability is expected to become a new
direction of energy and financial markets in the future.

Suggestions on Further Improvement of
Carbon Price Market
More accurate prediction of carbon prices can provide some
effective suggestions through which governments and enterprises
can build and improve the carbon price market in the future.
These are outlined below.

Improvement of the Initial Allocation Mechanism of
Carbon Emission Rights
In the initial allocation of carbon quotas, we should pay attention to
the fairness of allocation. First, the government should formulate
incentive policies to encourage regional governments and local
enterprises to reduce emissions and should give appropriate
incentives or policy support to the regions and enterprises that
use emission reduction technologies. Second, the initial allocation of
carbon emission rights requires effective operation and an effective
regulatory system; both of these components directly affect the
efficiency and fairness of carbon quota allocation. Strengthening the
construction of a carbon emission rights regulatory system will help
achieve efficiency and fairness of resource allocation as China’s total
emission reduction target is being met.

Rationalization of the Carbon Trading Pricing System
Owing to the imperfect development of the carbon trading
market and the carbon trading pricing system, the carbon
trading price is easily affected by monopoly enterprises. At
present, there is a certain monopoly phenomenon in the
carbon trading market in some regions of China. Some small
buyer enterprises can only passively accept the carbon price, and
this allows monopoly enterprises to disproportionately influence
the supply and demand of the market and reduces total social
welfare. The establishment of a reasonable pricing system that

TABLE 10 | Carbon price range prediction results based on EU ETS, SZ, and BJ
under different significance levels.

Site PINC Distribution PICP FINAW AWD

EU ETS 95% EPS-Extreme value 97.3822 0.0701 0.0027
EPS-Logistic 83.2461 0.0387 0.0354
EPS-Normal 95.2880 0.0516 0.0083
EPS-Stable 95.8115 0.05361 0.0073
EPS-TLS 95.8115 0.0542 0.0070

90% EPS-Extreme value 96.8586 0.0573 0.0062
EPS-Logistic 74.8691 0.0316 0.0584
EPS-Normal 90.0109 0.0412 0.0194
EPS-Stable 90.5759 0.0443 0.0162
EPS-T LS 90.0524 0.0426 0.0188

80% EPS-Extreme value 90.5759 0.0434 0.0155
EPS-Logistic 62.3037 0.0240 0.1170
EPS-Normal 80.5340 0.0331 0.0460
EPS-Stable 79.5812 0.0342 0.0419
EPS-T LS 81.675 0.0352 0.0378

Site PINC Distribution PICP FINAW AWD

SZ 95% EPS-Extreme value 98.0132 0.1811 0.0029
EPS-Logistic 94.7020 0.1191 0.0115
EPS-Normal 95.3642 0.1240 0.0105
EPS-Stable 95.3642 0.1207 0.0112
EPS-TLS 95.3642 0.1225 0.0100

90% EPS-Extreme value 95.3642 0.1477 0.0051
EPS-Logistic 92.0530 0.0970 0.0224
EPS-Normal 90.0514 0.1028 0.0183
EPS-Stable 92.0530 0.0927 0.0242
EPS-TLS 92.0530 0.0967 0.0222

80% EPS-Extreme value 90.7285 0.1121 0.0158
EPS-Logistic 81.4570 0.0724 0.0507
EPS-Normal 81.4570 0.0706 0.0547
EPS-Stable 81.4570 0.0682 0.0585
EPS-TLS 86.7550 0.0801 0.0375

Site PINC Distribution PICP FINAW AWD

BJ 95% EPS-Extreme value 92.0530 0.1546 0.0110
EPS-Logistic 89.4040 0.1054 0.0199
EPS-Normal 92.0530 0.1177 0.0137
EPS-Stable 96.6887 0.1550 0.0054
EPS-TLS 96.0265 0.1397 0.0065

90% EPS-Extreme value 92.0530 0.1263 0.0175
EPS-Logistic 85.4305 0.0848 0.0401
EPS-Normal 88.0795 0.0987 0.0258
EPS-Stable 86.0927 0.0900 0.0354
EPS-TLS 91.7951 0.1017 0.0224

80% EPS-Extreme value 88.7417 0.0958 0.0332
EPS-Logistic 84.1060 0.0632 0.0793
EPS-Normal 85.4305 0.0769 0.0524
EPS-Stable 75.4967 0.0520 0.1179
EPS-TLS 80.7947 0.0522 0.1134

Note: In the table above, FICP, FINAW, and AWD are selected to verify the prediction
performance of different models, where
FICP � ∑N

i�1ci × 100%/N,FINAW � ∑N
i�1(Ui − Li ) × 100%, andAWD � ∑N

i�1AWDi/N.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 74009318

Yang et al. Carbon Price Forecasting

22

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


avoids monopoly price manipulation is conducive to the return of
carbon prices to real value levels and to the optimal allocation of
resources.

Improvement of the Carbon Market Risk Management
and Control System
In the process of price fluctuation risk control, an accurate and
effective price forecasting model can be used to monitor price

fluctuations. Using the relevant data, such a model can be used to
predict long-term and short-term carbon trading prices, predict future
fluctuation trends, and establish an effective carbon trading price risk
early warning index system to effectively monitor the volatility risk
caused bymarket price fluctuations. Through prediction of the carbon
trading market price, we can grasp the fluctuations in carbon prices
and take measures in advance to exercise macro control and reduce
the level of risk when large market price fluctuations occur.

FIGURE 5 | Carbon price prediction intervals generated by the three proposed schemes.

TABLE 11 | Certainty of different forecasting methods.

Model ICEE-ELM ICEE-GBiLSTM ICEE-CNN EPS ICEE-LSTM ICEE-GWO-BP

EU ETS
SD(MAPE) 0.0105 0.0243 0.0902 0.0101 0.3277 0.0583
SD(RMSE) 0.0004 0.0007 0.0041 0.0003 0.0042 0.0007
SD(MAE) 0.0005 0.0008 0.0044 0.0005 0.0033 0.0005
SD(IA) 0.0001 0.0001 0.0007 0.0001 0.0007 0.0001

BJ
SD(MAPE) 0.0255 0.0204 0.0757 0.0147 0.0438 0.0171
SD(RMSE) 0.0091 0.0117 0.0224 0.0106 0.0212 0.0107
SD(MAE) 0.0129 0.0123 0.0379 0.0114 0.0321 0.0819
SD(IA) 0.0011 0.0011 0.0019 0.0012 0.0033 0.0038

SZ
SD(MAPE) 0.1845 0.1130 0.7846 0.1124 0.3831 0.1695
SD(RMSE) 0.0344 0.1363 0.1745 0.1352 0.1443 0.2029
SD(MAE) 0.0448 0.0062 0.1934 0.0054 0.0179 0.0348
SD(IA) 0.0021 0.0061 0.0076 0.0018 0.0067 0.0015

Note: ICEE is an abbreviation for ICEEMDAN. The best indicator values are shown in bold type.
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CONCLUSION

The availability of a reliable carbon price forecasting system is
significant in the emission trading market because it can help
decision-makers evaluate climate policies and adjust the emission
ceiling to effectively maintain the reliable operation of the market. In
this study, the EPS system, which adopts advanced data feature
extraction and selection methods, combines the three optimal
submodels through a multiobjective dragonfly optimization
algorithm and explores the deterministic and uncertainty
prediction of carbon price series. This study has several important
implications: 1) ICEEMDAN is better than traditional signal
decomposition at extracting data features. This can improve the
accuracy of the prediction system. 2) The deep learning algorithm
has a better ability than other algorithms to forecast carbon price
series. The developed GBiLSTM model has better predicted
performance and stability than the traditional LSTM. 3) Unlike
previous studies in which it was assumed that the prediction error
obeys a Gaussian distribution, this study explores five fitting
distribution functions of prediction error, finds a more accurate
error distribution function, and constructs a more reasonable
carbon price prediction interval. The experimental results indicate
that the EPS prediction system achieves the best prediction
performance, with MAPE values of 1.2657, 4.0156, and 1.0064%
for the three datasets. In addition, according to the optimal
distribution fitting function of EPS prediction error, the carbon
price prediction interval is constructed to mine the uncertainty of
carbon price fluctuation. At various significance levels, the constructed
prediction interval containsmost of the observations, showing that the
interval prediction has good performance. Therefore, the system is an

effective supplement to the existing carbon price prediction research
framework and contributes to the ability of the government to reduce
market risk and stabilize the market.

Although the combined prediction system proposed in this article
achieves good prediction performance, there are still some limitations
due to practical factors. Future research will analyze the carbon price
trend from two perspectives, historical carbon price series and external
factors, to obtain more accurate and stable prediction results.
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APPENDIX

APPENDIX A1 | The list of abbreviations in this study.

List of terminologies (method and indices)

EMD Empirical model decomposition EEMD Ensemble empirical mode decomposition
ICEEMDAN Improved complementary ensemble empirical mode

decomposition with adaptive noise
GRU Gated recurrent unit CNN Convolutional neural networks
ELM Extreme learning machine BP Back propagation neural network
CDF Cumulative density function ARIMA Autoregressive interval moving average model
GWO Grey wolf optimization algorithm MODA Multiobjective dragonfly optimization algorithm
GWO-BP BP after GWO algorithm GBiLSTM Bidirectional long short-term memory-gated recurrent unit
BiLSTM Bidirectional long short-term memory SSA Singular spectrum analysis
FINAW Forecast interval normalized average width FICP Forecast interval coverage probability
AWD Accumulated width deviation of testing dataset IMFs Intrinsic mode functions
DF Distribution function CDF Cumulative distribution function
MAPE Mean absolute percentage error MAE Mean absolute error
RMSE Root mean square error IA Concordance index
TLS T location-scale function GRNN Generalized regression neural network
R2 Coefficient of determination DL Deep learning probability density function

PDF
ANNs Artificial neural networks LSTM Long short-term memory
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An Outlier-Robust Point and Interval
Forecasting System for Daily PM2.5
Concentration
Ziqi Yin1 and Xin Fang2*

1Faculty of Information Technology, Macau University of Science and Technology, Macau, China, 2School of Business, Macau
University of Science and Technology, Macau, China

Air pollution forecasting, particularly of PM2.5 levels, can be used not only to deliver effective
warning information to the public but also to provide support for decisions regarding the
control and treatment of air pollution problems. However, there are still some challenging
issues in air pollution forecasting that urgently need to be solved, such as how to handle
and model outliers, improve forecasting stability, and correct forecasting results. In this
context, this study proposes an outlier-robust forecasting system to attempt to tackle the
abovementioned issues and bridge the gap in the current research. Specifically, the
system developed consists of two parts that deal with point and interval forecasting,
respectively. For point forecasting, a data preprocessing module is proposed based on
outlier handling and data decomposition to mitigate the negative influences of outliers and
noise, which can also help the model capture the main characteristics of the original time
series. Meanwhile, an outlier-robust forecasting module is designed for better modeling of
the preprocessed data. For the model to further improve its accuracy, a nonlinear
correction module based on an error ensemble strategy is developed that can provide
more accurate forecasting results. Finally, the interval forecasting part of the system is
based on a newly proposed artificial intelligence–based distribution evaluation and the
results of the point forecasting part to present the range of future changes. Experimental
results and analysis utilizing daily PM2.5 concentration from two provincial capital cities in
China are discussed to verify the superiority and effectiveness of the system developed,
which can be considered an effective technique for point and interval forecasting of daily
PM2.5 concentration.

Keywords: PM2.5 concentration, point forecasting, interval forecasting, outlier handling and modeling, forecasting
system

INTRODUCTION

Urbanization, industrialization, and energy consumption have caused the issue of air pollution to
become increasingly serious. The air pollution issue is considered a major concern (Andrade et al.,
2015) and regarded as the single largest health risk (Wendel, 2014). It can have adverse effects on
human beings and bring great economic losses as well as problems for society, affecting areas such as
public health (Li et al., 2017), corporate cash holdings (Li et al., 2021), and the tourism industry (Hao
et al., 2021). In this context, to solve air pollution issues and accelerate ecological progress, air
pollution forecasting, particularly of PM2.5 (particulate matter with an aerodynamic diameter of
2.5 μm or less) levels, has been acknowledged as a promising technique for air pollution control and
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treatment (Liu et al., 2019a). However, the performance of air
pollution forecasting suffers from many factors, and how to
develop a model that can improve forecasting effectiveness is
not only a challenging research topic but also a matter of growing
concern. As a result, developing a more effective model for
modeling PM2.5 concentration has become an imperative task
that cannot be postponed (Yang et al., 2019a).

Over the past few decades, many studies have been
conducted to propose an effective air pollution forecasting
model. In general, the current air pollution forecasting models
mainly belong to three categories, namely, the chemical
transport method (CTM), the traditional statistical method,
and the artificial intelligence method. In the first category,
Timmermans et al. (2017) employed a kind of CTM method to
analyze PM2.5 in China. Zhang et al. (2019) used the
community multiscale air quality (CMAQ) method to
analyze PM2.5 pollution events in Qingdao, China.
Similarly, Fan et al. (2015) employed third-generation air
quality modeling system Models-3/CMAQ to analyze air
pollution episodes in one region of China. However, the
forecasting performance of CTM methods is easily
influenced by the scale and quality of the emissions data
(Feng et al., 2015). Furthermore, Stern et al. (2008)
suggested that due to incomplete descriptions of physical
and chemical processes and limited knowledge of pollution
sources, CTMmodels may produce poor forecasting results. In
the traditional statistical method category, the widely
employed statistical model mainly consists of an
autoregressive integrated moving average (ARIMA) and
regression method. Vlachogianni et al. (2011) employed a
regression model for forecasting nitrogen oxides (NOx) and
PM10 (particulate matter with an aerodynamic diameter of
10 μm or less). Zafra et al. (2017) developed an ARIMA model
using hourly PM10 concentration data. However, the
traditional statistical model is unable to extract the complex
and nonlinear features of pollutant concentration data, which
may result in undesirable results (Wang et al., 2020a).
Fortunately, with the rapid development of advanced
technologies, new methods, including artificial neural
networks (ANN), support vector regression (SVR), extreme
learning machines (ELM), and other artificial intelligence
methods, have been proposed and are being widely
employed in different forecasting fields, including air
pollution forecasting. These novel methods are
acknowledged as promising solutions to air pollution
forecasting issues (Yang et al., 2019b).

However, all individual models, including artificial intelligence
models, have their advantages and disadvantages. For instance, they
may ignore the importance of data preprocessing and optimization
and thus be unsuited to meet the requirements of decision-making
and management. As a result, to overcome the deficiency of
individual artificial intelligence methods and improve air
pollution forecasting effectiveness, researchers have started to pay
increasing attention to the development of hybrid models by
hybridizing multifarious methods from individual forecasting
models, mainly including data decomposition techniques
(empirical mode decomposition (EMD) (Zhu et al., 2017),

ensemble EMD (EEMD) (Bai et al., 2019), complementary
EEMD (CEEMD) (Yang and Wang, 2017), fast EEMD (FEEMD)
(Luo et al., 2018), complete EEMD with adaptive noise
(CEEMDAN) (Hao and Tian, 2019), improved CEEMDAN
(ICEEMDAN) (Sharma et al., 2020), variational mode
decomposition (VMD) (Wu and Lin, 2019a), wavelet transform
(WT) (Cheng et al., 2019), discreteWT (DWT) (Siwek andOsowski,
2012), stationary WT (SWT) (Bai et al., 2016), maximum overlap
DWT (MODWT) (Prakash et al., 2011), wavelet packet
decomposition (WPD) (Liu et al., 2019b), and empirical WT
(EWT) (Liu and Chen, 2020), and so on) and artificial
intelligence optimization (whale optimization algorithm (WOA)
(Xu et al., 2017), bat algorithm (BA) (Wu and Lin, 2019b),
modified grey wolf optimization (MGWO) (Xing et al., 2019),
cuckoo search (CS) (Sun and Sun, 2017), multi-objective Harris
hawks optimization (MOHHO) (Du et al., 2020), and so on). For
example, Jiang et al. (2019) designed a hybrid system based on
ICEEMDAN, imperialist competitive algorithm (ICA), and
backpropagation neural network (BPNN) for pollutant
forecasting. Similarly, Du et al. (2020) devised a hybrid model
using ELM, MOHHO, and ICEEMDAN for air quality
forecasting. The abovementioned hybrid forecasting studies prove
the superiority of hybrid modeling, which has emerged as the most
promising research direction in the air pollution forecasting field.

Although many hybrid models have been proposed for air
pollution forecasting, there are still some challenging issues that
urgently need to be solved. Specifically, as far as we are aware,
most previous studies have employed data decomposition to
improve forecasting performance while ignoring the significance of
handling and modeling outliers in air pollution data, which may lead
to the hybrid model being unable to further enhance the forecasting
performance. Moreover, artificial intelligence optimization algorithms
are used to search for the optimal parameters of methods in a hybrid
model, but the forecasting ability can only be improved to a certain
degree. Significantly, however, these studies ignore the time-
consuming issues caused by incorporating artificial intelligence
optimization algorithms, which may be unable to completely
overcome the model’s limitations, i.e., the instability of the final
results. Furthermore, most previous studies have emphasized the
contribution of advanced data decomposition and optimization
algorithms while ignoring the significance of mining the
characteristics of the original air pollution time series and
correcting forecasting results to further improve the model’s
forecasting performance, despite the growing importance of air
pollution forecasting performance. Moreover, another issue with air
pollution forecasting, especially daily air pollution forecasting, is that it
is mainly focused on point forecasting and thus can only provide
deterministic information that is insufficient for real application and
cannot provide uncertainty information. As far as we know, interval
forecasting can make up for the defects of point forecasting, but this
method has been ignored by the relevant researchers despite it being a
novel research area that is especially deserving of attention.

In this study, to develop an effective model that overcomes the
abovementioned limitations of most previous studies, a novel
outlier-robust point and interval forecasting system is proposed
for forecasting daily PM2.5 concentration, which is composed of
two parts. The point forecasting part proposes a novel forecasting
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model based on a data preprocessing module, an outlier-robust
forecasting module, and a nonlinear correction module to
obtain future deterministic information, whereas the interval
forecasting part is designed based on the newly proposed
artificial intelligence–based distribution evaluation and point
forecasting results to obtain future uncertainty information.
Specifically, first, a data preprocessing module is proposed,
which takes into consideration the significance of outlier
handling and data decomposition, that can be employed to
mitigate the negative effects of outlier and noise information
so that the model developed can capture the main features and
achieve better performance. Second, an outlier-robust forecasting
module is designed, based on outlier-robust ELM (ORELM), to
forecast preprocessed data. Next, a nonlinear correction module
based on an error ensemble strategy is developed to mine
information in the forecasting results and further improve the
model’s forecasting performance. Finally, an artificial
intelligence–based distribution evaluation method is designed
in the interval forecasting part, which can be combined with
the point forecasting results to provide a range of future changes.
Case studies utilizing daily PM2.5 concentrations from two cities
in China are designed to validate the developed system.

The main novelty and contribution of this study to current
research can be summarized as follows:

(1) The forecasting focus of the system developed is not only on
point forecasting but also on interval forecasting. Previous
daily PM2.5 concentration forecasting studies mainly
focused on point forecasting, which can provide
deterministic information and is insufficient for real
application, while ignoring the research about interval
forecasting, which can provide uncertainty information.
Therefore, an outlier-robust forecasting system that
consists of point and interval forecasting is successfully
proposed in this study, which can make up for the
defects of point forecasting and is validated well in two
cities in China.

(2) An improved data preprocessing module is designed to solve
the outlier data and noise information issues
simultaneously. Most previous studies only employed data
decomposition for data preprocessing while ignoring the
significance of outlier handling and modeling and failed to
further enhance the forecasting performance. As a result, this
study develops an improved data preprocessing module based on
outlier handling and data decomposition that can effectively
overcome the limitations caused by outlier and noise information.

(3) Point forecasting performance is further enhanced by
proposing an outlier-robust forecasting module and a
nonlinear correction module. In the daily PM2.5

concentration forecasting field, outlier modeling and
forecasting result correction are of great importance but have
been ignored by the relevant researchers. Thus, on the one hand,
the outlier-robust forecasting module is designed to further
solve the outlier modeling issue; on the other hand, a nonlinear
correction module is developed based on an error ensemble
strategy to mine information in the forecasting results and
further enhance the model’s forecasting performance.

(4) Convincing experiments are designed to verify the
effectiveness and superiority of the system developed. For
system evaluation, five evaluation metrics are
employed in the evaluation of point forecasting,
whereas two typical metrics are used in the evaluation
of interval forecasting. For model comparison, four
experiments are designed to prove the effectiveness
and superiority of outlier handling and modeling, data
decomposition, nonlinear correction module, and the
system developed in daily PM2.5 concentration
forecasting.

The methods are presented in the Methodology section, next
the construction of the outlier-robust point and interval
forecasting system are discussed, then the Experimental
Analysis section presents the experiments, and the final section
draws the conclusions of this study.

METHODOLOGY

This section introduces the detailed methods used in the system
developed, which includes a data preprocessing module, an
outlier-robust forecasting module, a nonlinear correction
module, artificial intelligence–based distribution evaluation,
and interval forecasting theory.

Data Preprocessing Module
The data preprocessing module is proposed on the basis of outlier
handling and data decomposition, which can overcome the
limitations caused by outlier and noise information.

Outlier Handling
Outliers in the original time series data will have a negative
influence on the development of a model, which may bring poor
results. Therefore, in this study, an outlier handling algorithm, the
Hampel filter (HF), is introduced into the data preprocessing
module. HF, developed by Hampel (1974), is robust against
outliers (Liu et al., 2004). A brief explanation of HF can be
defined as follows (Wu et al., 2021).

Given a sequence x1, x2, . . ., xn,WK
i is a set of numbers within a

moving window and mi is the median value from the moving
window, which are defined as follows:

WK
i � (xi−K, ..., xi, ..., xi+K), (1)

mi � median(xi−K, ..., xi, ..., xi+K), (2)

where K is the sliding window’s half-width.
The new data obtained after using HF to handle the original

sequence can be defined as

yi � {xi, |xi −mi|≤ tSi
mi, |xi −mi|> tSi , (3)

where t denotes a positive integer and Si denotes the median
absolute deviation (MAD), which can be given by

Si � 1.4826 ×median(|xi−K −mi|, ..., |xi+K −mi|). (4)
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Data Decomposition
Data decomposition, which has been acknowledged as a
promising data preprocessing technique, has been widely
used in forecasting fields to solve complex nonstationary,
nonlinear time series forecasting issues. Numerous studies
have shown that the data decomposition algorithm has a
significant influence on forecasting performance. Thus, a
suitable decomposition method should be selected to
identify and extract the inner characteristics of the original
time series. In previous studies, such as Lin et al. (2017) and
Yang et al. (2019a), VMD, proposed by Dragomiretskiy and
Zosso (2014), has been shown to be superior to other
algorithms, including EMD, EEMD, and CEEMD.
Therefore, VMD is introduced into the data preprocessing
module to mitigate the negative noise information influence.
The main procedure of VMD is as follows.
Step 1: setting parameters of VMD, while each mode ŷ1

k, center
pulsation ŵ1

k, and Lagrangian multipliers λ are initialized.
Step 2: yk and w are updated by

ŷn+1
k � f̂(w) −∑

i≠ k

ŷi(w) + λ̂(w)
2

1 + 2α(w − wk)2, (5)

wn+1
k � ∫∞0 w

∣∣∣∣ŷn+1
k (w)∣∣∣∣2dw

∫∞
0

∣∣∣∣ŷn+1
k (w)∣∣∣∣2dw , (6)

where n is the iterations number, f(t) and yk are the original time
series and the kth component, whereas f̂(w), ŷi(w), λ̂(w), and
ŷn+1
k (w) denote the Fourier transforms of f(t), yi(t), λ(t), and

yn+1
k (t), respectively.

Step 3: λ can be updated by

λ̂
n+1(w)← λ̂

n(w) + π⎡⎣f̂(w) −∑
k

ûn+1
k (w)⎤⎦. (7)

Step 4: if ∑k

����ŷn+1
k − ŷn

k

����22/����ŷn
k

����22 < e, the VMD algorithm is
stopped, and a series of band-limited modes is returned;
otherwise, return to Step 2 to repeat the iteration.

Outlier-Robust Forecasting Module
The basic forecasting model is the important foundation of a
hybrid model, which can make a significant difference in
forecasting results. If outliers are present within the dataset,
the performance of the model developed will be significantly
affected. Considering the significance of outlier modeling and
outlier robustness, the ORELM model is acknowledged as a
potential contributor for modeling data with outliers.
Therefore, the ORELM model is introduced into daily PM2.5

concentration forecasting to design an outlier-robust forecasting
module. The original version of the ORELM model is ELM,
developed by Huang et al. (2004), which has many merits, such as
its simple structure, better performance, fast computation speed,
and the fact that it does not need a large number of samples.
Furthermore, previous studies have revealed that ELM methods
are superior to some typical ANN methods in solving forecasting
issues (Yang et al., 2019a), and it has become one of the most
promising approaches.

Given a training dataset withM samples, i.e., (xt, yt), t � 1,/,M,
the ELM model for input data xt and output data yt can be
presented as

ŷ �∑L
i�1
βigi(xi) �∑L

i�1
βiG(wi · xt + bi, ), (8)

where L denotes the number of hidden layer nodes,wi and bi denote
the input weight and hidden bias, G is the excitation function, βi
represents the connected weight between the ith hidden layer node
and the output layer, and ŷ represents the forecasting results.

By defining the hidden layer output matrix, i.e., H,

H � ⎡⎢⎢⎢⎢⎢⎣ h(x1)
«

h(x1)
⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣G(w1 · x1 + b1) / G(wL · x1 + bL)

« / «
G(w1 · xM + b1)/ G(wL · xM + bL)

⎤⎥⎥⎥⎥⎥⎦
M×L

.

(9)

The ELM model presented in Eq. 8 can be rewritten as

Hβ � Y, (10)

where β � [β1/βL]
T, Y � [y1/yM]T.

The optimal solution of β can be obtained by solving
min
β

� ����Hβ − Y
����2; the corresponding formula is

β̂ � H†Y, (11)

where H†represents the Moore–Penrose generalized inverse
matrix of H; the corresponding formula is

H† � [HTH]−1HT. (12)

As mentioned above, to enhance the ELM model’s robustness
when modeling data with outliers, the ORELM model is
developed by Zhang and Luo (2015). The core idea is
redefining the minimum problem as

⎧⎪⎪⎨⎪⎪⎩
min(β) ‖e‖1 +

1
k

����β����22
s.t.e � Y −Hβ

, (13)

where e represents training error and k is the regularization
parameter.

To solve the newly defined problem, the augmented Lagrange
multiplier (ALM) algorithm is adopted, and the corresponding
iteration process is defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βt+1 � argmin

β
Lμ(et, β, λt)

et+1 � argmin
e

Lμ(e, βt+1, λt)
λt+1 � λt + μ(Y −Hβt+1 − et+1)

, (14)

where λ represents the Lagrange multiplier vector, μ is the penalty
parameter, and βt+1 and et+1 are defined as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βt+1 � (HTH + 2

kμI
)−1

HT(Y − et + λt
μ
)

et+1 � shrink(Y −Hβt+1 +
λt
μ
,
1
μ
)

. (15)
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Nonlinear Correction Module
For a forecasting model, forecasting error is inevitable, but the
short-term trend in the variation of the forecasting error can be
anticipated by establishing a nonlinear model (Vukicevic, 1991).
To further improve the performance of the system developed, a
nonlinear correction module based on an error ensemble strategy
is developed to mine information in the forecasting results, which
is composed of three steps.
Step 1: generating the error sequence

Defining the actual value of the t th datum as A(t) and
forecasting the value of the t th datum as F(t), the forecasting
error value of the t th datum can be obtained by

E(t) � F(t) − A(t). (16)

Step 2: developing the error forecasting model
Defining the error value of the t−d th datum as E(t−d),

according to the detailed error sequence, the forecasting model
can be developed and denoted as f. The error forecasting value of
the t th datum, named EF(t), can be obtained by

EF(t) � f[E(t − 1), E(t − 2), ..., E(t − d)]. (17)

Step 3: correcting the forecasting results
To obtain a final result on the basis of the original forecasting

results and corresponding error forecasting results, an error ensemble
strategy based on ORELM is proposed, which fully exploits the
advantages of ORELM and is equipped with outlier robustness. By
developing an outlier-robust ensemble model, denoted as En.f, the
final forecasting results of the t th datum, i.e., FF(t), are

FF(t) � En.f[EF(t), F(t)]. (18)

Artificial Intelligence–Based Distribution
Evaluation
Distribution evaluation plays a vital role in many fields, such as
wind energy evaluation, time series analysis, and interval
forecasting. In recent years, in order to further mine data
characteristics, researchers have focused on applying different
distribution functions to fit the experimental data and obtain a
suitable distribution; then, the interval forecasting results can be
obtained according to the interval forecasting theory and point
forecasting results. However, to the best of our knowledge, the
related research is well validated in many fields, but so far, few
studies have involved research on or application to daily PM2.5

concentration forecasting. In this context, four typical distributions,
i.e., Weibull, Gamma, Rayleigh, and Lognormal, are introduced in
this study to fit the daily PM2.5 concentration data. In general, the
goodness of fit (0 ≤ R2 ≤ 1) was employed to measure the fitting
performance of one distribution. Traditionally, the maximum
likelihood estimation (MLE) method is used to estimate the
distribution function’s parameters. However, the MLE method
may not obtain the optimal distribution parameters. To the
best of our knowledge, the larger the R2 value, the more
optimal the distribution. As a result, the optimal
distribution determination problem can be converted into
solving the maximum value problem. Inspired by Wang

et al. (2020b), Schwarz et al. (2020), and Ließ et al. (2021),
artificial intelligence optimization can be considered a
promising technique for searching for the optimal
distribution parameters. Based on this idea and considering
the limitations of the traditional method, the artificial
intelligence–based distribution evaluation is proposed to
obtain the optimal distribution in this study. In order to
obtain the optimal distribution, specifically, an advanced
optimization algorithm named grey wolf optimizer (GWO)
is adopted to search for the optimal parameters of specific
distribution by maximizing the values of R2. In this study, the
minus R2 is defined as the objective function of GWO-based
distribution evaluation. Finally, the distribution with the best
R2 value among all distributions is selected as the optimal
distribution of PM2.5, which can be combined with interval
forecasting theory to achieve interval forecasting.

Interval Forecasting Theory
Given the significance level α, actual value At, and lower and
upper limits (L, U), the probability can be given by

P(L≤At ≤U) � 1 − 2α. (19)

For a random variable time series, Eq. 19 can be rewritten as

P(L≤At ≤U) � P(L≤At ≤U|E(At) � â) × P(E(At) � â).
(20)

Supposing that the forecasting value has a similar distribution
function, the estimated variance can be determined, and then the
following conditional probability formula can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(L≤At ≤U|E(At) � â) � ∫â
L

f(z|Θ)dz + ∫U
â

f(z|Θ)dz

∫ zf(z|Θ)dz � â

∫ (z − E(z))2f(z|Θ)dz � S2. (21)

The lower and upper limits can be obtained by

⎧⎪⎪⎪⎨⎪⎪⎪⎩(L̂, Û)|L̂≤At ≤ Û,∫
Û

â

f(z|Θ)dz + ∫â
L̂

f(z|Θ)dz � 1 − 2α

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (22)

CONSTRUCTION OF THE
OUTLIER-ROBUST FORECASTING
SYSTEM
The outlier-robust point and interval forecasting system is
constructed in this section; the details of the system design
and system evaluation are as follows.

System Design
The system design is composed of the point forecasting part and
the interval forecasting part, which can provide deterministic
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information and uncertainty information in the future,
respectively.

Point Forecasting
The point forecasting part is developed based on three modules,
i.e., a data preprocessing module, an outlier-robust forecasting
module, and a nonlinear correction module, and consists of three
phases as follows.

◆ Phase I: data preprocessing. Considering the negative influence
of outlier data and noise information in original daily PM2.5

concentration data, a data preprocessing module is designed
based on outlier handling and data decomposition that can
effectively solve the outlier data and noise information issues
simultaneously. Specifically, on the one hand, the HF algorithm
is employed to detect and correct the outliers in the original
data, which can eliminate the outliers’ negative influence on the
model’s development from the perspective of improving data
quality. On the other hand, the advanced data decomposition
method named VMD is performed to decompose the processed
data into a number of modes, which can eliminate the noise’s
negative effect on themodel’s performance from the perspective
of signal denoising and helps the model effectively capture the
main features of the daily PM2.5 concentration data.

◆ Phase II: forecasting preprocessed data. In this phase, some
modes obtained in Phase I are forecasted, and then, the
forecasting results can be obtained. As a result, it is
necessary to select a suitable model for preprocessed data
forecasting. Most previous studies tended to develop an
optimized ANN model for mode forecasting while ignoring
the instability parameter setting problem of artificial intelligence
optimization algorithms, which not only cannot guarantee the
forecasting model’s stability but also bring time-consuming
issues. In this context, the ORELM model, with its simple
structure, high forecasting performance, and fast calculation
speed, better forecasting ability than some typical ANNmodels,
and better outlier robustness than the original ELM model, is
selected to design the outlier-robust forecasting module to
obtain the future value of each mode, and finally, by
summing the forecasting results of each mode, the results of
daily ahead PM2.5 concentration forecasting can be achieved.

◆ Phase III: forecasting results correction. Most previous
studies have focused on using data decomposition and
optimization to enhance forecasting ability while ignoring the
significance of forecasting results correction. Therefore, in this
phase, a nonlinear correctionmodule based on an error ensemble
strategy is designed to mine information in the forecasting results
and thereby enhance the model’s performance, which is
composed of three steps, i.e., generating an error sequence,
developing an error forecasting model, and correcting the
forecasting results. Following these three steps, the results of
the point forecasting can be obtained; these results can provide
deterministic information in the future.

Interval Forecasting
The interval forecasting part is developed based on the previous
point forecasting results, artificial intelligence–based distribution

evaluation, and interval forecasting theory and consists of two
phases as follows.

◆ Phase I: distribution evaluation. Distribution evaluation is the
crucial basis of the interval forecasting part, whereas the
traditional MLE method may not fit the optimal distribution
for a specific PM2.5 concentration dataset. In order to solve this
issue, an artificial intelligence–based distribution evaluation is
proposed to obtain the optimal distribution. Specifically, the
advanced optimization algorithm named GWO is selected to
search the parameters of four typical distributions, i.e., Weibull,
Gamma, Rayleigh, and Lognormal. Finally, the distribution
function with the best R2 is considered the optimal distribution.

◆ Phase II: obtaining interval forecasting results. According to
the point forecasting results, the interval forecasting results are
estimated using the optimal distribution determined in Phase I
and interval forecasting theory, which can provide uncertainty
information in the future.

System Evaluation
This section is designed to provide system evaluation metrics,
including point forecasting evaluation and interval forecasting
evaluation.

Point Forecasting Evaluation
To evaluate the forecasting performance of the system developed
for daily PM2.5 concentration point forecasting, the three typical
metrics listed in Table 1 are selected in this study.

In addition to evaluating the forecasting accuracy using these
three typical evaluation metrics, to measure the similarity of the
forecasting value curve and actual value curve, grey relational
analysis (GRA) (Wang et al., 2015) is introduced into point
forecasting evaluation, which provides a new metric named grey
relational degree (GRD) for further analysis. Moreover, forecasting
stability is another important metric in practical application. Thus,
a metric named variance ratio (VR) (Yang and Wang, 2017) is
introduced into the point forecasting evaluation, which can
measure the forecasting stability of different models by
considering the variance between the actual and the forecast values.

Interval Forecasting Evaluation
To evaluate the interval forecasting performance, two widely used
metrics named forecasting interval coverage probability (FICP)
and forecasting interval normalized average width (FINAW) are
introduced into the interval forecasting evaluation. Specifically,
the FICP indicator is selected to measure the probability that the

TABLE 1 | Three typical metrics.

Abbreviation Full name Equation

MAE Mean absolute error MAE � 1
N ∑N

i�1|Fi − Ai |
RMSE Root mean square error RMSE �

�������
1
N ×∑N

i�1
√

(Fi − Ai )2

MAPE Root mean square error
MAPE � 1

N ∑N
i�1
∣∣∣∣∣∣∣Ai−Fi

Ai

∣∣∣∣∣∣∣ × 100%

Fi and Ai denote the forecasting value and actual value, respectively, at time i, andN is the
length of the time series.
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actual observation value falls into the forecasting interval, which
can reflect the reliability of the interval forecasting results. The
larger the FICP value, the higher the interval forecasting accuracy.
Furthermore, to avoid the excessive pursuit of the reliability of
interval forecasting while ignoring the effective measure of
interval forecasting width for interval forecasting results,
FINAW is employed to express the width of interval
forecasting results. The FICP and FINAW can be calculated by

FICP � 1
N
∑N
i�1

ci × 100%, (23)

where ci � { 1, Ai ∈[Li,Ui]
0, Ai ∉[Li,Ui] and N is the length of the time series,

FINAW � 1
NR

∑N
i�1

(Ui − Li), (24)

where Ui and Li denote the forecasting interval’s upper and lower
limits, respectively, at time i, and R is the range of actual values.

EXPERIMENTAL ANALYSIS

The experiments and analysis are presented in this section, which
is mainly composed of data description, experiment design, and
four detailed experiments.

Data Description
To validate the ability of the outlier-robust system developed to
perform point forecasting and interval forecasting of daily PM2.5

pollution, Jinan and Zhengzhou are considered as the study
areas; two datasets collected from these two study areas are used
as illustrative empirical studies in this study. Jinan, the capital
city of Shandong Province, is located in the middle of China.
Zhengzhou, the capital city of Henan Province, is located in
the middle part of the Yellow River. Specifically, two daily PM2.5

concentration datasets, covering 1 yr from July 1, 2017, to
June 30, 2018, are employed in this study. In the experiment,
the data, from July 1, 2017, to May 31, 2018, are employed as
training data for the development of the proposed system,
whereas the data from June 1, 2018, to June 30, 2018, are
considered as testing data to test the forecasting performance
of the system developed.

Experiment Design
As mentioned above, in this study, an outlier-robust point and
interval forecasting system is developed, which is composed of a
data preprocessing module, an outlier-robust forecasting module,
a nonlinear correction module, artificial intelligence–based
distribution evaluation, and interval forecasting theory to
obtain future deterministic information and uncertainty
information about daily PM2.5 pollution. To verify the
forecasting superiority of the system developed, sufficient
empirical research should be carried out. In addition to
comparing the performance of the system developed with that
of the other types of forecasting models, the contribution of each
component proposed or employed in the system developed
should also be proved by designing appropriate comparative

studies. For this purpose, this study designs four experiments
to conduct a convincing evaluation of the system developed.
Specifically, in Experiment I, the effectiveness of outlier handling
and modeling in the system developed is verified from the
perspectives of data preprocessing and model selection. In
Experiment II, the effectiveness of data decomposition in the
system proposed is compared with other decomposition
algorithm–based models and a model without a decomposition
preprocess. In Experiment III, a nonlinear correction module is
developed to correct the forecasting results, which is designed to
compare the proposed system with the model without correcting
the process and the model with a simple error-addition strategy.
It should be noted that the experiments for each model in
Experiments I–III are carried out 100 times in this study, and
the average values of the forecasting results are considered the
final forecasting results for practical application and model
comparison, which can ensure that the system developed is
more reliable, accurate, and independent of random factors to
some extent. In Experiment IV, different distributions of daily
PM2.5 concentration are compared to obtain the optimal
distribution, and the interval forecasting results based on point
forecasting are obtained and evaluated by two typical metrics.

Experiment I: The Effectiveness of Outlier
Handling and Modeling
To evaluate the effectiveness of outlier handling and modeling,
eight models, i.e., ELM, regularized ELM (RELM), weighted
RELM (WRELM), ORELM, HF-ELM, HF-RELM, HF-
WRELM, and HF-ORELM, are proposed and tested. The
MAE, RMSE, MAPE, VR, and GRD values of these eight
models are shown in Table 2. Meanwhile, the results of the
different models in the two cities are depicted in Figures 1, 2,
which indicate that the ORELM model is superior to ELM,
RELM, and WRELM, whereas the HF-ORELM model is
superior to the seven other models. As shown in Table 2, two
types of comparison can be designed based on these eight models.
Comparison I compares the forecasting results of the ELM (HF-
ELM), RELM (HF-RELM), WRELM (HF-WRELM), and
ORELM (HF-ORELM) models. Meanwhile, Comparison II
compares the forecasting results of the ORELM and HF-
ORELM models (or ELM and HF-ELM, or RELM and HF-
RELM, or WRELM and HF-WRELM). In other words,
transverse comparison and longitudinal comparison can be
conducted according to the metric values in Table 2. The
detailed comparisons are as follows:

1) In Comparison I, by comparing the ORELM (HF-ORELM)
with ELM (HF-ELM), RELM (HF-RELM), andWRELM (HF-
WRELM), it can be observed that the ORELM model is
superior to the ELM, RELM, and WRELM models, whereas
the HF-ORELM model is superior to the HF-ELM, HF-
RELM, and HF-WRELM models. For example, for daily
PM2.5 concentration forecasting in Jinan, the ORELM
model has a lower MAPE value of 28.6266%, compared to
the MAPE values of 31.5740%, 31.8239%, and 30.9697% for
the ELM, RELM, and WRELM models, respectively.
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Furthermore, for daily PM2.5 concentration forecasting in
Zhengzhou, the HF-ORELM model achieves the best
MAPE value of 25.9379% compared to the MAPE values of
30.4850%, 30.5535%, and 28.8852% for the HF-ELM, HF-
RELM, andHF-WRELMmodels, respectively. The differences
in the model forecasting results compared illustrate that the
ORELM model is more powerful and robust than the other
models for daily PM2.5 concentration forecasting. Therefore,
we can reasonably conclude that the ORELMmodel will make
a great contribution to the final successful modeling; therefore,
it can be selected as the basic forecasting model for the outlier-
robust forecasting system.

2) In Comparison II, the forecasting results of models with
outlier handling and those of models without outlier
handling can be compared to evaluate the effectiveness
of outlier handling in the proposed data preprocessing
module. By comparing the forecasting results of the

ORELM and HF-ORELM model (or ELM and HF-ELM,
or RELM and HF-RELM, or WRELM and HF-WRELM), it
can be observed that the HF-based model is superior to the
models without outlier handling. For example, the MAPE
values of HF-ELM, HF-RELM, HF-WRELM, and HF-
ORELM for daily PM2.5 concentration forecasting in
Jinan are 30.1351%, 29.9125%, 29.0110%, and 26.1079%,
whereas the corresponding models without outlier handling
have larger MAPE values, i.e., ELM (31.5740%), RELM
(31.8239%), WRELM (30.9697%), and ORELM (28.6266%).
The differences between the forecasting results of the ORELM
and HF-ORELM models, ELM and HF-ELM, RELM and HF-
RELM, WRELM and HF-WRELM reveal that outlier handling
is of great importance for daily PM2.5 concentration forecasting,
which can be combined with data decomposition to design the
data preprocessing module to further improve forecasting
performance.

TABLE 2 | Forecasting results of four individual models and HF-based models.

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Site: Jinan
ELM 7.3582 10.0165 31.5740 0.3709 0.6769 HF-ELM 6.9967 9.4329 30.1351 0.3342 0.6712
RELM 7.4260 10.0446 31.8239 0.3649 0.6729 HF-RELM 6.9388 9.3872 29.9125 0.3385 0.6726
WRELM 7.2311 9.8402 30.9697 0.3761 0.6733 HF-WRELM 6.7626 9.2276 29.0110 0.3529 0.6693
ORELM 6.8231 9.2232 28.6266 0.3514 0.6560 HF-ORELM 6.4068 8.2988 26.1079 0.4033 0.6598

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Site: Zhengzhou
ELM 8.8045 11.0005 33.2161 0.4607 0.6804 HF-ELM 8.2973 10.6228 30.4850 0.5829 0.6689
RELM 8.7766 10.9252 33.0157 0.4571 0.6778 HF-RELM 8.3243 10.6302 30.5535 0.5942 0.6672
WRELM 8.6697 10.7735 32.3432 0.5422 0.6836 HF-WRELM 7.9918 10.1581 28.8852 0.6194 0.6714
ORELM 8.0171 9.7210 28.4607 0.5481 0.6977 HF-ORELM 7.6229 9.6868 25.9379 0.7379 0.6804

(−) indicates no measurement unit.

FIGURE 1 | Forecasting results of different comparative studies in Jinan.

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 7471018

Yin and Fang Robust Forecasting System for PM2.5

34

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Summary: by taking Zhengzhou as an example, the
improvement percentage values of MAPE between the
different models are employed to summarize the contribution
and effectiveness of outlier handling and modeling in this study.
The detailed results are 8.2222% (HF-ELM vs ELM), 7.4577%
(HF-RELM vs RELM), 10.6916% (HF-WRELM vs WRELM),
8.8642% (HF-ORELM vs ORELM), 14.3166% (ORELM vs ELM),
13.7965% (ORELM vs RELM), and 12.0041% (ORELM vs
WRELM). It can be concluded that the HF algorithm and
ORELM model are suitable for outlier handling and modeling,
which make a great contribution to the success of the system
developed in this study.

Experiment II: The Effectiveness of Data
Decomposition
To verify the contribution of data decomposition in the
proposed data preprocessing module and the superiority of
the forecasting results of the outlier-robust forecasting
module developed, four models, i.e., HF-ORELM, HF-EMD-
ORELM-S, HF-EEMD-ORELM-S, and HF-VMD-ORELM-S,
are developed and compared in Jinan and Zhengzhou. In
detail, the HF-EMD-ORELM-S, HF-EEMD-ORELM-S, and
HF-VMD-ORELM-S employ different data decomposition
algorithms to decompose the data after outlier handling into
some modes, and the simple addition way is used to add all
modes’ forecasting results to obtain the daily PM2.5

concentration forecasting results. The MAE, RMSE, MAPE,
VR, and GRD values of HF-ORELM, HF-EMD-ORELM-S,
HF-EEMD-ORELM-S, and HF-VMD-ORELM-S are shown
in Table 3. Moreover, the forecasting results of these four
models in the two cities are shown in Figure 3, which
indicates that the HF-VMD-ORELM-S model is superior to
the original HF-ORELM model and the EMD- or EEMD-based

HF-ORELMmodel. In this experiment, two comparisons can be
designed as follows:

1) Comparison I is proposed to validate the superiority of the data
decomposition algorithm in the system developed by comparing
the HF-VMD-ORELM-S with other decomposition
method–based forecasting models, i.e., HF-EMD-ORELM-S
and HF-EEMD-ORELM-S. It can be observed that the HF-
EMD-ORELM-S model obtains worse forecasting performance
compared with the EEMD- and VMD-based models, whereas
the VMD-based model achieves better forecasting performance
compared with the EMD- and EEMD-based models. For
example, for daily PM2.5 concentration forecasting in
Zhengzhou, the MAE, RMSE, MAPE, VR, and GRD values of
HF-VMD-ORELM-S are 1.1259, 1.5228, 3.8169%, 0.9523, and
0.9222, respectively, whereas the metric values of HF-EMD-
ORELM-S are 4.2089, 5.9923, 14.1646%, 0.9024, and 0.7705, and
the values of HF-EEMD-ORELM-S are 2.1140, 2.7875, 7.0637%,
0.8161, and 0.8652. It is obvious that there are significant
differences in the forecasting power of these three models,
which further demonstrates the significance of selecting a
suitable data decomposition algorithm for the data
preprocessing module and the system developed. Therefore, in
this study, the VMDalgorithm is combinedwith outlier handling
to design the data preprocessing module, which also makes great
contributions to the success of the system developed.

2) Comparison II is designed to verify the superiority of the
outlier-robust forecasting module developed in daily PM2.5

concentration forecasting. In Experiment I, the superiority of
HF-ORELM over ORELM has been proven, which means the
outlier handling is an indispensable part of the forecasting
system developed. Against this background, there is no need
to compare the proposed outlier-robust forecasting module’s
results with those of the individual ORELMmodel. As a result,

FIGURE 2 | Forecasting results of different comparative studies in Zhengzhou.
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in Comparison II, the outlier-robust forecasting module is
compared with the HF-ORELM model to prove the
contribution of the VMD algorithm. From Table 3, it can
be observed that the HF-VMD-ORELM-S model performs
better than the HF-ORELM model in terms of MAE, RMSE,
MAPE, VR, and GRD. For example, in comparison with the
HF-ORELM model, the proposed HF-VMD-ORELM-S
model presents an improvement from (6.4068, 8.2988,
26.1079%, 0.4033, and 0.6598) to (1.1259, 1.5228, 3.8169%,
0.9523, and 0.9222) in terms of MAE, RMSE, MAPE, VR, and
GRD in Jinan. The results prove that the forecasting ability of
the HF-VMD-ORELM-S model is superior to the benchmark
model, which can provide a better basis for the success of the
system developed.

Summary: by taking Jinan as an example, the improvement
percentage values of MAPE between different models are

employed to summarize the contribution and effectiveness of
data decomposition in this study. The detailed results are
85.3803% (HF-VMD-ORELM-S vs HF-ORELM), 73.0532%
(HF-VMD-ORELM-S vs HF-EMD-ORELM-S), 45.9646% (HF-
VMD-ORELM-S vs HF-EEMD-ORELM-S), 45.7459% (HF-
EMD-ORELM-S vs HF-ORELM), and 72.9442% (HF-EEMD-
ORELM-S vs HF-ORELM). It can be concluded that the VMD
algorithm is superior to the EMD and EEMD algorithms and is a
promising technique for daily PM2.5 concentration
decomposition, which can also make a great contribution to
the success of the system developed.

Experiment III: The Effectiveness of the
Nonlinear Correction Module
As mentioned above, the third module, named the nonlinear
correction module, is proposed to correct the results of the

TABLE 3 | Forecasting results of HF-ORELM and HF-ORELM with different data decompositions.

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Jinan
HF-ORELM 6.4068 8.2988 26.1079 0.4033 0.6598
HF-EMD-ORELM-S 4.2089 5.9923 14.1646 0.9024 0.7705
HF-EEMD-ORELM-S 2.1140 2.7875 7.0637 0.8161 0.8652
HF-VMD-ORELM-S 1.1259 1.5228 3.8169 0.9523 0.9222

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Zhengzhou
HF-ORELM 7.6229 9.6868 25.9379 0.7379 0.6804
HF-EMD-ORELM-S 5.5281 6.4669 18.1868 0.9350 0.7335
HF-EEMD-ORELM-S 2.6744 3.6666 8.3559 0.7184 0.8596
HF-VMD-ORELM-S 1.4782 2.7491 5.0868 0.9365 0.9151

(−) indicates no measurement unit.

FIGURE 3 | Forecasting results of HF-ORELM with/without data decomposition.
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outlier-robust forecasting module to further improve the daily
PM2.5 concentration forecasting performance. To prove the
superiority and effectiveness of the proposed nonlinear
correction module and the system developed for point
forecasting, the performance of the point forecasting part
developed, i.e., HF-VMD-ORELM+EnError, is compared with
HF-VMD-ORELM-S and HF-VMD-ORELM+Error in this
section. In detail, the HF-VMD-ORELM-S model without a
correcting process is the best model in Experiment II, which
can provide the results of the devised forecasting module, whereas
the HF-VMD-ORELM+Error model is a model with a simple
error-addition strategy. The MAE, RMSE, MAPE, VR, and GRD
values of the system developed, HF-VMD-ORELM-S, and HF-
VMD-ORELM+Error are listed inTable 4; meanwhile, the results
of these three models are shown in Figure 4. Based on
Experiment III, the following conclusions can be obtained:

1) The HF-VMD-ORELM+Error model performs better than
HF-VMD-ORELM-S model in Jinan but performs worse than
HF-VMD-ORELM+Error in Zhengzhou, which indicates that
the simple error-addition strategy cannot guarantee the
effectiveness of error correction. Therefore, how to correct
the forecasting results is a challenging issue in forecasting
fields. In other words, the method of correcting forecasting
results plays a vital role in the success of the system developed.
In this context, a nonlinear correction module based on an
error ensemble strategy is presented to further improve the
model’s forecasting performance.

2) By comparing the HF-VMD-ORELM+EnError model and the
HF-VMD-ORELM+Error model, it can be found that the main
difference between these two models is the forecasting results
correcting method. As shown in Table 4, the forecasting results
obtained by the system developed are better than those
obtained by the HF-VMD-ORELM+Error model, with the
MAE, RMSE, MAPE, VR, and GRD values in Jinan and
Zhengzhou being (1.0744, 1.5525, 3.5736%, 0.9648, and
0.9228), and (1.3841, 2.7134, 4.8328%, 0.9439, and 0.9193),
respectively. Therefore, the HF-VMD-ORELM+EnError
model performs better than the HF-VMD-ORELM+Error
model, which proves the superiority of the nonlinear
correction module based on an error ensemble strategy.

3) The contribution of the proposed nonlinear correction module
and the superiority of the system developed can be measured by
comparing the point forecasting results of the system developed
with those of the HF-VMD-ORELM-S model. As shown in
Table 4, in comparison with the HF-VMD-ORELM-S model,
the proposed system presents an improvement from (1.4782,
2.7491, 5.0868%, 0.9365, and 0.9151) to (1.3841, 2.7134, 4.8328%,
0.9439, and 0.9193) in terms of MAE, RMSE, MAPE, VR, and
GRD in Zhengzhou. In previous experiments, the superiority of
the HF-VMD-ORELM-S model over other benchmark models
has been proven. Therefore, considering the system developed
performs better thanHF-VMD-ORELM-S, we can conclude that
the system designed in this study is superior to other models and
can be widely employed in daily PM2.5 concentration forecasting.

Summary: by taking the MAPE metric as an example, the
improvement percentage values between different models are
employed to summarize the contribution and effectiveness of

TABLE 4 | Metrics of the system developed and compared models.

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Jinan
HF-VMD-ORELM-S 1.1259 1.5228 3.8169 0.9523 0.9222
HF-VMD-ORELM+Error 1.1472 1.5203 3.9048 0.9529 0.9224
HF-VMD-ORELM+EnError 1.0744 1.5525 3.5736 0.9648 0.9228

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Zhengzhou
HF-VMD-ORELM-S 1.4782 2.7491 5.0868 0.9365 0.9151
HF-VMD-ORELM+Error 1.4252 2.6989 5.0681 0.9350 0.9192
HF-VMD-ORELM+EnError 1.3841 2.7134 4.8328 0.9439 0.9193

(−) indicates no measurement unit.

FIGURE 4 | Forecasting results of the system developed and compared
models in Jinan and Zhengzhou.

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 74710111

Yin and Fang Robust Forecasting System for PM2.5

37

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the nonlinear correction module in this study. The detailed results
for Jinan are 6.3743% (HF-VMD-ORELM+EnError vs HF-VMD-
ORELM-S), 8.4819% (HF-VMD-ORELM+EnError vs HF-VMD-
ORELM+Error), and −2.3029% (HF-VMD-ORELM+Error vs HF-
VMD-ORELM-S), whereas the values for Zhengzhou are 4.9933%
(HF-VMD-ORELM+EnError vs HF-VMD-ORELM-S), 4.6428%
(HF-VMD-ORELM+EnError vs HF-VMD-ORELM+Error), and
0.3676% (HF-VMD-ORELM+Error vs HF-VMD-ORELM-S). It
can be concluded that the proposed nonlinear correctionmodule is
not only effective for improving the final forecasting results but
also is superior to the HF-VMD-ORELM+Error model.
Furthermore, the HF-VMD-ORELM+Error model may perform
worse than the HF-VMD-ORELM-S model. In other words, the
proposed nonlinear correction module is suitable for correcting
forecasting results, which can contribute to improving the
performance of the system developed.

Experiment IV: Interval Forecasting
In the system developed, the interval forecasting can be achieved by
the proposed interval forecasting part according to the results of
the point forecasting part, artificial intelligence–based distribution
evaluation, and interval forecasting theory. In order to perform the
interval forecasting, a distribution evaluation of daily PM2.5

concentration data is conducted. As mentioned above, the
traditional MLE method may not obtain the optimal
distribution function for a specific PM2.5 concentration dataset,
whereas artificial intelligence optimization is a powerful technique
for determining the optimal distribution. Therefore, in this study,
the advanced optimization algorithmnamed GWO is selected to fit
four typical distributions, i.e., Weibull, Gamma, Rayleigh, and
Lognormal. In order to prove the superiority of GWO, detailed
distribution is also determined byMLE, and the parameters and R2

values provided by MLE and GWO are presented in Table 5.
Furthermore, the comparison is also depicted in Figure 5.

On the basis of Table 5 and Figure 5, we find that the GWO-
based distribution evaluation can obtain the best R2 values for
each distribution function, which indicates that the GWO-based
distribution evaluation is superior to the MLE method and is
suitable for fitting the detailed distribution. As a result, the results
of the GWO-based distribution evaluation can be compared by
R2. As shown in Table 5, the R2 values of Weibull, Gamma,
Rayleigh, and Lognormal are (0.9879, 0.9936, 0.9873, and 0.9976)
and (0.9779, 0.9818, 0.9666, and 0.9879) in Jinan and Zhengzhou,
respectively. It can be observed that the Lognormal distribution

achieves the largest R2, which means that the Lognormal
distribution can effectively fit the daily PM2.5 concentration
data in Jinan and Zhengzhou. Thus, the optimal Lognormal
distribution obtained can be combined with the point
forecasting results and interval forecasting theory to achieve
the final interval forecasting.

The interval forecasting results under different significance
levels are depicted in Figure 6, and the corresponding evaluation
metric values are listed in Table 6. From Table 6, we can find that
the interval forecasting performances for Jinan and Zhengzhou
are different at the same significance level. For example, when α �
0.30, the FINAW and FICP values for Jinan and Zhengzhou are
(0.6268, 100.0000%) and (0.4695, 96.6667%), respectively. The
main reasons for this phenomenon are that the interval
forecasting performance largely depends on the point
forecasting performance. As the system developed has
achieved excellent point forecasting performance, it has also
achieved ideal interval forecasting results. Moreover, for the
same dataset, the FINAW and FICP values under five
significance levels are different. For instance, for the
Zhengzhou dataset, the FINAW and FICP values for α � 0.20
and α � 0.25 are (0.7711, 100.0000%) and (0.6097, 96.6667%),
respectively. Furthermore, the solid lines represent the actual
values, and the shaded areas represent the forecasting intervals in
Figure 6. Obviously, as most of the observations fall into the
shaded area, the interval forecasting ability of the system
established can be considered effective and good. According to
the abovementioned analysis and discussion, we can reasonably
conclude that the system developed can be a promising tool for
daily PM2.5 concentration interval forecasting.

CONCLUSION

Forecasting air pollution is not only a challenging research topic
but also a growing concern. To model and forecast the complex
PM2.5 concentration time series, in this study, a novel outlier-
robust point and interval forecasting system is developed, which
attempts to mitigate or solve some of the challenges in current
studies. In the system developed, the point forecasting part is
designed to provide future deterministic information on daily
PM2.5 concentration, whereas the interval forecasting part is
devised to present future uncertainty information. More
specifically, three modules, named the data preprocessing

TABLE 5 | Distribution parameters and R2 provided by MLE and GWO.

Site Method Weibull Gamma Rayleigh Lognormal

λ k R2 θ k R2 σ R2 μ σ R2

Jinan MLE 64.9598 1.7146 0.9708 17.6411 3.2567 0.9839 48.2826 0.9432 3.8896 0.5554 0.9956
GWO 59.1176 1.8952 0.9879 16.8538 3.1787 0.9936 41.7205 0.9873 3.8587 0.5689 0.9976

Site Method Weibull Gamma Rayleigh Lognormal

λ k R2 θ k R2 σ R2 μ σ R2

Zhengzhou MLE 71.8142 1.4689 0.9325 25.1562 2.5516 0.9494 57.8859 0.7784 3.9533 0.6057 0.9818
GWO 57.3570 1.5556 0.9779 23.2795 2.2547 0.9818 39.7569 0.9666 3.8587 0.5703 0.9879
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FIGURE 6 | Results of interval forecasting in Jinan and Zhengzhou.

FIGURE 5 | Distribution results provided by MLE and GWO.
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module, the outlier-robust forecasting module, and the nonlinear
correction module, are proposed in the point forecasting part.
The data preprocessing module, considering the negative
influence of outliers and noise on the development of the
model, is designed on the basis of outlier handling and data
decomposition for the purpose of solving the outlier data and
noise information issues simultaneously. Moreover, in order to
obtain a forecasting model with outlier robustness, the ORELM
model with superior performance is selected to design the outlier-
robust forecasting module to forecast each mode. Furthermore,
the nonlinear correction module is developed based on an error
ensemble strategy, which can mine information in the forecasting
results and further improve the model’s forecasting performance.
Afterward, the interval forecasting part is developed based on
artificial intelligence–based distribution evaluation and interval
forecasting theory, which can be incorporated with the point
forecasting results to obtain the range of future changes. The
experimental results illustrate that the system developed can not
only perform better than other compared models in point
forecasting but also provide uncertainty information in the
future. Moreover, outside the field of daily PM2.5 concentration

forecasting, the system developed can also be employed to solve
other challenging issues, including energy forecasting, economic
forecasting, and financial forecasting.

Although the system developed shows better performance in
daily PM2.5 concentration forecasting, there are still some limitations
that must be considered in future research. For example, other
features neglected in this study may make the forecasting more
reliable and practical and can further improve the forecasting
performance, which can be a promising subject for future studies.
Moreover, only 1-day-ahead forecasting is conducted by the system
developed; how to achieve multi-day-ahead forecasting is of great
importance and worth studying but is still a challenging task. As a
result, further studies about multi-day-ahead point and interval
forecasting for PM2.5 concentration can be considered an
important research direction in future studies.
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Water is an important basic resource for social and economic development and also a
necessity for the life and produce of people. The unbalanced development of water
resources in Hebei Province of China and the obvious contradiction between supply and
demand, affected by geography and natural environment change, has seriously influenced
the Hebei village renewal process. This paper presents a comprehensive evaluation
method of water carrying capacity—principal component analysis (PCA)—and
constructs the evaluation index system of water carrying capacity in Hebei Province
from water resources, water management, industrial development, agricultural
development, social development, environmental protection, and other aspects. Based
on the economic and water statistical data of Hebei province from 2009 to 2018, this paper
adopts principal component analysis as an evaluation method to comprehensively
evaluate the carrying capacity of water resources in Hebei Province across time and
space. The results show that principal component analysis is an effective method for the
comprehensive evaluation of water carrying capacity, which can reflect the local water
carrying capacity objectively and comprehensively.

Keywords: principal component analysis, water carrying capacity, comprehensive evaluation, hebei province,
natural environment change

INTRODUCTION

Water conservancy plays an irreplaceable supporting role in implementing the rural revitalization
strategy. Water is an important basic resource for social and economic development as well as a
necessity for the life and produce of people. As an important component of natural resources, water
resources are the key objects of ecological protection. How to measure the carrying capacity of water
resources scientifically, how to predict the carrying capacity of water resources in advance, and how
to provide warning for the imminent danger of water resources, are the key issues in the research of
water carrying capacity.

Rural revitalization will eventually achieve comprehensive revitalization. Water plays an
important role in the rural revitalization of the Beijing-Tianjin-Hebei region. Affected by the
region and natural environment, the water resources in Hebei Province of China are obviously not
the same in Beijing and Tianjin. In terms of quantity and structure of water, there are different
degrees of quantity shortage or structure imbalance, which seriously affects the process of rural
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revitalization in Hebei Province. Water carrying capacity
provides a new thinking and methods for the comprehensive
utilization of water resources in Hebei Province. How to
effectively evaluate the carrying capacity of regional water
resources, reasonably develop the utilization potential of water
resources, and achieve the coordinated development of the social
economy and ecological environment is an important issue to be
quickly solved in Hebei Province.

The study of water carrying capacity is helpful for the
relevant departments to formulate water protection policies
and control risks, contribute to the rational utilization of
water resources, and provide water resource guarantees for
rural revitalization and development in Hebei Province. The
research on the carrying capacity of water resources at home and
abroad is reviewed, its concept and characteristics is given, its
evaluation methods are summarized and the theory of principal
component analysis is elaborated upon in detail in this paper. It
is an important part of examining the carrying capacity of water
resources to establish its evaluation indexes. 16 evaluation
indexes of water carrying capacity in Hebei province are
established from the aspects of water, water management,
industrial development, agricultural development, social
development, and environmental protection on the basis of
its influencing factors in the paper. The principal component
analysis method is adopted to comprehensively evaluate the
carrying capacity of the water resources of Hebei Province over
time and space, and rank the carrying capacity of water
resources in all regions of Hebei Province.

The rest of the paper is organized as follows: Literature review
is introduced in Literature Review. The proposed method of
Principal component analysis (PCA) is introduced in Methods.
The case study is illustrated in Data And Case Analysis, and
conclusions are discussed in Conclusion.

Literature Review
Research on the Concept of Water Carrying
Capacity
At present, the research of water carrying capacity has a certain
basis. The bearing capacity is a concept in mechanics, and it first
appeared in the engineering field. It refers to the ability of the
foundation to bear the load of buildings. Now it has been
accepted and used in many fields, among which the most
widely used is the study of environmental bearing capacity
and resource bearing capacity in ecology. In 1921, Park and
Burgess proposed the concept of ecological carrying capacity in
the journal of Human Ecology. In the 1980s, UNESCO put
forward the concept of carrying capacity (Nixon, et al., 2002). In
1999, United Research Service (URS Corp.)was commissioned
by the United States Army Corps of Engineers and the Florida
Society Office to study the carrying capacity of the Florida Keys
Basin.

Taking India as an example, Joardor. (1998) studied the
carrying capacity of urban water resources from the
perspective of water supply, and incorporated it into urban
development planning. Michiel A. Rijsberman et al. (2000)
takes water carrying capacity as a measurement standard for
urban water resource security.

In addition, the research on carrying capacity is more
abundant in other fields. C. Bacher et al. (1997) researched
ecosystem carrying capacity. Jonathan et al. (1999) researched
the carrying capacity of water resources in agricultural
production areas. Rees (1996) researched Urban water
Supply capacity. Duarte et al. (2003) researched the
Carrying capacity to coastal waters. Samuel Shephard et al.
(2010) researched the Carrying Capacity of Marine
ecosystems. Murray (2010) researched Population carrying
capacity. Guangwei Huang (2012) has done extensive
research on the carrying capacity of migratory waterfowl.
France Salerno et al. (2013), based on the concept of
environmental protection and sustainable development,
established an environmental model to discuss the concept
of tourism carrying capacity.

In China, Shi et al.(1989)first put forward the concept of the
carrying capacity of water resources. Later on, Shi Yafeng
(1992), Hui Yang He (2001), and Li Yunling et al. (2017)
defined water carrying capacity from the maximum carrying
capacity of water resources. Dictionary of Environmental
Science (1991), Feng et al. (1997), Xia Jun (2002), Liu Jia-jun
(2011), Duan Chunqing (2010), YANG Junfeng (2014), SUN
Deliang (2018), and WANG Lili (2018) defined water carrying
capacity from the maximum support scale. Xu Youpeng (1993),
Gao Yanchun (1997), Hu Cheng (2013), and Song et al. (2011)
defined the carrying capacity of water resources from the
perspective of maximum development capacity of water
resources. Tan Xiao (2018) believes that the carrying capacity
of water resources is the embodiment of the sustainable
development function of water resources-environment-
economy-society system.

Research on the Evaluation Index System of
Water Carrying Capacity
The index system of water carrying capacity is an important
aspect of water carrying capacity research, but there are many
factors affecting water carrying capacity, so scholars have
established the evaluation index system of water carrying
capacity from different perspectives.

Zhu et al. (2003) and Zhou Li (2016) established three
subsystems covering water resources, ecological environment,
social, and economic development. Liu et al. (2011), Zeng
et al. (2013), Qu Xiao ‘e (2017), and Song et al. (2018)
established an evaluation index system covering four
aspects of water resources, society, economy, and ecological
environment. Li et al. (2017) constructed the evaluation index
system of water carrying capacity in the Yangtze River
Economic Belt from four aspects: social economy, water
resource quantity, water consumption, and wastewater
discharge.

Research on Evaluation Methods of Water
Carrying Capacity
At present, studies on the evaluation of water carrying capacity
are mainly structured as follows:
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Firstly, some evaluation method is used to comprehensively
evaluate the index system, and then the water carrying capacity is
ranked according to the evaluation results. Xu Youpeng (1993),
for example, used a fuzzy comprehensive evaluation method to
evaluate water carrying capacity. Fu et al. (1999) used principal
component method to evaluate water carrying capacity. Zhu et al.
(2003) used analytic hierarchy process to evaluate water carrying
capacity. Zhou Li (2016), Huang Qiuxiang et al. (2016), Li et al.
(2017), Liu et al. (2020), and Hong (2020) used principal
component analysis and cluster analysis to evaluate the
carrying capacity of water resources.

Secondly, some scholars established a mathematical model
for quantification based on the interaction of some factors in
water carrying capacity. For example, Qu Xiao ‘e (2017) made
a comprehensive evaluation of the water carrying capacity of
relevant regions and cities by using the comprehensive
evaluation method of TOPSIS. Li Yun et al. (2017) made
an empirical analysis based on the technical route and
evaluation standard of water carrying capacity evaluation.
Song et al. (2018) proposed the improved abrupt progression
method to evaluate the water carrying capacity of five
provinces and cities in the lower reaches of the Yangtze River.

Review of Literature
To sum up, scholars have carried out different degrees of research
on different cities, basins or regions, but a generally accepted
viewpoint has not been formed in the systematic research on the
concept of water carrying capacity, and there are still
shortcomings:

1) The research on the concept of water carrying capacity has not
yet formed a generally accepted theoretical system.

According to the existing studies, the concept of water
carrying capacity can be divided into three categories: The
maximum carrying capacity of water resources, the maximum
supporting scale of water resources, and the maximum
development capacity of water resources. Water carrying
capacity is a comprehensive concept involving many elements
such as society, economy, environment, and ecology. Existing
definitions from one aspect, or from several aspects, do not fully
cover the subject.

2) There are a few personal subjective factors involved in the
selection of evaluation indicators of water carrying capacity.
Therefore, it is necessary to adopt objective methods to reduce
the impact of subjective factors and determine the importance
of indicators for evaluation research.

3) The evaluation method of water carrying capacity is not
comprehensive enough. The existing research methods
are mainly based on comprehensive evaluation, but most
scholars fail to consider the influence of index weight.
Especially after the rural revitalization strategy is put
forward, how Hebei province integrates the water
resources of Beijing, Tianjin, and Hebei, is particularly
important to the development of Hebei Province, but
there is a lack of research on this aspect.

METHODS

From the previous research results, the evaluation methods of
water carrying capacity mainly include supply-demand balance
method, analytic hierarchy process, fuzzy comprehensive
evaluation method, principal component analysis method,
systematic dynamic method, etc. In this paper, principal
component analysis (PCA) is used to evaluate the carrying
capacity of water resources in Hebei province. Principal
component analysis (PCA) is an independent statistical
analysis method that uses a small number of indicators to
represent majority variable indicators and reflects the
information reflected by majority variable indicators as much
as possible through dimension reduction (France Salerno et al.,
2013). The specific calculation steps are as follows.
Step1: In order to eliminate the impact of errors caused by order
of magnitude and dimension, the original data are standardized.

Zij � xij − �xj
Sj

, i � 1, 2,/, n; j � 1, 2,/p

Step2: Calculate the correlation coefficient matrix of the
standardized samples.

R � [rij]pXp � ZTZ

n − 1

rij � ∑ zkj · zkj
n − 1

, i, j � 1, 2,/, p

Step3: Calculate eigenvalues and eigenvectors.

FIGURE 1 | Location map of research area.
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Step4: Calculate the contribution rate of principal component and
the cumulative contribution rate. Under normal circumstances,
determine the main component with the cumulative contribution
rate greater than or equal to 85%.

∑m
j�1 λj∑p
j�1 λj

≥ 0.85

Step5: Calculate principal component load.

Uij � zTi b
o
j, j � 1, 2,/m

U1 is called the first principal component, U2 is called the
second principal component, and Up is called the pth principal
component.
Step6: Calculate comprehensive score and conduct
comprehensive evaluation on regional water carrying capacity.

DATA AND CASE ANALYSIS

Study Area Status and Data Sources
Hebei is located between longitude 113°27′ and 119°50′ east and
latitude 36°05′ and 42°40′ north. It is located in North China, north
of Zhanghe river, east of Bohai Sea and inner Ring of Beijing and
Tianjin, west of Taihang Mountain, North of Yanshan Mountain,
North of Yanshan is Zhangbei Plateau and the rest is Hebei plain (As
shown in Figure 1). It is the only province in China that has plateaus,
mountains, hills, plains, lakes, and seashores. Hebei province covers
an area of 188,800 square kilometers and has a permanent resident
population of 75, 919, 700. It has jurisdiction over 11 prefecture-level
cities, including Shijiazhuang city, Tangshan city, Handan city,
Cangzhou city, Baoding city, Langfang city, Qinhuangdao city,
Zhangjiakou city, Chengde city, Hengshui city, and Xingtai city.
It has a temperate continental monsoon climate, and most of the
four seasons are distinct.

The data used in this study are from Statistical Yearbook of
Hebei Province and Hebei Water Resources Bulletin (2009-2018)
which are calculated and sorted out.

Establish the Evaluation Index System
It can be seen from the definition of water carrying capacity that it
is a comprehensive concept involving many factors such as
society, economy, environment, ecology, etc. Therefore, in the
evaluation and analysis of regional water carrying capacity, the
selection of appropriate indicators should also involve several
factors.

This article is based on the summary and reflection of the
water carrying capacity system. According to the actual
situation of Hebei Province, 16 factors were selected from
the aspects of water resources, water management, industrial
development, agricultural development, social development,
and environmental protection to comprehensively evaluate
the water carrying capacity of Hebei province from 2009 to
2018, as shown in Table 1.

Because Hebei province straddles Beijing and Tianjin, and has
plateaus, mountains, hills, plains, lakes, and seashores, the
distribution of water resources is inevitably uneven, which
makes the water resources ineffectively used. In order to better
understand the carrying capacity of water resources in Hebei
Province, 11 cities in Hebei Province were also evaluated in this
paper. Combined with the actual situation, the evaluation index
system includes X1 (The total population at the end of the year),
X2 (Gross regional product), X3 (Per capita GDP), X4 (Per capita
disposable income of urban residents), X5 (Per capita net income
of farmers), X6 (Per capita water consumption), X7 (Total water
resources), X8 (Total water supply), X9 (Industrial water
consumption), X10 (Agricultural water consumption), X11

(Urban environmental water consumption), X12 (Water
consumption per 10,000 yuan of GDP), X13 (Development and
utilization rate of water resources), and X14 (Rainfall).

TABLE 1 | Evaluation index system of water carrying capacity in Hebei Province.

The target layer Rule layer Index layer Properties

Evaluation of water carrying capacity in Hebei Province The economic development X1 Total population at year end +
X2 Urbanization rate +
X3 Gross domestic product +
X4 Fixed asset investment +

The water resources X5 Rainfall +
X6 Total water resources +
X7 The total water supply +

Water management X8 Sewage discharge -
Industrial development X9 Industrial water consumption -
Agricultural development X10 Agricultural water consumption -

X11 Irrigation water per mu -
X12 Water for forestry, fishing and livestock -

The environmental protection
Social development

X13 Ecological water consumption -
X14 Domestic water consumption -
X15 Water consumption per capita -
X16 Water consumption per 10,000 yuan of GDP -

Note: "+" and "-" in Table 1 are the positive and negative properties of indicators respectively. The positive index has a positive influence on the evaluation of water carrying capacity. The
greater the index value is, the greater the water carrying capacity will be. The negative index has a negative impact on the evaluation of water carrying capacity. The greater the index value
is, the smaller the water carrying capacity is.
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Principal Component Analysis of Water
Carrying Capacity in Hebei Province
The data of 16 factors reflecting the water carrying capacity of
Hebei Province from 2009 to 2018 are shown in Table 2. The data
in Table 2 were standardized by SPSS25, and then the
standardized data were analyzed by principal component
analysis. The correlation coefficient matrix of the impact
factors of water carrying capacity (Table 3) and the eigenvalue
and contribution rate of principal components (Table 4) can be
obtained.

As can be seen from Table 3, there is a certain correlation
between the 16 factors. X1With X2, X3, X4 has a strong positive
correlation, and with X10、X15, X16 has a negative correlation;
X2With X3, X4 has a strong positive correlation, and with X10, X15

has a negative correlation; X3With X4 has a strong positive
correlation, and with X15, X16 has a negative correlation;

X4With X10, X14, X15 has a negative correlation; X5With X6,
X11 has a strong positive correlation. X6With X11 has a strong
positive correlation. X7With X10\X15 has a strong positive
correlation. These explain the rationality of principal
component analysis.

TABLE 2 | Economic and water resource status statistics of hebei province from 2009 to 2018.

year X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

2009 7034.4 0.4374 17,026.6 12,311 463 141.16 193.72 20.51 23.71 134.2 150 12.96 2.69 20.15 275 114
2010 7194 0.4450 20,197.1 15,083 526 137.8 193.68 19.73 23.06 134.87 147 12.12 2.87 17.46 270 96
2011 7240.51 0.4560 24,228.2 16,404 493 157.29 195.97 21.49 25.72 132.01 168 11.6 3.62 18.63 271 81
2012 7287.51 0.4680 26,575 19,661 606 235.53 195.33 21.94 25.22 130.99 251 11.94 3.8 18.5 268 74
2013 7332.61 0.4812 28,301.4 23,194 531 175.86 191.29 21.93 25.23 126.35 187 11.29 4.65 18.79 261 67
2014 7383.75 0.4933 29,421.2 26,672 408 106.14 192.82 21.07 24.48 128.45 113 10.72 5.06 19.28 261 65
2015 7424.92 0.5133 29,806.1 29,448 511 135.09 187.19 31.1 22.53 124.18 141 11.05 5 19.5 252 62
2016 7470.05 0.5332 31,827.9 31,750 596 208.31 182.57 28.88 21.94 116.99 217 11.01 6.72 20.71 244 57
2017 7519.52 0.5501 35,964 33,407 479 138.34 181.56 25.37 20.33 114.31 148.97 11.78 8.17 21.75 241 50
2018 7556.3 0.5643 36,010.3 35,311 508 164.04 182.42 26.3 19.08 109.87 167.7 11.21 14.51 22.82 241 50

TABLE 3 | Correlation coefficient matrix of impact factors of water carrying capacity.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 1.000
X2 0.957 1.000
X3 0.985 0.955 1.000
X4 0.976 0.984 0.966 1.000
X5 0.108 0.055 0.075 0.040 1.000
X6 0.072 0.040 0.099 0.012 0.912 1.000
X7 0.824 0.931 0.810 0.893 0.105 0.017 1.000
X8 0.701 0.741 0.649 0.758 0.280 0.131 0.763 1.000
X9 0.652 0.803 0.622 0.723 0.027 0.137 0.885 0.574 1.000
X10 0.904 0.980 0.915 0.938 0.100 0.106 0.945 0.693 0.831 1.000
X11 0.038 0.000 0.070 0.026 0.906 0.998 0.022 0.090 0.179 0.065 1.000
X12 0.753 0.595 0.700 0.703 0.013 0.047 0.389 0.518 0.132 0.489 0.077 1.000
X13 0.793 0.874 0.801 0.809 0.010 0.040 0.778 0.484 0.821 0.910 0.008 0.407 1.000
X14 0.639 0.825 0.688 0.740 0.136 0.029 0.834 0.527 0.832 0.880 0.069 0.168 0.862 1.000
X15 0.941 0.987 0.928 0.974 0.109 0.046 0.966 0.774 0.815 0.970 0.008 0.573 0.818 0.788 1.000
X16 0.981 0.903 0.982 0.939 0.139 0.140 0.736 0.658 0.503 0.845 0.113 0.793 0.712 0.553 0.882 1.000

TABLE 4 | Eigenvalues and contribution rates of principal components.

The eigenvalue Percentage of variance Cumulative %

1 10.445 65.283 65.283
2 2.964 18.523 83.806
3 1.435 8.970 92.776

TABLE 5 | Factor loading matrix.

1 2 3

X1 0.960 0.039 0.242
X2 0.998 0.027 0.014
X3 0.953 0.045 0.203
X4 0.985 0.035 0.139
X5 0.089 0.955 0.073
X6 0.062 0.981 0.100
X7 0.932 0.037 0.236
X8 0.761 0.151 0.069
X9 0.797 0.209 0.493
X10 0.981 0.020 0.154
X11 0.020 0.983 0.090
X12 0.613 0.020 0.750
X13 0.872 0.076 0.237
X14 0.809 0.171 0.464
X15 0.989 0.002 0.028
X16 0.907 0.113 0.362
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As can be seen from Table 4, the cumulative contribution
rate of the first three principal components reaches 92.776%,
which can be considered as the main factor affecting the
water carrying capacity. Therefore, the first, second, and third
principal components are selected to analyze the water
carrying capacity of Hebei Province, and the loads of each
variable on the first, second, and third principal components
are calculated.

As can be seen from Table 5, the first principal component has
a strong statistical significance with X1, X2, X3, and X4, and is
negatively correlated withX7, X15, and X16. This shows that the
population and social and economic development level are the
main factors affecting the carrying capacity of water resources in
Hebei Province. The total population of Hebei increased from 70,
344, 000 in 2009 to 755,563,000 in 2018. With the increase of
population, the demand for water resources also gradually
increased, and the contradiction between water resources
supply and demand intensified. Hebei’s GDP in 2018 was
360.03 billion yuan, 111.49 % higher than 1702.66 billion yuan
in 2009. Investment in fixed assets was 3.53109 trillion yuan in
2018, an increase of 186.84 percent over the 123.05 billion yuan in
2009. At the same time, with the rapid development of social
economy, the consumption of water resources is increased, and
the carrying capacity of water resources is under great pressure.

The second principal component and the third principal
component have a strong positive correlation with X5, X6, X11,
and X13, mainly reflecting the natural status of water resources.
Hebei province is a big agricultural province with a large amount
of agricultural water consumption. However, Hebei province is
located in the semi-arid region of North China and is inherently
deficient in water resources. In 2009, the total amount of water
resources was 14.116 billion m3. In 2012, the best year, the total
water resources was 23.553 billion m3, the total amount of water
resources varies greatly from year to year, thus affecting the
stability of the water carrying capacity.

Through factor analysis, the component scoring coefficient
matrix (factor scoring coefficient) is obtained. Table 6 lists the
coefficient vectors of standardized variables in the analytical

expressions of the three main components. We can write the
expression of common factors (F1, F2, and F3 represent the three
common factors, and ZX1∼ZX6 respectively, represent the
variables after the standard normal transformation):

F1� -0.029*ZX1+0.083*ZX2-0.014*ZX3+0.018*ZX4+0.002*
ZX5+0.011*ZX6-0.171*ZX7+0.023*ZX8-0.274*ZX9-0.138*ZX10+0.003*
ZX11+0.266*ZX12+0.168*ZX13+0.261*ZX14-0.087*ZX15+0.086*ZX16

Same thing with F2 and F3.
According to the formula, the comprehensive score of the

water carrying capacity of Hebei Province can be obtained (see
Table 7). The positive score means that the value is higher than
the average level at the time of the study, while the negative score
means that the value is lower than the average level. The larger the
comprehensive score value is, the stronger the carrying capacity
of water resources is, and conversely, the weaker the carrying
capacity is.

As can be seen from Table 7, with the passage of time, the
carrying capacity of water resources in Hebei province presents
an increasing trend year by year, this is mainly due to the
advancement of urbanization, the increase in Gross Domestic
Product (GDP) and population, consumption, and increasing
demand for water matched by increased water use efficiency and
the ability to deal with sewage gradually, in addition, the constant
improvement of the consciousness of water-saving among people,
to some extent, also can improve the bearing capacity of water
resources.

Comparative Analysis of Water Carrying
Capacity of Various Cities in Hebei
Province
Due to the serious uneven spatial and temporal distribution of
water resources in Hebei Province, this uneven distribution has
further reduced the effective supply of water resources. In order to
better understand the carrying capacity of water resources in
Hebei Province, this paper also selected the average data of the
cities in Hebei province in the past 10 years, and compared and
analyzed the differences of carrying capacity of water resources
among cities in Hebei Province. The selected index system
includes X1 (total population at year end), X2 (GDP), x3 (Per
capita GDP), x4 (The per capita disposable income of urban
residents), X5 (The farmers’ average net income), X6 (Per capita

TABLE 6 | Component score coefficient matrix.

1 2 3

X1 −0.029 0.190 −0.002
X2 0.083 0.050 −0.003
X3 −0.014 0.168 0.003
X4 0.018 0.133 −0.019
X5 0.002 −0.014 0.326
X6 0.011 −0.031 0.337
X7 −0.171 0.077 −0.011
X8 0.023 0.086 0.048
X9 −0.274 0.230 0.026
X10 −0.138 0.027 −0.024
X11 0.003 −0.028 0.336
X12 0.266 −0.449 0.065
X13 0.168 −0.082 −0.002
X14 0.261 −0.213 −0.016
X15 −0.087 −0.042 −0.006
X16 0.086 −0.255 −0.013

TABLE 7 | Comprehensive scores of water carrying capacity in Hebei Province
from 2009 to 2018.

year F1 F2 F3 F Ranking

2009 0.1680 1.7810 0.5065 0.2863 7
2010 0.5338 0.5681 0.2879 0.5169 9
2011 0.7925 0.1164 0.1279 0.5468 10
2012 0.5327 0.0941 1.9148 0.2085 5
2013 0.5986 0.5214 0.3820 0.2802 6
2014 0.7331 1.0468 1.6317 0.4646 8
2015 0.0821 0.8499 0.4256 0.0707 4
2016 0.4276 0.4943 1.2952 0.5248 3
2017 1.1706 0.1564 0.5332 0.7409 2
2018 1.5066 0.4292 0.0790 0.9668 1
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water consumption), X7 (Total water resources), X8 (Total water
supply), X9 (Industrial water consumption), X10 (Agricultural
water consumption), X11 (Urban environmental water
consumption), X12 (Water consumption per 10,000 yuan OF
GDP), X13 (Development and utilization rate of water resources),
X14 (rainfall). The original data of different regions from 2009 to
2018 are shown in Table 8.

It can be seen from Table 9, the cumulative contribution rate
of the first four principal components reached 91.454%. This can
be considered as the main factor affecting the carrying capacity of
water resources. Therefore, the first, second, third and fourth
principal components are selected to analyze the carrying
capacity of water resources in all regions of Hebei province,
and the loads of each variable on the first, second, third and
fourth principal components are calculated.

As it can be seen from Table 10, there is a strong positive
correlation between x2、x8、x9、x10, indicating that agricultural,
social, and economic development level are the main factors
affecting the water carrying capacity of all cities in Hebei
Province. The development of cities in Hebei province is
based on agriculture, and agricultural development consumes
large amounts of water resources and causes great pressure on the
carrying capacity of water supply resources. The second principal
component has a strong positive correlation with x7 and x14.
There is a strong positive correlation between the third principal
component and x1.

Through factor analysis, it is concluded that component score
coefficient matrix (coefficient of factor score), Table 11 lists the
four main composition analytic expressions of the standardized
variable coefficient vector, we can write a common factor
expression (F1, F2, F3, and F4 represent four common factors,
ZX1∼ZX14 represent the standard normal after the
transformation of variables):

F1� -0.014*ZX1+0.149*ZX2+0.365*ZX3+0.200*ZX4+0.189*ZX5+
0.103*ZX6+0.018*ZX7+0.045*ZX8+0.070*ZX9+0.158*ZX10-0.224*ZX11

-0.159*ZX12-0.023*ZX13+0.034*ZX14

Same thing with F2、F3, and F4.
According to the formula and principal component calculation, the

comprehensive score of water carrying capacity in Hebei province can
be obtained (see Table 12). The positive score means that the value is

TABLE 8 | Initial values of comprehensive evaluation indicators in Hebei province from 2009 to 2018.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

Tangshan 758.63 5749.62 74,341.7 28,006.7 12,353.5 102.608 20.22 7.7163 1.565 5.082 0.1906 14.47 0.359 83.11
Shijiazhuang
city

1049.665 4862.79 46,085.2 24,994.6 9926.2 52.903 17.452 5.88876 0.88439 1.5907 0.826 12.095 0.362 69.63

Cangzhou
city

755.779 2974.474 73,432.3 23,640.05 9023.5 20.446 10.739 0.79037 0.25193 0.2081 0.045 2.895 0.088 76.13

Handan 932.56 2988.86 30,539.6 23,236 9796.4 18.423 10.172 1.9595 0.84264 0.164 0.27 6.34 0.189 60.63
Baoding 1062.795 2661.94 25,425.3 20,676.2 9178.5 20.704 22.408 1.72409 0.4191 0.534 0.203 6.772 0.079 116.61
Langfang 445.319 2075.65 46,018.5 27,969.8 11,750.8 39.883 6.642 1.7608 0.28686 0.884 0.105 9.955 0.299 34.67
Qinhuangdao 303.964 1204.296 39,725.4 25,097.3 9541.5 71.139 15.647 2.15639 0.61526 0.661 0.181 17.889 0.164 51.53
Zhangjiakou 440.18 1266.733 28,815.6 20,700.3 7134.8 33.709 14.622 1.54373 0.47891 0.764 0.039 12.757 0.106 154.24
Chengde 377.99 1238.334 32,919.6 19,668.54 6932.26 29.071 22.033 1.283 0.47766 0.233 0.019 9.599 0.054 199.75
Hengshui city 447.69 1130.71 25,316.1 19,948.1 7908 25.271 6.075 1.12486 0.33104 0.524 0.076 11.274 0.222 45.27
Xingtai 721.95 1653.724 22,874.1 20,316.5 8011.1 19.2 12.099 1.40052 0.3828 0.4715 0.2415 9.296 0.144 63.01

TABLE 9 | Characteristic values and contribution rates of principal components in
each region of Hebei Province.

The eigenvalue Percentage of variance Cumulative %

1 7.145 51.034 51.034
2 2.286 16.330 67.364
3 2.116 15.118 82.481
4 1.302 9.300 91.782

TABLE 10 | Factor loading matrix.

1 2 3 4

x1 0.331 0.011 0.920 0.047
x2 0.879 0.067 0.436 0.148
x3 0.657 0.111 0.034 0.648
x4 0.816 0.378 0.194 0.204
x5 0.834 0.381 0.010 0.188
x6 0.850 0.218 0.456 0.007
x7 0.239 0.892 0.172 0.047
x8 0.952 0.241 0.067 0.123
x9 0.863 0.330 0.011 0.043
x10 0.890 0.238 0.166 0.131
x11 0.507 0.034 0.523 0.599
x12 0.411 0.245 0.704 0.503
x13 0.842 0.338 0.054 0.295
x14 0.334 0.860 0.021 0.217

TABLE 11 | Component score coefficient matrix.

1 2 3 4

x1 −0.014 0.358 −0.248 0.051
x2 0.149 0.147 −0.149 0.072
x3 0.365 −0.233 −0.261 0.053
x4 0.200 −0.107 −0.030 −0.145
x5 0.189 −0.036 −0.080 −0.138
x6 0.103 −0.099 0.215 0.055
x7 0.018 0.074 0.035 0.392
x8 0.045 0.135 0.112 0.076
x9 0.070 0.080 0.098 0.125
x10 0.158 −0.051 0.066 0.103
x11 −0.224 0.450 0.132 -0.087
x12 −0.159 −0.013 0.499 −0.028
x13 −0.023 0.143 0.159 −0.203
x14 0.034 −0.082 −0.029 0.404
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higher than the average level at the time of the study, while the negative
score means that the value is lower than the average level. The larger
the comprehensive score value is, the stronger the carrying capacity of
water resources is, and conversely, the smaller the comprehensice score
value is, the weaker the carrying capacity is.

On the whole, Tangshan, Cangzhou, Langfang, Shijiazhuang, and
other regions with relatively high economic development have
relatively large industrial water consumption. However, with the
reform of industrial technology, industrial water is reused, which
reduces the industrial water consumption. Moreover, with the
deepening of air pollution prevention and control, the
government requires large water users such as metal smelters and
chemical raw material manufacturers to stop production. The
stronger their water resources development and utilization
capacity is, the larger their water carrying capacity is.

Chengde city, Zhangjiakou city, and Baoding city are located in the
vast Bashang grassland, with insufficient regional resources, but
abundant precipitation, and the total water resources are in the
forefront of the province. Their economic level of the province is
in the middle level, but the development is strong and the demand for
water resources is also large, so the carrying capacity of water resources
is in the middle level. Due to the serious shortage of natural water
resources, the total water resources and precipitation of Xingtai city
and Hengshui city are relatively low, and the comprehensive score of
water resources carrying capacity is relatively low.

CONCLUSION

1) Human activities are the main factors of water carrying
capacity change in Hebei Province.

In recent years, the total amount of water resources in Hebei
Province is gradually expanding, but the population is increasing year
by year, the amount of water resources per capita is decreasing, and the
water consumption per capita is increasing year by year. According to
the change trend of water resources in Hebei Province from 2009 to
2018 and the water carrying capacity of various cities in Hebei
Province, the total population, urbanization rate, GDP and fixed
asset investment are the main factors affecting the water carrying
capacity in Hebei Province. With the expansion of human activities

and the development of the social economy to a certain stage,
production activities and living behaviors have a great impact on
the water environment, which ismainlymanifested in the reduction of
total water resources, large water consumption and serious water
pollution.

2) The carrying capacity of water resources in Hebei Province
showed a good trend.

According to the data analysis from 2009 to 2018, the water
carrying capacity grade of Hebei Province is basically developing
towards a good trend, and the carrying capacity of water resources is
gradually improving. However, with the development of the social
economy and the acceleration of urbanization, the contradiction
between supply and demand of water resources will become
increasingly prominent, and the comprehensive utilization of
water resources should be strengthened.

3) There are differences in the carrying capacity of water
resources in 11 cities of Hebei Province

Under the influence of natural conditions and policy factors,
the carrying capacity of water resources in the eastern part of
Hebei is higher than that in the northern and southern parts.
During the 13th Five-Year Plan period, the measures on water
resource environment optimization issued by the government are
positive and effective. During the 14th Five-Year Plan period, it is
necessary to continue to maintain a good momentum of
development, introduce measures to boost the carrying
capacity of water resources in various regions of Hebei, and
narrow the differences between regions.
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TABLE 12 | Comprehensive scores of water carrying capacity of cities in Hebei
Province.

Year F1 F2 F3 F4 F Ranking

Tangshan 2.4473 0.17586 0.92988 0.7411 1.6204 1
Shijiazhuang city 0.0208 2.31078 0.54503 0.167 0.4955 2
Cangzhou city 0.8872 0.7903 2.1027 0.181 0.0120 3
Handan 0.188 0.77635 0.7921 0.547 0.1525 6
Baoding 0.443 0.74457 0.9397 1.0044 0.1669 7
Langfang 0.6072 0.7807 0.0741 1.713 0.0130 4
Qinhuangdao 0.171 0.7973 1.55848 0.407 0.0214 5
Zhangjiakou 0.688 0.7271 0.52184 0.7982 0.3451 9
Chengde 0.571 0.8792 0.01533 1.7953 0.2895 8
Hengshui 0.934 0.3963 0.43077 1.01 0.6212 11
Xingtai 0.967 0.36329 0.0927 0.314 0.5203 10
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Research on Influence Factors of Air
Quality in the Host Area of the 24th
Winter Olympic Games Based on Grey
Relational Analysis
Wei Wang1, Yan Chen1, Yuhan Xie1 and Lifeng Wu1,2*

1College of Management Engineering and Business, Hebei University of Engineering, Handan, China, 2Hebei Key Laboratory of
Intelligent Water Conservancy, Hebei University of Engineering, Handan, China

In recent years, the continuous development of the economy and science and technology
of China has caused a certain degree of pollution to the atmospheric environment on which
the people depend. The current air pollution problem is actively a concern by the
government and all walks of life. Based on the 2015–2019 air quality indicators and
some socioeconomic indicators, this paper uses the grey correlation analysis method to
analyze the Beijing and Zhangjiakou cities that will host the Winter Olympics in 2022. The
study found that the three factors most closely related to the Beijing Air Quality Index (AQI)
are the permanent population (0.831), energy consumption (0.801), the number of motor
vehicles (0.79), and the permanent population (0.916) and industrial added value (0.905).
The total output value of agriculture, forestry, and animal husbandry and fishery (0.89) are
the three factors most closely related to the air quality index (AQI) of Zhangjiakou City, and
the permanent population is the common factor affecting the two cities. Considering that
the factors that affect the air quality of the two cities are not exactly the same, this paper
combines the development positioning of the two cities and their own characteristics, and
puts forward specific suggestions and opinions on the different problems faced by the two
cities. The aim is to promote the continuous improvement of air quality in the two cities to
reach an excellent level through scientific and feasible air management programs before
the opening of the 2022 Winter Olympic Games, and help the 2022 Winter Olympics to be
held smoothly.

Keywords: air quality, grey relational analysis, permanent population, governance measures, 24th Winter Olympic
Games

INTRODUCTION

In recent years, China’s economy, production, industry, and other aspects have been on rapid
development. The requirements of the people for material life and the pursuit of spiritual life are
constantly improving. Therefore, air quality has become one of the most concerning ecological and
environmental issues of the public. Due to industrial development and the continuous improvement
of living standards, pressure on the ecological environment has also increased. For example,
industrial exhaust, automobile exhaust, coal combustion exhaust, and many other harmful gases
are emitted into the atmosphere, resulting in many areas in the north of China being repeatedly
covered by haze. Haze is a particular concern in the Beijing–Tianjin–Hebei region, where the air
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pollution problem is most prominent. Because the indicators for
measuring air quality are affected by a variety of environmental
factors, and the main air pollutants vary from region to region,
analyzing the pollutants affecting air quality from multiple
perspectives and selecting reasonable and valuable indicator
data for correlation comparison has become the focus of
research and drawn the attention of many scholars in China
and internationally. Since the theory of the grey system was
proposed by Professor Julong Deng in 1982, it has caused many
scholars to study deeply and explore actively, making it possible
to expand the depth and breadth of the grey system theory in
continuous development to better serve national and social
development. The advantage of the grey system theory is that
it can perform a systematic analysis of the uncertainty of data
with a small sample and sparse information and reveal the
connections between, and potential value of, the data. Grey
relational analysis, as an important branch of the grey system
theory, is a new approach to factor analysis (Xiao, 1997). Grey
relational analysis has now been applied to many research fields
such as factor analysis, comprehensive evaluation, and program
decision making (Deng, 1989). Wang et al. studied the sources
and characteristics of PM2.5 in the areas where the Olympic
Games were held and found that the main factors of PM2.5
pollution in the two areas were quite different, and the
contribution of the surrounding areas to PM2.5 in the areas
where the Olympic Games were held was nearly twice that of the
remote areas (Wang et al., 2021). Liu et al. used a combination of
hybrid simulation and risk analysis to study 243 cities and towns
in Zhangjiakou City and found that 34 cities and towns may be
affected by aviation hazards, but the construction site for the 2022
Winter Olympics will not be threatened by the acute air pollution
in Zhangjiakou City (Liu et al., 2018). Zhan et al. studied the
correlation between air pollutant indicators and economic and
social indicators in the Guangdong–Hong Kong–Macao Greater
Bay Area from 2006 to 2016 (Zhan et al., 2018). Wang and He
studied the correlation between PM2.5 (PM2.5 is particulate matter
with a diameter ≤2.5 μm) and six elements of air quality in
Urumqi from 2014 to 2016 using grey relational analysis and
found that CO concentration values had the greatest influence on
PM2.5 (Wang and He, 2018). Based on the grey model, Ni took
Wuhan City as an example and found that the main factors
influencing air quality were the proportion of secondary industry,
total urban population, industrial SO2 emissions, and public
green space per capita (Ni, 2013). Gao and Wu used the
entropy-weighted grey relation method to study the factors
influencing air quality in Beijing and found that the
proportion of secondary industry, average temperature, and
industrial SO2 emissions were the main factors affecting air
quality in Beijing (Gao and Wu, 2017). Li et al. analyzed the
influence factors of air quality indexes in the Beijing, Tianjin, and
Hebei regions from 2013 to 2017 and showed that rainfall, wind
speed, and air temperature were negatively correlated with air
quality index, while relative humidity and air pressure varied
from region to region (Li and Wang, 2019). Wang and Tian used
grey relational analysis to investigate the influence factors of air
quality in Yichang City and found that different air quality
indexes had different influence factors (Wang and Tian, 2019).

Nan and Sun used a grey correlation model to analyze the
correlation between O3 concentration and influencing index
factors in Shanxi Province in 2015 and analyzed the factors
that were more correlated with O3 from different perspectives
(Nan and Sun, 2017). Wang et al. used grey relational analysis to
study the factors influencing air quality in Handan from 2014 to
2018 and found that the industrial value added, energy
consumption, and motor vehicle ownership were the main
factors influencing air pollution in Handan (Wang et al.,
2019). Wang used a modified grey relational analysis to
analyze the factors influencing haze in Zhengzhou City and
found that vehicle emissions, smoke and dust emissions, and
construction site dust were the main controllable influence
factors (Wang, 2020). Zhang et al. showed that local air
pollutant emissions, lagged PM2.5 concentrations, wind speed,
and PM2.5 concentrations in nearby areas had significant effects
on PM2.5 concentrations in the Beijing–Tianjin–Hebei region
(Zhang et al., 2018). Li et al. established an air quality research
model using a particulate matter source analysis technique and
concluded that the main sources of PM2.5 in Beijing were both
residential and industrial (Li et al., 2015). In their 2016 study, Yan
et al. showed that PM2.5 concentrations in 13 cities, including
Beijing, Tianjin, and Hebei, were influenced by seasonality, and
the seasons with high to low concentrations were winter, autumn,
spring, and summer in order (Yan et al., 2018). Tian et al. showed
that seasonal effects, land use, vehicle density, and emission
intensity were the main influence factors that continued to
affect air quality in Beijing (Tian et al., 2019). Chen et al.
analyzed and discussed the spatial–temporal coupling
relationship and restrictive factors among different cities in
Ningxia Hui Autonomous Region by combining grey
relational analysis with coupling coordination model and
linear regression (Chen et al., 2021). Khuman et al. regarded
the absolute grey correlation degree as a part of the novel R-fuzzy
grey analysis framework (RfGAf). The framework based on
subjective uncertainty has the advantages of capturing
information comprehensively, timely, and with a wide range of
adaptations (Khuman et al., 2019). Feng and Sun used the grey
correlation analysis method to select important indicators for the
economic, environmental, and social benefits of the
environmental investment of China, and established a
comprehensive evaluation model for the benefits of
environmental investment (Feng and Sun, 2020). Wu et al.
used a model combining grey correlation and entropy to
analyze the relationship between water resources and the
economy in the Beijing–Tianjin–Hebei region of China and
found that the correlation between the two systems from 2015
to 2024 is weak (Wu et al., 2021). Xiao et al. combined the grey
model with the coupling model to systematically study the
coordination relationship between the two important factors of
the economy and technology of China (Xiao et al., 2021). Zhu
et al. studied the relationship between the regression coefficients
and physical properties of coarse aggregates by means of grey
relational analysis (Zhu et al., 2021). Fiaz et al. used the grey
relational analysis method to study the first wave of COVID-19
epidemic data obtained from the worldometer website, and the
research results can bring a lot of useful information to the health
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systems of many countries (Qazi et al., 2021). Li and Ye chose the
grey correlation analysis method to analyze the coordination of
environmental policies in the 281 prefecture-level cities in China
from 2007 to 2016 and found that policy coordination has a
significant positive impact on haze governance (Li and Ye, 2020).
Wu and Qu proposed a new type of grey relational model of
dynamic weighting function that enables the problem of multi-
factor and multi-attribute classification to be better solved (Wu
and Qu, 2020). Xiao et al. proposed a grey correlation model
based on language binary matrix to quantitatively evaluate the
operation quality of regional industrial industries, and promoted
the innovation and application prospect of the grey correlation
model (Xiao et al., 2020). Wang et al. used the grey correlation
method to sort the multiple stages of different alternatives in
water pollution control to get the overall ranking, and then
allocated resources according to priority (Wang et al., 2020).
Gong et al. found that the main factors affecting the durability of
mixed modified asphalt mixtures are aggregate gradation and
aging temperature through the grey correlation analysis method
(Gong et al., 2021). Luo et al. used the grey correlation analysis
method to analyze the three aspects of energy, economy, and
environment in Guangxi and Zhejiang in China, and found that
energy consumption can promote economic development but
inhibit environmental improvement (Luo et al., 2019).

As can be seen from the above studies, most of the studies on
air quality are mainly based on meteorology, greenery, seasons,
and energy consumption, while relatively few studies analyze air
quality in conjunction with economic and social factors in the
study region. Based on this, this paper uses grey relational analysis
to study the main socioeconomic factors affecting air quality in
Beijing and Zhangjiakou from 2015 to 2019, finds the key influence
factors through comparative analysis, and proposes specific
management measures to contribute to the successful holding of
the 2022 Winter Olympic and Paralympic Winter Games.

DATA AND METHODS

Data Source and Processing
In the rapid economic development of modern China, air
pollution is influenced by multiple factors. Agriculture,
industry, energy consumed in winter for residential heating,
and many pollutants such as carbon monoxide, carbon
dioxide, nitrogen oxides, and hydrocarbons emitted from
motor vehicle exhaust can cause serious air pollution. The air
pollution in most regions is mainly influenced by the population
base, ecological environment, industrial status, and energy
consumption of the region. As a super-populous city and the
economic center of northern China, many factors affect the air
quality in Beijing. In Zhangjiakou, the secondary and tertiary
industries are developing rapidly under the 13th Five-Year Plan,
and the number of domestic and foreign tourists visiting
Zhangjiakou is increasing year by year. As a result, the air
pollution indicators in Beijing and Zhangjiakou are affected by
many socioeconomic factors. Considering the availability,
reference, and outstanding representativeness of data
indicators, seven air pollution-related indicators were selected

as a reference sequence, and 10 representative socioeconomic
indicators were selected as a comparison sequence for grey
relational analysis in Beijing, while six air pollution-related
indicators were selected as a reference sequence and eight
representative socioeconomic indicators were selected as a
comparison sequence in Zhangjiakou. The air pollution data
of Beijing were obtained from http://sthjj.beijing.gov.cn/. The
socioeconomic data of Beijing were obtained from http://tjj.
beijing.gov.cn/. The air pollution data of Zhangjiakou were
obtained from http://hb.zjk.gov.cn/. The socioeconomic data of
Zhangjiakou were obtained from http://tjj.zjk.gov.cn/. The air
pollution data of Beijing for 2015–2019 are shown in Table 1, and
the socioeconomic data of Beijing are shown in Table 2. The
2015–2019 air pollution data of Zhangjiakou are shown in
Table 3, and the socioeconomic data of Zhangjiakou are
shown in Table 4.

Methods
Since the air quality situation is closely related to the time point, in
order to conduct a more effective analysis, this paper selected the
data of air pollution and socioeconomic indicators from 2015 to
2019. However, as the sample size was relatively small, and the
relationships between the data were not easily found directly, many
existing statistical models were not suitable for conducting data
analysis and research using such data. For example, the Pearson
correlation coefficient proposed around the 1880s mainly studies
the degree of correlation between two variables, but it becomes quite
difficult to study the degree of correlation between multiple
variables at the same time. Moreover, Pearson correlation
coefficient method can only reflect the linear relationship
between two variables, and the direction of correlation has some
limitations. In 1982, The grey model proposed by the Chinese
scholar Professor Deng Julong has been committed to solving the
problem of uncertainty in terms of small samples and poor
information. Among them, the grey correlation analysis model
can process and mine the potential correlations between multiple
indicators at the same time, and then obtain the correlation degree
betweenmultiple comparison indicators, which is a great theoretical
and practical significance. In the approximately 40 years since the
appearance of the grey correlationmodel, due to its good correlation
analysis performance, it has been popularized and applied by many
scholars in wide fields. Because other factors such as demographic
factors, economic factors, industrial factors, and ecological factors
can cause different degrees of air pollution, these complex factors
can be understood as a grey system. Therefore, for this paper, it was
appropriate to choose grey relational analysis for the research and

TABLE 1 | Air pollution data of Beijing.

Indicator 2015 2016 2017 2018 2019

AQI 7.4 6.8 5.87 5.35 4.7
PM2.5(μg/m3) 80.6 73 58 51 42

PM10(μg/m3) 102 92 84 78 68

SO2(μg/m3) 14 10 8 6 4

NO2(μg/m3) 50 48 46 42 37

CO − 95per(mg/m3) 3.6 3.2 2.1 1.7 1.4

O3 − 8h − 90per(μg/m3) 202.6 199 193 192 191
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analysis of the air pollution data of Beijing and Zhangjiakou, and the
socio–economic indicators of the two regions. Grey relational
analysis is used to determine the degree of relation between
different data by the proximity of reference data and
comparison data, and the specific steps of grey relational
analysis are as follows.

Step 1: Y0 � (y0(1), y0(2),/, y0(n)) as the reference
sequence, and Y1 � (y1(1), y1(2),/, y1(n)), . . ., Ym �
(ym(1), ym(2),/, ym(n)) as the comparison sequence.

Step 2: Normalize data as in Eq. 1:

Xi(j) � yi(j)
yi(1), i � 0, 1, 2,/m; j � 1, 2,/n (1)

Step 3: Calculate the grey correlation coefficient using Eq. 2:

ξi(x0(k), xi(k))

�
min

i
min
k

∣∣∣∣X0(k) −Xi(k)
∣∣∣∣ + ρmax

i
max

k

∣∣∣∣X0(k) −Xi(k)
∣∣∣∣∣∣∣∣X0(k) −Xi(k)

∣∣∣∣ + ρmax
i

max
k

∣∣∣∣X0(k) −Xi(k)
∣∣∣∣ (2)

where ρ ∈ [0, 1] is the differentiation coefficient. According to
most of the literature on the use of the grey relation coefficient,

ρ � 0.5. It is further confirmed that the correlation result obtained
when the value of a is relatively better, in the Grey relational
analysis between socio–economic factors and air pollution in Beijing
and Zhangjiakou section of this paper, the value of a in the interval
of 0–1 is selected for three equal points to verify the case again.

Step 4: Calculate the grey relation using Eq. 3:

ci(y(0), y(i)) � 1
n
∑n
k�1

c(x(0)(k), x(i)(k)) (3)

where ci(y(0), y(i)) is the grey relation of Y0 and Yi. If the grey
relation is closer to 1, it means that the reference sequence Yi has
more influence on the main sequence Y0. Otherwise, it means
that the influence is less.

Step 5:

�c � 1
m

∑m
i�1

ci(y(0), y(i)) (4)

�c is the mean value of grey correlation obtained by all
control indicators corresponding to the same reference
indicator.

GREY RELATIONAL ANALYSIS BETWEEN
SOCIOECONOMIC FACTORS AND AIR
POLLUTION IN BEIJING AND
ZHANGJIAKOU

Taking the grey relation between the air quality index (AQI) and
the selected socioeconomic pollution sources of Beijing as an

TABLE 2 | Socioeconomic data of Beijing.

Indicator 2015 2016 2017 2018 2019

Resident population (10,000 people) 2,170.5 2,172.9 2,170.7 2,154.2 2,153.6
Number of tourists (10,000 people) 27,279 28,531.5 29,746.2 31,093.6 32,209.9
Total output value (hundred million yuan) 24,779.1 27,041.2 29,883 33,106 35,371.3
Construction industry output value (hundred million yuan) 1,002.6 1,074.5 1,210.9 1,387.8 1,513.7
Industrial value added (hundred million yuan) 3,458.9 3,635.5 3,885.9 4,139.9 4,241.1
Output value of tertiary industry (hundred million yuan) 20,218.9 22,245.7 24,711.7 27,508.1 29,542.5
Energy consumption (10 thousand tons) 6,802.8 6,916.7 7,088.3 7,269.8 7,360.3
Private car ownership (10 thousand) 440.3 452.8 467.2 479 497.4
Artificial forestation area (hectares) 8,252 12,667 11,853 17,974 18,698
Park area (hectares) 29,503 30,069 31,019 32,619 35,157

TABLE 3 | Air pollution data of Zhangjiakou.

Indicator 2015 2016 2017 2018 2019

AQI 4.64 4.5 4.18 4.11 3.53

PM2.5(μg/m3) 34 32 31 29 25

PM10(μg/m3) 78 83 70 69 56

SO2(μg/m3) 31 20 16 14 11

NO2(μg/m3) 26 27 25 23 22

CO − 95per(mg/m3) 1.6 1.4 1.3 1.4 1.1

TABLE 4 | Socioeconomic data of Zhangjiakou City.

Indicator 2015 2016 2017 2018 2019

Resident population (10,000 people) 442.17 442.51 443.3 443.4 442.33
Number of tourists (10,000 people) 3,848 5,193.77 6,259.8 7,354.8 8,605.06
Total output value (hundred million yuan) 1,363.54 1,461.05 1,555.6 1,536.6 1,551.06
Industrial added value (hundred million yuan) 404.7 373.9 372.5 423.9 456.96
Output value of tertiary industry (hundred million yuan) 574.13 651.86 726 791.6 861.87
Total output value of agriculture, forestry, animal husbandry, and fishery (hundred million yuan) 430.93 465.05 493.4 403.7 438.51
Artificial forestation area (hectares) 47,444 81,075 137,211 127,392 50,533
Urban green area (hectares) 3,791 4,163 3,848.7 3,989.7 4,081.22
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example, the following steps of grey relational analysis were
carried out in calculation: the reference sequence is
Y0 � (7.4, 6.8, 5.87, 5.35, 4.7), and the comparison sequence is:

Y1 � (2170.5, 2172.9, 2170.7, 2154.2, 2153.6),
Y2 � (27279, 28531.5, 29746.2, 31093.6, 32209.9),
Y3 � (24779.1, 27041.2, 29883, 33106, 35371.3),
Y4 � (1002.6, 1074.5, 1210.9, 1387.8, 1513.7),
Y5 � (3458.9, 3635.5, 3885.9, 4139.9, 4241.1),
Y6 � (20218.9, 22245.7, 24711.7, 27508.1, 29542.5),
Y7 � (6802.8, 6916.7, 7088.3, 7269.8, 7360.3),
Y8 � (440.3, 452.8, 467.2, 479, 497.4),
Y9 � (8252, 12667, 11853, 17974, 18698),
Y10 � (29503, 30069, 31019, 32619, 35157).

From steps 1–4,

c(Y(0), Y(1)) � 0.831, c(Y(0), Y(2)) � 0.772

c(Y(0), Y(3)) � 0.713, c(Y(0), Y(4)) � 0.708

c(Y(0), Y(5)) � 0.757, c(Y(0), Y(6)) � 0.706

c(Y(0), Y(7)) � 0.801, c(Y(0), Y(8)) � 0.79

c(Y(0), Y(9)) � 0.564, c(Y(0), Y(10)) � 0.785

were obtained.
The grey relation of each reference sequence and its

corresponding comparison sequence for Beijing and
Zhangjiakou were calculated using the same steps with the
results shown in Tables 5 and 6, respectively.

In order to further confirm the feasibility of the resolution coefficient
of 0.5, this paper selected the resolution coefficient of 0.25, 0.5, and 0.75

for comparison. The results of the analysis of the socioeconomic factors
and air pollutants in Beijing are shown inTable 5.When the resolution
coefficient is 0.5, it can be obtained from step 5.

�cAQI � 0.743, �cPM2.5
� 0.727, �cPM10

� 0.747, �cSO2
� 0.682,

�cNO2
� 0.78, �cCO−95per � 0.704, �cO3−8h−90per � 0.81

In the same way, the results when the resolution
coefficients are 0.25 and 0.75 can also be calculated in steps

TABLE 5 | Relational analysis between socio–economic factors and air pollutants in Beijing.

Socio-economic factor AQI PM2.5 PM10 SO2 NO2 CO − 95per O3 − 8h − 90per

Resident population (10,000 people) 0.831 0.803 0.84 0.739 0.888 0.768 0.954
Number of tourists (10,000 people) 0.772 0.753 0.777 0.702 0.814 0.727 0.85
Total output value (hundred million yuan) 0.713 0.702 0.716 0.664 0.743 0.684 0.758
Construction industry output value (hundred million yuan) 0.708 0.697 0.71 0.66 0.736 0.68 0.749
Industrial value added (hundred million yuan) 0.757 0.74 0.762 0.693 0.795 0.716 0.825
Output value of tertiary industry (hundred million yuan) 0.706 0.696 0.709 0.659 0.734 0.678 0.747
Energy consumption (10 thousand tons) 0.801 0.779 0.809 0.721 0.851 0.748 0.901
Private car ownership (10 thousand) 0.79 0.768 0.796 0.714 0.836 0.739 0.88
Artificial forestation area (hectares) 0.564 0.565 0.564 0.555 0.573 0.561 0.561
Park area (hectares) 0.785 0.765 0.791 0.711 0.83 0.736 0.87

TABLE 6 | Relational analysis between socioeconomic factors and air pollutants in Zhangjiakou.

Socio-economic factor AQI PM2.5 PM10 SO2 NO2 CO − 95per

Resident population (10,000 people) 0.916 0.903 0.904 0.762 0.935 0.879
Number of tourists (10,000 people) 0.64 0.634 0.649 0.596 0.649 0.63
Total output value (hundred million yuan) 0.849 0.838 0.861 0.726 0.876 0.821
Industrial added value (hundred million yuan) 0.905 0.905 0.884 0.765 0.896 0.884
Output value of tertiary industry (hundred million yuan) 0.766 0.758 0.779 0.678 0.785 0.746
Total output value of agriculture, forestry, animal husbandry and fishery (hundred million yuan) 0.89 0.877 0.901 0.748 0.92 0.859
Artificial forestation area (hectares) 0.606 0.6 0.608 0.567 0.618 0.597
Urban green area (hectares) 0.88 0.869 0.891 0.743 0.91 0.848

FIGURE 1 | Grey average correlation coefficient of air index under
different resolution coefficients in Beijing.
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1–5. The comparison of different resolution coefficient values
in Beijing is shown in Figure 1, and the comparison of
different resolution coefficient values in Zhangjiakou City
is shown in Figure 2. From Figures 1 and 2, it can be
clearly observed that when the resolution coefficient is 0.5,
it is more reasonable and objective than when the value is 0.25
or 0.75.

DISCUSSION AND RESULTS

From the results inTable 5, it can be obtained that the three social
and economic factors that are most relevant to the Beijing air
quality index (AQI) are permanent population (0.831), energy
consumption (0.801), and private car ownership (0.79). At the
same time, these three socioeconomic indicators are also the main
factors affecting PM2.5, PM10, SO2, NO2, CO-95per, and O3-8h-
90per. As the capital of China, Beijing is a mega city with a resident
population of more than 20 million, and the urban resident
population has reached more than 10 million. Faced with such
a large population, just taking essential breathing every day will
produce a lot of carbon dioxide emissions. What is more, the
work and daily life of these permanent residents in Beijing will
cause more exhaust gas to be discharged into the natural
environment to affect the air condition. Besides, the overall
situation of air quality will also be affected by the large
concentration of the population in some urban areas and the
population of many other provinces going to Beijing for job
hunting and entrepreneurship. In addition to the permanent
population factor, energy consumption is the second indicator
that is closely related to all air quality indicators in Beijing.
Although many high-emission and high-polluting factories
and facilities have been moved out of Beijing in recent years,
massive emissions of air pollutants in Beijing have been solved in

a short period of time. However, because the government
encourages the expansion and development of the tertiary
industry, it has also promoted the accelerated development of
machinery manufacturing, artificial intelligence technology
industries, various processing companies, and social service-
related industries. This makes the consumption of non-
renewable energy and electric energy show a certain upward
trend. Since the consumption of non-renewable resources will
have a greater impact on the environment than the consumption
of renewable resources, it is necessary to always strive to explore
possible renewable and clean energy. On the other hand, due to
the influence of the region, Beijing needs to provide a large area of
heating guarantee every winter, and the consumption of energy
such as coal and natural gas also increases. Many indicators that
consider environmental quality are disturbed by the dual effects
of weather factors and pollutant emissions in winter. Second,
affected by the continuous improvement of the living standards of
the current people, the private car ownership in Beijing has
shown a trend of steadily increasing year by year within the
time frame of the study. The increase in private car ownership will
undoubtedly increase the consumption of oil, natural gas, and
electric energy, resulting in the exhaust gas of vehicles using such
energy as petroleum containing harmful substances such as CO,
hydrocarbons, nitrogen oxides, and particulate matter of different
sizes. In turn, it will have an extremely bad impact on the
atmospheric environment. The research and development and
vigorous promotion and use of pollution-free or low-polluting
vehicles will play an indispensable role in improving the quality of
the air environment in Beijing and even the whole of China.

The correlation between air pollutants and economic
indicators in Zhangjiakou City is shown in Table 6. The
relevant factors affecting the air indicators in Zhangjiakou City
are different from those in Beijing. From Table 6, it can be seen
that the most closely related to the air quality index (AQI) are the
permanent population (0.916), the industrial added value (0.905),
and the total output value of agriculture, forestry, and animal
husbandry and fishery (0.89). These three factors are also the
main factors affecting PM2.5, SO2, and CO-95per. For the two air
indicators PM10 and NO2, the three most relevant factors are
permanent population, total output value of agriculture, forestry,
animal husbandry and fishery, and urban green area. To a certain
extent, it shows that the urban green area plays a vital role in air
purification in Zhangjiakou. From the perspective of population
size, the number of permanent residents in Zhangjiakou is much
less than that in Beijing. The Zhangjiakou area is affected by its
geographical location, which has led to a relatively slow opening
to the outside world. The overall quality of the population and
other aspects of weak environmental protection awareness still
need to be improved. For a long time, the rural residents in many
counties of Zhangjiakou have used wood or straw to carry out
their daily lives. The smoke produced by combustion contains air
pollutants, such as hydrocarbons, and it will have a negative
impact on the atmospheric environment. In recent years,
Zhangjiakou City has worked hard to expand and open up,
attracting many industrial enterprises to set up factories in
Zhangjiakou to promote the economic development of the
region and expand the popularity of the region. However,

FIGURE 2 | Grey average correlation coefficient of air index under
different resolution coefficients in Zhangjiakou.
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industrial enterprises need to emit a large amount of waste gas
into the atmosphere to increase industrial output. The emitted
fine particles, SO2, CO, and other pollutants will undoubtedly
have a serious impact on the local excellent atmospheric
environment. It is worth further discussing how the
Zhangjiakou government should change its development focus
and how industrial enterprises should reduce harmful substances
in exhaust gas. The natural geographical location makes the
development of agriculture, forestry, and animal husbandry
and fishery an important support for the economy of
Zhangjiakou, and agriculture, forestry, and animal husbandry
and fishery need to emit a lot of carbon oxide and nitrogen
hydride in the daily production or breeding process. Therefore, it
is necessary to explore a circular sustainable agriculture, forestry,
and animal husbandry and fishery development model that can
reduce the emission of air pollutants to a large extent. The area of
urban green space can be used as a criterion for evaluating the
environmental quality of a city. From the results in Table 6, it can
be seen that the urban green area of Zhangjiakou City has a high
degree of correlation with PM10 and NO2, indicating that the
urban green area can have a greater impact on some air pollution
indicators. The urban green area of Zhangjiakou City can have a
greater positive effect on the absorption and decomposition of
particles with larger diameters and nitrogen oxides. The
government and social workers in Zhangjiakou also need to
increase their energy investment and financial support in the
green development of the city, and create a beautiful business card
for Zhangjiakou by taking the good opportunity of taking the
2022 Winter Olympics express train.

SUGGESTIONS

Suggestions for Improving Air Quality in
Beijing
1) A reasonable adjustment of the urban population layout and

the reduction of the urban population density. Beijing is a
mega city with a relatively high population density, and its
population is the primary factor affecting its air quality. For
its part, the government should consider setting up high-tech
industrial parks and economic zones in Miyun District and
Huairou District in order to ease the population pressure
within Beijing, which could promote industrial development
while also reducing the population density in central Beijing.
The government should guide some Beijing administrative
departments to move to Xiong’an New Area in batches,
effectively dispersing local Beijing residents and other people
coming to Beijing to do business in dense areas, giving full
play to the complementary advantages of
Beijing–Tianjin–Hebei integration. The government
should increase the number of quality schools in the
development zones of Beijing to reduce the population
density of the schools in the city, and increase the
construction of parks, shopping plazas, and fitness
equipment around the city to attract people to live in
good environmental conditions. In addition, the
government should give certain preferential policies to

workers and job seekers in Beijing to encourage them to
move to Xiong’an New Area, which is the centralized bearer
of the non-capital functions of Beijing, in order to further
relieve the existing population pressure in Beijing.

2) Continuously optimize the energy structure and encourage
the use of clean energy. The state and government should
continue to promote clean energy, such as natural gas, as the
main source of energy for daily life. In the industrial industry,
the government should adopt certain policies to help
enterprises gradually replace high pollution and high
energy consumption equipment with low pollution and low
energy consumption equipment; upgrade sewage equipment;
strengthen energy consumption monitoring; recycle water,
coal, and industrial raw materials as many times as possible;
and take better optimization measures to further improve the
efficiency of energy use. Air conditioners and refrigerators are
most frequently used in summer. Encouraging the public to
buy or switch to fluoride-free air conditioners and
refrigerators will not only reduce energy consumption but
also reduce the damage to the ozone. Regarding urban
residential heating in the winter, the government should
strive to popularize natural gas heating, electric heating,
geothermal heating, and other clean heating methods as
soon as possible. Where possible, streetlights in urban areas
should be converted to solar power to reduce the energy
consumption of public resources, while wind power stations
can be set up in the northwestern part of Beijing as
appropriate. The promotion of various clean energy sources
will reduce the harmful emissions from the burning of non-
renewable resources, which will better promote the low-
carbon green development of Beijing and enter the 2022
Beijing Winter Olympic and Paralympic Games with
improved environmental quality.

3) Promote green travel for all people and the use of new energy
vehicles. The government should actively promote the public
taking the subway and bus as much as possible when they go
out, which is convenient and environmentally friendly.
People who do need to purchase a car should be
encouraged to respond to the national call for low carbon
and environmental protection by purchasing hybrid or
electric cars to meet their daily needs. The promotion of
low-carbon travel should be increased on bus billboards and
publicity boards in various public places. For new purchases
and car exchanges, according to personal circumstances, the
recommendation is to purchase electric or hybrid cars for
daily city trips and gasoline dual-purpose cars for frequent
long-distance business trips. In terms of traffic control, a
limiting number system should be applied to fuel cars to
reduce traffic flow, while the restrictions on new energy
vehicles should be relaxed to motivate people to buy new
energy vehicles. The number of refueling stations in the city
should be increased along with the number of charging posts
in city parking lots to ensure that new energy vehicles can be
recharged in time for continuous use. The bus routes in
Beijing should be optimized to make it easier for people to
travel by avoiding congestion in the morning and evening
rush hour bus lanes. The government should call on the
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people of the city to create a favorable travel environment for
the main venue of the 2022 Beijing Winter Olympic and
Paralympic Games, and to fully demonstrate the low-carbon
awareness of the people of China to the rest of the world at
the Winter Olympics.

Suggestions for Improving Air Quality in
Zhangjiakou
1) Actively guide urban and rural residents to enhance their

awareness of air protection. In order to maintain the air
quality in Zhangjiakou in the long term, it is necessary to
further increase the awareness of the people to air protection.
This can be done by holding a series of public meetings
such as “Environmental protection tips” and “Hazards of
air pollution” in neighborhood committees and village
committees, calling on the general public to learn more
about the importance of air for human survival. Township
residents should be encouraged to promote the use of natural
gas, solar energy, and other environmentally friendly energy
sources instead of the traditional straw burning in order to
reduce emissions. Television, radio, the internet, and other
information dissemination channels should be used to
promote the importance of protecting the air environment.
Real and rewarding methods, such as reporting, will attract
people to supervise each other, and eventually everyone will
consciously restrain themselves. Taking these steps will create
a good social atmosphere for the hosting of the Winter
Olympics and fully highlight the high-quality self-
cultivation level of the Chinese people.

2) Accelerate the optimization and upgrading of industrial
industries and attract high-quality enterprises to set up
factories. In the industrial industry, the government
should continue to deepen structural reform on the
supply side, provide increased assistance to industrial
enterprises to accelerate the optimization and upgrading
of industrial structures, and subsidize a certain percentage
of the high-energy consumption and high-pollution
equipment after elimination and replacement to
encourage enterprises to reduce energy consumption
and reduce the emission of harmful air pollutants.
Zhangjiakou should also make great efforts to attract
investment, focusing on attracting low-pollution
processing enterprises such as processing manufacturing
and the garment industry to set up factories in
Zhangjiakou. This would not only promote the
development of the economy of Zhangjiakou but also
help to protect the air quality in Zhangjiakou to
improve continuously so as to contribute to the smooth
operation of the 2022 Winter Olympic Games and Winter
Paralympic Games in Zhangjiakou.

3) Ensure stable production in agriculture, forestry, animal
husbandry, and fisheries, and strengthen technical
guidance and research in the exploration of recyclable
models. In agriculture, farmers should be encouraged to
use low pollution fertilizers. Drones should be used to spray
pesticides instead of traditional manual spraying. Notices

should be posted in prominent locations in rural streets to
clearly prohibit straw burning. More trees should be
planted on some unutilized hills, which would increase
the forest cover and have a purifying effect on the air
environment. The livestock industry should encourage
technical experts to increase the number of field
guidance trips in the countryside and actively help
herders to carry out scientific breeding and improve the
utilization rate of farmland and feed. Animal manure
should be stored centrally and regularly transported to
septic tanks for treatment. Farmers near grasslands
should take full advantage of their location to build
horseriding facilities, both to improve their income and
reduce the amount of breeding. Construct a comprehensive
industrial experimental zone integrating agriculture,
forestry, and animal husbandry, give full play to the
advantages of agriculture, and provide organic feed. The
forestry industry stabilizes the soil and protects it from
wind, absorbing exhaust gas, and replenishing sufficient
oxygen at the same time. For animal husbandry, in order to
reduce the use of chemical fertilizers, a variety of natural
fertilizers can be explored to reduce exhaust gas emissions.
Efforts should be made to explore a realistic model of multi-
resource recyclable use. While these efforts will help ensure
the stability of the daily life and livelihoods of the people,
they will also help carry out the important initiative of
“accelerating the reform of the ecological civilization
system and building a beautiful China” emphasized by
General Secretary Xi Jinping in the report of the 19th
Party Congress and welcome the 2022 Winter Olympics
and Winter Paralympics with a strong ecological outlook.

Research Limitations and Prospects
Research limitations
With the continuous acceleration of the social process, the
influence of economic factors on the atmospheric environment
has become more and more guiding. However, the current
economic system is difficult to sort out in the short term due
to the many elements involved. Therefore, this study selects as
many air and socioeconomic indicators as possible instead of
selecting all the indicators as the research object is one of the
limitations of this paper. In addition, this paper does not carry out
joint research on the air index and social economic index of the
area around the two cities.

Prospects
Since the concept of regional coordinated development is valued
by the government and society, it is also of great significance to
combine the grey correlation analysis model with the new
coupling coordination model to study some specific regions.
This paper only discusses the relationship between air
pollution indicators and social economy from the perspective
of time, and it is also interesting to consider combining time and
space for analysis in the future. Considering that the grey
relational analysis model has unique advantages in factor
analysis, it can also be widely used in more fields to give play
to the practical value of the model.
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The air quality index (AQI) indicates the short-term air quality situation and changing trend
of the city, which includes six air pollutants: PM2.5, PM10, CO, NO2, SO2 and O3. Due to the
diversity of pollutants and the fluctuation of single pollutant time series, it is a challenging
task to find out the main pollutants and establish an accurate forecasting system in a city.
Previous studies primarily focused on enhancing either forecasting accuracy or stability
and failed to analyze different air pollutants at length, leading to unsatisfactory results. In
this study, a model selection forecasting system is proposed that consists of data mining,
data analysis, model selection, and multi-objective optimized modules and effectively
solves the problems of air pollutants monitoring. The proposed system employed fuzzy
C-means cluster algorithm to analyze 13 original AQI series, and fuzzy comprehensive
evaluation is used to find out the main air pollutants in each city. And then multiple artificial
neural networks are used to forecast the main air pollutants for each category and find the
optimal models. Finally, the modified multi-objective optimization algorithm is used to
optimize the parameters of optimal models and model selection to obtain final forecasting
values from optimal hybrid models. The experiment results of datasets from 13 cities in the
Beijing–Tianjin–Hebei Urban Agglomeration demonstrated that the proposed system can
simultaneously obtain efficient and reliable data for air quality monitoring.

Keywords: air quality index, data analysis, data mining, artificial neural networks, model selection

INTRODUCTION

In recent years, air pollution has received increasing attention due to the negative effects, such as
respiratory diseases, that it has on human health (Jiang et al., 2017). Simultaneously, air pollution is a
growing environmental concern, responsible for approximately 2 million premature deaths per year
worldwide (World Health Organization, 2008). A report issued by the World Health Organization
(WHO) acknowledges that air pollution is one of the biggest health risks (Xu et al., 2016). Since the
industrial revolution, many countries have focused on economic development while ignoring air
quality, and incidents that cause harm are everywhere. In 1930, the Mas Valley event in Belgium
caused nearly 60 deaths in a week. In the 1940s, the smog incident in Los Angeles caused many
people to have red eyes, pharyngitis, respiratory disease deterioration, and even confusion and
pulmonary edema. In 1948, the American Donora incident caused 5,911 people to become violent.
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The most serious is the well-known London smog event of
1952—more than 4,000 deaths in 4 days and more than 8,000
deaths in 2 months. In addition, air pollution in China is also
quite serious. The previous results in 2009 showed that the air
quality index (AQI) in 107 cities of China did not meet the
country’s national air quality standards (NAAS) (Zhou et al.,
2014). In addition, 7 of the 10 most polluted cities in the world are
in China. According to the World Bank, China loses 10% of its
gross domestic product each year due to air pollution. Air
pollution is also associated with elevated rates of mortality,
causing between 350,000 and 500,000 premature deaths each
year in China (Shanshan et al., 2014). Air pollution has become
the fourth leading health risk factor for China after smoking, diet,
and obesity (Zhang et al., 2018). In order to reduce the losses
caused by air pollution, several health and governmental
institutions gather and publish data regarding what is known
as AQI to inform people about the state of air pollution. For
instance, the European Environment Agency (EEA) and the
European Commission (EC) have launched, in 2017, an online
platform that provides information about current air quality
situation based on measurements from more than 2,000 air
quality monitoring stations across Europe (Akyüz and Çabuk,
2009). In addition, China’s environmental supervisors have also
issued some plans and programs, including EIA (Environmental
Influence Assessment) and Emergency Response for reducing air
pollution. Since 2013, China has also begun to evaluate the quality
of air through AQI values and graded the city’s air quality by AQI
values. AQI is an important evaluation indicator that
comprehensively reflects the air pollution status related to
human health. Through the use of the AQI it was possible to
synthesize, in a single daily value, concentrations of major
pollutants in urban areas (NO2, O3, CO, SO2, PM2.5, PM10)
for the entire period (Feng et al., 2015). The greater the AQI
value, the more serious the air pollution. But real-time air quality
monitoring can no longer meet people’s needs. Like weather
forecasts, people also long for air quality prediction to arrange
their activities and take protective measures in advance (Hao
et al., 2021).

Obviously, if we can provide early warning before the hazard
occurs, based on a good air quality early-warning system, these
losses might be avoided by taking effective corresponding
protection measures. In order to establish an effective air
warning system, observation and control of air quality is the
key issue for authorities. The most significant point in any kind of
air pollution control system is to be able to detect increasing
(deterioration) or decreasing (improvement) trends (Hao and
Tian, 2018). Unfortunately, because air quality data is obtained in
limited time and space, its incompleteness and non-stationarity
may result in low accuracy and poor stability of the forecasting
results (Hao et al., 2019). Therefore, the prediction of AQI or
other pollution indicators is a challenging task.

In recent years, many studies on air quality have focused on
the prediction of atmospheric pollutant concentrations. From the
angle of methodology, various quantitative prediction methods of
the atmosphere pollutant concentrations can be classified into
two categories, including deterministic models and empirical
models (Steffens et al., 2017). The deterministic model is

mainly the chemical transport model (CTM), which is based
on the fundamental principles of simulating atmospheric physics
and chemistry that involve transportation, emissions, and
conversion processes in air pollution (Rivas et al., 2018). The
forecasts are used to support flight planning by enabling the
representation of important three-dimensional (3-D)
atmospheric chemical structures (such as dust storm plumes,
polluted air masses originated by large cities, and widespread
biomass burning events) and their time evolution, which are often
research targets to be detected and investigated through specific
flight plans (Latif et al., 2018). Various models have been
proposed to identify the interactions between various air
pollutants and their emission sources (Yang and Wang, 2017).
Nonetheless, due to the incomplete knowledge and
understanding of the sources, dispersion and sinks of
pollutants, transport processes, and atmospheric chemicals,
there are some significant uncertainties in the models,
resulting in air pollutant concentrations being among the most
difficult to forecast accurately using CTMs (Liu et al., 2008).
Therefore, CTM forecasts are less accurate than empirical air
quality predictive models that are trained with local
meteorological data and air quality.

A large number of empirical models include statistical models
and machine learning models for the forecast of atmospheric
pollutant concentrations. Common statistical models for air
quality prediction include autoregressive (AR) models, moving
average (MA) models, autoregressive integrated moving average
(ARIMA) models, and multiple linear regression (MLR) models.
For example, Zhang et al. (2018) applied the RIMA model to
predict the concentration of PM2.5 based on time series air quality
data covering two warm periods and two cold periods and
concludes that PM2.5 concentration is higher in the cold
period and lower in the warm period. MLR models are
applied by Mehmet Akyüz et al. (Pereira et al., 2018) to
forecast the concentration of individual pollutants. The study
also considers the effects of contaminant concentrations and
other meteorological parameters. Although Box–Jenkins Time
Series (ARIMA) andMLRmodels have been applied to air quality
forecasting in urban areas, they have limited accuracy owing to
their inability to predict extreme events, and they are not
applicable when performing long-term prediction and
nonlinear sequence prediction.

On the contrary, artificial neural networks (ANNs) are more
popular for their no-linear systems, especially when it is difficult
to determine the theoretical models (Lanzafame et al., 2015).
Díaz-Robles et al. (2008) combined a new hybrid model of
ARIMA and ANN to improve the prediction accuracy of areas
with limited air quality and meteorological data. Xiao Feng and
Qi Li et al. (Feng et al., 2015) combined air mass trajectory
analysis and wavelet transform and proposed that ANN predicts
the daily average concentration of pollutants 2 days in advance,
improves the accuracy of prediction, and is superior to other
models. However, they also have certain shortcomings that may
fall into local optimum or over-fitting, which may result in poor
prediction.

Any model has its inevitable shortcomings, and due to the
advent of the world’s big data era, data mining techniques such as
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decomposition methods (Güçlü et al., 2019), feature selection
techniques (Pan et al., 2011), and optimization algorithms (Liu
et al., 2019) combined with artificial intelligence technology are
more operational. Therefore, with consideration of forecast
accuracy, hybrid models which combine a new method with
artificial intelligence are of great significance in air quality
forecasting field (D’Allura et al., 2011). Although the
construction of the combined model is usually based on actual
problems to achieve the expected test objectives, there are still
some problems that most of the past studies have focused on
improving the prediction accuracy of the model while ignoring
the stability of the model prediction. Many optimization
algorithms inspired by nature including cuckoo algorithm
(Urbancok et al., 2017), firefly algorithm (Bessagnet et al.,
2019), bat algorithm (Liu et al., 2018), and particle swarm
optimization algorithm (Kumar et al., 2019) have been
developed to solve single-objective problems in recent years.
However, real-world optimization problems always involve
multiple objectives and so-called multi-objective optimization,
which means, in this case, the solutions for a multi-objective
problem, which is the main focus of the algorithm, represent the
trade-offs between the objectives due to the nature of such
problems (Shenfield and Rostami, 2015). The developed multi-
objective optimization algorithm has been applied more and
more widely in the fields of finance (Li et al., 2019) and
mechanical engineering (Dhiman and Kumar, 2018). The
atmosphere is a highly complex dynamic system. The air
quality data sequence usually has characteristics such as non-
stationarity and nonlinearity; thus, the multi-objective
optimization algorithm is a suitable choice.

Furthermore, air quality assessment algorithms are developed
to assess air quality and protect human health from air pollution
and play a vital role in air quality warning systems. The early-
warning system can increase the environmental consciousness of
society and protect the public against hazardous air quality. It can
also aid the relevant departments to better control air pollution
and avoid negative social, economic, and environmental impacts.
According to the aforementioned analysis, developing a novel
and robust air quality early-warning system has become highly
desirable for society. Therefore, a variety of models are employed
in air quality assessment, including mobile monitoring (Li et al.,
2018), CFD-RANS simulation (Lauriks et al., 2020), principal
component regression (PCR), sensitivity analysis (Kim et al.,
2018), Bayesian models (Han et al., 2021), support vector
machines (SVM) (Leong et al., 2019), ANNs (Davood et al.,
2021), and fuzzy techniques (Dass et al., 2021). However,
although the air quality warning system has important
practical significance to the public in other fields, China’s
research in this field is still relatively small.

Looking back at the previous literature on air quality
forecasting research, the shortcomings of the traditional air
quality forecasting models are summarized as follows: 1) the
large amount of information required by the CTMmodel leads to
uncertainty in the forecasting. 2) The single statistical models
with low forecasting accuracy cannot meet the requirements of air
quality forecasting. 3) In the past, many air quality studies
focused on eliminating the effects of noise on data processing

and less on the feature extraction of data. 4) It is easy for single-
objective optimization algorithm commonly used to fall into local
optimum and over-fitting, resulting in poor stability. 5) In
addition, previous studies on air quality have focused on air
quality forecasting, while the research on air quality assessment
was relatively rare.

Based on the above analysis, it is necessary to overcome these
deficiencies and develop a novel and robust air quality warning
system. The evaluation–forecast system developed in this study
consists of two parts: evaluation and forecasting. The evaluation
part involves feature extraction and finding out the main air
pollutants; in the forecasting part, a new metric is developed to
find the optimal model in each category, and optimal forecasting
models are optimized with modified gray wolf optimization
(DEGWO) optimization algorithm and leave-one-out deciding
weight strategy to improve the accuracy of forecasting results and
provide support for early warning systems. The specific
implementation steps of the hybrid forecasting system are as
follows: First, the feature extraction of the original data is
performed to find similar attributes of AQI time series
according to the relevant theory of fuzzy C-mean cluster.

Moreover, air quality evaluation based on the forecasting
results of air pollutant concentration plays a crucial role in the
development of the air quality warning system.

In this paper, in view of the uncertainty and ambiguity of each
air pollutant, the fuzzy comprehensive evaluation is applied in
AQI. According to the implementation of fuzzy comprehensive
evaluation results, finding out the main pollutants in each city is
another important part of this work. Next, we use long short-term
memory (LSTM), backpropagation neural network (BPNN),
adaptive network-based fuzzy inference system (ANFIS),
generalized regression neural network (GRNN), and SVM
models to forecast the main air pollutants time series, and a
developed new metric is used to select optimal forecasting model.
Finally, all these individual forecasting models’ predictors based
on the leave-one-out deciding weight strategy are optimized by
the DEGWO optimization algorithm, and the final forecasting
results are obtained. Therefore, the combination of these methods
will result in more accurate forecasts and assessments
performance, providing significant advantages for the
construction and implementation of early warning systems for
detecting air quality. The main contributions of this paper are as
follows:

1) The fuzzy comprehensive evaluation is established for six air
pollutants, which calculates the fuzzy membership degree of
each pollutant and determines the main pollutants of
each city.

2) A model selection index is established to select the optimal
forecasting model from different neural network models.
Based on model selection, the established weighted
information criterion can select the optimal forecasting
model for PM2.5, PM10, and NO2 forecasting.

3) The forecasting performance of the optimal single model is
improved. In the forecasting process, an improved multi-
objective optimization algorithm is used to optimize the
parameters of the single forecasting model, which not only
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improves the prediction accuracy but also improves the
stability of the single model

4) The model selection index is used to select the optimal
forecasting value from the optimal hybrid model.

METHODOLOGY

In this subsection, the relative methods are presented in detail,
including the data mining technique, forecasting model, and the
DEGWO) algorithm. Subsequently, the marching process of our
developed combined model is demonstrated.

Forecasting Model
Five typical models, namely, the multilayer perceptron (MLP) (You
et al., 2017), ANFIS (Jang, 1993), LSTM (Muzaffar and Afshari,
2019), SVM (Brereton and Lloyd, 2010), and GRNN (Land and
Schaffer, 2020), have been widely used for air pollutants forecasting
because of their robustness, efficiency, and accuracy.

Modified Gray Wolf Optimization (DE-GWO)
For the DE algorithm and gray wolf optimization (GWO) algorithm,
the defects of prematurity, poor stability, and ease in falling into local
optimum will occur when solving the optimization problem
separately. Combining the advantages and disadvantages of the
two algorithms, a more efficient hybrid optimization algorithm,
DEGWOalgorithm, is proposed to improve global search capabilities.

Firstly, in order to avoid the phenomenon in which the
population is iteratively reduced to a certain area, the crossover
and selection operations of the DE algorithm are used to maintain
the diversity of the population. Then, as the initial population of the
GWO algorithm, the objective function value of the individual is
calculated. The optimal three individuals Xα, Xβ, and Xδ are selected
to update the positions of other gray wolf individuals. Then, the
position of the gray wolf individual is updated by the intersection
and selection operations of DE, and the iterative update is repeated
until the optimal one is selected. The target function value is output.

The hybrid algorithm not only improves the global search
ability but also effectively avoids the defects of early maturity
stagnation and falling into local optimum. The specific
implementation steps of the algorithm are as follows:

Step 1: Set the relevant parameters of the hybrid optimization
algorithm, population size N, maximum iteration number
tmax, crossover probability CR, search dimension D, search
range ub, lb, and scaling factor range F.
Step 2: The parameters a, A, and C are initialized, and the DE
variant operation is performed on the population individual
according to Eq. 1 to generate an intermediate; an initial
population and the number of iterations is set to t � 1.

vij(g + 1) � { hij(g), rand(0, 1)≤ CR or j � rand(1, n)
xij(g), rand(0, 1)> CR or j≠ rand(1, n)

(1)

Then the competition selection operation is performed
according to Eq. 2 to generate.

xi(g + 1) � { vi(g), f[vi(g + 1)] <f[xi(g + 1)]
xi(g), f[vi(g + 1)] ≥ f[xi(g + 1)] (2)

Step 3: Calculate the objective function value of each gray wolf
individual in the population, sort according to the size of the
objective function value, and select the optimal first three
individuals as Xα, Xβ, and Xδ, respectively.
Step 4: Calculate the distance between other gray wolf
individuals in the population and the optimal Xα, Xβ, and
Xδ according to Eqs 3–5.

Dα � |C1Xα(t) −X(t)| (3)

Dβ �
∣∣∣∣C2Xβ(t) −X(t)∣∣∣∣ (4)

Dδ � |C3Xδ(t) −X(t)| (5)

Finally, update the current position of each gray wolf
individual according to Eqs 6–9.

X1(t + 1) � Xα(t) − A1Dα (6)

X2(t + 1) � Xβ(t) − A2Dβ (7)

X3(t + 1) � Xδ(t) − A3Dδ (8)

Xp(t + 1) � X1 +X2 +X3

3
(9)

Step 5: Update the values of a,A, and C in the algorithm, cross-
operate the position of the individual population according to
Eq. 1, retain the better components, then perform Eq. 2 to
select new individuals and calculate the objective function
values of all gray wolf individuals.
Step 6: Update the positions of the top three gray wolf
individuals Xα, Xβ, and Xδ.
Step 7: Determine the count value. If the maximum iteration
number tmax is reached, the algorithm exits and, based on Eq. 10,
outputs themulti-objective function value of the global optimalXα;
otherwise, let t � t + 1, and then go to Step 3 to continue execution.

minf � f1(x) + f2(x)

s.t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(x) � 1

n
∑n

i�1 (errori)2

f2(x) � 1
n
∑n

i�1 (errori − error)2
(10)

Fuzzy C-Means Clustering
Fuzzy C-means clustering (FCM), known as fuzzy ISODATA, is a
clustering algorithm that uses membership degrees to determine
the extent to which each data point belongs to a certain cluster. In
1973, Bezdek proposed the algorithm as an improvement to the
early hard C-means clustering (HCM) method (Gayen and
Biswas, 2021). The clustering steps are as follows:

Step 1: Initialize the membership matrix U with a random
number whose value is between 0 and 1, so that it satisfies the
constraint in Eq. 11.

∑
i�1
c

uij � 1,∀j � 1, ..., n (11)
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Step 2: Calculate c cluster centers ci (i � 1, c) using Eq. 12.

ci �
∑n

j�1u
m
ijxj∑n

j�1u
m
ij

(12)

Step 3: Calculate the value function according to Eq. 13. If it is
less than a certain threshold, or if the amount of change from
the value of the last value function is less than a certain
threshold, the algorithm stops.

J(Uc1, ..., cc) � ∑
i�1
c

Ji � ∑
i�1
c ∑

j

n
um
ijd

2
ij (13)

Step 4: Calculate the new U matrix with Eq. 14. Go back to
Step 2.

uij � 1

∑c
k�1(dij

dkj
) 2

(m−1)
(14)

Fuzzy Synthetic Evaluation Theory
The process of establishing a fuzzy synthetic evaluation (FSE)
system is as follows (Lu et al., 2011).

Step 1. The set of factors for the evaluation object is
determined.

The selected factors should possess the traits of
representativeness, feasibility, and system. Air quality evaluation
relies on the concentration levels of the main air pollutants.
Therefore, in this study, the indicators were chosen according to
China’s ambient air quality standards (AAQS: GB3095-2012).
Moreover, different geographical areas have different topographic
and economic characteristics, and consequently, the different key
pollutants in the study areas should be also considered.

Step 2. The evaluation rank standard is determined.

The evaluation rank set is described as V � {v1, v2,/,vn}. In
our study, the air pollution degrees were divided into five levels.
The pollutants grading standard according to AAQS is shown in
Supplementary Appendix S1.

Step 3. Index fuzzification.

In this step, the membership functions (MFs) corresponding to
each index are obtained. The process of fuzzification constitutes the
process of membership calculation by using MFs. In this study, we
used the trapezoidal membership to calculate the membership value.

Step 4. The factor weight is calculated.

Weight reflects the importance of each factor in synthetic
evaluation and directly affects the outcome of the evaluation.
Many methods exist for determining the weight, such as weighted
statistics, coefficient of variation method, the Delphi method, and

entropy methods. In our study, the weight was calculated by fuzzy
weighting method.

Step 5. The evaluation results are output.

The objective function of the DEGWO algorithm is based on
stability and accuracy, in which MSE is the standard to measure
accuracy and the variance of error is the standard to measure
stability. Algorithm 1 briefly outlines the process of the
MODEGWO.

Algorithm 1. MMODA
Input: Objective function Min fitness(x) � f1 + f2

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f1(x) � MSE � 1

N
∑N
i�1

(x̂i − xi), i � 1, 2, ..., N

f2(E) � Var(E) � 1
N

∑N
i�1

(Ei − �E)2, i � 1, 2, ..., N

Note: Ei is the test error; the calculation equation
is Ei � x̂i − xi

x̂i and xi are the actual data and output data by each model
Parameters of DEGWO
CR is crossover probability: 0.2;
MaxGen is the maximum number of the iteration: 500;
F is the scaling factor: [0.2, 0.8];
psize is population size: 50.

Output: The optimal solution and the best objective
function value.

Initialize a parent population, mutant population, and child
population of gray wolf with a random position in a feasible
region using equation;

xk
p � xk

p(low) + (xk
p(up) − xk

p(low)) × rand(0, 1)
Note: xkp(low) is the lower bound of the pth component of the

kth individual.
xk
p(up) is the upper bound of the pth component of the kth

individual.
rand(0, 1) represents a random number in [0, 1].
p � 1, 2/, d. k � 1, 2/, psize

Initialize crossover probability Pc and scaling factor F;
Initialize a, A, and C;
Evaluate f for all individuals in the parent population;
Sort the parent population in a non-decreasing order,

according to the objective function value;
Xα is the best individual in the parent population of gray

wolves;
Xβ is the second individual in the parent population of gray

wolves;
Xδ is the third individual in the parent population of gray

wolves;
While (t <MaxGen)
for each individual in the parent population of gray wolves
Update the position using the following equation;
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Xp(t + 1) � X1 +X2 +X3

3

end for
Obtain a mutant population of gray wolves using the following

equation;

Vi(g) � Xr1 + F · (Xr2(g) +Xr3(g))
Note: g is the generation number,

F is the scaling factor, g � 0, 1, 2,/, MaxGen,
MaxGen is the maximum number of the iteration

Obtain a child population of gray wolves using the following
equation;

vij(g + 1) � { hij(g), rand(0, 1)≤CR j � rand(1, n)
xij(g), rand(0, 1)>CR j � rand(1, n)

CR represents the crossover probability
for each individual Parenti in a parent population of gray

wolves
If f(Childi) < f(Parenti)
Replace Parenti with Childi
end if
Update A, C, and a;
Sort the parent population of gray wolves in a nondecreasing

order;
Update Xα, Xβ, Xδ;

t � t + 1;
End while
Return Parentα and f(Parentα).

Formulation of the Hybrid Model
The hybrid AQI forecasting system in this paper is composed of
the above three parts. A flow chart of the hybrid model is
presented in Figure 1.

From the above, we can see that the AQI forecasting step using
the hybrid forecasting system proceeds as follows:

Step 1: Data Mining
1. Collect the original data in the proposed hybrid forecasting

model. Specifically, the average hourly AQI and six air
pollutants are utilized as experiment data in this work.

2. Using data mining technology, 13 cities in
Beijing–Tianjin–Hebei Urban Agglomeration (BJ-TJ-HE)
are clustered, the characteristics of each category are
summarized, and each category is further analyzed.

The AQI and six air pollution time series with missing
points is filling processed by shape-preserving piecewise cubic
spline interpolation, which maintains the continuity of each
time series.

Step 2: Feature selection and data setting for each model

FIGURE 1 | Flowchart of air quality index forecasting system for Beijing–Tianjin–Hebei Urban Agglomeration.
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1. Feature selection: According to the result of cluster,
establish fuzzy comprehensive evaluation for six
pollutants and find out the main air pollutants of each in
the same category.

2. Data setting: Each main air pollutants time series can be
divided into three parts: training sample and testing samples
for the forecasting values. The training sample is used to
construct and train the ANNs, which in this work consist of
a BPNN, SVM, GRNN, LSTM, and ANFIS. In addition, the
testing sample is used to select the optimal model. For this,
the WIC values of the ANNs are calculated, and the best
model in terms of the WIC is selected. The input data are
used to train the ANNs before calculating the forecasting
value, with 1–6 input nodes and 1–30 hidden nodes.
According to the value of WIC, the best forecasting
model and best structure are chosen.

Step 3: Optimize the parameters of the best forecasting model.

To ensure the forecasting performance, a modified
optimization algorithm is used to further optimize the
parameters of the best forecasting model (expect LSTM).
Finally, the main air pollutants forecasting results are obtained
and compared with those of different hybrid forecasting models.

EXPERIMENT DESIGN AND ANALYSIS

In this section, the specific information of experiment datasets in
BJ-TJ-HE are described in detail. Eight performance metrics are
applied to assess the performance of the proposed model. The
experiments conducted in this study were implemented on
Matlab 2018a, and the specifications of the hardware were as
follows: Intel Core i9-7920X 2.90 GHz CPU and 32 GB RAM.

Data Description
The BJ-TJ-HE is the national capital region of the People’s
Republic of China. It is the biggest urbanized megalopolis
region in Northern China, where Beijing, Tianjin, Baoding,
and Langfang are the central core areas of BJ-TJ-HE. In this
paper, the 13 cities of BJ-TJ-HE are evaluated to develop an early
warning indicator for air quality. The datasets of hourly
concentrations of the six major air pollutants used in this
study are retrieved from the website of the China National
Environment Monitoring Centre (http://www.cnemc.cn/sssj/).
The first dataset includes AQI hourly concentrations collected
from January 1, 2017, to December 31, 2018, in BJ-TJ-HE.
Figure 2 shows the result of fuzzy C-mean cluster, which
displays the construction of a fuzzy matrix based on the
attributes of AQI in 13 cities and objectively and accurately
cluster (Category I: Beijing, Baoding, Langfang; Category II:
Shijiazhuang, Tangshan, Handan, Chengde, Hengshui, Xingtai;
Category III: Tianjin, Qinhuangdao, Zhangjiakou, Cangzhou).
The result of fuzzy comprehensive evaluation is shown inTable 1,
which found that the main air pollutants are PM10, PM2, and NO2

in 13 cities.
According to the analysis in Table 1, the main air pollutants

from statistical analysis of BJ-TJ-HE are NO2, PM2.5, and PM10

shown in Table 2, in which the average value of the main air
pollutants shows obvious differences among the 13 cities. The
average value of NO2 in the different cities is between 22.2525 and
49.4348 μg/m3, in which the average value in Xingtai is higher
than in the other cities. At the same time, the PM2.5 and PM10

average values in Xingtai are 69.6938 and 135.8368 μg/m3, which
are also higher than in the other cities. The maximum values of
NO2, PM2.5, and PM10 were in Hengshui, Baoding, and
Zhangjiakou, with values of 215, 402, and 1581 μg/m3, and the
minimum values of the three main air pollutants were in
Zhangjiakou, Beijing, and Zhangjiakou, with values of 1, 3,
and 12 μg/m3.

In terms of skewness, all data sets are rightward, with values of
skewness are greater than 0. For the values of kurtosis, only three
data sets of NO2 were less than 3, which meant that these three
sets (Qinhuangdao, Shijiazhuang, and Xingtai) had a fat tail. At
the same time, the other data sets had a thin tail.

Forecasting Metric
This section focuses on the efficiency of the different forecasting
model with respect to computational performance. Eight
evaluation criteria are applied to estimate the forecasting
performance, namely, mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE),
Theil U statistic 1 (U1), and Theil U statistic 2 (U2) were
calculated for all the fits; the goodness of forecasting fit (R2)
and the standard of forecasting error (STDE) indicates the
stability of the forecasting models; and the direction accuracy
(DA) evaluates the optimal decision-making, often relying on
correct forecasting directions or turning points between the
actual and forecasting values. These performance metrics are
defined in Table 3.

Experiment Preparation: Model Selection
In the forecasting processing, there is no model that can be
applied to all time series in the process of forecasting. Therefore,
in this paper we developed a new metric, which measures
accuracy of each hybrid model testing set and determines
whether the model can provide the optimal forecasting value.
The process of model selection is as follows:

Each model data is divided into 840 training samples, 168
testing samples, and one forecasting value. The accuracy of the
testing sample is calculated by using the WIC. In order to
eliminate the difference of the order of magnitude of
forecasting metric, the MAE, MAE RMSE, MAPE, STDE, U1,
and U2 are normalized. The calculation formula is as follows:

WIC � NMAE +NRMSE +NMAPE +NSTDE + U1 + U2

+ R2 + (1 − DA)
For the first forecasting, the 1st to 840th samples are the

training samples, the 841st to 1008th samples are the testing
samples, and the 1009th sample is the forecasting value. At the
end of the forecasting, the WIC value of the testing sample is
calculated. If the WIC of the ith model is the smallest, the
forecasting value of the ith model provides the optimal
forecasting value.
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For the second forecasting, the 2nd to 841st samples are the
training samples, the 842nd to 1009th samples are the testing
samples, and the 1010th sample is the forecasting value. At the
end of the forecasting, the WIC value of the testing sample is
calculated. If the WIC of the ith model is the smallest, the
forecasting value of the ith model provides the optimal
forecasting value.

For the kth forecasting, the kth to (840 + k − 1)th samples are
the training samples, the (840 + k)th to (1008 + k − 1)th samples
are the testing samples, and the (1008 + k)th sample is the
forecasting value. At the end of the forecasting, the WIC value
of the testing sample is calculated. If the WIC of the ith model is
the smallest, the forecasting value of the ith model provides the
optimal forecasting value.

FIGURE 2 | Result of data mining for Beijing–Tianjin–Hebei Urban Agglomeration.

TABLE 1 | The result of fuzzy comprehensive evaluation

City Air pollution

PM10 PM2.5 NO2 CO SO2 O3

Beijing 0.91237 0.98072 0.63530 0.43071 0.39424 0.38603
Tianjin 0.86953 0.90659 0.64191 0.30671 0.37710 0.48547
Shijiazhuang 0.75937 0.70576 0.67125 0.38993 0.43133 0.41205
Tangshan 0.91044 0.74470 0.64615 0.37757 0.35546 0.43152
Qinhuangdao 0.87371 0.89213 0.72628 0.41083 0.30361 0.41777
Handan 0.82031 0.98267 0.72983 0.48603 0.31468 0.49503
Baoding 0.87530 0.95838 0.75981 0.34638 0.41152 0.39322
Zhangjiakou 0.90838 0.99560 0.63953 0.30755 0.42579 0.31045
Chengde 0.81195 0.73604 0.82316 0.40926 0.48029 0.31550
Langfang 0.75893 0.81218 0.87910 0.47526 0.42354 0.30550
Cangzhou 0.84830 0.82908 0.86664 0.49499 0.31973 0.41617
Hengshui 0.75544 0.93064 0.97252 0.35830 0.40872 0.33812
Xingtai 0.90721 0.93224 0.70024 0.47492 0.44532 0.31803

Note: if the result of fuzzy comprehensive evaluation is greater than 0.5, the pollutant is the main pollutant. The bold values are main Air Pollution, which the fuzzy comprehensive evaluation
results are greater than 0.5.
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TABLE 2 | Statistic of each main air pollutant in different cities.

City Pollutant Min Max Mean Skewness Kurtosis Mode

Beijing NO2 16 158 39.1947 0.7894 3.2759 18
PM2.5 3 273 50.0068 1.7017 6.5652 5
PM10 56 1,058 83.0744 5.7125 63.4085 27

Tianjin NO2 17 195 49.4348 0.8042 3.5754 36
PM2.5 11 237 49.9759 2.0621 9.2214 40
PM10 23 321 85.0560 1.7136 7.1605 68

Shijiazhuang NO2 4 145 44.0150 0.6088 2.7786 16
PM2.5 12 343 69.6938 1.7761 6.5778 43
PM10 29 461 132.2141 1.3934 4.9017 80

Tangshan NO2 5 200 54.2055 0.6325 3.5206 36
PM2.5 12 350 60.4803 2.4753 12.7626 44
PM10 26 484 114.9052 1.8083 8.0477 76

Qinhuangdao NO2 4 130 43.2894 0.6124 2.7408 17
PM2.5 6 250 38.2879 2.1722 9.8110 21
PM10 15 392 78.6504 1.7126 7.8222 54

Handan NO2 4 153 40.4909 0.9210 3.4780 17
PM2.5 8 321 69.4114 1.9836 7.2348 45
PM10 24 513 135.8368 1.6375 5.8557 85

Baoding NO2 4 159 44.7402 0.8947 3.3395 15
PM2.5 11 402 66.6175 1.9971 8.9785 33
PM10 24 527 115.9434 1.5658 6.3524 65

Zhangjiakou NO2 1 136 22.2525 1.9035 8.0002 19
PM2.5 7 184 31.1680 2.2524 10.1861 16
PM10 12 1,581 88.7293 6.2068 64.1126 31

Chengde NO2 2 126 30.6221 0.7458 3.5114 6
PM2.5 7 189 31.7188 2.2798 10.0002 13
PM10 14 561 81.6457 2.6593 14.4003 36

Langfang NO2 7 206 45.0315 1.0029 3.9963 20
PM2.5 9 282 51.8249 1.9651 7.9869 15
PM10 21 428 100.0498 1.6177 6.3231 69

Cangzhou NO2 5 170 41.2205 1.0111 4.0626 22
PM2.5 10 381 58.8355 2.5108 12.7637 35
PM10 16 509 104.4355 1.8495 8.5249 75

Hengshui NO2 2 215 32.2611 1.1356 4.8037 15
PM2.5 14 310 61.7583 2.3912 10.0981 40
PM10 19 391 103.5030 1.7636 6.3377 68

Xingtai NO2 3 155 47.4996 0.5950 2.9794 18
PM2.5 11 369 69.1419 1.9618 7.4487 35
PM10 17 524 135.3799 1.3911 5.2029 88

TABLE 3 | Definition of the performance metrics.

Metric Definition Equation

MAE The average absolute forecasting results error of n MAE � 1
n ∑n

i�1 |yi − ŷi |
RMSE The mean absolute percentage error of n forecasting results RMSE �

��������������
1
n ∑n

i�1 (yi − ŷi)2
√

MAPE The root mean square error of n forecasting results MAPE � 1
n∑n

i�1|yi− ŷi
yi

| × 100%

STDE The standard of error of n forecasting results STDE � �����������
Var(yn − ŷn)

√
U1 Theil U statistic 1

U1 �
����������
1
T∑T

T�1(yi−ŷi )2
√

��������
1
T∑T

T�1(yi )2
√

+
��������
1
T∑T

T�1(ŷi )2
√

U2 Theil U statistic 2
U2 �

�����������
1
T∑T

T�1(
yi+1−ŷi+1

yi
)2

√
����������
1
T∑T

T�1(
yi+1−ŷi

yi
)2

√
R2 The goodness of forecasting fit R2�∑N

n�1(yn−�y)−∑N

n�1(yn−ŷn)∑N

n�1(yn−�y)
DA Directions or turning points between actual and forecasting values

DA � 1
T ∑T

i�1 ai , ai � {1 if (yi+1 − ŷi)(ŷi+1 − yi)>0
0 otherwise.

Note: yi is the actual value, ŷi is the forecasted value, and T is the total number of data items.
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In the whole forecasting process, 168 optimal forecasting
values are generated, and 168*5 WIC values are generated at
the same time. Table 4 only shows the optimal model and the
percentage of optimal forecasting value for three main air
pollutants.

From Table 4, it can be seen that SVM provides more
optimal forecasting value for the three main pollutants at
different times, especially in the PM10 forecasting process;
the optimal forecasting value for the first quarter and the third
quarter is 82.14% (138 optimal forecasting value), and the
other four models also provide corresponding optimal
forecasting value.

Experiment I: Forecasting Processing for
Three Categories of NO2 by Each Model in
the First Season
In this portion, the hourly NO2 time series for 13 cities in three
categories were utilized as the testing data for the five hybrid

models with one-step-ahead forecasting. Beyond that, with the
purpose of comprehensively comparing the precision of the
modeling forecasting, this experiment consisted of two parts:
the multi-step forecasts demonstrated inTable 4 and, for the local
analysis horizon, the local forecasts presented in Table 95 and
Figure 3, which focus on first season. Table 5 and Figure 3
demonstrate the following:

1) Focusing on Category I, the new proposed model based on
model selection realizes excellent results on the eight
evaluation indices in the first season forecasting. On the
contrary, DEGWO-ANFIS has the lowest effectiveness. The
maximum reduction of MAPE for the proposed model
compared with the other hybrid models is approximately
71.18% in Beijing’s NO2 forecasting, 53.93% in Baoding’s
NO2 forecasting, and 61.61% in Langfang’s NO2

forecasting, respectively. The reduction was about
62.39% and 76.49% for one-step forecasting and 2.79%,
6.10%, and 19.33% for the three cities at the hourly interval

TABLE 4 | The result of model selection for main air pollutants in different seasons.

Category Air pollutants Selection First season Second season

I NO2 Model SVM GRNN BPNN ANFIS SVM GRNN BPNN LSTM
Percentage 67.86% 21.43% 7.14% 3.57% 39.29% 46.43% 10.71% 3.57%

II Model SVM GRNN BPNN LSTM SVM GRNN BPNN ANFIS LSTM
Percentage 53.57% 35.71% 3.57% 7.14% 64.29% 17.86% 7.14% 3.57% 7.14%

III Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 53.57% 35.71% 10.71% 32.14% 50.00% 10.71% 7.14%

I PM2.5 Model SVM BPNN SVM BPNN
Percentage 42.86% 57.14% 57.14% 42.86%

II Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS LSTM
Percentage 64.29% 21.43% 3.57% 10.71% 64.29% 17.86% 4.29% 3.57%

III Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS LSTM
Percentage 71.43% 17.86% 3.57% 7.14% 78.57% 14.29% 3.57% 3.57%

I PM10 Model SVM BPNN ANFIS SVM BPNN
Percentage 82.14% 14.29% 3.57% 78.57% 17.86%

II Model SVM BPNN SVM BPNN
Percentage 76.79% 16.07% 78.57% 21.43%

III Model SVM BPNN SVM GRNN BPNN
Percentage 82.14% 17.86% 75.00% 14.29% 10.71%

Category Air pollutants Selection Third season Fourth season

I NO2 Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 57.14% 25.00% 17.86% 60.71% 28.57% 5.36% 5.36%

II Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 60.71% 32.14% 7.14% 51.79% 32.14% 8.93% 7.14%

III Model SVM GRNN BPNN ANFIS LSTM SVM GRNN BPNN
Percentage 46.43% 25.00% 14.29% 7.14% 7.14% 46.43% 39.29% 10.71%

I PM2.5 Model SVM BPNN LSTM SVM BPNN ANFIS
Percentage 60.71% 17.86% 21.43% 50.00% 33.93% 14.29%

II Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS
Percentage 71.43% 17.86% 7.14% 3.57% 71.43% 21.43% 7.14%

III Model SVM BPNN ANFIS LSTM GRNN SVM BPNN ANFIS LSTM
Percentage 53.57% 28.57% 7.14% 7.14% 3.57% 64.29% 21.43% 10.71% 3.57%

I PM10 Model SVM BPNN SVM BPNN ANFIS
Percentage 82.14% 17.86% 71.43% 21.43% 7.14%

II Model SVM BPNN ANFIS SVM BPNN
Percentage 71.43% 17.86% 10.71% 67.86% 21.43%

III Model SVM BPNN ANFIS SVM BPNN ANFIS
Percentage 78.57% 17.86% 3.57% 76.79% 17.86% 5.36%
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TABLE 5 | The forecasting results of each model for NO2 in three categories.

Category I

Metric Model MAE RMSE STDE DA U1 U2 MAPE R2

Beijing MODEGWO-SVM 2.1754 3.1919 3.2010 80.84% 0.0464 2.0148 9.95% 0.9868
MODEGWO-GRNN 3.0082 3.9179 3.9242 50.90% 0.0569 2.6113 15.23% 0.9800
MODEGWO-BPNN 2.6589 3.7849 3.7857 69.46% 0.0550 2.4488 13.07% 0.9814
MODEGWO-ANFIS 3.4548 6.0636 6.0514 64.07% 0.0889 4.1096 16.57% 0.9524
Model select 2.1300 3.1765 3.1847 77.25% 0.0463 1.9446 9.68% 0.9869

Baoding MODEGWO-SVM 4.7162 7.4952 7.5055 77.25% 0.0665 2.1441 12.69% 0.9620
MODEGWO-GRNN 5.1070 7.9556 7.8716 60.48% 0.0706 3.6465 17.57% 0.9569
MODEGWO-BPNN 6.9580 9.8870 9.5789 59.28% 0.0906 2.3774 17.26% 0.9355
MODEGWO-ANFIS 7.0574 10.5964 10.1816 56.89% 0.2401 2.4591 18.41% 0.9223
Model select 4.4448 7.3418 7.3599 76.65% 0.0654 2.1115 11.96% 0.9628

Langfang MODEGWO-SVM 4.5141 7.5578 7.5731 76.05% 0.0880 2.2411 13.46% 0.9372
MODEGWO-GRNN 3.8320 5.2949 5.3098 62.28% 0.0625 1.7523 12.52% 0.9682
MODEGWO-BPNN 5.3965 8.4998 8.3895 62.87% 0.0980 2.9703 17.22% 0.9214
MODEGWO-ANFIS 6.3336 11.4957 11.3948 60.48% 0.1305 3.2108 18.23% 0.8745
Model select 3.6594 5.3249 5.3380 68.86% 0.0627 1.7819 11.28% 0.9676

Category II

Shijiazhuang MODEGWO-SVM 2.8162 4.8606 4.8733 82.04% 0.0498 2.3785 8.21% 0.9695
MODEGWO-GRNN 3.5480 5.0067 5.0163 50.90% 0.0517 2.2642 10.46% 0.9674
MODEGWO-BPNN 4.3533 6.7126 6.6382 58.68% 0.0694 2.9803 11.62% 0.9450
Adam-LSTM 5.8291 8.3652 8.3630 55.09% 0.0859 3.5319 14.95% 0.9167
Model select 2.8001 4.0036 4.0095 74.25% 0.0412 2.0289 8.02% 0.9792

Tangshan MODEGWO-SVM 4.2928 6.4751 6.4876 82.63% 0.0584 2.3028 12.41% 0.9643
MODEGWO-GRNN 3.5396 5.2423 5.2563 73.65% 0.0474 1.5259 9.14% 0.9763
MODEGWO-BPNN 5.9179 8.2307 8.2550 68.86% 0.0743 2.3721 16.20% 0.9423
Adam-LSTM 5.0169 6.9705 6.9845 74.25% 0.0630 2.3430 13.86% 0.9579
Model select 3.5604 5.3107 5.3266 77.84% 0.0481 1.5419 9.10% 0.9757

Handan MODEGWO-SVM 3.6331 5.9196 5.9315 72.46% 0.0570 2.2986 9.69% 0.9552
MODEGWO-GRNN 4.0699 6.2263 6.2395 60.48% 0.0604 2.3158 11.35% 0.9494
MODEGWO-BPNN 5.7352 8.4969 8.4366 55.69% 0.0832 2.3412 13.92% 0.9058
Adam-LSTM 5.3202 7.0150 6.9787 60.48% 0.0682 2.2208 12.31% 0.9378
Model select 3.3618 5.4628 5.4791 76.05% 0.0527 2.1130 8.79% 0.9620

Chengde MODEGWO-SVM 2.6775 4.0365 4.0326 71.26% 0.0653 1.8783 15.35% 0.9735
MODEGWO-GRNN 2.6787 4.0350 4.0461 62.87% 0.0658 2.0476 17.48% 0.9735
MODEGWO-BPNN 3.4332 4.9117 4.9230 60.48% 0.0804 2.2906 20.15% 0.9605
Adam-LSTM 4.5095 6.9772 6.9648 67.07% 0.1123 2.6262 26.28% 0.9201
Model select 2.4481 3.7646 3.7746 73.05% 0.0612 1.7081 13.90% 0.9769

Hengshui MODEGWO-SVM 4.7952 6.5453 6.5494 73.65% 0.0764 2.1369 15.41% 0.9405
MODEGWO-GRNN 6.0417 8.0467 8.0648 47.90% 0.0950 3.2945 23.59% 0.9078
MODEGWO-BPNN 10.7085 17.2255 16.7668 55.69% 0.2122 3.6978 27.02% 0.5924
Adam-LSTM 7.5643 10.4959 9.9896 49.70% 0.1296 2.3976 22.00% 0.8544
Model select 4.3346 6.1328 6.1423 74.85% 0.0717 2.0600 14.27% 0.9477

Xingtai MODEGWO-SVM 3.7973 5.6732 5.6880 70.66% 0.0494 2.1280 9.22% 0.9688
MODEGWO-GRNN 4.0825 6.1326 6.1358 65.87% 0.0535 2.3674 10.61% 0.9633
MODEGWO-BPNN 5.5707 8.1697 8.0221 61.68% 0.0727 2.6425 12.39% 0.9361
Adam-LSTM 7.1767 11.0393 11.0367 65.87% 0.0967 2.9015 15.29% 0.8884
Model select 3.5614 5.4338 5.4465 67.07% 0.0474 1.9570 8.58% 0.9710

Category III

Tianjin MODEGWO-SVM 2.5155 3.5288 3.5317 80.84% 0.0355 1.8109 5.98% 0.9830
MODEGWO-GRNN 2.9357 4.2368 4.2449 70.06% 0.0427 1.9437 7.51% 0.9750
MODEGWO-BPNN 3.1418 4.3375 4.3501 77.84% 0.0436 2.0924 7.57% 0.9744
Model select 2.3407 3.3033 3.3130 87.24% 0.0333 1.7699 5.66% 0.9850

Qinhuangdao MODEGWO-SVM 3.8108 5.4949 5.4950 81.44% 0.0554 1.7553 10.87% 0.9744
MODEGWO-GRNN 3.7633 5.3865 5.3965 65.87% 0.0549 2.1029 12.88% 0.9752
MODEGWO-BPNN 5.4520 7.6113 7.3974 67.66% 0.0791 2.0834 14.56% 0.9531
Model select 3.4285 4.8590 4.8733 74.85% 0.0494 1.7261 10.28% 0.9797

Zhangjiakou MODEGWO-SVM 2.3096 3.5862 3.5967 75.45% 0.0945 1.8076 13.87% 0.9058
MODEGWO-GRNN 3.1474 4.1463 4.1587 44.91% 0.1106 2.3875 20.99% 0.8669
MODEGWO-BPNN 2.7829 4.2140 4.1925 61.08% 0.1137 2.0222 16.66% 0.8640
Model select 2.0741 2.8440 2.8524 71.86% 0.0753 1.7182 13.10% 0.9395

Cangzhou MODEGWO-SVM 6.1489 9.0417 9.0626 78.44% 0.0803 2.0706 15.17% 0.9373
MODEGWO-GRNN 5.4532 7.6253 7.6448 58.68% 0.0682 2.0220 14.67% 0.9535
MODEGWO-BPNN 8.0522 11.4542 11.4009 55.69% 0.1031 2.8158 19.38% 0.9018
Model select 5.3105 7.9582 7.9179 70.66% 0.0716 1.9162 12.87% 0.9509
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NO2 forecasting in Category I. As for the R2, the proposed
model has the best performance among the four single-
hybrid models for hourly interval NO2 time series.

2) Focusing on Category II, it is clear that proposed model based
on model selection exhibits the best performance among the
single fourth hybrid models implemented for all eight criteria

FIGURE 3 | Forecasting result of NO2 for three categories in the first season.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 76128712

Huang et al. Main Air Pollution Forecasting

72

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


TABLE 6 | The PM2.5 forecasting result for each city in Category II by different models.

Metric Shijiazhuang

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.4632 0.4450 0.6554 1.2945 0.3518
RMSE 0.6106 0.5877 1.2148 2.0978 0.4497
STDE 0.6124 0.5809 1.2182 2.1038 0.4509
DA 75.45% 73.05% 70.66% 42.51% 81.44%
U1 0.0067 0.0064 0.0133 0.0221 0.0049
U2 1.4464 1.3998 3.4525 4.3147 1.2087
MAPE 1.31% 1.08% 1.85% 2.88% 0.88%
R2 0.9991 0.9992 0.9964 0.9889 0.9995

Metric Handan

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.5522 0.5250 1.3025 2.1956 0.4694
RMSE 0.7024 0.7009 2.5927 3.1495 0.6125
STDE 0.6835 0.7007 2.5352 3.1450 0.6092
DA 82.63% 83.83% 71.26% 43.71% 88.02%
U1 0.0051 0.0051 0.0191 0.0232 0.0045
U2 1.3944 1.4399 2.7102 4.7186 1.2395
MAPE 0.90% 0.85% 2.08% 3.46% 0.76%
R2 0.9993 0.9992 0.9896 0.9831 0.9994

Metric Hengshui

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.4649 0.5305 1.5424 2.6723 0.4392
RMSE 0.6107 0.7545 3.3746 3.8908 0.6260
STDE 0.6044 0.7515 3.3556 3.8552 0.6279
DA 82.63% 74.85% 65.87% 38.92% 83.44%
U1 0.0056 0.0070 0.0312 0.0356 0.0058
U2 1.3886 1.4988 6.8777 6.1294 1.2831
MAPE 0.92% 1.07% 3.34% 5.02% 0.88%
R2 0.9985 0.9984 0.9744 0.9724 0.9989

Metric Tangshan

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.3165 0.4449 1.1059 1.5655 0.3107
RMSE 0.3984 0.5718 2.9201 2.4642 0.3948
STDE 0.3961 0.5714 2.8491 2.4622 0.3947
DA 80.24% 69.46% 62.28% 43.11% 82.04%
U1 0.0052 0.0074 0.0381 0.0321 0.0051
U2 1.0656 1.3226 11.8381 5.4107 1.0363
MAPE 0.94% 1.36% 3.85% 4.63% 0.91%
R2 0.9996 0.9992 0.9818 0.9845 0.9996

Metric Chengde

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Ada-LSTM Model select

MAE 0.2413 0.3283 0.6149 0.9537 0.2388
RMSE 0.3103 0.4255 1.1569 1.7033 0.3017
STDE 0.3101 0.4241 1.1353 1.7052 0.3007
DA 70.06% 61.08% 53.89% 37.13% 72.06%
U1 0.0096 0.0104 0.0281 0.0414 0.0076
U2 1.0296 0.9017 2.7485 5.1292 1.0022
MAPE 1.46% 1.79% 3.20% 4.77% 1.34%
R2 0.9987 0.9976 0.9827 0.9663 0.9987

Metric Xingtai

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Ada-LSTM Model select

MAE 0.4611 0.5550 0.9154 1.4376 0.4354
RMSE 0.5936 0.7151 1.4925 1.9675 0.5685
STDE 0.5905 0.7119 1.4969 1.9238 0.5691
DA 74.85% 70.06% 56.89% 33.53% 77.25%
U1 0.0049 0.0059 0.0123 0.0161 0.0047
U2 1.3588 1.4830 3.4545 4.4867 1.2932
MAPE 0.79% 0.98% 1.67% 2.47% 0.75%
R2 0.9988 0.9983 0.9923 0.9874 0.9989
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involved. For theMAPE, there are average reductions between
the proposed model and single hybrid model, by
approximately 12.48%, 29.12%, 60.00%, and 66.70% in six
cities for the hourly NO2 time series forecasting, respectively.
Comparing the four single hybrid models for the hourly NO2

forecasting, the forecasting accuracy of DEGWO-SVM is

higher than that of the other three hybrid models. The
average reduction of MAPE among the MODEGWO-SVM
and the other three hybrid models is 16.70%, 42.79%, and
50.10%, respectively. In addition, all the R2 values of the
proposed model are over 90%, which underlines the higher
fitting effect on Category II.

FIGURE 4 | Forecasting performance of each model for Category II in the first season.
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3) The forecasting metric of the single hybrid models and the
proposed model in Table 4 indicates that the proposed model
based on model selection performs better than the single
hybrid model in Category III. As an example, with respect
to Tianjin, the DA values of the individual hybrid models are
80.84% (MODEGWO-SVM), 70.06% (MODEGWO-GRNN),
and 77.84% (MODEGWO-BPNN), while the DA values of the
proposed models is 87.24%, respectively. The comparative
analysis between the proposed model and the single model
confirms the advantages of the hybrid forecasting model.

4) Moreover, Table 5 displays each metric of NO2 forecasting
among the developed hybrid forecasting system and the single
hybrid models. According to Table 5, it is obvious that the
values of MAE, RMSE, MAPE, U1, and U2 of the proposed
hybrid model are all smaller than the other considered models,
and the values of DA and R2 of the developed hybrid
forecasting system are all greater than that of the single
hybrid model, which further confirms the superiority of the
presented hybrid forecasting system in terms of forecasting
ability.

In summary, from the analyses above, it can be concluded that
the model selection forecasting system realizes the best
forecasting results compared to the single hybrid model.
Model selection also gives better forecasting performance in
the other season with the results shown in Supplementary
Appendices S2–S4 indicating better robustness of the model
selection forecasting system.

Experiment II: The Forecasting Results of
Category II PM2.5 Forecasting in the First
Season
This experiment mainly focused on the forecasting performance
of each model for PM2.5 of Category II in the first season, with the
forecasting results of four different hybrid models (MODEGWO-
SVM, MODEGWO-BPNN, MODEGWO-ANFIS, Adam-LSTM)
and model selection represented in Table 6 and Figure 4

1) For first season PM2.5 forecasting accuracy, the final forecast
results of PM2.5 for six cities in Category II are composed of
four hybrid models, which include MODEGWO-SVM,
MODEGWO-BPNN, MODEGWO-ANFIS, and Adam-
LSTM. Among the four models, MODEGWO-SVM and
MODEGWO-BPNN have better forecasting performance,
with the MODEGWO-SVM obtaining 64.29% optimal
forecasting points and the MODEGWO-BPNN obtaining
21.43% optimal points for six cities in Category II. The
smallest MAPE values of MODEGWO-SVM are 0.92%,
0.94%, 1.36%, and 0.79% for Hengshui, Tangshan,
Chengde, and Xingtai PM2.5 forecasting, and the
MODEGWO-BPNN obtains the best MAPE (1.08% and
0.85%) value for Shijiazhuang and Handan.

2) For the goodness of fit, the R2 values of four different hybrid
models are over 0.95 for six cities in the first season, which
indicates that the forecasting values obtained by these models
is close to the actual value. The forecasting result of

Shijiazhuang shows that the R2 value of best hybrid modes
(MODEGWO-BPNN) is 0.9993, very close to 1, which
indicates that there is less difference between forecasting
data and actual data, and the forecasting value is basically
consistent with the actual value. Meanwhile, The DA values of
the best hybrid model are over 70%, which proves the best
models can effectively capture the changing trend of the
actual data.

3) For the forecasting results of model selection, Table 6 and
Figure 4 clearly show that the forecasting performance of
model selection is better than the hybrid model. The MAPE
value of model selection is 0.88%; compared with the optimal
hybrid model the MAPE improved 22.73%, and the MAE and
RMSE reduced 26.49% and 30.69%, respectively. Although the
model selection can improve the forecasting accuracy, in the
PM2.5 forecasting of some cities, due to the better forecasting
performance of the single hybrid model, the forecasting
accuracy of the model selection is not significantly
improved. For example, in the PM2.5 forecasting of Xingtai,
the MAPE value of optimal forecasting model (MODEGWO-
SVM) is 0.79%, and theMAPE of the model selection is 0.76%,
which shows that forecasting accuracy has no significant
improvement.

4) Similar to the first season, the PM2.5 forecasting results of
Category II in the second to fourth seasons are listed in
Supplementary Appendix Table 7 in which the best
forecasting performances of the hybrid model are shown
by DEGWO-SVM, DEGWO-BPNN, DEGWO-ANFIS, and
Adam-LSTM for PM2.5 forecasting in each city. Compared
with the optimal hybrid model, the final forecasting results
obtained by the model selection is more accurate than single
hybrid model, which indicates that the optimal hybrid model
has good forecasting performance but cannot be applied to all
the forecasting data.

In summary, for the Category I and Category III PM2.5

forecasting list in Supplementary Appendices S5–S7, the
model selection forecasting system exhibits the best forecasting
accuracy among the different hybrid models for four seasons. It is
evident that the forecasting capacity of the model selection is
robust when considering each forecasting metrics. The accuracy
of model selection depends on the hybrid model, so it is necessary
to increase the types of models in the modeling process which
ensures that more forecasting results can be obtained, and the
optimal forecasting value can be selected in the model selection
process.

Experiment III: PM10 Forecasting Analysis
for Category III in Four Seasons
For the hourly PM10 time series for three categories, it can be
observed that the model selection forecasting system attains
satisfactory results. Specifically, the lowest values of MAE are
0.4643, 0.4600, and 0.3869 and of RMSE are 0.7302, 0.7906, and
0.5561, corresponding to PM10 forecasting in Category I in three
cities, successively. The results of Category I indicate that the
smaller the MAE and MSE, the smaller the deviation between the
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TABLE 7 | The forecasting result of each model in different seasons for Category III.

Location Metric First season Second season Third season Fourth season

DEGWO-
SVM

DEGWO-
BPNN

Model
selection

DEGWO-
SVM

DEGWO-
GRNN

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

DEGWO-
SVM

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

DEGWO-
SVM

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

Tianjin MAE 0.4119 0.4687 0.3576 2.3288 3.1388 2.6986 6.2681 1.8811 0.7567 0.8285 1.1091 0.5870 0.6775 0.8685 1.0346 0.5747
RMSE 0.5572 0.6236 0.4552 8.1840 7.7183 8.6510 25.5466 7.1780 0.9382 1.1333 1.5570 0.7880 0.8649 1.1016 1.4746 0.7649
STDE 0.5472 0.6019 0.4535 8.2080 7.7255 8.6768 25.5589 7.1987 0.9259 1.1090 1.5400 0.7841 0.8531 1.0938 1.4463 0.7531
DA 81.44% 74.25% 76.05% 76.05% 31.74% 64.67% 65.87% 76.05% 55.09% 55.09% 47.90% 68.26% 71.26% 50.30% 50.90% 71.26%
U1 0.0037 0.0051 0.0037 0.0435 0.0412 0.0460 0.1343 0.0382 0.0064 0.0078 0.0107 0.0054 0.0063 0.0076 0.0101 0.0053
U2 1.3126 1.4969 1.2192 1.9855 1.9275 2.0215 13.1964 1.6470 2.8029 1.8298 2.7405 1.7659 2.2110 2.2721 2.9704 2.1810
MAPE 0.71% 0.83% 0.65% 2.65% 3.69% 3.09% 7.55% 2.12% 1.09% 1.13% 1.53% 0.84% 0.93% 1.19% 1.41% 0.83%
R2 0.9998 0.9996 0.9998 0.9601 0.9629 0.9534 0.7662 0.9681 0.9974 0.9965 0.9930 0.9982 0.9973 0.9969 0.9938 0.9983

Qinhuangdao MAE 0.4140 0.5075 0.4034 0.7588 2.5923 1.0097 1.9170 0.7441 0.4645 0.6423 1.1009 0.4303 0.7377 0.8356 1.1088 0.6459
RMSE 0.5527 0.6725 0.5440 1.2183 3.4536 1.6718 3.9976 1.2117 0.6622 0.8380 2.4277 0.5914 1.0205 1.2012 1.5364 0.9614
STDE 0.5529 0.6736 0.5452 1.2219 3.4639 1.6274 3.9538 1.2146 0.6639 0.8317 2.3892 0.5932 1.0232 1.2029 1.5351 0.9642
DA 82.04% 68.86% 83.23% 85.63% 32.93% 79.64% 72.46% 86.23% 81.44% 70.66% 72.46% 82.63% 79.04% 80.84% 64.67% 85.63%
U1 0.0044 0.0054 0.0044 0.0061 0.0173 0.0083 0.0199 0.0061 0.0053 0.0067 0.0194 0.0047 0.0054 0.0063 0.0081 0.0050
U2 1.1881 1.2933 1.1573 1.3515 4.7857 1.5998 4.0494 1.2920 1.6354 1.6295 5.0927 1.4787 1.4708 1.4926 1.9014 1.3827
MAPE 0.81% 0.96% 0.75% 0.86% 3.22% 1.09% 2.09% 0.84% 0.96% 1.19% 2.18% 0.82% 1.00% 1.07% 1.49% 0.83%
R2 0.9997 0.9996 0.9997 0.9995 0.9964 0.9993 0.9959 0.9996 0.9994 0.9991 0.9925 0.9995 0.9996 0.9994 0.9991 0.9997

Zhangjiakou MAE 0.6366 0.7970 0.4310 4.1069 7.4836 4.7017 4.8835 3.7104 0.4875 0.5652 0.8045 0.4782 0.7864 1.0681 1.7907 0.7297
RMSE 0.7642 1.1575 0.5662 11.3281 12.9323 11.1572 12.2400 9.2301 0.6852 0.7945 1.2237 0.6836 1.0777 1.4880 2.8905 1.0128
STDE 0.7655 1.1117 0.5666 11.3585 12.8990 11.1833 12.2350 9.2556 0.6797 0.7559 1.1982 0.6802 1.0638 1.4884 2.8853 0.9772
DA 67.25% 62.87% 77.25% 83.83% 33.53% 74.25% 67.07% 82.04% 72.46% 70.06% 65.87% 72.46% 74.25% 66.47% 56.89% 75.45%
U1 0.0099 0.0101 0.0049 0.0219 0.0251 0.0217 0.0237 0.0179 0.0042 0.0049 0.0075 0.0042 0.0066 0.0091 0.0177 0.0062
U2 1.7496 2.5892 1.3923 1.6411 3.0821 1.5223 1.8703 1.3734 1.4487 1.7344 1.5603 1.4729 1.9104 2.1059 2.8750 1.8712
MAPE 1.09% 1.93% 0.97% 2.27% 6.19% 2.51% 3.28% 2.06% 0.61% 0.72% 1.02% 0.59% 1.24% 1.73% 2.78% 1.18%
R2 0.9993 0.9991 0.9998 0.9979 0.9973 0.9980 0.9976 0.9986 0.9988 0.9985 0.9963 0.9988 0.9993 0.9986 0.9945 0.9994

Cangzhou MAE 0.5447 0.5872 0.5178 4.8605 4.9067 4.8833 4.8570 2.0438 0.4579 0.5585 0.7233 0.4391 0.6380 0.8810 1.8394 0.6300
RMSE 0.7422 0.7952 0.7083 7.2624 7.2642 7.2682 7.2725 3.8192 0.5983 0.7079 1.0983 0.5802 0.8898 1.2163 3.6287 0.8931
STDE 0.7422 0.7963 0.7061 5.9796 5.9749 5.9578 5.9428 3.8275 0.5990 0.6926 1.0950 0.5813 0.8872 1.2080 3.6191 0.8812
DA 81.44% 82.63% 83.23% 80.84% 73.89% 77.84% 80.84% 87.31% 80.24% 68.86% 64.07% 82.63% 85.03% 78.44% 68.86% 86.83%
U1 0.0045 0.0048 0.0043 0.0293 0.0293 0.0294 0.0294 0.0127 0.0040 0.0048 0.0074 0.0039 0.0043 0.0059 0.0176 0.0043
U2 1.3594 1.3911 1.3065 5.5390 5.6602 5.5440 5.5906 1.8692 1.4269 1.4604 1.5698 1.4152 1.4389 1.4227 2.7705 1.3837
MAPE 0.72% 0.76% 0.67% 2.83% 2.90% 2.84% 2.81% 1.67% 0.65% 0.80% 0.99% 0.62% 0.66% 0.93% 1.83% 0.65%
R2 0.9996 0.9995 0.9996 0.9251 0.9288 0.9386 0.9472 0.9984 0.9992 0.9990 0.9975 0.9993 0.9994 0.9989 0.9904 0.9994
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observations and forecasting, which verifies the forecasting
performance. In addition, the average MAPE values of model
selection for six cities of Category II in four seasons are lower than
1%. Compared with the optimal hybrid model, the model
selection is approximately reduced by 10%. The analyses reveal
the forecasting superiority of the model selection system. By
parity of reasoning, a similar conclusion can be reached through
the analyses of the hourly PM10 forecasting results for Category
III (the forecasting results are shown in Table 7 and Figure 5).

1) For PM10 forecasting in the first season, the optimal hybrid
models are DEGWO-SVM and DEGWO-BPNN, with which
the MAPE values of the best hybrid model (DEGWO-SVM)
for four cities of Category III are 0.71%, 0.81%, 1.09%, and
0.72%. The final forecasting values are obtained by model
selection; based on the results of DEGWO-SVM and
DEGWO-BPNN the MAPE values of model selection are
0.65%, 0.75%, 0.97%, and 0.67%. Additionally, the values of
other forecasting metrics are at their best under the model
selection.

2) In the second season of PM10 forecasting for four cities, the
final forecasting results consist of four different hybrid models
(DEGWO-SVM, DEGWO-GRNN, DEGWO-BPNN, and
DEGWO-ANFIS). From the forecasting performance of
four hybrid models, the forecasting performance of

DEGWO-SVM is better than the other three models, in
which the values of MAPE are 2.65%, 0.86%, 2.27%, and
2.83% for different cities’ PM10 forecasting in Category III.
Additionally, the DA value of MODEGWO-SVM is over 75%,
which indicates that the hybrid model can capture future
changing trends of PM10. The final forecasting results are
obtained bymodel selection, in which the forecasting accuracy
is better than those of the four hybrid models. Compared with
the best hybrid model, theMAPE values of model selection are
reduced by 25.00%, 2.38%, 10.19%, and 69.46%, respectively.

3) According to forecasting results in Table 7 and Figure 5 for
PM10 of the third season, the three kinds of hybrid models
(DEGWO-SVM, DEGWO-BPNN, and DEGWO-ANFIS) are
employed to forecast hourly PM10; the DEGWO-SVM has the
best forecasting performance among the three hybrid models
in Zhangjiakou, and the MAPE is 0.61%. DEGWO-SVM has
better forecasting accuracy, and model selection has little
improvement on the forecasting accuracy in the final
prediction results, but the MAPE has maximum
improvement of 29.76% for Tianjin PM10 forecasting.

4) According to the results in Table 6, the three kinds of hybrid
models are used to forecast PM10 for four cities of Category III
in the fourth season, and the R2 value of each model was
greater than 0.99, which shows that these models have a good
forecasting performance for the PM10. Meanwhile, model

FIGURE 5 | The forecasting result of PM10 for Category III in different seasons.
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selection uses the predicted values of each model to form the
final forecasting results, and the corresponding MAE values
are 0.5747, 0.6459, 0.7297, and 0.6300 for four cities.

In summary, whether for Category III or the other categories
(the results are shown in Supplementary Appendix S8 and
Supplementary Appendix S9) PM10 forecasting, the model
selection system attained the best performance for 13 cities. In
the comparison of various hybrid models, the forecasting
performance of MODEGWO-SVM is better than other hybrid
models. Additionally, it can be observed that some models have
low accuracy, which can still provide some optimal forecasting
values for the model selection system for hourly PM10 forecasting.
Based on the above analysis, it can be seen that none of the models
has been playing the best forecasting performance in the
forecasting process, and various hybrid models are needed to
make up for the shortcomings of the single hybrid model.

DISCUSSIONS

This section mainly discusses the hyperparameter related to the
SVM and ANN model that would influence the forecasting
performance. A large variety of machine learning models and
ANNs are available for air pollution time series including three
different type pollutants. Finally, compare computing in different
model.

Support Vector Machine
According to the results of each experiment, SVM provided the
more optimal forecast values for the three main pollutants in the
four quarters of 13 cities. The reason for the favorable score
produced by SVM is that SVM provides a way to avoid the
complexity of high-dimensional space by directly using the inner
product function of the space (which is the kernel function) and
then directly solving the corresponding decision-making problem
in high-dimensional space by using the solution method under
the condition of linear separability. When the kernel function is
known, it can simplify the difficulty of solving the problem in
high-dimensional space. Meanwhile, SVM is based on the small
sample statistical theory, which conforms to machine learning. In
addition, support vector machine has better generalization ability
than neural network. Although the time series of the three main
air pollutants are neither regular nor seasonal, SVM can also
effectively capture future changes of the three main air pollutants.

SVM has two very important parameters: c and g. c is the
penalty coefficient, that is, tolerance of errors. The higher the c,
the more intolerable the errors and easy to over-fit. The smaller
the c, the less easy fitting is. If c is too large or too small, the
generalization ability becomes worse. g is a parameter that comes
with RBF function when it is selected as a kernel. Implicitly it
determines the distribution of data after mapping to a new feature
space. The bigger the g, the less support vectors; it will only act
near the support vector samples. For the unknown samples, the
classification effect is very poor. There is a possibility that the
training accuracy can be very high, and the test accuracy is not
high, that is, over-fitting. The smaller the g value is, the more

support vectors there are, and the greater the smoothing effect
will be; the higher accuracy of the training processing cannot be
obtained, and the accuracy of the testing processing will also be
affected. This paper used DEGWO algorithm and GWO
algorithm to optimize the parameters of SVM (c and g). The
results of two types of hybrid SVMs are shown in Table 8, which
displays that the optimum penalty coefficients of SVM
corresponding to pollutant forecasting in different cities vary
widely. For example, in the forecasting processing of NO2, the
variation range of parameters is [2, 99]. However, the fluctuation
range of g is small, with most variations ranging from 0 to 1. In
general, the air pollutants forecasting performances of support
vector machine are very dependent on the penalty coefficient. In
the whole experiment it can be observed that the support vector
machine has good forecasting accuracy for three main air
pollutants forecasting, but it cannot provide the best
forecasting value in each point. It indicates that the support
vector machine is suitable for hourly air pollutants forecasting.

Artificial Neural Network: Number of Input
Layer and Number of Hidden Layers
ANN as a nonlinear mapping model is used to solve the problem
of time series forecasting, because the ANN model can find the
optimal solution of a complex problem with the help of high-
speed computing ability of the computer. In order to ensure the
forecasting accuracy of the ANNmodel, parameters of ANN need
to be elaborately configured. However, there is no effective rule
for establishing the values of these parameters on air pollutants
forecasting. Although there are many studies on the tuning of the
parameters of the neural network, it is obvious that the selection
of the whole parameter space is beyond the scope of this study.
Therefore, the parameters of the neural network are set by means
of simulation experiment and optimization algorithm: the
experimental design is as follows:

This processing configured various input layers and a number
of hidden layers to find out the influence of the usage of recent
data on the performance of different ANN models. The number
of input layers from 1 to 10 increases for three main air pollutants,
whichmeans there are 1,008 pieces of sample data on NO2, PM2.5,
and PM10; the train-to-verify ratio 5:1 means that 840 pieces of
sample data were used as training data for building the ANN
model, while 168 pieces of sample data were used as testing data
for finding the training-to-testing ratio and parameter of each
ANN model (the optimal number of input layers of each model
and the number of hidden layers of LSTM and BPNN). Figure 6
shows the forecasting performance with the different
configurations of the optimal number of input layers and the
number of hidden layers of LSTM and BPNN, in which it is
difficult to find a regular correlation between the forecasting
performances and the parameters. Consequently, it is difficult to
find an optimal combination of ANN’s parameters that brings the
model to the best performance in the practical air pollutant
forecasting where MAPE and R2 are unknown.

During the experiment on configurations of ANN’s parameter,
the optimal parameter setting trained the networks models for
each ANNmodel in 13 cities. The forecasting values with the best
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TABLE 8 | The result of two types of SVM for three main air pollutants in different cities.

Air Pollution Parameter Beijing Tianjin Shijiazhuang Tangshan Qinhuangdao Handan Baoding Zhangjiakou Chengde Langfang Cangzhou Hengshui Xingtai

DEGWO-
SVM (NO2)

best.C 46.9568 99.5518 99.309 99.161 99.8544 9.6662 83.7412 3.5907 16.9145 2.6853 49.9809 99.1334 4.3575
best.g 0.9694 0.0763 0.1945 0.3663 0.0393 0.5403 0.0101 4.0931 0.0105 1.4979 0.0105 0.4098 0.4622
SSE 1.74*103 1.92*103 3.82*103 7.76*103 5.30*103 7.12*103 8.78*103 2.09*103 3.06*103 8.96*103 1.27*104 7.37*103 5.62*103

min.E 0.0338 0.0186 0.0061 0.0336 0.0002 0.0446 0.0216 0.0127 0.0355 0.0077 0.0494 0.0305 0.0259
max.E 10.7395 13.5376 36.7462 27.3748 20.6095 41.3333 38.0069 13.0612 18.5541 44.2883 34.1065 27.4761 24.1837
Var.E 10.3228 11.1665 22.8619 46.4519 31.2395 42.479 52.0663 12.3554 18.01 53.4352 75.7013 43.7583 33.6634
Time 467.0666 493.4147 487.456 503.9043 510.1607 497.2697 474.2788 495.2658 499.3622 474.5837 490.1128 478.4362 492.8458

GWO-SVM (NO2) best.C 78.5905 324.3692 210.5643 31.6254 212.0154 10.2694 200.0915 33.5771 17.2807 278.5659 50.1119 169.9275 401.8597
best.g 0.9669 0.0765 0.1961 0.3913 0.0395 0.5486 0.01 3.9411 0.1216 1.4618 0.0105 0.4118 0.2077
SSE 1.86*103 1.94*103 4.12*103 7.96*103 5.70*103 7.67*103 9.29*103 2.10*103 3.33*103 9.74*103 1.32*104 7.90*103 5.76*103

min.E 0.0368 0.0187 0.0062 0.0367 0.0003 0.049 0.023 0.0134 0.0383 0.0083 0.0507 0.0321 0.0283
max.E 11.3172 13.5905 38.0581 29.5744 20.7387 44.7556 38.7649 13.1132 19.3 45.5339 35.1327 28.8798 25.4748
Var.E 10.612 11.2675 23.2602 50.7895 32.7046 46.1177 53.6559 13.2875 18.7424 56.4917 78.4229 46.1941 34.9107
Time 414.2995 409.8461 397.1843 439.9873 449.712 434.443 409.6929 405.8517 405.4657 426.6385 438.0274 395.0127 436.3719

DEGWO-SVM
(PM2.5)

best.C 77.7686 0.079 0.1832 32.0261 0.697 4.7476 47.0616 88.2993 99.8909 2.7945 1.4898 0.0972 5.0422
best.g 5.0885 2.6319 7.6937 0.01 3.736 0.01 0.01 0.016 0.0134 4.7102 3.5942 1.9463 0.01
SSE 8.67*102 4.91**102 7.68*102 2.42*102 1.10*102 1.61*103 1.71*103 50.63 1.63*102 7.55*102 1.69*103 1.31*103 5.85*102

min.E 0.024 0.0079 0.0308 0.0114 0.0008 0.0034 0.0016 0.0011 0.0039 0.0182 0.0711 0.0363 0.0053
max.E 4.3326 4.8468 7.4561 3.3869 2.1798 9.1996 9.9057 1.5044 2.5344 5.0337 8.2179 8.8812 6.0958
Var.E 3.6799 2.544 4.0871 1.4022 0.6552 7.9582 10.6013 0.2743 0.6602 3.8421 9.8701 6.7322 3.4501
Time 78.5201 79.9691 79.8954 80.0222 81.0965 85.7327 85.5043 80.7387 85.0065 80.3694 84.4306 83.4787 83.4082

GWO-SVM (PM2.5) best.C 40.8136 93.0752 8.4678 31.86 60.0461 4.7539 52.6286 87.9288 100 92.1335 17.8947 41.9715 59.3705
best.g 5.0366 1.397 8.7715 0.01 3.7298 0.01 0.01 0.0165 0.0134 4.7102 3.6199 3.306 0.01
SSE 8.83*102 8.08*102 8.20*102 2.43*102 1.11*102 1.63*103 1.77*103 50.61 1.57*102 7.55*102 1.68*103 2.63*103 6.07*102

min.E 0.0086 0.0136 0.0147 0.0106 0.0039 0.0263 0.0038 0.0038 0.0013 0.0182 0.0474 0.0024 0.0018
max.E 4.2931 6.2686 8.4904 3.422 2.1569 9.2235 9.9212 1.5028 2.4958 5.0337 8.1801 7.6894 6.0805
Var.E 3.7291 4.6545 4.282 1.4157 0.6563 7.9943 10.5457 0.2739 0.6459 3.8421 9.753 9.6812 2.0456
Time 63.6136 65.0956 67.7701 71.8366 67.2112 70.9237 68.4242 68.8076 68.1498 69.0608 74.1707 71.644 68.8802

DEGWO-SVM
(PM10)

best.C 3.5114 18.3746 4.8387 61.0409 56.5602 0.847 83.9649 51.5595 5.1477 19.6408 12.4613 1.2529 0.553
best.g 4.7786 7.0919 0.01 0.0366 0.0187 0.3343 0.0103 0.01 0.0563 5.9592 3.3231 0.4991 4.3841
SSE 2.58*103 9.35*102 8.17*103 1.49*103 8.61*102 2.98*103 6.80*103 8.81*102 1.69*103 1.71*103 1.72*103 1.67*103 1.46*103

min.E 0.0176 0.0076 0.0036 0.0026 0.0005 0.0778 0.1005 0.0003 0.1025 0.0015 0.0039 0.03 0.0134
max.E 10.9659 8.4861 14.0939 8.4406 5.9929 10.8543 15.9743 6.9388 7.4138 10.0266 10.3846 7.3109 8.9293
Var.E 10.2272 5.1871 28.3304 8.9646 5.1568 17.5229 33.6806 3.9992 7.9292 5.211 14.8334 9.6962 8.9122
Time 81.873 85.2247 85.6066 84.1662 79.4368 80.1318 80.0802 86.2987 82.036 83.7506 82.7005 81.4053 85.2475

GWO-SVM (PM10) best.C 5.9521 18.4212 0.6008 56.4077 82.7556 0.8624 88.0444 51.7353 5.124 67.6243 5.4252 1.2881 9.1351
best.g 4.7723 7.0158 0.0101 0.0367 0.0187 0.3284 0.0101 0.0101 0.0565 5.9744 0.01 0.4842 0.01
SSE 2.61*103 9.43*102 8.30*103 1.50*103 8.65*102 3.00*103 6.88*103 9.74*102 1.69*103 1.72*103 3.11*103 1.68*103 1.51*103

min.E 0.0249 0.0083 0.0207 0.0192 0.0528 0.081 0.1022 0.079 0.1026 0.0071 0.0256 0.066 0.0899
max.E 10.9762 8.5423 14.7419 8.4423 6.0089 10.9071 16.0619 6.9653 7.416 10.0514 11.5914 7.4373 12.3556
Var.E 10.2477 5.2718 38.3341 8.8981 5.1728 17.469 33.8092 4.1143 7.9363 5.2235 10.2618 9.5788 8.6932
Time 73.6691 70.3273 73.1108 72.0992 69.9234 64.3441 65.0347 75.2683 71.9299 72.8245 69.424 65.4326 71.6009
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performance of each ANN (the best forecasting metric inTable 9)
were selected to forecast three main air pollutants in each
experiment. However, it can be found that there were no giant
differences on forecasting performance among the networks
trained with the same configuration, even if the neural
network has the randomness and probability mechanism
inside the training processing. A large sample of the times
series is another reason that the training stability of the neural
network can be ensured. For example, the best MAPE of BPNN
for the forecasting of NO2 in Beijing shown in Figure 6 is 5.82%,
and the worst one is 8.94%. Most of the MAPEs are between 6%
and 7%. It is practical to use ANN in real air pollutants forecasting
application where forecasting the changing air pollutant time
series is suitable.

In summary, with the rapid development of ANN, it has
become a powerful tool to solve prediction problems. Neural
network is used in the field of air pollution to solve the problem of
non-linear forecasting which cannot be solved by statistical
models. Its non-linear mapping is especially suitable for the
application of air pollutant forecasting. The main reason is
that the ANN has the following advantages:

1) Non-linear mapping ability: ANN realizes a mapping function
from input to output in essence. Mathematical theory proves
that three-layer neural network can approximate any non-
linear continuous function with arbitrary precision. This
makes it especially suitable for solving complex internal

mechanism problems, that is, ANN has strong non-linear
mapping ability.

2) Self-learning and self-adapting ability: ANN can
automatically extract the “reasonable rules” between output
and output data by learning and self-adaptively memorizing
the learning content in the weights of the network. ANN has a
high ability of self-learning and self-adaptation.

3) Generalization ability: When designing pattern classifiers, the
so-called generalization ability refers to whether the network
can forecast the unknown time series correctly after training,
while ensuring that the classified objects are correctly
classified. ANN can apply learning results to new knowledge.

4) Fault-tolerant ability: ANNwill not have a great impact on the
global training results after its local or partial neurons are
damaged; the system can work normally even when it is
damaged locally. ANN has certain fault-tolerant ability.

Computing Time for Each Model
In order to improve the computing efficiency and save the
computing time, training and forecasting processing of all the
models for the main air pollutants time series with parallel
computing by central processing unit (CPU) and graphics
processing unit (GPU). The computing times of every
independent hybrid model in each experiment are shown in
Table 10, from which we can further research the
computational efficiency of the developed model selection
forecasting system for the main air pollutants. Specifically, the

FIGURE 6 | The simulation result of each ANN model for three main air pollutants in different cities.
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TABLE 9 | The simulation result of each ANN model.

Model BPNN ANFIS

Metric NO.
Input

NO.
Hidden

MAE MSE MAPE R2 NO.
Input

MAE MSE MAPE R2

Beijing 7 29 2.7515 13.4095 12.82% 0.9825 7 2.2208 14.1852 11.61% 0.9816
Tianjin 4 21 2.6124 12.3784 6.07% 0.9830 4 1.8908 18.6934 5.00% 0.9747
Shijiazhuang 7 23 3.2795 28.5628 8.32% 0.9628 2 1.7853 9.7964 5.20% 0.9876
Tangshan 6 15 4.8308 49.0277 11.76% 0.9583 4 3.2171 25.9431 8.18% 0.9779
Qinhuangdao 8 24 4.4735 38.3830 13.34% 0.9672 7 4.2183 33.3884 14.23% 0.9722
Handan 10 21 3.9385 30.7437 9.47% 0.9602 3 1.9940 16.6067 5.23% 0.9788
Baoding 9 26 4.8845 54.5972 12.89% 0.9626 4 5.1107 52.7317 16.64% 0.9637
Zhangjiakou 2 21 2.6965 14.1237 15.52% 0.8956 2 3.0306 16.3035 19.68% 0.8805
Chengde 5 21 3.1457 21.7384 17.12% 0.9642 4 2.0878 12.3017 13.23% 0.9799
Langfang 4 21 5.0108 53.2976 13.89% 0.9393 4 4.2474 37.6082 13.43% 0.9602
Cangzhou 3 24 5.5917 58.3720 13.31% 0.9547 4 3.0234 31.2348 9.23% 0.9759
Hengshui 7 23 4.5165 37.0716 14.85% 0.9482 5 3.7816 33.4263 11.99% 0.9550
Xingtai 9 21 3.4928 30.4963 8.57% 0.9702 6 2.4056 28.1033 5.40% 0.9725

Model LSTM GRNN

Metric NO. Input NO. Hidden MAE MSE MAPE R2 NO. Input MAE MSE MAPE R2

Beijing 8 27 2.8379 15.0298 14.37% 0.9805 2 3.1653 17.7058 14.09% 0.9772
Tianjin 9 9 2.6240 13.6968 6.72% 0.9812 8 3.1290 20.3228 6.97% 0.9720
Shijiazhuang 3 30 3.1771 28.2116 8.22% 0.9634 9 3.8065 34.9429 10.99% 0.9577
Tangshan 5 21 4.7107 43.2069 10.36% 0.9630 10 5.5704 55.6046 14.00% 0.9522
Qinhuangdao 4 30 4.5057 37.7889 13.13% 0.9673 7 5.2814 47.7487 16.22% 0.9590
Handan 6 29 3.6311 25.9993 8.01% 0.9663 2 4.8767 60.1796 12.32% 0.9271
Baoding 8 9 4.7872 50.7279 11.98% 0.9651 5 6.2932 72.5647 16.31% 0.9538
Zhangjiakou 7 29 2.7874 17.0202 18.70% 0.8783 8 2.9293 17.9413 16.74% 0.8711
Chengde 1 29 3.1558 20.0247 15.77% 0.9673 3 3.5448 25.0984 18.05% 0.9588
Langfang 10 30 5.0278 53.3276 13.90% 0.9383 10 5.9260 76.8659 15.51% 0.9170
Cangzhou 8 30 5.3683 56.0168 12.77% 0.9570 7 6.9785 94.2087 16.45% 0.9265
Hengshui 10 27 4.3802 36.2420 14.52% 0.9523 6 5.5657 56.0395 16.84% 0.9239
Xingtai 4 27 3.8483 33.5689 9.43% 0.9670 9 5.1267 52.2457 11.13% 0.9551

TABLE 10 | Computing time by each model.

Category Model Min Max Average Model Min Max Average

Category I (NO2) MODEGWO-SVM 39.4238 48.1795 43.9663 First season for Category III (PM10)
MODEGWO-GRNN 65.7006 80.2975 72.8432 DEGWO-SVM 32.49657 39.71566 36.03983
MODEGWO-BPNN 65.7133 80.2837 72.7285 DEGWO-BPNN 54.17679 66.18566 60.13886
MODEGWO-ANFIS 39.4207 48.1762 43.7417 Model selection 0.108317 0.132383 0.120239
Model select 0.1314 0.1605 0.1460 Final time 87.15716 105.6679 96.29893

Final time 214.8663 251.5786 233.4256 Second season for Category III (PM10)

Category II (NO2) MODEGWO-SVM 44.5487 54.4188 49.4898 DEGWO-SVM 43.09741 52.62296 47.78303
MODEGWO-GRNN 74.2109 90.6824 82.7233 DEGWO-GRNN 71.80499 87.73968 79.55603
MODEGWO-BPNN 74.2103 90.7002 82.6234 DEGWO-BPNN 43.08113 52.63649 48.01184
Adam-LSTM 133.5967 163.2337 148.2152 DEGWO-ANFIS 71.80864 87.74184 79.77636
Model select 0.1484 0.1813 0.1650 Model selection 0.143618 0.175492 0.159656
Final time 330.6037 393.0909 363.2167 Final time 235.9748 276.3926 255.2869

Category III (NO2) MODEGWO-SVM 41.5062 50.7174 46.0609 Third season for Category III (PM10)

MODEGWO-GRNN 69.1727 84.5312 76.9191 DEGWO-SVM 37.79408 46.17638 42.03216
MODEGWO-BPNN 69.1691 84.5052 76.7223 DEGWO-BPNN 62.98502 76.9619 70.11255
Model select 0.1383 0.1689 0.1537 DEGWO-ANFIS 75.59966 92.35553 83.84003
Final time 183.1891 218.0664 199.8560 Model selection 0.125959 0.15388 0.139823

(Continued on following page)
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average computation time of the model selection forecasting
system ranges from 330.6037 to 363.2167 s for NO2

forecasting in Category II, with the longest computing time
appearing in the different categories. Notably, Adam-LSTM
with complex model structure has longer computing time than
the other hybrid models, taking more time in the iterative
optimization process. Moreover, this paper establishes multiple
hybrid models and uses the model selection method to find the
best forecasting value, in which the final forecasting accuracy is
improved but needs more computing time.

CONCLUSION

In this study, a novel model selection forecast system was
proposed that overcomes the shortcomings of the single
hybrid model, which cannot give the optimal results for the
forecasting process. First, the FSE theory is employed to analyze
the major pollutant for each city in BJ-TJ-HE, and the fuzzy
c-means algorithm is used to analyze the feature of the 13 cities.
Then, to further improve modeling accuracy and rationality of
modeling, a modified optimization algorithm (DEGWO) was
used to optimize the premasters of different models. Finally, the
model selection forecasting system obtains forecasting results at
each time point from different hybrid models.

The developed model selection forecasting system was
evaluated on hourly NO2, PM2.5, and PM10 from 13 cities, and
several performance metrics were calculated, with experimental
results indicating that the model selection forecasting system is
superior to single hybrid models with the smallest MAPE in the
different cities pollutant forecasting, indicating its strong
forecasting performance. Overall, the proposed model selection
forecast system exhibits outstanding performance in data analysis
and time series forecasting for air pollutants. Specifically, it can

not only deeply analyze major pollutants of AQI for BJ-TJ-HE but
also approximate the actual values with high accuracy and
stability.
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Modeling the direct economic losses of storm surge disasters can assess the disaster

situation in a timely manner and improve the efficiency of post-disaster management

in practice, which is acknowledged as one of the most significant issues in clean

production. However, improving the forecasting accuracy of direct economic losses

caused by storm surge disasters remains challenging, which is also a major concern

in the field of disaster risk management. In particular, most of the previous studies

have mainly focused on individual models, which ignored the significance of reduction

and optimization. Therefore, a novel direct economic loss forecasting system for storm

surge disasters is proposed in this study, which includes reduction, forecasting, and

evaluation modules. In this system, a forecasting module based on an improved

machine learning technique is proposed, which improves the generalization ability and

robustness of the system. In addition, the key attributes and samples are selected by

the proposed reduction module to further improve the forecasting performance from

the two innovative perspectives. Moreover, an evaluation module is incorporated to

comprehensively evaluate the superiority of the developed forecasting system. Data

on the storm surge disasters from three typical provinces are utilized to conduct a

case study, and the performance of the proposed forecasting system is analyzed and

compared with eight comparison models. The experimental results show that the mean

absolute percentage error (MAPE) predicted by the Extreme Learning Machine (ELM)

model was 16.5293%, and the MAPE predicted by the proposed system was 1.0313%.

Overall, the results show that the performance of the proposed forecasting system

is superior compared to other models, and it is suitable for the forecasting of direct

economic losses resulting from storm surge disasters.

Keywords: storm surge, hybrid forecasting, forecasting, optimization algorithm, economic losses

INTRODUCTION

Four portions are introduced in the section. The main issues are introduced in the first part, the
second reviews the related literature and works, the third presents the main contributions, whereas
the fourth provides the structure of this article.

Main Issues
Marine disasters caused by abnormal marine environments or extreme climate change have a
significant impact on marine security, economic and social development, and clean production.
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However, storm surge disasters have resulted in a considerable
threat to human life and production, causing the most serious
impact. The China Marine Disaster Bulletin (China Marine
Disaster Bulletin, 2020–2021) shows that the total loss due
to marine disasters was about 11.64 billion in 2019 and 832
million in 2020, of which the direct economic losses caused by
storm surge disasters account for 99.44 and 97.36%, respectively.
The importance of research on the economic impact of storm
surge disasters has recently become clear (Neumann et al., 2015;
Guo and Li, 2020; Zhou et al., 2020). The rapid and accurate
forecasting of losses caused by storm surge disasters can provide
strategic decision support for the prevention and reduction of
disasters, disaster situation warnings, and rescue management.
However, due to the particularity and irregularity of natural
disasters, it is difficult to rapidly and accurately forecast marine
disaster losses. Therefore, the development of an appropriate
method to model the economic losses caused by storm surge
disasters is required, as this is widely considered a key concern
in clean production (Yang et al., 2019a).

Literature Review
In disaster loss assessment and forecasting, scholars have mainly
focused on earthquakes (Jena et al., 2020; Kim et al., 2020;
Pulinets et al., 2021), tropical cyclones (Qi and Du, 2018;
Sawant et al., 2019; Giffard-Roisin et al., 2020; Zeng et al.,
2021), and floods (Zhi et al., 2020; Soltani et al., 2021), but
few studies have been conducted on storm surge. With the
background and impact of global climate change (Hao et al.,
2021), the problem of marine disasters (Fang et al., 2017;
Yan et al., 2020) is becoming increasingly obvious. Among
the losses caused by marine disasters, storm surge disaster
losses account for a large proportion, so it is necessary to
pay attention to the research on storm surge disasters (Arns
et al., 2015). Most studies have focused on storm surge and its
forecasting methods (Sahoo and Bhaskaran, 2018; Ohz et al.,
2020), but only few on direct economic loss assessment. Three
methods are commonly adopted in this forecasting field. (1) In
previous studies, physical methods were mainly used in data
monitoring, early warning, and forecasting. Meanwhile, a large
number of data were outputted to assist the research and the
forecasting (Lakshmi et al., 2017; Nahornyi et al., 2021). Physical
models employ meteorological information or related physical
information as input, and require a great deal of historical
information to judge the specific relationship between disaster
sequences and physical information to perform forecasting.
However, the amount of data comprising this information is large
and difficult to obtain, and consequently forecasting is difficult.
(2) Statistical methods such as autoregressive integrated moving
average (ARIMA) and generalized autoregressive conditional
heteroskedasticity (GARCH) have exhibited good results in
solving low-dimensional weakly non-linear problems (Yi et al.,
2021). However, disasters themselves are complex problems,
whereas disaster loss assessment and forecasting are multi-
dimensional and non-linear problems. The traditional statistical
methods have obvious disadvantages. (3) In machine learning
methods, machine learning algorithms have shown stronger
ability to fit complex non-linear data, and, thus, have been

highly regarded. Machine learning methods had been widely
applied in some forecasting fields such as electricity price
forecasting (Yang et al., 2022). Support-vector machine (SVM),
extreme learning machine (ELM), and backpropagation neural
networks (BPNN) are commonly used forecasting methods.
Xiong et al. (2018) successfully improved ELM to predict
the seasonal price of vegetables. Liu et al. (2020) proposed
a combined model using self-organizing map (SOM), kernel
principal components analysis (KPCA), and an SVM to classify
and to forecast the patent quality in the biomedical industry.
Li et al. (2021) proposed the gray-BPNN model to predict the
grain output of Henan Province. These three methods have
been proposed to form different models for forecasting, such as
single model, hybrid model (Sahin, 2019; Wang et al., 2019b;
Yang et al., 2019b), combined model (Niu and Wang, 2019;
Wang et al., 2019a), and ensemble model (Hao and Tian,
2019).

In the field of marine disaster forecasting, single models have
been widely proposed.Wang et al. (2021) proposed GIS and open
data to quantitatively evaluate the storm surge and to estimate
the direct physical losses. Yin et al. (2017) established a gray
relational model based on the panel data dispersion, which was
applied to the study of storm surge disaster losses in the coastal
areas of China. Hybrid models have been widely proposed in
the field of disaster forecasting. Young et al. (2017) combined
the traditional physical hydrological simulation method with
the SVR to form a hybrid forecasting model in predicting
the hourly runoff of Chishan River Basin in southern Taiwan.
Compared with the physical hydrological model, ANN, SVR,
and two hybrid models (HEC-HMS-ANN, HEC-HMS-SVR)
which were based on a hydrologic modeling system, the novel
model exhibited some advantages, especially a higher accuracy in
long-term forecasting. However, the individual model research
methods on the economic impact of disasters are relatively
inaccurate. The combination model was developed to improve
the forecasting accuracy. Chen et al. (2018) introduced a new
combined model method to forecast disaster losses caused by
tropical cyclones, hence, using the model combination method,
GA-Elman neural network, SVR, and GRNN were combined
into a comprehensive evaluation model. The results showed
that their proposed model performed better than the single
model. Feng and Liu (2017) established an index system with
gray correlation analysis. Compared with the single model, the
combined model of BP and SVM was proposed to better forecast
the direct economic losses and the number of populations
affected by storm surge. Zhao et al. (2020) combined the results
of ENN and GRNN with a definite integral to achieve interval
forecasting, and obtained a large number of high-precision
results of the annual storm surge disaster economic losses. At
present, ensemble models are widely proposed to reduce bias
and to improve forecasting accuracy (Liu and Xu, 2020; Bravo
and Ayuso, 2021), but the application of this model in the
field of marine disaster forecasting remains rare (Ding et al.,
2020). Zhao et al. (2019) proposed an ensemble learning model
called Adaboost-BPNN which is designed to forecast direct
economic losses of marine disasters. Considering the interaction
between pressure, topographic constraints, and the resonant
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characteristics of the basin, Žust et al. (2020) proposed an
integrated sea level forecastingmethod calledHIDRA. In the field
of direct economic losses of storm surge disasters forecasting,
those methods have been developed gradually, but they ignore
the significance of attributes and of sample reduction, as well as
the model optimization.

Primary Work and Contributions
Therefore, with the goal of exceeding the limitations of the above-
mentioned models and methods, a novel hybrid forecasting
system is proposed herein to forecast the direct economic losses
of storm surge disasters. In contrast to most of the previous
studies, it improves the forecasting performance by considering
the complexity of the loss factors and the similarity of data.
More specifically, the system consists of three modules, including
a reduction module for data processing, a forecasting module,
and an evaluation module. Specifically, the key attributes in the
economic loss assessment attribute set of storm surge disasters
are selected by the reduction module to obtain the optimal input
of each sample. Subsequently, the forecasting module is designed
to obtain the forecasting loss results for each storm surge disaster
based on the optimal input. Afterward, the evaluation module
comprehensively evaluates the performance of the developed
forecasting system. To test the feasibility and the superiority
of the forecasting system, real data samples of direct economic
losses of storm surge disasters from 1989 to 2019 were collected
for numerical experiments. The experimental results showed that
the proposed approach exhibited good performance, which was
superior compared to that of other models, and it is suitable for
the forecasting of direct economic losses resulting from storm
surge disasters in practical applications.

The main contributions of this study are summarized
as follows:

(1) Modeling of direct economic losses of storm surge disasters

is achieved by a novel hybrid forecasting system. Previous
studies have mainly focused on improving the forecasting
performance by introducing different individual models,
which ignored the potential forecasting power of a hybrid
modeling. Therefore, a novel hybrid forecasting system
is proposed, which can bridge the research gap in
current studies.

(2) An advanced reduction module is proposed to

simultaneously obtain the key attributes and samples.

Reduction is an effective method to improve forecasting
performance. However, it is ignored by majority of the
previous studies. Therefore, in this study, we combine
rough sets with a SOM, reduce the samples after attribute
reduction, and horizontally and vertically process the data
to improve the forecasting accuracy of the system.

(3) A Forecasting module based on an improved machine

learning technique is proposed to improve the

generalization ability and robustness of the system.

The advanced machine learning technique, named as ELM
architectures, has, thus, long been ignored in modeling of
direct economic losses from storm surge disasters, despite its
superiority in other forecasting fields. Hence, the forecasting

module is developed based on an improved ELM to further
improve the performance of the forecasting systems.

Organization
The remainder of this article is organized as follows. Section
Detailed Process of the Developed Hybrid Forecasting System
introduces the reduction module and forecasting module,
respectively. In section The Direct Economic Loss Forecasting
System, the direct economic loss forecasting system is presented.
The experimental setup and a summary of the results are shown
in sections Experiments and Summary. Section Conclusions and
Future work generalizes the conclusions and suggests some
possible directions for future research.

DETAILED PROCESS OF THE DEVELOPED
HYBRID FORECASTING SYSTEM

The hybrid forecasting system based on intelligent algorithm is
successfully developed, which includes three modules: reduction
module, forecasting module, and evaluation module.

Module 1: Reduction Module
In the process of forecasting the direct economic losses caused
by regional storm surge disasters, many indicators affect the data.
Varying time intervals of storm surge have different contributions
to each other, and various factors have different effects on
the loss results. Therefore, the processing of sample data and
the selection of storm surge samples affect the accuracy of
the forecasting results. The reduction module is applied to
simultaneously reduce the indices and samples, so as to identify
the key indices affecting the loss values and to select the samples
with a strong forecasting correlation. Accuracy is also improved
by an effective dataset.

Construction of Attribute set
To maintain the integrity and validity of the index system,
the availability and accuracy of storm surge disaster loss data
should be considered. By combining frequency statistics with
theoretical analysis of disaster economic loss assessment (Yin
and Sun, 2011; Yin et al., 2011), an economic assessment of
the index system of storm surge disasters was constructed, and
the initial attribute set of the module was formed. Attribute
classification and spatiotemporal clustering were carried out for
factors under the four dimensions of the risk of disaster-caused
factors, economic loss index, vulnerability to hazards, and the
adaptability of storm surge disasters. The initial attribute set is
composed of 19 factors that affect the economic losses caused by
storm surge disasters, as shown in Figure 1.

Stage I: Attribute Reduction
The choice of rough set theory as a tool for feature selection is
based on two considerations. First, rough set theory does not
require a priori knowledge and the mathematical technology is
mature. Second, a rough set theory can directly analyze and infer
data so as to discover the hidden knowledge between the data
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FIGURE 1 | Attribute set for economic loss assessment of storm surge disasters.

and to reveal potential patterns. Thus, it is an effective method of
knowledge discovery.

Definition 1. In Pawlak’s rough set (Pawlak, 1982) attribute
reduction theory, an equivalence relation is central and primitive.
The theory begins with the notion of an information system,
which is considered as IS = (U,AT, g,V), where is a non-
empty set of finite objects, U = {x1, . . . , xi, . . . , xn}, it is called
the universe. AT is a non-nullable collection of attributes. The
information function isg :U × AT → V , which expresses the
value of xi under a, that is g(xi, a) ∈ Va(a ∈ AT, xi ∈ U), Va

is the domain that attribute what amay take.

Definition 2.Given anyA ⊆ AT, there is an indiscernible relation
IND(A) on U.

IND(A) = {(xi, xj) ∈ U × U|∀a ∈ AT, g(xi, a) = g(xj, a)} (1)

If(xi, xj) ∈ IND(A), then and cannot be discernible by attributes
from A. Generated by IND(A), the partition of is denoted as

U
/

IND(A) = {[xi]A : xi ∈ U} (2)

With regard to attribute set AT, [Xi]A are equivalent classes of
indiscernible relation, which can describe arbitrary subsets of U.

The equivalence classes of IND(A) and the empty set ∅ are the
base sets in the information system IS.

Definition 3. Let X ⊆ U, it may not be represented exactly
and clearly in U. One can describe an arbitrary subset X by
a pair of lower and upper approximations. They are defined,
respectively, as

A(X) = {Xi[Xi]A ⊆ X} and

A(X) = {Xi[Xi]A ∩ X 6= ∅} (3)

The pair [A(X),A(X)] is termed as the rough set of X in regard to
the set of attributesAT.

Definition 4. Let A and B be the two equivalence relations over
U. Then the regions of B: positive region, negative region and
boundary region can be defined as, respectively,

POSA(B) =
⋃

X∈U/B

AX (4)

NEGA(B) = U −
⋃

X∈U/B

AX (5)

BNDA(B) =
⋃

X∈U/B

AX −
⋃

X∈U/B

AX (6)
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TABLE 1 | Example dataset.

x ∈ U a b c d ⇒ e

1 2 1 3 3 1

2 1 2 2 2 3

3 3 1 1 2 2

4 2 2 1 3 3

5 2 1 3 1 2

6 3 3 1 2 2

7 3 2 2 2 3

8 1 2 2 1 2

Definition 5. An information system is called a decision system
if the collection of attributes AT can be divided into condition
attribute set A and decision attribute set B. In order to clearly
illustrate these mathematical definitions, an example will be
employed to explain the principle. In this case, four conditional
attributes (a, b, c, d), one decision attribute e, and eight objects
are represented in Table 1.

In the system, one of the significant matters in data analysis
is to find the dependency relationship between attributes. The
dependency betweenA and B can be defined in the following way:

γA(B) =
|POSA(B)|

|U|
(7)

If γA(B) = 1, B depends totally onA, if 0 < γA(B) < 1, B depends
partially on A, and if γA(B) = 0, then does not depend on A.

For example, if A =
{

b, c
}

then objects 2, 7, and 8 are
indiscernible, 1 and 5 are indiscernible. The partition of U can
be shown as

U/IND(A) = U/IND(b) ⊗ U/IND(c)

= {{1, 3, 5} {2, 4, 7, 8} {6}} ⊗ {{3, 4, 6} {2, 7, 8} {1, 5}}

= {{3} {1, 5} {4} , {2, 7, 8} , {6}} .

IfA =
{

b, c
}

and B = {e}, then

POSA(B) =
⋃

{∅, {3, 6} , {4}} = {3, 4, 6}

NEGA(B) = U −
⋃

{{1, 5} , {3, 1, 5, 2, 7, 8, 6} , {4, 2, 7, 8}} = ∅

BNDA(B) = U − {3, 4, 6} = {1, 2, 5, 7, 8} .

It follows that in attribute set A, objects 3, 4, and 6 can definitely
be classified as one class for attribute e. The rest of the objects,
however, cannot be classified.

Hence, The dependency of {e} from
{

b, c
}

is

γ{b,c}({e}) =
|POS{b,c}({e})|

|U|
=

|{3, 4, 6}|

|{1, 2, 3, 4, 5, 6, 7, 8}|
=

3

8
.

Definition 6. Given A, and an attribute a ∈ A, the significance of
the attribute a is defined as

σA(B, a) = γA(B)− γA−[a](B) (8)

The more the dependency changes, the more important the
attribute becomes. If the significance is 0, that means POSA(B) =
POSA−[a](B), then the attribute is dispensable. Otherwise, a is
said to be relatively indispensable in A. In E, if every attribute
is relatively indispensable and POSE(B) = POSA(B), So is called a
relative reduction in condition attribute set A.

For example, if A =
{

a, b, c
}

and B = {e}, then

γ{a,b,c}({e}) = |{3, 4, 6, 7}|/8 = 4/8

γ{a,b}({e}) = |{3, 4, 6, 7}|/8 = 4/8

γ{b,c}({e}) = |{3, 4, 6}|/8 = 3/8

γ{a,c}({e}) = |{3, 4, 6, 7}|/8 = 4/8

so the significance of a, b, c is calculated as follows:

σA(B, a) = γ{a,b,c}({e})− γ{b,c}({e}) = 1/8

σA(B, b) = γ{a,b,c}({e})− γ{a,c}({e}) = 0

σA(B, c) = γ{a,b,c}({e})− γ{a,b}({e}) = 0

Hence, attribute a is relatively indispensable, while, attribute b
and c can be dispensable. By experimenting, the final relative
reduction can be built.

Stage II: Sample Reduction
On the basis of the data, the features of storm surge disaster
direct economic losses. The SOM is put forward to classify the
samples automatically. The samples with high correlation degree
are gathered and retained, while the samples with low correlation
degree are separated and removed to achieve a sample reduction.

Definition 1. Self-Organizing Map (Kohonen, 1990) is an
unsupervised learning method, which can reduce the dimension
of an n-dimensional input space X to a two-dimensional output
plane, thus, forming a topology of M neurons. The weight
vector Wi(i ∈ 1, . . . ,M) represents each neuron, which is an n-
dimensional vector related to the input samples. The SOM system
schematic is described in Figure 2.

FIGURE 2 | The Self-Organizing Map (SOM) system schematic.
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Definition 2. In the initial stage, the weight of neurons is varied to
initialize the network with different topologies. When the input
vectors are sent through the SOM neural network, each neuron
varies its position by calculating the distance between the weight
and the input vector. At time step t, a new input sample X(t) is
presented to SOM, and a winner neuron is stated:

WX(t) = arg
min

j ∈ {1, . . . ,M}
∥

∥X(t)−Wj(t)
∥

∥ (9)

Then, the weight vectors are updated,

Wi(t + 1) = Wi(t)+ η(t)9(i,WX(t))(X(t)−Wi(t)) (10)

where η(t) is a decaying learning rate and 9(i,WX(t)) is called
the neighborhood function,

9(i,WX(t)) = exp(−

∥

∥WX(t)−Wi

∥

∥

2

2σ 2(t)
) (11)

σ 2(t) is the neighborhood radius,
∥

∥WX(t)−Wi

∥

∥ is the Euclidean
distance between the neurons. After repeated iterative training,
the similar weight vectors are close, can even be clustered, while
the dissimilar weight vectors are separated.

Module 2: Forecasting Module
The prediction module mainly adopts the Marine Predators
Algorithm (MPA) to optimize the ELM. The MPA (Faramarzi
et al., 2020) was developed as a novel meta-heuristic algorithm,
which is primarily modeled on ocean predators to select an
optimal foraging strategy according to the prey location. In the
forecasting module, the position of the predator is represented
by the multi-dimensional vector composed of input weights and
hidden layer thresholds, which can determine the performance of
the ELM. Then, the optimal parameters are obtained based on the
optimization criteria. These two theoretical principles will briefly
introduce the following.

Extreme Learning Machine
Definition 1. Extreme learning machine (Huang et al., 2004)
was proposed as an easy-to-use and effective single hidden-
layer feedforward neural network method. Instead of iteratively
adjusting the weights and biases of the network, the hidden layer
parameters are assigned randomly, and the least square method
is proposed to generate the unique optimal solution. Therefore,
it has the advantages of fast training speed, avoiding over fitting,
and local optimization to a certain degree.

Definition 2. Given the original training dataset (xj,tj), where xj
is the input variables, xj = [xj1, xj2, . . . , xjn]

T ∈ Rn, and tj is the

output variables, ti = [ti1, ti2, . . . , tim]
T ∈ Rm. D is the number of

hidden neurons. The output matrix of ELM is shown as follow:

T =











t1j
t2j
...
tmj











m×N

=











∑D
i=1 βi1g(aixj + bi)

∑D
i=1 βi2g(aixj + bi)

...
∑D

i=1 βimg(aixj + bi)











m×N

,(j = 1, 2, . . . ,N)

(12)

where βi = (βi1,βi2, . . . ,βim)
T is the output weights matrix

between the ith hidden neuron and the output layer nodes,
g(·) is the activation function of the hidden layer, ai =

(ai1, ai2, . . . , aiN)
T is the input weight matrix that connects the ith

hidden layer node and input layer nodes, and bi is the bias of the
ith hidden layer node.

The above-mentioned matrix can be indicated as below:

Hβ = T (13)

where H is the hidden layer output matrix:

H =





g(a1x1 + b1) · · · g(aDx1 + bD)
· · · · · · · · ·

g(a1xN + b1) · · · g(aDxN + bD)





N×D

(14)

Definition 3. In the training dataset, the inputs samples and its
corresponding targets are already given. The input weight matrix
a and bias b can be given randomly, then the output weight
matrix β can be calculated byMoore-Penrose generalized inverse
to get its least square solution:

β = H+T (15)

where is called the Moore-Penrose generalized inverse of matrix.
Then the orthogonal projection approach is taken to calculate

H+that is H+ = HT(HHT)
−1

.
The network architecture of ELM is displayed as (Figure 3).
As mentioned above, the input weight matrix a and bias b are

the two crucial parameters that are presented in ELM.

Marine Predators Algorithm
According to the theory of “survival of the fittest,” the predator
determines the optimal strategy ensuring a reasonable contact
rate with the prey. The MPA starts from the initial stage of
the population, then goes through the three optimization stages
considering different speed ratio and simultaneously simulating
the whole life cycle of the predator and prey.

Definition 1. At initialization stage, the initial populations for
both the prey and the predator can be randomly located in the
search space via the following mathematical expression:

U = lb+ rand∗(ub− lb) (16)

where lb and ub are the lower and upper boundaries for variables,
and rand∗is a random number in the range of 0–1. According
to the formula 14, the initial location matrix of prey can be
established, as below:

prey =









U11

U21

. . .

Un1

U12

U22

. . .

Un1

. . .

. . .

. . .

. . .

U1d
U2d
. . .

Und









n×d

(17)

In Equation (17), n is the number of search agents, while d is the
number of dimensions.

Definition 2. Inspired by the concept of survival of the fittest, the
first-class predators have the best foraging techniques. Therefore,
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FIGURE 3 | Network structure of extreme learning machine (ELM).

when establishing the Elite matrix, the fittest population is
selected as the first-class predator. On the basis of the location
information of the prey, the digit group of the elite matrix is
updated by searching and finding the quarry. At the end of each
iteration, if the first-class predator was replaced by a better one,
the Elite matrix would be altered.

Elite =









UI
11

UI
21

. . .

UI
n1

UI
12

UI
22

. . .

UI
n2

. . .

. . .

. . .

. . .

UI
1d

UI
2d

. . .

UI
nd









n×d

(18)

Definition 3. In the initial iteration stage of optimization,
Iter < 1

3Max_Iter, (Iter is the current iteration, Max_Iter
is the maximum one), the prey searches for food in the
exploration field, while the predator chooses the optimal strategy
of immobility. Therefore, the location of the prey is determined
by the following equations.

Si = RB ⊗ (Elitei − RB ⊗ Ui), i = 1, 2, . . . , n (19)

Ui = Ui + P.R⊗ Si (20)

where RB indicates a vector including random numbers (based
on the normal distribution of Brownian motion), ⊗ represents
entry-wise multiplications. The P = 0.5. is a constant
number and R ∈ [0, 1] is a random number coming from a
uniform distribution. The multiplication of RB and prey imitates
its movement.

Definition 4. In the intermediate iteration stage of optimization,
1
3Max_Iter < Iter < 2

3Max_Iter, not only do the prey and
predator change their positions to seek food, but they also
move at the equal velocity. The population is divided into two
parts. The first part (i.e., prey) of the agents is allocated for
exploitation, and the second half (i.e., predator) is in charge of

exploration. Equation (21) imitates the movement of the first half
of the population.

Si = RL ⊗ (Elitei − RL ⊗ Ui), i = 1, 2, . . . , n�2 (21)

Ui = Ui + P.R⊗ Si (22)

where RL represents a random number vector based on the
Lévy distribution. The multiplication of RL by prey emulates the
motion of prey, while the second half of the agents perform
the following equations. The second half of the population is
represented by the following mathematical formula:

Si = RB ⊗ (RB ⊗ Elitei − Ui), i = 1, 2, . . . , n�2 (23)

Ui = Elitei + P.CF ⊗ Si,

CF = (1−
Iter

Max_ Iter
)
(2 Iter

Max_Iter
)

(24)

where CF is the adaptive parameter that controls the step size for
the predator motion.

Definition 5. In the final iteration stage of optimization, Iter >
2
3Max_Iter, the speed of prey is slower than that of predator. The
predator adopts exploitation strategy based on Lévy migration
and its location is updated as follows:

Si = RL ⊗ (RL ⊗ Elitei − Ui), i = 1, 2, . . . , n (25)

Ui = Elitei + P.CF ⊗ Si,

CF = (1−
Iter

Max_Iter
)
(2 Iter

Max_Iter
)

(26)

Definition 6. Faramarzi et al. believed that the external
environmental factors make the behavior of the population
change more or less, such as the eddy formation or Fish
Aggregating Devices (FADs) effects. In order to avoid the
local optimization, longer jumps should be considered in
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the simulation process. Hence, Equation (27) shows the
mathematical model of the FADs effects,

Ui =

{

Ui + CF[Umin + R⊗ (Umax − Umin)⊗M r5 < FADs
Ui + [FADs(1− r)+ r](Ur1 − Ur2) r5 > FADs

(27)

In Equation (27), where FADs represent the probability of
affecting the search process and is set equivalent to 0.2, and M
is the binary solution (0 or 1) corresponding to the stochastic
solution. If the array is <0.2, the array is altered to zero. If the
array is >0.2, the array is converted to one. The notation r ∈

[0, 1] defines a random number. The r1 and r2 are the random
indices of the prey.

Definition 7. An important feature of marine predators is that
they have a specific memory of their successful foraging position.
In MPA, this feature is simulated by saving the optimum solution
of the previous iteration, and the performance of each solution
of the current iteration is compared with the previous one. If it is
better, the previous solution will be replaced, which is helpful for
fast optimization.

Proposed MPA-ELM Forecasting Module
The MPA has a good ability of optimization. The input weight
matrix and bias b of ELM are optimized. The forecasting module
is constructed. The loss of training set is considered as the fitness
function of MPA, and the calculation is shown in Equation (28),

RMSE =

√

√

√

√

1

m

m
∑

i=1

(Yi − Ŷi)2 (28)

where Y is the actual value and Ŷ is the predicted value.
The pseudo code of forecastingmodule is described as follows:
The flowchart of forecasting module is shown in Figure 4, the

steps can be summarized as the following:

Step 1: Initialize positions for the prey and the predator,
construct the matrices of prey and Elite according to
Equations (17) and (18), and accomplish a memory saving.
The position coordinates of each predator are composed of
parameters a and b.
Step 2: Select the best predator. On the basis of the location
information of the prey and the previous memory of predator
to capture its food successfully, the best predator matrix
is assigned.
Step 3: Determine the update criteria according to the range
of Iter. If Iter < 1

3MaxIter, the process is in the stage 1,
execute Step 4, otherwise, execute Step 5.
Step 4: Update the solutions based on Equations (19) and
(20), and then skip to Step 8.
Step 5: If 1

3MaxIter < Iter < 2
3MaxIter, the process is in the

stage 2, execute Step 6, otherwise, the process is in the stage
3,execute Step 7.
Step 6: Update the positions of the prey and predator based
on Equations (21–24). The first half part performs Equations
(21) and (22), and the other half follows Equations (23) and
(24), and then skip to Step 8.

Algorithm 1:MPA-ELM

Fitness function:

RMSE =

√

1
m

m
∑

i=1

(

Yi − Ŷi

)2

output:

Ŷ—the forecasting direct economic losses from ELM
Parameters:

Max_Iter—the maximum number of iterations
N—the number of search agents
Fi—the fitness function of Elite i
Xi—the position of i_th search agent
lb/ub—the lower/upper bound of variables
Iter—the current iteration number
r—the random number from 0 to 1
d—the number of dimension

1 /∗Set the parameters of MPA.∗/
2 /∗Initialize search agents of Xi (i= 1, 2,..., N) randomly.∗/
3 FOR EACH i: 1 ≤ i ≤ N DO
4 Evaluate the corresponding fitness function Fi
5 END FOR
6 /∗Determine the current Elite matrix.∗/
7 WHILE (Iter< Max_Iter) DO
8 FOR EACH i=1: N DO
9 /∗Calculate the objective value of all agents.∗/

10 /∗Update the obtained solution.∗/
11 IF (Iter<Max_Iter/3) THEN
12 /∗Update all population positions in the

exploration field.∗/

13
Si = RB ⊗ (Elitei − RB ⊗ Ui), i = 1, 2, . . . , n
Ui = Ui + P.R⊗ Si

14 ELSE
15 IF (Max_Iter/3<Iter<2∗Max_Iter/3) THEN
16 FOR EACH i=1: N /2 DO
17 /∗Update the position of the first half

population.∗/

18

Si = RL ⊗ (Elitei − RL ⊗ Ui),
i = 1, 2, . . . , n�2

Ui = Ui + P.R⊗ Si
19 /∗Update the position of the second half

population.∗/

20

Si = RB ⊗ (RB ⊗ Elitei − Ui),
i = 1, 2, . . . , n�2
Ui = Elitei + P.CF ⊗ Si,

CF = (1− Iter
Max_Iter )

2 Iter
Max_Iter

21 END FOR
22

ELSE If (2∗Max_Iter/3<Iter<Max_Iter) THEN
23 /∗Update all population positions in the final

stage.∗/

24

Si = RL ⊗ (RL ⊗ Elitei − Ui),
i = 1, 2, . . . , n
Ui = Elitei + P.CF ⊗ Si,

CF = (1− Iter
MaxIter )

(2 Iter
MaxIter )

25 END IF
26 END IF
27 END FOR
28 /∗ Using FADs effect and update current agent based on

Equation. (27).∗/
29 Iter=Iter+1
30 ENDWHILE
31 RETURN Xi

∗

32 Set the weight and bias of the ELM according to Xi
∗

33 Input the testing data into ELM to obtain the forecasting
value Ŷ

Frontiers in Marine Science | www.frontiersin.org 8 January 2022 | Volume 8 | Article 80454191

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Guo et al. Storm Surge Economic Losses Modeling

FIGURE 4 | The flowchart of marine predators algorithm (MPA)-ELM forecasting module.

Step 7: Update the positions of the prey and predator based
on Equations (25) and (26), and then skip to Step 8.
Step 8: Apply the model of the FADs effects using Equation
(27), and then skip to Step 9.
Step 9: Evaluate the objective function, and then skip to
Step 10.
Step 10: Determine whether the termination condition is
satisfied. If it is met, the program ends, and the best position
parameter is the output. Otherwise, skip to step 2.
Step 11: Obtain the optimal ELM.
Step 12: Calculate the error, output the predicted result.

Module 3: Evaluation Module
In order to evaluate the effectiveness of the proposed system, an
evaluation module is provided. There is no unified standard to
confirm the validity of various models. Therefore, by consulting
the relevant literature in the field of prediction (Wang et al.,
2018; Gu et al., 2021), a variety of error metrics are adopted in
this paper, including mean square error (MSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE),
PMSE, PMAE, and PMAPE, as shown in Table 2. Where m
represents the number of testing data, A and F represent the
collected and predicted economic losses data, respectively. The
A is the average value of the actual data, and F is the average
value of forecasting results. Specifically, MSE, MAE, and MAPE
can be considered to evaluate the forecasting accuracy, and
the smaller value of these indicators shows better forecasting
performance. Performance improvement percentage indicators
namely PMSE, PMAE, and PMAPE further evaluate the
improvement between different models to quantitatively describe
the degree of performance improvement. The evaluation module
evaluates the forecasting accuracy, the degree of performance
improvement, and the forecasting ability of the system. In
summary, six indicators are selected, which can focus on a
comprehensive scientific evaluation.

TABLE 2 | Performance metric rules.

Metric Definition Equation

MSE The average of m error

squares

MSE = 1
m

m
∑

i=1

(Ai − Fi )
2

MAE The mean absolute error of

forecasting results

MAE = 1
m

m
∑

i=1

|Ai − Fi |

MAPE The average of m absolute

percentage errors

MAPE = 1
m

m
∑

i=1

∣

∣

∣

(Ai−Fi )
Ai

∣

∣

∣
× 100%

PMSE The improvement rate of

MSE between model 1 and

model 2

PMSE =
(

MSE1−MSE2
MSE1

)

× 100%

PMAE The improvement rate of

MAE between model 1 and

model 2

PMAE =
(

MAE1−MSE2
MAE1

)

× 100%

PMAPE The improvement rate of

MAPE between model 1

and model 2

PMAPE =
(

MAPE1−MAPE2
MAPE1

)

× 100%

THE DIRECT ECONOMIC LOSS
FORECASTING SYSTEM

A new hybrid forecasting system RS-SOM&MPA-ELM is
proposed for the prediction of the direct economic losses
caused by storm surge disasters. Figure 5 illustrates the hybrid
forecasting framework of our proposed new hybrid approach.
The proposed hybrid approach is generalized as given below:

Step 1: Data collection and processing. Before being input to
the model, the data is processed into a pattern that meets its
requirements, including data normalization, discretization,
and processing of the training format. At the same time, the
data set is divided into training data set and testing data set.
Step 2: Attribution and sample reduction. Rough sets are
proposed to reduce initial attributes, and the key features
affecting the direct economic losses are selected. The decision
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FIGURE 5 | The forecasting framework of forecasting system.

table, composed of normalized and discretized data sets
of direct economic loss factors of storm surge disasters,
is reduced by positive region reduction rules and by
dependency reduction rules. Then, according to the features
extracted from RS, disaster-related parameters of several
storm surge are input into the SOM as the initial training
set. Subsequently, sample sets that contribute to improving
prediction performance are selected as the new training set.
Step 3: The MPA optimization. First, the parameters of ELM
are initialized. Second, ELM is embedded into the MPA for
calculation, including the input weight and the bias update.
Finally, after the embedded model training is completed,
the algorithm judgment conditions are checked to determine
whether the maximum iteration times has been satisfied. If
the requirement is met, the optimized parameters are output,
otherwise, repeat the above process.
Step 4: Final system performance test. After the completion
of the third step, the optimized model is obtained, the
test data set is input into the forecasting module. Then,
the result is output, and the forecasting performance
is tested.

EXPERIMENTS

To verify the superior performance of the system and to
ensure the diversity of data, experiments were carried
out on the data of three provinces. The experimental
environment is macOS 10.14.6, on a system with an Intel(R)
Core CPU (Core-i5 2.6 GHz), and 8G RAM. Different
tools were used to implement the methods of this paper.
Rough sets were implemented in Python 3.8.3, and all the
other models were implemented in the MATLAB R2016b
software package.

Experimental Data
This study involves 19 variables, including 18 characteristic
variables of attribute sets and direct economic losses of storm
surge disasters. This paper selected 60 relatively complete
records of storm surge disasters in Guangdong, Zhejiang
and Fujian provinces from 1989 to 2019 as the research

TABLE 3 | Data sources.

Variables Source

Maximum storm surge (cm) Fujian Marine Disaster Bulletin,

2012–2021; Zhejiang Marine Disaster

Bulletin, 2012–2021; Guangdong

Marine Disaster Bulletin, 2014–2021;

Nanhai Marine Disaster Bulletin,

2016–2021; China Marine Disaster

Bulletin, 2020–2021, Collection of

Storm Surge Disasters Historical Data

in China 1949–2009, (Yu et al., 2015)

Maximum wind speed at landing (m/s)

Central air pressure at landing (hPa)

Damaged area of crops (1,000 HA)

Affected area of aquaculture (1,000 HA)

The length of marine engineering damage

(km)

The number of damaged vessels

The disaster-affected population (10,000)

GDP per capita (CNY) Guangdong Statistical Yearbook,

1990–2020; Zhejiang Statistical

Yearbook, 1990–2020
Population density (people/km2 )

Proportion of primary industry in GDP (%)

Per capita disposable income of urban

households (CNY)

Number of doctors per 10,000 people Fujian Statistical Yearbook,

1990–2020; China social statistical

yearbook, 2006–2020
Number of beds per 10,000 people

Number of medical institutions

Local fiscal revenue (CNY100M)

Per capita disposable income of rural

households (CNY)

Mariculture area (1,000 HA) China Agricultural Statistical Report,

1990–2017; China Marine Statistical

Yearbook, 1993–2017
Sown area of crops (10,000 mu)

objects (Because there are no complete storm surge samples
collected in 2020 and 2021, the selected samples extend to
2019). To ensure the validity and dependability of the data,
the relevant data obtained are from the public sources in
Table 3.

Normalization and Discretization
Each sample in the original data table has 19 different attributes,
and each attribute represents different meanings about the
economic losses caused by storm surges disasters, including data
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about the natural attributes of storm surges and information
about the affected areas. Each group of data has different
dimensions. To eliminate the dimensional influence between
indicators and to speed up the training speed, the general data
processing method should be the normalization before entering
data into the model. The normalization calculation method is
shown in Equation (29), where xj is the input data of the j-th node
in the input layer of the model, xmax and xmin are the maximum
and minimum values of the input sequence, respectively, and xj
is the normalized data with the range of [0, 1].

xj =
xj − xmin

xmax − xmin
(29)

To reduce the attributes based on rough set theory, it is
necessary to initially discretize the data. The sample variables
are divided into several intervals, and each interval is regarded
as a category. This process of categorizing data variables is
often called discretization. All values within each category are
mapped to the same value, converting the actual value to a
numeric attribute of the symbol. The equal distance partition
algorithm is proposed for discretization. After discretization, the
original decision table is replaced by a new decision table of
numerical attributes.

Experimental Design
To verify the effectiveness and robustness of the developed
prediction system, two experiments will be done, denoted as
Experiment I: compared with the traditional single models,
Experiment II: compared with the improved hybrid models.

To verify the superiority of the proposed RS-SOM&MPA-
ELM forecasting system in predicting the economic losses
caused by storm surge disasters, some forecasting models are
selected as comparison models. Therefore, the single neural
network algorithmmodels, different hybridmodels, and different
optimization algorithm-based models are considered. To sum
up, eight comparative models are established to evaluate the
developed hybrid forecasting system. These comparison models
are listed in Table 4.

To ensure the fairness of the comparison between the models,
the basic parameters of each algorithm are set according to the
default values. To ensure fairness, some parameter settings in
the original literature are maintained for competing models,

TABLE 4 | Comparison models.

Experimental Comparison models

Experimental I BPNN

SVM

ELM

Experimental II RS+SOM+BPNN

RS+SOM+SVM

RS+SOM+ELM

MPA+ELM

RS+SOM & PSO+ELM

while some parameters are shared. For example, the number
of iterations or the frequency of training of all models is set
to 50, and each model was performed 250 times to output
statistically stable results. To judge the number of SOM clustering
categories, two, three, and four values are selected to do the
experiment. The results show that 60 samples are classified
according to the occurrence time. To reflect the classification
features to the greatest extent and to ensure the sufficient
number of samples, the optimum clustering numbers of SOM is
determined as 2. The BPNN and ELM adopt Sigmoid function as
the activation function. The Radial Basis Function is adopted in
SOM and SVM as kernel function. The regularization parameter
C and kernel parameter in all SVM-based comparison models
are searched in grid ranges of [2−8, 28] and [2−5, 25] with
step 0.5. The specific experimental parameters are shown in
Table 5.

Moreover, due to the uncertainty of the occurrence of storm
surge disasters and the incompleteness of statistical data, the
economic loss forecasting of storm surge disasters exhibited the
characteristics of small sample size. In the proposed system and

TABLE 5 | Experimental parameter values.

Models Experimental parameter Default value

BPNN Neuron number in the input layer 5

Neuron number in the hidden layer 7

Neuron number in the output layer 1

Number of the hidden layer 5

Learning velocity 0.1

Training requirements precision 0.00004

Maximum number of trainings 50

SVM Penalty parameter 50

Value of gamma in kernel function 0.2

Setting type 3

Value of epsilon in loss function 0.05

Maximum number of errors 0.1

ELM Neuron number in the input layer 19

Neuron number in the output layer 1

Number of the hidden layer 1

SOM Neuron number in the input layer 5

Neuron number in the output layer 2

Learning rate 0.5

Maximum number of trainings 50

MPA Search agents number 30

FADs 0.2

Constant number P 0.5

Random index of agents 0 to 1

Maximum number of iteration times 50

PSO Population scale 20

Acceleration constant C1 1.49445

Acceleration constant C2 1.49445

Speed limit 0.1 to 0.2

Variable value −10 to 10

Maximum number of iteration times 50
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TABLE 6 | Forecasting performance of comparison models.

Models MSE MAE MAPE (%)

Model 1 17.5536 4.1327 36.9559

Model 2 6.7561 2.4689 21.9069

Model 3 3.5866 1.8464 16.5293

Model 1: BPNN, Model 2: SVM, Model 3: ELM.

comparison models, two groups of data are proposed as the
testing set, which are the economic loss samples of regional
storm surge disasters in 2019 and 2018. At the same time, two
storm surges are coded sequentially: the first sample and the
second sample. The remaining samples constitute the initial
training data set. The SOM is proposed to, respectively, select the
corresponding new training set for the samples. The results are as
follows. The new training set of the first sample is from sample 35
to sample 59, whereas that of the second sample is from sample
34 to sample 58. Subsequently, for the five attributes selected by
RS, the test and error test should be carried out by minimizing
the MAE and the MAPE of the training set to verify whether all
of them are input. The results show that in the training set of
test samples, regardless of which of the five factors selected by
RS is removed, good performance is not obtained. Hence, five
attributes are determined as the input of forecasting module.

Experiment I: Comparison With the Traditional Single

Models
In Experiment I, three single models are adopted for forecasting
through the comparison of performance forecasting standards,
where BPNN and SVM are the most popular machine learning
models. The ELM is the method related to the forecasting model
that we use. Researchers have shown that these models have good
performance in forecasting. All the performance metrics of each
single model are shown in Table 6.

For the direct economic losses forecasting, in terms of the
comparison among the results of single models, ELM has the
best forecasting performance, followed by SVM and BPNN. The
difference of calculation results of the threemodels shows that the
ELM for this kind of structure is more suitable for the considered
problem. Therefore, it is selected as the basic forecasting module
of the proposed forecasting system. Although ELM results are
better than the other two models, the forecasting results of single
model are not ideal.

Experiment II: Compared With the Improved Hybrid

Models
In Experiment II, a series of hybrid methods are selected to
apply to multi factor forecasting. Taking proposed forecasting
method ELM as an example, the first type of hybrid approaches
only employed the forecasting module (MPA-ELM), the second
type of hybrid approaches only conducted a reduction operation
(RS+SOM+ELM), whereas another type of hybrid approaches
only changed the optimization algorithm for the proposed
model (RS+SOM&PSO+ELM).

After attribute reduction on the basis of RS, five attributes
are obtained: the length of marine engineering damage C6, the
disaster-affected population C8, proportion of primary industry
in GDP C11, mariculture area C14, and the number of beds
per 10,000 people C17. Through SOM neural network training,
according to the occurrence time of storm surge, 60 storm surge
samples are divided into two groups: one group comprised of 32
storm surges from 1989 to 2008, and the other group comprised
of 28 storm surges from 2008 to 2019. The recent storm surges
were selected as the testing samples, and the storm surges samples
from 2008 to 2017 were selected as the training set.

After training, the parameters of the proposed model and
other models for forecasting are obtained. The MSE, MAE,
and MAPE [Equation (24)] are used as indices to evaluate the
forecasting performance. To ensure the reliability and stability
of forecasting results, considering the inherent randomness of
MPA and ELM, these models run 250 times, and the average
forecasting value is taken as the final result.

The comparison between the results obtained by the above
hybrid models and by the actual values is shown in Table 7. The
MSE, MAE, and MAPE for the predicted values of each model
are listed in Table 8. The IR between different approaches is
presented in Table 9. The results of the tables also demonstrate
the following:

(1) The experimental results show that the forecasting
performance of all hybrid models is better than that of the
single models.

(2) The proposed system significantly outperformed all models
compared in terms of level of accuracy for the forecasting of
direct economic losses caused by storm surge disasters. This
verifies that the proposed forecasting system is an effective
tool for forecasting direct economic losses caused by storm
surge disasters, with the lowest MSE, MAE, and MAPE of
0.0133, 0.1154, and 1.0313%, respectively.

(3) Table 9 displays the contribution of reduction module
operation in attribute reduction and sample selection, in
which Models 1, 2, and 3 represent BPNN, SVM, and ELM,
respectively, and Models 5, 6, and 7 refer to approaches
that, respectively, combined RS-SOMwith the abovemodels.
For each corresponding group, Models 5–7 outperformed
Models 1–3, respectively, according to the positive IR
values. Through the positive PMAPE and PMAE criteria,
the results clearly show that the models with the reduction
module obtained higher levels of forecasting accuracy, which
indicates that reduction module is very helpful to improve
forecasting performance. Thus, it is particularly significant
to master the features and preprocess the data.

(4) The performance of the models with the optimization
algorithm is better than other models, which proves that
the optimization algorithm can significantly improve the
forecasting ability and stability of the model. Among them,
the model with MPA algorithm is better in forecasting
performance, and the optimization time is relatively short.

(5) The forecasting performance of model 9 is improved
compared with models 5 and 6. The performance of the
models with forecastingmodule is better than that with other
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TABLE 7 | Predicted results of testing set.

Comparison models

Sample number MPA+ELM RS+SOM+BPNN RS+SOM+SVM RS+SOM+ELM RS+SOM+PSO+ELM RS+SOM+ MPA+ELM Actual value

1 12.7953 11.8747 11.2483 11.2016 11.1858 11.1700 11.0400

2 13.2193 12.5694 11.2292 11.2173 11.2163 11.4908 11.3900

TABLE 8 | Forecasting performance of hybrid models.

Hybrid models Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

MSE 3.2123 1.0141 0.0341 0.0279 0.0255 0.0133

MAE 1.7923 1.0071 0.1846 0.1672 0.1598 0.1154

MAPE (%) 15.9800 8.9577 1.6493 1.4900 1.4228 1.0313

Model 4: MPA+ELM, Model 5: RS+SOM+BPNN, Model 6: RS+SOM+SVM, Model 7:

RS+SOM+ELM, Model 8: RS+SOM+PSO+ELM, Model 9: RS+SOM+MPA+ELM.

TABLE 9 | IR between different approaches.

Models PMSE (%) PMAE (%) PMAPE (%)

Model5→ Model1 94.2228 75.6309 75.7611

Model6→ Model2 99.4953 92.5230 92.4713

Model7→ Model3 99.2221 90.9445 90.9857

Model9→ Model4 99.5860 93.5613 93.5463

Model9→ Model5 98.6885 88.5414 88.4870

Model9→ Model6 60.9971 37.4865 37.4704

Model9→ Model7 52.3297 30.9809 30.7852

Model9→ Model8 47.8431 27.7847 27.5162

Model 1: BPNN, Model 2: SVM, Model 3: ELM, Model 4: MPA+ELM, Model 5:

RS+SOM+BPNN, Model 6: RS+SOM+SVM, Model 7: RS+SOM+ELM, Model 8:

RS+SOM+PSO+ELM, Model 9:RS+SOM+MPA+ELM.

forecasting models. In general, BPNN and SVM showed
strong performance in the forecasting field in the past,
but poor performance in this research framework. This is
primarily due to the characteristics of the disaster loss data,
small sample problems, and the instability of forecasting
results. The stability and forecasting performance of the
system RS-SOM &MPA-ELM proposed in this paper is
superior to that of the existing methods.

SUMMARY

According to the performance comparisons of both single
models and hybrid models above, it is obvious that the
forecasting results of RS-SOM&MPA-ELM are better than
other models. Moreover, the forecasting performance of hybrid
models is better than that of single models. In addition, some
interesting phenomena are found during the study, as noted
briefly below:

(1) The results of hybrid models are better than those of
single models, and these single models cannot directly

obtain satisfactory results. The main factors that affected the
forecasting results are the redundancy and the non-linearity
of the original influence factors. It is necessary to preprocess
the direct economic loss factor table of storm surge disasters,
so as to further improve the forecasting accuracy.

(2) In the contrast experiment, with or without RS-SOM, the
forecasting results of the models with RS-SOM are better
than those without RS-SOM. The RS can remove the
redundant factors and screen out the key factors to improve
the accuracy of forecasting. When the samples are clustered
by SOM, there is a significant correlation between the sample
classification and the occurrence time of storm surges. Other
samples within 10 years (including 10 years) from the
occurrence time of forecasting samples are more relevant to
their data. This paper attempts to explain the reasons for this
result: if the time interval between the two storm surges is
longer, the gap between the industrial structure, economic
level, forecasting technology level, and social management
level is larger. The items causing economic losses are also
different. On the contrary, the closer the occurrence time is,
the higher the similarity of samples will be.

(3) In this work, risk of disaster-caused factors are not selected
as critical factors, and different factors are chosen in other
papers. Different methods and different samples lead to
different choices, but the forecasting performance of the
proposed approach is good, which verifies the rationality
of the factor selection. However, it can be considered that
different feature selection methods can be proposed for
cross-validation in future work.

(4) Compared with the comparison models, the new forecasting
system can obtain better accuracy in the forecasting of direct
economic losses caused by storm surge disasters. The data
presents the characteristics of small samples. Therefore, the
forecasting system can be applied to other areas for small
sample forecasting, such as economic loss forecasting for ice
disasters, red tides, tsunamis, and other disasters, short-term
time series forecasting, and so on.

(5) Although the proposed hybrid model has been verified
to have a good forecasting ability in the small sample
forecasting of economic losses caused by storm surge
disasters, it still has some limitations and needs to be
improved. First of all, in terms of data, the collection of
economic loss evaluation index of storm surge disasters
is limited by the practical difficulty, and the initial 18
index selection is subjective. Secondly, although the
proposed optimization algorithm MPA improves the
forecasting accuracy, it increases the forecasting time and
the model complexity.
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CONCLUSIONS AND FUTURE WORK

Storm surge disaster is the most serious source of marine disaster
losses, which causes massive losses to coastal areas every year.
Reasonable disaster loss assessment and forecasting help to carry
out disaster management and reduce losses effectively. Therefore,
direct economic loss forecasting of storm surge disasters has
become an important topic. The proposed RS-SOM&MPA-ELM
system is composed of three modules: one of which is the
reduction module of RS-SOM, the second is the forecasting
module of MPA-ELM, and the last is the evaluation module.
The reduction module reduces the attributes and samples of
the initial data simultaneously, to obtain the key input set of
the forecasting module. In terms of model performance, the
training set processed by reduction module performs better on
single ELMmodel, the PMAPE can reach 90.9857%. The random
allocation parameters of ELM are selected and optimized by
MPA. Experimental results show that the performance of the
system optimized by MPA is better than that of RS+SOM+ELM
model. The improvement rate of MAPE between the models
is 30.7852 %. Based on the data sets of storm surge disasters
in Fujian, Zhejiang, and Guangdong, the proposed forecasting
system is effective. The module is friendly to small sample
forecasting, and the performance of the proposed system is better
than other comparison models.

In the article, all the data are numerical data, while multi-
source data can be added to the later system. At present, we
focus on the samples under normal circumstances. In the future
research, we would focus on the special sample data and pay

more attention to huge disasters with extreme risks. It would be
expected to establish a forecasting systemwith good performance
for sparse samples.
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Air pollution forecasting plays a pivotal role in environmental governance, so a large
number of scholars have devoted themselves to the study of air pollution forecasting
models. Although numerous studies have focused on this field, they failed to consider fully
the linear feature, non-linear feature, and fuzzy features contained in the original series. To
fill this gap, a new combined system is built to consider features in the original series and
accurately forecast PM2.5 concentration, which incorporates an efficient data
decomposition strategy to extract the primary features of the PM2.5 concentration
series and remove the noise component, and five forecasting models selected from
three types of models to obtain the preliminary forecasting results, and a multi-objective
optimization algorithm to combine the prediction results to produce the final prediction
values. Empirical studies results indicated that in terms of RMSE the developed combined
system achieves 0.652 6%, 0.810 1%, and 0.775 0% in three study cities, respectively.
Compared to other prediction models, the RMSE improved by 60% on average in the
study cities.

Keywords: combined forecasting model, air pollution forecasting, improved extreme learning machine, data
decomposition, multi-objective optimization approach, fuzzy computation and forecasting

1 INTRODUCTION

Atmosphere pollutants can cause a variety of diseases (Organization, 2014, March 25; Glencross
et al., 2020), and cause other environmental problems (Grennfelt et al., 2020; Manisalidis et al., 2020),
endangering human survival. To alleviate the impacts of atmosphere pollution, support
environmental management, more scholars are focusing on air pollution forecasting.

Air pollution forecasting is a complex task since there are multiple influences on pollutant
concentrations, such as weather, wind speed and direction, geographic location, pollution emission
and absorption, and policies, etc. Therefore, the concentration series are chaotic and usually contain
both linear and non-linear features (Niska et al., 2004). In the past decades, the forecasting of air
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pollution has attracted wide academic interest, and much effort
has been made to forecast concentration using various
approaches. Generally speaking, these approaches can be
divided into four categories: individual models, hybrid models,
combined models, and meteorological models. The
meteorological models are based on the physical and chemical
processes of pollutants in the atmosphere. This type of model is
the subject of atmospheric research. For individual methods, the
concentration series are modeled and forecast by one type of
model, such as the traditional statistical model, Auto-Regressive
Integrated Moving-Average (ARima), neuron network model,
Back-propagation Neural Network (BPnn), etc. Research on this
type of model was mainly concentrated before 2010. Such as
Niska et al. (2004) used a parallel genetic algorithm to select the
inputs for the multi-layer perceptron model to forecast hourly
concentrations of nitrogen dioxide. Goyal et al. (2006) compared
the performance of three statistical models for forecasting the
concentration of respirable suspended particulate matter. These
three models are multiple linear regression, ARima, and the
combination of ARima and Multiple linear regression. The
prediction results show that the combination of ARima and
Multiple linear regression performs better. Kurt et al. (2008)
built an online forecasting system by utilizing BPnn to predict the
concentrations of SO2, PM10 and CO.

With the development of forecasting methods, a new type of
forecasting method, the hybrid model, has been proposed and
widely used. The hybrid models can advance forecasting by
combining different forecasting techniques, such as combining
statistical models and machine learning methods. This
combination can compensate for the limitations of individual
methods by taking advantage of different methods. Zhu et al.
(2017) decomposed the original data into several intrinsic mode
functions (IMFs, containing the important information) and
noise series. Then, they built two hybrid forecasting models to
forecast the daily air quality index, including least square support
vector regression, Holt-Winters additive model, Grey model, and
seasonal ARima. By combining the Hampel identifier, empirical
wavelet transform, Elman neural network, and Outlier-robust
extreme learning machine, a novel hybrid algorithm was
proposed in (Liu et al., 2019), which improved the forecasting
accuracy of fine particle concentrations. Similarly, using a data
preprocessing module and an optimal forecasting module, Wang
et al. (2020a) proposed a new well-performing hybrid model to
forecast daily air quality, which combines Hampel identifier,
Variational mode decomposition, Sine cosine algorithm, and
Extreme learning machine to forecast daily air quality.

With the development of different forecasting techniques,
combined forecasting has gradually become the research focus
of scholars. The main idea of the combined models is to combine
the forecasting results of several individual models. Yang et al.
(2020) proposed a combined forecasting system combining
Complementary ensemble empirical mode decomposition
(CEEMD), BPnn, Extreme learning machine, and Double
Exponential Smoothing, then used fuzzy theory and Cuckoo
search algorithm to determine aggregation weights to obtain
final results. Based on the wavelet transform and neural
networks, Liu et al. (2021) constructed a new combined

model. In their study, discrete Wavelet transform was used to
decompose the NO2 concentration series. Next to the Long short-
term memory neural network (LSTM), Gated recurrent units and
Bi-directional LSTM were utilized to forecast NO2 concentration.
Finally, they applied two numerical weighting methods
combining the three single forecasting results.

However, these forecasting models have various problems.
Because of their simple structure and convenient calculation,
statistical models have been widely used, but the linear
mapping and poor extrapolation limit the forecasting
performance of such models (Wang et al., 2020c). Artificial
intelligence methods are widely used own to their strong
learning ability and ability to handle nonlinear features, but
such methods tend to fall into local optima and overfitting.
Moreover, their performance is dependent on artificially set
hyperparameters (Niu and Wang, 2019). To avoid the defects
of the individual models, several hybrid models have been
developed. However, hybrid models still do not always
perform best using only one single predictor, since the
single model cannot capture various features contained in
the series (Yang et al., 2020). Therefore, the combination
models gradually developed. However, previous combined
models usually combine a certain type of model. This
combination can only continuously extract one type of
feature in the series, and still cannot analyze the multiple
features contained in the series. This paper summarizes the
above-mentioned types of models in Table 1. To fill this gap, a
novel combined model containing a data decomposition
module, a forecasting module consisting of different types
of forecasting models, and a combination module weighted
by multi-objective optimization algorithms is proposed in this
paper. More specifically, the complete ensemble empirical
mode decomposition with adaptive noise (cEEMDan)
strategy is used for data decomposition to reduce the
influence of the noise in the original series. Whereafter, five
predictors from three types of models are introduced to
construct the forecasting module. These five predictors are
one statistical model, three neuron networks, and a hesitant
fuzzy forecasting model. The multi-optimization algorithm is
utilized to aggregate the forecasting results of five individual
models to obtain the final forecasting results.

Based on the above content, the main contributions and
innovations of this research are summarized as follows:

1) A novel combined forecasting system is proposed by combining
with data decomposition strategy, forecasting models, and
multi-objective optimization algorithm. To obtain better
forecasting performance, the strategy of “decomposition and
ensemble” is introduced to capture different features and
remove the noise of the original data, five individual models
are used to forecast the decomposed data, and a multi-objective
optimization algorithm is utilized to obtain the optimal weights
of individual models and integrate them. The empirical
experiments demonstrated that the proposed combined
forecasting system can provide accurate prediction results for
PM2.5 concentration forecasting, and can provide data support
for decision-making.
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TABLE 1 | Summary of the different types of models.

Models References Variables Results Advantages Dis-advantages

Meteorological Models

ADMS-Urban Dėdelė and
Miškinytė
(2019)

PM10 According to the analysis of PM10 in
the study cities, the ADMS-Urban
model takes into account the different
characteristics of the sites and can be
applied to the exposure estimates in
the cohort studies

AERMOD Mousavi et al.
(2021)

CO,
CO2, SO2

According to the experimental
results, the CO concentration of 8 h
and the SO2 concentration of 1 h in
the cold season may aggravate the
impact on the breathing air of
residents around the studied refinery

No historical weather data is
required, the accuracy is high, and
the causal relationship between the
input and output in the model is
clear, which makes the model more
readable

The models are very computationally
intensive and time-consuming, and
the quality of the input data has a
significant impact on the prediction
results, as even small data deviations
can lead to large differences in the
results

CRTM and WRF-
Chem

Cheng et al.
(2019)

PM10 The results show that assimilation of
Lidar data can effectively improve the
prediction effect. The predicted PM2.5

concentration of the constructed
model is closer to the observed value,
and the low deviation of the model is
significantly reduced

Statistical models

ARima Zhang et al.
(2018)

PM2.5 The trend of fluctuations in PM2.5
concentrations in the forecast period
is similar to the trend in the first two of
the forecast period, which is a
seasonal fluctuation

The structure of the statistical
model is simple, so it is easy to
implement and easy to calculate

This kind of models need a large
amount of historical data. The
statistical models cannot analyze non-
linear series, and have poor
extrapolation

MLR and ARima
and MLR-ARima

Goyal et al.
(2006)

PM According to the experimental
results, the prediction performance of
the combination of ARima and
multiple regression is better

Neuron networks

MLP and GA Niska et al.
(2004)

NO2 The results show that the GA is able
to reduce computation by eliminating
irrelevant inputs and search for
feasible high-level architectures

The neuron networks have strong
learning ability and can handle non-
linear features in the data

This kind of models need a large
amount of historical data. And may fall
into the local optima and overfitting.
Moreover, their performance is
dependent on artificially set hyper-
parameters

BPnn Kurt et al. (2008) SO2,
PM10, CO

Experiments show that quite
accurate predictions of air pollutant
indicator levels are possible with
proposed online air pollution
forecasting system

Hybrid models

EMD-SVR-
SARima and
EMD-HW/GM-
SARima

Zhu et al. (2017) AQI The proposed hybrid model can be
used as an effective and simple tool
for air pollution early warning and
management, and can be applied to
predict other pollution indices

HI-IEWT-Enn-
ORelm

Liu et al. (2019) PM2.5 The performance of the proposed
model is improved in multi-step
forecasting, while the reconstruction
method solves the overfitting problem
and improves the stability of the
hybrid model

Hybrid models can integrate the
advantages of individual models, so
that the forecasting more accuracy

This kind of models not always
perform best using only one type of
models, since they cannot capture
various features contained in the
series

HI-VMD-
SCA-ELM

Wang et al.
(2020a)

AQI The proposed hybrid model gives a
new feasible method for air pollution
forecasting, which is beneficial to air
quality management
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2) Three types of forecasting models are introduced to establish
the robust forecasting module. In order to fully analyze the
various features contained in the series, three types of
forecasting models are combined. Since there are multiple
influences on air pollution, the pollutant concentration series
are chaotic and usually contain linear and non-linear features.
The utilized three different types of models can analyze
different features in the series, the statistical model can
deal with linear features, neuron networks can cope with
non-linear features, and the hesitant fuzzy forecasting
model is used to analyze the fuzzy features. This ensures
the diversity of the system and avoids that the combined
model focuses on a certain type of specific model while
ignoring other features in the series.

3) A multi-objective optimization algorithm is used to weight
the individual forecasting models. In this study, the final
forecasting results are equal to the weighted sum of
individual model forecasting results, so the weight of each
model is a key to ensuring forecasting accuracy. Most
previous studies used numerical weighting methods, so
this paper compares several numerical weighting methods
with optimization algorithms. In addition, the idea of some
feature selection methods can also be regarded as a kind of
weighting, so this paper also chooses two feature selection
methods, Max-Relevance and Min-Redundancy (MRMR)
and ReliefF, as weighting methods to participate in the
comparison of weighting methods. However, after the
comparison in this study, the multi-objective optimization
algorithm is proven to be the best weighting method,
outperforming not only numerical methods but also
feature selection methods.

For the convenience of the readers, all abbreviation words are
listed in Table 2. The remainder of this paper is organized as
follows: the basic methodology of utilized methods and the
system design is introduced in Section 2. The experimental
design, the experiment results, and the analysis of the results
are presented in Section 3. The significance test and stability test
are discussed in Section 4. Finally, Section 5 provides the
conclusion of this study.

2 FRAMEWORK OF THE DEVELOPED
COMBINED FORECASTING SYSTEM

In this section, the utilized methodologies of the combined
system are introduced. These methodologies include the
cEEMDan, ARima, BPnn, ℓ2,1-norm and Random Fourier
Mapping-Based Extreme Learning Machine (ℓ2,1RFelm), Echo
state network (ESn), Fuzzy time series forecasting based on
hesitant fuzzy sets (HFs) and Multi-objective salp swarm
algorithm (mSSa).

2.1 Data Decomposition
Due to various factors, the monitoring data, especially the air
pollutant concentration data, will have fluctuations and noise,
which will affect the further analysis of the data. Therefore, to

extract the characteristics of the series, cEEMDan is used to
decompose the original series.

cEEMDan is an improved method based on the Empirical
Mode Decomposition (EMD) method, which adds adaptive noise
series at each stage of the EMD decomposition to make the
decomposition more perfect while avoiding mode mixing
problem (Torres et al., 2011). EMD-series methods can
decompose any complicated series into a finite of intrinsic
mode functions (IMFs), and each IMF represents the implicit
characteristics of the original series.

The decomposition results of EMD are some IMFs and
residuals, and the decomposition process is the process of
finding the IMFs. Assume the original PM2.5 concentration
series X (t), t = 1, . . . , n is decomposed into k IMFs, the
EMD process can be summarized as follows:

Let a0(t) = X(t) be the signal being analyzed, find all the local
maximum andminimum of a0, and interpolate to form upper and
lower envelopes, denoted as amax

0 and amin
0 , respectively. Calculate

the mean of upper and lower envelopes as
m11(t) � [amax

0 (t) + amin
0 (t)]/2. Next, extract the first detailed

component as �χ�11(t) � a0(t) −m11(t). If �χ�11(t) satisfies the two
conditions of IMFs, �χ�11(t) is the first IMF, denoted as IMF1; else,
�χ�11(t) is considered as the signal, and repeat the Step 1-Step 3
until the decomposition result �χ�1j satisfies the conditions at j-th
decomposition, IMF1(t) � a0(t) −∑r

i�1m1j(t). And the first
residue is γ̂1(t) � ∑r

i�1m1j(t). Set γ̂1 as the signal to be
decomposed, and keep repeating the Step 1-Step 4 until the
final residual γ̂k becomes a monotonic function. At the end of
this decomposition, the original series can be represented as
X(t) � ∑k

i�1IMFk(t) + γ̂k(t).
Since the EMD method is subject to mode mixing, the

ensemble EMD (EEMD) method is proposed to alleviate this
problem by adding white noise to the original signal. However,
EEMD with high computational cost and the number of
decomposed IMFs varies with the added noise. To overcome
the aforementioned problem, an improved EEMD method is
proposed (Wang et al., 2020b). Let wi, i = 1, . . . , I be white noise
with standard deviation εj. Based on the EMD, the process of
cEEMDan can be described as following. Add white noise into the
original signal, then the signals being analyzed are
~ai0(t) � X(t) + ε0wi(t), i � 1, . . . , I. Using EMD decompose ~ai0
to obtain its first IMF, denoted as ĨMF

i
1. Then, the first IMF

after cEEMDan of X (t) is IMF1(t) � 1
I∑I

i�1ĨMF
i
1(t). And the

residual after first decomposition is ~r1(t) � X(t) − IMF1(t). Let
~r1 as the signal need further decomposition, construct the signal
by the ~ai1(t) � ~r1(t) + ε1E1[wi(t)], i � 1, . . . , I, where E1 (·)
represents the first IMF obtained by EMD method. The
second IMF can be calculated as IMF2(t) � ∑I

i�1E1[~ai1(t)]/I.
For k = 2, . . . , K, calculate the k-th residue by
~rk(t) � ~rk−1(t) − IMFk(t), and decompose ~aik(t) � ~rk(t)+
εkEk[wi(t)], then (k + 1)-th IMF can be computed as
IMFk+1(t) � 1

I∑I
i�1E1[~aik(t)], where Ek (·) is the k-th IMF

obtained by EMD. Repeat the decomposition processes until
the residue cannot be further decomposed. After
decomposition, the given signal X (t) can be expressed as
X(t) � ∑K

k�1IMFk(t) + ~rK(t), where ~rK(t) is the final residue
that is no longer feasible to be decomposed. Compared with
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cEEMD, cEEMDan has reduced the computational cost (Torres
et al., 2011), and Wang et al. (2014) has proved that the
computational complexity of EEMD is equivalent to
KO(TlogT), where T is the number of the sample. Therefore,
the computational complexity of cEEMDan is less than
KO(TlogT).

2.2 Individual Forecasting Methods
In this study, three different types of methods are utilized to
predict the concentration of PM2.5. More details are introduced in
the following subsections.

2.2.1 Conventional Statistical Method
This kind of method is based on statistics, with the advantages of
low complexity and fast computational speed, and has a strong
model interpretation. One of the most popular and important
models is the Auto-regressive Integrated Moving Average
(ARima), which has been widely used in time series
forecasting (Pai and Lin, 2005; Ariyo et al., 2014; Benvenuto
et al., 2020).

For the ARima model, future values are considered as a linear
combination of past values and errors, and the mathematical
form of the model for predicting is expressed as follows (Pai and
Lin, 2005):

X(t) � �Ψ�
0 + �Ψ�

1
X(t − 1) + �Ψ�

2
X(t − 2) +/ + �Ψ�

p
X(t − p) + �Ψ

t

− �θ�
1
t−1 − �θ�

2
t−2 −/ − �θ�

q
t−q,

(1)
cwhere X(t), . . ., X (t−p) are actual values, t, . . . ,t−q are
random errors, �Ψ�

0
is the trend component, p and q are the

order of the auto-regressive model (AR) and moving average
model (MA), respectively. For ARima, the complexity is
depended on the order of AR p and the order of MA q.
When the number of sample is T, the computational
complexity of ARima is O((T − p)p2 + (T − q)q2)
(Gavirangaswamy et al., 2013).

2.2.2 Fuzzy Computation and Forecasting
The fuzzy time series forecasting method was first proposed by
Song et al. (Song and Chissom, 1993) based on the fuzzy set
theory (Zadeh, 1996). It has been continuously developed in
recent decades and has been widely applied for forecasting in
many fields (Singh, 2007; Cheng et al., 2016; Wang et al., 2021a).
As an extension of the fuzzy sets, Torra et al. introduced the
concept of hesitant fuzzy sets in 2009 (Torra and Narukawa,
2009). The specific operation steps of HFs are described as
follows (Bisht and Kumar, 2016; Cheng et al., 2016; Wang et al.,
2021a).

Define the universe of discourse as U = (Xmin−σ, Xmax + σ).
Here Xmin and Xmax are the minimum and maximum of the
training set, σ is the standard deviation of X. Next, using equal
and unequal intervals, and triangular membership function to
fuzzify the universe of discourse. The length of equal intervals is
determined by the distance between the maximum and
minimum values in the time series, and the length of
unequal intervals is determined by using the cumulative
probability distribution approach (Lu et al., 2015; Bisht and
Kumar, 2016). Suppose it is divided into J intervals, each
interval defined by three parameters, x

�lj
and x

�rj
for feet of

intervals, and �x�mj for the tip of intervals. Two expresses
mathematical formula of the triangular membership function
(Wang et al., 2021a):

TABLE 2 | List of nomenclature.

ADMS Atmospheric dispersion modelling system LSTM Long short-term memory neural network
AERMOD American meteorological society environmental policy agency regulatory

model
ℓ2,1RFelm ℓ2,1-norm and Random fourier mapping-based extreme learning

machine
AIC Akaike information criterion MA Moving average model
AR Auto-regressive model MAE The mean absolute error
ARima Auto-regressive integrated moving average MAPE The mean absolute percentage error
BPnn Back-propagation neural network MLP Multi-layer perceptron model
CEEMD Complementary ensemble empirical mode decomposition MLR Multiple linear regression
cEEMDan Complete ensemble empirical mode decomposition with adaptive noise MRMR Max-relevance and min-redundancy
CRTM Community radiative transfer model mSSa Multi-objective salp swarm algorithm
DM Diebold-mariano test ORelm Outlier-robustness extreme learning machine
EEMD Ensemble empirical Mode decomposition PM Particulate matters
EMD Empirical mode decomposition PRD The pearl river delta in China
Enn Elman neural network QD Quartile deviation
ESn Echo state network RMSE The root mean squared error
GA Genetic algorithm SARima Seasonal ARima
GM Grey model SCA Sine cosine algorithm
GZ Guangzhou SD Standard deviation
HFs Fuzzy time series forecasting based on hesitant fuzzy sets SVR Support vector regression
HI Hample Identifier SZ Shenzhen
HW Holt-winters VMD Variational mode decomposition
IEWT Inverse empirical wavelets transform VR Variance ratio
IMFs Intrinsic mode functions WRF-

Chem
Weather research and forecasting model coupled to chemistry

LA Lichtenberg algorithm ZH Zhuhai
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f(x) �

0 x< x
lj
,

x − x
lj

�x�mj − x
lj

x
lj
≤x≤ �x�mj,

x
rj
− x

x
rj
− �x�mj

�x�mj <x≤ x rj
,

0 x> x
rj
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

After this step, the membership degrees of xi to equal intervals
and the unequal intervals can be obtained, denoted as mde and
mdu, respectively. Then, compute the weights of equal intervals
and unequal intervals using the following formula (Bisht and
Kumar, 2016),

wj
e �

d ̀ej

d ̀ej + dùj
,

wj
u � 1 − wej,

⎧⎪⎪⎨⎪⎪⎩ (3)

where dej and duj are the lengths of j-th equal and unequal
intervals, wj

e and wj
u are the weights of j-th equal and unequal

intervals, respectively. Determine the membership of every
element by using aggregate hesitant fuzzy elements, and build
a fuzzy set using a novel aggregation operator, which is defined as
follows (Wang et al., 2021a):

O(x1, x2, . . . , xn) � 1 − (1 −mdij
e )w

j
e(1 −mdij

u)w
j
u , i � 1, . . . , n; j

� 1, . . . , J,

(4)
where mdije is the membership degree of xi to j-th equal interval,
so asmdij

u is the membership degree of xi to j-th unequal interval,
wj

e represents the weight of j-th equal interval and wj
u represents

the weight of j-th unequal interval. Specifically, wj
e ∈ [0, 1],∑J

j�1w
j
e � 1.

Following example introduces the specific aggregation process
for aggregation:

Let X = {x1, x2, x3} be a reference set. H �
{<x1, {0.2, 0.4}> , < x2, {0.5, 0.25}> , < x3, {0.3, 0.4}> } is a
hesitant fuzzy set on X, and taking w = (0.4, 0.6). Applying
the aggregation method motioned above, the fuzzy elements can
be obtained as follows:

h(x1) � 1 − (1 − 0.2)25(1 − 0.4)35 ≈ 0.33
h(x2) � 1 − (1 − 0.5)25(1 − 0.25)35 ≈ 0.41
h(x3) � 1 − (1 − 0.3)25(1 − 0.4)35 ≈ 0.64

Therefore, the fuzzy set A is established
as A � {<x1, 0.33> , <x2, 0.41> , <x3, 0.64> }.

After determining the membership of every element,
establish fuzzy logical relationships and fuzzy logical
relationship groups. The fuzzy logical relationships are
established by the rule: If Ai and Ai+1 are the fuzzy values
at time t and t + 1 respectively, the fuzzy logical relation is
denoted as Ai → Ai+1. Here, Ai is called the current state and
Ai+1 is the next state. Then, the same left-hand side of the fuzzy

logical relationships is classified to form several fuzzy logical
relationship groups. The main idea of forecasting is to infer
the next state based on the current state. Based on the fuzzy
logical relationship groups, a matrix Pm×m can be generated,
each element in P represents the frequency of Ai → Ai+1 that
with the same fuzzy logical relationship. According to the
max-min composition operations on fuzzy logical
relationship, the fuzzy output can be obtained and
defuzzify by Γ̂i � PiM, here M is the combined midpoint of
the triangular membership functions for equal and unequal
intervals respectively, calculated as follows (Bisht and
Kumar, 2016):

M � Mewe +Muwu

we + wu
, (5)

where Me and Mu is the mid points of the equal and unequal
intervals. As the introduction above, the computational
complexity of HFs is O(Jn), J is the number of the interval
and n represents the number of sample.

Summarizing all this activity, Table 3 is given to show the
implementation of the HFs.

2.2.3 Machine Learning Technique
The methods based on machine learning have strong learning
ability and can handle the non-linear components in the time
series, so they have been widely used in some fields (Gündüz
et al., 2019; Henrique et al., 2019; Volk et al., 2020; Wang et al.,
2021b). In this study, three different networks were selected
to analyze the series, since the features of the series are
uncertain.

(A) Back-Propagation Neural Network
Back-propagation neural network (BPnn) is a three-layer
feed-forward network with an input layer, a hidden layer,
and an output layer. Each layer takes inputs only from the
previous layer and sends the outputs only to the next layer.
Define the input vector as X � {X1,X2, . . . ,XN }, and the
output vector as Y � {Y1,Y2, . . . ,YN }. Assume the input
layer has I neurons, the hidden layer has H neurons, and
the output layer has one neuron, the network can be
constructed as Figure 1B, and the training processes are
described as follows.

TABLE 3 | The process of the HFs.
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Calculate outputs of all neurons in hidden layer (Hecht-
Nielsen, 1992; Wang Y. et al., 2021):

hih � ∑I

i�1wihxn + �[h, h � 1, 2, . . . , H,

hoh � f(hih), h � 1, 2, . . . , H,

⎧⎨⎩ (6)

Where, hih is the activation value of the h-th node of hidden layer,
hoh represents the output value of h-th hidden neuron, wih denotes
the connection weight between i-th input neuron and h-th hidden
neuron, �[h represents the bias of h-th hidden neuron, and f (·) is
the activation function. Then, determine the output of the
network as Oo � g(∑H

h�1whh
o
h + �[�), where Oo is the output

value of output neuron, wh is the weight between h-th hidden
neuron and output neuron, �[� represents the bias of output
neuron, and g (·) is the activation function. Obtain the
minimum global error by the “error feedback” training
mechanism. The global error is E � ∑N

n�1(Oo
n − Yn)2/2, Oo

n
represents n-th output of network. For more details, please
refer to (Hecht-Nielsen, 1992). For each iteration, the
computational complexity of both the forward propagation
process and the backward propagation process is
O(N(H + 1)(F + 1) +N(H + 1)(O + 1)), where F is the
dimension of the input set and O represents the dimension of
the output set. In this study, F = 4, O = 1, so the computational

complexity of the algorithm is TbpnnO(NH), here Tbpnn is the
number of iterations.

(B) ℓ2,1-Norm and Random Fourier Mapping-Based Extreme
Learning Machine
ℓ2,1RFelm is an improved feed-forward neural network with a
single hidden layer, which was proposed by Zhou et al. (2016). In this
method, Random Fourier Mapping is used to improve the
extendibility of the network by approximating the activation
function in ELM. And ℓ2,1-norm is used to make the hidden
layermore compact and discriminative by cutting irrelevant neurons.

To predict the PM2.5 concentration of the day, the PM2.5

concentrations of the past 4 days are used. So, the original
concentration series X = {x1, x2, . . . , xT} is reconstructed as follows:

X � [X1,X2, . . . ,XN ] �
x1 x2 / xT−4
x2 x3 / xT−3
x3 x4 / xT−2
x4 x5 / xT−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
Y � [Y1,Y2, . . . ,YN ] � [x5, x6, . . . , xT−1, xT].

(7)

Then, the main processes of this method can be introduced as
follows:

Randomly initialize the connection weights W between the
input layer and hidden layer and the bias B of the hidden layer,

FIGURE 1 | (A) is the flowchart of the proposed combined system; (B) and (C) are the structures of the neural networks used in this paper, where BPnn and
ℓ2,1RFelm have the same structure and different solution processes.
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assume the hidden layer has H neurons, these two matrix are
represented as follows:

W � W1, . . . ,Wh, . . . ,WH[ ]T �
w11 w12 w13 w14

w21 w22 w23 w24

..

. ..
. ..

. ..
.

wH1 wH2 wH3 wH4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B � [b1, . . . , bh, . . . , bH], h � 1, 2, . . . , H,

(8)
herewH1 represents the weight between the first input neuron and
H-th hidden neuron, bh represents the bias of h-th hidden
neuron. Then the output matrix of the hidden layer is

H �
g(W1X1 + b1) g(W1X2 + b1) / g(W1XN + b1)
g(W2X1 + b2) g(W2X2 + b2) / g(W2XN + b2)

..

. ..
.

1 ..
.

g(WHX1 + bH) g(WHX2 + bH) / g(WHXN + bH)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(9)

In this method, the Random Fourier Mapping g (·) is used to
approximate the kernel function, so WX + B can be mapped
into a Random Fourier feature space. The specific mapping is
defined as below (Rahimi and Recht, 2007):

g(x) � 1��
N

√ [cos(wT
1x), . . . , cos(wT

Nx), sin(wT
1x), . . . , sin(wT

Nx)]T.
(10)

Then, calculate the output of the network and solve parameter.
Let the connection weight between the hidden layer and the
output layer is β � [β1, β2, . . . , βH]T, then the output function of
this network is ∑H

h�1βhg(WhXn + �[h) � Oi, n � 1, 2, . . . , N. In
ℓ2,1RFelm, the only parameter need to solve is β. Based on the
given data and the initial parameters, the objective function of
this network is

Min
β, ε

1
2
‖β‖2,1 + 1

2
~C∑N

i�1‖ϒi‖2,
s.t.g(Xi)β � yi − ϒi, i � 1, 2, . . . ,N,

(11)

chere ε represents the training error, ~C is the penalty coefficient,
and ‖βT‖2,1 is ℓ2,1-norm of β, ‖β‖2,1 �

������∑H
h�1β

2
h

√
. Finally, β can be

obtained β̂ � (D/~C +HTH)−1HTYT, where D is a diagonal
matrix with Dhh = 1/(2‖β‖2), and at the beginning of the
iterative, D is an identity matrix. For more details of solve
process, please refer to (Zhou et al., 2016). In this study, the
computational complexity of ℓ2,1RFelm is mainly contributed by
the process of computing (D/~C +HTH)−1. Thus the
computational complexity of ℓ2,1RFelm is TrfelmO(H3), Trfelm
is the number of the iterations.

(C) Echo State Network
Echo state network (ESn) is an improved recurrent neural
network and was proposed in 2004 (Jaeger and Haas, 2004).
Without output feedback connections, an ESn consists of an
input layer with I neurons, L internal neurons possessing internal

states, and one output neuron. The structure of ESn is shown in
Figure 1C. Given a training set [X ,Y] the main steps of ESn are
as follows (Qiao et al., 2016; Wang et al., 2019). Randomly
generate a reservoir weight matrix W with the predefined
sparsity and size. In order for the reservoir to have echo-state
property, the singular values of reservoir weight matrix of the
reservoir must be scaled to within 1, so scaledW as ~W � (α/Ψ)W,
here 0 < α < 1 and Ψ is the spectral radius ofW. Next, randomly
generate the weight matrix between input layer and reservoir,
denoted asWin. And initialize the reservoir states £ (0). Calculate
the state of reservoir by using dynamic equation, £ (n+1) =F( ~W
£ (n)+W inXn+1), here £ (n) and £ (n+1) are reservoir states,F(·)
is activation function, Xn+1 represent (n + 1)-th sample input.
Finally, calculate the network output ŷn+1 � G(Wout£ (n+1)),
where Wout represents weight matrix between reservoir and
output layer, G(·) is activation function. The only trainable
part of the ESn is the output weight matrix Wout, and can be
commonly obtained asWout � (XTX )−1XTY. As shown above,
the computational complexity of ESn is largely proportional to
the state updating process, the complexity of this process is equal
to O(LT), where T is the number of sample.

2.3 Optimization of Combination Weights
Mirjalili et al. proposed a novel swarm intelligence optimization
algorithm in 2017, which was inspired by the behavior of salps
looking for food (Mirjalili et al., 2017a). Their study has shown that
thismethod can approximate the Pareto optimal solution with high
convergence and coverage. It has merits among the current
optimization algorithms and is worth applying to different
problems (Mirjalili et al., 2017a). Therefore, this method (mSSa)
is used to find the optimal combined weight of different forecasting
models in this study. More details are introduced as follows.

2.3.1 Multi-Objective Optimization
Multi-objective optimization is concerned with mathematical
optimization problems involving more than one objective
function to be optimized simultaneously (Haimes et al., 2011).
The multi-objective optimization problem can represent as
follows:

Minimize [Obf1(x),Obf2(x), . . . ,Obfo(x)],
subject to x ∈ S,{ (12)

where S is the feasible search space, o is the number of objective
function, and Obfi is i-th objective function.

The purpose of multi-objective optimization is to find the set
of acceptable solutions (Ngatchou et al., 2005). Hence, the
definitions related to the Pareto-optimal solutions are introduced.

Definition 1. Pareto domination Given two vectors �X �
(x1, x2, . . . , xn) and �Y � (y1, y2, . . . , yn), vector �Y dominates
�X or called vector �X is dominated by vector �Y denoted as
�Y ≺ �X if and only if ∀ i ∈ [1, o], [Obf i( �Y)≤ Obf i( �X)] ∧
∃ i ∈ [1, o], [Obf i( �Y)<Obf i( �X)], where Obfi (·) represents
i-th objective function.

Definition 2. Pareto optimal set A set including all the non-
dominated solutions is called Pareto optimal set. The
mathematical description is Ps ≔ x, z ∈ �X | e z ≺ x{ }.
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2.3.2 Process of Multi-Objective Salp Swarm
Algorithm
The individuals in a salp chain are divided into two groups: the front of
the chain is the leader, the others are followers. AssumeO indicates the
dimension of search space,N denotes the number of salp chains, then
the location of all the salps can be defined as a matrix:

Pt �
p1
1(t) p1

2(t) . . . p1
O(t)

p2
1(t) p2

2(t) . . . p2
O(t)

..

. ..
.

. . . ..
.

pN
1 (t) pN

2 (t) . . . pN
O(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

here t represents t-th iteration. The position of each salp is a
candidate solution. Next, calculate fitness of each salp chain

Fit [ �pj(t)] � obf1[ �pj(t)],{ obf2[ �pj(t)], . . . , obfO[ �pj(t)]},

j � 1, 2, . . . , N, where Fit[ �pj(t)] represents the fitness of j-th
salp chain at t-th iteration, obfo[ �pj(t)] is the value of o-th
objective function of j-th salp chain at t-th iteration. Then,
determine the non-dominated salp chains according to
Definition 1, and update the archive (Pareto optimal set,
Definition 2). Select a salp chain as a food source from the
archive, denoted as F. After that, leaders p1 guides the salp
swarm toward the food source in an O-dimensional search
space. The positions of the leaders are updated as follows
(Mirjalili et al., 2017a):

pi
1(t + 1) �

Fi(t) + τ1 p1 − p 1( )τ2 + p 1[ ], τ3 ≥ 0,

Fi(t) − τ1 p1 − p 1( )τ2 + p 1[ ], τ3 < 0,

⎧⎪⎪⎨⎪⎪⎩ (14)

TABLE 5 | Experimental parameter settings of different individual models.

Method Meaning Value

cEEMDan Noise standard deviation 0.5
Number of realizations 200
Maximum number of sifting iterations allowed 10

ARima The lag order 10 (GZ), 8 (SZ), 8 (ZH)
The degree of differencing 1 (GZ), 1 (SZ), 1 (ZH)
The order of the moving average 7 (GZ), 10 (SZ), 10 (ZH)

HTS Number of interval 23 (GZ), 24 (SZ), 23 (ZH)
BPnn Maximum number of iteration times 100

Learning rate 0.1
Training accuracy goal 0.000 01
Neuron number of input layer 4
Neuron number of hidden layer 9
Neuron number of output layer 1

ℓ2,1RFelm Penalty coefficient 5
Maximum iterations 50
Number of neurons in hidden layer 15

ESn Reservoir dimension 20
Spectral radius 0.2
Leaking rate 0.5
Connectivity 0.2
Readout regularization 0.05

mSSa Size of archive 100
Size of population 30
Maximum iterations 50
Individual value range [−5,5]

TABLE 4 | Descriptive statistics of data sets.

Study areas Data sets (number of
obs)

Central tendency Variability Distribution

Mean Median Mode SD Range QD Kurt Skew

GZ All (3,600) 16.032 7 12.741 9 2.174 6 11.266 6 60.566 3 11.538 2 5.341 5 1.570 0
Training (2,522) 14.150 6 10.196 0 2.174 6 11.561 9 60.566 3 9.107 9 7.125 8 2.077 9
Test (1,078) 20.435 8 17.870 1 5.978 0 9.142 0 42.083 8 13.389 5 2.750 5 0.758 1

SZ All (3,600) 12.562 1 8.560 5 1.951 5 11.187 9 70.718 5 10.637 4 7.197 1 1.983 4
Training (2,522) 9.942 4 6.761 4 1.951 5 10.228 2 70.718 5 6.068 8 12.981 9 3.001 5
Test (1,078) 18.690 8 16.489 5 2.886 7 10.942 2 53.130 8 13.574 4 3.671 8 0.991 9

ZH All (3,600) 13.887 2 10.585 2 1.857 4 72.293 2 70.435 9 10.193 8 6.782 1 1.832 5
Training (2,522) 11.636 6 8.895 4 1.857 4 72.293 2 70.435 9 6.397 2 10.645 8 2.588 2
Test (1,078) 19.152 4 17.081 3 4.335 2 62.078 1 57.742 9 11.922 8 4.704 9 1.155 1

Note SD: standard deviation; QD: quartile deviation; Kurt. kurtosis; Skew. skewness.
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where pi
1(t + 1) is the position of leader in the i-th chain at (t +

1)-th iteration, Fi(t) represents the food source position in the i-th
dimension at t-th iteration. p 1 and p1 are the lower bound and
the upper bound of p1.

In Eq. 14, τ1 is a parameter that controls the balance of
exploration and exploitation, τ2 is a random number in (0, 1) that
determines the distance to move, and τ3 is also a random number
in (0, 1) that determines the direction of movement. The
coefficient τ1 is defined as τ1 � 2e−(4t/TmSSa)2 , where t is the
number of the current iteration and TmSSa represents the
number of maximum iteration. Whereafter, the positions of
the followers are mathematically updated as
pi
j(t + 1) � 1

2 [pi
j(t) + pi−1

j (t)], ∀2≤ j, i � 1, 2, . . . , N. Finally,
repeat the processes of calculating fitness, updating the
archive, selecting food source and updating the salps location
until satisfied with the end condition.

If the archive is not full, the non-dominated solutions are
saved to the archive after comparison according to Definition 1,
otherwise, before storage deletes some solutions (Mirjalili et al.,
2017a). According to the principle of improving the distributivity
of solutions in the archive, use the Roulette Wheel mechanism to
remove the densest solutions. The probability of the solution

being removed can be calculated as Pr = Nl/c, where Nl is the
number of l-th solution in the archive, and c is a constant greater
than 1 (Mirjalili et al., 2017b).

According to the introduction of mSSa, the computational
complexity of this method isO(O × N + cof × N + 2N2) at one
iteration, where cof is the computational complexity of the
objective function. In this study, the Mean Square Error and
the Standard deviation of the error are set as objective function.
The complexity of the first objective functions is O(T2) and the
second objective function is O(T). Therefore, the complexity of
one iteration of mSSa is O(O × N + (T2 + T) × N + 2N2), here
T is the number of samples.

2.4 The Proposed Combined Forecasting
System
Using the aforementioned methods and strategy, a novel
combined pollutant concentration forecasting system based on
the data decomposition strategy, several individual forecasting
models, and a multi-objective optimization algorithm is designed.

Assume there are M models to predict the pollutant
concentration, the forecasting results are denoted as

TABLE 6 | Forecasting results of individual models and combined systems based on the original data and decomposed data.

GZ SZ ZH

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

(a1) Individual models without cEEMDan

ARima 1.362 8 1.871 4 7.479 2 1.838 4 2.686 2 12.058 9 1.697 4 2.369 2 10.212 0
BPnn 2.118 4 2.931 3 11.366 4 3.092 7 4.414 2 19.387 5 2.676 5 3.814 4 15.744 8
ℓ2,1RFelm 2.144 6 2.975 3 11.435 4 2.996 9 4.287 1 18.920 9 2.616 0 3.708 8 15.439 4
ESn 2.133 3 2.994 4 11.406 6 2.957 0 4.199 0 18.759 8 2.627 7 3.726 8 15.473 9
HFs 1.761 7 2.290 5 9.684 9 1.652 5 2.092 8 10.796 1 2.102 8 3.003 2 11.420 3

(a2) Individual models combined with cEEMDan

C-ARima 0.483 4 0.649 5 2.666 1 0.619 6 0.959 0 4.050 4 0.590 7 0.830 5 3.591 6
C-BPnn 1.078 3 1.447 3 5.896 8 1.552 5 2.148 6 9.990 0 1.401 1 1.884 2 8.332 2
C-ℓ2,1RFelm 0.954 8 1.303 3 5.109 5 1.378 6 1.882 3 8.877 7 1.226 6 1.666 3 7.106 5
C-ESn 1.030 1 1.478 2 5.623 4 1.392 3 1.931 3 9.252 7 1.267 5 1.813 0 7.440 9

(b1) Combined system without ceemdan

FIX 1.464 1 2.024 2 6.894 2 1.837 0 2.383 1 8.294 7 1.848 3 2.544 5 8.392 9
MAX 14.7246 15.953 4 63.339 1 16.577 1 17.784 7 71.460 0 18.127 7 19.490 4 80.842 1
MIN 1.573 7 2.218 4 7.335 3 1.810 9 2.394 6 8.250 7 1.700 3 2.317 1 7.992 0
MIX 10.679 5 11.662 2 45.676 9 2.731 9 3.515 7 11.574 8 6.301 1 7.179 3 27.436 7
MRMR 1.459 9 2.024 4 6.827 7 1.754 1 2.298 7 7.983 5 1.800 7 2.464 4 8.302 3
ReliefF 1.297 7 1.744 3 6.487 6 1.430 9 1.838 0 6.374 9 1.670 5 2.366 4 7.311 6
LA 1.394 2 2.346 7 6.861 9 1.665 9 2.077 6 7.903 4 1.478 9 2.247 7 6.326 3
mSSa 1.123 2 1.515 7 5.899 2 1.222 7 1.539 0 6.430 5 1.177 2 1.671 2 5.261 2

(b2) Combined system includes cEEMDan

C-FIX 0.776 4 1.085 9 3.730 1 0.930 7 1.195 4 4.283 4 0.969 0 1.361 4 4.414 1
C-MAX 3.371 1 3.770 5 14.280 8 9.856 4 10.582 4 42.521 7 11.970 1 12.874 4 53.448 9
C-MIN 0.738 3 0.994 3 3.469 6 0.770 9 1.049 5 3.617 9 1.217 1 1.605 6 5.650 1
C-MIX 16.058 5 17.348 2 69.318 9 11.826 6 12.687 0 51.030 1 13.502 7 14.510 1 60.356 4
C-MRMR 0.659 8 0.930 0 3.134 4 0.795 1 1.048 1 3.688 7 0.820 3 1.125 2 3.776 8
C-ReliefF 0.772 3 1.053 1 3.883 1 0.944 8 1.197 4 4.182 9 0.883 3 1.248 5 3.994 5
C-LA 0.502 7 0.687 4 2.416 8 0.583 7 0.836 1 2.836 6 0.576 0 0.790 0 2.769 2
C-mSSa 0.477 6 0.652 6 2.357 6 0.567 0 0.810 1 2.787 9 0.564 2 0.775 0 2.740 4

“C-” represents the forecasting models combined with cEEMDan.
The bold numbers indicate the optimal value of the indicators.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 83337410

Bai et al. Fine Particulate Matter Prediction

109

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Ŷm, (m � 1, 2, . . . ,M), and the weight coefficients of each
forecasting result are ω1, ω2, . . . , ωM, then the combined
system can be expressed in mathematical form as

F � ∑M

m�1ωmŶm,∑M

m�1 Ωm � 1,

⎧⎪⎨⎪⎩ (15)

here F is the final forecasting result.
The main steps of this proposed system are listed as

follows, and the flowchart of this study is described in
Figure 1.

Pre-processing of original data. Since the original series are
fluctuating, it is difficult to analyze its features. Therefore, the
strategy of “decomposition and ensemble” is utilized to
distinguish different characteristics and noise in the original
series. And then, the noise is filtered out to reconstruct a more
stable series. The parameters of this method are shown in Table 5.

Forecasting by individual models. Since the features hidden in
the series are not certain, three types of methods were used to
analyze the series and implement forecasting. These methods
contain a traditional statistical model (ARima), a hesitant fuzzy
time series forecasting model, and machine learning models
(BPnn, ℓ2,1RFelm, ESn). In the three machine learning models,
BPnn and ℓ2,1RFelm have the same network structure but different
solving strategies, BPnn and ESn have different network structures

but the same solving strategy, and ℓ2,1RFelm andESn have different
network structures and solving strategies.

Construction of the combined system. In order to obtain more
accurate forecasting results, use mSSa to conduce the optimal
combined weights of the individual models. More specifically,
take the predicted values obtained by each individual model as
input and the true concentration values as output to form a training
set. Then, the optimization algorithm is trained based on this set and
finally obtains the optimal weight vector. Afterward, the forecasting
results of such individual models are combined together by using
optimal weight to obtain the final forecasting value.

3 EMPIRICAL ANALYSIS

In this study, the concentration of PM2.5 is forecast by
the proposed combined system. This section mainly
introduces the experimental process and analyzes the
forecasting results.

3.1 Data Description
Three PM2.5 concentration data sets collected from the Pearl
River Delta (PRD) region in China are selected as illustrative
examples to verify the effectiveness of the proposed combined
prediction system, including Guangzhou (GZ), Shenzhen (SZ),

FIGURE 2 | The forecasting results of the different models, where “C-” represents the forecasting models combined with cEEMDan.
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and Zhuhai (ZH). There are few missing data in these series,
and the moving median method with a window length of 10 is
used to fill in the missing data. Some statistical indicators for
these three data sets are presented in Table 4. Considering the
availability of data, the hourly concentrations were collected
from 2020.04.29 to 2020.09.25, and these data were divided
twice. In the forecasting module, the original data sets were
divided into training sets and test sets, and the train to test
ratio of each study city is Tr1:Te1 = 7 : 3. And in the
combination module, Te1 was divided into training set Tr2
and test set Te2, the division ratio is 7:3.

3.2 Evaluation Metrics
In previous studies, numerous metrics have been utilized to
evaluate model performance. To scientifically assess the
proposed system, three metrics are selected as evaluation
criteria, including two scale-dependent indicators and a
percentage indicator. Details are as follows.

3.2.1 Scale-dependent Indicators
The unit of this type of indicator is the same as the unit of original
data, so it can not be used to compare two series with different
units. Two commonly used scale-dependent measures are Mean
absolute error and Root mean squared error, they are based on
absolute errors and squared errors, respectively (Hyndman and
Athanasopoulos, 2018).

A. Mean Absolute Error
The mean absolute error (MAE) is a commonly used indicator to
evaluate the deviation between forecast values and true values
(Khair et al., 2017):

MAE � 1
N

∑N
n−1

|An − Fn|, (16)

where N is the sample size, An represents the actual value of n-th
sample, and Fn indicates the n-th forecast value. This metric
can avoid the cancellation of the positive and negative

FIGURE 3 | The forecasting results of the different combined methods. (A) is the results of evaluation indicators of three study cities. (B) is the forecasting results of
C-LA and C-mSSa, where “C-” represents the cEEMDan.
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predicted errors. The lower the value ofMAE, the better the model is.
MAE = 0 indicates that there is no error in the forecasting.

B. Root Mean Squared Error
The root mean squared error (RMSE) is a commonly used
measure of the forecasting results of machine learning models.
Its equation is shown in (Eq. 17) (Wang Y. et al., 2021)

RMSE �

��������������
1
N

∑N
n�1

(An − Fn)2
√√

. (17)

Same to the MAE, the lower the value of RMSE, the better the
prediction. But RMSE is more sensitive to extreme values.
Therefore, if the difference between RMSE and MAE is large,
the greater the possibility of large errors existing in forecasting.

3.2.2 Percentage Indicator
The frequently used percentage indicator is the mean absolute
percentage error (MAPE). It is often used in practice since it is a
very intuitive explanation in terms of relative error and is unit-
free. Its equation is shown as follows (Khair et al., 2017):

MAPE � 1
N

∑N
n�1

An − Fn

An
× 100%. (18)

Compared to MAE, this indicator is normalized by actual
value, and useful when the size or size of a prediction variable is
significant in evaluating the accuracy of forecasting (Khair et al.,
2017). However, when there is 0 in the actual value, this indicator
can not be used. MAPE = 0% indicates a perfect model, while
MAPE = 100% indicates a poor model.

3.3 Parameter Settings
Different parameters of the model will lead to different results, so
the analysis of the predicted results should be based on the
parameters used. The model parameters used in this paper are
shown in Table 5. For ARima, the optimal lag order, the optimal
degree of difference, and the optimal order of the moving average
are determined based on the Akaike Information Criterion (AIC).
And all the empirical experiments are implemented on MATLAB
R2020a, run on the Windows 10 professional operating system.

3.4 Experiments and Results Analysis
In this study, three comparisons are implemented based on the
data from GZ, SZ, and ZH in China. The first comparison is
implemented to verify the effectiveness of the data decomposition
strategy, the second comparison compares the different
combination methods, and the last comparison compares the
individual forecasting methods with the combined forecasting
system. The forecasting performance lists in Table 6 and the
specific results are analyzed as follows.

3.4.1 Comparison I
This comparison is set to compare the forecasting accuracy
between the models combining the cEEMDan and models
without combining cEEMDan. The comparisons are divided

into two categories, one for individual models and one for the
combined system. The first category contains comparisons of
ARiam vs. C-ARima, BPnn vs. C-BPnn, ℓ2,1RFelm vs. C-
ℓ2,1RFelm, and ESn vs. C-ESn. Here, the hesitant fuzzy time
series forecasting method has fuzzed the original series and
constructed a transition matrix based on the fuzzy logic
relationship group to forecast pollution concentration. These
operations have compressed and filtered the information of
the original series, so the hesitant fuzzy time series forecasting
experiment based on the composed data is no longer carried out.
The second category contains comparisons of FIX vs. C-FIX,
MAX vs. C-MAX, MIN vs. C-MIN, MRMR vs. C-MRMR, ReliefF
vs. C-ReliefF, LA vs. C-LA, and mSSa vs. C-mSSa.

1) From the results inTable 6 (a1) and (a2), it can be found that the
forecasts based on the decomposed data are more accurate than
based on the original data. Take the results from Guangzhou as
an example. The maximum MAPE of the forecasts based on
decomposed data (MAPEC−BPnn

GZ = 5.896 8%) is lower than the
minimum MAPE of the forecasts based on the original data
(MAPEARima

GZ = 7.479 2%). And the MAE values of the forecasts
based on the original data are all greater than 1.1 (MAEGZ > 1.1),
but the MAE values of the forecasts based on the decomposed
data are all less than 1.1 (MAECGZ < 1.1), especially the
(MAEC−ARima

GZ < 0.5), which is the best performance among
all the forecasting models. The value of RMSE also shows
the same result. The values of RMSE for the forecasts based on
the original data are all greater than the values of RMSE for the
forecasts based on the decomposed data (RMSEGZ >RMSEC

GZ),
which indicates that the forecasting values based on the
decomposed data are closer to the true values. The sub-
figures in Figure 2 show the predicted results of these models.

2) The strategy of “decomposition and ensemble” to remove noise
contributes to improving the forecasting accuracy. The figures in
Table 6 (b1) and (b2) show the forecasting results of combined
systems. Take ZH as an example, the values of the indicators of
the mSSa combination method are (1.177 2, 1.6712,
5.2612%)MAE, RMSE, MAPE. But, the results obtained by the
proposed cEEMDan-mSSa based method are (0.564 2, 0.775 0,
2.7404%)MAE, RMSE,MAPE, these three values are lower compared
to the index results of mSSa based combined method. The same
relationship can be found in the indicator results for GZ and SZ.

Then, by comparing the remaining figures, it can be found that
the values of indicators for systems without combining data
decomposition strategy are smaller than the values of
combining data decomposition strategy except for the MIX
combined method. Take GZ as an example, all the values of
MAE are greater than 1 of the method without combining
cEEMDan (MAEGZ > 1), but the values of these indicators are
less than 1 for the method combining cEEMDan except for MAX
and MIX combined methods (MAEC

GZ < 1). So as the values of
RMSE and MAPE, the figures for the methods without
combining cEEMDan are greater than the figures for methods
combining cEEMDan. Therefore, it can be considered that no
matter which combination method, the forecasting based on the
decomposed data is more accurate.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 83337413

Bai et al. Fine Particulate Matter Prediction

112

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Remark: Through the comparisons between the models
combining the cEEMDan and models without combining
cEEMDan, what can be found is that the data decomposition
strategy can effectively improve the prediction ability of the model.

3.4.2 Comparison II
This comparison is set to compare the combination methods.
These methods contain four numerical methods (FIX1, MAX2,
MIN3, MIX4), two feature selection methods (MRMR, ReliefF),
and two optimization algorithms, the Lichtenberg algorithm (LA)
and mSSa. The results in Table 6 (b1) and (b2), and Figure 3
demonstrate that after data decomposition, the forecasting
accuracy is improved. Moreover, the proposed combined
model performance is best. The detailed analyses are as follows.

1) The multi-objective optimization method is the best weighting
method. For the results in Table 6 (b1), it can be seen that the
indicators’ values ofmSSa are the smallest. TakeGZ as an example,
the indicators’ values of mSSa are (1.1232, 1.5157, 5.8992%)MAE,
RMSE, MAPE, the minimum indicators’ values of the numerical
methods areMAEFIX

GZ = 1.4641, RMSEFIX
GZ = 2.0242,MAPEFIXGZ =

6.8942, and theminimum indicators’ values of the feature selected
methods are MAEReliefF

GZ = 1.2977, RMSEReliefF
GZ = 1.7443,

MAPEReliefF
GZ = 6.4876. Based on these indicators’ values, it can

be seen that themSSamethod has the best forecasting results. So as
the results in SZ and ZH, the indicators’ values obtained by mSSa
method are smaller than the value of other methods.

2) Check the results in Table 6 (b2), take SZ as an example, the
MAE of numerical methods are (0.9307, 9.8564,0.7709,
11.8266)FIX, MAX, MIN, MIX, MAE of feature selected
methods are (0.7951, 0.9448)MRMR, ReliefF, and for the
optimization methods are (0.5837, 0.5670)LA, mSSa. And
min(MAE) � MAEC−mSSa

SZ = 0.5670. The same result can be
obtained in GZ and ZH. Based on the results shown in the
tables, it can be considered that the mSSa optimization
algorithm is optimal as a weighting method.

3) The forecasts of the proposed combined system are more
accurate than the mSSa based system. As the forecasting
results shown in Table 6 (b1) and (b2), the MAE values of
the proposed combined system in the three study cities are
MAEC−mSSa = (0.477 6, 0.567 0, 0.564 2)GZ,SZ,ZH, these values
are less than 0.6, but the MAE values of the system based on
the original data are greater than 1.1 for three study cites
(MAEmSSa = (1.123 2, 1.222 7, 1.177 2)GZ,SZ,ZH). Moreover,

the MAPE values of the proposed system are MAPEC−mSSa =
(2.357 6%, 2.787 9%, 2.740 4%)GZ,SZ,ZH, compared to the
mSSa-based system they are improved by (60.04, 56.65,
47.91%)GZ,SZ,ZH

5. Since the smaller the values of the three
metrics, the better the forecasting. Therefore, the results of
these metrics indicate that the proposed combined system is
performing better than the other system. The same conclusion
can be drawn from the values of RMSE.

Remark: The optimization algorithm combination methods are
performing better than the other combination methods, especially
better than the numerical combination methods. The weights
determined by the numerical methods only consider part of the
samples, so when the data fluctuates greatly, this type of method
cannot get good forecasting results. And the weights determined by
the feature selection methods and the optimization algorithms
consider all the samples, including samples with large
fluctuations, so the impact of large fluctuations can be reduced
during the forecasting process.

3.4.3 Comparison III
This experiment compares the forecasting performance of the
individual forecasting models and the combined forecasting
system. The proposed forecasting system performs better than
the individual forecasting models. Almost all the indicators’
values in the Table 6 (b1) and (b2) are smaller than those in
the Table 6 (a1) and (a2), except for the MAX combination
method and MIX combination method. Based on the data of SZ,
themin(MAPESZ) � MAPEC−ARima

SZ = 4.0504, but this value is still
greater than the MAPEC−mSSa

SZ = 2.7879%. The results of the other
twometrics of SZ also show the same relationship. The min(MAESZ)
and min(RMSESZ) are (0.5670, 0.8101), and all are obtained by the
proposed forecasting system. These results indicate that the proposed
combined forecasting system outperforms the individual forecasting
models. The metric results of ZH can also draw the same conclusion
as SZ. The results in GZ are a little different. The min(RMSEGZ) =
RMSEC−ARima

GZ = 0.6495, and RMSEC−mSSa
GZ = 0.652 6, which is only

0.0031 different from the result of C-ARima. Therefore, the
performance of the combined forecasting system can be regarded
as better than the performance of the individual models.

In summary, the following conclusions can be drawn. The data
decomposition strategy can significantly improve forecasting
accuracy. These experimental results show that the forecasting
results of all methods combined with cEEMDan, except MIX, are
more accurate than the methods not combined with cEEMDan.
In addition, the mSSa method has the best forecasting results
among these combined methods, thus proving the forecasting
performance of the proposed system is best.

Remark: For forecasting, data preprocessing is important. In this
study, a powerful data decomposition strategy was used to
decompose the original data series, and then discarded the noise
component of the series. This processing improves the accuracy of the

1FIX represents a weighting method with fixed weights, and the weight of each
forecasting model is 0.2.
2MAX represents the method of using the maximum forecasting error to assign
weights, and the weight of each forecasting model is the reciprocal of the maximum
forecasting error obtained by each model in the training set.
3MIN is opposite toMAX, using the minimum value of the forecasting error is used
as the basis for weighting, the weight of wach methode is caluculated as
wi � ei/∑5

i�1ei, ei � 1/mei, i � 1, . . . , 5, where mei represents minimum error of
i-th model.
4For MIX weighting method, the weight of each model is obtained by following
equation: wi = mean(|ein|/An), i = 1, . . . , 5; n = 1./ , N, here the ein is forecasting
errors of i-th model, An is the actual value of PM2.5 concentration.

5The improved percentage is calculated as follows:
Pmetric � (VModel1

m − VModel2
m )/VModel1

m . Such as the improved percentage of GZ’s
MAPE is ((5.899 2–2.357 6)/5.899 2) × 100%.
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forecasting, and this conclusion is reached in two experiments. For
combination, the multi-objective optimization method works better,
and the numerical methods are the worst, and the performance is
unstable. When the results of other methods become better, the
numerical method performs worse.

4 TEST OF FORECASTING SYSTEM

In order to verify the significance and stability of the
proposed forecasting system, the Diebold-Mariano test (DM)
(Francis and Roberto, 1995) and the variance ratio (VR) are

introduced in this study. The related details and results are
described in this section.

4.1 Diebold-Mariano Test
DM is a hypothesis testing method to analyze the difference in
prediction accuracy. According to the constructed DM statistics,
it can be judged whether the difference of the prediction method
is significant. In this test, the null hypothesis (H0) and the
alternative hypothesis (H1) are as follows:

H0: �E�[ ~L(�δt1)] � �E�[ ~L(�δt2)]
H1: �E�[ ~L(�δt1)] ≠ �E�[ ~L(�δt2)]

(19)

TABLE 7 | DM test results of different models.

Based on the original data — Based on the decomposed data

GZ SZ ZH GZ SZ ZH

(a) Forecasting models

ARima 5.0977* 8.6243* 6.3830* C-ARima 1.8092** 1.1831*** 1.2560***
BPnn 6.8607* 10.4830* 8.5372* C-BPnn 7.2128* 8.3443* 9.5224*
ℓ2,1RFelm 7.0826* 9.5058* 9.0820* C-ℓ2,1RFelm 6.6667* 7.9443* 8.2492*
ESn 5.9861* 9.2922* 8.1848* C-ESn 2.1994** 7.8597* 2.5456**
HFs 8.5816* 11.6504* 5.2527* — — — —

(b) Combined systems

FIX 7.2134* 9.0465* 7.7204* C-FIX 4.5435* 5.3059* 11.5207*
MAX 22.7947* 21.5754* 20.7482* C-MAX 16.9403* 21.2405* 14.4119*
MIN 6.3787* 6.1052* 5.9078* C-MIN 5.1935* 4.8392* 12.5494*
MIX 21.4592* 10.6720* 14.4818* C-MIX 23.2960* 21.4463* 16.1001*
MRMR 6.7769* 9.0465* 8.4095* C-MRMR 3.9308* 4.1445* 11.9718*
ReliefF 8.2291* 8.4603* 4.9277* C-ReliefF 5.2545* 5.4203* 10.6837*
LA 2.2041** 9.7650* 5.5175* C-LA 1.6563** 2.2618** 0.5763***
mSSa 6.7769* 8.6787* 5.8400* C-mSSa — — —

* indicates the 1% significance level Z0.01/2 = 2.58; ** indicates the 5% significance level Z0.05/2 = 1.96; *** indicates the 10% significance level Z0.10/2 = 1.64.
“C-” represents the forecasting models combined with cEEMDan.
Indicates that the DM test has not been performed. Since HFs have compressed the original series, the forecasting based on the decomposed data has not been performed. And the
C-mSSa is the system proposed in this paper, so the DM test has not been performed on itself.

TABLE 8 | Results of the model stability test.

Based on the original data — Based on the decomposed data

GZ SZ ZH GZ SZ ZH

(a) Forecasting models

ARima 0.966 4 0.965 8 0.898 1 C-ARima 0.984 1 0.988 1 0.972 1
BPnn 0.990 2 0.984 1 0.991 5 C-BPnn 0.997 1 0.993 6 0.964 4
ℓ2,1RFelm 0.964 3 0.994 3 0.926 2 C-ℓ2,1RFelm 0.997 9 0.957 7 0.993 5
ESn 0.928 8 0.912 6 0.837 6 C-ESn 0.956 4 0.993 2 0.914 4
HFs 0.796 8 0.802 8 0.895 1 — — — —

(b) Combined systems

FIX 0.899 6 0.894 7 0.862 5 C-FIX 0.931 8 0.952 1 0.942 0
MAX 0.117 9 0.073 4 0.032 9 C-MAX 0.700 9 0.322 5 0.212 2
MIN 0.935 0 0.923 4 0.879 4 C-MIN 0.990 9 0.986 3 0.999 5
MIX 0.270 1 0.773 3 0.478 9 C-MIX 0.085 2 0.232 5 0.155 7
MRMR 0.925 4 0.917 9 0.875 5 C-MRMR 0.952 6 0.967 6 0.954 5
ReliefF 0.830 0 0.839 1 0.852 7 C-ReliefF 0.897 2 0.897 2 0.934 8
LA 0.837 4 0.859 9 0.939 3 C-LA 0.938 9 0.975 6 0.879 4
mSSa 0.946 0 0.992 1 0.990 6 C-mSSa 0.986 1 0.998 6 0.985 9

“C-” represents the forecasting models combined with cEEMDan, that is the forecasting models based on the decomposed data.
Indicates that the stability test has not been performed. Since HFs have compressed the original series, the forecasting based on the decomposed data has not been performed. And the
C-mSSa is the system proposed in this paper, so the stability test has not been performed on itself.
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here �δ
t
1 and �δ

t
2 represent the forecasting errors of forecasting

model 1 and forecasting model 2 at t-th, ~L(·) represents the loss
function. Then, the DM statistic is constructed as follows (Huang
et al., 2021):

DM �
∑n

t�1[ ~L(�δt1) − ~L(�δt2)]/n����
S2/n√ (20)

where S2 denotes the variance estimation of �δ
t
1 − �δ

t
2.

Given a certain significance level α, the critical value Zα/2 can
get, if the absolute value of DM statistic is greater than the Zα/2,
the null hypothesis H0 is rejected, and the result that two
forecasting methods have significant differences.

Table 7 gives the DM test results of different forecasting models.
This study compares 24 forecasting models or systems with the
proposed system. Compared with the forecasting model without
cEEMDan, the proposed forecasting system is significantly better,
since the values of DM statistic are greater than the critical value of
1% significance level. After combined with cEEMDan, the forecasting
ability of individual forecasting models has been improved, but the
DM test results show that their predictive ability is still inferior to the
proposed forecasting system, since the lowest value of DM test is
between the critical value of 10% significance level and the critical
value of 15% significance level. The DM values of Table 7 (b) also
show that the proposed forecasting system is significantly superior
than the other combined forecasting system, especially the system
without data decomposition strategy.

4.1.1 Stability Test
In order to validate the stability of models, the variance ratio (Vr)
is introduced. Vr combines the variances of the forecasting value
and the true value to illustrate the stability of the forecasting
model. The greater the value of Vr, the higher the forecasting
stability of the method (Huang et al., 2021).

Vr � min(Varf orecasting/Varactual,Varactual/Varf orecasting),
(21)

here, Varforecasting and Varactual are the variances of the
forecasting values and actual values.

The Vr results are shown in Table 8. The Vr values of the
proposed system in the three cities are (0.986 1, 0.998 6,
0.9859)GZ,SZ,ZH. Although the Vr values of the proposed system
are not the largest among all forecasting models and systems, these
three values are all greater than 0.98, while theVr values ofmost other
forecasting models and systems are less than 0.98, indicating that the
proposed forecasting system is relatively stable. Combined with the
results of the forecasting evaluation metric shown in section 3, it
shows that the proposed forecasting system has high prediction
accuracy and relatively high stability.

5 CONCLUSION

Based on the multi-objective optimization algorithm and data
decomposition strategy, an effective combined forecasting system is

proposed to forecast the PM2.5 concentration from Guangzhou,
Shenzhen, and Zhuhai in China. The proposed system mainly
contains three modules, the data preprocessing module, the
individual model forecasting module, and the combination
forecasting module. In the first module, the strategy of
“decomposition and ensemble” is applied to remove the noise in the
original series. In the individual model forecasting module, ARima,
BPnn, ℓ2,1RFelm, ESn, and HFs are applied to forecast PM2.5

concentration respectively. These five models are from different
kinds of forecasting models and are used to analyze different
features in the PM2.5 concentration series. ARima is a classical
traditional statistical forecasting method; BPnn, ℓ2,1RFelm, and ESn
are neural networks with different characteristics; hesitant fuzzy time
series model is a fuzzy-based forecasting model. By comparing eight
weightingmethods from three categories, the best combinationmethod
is found as a multi-objective optimization weighting method.

The developed combined forecasting system has been
successfully applied in PM2.5 concentration forecasting. Based
on the forecasting evaluation indicators, the forecasting
performance of the proposed system is validated. Specifically,
compared the models forecasting results based on data before and
after the preprocessing of cEEMDan in Comparison I. In
Comparison II, compare the system employing diverse
combination methods. Compere between the individual
models and the combined models in Comparison III. After
these comparative experiments, it can be observed that the
MAE and MAPE values of the proposed system are always
lower than the values of individual models and other
combination methods. For RMSE in Guangzhou, the value of
the proposed system is slightly higher than the minimum RMSE
value, but overall, the forecasting performance of the proposed
system is still the best. Therefore, the proposed combined
forecasting system, which combines different types of
individual forecasting models, has high practical application
potential in air pollution concentration forecasting.
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A Quantitative Assessment on
Ecological Compensation Based on
Water Resources Value Accounting: A
Case Study of Water Source Area of
the Middle Route of South-To-North
Water Transfer Project in China
Junfei Chen1,2,3*, Qian Wang1 and Qian Li1

1Business School, Hohai University, Nanjing, China, 2Yangtze Institute for Conservation and Development, Hohai University,
Nanjing, China, 3Jiangsu Research Base of Yangtze Institute for Conservation and High-Quality Development, Nanjing, China

As an economic means to adjust the contradiction between ecology and development,
ecological compensation plays an important role in promoting the good operation of
interbasin water transfer projects and the sustainable development of regional economy.
The accounting of ecological compensation is the key and difficult point of ecological
compensation as well as the basis of ecological compensation policy and practice.
Watershed ecological compensation based on water resources value accounting is an
early exploration field of ecological compensation research, and water resources value
calculation needs to consider both water quantity and water quality comprehensively.
Taking the water source area of theMiddle Route of South-to-NorthWater Transfer Project
(SNWTP) as an example, this article tries to establish the payment standard of watershed
ecological compensation from the perspective of water resources value. The results show
that: 1) The water resources value of the six core regions in the water source area has
shown an overall upward trend since 2000, and the northern regions have demonstrated
higher value of water resources than the southern regions. 2) The LSTM neural network
model is used to forecast the value of water resources in the six regions from 2020 to 2022,
and it is found that the value of water resources would increase in the next few years. 3) The
compensation price of the six regions in the water source area is predicted in the range of
0.5–1.5 yuan/m3 from 2020 to 2022, and an upward trend in the ecological compensation
amount is forecast. Based on the above conclusions, this article puts forward suggestions
to establish an ecological compensation accounting system in line with the Middle Route
water source area from the perspectives of ecological compensation legislation, allocation
of ecological compensation amount, and introduction of market mechanism.

Keywords: water resources value, ecological compensation accounting, themiddle route of water transfer,machine
learning, China
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1 INTRODUCTION

Ecological compensation is an important economic measure to
ensure the sustainability of water quality and quantity in the
interbasin water transfer project, which is beneficial to realize the
efficiency and equity in the process of water supply and
consumption in water source area and water-receiving area.
One of the key points of ecological compensation lies in the
accounting of ecological compensation. Different accounting
methods produce different implementation effects, which have
very important practical significance for the sustainability of
water transfer projects and economic development of water
source area. The existing studies on ecological compensation
accounting methods mainly are carried out from the perspectives
of ecosystem service value, beneficiary’s profit, conservator’s
input and loss, payment, and compensation willingness
(Xepapadeas, 2011; Hu, 2016). The common compensation
accounting can be divided into protection compensation and
cross-basin compensation (Wang and Hou, 2013). So far,
compensation accounting methods in water source area have
included ecosystem service value method (Zhang et al., 2002),
water quality accounting method (Xu et al., 2008), water
resources value method and willingness to pay method
(Costanza, 2012), water ecological restoration cost method
(Martinez-Paz et al., 2013), etc. And the ecosystem service
value method is the most important accounting method. In
the 1970s, the value assessment of ecosystem services begins to
receive more attention from different countries and regions.
Value quantity and physical quantity are mostly used to
measure the value of ecosystem services internationally.
Pimentel et al. (1995) proposed two methods (i.e., ecosystem
optimal model and maintenance of biological balance model) to
estimate the functional value of global biodiversity based on
willingness to pay. Ouyang and Wang, 2000a; Ouyang et al.,
2000b) divided the value of ecosystem services into four
categories, namely direct use-value, indirect use-value,
selection value, and heritage value, and calculated the value of
six terrestrial ecological services. In the study of global
environment and natural services, ecosystem service value is
divided into use-value and non-use-value (Rawlins et al.,
2018). Specifically, use-value includes direct use-value, choice
use-value, and indirect use-value, while non-use-value is divided
into existence value and heritage value (Gomez-Baggethun et al.,
2010). By simulating the flow path and quantity of water supply
services, Xu et al. (2019) provided a scientific theoretical basis for
ecosystem service management and ecological compensation. Ma
and Wang (1984) studied the complex ecosystem of Society-
Economy-Nature, which marked ecologists’ march into the field
of economics. Subsequently, empirical studies based on specific
regions and basins began to emerge. Zhang et al. (2001) studied
the service value evaluation method and divided it into three
categories, namely actual market, alternative market, and
simulated market. Zi (2010) evaluated the economic value of
ecosystem services of water tourism resources in Heilongjiang
Province, and believed that reasonable water tourism resources
planning should be made with emphasis on the protection of
wetlands, rivers, lakes, and other water bodies. Based on the

existing achievements in this field, Xie (2012) compiled a table
of equivalent factors of ecosystem service value in China. Based
on the Research Report of the United Nations Environment
Programme (UNEP) and combined with the theory of
ecological economics, Ouyang et al. (2013) obtained the
ecosystem service value evaluation methods of alternative
market and simulated market. According to the existing
problems in the ecological environment of the Chishui
River, Qiu and Zhai (2014) established the ecological
compensation mechanism. Based on the perspective of
agricultural development, Hu (2015) concluded that the
factors affecting the ecological compensation mechanism
mainly include the loss of development opportunities,
environmental protection cost, and public awareness. Yang
et al. (2020) analyzed the current situation of ecological
compensation in the Yellow River basin, and described the
framework of water-related ecological compensation in the
Yellow River Basin in detail. Xu et al. (2021) constructed a
universal framework for interregional ecological
compensation on the basis of considering differences among
regional development.

The value of water resources was first discussed in the 1970s,
and it was expressed as the maximum payment amount willing
to transfer a unit of water. In the late 1980s, with the deepening
of water resources crisis, water resources price has caused an
upsurge of research by scholars. Lyman (1992) found that the
maximum price of water resources fluctuated twice as much as
the non-maximum price. Jiang (1998a) discussed the value basis
of water resources from different perspectives, and his most
significant contribution was to complete the calculation of the
water resources value with the method of fuzzy mathematics.
Wang and Qu (2001) incorporated the water resources indexes
into the national economic accounting system. Piper (2003)
explored the relationship between water quality and cost, and
proposed the mechanism of water price affecting water quality.
Wang et al. (2003) and Shen (2006) put forward the concept of
“triple water price” and tried to use the general equilibrium
model to calculate the actual water price in China. Subsequently,
the value accounting of water resources began to cross
departments and regions, and gradually tended to be market-
oriented. Zhao et al. (2007) established a theoretical model of
emission rights trading market based on experimental methods,
and proposed the system construction scheme of resources
trading market with optimal efficiency. Wei et al. (2008)
analyzed the different profit levels of water conservancy
departments under different water prices, so as to explore the
maximization of income under the condition of the lowest water
price. Du (2015) explored the improvement scheme of the real
water price setting mechanism in view of the problems existing
in the current water price scheme of SNWDP in China. Jia et al.
(2018) used the improved fuzzy comprehensive evaluation
model to calculate the maximum affordable water price of
residents. Taking Taipu River as an example, Yang et al.
(2019) adopted the game theory method to study the
incentive policy, ecological compensation, and water quality
accounting, and explored the establishment of trans-regional
cooperation mechanism of water resources.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8541502

Chen et al. Assessment on Ecological Compensation

119

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


To sum up, there are many studies on ecological compensation
accounting and value of water resources, but few ones connect the
two to discuss, resulting in the lack of effective connection between
the existing ecosystem service value accounting methods and water
resources social-economic pricing. Considering that it is more easy
to accept the cost (i.e., value of water resources) paid for protecting
water resources as the compensation standard by both the water
source area and the water receiving area, the paper takes the water
source area of theMiddle Route of SNWDP inChina as the research
object, and studies the ecological compensation accounting from
the perspective of water resources value accounting, which could
promote the research on the ecological compensation accounting
method of water source area. The novelty of this study is that the
machine learning method (i.e., K-means clustering model and
LSTM model) in computer science is applied to the evaluation
of water resources value in the field of ecosystem. It gives full play to
the advantages of machine learning method in dealing with
complex nonlinear social science topics and makes the research
results more consistent with the reality.

2 MATERIALS AND METHODS

2.1 Study Area
The water source area of the Middle Route of the SNWDP mainly
refers to the basin area above the Danjiangkou Reservoir, which is
located at the junction of Shaanxi, Henan, and Hubei provinces.
The geographical coordinates of the water source area boundary
are between 106°30′-112°18′E and 31°20′-34°10′N. The water
source area of the middle route covers a total area of 130,906

square kilometers, with a total population of 24.26 million. The
core cities in the water source area mainly include Shiyan of Hubei
Province, Hanzhong, Ankang and Shangluo of Shaanxi Province,
Nanyang and Sanmenxia of Henan Province (Figure 1). This area
belongs to the north subtropical subhumid monsoon climate zone,
with uneven distribution of precipitation. The average annual
temperature is 16°C, and the annual average precipitation is
about 800 mm. Han River is the main river, crossing the whole
territory from west to east. The river water system in this area is
relatively abundant, and large-scale water conservancy projects
such as Xi River Reservoir and Shimen Reservoir have been built.

To protect the ecological environment of the water source
area, all polluting enterprises andmines on both sides of the water
source area have been closed, and garbage treatment and sewage
purification plants in some cities with relatively concentrated
populations have been set up by the local government. An area of
7,681 square kilometers has been brought under water and soil
erosion control, more than 20,000 ha of basic farmland have been
newly built and 270,000 ha of afforestation have been planted,
which not only effectively controlled water and soil loss, but also
promoted local economic development. In addition, the
government of the water source region has actively
implemented the natural forest protection project and stopped
logging of natural forest commodities. Sixteen state-owned forest
farms in 199 townships have been included in the project to
protect natural forests, and provincial-level protected forests such
as Hualongshan and Yinghu Wetland have been established. In
these protected forests, the animal and plant communities are
rich and complete, and the ecological environment is good as a
whole. The drainage area is large and the rainfall is abundant;

FIGURE 1 | Water source district administrative zoning map. Note: The map was generated by ArcGIS 10.5. URL link: https://www.esri.com/en-us/arcgis/
products/districting-for-arcgis/overview.
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therefore, the water supply is sufficient, the self purification
capacity is strong, and the water quality is excellent (Li et al., 2021).

The construction of the SNWDP has improved the irrigation
conditions, promoted the development of fishery, forest
industry, and its processing industry, and promoted the
adjustment of agricultural industrial structure in the water
source area. Take Nanyang, one of the core cities in the
water source area, as an example. After the completion of
the supporting water conservancy infrastructure related to
the SNWDP, the water diversion for Nanyang can be
increased by nearly 600 million cubic meters every year, with
an effective irrigation area of 2,673 square kilometers,
accounting for 31% of the total irrigation area of the city,
which can effectively alleviate the current situation of
agricultural water shortage and improve crop output in
Nanyang (Wu, 2009; Yu, et al., 2021).

2.2 The Index System Construction
Referring to the existing evaluation index system of water
resources value research (Fu, 2008; Hajkowicz and Higgins,
2008; Shen et al., 1998), the value of the water resources
evaluation system for ecological compensation is constructed.
And 21 indicators from three dimensions of nature, economy,
and society are selected, as shown in Table 1. Specifically, the
natural dimension indicators are considered from the
perspectives of water quantity, water quality, and water
development, which reflect the ecological environmental value
of water resources. The economic dimension indicators reflect the
economic value of water resources by considering the utilization

efficiency of water resources, per capita income, and economic
scale. Social dimension indicators are considered from the aspects
of population, policy, social background, etc.

2.3 Methods
This part mainly consists of three parts: 1) introduce the methods
of water resources value measurement and comprehensive
evaluation, 2) introduce the method to forecast the value of
water resources in the next few years, and 3) introduce the
accounting method of ecological compensation.

2.3.1 Value of Water Resources Measurement Model
Based on K-Means Clustering Algorithm
The K-means clustering algorithm (Zhao et al., 2021; Liu et al.,
2022) is used tomeasure the value of water resources in this study.
Select the initialized n samples as the initial clustering center and
divide n data into K sets (i.e., C � {C1, C2/Ck}) to minimize the
Within-Cluster Sum of Squares (WCSS), so as to form cluster Ci.

argmin
s

∑n
i�1

∑
x∈Si

‖x − μ2i ‖ (1)

μi �
1

|Ci| ∑
x∈Ci

x (2)

C(t)
i � {x: ����x −m(t)

i

����2 ≤ ����x −m(t)
j

����2∀i, 1≤ j≤ n} (3)

dist(xi, xj) �
�������������
∑n
d�1

(xi,d − xj,d)2
√√

(4)

TABLE 1 | Evaluation index system of water resources value.

Dimension Indicator Description Attribute

Nature X1: Surface water resources (10 × 107 m3) Extract the data of surface water resources −

X2: Groundwater resources (10 × 107 m3) Extract the data of groundwater resources −

X3: Annual precipitation (10 × 107 m3) Collect rainfall monitoring data from national meteorological stations −

X4: Water quality Collect water quality monitoring data +
X5: Total soil erosion (t) Calculate the total amount of soil erosion per unit area per year +
X6: Carbon fixation and oxygen release (t) Calculate the carbon retention per unit area per unit time +
X7: Surface runoff coefficient Calculate the ratio of surface runoff to rainfall +

Economy X8: Per capita GDP (yuan) Calculate the ratio of GDP to population −

X9: Per capita income of residents (yuan) Extract the data of per capita income −

X10: Per capita consumption expenditure (yuan) Extract the per capita expenditure data −

X11: Per capita urban maintenance and construction
funds (yuan)

Extract the per capita urban construction cost +

X12: The registered urban unemployment rate (%) Extract the unemployment rate data +
X13: Water consumption per 10,000 yuan GDP (m3) Extract the water consumption of 10,000 yuan GDP −

X14: Utilization ratio of water resources (%) Calculate the ratio of water supply to total water resources −

Society X15: Population density (people/km2) Extract the population density data +
X16: Urban area green coverage rate (%) Extract the greening coverage rate data +
X17: Ratio of students in ordinary colleges and
universities (%)

Calculate the ratio of the number of students in colleges and universities to total
population

−

X18: Number of beds in public health institutions (PCs./
1,000 persons)

Extract the data of medical beds −

X19: Poverty rate (%) Calculate the ratio of population receiving minimum living security in urban and rural
areas to total population

+

X20: Per capita water resources (m3) Extract the per capita water resources −

X21: Sewage treatment rate (%) Extract the sewage treatment data +

Note: “+” represents that the indicator is positive, and “−” represents that the indicator is negative.
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where x is the sample value, μi is the centroid of all points in C
(t), C(t)

is the new cluster formed after t times of update, m(t) is the sample
mean vector, and dist (xi, xj) represents the dissimilarity of xi and xj.

The clustering obtained from Eq. 4 causes the data object x to be
allocated to the nearest centroid. Taking the center of the observed
value in the clustering as the new centroid, the family partition
(i.e., C � {C1, C2/Ck}) is obtained by reciprocating division.

2.3.2 Comprehensive Evaluation Method of Water
Resources Value Based on Entropy Weight Method
Entropy weight method is an objective weight assignment
method to determine the index weight according to the
change range of information entropy (Zou et al., 2005). The
indicators are divided into positive and negative, and different
algorithms are needed for standardization.

When indicators are positive

xij
′ � xij −min {x1j,/, xnj}

max {x1j,/, xnj} −min {x1j,/, xnj} (5)

When indicators are negative

xij
′ � max {x1j,/, xnj} − xij

max {x1j,/, xnj} −min {x1j,/, xnj} (6)

Then, the information entropy and weight of indicator j are
calculated as follows:

P(x′ij) � x′ij/∑n
i�1
x′ij (7)

ej � − 1
lnm

∑n
i�1
P(xij

′) lnP(xij
′), j � 1,/, m (8)

ωj � 1 − ej

∑m
j�1
1 − ej

, j � 1,/, m (9)

The comprehensive score of sample i is

Si � ∑m
j�1
ωjxij

′, i � 1,/, n (10)

Calculate the total score of each cluster of samples, and sort
them according to the score, so as to distinguish the level of water
resources value.

2.3.3 Value of Water Resources Prediction Model
Based on LSTM Algorithm
As an improved algorithm of recurrent neural network (RNN),
long short-term memory network (LSTM) model can preserve
valid data information in long-term time series, which has good
support for the persistence of data information. The LSTMmodel
has both forward and back propagation functions. By changing
part of the data into training set, the parameters are constantly
updated in the learning process, and the processing and
discarding of historical data are controlled by internal
algorithm. Therefore, the LSTM model is suitable for dealing
with time series problems (Omlin and Giles, 1996; Wang et al.,

2018). When establishing the value of water resources prediction
model based on LSTM to predict the evaluation index Xi, m, and
d are taken as the current time and the sliding window size,
respectively:

Xi(m) � [xi(m − d + 1) . . .xi(m − 1), xi(m)] (11)
The sequence Xi(m) is adopted to predict the value

(i.e., x̂i(m + 1)) at time m+1.
The selection of sliding window d is very critical. In this article,

referring to the existing literature (Gers et al., 2000; Wang et al.,
2018) and combining with the data of the water source area, the
size of the sliding window is set as 5. On the basis of first-order
difference, regularization, and other preprocessing of the data, the
data from 2000 to 2005 are used as the training set to predict the
value of water resources grade in 2006, the data from 2001 to 2006
are used as the training set to predict the value of water resources
grade in 2007, and so on, the data from 2015 to 2019 are used as
the training set to predict the value of water resources grade
in 2020.

The main steps of water resources value prediction using
LSTM are as follows:

1) To improve the stability of the time series and solve the over-
fitting phenomenon that may occur in the process of
prediction, the data set is stabilized (i.e., difference) and
regularized;

2) The training set D is constructed according to the size of the
sliding window d;

3) Establish the value of water resources prediction model based
on LSTM and initialize the model parameters;

4) The prediction model is trained by the training set D. The
gradient descent method is used to back propagate, and
update the model parameters until the prediction accuracy
requirements are met;

5) Input the first d historical observation value sequence Xi(m)
ofXi into the LSTMprediction model of water resources value
completed by training, and obtain the predicted value
x̂i(m + 1) at time m+1.

2.3.4 Calculation Method of Ecological Compensation
Amount Based on Value of Water Resources
In this article, the difference between the upper limit of water
price and the cost of current water price is taken as the upper limit
of compensation amount, and then the ecological compensation
amount is calculated according to the value of water resources.
The upper limit of water price presents the water price when it
reaches the maximum water price bearing index. In the
calculation of ecological compensation in water source area, to
convert the dimensionless evaluation level of water resources
value into the scalar value of corresponding water price, it is
necessary to introduce the price vector (Jiang, 1998b; Li et al.,
2010; Zhu et al., 2017). The water price is calculated as follows:

P � V · ST (12)
where P is the price of water resources,V is the value level of water
resources, and ST represents the value vector of water resources.
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The price of water resources is calculated according to the
water price bearing index method, which reflects the affordability
of consumers to pay for water commodities.

A � SW/AE (13)
whereA is water cost bearing index, SW is water cost expenditure,
and AE is income of residents. According to the international
standard of water price bearing index for developing countries,
3% of residents’ per capita income is generally taken as the
maximum water price bearing index for households (Gakidou
et al., 2017).

At present, the current water price in China mainly includes
water resources fee, water supply cost, and sewage treatment fee.
The upper limit of the water resources compensation price is
calculated as follows:

PU � E · A
B
− C −D − F (14)

where PU is the upper limit of water resources compensation
price, E is per capita disposable income of residents, B is per
capita water consumption, C is water supply cost, D is water
resources fee, and F is sewage treatment fee.

The compensation price upper limit PU is divided according
to arithmetic series, and the compensation price vector is
calculated as follows:

S � [0, 0.25PU, 0.5PU, 0.75PU, PU] (15)
Finally, the ecological compensation in the water source area is

calculated as follows:

W � P · QW · G (16)
where W is the amount of ecological compensation (100 million
yuan/year), P is compensation price (yuan/m3),QW is the annual
water regulation (108 m3/year), and G is the water quality
adjustment coefficient.

2.4 Data Sources
The data of regions in the core water source area of the Middle
Route of the SNWDP from 2000 to 2019 is collected and
analyzed. The data are cited from Water Resources Bulletin of
the study area (2000–2019), China Statistical Yearbook
(2001–2020), and China Urban Construction Yearbook
(2000–2019).

3 RESULTS

3.1 Calculation of Water Resources Value in
Water Source Area of the Middle Route of
SNWTP
3.1.1 Classification of Water Resources Value Based
on K-Means Algorithm
Since value of water resources accounting belongs to high-
dimensional data clustering in clustering algorithm, dimension
reduction is required. Feature extraction has become a common

method, and its principle is to map the original feature set from
high-dimensional space to low-dimensional space using the
linear mapping method (Yu and Li, 2009). In this paper,
principal component analysis (Cui et al., 2020) is adopted to
extract features from high-dimensional data, and the two
indicators of surface water resources and groundwater
resources are finally selected to measure their dissimilarity,
namely xi and xj in Eq. 4. The K-means clustering results are
shown in Figure 2.

The optimal K value is determined by the elbow method.
Based on the deviation sum of squares (SSE) index, when SSE
decreases gently with the increase in K, it indicates that the K
value corresponding to elbow is the optimal cluster number (Hou
et al., 2005). SSE is calculated as follows:

SSE � ∑n
i�1
(yi − ŷi)2 (17)

The errors of water resources value accounting based on the
K-means clustering algorithm under the selection of different
cluster numbers are shown in Figure 3. When the curvature is the
highest, the K value corresponding to the elbow is 5. Therefore,
the value of water resources in the water source region is divided
into five categories. At this time, there is no grade relationship
between the five categories.

After obtaining the classification results of the water resources
value data in the water source area based on the K-means
algorithm, the entropy weight method could be used to
comprehensively score each category. The total scores are
sorted in order, namely, V1-V5, where V1 represents the
lowest grade and V5 represents the highest grade. The scoring
results of V1-V5 are shown in Table 2.

3.1.2 Comprehensive Evaluation of Water Resources
Value Based on Entropy Weight Method
The entropy weight method was used to calculate the weight of
indicators in the value of water resources evaluation system
constructed based on the three dimensions of nature,
economy, and society. The results are shown in Figure 4.

By using the entropy weight method, the value of water
resources of six regions in the core water source area of the
Middle Route of the SNWDP from 2000 to 2019 is evaluated
(Figures 5–7). As shown in Figures 5–7, the blue dotted line
represents the trend line of water resources value from 2010 to
2019, the value of water resources of the six core regions in the
water source area has shown an overall upward trend from 2000
to 2019. The value of water resources in northern regions (e.g.,
Sanmenxia, Nanyang, and Shangluo) was higher than that in the
southern regions (e.g., Shiyan, Ankang, and Hanzhong) in terms
of spatial distribution. The increasing rate of water resources
value in different regions varied significantly in terms of time
distribution. The value of water resources of Shiyan showed an
obvious upward trend, while that of Hanzhong and Ankang had a
gentle upward trend.

Specifically, as can be seen from Figure 5, the value of water
resources in Shiyan has shown an obvious upward trend since
2013. The value of water resources of Shiyan was basically stable
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FIGURE 2 | Comparison diagram of k-means clustering results.

FIGURE 3 | Relation diagram of K-means clustering on the evaluation
error of water resources value and cluster number.

TABLE 2 | Comprehensive evaluation results based on the entropy weight
method.

Grade V1 V2 V3 V4 V5

Value 7.8 18.7 50.0 79.0 95
FIGURE 4 | The result of index weight evaluation based on the entropy
weight method.
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at V1 level from 2000 to 2012, and only increased to V2 level in
2002 and 2009. After 2013, it basically stayed above V2 level, then
rose and stayed at V4 level for a long time from 2017 to 2019.
There was little difference between the three regions in southern
Shanxi in terms of water resources value, among which, Shangluo
had the highest value of water resources, Ankang took the second
place, and Shangluo had the lowest value, as shown in Figure 6.
The value of water resources in Hanzhong was generally stable.
The value of water resources in Ankang was at V2 level before
2012. Thereafter, it increased to V3 level. The value of water
resources in Shangluo increased the most, which stabilized at V3

level before 2013, and rose to V4 level after 2013. The value of
water resources in Sanmenxia was obviously higher than that in

Nanyang (Figure 7). The value of water resources of Nanyang
was mostly at or below V3 level, while that of Sanmenxia reached
at or above V3 level.

3.2 Value of Water Resources Forecast in
Water Source Area of the Middle Route of
SNWTP
The prediction results of the water resources value in the water
source area of theMiddle Route of the SNWTP from 2020 to 2022
are shown in Table 3.

The overall level of water resources value in each region will
experience an upward trend in varying degrees in the future.

FIGURE 5 | Evaluation results of water resources value in Shiyan city, Hubei province.

FIGURE 6 | Evaluation results of water resources value in three regions of Shaanxi province.
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However, the value of water resources in Hanzhong in 2022 may
be lower than that in 2021, which is due to the fact that natural
precipitation is the main source of water resources in Hanzhong,
and its annual precipitation has an oscillation cycle of 13~14
years. After 2020, when the next rainy period is entered, the
amount of water resources will increase. It should be noted that
the value assessment of water resources is a high-dimensional and
complex research subject, which is affected by many factors such
as water quantity and quality, ecological environment, economic
development, continuous investment cost of water transfer
project, etc. Any change in the above factors may lead to
changes in the overall valuation of water resources value.

Overall, the prediction results could basically reflect the actual
situation of water resources value of core regions in the water
source area from 2020 to 2022. However, with the increase in
domestic and industrial water consumption, the value of water
resources will be further improved in the water source area.

3.3 Accounting for Ecological
Compensation in the Water Source Area of
the Middle Route of SNWTP
3.3.1 Ecological Compensation Price Accounting
In terms of water supply cost and normal profit, the total cost of
water supply of the Middle Route project is 3.142 billion yuan,
and the average unilateral comprehensive water supply cost is
0.305 yuan/m3 (Tan and Zhu, 1998). The Middle Route Project
spans several watersheds, and the management costs vary

between different provinces and regions. Generally speaking,
the water resources fee of the whole project is roughly stable
between 0.02 and 0.2 yuan/m3 (Zhang et al., 2006). Combined
with the experts’ suggestions and the general situation of the
water source area, the water resources fee is calculated at
0.2 yuan/m3 in this paper. As for sewage treatment fee, the
average treatment costs of sewage plants in Hanzhong,
Ankang, and Shangluo are 0.97 yuan/m3, 1.74 yuan/m3, and
1.05 yuan/m3, respectively, whereas the average collection of
sewage treatment fee in these three regions is only 0.47 yuan/
m3 (Ma, 2014). Considering the situation of other regions in the
water source area, 0.5 yuan/m3 is taken as the sewage treatment
fee in this paper.

The ecological compensation prices of Shiyan, Sanmenxia,
Nanyang, Shangluo, Ankang, and Hanzhong are calculated based
on the predicted value of water resources grade results from 2020
to 2022 (Table 3). Taking the data of Shiyan in 2020 as an
example, the annual disposable income of residents is 21,435
yuan, and the total water consumption of the city is 9.09 yuan ×
108 m3, the total population is about 3.5 million. Therefore, the
upper limit of compensation price in Shiyan in 2020 can be
calculated as follows:

PU � 21435 × 3%
9.09 × 108/(350 × 104) − 0.305 − 0.2 − 0.5 ≈ 1.468

The LSTM model is adopted to predict that the value of water
resources of Shiyan in 2020 is at V4 level, and the compensation
price of Shiyan in 2020 is calculated as follows:

FIGURE 7 | Evaluation results of water resources value in Henan province.

TABLE 3 | Water resources value of regions in water source area in 2020–2022.

RegionYear Shiyan Hanzhong Ankang Shangluo Nanyang Sanmenxia

2020 V4 V2 V4 V3 V2 V3
2021 V3 V3 V3 V3 V3 V5
2022 V5 V4 V3 V3 V3 V5
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P � [0, 0, 0, 1, 0][0, 0.367, 0.734, 1.101, 1.468]T � 1.101

The calculation results of ecological compensation prices of
regions in the core water source area of the Middle Route in
2020–2022 are shown in Table 4.

As can be seen from Table 4, the compensation prices of
regions in the water source area show an overall upward trend
from 2020 to 2022. There would be obvious fluctuations in
compensation prices in some regions. For instance, the
compensation prices in Shangluo will drop in 2021. The
regions with the highest and lowest compensation prices will
be Sanmenxia and Hanzhong, respectively. From the perspective
of time, the compensation prices in the water source area from
2020 to 2022 will have the largest change range in Nanyang, and
the smallest change range in Shangluo. The compensation prices
of six regions in the water source area in 2020–2022 will be mostly
in the range of 0.5–1.5 yuan/m3. Taking 1 yuan/m3 and 2 yuan/
m3 as different compensation gradient boundaries, the
compensation prices in Hanzhong and Ankang will be lower
than 1 yuan/m3 from 2020 to 2022. The compensation prices in
Nanyang will be less than 1 yuan/m3 in 2020 and 2021, and then
show an upward trend in 2022. The compensation prices in
Shiyan and Shangluo will be between 1 and 2 yuan/m3 in the next
few years. Sanmenxia will have the highest compensation prices,
which are predicted basically to be above 2 yuan/m3 from 2020
to 2022.

3.3.2 Ecological Compensation Accounting
As for the water quality adjustment coefficient C, the principle of
“high quality, high price” shall be followed, and the adjustment
coefficient is determined according to the water quality situation.
Table 5 shows the rule of water quality adjustment coefficient
value.

According to the monitoring of relevant departments in
China, the water quality in Danjiangkou reservoir area has
been stable above the national class II standard for many
years. Therefore, the C value is taken as 1.

Based on the compensation prices of water resources per cubic
meter in the six regions in the water source area from 2020 to
2022, the ecological compensation amount is calculated in

combination with the annual average water transfer and water
quality of each city (Table 6). For instance, Shiyan is rich in water
resources, and the average annual water inflow into Danjiangkou
Reservoir is 3.62 × 109 m3. The annual water diversion from
Danjiangkou reservoir accounts for about 26% of the total water
inflow. Therefore, the annual water diversion from Shiyan is
about 9.41 × 108 m3. Based on Eq. 16, it can be calculated that the
ecological compensation amount of Shiyan in 2020 is 1.036
billion yuan.

As can be seen from Table 6, the accounting results of
ecological compensation amount of regions in the water
source area show an upward trend from 2020 to 2022, and
the overall change trend is the same as that of ecological
compensation prices of regions. As the calculation of
ecological compensation amount needs to comprehensively
consider the compensation price, water quality, and quantity,
the compensation prices and amount in some regions do not
match very well. For instance, the compensation prices of
water resources in Sanmenxia are predicted high with a
relatively low compensation amount. And the
compensation prices of water resources in Shangluo are in
the opposite situation that the compensation prices of water
resources are predicted low with a relatively high
compensation amount.

The annual compensation amount in the water source area
from 2020 to 2022 will be the highest in Shangluo and the lowest
in Hanzhong. According to the prediction results, the ecological
compensation amount from 2020 to 2022 is divided into three
gradients. The first gradient will include Ankang and Nanyang,
with the compensation almost in the range of 0.5–1 billion yuan.
The second gradient will include Shiyan, Hanzhong, and
Sanmenxia, whose compensation is in the range of 1–2 billion
yuan. The third gradient will include Shangluo, with the
compensation in the range of 2–4 billion yuan. In 2021, the
epidemic has affected the production and life of residents,
resulting in reduced water demand. Therefore, the growth
trend of ecological compensation amount in some regions
slowed down or even fell back, which was also reflected in the
prediction results.

4 DISCUSSION

4.1 Trend Analysis of Water Resources
Value
By comparing the historical data and the calculation results of
water resources value of core regions in the water source area, it
can be seen that the change of water resources value in the water
source area had experienced three stages.

TABLE 4 | Ecological compensation prices of regions in water source areas in 2020–2022. Unit: yuan.

RegionYear Shiyan Hanzhong Ankang Shangluo Nanyang Sanmenxia

2020 1.101 0.227 0.573 1.440 0.445 2.018
2021 1.144 0.627 0.603 1.091 0.937 2.643
2022 1.529 0.478 0.899 1.521 1.480 2.724

TABLE 5 | The rule of water quality adjustment coefficient value.

C value Condition

1<C< 2 When the water quality is better than class I
C � 1 When the water quality is between class II and class I
0<C< 1 When the water quality is between class III and class II
C � −1 When the water quality is poor V or above
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4.1.1 Initial Rising Stage of Water Resources Value
The first stage is from 2000 to 2005, during which the reservoir
area had suitable climate, abundant water resources, and suitable
ecological environment. The value of water resources was
relatively stable and low, basically at V1 or V2 levels. The
Middle Route project started in 2005. To make the water
quality reach the high level, polluting enterprises have been
rectified or even shut down. The value of water resources was
coming into focus and increased obviously since that year.

4.1.2 Unstable Change Stage of Water Resources
Value
The second stage is from 2006 to 2013. At the end of 2008, the
Danjiangkou Reservoir area immigration pilot was officially
launched. As of September 2010, there were 65,000
immigrants and the poor population increased. The Middle
Route of the SNWDP was completed in 2013 and was put
into operation by the end of 2014. Although experiencing the
dual pressure of natural environment and social-economic
development, the value of water resources in the water source
area generally showed a trend of declining first and then rising
with the emergence of importance of the Middle Route project to
the allocation of national water resources.

4.1.3 Steady Rising Stage of Water Resources Value
The third stage is from 2014 to 2019, during which the value of
water resources in the water source area was basically at V3 or V4

levels, and the value of water resources kept rising gently. To
protect the water quality of the water source area, the State
Council has successively approved a number of plans related
to water pollution prevention, and soil and water conservation in
Danjiangkou reservoir area, so as to ensure that the water
environment of the core water source area can be at high level.

4.2 Analysis on Price Difference of Water
Resources Ecological Compensation for
SNWDP
The compensation prices in regions have produced obvious
differences (Table 7). The average compensation prices of
regions in the water source area could be obviously different
due to the diversity of natural environment, social and economic
development. Among regions with the average compensation
prices less than 1 yuan/m3, we take Hanzhong as an example for
analysis. Hanzhong is located in the basin with abundant rainfall.
It is the water conservation area of the water diversion project and
the birthplace of the Han River. Covering an area of 27,247 square
kilometers, Hanzhong is the largest city in the water source area

of the Middle Route project, with a permanent population of
3.437 million in 2019. Per capita water consumption in
Hanzhong reaches 450 m3, ranking first among regions in the
water source area. The industrial pillars of Hanzhong are
equipment manufacturing, modern materials, and green food
and medicine. Among the three regions in southern Shanxi,
Hanzhong is least affected by the water transfer project.
Therefore, the compensation price of Hanzhong is low.
Among regions with average compensation prices between 1
and 2 yuan/m3, Shangluo is taken as an example for analysis.
As a northern city in the water source area, Shangluo covers an
area of 19,851 square kilometers and has a permanent population
of 2.38 million in 2019. The annual water transfer of Shangluo
accounts for more than 20% of the total planned water transfer of
the SNWDP, slightly lower than that of Ankang. In recent years,
the ecological environment quality has been improved
significantly, and the registered urban unemployment rate of
Shangluo has stabilized at around 3%. The relocation of migrants
and re-employment problems has been properly dealt with as
well. Owing to the abundant rainfall and the increase of total
water resources in Shangluo, the value of water resources will not
be very high in the next few years. Among regions with average
compensation prices higher than 2 yuan/m3, we take Sanmenxia
as an example for analysis. Sanmenxia belongs to the eastern
extension of loess Plateau, and the problem of soil erosion is
serious. With an area of 10,309 square kilometers, Sanmenxia is
the smallest city in the water source area of the middle Line
project, with a resident population of 2.28 million. The rainfall is
at low level in the regions of the water source area, and the
amount of water resources is less than other regions. The
construction of water diversion project and water environment
improvement have led to the closure of a large number of
seriously polluting enterprises, increasing the poor population
and the unemployment rate. The economic development is
seriously affected by the water transfer project. Therefore, the
compensation price is relatively high.

4.3 Measures to Improve the Accounting
System of Ecological Compensation in
Water Source Area
To establish a market ecological compensation accounting system
in line with the water source area of the Middle Route, the
following countermeasures and suggestions are put forward.
First, establish and improve the legislation of ecological
compensation in water source area, and define the subject and
scope of accounting according to law. Ecological compensation in
water source area is a long-term and arduous task. The object,
scope, method, and standard of compensation should be

TABLE 6 | Amount of ecological compensation for regions in water source areas in 2020–2022. Unit: 109 yuan.

Year/Region Shiyan Hanzhong Ankang Shangluo Nanyang Sanmenxia

2020 1.036 0.477 0.802 3.169 0.418 0.827
2021 0.691 1.381 0.905 2.509 0.975 1.348
2022 1.439 1.099 1.438 3.651 1.689 1.389
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established in legal form, which can lay a legal foundation for the
appropriate and sustainable development and utilization of the
water resources and environment. The second is to establish the
ecological compensation distribution accounting system in water
source area. On the basis of establishing the standard of water
price and water resources fee which is in line with the common
interests of water source area and water receiving area, the
differences of natural environment, productivity level,
technological level, capacity, and scale of ecological protection
input should be comprehensively considered to determine the
allocation amount of ecological compensation. Taking the
problem of soil erosion in southern Shanxi as an example, the
rate is 44.6% in Hanzhong, 53% in Ankang, and 66% in Shangluo.
The control expense of soil erosion in Shangluo is obviously
higher than that in the other two regions. If such factors are not
fully considered in the allocation of compensation, the
enthusiasm of ecological protection in Shangluo would be
reduced and the effect of compensation incentive cannot be
achieved. The third is to introduce market mechanism and
fully consider the specific situation of resource taxes and fees
in water source area when calculating the compensation amount.
In 2016, Beijing, Tianjin, Henan, and other regions became the
pilots of water resources tax reform in China, with the water
resources tax rate ranging from 0.4 yuan/m3 to 1.8 yuan/m3.
When forecasting the amount of ecological compensation, the
water-receiving area should make market compensation for the
water source area according to the water resources tax rate of the
water source area as reference.

5 CONCLUSION

Based on the relevant data of regions in the core water source area
of the Middle Route of SNWDP from 2000 to 2019, this paper
uses value of water resources accounting as the entry point of
compensation accounting to predict the ecological compensation
amount of theMiddle Route water source area from 2020 to 2022.
The main conclusions are summarized as follows:

1) Based on entropy weight method and K-means clustering,
the value of water resources assessment model is constructed to
calculate the value of water resources from 2000 to 2019 in the
water source area. The results reveal that the value of water
resources of the six core regions in the water source area has an
overall upward trend, and the value growth curve of regions is
slightly different. 2) Based on the value of water resources and its
dynamic changes, the ecological compensation payment standard

is established, and the value of water resources in the water source
area from 2020 to 2022 is predicted by using the LSTM neural
network model. It is found that the value of water resources in the
water source area will increase in the future, and the number of
the high value regions will increase. 3) The ecological
compensation amount from 2020 to 2022 in the water source
area is predicted. For example, in 2020, among the six regions in
the water source area, the highest and lowest ecological
compensation amounts are expected to reach 3.651 billion
yuan in Shangluo and 0.418 billion yuan in Nanyang. To
maintain the sustainability of the water transfer project, it is
necessary to establish the ecological compensation accounting
system in line with water source area of the Middle Route.

Water source area is a concept of geographical region. This
paper takes the main regions in the water source area as the
research scope, including Ankang, Hanzhong, and Shangluo in
Shanxi Province, Shiyan in Hubei Province, Nanyang and
Sanmenxia in Henan Province. Some regions (e.g., Baoji) are
not included in the analysis. After consulting information from
various sources, it is found that there are differences between
administrative region and geographical region. However, the
statistical data adopted in this paper are mostly divided by
administrative regions, and less by geographical regions.
Therefore, it is impossible to accurately calculate the value of
water resources and ecological compensation amount within
geographical regions. The calculation of the relevant data
within the geographical regions shall be analyzed after the
water source area is divided into independent
administrative units.
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Multivariate Adaptive Step Fruit Fly
Optimization Algorithm Optimized
Generalized Regression Neural
Network for Short-Term Power Load
Forecasting
Feng Jiang*, Wenya Zhang and Zijun Peng

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China

Short-term load forecasting plays a significant role in the management of power plants. In
this paper, we propose a multivariate adaptive step fruit fly optimization algorithm (MAFOA)
to optimize the smoothing parameter of the generalized regression neural network (GRNN)
in the short-term power load forecasting. In addition, due to the substantial impact of some
external factors including temperature, weather types, and date types on the short-term
power load, we take these factors into account and propose an efficient interval partition
technique to handle the unstructured data. To verify the performance of MAFOA-GRNN,
the power load data are used for empirical analysis in Wuhan City, China. The empirical
results demonstrate that the forecasting accuracy of the MAFOA applied to the GRNN
outperforms the benchmark methods.

Keywords: power load, multivariate adaptive step, fruit fly optimization algorithm, generalized regression neural
network, forecasting

INTRODUCTION

It is well known that the role of short-term power load forecasting is increasingly crucial in the
management of power plants. Short-term power load forecasting mainly refers to electric load
forecasting in the next few hours, 1 day to several days. Accurate short-term power load forecasting
can reasonably arrange the operation of units, ensure the safety of operation of the power grids, and
improve the economic benefits of power enterprises (Friedrich and Afshari, 2015; Dudek, 2016). On
the contrary, inaccurate forecasts will produce unnecessary electricity and result in considerable
electrical power system losses (Yang et al., 2017). Hobbs et al. (1999) pointed that the reduction of 1%
in load forecasting error of 10,000 MW utility can save up to $1.6 million annually. So, it is of vital
importance to achieve high accuracy for short-term power load forecasting nowadays.

With the development of computer technology, the theory of artificial neural networks (ANNs)
has been applied in a wide range of fields such as power market, system engineering, and control
system (Jiang et al., 2014; Liu et al., 2018; Du et al., 2019; Yang et al., 2022). The forecast of power load
considers not only the load but also the factors that affect the load, so the use of ANNs has been
highly concerned by researchers. For example, Xuan et al. (2021) combined the convolutional neural
network (CNN) and bidirectional gated recurrent unit (Bi-GRU) to forecast the short-term load. In
the meantime, the random forest was used to select features. The final result showed that this hybrid
method had a higher accuracy. Wang et al. (2020) applied an extreme learning machine model to
electricity price forecasting, as well as considering the influence of outliers. The Elman neural
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network (ENN) model was also used to forecast the electrical
power system (Zhen Wang et al., 2018). Abedinia and Amjady
(2016) presented a new stochastic search algorithm to find the
optimum number of neurons for the hidden layer, and they used
the proposed method to predict the power load. They compared
the obtained results with those of several other recently published
methods, and it confirmed the validity of the developed approach.
Lu et al. (2016) used the weighted fuzzy C-means clustering
algorithm based on principal component analysis to determine
the basis function centers, and they used the gradient descent
algorithm to train the output layer weights. The proposed model
was implemented on real smart meter data, and simulation results
showed that the proposed method had good forecasting accuracy.
Ding et al. (2016) applied variable selection and model selection
to power load forecast to ensure an optimal generalization
capacity of the neural network model, and the results showed
that the neural network–based models outperform the time series
models.

The generalized regression neural network (GRNN) is a type
of ANNs based on mathematical statistics, proposed by Specht
(1991). Instead of listing the equations in advance, the network
uses a probability density function to predict the output.
Therefore, the GRNN has strong non-linear mapping
capability and quick learning speed, which is better than the
radial basis function neural network. In addition, even if the
number of input training samples is small, its output can
converge to the optimal value, which is very suitable for
solving the problem of non-linearity (Jiang and Chen, 2016;
Zhu et al., 2018). It has been applied in a wide range of fields
such as prediction of wind speed (Kumar and Malik, 2016), two-
dimensional spectral images (Jianzhou Wang et al., 2018),
automated emotion detection systems (Talele et al., 2016),
short-term load forecasting (Hu et al., 2017), mineral resource
estimation (Das Goswami et al., 2017), and the estimation of peak
outflow (Sammen et al., 2017). The optimization of smoothing
parameter is a crucial step in the application of GRNN. There are
a few ways to estimate its value. For example, Agarkar et al. (2016)
applied particle swarm optimization (PSO) to the smoothing
parameter of GRNN, which reduced the time complexity and
produced more accurate results than random selection of spread
factor. Gao and Chen (2015) presented an improved GRNN
algorithm, using phase space reconstruction to strike GRNN
training samples, applying adaptive PSO algorithm to optimize
the smoothing parameter. Zhao et al. (2020) applied PSO-GRNN
for risk prediction of urban logistics and found that the model can
handle the high-frequency influencing factors well. The result
showed that PSO-GRNN can better improve the accuracy of
prediction than others.

Recently, Pan (2012) proposed a fruit fly optimization
algorithm (FOA) to optimize the financial distress model, which
was based on the foraging behavior of fruit flies. This algorithm has
been effectively applied in a few fields including the dual-resource
constrained flexible job-shop scheduling problem (Zheng and
Wang, 2016), monthly electricity consumption forecasting
(Jiang et al., 2020), multidimensional knapsack problem (Meng
and Pan, 2017), seasonal electricity consumption forecasting (Cao
and Wu, 2016), joint replenishment problems (Wang et al., 2015),

steelmaking casting problem (Li et al., 2018), and optimization of
support vector regression (Samadianfard et al., 2019; Zhang and
Hong, 2019; Sattari et al., 2021). With the extensive applications of
FOA, more and more scholars studied the optimization of this
algorithm. Hu et al. (2017) changed the step length of the fruit fly
from a constant to a decrement sequence to improve the
optimization abilities of FOA, and the empirical results showed
that the performance of the proposed algorithmwas improved. Pan
et al. (2014) introduced a new control parameter that adaptively
adjusted the range of search space around the location of the
cluster, and the accuracy and convergence speed were improved.

In this paper, we propose a multivariate adaptive step fruit fly
optimization algorithm (MAFOA) to optimize the smoothing
parameter of GRNN for short-term load forecasting. We make
three contributions as follows. Firstly, we consider factors that affect
the power load as much as possible, such as temperature, weather
type, and date type. Secondly, we propose an efficient interval
partition technique to handle the structured and unstructured data.
Finally, we improve the selection of step size, which has a
multivariate adaptive step and can achieve high adaptability.

The remainder of this paper is organized as follows. FOA and its
improvement are presented in The Improvement of Fruit Fly
Optimization Algorithm. Improvement of Generalized Regression
Neural Network shows the MAFOA-optimized GRNN for short-
term load forecasting. We carry out the empirical analysis and
compare the proposed model with other models in Empirical
Analysis. Finally, the summary of this study is drawn inConclusion.

THE IMPROVEMENT OF FRUIT FLY
OPTIMIZATION ALGORITHM

Considering the problems of local optimum in the ordinary FOA,
we propose the MAFOA to optimize the smoothing parameter of
GRNN. In this section, we first briefly introduce the ordinary
FOA in Fruit Fly Optimization Algorithm, and then we propose
the MAFOA in Multivariate Adaptive Step Fruit Fly Algorithm.

Fruit Fly Optimization Algorithm
Fruit fly is a kind of flying insect, which is very sensitive to the
external environment because of its superior olfactory and vision.
Firstly, the olfactory organ is used to obtain the odor floating in
the air. Then, it will distinguish the general direction of the food
source and fly to the source of food. Finally, the fruit fly can
discover the position of food by its keen vision, and then fly to the
position. The process of searching food for the fruit flies can be
simulated as follows (Mitić et al., 2015):

1) Randomly initialize the population size, maximal number of
iterations, and position coordinates (x, y) of the group in a set
interval.

2) Choose the search radius of the fruit fly. Then, determine the
new position coordinates (xi, yi) of individual fruit fly by using

{ xi � x + L0 × rands(−1, 1),
yi � y + L0 × rands(−1, 1), (1)
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where L0 is a fixed step size and rands(−1, 1) is a sample of
uniform distribution on (−1, 1).

3) Estimate the distance (di) between the individual fruit fly and
the coordinate origin and then calculate the judgment value
(Si) of smell concentration:

di �
������
x2
i + y2

i

√
, (2)

Si � 1/di. (3)

4) Calculate the smell concentration (smelli) by substituting Si
into the fitness function (f) of the taste concentration:

smelli � f(Si). (4)

5) Find out the best smell concentration (smelli) among the fruit
fly swarm:

[bestsmell bestindex] � best(smelli), (5)
where bestsmell is the extreme value of smelli and bestindex is the
position coordinate of the individual fruit fly with best smell
concentration.

6) Determine whether the smell concentration is better than the
previous one. If yes, implement step 7; otherwise, repeat the
process from step 2 to step 6.

7) Retain the best smell concentration value (Smellbest) and the
position coordinate of the individual fruit fly with the best
smell concentration (xbest, ybest):

Smellbest � bestsmell, (6)

{ xbest � x(Smellbest),
ybest � y(Smellbest). (7)

8) Determine whether the end condition is reached. If yes, find
out the location of the best smell concentration value;
otherwise, return to step 2.

Multivariate Adaptive Step Fruit Fly
Algorithm
In the ordinary FOA, the individual fruit fly seeks the food source
with the pre-set step size. Obviously, if the step size is too small,
the search space will be limited, and it will cause the problem of
local optimum. On the contrary, if the step size is too large, its
local search ability will become weaker, and the convergence rate
will slow down. To deal with these issues, the setting of step size
should adhere to the following principles. In the initial phase of
iterations, the step size should be large to ensure global
optimization performance. On the contrary, in the later stage,
the step size should be small to ensure local search performance.

Therefore, there are a few successful algorithms for the
improvement of step size of fruit flies, such as the decreasing
step fruit fly optimization algorithm (DSFOA) (Hu et al., 2017),
self-adaptive step fruit fly optimization algorithm (FFOA) (Yu
et al., 2016), and improved fruit fly optimization algorithm
(IFFO) (Pan et al., 2014). In the DSFOA and IFFO, the step
size decreased quickly in the initial phase of iteration, which
cannot guarantee the global optimization performance of the
algorithm. In this paper, we propose the multivariate adaptive
step size, which can be demonstrated as follows:

FIGURE 1 | Multivariate adaptive step size corresponding to different values of N and α: (A) N = 10, (B) N = 15, (C) N = 20, and (D) N = 25.
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Li � L0 · exp[ −N( Gi

Gmax
)α], (8)

where L0 is the initial step size, Gi is the current number of
iterations, Gmax is the maximum number of iterations, N is a
positive integer, and the exponential factor α is a constant within
(0, 10). The positive integer N and the exponential factor α
control the decreasing rate of step size and realize the better
local search performance. In order to choose proper values of N
and α, the convergence ability of algorithm under different
parameter values is compared. The initial step size L0 is set to
20, and the maximum number of iterations Gmax is set to 100.
Figure 1 gives the variations of step size in Eq. 8 corresponding to
different values of α when N � 10, N � 15, N � 20, and N � 25,
respectively.

As shown in Figure 1, the step size decreases gradually from
20 to 0 with the increasing iteration number and different values
of α correspond to different step size change trends. In the initial
stage of iterations, the algorithm has the largest step size, which
can guarantee the global optimum. As the iteration number
increases, the capability of local search is gradually enhanced
to find the local optimum value, which can be seen from the rapid
decline in the curves. Therefore, the dynamic step size can realize
the balance of global search capability and local optimization
ability.

Besides, from the subfigures in Figure 1, the step size
changes relatively symmetrical when α � 3, α � 5, and α � 7.
When α � 1, the curve drops sharply from the beginning,
which means the step size will become small even before
achieving the global optimum, and the step size cannot
achieve 20 at the beginning of iteration. The moment when
step size begins to decline is a bit later when α � 9. There seems
to be no difference in convergence performance when N takes
different values. So in Empirical Analysis, we will test the
performance of the proposed model with different values of
N and α to search for the optimal value, and we will substitute
the optimal N and α into the model for short-term load
forecasting.

IMPROVEMENT OF GENERALIZED
REGRESSION NEURAL NETWORK

Generalized Regression Neural Network
The GRNN is a kind of neural network using the radial basis
function and has been very popular in applications in recent
years. It can establish the implicit mapping relationship according
to the sample data, so that the output can converge the optimal
regression surface. Once the sample is determined, the only goal
is the determination of smoothing parameter in the kernel
function (Ozturk and Turan, 2012; Kumar and Malik, 2016).

Assuming that f(x, y) is the joint probability density function
of random variable X and variable Y, the observed value of X is
x0, and the regression of Y with respect to X is

Ŷ(x0) �
∫∞

−∞yf(x, y)dy∫∞

−∞f(x0, y)dy . (9)

Based on the Parzen non-parametric estimation, the density
function f(x0, y) can be estimated by the sampled
dataset {xi, yi}ni�1:

f(x0, y) � 1

n(2π)p+12 σ1σ2 . . . σpσy

∑n
i�1
e−d(x0 ,xi)e−d(y,yi), (10)

d(x0, xi) � ∑n
j�1
[(x0j − xij)/σj]2, (11)

d(y, yi) � (y − yi)2, (12)
where n is the sample size, p is the dimension of random variable
X, and σ is the width coefficient of the Gaussian function, which
is called the smoothing parameter.

Substituting Eq. 10 into Eq. 9 yields

Ŷ(x0) �
∑n
i�1
(e−d(x0 ,xi)∫∞

−∞ye
−d(y,y0)dy)

∑n
i�1
(e−d(x0 ,xi)∫∞

−∞e
−d(y,y0)dy) . (13)

Note that ∫∞

−∞ ze−z2dz � 0, (Eq. 13) can be simplified as follows:

FIGURE 2 | Flowchart of the MAFOA-GRNN model.
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Ŷ(x0) �
∑n
i�1
yie−d(x0 ,xi)

∑n
i�1
e−d(x0 ,xi)

. (14)

The predicted value in Eq. 14 is the weighted sum of the
observations of the dependent variable, and the weights are
e−d(x0 ,xi). The GRNN is composed of input layers, pattern layers,
summation layers, and output layers. Once the learning samples
are determined, the structure of neural network and the
connection weights between neurons are completely
determined. Therefore, the GRNN does not need to adjust
the connection weight values between neurons, but to adjust
the transfer function of each unit by changing the smoothing
parameter to obtain the best regression result, which is different
from the traditional error backward propagation algorithm.
Thus, a key step in the GRNN is to determine the value of
the smoothing parameter.

Optimization of Generalized Regression
Neural Network Based on Multivariate
Adaptive Step Fruit Fly Optimization
Algorithm
In this paper, the MAFOA is applied to optimize the smoothing
parameters in the GRNN. The MAFOA-GRNN takes the root
mean square error (RMSE) of GRNN as the fitness function of
MAFOA, so as to calculate the smell concentration in each
iteration. Part of the training data are used in the MAFOA to
select the best parameters for the GRNN. When the algorithm
reaches the maximum number of iterations, the location of the
fruit fly with best smell concentration is obtained. Then, these
optimal parameters will be used in the GRNN to get the optimal
prediction model. The flowchart of the MAFOA-GRNNmodel is
shown in Figure 2.

EMPIRICAL ANALYSIS

In this section, the power load data in Wuhan are used to test the
performance of MAFOA-GRNN. The data description is
introduced in Data Description. Then, Data Processing is
discussed. The evaluation criteria and empirical results are
further discussed in Evaluation Criteria and Experimental
Analysis.

Data Description
The power load data used in this paper are hourly and obtained
from a power grid in Wuhan with 2,880 observations ranging
from January 1, 2014, to April 30, 2014, which are shown in
Figure 3. In this section, we predict the power load of the last day
of each month. The in-sample data are power load data of each
month except the last day, and the out-of-sample data are the
power load data of the last day of each month.

As shown in Figure 3, the short-term power load has obvious
periodicity. Therefore, historical load data are an important
reference for forecasting. In order to accurately predict the
power load, the factors influencing the power load should be
considered as much as possible. The factors related to load
forecasting include date classification (weekday, weekend,
holiday), daily temperature (maximum, minimum, average
temperature), and weather condition.

Combining the influence factor, the improved GRNN adopts a
three-layer network structure. The input variables of the GRNN
are shown in Table 1, and the corresponding output vector is the
power load value at t o’clock on day d.

Data Processing
The original load data are normalized to eliminate the impact of
the dimensions between indicators. In addition, the input
variables of GRNN in Table 1 should be numerical data, so
we quantify the above weather factors and date type factors.

FIGURE 3 | Historical power load curve: (A) January 2014, (B) February 2014, (C) March 2014, and (D) April 2014.
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Meanwhile, we propose an efficient interval partition technique
to handle temperature and weather types:

1) Normalization of load data. All load data are normalized by
using the linear transformation method, given by

y � x − xmin

xmax − xmin
, (15)

where xmin is the minimum load value in the dataset and xmax is
the maximum load value in the dataset.

2) Quantization of temperature. In the previous studies,
temperature is standardized by direct standardization (Hu
et al., 2017). When the temperature changes in a suitable
range, the effect of the load is small. However, when the
temperature increases or decreases to a certain extent, the
effect on the load will be larger gradually. Therefore,
standardization may not be an appropriate choice. In this
work, we propose an efficient interval partition technique. The
temperature is partitioned by intervals, and different
quantitative values are taken according to the situation. For
example, when the temperature is 0°C, the temperature is
coded as 1; when the temperature is 5°C, the temperature is
coded as 0.8. The specific code value can be adjusted within a
small range according to the previous prediction result.

Therefore, the temperature is partitioned by intervals, as
shown in Table 2.

3) Quantization of weather types. The weather types can be
divided into six categories, as shown in Table 2, which can
affect the power load by influencing the use of lighting
equipment and other household appliances. Their
corresponding quantized values are also shown in
Table 2.

4) Quantization of date types. As a result of the social
production modules, the electricity consumption generally
shows the alternation of work and rest. The date types can be
divided into three categories: weekday (Monday to Friday),
weekend (Saturday to Sunday), and holiday (holiday or
major event day). On holiday, people often go out to
relax or take a rest, which has a substantial impact on the
changes in power load. According to the degree of influence
on power load, the date type is coded as three categories:
weekday is coded as 0, weekend is coded as 0.5, and holiday is
coded as 1.

Evaluation Criteria
This paper uses the normalized root mean square error
(NRMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) as the evaluation
criteria, given by

NRMSE � 100
�y

������������
1
N

∑N
i�1
(yi − ŷi)2

√√
, (16)

MAE � 1
N

∑N
i�1
|yi − ŷi|, (17)

MAPE � 1
N

∑N
i�1
|yi − ŷi

yi
|, (18)

where �y is the mean of value, ŷi is the predicted value, yi is the
observation value, and N is the number of data.

Although the NRMSE, MAE, and MAPE can be used as
criteria to obtain model predicted loss values, it cannot be
verified whether the comparison result is statistically
significant. To solve this problem, Diebold and Mariano
(1994) proposed the Diebold–Mariano (DM) test to test the
statistical significance of different prediction models. Assume
that model B andmodel T do the forecasting task in period t at the

TABLE 1 | Input variables of the GRNN.

Number Input variables

1 Power load value at t o’clock on day d − 2
2 Power load value at t − 1 o’clock on day d − 2
3 Maximum temperature on day d − 2
4 Minimum temperature on day d − 2
5 Weather condition on day d − 2
6 Date type on day d − 2
7 Power load value at t o’clock on day d − 1
8 Power load value at t − 1 o’clock on day d − 1
9 Maximum temperature on day d − 1
10 Minimum temperature on day d − 1
11 Weather condition on day d − 1
12 Date type on day d − 1
13 Maximum temperature on day d
14 Minimum temperature on day d
15 Weather condition on day d
16 Date type on day d

TABLE 2 | Quantitative value of meteorological factors.

Temperature (°C) Quantitative value Weather type Quantitative value

−5–0 (0.7, 1.0) Sunny (0, 0.1)
0–5 (0.5, 0.8) Sunny–cloudy (0.1, 0.2)
5–10 (0.3, 0.6) Cloudy (0.2, 0.4)
10–15 (0.2, 0.4) Cloudy–rainy (0.3, 0.6)
15–20 (0.1, 0.2) Rainy (0.5, 0.8)
20–25 (0, 0.1) Snowy (0.7, 1.0)
25–30 (0.1, 0.4)
30–35 (0.4, 0.7)
35− (0.1, 1.0)
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same time, and we wonder if there are significant differences in
the performance between the twomodels. The original hypothesis
is that the forecast accuracy for two models is the same, which is
equivalent to the mean value of relative loss function of 0. The
DM statistics is defined as follows:

DM �
�d�����

2πfd(0)
T

√ , (19)

where

�d � 1
T
∑T
t�1
dt (20)

is the sample mean loss differential, in which

dt � LossT − LossB (21)
is the relative loss function, where LossT and LossB are the loss
function of predicted errors of test model T and benchmark
method B at time t, respectively.

Note that, in this paper, the mean-squared prediction error
(MSPE) is used as the loss function:

Lossi � 1
N

∑N
i�1
(yt − ŷit)2, (22)

where ŷit is the predicted value of model i at time t.

fd(0) � 1
2π

∑∞
τ�−∞

γd(τ) (23)

is the spectral density of relative loss function at frequency
zero.

γd(τ) � E[(dt − μ)(dt−τ − μ)] (24)

is the autocovariance of dt at displacement τ, where μ is the
population mean loss differential.

If the p-value corresponding toDM is less than the significant
level, which normally is 0.01 or 0.05, the original hypothesis is
rejected; otherwise, it cannot be rejected.

Experimental Analysis
To determine the values of parameters α and N, we apply α �
1, 3, 5, 7, 9 and N � 10, 15, 20, 25 into the model to test the
performance of the model. In this section, the data from
January 1, 2014, to January 30, 2014, in Wuhan are used as
training data, and the load data on January 31, 2014, are
regarded as test data. Finally, the anti-normalization
processing is carried out, and the NRMSE, MAE, and MAPE
are calculated.

Table 3 shows the prediction errors for different α andN. We
can see that whatever value N takes, three types of errors are
obviously higher than others when α � 1. When α � 3 and

TABLE 3 | Errors of the test set for different α and N.

n Error type α � 1 α � 3 α � 5 α � 7 α � 9

N = 10 NRMSE 33.3898 22.8639 15.8455 7.3671 7.4929
MAE 7.2234 7.0068 6.5260 5.2611 6.1537
MAPE 0.0093 0.0083 0.0080 0.0072 0.0081

N = 15 NRMSE 34.4198 23.7839 27.4610 1.0415 5.5455
MAE 7.0454 7.0378 6.5378 6.5242 6.6737
MAPE 0.0086 0.0087 0.0089 0.0087 0.0097

N = 20 NRMSE 38.8445 35.8757 10.7160 4.7947 0.0072
MAE 7.3071 6.5455 5.8260 5.6311 6.2587
MAPE 0.0098 0.0083 0.0080 0.0076 0.0081

N = 25 NRMSE 39.7045 20.3099 11.6360 5.6547 8.2882
MAE 7.2102 6.5139 6.5072 5.9937 6.8254
MAPE 0.0098 0.0094 0.0093 0.0084 0.0082

FIGURE 4 | Fitness of variation with the increase of iterations: (A) α � 7; (B) N = 15.
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TABLE 4 | Forecast results of power load.

Time January February March April

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

(MW) (MW) (%) (MW) (MW) (%) (MW) (MW) (%) (MW) (MW) (%)

1:00 677.40 689.79 0.0183 709.82 720.35 0.0148 692.63 690.92 0.0025 658.30 657.68 0.0009
2:00 653.06 672.15 0.0292 694.35 685.74 0.0124 680.72 675.48 0.0077 647.19 645.88 0.0020
3:00 653.51 658.18 0.0071 670.91 672.69 0.0027 673.70 673.74 0.0001 637.70 637.16 0.0009
4:00 642.52 650.65 0.0127 677.20 661.16 0.0237 670.04 670.97 0.0014 630.18 644.47 0.0227
5:00 639.44 641.16 0.0027 662.21 660.71 0.0023 671.82 671.71 0.0002 637.72 643.55 0.0091
6:00 653.05 658.27 0.0080 684.66 687.16 0.0036 698.88 686.72 0.0174 676.44 667.54 0.0132
7:00 690.42 695.86 0.0079 731.70 729.71 0.0027 745.87 747.82 0.0026 722.95 717.03 0.0082
8:00 803.07 812.36 0.0116 814.08 814.16 0.0001 795.26 812.49 0.0217 751.95 762.93 0.0146
9:00 874.77 873.36 0.0016 889.29 889.97 0.0008 833.28 835.70 0.0029 788.23 791.43 0.0041
10:
00

853.36 853.67 0.0004 885.28 888.98 0.0042 814.67 809.35 0.0065 777.08 776.24 0.0011

11:
00

851.10 850.23 0.0010 884.13 880.51 0.0041 803.69 804.61 0.0011 767.25 769.31 0.0027

12:
00

813.58 811.36 0.0027 848.45 846.00 0.0029 783.17 769.67 0.0172 745.26 740.57 0.0063

13:
00

809.11 808.87 0.0003 831.73 828.58 0.0038 786.08 771.60 0.0184 730.55 722.46 0.0111

14:
00

788.90 799.90 0.0139 818.47 822.24 0.0046 777.79 779.13 0.0017 742.14 731.85 0.0139

15:
00

790.56 800.82 0.0130 826.27 826.70 0.0005 780.92 779.61 0.0017 739.81 742.17 0.0032

16:
00

797.75 807.82 0.0126 824.00 830.17 0.0075 788.51 784.73 0.0048 753.58 737.04 0.0219

17:
00

826.79 825.41 0.0017 856.85 847.88 0.0105 797.58 803.80 0.0078 771.64 770.39 0.0016

18:
00

859.40 857.91 0.0017 859.35 865.93 0.0077 787.30 787.15 0.0002 748.37 753.00 0.0062

19:
00

899.44 894.48 0.0055 896.94 899.66 0.0030 814.22 807.29 0.0085 756.61 767.41 0.0143

20:
00

894.75 904.78 0.0112 909.69 911.58 0.0021 804.24 809.36 0.0064 760.59 770.73 0.0133

21:
00

871.66 880.29 0.0099 887.56 883.48 0.0046 779.43 786.43 0.0090 728.23 741.39 0.0181

22:
00

828.78 838.28 0.0115 824.59 828.39 0.0046 760.20 767.66 0.0098 707.18 717.41 0.0145

23:
00

776.42 788.16 0.0151 760.49 764.49 0.0053 739.43 751.64 0.0165 696.21 707.82 0.0167
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N � 25, the NRMSE andMAE are small. The NRMSE, MAE, and
MAPE are small at the same time when α � 5 andN � 20, which
is consistent with that reported in the FFOA proposed by Yu et al.
(2016).When α � 9 andN � 20, the NRMSE andMAPE are both
small. But the smallest values of NRMSE, MAE, and MAPE are
obtained when α � 7 and N � 15, which means the forecasting
performance is the best at this moment. So, we can initially claim
that when α � 7 andN � 15, the step size can realize the balance
of global search capability and local optimization ability. Figure 4
shows the fitness curves of MAFOA when α � 7 and N � 15.

Figure 4 provides the fitness variation with the increase of
iteration number. Figure 4A shows the convergence situation
of different N when α � 7, and Figure 4B shows the
convergence performance of different α when N � 15. It
can be seen that, under the condition of α � 7, when we
choose N � 15, the algorithm has the minimal fitness value
and arrives at its optimal value much more quickly than other
conditions; under the condition of N � 15, when we choose
α � 7, the algorithm has the same performance. Accordingly,
α � 7 and N � 15 are perceived as an ideal choice in the step
size formula.

After choosing α � 7 andN � 15, we train the power load data
of each month except the last day to predict the load of the last
day of each month. Table 4 shows the prediction results obtained
by the MAFOA-GRNN algorithm from January to April 2014,
respectively. The relative errors are basically within 2%, and the
accuracy is high.

In order to test the forecasting performance of the
proposed model, the backpropagation (BP) neural network,
support vector machine (SVM), GRNN, PSO-GRNN, FOA-
GRNN, and DSFOA-GRNN are regarded as benchmark
models to be compared with MAFOA-GRNN in short-term
power load forecasting. The PSO was proposed by Kennedy
and Eberhart in 1995, which was inspired by the swarm
behavior of birds. The FOA proposed by Pan in 2012 was

also used in this work. Since PSO and FOA are both classical
optimization algorithms that have been widely utilized in
research, we have chosen PSO-GRNN and FOA-GRNN as
benchmark models. The DSFOA proposed by Hu et al. in 2017
is an improvement algorithm of FOA. With the decreasing
step size in mind, the DSFOA performed well in optimizing
the spread parameter of GRNN. The flight distance is updated
referring to the sigmoid function. So, DSFOA-GRNN has also
been compared with our proposed model. Besides, some other
basic prediction models are also taken into account, such as
the BP neural network and SVM. Figure 5 shows the relative
error curves of the single models on January 31. Figure 6
shows the relative error curves of the hybrid models on
January 31.

It can be seen from Figure 5 that, in the commonly applied
forecasting methods, the GRNN has the best prediction ability.
Figure 6 shows that the proposed method can accurately predict
the overall trend of power load, and the fitting effect is very
good. From the relative error curves, it can be seen that
MAFOA-GRNN can offer a better predicting performance
and higher precision than DSFOA-GRNN, FOA-GRNN, and
GRNN. In addition, the relative errors of MAFOA-GRNN are
more stable, and the majority are below 0.02, which
demonstrates that the improved FOA is perceived as an ideal
method in optimizing model parameters during GRNN
training.

Then, the anti-normalization processing is carried out, and the
comparison results of NRMSE, MAE, and MAPE evaluation
criteria are shown in Figures 7–9. Table 5 shows the error
analysis of the training set and test set.

Obviously, MAFOA-GRNN has the smallest NRMSE,
MAE, and MAPE, followed by FOA-GRNN, but the BP
neural network has the worst performance. Besides, the
prediction error of the training set and test set has no
obvious difference, which indicates that MAFOA-GRNN

FIGURE 5 | Relative errors of the single models. FIGURE 6 | Relative errors of the hybrid models.
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has high generalization performance. According to the
comparison results, it can be concluded that MAFOA-
GRNN outperforms other models in both accuracy and
stability. Table 5 demonstrates the same conclusions
as above.

Although the NRMSE, MAE, and MAPE can be used as
criteria to obtain model-predicted loss values, it cannot be
verified whether the comparison result is statistically
significant. To statistically compare the differences
between the prediction accuracy of different models, the
DM statistics test is carried out in this paper, and the
results are shown in Table 6. For all the benchmark

models, the values of the MAFOA-GRNN model proposed
in this paper are below 0.05, which indicates that the
predictive ability of the MAFOA-GRNN model is better
than that of DSFOA-GRNN, DSFOA-GRNN, GRNN,
SVM, and BP neural network under the confidence
interval of 95%.

According to the above comparisons, the following three main
conclusions can be summarized:

1) The proposed MAFOA-GRNN outperforms the GRNN,
which indicates that the MAFOA can optimize the
smoothing parameter of GRNN effectively.

FIGURE 8 | Performance comparison of models in terms of MAE criteria.

FIGURE 7 | Performance comparison of models in terms of NRMSE criteria.
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2) The performance of MAFOA-GRNN is better than that of
FOA-GRNN, which shows that the multivariate adaptive step
can effectively improve the optimization ability of FOA.

3) From January to April 2014, MAFOA-GRNN has reached
high prediction accuracy, which shows that the proposed
algorithm is a stable and effective forecasting framework.

TABLE 5 | Error comparison between MAFOA-GRNN and the benchmark models.

Month Error
type

BP SVM GRNN PSO-GRNN FOA-GRNN DSFOA-GRNN MAFOA-GRNN

January NRMSE 4.4106 3.7301 3.0477 3.5618 3.5189 2.7762 1.0415
MAE 27.6808 23.1618 18.6411 23.4856 23.5662 18.4538 6.5242
MAPE 0.0351 0.0293 0.0234 0.0317 0.0315 0.0253 0.0087

February NRMSE 4.9501 3.7416 2.5321 1.9097 1.4507 1.2274 0.7050
MAE 31.1464 23.7110 16.2740 11.7292 8.7336 7.4065 4.3071
MAPE 0.0378 0.0296 0.0204 0.0151 0.0113 0.0096 0.0056

March NRMSE 3.4144 3.0825 2.7506 2.1027 1.8578 1.5972 0.9859
MAE 22.2451 19.4858 16.7246 12.6088 10.8888 9.2868 5.5455
MAPE 0.0291 0.0262 0.0214 0.0171 0.0143 0.0127 0.0072

April NRMSE 3.1352 2.5490 1.9609 1.9380 1.7843 1.4344 0.6178
MAE 18.3732 14.9324 11.4907 10.9833 9.9950 9.0616 6.8816
MAPE 0.0260 0.0216 0.0166 0.0163 0.0139 0.0128 0.0096

TABLE 6 | DM results of the different models.

Tested model Benchmark model (January)

DSFOA-GRNN FOA-GRNN PSO-GRNN GRNN SVM BP

MAFOA-GRNN 2.4083 (0.0036) 4.9502 (0.0120) −2.5780 (0.0073) 2.8360 (0.0048) −2.5430 (0.0160) −3.4426 (0.0012)
DSFOA-GRNN 3.8311 (0.0280) −3.7578 (0.0260) 4.1183 (0.0000) −3.5324 (0.0180) 4.3981 (0.1802)
FOA-GRNN −1.1790 (0.0370) 0.5811 (0.7165) −3.5824 (0.0000) −1.5424 (0.0686)
PSO-GRNN 4.4083 (0.0480) −1.8246 (0.0190) 3.2784 (0.0735)
GRNN −2.4083 (0.0370) −2.6555 (0.0072)
SVM 4.1736 (0.0078)

FIGURE 9 | Performance comparison of models in terms of MAPE criteria.
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CONCLUSION

In this paper, we have proposed MAFOA-GRNN and applied it
to short-term load forecasting. Firstly, we discussed a number of
external factors including weather types and date types as input
variables of the GRNN, in order to optimize the structure of
NNs. Then, we propose an efficient interval segmentation
technique for temperature types and weather types. Finally,
we use the MAFOA to obtain the optimal GRNN model instead
of the ordinary FOA, which solves the problem of local
optimum in the implementation of FOA. The hybrid model
proposed in this paper has a higher accuracy than the BP neural
network, SVM, GRNN, PSO-GRNN, FOA-GRNN, and
DSFOA-GRNN, and the majority of relative errors are
below 0.02.

The proposed models can accurately predict the load of the
power system, especially in short-term load forecasting. Electric
energy cannot be stored in large quantities, and its generation and
consumption are almost completed at the same time. Therefore,
in order to arrange the work of power plants economically and
reasonably, short-term load forecasting is indispensable.
Furthermore, the proposed model can also predict other time
series by adjusting the input vector and parameters.

In addition to short-term load forecasting, the proposed
MAFOA-GRNN can be applied to solve other complex
multivariable problems, including solar radiation forecasting,
crude oil price forecasting, and wind load forecasting.
Furthermore, the factors considered in this article are limited,
and the forecasting performance may be better if other valuable

factors are taken into consideration. Finally, further research may
improve the performance of proposed model such as training the
data of weekdays and holidays separately.
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Forecasting Energy Consumption
Based on SVR and Markov Model: A
Case Study of China
Zhaosu Meng1,2*, Huike Sun1 and Xi Wang1

1School of Economics, Ocean University of China, Qingdao, China, 2Institute of Marine Development of Ocean University of China,
Qingdao, China

Forecasting energy demand in emerging nations is a critical policy tool utilized by decision
makers worldwide. However, as estimated economic and demographic characteristics
frequently diverge from realizations, precise forecast results are difficult to get due to the
economic system’s intrinsic complexity. This work proposed a machine learning model for
estimating energy consumption in China using the support vector regression model (SVR).
Additionally, Markov Chain (MC) is employed to forecast and analyze the evolving energy
consumption structure. The results demonstrate that SVRmodel is more accurate (98.4%)
than the linear model (Moving Average model), the nonlinear model (Grey model), and past
research in predicting energy usage. Under the current rate of energy consumption,
China’s total energy consumption will break through six billion in the next 4 years.
Furthermore, it is expected that China’s energy consumption structure will be more
rational in 2025, with increased non-fossil energy consumption and decreased coal
consumption, while natural gas consumption continues to grow at a low rate. It
provides scientific basis for the implementation of carbon emission peak action, energy
security and energy development plan during the 14th Five-Year Plan period.

Keywords: forecast, energy consumption, machine learning, sustainable development, energy structure

1 INTRODUCTION

One of themost essential policy instruments utilized by decisionmakers worldwide is energy consumption
predictions. This is especially true in rising energymarkets like China. According to theNational Bureau of
Statistics, in 2021, China’s gross domestic product (GDP) was RMB 114.4 trillion ($17.7 trillion), up
aroundRMB13 trillion (United States $3 trillion) from20201.With an economy anticipated to develop at a
rate of 6–8% for decades, China’s influence in the global energy market is growing.

Between 1990 and 2020, China’s overall energy output and consumption increased steadily
(Figure 1). Energy production has gradually increased from about 1.26 billion tons of ordinary coal
to 4.08 billion tons, but it is still unable to satisfy energy demand, and the gap between the two is
widening. China’s total energy imports in 2020 is 1.20 billion tons, and this figure will rise further.1

As the biggest energy consumer of the world, China’s underlying demand and supply imbalances
will have a significant impact on global energy markets. Long-term estimates are also required to
determine the extent to which future trade and investment plans are required to secure China’s
energy security. Furthermore, in the General Debate of the 75th Session of the United Nations
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General Assembly in 2020, China has pledged to peaking carbon
emissions by 2030 and reaching carbon neutrality by 2060, while
also aiming to double the size of the Chinese economy by 2035. As
a result, forecasting energy use in China is crucial.

China’s energy use is imbalanced (Figure 2). This is shown
by coal’s considerable domestic market share in China, despite
its waning dominance in recent years (dropped to 56.8% in
2020)1. Natural gas is also insignificant. As a result of this
predicament, the economic cost of environmental damage
associated with excessive coal consumption has been
substantial. As a result, the energy industry and policymakers
are under intense pressure to modify the structure of energy use
and shift away from coal and toward cleaner options such as
natural gas and hydropower.

As illustrated in Figure 3, in 2019, the total urban
consumption was 26,665 ten thousand tons of standard coal,
3.89 times that of 1997 (6,845.89 ten thousand tons of standard
coal)2. The total energy consumption of rural residents is also
growing rapidly, but not as fast as it is in the urban area. Since
2000, the gap between urban and rural enlarged. Therefore,
with rapid urbanization, the energy consumption in China
shows new characteristics. Demand for coal, oil, natural gas,
and other fossil fuels is expanding at a rapid pace, while
consumption of coal is declining. However, the energy gap
continues to widen.

FIGURE 1 | Total energy consumption and production in China from 1999 to 2020. Data source: China Statistical Yearbook 2021.

FIGURE 2 | Proportion of energy consumption in China from 2009 to 2020. Data source: China Statistical Yearbook 2021.

2China Statistical Yearbook 2021, http://www.stats.gov.cn/tjsj/ndsj/
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While China’s energy conservation and emission reduction
policies have had some initial success, the future situation
remains unpredictable. Conducting a thorough examination of
future energy forecasts will not only aid in comprehending the
future energy situation, but also in providing scientific support for
overall energy planning and policy creation. To meet rising
consumer demand and achieve green and sustainable growth,
energy consumption structure should be optimized, with less coal
consumption, and more clean energy. And better data
interpretation and forecasting techniques are required.

Due to their applicability, machine learning models are being
utilized in a wide number of sectors, and their operation is similar
to that of a function that best maps input data to output. Using
machine learning methods, energy consumption forecasts can be
created with high accuracy. As a result, governments can use
them to undertake energy-saving efforts. They can be used to
forecast future energy usage, such as electricity or natural gas.

The goal of this research is to develop a unique forecasting
system that utilizes nonlinear machine learning models to
optimize linear time series in order to discover energy
consumption patterns. Then, we assess the model prediction
findings in conjunction with the actual scenario and offer
countermeasures and suggestions in order to fulfill the goal of
providing a foundation for policymakers to create policies more
effectively. Numerous optimization techniques, including the
SVR model, the linear model MA (3), and the nonlinear
model GM (1, 1) are examined and compared for usage in the
proposed forecasting system. By anticipating primary energy
consumption and its structure, it will assist in the process of
energy decarbonization, minimize the effects of climate change,
and rein in China’s future climate initiative. It is beneficial for
policymakers to increase energy efficiency through energy
policies and other measures, while reducing greenhouse gas

emissions enables the energy structure to be adjusted to
achieve co-benefits such as the efficient development of a
green and low-carbon economy and climate change adaptation.

The remainder of this study is structured in the following
manner. The second section covers the preceding research
literature in two areas: variables influencing energy use and
energy prediction models. The third section describes the
influencing factors on energy consumption that were chosen
for this study, as well as the methods, models, variables, and
data sources employed in this study. The fourth section assesses
SVR model’s validity and prediction accuracy before estimating
China’s energy consumption for the time covered by the 14th
Five-Year Plan. Then, we use Markov Chain to predict the change
of energy structure during the 14th Five-Year Plan period. The
fifth section discusses the findings of the investigation, as well as
the accompanying countermeasures and recommendations.

2 LITERATURE REVIEW

Studying the relationship between numerous drivers and energy
consumption is not only required for model predictions, but it
also helps readers understand the mechanisms by which these
factors affect energy consumption. Some scholars believe that
economic development has a substantial impact on energy
consumption intensity (Asafu-Adjaye, 2000; Stern, 2000;
Soytas and Sari, 2003; Ang, 2004; Aboagye, 2017; Marques
et al., 2019). According to Birol and Keppler (2000),
technological advancements will not only reduce energy
consumption intensity, but will also boost energy consumption
per unit of GDP. Other researchers believe that improved
technology can promote a decline in energy intensity (Li and
Lin, 2014; Huang et al., 2017). Hunt and Ninomiya (2005)

FIGURE 3 | Changes in household energy consumption from 1997 to 2019. Data source: China Energy Statistical Yearbook.
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discovered a negative relationship between energy prices and
demand. According to Inglesi (2010), there is a long-term link
between energy usage, prices, and economic growth. He et al.
(2011) believed that the secondary industry was not conducive to
improving energy efficiency, while the development of the tertiary
industry could effectively encourage the decline of energy
consumption intensity. Achour and Belloumi (2016) believe
that in addition to economic growth and energy prices,
population size also has a positive impact on energy
consumption. Some scholars studied from the perspective of
industrial structure. Lin and Zhu (2017) conducted additional
research and found that industrial structure upgrading is
adversely connected with energy consumption intensity. Later,
from a micro perspective, some scholars believe that household
variables such as family size and education level of family
members have a significant impact on energy use (Zou and
Luo, 2019).

Machine Learning (ML) is the basic approach to achieve
artificial intelligence. In recent years, more scholars have paid
attention to ML with its advantages of recognizing trends and
patterns from data, not requiring human intervention, constantly
optimizing cognition according to data changes, and processing
various high-dimensional data. Hao et al. (2021) developed an
economic loss analysis system to quantitatively evaluate the losses
caused by haze pollution on tourism. Yang et al. (2022) developed
an improved electricity price prediction model, which has the
advantages of adaptive data preprocessing, etc.

Machine Learning has experienced a transition from
shallow learning to deep learning. Rumelhart et al. (1986)
proposed the idea of learning representation based on error
back propagation, which enabled artificial neural network
(ANN) to be trained. Subsequently, Support Vector
Machine (SVM), Decision tree (DT) and other models that
are easier to obtain global optimal solutions have been widely
concerned and applied. With the progress of the data
accumulation, the computing power and the improvement
to the algorithm, deep and complex training to become
possible. At present, both shallow learning model and deep
learning model are widely used in various fields. To predict
specific problems, it is necessary to select appropriate machine
learning algorithms from the perspectives of data category,
sample size and model characteristics.

Numerous methods for forecasting energy consumption have
been proposed in the literature, such as the energy demand model
(EDM), the Autoregressive Integrated Moving Average Model
(ARIMA), the particle swarm optimization technique (PSO), the
artificial neural networkmodel (ANN), and the greymodel (GM).
Gori and Takanen (2004) used the modified EDM model to
predict the energy consumption of Italian industry, household
and service. Ediger and Akar (2007) used the ARIMA and
seasonal ARIMA methods to anticipate Turkey’s energy
demand from 2005 through 2020. Some scholars forecasted
Turkey’s energy consumption using PSO methodologies
(Uenler, 2008; Kran et al., 2012; Yakut and Özkan, 2020).
Zong and Roper (2009) suggested an ANN model for
estimating Korea’s energy demand. Meng et al. (2020) estimate
China’s energy intensity using an upgraded DVCGM (1, N)

model, and found that the improved DVCGM (1, N) model
could reflect the lag effect of government policies. Zhu et al.
(2020) developed an adaptive gray-scale weighted model to
forecast Jiangsu’s electricity usage. Chen et al. (2021) predicted
energy consumption in the Beijing-Tianjin-Hebei region using
the FGM (1, 1) model. At the same time, some scholars predict
the structure of energy consumption. Xie et al. (2015) forecasted
total energy production and consumption using an improved
univariate discrete grey forecasting model and suggested a new
Markov technique based on a quadratic programming model to
predict the structure of energy production and consumption. Ren
et al. (2017) used Markov model to predict the energy
consumption structure of Beijing.

The benefits and drawbacks of the most commonly used
energy forecast methods of the literature is outlined in
Table 1. The energy consumption system is a nonlinear
system with many influencing factors. Because most
traditional prediction approaches lack a learning mechanism,
it is difficult to describe the nonlinear relationship in the energy
system, resulting in low forecast accuracy. Some new computer
forecasting approaches are exceedingly complicated and
subjective, jeopardizing the accuracy of energy consumption
forecasting. Time series models are problematic due to a
paucity of data on China’s energy consumption. PSO model is
easy to fall into local optimal solution, so it is difficult to obtain
global optimal solution. If an ANN model is used to forecast, the
performance of the prediction will be inconsistent due to
insufficient sample training and over-learning. The GM
model’s prediction is based on exponential prediction. This
approach works best with data that grows exponentially,
which makes it unsuitable for calculating China’s energy
consumption. Therefore, we propose a Support Vector
Regression (SVR) model to anticipate China’s energy
consumption during the 14th Five-Year Plan period, while the
widely used Markov Chain (MC) is used to predict the energy
structure.

3 METHODOLOGY

3.1 Model
3.1.1 Support Vector Regression
SVMs are supervised machine learning models used to tackle
classification and regression problems. SVMs are composed of
two components: a kernel and an optimizer method. The kernel
converts non-linear data to a high-dimensional space and then
linearly separates the data. Optimizer algorithm tackles the
optimization problem, which is computationally costly. SVM
usually outperforms other machine learning approaches in
terms of generalization.

This section describes the data collection and the process of
developing a predictionmodel usingmany variables. To begin, we
identify the elements that influence energy use and preprocess the
data. The SVR model is then used to create training and test sets
randomly, and the accuracy is compared to that of the GM and
MA models. Then, we make predictions using the SVR model.
The framework for projecting energy use is displayed in Figure 4.
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Based on the basic idea of support vector machine (SVM)
model prediction (Cortes and Vapnik, 1995), input various
energy demand influencing factors x1, x2..., xd maps to a
higher dimensional eigenspace [φ(x1), φ(x2) ..., φ(xn)].
According to statistical learning theory, the original nonlinear
model can be transformed into a linear regression model of
feature space, as shown in Eqn 1

f(xj) � ωTφ(xj) + b (1)
Wherein, φ(xj) is a kernel function, ω and b are the parameters to
be identified in the model. The parameters to be identified in Eqn
1 are processed using the idea of reducing structural risk, as
shown in Eqn 2.

Remp(f) � ∑s
i�1
C(ei) + λ ‖ ω‖2 (2)

Where, Remp(f) is empirical risk, ‖ ω‖2 is the confidence risk, C(ei)
is the loss function. Further, according to the principle of SVM,
solving Eqn 2 is equivalent to solving the optimization problem in
Eqn 3

minL � 1
2
ωTω + C∑s

i�1
ε*i + εi

s.t.
⎧⎪⎨⎪⎩

y − (ω,φ(Xt)) − b≤ ε + ε*i(ω,φ(Xt)) + b − y≤ ε + εi
ε*i , εi ≥ 0

(3)

In order to facilitate the solution, Eqn 3 is often transformed
into a duality problem, then the nonlinear function f(x) can be
obtained.

f(x) � ∑l
i�1
(ai − a*i )K(Xt,X) + b (4)

TABLE 1 | Comparison of prediction methods.

Model Pros Cons

ARIMA · Good in short-term forecasting ·Not suitable for long-term forecasting
· It can show how data develops and changes

PSO · The calculation process is simple ·Easy to fall into local optimal solution, difficult to obtain global optimal
solution· Obtain the best prediction result through continuous iteration

ANN · Can process complex data ·Easy to fall into local convergence
· Simple modeling ·Learning mechanism is difficult to acquire
· Any nonlinear sequence can be approximated with any accuracy ·Parameters need to be adjusted continuously during the modeling

process
·Time consuming

GM · Suitable for dynamic process analysis ·Modeling bias exists in the model itself
· Dot demanding for sample data ·The prediction accuracy will decrease with the increase of time span

SVR · Applicable to small sample, nonlinear, high-dimensional, local minimum and other
problems

·Outliers are difficult to excavate

· Good prediction on limited data samples
· Easy to use and doesn’t have any “over-learning” faults
· Avoids the influence of subjective factors, but also integrates more relevant factors

FIGURE 4 | Framework of energy consumption forecasting.
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Where, ai and ai* are support vector parameters, K (Xt, X) is the
inner product. According to Mercer conditions, define kernel
function and select radial basis kernel function (RBF)

K(Xt,X) � exp{ − ‖ xj − xv‖2
σ2

} (5)

Substituting Eqn 5 into Eqs 4, 6 can be obtained through
equivalent transformation.

f(x) � ∑l
i�1
ajexp{ − ‖ xj − xv‖2

σ2
} + b (6)

Where, aj is the parameter value corresponding to the support
vector, xj is the input data vector of training year. xv is the input
data vector for predicting years, f(x) is the set of output vectors.
According to Eqn. 6, energy demand prediction parameters aj
and b are obtained, and the energy demand prediction model is
estimated.

3.1.2 Markov Chain
Because the direction in the energy consumption structure is
policy-driven and the process is gradual, the Markov Chain
hypothesis is used (Niu et al., 2004). That is, in the process of
event change, the state atm is determined by the state atm-1, and
is not correlated with the state at m-i (i ≥ 2). Conversely, to
predict the state at m + i, it is necessary to calculate the state at
m+1 from the state at m, repeat the process and get the result.

We propose a time set Xt with n states, at timem, Xm is set as a,
Xm+1 is set as b. Then the conditional probability (pab) of the
transition from the state at m to m+1 is as follows:

pab � {Xm+1 � b|Xm � a} (7)
and the formula of the transition matrix p can be derived in
Eqn (8).

P � pab �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p11 / p1b

..

.
1 ..

.

pa1 / pab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

After the transfer matrix p is obtained, the energy
consumption structure at m is known as Per (m), then the
energy consumption structure at m + i is calculated as follows:

Per(m) � {Perc(m), Pero(m), Perg(m), Pere(m)}
Per(m + i) � Per(m)*Pi (9)

in which, Perc(m), Pero(m), Perg(m), Pere(m) respectively
represent the proportions of coal, crude oil, natural gas and
clean energy (hydro power, wind power, etc.) in the total
primary energy consumption.

Energy consumers and producers may change their option on
energy consumption. For example, if some energy customers
select natural gas over coal this year, the proportion of coal
consumption will fall and the proportion of natural gas will rise.
The energy structure change is the calculated transfer probability
from coal to natural gas, and the probability of each energy
structures transferring to each other constitutes the transition

probability matrix. The retention probability pc→c(m) is
calculated. The energy structure changes from m to m + 1,
and the retention probability is the share at m + 1 divided by
the share at m. The detailed calculation formula is shown in
10–12.

Probability of coal switching to oil (Eqn 10):

pc→o(m) � [1 − pc→c(m)]p[Pero(m + 1) − Pero(m)]
[Pero(m + 1) − Pero(m)] + [Perg(m + 1) − Perg(m)] + [Pere(m + 1) − Pere(m)]

(10)

Probability of coal switching to natural gas (Eqn 11):

pc→g(m) � [1 − pc→c(m)]p[Perg(m + 1) − Perg(m)]
[Pero(m + 1) − Pero(m)] + [Perg(m + 1) − Perg(m)] + [Pere(m + 1) − Pere(m)]

(11)

Probability of coal turning to water and wind power (Eqn 12):

pc→e(m) � [1 − pc→c(m)]p[Pere(m + 1) − Pere(m)]
[Pero(m + 1) − Pero(m)] + [Perg(m + 1) − Perg(m)] + [Pere(m + 1) − Pere(m)]

(12)

Where, Peri(m) is the proportion of i energy in the total amount at
moment m.

Suppose that the one-step transition probability matrix of
China’s primary energy consumption structure from moment m
to moment m + 1 is:

P(m) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pc→c(m) pc→o(m) pc→g(m) pc→e(m)
po→c(m) po→o(m) po→g(m) po→e(m)
pg→c(m) pg→o(m) pg→g(m) pg→e(m)
pe→c(m) pe→o(m) pe→g(m) pe→e(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

3.2 Influencing Factors Preparation
A country’s energy consumption (EC) is a nonlinear complicated
system that is influenced by a large number of variables. GDP,
energy price, secondary industry’s fraction of added value, energy
consumption intensity, technical progress, resident consumption
level, and population size are used as dependent variables on
energy consumption (Chen and Zhu, 2013; Marques et al., 2019),
which can be expressed as:

EC � f(GDP,P, I,EI,RD,C, POP) (14)
Where: EC denotes total energy consumption,GDP denotes gross
domestic product, p is for energy price, I denotes the proportion
of secondary industry, EI represents energy consumption
intensity, RD is for technological progress, C represents
household consumption level, and POP denotes total
population size.

To avoid the impact of price considerations, we recalculate
GDP at 1990 prices and determine energy consumption intensity
per unit GDP. China’s GDP increased by 9% yearly from 1990 to
2020, rising from 1,887.3 billion yuan to 10,1598.6 billion yuan3.
Economic growth results in increased energy consumption,
which continues to rise year after year. As a result, economic

3China Statistical Yearbook 2021, http://www.stats.gov.cn/tjsj/ndsj/
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development is the most important determinant of energy use
consumption.

Population has a direct impact on energy consumption. By the
end of 2019, China’s overall population exceeded 1.4 billion.3

Despite the fact that China’s annual net increase has decreased
below 10 million, showing that the country’s population is
stabilizing, China’s energy consumption is enormous. The
natural population growth rate will remain at about 4‰,
which will continue to drive high demand for energy.4

Additionally, there is a major discrepancy in the levels and
ways of energy consumption between urban and rural
inhabitants. With China’s urbanization process accelerating,
the growth in urban population necessarily results in an
increase in overall energy demand.

The secondary industry has always been the largest energy
consumption industry in China. The primary industry consumes
less energy and the tertiary industry has relatively high energy
utilization efficiency. The increment of energy consumption
brought by the vigorous development of the tertiary industry is
not obvious. As the energy consumption of the secondary industry
is much higher than that of the primary and tertiary industries,
with the gradual adjustment of China’s industrial structure in the
future, especially the adjustment of the proportion of the secondary
industry, energy consumption will be affected.

It is shown that the output value of secondary industries has
remained dominant during the last few decades (Figure 5). China is
aggressively establishing a new green and low-carbon economy,
promoting reduced energy consumption in industrial industries,
owing to industrial restructuring and upgrading and the strict
limits of the “carbon peak and carbon neutrality” targets. China’s
economy will enter a new era during the 14th Five-Year Plan period.
Under the “Belt and Road Initiative”, industrial transformation and
upgrading, the proportion of primary industry will continue to shrink,

as will the proportion of secondary industry, while the proportion of
tertiary industry will continue to expand, and by 2050, will be the
supporting industry of China’s national economic growth.
Accordingly, the structure of energy consumption will change as well.

China’s total energy processing and conversion efficiency is
expected to reach 73.3% by 2019.5 We believe that the impact
of technical innovation on energy consumption is mostly
due to advancements in scientific and technological levels,
notably the advancement of energy-saving technology, which
increases the rate of energy conservation and decreases energy
consumption. Furthermore, technical advancement allows for
the new energy adaptation, resulting in a shift in energy
consumption structure and, as a result, a shift in China’s
energy consumption. Technological progress to promote
energy efficiency, energy saving, and emissions reduction
significantly promote the role, is the key to achieve energy
conservation and emissions reduction. As a result, we choose
independent research and development as a metric for China’s
technical advancement.

Household consumption has changed dramatically as people’s
living standards have improved. People seek enhanced consuming
enjoyment, thereby increasing the demand for direct energy
consumption, especially for high-quality energy such as
electricity, gas fuel and new energy. Urbanization has enhanced
people’s living standards. Compared with things in the 1990’s, in
2019, the rural consumption increased by 504%, while urban
consumption increased by 793%. The rise in living standards
has increased household energy consumption, from 139 kg
standard coal in 1990 to 442 kg standard coal in 2019.5 The
future will see increased per capita energy consumption due to
improved quality of life, increased family automobile ownership,
and increased usage of air conditioning and other household
equipment.

FIGURE 5 | China’s industrial structure, 1990–2020. Data source: China Statistical Yearbook 2021.

4China Statistical Yearbook 2021, http://www.stats.gov.cn/tjsj/ndsj/ 5China Statistical Yearbook 2021, http://www.stats.gov.cn/tjsj/ndsj/
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Energy consumption intensity, or energy intensity for short is
first proposed by Patterson et al. (1996). This macro index
mainly measures the energy consumption per unit output value
and can better reflect the energy utilization efficiency level of a
country. Figure 6 illustrates China’s energy intensity from
1990–2000 at 1990 prices. Throughout the last 2 decades,
there is a rising energy consumption accompanied by a
remarkable drop in energy intensity of use. China’s energy
intensity reduced from 5.3 tons of standard coal per 10,000
yuan to 1.88 tons, indicating that China’s energy efficiency is
improving.5 By 2020, China’s energy intensity had decreased to
half of its levels in 1990. The main causes have been recognized
as technical and structural changes. The 14th Five-Year Plan
calls for promote high-quality development, improve the
implementation of the dual management of energy
consumption intensity and total amount and organize the
implementation of key energy saving and emission reduction
projects, and promote energy efficiency.

Price has a direct factor affecting consumption. We may
deduce from supply and demand theory that high prices lead
to lower demand and consumption, whereas low prices lead to
increased consumption. Similarly, energy costs have an impact on
energy use. Other variables, such as energy-saving and emission-
reduction programs, automobile purchase limitation rules, and so
on, will also affect energy consumption, but these aspects are
difficult to measure or lack relevant statistical data, therefore they
are not taken into account for the time being. After selecting the
influencing factors, we preprocess the data for the SVR model
prediction.

3.3 Data Preprocessing
All data in this paper are from China Statistical Yearbook, China
Energy Statistical Yearbook and China Science and Technology
Statistical Yearbook from 1990 to 2021. The influencing factors
introduced above are taken as independent variables of energy
consumption. Variable Settings and their meanings are shown in

Table 2 below. The indicators of GDP, household consumption
level and energy consumption intensity have been converted
according to the constant prices in 1990, and energy price p is
represented by fuel and power purchasing price index.

Furthermore, the dimensions of the seven input and one output
indices examined in this paper’s analysis of energy consumption
are inconsistent, and the data varies substantially in magnitude,
whichmight result in significant variations in prediction results. As
a result, every index datamust be normalized in advance, that is, all
index data must be converted to between [0,1] using Eqn 15.

x � xi − xmin

xmax − xmin
(15)

Next, we introduce the data set and how the prediction model is
built with several variants and data exploratory analysis. We collect
energy consumption data from statistical yearbooks from 1990 to
2020, randomly select 22 years of sample data as a training set and
the remaining years data as a test set to evaluate the model’s
prediction accuracy, and then forecast China’s energy
consumption during the 14th Five-Year Plan period. This study
examined the trend in China’s energy use and makes
recommendations for China’s future energy development.

4 EMPIRICAL ANALYSIS

4.1 Data Training and Accuracy Analysis of
Prediction Model
The input to the SVMs model is set to China’s energy
consumption influencing factors, while the output is set to
energy consumption. Following normalization of the predicted
and actual values of the linear fitting, the SVR model chose
22 years of historical data at random as the training sample for
modeling and simulation, as shown in Figure 7 (a). This indicates
a high accuracy of the model (R2 = 0.999). The model’s validity
is validated using the same test set data; Figure 7 (b) shows a

FIGURE 6 | change of China’s energy consumption intensity from 1990 to 2020. Data source: China Statistical Yearbook 2021.
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nine-year test set showing the connection between raw data and
predicted data. As can be observed, the model projected values
and the real value are reasonably comparable (R2 = 0.997),
implying that it can be used to forecast China’s energy
consumption.

Then, we compare actual and predicted values from 2013
through 2020 (Table 3). The prediction results are pretty close to
the actual energy consumption figure. The model’s validity is
established, and it is demonstrated that the SVR model has an
excellent forecasting effect on China’s energy consumption and a
high degree of forecasting ability or generalization, making it
suitable for predicting China’s future energy consumption
changes.

Two competing models, namely GM (1, 1) and MA (3) are
employed to test the accuracy of the SVR model on energy
consumption forecasting. We chose these models for
comparison because they are the most commonly used in
energy prediction research, have a high level of
representativeness, and can be applied to a wide range of
situations. Consistent with the steps of the SVR model, the
energy consumption data from 1990 to 2012 were used. Then,
based on GM (1, 1) model and MA (3) model, the energy
consumption of China from 2013 to 2020 is predicted.

Taking into account the predictions from the SVR, GM (1, 1),
and MA (3) models, Table 4 and Figure 8 illustrate the accuracy
of the fitting value in contrast to the original value. The results
reveal that the GM (1, 1) model exhibits a substantial prediction
error, the majority of which exceeds 5%. Additionally, while the
MA (3) model outperforms the GM (1, 1) model in terms of
prediction performance, its prediction accuracy is not as steady as
the SVRmodel, and prediction results vary greatly. In general, the

TABLE 2 | Variables and their meanings.

Name Variable Meaning

The dependent variable Energy consumption (EC) The sum of all kinds of energy consumed in China for production and living
The independent variables Gross Domestic Product (GDP) GDP calculated at 1990 constant prices

Residents’ consumption level (C) The average consumption of all Chinese residents in material products and services
Energy price (p) Expressed by fuel power category purchase price index
Population size (POP) Resident population of China
Technical Progress (RD) Internal expenditure
Energy consumption intensity (EI) China’s energy consumption per unit of GDP.
The proportion of secondary industry (I) The proportion of added value of China’s secondary industry in GDP.

FIGURE 7 | Real and predicted values of China’s energy consumption in the training (a) and testing set (b).

TABLE 3 | Prediction results of China’s energy consumption based on
SVR model.

year Actual value (ten
thousand tons of
standard coal)

Predicted value (ten
thousand tons of
standard coal)

Prediction error (%)

2013 416,913 416,317.12 −0.14
2014 428,334 430,307.75 0.46
2015 434,113 433,765.65 −0.08
2016 441,492 443,472.43 0.45
2017 455,827 457,781.11 0.43
2018 471,925 471,483.83 −0.09
2019 487,488 485,610.61 −0.39
2020 498,000 500,432.54 0.49
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SVR model surpasses the other two commonly used forecasting
models when it comes to projecting China’s energy consumption.
As a result, the SVR model can be used to anticipate China’s
future energy consumption throughout the period covered by the
“14th Five-Year Plan”.

4.2 Predicted Value of Influencing Factors
According to the Chinese government network, the National Bureau
of Statistics, the energy bureau of the relevant data, 14th Five-Year
energy development planning and the relevant data such as the
government statistical bulletin, through the scenario analysis, this
article selects the China 2021–2025, the total energy consumption of
seven influencing factors of value analysis and estimate (Table 5). The
following values of the influencing factors setting aremainly based on
the “Outline of the 14th Five-Year Plan (2021–2025) for National
Economic and Social Development and Vision 2035”.6

(1) GDP: GDP increased by 6% year on year in 2019 in terms of
comparable prices. The GDP for 2019 is 25,783.73 trillion
yuan based on 1990 prices. According to the outline of the
14th Five-Year Plan, new economic development progress
has been made, growth potential has been fully realized, and
average annual GDP growth has been kept within a
reasonable range. China’s GDP is expected to grow at an
annual rate of around 7% during the 14th Five-Year Plan
period. The national economy is predicted to sustain a
modest growth range of 6–8% over the 14th Five-Year
Plan period, thanks to the expansion of the national
economy and the expansion of the macroeconomic base.
Then we set the annual GDP growth rate for the 14th Five-
Year Plan at 6, 6.5, 7, 7.5, and 8%, respectively.

(2) Proportion of added value of secondary industry (I): In 2019, the
tertiary industry contributed 59.4% of added value, and this
figure is expected to exceed 60% by 2025. However, as a result
of the epidemic’s impact, the service industry has been severely
restricted in recent years, with the secondary industry

TABLE 4 | Simulation of energy consumption in China by SVR, GM (1, 1) and MA (3) model (Unit: ten thousand tons of standard coal).

year Original
value

SVR Predicted
value

Prediction error (%) GM (1,1) Model
predicted

value

Prediction error (%) MA (3) Model predicted
value

Prediction error (%)

2013 416,913 416,317.12 −0.14 387,374.40 −7.09 417,965.05 0.252
2014 428,334 430,307.75 0.46 409,238.80 −4.46 432,031.39 0.863
2015 434,113 433,765.65 −0.08 432,337.28 −0.41 432,965.35 −0.264
2016 441,492 443,472.43 0.45 456,739.49 3.45 442,998.62 0.341
2017 455,827 457,781.11 0.43 482,519.03 5.86 451,203.35 −1.014
2018 471,925 471,483.83 −0.09 509,753.63 8.02 471,942.73 0.004
2019 487,488 485,610.61 −0.39 538,525.42 10.47 487,506.31 0.004
2020 498,000 500,432.54 0.49 568,921.17 14.24 498,018.71 0.004

FIGURE 8 | Estimated values of energy consumption.

6http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm
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accounting for 36.8% of added value in 2019. The proportion
of secondary industry and tertiary industry are expected to
wane and wax during the 14th Five-Year Plan period, and the
tertiary industry will become the supporting industry of
China’s national economic growth by 2050, and the energy
consumption structure will also change accordingly. The
secondary industry’s added value is expected to fluctuate
between 35 and 38% during the “14th Five-Year Plan.” We
set the added value of secondary industry at 38, 37, 36, 36, and
36% in 2021–2025, respectively.

(3) Technological progress (RD): Technological progress plays a
critical role in promoting energy efficiency, energy conservation,
and emissions reduction. Independent research and development
(R&D) is frequently viewed as the primary means of a country’s
technological progress, research and development expense. The
moremoneywe invest in research and development, themore we
can foster independent innovation and technical progress,
thereby increasing energy efficiency, lowering energy intensity,
and lowering energy consumption. Therefore, we select
independent research and development to measure China’s
technological progress. The 14th Five-Year Plan outlines a
major increase in China’s capability for innovation, with
overall R&D investment increasing at an annual pace of more
than 7%on average. As a result, we project that between 2021 and
2025, China’s internal R&D investment would expand at an
average annual rate of 7%.

(4) Household consumption level (C): The standard of life has risen,
and people’s well-being has reached a new level. Per capita
disposable income has mostly maintained pace with GDP
growth, as has consumption. As a result, we anticipate
consumption to increase by 6, 6.5, 7, 7.5, and 8% throughout
the 14th Five-Year Plan period.

(5) Population size (POP): In 2019, China’s population
surpassed 1.4 billion and is projected to reach 1.412
billion by 2020. Given the low level of desire for children,
China proposed and pushed the “three-child” policy.
However, a number of studies have demonstrated that
implementing the “three-child” policy will have little effect
on China’s natural population growth rate. The natural
population growth rate is not expected to surge, but due
to the effect of inertia of the huge population base and
growth, the size of the population will expand further.
Therefore, if the average annual growth rate from 2010 to
2020 remains at 4% till 2025, China’s population will be 1.418

billion, 1.423 billion, 1.429 billion, 1.435 billion, and 1.441
billion in 2021 and 2025, respectively.

(6) Energy consumption intensity (EI): The 14th Five-Year Plan
prioritizes the development of a clean, low-carbon, safe, and
efficient energy system, as well as the enhancement of energy
security. Increasing the share of non-fossil energy in total
energy consumption to around 20% andmaintaining a healthy
balance of overall energy consumption and energy intensity.
The 14th Five-Year Plan also asks for sticking to a new vision
of development, ensuring sustainable and sound economic
growth while considerably enhancing development’s quality
and efficiency, and reducing energy consumption intensity by
13.5% over the last 5 years. Based on a total reduction of 13.5%
in energy consumption per unit GDP over the next 5 years, or
a 2.7% annual reduction rate, energy consumption per unit
GDP in 2021–2025 will be 1.84, 1.79, 1.74, 1.69, and 1.65 tons
of standard coal per 10,000 yuan.

(7) Energy prices (P): We anticipate reasonably constant energy
prices, with an average annual growth rate of 6% from 2010
to 2020. China’s 2021–2025 gasoline and electricity purchase
price index is fixed at 106 in comparison to the
corresponding price in 1990.

4.3 Energy Consumption and Energy
Structure Forecast
We forecast China’s energy usage between 2021 and 2025 using a
trained SVR model (Figure 9). The accuracy of the prediction is
greater than 98.4%. China’s energy consumption is projected to
continue growing at an average annual rate of 7%, surpassing 6
billion tons of standard coal by 2024. As China’s industrialization and
urbanization intensify, the country’s energy consumption will
continue to grow rapidly, putting policymakers under increased
pressure to strike a balance between energy use and economic
development.

In accordance with “Outline of the 14th Five-Year Plan
(2021–2025) for National Economic and Social Development
and Vision 2035” 7, China’s economic and social development
must adopt a green transition aimed at carbon reduction. The
expanding energy consumption will exacerbate the imbalance
and raise the need for energy imports. Energy technology is still in
its infancy at the early stages of new energy development and
change. All of these circumstances are likely to jeopardize China’s
energy security, which should be taken into account.

China’s energy consumption structure remains irrational at
the moment. The share of low-carbon energy sources such as oil,
natural gas, and non-fossil energy consumption is significantly
lower than the average for industrialized countries. As China’s
economic development enters a new normal, improving the
energy structure will enable the country to progressively wean
itself off coal, improve economic quality, and achieve sustainable
economic growth. As a result, we use Markov Chain (MC) to
predict the energy consumption structure.

TABLE 5 | Indicators for the 14th Five-Year Plan period.

Variables Estimated annual growth
rate from 2021

to 2025

GDP 6%, 6.5, 7%, 7.5, and 8%
I 38, 37, 36, 36, and 36%
RD An average annual rate of 7%
C 6, 6.5, 7, 7.5, and 8%
POP 1.418 billion, 1.423 billion, 1.429 billion, 1.435 billion, and 1.441 billion
EI 1.84, 1.79, 1.74, 1.69, and 1.65 tons of standard coal per 10,000 yuan
p Price index is fixed at 106

7http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm
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Only the proportion of coal declined between 2012 and 2019, while
the proportions of crude oil, natural gas, and clean energy grew. It can
be seen that the maintenance rate for crude oil, natural gas, and clean
energy is 1, however the drop in coal’s share is decomposed into the
other three. In 2020, the proportion of coal and crude oil has reduced,
the retention rate of natural gas and clean energy has increased to 1,
and the decline in coal and crude oil proportion has been decomposed
into an increase in the other two items. The one-step transitionmatrix
for 2012–2020 computed using Eqs 9–11 can be found in Appendix
A1. The average transfer matrix for 2012–2020, according to the
transfer matrix every 2 years, is as follows:

�P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9769 0.0039 0.0071 0.0121

0 0.9993 0.0002 0.0004
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
According to the average transfer matrix, the amount of natural

gas and clean energy in China’s primary energy structure has
continuously increased (the transfer proportion on the main
diagonal is 1), which is compatible with the country’s clean energy
policy. The coal-to-oil ratio has decreased. The proportion of coal
energy structure declined the most quickly, with the lowest retention
rate (97.69%). Petroleum energy is retained at a rate of 99.93%.

Based on the energy consumption structure in 2020, we set the
initial state, in which Per (0) = (0.568, 0.189, 0.084, 0.159). The
energy consumption proportion in 2021 is anticipated to be the
energy consumption proportion matrix in 2020 multiplied by the
average state transfer matrix using the average transfer matrix
formula. The energy consumption ratio in 2022 is calculated by
multiplying the energy consumption ratio in 2020 by the square
of the average state transition matrix, and so on. The prediction
results of 2021–2025 energy consumption structure are shown in
Table 6. The results show that coal consumption has been
declining, while natural gas is growing slowly (Wang and
Wang, 2019; Zhao and Liu, 2019).

Our estimation on the structure of energy consumption
suggests that coal consumption is decreasing steadily, and by
2025, coal is expected to account for around 50.5% of overall
energy consumption. According to the Guiding Opinions on the
High-Quality Development of the Coal Industry during the 14th
Five-Year Plan, national coal consumption will be managed at
around 4.2 billion tons by the end of the “14th Five-Year Plan,”
and this binding target will be met.8 Oil consumption is rising
year by year and is predicted to account for 19.9% of total energy
consumption by 2025, which is in line with the Development Plan
of China’s Petroleum and Petrochemical Equipment
Manufacturing Industry in the 14th Five-year Plan’s
requirements for total oil consumption in my country.9

However, it is worth noticing that, according to The 14th Five-
Year Comprehensive Work Plan for Energy Conservation and
Emission reduction, natural gas should account for around 15% of
China’s energy mix by 2025.10 Compared with our forecast figure
of 10.3% in 2025, there is still a gap between natural gas
consumption and the target. According to the Comprehensive
Work Plan10, non-fossil energy, such as electricity consumption,
must account for more than 20% of total energy consumption.

FIGURE 9 | Forecast value of China’s energy consumption during the 14th Five-Year Plan period.

TABLE 6 | Forecast of Energy consumption structure.

Year Coal (%) Oil (%) Gas (%) Electricity (%)

2021 55.5 19.1 8.8 16.6
2022 54.2 19.3 9.2 17.3
2023 53.0 19.5 9.6 17.9
2024 51.7 19.7 10.0 18.6
2025 50.5 19.9 10.3 19.2

8http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=
9&id=129818
9https://m.cpei.org.cn/index.html
10http://www.gov.cn/zhengce/content/2022-01/24/content_5670202.htm
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The forecast figure for 2025 is 19.2%, which has yet to be
achieved, and the target will be met in 2030.

5 CONCLUSIONS AND SUGGESTIONS

This study anticipates China’s overall energy consumption
throughout the 14th Five-Year Plan period by proposing a
machine learning model and predicts the evolving energy
consumption structure. In comparison to commonly used
forecasting models, i.e. the GM (1, 1) and MA (3), the SVR
model is more accurate in forecasting China’s energy
consumption. The overall energy consumption is projected
to continue growing at an average pace of 7%, surpassing 6
billion tons of standard coal by 2024. In terms of energy
structure, it is expected that China’s energy consumption
structure will be more rational in 2025, with increased non-
fossil energy consumption and decreased coal consumption,
while natural gas consumption continues to grow at a low
rate. The growing disparity between energy consumption and
production will undermine China’s energy security. We are
compelled to make proactive adjustments to our energy
strategy and structure. The following policy implications
are made based on the findings:

(1) When energy supply expansion is limited, ensuring national
security requires scientific regulation of the energy consumption
elasticity system. We need to reform our energy consumption
structure, speed up industrial restructuring, and recommence
our energy conservation efforts. It is very important to increase
investment in clean energy, improve the efficiency of
conventional energy sources (such as coal), and advocate for
energy conservation and emission reduction.

(2) There is more intense competition between provinces and cities,
urban and rural areas, and industry and civilians in terms of
energy consumption. To avert the deterioration, regional total
energy consumptionmanagement strategies should be attempted.
A relationship between energy consumption and economic
performance should be established so that when economic
performance exceeds the task, overall regional energy
consumption exceeds the regional energy development goal.

(3) In terms of energy consumption, some policies that have
worked well, such as lax coal management, clean oil
promotion, and electric energy replacement programs, must
be maintained. While retaining the proportion of oil, the

amount of coal should be gradually reduced and transferred
to natural gas and other clean energy sources.

(4) The long-term sustainable development of natural gas should
be prioritized. On the supply side, we should enhance the
efficiency of existing gas resources and vigorously boost
offshore gas and natural gas hydrate development. While
total output continues to increase, it is critical to monitor
market prices and analyze and establish an acceptable natural
gas pricing system to ensure steady growth in natural gas
consumption demand.

A few caveats are necessary. Investigating the disparities in energy
consumption between urban and rural locations would be an
intriguing side study. Additionally, policies aimed at energy
conservation and emission reduction have a close connection with
energy consumption. These will be studied in greater detail in our
subsequent investigation.
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APPENDIX

APPENDIX A1 THE ONE-STEP TRANSITION
MATRIX FOR 2012–2020.

P2012−2013 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9839 0.0015 0.0073 0.0073

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2013−2014 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9763 0.0030 0.0044 0.0163

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2014−2015 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9696 0.0167 0.0030 0.0106

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2015−2016 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9749 0.0047 0.0047 0.0157

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2016−2017 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9743 0.0032 0.0129 0.0096

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2017−2018 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9736 0 0.0116 0.0149

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2018−2019 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9780 0.0017 0.0068 0.0135

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2019−2020 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9844 0 0.0057 0.0085

0 0.9947 0.0019 0.0029
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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With the rapid development of global industrialization and urbanization, as well as the
continuous expansion of the population, large amounts of industrial exhaust gases and
automobile exhaust are released. To better sound an early warning of air pollution,
researchers have proposed many pollution prediction methods. However, the traditional
point prediction methods cannot effectively analyze the volatility and uncertainty of
pollution. To fill this gap, we propose a combined prediction system based on fuzzy
granulation, multi-objective dragonfly optimization algorithm and probability interval,
which can effectively analyze the volatility and uncertainty of pollution. Experimental
results show that the combined prediction system can not only effectively predict the
changing trend of pollution data and analyze local characteristics but also provide strong
technical support for the early warning of air pollution.

Keywords: atmospheric contamination prediction, temporal convolution network, fuzzy information granulation,
multi-objective dragonfly optimization algorithm, interval prediction

INTRODUCTION

With the continuous development of the economy and the rising living standards, the deterioration
of the environment, land desertification, greenhouse effect, and other problems have begun to
plague us. In addition, the United States and other developed countries have classified indoor
air pollution into the five environmental factors that endanger human health. The Health Effects
Institute from the US released “State of Global Air (2020),” which indicates that, at least 6.7 million
people worldwide, will die from chronic exposure to air pollution in 2019 (State of Global Air,
2020).

Up to now, many studies have been conducted to study the problem of air pollution. Recently, to
accurately measure the quality of air, particulate matter (PM) has become a significant and common
index to be monitored (Beaulant et al., 2008). PM2.5 is one type of PM, which means that the
particulate matter in the ambient air has an aerodynamic equivalent diameter less than or equal to
2.5 µm (van Donkelaar et al., 2006). It can be suspended in the air for a long period, and the higher
the concentration of its content in the air, the more serious the air contamination. Compared with
coarser atmospheric particles, PM2.5 has the following features: small particle size, large area, strong
activity, easy adhesion, and long residence time in the atmosphere; thus, it has a greater impact on
human health and the quality of the atmospheric environment (Sun and Li, 2020).

As a result, PM2.5 has become a worldwide problem to be solved, and many institutions have
established various methods to accurately monitor PM2.5 concentrations (McKeen et al., 2007;
Borrego et al., 2011; Air Quality Expert Group, 2012; Bergen et al., 2013; Wakamatsu et al., 2013).
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Bai et al. (2019) proposed the DL-SSAE method as an
autoencoder model to consider the advantages of seasonal
analysis and deep feature learning to predict the hourly PM2.5
concentrations. Irina et al. developed the Community Multiscale
Air Quality method with five different data preprocessing
strategies to analyze the concentrations of PM2.5, and they found
that the Kalman filter correction could compute the most precise
results (Djalalova et al., 2015). In addition, Samia et al. (2012)
combined autoregressive integrated moving average (ARIMA)
and Ann to enhance predicting performance, and the results
show that the proposed hybrid system could be used to efficiently
forecast and provide useful air quality information. In addition,
multiple linear regression have been utilized to forecast PM2.5
or PM10 concentrations in the air to make decisions related to
traffic restrictions in the future or support the control of air
quality (Akyüz and Çabuk, 2009; Genc et al., 2010). Moreover,
Banik et al. (2020) employed long short-term memory (LSTM)
to analyze wind speed in various seasons, and they concluded
that LSTM performs better than Elman and non-linear auto-
regressive models. Osowski and Garanty (2007) used support
vector machine (SVM) to decompose the original data and to
predict the air quality of Poland based on wavelet representation.
Another common method is the gray model (GM), which was
employed by Pai et al. After comparing with other models for
predicting the performance of PM2.5 and PM10 concentrations of
Taipei, they demonstrated that GM (1, 1) could be a useful early
warning system for nearby citizens (Pai et al., 2013).

Additionally, the temporal convolutional network (TCN) is
widely used to achieve more accurate performance. For instance,
Zhu et al. (2020) solved the problem of long-term dependencies
and performance degradation of a deep convolutional model by
TCN, which shows that the power system with TCN performs
better and more stably compared with others. Li et al. (2018)
predicted oil consumption with various parameters according
to TCN and found that the proposed model could obtain more
satisfying results and help make decisions for the energy market.
Wei designs a convolutional spiking neural network to deal with
temporal datasets, which corrects and optimizes the historical
performance, and more accurately forecasts wind speed. Also,
this method could quantify the differences in predicting the
performances that resulted from uncertainties (Wei et al., 2021).
Chen et al. (2020) established a structure with the convolutional
neural network (CNN) to forecast associated sequences and to
handle more complex seasonal problems, which helps make
useful decisions to assess power generation by providing more
evidence. Yang W. et al. (2020) combined empirical mode
decomposition (EMD) and TCN to forecast the remaining useful
life and reduce the cost during the operation. Tian and Wang
(2021) applied the temporal convolution networks with the
quantile regression (TCNQR) method to judge the period of
health and operation. In this study, we used TCN as one of the
forecasting tools to obtain the results of air quality.

The recently developed approaches mainly belong to point
forecasting, which includes some disadvantages and limitations
(Wang J. et al., 2021). For example, Wang et al. (2022b) have
pointed out that the point predicting approaches produce an
unavoidable error during the operation, which might result in

immense risks for an electric power system since it only depends
on the accurate results. In addition, a considerable amount of
time and high cost will be wasted if precise information cannot
be provided, which is also a loss to the entire power system.

Unlike point prediction, which gives a “specific numerical
prediction,” the interval forecast aims for a future period and
gives an interval in which the predicted values are likely
to occur, with a prediction interval corresponding to the
expected probability. The interval forecast gives more prediction
information than the point forecast, which means that we can get
the value of the point forecast within a certain interval based on
a certain probability, thus more scientifically characterizing the
uncertainty of the model forecast.

As for data preprocessing, information granulation (IG) is
a technique for studying the formation and representation of
information grains and for information pre-processing. Fuzzy
information granulation (FIG) is one type of IG first proposed
by Zadeh (1997) to discuss how to deal with fuzzy datasets.
FIG has been employed to acquire original data of fluctuating
traffic and construct a traffic flow, predicting the approach with
interval forecasting (Guo et al., 2018). Zhang and Na (2018)
applied FIG to transform the historical agricultural price into
FIG particles, and the forecasting results show that the proposed
price predicting system model performs more efficiently with
better accuracy. FIG could also be used in the power system.
For example, the authors utilize FIG to remove the variability
of the historical series of wind and solar energy, and the
experimental results demonstrate that the developed approach
performs efficiently and could help decision-makers stabilize the
energy system (He et al., 2019b). Additionally, to forecast the
actual streamflow data, FIG is combined with support vector
regression (SVR) to provide more precise computation and
eliminate the fluctuation of the streamflow, which means that the
proposed model has a more accurate prediction interval of the
hydrologic system (He et al., 2019a).

According to the existing research about PM2.5 concentrations
and forecasting, we found that the majority of the models are
combined models. Compared with the traditional single model,
the combined models avoid the error of individual approaches
and yield more accurate results. Therefore, more researchers have
adopted combined models for prediction. For example, Wang S.
et al. (2021) applied a novel wind power combined predicting
system to obtain more precise performance, which supports
further research in wind generation. Wang et al. (2022a) used
four foundation models and optimized the weight coefficient
using a multi-objective water cycle algorithm (MOWCA) to
predict hourly PM2.5 concentrations. Details of a single model
and combined models are summarized in Table 1. In Table 2 for
detailed nomenclature in the article.

Based on the analyses above, this study employs a novel
combined predicting system to monitor PM2.5 and PM10. It
integrates FIG, TCN, ARIMA, and LSTM to forecast PM2.5 and
PM10 concentrations, then uses a weight generation structure
to compute each coefficient, and finally combines the single
approaches to achieve a better result of the experiments.

The primary contributions and innovations of this study are
shown as follows.
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TABLE 1 | Summary of predicting approach types.

Category References Advantages Disadvantages

Physical model Xiao et al., 2019 Physical model concentrates on long-term
predicting data series where it could perform
better

Physical models have difficulties in
predicting data series in short term, and
they need to collect sufficient data as
an initial dataset

Statistical approach

Auto-regressive moving average
(ARma)

Wang et al., 2012; Wang and
Hu, 2015

Statistical approaches achieve satisfying
performance in dealing with linear data

The assumption of statistical approach
is tough to realize, and they cannot
operate well in non-linear patterns

Auto-regressive integrated moving
average (ARIMA)

Grey method (GM) Ding, 2019

Artificial intelligence

Artificial neural network (Ann) Wang et al., 2016

Support vector machine (SVM) Zhang et al., 2019

Fuzzy logic (FL) Sfetsos, 2000

Back propagation neural network
(BPnn)

Bin et al., 2014 They are suitable to handle non-linear data
series and could obtain better results and
stability.

Artificial intelligence approaches cannot
perform well due to the over-fitting
problem, and single approaches have
some limitations.

General regression neural network
(GRnn)

Majumder and Maity, 2018

Long short-term memory (LSTM) Banik et al., 2020

Particle swarm optimization (PSO) Liu W. et al., 2019

Combined model

WPD-PSO-BPnn Liu H. et al., 2019

FT-CS Yang H. et al., 2020 Combined models consider the strengths and
weaknesses of single approaches to achieve
more precise results

The running period of the combined
models is longer than other single
models, and the weight coefficient
needs to be considered

VMD-BEGA-LSTM Mencar and Fanelli, 2008

FIG-SVR He et al., 2019a

(1) To avoid the limitations of point predicting methods, this study
proposes a useful interval predicting approach. This technique
could deal with the fluctuation associated with the PM2.5
and PM10 concentrations by quantifying the information of
the original dataset. The performance of interval predicting
is shown to be more effective than that of other point
forecasting approaches.

(2) According to the decomposition and reconstruction techniques,
this study applies the data pretreatment method to eliminate the
negative influence of the initial data series. As a superior data
preprocessing strategy, FIG is used to decrease high-frequency
noise and to reconstruct the novel data sequences to acquire
the significant elements of the historical data and facilitate the
smooth implementation of the next phase.

(3) A combined model is developed in the predicting section
to obtain the results of PM2.5 concentrations. It obtains
more accurate prediction results when compared with
the traditional PM2.5 and PM10 concentrations of
prediction approaches.

(4) The developed model could be employed in air quality
monitoring. The proposed system and the predicting
results are clearly improved by providing more useful
information on air quality to people and analyzing and

predicting PM2.5 and PM10 concentrations even in more
complicated conditions.

The rest of this article is organized as follows. Section
“Forecasting System Development” touches upon the design
of the forecasting system, including data fuzzy information
granulation and the proposed combined forecasting system.
Section “Framework of the Proposed Forecasting System
and Parameter” describes the framework and parameters
of the proposed prediction system. To further verify the
accuracy and effectiveness of the proposed combined model
from various aspects, detailed experimental results and
analysis are presented in section “Experimental Results
and Discussion”. Finally, section “Conclusion” concludes
this research.

FORECASTING SYSTEM DEVELOPMENT

This section develops an innovative combined predicting system
to predict the PM2.5 and PM10 concentrations in the air, which
enhances the performance of the results by a data denoising
strategy and a predicting approach.
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TABLE 2 | Nomenclature.

Nomenclature

Abbreviate

Anns Artificial neural networks WPD Wavelet packet decomposition

BPnn Back propagation neural Network FT Fuzzy theory

ARIMA Auto-regressive integrated Moving Average CS Cuckoo search

ARma Auto-regressive moving Average BEGA Binary encoding genetic optimization Algorithm

GM Gray method VMD Variational mode decomposition

GRnn General regression neural Network MSE Mean squared error

LSTM Long short-term memory Network MAPE Average absolute percent error

PSO Particle swarm optimization MAE Mean absolute error of N predicting results

SVM Support vector machine RMSE Root of mean error squares

TCN Temporal convolution network SSE Sum of squared error

PICP Prediction interval coverage probability PBW Prediction band width

FL Fuzzy logic MOWCA Multi-objective Water Cycle Algorithm

SVR Support vector regression FIG Fuzzy information granulation

IG Information granulation TCNQR Temporal convolution network with the quantile regression

EMD Empirical mode decomposition MLR Multiple linear regression

PM Particulate matter MODOA Multi-objective dragonfly optimization algorithm

CNN Convolutional neural network

Decomposition and Denoising Strategies
Fuzzy information granules (FIG) construct information
granules by building fuzzy sets for each subsequence formed by
discretizing the time series (Mencar and Fanelli, 2008). The core
of fuzzy information granulation is to complete the fuzzification
process after the window is created, which mainly includes
window division and information fuzzification.

The window division is to convert the time series
R =

{
R1,R2, . . . ,Rγ

}
into the granular time series

¯̄2 =
{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
after information granulation by

setting the time granularity
_
E to divideR =

{
R1,R2, . . . ,Rγ

}
into H subseries ¯̄2 =

{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
, where H = γ

_
E

and

theηth subseries is ¯̄2η =

[
R
(η)

1 ,R
(η)

2 , . . . ,R
(η)
_
E

]
.

{
R1,R2, . . . ,Rγ

}
⇒

{[
R
(1)
1 ,R

(1)
2 , . . . ,R

(1)
_
E

]
, ...,[

R
(H)
1 ,R

(H)
2 , . . . ,R

(H)
_
E

]}
(2− 1− 1)

The information granulation of the time series
R =

{
R1,R2, . . . ,Rγ

}
is to construct the information particles

0̃ =
{
0̃
′

1, 0̃
′

2, . . . , 0̃
′

ς

}
using the fuzzy method for each of

theH subsequences ¯̄2 =
{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
formed by the

discretization operation.
Suppose that Z is a given theoretical domain, then a fuzzy

subset3 = {χ,� (χ) |χ ∈ Z} on Z,� (χ) : χ→ [0, 1] represents
the affiliation function of 3. Two fuzzy subsets, 8 and 4,
are equal, denoted by 8 = 4, if they have the same affiliation

function, i.e.,
_
� ′8 (χ) =

_
� ′′4 (χ ).

In this study, the triangular fuzzy particles are chosen to
construct the information grain and its affiliation function is as
follows:

ATf (x) =


x–ITf

KTf−ITf
, ITf ≤ x ≤ KTf

0, x<ITf ∪ x > NTf
NTf−x

NTf−KTf
,KTf < x ≤ NTf

(2− 1− 2),

where x is the variable in the theoretical domain and ITf , KTf , and
NTf are the three parameters of the triangular type fuzzy example
affiliation function, which correspond to the lower boundary,
average level, and upper boundary of the window after fuzzy
particleization, respectively.

Fuzzy sets get rid of the either-or duality in classical set theory
and extend the value domain of the affiliation function from the
binary {0, 1} to the multi-valued interval [0, 1], which is a kind
of extension of the set theory. Information fuzzification is the
fuzzification of each information grain, and the fuzzification of
a single sub-window, ¯̄2µ, generates multiple fuzzy sets 0̃

′

µ =[
0̃
′′

µ;1, 0̃
′′

µ;2, 0̃
′′

µ;3

]
.

Considering the single-window problem, ¯̄2µ =[
¯̄T(µ)1 , ¯̄T(µ)2 , . . . , ¯̄T(µ)_

E

]
should first be viewed as a window

for fuzzification. The task of fuzzification is to build a triangular

fuzzy particle TFP on ¯̄2µ =

[
¯̄T(µ)1 , ¯̄T(µ)2 , . . . , ¯̄T(µ)_

E

]
, which can

reasonably explain the fuzzy concept M of ¯̄2µ. The fuzzy particle

0̃
′

µ =

[
0̃
′′

µ;1 =
_
I

µ

Tf , 0̃
′′

µ;2 =
_
K

µ

Tf , 0̃
′′

µ;3 =
_
N

µ

Tf

]
can be constructed

by the relevant parameters in the determined affiliation function
(2-1-2) of the triangular fuzzy particle.
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Predicting Algorithm
In this section, the basic theory and equations of some forecasting
approaches are described.

Auto-Regressive Integrated Moving Average Model
The AR(p) model means the auto-regressive approach of the pth

order, expressed as (Hamilton James, 2015):

yt = c+ a1yt−1 + · · · + apyt−p + ut (2− 2− 1),

where a1, · · · , ap are indicators; c is a constant; and ut is referred
to as the random variable.

Besides, the MA(q) model represents the moving average
model of the pth order, which is defined as:

yt = a+ ut +m1ut−1 + · · · +mqut−q (2− 2− 2),

where m1, · · · ,mqare the factors of the approach; yt is always
set as 0, and the expectation of yt can be written as a. Also,
ut , ut−1 and ut−q could describe the white noise error terms of
the initial series.

Then, the ARMA(p, q) combines the two approaches listed
above, which is shown in the following formula:

yt = c+ a1yt−1 + · · · + apyt−p + ut +m1ut−1 + · · ·

+mqut−q (2− 2− 3)

If these three approaches are employed in dealing with
samples with non-stationarity evidence, we could consider taking
various steps to decrease this limitation, which is regarded as
ARIMA (p,d,q), where d is the degree of differencing.

Deep Learning Using Long Short-Term Memory
Recurrent Neural Networks
Recurrent neural network (RNN) is one type of ANN, and the
combinations of various samples become a directed cycle. LSTM
is proposed to handle long series. Both LSTM and RNNs could
employ some gates to fix the gradient problem. Some scientists
have proved that RNNs are included in the hidden layer, which is
one of the features of LSTM (Gers et al., 2000). The three layers of
RNNs with LSTM demonstrated in Figure 1 present the memory
cell functions.

ft = σ(Wf • [Ct−1, ht−1, xt] + bf ) (2− 2− 4)

it = σ(Wi • [Ct−1, ht−1, xt] + bi) (2− 2− 5)

ot = σ(Wo • [Ct, ht−1, xt] + bo) (2− 2− 6)

Ct = ft × Ct−1 + it × C̃t (2− 2− 7)

C̃t = tanh(Wc • [ht−1, xt] + bc) (2− 2− 8)

ht = ot × tanh(Ct) (2− 2− 9),

where xt is the input value; ht is the output vector; Ct represents
the cell state variable; W and b are indicator matrices and
indicator; ft , it , and ot are forget, input, and output gate
variables, respectively. In the equation, σ means the sigmoid
formula and tanh refers to a rescale logistic sigmoid function
belonging to (−1, 1).

Temporal Convolutional Network
A TCN, an interval predicting method, is a special kind of
CNN (Shelhamer et al., 2017). It includes three sections: causal
convolution, dilated convolution, and residual network. The first
section makes sure of the result at time β, and we assume the
input value ←→µ ∈ 2̃

−→

Band a filter π :
{

0, . . . , k− 1
}
→ 2̃
−→

.
The historical convolutional layer is stated by two
equations: ̂̃3

←→
(←→µ β) = (

←→
µ � π)(β) =

∑k−1
j=0 πj

←→
µ β−jand˜̂ouse = ( ̂̃3

←→
(←→µ 1),

̂̃3
←→

(←→µ 2), · · · ,
̂̃3
←→

(←→µ B)), where k is the

size of convolutional kernel, ˜̂ouse is the output series, and ̂̃3
←→

(•)

is the process of convolution.
The second part uses a hyperparameter to jump some

input values; thus, a range longer than it used to be could
be accepted by the filter. In detail, if the causal convolution
mixes, the mth layer dilated convolution can be described by:̂̃3
←→

(←→µ β) = (
←→
µ � dmπ)(β) =

∑k−1
j=0 πj

←→
µ β−dmj

β− dmj
and ˜̂ouse =

( ̂̃3
←→

(←→µ 1),
̂̃3
←→

(←→µ 2), . . . ,
̂̃3
←→

(←→µ B)), where dm means the
dilation indicator of the mth layer and the range could be set
to 2m−12m−1. Here, β− dmj represents the historical direction.
The second formula is a temporal convolutional layer, which
constructs TCN in many layers.

If the layers are deep, to deal with the issue of decreased
efficiency of the CNN results, a residual block is utilized.
During the training procedure, we added a residual connection
into the block to ensure normal operation in the deep
layers. Moreover, TCN prevents the over-fitting problem by
introducing the dropout layer after each dilated convolution
(Srivastava et al., 2014).

Combined Model
Combining forecasts has long been recognized as an effective and
a simple way to improve forecast stability, an improvement over
a single model. This study proposes a new combined forecasting
model that fuses ARIMA, neural networks, and the non-positive
constraint theory.

The traditional forecasting combination method attempts to
find the best weight of the combined models based on minimizing
SSE:

min F=DTED=
T∑

t=1

m∑
j=1

m∑
i=1

didjeitejt

{
RTD = 1
D ≥ 0

(2− 3− 1),

where D =
(
d1, d2, . . . , dm

)T is the weight vector;
R = (1, 1, . . . , 1)T is a column vector where all elements
are 1; and E =

(
E =ij

)
m×mis called the error information matrix

(Eij = eT
i ej, ei = (ei1, ei2, . . . , eiN )).
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FIGURE 1 | Three-layer long short-term memory (LSTM) of two LSTM memory blocks (Gers et al., 2000).

An improvement of the traditional combination method
based on the non-negative constraint theory (TCM-NNCT) and
non-positive constraint theory is given as follows:

min J=DTED=
T∑

t=1

m∑
j=1

m∑
i=1

didjeitejt (2− 3− 2)

st RTD = 1 (2− 3− 3)

In Eq. (2-3-1), the weight vector has no limitation in the range
[0,1]. The experiment results show that the combination model
can obtain desirable results if the weight vector has a value in
the range of [−2,2]. This section provides a weight-determined
method that will be assessed by experimental simulation rather
than a theoretical proof.

Interval Prediction Based on Temporal
Convolutional Network
In this section, we constructed a novel multidimensional time
series CNN prediction model for air contamination forecasting
and uncertainty analysis.

Interval Prediction Module
There is no need to presuppose an error distribution in an
interval forecasting model that, based on a linear model, is
expressed as:

Y = β̃0 (θ)+ β̃1 (θ)X1 + · · · + β̃n (θ)Xn + u

= Q̃ (θ;X)+ u (2− 4− 1),

where X is n explanatory variables, β̃i is a vector
that can be determined based on X and θ, and β̃i
is a vector that can be identified based on X and θ.
Given K samples, the vector is statistically estimated:
β̃i (θ) = arg min

β

∑K
i=1 f (θ)

[
Yi − Q̃ (θ;X)

]
(i = 1, 2, . . . ,K),

where f (θ) is a piecewise linear loss function that can be defined
as:

f (θ) =
{

θu, u ≥ 0
(θ− 1) u, u < 0

(2− 4− 2)

Evaluation Index of Prediction Model and Interval
Forecasting
Due to the advanced non-linear characteristics and uncertainty
of air contamination data, the prediction error of a single model
is usually possible. For this case, the calculation of the prediction
interval, i.e., the higher and lower bounds for predicting future
values, is appropriate for the prediction of air contamination
data. Below the given prediction interval, the predictions are
often created higher and therefore the stability of prediction
can be additionally improved. Different indicators can judge the
prediction results and quality of the interval prediction model,
such as the following common evaluation indicators.

Prediction interval coverage probability (PICP) is the most
important index to measure the quality of the prediction
interval, which reflects the probability result of the observed
value falling into the prediction interval, namely reliability.
In other words, the greater the probability value, the more
the observations covered by the prediction interval and vice
versa. In general, within the established prediction interval, the
calculated probability p (PICP) should be higher than the rated
confidence level, namely: p = P

(
fi ∈

[
L
(

Xi

)
,U

(
Xi

)])
≥ µ,

i = 1, 2, . . . ,K, where P (•) is the expressed probability;
L
(

Xi

)
,U

(
Xi

)
represent the lower and upper bounds of the

prediction interval predicted by Xi, respectively; fi is the predicted
value; and µ is a given confidence level. According to Bernoulli’
law of huge numbers, χ̃cp will be expressed by the frequency
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that the prediction interval covers the determined value, and its
likelihood converges to P, namely:

χ̃cp =
1
D

D∑
i=1

ci × 100% P
−→ P

(
fi ∈

[
L
(

Xi

)
,U

(
Xi

)])
(2− 4− 3)

where D is the predicted sample size and Ci is a Boolean quantity.

Ci=

 1, if fi ∈
[

L
(

Xi

)
,U

(
Xi

)]
0, if fi /∈

[
L
(

Xi

)
,U

(
Xi

)] (2− 4− 4)

If χ̃cp ≥ µ, it indicates that the established prediction interval
is valid; otherwise, it indicates that the established prediction
interval is invalid, and it should be reestablished.

To decide the prediction interval more reasonably, it is
necessary to depend on the prediction interval mean width
percentage (PIMWP), which is the parameter basis for evaluating
the prediction interval. If the forecast interval is wide enough, the
coverage of the forecast interval will be on the brink of 100%.
However, such a good interval cannot effectively provide the
uncertainty data of the predicted value, rendering the results of
the forecast interval meaningless.

If χ̃cp is larger and ¯̃χMWP is smaller, the prediction interval of
the model is more accurate and the performance is better.

¯̃χMWP =
1
D

D∑
i=1

U
(

Xi

)
− L

(
Xi

)
f i

× 100% (2− 4− 5)

In addition, single high reliability and high clarity cannot
reflect the performance of the interval prediction model, which
is one of the biggest differences with the evaluation index of the
deterministic prediction model. χ̃cpThe performance evaluation
indexes, χ̃cp and ¯̃χMWP, are often used to predict interval
models. However, if some special situations occur, these two
indicators cannot achieve a reasonable and scientific performance
evaluation of the interval prediction model. For example, if
the observed value is not within the prediction interval and if
there is a small difference between χ̃cp and ¯̃χMWP at the same
time, it is impossible to measure the degree of deviation of the
observed value from the prediction interval. The extent to which
observations deviate from the predicted interval is immeasurable.
To compensate for the shortcomings of χ̃cp and ¯̃χMWP, this study
introduces another evaluation index of the prediction interval
model, namely accumulated width deviation (AWD), which
can clearly measure the deviation degree of observed values
outside the prediction interval. Here, χAWD =

∑D
i=1 ζi, where ζi

represents the degree to which the observed value deviates from
the upper and lower bounds of the predicted interval.

ζi=


L
(

Xi

)
−fi

fi
, if fi < L

(
Xi

)
0, if fi ∈

[
L
(

Xi

)
,U

(
Xi

)]
fi−U

(
Xi

)
fi

, if fi > U
(

Xi

) (2− 4− 6)

Under the condition of the same χ̃cp and ¯̃χMWP, the
smaller the value of χAWD, the higher the quality of the
prediction interval.

The above three evaluation indicators, χ̃cp, ¯̃χMWP, and χAWD,
are independent of each other, and only a certain feature of the
prediction interval is considered. However, if only one evaluation
index is selected, it is not enough to explain the quality and
performance of the prediction interval. A high-quality prediction
interval should conform to the confidence level requirements, i.e.,
χ̃cp should be as high as possible while ¯̃χMWP and χAWD should
be as low as possible. However, the definitions of χ̃cp, ¯̃χMWP,
and χAWD show that these three metrics are conflicting with
each other: the higher the χ̃cp, the higher the ¯̃χMWP; the lower
¯̃χMWP, the lower χ̃cp and the higher χAWD; the lower the χAWD is,
the higher the ¯̃χMWP is. Therefore, taking these three indicators
into consideration, this study proposes a comprehensive index
that can quantitatively evaluate the prediction interval, namely,
prediction interval satisfaction index (PISI). It can be calculated
by:

χPISI =

[
1−

(
1+ λ× χAWD

)
¯̃χMWP ×

(
1+ e−η

(
χcp−µ

))]
×100% (2− 4− 7),

where λ is the penalty factor of χAWD, η is the penalty factor of
χ̃cp, and µ (95%) is the given confidence level. In this study, we
choose λ = 0.5 and η =50.

If χ̃cp is greater than the given confidence level µ, the curve
of χPISI is flat and the value of χPISI tends to 1. At this point,
χPISI is mainly determined by ¯̃χMWP and χAWD. If χ̃cp is less
than the given confidence level µ, the value of χPISI changes
according to the difference between χ̃cp and µ, and χPISI is
mainly determined by χ̃cp at this time. Therefore, χPISI can
further reflect the quality of the prediction interval by combining
χ̃cp, ¯̃χMWP, and χAWD, making the evaluation of the prediction
interval more effective and accurate.

FRAMEWORK OF THE PROPOSED
FORECASTING SYSTEM AND
PARAMETER

This section presents the description of the material analyzed
(section “Dataset Description”) and the entire probabilistic
forecasting system applied in this study (section “Flow of the
Proposed Ensemble Probabilistic Forecasting System”).

Dataset Description
This study took the PM2.5 and PM10 pollution data of Beijing,
Shanghai, and Shenzhen as the experimental data set, which
are daily data from January 2020 to December 2021. From
each dataset, we extracted 4,386 point values as experimental
sequences and selected 80% of the total length as training sets.
The remaining 20% points were divided into test sets as shown in
Figure 2.
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FIGURE 2 | Information of the research areas.

Flow of the Proposed Ensemble
Probabilistic Forecasting System
In accordance with the aforementioned data processing
approaches and forecasting models, the proposed forecasting
system includes Fuzzy information granulation, ARIMA, LSTM,
TCN, multi-objective optimization, and interval prediction.

Step 1: The original three data sets were divided into a training
set and a test set. A total of 4,386 pieces of data were collected.
There were 3,500 pieces of data in training sets and 877 pieces of
data in test sets.

Step 2: The pollution values of PM2.5 and PM10 are
reconstructed by graining Fuzzy information granulation and the
data after noise reduction has been obtained.

Step 3: ARIMA, LSTM, and TCN were used for forecasting,
and they were used as the comparative models of the multi-target
dragonfly combination prediction results in the fourth step.

Step 4: The prediction results of ARIMA, LSTM, and TCN
were combined with a multi-objective Dragonfly algorithm
for optimization.

Step 5: Probabilistic forecasting module: The upper and
lower bounds and the prediction interval were obtained by
using interval prediction to forecast the progress of PM2.5 and
PM10 data.

By constructing the prediction interval, the probability
prediction of air pollution is carried out. To determine the
distribution of forecast errors resulting from point forecasts,
three metrics were used: the PICP, the BW, and the PINAW.
Furthermore, interval forecasts were created by combining upper
and lower bounds with an optimal distribution with a design
confidence level of 95%.

Model Selection and Parameter Setting
In general, a hybrid forecasting system adopts a decomposition
strategy using a shallow neural network; all of the ARIMA and
LSTM have satisfactory performance in solving regression
problems. In DL, the TCN based on multidimensional
time series is sensitive to the prediction of statistical
data. Therefore, we selected the multi-objective dragonfly
optimization algorithm based on the multidimensional
time series for interval prediction. The model naming
and argument details of the other models are presented in
Table 3.

Evaluation Index
In this study, five evaluation indexes [such as the mean
absolute percentage error (MAPE) and root mean square error
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TABLE 3 | Compare the parameter settings of each model.

Model Symbol Meaning Value Reason

LSTM ni Number of input layer nodes 5 Number of feature inputs

nh Number of hidden layer nodes [100, 100] Trial-and-error manner

n0 Number of output layer nodes 1 Number of feature inputs

et Epochs of training 5000 Trial-and-error manner

ARIMA p Auto-Regressive term [p-site1, p-site2, p-site3] = [5,5,3] AIC and BIC

d Integrated term 1 ADF test

q Moving Average term [q-site1, q-site2, q-site3] = [3,6,3] AIC and BIC

TNC ←→
µ input value DataSet Preset

˜̂ouse output series \ Preset̂̃3
←→

(•) The process of convolution \ Preset

dm dilation indicator \ Preset

(RMSE)] were used to assess the prediction system stability and
accuracy, and other indicators were used to evaluate the interval
prediction capability. Table 4 presents the specific equations
and definitions.

EXPERIMENTAL RESULTS AND
DISCUSSION

This section discusses in detail the fuzzy granulation strategy
based on multi-dimensional time series, the multi-objective
dragonfly optimization algorithm, and the simulation results of
interval prediction. To further improve the prediction results,
the prediction efficiency (FE) and improvement rate (IR) of the
proposed combined prediction model and interval prediction, as
well as sensitivity, are analyzed in the study.

Data Pre-processing: Fuzzy Information
Granulation
Through fuzzy information granulation, the pollution data of
PM2.5 and PM10 are processed.

Specific steps are as follows:
(1). To confirm sample extraction and fuzzification

processing, sample information needs to be extracted to a certain
extent. Then, the specific size of the window can be understood

TABLE 4 | Evaluation metrics applied in this study.

Metric Equation

RMSE RMSE =
√[∑N

i=1 PPi − APi

]/
N

MAPE MAPE = 1
N
∑N

i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%

MSE MSE = 1
n
∑n

i=1 (yi − ŷi)
2

Adjusted
R square

R = 1−
∑

i (̂yi−yi )
2∑

i (yi−yi )
2

SSE SSE =
∑n

i=1 (yi − ŷi)
2

PICP χ̃cp =
1
D
∑D

i=1 ci × 100%

BW XBW =
∑D

i=1 ξ i

PINAW X̃PINAW =
[
1− (1+ λ×

¯̄XAWD)XMWP × (1+ e−η(Xcp−µ))
]
× 100%

through the extracted data. Later, fuzzy information granulation
processing is carried out according to the formula (2-1-1).

(2). The minimum, average, and maximum values are
normalized after granulation treatment. The processing formula
is:

pi =
xi − xmin

xmax − xmin
,

where pi is a variable data in the sample data; xi is the normalized
data coefficient; xmin is the minimum value of the extracted data;
and xmaxis the maximum value in the sample.

In the subsequent combined prediction model, we use the
granulated average R as the input for training and testing. The
comparison result of fuzzy granulation with the original data is
shown in Figure 3.

Multi-Objective Optimization
Combination Forecasting and
Comparison Model
This section compares the proposed combined forecasting model
with the commonly used single-point forecasting models. The
single models of point prediction include ARIMA, LSTM, and
T-convolutional neural network.

Experiment I: PM2.5 and PM10 forecasting.
In this experiment, three traditional single models, ARIMA,

LSTM, and TCN, are utilized to compare with the proposed
system. The prediction results are shown in Tables 5, 6.

(a) From Tables 5, 6, we can see that the proposed model
has achieved significant improvements compared with the three
single models. In the forecast of PM2.5 daily concentration in
the three cities, the MAPE (×100%) of the model in this study
are 17.53130124, 11.52643852, and 6.00510985, respectively,
and the MAPE of PM10 are 20.10103656, 19.61939713, and
9.348984687, respectively. In addition, there are substantial
improvements in other data comparisons, which demonstrate the
superior predictive power of the proposed model in simulating air
contamination series.

(b) MAPE and RMSE are mainly used to measure the
prediction error of each model. The smaller the value, the
better the model prediction performance. In addition, the
R index mainly evaluates the fit consistency between the
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FIGURE 3 | Data preprocessing flowchart.

original value and the predicted value. The index values
of the system are all larger than the reference model,
indicating that the system has a better simulation effect

on the air pollution sequence. The R value is negative,
indicating that the model is not suitable for simulating the air
pollution series.

Frontiers in Ecology and Evolution | www.frontiersin.org 10 April 2022 | Volume 10 | Article 855606169

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-855606 April 18, 2022 Time: 13:39 # 11

Wang et al. Prediction of Air Pollution Interval

TABLE 5 | Statistical errors of the proposed system and three traditional models for daily PM2 .5 concentrations of Beijing, Shanghai, and Shenzhen.

Dataset Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 86.97079038 290.8284471 0.447545833148643 17.053693062077780 5.816568941111197e + 04

LSTM 136.01785 413.20679 0.215077461604307 20.327488086028843 8.264135437752891e + 04

TCN 142.5970955592992 483.03770834970896 0.1626560139686989 21.9781 66176.16604391013

Proposed model 17.53130124 148.870600556075 0.658175732872686 25.2317663 29774.1201112151

Shanghai ARIMA 43.06089753 139.425587 0.448273075306167 11.807861237106376 2.788511739895187e + 04

LSTM 44.672726 173.59648 0.313053969451486 13.175601796860805 3.471929654188834e + 04

TCN 60.826491189904864 265.8895658979947 −0.8598887306068743 16.3061 36426.870528025276

Proposed model 11.52643852 67.0458435333302 0.667495893927825 15.29028516 13409.1687066660

Shenzhen ARIMA 40.30779213 37.85861391 0.624570379270827 6.152935389900167 7.571722782457183e + 03

LSTM 66.276283 89.870964 0.108783389745464 9.480030256857855 1.797419473418808e + 04

TCN 60.826401222797664 84.42822174344232 0.0699984144048289 9.1885 11566.666378851598

Proposed model 6.00510985 17.5222223250933 0.985588304 7.806397025 3504.44446501865

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.

TABLE 6 | Statistical errors of the proposed system and three traditional models for daily PM10 concentrations of Beijing, Shanghai, and Shenzhen.

Dataset Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 63.52736357 487.0786852 0.174520697390467 22.069859201835650 9.741573703776996e + 04

LSTM 196.7689707455670 2.432077115750104e + 03 −3.121776177956965 49.316093881714760 4.864154231500208e + 05

TCN 87.22617049732669 706.49757233221 −0.30037075679791525 26.5800 RMSE 96790.16740951277

Proposed model 20.10103656 172.374212971936 0.403054937 25.04239173 34474.8425943872

Shanghai ARIMA 29.09318151 176.4140437 0.528676587826571 13.282094853290085 3.528280873835899e + 04

LSTM 35.3052930993369 2.069021408276871e + 02 0.447221882339130 14.384093326577350 4.138042816553741e + 04

TCN 40.82371479881204 552.8902300983436 −0.09493369083894865 23.5136 75745.96152347307

Proposed model 19.61939713 98.0218221960804 0.342456465189497 19.8011941252118 19604.3644392161

Shenzhen ARIMA 25.09504498 88.93366541 0.659983745777606 9.430464750332934 1.778673308145440e + 04

LSTM 28.8580663433921 1.252390110215527e + 02 0.521179080890740 11.191023680680540 2.504780220431053e + 04

TCN 33.353551605811546 158.35503196357078 0.29102131681963195 12.5839 21694.639379009197

Proposed model 9.348984687 35.9146836500957 0.71286274 11.84927859 7182.93673001914

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.

Experiment II: SO2 and CO forecasting.
In Experiment I, we performed prediction experiments using

PM2.5 and PM10 data, which achieved good results. To further
verify the effectiveness of the prediction system, in Experiment
2, the SO2 and CO data of three cities were used to conduct the
experiment again.

Therefore, in this part, we selected the CO value and sulfur
dioxide data of three cities for comparative experiments. The
detailed results are shown in Table 7.

To further explore the application of the point prediction
system, this experiment used SO2 and CO daily datasets in
Beijing, Shanghai, and Shenzhen to examine the superiority and
applicability of the developed system. The results showed that
the model proposed in this study not only exhibits the best
prediction performance, indicating that the prediction system in
this study is not only suitable for the prediction of PM2.5 and
PM10, but also for the prediction of other air pollutants. Although
the randomness and complexity of different datasets are different,
the results show that the proposed model has strong applicability

and effectiveness for the prediction of various air pollution and
has potential application prospects in air pollution monitoring.

Indexes of Prediction Model and Interval
Forecasting
Point forecasting only provides each forecast point for the
target and does not show the probability of correct forecasting.
However, in several problems, it is necessary to quantify
the accuracy of estimates using countermeasures. Once the
extent of uncertainty increases, the dependability of the
point prediction decreases significantly. In contrast to point
forecasting, prediction intervals not only provide the location
in which observations are presumably made but also conjointly
provide an indicator of capability known as the confidence
level. Since interval forecasting is more reliable and informative
than the settled point forecast, it is helpful to investigate and
evaluate the data.

Experiment III: Interval forecasting and evaluation index.
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To comprehensively evaluate the forecast results of the
prediction model, four analysis indexes are adopted in the study,
including the prediction interval coverage probability (PICP),
coverage width criterion (CWC), prediction band width (PBW),
and PI normalized averaged width (PINAW).

Prediction interval coverage probability is the basic evaluation
index to assess the overall probability of the actual value falling
into the PBW, and it is expressed as follows:

PICP =

(
1
n

n∑
i=1

Ci

)
× 100% (4− 3− 1)

Ci =

{
0 yi /∈ (Li,UI)

1 yi ∈ (LI,UI)
(4− 3− 2),

Where the variable yi is the actual air contamination value. Ui
and Li represent the upper and lower bounds, respectively, and n
is the number of samples.

If the PI width is sufficiently large, the PICP can easily
reach 100%. Considering that the PICP meets the prediction
interval nominal confidence (PINC) of the required prediction
interval, the PBW should be as small as possible to guarantee the
prediction effect.

Due to the contradiction between PICP and PINRW, CWC is
used as a comprehensive evaluation index. In addition, because

PICP is a basic evaluation indicator compared with PINAW
(or PINRW) and is expected to achieve the desired nominal
confidence level µ, an improved CWC design can assess the
prediction effect better.

The modified CWC used in the experiment is defined as
follows:

CWCproposed =


η1 · PINAW(PICP ≥ µ)

(0.1+ µ1 · PINAW)[1+ exp(η2(µ− PICP))]
(PICP < µ) (4− 3− 3)

PBW, PICP, PINAW, and CWC are used to assess the IP
performance. The detailed forecasting results of the proposed
hybrid forecasting system and the comparative models are
presented in Figure 4 and Table 8.

(a) After optimization using the combined prediction
algorithm, the interval prediction can estimate the upper and
lower bounds of the probability prediction. Then, PICP, PINAW,
and CWC indicators are selected to measure the performance of
interval prediction of air pollution series. PICP mainly measures
the probability of the original data entering the prediction
interval, and PINAW is used to evaluate the normalized average
width of the interval. This section adopts the interval prediction
of PM2.5 and PM10, and the obtained results provide a practical
application for analyzing the uncertainty of air pollution.

TABLE 7 | The forecasting performances of various models for SO2 and CO in three cities.

Dataset (SO2) Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 16.9679992 0.594247371 0.214374179 0.77087442 1.19E + 02

LSTM 62.5043641 3.575070593 −3.7264286 1.890785708 7.15E + 02

TCN 21.19875252 0.358244808 −1.246512939 0.5985 48.7212939

Proposed model 8.801941086 0.017101509 −4.775512824 0.307953961 3.129576183

Shanghai ARIMA 16.804447 1.47013432 0.242891519 1.212490957 2.94E + 02

LSTM 33.6266108 4.642820638 −1.391018856 2.154720548 9.29E + 02

TCN 17.30624383 1.627779555 −0.25163582 1.2758 221.3780194

Proposed model 13.3948766 0.120567162 −3.960236439 0.817679472 22.06379071

Shenzhen ARIMA 13.93960103 0.183750043 0.68076782 0.428660755 36.75000861

LSTM 7.4051157 0.003636823 0.659593382 0.060306074 0.727364522

TCN 7.401322957 0.323880616 0.047690701 0.5691 44.0477638

Proposed model 4.5874185 0.143997793 −7.824128059 0.893606857 26.35159606

Dataset (CO)

Beijing ARIMA 55.82851595 0.054564355 0.005877223 0.233590143 10.91287095

LSTM 63.6736338 0.123604838 −1.251990073 0.351574798 24.72096768

TCN 39.54360038 0.062681733 −0.71777545 0.2504 8.524715657

Proposed model 36.0314606 0.027527125 −3.06026958 0.390705028 5.037463826

Shanghai ARIMA 15.8161825 0.017936156 0.224697526 0.133925933 3.587231123

LSTM 23.8757882 0.041810611 −0.807291964 0.204476431 8.362122138

TCN 18.00573321 0.033547157 −0.834057427 0.1832 4.562413404

Proposed model 11.03447391 0.011493365 −5.983131272 0.07983478 0.210328539

Shenzhen ARIMA 22.46848191 0.379235401 0.341147671 0.615820916 75.84708014

LSTM 9.8188329 0.005360446 0.498262188 0.07321507 1.072089292

TCN 11.01559594 0.007725412 0.046786078 0.0879 1.050656042

Proposed model 6.6615594 0.003953843 −1.79785567 0.148073826 0.723553317

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.
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FIGURE 4 | A graph of interval prediction results.

(b) Table 8 show the daily probability prediction evaluation
results of PM2.5 and PM10 in Beijing, Shanghai, and Shenzhen.
It can be seen that the results of a single model interval
are not good because the result of the width is too narrow
and the coverage rate is low, while the interval coverage
rate of the combined forecasting system proposed in this
study is higher than that of a single model and the results
are more accurate.

(c) It is difficult to satisfy all the optimal conditions due to
the large number of indicators that measure the performance
of interval prediction. However, the higher the confidence, the
greater the coverage probability and the wider the interval.
Therefore, the probability forecast has a certain prediction
interval, which provides a reference for the actual application of
air pollution monitoring.

Discussion
In this section, we used three methods to discuss the
performance of the proposed combined forecasting system:
forecasting effectiveness (FE), stability analysis (SA), and
improvement ratio (IR).

Forecasting Effectiveness
To verify the availability of the relevant prediction system, the
finite element method (Banik et al., 2020) is adopted in this
study. This may be determined using the expected result of the
prediction accuracy series, that is, the deviation between the
expected value and normal deviation. The indicator is explained
as follows.

Count the d-th order predicting availability element md
=∑n

i=1 QiAd
i , where Ai is the prediction accuracy, Qi is the discrete
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TABLE 8 | Interval forecasting results of the proposed system for daily PM2 .5 and PM10concentrations of Beijing, Shanghai, and Shenzhen.

PM2.5 Indicators Proposed model ARIMA LSTM TCN

Site 1 BW 27.27709623 5.588932739 5.400260609 9.399792741

CP 0.8 0.1 0.2 0.4

CWC 967.5573339 4.62E + 17 3.30E + 15 4.05863E + 11

PINAW 0.534845024 0.160988443 0.170554714 0.462680511

Site 2 BW 25.83786828 3.101276071 1.711007768 2.246018338

CP 0.7 0.2 0.1 0.1

CWC 1216.366544 1.23E + 15 9.11E + 16 3.79E + 17

PINAW 0.453295935 0.063429076 0.031777656 0.132020441

Site 3 BW 13.02474235 1.822308173 2.649576346 2.393098477

CP 0.7 0.1 0.1 0.2

CWC 1294.458165 2.17E + 17 −2.06E + 17 1.50E + 15

PINAW 0.482397865 0.075831053 −0.071902246 0.077871318

PM10 Indicators Proposed model ARIMA LSTM TCN

Site 1 BW 40.37286522 2.864634888 2.867020268 7.299477064

CP 0.8 0.1 0.3 0.2

CWC 1197.315173 3.11E + 17 2.5209E + 13 5.96E + 15

PINAW 0.66185025 0.108333022 0.193635382 0.30842717

Site 2 BW 39.53693477 3.204081672 18.80110089 4.136207351

CP 0.8 0.3 0.4 0.3

CWC 1300.436217 7.86722E + 12 3.06843E + 11 3.62306E + 13

PINAW 0.718853359 0.060429758 0.349798846 0.278294498

Site 3 BW 36.49380793 5.868071455 4.509674695 2.006110094

CP 0.8 0.3 0.1 0.1

CWC 1500.428327 2.04898E + 13 1.78E + 17 3.38E + 17

PINAW 0.829404726 0.157386217 0.062204966 0.11778856

The indicators can be defined as χ̃cp =
1
D

∑D
i=1 ci × 100% ,XMWP =

1
D

∑D
i=1

U(Xi)−L(Xi)
fi

× 100%, XBW =
∑D

i=1 ξi , and X̃PINAW =[
1− (1+ λ×

¯̄XAWD)XMWP × (1+ e−η(Xcp−µ))
]
× 100%. The most satisfactory results are shown in bold.

TABLE 9 | Forecasting effectiveness (FE) of different models (PM2 .5).

Beijing Shanghai Shenzhen

1-Order 2-Order 1-Order 2-Order 1-Order 2-Order

Proposed model 0.713962612 0.499107698 0.833677634 0.674130951 0.827274422 0.715910344

Model (PM2.5)

ARIMA 0.537758525 0.365927564 0.626486448 0.434454329 0.687655842 0.501227795

LSTM 0.419353392 0.262811053 0.620248042 0.442276111 0.552618069 0.371521413

TCN 0.380004231 0.25407457 0.509236577 0.344293544 0.58990613 0.408951676

Model (PM10)

Proposed model 0.820324675 0.612407931 0.892528922 0.780386906 0.882115673 0.798110303

ARIMA 0.584812738 0.406227792 0.71977323 0.539768394 0.776748883 0.625024691

LSTM 0.21938475 0.147504326 0.676791129 0.488168419 0.740723134 0.585249795

TCN 0.488147467 0.319256144 0.56964758 0.390169063 0.633711865 0.453582124

probability distribution, and
∑n

i=1 Qi = 1, Qi > 0. Since we
could not obtain any prior information on Qi, it is determined
as Qi = 1/n, i = 1, 2, . . . , n. The other Ai is calculated using
Ai = 1−

∣∣∣ξ i∣∣∣, in which ξ i is expressed as:

ξ i =


−1,
(APi − PPi)

/
APi,

1,

(APi − PPi)
/

APi < −1
− 1≤ (APi − PPi)

/
APi < 1

(APi − PPi)
/

APi > 1
, (4− 4− 1)

where PPi and APi indicate the i-th point
forecast value and observation quantitative value,
respectively.

Thereafter, the continuous function L
(
g1, g2, . . . , gd

)
of

a d-order unit is introduced to assess the d-th order
predicting availability. While there is only one variable in the
equation L (z) = z , the first-order FE can be expressed as
L
(
g1)
= g1 .
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If there are two variables in this equation, for instance,
L
(
i, j
)
= i

(
1−

√
j− i2

)
, the second-order FE can be expressed

as follows:

L
(
g1, g2)

= g1
(

1−
√

g2 −
(
g1
)2
)

(4− 4− 2)

According to the FE definition, the higher the value of L, the
better the prediction performance of the models.

Therefore, the d-th order FE is expressed as
H
(
m1,m2, · · · ,mk

)
. Thus, the first-order prediction

effectiveness is defined as H
(
m1)
= m1. If there are two

variables in the equation, the second-order FE is given by

H
(
m1,m2)

= m1
(

1−
√
m2 −

(
m1
)2
)

.

By comparing the FE values with those of other related
models, it can be easily concluded that the proposed system
obtains the highest index value in both the first-order and
second-order calculations, which shows that its performance
in air pollution prediction exceeds that of other models.
Specifically, we took Beijing PM10 data as an example in one-
step, HBeijing

1 = 0.820324675 and HBeijing
2 = 0.612407931 in

two orders, and the FE is much larger than that of other
models. In other predictions, our proposed system exhibits the
best forecast performance compared with the other models. The
specific experimental results of the other models are listed in
Table 9.

Sensitivity Analysis
In this section, the sensitivity of the proposed prediction system
is analyzed experimentally. Since the weight determination
method plays an important role in the final prediction, this
study discusses the prediction sensitivity of the combined
prediction model by adjusting the optimization parameters.
In the parameter setting stage, the important parameter of
the population size has a great influence on the optimization
performance. Therefore, the experiment adopts the method
of changing one parameter to examine its influence on the
prediction result. Here, the size of the population is set to 40, 60,
80, and 100 in turn. The specific experimental results are shown
in Table 10. The relevant conclusions are summarized as follows:

From Table 10, it can be seen that the performance of the
proposed mode is different under various parameter settings. For
example, in the Shenzhen PM2.5 forecast, MAPE values range
from 5.9821 to 6.4834%.

Consequently, the fluctuation range of the forecast values in
the three regions is small, indicating that the forecast system is
less sensitive to the two modes and has a good stability in practical
applications.

Improvement Ratio
In this section, the effectiveness of the combined forecasting
model system is analyzed by the percentage improvement of
MAPE and MSE. We proposed an index IRMAPE to measure the
improvement in the PCFM prediction accuracy. IRMAPE can be TA
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TABLE 11 | Improvement ratio (IR) for CO of different models (×100%).

Model Beijing Shanghai Shenzhen

PMAPE ARIMA 35.460472% 30.233% 70.3515%

LSTM 43.412275% 53.7838% 32.155%

TCN 8.8817% 38.71689% 39.526%

PMSE ARIMA 49.551% 35.92069% 98.957%

LSTM 77.729% 72.51089% 26.2404%

TCN 56.084% 65.7396% 48.8203%

The MAPE ×100% of the proposed prediction system is MAPEBeijing
=

36.0314606 , MAPEShanghai
= 11.03447391andMAPEShenzhen

= 6.6615594 .

expressed as:

PMAPE =
[(
MAPEcom −MAPEpro

) /
MAPEcom

]
× 100%

PMSE =
[(
MSEcom −MSEpro

) /
MSEcom

]
× 100%,

where MAPEcom is the compared model MAPE values and
MAPEpro indicates MAPE values of the prediction system.
Moreover, the three models are compared with different
indicators, which shows the superiority of the combined
forecasting model system. The detailed calculation results are
shown in Table 11.

(a) The model is improved by MAPE, which verifies the
superiority of the proposed prediction system. Compared with
the ARIMA model, this model improves by 35.460472%. For
the LSTM model, the combined prediction system achieves a
43.412275% improvement in MAPE. The results show that the
system has a good prediction effect on PM2.5 and PM10.

(b) For the three urban datasets considering mean square
error (MSE) and MAPE, the proposed prediction system still
achieves a significant improvement in prediction accuracy.
Experiments show that, compared with the TCN model (taking
Beijing as an example), the MAPE of the combined model is
improved by 56.084%.

CONCLUSION

Predicting air quality plays a vital role in the environment
and economy of energy development, which is widely discussed
worldwide. In recent years, more researchers have focused on
the methods to forecast PM2.5 and PM10 concentrations and
provide useful information for the citizens in their daily lives.
However, to overcome the limitations and negative effects of
an individual approach, this study develops a novel combined
forecasting system that takes advantage of data preprocessing,
single models, and the interval predicting approach.

The developed system includes an advanced data denoising
technique, three single forecasting algorithms, and an
optimization approach to predict the PM2.5 and PM10
concentrations. Based on the experiments, we concluded
that the combined model has the following advantages: (1) as
for data denoising strategy, the combined system computes
the data series without fluctuation and uncertainty by FIG,
which yields better performance compared with single models

by decomposing and reconstructing the initial data. (2) In
the comparative experiments, to predict the PM2.5 and PM10
concentrations of three cities, we found that the PM2.5 MAPE
(×100%) values of the proposed system are 17.53130124,
11.52643852, and 6.00510985, which provide more satisfying
results than the ARIMA models (86.97079038, 43.06089753,
and 40.30779213). (3) Consequently, MODOA is utilized as an
advanced optimization algorithm to determine the weight of
every single model and to obtain the forecasting values of PM2.5
and PM10 concentrations.

The proposed early warning system has many practical
applications, such as warning and guiding the public before
the occurrence of harmful air pollutants and mining the
characteristics of air pollutants.

(1) The fuzzy preference rough set was applied to the early
warning system to determine the main pollutants suitable for
different cities. Attribute selection simplifies the process of early
warning systems and makes the prediction of pollutants more
effective. In addition, these results can help decision-makers
in relevant sectors to monitor and analyze certain polluting
pollutants, which play a crucial role in formulating effective
strategies for each city.

(2) In the developed early warning system, the interval forecast
based on deterministic forecast provides the forecast range and
the confidence level, which can be used to analyze and monitor
the uncertainty information of the future value of pollutants. Air
quality warning systems trigger alerts when air pollution exceeds
an upper limit. According to the forecast range, different early
warning levels can also be divided as a guide for daily life.

Therefore, we concluded that the proposed combined
predicting system enhances the forecasting capacity and accuracy
of PM2.5 and PM10 concentrations by conducting and analyzing
the experiments. Accurate forecasts not only reduce the cost
and risk of dealing with air pollution systems but also help
policymakers come up with effective strategies.
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The outbreak of Coronavirus disease 2019 (COVID-19) has become a global public
health event. Effective forecasting of COVID-19 outbreak trends is still a complex and
challenging issue due to the significant fluctuations and non-stationarity inherent in
new COVID-19 cases and deaths. Most previous studies mainly focused on univariate
prediction and ignored the uncertainty prediction of COVID-19 pandemic trends, which
may lead to insufficient results. Therefore, this study utilized a novel intelligent point and
interval multivariate forecasting system that consists of a distribution function analysis
module, an intelligent point prediction module, and an interval forecasting module.
Aimed at the characteristics of the COVID-19 series, eight hybrid models composed of
various distribution functions (DFs) and optimization algorithms were effectively designed
in the analysis module to determine the exact distribution of the COVID-19 series. Then,
the point prediction module presents a hybrid multivariate model with environmental
variables. Finally, interval forecasting was calculated based on DFs and point prediction
results to obtain uncertainty information for decision-making. The new cases and new
deaths of COVID-19 were collected from three highly-affected countries to conduct
an empirical study. Empirical results demonstrated that the proposed system achieved
better prediction results than other comparable models and enables the informative
and practical quantification of future COVID-19 pandemic trends, which offers more
constructive suggestions for governmental administrators and the general public.

Keywords: COVID-19, point forecasting, interval forecasting, artificial intelligence, environmental variables

INTRODUCTION

Risk prevention and control of major infectious diseases are essential for human health and social
stability. In recent years, with global warming, the deterioration of the ecological environment,
and the acceleration of urbanization, an increasing number of pathogenic microorganisms have
mutated, leading to the outbreak of major infectious diseases more frequently (Wu et al., 2017).

Abbreviations: ARIMA, auto regressive integrated moving average model; BPNN, back propagation neural network;
GRNN, general regression neural network; ANFIS, Adaptive Neuro-Fuzzy Inference System; LSSVM, least square support
vector machine; SCA, sine cosine algorithm; DFs, distribution functions; MLE, maximum likelihood estimation; TN-SCA-
LSSVM, SCA-LSSVM with NO2 and temperature; ECDC, European Center for Disease Prevention and Control; WAQI,
World Air Quality Index project.
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In December 2019, infectious pneumonia caused by a novel
coronavirus disease (COVID-19) was discovered and quickly
spread to more than 200 countries worldwide. With the global
novel coronavirus epidemic becoming more serious, the World
Health Organization raised the global risk of the COVID-19
epidemic to the highest level.

The COVID-19 epidemic was non-linear, dynamic, and
fuzzy, thereby increasing the difficulty of prevention and
control decision-making. Practical modeling approaches to
predict the spread of a novel virus in the population play
an essential role in the preparation and formulation of health
and economic policies of any government or authority figure.
When new cases increase at rates of thousands per day,
health care systems of even the most developed countries
are overwhelmed and unable to handle influxes of such large
numbers of patients. In overwhelming situations, timely outbreak
forecasting supports responsible agencies in being prepared and
in managing the response effectively. For example, by targeting
exclusion zones and scheduling economic activities, managing
medical resources, and planning for emergency hospitals,
effective forecasting is strategically essential for decision-makers
(Swapnarekha et al., 2020).

Recently, various models have been developed to forecast
the upcoming number of COVID-19 cases and its spread
in the near future. Epidemiological models have been widely
adopted in predicting COVID-19 cases and deaths. Many of
these models were based on the traditional SEIR model and
have been widely adopted (Li et al., 1999; Barmparis and
Tsironis, 2020; He et al., 2020; Ndaïrou et al., 2020; Pandey
et al., 2020). Additionally, statistical forecasting models, artificial
intelligence (AI) models, and hybrid forecasting models have
also been practical for epidemic prediction. For example, Ceylan
(2020) applied auto regressive integrated moving average model
(ARIMA) to forecast the epidemiological trend in Italy, Spain,
and France. Ghosal et al. (2020) used linear and multiple linear
regression methods to predict the number of deaths in India
over a short period of 6 weeks. Moftakhar and Seif (2020)
used the ARIMA model to forecast the number of patients
with COVID-19 in Iran in the next 30 days. Ala’raj et al.
(2021) developed a dynamic hybrid model based on SEIRD and
ARIMA models to provide long- and short-term forecasts with
confidence intervals. Ly (2020) employed an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to predict COVID-19 cases
in the United Kingdom. The results showed that data from
Spain and Italy increased the ability to forecast COVID-19
cases in the United Kingdom. Borghi et al. (2021) used a
machine learning model based on the multilayer Perceptron
artificial neural network structure, which effectively predicted
the behavior of four time series (accumulated infected cases,
new cases, accumulated deaths, and new deaths). Parbat and
Chakraborty (2020) used support vector regression (SVR) for
a 60-day forecast of COVID-19 cases in India based on time-
series data reported from March 01, 2020, to April 30, 2020.
Meanwhile, the combination and mixing of different models have
also regarded as effective ways to improve prediction, including
applications in different fields, such as economic modeling and
policy-making [18,19] (Stock and Watson, 2004; McAdam and

McNelis, 2005), electricity price forecasting (Yang et al., 2022),
environmental pollution (Hao et al., 2021), and COVID-19
forecasting (Castillo and Melin, 2020).

Although these methods have contributed significantly to the
field of COVID-19 prediction, most of the models mainly focused
on deterministic forecasts and ignored the uncertain information
in the forecasts, resulting in the inability of the government
disease control department to assess and manage epidemic risk.
Additionally, one area of research has been on the impact of
air pollution on new cases and deaths from COVID-19. It is
known that air pollution can result in several diseases, including
chronic respiratory diseases, stroke and cardiovascular problems.
Recent studies have identified links between air pollution (mainly
nitrogen oxides NO2 and PM2.5) and deaths and cases of
COVID-19. Travaglio et al. (2021) explored potential links
between air pollutants and COVID-19 mortality and infectivity.
They found that air pollutant concentrations, especially nitrogen
oxides and PM2.5, were positively associated with COVID-19
mortality and infectivity. Konstantinoudis et al. (2021) used
high geographical resolution to investigate the effect of long-
term exposure to NO2 and PM2.5 on COVID-19 mortality in
England. They found some evidence of an association of NO2
with COVID-19 mortality, while the effect of long-term exposure
to PM2.5 remained uncertain. Lian et al. (2021) reported that
urban lockdown was an effective method to reduce the number
of new cases, and nitrogen dioxide (NO2) concentrations can
be used as an indicator of environmental lockdown to assess
the effectiveness of lockdown measures. In some studies, the
influence of meteorological parameters on the transmission of
COVID-19 was discussed, and it was found that weather factors
could affect the spread of COVID-19 (Malki et al., 2020; Shi et al.,
2020). For example, Wu et al. (2020) analyzed the relationship
between temperature change and n COVID-19 pneumonia and
its impact on 166 countries. Wang et al. (2020) demonstrated that
temperature can significantly modify the spread of COVID-19 to
a certain extent and that there may be an optimal temperature for
virus transmission. The above studies have pointed out the effects
of environmental and meteorological factors on the survival and
spread of the virus. A tremendous number of studies support
that both nitrogen oxides and temperature play an important
role in the spread and infection of COVID-19, motivating the
current study to take environmental and meteorological factors
into account in the prediction of COVID-19. We sought to
determine whether the addition of these variables would improve
the outbreak prediction.

Hence, by taking into consideration the results of the above
works, this study utilized a novel point and interval data-
driven forecasting model consisting of a distribution function
analysis module, an intelligent point prediction module, and an
interval forecasting module. First, several distribution functions
(DFs) optimized by a metaheuristic algorithm were effectively
designed to analyze the characteristics of the COVID-19 series.
Furthermore, we used environmental features, such as nitrogen
dioxide (NO2) and temperature, as inputs to the multivariable
hybrid prediction model, which is a combination of the sine
cosine algorithm (SCA) and least square support vector machine
(LSSVM). Based on the DFs and point forecasting results, interval
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forecasting was designed to obtain uncertain information. The
new case and new death series collected from the top three
affected countries were used for the empirical study. We
compared the performance of the best data-driven univariate
model and the best multivariate model in an attempt to generate
better predictions.

Our main contributions are as follows:

1 A practical epidemic analysis and prediction tool based on
distribution function analysis, intelligent point prediction,
and interval forecasting modules are proposed for the
government and the public.

2 Environmental variables, such as NO2 and temperature,
were selected as inputs to construct a multivariable hybrid
prediction model.

3 Interval forecasting based on DFs and point forecasting results
can provide more uncertainty information for decision-
making.

The rest of the paper is organized as follows. Section
“Methodology” introduces the related Methodologies. Section
“A Framework of the Developed Hybrid Forecasting System”
describes the primary process of the proposed framework
of the developed hybrid system. Section “Data Description
and Evaluation Criteria” describes the research datasets and
the evaluation criteria of this study. Section “Experimental
Results and Analysis” discusses the forecasting results of
the proposed model and the comparative results with other
models. Finally, Section “Conclusion” concludes the critical
conclusions of this paper.

METHODOLOGY

Some related methodologies are introduced in this section,
including LSSVM, SCA, DFs, and interval prediction theory.

Least Squares Support Vector Machine
The support vector machine (SVM) proposed by Vapnik is an
essential method in machine learning that effectively resolved
pattern identification and classification tasks. The support vector
machine is aimed at a small sample problem, is based on
structural risk minimization, better solves the previous machine
learning model overlearning, non-linear, dimensional disaster
and local minimum problems, and has a good generalization
ability. However, this method has some defects, such as slow
training speed and poor stability when training samples on a
large scale, limiting its application scope (quadratic programming
problem needs to be solved in the learning process). Therefore,
Suykens and Vandewalle (1999) proposed the least squares
support vector machine (LSSVM) based on SVM, which
significantly reduced the algorithm’s computational complexity
and improved the training speed. The LSSVM is an extension
of the standard SVM. The algorithm transforms the solution
of the support vector machine from a quadratic programming
problem to linear equations. More details on the LSSVM can be
found in Suykens and Vandewalle (1999).

It is worth noting that different types of kernel functions can
be used in the LSSVM model, such as sigmoid, polynomial, and
radial basis function (RBF), which are commonly used in the
LSSVM model. RBF is a general choice of the kernel function
proposed in Keerthi and Lin (2003), requiring fewer parameters
and superior performance in applications. Accordingly, this study
identifies RBF as the appropriate kernel function:

K
(
xi, xj

)
= exp

{
−
∣∣∣∣xj − xi

∣∣∣∣ 2
/2 σ2} (1)

Sine Cosine Algorithm
Mirjalili (2016) proposed the SCA, which is based on sine
and cosine functions to explore different regions of the search
space. It can effectively avoid local optimization, converge to
global optimization, and effectively use the promising area of
the search space during optimization. In SCA, the search space
dimension is determined by the number of parameters required
for optimization. The SCA creates different initial random agent
solutions and requires them to use mathematical models based
on sine and cosine functions to swing outward or toward the best
solution.
−−→

xt+1
i =

−→
xti + rand1 × sin

(
rand2

)
×

∣∣∣∣rand3 × lti −
−→
xti

∣∣∣∣ (2)

−−→

xt+1
i =

−→
xti + rand1 × cos

(
rand2

)
×

∣∣∣∣rand3 × lti −
−→
xti

∣∣∣∣ (3)

where
−→
xti is the current position at the tth iteration in

the ith dimension, lti is the targeted optimal global solution
and rand1, rand2, rand3 ∈ [0, 1] are random numbers. Eqs. (2)
and (3) use 0.5 ≤ rand4 < 0.5 conditions for exploitation and
exploration.

−−→

xt+1
i =


−→
xti + rand1 × sin

(
rand2

)
×

∣∣∣rand3 × lti −
−→
xti
∣∣∣ , rand4 < 0.5

−→
xti + rand1 × cos

(
rand2

)
×

∣∣∣rand3 × lti −
−→
xti
∣∣∣ , rand4 ≥ 0.5

(4)

Distribution Functions
The probability distribution function has played an essential
role in time series analysis, resource evaluation, and interval
prediction in recent years. Researchers have tried to fit the basic
characteristics of historical data by various DFs, hoping to mine
the relevant characteristics, thereby deeply understanding data
uncertainty. This study used the weibull distribution, gamma
distribution, lognormal distribution, and Rayleigh DFs to study
the statistical characteristics of new Covid-19 cases and deaths in
three countries. The above DFs are shown in Table 1.

Interval Prediction Theory
Based on deterministic prediction, many studies (Song et al.,
2015; Xu et al., 2017; Tian and Hao, 2020) have proposed interval
prediction technology that can reflect the uncertain trend of
future values to provide uncertain information about time series,

Frontiers in Ecology and Evolution | www.frontiersin.org 3 May 2022 | Volume 10 | Article 875000180

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-875000 April 26, 2022 Time: 11:57 # 4

Qu et al. Point and Interval COVID-19 Forecasting

TABLE 1 | Four distribution functions.

Distribution functions Equations Parameters

Lognormal f (x,µ, σ) = 1
x
√

2πσ
exp

(
−
(ln(x)−µ)2

)
µ, σ

Gamma f (x, ξ, θ) = xξ−1

θξ0(ξ)
exp

(
−

x
θ

)
σ

Weibull f (x, k, c) = k
c

( x
c

)k−1 exp
(
−
( x

c

)k)
ξ, θ

Rayleigh f (x, σ) = 1
σ2 exp

(
−

x2

2πσ2

)
k, c

such as air pollutants, wind energy, macroeconomic economy,
and carbon trading prices. This type of interval prediction
is a dynamic interval prediction method that calculates the
uncertain information of future values based on point prediction
and DFs. Therefore, the performance of the interval prediction
model depends on the accuracy of the point prediction and
the estimation of the distribution function. To be specific,
assuming that the observation is Yt , at the significance level α,
the probability formula for the lower limit: L and upper limit: U
can be expressed:

P (Lt ≤ Yt ≤ Ut) = 1− 2α (5)

The above formula can also be described by the following
equation.

P
{
Lt ≤ Yt ≤ Ut

∣∣E (Yt) = ŷ
}
· P
{
E (Yt) = ŷ

}
= 1− 2α (6)

Additionally, we suppose that the forecasting values possess
similar DFs with the historical datasets. Therefore, once the DFs
of the original time series are determined, the estimated variance
can be obtained. As a result, the values of the upper and lower
bounds can be calculated with a certain confidence levelα.{

(Lt,Ut)| Lt ≤ Yt ≤ Ut,

∫ Ut

Lt
f
(
t
∣∣2̂ ) dt = 1− 2α

}
(7)

The above equation can also be expressed as:{
[̂L,Û]=[̂L,̂y][̂y,Û]∫ ŷ
L̂ f (t|2̂ )dt+

∫ Û
ŷ f (t|2̂ )dt=1−2α

(8)

A FRAMEWORK OF THE DEVELOPED
HYBRID FORECASTING SYSTEM

This section describes the details of the developed hybrid
architecture framework, as shown in Figure 1. The framework
consists of three modules: distribution function analysis,
intelligent point prediction with environmental features, and
interval forecasting.

Distribution Function Analysis Module
This module mainly implements characteristic data analysis of
raw epidemic data. First, the Weibull distribution, Rayleigh
distribution, Lognormal distribution, and Gamma distribution
are introduced to fit the epidemic time series. To obtain the
optimal estimation of model parameters, two different estimation
methods, namely, maximum likelihood estimation (MLE) and

a robust heuristic algorithm (SCA), are applied to evaluate the
parameters of different DFs. Finally, the most suitable epidemic
sequence distribution function is obtained by comparing the
fitting ability of 8 hybrid probability DFs.

Intelligent Point Prediction Module With
Environmental Features
The volatility and non-linearity of new cases and new deaths of
COVID-19 make modeling very difficult. A successful predictive
model requires optimization as well as sufficient data to drive it.
Previous studies have shown that some environmental variables
are highly correlated with epidemic changes, especially nitrogen
dioxide and temperature, which have a significant impact on
the epidemic trend of COVID-19 (Bauwens et al., 2020; Shi
et al., 2020; Wang et al., 2020; Travaglio et al., 2021). Thus, we
took environmental features, such as nitrogen dioxide (NO2)
and temperature, as inputs to construct a multivariable hybrid
prediction model. To develop an intelligent point prediction
model, we designed a LSSVM prediction model based on SCA
optimization, namely, the hybrid SCA-LSSVM. Specifically, the
SCA was introduced when training the LSSVM model, and the
parameters (i.e., σ, γ) of the LSSVM model were optimized by
the SCA algorithm to achieve high-performance forecasting.

Interval Forecasting Module
According to interval forecasting theory, interval prediction
of the COVID-19 epidemic can be achieved based on
the appropriate distribution function and point prediction
values of COVID-19.

DATA DESCRIPTION AND EVALUATION
CRITERIA

Data Description
The accuracy of the prediction mainly depends on the quality
of the data and requires sufficient historical data. This study
collected the data from the open dataset Our World in Data
[Coronavirus (COVID-19) Cases – Our World in Data], which
contains global daily data from the European Center for
Disease Prevention and Control (ECDC). Due to the significant
fluctuations and non-stationarity inherent in COVID-19, new
case and death series bring great challenges to predictions. To
verify the performance of the model, we used new cases per
100 thousand of the population per day as one of the predictive
variables:

New cases per 100 thousand =
new cases per day
Total Population

∗100, 000

(9)
The new deaths per thousand of the population calculated

according to Equation (10) were also predicted based on available
data.

New deaths per 100 thousand =
new deaths per day
Total Population

∗100, 000

(10)
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FIGURE 1 | The main procedure of the proposed system.

The World Air Quality Index project (WAQI) (Covid-19
Worldwide Air Quality data) provides a dataset covering air
quality for more than 130 countries, updated daily starting in the
first quarter of 2020. The dataset contains the data of each air
pollutant, i.e., CO, NO2, O3, SO2, PM10, and PM2.5, as well as
meteorological data including humidity and temperature.

We focused on the three major countries that have been most
strongly affected by COVID-19: the United States, India, and

Brazil. The data of new cases and new deaths per 100 thousand
of the population for the three countries, as well as the data
of NO2 and temperature for the same period, were selected
as input variables for the outbreak modeling. Notably, the first
observation time (or start time) and the length of the time series
are different for each country. Sample data from the United States
were collected from February 29, 2020, to March 10, 2021. Sample
data from India were collected from March 18, 2020 to March
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TABLE 2 | Eight evaluation rules.

Metric Equation Definition

MAE MAE = 1
N

∑N
n=1

∣∣∣∣yn −
∧

y
n

∣∣∣∣ The average absolute forecast
error of n times forecast results

RMSE RMSE =

(
1
N

∑N
n=1

(
yn −

∧

y
n

)2
)1/2

The root-mean-square forecast
error

MAPE MAPE = 1
N

∑N
n=1

∣∣∣∣ yn−
∧

yn
yn

∣∣∣∣× 100% The average of absolute error

TIC TIC =

√
1
N
∑N

n=1(yn−ŷn)2√
1
N
∑N

n=1 y2
n+

√
1
N
∑N

n=1 ŷ2
n

Theil’s inequality coefficient

IA IA= 1−
1
N
∑N

n=1(yn−ŷn)
2∑N

n=1(|ŷn−ȳ|+|yn−ȳ|)2
The index of agreement of

forecasting results

R2 R2
= 1−

∑N
n=1(yn−ŷn)∑N
n=1(yn−ȳ)

Coefficient of determination

IFAW IFAW= 1
N

∑N
n=1(Un − Ln) Interval forecasting average

width

IFCP IFCP = 1
N

∑N
n=1 bn, bn = {

1, if yn∈[Un, Ln]

0, otherwise Interval forecasting coverage
probability

10, 2021. Sample data from Brazil were collected from March
17, 2020, to March 10, 2021. Sample data were divided into two
parts: a training subset and a testing subset. We used 80% of
the total data as the training subset and the remaining 20% as
the test subset.

Evaluation Criteria
This study considered eight evaluation criteria to effectively
evaluate the model’s performance, as shown in Table 2.
Specifically, the MAE, RMSE, and R2 were chosen as error criteria
to determine the fitting level of these DFs. The MAE, RMSE,
MAPE, IA, DA, and R2 were used to reflect the prediction
performance of the point forecasting models. The PIAW and
PICP were used to measure the validity of the interval prediction.

Here yn and ŷn represent the actual and predicted values at
time n, respectively. N denotes the sample size. Ln and Un are the
lower and upper values of the interval forecasting, and bn means
a Boolean value.

EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we establish three experiments (Experiment I:
DFs of COVID-19 cases; Experiment 2: point prediction of
COVID-19 cases; Experiment 3: interval prediction of COVID-
19 cases) to illustrate that the proposed hybrid system can
effectively analyze the deterministic and uncertain information
of COVID-19. Specifically, Experiment I used four probability
DFs (Weibull, Rayleigh, Lognormal, and Gamma) to fit the
distribution of epidemic cases. The parameters of the four
probability DFs were optimized using the SCA algorithm. In
experiment II, a hybrid model with environmental features, TN-
SCA-LSSVM, was proposed for the point prediction of new cases
and deaths from COVID-19. Three countries were selected as
experimental cases and compared with the benchmark model
to verify the prediction accuracy of the proposed model. To
show the superior forecast performance of the hybrid model, five

benchmark models, namely, ARIMA, back propagation neural
network (BPNN), general regression neural network (GRNN),
LSSVM, and SCA-LSSVM, were introduced. Experiment III
calculated the interval prediction of new cases and new deaths
in three countries based on the best distribution function
determined in Experiment I and the point prediction results with
the highest accuracy in Experiment II. Details are shown in the
following sections.

Experiment I: Distribution Functions of
COVID-19 Cases
To obtain the characteristics of the COVID-19 series and
determine the optimal distribution function, four DFs (Weibull,
Rayleigh, Lognormal, and Gamma), were used to calculate the
distribution function of new COVID-19 cases and deaths. In
addition, the parameter assessment of DFs was an essential step.
Traditionally, the MLE method is used for parameter estimation
of DFS. However, this study employed a robust optimization
algorithm SCA to optimize the relevant parameters, and MLE
was used as a comparison method to illustrate the optimization
performance of SCA. Table 3 shows the estimated parameters of
the different DFs determined by the MLE and SCA methods. To
further select the optimal DFs, the MAE, RMSE, and R2 were
chosen as error criteria to determine the fitting level of these DFs.
Table 4 shows the values of the error results for the different
distributions of new cases and new deaths of the epidemic in
the three countries, and the bold values are the optimal results.
Among the four DFs of all datasets, the R2 determined by the SCA
algorithm was significantly larger than that of the MLE method.
At the same time, the SCA algorithm determined that the values
of MAE and RMSE were also smaller than those of the MLE
method. Thus, the SCA algorithm used in this paper had better
optimization performance and simulated the distribution of the
epidemic data exactly.

Furthermore, among the four DFs optimized by SCA, SCA-
Lognormal only achieved optimal simulation capability for
the new cases in the United States. SCA-Gamma achieved
optimal simulation performance for both the new deaths in the
United States and the new cases in India. SCA-Weibull obtained
optimal simulation ability for new cases and new deaths in
Brazil and India.

Experiment II: Intelligent Point Prediction
for COVID-19 Cases
In this experiment, an intelligent hybrid prediction model
coupled with environmental variables (TN-SCA-LSSVM) was
used to perform a point prediction analysis of new cases and
new deaths in three countries. The new cases and new deaths
of COVID-19 and the environmental variables (temperature and
NO2) were taken as inputs of the multivariable point prediction.
Thus, the number of input neurons of LSSVM was set to 4. To
evaluate the predictive advantages of the proposed hybrid model,
five univariate approaches, namely, ARIMA, BPNN, GRNN,
LSSVM, and SCA-LSSVM, were selected as benchmark models
for comparison. In addition, six evaluation criteria (MAE, RMSE,
MAPE, IA, DA, and R2) were used to reflect the prediction
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TABLE 3 | The parameters values of the different distribution functions are determined by MLE and SCA.

Countries Types of cases Methods Lognormal Gamma Weibull Rayleigh

µ σ θ k λ k σ

United States New cases MLE 1.5859 4.8799 235.4008 0.9975 232.5667 1.1314 221.8384

SCA 5.0481 0.8191 162.3509 1.3498 238.4217 1.0433 135.1476

New deaths MLE 1.4159 0.9973 2.0827 2.1522 4.5237 1.2630 3.6913

SCA 1.2491 0.7112 2.1612 1.9676 4.5382 1.4115 3.0889

Brazil New cases MLE 1.2901 4.5723 117.6314 1.2773 160.8250 1.3241 126.2440

SCA 4.8261 0.6909 70.6131 2.2244 176.4688 1.4984 122.9704

New deaths MLE 1.1251 0.9589 2.1763 1.6661 3.9725 1.5907 2.9499

SCA 1.2175 0.5933 1.5846 2.4602 4.2921 1.7905 2.9930

India New cases MLE 1.6692 2.4204 27.6680 0.8291 22.3740 0.9368 21.4061

SCA 2.7967 1.0588 27.4867 0.9043 24.9569 0.9138 15.6776

New deaths MLE 1.3955 −1.7107 0.3206 1.0024 0.3273 1.0529 0.2944

SCA −1.4439 1.1266 0.2868 1.0798 0.3507 0.9885 0.2440

TABLE 4 | The criteria values of different distribution functions of six datasets.

Countries Types of cases Criteria Lognormal Gamma Weibull Rayleigh

MLE SCA MLE SCA MLE SCA MLE SCA

United States New cases MAE 0.0839 0.0235 0.0441 0.0375 0.1634 0.0618 0.0420 0.0403

RMSE 0.1023 0.0351 0.0540 0.0447 0.1930 0.0827 0.0505 0.0476

R2 0.8750 0.9853 0.9652 0.9761 0.5553 0.9184 0.9696 0.9730

New deaths MAE 0.0973 0.0165 0.0287 0.0148 0.0280 0.0214 0.0816 0.0472

RMSE 0.1140 0.0217 0.0349 0.0181 0.0375 0.0245 0.0949 0.0533

R2 0.8455 0.9944 0.9855 0.9961 0.9833 0.9929 0.8930 0.9662

Brazil New cases MAE 0.0930 0.0526 0.0611 0.0327 0.0465 0.0223 0.0503 0.0491

RMSE 0.1084 0.0587 0.0695 0.0392 0.0513 0.0298 0.0585 0.0572

R2 0.8591 0.9587 0.9421 0.9816 0.9684 0.9893 0.9590 0.9608

New deaths MAE 0.0917 0.0386 0.0611 0.0284 0.0424 0.0237 0.0317 0.0323

RMSE 0.1069 0.0486 0.0686 0.0354 0.0464 0.0296 0.0375 0.0368

R2 0.8662 0.9724 0.9449 0.9853 0.9747 0.9897 0.9836 0.9842

India New cases MAE 0.0734 0.0385 0.0353 0.0226 0.0315 0.0232 0.1281 0.1213

RMSE 0.0853 0.0474 0.0408 0.0269 0.0368 0.0279 0.1595 0.1322

R2 0.9131 0.9732 0.9801 0.9913 0.9838 0.9907 0.6962 0.7912

New deaths MAE 0.0565 0.0396 0.0380 0.0325 0.0322 0.0231 0.1140 0.1010

RMSE 0.0673 0.0482 0.0441 0.0380 0.0367 0.0291 0.1366 0.1189

R2 0.9452 0.9719 0.9765 0.9825 0.9838 0.9897 0.7743 0.8290

The bold values present the optimal results.

performance of the models; the results are shown in Tables 5, 6.
The boldly marked values indicate the best values of the model
in different evaluation metrics, and the optimal point prediction
model is selected accordingly. Figure 2 shows the predicted and
observed values between the proposed model and other models.
Further discussion of the experimental results follows.

From Table 5, we can draw the following conclusions:
For the single model comparisons, including ARIMA, BPNN,

GRNN, LSSVM, it can be seen from Table 5 and Figure 3 that
LSSVM had more accurate prediction accuracy than other single
models and had the best performance among a variety of error
indicators of MAE, RMSE, MAPE, IA, DA, and R2. For instance,
the MAPE of new cases predicted by ARIMA, BPNN, GRNN, and

LSSVM in the United States were 39.1424, 17.6103, 15.6918, and
14.1000%, respectively. In Brazil, the MAPE values of ARIMA,
BPNN, GRNN, and LSSVM were 65.3496, 51.0333, 53.7500, and
51.2592%, respectively. In India, the MAPE values of ARIMA,
BPNN, GRNN, and LSSVM were 36.4135, 18.8504, 17.5906, and
15.2222%, respectively.

The proposed hybrid model with environmental features
showed stronger predictive performance compared with other
models. For example, in the United States, compared with the
LSSVM and SCA-LSSVM, TN-SCA-LSSVM led to 7.6160 and
4.3233% reductions in MAE, 3.5175 and 3.7255% reductions
in RMSE, and 7.9957 and 6.2626% reductions in MAPE,
respectively. In Brazil, compared with LSSVM and SCA-LSSVM,
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TABLE 5 | The comparative forecasting error of different models for COVID-19 new cases.

Countries Criteria ARIMA BPNN GRNN LSSVM SCA-LSSVM TN-SCA-LSSVM

United States MAE 103.3365 72.3343 65.6524 60.5696 58.4851 55.9566

RMSE 125.7786 103.3695 102.0531 88.3619 88.5528 85.2538

MAPE (%) 39.1424 17.6103 15.6919 14.1000 13.8393 12.9726

TIC 0.1337 0.1136 0.1131 0.0927 0.0927 0.0951

IA 0.8571 0.9261 0.9250 0.9524 0.9524 0.9533

R2 0.6493 0.7631 0.7710 0.8269 0.8402 0.8262

Brazil MAE 147.5017 80.0527 78.6863 84.3194 59.0297 58.6014

RMSE 191.1310 101.7826 103.0591 105.4444 75.1114 73.9705

MAPE (%) 65.3496 51.0333 53.7500 51.2592 28.9399 28.0350

TIC 0.3616 0.2230 0.2266 0.2369 0.1521 0.1478

IA 0.3509 0.6131 0.6225 0.5957 0.7050 0.7084

R2
−4.2445 −0.4873 −0.5248 −0.5962 0.1901 0.2145

India MAE 3.6180 2.8170 2.3159 1.9432 1.8260 1.7828

RMSE 4.3580 5.4566 3.3962 3.1049 3.2072 3.1651

MAPE (%) 36.4135 18.8504 17.5906 15.2222 14.5030 14.3134

TIC 0.1697 0.2183 0.1406 0.1320 0.1370 0.1358

IA 0.5170 0.5111 0.6722 0.7120 0.7283 0.7308

R2
−0.4228 −1.2524 0.1275 0.2778 0.2219 0.2422

TABLE 6 | The comparative forecasting error of different models for COVID-19 new death cases.

Countries Criteria ARIMA BPNN GRNN LSSVM SCA-LSSVM TN -SCA-LSSVM

United States MAE 3.9138 1.7581 1.8688 1.7476 1.7006 1.6252

RMSE 4.8346 2.1134 2.2823 2.2780 2.1507 2.0040

MAPE (%) 55.9991 25.2980 27.9532 26.1569 25.3390 24.3988

TIC 0.2922 0.1289 0.1434 0.1387 0.1321 0.1262

IA 0.5075 0.8354 0.7983 0.8166 0.8376 0.8470

R2
−1.4148 0.5386 0.4618 0.4639 0.5221 0.5821

Brazil MAE 2.0207 1.5995 1.5551 1.4997 1.2921 1.1995

RMSE 2.4866 2.3221 2.3352 2.2038 1.7577 1.4880

MAPE (%) 47.3042 48.2826 46.8319 44.1043 33.4255 26.4318

TIC 0.2277 0.2232 0.2301 0.2185 0.1694 0.1381

IA 0.3561 0.5578 0.5851 0.6269 0.7256 0.7876

R2
−0.5565 −0.3574 −0.3727 −0.2225 0.2223 0.4427

India MAE 0.1176 0.0591 0.0330 0.0261 0.0227 0.0251

RMSE 0.1235 0.1428 0.0471 0.0396 0.0341 0.0400

MAPE (%) 144.3315 43.5405 23.6569 18.5391 17.6502 17.7402

TIC 0.3678 0.4568 0.1844 0.1582 0.1395 0.1583

IA 0.3677 0.4284 0.8035 0.8538 0.8727 0.8557

R2
−4.3463 −6.5096 0.1844 0.4236 0.5931 0.4409

TN -SCA-LSSVM led to 30.5007 and 0.7256% reductions in
MAE, 29.8488 and 1.5190% reductions in RMSE, and 45.3074 and
3.1267% reductions in MAPE, respectively. In India, compared
with LSSVM and SCA-LSSVM, TN-SCA-LSSVM led to 21.1537
and 6.0300% reductions in MAE, 5.5636 and −3.2965%
reductions in RMSE, and 17.5524 and 4.7246% reductions in
MAPE, respectively. According to the six evaluation criteria,
it can be concluded that the proposed hybrid multivariable
model was significantly better than other benchmark models for
forecasting new cases.

From Table 6, we can draw the following conclusions:

It can be seen from Table 6 and Figure 3 that the proposed
TN-SCA-LSSVM showed stronger predictive performance than
ARIMA, BPNN, GRNN, LSSVM, and SCA-LSSVM. LSSVM had
more accurate prediction accuracy than other single models
and had the best performance among various error indicators
of MAE, RMSE, MAPE, IA, DA, and R2. The proposed
TN-SCA-LSSVM showed stronger predictive performance than
other single or hybrid univariate models. According to the
six evaluation criteria, it can be concluded that the proposed
hybrid multivariable model was significantly better than other
benchmark models for forecasting new death cases.
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FIGURE 2 | The observed sequences and probability density functions of four distributions in the United States, Brazil, and India.

Remark
The proposed hybrid multivariable model with environmental
features had strong prediction ability and effectively
addressed the complexity and non-linearity of new cases
and new deaths. The optimization method played an
essential role in improving the prediction accuracy of the
hybrid model. Results indicated that the SCA significantly
improved the prediction performance of the LSSVM.
In addition, the forecasting model with environmental
variables further improved the prediction ability of
the hybrid model.

Experiment III: Interval Forecasting of
COVID-19 Cases
In Experiment III, based on the interval forecasting theory
discussed in Section “Interval Forecasting Module,” the interval
prediction of new cases and new deaths in three countries was
calculated by incorporating the optimal distribution function
determined in Section “Experiment I: Distribution Functions
of COVID-19 Cases” and the point prediction results with the
highest accuracy in Section “Experiment II: Intelligent Point
Prediction for COVID-19 Cases.” In addition, two metrics, PIAW
and PICP listed in Table 1, were used to measure the validity
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FIGURE 3 | Forecasting results of the proposed model and benchmark models.

TABLE 7 | The interval prediction results under five different significance levels of COVID-19 cases.

Countries Types of cases Criteria α

0.2 0.25 0.3 0.35 0.4 0.45

United States New cases IFCP 100.00% 100.00% 100.00% 100.00% 98.65% 87.84%

IFAW 627.5977 489.2653 372.9357 270.2132 176.0058 86.8294

New death cases IFCP 100.00% 100.00% 98.65% 93.24% 90.54% 66.22%

IFAW 9.9036 7.7723 5.9529 4.3280 2.8256 1.3958

Brazil New cases IFCP 100.00% 98.59% 98.59% 92.96% 81.69% 59.15%

IFAW 300.3756 236.0082 180.9128 131.6092 85.9563 42.4711

New death cases IFCP 100.00% 100.00% 98.59% 97.18% 87.32% 59.15%

IFAW 5.5115 4.3527 3.3489 2.4426 1.5981 0.7904

India New cases IFCP 100.00% 100.00% 100.00% 100.00% 100.00% 85.71%

IFAW 19.1788 14.8640 11.2819 8.1496 5.2975 2.6103

New death cases IFCP 100.00% 100.00% 100.00% 100.00% 100.00% 84.29%

IFAW 0.2010 0.1548 0.1170 0.0842 0.0546 0.0269

of the interval prediction. It should be noted that the optimal
interval prediction should satisfy the following conditions:
The larger the IFCP value (0 ≤ IFCP ≤ 100%) and the smaller
the IFAW value at a given significance level α are, the better the
predictive performance of the interval prediction. Table 7 shows
the United States, India, and Brazil interval prediction results
under five different significance levels (0.20, 0.25, 0.30, 0.35, and
0.40). From Table 7, it can be observed that the values of IFCP

and IFAW were different at five significance levels. For example,
when α was 0.3, the IFCP and IFAW of COVID-19 new cases in
the United States were 100.00% and 372.9357; when α was 0.35,
the IFCP and IFAW of COVID-19 new cases in the United States
were 100.00% and 270.2132, respectively.

To present the interval prediction results more visually, the
interval prediction results of COVID-19 cases at four significance
levels of 0.25, 0.3, 0.35, and 0.4 were selected to make a visual
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FIGURE 4 | Interval prediction results of the proposed model with different significance levels.

effect, as shown in Figure 4. Figure 4 contains six subplots
showing the interval prediction results of new cases and new
deaths for each of the three countries. The dots represent the
actual value, and the color depth of the shaded area indicates
the range of interval forecasting at different significance levels.
When a smaller significance level is selected, there are individual
actual values that exceed the corresponding shaded areas. When
a smaller significance level is chosen, there are individual actual
values that exceed the corresponding shaded areas. When the
significance level is large, although the shaded area can cover all
the actual values well, it will lead to a large range of prediction
intervals and lose practical significance.

Discussion
The proposed point and interval forecasting approach with
environmental variables obtained better prediction results than
other comparable models. The specific reasons were determined
to be as follows: First, the optimal DFs and their parameters
that best fit the epidemic data of different countries were
obtained by SCA. Second, the proposed hybrid multivariable
model SCA-LSSCM had a strong prediction ability and effectively
addressed the complexity and non-linearity of new cases and new
deaths. Third, the addition of environmental variables further
improved the prediction ability of the hybrid model. Finally,
interval forecasting was calculated based on the optimal DFs and
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point prediction results to capture uncertainty information for
decision-making.

Notably, because the interval prediction results were
calculated based on the point prediction results, the interval
prediction performance depends mainly on the point prediction
results. In addition, a suitable significance level needs to be
selected according to the actual situation in the practical
application. In conclusion, the interval forecasting model
proposed in this study could provide uncertain information
about future epidemic development and could be combined
with the accurate deterministic information provided by the
point prediction hybrid model in Experiment 2. It could provide
public health decision-makers with rich information for epidemic
prevention and control decisions.

In practice, the proposed model could be driven by real-
time data to dynamically and continuously optimize the model
parameters by updating the data daily, making the model
adaptable to complex epidemic scenarios that are non-linear,
dynamic, and ambiguous. At the same time, this data-driven
prediction would also help to establish a predictable safeguard
mechanism, leaving a window of time for relevant decision-
making departments to take measures and adjust strategies in
advance to avoid the continuous spread of the epidemic.

CONCLUSION

This study presented a novel point and interval forecasting
approach with environmental variables, which was composed
of a distribution function analysis module, an intelligent point
prediction module, and an interval forecasting module. In the
distribution function analysis module, according to the results
of the MAE, RMSE, and R2, SCA-Lognormal achieved optimal
simulation capability for the new cases in the United States,
while SCA-Gamma achieved optimal simulation performance in
both the new deaths in the United States and the new cases
in India. SCA-Weibull obtained optimal simulation ability for
new cases and new deaths in Brazil and new deaths in India. In
the intelligent point prediction module, according to the MAE,
RMSE, MAPE, IA, DA, and R2, the hybrid multivariate model
TN-SCA-LSSVM achieved more robust predictive performance
than other univariate approaches, such as ARIMA, BPNN,
GRNN, LSSVM, and SCA-LSSVM, which indicated that SCA
significantly improved the prediction performance of LSSVM
and that the addition of environmental features (temperature

and NO2) further improved the prediction ability of the
hybrid model. For instance, the average MAPE values of
the proposed TN-SCA-LSSVM model were 62.1521, 33.9225,
27.5146, 18.3956, and 5.8034% lower than those of ARIMA,
BPNN, GRNN, LSSVM, and SCA-LSSVM, respectively. In the
interval forecasting module, for interval prediction of Covid-19
data in three countries, interval prediction results for new cases
and new deaths were obtained based on the point prediction
values and optimal DFs of the proposed hybrid TN-SCA-LSSVM
model. The results showed that the performance of interval
prediction was excellent because most of the observed values
were located in the shaded area, with higher values of IFCP
and smaller values of IFAW at different significance levels.
Overall, the proposed system achieved better prediction results
than other comparable models and enabled the informative and
practical quantification of future COVID-19 pandemic trends,
which offers more constructive suggestions for governmental
administrators and the general public.

In this study, epidemiological data and two environmental
variables were considered inputs for point and interval
prediction models. However, predicting COVID-19 is a complex
problem related to multiple factors, such as meteorological,
environmental, socioeconomic or policy factors. Thus, the
forecasting model can be improved by incorporating more
influencing factors from different data sources, which may be an
interesting research pursuit.
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Effectively prediction of the tourism demand is of great significance to rationally allocate

resources, improve service quality, and maintain the sustainable development of scenic

spots. Since tourism demand is affected by the factors of climate, holidays, and

weekdays, it is a challenge to design an accurate forecasting model obtaining complex

features in tourism demand data. To overcome these problems, we specially consider the

influence of environmental factors and devise a forecasting model based on ensemble

learning. The model first generates several sub-models, and each sub-model learns

the features of time series by selecting informative sequences for reconstructing the

forecasting input. A novel technique is devised to aggregate the outputs of these sub-

models to make the forecasting more robust to the non-linear and seasonal features.

Tourism demand data of Chengdu Research Base of Giant Panda Breeding in recent 5

years is used as a case to validate the effectiveness of our scheme. Experimental results

show that the proposed scheme can accurately forecasting tourism demand, which can

help Chengdu Research Base of Giant Panda Breeding to improve the quality of tourism

management and achieve sustainable development. Therefore, the proposed scheme

has good potential to be applied to accurately forecast time series with non-linear and

seasonal features.

Keywords: tourism demand forecasting, ensemble learning, RNN, time series, machine learning

1. INTRODUCTION

Tourism, as a multibillion-dollar business, has a certain impact on the ecological environment,and
also servers as an engine of economic growth. For the economic growth in the past decade, the share
of tourism industry has increased steadily (Claveria et al., 2015; Yu, 2021), which has caused rising
concerns about the efficiency and effectiveness of the allocation of tourism resources. Tourism
forecasting plays a vital role in the allocation of tourism resources, and the accurate forecasting
results can not only help decision makers make the reasonable allocation, but also support tourists
to plan their schedules.

Many researchers devote to the tourism demand forecasting, and the existing studies have
proved that tourism demand forecasting is crucial to allocate the tourism resources (Li and Cao,
2018; Khademi et al., 2022). For natural resource scenic spots, accurate forecasting of tourism
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demand can also help scenic spots control the impact of visitors
on the environment, achieve a good balance between economic
income and environmental protection, and thus promote the
sustainable development of scenic spots. Tourism activity is
affected by many factors (Hao et al., 2021), such as weather,
environment, emergencies such as pandemic and government
policy, which makes the accurate tourism forecasting as a
challenge thing. Therefore, it is necessary to consider all of these
factors in order to improve the forecasting accuracy.

The above challenges have promoted the development of
tourism demand forecasting algorithm. Most of these schemes
can be classified into two categories: statistical based models and
machine learning based models. Statistical based models aim to
make the unbiased prediction of the future demand, and they
hold strong assumption on the time series data. One of the most
representatives of these models are based on the Autoregressive
Integrated Moving Average (ARIMA) technique (Faruk, 2010;
Wang, 2022). ARIMA based models predicts a future value
with several past observations and random errors with a linear
function. They commonly used stationary time series fitting
prediction model and can only capture linear, but not non-linear
relations. Liu et al. (2014) proposes gray forecasting model. This
method accumulating the original series and create new series to
weaken the inherent randomness of the original data. Thus, it
can reveal the regularity of the orderly data sequence and in turn
make predictions for future values. However, gray forecasting
model also impose heavy restrictions on time series. Due to
the strict assumption on data, both ARIMA or gray forecasting
based models need to pre-process the forecasting input. With
constant assumptions, the models can solve the closed form of
the solution. Nevertheless, thesemodels are still far from practical
due to the inherent complexity of the real tourism data.

Machine learning based models have been widely applied in
tourism demand forecasting. In contrast to statistical learning
based models, machine learning based models have the potential
to recognize the nonlinear, seasonal and other complex features
in the tourism time series by imposing no restriction on raw
data. Singh et al. (2021) apply Support Vector Machine (SVM)
to forecast the forest fire. SVM finds a hyperplane in the n-
dimensional space that can classify the data points with non-
linear relations.

Due to the effectiveness of capturing non-linear relations,
quite a few works introduce neural networks to address the
time series forecasting problems (Qian et al., 2022; Wang et al.,
2022). Among them, some works based on the Convolutional
Neural Network (CNN) to build the forecasting models (LeCun
and Bengio, 1995; Shin et al., 2016). As an effective deep
learning models, CNN can effectively extract robust features
from the time series data. To learn the long-term and short
term dependencies in time series data, many works propose
to apply LSTM method for forecasting task (Ji et al., 2019;
Khademi et al., 2022; Ozkok and Celik, 2022). The performance
of these models highly depends on the feature engineering. How
to reconstruct the forecasting input to identify and combine
the critical information in data features is utmost significant.
And, several complex models (e.g., deep learning based models)
with large number of parameters not only require laborious

computation but hinder the efficiency in model training and
predicting. Moreover, these models suffer from the overfitting
problem due to the complicated characteristics of the tourism
data.

Resolving the aforementioned problems paves the way to
practical tourism forecasting models. For this aim, this article
presents a novel model based on ensemble learning, which
considers the environmental factors. Our method is built upon
the following key observations. First, the forecasting model is
comprised of two components to learn the sequential relation and
complex interactions of features in tourism data. Second, time
series from different category are combined to expand the feature
space, which is beneficial to augment and smooth the series data.
Third, different feature are sampled to build several forecasting
sub-models, which ensure the diversity of the sub-models and the
ability to capture informative sequences in tourism time series.
More robust prediction is produced by aggregating the outputs
from the sub-models. This alleviate the overfitting problem of
the single model based scheme, thus improve the accuracy of the
forecasting model. Overall, the contributions of this article are
three-folded.

1. We propose a forecasting framework that can both learn
dependencies in tourism time series and extract high and low-
order correlation in features of the target time. This design
effectively addresses the problem of the non-linear, seasonal
features in tourism time series data.

2. Considering the impact of environmental factors and the
speciality of the tourism data, we propose a more robust
model that is a marriage between combination technique and
ensemble learning. To the best of our knowledge, we are the
first to incorporate the combination technique and the idea
of ensemble learning in tourism demand forecasting problem.
These two techniques can alleviate the overfitting problem of
previous work on tourism time series data.

3. Chengdu Research Base of Giant Panda Breeding, a
famous education tourist attraction in China, is used as
a case to validate the effectiveness of our scheme. The
experimental results show that the proposed scheme provides
accurate estimates on the daily tourism demands. Thus, the
proposed scheme is conducive to improving the sustainable
development of the scenic spot.

The remainder of this article is organized as follows. In Section 2,
we describe the design of our model. The experimental results are
reported and analyzed in Section 3. In Section 4, the conclusion
of this article is drawn.

2. THE PROPOSED METHODOLOGY

For effectively improving the generalization ability and
preventing the overfitting problem. The proposed model
is comprised of two components: the sequential learning
component is responsible for exploring relations in time series;
the feature extracting component is designed to explore the
high-order and low-order information in features of the target
time t. The outputs of the two components are aggregated to
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form the final predictive value. The overview of the forecasting
model is shown in Figure 1.

2.1. Sequential Learning Component
The recurrent neural network (RNN) based models are more
suitable for time series fitting tasks with time dependencies
than the normal artificial neural network (ANN). Due to the
weather and seasonal features of the tourism data, (a) we design
an RNN model that has the ability for sequential learning to
explore the short-term dependencies in tourism time series. The
main function of RNN based models is to interact the current
information with the historical state. In our network, the state of
the hidden layers is updated as follows:

St−1 = u(Ht−1)

Mt = v(Xt) (1)

Ht = p(Mt + St−1)

where Xt denotes the features at time t, Ht denotes the state of
the hidden layer at time t, u(·) transform the state of hidden layer
at t − 1, v(·) extracts the information within Xt and p(·) joints the
relevant contextual at time t − 1 and t. Thus, the current state of
the hidden layer is updated and transferred. In our network, the

functions u(·), v(·), and p(·) are defined as follows:

u (Ht−1) = relu
(

V
T
2 relu

(

V
T
1Ht−1 + b1

)

+ b2

)

v (Xt) = σ

(

U
T
2

(

relu
(

U
T
1Xt + b3

)

+ b4

))

(2)

p (Mt + St−1) = σ (Mt + St−1)

where U ,W, and b are parameters that are trained at each step t.
The symbol relu(·), σ (·) are denoted as relu and sigmoid function,
respectively.

2.1.1. Feature Extracting Component
Different correlations of features in the tourism data contains
different information. In order to better extract the informative
correlations in features, we design two modules that can be
executed in parallel in feature extracting component, which
are utilized to extract high-order and low-order information in
tourism data.

For extracting the low-order information, we design a single-
layer fully connected neural network to explore the linear relation
in tourism data. It transforms features by combining features in
different dimensions linearly. The module is defined as:

rl = w
T
l Xt + bl, (3)

where Xt denotes the features of the target time t, rl is the linear
combination of features. wl ∈ R

n is the parameters serve as the
coefficients for linear weighting.

FIGURE 1 | The overview of the proposed forecasting model.
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We devise another model for extracting high-order
correlations in features. This module leverages the powerful
non-linear expressing capability of multi-layer perceptrons
to extract complex but valuable correlations in features. This
module can be formally defined as follows:

h1 = γ0

(

W
T
0Xt + b0

)

h2 = γ1

(

W
T
1h1 + b1

)

· · · · · · (4)

hn+1 = γn

(

W
T
nhn + bn

)

hh = σ

(

W
T
n+1hn+1 + bn+1

)

where n denotes n-th hidden layer, Wn, bn, γn(·), and hn+1

are the weight matrix, bias, activation function and output of
(n + 1)-th hidden layer, respectively. Wn+1, bn+1, σ (·), and
hh are the weight matrix, bias, activation function, and output
of output layer, respectively. This module takes the features Xt

as inputs, and output the hh as the high-order combination of
features. Finally, the output of the forecasting model is combined
as follows:

H = Ht + hh

rf =W
T
u f

(

W
T
vH + bv

)

+ bu (5)

Ŷt = rl + rf

Here, the high-order information is combined with the output of
sequential learning part. Then the result is in turn combined with
the output of low-order information to form the prediction of the
future value at time t.

2.2. Ensemble Method
The above design rely on single model for forecasting. By
combining multiple sub-models, ensemble learning often results
in significantly superior generalization performance over a single
model. In this section we propose an ensemble learning scheme
that can boost the accuracy of the forecasting model. Our design
based on the observation that tourism data happen in same time
can be classified into different category (e.g., year, region, etc.),
which we defined as band. Sequence data happens in different
band but same time can be combined to improve the robustness
of the model prediction. The proposed approach can be divided
into the following steps:

(1) Features division
The method extract features {X1,X2, · · · , xT} from times
series {x1, x2, · · · , xT}, and then the features are divided into
several bands as

Xt = {X
1
t ,X

2
t , · · · ,X

m
t }(t = 1, 2, · · · ,T) (6)

where each features at time point t are divided into m
sub-features.

(2) Features reconstruction.
To obtain more representative features for the models, the
original features have been reconstructed in this step as
following,

D = {X1′
t ,X

2′
t , · · · ,X

N′
t } (7)

where D denotes the new features set, and each features at
time point t are reconstruct into N sub-features.

(3) Sub-models results on the new feature data
Eachmodel has been trained using the reconstructed features
to obtaining the following results,

φ(D) = {φ1(X
1′
t ),φ2(X

2′
t ), · · · ,φN(X

N′
t )} (8)

where φi, i = 1, 2, · · · ,N are the sub-models adopted in the
proposed approach.

(4) Models ensemble
After the above three steps, we can obtain the sub-models

for each sub-feature, after then, the operator ofCom has been
adopted to obtain the ensemble model. The overview of the
ensemble method is presented as Figure 2.

8c,t = Com{φ1(X
1′
t ),φ2(X

2′
t ), · · · ,φN(X

N′
t )} (9)

where φc,t denotes the final results of at time point t.
φ presents a particular transformation method, such
as stacking, hadmard product or linear combination.
Based on the combination, we can form multiple sub-
models to explore the relations in different bands.
The process of the ensemble method is shown in
Algorithm 1:

Algorithm 1 The proposed ensemble algorithm.

Require:

{x1, x2, · · · , xT} ← Input original time series;
N ← Number of sub-models;
φ← sub-models function

Ensure: 8c,t ;
1: Extract features of time series as {X1,X2, · · · , xT}
2: while (i<N) do
3: Divide the features into several bands as Xt =

{X1
t ,X

2
t , · · · ,X

m
t };

4: Select the appropriate sub-features from the divided bands
as D = {Xi,1

t ,Xi,2
t , · · · ,Xi,N

t };
5: Put the sub-models φ on the reconstructed features;
6: Calculate the sub-models results as
{φi,1(X

i,1
t ),φi,2(X

i,2
t ), · · · ,φi,N(X

i,N
t );

7: Obtain the final combination model as 8c,t =

Com{φi,1(X
i,1
t ),φi,2(X

i,2
t ), · · · ,φi,N(X

i,N
t )};

8: i = i+ 1;
9: end while
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FIGURE 2 | The overview of the proposed ensemble scheme.

3. EXPERIMENTAL EVALUATION

3.1. Dataset Description
In this article, the tourism demand time series from Cheng du
Research Base of Giant Panda Breeding1 (TDPB) is used in our
experiment, as shown in Figure 3. Cheng du Research Base of
Giant Panda Breeding, located at 1375# Panda Road, Northern
Suburb, Chenghua District, Chengdu City, Sichuan Province,
P.R.China, is 10 km away from the city center and over 30 km
from Chengdu Shuangliu International Airport. Proclaimed the
“ecological demonstration project for the ex-situ conservation
of giant pandas.” The Base, covering an area of 1,000 mu
(66.67 hectares), serves as the world’s torchbearer for the ex-situ
conservation of giant pandas, scientific research and breeding,
public education, and educational tourism. The Base wears its
title very well as the sanctuary for giant pandas, red pandas, and
other endangered wild animals exclusive to China. TDPB covers
the number of visitors to the panda base from 2017 to 2021, with
a total of 1,826 pieces of data. The largest number of visitors
was on October 4,2018, with 102,305 visitors. The corresponding
statistics are shown in the following Table 1.

3.2. Evaluation Indicator
To evaluate the effectiveness of our scheme, we use the Root
Mean Square Error (RMSE), mean absolute error (MAE), and

1http://www.panda.org.cn/english/

Mean Absolute Percentage Error (MAPE) metrics to measure the
accuracy of the estimates. These metrics are defined as:

MAPE =
1

N

N
∑

t=1

∣

∣

∣

∣

∣

Yt − Ŷt

Yt

∣

∣

∣

∣

∣

× 100%, (10)

RMSE =

√

√

√

√

1

N

N
∑

t=1

(

Yt − Ŷt

)2
, (11)

MAE =

∑N
t=1 |Yt − Ŷt|

N
, (12)

where Yt and Ŷt are the actual demand and predicted demand of
future value at time t, respectively, and N denotes the maximum
time being predicted in the test set. Clearly, smaller value of the
three metrics indicates better forecasting results.

3.3. Other SCHEMES and Parameter
Selection
To evaluate the performance of our scheme, we compare it with
some state-of-the-art tourism demand forecasting techniques,
listed as follows.

• Decision Tree (DT) (Song and Ying, 2015): DT falls under the
category of supervised learning. It uses the tree representation
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FIGURE 3 | The Chengdu research base of giant panda breeding.

to solve the problem in which each leaf node corresponds to a
class label and attributes are represented on the internal node
of the tree.
• Random Forest (RF) (Kane et al., 2014): RF is a supervised

machine learning algorithm that is constructed from multiple
decision tree. And RF is a classic ensemble learning algorithm
for regression and classification.
• Extra Trees (ET) (Hammed et al., 2021): ET also known

as Extremely Randomized Trees. Similar to RF, ET builds
multiple trees and splits nodes using random subsets of
features. Different from RF, ET uses the whole learning sample
and splits nodes by choosing cut-points fully at random.
• Gradient Boosting (GB) (Gong et al., 2020): GB is an

supervised machine learning algorithm used for classification
and regression problems. It is an ensemble technique which
uses multiple weak learners to produce a strong model for
regression and classification.GB relies on the intuition that the
best possible next model, when combined with the previous
models, minimizes the overall prediction errors. The key idea
is to set the target outcomes from the previous models to the
next model in order to minimize the errors.
• Light Gradient Boosting Machine (LGB) (Fan et al., 2019):

LGB is a gradient boosting framework based on decision trees
to increase the efficiency of the model. LGB has been widely
used in time series problems. And LGB is one of the most
popular time series models.

TABLE 1 | The datasets used in our experiments.

Property 2017 2018 2019 2020 2021

Mean 13,252.54 19,870.63 24,347.87 98,65.582 12,055.78

Std 9,611.484 13,261.87 15,725.53 91,31.715 12,643.28

Min 3,419 6,545 7,979 0 86

Max 79,548 102,305 92,608 58,215 79,572

• Extreme Gradient Boosting (XGBoost) (Chen et al., 2015):
XGBoost is a decision trees based ensemble method which
makes use of gradient boosting. It is one of the most powerful
algorithms for regression and classification with high speed
and performance.

In this dataset, the main factors we consider include holidays,
weather, and the number of visitors a few days before the
forecasted date. In our experiment, each model uses the same
feature input to ensure that the model does not differ in
performance due to inconsistent input information. In the
proposed model, we separately verified the performance of
the RNN module and DNN module with different numbers
of neurons in the hidden layer (32, 64, 128, 256, 512).
The parameters are initialized using the popular Xavier’s
approach (Glorot and Bengio, 2010), and the optimizer is
stochastic gradient descent algorithm (Bottou, 2012).
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3.4. Experimental Results and Analysis
The forecasting results on test set are reported in Table 2 and
Figure 4. Table 2 reports the test results of our experiments
on RMSE, MAE, MAPE. It can be seen from Table 2 that our
scheme performs better than other algorithms in RMSE, MAE,
and MAPE. Compared with the Decision Tree, ensemble models

TABLE 2 | The values of RMSE, MAE, and MAPE results for different methods.

Model RMSE MAE MAPE (%)

Random forest 7,790.284 4,122.607 41.8044

Extra tree 8,990.606 4,543.783 43.8647

Extreme gradient boosting 8,136.099 4,204.991 45.8960

Light gradient boosting 8,187.854 4,249.289 44.0973

Gradient boosting 7,898.574 4,006.404 44.5745

Decision tree 1,1249.43 5,566.168 51.2416

Our 5,673.635 2,887.705 26.0540

The bold style represents the best test result compared to other model.

achieve better performance since they can effectively mine more
valuable information. In RMSE, our scheme achieves the best
performance with 5673.635, and Random Forest achieves the
second best performance with 7790.284, and other models are
over 7,800. Similar to RMSE, the MAE value of the proposed
scheme outperforms other models, and our scheme achieves at
least 1,119 improvement. In terms of MAPE metric, our scheme
achieves the lowest value of 26.05%, while the corresponding
values of other ensemble models are about 44%. The main reason
for this accuracy improvement is that our scheme incorporates
historical information and some environmental factors, and
extracts high-order features and low-order features from the
original data through the feature extracting component and
sequential learning component.

Figure 4 draws the observed tourism demand and the
forecasting results of different algorithms. Compared with other
algorithms, the results of our schemes fits the actual results
with the smallest gap. Compared with Figure 4G, the forecasting
results of these algorithms have low accuracy at specific times.
Around the 50-th forecasting date, the Figure 4G shows there

FIGURE 4 | The overview of the forecasting results in different model. (A) Forecasting results of RF, (B) forecasting results of ET, (C) forecasting results of LGB, (D)

forecasting results of XGBoost, (E) forecasting results of GB, (F) forecasting results of DT, (G) forecasting results of Ours.
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TABLE 3 | Forecasting results in 2019.

Metrics Month Ours DT ET GB LGB RF XGBoost

MAE Jan. 1,715.81 6,133.29 2,827.98 2,184.47 4,051.26 4,195.45 3,817.47

Feb. 3,557.77 13,209.00 9,335.63 7,497.24 7,545.80 8,121.82 8,535.36

Mar. 2,091.67 3,007.80 1,776.53 1,485.57 1,535.52 1,663.79 1,716.90

Apr. 1,535.54 17,150.67 6,272.12 15,062.00 10,964.92 15,623.47 10,002.17

May 12,628.74 16,617.00 8,857.97 8,394.18 1,1702.60 9,917.97 10,336.93

Jun. 3,558.17 3,829.43 5,162.59 5,208.52 4,842.70 3,981.84 5482.73

Jul. 8,083.73 7,566.25 5,498.45 7,738.89 6,529.65 72,05.41 7,480.24

Aug. 6,145.03 2,951.20 3,351.42 3,705.38 2,410.52 4,212.86 2,094.07

Sep. 5,083.70 3,169.60 2,755.62 2,766.85 2,583.64 1,818.64 2,404.59

Oct. 3,482.43 9,081.25 8,465.67 3,194.80 11,608.65 7,047.15 3,132.15

Nov. 797.49 3,742.20 788.34 879.51 1,602.35 1,188.19 1,219.21

Dec. 1,423.71 1,487.56 2,461.08 1,793.96 2,055.82 1,504.11 2,105.56

Mean 4,175.32 7,328.77 4,796.12 4,992.61 5,619.45 5,540.06 4,860.62

MAPE Jan. 11.39 42.24 17.84 14.31 24.83 27.94 23.31

Feb. 15.71 53.13 52.82 31.57 33.99 46.70 42.46

Mar. 13.27 17.09 10.70 9.98 9.20 10.29 11.62

Apr. 8.50 122.06 44.79 107.47 77.94 112.95 71.20

May 23.19 33.25 23.78 21.62 32.22 23.67 21.14

Jun. 15.36 15.36 20.70 20.15 19.35 16.14 22.69

Jul. 20.05 19.34 14.00 19.74 16.06 18.13 18.62

Aug. 13.30 6.95 9.27 10.78 9.35 11.52 6.65

Sep. 36.07 27.51 22.80 25.29 22.20 18.43 20.78

Oct. 21.15 51.58 61.94 22.10 84.78 49.27 19.90

Nov. 4.58 32.17 4.91 6.19 11.17 9.07 8.89

Dec. 10.43 11.83 21.86 14.96 18.06 12.96 18.98

Mean 16.08 36.04 25.45 25.35 29.93 29.76 23.85

RMSE Jan. 2187.95 1,1047.12 3,406.68 2,594.98 4,799.35 5,720.96 4,701.10

Feb. 5,002.60 169„67.29 11841.20 9„420.13 8,520.43 9,541.07 10,509.79

Mar. 2,414.08 4,787.21 2,321.24 1,773.48 1,850.04 2,162.45 2,213.01

Apr. 2,008.43 26,370.80 9,576.12 23364.51 16,473.05 25,022.96 14,946.13

May 24,616.58 30,788.08 15,198.75 16,677.08 19,696.03 17,961.96 19,730.23

Jun. 3,918.73 5,099.65 6,465.84 6,751.16 5,989.56 4,650.59 6,795.89

Jul. 9,500.12 8,174.99 6,628.18 8,956.95 7,832.94 7,889.64 8,826.97

Aug. 7,743.35 3,589.14 3,770.32 4,260.17 3,648.02 4,316.13 2,526.00

Sep. 6,167.16 4,224.72 3,313.19 3,416.73 3,485.41 2,903.30 3,048.56

Oct. 3,703.89 13,309.60 14,913.55 4,597.15 20,704.75 10,660.30 3,553.41

Nov. 995.92 6,746.17 1,248.22 1,220.55 1,693.63 1,552.80 1,377.37

Dec. 2,131.27 1,928.57 3,603.91 2,328.28 2,500.87 2,126.25 2,576.12

Mean 5,865.84 1,1086.11 6,857.27 7,113.43 8,099.51 7,875.70 6,733.71

The bold style represents the best test result compared to other model.

is a significant gab between predicted demands and the actual
demands from Figures 4A–F, and our scheme avoids this
phenomenon as shown in Figure 4G. The accuracy improvement
can be attributed to the effectiveness of our models for extracting
useful information through the recurrent neural network, and the
tree-based ensemble models only consider the information of the
forecasting date.

To make the conclusions are more believable and robust.
We have compared the forecasting results before the outbreak
of COVID-19 and after the outbreak of COVID-19, as shown

in Tables 3, 4. Table 3 reports the test results for each month
of 2019. It can be seen that in most of cases, the proposed
approach can obtain the desire forecasting performance. The
results indicate that the proposed model achieves the best
performance in January, February, April, June, and December
in terms of MAE values. Furthermore, for MAPE values,
the proposed model performs better than other algorithms
in January, February, April, November, and December, as
well as outperforms other algorithms on RMSE in January,
February, April, June, and November. Our method holds a good
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TABLE 4 | Forecasting results in 2021.

Metrics Month Ours DT ET GB LGB RF XGBoost

MAE Jan. 1,026.58 762.86 840.44 472.51 437.24 648.03 892.38

Feb. 1,704.86 5,668.67 2,049.68 1,169.37 1,436.63 3,047.89 1,456.21

Mar. 1,352.96 2,985.89 1,396.46 2,070.19 953.09 1,196.66 1,233.52

Apr. 2,107.10 2,706.33 1,972.09 1,540.73 4,589.47 1,639.77 5,264.18

May 1,931.20 1,474.20 1,356.71 1,361.01 1,344.46 694.01 1,491.45

Jun. 1,961.63 2,264.67 2,161.33 2,753.19 4,391.46 2464.27 3012.06

Jul. 4,645.64 6,414.20 11,967.62 9,351.52 8801.87 9696.32 10,009.47

Aug. 3,311.54 2,305.43 2,102.71 1,382.32 2,070.20 2,201.82 2,006.48

Sep. 2,046.92 3,696.60 2,798.92 3,121.44 1,169.52 3005.99 1889.78

Oct. 2,742.71 2,119.40 6,383.75 4,172.75 5943.67 4,117.29 3,987.71

Nov. 836.31 2,069.71 1,061.51 1,907.52 1,232.21 1,181.79 882.40

Dec. 698.14 1,135.40 1,616.47 2,192.80 1,317.63 937.44 1,500.83

Mean 2,030.47 2,800.28 2,975.64 2,624.61 2,807.29 2,569.27 2,802.21

MAPE Jan. 38.01 65.80 47.73 35.25 24.00 46.90 34.70

Feb. 31.81 91.25 58.88 31.29 36.67 65.25 26.93

Mar. 14.71 34.22 14.46 21.61 8.23 12.66 11.98

Apr. 11.76 12.02 9.96 10.23 26.14 9.09 29.00

May 11.14 9.41 9.37 9.64 8.07 4.97 8.42

Jun. 9.43 18.55 14.50 17.33 28.76 16.78 20.20

Jul. 33.92 51.95 148.52 111.18 98.25 110.27 113.54

Aug. 64.97 47.03 49.15 35.57 50.68 53.06 45.19

Sep. 27.20 51.72 40.49 48.54 17.22 44.60 28.37

Oct. 19.04 18.91 47.81 25.69 33.60 26.54 23.84

Nov. 151.73 112.48 155.61 348.19 181.14 130.48 193.54

Dec. 22.87 26.60 45.22 61.86 37.61 25.92 38.93

Mean 36.38 44.99 53.48 63.03 45.86 45.54 47.89

RMSE Jan. 1,726.24 1,086.76 1,039.70 573.62 586.01 820.50 1,498.36

Feb. 2,258.79 7,381.18 2,464.34 1,528.46 1,823.97 3,761.52 2,504.96

Mar. 1,579.75 5,983.88 1,904.97 2,541.96 1386.78 1,696.02 1,734.95

Apr. 2,479.79 5,525.57 2,905.72 1,704.78 6,484.21 2,192.40 7,484.01

May 2,484.52 2,124.25 1696.11 1737.53 1,592.35 885.71 1,953.02

Jun. 2,346.38 3,752.66 2,392.81 2,898.90 4,638.89 2,742.14 3,410.14

Jul. 5,304.81 9,207.52 15,931.66 12,263.30 11,314.82 12,624.66 13,127.96

Aug. 4,026.71 2,802.32 2,589.09 1,798.77 2,571.36 2,823.40 2,583.59

Sep. 2,606.43 4,136.84 4,149.44 4,980.07 1,750.01 4,178.09 3,032.40

Oct. 3,721.60 2,575.87 10,143.01 7,939.14 12,435.73 6,730.35 7,928.54

Nov. 905.88 3,656.69 1,326.72 2,216.78 1,456.82 1,561.39 1,180.68

Dec. 734.18 1,455.59 2,730.80 3,540.15 1,975.89 1,092.71 2,062.12

Mean 2,514.59 4,140.76 4,106.20 3,643.62 4,001.40 3,425.74 4,041.73

The bold style represents the best test result compared to other model.

performance in January in terms of all metrics, the number
of tourists in January is unstable, because the Spring Festival
of 2019 is not in January but the winter holiday is beginning
in January. What’s more, the proposed model also performs
well in November and December, there is no official holiday
in these 2 months, therefore, the proposed model can both fit
the data tendency of peaks and valleys. In general, the mean
values of the proposed model in this study performs better
than other algorithms. The mean MAE value of our proposed
model is 4175.32, which is lower than other compared models

and can improve about 700. Similarly, the proposed model
can also achieve the desire results in terms of the mean value
of MAPE, it owns MAPE value of 16.08% and improves the
worst model (DT) about 20%. Otherwise, the same tendency
also existed in the metric of RMSE. The averaged MAPE values
of our method is 19.96, 9.37, 9.26, 13.85, 13.67, and 7.77%,
which are lower than DT, ET, GB, LGB, RF, and XGBoost,
respectively. Therefore, the proposed approach in this study
achieves the highest accuracy in most cases, which validates
the superiority in extracting nonlinear features and useful
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information in TDPB through sequential learning and feature
extracting components.

Table 4 lists the forecasting results for eachmonth of 2021, the
results are worse than the results of 2019, which is mainly caused
by the outbreak of COVID-19. Where the COVID-19 occurs in
the end 2019, the local government introduce policies to restrict
tourism, therefore, the data set of 2020 shows a large fluctuation
comparing to the previous years, in this way, the use of data set
of 2020 has a negative effect on the model building. The results
indicate that our proposed model has a good performance in
June, July, November, and December both in MAE, MAPE, and
RMSE values. However, comparing with other models, the mean
results of our proposed model are superior. After 2020, at the
beginning of each year, the repeat outbreak of COVID-19 makes
the number of tourists is uncertainty. Therefore, the proposed
model is failed to forecast the results of January, February and
so on, but it is adapted by itself after the May. It can be seen
from Table 4 that the proposed scheme obtains the best MAPE in
2021 with 36.38%, and achieves 8.61, 17.09, 26.65, 9.48, 9.16, and
11.50% improvement over DT, ET, GB, LGB, RF, and XGBoost,
respectively. Other two metrics of MAE and RMSE also support
the same conclusions. Similar to 2019, the proposed scheme
outperforms other models.

Comparing Tables 3, 4, it can be found that the MAPE
value of each model in 2021 is obviously higher than in
2019. Different from 2019, 2021 is the time after the COVID-
19 outbreak. As we all known, China government imposes
some travel restrictions during COVID-19. Although some
contingencies are not considered in our scheme, our scheme
still achieves the best accuracy performance, which indicates
that our scheme has stronger robustness. Overall, the above
experimental results demonstrate that the proposed scheme
universally and consistently provide the best accuracy in all
test set. This demonstrates the robustness of our method
against the unexpected factors including travel restrictions.
This also validates the effectiveness of sequential learning
component for capturing the corresponding the difference
in time.

4. CONCLUSION

Chengdu Research Base of Giant Panda Breeding is the top
attractions both at home and abroad. Effective tourism demand
forecasting of Chengdu Research Base of Giant Panda Breeding
can help managements balance the hotel, traffic, and other
public resources. This article proposes an ensemble learning
based model for tourism demand forecasting considering
environmental factors. The proposed scheme can both explore
the sequential relation in tourism time series and extract valuable
correlation in features of the estimate time through sequential
learning component and feature extracting component. The
ensemble method is proposed to fuse multiple forecasting
results from sub-models with reconstructed forecasting input.
Experimental results on the tourism demand time series from
Chengdu Research Base of Giant Panda Breeding demonstrate
that the proposed ensemble learning based model not only
can achieve higher forecasting accuracy, but also has stronger
robustness. Thus, the proposed model holds potential to be
widely applied in tourism industry.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JH: writing, conceptualization, and methodology. DL: modeling
and writing and editing. YG: data collection and processing.
DZ: data processing and model programming. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Central Guidance on Local
Science and Technology Development Fund of Sichuan Province
(2021ZYD0156).

REFERENCES

Bottou, L. (2012). “Stochastic gradient descent tricks,” in Neural Networks:

Tricks of the Trade. Lecture Notes in Computer Science, Vol. 7700, eds
G. Montavon, G. B. Orr, and K. R. Müller (Berlin; Heidelberg: Springer).
doi: 10.1007/978-3-642-35289-8_25

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015).
Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2, 1–4. Available
online at: https://cran.r-project.org/web/packages/xgboost/ (accessed April 26,
2022).

Claveria, O., Monte, E., and Torra, S. (2015). Common trends in international
tourism demand: are they useful to improve tourism predictions? Tour.

Manage. Perspect. 16, 116–122. doi: 10.1016/j.tmp.2015.07.013
Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., and Zeng, W. (2019). Light gradient

boosting machine: an efficient soft computing model for estimating daily
reference evapotranspiration with local and external meteorological
data. Agric. Water Manage. 225, 105758. doi: 10.1016/j.agwat.2019.
105758

Faruk, D. Ö. (2010). A hybrid neural network and ARIMA model for
water quality time series prediction. Eng. Appl. Artif. Intell. 23, 586–594.
doi: 10.1016/j.engappai.2009.09.015

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training
deep feedforward neural networks,” in Appearing in Proceedings of the 13th

International Conference on Artificial Intelligence and Statistics (AISTATS) 2010,
(Sardinia), 249–256.

Gong, M., Bai, Y., Qin, J., Wang, J., Yang, P., and Wang, S. (2020). Gradient
boosting machine for predicting return temperature of district heating system:
a case study for residential buildings in Tianjin. J. Build. Eng. 27, 100950.
doi: 10.1016/j.jobe.2019.100950

Hammed, M. M., AlOmar, M. K., Khaleel, F., and Al-Ansari, N. (2021). An
extra tree regression model for discharge coefficient prediction: novel, practical
applications in the hydraulic sector and future research directions.Math. Probl.

Eng. 2021, 7001710. doi: 10.1155/2021/7001710
Hao, Y., Niu, X., andWang, J. (2021). Impacts of haze pollution on china’s tourism

industry: a system of economic loss analysis. J. Environ. Manage. 295, 113051.
doi: 10.1016/j.jenvman.2021.113051

Frontiers in Ecology and Evolution | www.frontiersin.org 10 May 2022 | Volume 10 | Article 885171200

https://doi.org/10.1007/978-3-642-35289-8_25
https://cran.r-project.org/web/packages/xgboost/
https://doi.org/10.1016/j.tmp.2015.07.013
https://doi.org/10.1016/j.agwat.2019.105758
https://doi.org/10.1016/j.engappai.2009.09.015
https://doi.org/10.1016/j.jobe.2019.100950
https://doi.org/10.1155/2021/7001710
https://doi.org/10.1016/j.jenvman.2021.113051
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


He et al. Tourism Demand Forecasting

Ji, L., Zou, Y., He, K., and Zhu, B. (2019). Carbon futures price forecasting
based with ARIMA-CNN-LSTM model. Proc. Comput. Sci. 162, 33–38.
doi: 10.1016/j.procs.2019.11.254

Kane, M. J., Price, N., Scotch, M., and Rabinowitz, P. (2014). Comparison of
ARIMA and random forest time series models for prediction of avian influenza
h5n1 outbreaks. BMC Bioinformatics 15, 276. doi: 10.1186/1471-2105-15-276

Khademi, Z., Ebrahimi, F., and Kordy, H. M. (2022). A transfer learning-
based CNN and LSTM hybrid deep learning model to classify
motor imagery EEG signals. Comput. Biol. Med. 2022, 105288.
doi: 10.1016/j.compbiomed.2022.105288

LeCun, Y., and Bengio, Y. (1995). “Convolutional networks for images, speech,
and time series,” in The Handbook of Brain Theory and Neural Networks, ed M.
Arbib (Cambirdge, MA: MIT Press), 255–258.

Li, Y., and Cao, H. (2018). Prediction for tourism flow based on lstm
neural network. Proc. Comput. Sci. 129, 277–283. doi: 10.1016/j.procs.2018.
03.076

Liu, X., Peng, H., Bai, Y., Zhu, Y., and Liao, L. (2014). Tourism flows prediction
based on an improved grey GM (1, 1)model. Proc. Soc. Behav. Sci. 138, 767–775.
doi: 10.1016/j.sbspro.2014.07.256

Ozkok, F. O., and Celik, M. (2022). A hybrid CNN-LSTM model for high
resolution melting curve classification. Biomed. Signal Process. Control 71,
103168. doi: 10.1016/j.bspc.2021.103168

Qian, L., Zhao, J., and Ma, Y. (2022). Option pricing based on GA-BP
neural network. Proc. Comput. Sci. 199, 1340–1354. doi: 10.1016/j.procs.2022.
01.170

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016).
Deep convolutional neural networks for computer-aided detection:
CNN architectures, dataset characteristics and transfer learning.
IEEE Trans. Med. Imaging 35, 1285–1298. doi: 10.1109/TMI.2016.25
28162

Singh, K. R., Neethu, K., Madhurekaa, K., Harita, A., and Mohan, P. (2021).
Parallel SVM model for forest fire prediction. Soft Comput. Lett. 31, 00014.
doi: 10.1016/j.socl.2021.100014

Song, Y.-Y., and Ying, L. (2015). Decision tree methods: applications
for classification and prediction. Shanghai Arch. Psychiatry

27,130. doi: 10.11919/j.issn.1002-0829.215044
Wang, H.-J., Jin, T., Wang, H., and Su, D. (2022). Application of ieho-bp neural

network in forecasting building cooling and heating load. Energy Rep. 8,
455–465. doi: 10.1016/j.egyr.2022.01.216

Wang, X. (2022). Research on the prediction of per capita coal consumption
based on the ARIMA-BP combined model. Energy Rep. 8, 285–294.
doi: 10.1016/j.egyr.2022.01.131

Yu, H. (2021). Development of tourism resources based on fpga microprocessor
and convolutional neural network. Microprocess. Microsyst. 82, 103795.
doi: 10.1016/j.micpro.2020.103795

Conflict of Interest: DZ was employed by Chengdu Zhongke Daqi Software Co.,
Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 He, Liu, Guo and Zhou. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 May 2022 | Volume 10 | Article 885171201

https://doi.org/10.1016/j.procs.2019.11.254
https://doi.org/10.1186/1471-2105-15-276
https://doi.org/10.1016/j.compbiomed.2022.105288
https://doi.org/10.1016/j.procs.2018.03.076
https://doi.org/10.1016/j.sbspro.2014.07.256
https://doi.org/10.1016/j.bspc.2021.103168
https://doi.org/10.1016/j.procs.2022.01.170
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1016/j.socl.2021.100014
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1016/j.egyr.2022.01.216
https://doi.org/10.1016/j.egyr.2022.01.131
https://doi.org/10.1016/j.micpro.2020.103795
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


ORIGINAL RESEARCH
published: 26 May 2022

doi: 10.3389/fevo.2022.885955

Frontiers in Ecology and Evolution | www.frontiersin.org 1 May 2022 | Volume 10 | Article 885955

Edited by:

Pei Du,

Xi’an Jiaotong University, China

Reviewed by:

Xiaojia Huang,

Lanzhou University, China

Lu Bai,

University of Macau, China

*Correspondence:

Mengying Hao

mengying.hao@hotmail.com

Specialty section:

This article was submitted to

Environmental Informatics and

Remote Sensing,

a section of the journal

Frontiers in Ecology and Evolution

Received: 28 February 2022

Accepted: 04 April 2022

Published: 26 May 2022

Citation:

Cai F, Yin K and Hao M (2022)

COVID-19 Pandemic, Air Quality, and

PM2.5 Reduction-Induced Health

Benefits: A Comparative Study for

Three Significant Periods in Beijing.

Front. Ecol. Evol. 10:885955.

doi: 10.3389/fevo.2022.885955

COVID-19 Pandemic, Air Quality, and
PM2.5 Reduction-Induced Health
Benefits: A Comparative Study for
Three Significant Periods in Beijing

Fangfang Cai 1,2, Kedong Yin 1,2 and Mengying Hao 3*

1 School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, China, 2 Institute

of Marine Economy and Management, Shandong University of Finance and Economics, Jinan, China, 3 School of

Mathematics and Computer Application Technology, Jining University, Jining, China

Previous studies have estimated the influence of control measures on air quality in the

ecological environment during the COVID-19 pandemic. However, few have attached

importance to the comparative study of several different periods and evaluated the

health benefits of PM2.5 decrease caused by COVID-19. Therefore, we aimed to

estimate the control measures’ impact on air pollutants in 16 urban areas in Beijing

and conducted a comparative study across three different periods by establishing the

least squares dummy variable model and difference-in-differences model. We discovered

that restriction measures did have an apparent impact on most air pollutants, but there

were discrepancies in the three periods. The Air Quality Index (AQI) decreased by

7.8%, and SO2, NO2, PM10, PM2.5, and CO concentrations were lowered by 37.32,

46.76, 53.22, 34.07, and 19.97%, respectively, in the first period, while O3 increased

by 36.27%. In addition, the air pollutant concentrations in the ecological environment,

including O3, reduced significantly, of which O3 decreased by 7.26% in the second

period. Furthermore, AQI and O3 concentrations slightly increased compared to the

same period in 2019, while other pollutants dropped, with NO2 being the most apparent

decrease in the third period. Lastly, we employed health effects and environmental value

assessment methods to evaluate the additional public health benefits of PM2.5 reduction

owing to the restriction measures in three periods. This research not only provides

a natural experimental basis for governance actions of air pollution in the ecological

environment, but also points out a significant direction for future control strategies.

Keywords: COVID-19, control measures, air quality, PM2.5 reduction, health benefit

INTRODUCTION

The international spread of Coronavirus Disease 2019 (COVID-19) is affecting public health
worldwide (Wang et al., 2020a). The first case was detected inWuhan before it rapidly disseminated
throughout China. Afterward, it spread to more than 210 countries and regions (Ali and Alharbi,
2020), developing as an international health threat (Huang et al., 2020). According to the latest
real-time statistics of the World Health Organization, as of 16 March 2022, the total number
of confirmed cases of COVID-19 reached 4.5847 trillion, and the cumulative death toll reached
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more than 6 million1. Since the outbreak of COVID-19, China
has gone through three critical periods for initial epidemic
prevention: the initial outbreak on 23 January 2020, the cluster
of epidemic outbreaks in Beijing’s Xinfadi market on 11 June
2020, and the policy that people stayed at their current residing
localities during the Spring Festival in 2021. As the control
measure of the COVID-19 outbreak was an external interference,
its impact can be quantified by adopting quasi-experimental
approaches. As a result, the three periods provide a unique
opportunity to investigate the air quality response to such
anthropogenic disruptions. The impact of the blockade triggered
by the initial outbreak of COVID-19 in the world has attracted
a great deal of attention (Briz-Redón et al., 2021; Gupta et al.,
2021; Ju et al., 2021; Querol et al., 2021). People were frightened,
and the blockade rules were strictly observed since there was no
known drug or vaccine against the disease when COVID-19 first
broke out during the Spring Festival in 2020 and the epidemic
recurrence in Beijing’s Xinfadi market. This is due to the efforts
of the government and the fear of the people.

During the policy period of staying in place for Chinese New
Year 2021, people were relieved from initial fear following a year
of cohabitation with COVID-19, partial vaccination, and partial
relaxation in industrial sectors to avoid the economic hardships
experienced during the first lockdown cycle (Mahato and Pal,
2022). It is necessary to analyze the impact and differences of
control measures in different stages on air pollution along with
the results of the differences for a more detailed and scientific
air pollution prevention and control strategy. It is universally
known that China implemented an array of dramatic control
measures during COVID-19 to minimize human interaction
and prevent the virus from spreading further (Kraemer et al.,
2020), including staying put during the spring festival, closing
schools and workplaces and implementing remote office and
teaching, canceling public events, restricting gatherings and
traffic, carrying out strict home isolation, and even blocking out
the entire city2.

Undoubtedly, enacting these restrictions was accompanied by
a significant economic loss in addition to affecting the daily lives
of people around the world (Anderson et al., 2020; Meo et al.,
2020; Brodeur et al., 2021). Firstly, the capital market has been
severely impacted due to the disease quickly expanding across the
country. Additionally, countries have imposed travel restrictions
and restricted production activities to prevent the spread from
escalating again, which has triggered concern of an impending
economic crisis and downturn (Nicola et al., 2020). In particular,
the pandemic has also affected the supply of the energy sector,
such as the oil and power sector (Chiaramonti and Maniatis,
2020). The blockade has achieved great success in curbing
COVID-19. For it to work, the world has to deal with severe
economic crises, chronic hunger, mass unemployment, and a
range of other problems (Berkowitz and Basu, 2021; Rasul et al.,
2021), all of which the world is still coping with (Kassa and Grace,

1Reference to the China national emergency broadcasting: http://www.cneb.gov.
cn/2022/03/16/ARTI1647384446343556.shtml.
2Reference to the report on China’s practices in combating COVID-19: http://cn.
chinadaily.com.cn/a/202004/21/WS5e9e45afa310c00b73c786ed.html.

2020). In addition, the fiscal policy effectively contributed to
the economic development in the time duration of the COVID-
19 pandemic thus far (Ren et al., 2022). Generally, the global
pandemic of COVID-19 has had an extensive and far-reaching
impact on the development of the world economy. It will not only
reconstruct the core concepts and fundamental connotations of
economic globalization but also reshape the ecosystem of the
world economy and promote fundamental changes in the global
governance system (Jones, 2020).

Nevertheless, there have been unintentional ecological and
environmental benefits during the pandemic. Much empirical
research has focused on the impact of prevention measures in
the COVID-19 pandemic on air pollution. Zhang et al. (2021)
employed a two-way fixed effects model and an interrupted time-
series analysis to explore the impacts of the control measures
on air pollution during the COVID-19 outbreak. They detected
that the related decrease in air pollutant concentrations was more
evident over time since the lockdown began. Wang et al. (2021)
utilized a difference-in-differences (DID) model to assess the
implication of intra-city mobility declines on air pollution in
325 Chinese cities, finding that cities with restriction measures
have a 12.2% greater decrease in AQI. Furthermore, this reducing
impact varies with distinct types of air contaminants. Lu et al.
(2021) constructed a machine learning prediction model to
quantify changes in NO2, SO2, PM2.5, and PM10 levels induced
by the first-level public health emergency response of 174 cities
in China to COVID-19. They found the short-term emission
control effect ranges from 53.0 to 98.3% for all cities, and
southern cities show a significantly stronger effect than northern
cities (p< 0.01). Compared with megacities, small-medium cities
show a similar control effect on NO2 and SO2, but a larger effect
on PM2.5 and PM10.

Additionally, the change in air pollutants indicated high
spatial heterogeneity. The provinces with a reduction in PM2.5

and PM10 >20 and >40% reduction in NO2 during the impact
period were mainly concentrated southeast of the “Hu Line.”
In addition, different types of cities show different response
and resilience patterns to the pandemic (Zeng and Wang,
2022). Although COVID-19’s blockade has led to a temporary
improvement in air quality (He et al., 2020), it comes at the
cost of curbing economic development. Furthermore, most of
the reduction in pollutant concentrations in 2020–2021 appears
to result from a long-term declining trend rather than COVID-
19 (Hwang and Lee, 2022). Moreover, during the resumption
of work, the economy recovered, and there was an increase
in energy consumption. CO2 and NO2 emissions increased
significantly, reaching the level before the blockade (Zhou et al.,
2022).

Air pollution has caused great damage to the ecological
environment and human health, causing serious economic losses
(Hao et al., 2021). As a result, numerous scholars have carried out
studies on the health benefits of improving air quality in recent
years (Zhang et al., 2007; Chen et al., 2010; Xie, 2011). Several
studies have been conducted on the health effects of COVID-
19 lockdown through their impact on air quality. Wang et al.
(2021) assessed the excess risk (ER) of six pollutants and the AQI
based on health risk (HAQI) to determine the health impacts of
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various air pollutants. They found that PM2.5 was the most health
risk factor and HAQI values were all lower during COVID-19.
Liu et al. (2021) used a novel COVID-19 government response
tracker dataset to quantify the causal impacts of lockdown
measures on air pollution using aDID approach. They discovered
that across the 76 nations and areas involved in the restriction
measures of the COVID-19 outbreak, the estimated avoided
premature deaths owing to air pollution decreases range from
99,270 to 146,649 fatalities. Additionally, Shi et al. (2021) studied
the long-run health implications of reducing PM2.5 during the
Thirteenth Five-Year Plan. They determined the total premature
deaths acquiring the relative risk of PM2.5 exposure from former
research and found that the yearly PM2.5 level decreased from
49.7 µg/m3 in 2015 to 33.2 µg/m3 in 2020. Premature deaths
declined from 1,186,201 and 446,415 in 2015 to 997,955 and
368,786 in 2020, respectively. In Seoul and Daegu, improved air
quality has lowered premature mortality and saved health costs
(Seo et al., 2020).

Moreover, Lam et al. (2022) selected fifteen cities worldwide
to investigate the public health co-benefits of PM2.5 reduction
during a period when various non-pharmaceutical interventions
(NPIs) were adopted in the COVID-19 pandemic. Due to the
high PM2.5 background with a large population, there were
tremendous health co-benefits for cities in India and China. New
Delhi has received the largest co-benefits, saving over 14,700
premature deaths. Bai et al. (2022) examined the PM2.5 variations
between the COVID-19 lockdown and found that the national
average of PM2.5 decreased by 18 µg/m3, and the mean PM2.5

for most sites decreased by 30–60%. The total avoided premature
death due to PM2.5 reduction is 9,952 in China, with a dominant
contribution (94%) from anthropogenic emission changes.

Beijing is one of the capital economic centers. It is regarded
as a major metropolis globally, playing a vital role in political,
economic, cultural, scientific, and technological innovation.
However, air pollution has long been a major concern in this
area, particularly during the winter (Vu et al., 2019). Due to the
peculiar geography, air pollution in this location is frequently
more severe than in other places when weather conditions are
adverse (Wang et al., 2017). In addition, Beijing was impacted
by contaminants carried from other locations in addition to local
air pollution, particularly during periods of serious air pollution
(Zhang et al., 2015). Furthermore, since the implementation
of the restriction policy after the initial COVID-19 epidemic,
except for power plants and large enterprises, almost all factories
have been closed and traffic was also restricted. Moreover,
Beijing is the city with the highest proportion of people, as
high as 70.9%, staying put during the Spring Festival in 20213.
Such restrictions should have greatly improved the state of the
ecological environment. However, severe regional air pollution
persisted despite the adoption of stringent controls, and greater
efforts should be made to avert heavy air pollution (Wang et al.,
2020b).

There have been substantial studies conducted on the
influence of preventive and control measures on air pollutants
all over the world since the outbreak of COVID-19 which have

3The data comes from Zhaopin recruitment: https://www.zhaopin.com/.

drawn some meaningful conclusions. However, there are still
at least three deficiencies in most existing studies, which are of
great research value or significance. Firstly, most studies merely
analyze the situation in a specific period without comparative
studies on diverse periods. Suppose the distinctions in different
periods and the causes of the differences are ignored. It is not
adequate to dig out more factors that need to be considered
to prevent and control air pollution. Secondly, the data scale
used in most studies is provincial data. However, there are gaps
in economic development and the natural environment among
various regions in the same province. Therefore, a unified air
pollution control strategy cannot be adapted to local conditions.
Thirdly, most studies solely analyze its impact on air quality
without additional research value. However, our ultimate goal
in improving air quality is to minimize the damage to human
health and economic losses. As a result, the assessment of related
health benefits can make us feel the benefits of air pollution
prevention, encouraging human beings to take the initiative
to reduce emissions and air pollution. The research focus of
this study attempts to make up for the deficiency of the above
research. This study aims to (i) determine whether the COVID-
19 control measures have a causal impact on the air quality;
(ii) evaluate the health benefits and avoidable economic costs
due to changes in PM2.5 concentration during COVID-19; and
(iii) carry on the comparative analysis of three critical periods
in China regarding the impact of restriction measures on air
pollution, health benefits, and avoidable economic losses of PM2.5

changes due to COVID-19.
Our study adopted data including daily air pollutant

concentrations, meteorological information of 16 urban areas in
Beijing, and designed the least squares dummy variable model
and DID method to evaluate the implication of the initial
COVID-19 breakout, the reemergence of the epidemic in the
Xinfadi market, and the policy period that people stayed in place
for Lunar New Year of 2021, respectively. We discovered that
restriction measures did have an apparent impact on most air
pollutants, but there were discrepancies in the three periods.
The AQI fell by 7.8%, and SO2, NO2, PM10, PM2.5, and CO
concentrations were lowered by 37.32, 46.76, 53.22, 34.07, and
19.97%, respectively, during the initial outbreak of COVID-
19 in 2020, while O3 increased by 36.27%. In addition, the
air pollutants concentrations in the ecological environment,
including O3, reduced significantly, of which O3 decreased
by 7.26%, and AQI and PM2.5 fell by 22.61% and 45.12%,
respectively, when the epidemic outbreak occurred in Beijing’s
Xinfadi market. Moreover, AQI and O3 concentration increased
slightly in comparison to the same period in 2019, while
other pollutants dropped, with NO2 being the most apparent
decrease during the policy of staying in place for the Lunar New
Year of 2021. And Spring Festival had a great impact on the
concentration of NO2 and CO.

In addition, based on health-related data, such as exposed
population and outpatient morbidity and mortality, we
innovatively estimated the health benefits and avoided economic
costs brought by the changes in PM2.5 pollution as a result of the
pandemic. Specifically, we applied Poisson regression relative
risk models and environmental value evaluation approaches to
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analyze the avoided health risks and economic losses of PM2.5

reduction in the 16 municipal districts of Beijing in these three
periods, adopting the secondary standard limit of 35 µg·m−3. In
other words, we used the impact of control measures on changes
in air pollutants to calculate the indirect health impacts of the
pandemic. We found differences in health effects and avoided
economic loss among the three periods in each urban area due
to the gaps in PM2.5 changes, exposure population, outpatient
incidence, and mortality in different urban areas. In addition,
the avoided total health and economic loss owing to the PM2.5

reduction affected by the restriction actions in three pandemic
periods were 82,747.65 million yuan [95% CI (3,406.4, 10,879.1)],
11,143.71 million yuan [95% CI (3,826.43, 16,949.1)], and 871.65
million yuan [95% CI (350.54, 1,165.95)], respectively.

The main innovations and contributions of this research are
as follows:

(a) Previous research merely studied and compared the air
pollutant concentrations over a year or months before and
after the outbreak. The unique characteristics of different
critical periods have received little attention. In this study,
we carried out targeted research for various crucial periods
in China. We made comparisons both in the changes in air
pollutant concentrations and indirect health benefits of the
COVID-19 epidemic by affecting PM2.5 pollutants. Targeted
and more detailed control measures for serious air pollution
can be formulated by exploring the particularity of different
vital epidemic periods.

(b) Most former studies have relied on relatively macro and
large-scale data from various countries, provinces, or cities
to carry out their research. However, there are distinctions
in the ecological environment, resource elements, air quality,
and the intensity of control measures in specific regions,
such as towns or urban areas, which cannot be generalized.
Consequently, district-level and low-scale data are adopted
to conduct research for elaborate prevention, control, and
governance of regional air pollution.

(c) We still have no idea how the specific value of such changes
is reflected in our daily lives if the study solely reports
how and to what extent COVID-19 affects variations in air
pollutant concentrations. Further research value is assessed
in this study, which includes the health effects and economic
benefits of PM2.5 reductions induced by COVID-19. This
work will present more valuable information for air pollution
prevention and control decision-makers. Still, it will also play
a vital role in implementing early warning and prevention
measures related to air pollution and human health.

The following is the organization of the rest of the study.
Section Methodology explains the empirical strategy and
the value assessment methods. Section Data describes the
data sources and processing. Section Empirical Study on the
Effect of Control Measures on Air Quality discloses the
effects of restriction efforts on air quality over three periods,
respectively. Section PM2.5 Reduction-Induced Health Benefit
Evaluation assesses the indirect health effects and avoided
economic loss of the prevention actions in the COVID-19
pandemic by affecting air pollution. Section Discussions on

Recommendations for Meticulous Control of Air Pollution
discusses the recommendations of control measures to improve
air quality, and Part 7 contains the conclusions. The flowchart of
this study is as follows (Figure 1).

METHODOLOGY

This section describes the methods adopted in this article, and it
consists of two parts. Part one is the empirical strategy and part
two is the value assessment methods.

Impact of Restriction Measures on Air
Pollution
The empirical model was mainly utilized to evaluate the impact
of control measures on air pollutants in three periods. The least-
squares dummy variable model and DID model were used in
this study.

Least Squares Dummy Variable Model
First, we adopted the least squares dummy variable (LSDV)
method to explore the impact of the Chinese New Year in 2020
and COVID-19 restrictions on air pollution. Hence, this study
mainly used an urban panel data model with a fixed effect,
as follows:

ln pit = α0 + α1Covid + α2Holidays+ α3Other holidays

+θ1Wit + ϑ1Xit + µi + πt + εit (1)

where ln Pit represents the explained variable, which is obtained
by logarithmizing the daily average concentration of air
pollutants in region i on day t. The value of “Covid” was 1
if the day falls within the initial COVID-19 epidemic period
(24 January 2020–29 February 2020). “Covid” denoted the core
explanatory variable for this model. If COVID-19’s prevention
and control measures can improve air quality, its regression
coefficient should be significantly negative. “Holiday” was 1 when
it falls within Chinese New Year (4 February 2019–10 February
2019 or 24 January 2020–2 February 2020). If not, it has a value
of 0. It belongs to a dummy variable. “Other holidays” connotes
the dummy variable for vacations except for Chinese New Year.
Wit represents the weather variables in region i on day t. They
are variables added to control the influence of meteorological
conditions on air pollutants. Xit denotes other control factors,
incorporating the impact of Month. µi connotes urban fixed
effects, which is used to control regional heterogeneity. πt

represents the date fixed effects and εit denotes the error term.
Second, we still employed the LSDV model to analyze the

influence of the outbreak of COVID-19 in Beijing’s Xinfadi
market on air contaminants. Our main method is following:

ln p̃it = β0 + β1Market + β3Other holidays+ θ2Wit

+ϑ2Xit + µi + πt + εit (2)

The COVID-19 epidemic broke out in Beijing’s Xinfadi market
on 11 June 2020, and the number of cases was not cleared until
6 August 2020. As a result, the value of “Market” was 1 if the day
falls within the epidemics outbreak period in Beijing’s Xinfadi
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FIGURE 1 | The flowchart of the research.
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market (11 June 2020–6 August 2020). “Other holidays” is a
dummy variable for holidays during the epidemic outbreak in the
Xinfadi market. The explanation of lnP̃it , Wit , Xit , µi, πt , and εit
is the same as the equation (1).

Differences-In-Differences Model
The DID model (Jiménez and Perdiguero, 2017) has been
frequently utilized to assess the causal influence of control
measures taken by the government on the atmosphere and to
distinguish policy effects from other impacting variables. These
models may avoid uncontrolled and unexpected factors in the
time leading up to and after adopting the regulations (Li and Lin,
2017).

As the policy of staying put during the Spring Festival in
2021 coincided with the Chinese Spring Festival in 2021, which
influences factory production, people’s travel, and entertainment,
separating the impact of the Spring Festival holiday effect
becomes indispensable (Fu and Gu, 2017). Consequently, this
study uses the DID model to estimate the impact of a policy,
which stated that people stayed in place for the Lunar New Year
in 2021, on air quality. The experimental group consisted of air
quality data from 2021, while the control group consisted of
data from the same time in 2019 due to the unusual epidemic
and complicated situation in the Chinese New Year 2020. We
collected data for 10 days before and after the Chinese New
Year in 2021 (1 February 2021–21 February 2021) and 2019 (25
January 2019–13 February 2019). The DID model goes like this:

ln Pit = δ0 + δ12Holiday× Treat + δ1Holiday

+δ2Treat + θ3Wit + µi + πt + εit (3)

where “Treat” belongs to a grouping dummy variable whose value
was 1 if it falls within 2021, and it took the value 0 for 2019. The
value of “Holiday” was 1 when it falls after the Chinese New Year
(4 February 2019 or 11 February 2021) during the sample period.
The interaction term “Holiday×Treat” connotes the policy effect
of staying put during the holiday of LunarNewYear’s Eve in 2021.

Hausman test is applied to determine whether the model is
valid, and we have corroborated that the usage of fixed effects
in Equations (1, 2) is reasonable. The explained variables in all
equations take the value of its logarithm to eliminate potential
heteroscedasticity and decrease data fluctuations. The relative
variations are easier to grasp (Bel and Holst, 2018; Lin and Zhu,
2019).

PM2.5 Reduction-Induced Health Effects
and Economic Benefits
This section is the methods employed in three steps of health
benefits assessment. First, we evaluated the environmental health
effect combined with the Poisson regression relative risk model
and the relation coefficient β of exposure-response model.
Second, we assessed the environmental health value using the
value of a statistical life. Third, we evaluated the health and
economic benefits according to the calculated results of each
health endpoint’s health effects and unit economic value in the
previous two steps.

TABLE 1 | Exposure-response coefficients of PM2.5 and the occurrence rates

under health endpoints.

Diseases Health

endpoints

E Value (%) β Value (95% CI)

Death Early death 0.539 0.296 (0.076, 0.504)

Hospital

admissions

Disease of

respiratory

system

1.33 0.109 (0.000, 0.221)

Cardiovascular 0.69 0.068 (0.043, 0.093)

Outpatient

service

Department of

pediatrics (≤14

years old)

7.25 0.056 (0.020, 0.090)

Internal medicine

(>15 years old)

22.33 0.049 (0.027, 0.070)

Diseases Acute bronchial 3.72 0.790 (0.270, 1.300)

Chronic

bronchitis

0.694 1.009 (0.366, 1.559)

Asthma 0.94 0.210 (0.145, 0.274)

Sources from Kan and Chen (1989), Xie et al. (2009), and Liu et al. (2010); Beijing

Municipal Bureau of Statistics; Statistical Information Center of National Health and Family

Planning Commission. β represents the percentage increase (%) of the morbidity and

mortality per 10 µg/m3 of the PM2.5 rise. CI, confidence interval.

Environmental Health Effect Assessment
Below, the estimation equation simulates the associated
population health risks (Huang et al., 2012). This expression
illustrates the correlations between changes in PM2.5

concentration and changes in human health endpoints.

E = E0× exp[β(C − C0)] (4)

1E = P×(E− E0) (5)

where C denotes the daily PM2.5 concentration and C0 represents
the limit of the secondary concentration of PM2.5 pollutants.
In this article, we chose 35 µg/m3 as C0. P is the number of
exposed populations. This study selects the resident population
at the end of the year to replace. β indicates a coefficient in
the explosion-response relationship that connotes the percentage
of the health impacts of variation for each 10 µg/m3 rise in
PM2.5 levels, as indicated in Table 1. E and E0 are the health
effects under C and C0 concentrations, respectively, and 1E is
the change of health effects. According to the existing research
(Huang and Zhang, 2013; Xie et al., 2014; Li et al., 2017a),
the selected health endpoints affected by PM2.5 are premature
death, respiratory disease hospitalization, cardiovascular disease
hospitalization, internal medicine clinic, pediatrics clinic, acute
bronchitis, chronic bronchitis, and asthma. Additionally, the
variations of the health impacts (1HE) induced by PM2.5 can
be acquired utilizing the formula below based on the exposure
population (Pop).

1HE=Pop× (E− E0) = Pop× E×

[

1−
1

exp(β × (C − C0))

]

(6)

Research on exposure-response relationship coefficients was
conducted to increase the reliability of air pollution damage
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to residents and reduce errors as much as possible. Numerous
scholars, such as Kan et al. (2004), Xie et al. (2009), Lv
and Li (2016), have ultimately proposed an exposure-response
relationship coefficient that is suitable for China taking into
account differences in pollutant concentrations at home and
abroad and also the different effects of pollutants such as PM2.5

on various races and populations. Table 1 shows the relationship
coefficient (β) of exposure-response model and the benchmark
incidence (E value) of corresponding health endpoints based on
previous research findings.

This study adopted the achievement reference method since
the relative deficiency of the latest analyzed data in China. The
incidence of premature death was acquired from the Beijing
Regional Statistical Yearbook (CSY., 2020) and the Statistical
Bulletin of National Economic and Social Development 4

published on the Beijing Bureau of Statistics’ official website. The
hospitalization rates of respiratory and cardiovascular diseases
were attained from the Fifth National Health Service Survey and
Analysis report released by the Statistical Information Center of
the National Health and Family Planning Commission 5 in 2015.
Additionally, the incidence of medical and surgical outpatients
was estimated from the percentage of Beijing’s medical and
surgical outpatients in the total number of outpatients according
to the literature (Kip Viscusi et al., 1991; Xie et al., 2015; Lv and
Li, 2016). Finally, the baseline incidence (E value) of acute and
chronic bronchitis and asthma was determined concerning the
research results of predecessors.

Environmental Health Value Evaluation
The value of a statistical life (VOSL) is how residents are willing to
lower the risk of death by employing money. This study applied
the VOSL method to assess the economic cost of premature
death due to PM2.5 based on VOSL research results in Beijing
(Xie, 2011; Huang and Zhang, 2013). In recent years, Beijing
residents’ statistical life expectancy value has been estimated
by adopting per capita gross domestic product (GDP) and the
Consumer Price Index (CPI) (Matus et al., 2012; Lu et al., 2017;
Giannadaki et al., 2018; Maji et al., 2018). The following is the
calculation method:

VOSLt = VOSLk×(1+%1P +%1G)β1 (7)

where VOSL t and VOSL k are Beijing’s statistical life value in t
and k years, respectively, %1P and %1G are the growth rates of
CPI and per capita GDP in Beijing from k to t years. β1 is the
coefficient of income elasticity, and its value in this study is 0.8
(Lanzi et al., 2016).

The disease cost approach is utilized to estimate outpatient
and hospitalization expenses in this study. The economic loss
induced by outpatient and hospitalization expenses includes two

4Beijing Municipal Bureau of Statistics: Statistical Bulletin of National Economic

and Social Development in Beijing (2019). Available online at: http://tjj.beijing.
gov.cn/tjsj_31433/sjjd_31444/202003/t20200302_1673395.html (accessed August
18, 2020).
5Statistical Information Center of National Health and Family Planning
Commission. (2015). 2013 Report on the Fifth National Health Service Survey and

Analysis. Beijing: China Union Medical University Press.

parts: the outpatient and hospitalized medical costs per capita
and the lost work time due to disease treatment. The unit cost
estimation formula is as follows (Zhang et al., 2007):

ECi = ECi,p + (GDPp×Ti,L) (8)

where i is the ith health endpoint, ECi is the unit economic loss
of outpatient or hospitalization, ECi,p is the per capita medical
expense, including direct and indirect medical expenses, GDPp
represents the cost of absenteeism per capita on a daily basis,
estimated by the daily per capita GDP, and Ti,L is the number
of days of absenteeism caused by treating ith health endpoint
diseases. The time spent missing work in the outpatient clinic is
calculated using a 0.5-day rule (Wei and Shi, 2018; Han et al.,
2019). In addition, the outpatient expenses are taken from the
China Health and Family Planning Statistical Yearbook of 2020
issued by the National Health and Family Planning Commission.
The hospitalization expenses and length of stay are obtained by
adopting Wei and Shi’s (2018) estimation method.

Since chronic bronchitis treatment is slow, the treatment costs
are difficult to calculate. Consequently, the disease cost method is
not suitable for determining its economic cost. This study applied
the achievement reference method to estimate chronic bronchitis
according to 32% of Kip Viscusi’s et al. (1991) statistical life
value. Additionally, the unit economic loss of acute bronchitis
was calculated by outpatient cost according toHuang and Zhang’s
(2013) ratio of the unit economic value of outpatient clinic to
acute bronchitis. Table 2 shows the average hospitalization or
outpatient days, medical expenses, and unit economic loss cost
for each health endpoint.

Health and Economic Benefits Evaluation
Eventually, the overall economic loss of health impacts induced
by PM2.5 can be evaluated utilizing the formula below (Yin et al.,
2017).

EL =
∑

1HEi × Vi (9)

where EL denotes the overall health and economic benefits of
residents brought by PM2.5 reduction and Vi connotes the unit
economic value of the i th health endpoint, obtained by the
equation below (Hammitt and Robinson, 2011).

VBeijing_2020 = VBeijing_2009 ×

(

IncomeBeijing_2020

IncomeBeijing_2009

)e

(10)

where IncomeBeijing_2009 and IncomeBeijing_2020 represent Beijing’s
income in 2009 and 2020 correspondingly, e is the elastic
coefficient, and then the VBeijing_2009 and VBeijing_2020 are the
values of 2009 and 2020 correspondingly in Beijing. The
economic value in 2020 (VBeijing_2020) can be acquired referring
to the IncomeBeijing_2009 in Hammitt and Robinson (2011) and
Equation 10.
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TABLE 2 | Days of hospitalization, outpatient service and their medical expenses for health endpoints and unit economic loss value in 2020.

Average hospitalization days Average hospitalization cost per time

Cardiovascular Disease of the

respiratory system

Asthma Cardiovascular Disease of

the

respiratory

system

Asthma

8.1 10.2 10.7 30381.3 8150.03 11196.5

Hospitalization

VSL (unit: Ten thousand yuan per person) Disease of

respiratory system

(unit: Yuan per person)

Cardiovascular (unit:

Yuan per person)

Outpatient service (unit:

Yuan per person)

374.7 13466.4 34748.5 807.4

Average outpatient days per case(unit: Yuan per case) Average outpatient

expenses per case

(unit: Yuan per case)

Indirect cost per case

Hospitalization Outpatient service

0.5 561.4 706 20

Acute bronchial (unit: Yuan per person) Chronic bronchitis (unit:

Yuan per person)

Asthma (unit: Yuan per

person)

Average GDP per

person per day (unit:

Yuan)

3915.9 119.9 16032.9 452

The data are derived from Xie et al. (2015) and the relevant literature described in Sections Environmental Health Value Evaluation or are estimated through the formulas, and related

methods in Section Environmental Health Value Evaluation of this study.

DATA

This section describes the data sources and processing in
empirical analysis and health benefits assessment of PM2.5

pollution, respectively, including air quality and meteorological
data required in empirical analysis, and related data employed in
health benefits assessment of PM2.5 pollution.

Air Quality and Meteorological Data
Air quality data was taken from the Qingyue Open Environment
Data Center 6. We attained relevant air quality data, including the
daily AQI, PM2.5, PM10, SO2, NO2, CO, and O3 concentrations
from 16 urban areas in Beijing from the following periods: (i)
1 January 2019–29 February 2020, the period containing the
Chinese New Year 2020 and the initial COVID-19 outbreak;
(ii) 11 June 2020–6 August 2020, the period including the
outbreak of Beijing’s Xinfadi market from the beginning to the
end; and (iii) 1 February 2021–21 February 2021, the period
containing the implementation of policy that people stayed in
place for Lunar New Year in 2021. Meteorological data were
sourced from Huiju data7 and the National Meteorological
Information Center8. We gathered daily meteorological data of
three periods same as air quality information, including mean
temperature, mean relative humidity, mean wind speed, and
precipitation (accumulated over 8 h) on a daily basis for 16 urban
districts in Beijing. Table 3 presents the summary statistics of our
important variables.

6The Qingyue Open Environment Data Center. Available online at: http://dataold.
epmap.org/.
7Huiju Data. Available online at: http://hz.hjhj-e.com/home/.
8The National Meteorological Information Center. Available online at: http://www.
nmic.cn/.

Data Related to Health Benefit Evaluation
of PM2.5 Pollution
The GDP, per capita GDP, CPI, and year-end resident population
(exposed population) data in various districts of Beijing are
obtained from the Beijing Regional Statistical Yearbook of
2020 (CSY., 2020) or the Beijing Bureau of Statistics (or
government), the Beijing District Bureau of Statistics (or
government), and the official website of the National Bureau
of Statistics9, etc. In addition, the mortality, morbidity,
per capita hospitalization, and outpatient expenses were
obtained or estimated from the Beijing Regional Statistical
Yearbook of 2020, the Statistical Bulletin on National
Economic and Social Development of Beijing in 2020
published by the Beijing Municipal Bureau of Statistics10,
the Statistical Information Center of National Health and Family
Planning Commission11, and survey data from the China
Asthma Alliance.

It is challenging to acquire or estimate detailed
data, such as mortality, the statistical value of life,
prevalence rate, outpatient, hospitalization expenses, and
length of stay, for each district in Beijing. Therefore,
this study uniformly adopts the corresponding data of
Beijing in the same year. Moreover, this article uses the
corresponding data in the next year or the preliminary
accounting data from the district people’s government

9The National Bureau of Statistics. Available online at: http: //www.stats.gov.cn/.
10Beijing Municipal Bureau of Statistics. Statistical Bulletin on National Economic

and Social Development of Beijing in 2020. Available online at: http://www.beijing.
gov.cn/zhengce/gfxwj/sj/202103/t20210312_2305538.html.
11The Statistical Information Center of National Health and Family Planning
Commission. (2020). China Health and Family Planning Statistical Yearbook.

Beijing: China Union Medical University Press.
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TABLE 3 | Summary statistics of key model variables.

Variables Unit Obs. Mean Std. Dev. Min Max

Panel A. 2020 sample: the initial COVID-19 outbreak

AQI N/A 6,800 87.81 48.35 15 433

PM2.5 µg/m3 6,800 45.56 39.21 3 399

PM10 µg/m3 6,800 70.74 46.71 2 457

SO2 µg/m3 6,800 4.516 3.245 1 37

NO2 µg/m3 6,800 34.95 18.24 2 116

CO mg/m3 6,800 0.726 0.421 0.100 3.600

O3 µg/m3 6,800 92.39 58.21 2 316

Temperature ◦C 6,800 11.95 11.49 −8.500 32.20

Humidity % 6,800 47.77 18.48 10 92

Wind speed m/s 6,800 1.615 0.810 0.300 4.600

Precipitation mm 6,800 1.060 4.166 0 37.50

Panel B. 2020 Xinfadi sample: the epidemics outbreak in Beijing’s

Xinfadi market

AQI N/A 2,544 85.90 36.50 30 209

PM2.5 µg/m3 2,544 33.28 21.85 3 129

PM10 µg/m3 2,544 63.23 35.14 11 323

SO2 µg/m3 2,544 3.395 1.925 1 17

NO2 µg/m3 2,544 23.57 11.05 2 71

CO mg/m3 2,544 0.545 0.257 0.100 1.600

O3 µg/m3 2,544 127.9 48.46 30 309

Temperature ◦C 2,544 20.11 7.471 2.100 31.70

Humidity % 2,544 48.91 18.78 11 90

Wind speed m/s 2,544 2.779 2.072 0.800 8.800

Precipitation mm 2,544 1.226 3.902 0 25.80

Panel C. CNY2021 sample: the policy period of staying in place for

Chinese New Year 2021

AQI N/A 640 80.17 56.69 27 324

PM2.5 µg/m3 640 50.89 49.89 4 274

PM10 µg/m3 633 80.31 55.87 11 355

SO2 µg/m3 640 5.370 3.397 1 22

NO2 µg/m3 640 27.59 16.30 2 92

CO mg/m3 640 0.762 0.474 0.200 3.200

O3 µg/m3 640 64.05 17.49 18 152

Temperature ◦C 640 0.0950 3.792 −7.300 9.200

Humidity % 640 34.52 18.31 11 87

Wind speed m/s 640 1.940 0.984 0.600 4.700

Precipitation mm 640 0.0300 0.159 0 1

and the Bureau of Statistics to supplement the missing or
unpublished data.

EMPIRICAL STUDY ON THE EFFECT OF
CONTROL MEASURES ON AIR QUALITY

This section indicates the effect of restriction measures during
the COVID-19 outbreak on the air pollutant concentrations in
three significant periods. Each period has two parts: the graphical
analysis and empirical model regression results.

The Initial COVID-19 Outbreak in 2020
In this part, we firstly analyzed the changes in air contaminants
during the initial COVID-19 outbreak in 2020 based on
the variation of pollutant concentration distribution diagrams.
Secondly, we conducted a further simulation and indicated the
influence of preventive measures on air pollution based on LSDV
model regression results.

The Variation of Pollutant Concentration Distributions
As a visual demonstration of changes in air pollutants, the
mapping tool in ArcGIS10.2 was employed to graphically portray
the pollutant concentration distributions of 16 urban areas in
Beijing. The work is achieved by comparing the emissions of
air contaminants in each urban area before and after taking
measures to stop the further spread of the COVID-19 epidemic.
As shown in Figure 2, the temporal and spatial distribution
of different air pollutants in various urban areas has obvious
heterogeneity. Specifically, except for no significant change in the
O3 concentration, the AQI and other air pollutant concentrations
seem to be much lower than the normal concentration during
the epidemic prevention and control measures, which provides
supporting evidence for the effectiveness of epidemic control
efforts to decrease air pollution. In the following section, we
further simulate the effect obtained by the LSDV model.

The Impact of Control Efforts on air Pollution
First, we conducted a regression employing the LSDV model on
the influencing variables of air pollution from 1 January 2019 to
29 February 2020, as shown inTable 4. We discovered that except
for the increase in O3, which increased by 36.27%, other air
pollutant concentrations declined significantly when restriction
measures were implemented, indicating that they have alleviated
the air pollution. The AQI dropped by 7.8%, while NO2 reduced
by 46.76%. At the same time, PM2.5, SO2, PM10, and CO had
different degrees of decline, which fell by 34.07, 37.32, 53.22,
and 19.97%, respectively. Spring Festival had a great impact on
the concentration of NO2. Furthermore, other holidays reduced
pollutants even if their impact on PM10 and O3 was small. In
addition, related weather variables explain plenty of changes in
air pollutant concentrations. The time variable (month) shows
the long-run temporal tendency of the monthly fluctuation of
air pollutants (Wang et al., 2010) and substantially impacts air
quality. These constants are statistically crucial because they
effectively balance the errors that other terms in the model do
not take into account and ensure that the residual’s average value
is zero.

Mobility restrictions and rapid reduction of pollutants emitted
by vehicles and industry following the lockdowns are possible
explanations for short-term air quality improvement (Dang
and Trinh, 2021; Jiang et al., 2021). The decline in economic
activity and traffic restrictions during the epidemic directly led to
changes in China’s energy consumption, resulting in a decline in
carbon emissions and air pollution levels, alleviating ecological
and environmental pollution (Muhammad et al., 2020). Due to
the restrictions on human activities and traffic, the pollutant
concentrations in China have sharply dropped in a few days,
especially NO2 and PM10 (Dutheil et al., 2020; Liu et al., 2020).
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FIGURE 2 | Variations of AQI, SO2, PM2.5, PM10, NO2, CO and O3 concentration distribution before and after control measures.

O3 participates in photochemical reactions, and its concentration
is often opposite to the change of emission due to the non-linear
characteristics of the chain reaction (Kim et al., 2017).

The COVID-19 Resurgence in the Xinfadi
Market
In this part, we firstly analyzed the variations in air quality
during the cluster of COVID-19 outbreaks in Beijing’s Xinfadi
market based on the changing trend of pollutant concentrations
diagrams. Secondly, we further simulated and revealed the
relationship between control measures and air quality based on
LSDV model regression results.

The Changing Trend of Pollutant Concentrations
As a visual demonstration of changing trend in pollutant
concentrations, we used the mapping tools in Minitab19 to
graphically describe the time trend of each pollutant. This is
achieved by comparing the emissions of air pollutants in 16
urban areas of Beijing before and after the outbreak in the Xinfadi
market. As illustrated in Figure 3, the pollutant concentrations
in each urban area briefly decrease after taking measures, in

which PM2.5 is the most obvious and the decline of AQI is
relatively slow. In addition, the concentrations of PM2.5, CO, and
AQI have an upward trend after a period of control measures.
The time trends of different air pollutants in various urban areas
are generally similar, proving evidence of the effectiveness
of epidemic control measures to reduce air pollution.
Below, we will further simulate the effect derived from the
LSDV model.

The Effect of Restriction Actions on Air Quality
Second, we still implement a regression applying the LSDV
method on the contributors impacting air pollution from 11
June 2020 to 6 August 2020 (Table 5). Similar to the first
period, findings revealed that enacting prevention measures
during Beijing’s Xinfadi market outbreak significantly lowered
air pollutant concentrations. The AQI dropped by 22.6% and
NO2 reduced by 34.6%. Meanwhile, PM2.5, SO2, PM10, and CO
concentrations fell by 45.1, 35.0, 46.7, and 18.5%, respectively,
indicating that control measures improved air quality. PM10

and PM2.5, related to vehicle exhaust emissions and industrial
processes, declined most obviously. Compared with the first
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TABLE 4 | Panel model regression results using least squares dummy variable (LSDV).

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

Covid −0.078*** −0.3407*** −0.5322*** −0.3732*** −0.4676*** −0.1997*** 0.3627***

(0.0245) (0.028) (0.0391) (0.0359) (0.0284) (0.0177) (0.0218)

Holiday 0.1071*** 0.1299*** 0.209*** 0.1526*** −0.4374*** −0.0326 0.3366***

(0.0185) (0.0185) (0.0334) (0.0376) (0.0203) (0.0242) (0.0191)

Other holidays −0.1501*** −0.1455*** −0.0389* −0.1211*** −0.1701*** −0.1827*** −0.0147*

(0.0083) (0.0094) (0.0194) (0.0229) (0.0186) (0.0124) (0.0079)

Temperature 0.012*** −0.0113*** −0.0008 −0.0098*** −0.0118*** −0.0123*** 0.0568***

(0.0014) (0.0014) (0.0013) (0.0021) (0.0015) (0.0014) (0.0016)

Humidity 0.0095*** 0.0243*** 0.0057*** −0.0035*** 0.0014** 0.0146*** −0.006***

(0.0002) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Wind speed −0.1143*** −0.2325*** −0.16*** −0.2123*** −0.3506*** −0.2118*** 0.0948***

(0.011) (0.0125) (0.0074) (0.0167) (0.0083) (0.01) (0.0099)

Precipitation −0.0265*** −0.0291*** −0.0196*** −0.0001 −0.0142*** −0.0117*** −0.0065***

(0.0005) (0.0008) (0.0008) (0.0011) (0.0012) (0.0005) (0.0003)

Month −0.0331*** −0.0692*** −0.0305*** −0.0527*** −0.0059** −0.0304*** −0.0496***

(0.0013) (0.0014) (0.0021) (0.003) (0.0023) (0.0015) (0.0015)

Constant 4.158*** 3.3017*** 4.2962*** 2.2897*** 4.1587*** −0.4611*** 4.0006***

(0.0441) (0.0577) (0.0359) (0.0796) (0.0333) (0.0538) (0.0306)

Urban fixed effect Yes Yes Yes Yes Yes Yes Yes

Observations 6,800 6,800 6,676 6,797 6,800 6,800 6,800

R-squared 0.2685 0.3948 0.1319 0.2831 0.4568 0.4834 0.6574

*, **, *** represent significance at the 10, 5, and 1% levels correspondingly.

period, the reduction of PM10, SO2, NO2, and CO was less.
The recurrence of the outbreak in the Xinfadi market was
only a small-scale aggregated outbreak in Fengtai District and
was brought under control in about a week. Furthermore,
Industrial sectors return to work and production with partial
relaxation of the epidemic’s control measures to avoid the
economic hardships experienced during the first lockdown. In
addition, appropriate people’s travel and traffic flow are allowed,
which might explain these results. It is worth mentioning
that the O3 concentration has also decreased by 7.26%, which
may be the reduction and dispersion of emissions in NOx
and volatile organic compounds (VOCs) precursors (Yang
et al., 2019). Other festivals have a greater impact on PM10

and PM2.5 and less impact on NO2, SO2, CO, which may
be due to restrictions on travel, play, and related activities
since the initial outbreak of COVID-19 in 2020. Thus, NO2,
SO2 and CO levels have few changes during the epidemic
outbreak of Xinfadi market. Meteorological factors also show
strong explanatory power that is coherent with the previous
regression findings.

The Policy Period of Staying in Place for
Lunar New Year in 2021
In this part, we first compared the air quality changes in the
policy period of staying in place for Lunar New Year based on the
comparison of pollutant concentrations variations between 2020
and the same period in 2019. Secondly, we further simulated and
indicated the impact of control measures on air quality based on
DID model regression results.

The Comparison of Pollutant Concentrations With

2019
For a visual representation of the comparison between the
control and the treatment groups in air pollution, we used
the mapping tools in Minitab19 to graphically describe
the time trends before and after the Spring Festival in
2019 and 2021. As shown in Figure 4, except for O3, the
concentrations of all pollutants decreased during the Spring
Festival policy in 2021, especially that of AQI, PM2.5, and
PM10. In addition, for a period after the end of the
policy, the concentration of pollutants in 2020 was often
lower than that in 2019, which provides evidence of the
effectiveness of epidemic control measures to reduce air
pollution. Below, we will further simulate the effect acquired from
DID model.

The Influence of Control Measures on Air Quality
Finally, we adopted the DID model to explore the impact
of the policy period people stayed put during the Spring
Festival in 2021 on air quality. This model can quantify the
net impact of prevention efforts on air pollutants in the
COVID-19 pandemic by separating restriction measures from
the Chinese New Year holiday effect. The air quality data in
2019 were chosen as the control group (no controls), and the
air quality data for 2021 were used as the treatment group.
The DID analysis (Table 6) revealed that prevention efforts had
improved air quality in comparison to the same time in 2019,
with the most significant impact on NO2. The pollutant was
primarily related to a decline in economic development and
transportation constraints, which resulted in reduced energy
usage and lowered emissions (Filonchyk et al., 2020). This was

Frontiers in Ecology and Evolution | www.frontiersin.org 11 May 2022 | Volume 10 | Article 885955212

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Cai et al. COVID-19, Air Quality, and Health Benefit

FIGURE 3 | The changing trend of pollutant concentrations before and after the COVID-19 outbreak in Beijing’s Xinfadi market. The vertical open black line denotes

the start of the cluster of epidemic outbreaks in the Beijing’s Xinfadi market.

TABLE 5 | Panel model regression results adopting LSDV model.

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

Covid −0.2261*** −0.4512*** −0.4669*** −0.3504*** −0.3459*** −0.1845*** −0.0726***

(0.0241) (0.0379) (0.0308) (0.0293) (0.023) (0.0249) (0.019)

Other holidays 0.1462*** 0.2186*** 0.3192*** 0.1515*** 0.0687** 0.0818*** 0.0641**

(0.0283) (0.0428) (0.0392) (0.0368) (0.0321) (0.0262) (0.0277)

Temperature 0.0377*** 0.0114*** 0.0345*** 0.0129*** 0.0173*** 0.0059*** 0.0397***

(0.0014) (0.0022) (0.002) (0.0016) (0.0016) (0.0014) (0.001)

Humidity 0.004*** 0.024*** 0.0002 0.0015*** 0.0073*** 0.0198*** −0.0014***

(0.0005) (0.0007) (0.0007) (0.0006) (0.0006) (0.0005) (0.0004)

Wind speed 0.0201*** −0.0023 0.0099** −0.0033 −0.021*** 0.0078** 0.0169***

(0.0035) (0.0052) (0.0042) (0.005) (0.0039) (0.0037) (0.0025)

Precipitation −0.0073*** −0.0271*** −0.0114*** −0.0007 −0.0181*** −0.0108*** −0.0012

(.0019) (0.0025) (0.0022) (0.0016) (0.0015) (0.0018) (0.0015)

Constant 3.4342*** 2.0713*** 3.477*** 1.0588*** 2.9335*** −1.6544*** 4.0057***

(0.0358) (0.0644) (0.054) (0.0534) (0.0535) (0.0428) (0.0272)

Urban fixed effect Yes Yes Yes Yes Yes Yes Yes

Observations 2,385 2,380 2,348 2,385 2,385 2,385 2,385

R-squared 0.3969 0.3464 0.2263 0.1121 0.3402 0.485 0.5642

**, *** represent significance at the 5 and 1% levels correspondingly.
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FIGURE 4 | The comparison of pollutant concentrations changes between 2020 and the same period in 2019. The vertical solid black line connotes the beginning of

Chinese New Year holiday, while the vertical solid red line denotes the end of Chinese New Year holiday.

followed by PM10, SO2, and CO, which dropped by 30.35, 42.38,
and 39.13%, respectively. However, AQI increased during this
period compared to the same time in 2019, and no significant
effect on PM2.5 was observed.

On the one hand, some pollutant concentrations have not
significantly fallen in comparison with the first period. People
staying at their current residing localities during the Spring
Festival in 2021 may reduce the migration index but has a
relatively small impact on the urban travel intensity index. On
the other hand, several major pollutant concentrations in the
third period declined more than in the second period, probably
due to the large flow of people during the Spring Festival. The
prevention and control measures of the COVID-19 pandemic are
more stringent than the second period to prevent the large-scale
recurrence of the epidemic similar to the Spring Festival in 2020,
which might the explanations of these results.

Test on Parallel Trend Assumption
The DID model requires consistency in the development
tendency over time between the experimental and the control
group (Wan et al., 2019). Therefore, we tested the parallel trend
hypothesis to ascertain if the pollutant concentration trends of
the control and the treatment groups are parallel before the
implementation of the intervention measure. Firstly, it can be
seen that before the implementation in Section The Comparison
of Pollutant Concentrations With 2019 (Figure 4), the trend of
air pollutants in the control group (2019) and the treatment
group (2021) was basically the same before the intervention.
Consequently, our research may be able to pass the parallel trend
hypothesis test. The residual diagram of the estimated coefficients
of the model equation (3) was drawn to exhibit the policy effect
better. Figure 5 shows the time trend of residuals of air quality for
10 days before and following the Spring Festival after excluding
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TABLE 6 | Regression results according to the DID model.

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

Diff (Covid) 0.1766*** −0.1521 −0.3035*** −0.4238*** −0.9396*** −0.3913*** 0.1014**

(0.0579) (0.1093) (0.1001) (0.1243) (0.1647) (0.1114) (0.0507)

Temperature 0.0663*** 0.0466*** 0.0849*** 0.0059 0.043*** 0.034*** −0.004

(0.0047) (0.0066) (0.0063) (0.0106) (0.0067) (0.0086) (0.0056)

Humidity 0.0508*** 0.0533*** 0.035*** −0.0199 0.0294* 0.0431*** 0.0105

(0.008) (0.0129) (0.0108) (0.0161) (0.0157) (0.0134) (0.0163)

Wind speed 0.4257*** −0.1883 −0.0894 −0.5503*** −0.5591*** −0.0762 0.169

(0.0835) (0.1188) (0.1136) (0.1813) (0.1542) (0.1203) (0.1336)

Precipitation −10.0712*** −7.5783** −8.4402*** 3.8658 −8.0672* −6.7001* −4.1689

(2.2774) (3.6641) (3.2534) (4.5746) (4.4533) (3.6901) (4.6013)

Constant 1.4409*** 2.0778*** 2.9998*** 3.1405*** 4.3461*** −1.4123** 3.3558***

(0.3834) (0.5771) (0.5187) (0.8059) (0.7164) (0.5752) (0.6784)

Urban fixed effect Yes Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes Yes

Observations 640 640 633 640 640 640 640

R-squared 0.9447 0.9389 0.9022 0.7681 0.8872 0.8925 0.7866

*, **, *** represent significance at the 10, 5, and 1% levels correspondingly.

FIGURE 5 | Time trends 10 days prior to and after the Chinese New Year.

weather effects and other potential complicating variables. In
both the control and treatment groups, the residual errors are
standardized to zero, as can be observed (Li et al., 2017b).

We conducted further counterfactual research utilizing the
model below (Equation 11) to examine the parallel trend
assumption with greater rigor (Guo et al., 2020). Specifically,
we included interaction terms between the grouping variable
“Treat” and the temporal tendency of the 10 days before
carrying out the restriction work to validate the parallel tendency
of the 10 days before enacting the prevention efforts. The
commencement of the intervention actions and the following

3 days were incorporated to avoid complete collinearity. The
parallel tendency hypothesis is met if the interaction items of 10
days before implementing the restriction efforts exist no apparent
impact on the independent variables.

lnPit = γ0 +

d=−1
∑

d=−10

γ1trendid × Treat +

d=2
∑

d=0

γ2trendid

×Treat + γ3Holiday+ θ4Wit + µi + πt + εit (11)
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TABLE 7 | Tests on parallel trends hypothesis adopting model 11.

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

day_−10 −0.895*** 0.1361 0.4628 0.5495 −0.0406 −0.3404 −0.3477

(0.244) (0.4134) (0.3408) (0.4971) (0.5079) (0.4225) (0.4821)

day_−9 0.3227*** 0.112 0.5337*** −0.4218** −0.2936* 0.0892 −0.076

(0.089) (0.1554) (0.1323) (0.1932) (0.1754) (0.1616) (0.1173)

day_−8 −0.0489 −0.3701* 0.2559 −0.2365 −0.569** −0.3428 0.0645

(0.123) (0.2232) (0.1798) (0.2398) (0.2719) (0.2406) (0.2492)

day_−7 0.3074*** 0.4467*** 0.3931*** −0.007 −0.216 0.0824 −0.059

(0.0841) (0.1524) (0.127) (0.1626) (0.1769) (0.1462) (0.1209)

day_−6 0.3103*** −0.1835 0.0079 −0.561** −0.9439*** −0.2342 0.1187

(0.1074) (0.1775) (0.1589) (0.2266) (0.2341) (0.1839) (0.1567)

day_−5 0.1355 −0.2747 0.2423* −0.4357** −1.3173*** −0.6369*** 0.3181*

(0.0916) (0.1709) (0.1383) (0.1881) (0.2238) (0.166) (0.1683)

day_−4 −0.1806 −0.6859*** −0.1758 −0.2721 −1.732*** −0.7923*** 0.1419

(0.1317) (0.2324) (0.2072) (0.2457) (0.282) (0.239) (0.25)

day_−3 −0.2265 −0.5171** −0.3851* −0.4362 −1.1808*** −0.5358** 0.0586

(0.138) (0.2406) (0.199) (0.2753) (0.3001) (0.2616) (0.2674)

day_−2 0.0459 −0.3881 −0.2871 0.0154 −1.3744*** −0.6117* 0.1376

(0.1729) (0.3046) (0.2502) (0.3384) (0.3835) (0.3299) (0.359)

day_−1 0.0151 −0.2905 −0.3306 0.1103 −1.4679*** −0.5499* 0.369

(0.1682) (0.2956) (0.2422) (0.3289) (0.373) (0.3114) (0.3525)

day_0 0.0535 0.223 0.0835 1.1606*** −0.5815 −0.0927 0.1497

(0.1947) (0.3175) (0.272) (0.3876) (0.3915) (0.3146) (0.4057)

day_1 −0.2204 0.1384 0.0369 1.3737*** −0.9596** −0.3889 0.2732

(0.2454) (0.3923) (0.3325) (0.4921) (0.4805) (0.3824) (0.4962)

day_2 −1.463*** −1.0606 −0.6776 1.3291 −1.3005 −1.0454 −1.1394

(0.4561) (0.7361) (0.6188) (0.9242) (0.8973) (0.7413) (0.9322)

day_3 −1.8529*** −1.4064** −1.6527*** 0.5362 −1.5704* −1.2538* −0.7377

(0.4242) (0.683) (0.6107) (0.8507) (0.8299) (0.6868) (0.8578)

Control variables Yes Yes Yes Yes Yes Yes Yes

Urban fixed effect Yes Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes Yes

Observations 640 640 633 640 640 640 640

R-squared 0.9447 0.9389 0.9022 0.7681 0.8872 0.8925 0.7866

*, **, *** represent significance at the 10, 5, and 1% levels correspondingly.

where d denotes the days since the beginning of the
intervention policy, trendid indicates the time tendency, and
γ1 is a series of estimated coefficients for the 10 days before
the preventative measures start, indicating the divergence in
pollutant indexes between the control and treatment groups
when making a comparison to the time before implementing the
intervention policy.

Table 7 presents the estimated results of model 11.
Most of the estimated results for the first 10 days before
the prevention efforts are near zero. Besides, most of
the coefficients are not statistically significant, as we can
observe. In addition, Figure 6 depicts the tendency of AQI
estimation coefficients. We find that the coefficients are
mostly close to zero before carrying out the measures, and
that there is no obvious trend. The findings above indicate
that the treatment and experimental groups have the same
tendency before enacting the control measures (Zhang et al.,
2020).

Robustness Tests
Further evidence is provided to prove the robustness of our
empirical findings. First, we evaluate if our conclusions are still
true if the width of the sample window changes. The initial
sample window of our research includes 10 days before and after
the Chinese New Year. We removed the head and tail for 1–
3 days, respectively, and re-evaluated our model. Table 8 show
the findings of our research. The majority of the coefficients had
similar orientations and magnitudes to our earlier results (i.e.,
coherent with Table 6).

Furthermore, considering that Chaoyang District, Haidian
District, and Xicheng District intensified control efforts in
the COVID-19 epidemic, we further confirmed whether the
estimated results are robust by excluding Chaoyang District,
Haidian District, and Xicheng District to prevent interference in
economically developed areas. Table 9 shows only the impact of
the other 13 urban areas. All the estimated results are robust to
this series of changes, which indicates that our research results
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FIGURE 6 | Tests on parallel trends hypothesis. The vertical dashed gray line

denotes the initiation of the policy of staying in place for Lunar New Year of

2021.

are not dominated by the super-developed urban areas most
impacted by the pandemic.

PM2.5 REDUCTION-INDUCED HEALTH
BENEFIT EVALUATION

We estimated the health effects and health economic benefits
of PM2.5 reduction induced by COVID-19 epidemic control
measures in three periods based on the results of previous
studies. The estimation process adopts the PM2.5 concentration,
resident population, GDP data, and related calculation formulas.
We utilized the secondary standard limit of the annual average
value of PM2.5 in China’s Environmental Air Quality Standard
(GB3095-2012) 35 µg·m−3. Specifically, we determined the
PM2.5 concentration in the absence of the COVID-19 epidemic
(P1) using the percentage decrease of PM2.5 concentration
(Z%) due to the COVID-19 epidemic and the actual PM2.5

concentration data (P2) in each district of Beijing: P1 = P2/(1-
Z%).

First, the P1 and exposed population data were substituted
into the Poisson regression relative risk model (equations (4) and
(5)), and the change of health effect (1E1) when there was no
COVID-19 epidemic could be estimated. The change of health
effect (1E2) when the COVID-19 occurred in each district of
Beijing can be acquired through P2 in the same way. Then, the
difference in the change of health effect (1E3 = 1E1−1E2) can
be obtained. The variation of health effect (1E4) attributed to the
PM2.5 decrease owing to the restriction measures of COVID-19
outbreak can be obtained by dividing by the sum of days of the
year (d) and multiplying by the number of days of each sample
period (m):1E4 = 1 E3∗m/d.

Finally, ∆E4 is brought into the model (9) to determine
the monetary value of each health endpoint’s economic benefits
owing to the variation of PM2.5 concentration employing the
unit economic value of each health effect. This section mainly

consists of two parts: estimation and analysis of the avoided
health risk owing to PM2.5 changes in Beijing during the initial
epidemic outbreak in 2020, the epidemic outbreak in Beijing’s
Xinfadi market in 2020, and the policy period of staying in place
for Lunar New Year of 2021. Besides, the health and economic
benefit assessment results due to the PM2.5 changes in Beijing
during these three special periods are estimated and analyzed, as
described below.

Avoided Health Risk Assessment
In this part, we evaluated the health effect of each health endpoint
of PM2.5 reduction caused by the COVID-19 epidemic. Then, we
assessed the total health effects of 16 urban areas in Beijing by
adding up the health effects of all health endpoints.

Health Endpoint Effects Assessment
We summarized the avoided health risks’ estimation results of
health endpoints in Beijing’s 16 urban areas during the above
three epidemic periods. Generally, the findings demonstrate that
PM2.5 reduction induced by restriction efforts has impacted
each health endpoint, as observed in Table 10. Additionally,
the degree of health endpoints affected by PM2.5 pollution
varies depending on PM2.5 concentration, exposure population,
outpatient incidence, and mortality in various urban areas.
Similarly, the health effects of the same area are also various in
distinct epidemic periods. Specifically, the health effects between
different periods exist differences. It is estimated that the health
effect of the PM2.5 decrease induced by the outbreak in the
Xinfadi market is the greatest. It has a more extended sample
period. For this reason, there is a greater impact of PM2.5

reduction than that of the other two periods, which are possible
explanations. On the contrary, the policy of staying in place for
the Lunar New Year in 2021 has a relatively short duration, so
it brings a small influence due to PM2.5 reduction. As a result,
its health effect is smaller than the former two. Furthermore,
the number of health beneficiaries in divergent regions is also
heterogeneous. The three periods have the greatest impact on the
health of Chaoyang District and Haidian District while having
little effect on Mentougou, Huairou, and Yanqing areas. The
top three health endpoints for the health benefits owing to
PM2.5 decrease are acute bronchitis, internal medicine clinic,
and chronic bronchitis, accounting for about 80% of the total
health effects. Cardiovascular diseases are relatively uncommon
among hospitalized patients. Besides, the decline in PM2.5 caused
by control measures in the three epidemic periods probably
avoided premature deaths of 1,117 cases [95% CI (328, 1,676)],
1,273 cases [95% CI (339, 2098)], and 115 cases [95% CI (33,
175)], respectively.

Total Health Effects Assessment
Table 11 shows the results of the three-period evaluation and
ranking of the total health effects of PM2.5 pollution changes
in each of Beijing’s urban areas. As observed, the total quantity
of beneficiaries induced by the PM2.5 decline resulting from
COVID-19’s epidemic control measures in the three periods
are 35,968 cases [95% CI (17,238, 47,646)], 45,146 cases [95%
CI (18,621, 67,876)], and 3,752 cases [95% CI (17,64, 55,035)],
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TABLE 8 | Robustness test utilizing various sample windows.

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

Panel C: 10 days before and after the spring festival

Diff (Covid) 0.1766*** −0.1521 −0.3035*** −0.4238*** −0.9396*** −0.3913*** 0.1014**

(0.0579) (0.1093) (0.1001) (0.1243) (0.1647) (0.1114) (0.0507)

Panel D: 9 days before and after the spring festival

Diff (Covid) 0.1349 −0.2* −0.7184*** −0.8935*** −0.7955*** −0.4306*** 0.3091***

(0.0875) (0.1135) (0.1327) (0.1932) (0.209) (0.1313) (0.0865)

Panel E: 8 days before and after the spring festival

Diff (Covid) −0.5295*** −1.7599*** −1.1156*** −1.8004*** −1.5196*** −1.3205*** 0.1807**

(0.1191) (0.1915) (0.1814) (0.2801) (0.2083) (0.1499) (0.087)

Panel F: 7 days before and after the spring festival

Diff (Covid) −0.6264*** −1.7269*** −0.4495*** −1.1221*** −1.058*** −1.1542*** 0.3554***

(0.1149) (0.2015) (0.1576) (0.2217) (0.1337) (0.1204) (0.0663)

*, **, *** represent significance at the 10, 5, and 1% levels correspondingly.

TABLE 9 | Robustness test of 13 urbans, excluding Chaoyang, Haidian, and Xicheng.

Variables ln (AQI) ln (PM2.5) ln (PM10) ln (SO2) ln (NO2) ln (CO) ln (O3)

Diff (Covid) 0.1441** −0.1627 −0.3032** −0.4151*** −1.0631*** −0.4677*** 0.0927

(0.0641) (0.1333) (0.1183) (0.1435) (0.1909) (0.1333) (0.058)

Temperature 0.0655*** 0.0479*** 0.0866*** 0.0134 0.0375*** 0.0268*** −0.0005

(0.0052) (0.0078) (0.0078) (0.0123) (0.0078) (0.0095) (0.0065)

Humidity 0.0525*** 0.0582*** 0.042*** −0.0088 0.0247 0.0452*** 0.0145

(0.0092) (0.0158) (0.0125) (0.0183) (0.0181) (0.0149) (0.0191)

Wind speed 0.4547*** −0.1362 −0.0195 −0.4293** −0.6584*** −0.0835 0.1917

(0.0976) (0.1424) (0.1331) (0.2087) (0.1775) (0.1378) (0.1575)

Precipitation −10.3249*** −8.7487* −11.4966*** 0.7674 −6.3787 −6.9345* −5.3797

(2.6346) (4.4574) (3.7204) (5.1923) (5.1419) (4.1308) (5.424)

Constant 1.3622*** 1.8495*** 2.6752*** 2.5886*** 4.7425*** −1.4029** 3.2085***

(0.4459) (0.6966) (0.605) (0.9244) (0.8281) (0.6528) (0.7999)

Urban fixed effect Yes Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes Yes

Observations 520 520 514 520 520 520 520

R-squared 0.9397 0.9322 0.898 0.7499 0.8752 0.8816 0.7567

*, **, *** indicate significance at the 10, 5, and 1% levels, respectively.

respectively, and this is the total number of avoided premature
death, respiratory disease hospitalization, cardiovascular disease
hospitalization, internal medicine clinic, pediatrics clinic, acute
bronchitis, chronic bronchitis, and asthma. In terms of different
urban areas, the total number of health beneficiaries brought
about by PM2.5 pollution changes is highest in Chaoyang District
and lowest in Huairou, Miyun, Yanqing, and Mentougou. For
example, at the beginning of the outbreak in 2020, the total health
benefits of Chaoyang reached 5,598 cases [95% CI (2,657, 7,462)].
The second is Haidian with 5,213 cases [95% CI (2,508, 6,879)],
followed by Daxing with 3,520 cases [95% CI (1,753, 4,530)], and
Yanqing with 532 cases [95%CI (246, 723)]. Themain reasons are
as follows: on the one hand, the PM2.5 concentrations are higher
in urban areas with more beneficiaries. On the other hand, the
exposed population in these urban areas is relatively large. For
example, the exposed population of Chaoyang district in 2018

is about nine times that of Huairou. The resident distribution is
fairly dense and Huairou’s per capita occupation area (5,128 m2)
is about 39 times that of Chaoyang (131 m2).

Avoided Economic Loss Evaluation
In this part, we assessed the health and economic benefit
of various health endpoints and summarized the total health
endpoint benefits of PM2.5 reduction due to the COVID-19
epidemic in various urban of Beijing.

Economic Benefits Evaluation of Health Endpoints
This section uses the methods in Section PM2.5 Reduction-
Induced Health Effects and Economic Benefits to estimate the
initial outbreak of COVID-19 in 2020, the outbreak of the
Xinfadi market in Beijing, and the policy period of celebrating
the Chinese New Year 2021 in place based on the evaluation
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TABLE 10 | Evaluated amount of health effects induced by PM2.5 reduction caused by the COVID-19 epidemic of 16 districts of Beijing in three periods (C0 = 35 µg/m3).

Period Districts Death In hospital Outpatient service Diseases Total estimated

number

The respiratory

system

Cardiovascular Department of

pediatrics (≤14

years old)

Internal

medicine (>15

years old)

Acute bronchial Chronic

bronchitis

Asthma

The initial

outbreak of

COVID-19 in

2020

Dongcheng 34 (10, 52) 36 (0, 68) 12 (8, 16) 103 (37, 162) 278 (155, 392) 503 (227, 634) 107 (54, 124) 46 (33, 58) 1118 (524, 1507)
Xicheng 57 (17, 85) 60 (0, 114) 20 (13, 27) 174 (64, 274) 472 (263, 665) 805 (378, 974) 168 (90, 187) 77 (55, 97) 1833 (880, 2422)

Chaoyang 173 (50, 261) 181 (0, 345) 60 (39, 81) 524 (191, 825) 1417 (791, 2000) 2487 (1145, 3064) 523 (274, 593) 233 (167, 293) 5598 (2657, 7462)

Haidian 162 (48, 243) 172 (0, 325) 57 (37, 77) 497 (181, 782) 1345 (752, 1897) 2284 (1076, 2753) 476 (256, 527) 220 (158, 275) 5213 (2508, 6879)

Fengtai 108 (32, 160) 115 (0, 217) 38 (25, 52) 334 (122, 525) 905 (506, 1275) 1487 (717, 1753) 307 (170, 332) 147 (106, 183) 3442 (1678, 4497)

Shijingshan 30 (9, 44) 32 (0, 60) 11 (7, 14) 92 (34, 145) 249 (139, 351) 416 (198, 496) 86 (47, 94) 41 (29, 51) 956 (463, 1256)

Mentougou 19 (5, 29) 20 (0, 38) 7 (4, 9) 57 (21, 90) 155 (86, 219) 280 (126, 351) 59 (30, 69) 26 (18, 32) 622 (292, 837)

Fangshan 76 (23, 109) 82 (0, 153) 27 (18, 37) 241 (88, 376) 652 (365, 916) 983 (503, 1094) 198 (118, 201) 104 (75, 129) 2363 (1191, 3016)

Tongzhou 96 (28, 144) 102 (0, 193) 34 (22, 46) 296 (108, 465) 800 (447, 1128) 1346 (638, 1611) 280 (152, 307) 130 (94, 163) 3084 (1489, 4057)

Shunyi 63 (18, 96) 65 (0, 124) 22 (14, 29) 187 (68, 295) 505 (282, 714) 932 (415, 1188) 199 (100, 234) 84 (60, 106) 2057 (956, 2787)

Daxing 112 (34, 163) 121 (0, 226) 40 (26, 54) 352 (129, 552) 954 (534, 1342) 1486 (744, 1689) 302 (175, 314) 153 (111, 190) 3520 (1753, 4530)

Changping 106 (30, 163) 110 (0, 210) 36 (23, 49) 315 (115, 498) 852 (475, 1205) 1589 (701, 2040) 340 (169, 403) 142 (101, 179) 3491 (1615, 4747)

Pinggu 25 (7, 36) 26 (0, 49) 9 (6, 12) 76 (28, 119) 206 (115, 290) 337 (163, 396) 69 (39, 75) 33 (24, 42) 781 (381, 1020)

Huairou 18 (5, 29) 18 (0, 36) 6 (4, 8) 52 (19, 83) 142 (79, 201) 290 (120, 397) 64 (29, 81) 24 (17, 31) 615 (273, 865)

Miyun 22 (6, 35) 22 (0, 43) 7 (5, 10) 64 (23, 101) 173 (96, 245) 350 (146, 475) 77 (35, 96) 29 (21, 37) 744 (332, 1043)

Yanqing 16 (5, 25) 17 (0, 32) 6 (4, 7) 48 (17, 76) 130 (72, 183) 242 (107, 311) 52 (26, 61) 22 (15, 27) 532 (246, 723)

Beijing 1117 (328, 1676) 1179 (0, 2233) 391 (251, 527) 3412 (1246, 5371) 9235 (5158,

13024)

15817 (7404,

19227)

3307 (1766, 3696) 1509 (1085, 1894) 35968 (17238,

47646)

The outbreak in

the Xinfadi

Market in 2020

Dongcheng 45 (12, 74) 43 (0, 86) 14 (9, 19) 121 (44, 194) 327 (181, 466) 796 (292, 1226) 184 (73, 265) 58 (40, 75) 1589 (650, 2405)

Xicheng 82 (22, 133) 80 (0, 159) 26 (17, 36) 227 (82, 363) 613 (339, 872) 1409 (537, 2089) 321 (133, 444) 107 (75, 138) 2865 (1205, 4233)

Chaoyang 250 (67, 409) 244 (0, 485) 80 (51, 109) 691 (249, 1104) 1866 (1033, 2655) 4334 (1640, 6471) 990 (407, 1379) 326 (228, 420) 8782 (3674,

13030)

Haidian 228 (61, 373) 223 (0, 443) 73 (46, 99) 633 (228, 1010) 1708 (945, 2429) 3953 (1499, 5888) 902 (372, 1253) 298 (209, 384) 8018 (3360,

11880)

Fengtai 95 (25, 159) 91 (0, 183) 30 (19, 40) 257 (92, 411) 692 (382, 987) 1727 (622, 2704) 403 (156, 590) 123 (86, 159) 3417 (1381, 5233)

Shijingshan 39 (10, 64) 38 (0, 75) 12 (8, 17) 107 (38, 170) 287 (159, 409) 685 (255, 1041) 158 (63, 224) 51 (35, 65) 1376 (569, 2066)

Mentougou 7 (2, 12) 7 (0, 14) 2 (2, 3) 20 (7, 31) 53 (29, 75) 137 (48, 221) 32 (12, 49) 10 (7, 12) 268 (106, 419)

Fangshan 67 (18, 111) 64 (0, 128) 21 (13, 29) 181 (65, 289) 487 (269, 694) 1207 (436, 1882) 281 (109, 410) 86 (60, 112) 2393 (970, 3655)

Tongzhou 133 (36, 218) 130 (0, 259) 43 (27, 58) 369 (133, 589) 996 (551, 1416) 2312 (875, 3450) 528 (217, 735) 174 (122, 224) 4684 (1960, 6949)

Shunyi 78 (21, 129) 75 (0, 150) 24 (16, 33) 211 (76, 338) 570 (315, 812) 1396 (509, 2159) 324 (127, 468) 101 (70, 131) 2779 (1133, 4220)

Daxing 87 (23, 146) 84 (0, 168) 27 (17, 37) 235 (84, 377) 634 (350, 903) 1589 (570, 2497) 371 (143, 546) 113 (78, 146) 3140 (1266, 4819)

Changping 99 (26, 165) 95 (0, 190) 31 (19, 42) 266 (95, 426) 717 (396, 1021) 1798 (644, 2825) 420 (162, 618) 127 (88, 165) 3551 (1431, 5452)

Pinggu 18 (5, 30) 17 (0, 34) 6 (4, 8) 48 (17, 77) 130 (72, 185) 327 (117, 517) 77 (29, 113) 23 (16, 30) 646 (259, 994)

Huairou 21 (6, 36) 20 (0, 41) 7 (4, 9) 57 (21, 92) 155 (86, 221) 386 (139, 603) 90 (35, 132) 28 (19, 36) 764 (309, 1169)

Miyun 12 (3, 20) 12 (0, 23) 4 (2, 5) 32 (12, 52) 87 (48, 124) 225 (79, 362) 53 (20, 80) 16 (11, 20) 441 (175, 687)

Yanqing 12 (3, 20) 11 (0, 23) 4 (2, 5) 32 (12, 51) 86 (48, 123) 219 (78, 347) 51 (20, 76) 15 (11, 20) 431 (173, 665)

Beijing 1273 (339, 2098) 1235 (0, 2459) 403 (256, 549) 3487 (1253, 5574) 9407 (5202,

13393)

22500 (8338,

34283)

5186 (2078, 7383) 1655 (1155, 2137) 45146 (18621,

67876)

(Continued)
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TABLE 10 | Continued

Period Districts Death In hospital Outpatient service Diseases Total estimated

number

The respiratory

system

Cardiovascular Department of

pediatrics (≤14

years old)

Internal

medicine (>15

years old)

Acute bronchial Chronic

bronchitis

Asthma

The policy of

staying put

during Spring

Festival in 2021

Dongcheng 4 (1, 6) 4 (0, 8) 1 (1, 2) 12 (4, 19) 32 (18, 45) 55 (26, 68) 12 (6, 13) 5 (4, 7) 125 (60, 166)
Xicheng 6 (2, 9) 6 (0, 12) 2 (1, 3) 18 (7, 29) 49 (27, 70) 86 (40, 106) 18 (10, 20) 8 (6, 10) 194 (92, 258)

Chaoyang 18 (5, 28) 19 (0, 37) 6 (4, 9) 56 (20, 88) 151 (84, 213) 268 (122, 332) 56 (29, 64) 25 (18, 31) 599 (283, 801)

Haidian 17 (5, 25) 17 (0, 33) 6 (4, 8) 50 (18, 79) 136 (76, 192) 242 (110, 301) 51 (26, 58) 22 (16, 28) 542 (255, 725)

Fengtai 11 (3, 16) 11 (0, 22) 4 (2, 5) 33 (12, 52) 89 (50, 126) 157 (72, 194) 33 (17, 37) 15 (10, 18) 353 (167, 470)

Shijingshan 3 (1, 5) 3 (0, 6) 1 (1, 1) 9 (3, 14) 25 (14, 35) 44 (20, 55) 9 (5, 11) 4 (3, 5) 98 (46, 131)

Mentougou 2 (1, 3) 2 (0, 4) 1 (0, 1) 5 (2, 9) 15 (8, 21) 29 (12, 38) 6 (3, 8) 2 (2, 3) 62 (28, 86)

Fangshan 6 (2, 10) 6 (0, 12) 2 (1, 3) 18 (7, 29) 49 (27, 69) 96 (41, 128) 21 (10, 26) 8 (6, 10) 207 (93, 286)

Tongzhou 10 (3, 15) 11 (0, 21) 4 (2, 5) 32 (12, 50) 86 (48, 121) 145 (68, 174) 30 (16, 33) 14 (10, 18) 331 (160, 436)

Shunyi 7 (2, 11) 8 (0, 14) 3 (2, 3) 22 (8, 34) 59 (33, 83) 103 (48, 127) 22 (11, 24) 10 (7, 12) 233 (111, 310)

Daxing 11 (3, 16) 11 (0, 21) 4 (2, 5) 33 (12, 51) 88 (49, 125) 155 (71, 191) 33 (17, 37) 15 (10, 18) 349 (166, 465)

Changping 11 (3, 17) 11 (0, 21) 4 (2, 5) 31 (11, 49) 84 (47, 119) 166 (70, 221) 36 (17, 44) 14 (10, 18) 356 (160, 494)

Pinggu 3 (1, 4) 3 (0, 5) 1 (1, 1) 8 (3, 13) 22 (12, 31) 36 (18, 43) 8 (4, 8) 4 (3, 5) 84 (41, 110)

Huairou 2 (1, 3) 2 (0, 4) 1 (0, 1) 7 (2, 10) 18 (10, 25) 33 (15, 43) 7 (4, 8) 3 (2, 4) 73 (33, 99)

Miyun 3 (1, 4) 3 (0, 6) 1 (1, 1) 9 (3, 14) 24 (13, 34) 41 (19, 50) 9 (5, 10) 4 (3, 5) 93 (45, 124)

Yanqing 2 (0, 2) 2 (0, 3) 1 (0, 1) 4 (2, 7) 12 (7, 17) 25 (10, 34) 5 (2, 7) 2 (1, 3) 52 (23, 73)

Beijing 115 (33, 175) 120 (0, 229) 40 (26, 54) 346 (126, 546) 937 (522, 1323) 1682 (762, 2103) 356 (183, 409) 155 (111, 195) 3752 (1764, 5035)

It’s the value of 95% CI in parentheses; the actual average annual concentration of PM2.5 is less than or equal to 35 µg/m3, and its health effect is 0.

F
ro
n
tie
rs

in
E
c
o
lo
g
y
a
n
d
E
vo

lu
tio

n
|
w
w
w
.fro

n
tie
rsin

.o
rg

M
a
y
2
0
2
2
|
V
o
lu
m
e
1
0
|A

rtic
le
8
8
5
9
5
5

220

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Cai et al. COVID-19, Air Quality, and Health Benefit

results of health effects inTable 10 and the unit economic value of
each health endpoint in Table 2. Table 12 shows the estimations
of the health endpoint benefits of residents under the condition
of PM2.5 reduction induced by prevention efforts. Generally, the
corresponding economic benefits of health endpoints in Beijing
and its 16 urban areas have the same characteristics as the
number of health effects in terms of different epidemic periods.
Additionally, the economic benefits of various health endpoints
caused by the PM2.5 reduction are diverse due to differences in
PM2.5 concentration, benchmark incidence, economic value per
unit of health endpoints, and exposure population. For example,
the health and economic benefit of the PM2.5 decrease in Beijing
due to early death was 4,183.79 million yuan [95% CI (1,228.81,
6,278.53)]. In comparison, the health and economic benefit of
hospitalization was 29.47 million yuan [95% CI (8.73, 48.38)]
during the initial COVID outbreak in 2020. Furthermore, the
health benefit of chronic bronchitis was the greatest, followed by
early death, acute bronchitis, asthma, and hospitalization, while
the health benefit of the outpatient clinic was the smallest.

Total Economic Benefits Evaluation
Table 13 summarizes the health and economic benefits of PM2.5

pollution changes caused by three-period epidemic prevention
and control measures in Beijing and various regions. The total
health and economic benefits induced by changes in PM2.5

pollution in Beijing and various districts over three periods
are heterogeneous according to the assessed results in Table 13.
Additionally, the per capita health economic benefits and total
health benefits of various districts in Beijing are dissimilar
or even quite divergent in the three periods, mainly due to
divergences in resident population and PM2.5 concentration
changes among Beijing’s urban areas. Specifically, the avoided
total health and economic loss induced by the PM2.5 reductions
owing to the control measures in three epidemic periods are
82,747.65 million yuan [95% CI (3,406.4,10,879.1)], 11,143.71
million yuan [95% CI (3,826.43,16,949.1)], and 871.65 million
yuan [95% CI (350.54, 1,165.95)], which accounted for 0.23%
[95% CI (0.09%, 0.3%)], 0.31% [95% CI (0.11%, 0.47%),]
0.02% [95% CI (0.1%, 0.03%)] of the GDP of Beijing that
year, respectively. Furthermore, Chaoyang, Haidian, Tongzhou,
and Fengtai are still the areas that benefit the most from
the changes in PM2.5 concentration in terms of health and
economy. For instance, the health and economic benefits of
the four urban areas were 2,154.15 million yuan [95% CI
(751.53, 3,229.36)], 1,965.49 million yuan [95% CI (687.41,
2,942.39)], 1,148.71 million yuan [95% CI (400.8, 1,722.54)],
850.61 million yuan [95% CI (285.52, 1,319.71)], while the health
and economic benefits of Yanqing, Mentougou, Huairou, and
other districts are relatively low during the outbreak of the Beijing
Xinfadi market.

DISCUSSIONS ON RECOMMENDATIONS
FOR METICULOUS CONTROL OF AIR
POLLUTION

China has enacted various stringent controls to prevent the
epidemic of COVID-19 from spreading, such as closing factories

and restricting traffic. However, Beijing still suffers from
severe air pollution in extreme weather. People hold divergent
perspectives on how to prevent and control air pollution
effectively. Rigorous empirical research is required to quantify the
causal impact of control actions on air pollution in the COVID-
19 epidemic. Firstly, the methods and findings of this research
provide a valuable natural experiment for exploring the causal
effects of blockade efforts on air pollution. In our study, real-time
observation data are used to demonstrate the changing air quality
trend before and after the outbreak of COVID-19. Subsequently,
LSDV and DID models are constructed to determine the causal
impact of epidemic restriction efforts on air pollution and keep
weather, holidays, and other influential factors from interfering.
The execution of regulatory efforts improved air quality and
provided empirical evidence for ascertaining the causal relation
of blockade actions to air pollution in the COVID-19 pandemic.
Furthermore, we could carry out targeted control of air pollution
by comparing the influence of the pandemic on air pollutants
in various periods and analyzing the causes of the distinction.
What deserves our attention is that adopting lower-scale data is
beneficial for the meticulous prevention, control, and governance
of air pollution.

The study’s two conclusions are critical for future air
pollution mitigation. Firstly, traffic restrictions are crucial
for controlling NO2 pollution in densely populated urban
areas, which indicates an essential direction for NO2 pollution
prevention. The management of traffic activities should focus
on NO2 pollution control in the future. With the gradual
lifting of traffic restrictions at the end of February 2020,
epidemic prevention actions for public transport, such as buses
and subways, continue to be strict. This may lead to an
increase in the utilization of personal automobiles (Lee et al.,
2020). Therefore, calling on urban daily travel to return to
green safety is the government’s primary concern. In this
case, walking and cycling are advisable for personal travel.
The infrastructure for non-motorized transportation, such as
walking and cycling, is supposed to be optimized regularly,
which will have dual benefits for pandemic control and air
pollution mitigation in the long run. Additionally, the index
system of travel intensity in the city can be established
to accomplish precise management and control through the
real-time observation of the big data system. Meantime,
proper management, and motivations can be constituted to
lower the strength of urban traffic, such as tail number
restrictions, rising oil prices, public transportation subsidies,
and others.

Secondly, the health and economic benefits of changes
in PM2.5 concentrations are quantified in this study. The
health effects were related to the exposure population, the
change in PM2.5 concentration, the standard concentration
threshold, the exposure-response relationship coefficient, and
the baseline incidence. For each urban area of Beijing,
the concentration of PM2.5 in the urban areas with more
health benefits is higher, and the base of exposed population
in these urban areas is larger. For example, the exposed
population in Chaoyang District in 2018 is about nine
times that of Huairou, and the distribution of residents is
relatively dense. Therefore, the control of PM2.5 pollution
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TABLE 11 | Health effects and ranking of PM2.5 reduction caused by the COVID-19 epidemic of 16 districts of Beijing.

Districts The initial outbreak of

COVID-19 in 2020

The outbreak in the Xinfadi market in

2020

The policy of staying put during the Spring

Festival in 2021

Total health effect Order Total health effect Order Total health effect Order

Dongcheng 1,118 (524, 1,507) 10 1,589 (650, 2,405) 10 125 (60, 166) 10

Xicheng 1,833 (880, 2,422) 9 2,865 (1,205, 4,233) 7 194 (92, 258) 9

Chaoyang 5,598 (2,657, 7,462) 1 8,782 (3,674, 13,030) 1 599 (283, 801) 1

Haidian 5,213 (2,508, 6,879) 2 8,018 (3,360, 11,880) 2 542 (255, 725) 2

Fengtai 3,442 (1,678, 4,497) 5 3,417 (1,381, 5,233) 5 353 (167, 470) 4

Shijingshan 956 (463, 1,256) 11 1,376 (569, 2,066) 11 98 (46, 131) 11

Mentougou 622 (292, 837) 14 268 (106, 419) 16 62 (28, 86) 15

Fangshan 2,363 (1,191, 3,016) 7 2,393 (970, 3,655) 9 207 (93, 286) 8

Tongzhou 3,084 (1,489, 4,057) 6 4,684 (1,960, 6,949) 3 331 (160, 436) 6

Shunyi 2,057 (956, 2,787) 8 2,779 (1,133, 4,220) 8 233 (111, 310) 7

Daxing 3,520 (1,753, 4,530) 3 3,140 (1,266, 4,819) 6 349 (166, 465) 5

Changping 3,491 (1,615, 4,747) 4 3,551 (1,431, 5,452) 4 356 (160, 494) 3

Pinggu 781 (381, 1,020) 12 646 (259, 994) 13 84 (41, 110) 13

Huairou 615 (273, 865) 15 764 (309, 1,169) 12 73 (33, 99) 14

Miyun 744 (332, 1,043) 13 441 (175, 687) 14 93 (45, 124) 12

Yanqing 532 (246, 723) 16 431 (173, 665) 15 52 (23, 73) 16

Beijing 35,968 (17,238, 47,646) — 45,146 (18,621, 67,876) — 3,752 (1,764, 5,035) —

It’s the value of 95% CI in parentheses.

concentration and the health and safety protection of residents
in these urban areas will undoubtedly have great potential
for health effects in the future. The health effects and health
economic benefits owing to the PM2.5 decrease, along with
the corresponding 95% confidence interval, provide a reference
value for Beijing to meet the air quality standards, control
severe ambient air pollution, and implement health early
warning system.

Finally, the experimental importance of control efforts in
reducing severe air pollution is also discussed in our study.
The COVID-19 pandemic is a special public health event
as it is particular and uncertain, providing an exceedingly
unusual natural experiment for controlling the social and
economic activities that impact air quality. Large-scale pollution
outbreaks, such as haze pollution in the winter, have occurred
in northern China, particularly in the Beijing area. Extreme
air pollution is harmful to people’s health and affects the
regular operation of the social economy, particularly in
regions with high population density and developed economies
(Archer-Nicholls et al., 2016; Vu et al., 2019). Consequently,
high-intensity limitations on population, transportation, and
economic activities should be adopted to lower their damage
and cope with serious urban pollution. For instance, in the
event of an extreme air pollution incident, the remote work and
online teaching system emerging during COVID-19’s blockade
will be immediately employed. This study provides significant
evidence for the development of contingency designs for
comprehensive socio-economic governance strategies in cases of
severe pollution.

CONCLUSIONS

The COVID-19 epidemic has been around for a long time.
However, it is not yet over and is entering the normalization
stage. Outbreaks still occur in different regions. Therefore, it is
still worthy of further study and remains an important issue to
determine the causal impact of restriction efforts on air quality
in the ecological environment. Here, by establishing LSDV and
DIDmodels, we quantitatively determine and compare the causal
impact of control and blockade measures on air quality across
three significant periods in China. We find that restriction
measures have a significant positive influence on improving the
air pollution in the ecological environment, and the effects of
the three periods are different. As expected, during the initial
outbreak in 2020, except for the increase in O3 concentration,
the execution of control actions decreased the AQI by 7.8% and
NO2, and SO2 by 46.76% and 37.32%. At the same time, the level
of PM2.5, PM10, and CO had different degrees of decline, which
fell by 34.07, 53.22, and 19.97%, respectively. Additionally, during
the outbreak of the Xinfadi market in Beijing, the air pollutant
concentrations, including O3, decreased significantly, of which
O3 decreased by 7.26% and AQI and PM2.5 dropped by 22.61 and
45.12%, respectively, compared with the first period. During the
policy period of staying in place for the Lunar New Year of 2021,
except for slight decline in AQI and O3 levels, other pollutants
decreased compared with the same period in 2019, among which
NO2 decreased most obviously.

PM2.5 concentrations in the ecological environment beyond
a particular threshold will raise the risk of cardiovascular and
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TABLE 12 | Avoided economic loss of the health effects induced by PM2.5 reduction caused by the COVID-19 epidemic of 16 districts of Beijing in three periods (C0 = 35 µg/m3, unit: million yuan).

Period Districts Death In hospital Outpatient service Diseases Total economic

loss (million yuan)

The respiratory

system

Cardiovascular Department of

pediatrics (≤14

years old)

Internal

medicine (>15

years old)

Acute bronchial Chronic

bronchitis

Asthma

The initial

COVID-19

outbreak in 2020

Dongcheng 128.41

(37.12,195.84)

0.48 (0,0.92) 0.41 (0.26,0.55) 0.08 (0.03,0.13) 0.22 (0.13,0.32) 1.97 (0.89,2.48) 128.24

(65.33,148.6)

0.74 (0.53,0.93) 260.55

(104.29,349.77)

Xicheng 213.64

(62.5,320.08)

0.81 (0,1.53) 0.69 (0.45,0.93) 0.14 (0.05,0.22) 0.38 (0.21,0.54) 3.15 (1.48,3.81) 201.33

(108,223.75)

1.24 (0.89,1.55) 421.38

(173.58,552.43)

Chaoyang 647.74

(189.02,978.81)

2.44 (0,4.64) 2.09 (1.34,2.81) 0.42 (0.15,0.67) 1.14 (0.64,1.62) 9.74 (4.48,12) 627.14

(328.6,710.54)

3.73 (2.68,4.7) 1294.46

(526.91,1715.78)

Haidian 607.97

(178.79,910.62)

2.31 (0,4.37) 1.98 (1.28,2.67) 0.4 (0.15,0.63) 1.09 (0.61,1.53) 8.95 (4.21,10.78) 570.66

(307.51,631.38)

3.52 (2.53,4.41) 1196.87

(495.08,1566.41)

Fengtai 404.55

(120.46,600.01)

1.55 (0,2.92) 1.33 (0.86,1.79) 0.27 (0.1,0.42) 0.73 (0.41,1.03) 5.82 (2.81,6.87) 367.99

(203.88,397.57)

2.35 (1.7,2.94) 784.61

(330.2,1013.55)

Shijingshan 112.12

(33.33,166.67)

0.43 (0,0.81) 0.37 (0.24,0.5) 0.07 (0.03,0.12) 0.2 (0.11,0.28) 1.63 (0.78,1.94) 103.51

(56.61,113.09)

0.65 (0.47,0.81) 218.99

(91.56,284.22)

Mentougou 71.21

(20.45,108.71)

0.27 (0,0.51) 0.23 (0.15,0.31) 0.05 (0.02,0.07) 0.13 (0.07,0.18) 1.09 (0.49,1.37) 71.15

(36.36,82.18)

0.41 (0.29,0.52) 144.54

(57.84,193.85)

Fangshan 282.96

(86.37,410.24)

1.11 (0,2.06) 0.96 (0.62,1.29) 0.19 (0.07,0.3) 0.53 (0.29,0.74) 3.85 (1.97,4.29) 237.33

(141.57,241.09)

1.66 (1.21,2.06) 528.59

(232.1,662.06)

Tongzhou 360.61

(106.44,538.27)

1.37 (0,2.59) 1.18 (0.76,1.58) 0.24 (0.09,0.38) 0.65 (0.36,0.91) 5.27 (2.5,6.31) 335.27

(182.06,368.24)

2.09 (1.5,2.62) 706.68

(293.7,920.9)

Shunyi 234.85

(67.43,359.86)

0.87 (0,1.67) 0.75 (0.48,1) 0.15 (0.05,0.24) 0.41 (0.23,0.58) 3.65 (1.62,4.65) 238.54

(119.76,280.24)

1.35 (0.96,1.7) 480.57

(190.53,649.94)

Daxing 418.95

(126.52,612.13)

1.63 (0,3.04) 1.4 (0.9,1.88) 0.28 (0.1,0.45) 0.77 (0.43,1.08) 5.82 (2.91,6.61) 362.06

(210.06,376.24)

2.45 (1.77,3.05) 793.36

(342.7,1004.48)

Changping 397.73

(113.64,610.62)

1.48 (0,2.83) 1.26 (0.8,1.7) 0.25 (0.09,0.4) 0.69 (0.38,0.97) 6.22 (2.75,7.99) 407.87

(202.78,482.9)

2.28 (1.62,2.88) 817.78

(322.07,1110.29)

Pinggu 92.05

(27.27,135.99)

0.35 (0,0.66) 0.3 (0.19,0.41) 0.06 (0.02,0.1) 0.17 (0.09,0.23) 1.32 (0.64,1.55) 83.27 (46.3,89.82) 0.53 (0.39,0.67) 178.06

(74.91,229.42)

Huairou 68.18

(18.94,107.58)

0.25 (0,0.48) 0.21 (0.13,0.28) 0.04 (0.02,0.07) 0.11 (0.06,0.16) 1.14 (0.47,1.55) 76.48

(35.03,96.85)

0.39 (0.27,0.49) 146.8

(54.92,207.47)

Miyun 82.58

(23.11,130.31)

0.3 (0,0.59) 0.25 (0.16,0.34) 0.05 (0.02,0.08) 0.14 (0.08,0.2) 1.37 (0.57,1.86) 92 (42.54,115.63) 0.47 (0.33,0.6) 177.16

(66.81,249.61)

Yanqing 60.23 (17.42,92.8) 0.22 (0,0.43) 0.19 (0.12,0.26) 0.04 (0.01,0.06) 0.1 (0.06,0.15) 0.95 (0.42,1.22) 62.18

(30.91,73.57)

0.35 (0.25,0.44) 124.27

(49.2,168.93)

Beijing 4183.79

(1228.81,6278.53)

15.88 (0,30.07) 13.59 (8.73,18.31) 2.76 (1.01,4.34) 7.46 (4.16,10.52) 61.94

(28.99,75.29)

3965.03

(2117.3,4431.69)

24.2 (17.39,30.36) 8274.65

(3406.4,10879.1)

The outbreak in

the Xinfadi

market in 2020

Dongcheng 45 (12, 74) 43 (0, 86) 14 (9, 19) 121 (44, 194) 327 (181, 466) 796 (292, 1226) 184 (73, 265) 58 (40, 75) 1589 (650, 2405)

Xicheng 82 (22, 133) 80 (0, 159) 26 (17, 36) 227 (82, 363) 613 (339, 872) 1409 (537, 2089) 321 (133, 444) 107 (75, 138) 2865 (1205, 4233)

Chaoyang 250 (67, 409) 244 (0, 485) 80 (51, 109) 691 (249, 1104) 1866 (1033, 2655) 4334 (1640, 6471) 990 (407, 1379) 326 (228, 420) 8782 (3674, 13030)

(Continued)
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TABLE 12 | Continued

Period Districts Death In hospital Outpatient service Diseases Total economic

loss (million yuan)

The respiratory

system

Cardiovascular Department of

pediatrics (≤14

years old)

Internal

medicine (>15

years old)

Acute bronchial Chronic

bronchitis

Asthma

Haidian 228 (61, 373) 223 (0, 443) 73 (46, 99) 633 (228, 1010) 1708 (945, 2429) 3953 (1499, 5888) 902 (372, 1253) 298 (209, 384) 8018 (3360, 11880)

Fengtai 95 (25, 159) 91 (0, 183) 30 (19, 40) 257 (92, 411) 692 (382, 987) 1727 (622, 2704) 403 (156, 590) 123 (86, 159) 3417 (1381, 5233)

Shijingshan 39 (10, 64) 38 (0, 75) 12 (8, 17) 107 (38, 170) 287 (159, 409) 685 (255, 1041) 158 (63, 224) 51 (35, 65) 1376 (569, 2066)

Mentougou 7 (2, 12) 7 (0, 14) 2 (2, 3) 20 (7, 31) 53 (29, 75) 137 (48, 221) 32 (12, 49) 10 (7, 12) 268 (106, 419)

Fangshan 67 (18, 111) 64 (0, 128) 21 (13, 29) 181 (65, 289) 487 (269, 694) 1207 (436, 1882) 281 (109, 410) 86 (60, 112) 2393 (970, 3655)

Tongzhou 133 (36, 218) 130 (0, 259) 43 (27, 58) 369 (133, 589) 996 (551, 1416) 2312 (875, 3450) 528 (217, 735) 174 (122, 224) 4684 (1960, 6949)

Shunyi 78 (21, 129) 75 (0, 150) 24 (16, 33) 211 (76, 338) 570 (315, 812) 1396 (509, 2159) 324 (127, 468) 101 (70, 131) 2779 (1133, 4220)

Daxing 87 (23, 146) 84 (0, 168) 27 (17, 37) 235 (84, 377) 634 (350, 903) 1589 (570, 2497) 371 (143, 546) 113 (78, 146) 3140 (1266, 4819)

Changping 99 (26, 165) 95 (0, 190) 31 (19, 42) 266 (95, 426) 717 (396, 1021) 1798 (644, 2825) 420 (162, 618) 127 (88, 165) 3551 (1431, 5452)

Pinggu 18 (5, 30) 17 (0, 34) 6 (4, 8) 48 (17, 77) 130 (72, 185) 327 (117, 517) 77 (29, 113) 23 (16, 30) 646 (259, 994)

Huairou 21 (6, 36) 20 (0, 41) 7 (4, 9) 57 (21, 92) 155 (86, 221) 386 (139, 603) 90 (35, 132) 28 (19, 36) 764 (309, 1169)

Miyun 12 (3, 20) 12 (0, 23) 4 (2, 5) 32 (12, 52) 87 (48, 124) 225 (79, 362) 53 (20, 80) 16 (11, 20) 441 (175, 687)

Yanqing 12 (3, 20) 11 (0, 23) 4 (2, 5) 32 (12, 51) 86 (48, 123) 219 (78, 347) 51 (20, 76) 15 (11, 20) 431 (173, 665)

Beijing 1273 (339, 2098) 1235 (0, 2459) 403 (256, 549) 3487 (1253, 5574) 9407 (5202,

13393)

22500 (8338,

34283)

5186 (2078, 7383) 1655 (1155, 2137) 45146 (18621,

67876)

The policy of

staying put

during Spring

Festival in 2021

Dongcheng 4 (1, 6) 4 (0, 8) 1 (1, 2) 12 (4, 19) 32 (18, 45) 55 (26, 68) 12 (6, 13) 5 (4, 7) 125 (60, 166)
Xicheng 6 (2, 9) 6 (0, 12) 2 (1, 3) 18 (7, 29) 49 (27, 70) 86 (40, 106) 18 (10, 20) 8 (6, 10) 194 (92, 258)

Chaoyang 18 (5, 28) 19 (0, 37) 6 (4, 9) 56 (20, 88) 151 (84, 213) 268 (122, 332) 56 (29, 64) 25 (18, 31) 599 (283, 801)

Haidian 17 (5, 25) 17 (0, 33) 6 (4, 8) 50 (18, 79) 136 (76, 192) 242 (110, 301) 51 (26, 58) 22 (16, 28) 542 (255, 725)

Fengtai 11 (3, 16) 11 (0, 22) 4 (2, 5) 33 (12, 52) 89 (50, 126) 157 (72, 194) 33 (17, 37) 15 (10, 18) 353 (167, 470)

Shijingshan 3 (1, 5) 3 (0, 6) 1 (1, 1) 9 (3, 14) 25 (14, 35) 44 (20, 55) 9 (5, 11) 4 (3, 5) 98 (46, 131)

Mentougou 2 (1, 3) 2 (0, 4) 1 (0, 1) 5 (2, 9) 15 (8, 21) 29 (12, 38) 6 (3, 8) 2 (2, 3) 62 (28, 86)

Fangshan 6 (2, 10) 6 (0, 12) 2 (1, 3) 18 (7, 29) 49 (27, 69) 96 (41, 128) 21 (10, 26) 8 (6, 10) 207 (93, 286)

Tongzhou 10 (3, 15) 11 (0, 21) 4 (2, 5) 32 (12, 50) 86 (48, 121) 145 (68, 174) 30 (16, 33) 14 (10, 18) 331 (160, 436)

Shunyi 7 (2, 11) 8 (0, 14) 3 (2, 3) 22 (8, 34) 59 (33, 83) 103 (48, 127) 22 (11, 24) 10 (7, 12) 233 (111, 310)

Daxing 11 (3, 16) 11 (0, 21) 4 (2, 5) 33 (12, 51) 88 (49, 125) 155 (71, 191) 33 (17, 37) 15 (10, 18) 349 (166, 465)

Changping 11 (3, 17) 11 (0, 21) 4 (2, 5) 31 (11, 49) 84 (47, 119) 166 (70, 221) 36 (17, 44) 14 (10, 18) 356 (160, 494)

Pinggu 3 (1, 4) 3 (0, 5) 1 (1, 1) 8 (3, 13) 22 (12, 31) 36 (18, 43) 8 (4, 8) 4 (3, 5) 84 (41, 110)

Huairou 2 (1, 3) 2 (0, 4) 1 (0, 1) 7 (2, 10) 18 (10, 25) 33 (15, 43) 7 (4, 8) 3 (2, 4) 73 (33, 99)

Miyun 3 (1, 4) 3 (0, 6) 1 (1, 1) 9 (3, 14) 24 (13, 34) 41 (19, 50) 9 (5, 10) 4 (3, 5) 93 (45, 124)

Yanqing 2 (0, 2) 2 (0, 3) 1 (0, 1) 4 (2, 7) 12 (7, 17) 25 (10, 34) 5 (2, 7) 2 (1, 3) 52 (23, 73)

Beijing 115 (33, 175) 120 (0, 229) 40 (26, 54) 346 (126, 546) 937 (522, 1323) 1682 (762, 2103) 356 (183, 409) 155 (111, 195) 3752 (1764, 5035)

It’s the value of 95% CI in parentheses; the actual average annual concentration of PM2.5 is less than or equal to 35 µg/m3, and its health effect is 0.
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TABLE 13 | Health benefits of PM2.5 reduction caused by the COVID-19 epidemic of 16 districts of Beijing in three periods.

Districts The initial COVID-19 outbreak in 2020 The outbreak in the Xinfadi market in 2020 The policy of staying put during the Spring Festival in 2021

Total health

benefit (unit:

million yuan)

Proportion of

GDP (unit: %)

Per capita health

benefit (unit:

yuan)

Total

health benefit

(unit:

million yuan)

Proportion of

GDP (unit: %)

Per capita health

benefit (unit:

yuan)

Total

health benefit

(unit:

million yuan)

Proportion of

GDP (unit: %)

Per capita health

benefit (unit:

yuan)

Dongcheng 260.55

(104.29,349.77)

0.09 (0.04,0.12) 367.6

(147.13,493.47)

393.46

(134.02,603.14)

0.13 (0.05,0.2) 555.1

(189.08,850.94)

28.84

(11.78,38.06)

0.01 (0,0.01) 40.69

(16.61,53.69)

Xicheng 421.38

(173.58,552.43)

0.08 (0.03,0.11) 380.93

(156.91,499.39)

701.11

(246.74,1046.85)

0.14 (0.05,0.21) 633.8

(223.05,946.35)

44.91

(18.32,59.33)

0.01 (0,0.01) 40.6 (16.57,53.64)

Chaoyang 1294.46

(526.91,1715.78)

0.18 (0.07,0.24) 374.93

(152.62,496.97)

2154.15

(751.53,3229.36)

0.31 (0.11,0.46) 623.94

(217.68,935.37)

138.96

(56.26,184.65)

0.02 (0.01,0.03) 40.25 (16.3,53.48)

Haidian 1196.87

(495.08,1566.41)

0.14 (0.06,0.18) 381.9

(157.97,499.81)

1965.49

(687.41,2942.39)

0.23 (0.08,0.35) 627.15

(219.34,938.86)

125.7

(50.69,167.52)

0.01 (0.01,0.02) 40.11

(16.18,53.45)

Fengtai 784.61

(330.2,1013.55)

0.42 (0.18,0.55) 388.42

(163.47,501.76)

850.61

(285.52,1319.71)

0.46 (0.15,0.71) 421.09

(141.35,653.32)

81.6

(33.16,108.24)

0.04 (0.02,0.06) 40.4 (16.41,53.58)

Shijingshan 218.99 (91.56,284.22) 0.26 (0.11,0.33) 385.54

(161.2,500.38)

339.21

(116.51,515.54)

0.4 (0.14,0.6) 597.2

(205.12,907.64)

22.77 (9.2,30.43) 0.03 (0.01,0.04) 40.09

(16.19,53.57)

Mentougou 144.54 (57.84,193.85) 0.58 (0.23,0.77) 368.15

(147.33,493.77)

67.77

(22.53,106.95)

0.27 (0.09,0.43) 172.63

(57.38,272.42)

14.58 (5.6,20.41) 0.06 (0.02,0.08) 37.14

(14.25,51.99)

Fangshan 528.59 (232.1,662.06) 0.65 (0.29,0.82) 402.64

(176.8,504.31)

595.04

(200.24,920.4)

0.73 (0.25,1.14) 453.26

(152.53,701.1)

48.98

(18.69,68.03)

0.06 (0.02,0.08) 37.31

(14.23,51.82)

Tongzhou 706.68 (293.7,920.9) 0.64 (0.27,0.83) 384

(159.6,500.41)

1148.71

(400.8,1722.54)

1.04 (0.36,1.56) 624.2

(217.79,936.01)

75.96 (31.5,99.26) 0.07 (0.03,0.09) 41.28

(17.12,53.94)

Shunyi 480.57

(190.53,649.94)

0.26 (0.1,0.35) 362.97

(143.9,490.89)

689.56

(233.56,1059.32)

0.37 (0.12,0.57) 520.81

(176.41,800.09)

53.83

(21.99,71.09)

0.03 (0.01,0.04) 40.66

(16.61,53.69)

Daxing 793.36

(342.7,1004.48)

0.85 (0.37,1.08) 397.95

(171.9,503.85)

782.76

(261.64,1216.8)

0.84 (0.28,1.3) 392.63

(131.24,610.36)

80.69

(32.78,106.78)

0.09 (0.04,0.11) 40.47

(16.44,53.56)

Changping 817.78

(322.07,1110.29)

0.71 (0.28,0.97) 360.34

(141.91,489.22)

885.21

(295.71,1376.46)

0.77 (0.26,1.2) 390.05

(130.3,606.5)

84.43

(32.22,117.37)

0.07 (0.03,0.1) 37.2 (14.2,51.72)

Pinggu 178.06 (74.91,229.42) 0.63 (0.26,0.81) 389.36

(163.81,501.69)

161.2

(53.71,251.43)

0.57 (0.19,0.88) 352.51

(117.45,549.81)

19.25 (8.15,24.7) 0.07 (0.03,0.09) 42.1 (17.82,54)

Huairou 146.8 (54.92,207.47) 0.37 (0.14,0.52) 332.89

(124.54,470.45)

190.51

(63.92,294.89)

0.48 (0.16,0.74) 431.99

(144.94,668.69)

17.14 (6.68,23.16) 0.04 (0.02,0.06) 38.87

(15.15,52.52)

Miyun 177.16 (66.81,249.61) 0.52 (0.2,0.74) 335.72

(126.61,473.01)

110.89

(36.77,174.8)

0.33 (0.11,0.52) 210.14

(69.69,331.25)

21.49 (8.82,28.36) 0.06 (0.03,0.08) 40.72

(16.72,53.74)

Yanqing 124.27 (49.2,168.93) 0.64 (0.25,0.87) 359.46

(142.31,488.67)

108.04

(35.8,168.5)

0.56 (0.18,0.87) 312.52

(103.57,487.41)

12.5 (4.71,17.57) 0.06 (0.02,0.09) 36.17

(13.63,50.84)

Beijing 8274.65

(3406.4,10879.1)

0.23 (0.09,0.3) 377.96

(155.59,496.92)

11143.71

(3826.43,16949.1)

0.31 (0.11,0.47) 509.01

(174.78,774.18)

871.65

(350.54,1164.95)

0.02 (0.01,0.03) 39.81

(16.01,53.21)

It’s the value of 95% CI in parentheses; “-” means that Chaoyang GDP in 2019 has not been released and cannot be calculated for the time being. If the actual annual PM2.5 concentration is less than or equal to 35 µg/m3, the health

benefit is set to 0.
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respiratory disorders, pose a potential threat to human life, and
impose a significant economic cost on society. To this end,
we also studied the health benefits of PM2.5 reductions due
to control measures in three periods. Firstly, we discovered
that the health effects of the same area are various in distinct
epidemic periods, and that the number of health beneficiaries
in different regions is also heterogeneous. Chaoyang, Haidian,
Tongzhou, and Fengtai are the urban areas that have benefited
most from the PM2.5 reduction, as evidenced by the COVID-19
outbreak in Beijing’s Xinfadi market. Secondly, acute bronchitis,
internal medicine clinics, and chronic bronchitis are the top
three health endpoints for health benefits owing to the PM2.5

decrease, accounting for about 80% of the total health effects.
Meanwhile, the decline in PM2.5 caused by control measures
in the three epidemic periods probably avoided premature
deaths of 1,117 cases [95% CI (328, 1,676)], 1,273 cases
[95% CI (339, 2,098)], and 115 cases [95% CI (33, 175)],
respectively. Furthermore, the total health and economic benefits
owing to the PM2.5 reduction affected by the restriction
actions in three pandemic periods were 82,747.65 million yuan
[95% CI (3,406.4, 10,879.1)], 11,143.71 million yuan [95% CI
(3,826.43, 16,949.1)], and 871.65 million yuan [95% CI (350.54,
1,165.95)], respectively.

It is necessary to indicate two fields that require further study.
Although these control measures have led to unprecedented
improvements in air quality, air pollution in the ecological
environment remained high during the blockade. Other
factors contributing to air pollution, such as coal-fired winter
heating systems and unfavorable weather conditions, might be
responsible for air pollutant concentrations (Chen et al., 2013;
Ebenstein et al., 2017). Second, the positive impact on air quality
is transient since the study noticed that restriction efforts in
the COVID-19 pandemic only reduced China’s air pollutant

concentrations in the short term. Nevertheless, in the long run,
when COVID-19 control measures are lifted, large amounts of
energy consumption and industrial activities may bring about
more severe air pollution (Wang and Su, 2020). Maintaining this
improvement in air quality remains a major challenge. Finally,
as air pollution is consistent with human life and economic
activities, the improvement of air quality belongs to a prolonged
fight. Despite the strong restriction actions on dealing with
public health crises, such as the COVID-19 epidemic, which
have alleviated air pollution in the ecological environment, they
have led to great impairment on society and the economy.
Consequently, an essential task for improving the air quality in
Beijing is the establishment of sustainable development strategies
that consider the economic, social, and ecological environment
factors (Wang and Watanabe, 2019; Lee et al., 2020).
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Analysis of Ambient Air PM10-Bound
Pollutants Surrounding an Industrial
Site and Their Prediction Using
Artificial Neural Network
M.G. Bonelli 1*, M. Cerasa2, E. Guerriero2, A. Manni3, S. Mosca2, M. Perilli 2 and G. Rossetti 3

1Programming and Grant Office Unit, Italian National Research Council (CNR), Monterotondo, Rome, Italy, 2Institute for
Atmospheric Pollution Research (IIA), Italian National Research Council (CNR), Monterotondo, Rome, Italy, 3Chemical Research
2000 Srl, Rome, Italy

The 2030 Agenda dictated the Sustainable Development Goals. It states the waste
reduction needs through their reuse, i.e., considering them as secondary raw materials
(Objective 12.5). Bottom ashes from municipal or industrial incinerators can be reused as
partial cement replacement in concrete after preventive physical processes such as ferrous
metals removal (magnetic separation) and nonferrous metals removal (Eddy current
separation). Net of the principal pollutant containment systems, diffusive emissions of
fine particles from these processes, coupled with several screening steps and a final long-
time open-air residues stabilization, could impact the surrounding environment due to the
chemical composition of the particulate matter itself (inorganic and organic pollutants).
Moreover, the particulate may also arise from transporting the raw bottom ashes to the
pre-treatment plant (point source). The present work aims to predict the concentration of
the PM10-bound organic contaminants that are usually sampled weekly (PCDD/Fs, PCBs,
PAHs) from the concentration of the daily analyzed inorganic pollutants in the surrounding
area of an municipal solid waste slag treatment plant, using Artificial Neural Networks
(ANNs) as a forecasting tool. Moreover, ANNs have also been used as a clustering tool to
evaluate the plant’s environmental impact on the surrounding area with respect to other
additional emission sources.

Keywords: artificial neural network, organic micropollutants forecasting, data clusterization, PM10
characterization, MSWI slag

INTRODUCTION

A combustion process creates heat that is recycled and reused or converted to electrical energy. The
fate of the residues (fly and bottom ashes) depends on their characteristics. The thermal treatment
plants’ residues from power production and municipal or industrial wastes show pozzolanic
properties. They can be used as secondary raw materials for cement and building material
production. (Giergiczny 1991; Kumar and Singh 2021; Mafalda Matos and Sousa-Coutinho
2022). This statement agrees with the request of the 2030 Agenda to protect the planet from
degradation by minimizing waste generation through prevention, reduction, recycling, and reuse, as
mentioned in its objective 12.5 (United Nations 2015). After incineration, bottom ashes are mainly
composed of slag, synthetic ceramics, minerals, ferrous and nonferrous metals, unburned organic
matter, glass, porcelain, and soluble salts such as hydroxides and chlorides. They are preliminarily
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screened to remove bigger particles, after which they are subjected
to physical treatments such as magnetic separation to extract
ferrous materials and Eddy current separation to remove
nonferrous metal constituents. They undergo a final long-time
open-air stabilization. This can last up to 6–9 months, and it is
used to weather/oxidize the components mainly by the action of
O2, CO2, and water. The pH of the bottom ashes bulk will
decrease, allowing the constituents’ modification from
hydroxides to sulfate than to carbonates, decreasing their
leachability and dramatically contributing to the heavy metals
leaching reduction (Chimenos et al., 2003). Finally, bottom ashes
are sieved with different meshes to create aggregates showing
several physical and mechanical characteristics such as density,
compressive strength, and flexural strength, making them
suitable for various uses in construction either directly or as
an aggregate in other materials (Saffarzadeh et al., 2011;
Spreadbury et al., 2021; Y.; Kim and Lee 2002; Youcai 2017;
Astrup et al., 2016; Koksal et al., 2021). Prior to any other
considered use, their environmental impact must be proven. It
means sampling, analysis, and data processing. The focus is on
the content of metals and persistent organic pollutants (POPs)
due to the toxic aspects (Kim et al., 2004; Wei et al., 2021). The
analysis of POPs (i.e., PCDD/Fs, PCBs, and PAHs) requires
multiple days of sampling (due to the low concentrations in
air, an enrichment of the sample is necessary to have an amount
greater than the instrumental limit of quantification) and the
laboratory analysis (extraction, analysis and data processing)
requires at least 2 days. Usually, airborne metals are collected
daily on filters and then determined by Inductively Coupled
Plasma–Optical Emission Spectrometer (ICP-OES), Atomic
Emission Spectrometer (AES), Mass Spectrometer (MS), and
X-ray fluorescence (XRF) (Suvarapu and Baek, 2017).

Artificial neural networks (ANNs) are computational
methodologies that perform multifactorial analyses. Inspired
by biological neuron processes, the concept was introduced in
1943 by McCulloch and Pitts, simulating how the human brain
processes information through the nerve cells, or neurons,
connected to each other in a complex network within a
computational model (McCulloch and Pitts, 1943). ANNs can
model complicated and non-linear relationships. Moreover, from
a modeling perspective, it works as a black box (Mjalli et al.,
2007): it can approximate any function, studying its structure, but
it cannot give any insights about the structure of the function
being approximated. Therefore, ANNs can process the available
data (input) and produce a prediction of the target value (output),
identifying and learning the effects of an unknown complex
cause-effect relationship between input and output through a
training process. A neural network can approximate a wide range
of statistical models without hypothesizing in advance any
relationships between the dependent and independent
variables. Instead, the form of the relationships is determined
during the learning process. If a linear relationship between the
dependent and independent variables is appropriate, the neural
network results should closely approximate those of the linear
regression model. If a non-linear relationship is more
appropriate, the neural network will automatically match the
“correct” model structure. The neuron (node) is the basic

processing unit in neural networks. Neural networks impose
minimal demands on model structure and assumptions. Still,
it is necessary to choose the general network architecture
correctly, consisting of multiple layers of nodes in a directed
graph. Each layer is fully connected to the next one.

ANNs are a useful statistical tool for solving classifications,
clustering, regression, pattern recognition, dimension
reduction, structured prediction, machine translation,
anomaly detection, decision making, visualization, and
computer vision problems. They are often used as
alternative forecasting methods in many fields, such as
marketing, meteorology, and finance, where a significant
amount of data is challenging to manage. In environmental
sciences, they have been recently used in the prediction of
sorption/desorption of chemicals from soil (Silva et al., 2019),
delineation of soil contaminant plumes (Tao et al., 2019), risk
assessment, and spatial modeling of heavy metals (Abbaszadeh
et al., 2020), soil infiltration in furrow irrigation (Nazli et al.,
2019), determination of principal components affecting soil
infiltration (Alipour et al., 2021), forecasting the change in
organic agricultural output (Doan 2021), investigating in
PAHs bioremediation (Bao et al., 2019) and investigating
the atmospheric sciences (Gardner and Dorling 1998).
Many researches were performed using ANNs for air
pollutant time series modeling and air pollutant
concentrations forecasting, describing this method as good
training, validation, and testing techniques and discussing
measurements of performance and reliability (Prachi and
Matta, 2011). An ANNs model has also been used to
forecast short and middle long-term concentration levels of
well-known air pollutants (Viotti et al., 2002). The method has
shown outstanding performances for the short forecasts. For
the medium and long-term forecasts, the results are better than
the usual deterministic models in terms of mean square error
(MSE), introducing hypotheses about the values of the
meteorological and traffic parameters. Other studies have
compared the predictive ability of the ANN models (non-
linear method) for forecasting concentrations of air pollutants
with the Multi-Linear Regression (MLR), proving that MLR is
better than ANNs except in a few cases (Cakir and Moro 2020).

A multilayer perceptron (MLP) is a class feedforward
artificial neural network. It consists of three or more layers
(an input and an output layer with one or more hidden layers)
of nonlinearly activating nodes: it is a function of predictors
(also called inputs or independent variables) that minimize
the prediction error of target variables (also called outputs).
An example of MLP’s architecture is shown in Supplementary
Material S1.

The MLP model is an example of a feedforward neural
network, referring to a fully connected network with three or
more layers (an input and an output layer with one or several
hidden layers) of nonlinearly activating nodes. The
connections are unidirectional, and there are no cycles or
loops in the network; thus, each neuron is linked only to
neurons in the next layer. Each layer is connected to the
adjacent neurons through an activation function, and all
connections have their weights.
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The MLP’s Learning Process Occurs in the Following
Consecutive Phases

a) Training (or calibration) phase: the original input set is
divided into three subsets: training set, test set, and
holdout set (Riad et al., 2004). The MLP reads the input
and output variables of the training set and optimizes the
prediction error of the output.

b) Testing (or verification) phase: the model accuracy is
estimated by error indicators such as the Coefficient of
determination (R2) and the Root Mean Square Error
(RMSE) of prediction calculated for the holdout set. The
minimum RMSE and the maximum R2 are often used to
select the “better” neural network (Afan et al., 2015). RMSE is
calculated in both the training and test set. Comparing both
values, if they are of the same order of magnitude, the neural
network provides reliable predictions (Chaloulakou et al.,
2003).

As previously stated, the analysis of POPs is time- and cost-
consuming. In this study, an MLP model has been used to predict
the concentration of PM10-bound organic micropollutants
(PCDD/Fs, dl-PCBs, and PAHs) from the concentration of
daily airborne metals in an area where a municipal solid waste
(MSW) bottom slag recovery plant is present, also considering
whether it is possible to apply the neural networks for identifying
the different emission sources. This work aims to underline that
ANNs can be a helpful tool for predicting the concentrations of
persistent pollutants and as a support tool for the plant manager
to reduce the fallout of its emissions on the ground.

MATERIALS AND METHODS

Sampling Area and Strategy
This section provides information related to ambient air sample
data collection. The industrial plant, focus of this work, bottom
slag recovery plant. It is a mechanical slag treatment in an
industrial-covered shed. There is an aspiration system for
collecting and treating dust emissions generated by processing
incoming waste and bag filters for air filtration. The plant is in a
mainly periurban area, where other productive settlements are
located (concrete production, semi-finished food products,
carpentry, welding). Ambient air samples were collected at
three sites, named A, B, and C, selected based on the position
of the industrial plant (distance, wind direction). In detail, site A
can be considered representative of the maximum fallout of the
plant, as it is located within the perimeter of the plant itself; site B
is located 4 km West of the plant, in a suburban site, on a
moderately high-traffic road; site C is located 3 km East of the
plant, in an urban park.

Ambient air samples were collected in two experimental
campaigns in summer and winter, lasting 3 weeks each. Air
samples were collected using a high-volume sampler (Echo
PUF high volume sampler, TCR Tecora, Milan, Italy),
equipped with a quartz fiber filter (QFF) and a polyurethane

foam (PUF), allowing simultaneous sampling of particulates and
gases at a flow rate of 200 L/min for organic micropollutants, and
with a SkyPost PM10 sampler for the collection of particulate
matter on which the subsequent analysis of metals was carried
out. The organic micropollutants were collected weekly (18
samples), whereas the particulate matter was collected daily.

Chemical Analysis
Once collected, the samples were sent to the laboratory for
analysis. Each QFF + PUF sample was spiked with standard
solutions (Wellington Lab, Canada) containing PCDD/Fs
(EN-1948 ES) and dl-PCBs (WP-LCS) prior to the
extraction process (36 h Soxhlet extraction with toluene).
The extract was concentrated and divided into two
fractions - one for PAHs and one for separating PCDD/Fs
and PCBs. A subsequent clean-up followed (Mosca et al.,
2010) prior to the instrumental GC/MS analysis. The
analysis of metals was based on the extraction of each filter
in an ultrasonic bath, extraction of the residue via acid
digestion, and the subsequent ICP/MS analysis of both
fractions, according to Canepari et al. (2006).

Statistical Analysis
In this work, preliminary correlation analysis has been
performed, investigating the possible linearity of the
relationships between the considered variables employing
Pearson’s correlation matrix. If there is a linear dependence
between organic, PM10, and inorganic variables, it could be
assumed that the same emission source is present. Then, a
Principal Component Analysis (PCA) is processed to increase
the interpretability of the variable’s relationships. Finally, a
Multilayer Perceptron algorithm has been carried out,
considering PM10 and 27 metals as input variables and the
organic contaminants (TCDD, ∑ PCDD/F, ∑ PCB, BaP, and∑ PAHs as the output to be predicted. Daily data for PM10 and
metals were aggregated on a weekly basis to carry out a consistent
analysis.

All statistical applications were performed using the software
package SPSS v. 27.

RESULTS AND DISCUSSION

Preliminary Statistical Analysis
As mentioned above, a preliminary analysis for the study of linear
dependence was performed. PM10, 27 metals (independent
variables or input), and organic micropollutants (dependent
variables or output) were analyzed from 18 air samples.
Among micropollutants, 2.3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) and benzo(a)pyrene (BaP) were considered, along
with the sum of PAHs, PCDD/Fs, and dioxin-like PCBs, due
to their toxicological aspect. Pearson’s correlation matrix with the
significance level at p < 0.05 is shown in the Supplementary
Material S1.

Correlation analysis shows the presence of multicollinearity:
two or more of the predictors (or input variables) are moderately
or highly correlated with one another. This occurs, for instance,

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8938243

Bonelli et al. POPs Prediction by ANN

231

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


for As and Co., whose Pearson’s correlation coefficient r2, at a
significance level of 0.05, is equal to 0.93, or for Fe and Cr, with r2

equal to 0.97.
Some important relationships are also observed between

predictors and dependent variables. For example, TCDD is
negatively correlated with Mg, with r2 equal to -0.65; ∑ PCB
has a linear correlation with Cr and Fe (r2 equal to 0,63 and
0.60, respectively); BaP and ∑ PAHs are positively correlated
with Tl, with r2 as 0.76 and 0.70 respectively, and negatively
correlated with Ba (r2 as -0.75 and -0.70, respectively), Mg (r2

as -0.70 and -0.64, respectively), Ni (r2 as -0.68 and -0.61,
respectively) and V (r2 as -0.73 and -0.68, respectively). At the
same time, ∑ PCDD/Fs do not correlate with any metal. The
presence of linear relationships allows us to hypothesize for
organic and inorganic contaminants with the same emission
source and to perform forecasts through traditional methods,
such as the Multi Linear Regression. The next step was the
application of the Principal Component Analysis (PCA) to
find out if there were any latent relationships between the
variables ∑ PCDD/Fs and metals. In other words, PCA was
used as data clustering to identify if and–eventually - which
metal influences the presence of PCDD/Fs (and the other

TABLE 1 | Principal Component Analysis (PCA).Rotated component matrix and variance explained.

PC1 PC2 PC3 PC4 PC5 PC6

PM10 0.057 −0.045 0.269 −0.692 −0.088 0.489
As 0.872 0.321 −0.074 −0.163 −0.013 −0.042
Ba 0.901 0.111 −0.058 −0.002 −0.227 0.116
Ca 0.224 −0.709 0.587 0.166 −0.158 −0.114
Cd −0.315 0.259 0.589 −0.426 0.243 −0.431
Ce 0.871 0.393 −0.196 0.114 0.054 0.084
Co. 0.916 0.329 -0.058 0.015 0.054 -0.012
Cr 0.446 0.813 −0.153 0.236 0.082 0.144
Cs −0.197 0.651 −0.246 0.345 0.451 0.202
Cu 0.529 −0.109 0.817 −0.026 0.029 0.000
Fe 0.532 0.763 −0.065 0.285 0.148 0.142
K −0.592 −0.347 0.536 0.018 −0.276 0.234
Li 0.774 0.297 0.232 0.443 0.218 −0.048
Mg 0.551 −0.712 0.141 −0.075 0.14 −0.185
Mn 0.66 −0.182 0.647 0.188 0.047 0.04
Mo -0.01 0.419 0.802 0.054 −0.176 0.323
Na −0.422 −0.538 0.11 0.416 0.217 0.173
Ni 0.737 −0.244 0.182 −0.421 −0.012 −0.113
Pb −0.303 0.465 0.555 −0.377 0.383 −0.296
Rb −0.618 0.427 0.435 0.209 −0.104 0.385
Sb 0.269 0.105 0.84 0.000 0.002 0.398
Sn 0.058 0.694 0.553 −0.244 0.268 −0.193
Sr 0.691 −0.419 0.383 0.346 −0.032 −0.203
Ti 0.656 0.64 −0.044 −0.18 0.242 0.003
Tl −0.888 0.095 0.078 −0.031 0.31 0.133
V 0.829 −0.308 0.092 0.131 0.026 -0.11
W 0.464 0.353 −0.108 −0.668 −0.275 0.208
Zn 0.067 −0.2 0.889 0.243 0.067 −0.056
TCDD −0.43 0.667 0.238 0.115 −0.397 −0.259
PCDD_F −0.318 0.611 0.107 0.072 −0.466 -0.3
PCB 0.327 0.609 0.026 0.266 −0.604 −0.196
BaP −0.828 0.395 0.244 0.118 0.014 −0.077
PAH −0.777 0.419 0.243 0.072 −0.025 −0.186
% variance 26.2 22.6 15.8 10.5 8.9 7.6
% cumulative variance 26.2 48.8 64.6 75.1 84.0 91.6

FIGURE 1 | The three-dimensional component plot in rotated space.
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organic pollutants) to be referred to as the same
contamination source.

The PCA’s process computes six principal components by
varimax orthogonal rotation criterium, as described in Table 1.

The first six PCs accounted for 91.6% of the total variation in
the dataset: a six-dimensional space is supposed to be an excellent
approximation to the original scatterplot of 33 variables, but it is
not graphically representable. Furthermore, the first three PCs
accounted only for 64.6% of the cumulative variance, and any
cluster within the component plot is difficult to define (Figure 1).

It has thus been shown that PCA cannot clearly identify the
sources of pollution, justifying the concomitant emission of
PM10 and some metals with organic contaminants. Therefore,
it was decided to apply an additional statistical clustering method
to study the potential aggregations between variables and to
explain the simultaneous presence of the variables considered
in the same site.

The idea behind it all was to investigate the cause/effect
relationships between all pollutants, in the three sites, by
predicting the concentration of each organic component
(output) resulting from PM10 and metals (input) through the
development of an MLP model. The MLP, being a non-
parametric technique, has been preferred to any other
predictive method because the net can provide reliable results
without hypothesizing in advance any relationships between the
dependent and independent variables.

Artificial Neural Networks Results
Generally, ANNs models are considered a fundamental tool for
collecting information about an extensive data system, but they
can process small datasets. Referring to five output variables and
28 input variables (PM10 and the 27 metals), two MLP models
have been performed for each organic contaminant (TCDD,
PCDD/F, PCB, BaP, and PAHs), first considering all the 18
samples collected at the three sampling points, called Zone T
(Sites A, B, and C), and then considering only the 12 samples
placed outside the treatment plant, called Zone E (Sites B and C).

Each net has an MLP architecture 28-nine to one, where “28”
is referred to the input variables (PM10 and 27 metals), “9” refers
to the hidden variables (in one hidden layer), and “1” is referred

to the output variables (organic contaminants). MLP architecture
is shown in Supplementary Material S1.

The training set was used to train the network and the test set
to evaluate the prediction performance of the ten models. R2 and
RMSE of the training and test set values are displayed in Table 2.

All values of R2 are over 0.80, except for TCDD in zone T
(0.66). Furthermore, the RMSE values in the training and test set
are all in the same order. Therefore, the MLP models in Zone T
and E provide reliable predictions.

The results for Zone T and Zone E models do not differ
significantly, except for the TCDD variable, as the network could
not “read” any relationships between TCDD and metals in
samples from Site A (treatment plant). ANN predictive
capability is higher for external samples (Zone E) than for the
total of the samples (Zone T = Zone E + treatment plant) except
for the variable PCDD/Fs. Among the external samples, the
Urban site (site B) is more distant from the plant and
influenced by ordinary traffic and trucks that go back and
forth from the plant. This peculiarity impacts PCDD/F values
and seems to affect the predictive capacity of the network
adversely. The source of dioxin emission at this site is
unknown and will be further investigated. It is also noted that
anomalous values are recorded at the same site in the case of PCB-
126 (3.3′,4.4′,5-PentaCB) and PCB-169 (3.3′,4′,5.5′-HexaCB).

A T-test for two independent groups has been applied to
confirm if the performance of the Zone T and Zone E models
provides similar analytical results for the other variables (Johnson
andWickern, 2014). The outcome of this test is the acceptance or
rejection of the null hypothesis (H0) within a predefined
confidence level, generally at 95%. The null hypothesis states

TABLE 2 | ANNs performance evaluation.

R2 RMSEtraining RMSEtest

TCDD
Zone T 0.66 0.36 0.01
Zone E 0.93 0.39 0.02

PCDD_F
Zone T 0.92 0.07 0.01
Zone E 0.81 0.022 0.09

PCB
Zone T 0.83 0.17 0.00
Zone E 0.95 0.03 0.00

BaP
Zone T 0.95 0.03 0.32
Zone E 0.96 0.05 0.00

PAH
Zone T 0.91 0.05 0.04
Zone E 0.96 0.03 0.00

TABLE 3 | T-test results.

TCDD texp Accptance region H0

Inf Sup
R2 5.88 -0.92 2.51 Reject
RMSEtraining 22.74 0.16 0.58 Reject
RMSEtest 2.39 -0.05 0.07 Reject

PCDD_F texp Accptance Region H0
inf sup

R2 15.87 0.17 1.55 Reject
RMSEtraining 1.85 -0.26 0.35 Reject
RMSEtest 1.39 -0.41 0.51 Reject

PCB texp Accptance Region H0
inf sup

R2 15.00 0.14 1.65 Reject
RMSEtraining 1.45 -0.78 0.98 Reject
RMSEtest 1.00 -0.01 0.02 Reject

BaP texp Accptance Region H0
inf sup

R2 424.51 0.93 0.98 Reject
RMSEtraining 4.96 −0.06 0.14 Reject
RMSEtest 7.8 0.00 0.01 Reject

PAH texp Accptance Region H0
inf sup

R2 42.94 0.66 1.21 Reject
RMSEtraining 3.26 -0.12 0.2 Reject
RMSEtest 1.28 -0.19 0.24 Reject
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that any differences or outlying results are purely due to random
and not systematic errors. The alternative hypothesis (H1) states
precisely the opposite. Even though it is true, an erroneous
rejection of H0 constitutes a “type 1 error” or p-value. A
smaller p-value means stronger evidence in favor of the
alternative hypothesis. The most commonly used p-value is
0.05. To accept or reject H0, the observed t-statistic text has to
fall within the acceptance region (AR). The AR boundaries
depend on the significance level of the test (the probability of
erroneously rejecting the null hypothesis). Then they are
calculated as a function of the p-value.

In this study, H0 is the hypothesis that the predictive capability
of both Zone T and Zone E models is the same for each output
variable. T-test results are explained in the following Table 3.

For each organic pollutant, the test leads to the rejection of the
null hypothesis: the predictive capability of the models is very
different not only for TCDD but also for other variables despite
the agreement between R2 and RMSE values.

CONCLUSION

This study analyzed the concentration data of persistent organic
micro-pollutants (PCDD/Fs, PCBs, and PAHs), PM10, and
metals potentially emitted from an MSW residual treatment
plant in ambient air. The traditional statistical approach could
not clearly identify the sources of contaminants proving the same
release of PM10, metals, and organic pollutants. ANN via MLP
models was then applied to the dataset (concentration in three
sampling sites), considering PM10 and metals as input and
organic pollutants as output. As the first goal of this study, the
contribution of the plant’s emissions to the surrounding air was
evaluated by differentiating the data analysis of the sampling sites:
“T zone,” including all three sites, and “E zone,” including only
the two most distant sites from the plant, thus excluding the
concentrations in the site of maximum relapse.

An assessment of the predictive capability of the models (R2

and RMSE) in both areas (inside and outside the plant) identified
that the emission sources of external and internal samples were
different. Therefore, the network’s performance was higher for
TCDD, PCB, BaP, and PAHs when only external samples were
considered (even if the sample numbers are lower) since the
model relationships were “contaminated” by the pollution
sources within the treatment plant.

According to the R2 values, the E model (external sites) for
TCDD, PCB, BaP, and PAH provides more reliable
predictions than the T Model (all sites) though with fewer
samples, as if the stationary emission source due to the plant
was “clouding” the relationships between the different
pollutants. Conversely, in Zone E, the ANNs can better
interpret the relationships. For PCDD/F, T Model is better

than E Model: the relationships between the contaminants in
the three sampling sites are more straightforward and allow
the network to “learn” more.

Given the correspondence between the input and output data, it is
possible to control the emission ofmicropollutants bymonitoring the
concentration of PM10 and metals (input). Furthermore, from an
analytical point of view, it is easier and cheaper to obtain PM10 and
metals data than POPs. This means that anomalous data of PM10
and/or metals (a daily event) and a higher concentration of POPs
could be associated. In this case, it would be possible to promptly start
the weekly sampling, thus reducing the costs of air quality analysis.
Moreover, since pollutants are emitted from multiple sources,
stationary and mobile, the application of ANN as a predictive tool
can even support the plant manager (stationary source), acting on
operative parameters (i.e., feeding, abatement systems, . . . ) to control
polluting emissions. In this way, the contribution to the total
concentration of organic micropollutants in ambient air in the
surrounding area can be monitored and eventually minimized
almost in real-time.
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Research and Application of the Mode
Decomposition-Recombination
Technique Based on Sample-Fuzzy
Entropy and K-Means for Air Pollution
Forecasting
Chunhua Niu1, Ziqi Niu2, Zongxi Qu1*, Lili Wei1 and Yutong Li1

1School of Management, Lanzhou University, Lanzhou, China, 2School of Mathematics and Statistics, Lanzhou University,
Lanzhou, China

Practical forecasting of air pollution components is important for monitoring and providing
early warning. The accurate prediction of pollutant concentrations remains a challenging
issue owing to the inherent complexity and volatility of pollutant series. In this study, a novel
hybrid forecasting method for hourly pollutant concentration prediction that comprises a
mode decomposition-recombination technique and a deep learning approach was
designed. First, a Hampel filter was used to remove outliers from the original data.
Subsequently, complete ensemble empirical mode decomposition adaptive noise
(CEEMDAN) is employed to divide the original pollution data into a finite set of intrinsic
mode function (IMF) components. Further, a feature extraction method based on sample-
fuzzy entropy and K-means is proposed to reconstruct the main features of IMFs. In
conclusion, a deterministic forecasting model based on long short-term memory (LSTM)
was established for pollutant prediction. The empirical results of six-hourly pollutant
concentrations from Baoding illustrate that the proposed decomposition-recombination
technique can effectively handle nonlinear and highly volatile pollution data. The developed
hybrid model is significantly better than other comparative models, which is promising for
early air quality warning systems.

Keywords: hourly pollutants forecasting, decomposition-recombination technique, sample-fuzzy entropy, k-means,
long short-term memory

INTRODUCTION

Following rapid industrialization and urbanization, various air pollution problems have occurred
frequently. Air pollution has serious effects on human health and causes significant economic losses
(Tang et al., 2010; Liu et al., 2011; Pandey et al., 2021). Therefore, establishing high-precision
monitoring and prediction models is necessary to support governmental decision-making,
environmental protection, and medical diagnosis.

Up to now, enormous amount of studies contributed to predicting future trends of air pollutants.
In summary, most works modeled for prediction from three perspectives: mathematical and physical
techniques, statistical prediction models, and machine learning models. First, mathematical and
physical techniques have long been widely used in the field of air pollutant prediction. For instance,
Huang et al. (2018) developed a random forest model, including gap-filled aerosol optical depth
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(AOD), Modern-Era Retrospective analysis for Research and
Applications Version 2 (MERRA-2) simulations,
meteorological parameters, and land cover as predictors to
estimate monthly PM2.5 concentrations in North China.
Tessum et al. (2015) used Weather Research and Forecasting
with Chemistry Meteorological (WRF-Chem) and a chemical
transport model (CTM) to simulate air pollution in adjacent areas
of the United States for 12 months in 2005 with a horizontal
resolution of 12 km and evaluated the simulation results.
Atmospheric environment diffusion model techniques such as
CTM and WRF can predict the pollutant concentration by
solving the corresponding differential equation, which makes
the prediction more deterministic (Yahya et al., 2014).
Pollutants can further be predicted using the statistical
forecasting model. Statistical methods are used to predict
pollutants by mining time-series data for characteristic
information. Zhang et al. (2018) used the autoregressive
integrated moving average model (ARIMA) to predict the
PM2.5 concentration and compared it with other pollutant
concentrations and meteorological parameters. Further, Wang
P. et al. (2017) proposed a novel hybrid generalized autoregressive
conditional heteroskedasticity (GARCH) method by combining
ARIMA and support vector machine (SVM) forecasting models.
Additionally, some improved statistical models, such as multiple
linear regression (Elbayoumi et al., 2015; Yuchi et al., 2019; Yan
and Enhua, 2020) and gray models (Chen & Pai, 2015; Wu &
Zhao, 2019), are proposed for better prediction of PM2.5.
Machine learning models such as artificial neural networks
and support vector algorithms have recently become more
prominent in pollution prediction. Various machine learning
methods have been used in previous air pollution prediction
studies. These include the following: backpropagation neural
network (BPNN) (Bai et al., 2016); generalized regression
neural network (GRNN) (Zhou et al., 2014); extreme learning
machine (ELM) (Shang et al., 2019); random forest (Huang et al.,
2018); support vector regression (SVR) (Zhu et al., 2018); long
short-term memory (LSTM) (Qi et al., 2019; Yan et al., 2021)
Zhang et al. (Zhang et al., 2019), integrated a multiple objectives
model with five algorithms—BPNN, ARIMA, cuckoo search
(CS), holt winters (HW) and online extreme learning machine
(OELM)—for wind speed prediction. A constructed function
comprising a three-objective combined model was optimized
using a non-dominated sorting genetic algorithm. Liu et al.
(Liu et al., 2018), constructed a combined model was
constructed using a nonlinear neural network and statistical
linear algorithm. Compared with several integrated models, it
is more reliable and results in high accuracy.

However, it is hardly possible for a single prediction method to
elaborately capture all complex features in pollution series which
locate in a high dimension space. To this end, data preprocessing
by outlier removing and series decomposition is efficient way for
model construction at first. Various data preprocessing methods
are developed for pollution data with nonlinearity and volatility
present in. Data preprocessing approaches and optimization
strategies have been extensively researched for pollutant
prediction to increase the efficiency and accuracy of the
prediction performance (Li & Zhu, 2018). Researchers usually

propose suitable data preprocessing methods and process them
according to study requirements. Several existing data
preprocessing methods are relevant to the study of
environmental contaminants. Empirical Mode Decomposition
(EMD) (Huang et al., 1998) is a well-known algorithm for series
decomposition. This algorithm projects a time series onto a set of
intrinsic mode function (IMF) acting as bases because the project
coefficients show good shapes via the Hilbert transform. These
bases are derived from the phenomena of oscillations in the
physical time domain. Owing to the poor performance of the
subjective intervention for the intermittence test, EEMD (Wu and
Huang, 2009) is proposed using noise-assisted data analysis
(NADA) to construct a set of IMF. To increase the scales of a
series at high frequency via the transformation of the IMF, an
ensemble of white noise is incorporated for the designed trials
because its scales are distributed uniformly in both the time and
frequency domains. The true signal is estimated using the average
of the ensemble in which the random white noise is canceled out,
and only the persistent part of the signal remains. For example,
(Zhou et al., 2014), suggested a hybrid ensemble empirical mode
decomposition-generalized regressionneural network (EEMD-GRNN)
model that integrates the EEMD and a generalized regression
neural network (GRNN) as a strategy for forecasting PM2.5.
Wang (Wang D. et al., 2017) developed a new hybrid model
based on a two-phase decomposition technique and modified
ELM to improve the forecasting accuracy of the air quality
index. Xu et al. (Xu et al., 2017) developed a hybrid model based
on Improved Complementary Ensemble Empirical Mode
Decomposition, Whale Optimization Algorithm and Support
Vector Machine (ICEEMD-WOA-SVM) to predict major
pollutants, in which the data preprocessing part follows a
“decomposition and integration” strategy. The raw series of
each pollutant concentration was decomposed into several IMFs
that were individually decomposed using a data preprocessing
technique. The Hampel filter is an offline frequency-domain
filtering method for eliminating spectral outliers (Allen, 2009).
The advantage of the Hampel filter is that there is no prior need
to know the outliers where the disturbance occurs. Moreover,
the processed data series will not be distorted. Li et al. (Li et al.,
2019) developed a new analysis and prediction system for air
quality index prediction. Outliers in the air quality index series
were eliminated using Hampel filter. Liu et al. (Liu and Chen,
2020) proposed a three-stage hybrid neural network model for
outdoor PM2.5 forecasting. K-means is an iterative clustering
analysis algorithm used in pollutant data analysis. Riches et al.
(Riches et al., 2022) employed the K-means cluster to analyze
five concentrations. They further examined the patterns of
association between PM2.5, PM10, CO, NO2, O3, and SO2

measurements and variations in annual diabetes incidence at
the county level in the United States.

The data preprocessing methods mentioned above provided
qualified data for later analysis with prediction models. However,
most current studies only use a single data preprocessing
technology which cannot offer well present data suitable for
further modeling. For example, in some studies, the EEMD
technique was the only method used to decompose the
original data into numerous IMF components for reducing the
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prediction complexity. The effective extraction of features from
IMFs is difficult because features with diversity in frequency
domain might be caused by outliers, which introduce disturbance
into prediction. Therefore, in this study, the original data were
first filtered by Hampel to eliminate the outliers in the data. The
data were then decomposed into several IMFs using complete
ensemble empirical mode decomposition adaptive noise
(CEEMDAN). The complexity characteristics of the different
sequences were obtained by calculating the fuzzy entropy and
information entropy of each IMF signal. Subsequently, similar
IMFs are recombined using the K-means clusteringmethod based
on fuzzy entropy and information entropy. After that, a
prediction model was established using LSTM to conduct an
empirical study of the six pollutants.

RELATED METHODOLOGIES

Data Preprocessing Method
Six data preprocessing methods—the Hampel filter, CEEMDAN,
Sample entropy (SE), Fuzzy entropy (FE), K-means, and LSTM
prediction methods—were applied in this study to better predict the
concentrations of six pollutants: PM2.5, PM10, SO2, NO2, O3, and
CO. First, the original data were filtered byHampel filter to eliminate
the outliers in the data. Then, the data was decomposed into several
IMFs using CEEMDAN. The complicated characteristics of the
different sequences were obtained by calculating the fuzzy
entropy and information entropy of each IMF signal. Finally, to
sum up similar IMFs in each group clustered with the K-means in
terms of fuzzy entropy and information entropy.

Hampel Filter
The Hampel filter is an offline frequency-domain filtering
method used to eliminate spectral outliers that are difficult to
represent elaborately using prediction models. By representing
the sequence with a one-dimensional vector, the method
generates a local window around each element of the vector
and calculates the median of all elements in that window. The
standard deviation of each sample was further estimated using the
absolute value of the median. The absolute difference between the
sample and median shorted in the MAD can be a direct
measurement for outlier detection. Mathematically, the
Hampel filter detects elements as outliers in a vector using Eq. 1:

{ Sj � 1.4286median{∣∣∣∣∣xj − xp
j

∣∣∣∣∣},
xj � xp

j , if
∣∣∣∣∣xj − xp

j

∣∣∣∣∣> tSj, for j � 1, ..., N,
(1)

where t is the threshold, and N is the length of the vector. The
variables xp

j and Sj are the median and standard deviation of the
window centered at element xj, respectively. The deviation Sj is
estimated adaptively by multiplying MAD and a constant.
Element xj is further replaced with xp

j when the MAD is t
times larger than Sj, the standard deviation.

Algorithm of CEEMDAN
EEMD can obtain better IMF than EMD. However, it does not
result in exact decomposition because the white noise drives the

generation on new modes that hide within the mixed IMFs.
Furthermore, the IMF might not be orthogonal so that the energy
of the added white noise is not similar to that when the polluted
series are expanded by the IMF. To overcome this problem,
CEEMDAN first defines a residual between the series and
variation IMF from EEMD and then applies the step in EMD,
which extracts the most IMF of the residual. The above steps were
repeated until the residual energy was small. The last residual is
defined as the last mode, which is why this algorithm is
considered complete.

Let E1(•) denote the operator that decomposes the first mode
from a series, defined as in EMD, and let IMFV

j denote the
variation of the j − th IMF. Assuming M, the number of trials in
EEMD, the procedure of CEEMDAN is described in detail as
follows:

Step 1: The first variation IMF is the same as the first in EEMD.

IMFv
1[n] �

1
M

∑M
i�1
IMFi

1[n] � IMF1[n].

Step 2: The following is the first residual off the decomposed
series.

r1[n] � x[n] − IMFv
1[n].

Step 3: Let the second mode be the mean of the
decompositions of the residuals enhanced by adaptive noise
with E1(•) in an ensemble of trials.

IMFv
2[n] �

1
M

∑M
i�1
E1(r1[n] + ε1E1(ωi[n])).

Step 4: Similar to step 2, define the k − th residual off the
(k − 1) − th residual.

rk[n] � r(k−1)[n] − IMFv
k[n].

Step 5: Extract the (k + 1) − th mode, IMFV
k+1[n], from the

enhanced k − th residual by an adaptive noise,

IMFv
(k+1)[n] �

1
M

∑M
i�1
E1(rk[n] + εkEk(ωi[n])).

Step 6: After the number ofK decompositions, the last residual
is given as follows:

R[n] � x[n] −∑K
k�1

IMFv
k,

and we have the exact decomposition

x[n] � ∑K
k�1

IMFv
k + R[n].

Sample Entropy
Sample entropy is a new measure of time-series complexity proposed
by Richman and Moornan (Richman et al., 2000), which aims to
reduce the error of the approximate entropy algorithm with higher
accuracy. Sample entropy was calculated as follows:
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From a time series X � [x1,x2,/, xn], and a tolerance r,
Step 1:Generate a group of vector by rolling on time,

Xm
i � [xi, xi+1,/, xi+m−1], i � 1, 2, ..., n −m + 1.

Step 2: Define the distance between Xm
i and Xm

j with the
maximum norm of Xm

i −Xm
j ,

dm
ij � d(Xm

i , Xm
j ) � max{∣∣∣∣xi+k − xj+k

∣∣∣∣, k � 0, 1,/, m − 1}.
Step 3:For each i, i � 1, . . . , n −m + 1, calculate Pm

i (r) by the
sum of indicate function I(•), Pm

i (r) � 1
n−m ∑

j≠i
I(dmij < r), and

ϕm(r) � 1
n−m+1 ∑n−m+1

i�1
Pm
i (r).

Step 4:Let m � m + 1, and repeat steps 1–3, get ϕm+1(r), then
the sample entropy is defined as

SEm(r) � −ln(ϕm+1(r)
ϕm(r) ) (2)

Fuzzy Entropy
The concept of fuzzy sets was first introduced by Zadeh (Zadeh,
1965), which resulted in the formation of fuzzy entropy with
further research on fuzzy sets. The statistical measure of fuzzy
entropy was further developed by Chen et al. (Chen et al., 2009) to
characterize the degree of fuzziness of fuzzy sets. As a measure of
complexity, there is less bias, and continuity is achieved as well as
free parameter selection and greater robustness against noise.

There are many definitions of fuzzy entropy as long as the
definition satisfies the four rules described in this study (Zadeh,
1965). In this study, fuzzy entropy is similarly formulated as part
of the sample entropy. The first difference is that a constant c is
subtracted from all the elements of the vector Xm

i generated by
rolling on time:

Xm
i � [xi, xi+1,/, xi+m−1] − c, i � 1, 2, ..., n −m + 1,

where c � 1
m∑i+m−1

k�i k. The second difference is the definition of
distance for two vectors,

dm
ij � exp

⎧⎨⎩ − (
∣∣∣∣∣Xm

i −Xm
j

∣∣∣∣∣max

r
)2⎫⎬⎭.

The other steps are similar to those of the sample entropy. In
conclusion, the fuzzy entropy is defined as

FuzzyEn(t) � ln ϕm(t) − ln ϕm+1(t). (3)

K-Means
The K-means algorithm is a classic method for clustering points in
high-dimensional space, as proposed by Macqueen (Macqueen,
1967). Based on the criterion of similarity between two points,
usually measured by the Euclidean distance, a point is determined
to belong to the class whose center is closest to it. The centers of all
groups are updated after all points in the dataset are set. The algorithm
stops when the cluster measurement function converges, which
means that there are no changes for all centers in the updating.

The distance and similarity between points Xi and Cj, the
center of the jth class, can be calculated as follows:

d(xi, cj) �
������������������������������������(x1

i − c1j)2 + ... + (xk
i − ckj)2 + ... + (xd

i − cdj )2
√

,

s(xi, cj) � 1/d(xi, cj).
For each updated class, a new cluster center is calculated.

Assuming that the samples in the jth class are {xj1, xj2, ..., xjnj}
and the cluster center is cj � (c1j , c2j , ..., ckj , ..., cdj ), the kth attribute
of class center Cj is represented as CKj, which is

ckj �
xk
j1 + xk

j2 + ... + xk
jnj

nj
.

The above process is repeated until the standard measure
function converges. The conventional clustering measure function
is usually the mean-square deviation, which is expressed as

J �

�������������
∑k
i�1

∑nj
j�1

(xij − ci)2
n − 1

√√
. (4)

LSTM
LSTM is a type of recurrent neural network (RNN), which was
originally established by Hochreiter and Schmidhuber (Aksoy et al.,
2018) andwas refined and popularized bymany others in subsequent
work. RNN are sensitive to short-term information. However, they
always have a problem of long-term reliance. As an improvement to
RNN, LSTM solves this problem by introducing a cell state in which
the long-term state is saved. In this neural network, there are some
LSTM blocks, which are regarded as intelligent net cells in certain
studies. In several versions of LSTM, themost important LSTM cell is
“forget gate.” There are four neural network layers, each of which
interacts in a unique manner.

The first stage of LSTM is to identify the information from the
cell state that should be forgotten or rejected. The “forget gate layer,”
formulated by a sigmoid layer, makes this judgment. For input ht−1
and xt, a number between zero and one is the output for each
number in the cell state Ct−1. Output 1 means “keep this
completely,” while 0 means “forget this completely.” This step is
formulated as follows:

ft � σ(Wf · [ht−1, xt] + bf). (5)
where ht−1 is the output of the previous input value, representing
the effect on the current input value. Matrix wf is the weight of
the input value, and bf is the deviation of the input value. Output
ft is the result of function σ, a 0–1 output function.

We further determine which part of the information needs to
be stored in the cell state. The “input gate layer” it first determines
which values will be updated. Denoting Ct

~ as the “tanh layer,” a
vector is generated for new candidate values. These two layers are
further integrated to update the state.

it � σ(W _I · [ht−1, xt] + bi)
Ct

~ � tanh(WC · [ht−1, xt] + bC)
where tanh is a function of hyperbolic arctangent. The other
parameters are similar to those in Eq. 5.
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The next step is to multiply the old state by ft, forgetting the
information that should be rejected earlier. This is implemented
using the following operation:

Ct � ftpCt + itp~Ct

In conclusion, the unit state Ot is determined by the
output of the sigmoid layer. Subsequently, the cell state is
transformed by the tanh function, which outputs a value
between 1 and -1. For the next recurrent, ht is the
multiplication of the unit state and tanh transform of the
cell state. This is formulated as

Ot � σ(Wo[ht−1, xt] + bo),
ht � otptanh(Ct). (6)

HYBRID MODEL ARCHITECTURE

This section introduces the proposed hybrid model
architecture, which includes the following three parts: data
preprocessing, pollutant concentration prediction, and model
evaluation. Figure 1 shows a framework diagram of the
proposed model.

Part 1 Mode
Decomposition-Recombination
Step 1: Original data were filtered using Hampel filtering to
eliminate outliers.

Step 2: The filtered data were decomposed into several IMF
component sequences using CEEMDAN.

Step 3: Calculated the information entropy and fuzzy entropy
of each IMF component into a two-dimensional vector.

Step 4: Based on the calculation results of the information
entropy and fuzzy entropy, K-means was used to cluster the IMF
components to achieve feature extraction.

Part 2 Pollutant Concentration Prediction
Step 1: For each data group obtained from clustering, the 4-fold
cross-validation method was used for training.

Step 2: Setting up the LSTM model structure, the hidden layer
was selected as a 2-layer LSTM structure, the number of neuron
nodes in the first layer was 64, the number of neuron nodes in the
second layer was 32, and the output layer reduced the results to
the original data format.

Step 3: The mean absolute error (MAE) was chosen as the loss
function, the Adam algorithm was used to generate optimization
parameters for each node learning, and the error was reduced by
iterating and adjusting the weights until convergence.

Step 4: To obtain the final prediction results, the prediction
results of each group were superimposed.

Part 3 Model Evaluation
Step 1: Designed model evaluation experiments. In this study, we
designed two sets of evaluation experiments: 1) data
preprocessing comparison; 2) prediction model comparison.

Step 2: In the data preprocessing comparison experiments,
we chose three comparison models: 1) the LSTM model without
data preprocessing; 2) Hampel integrated with the LSTMmodel;
3) the CEMMDAN integrated LSTM model with our proposed
SFE-K-Means integrated LSTM model for the comparison
experiments.

Step 3: For the prediction model comparison experiments, we
chose the backpropagation neural network (BPNN), evolutionary
neural network (ENN), and Extreme Learning Machine (ELM),
which are the three benchmark comparison models for
comparison with the LSTM model and our proposed model.

FIGURE 1 | The framework diagram of the hybrid model.
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Step 4: We chose mean squared error (RMSE), MAE, and
mean absolute percentage error (MAPE) as the model evaluation
criteria for the above two sets of experiments.

EMPIRICAL STUDY

Data Description
Major air pollutants in the atmosphere, including PM2.5, PM10,
SO2, CO, NO2 and O3, were selected as the research objects in this
study. The Ministry of Environmental Protection of the People’s
Republic of China (http://www.mep.gov.cn/) has provided six
pollutant concentration datasets from Baoding. Sample data were
collected on September 1, 2017, and November 30, 2017, in
Baoding. The hourly pollution concentration data totaled
2140. These datasets were split into two categories: training
and testing. The first 1814 data (approximately 85% of the
total data) are training sets, and 321 data points
(approximately 15%) for test.

Performance Evaluation Criteria
This study considers three assessment criteria, as in Table 1, to
effectively evaluate the performance of the model. MAE,MSE and
MAPE were chosen as error criteria to reflect the prediction
performance of the forecasting models.

Mode Decomposition-Recombination
Technique Process
Results of Outlier Detection
The series of original environmental pollution concentrations
have obvious volatility and nonlinear characteristics and contain
a few outliers. Therefore, data preprocessing is required for the
original data. This section first uses a Hampel filter to process the
original data. The filtering results of the six pollutant time series
are shown in Figure 2, which shows that the filtered time series
present more smooth appearance and more stable variation in
local area after outliers and noise are eliminated from the
original data.

TABLE 1 | Evaluation criteria.

Criteria Interpretation Equation

MAE The average absolute error of n times forecast results 1
N ∑N
n�1

|yn − y
∧
n|

MSE The mean-square forecast error (1N ∑N
n�1

(yn − y
∧
n)2)

MAPE The mean absolute precent error of forecasting results 1
N ∑N
n�1

|yn−yn
∧

yn
| × 100%

FIGURE 2 | Filtering results of the six pollutants time series.
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Results of Decomposition for Six Pollutants Data
In this section, CEEMDAN is used to decompose the original
amount of pollutant series into a collection of IMFs with
associated frequencies and the residue component. We chose
an ideal standard deviation of 0.1–0.5 and a total of 200 ensemble
members. The original pollutant series decomposed using
CEEMDAN is shown in Figure 3.

Calculate Sample and Fuzzy Entropy
Figure 3 clearly shows that the original data are decomposed by
CEEMDAN to obtain different frequency components. From
IMF1 to IMF11, the higher frequency of the IMF components
indicates that each component contains more information and

complexity. Therefore, we calculated the sample entropy and
fuzzy entropy of each IMF separately to evaluate the complexity
characteristics of different IMF time series. Table 2 shows that the
frequency of the sequence from IMF1 to IMF11 gradually
decreases, and the calculated sample entropy and fuzzy
entropy also gradually decrease, which indicates that the
complexity of the IMFs decreases.

Results of K-Means Cluster
Based on the entropy value results for each IMF component
obtained from Table 2, a cluster analysis was implemented with
K-means method. The clustering centers and groupings of each
pollutant were obtained, as shown in Table 3. From the results in

FIGURE 3 | Pollutant series decomposed by CEEMDAN.

TABLE 2 | Sample and fuzzy entropy of IMF.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

PM2.5 FE 8.047495 6.388529 1.649125 1.270372 0.959852 0.497776 0.27859 0.040618 0.023789 0.004574 9.89E-05
SE 1.983576 0.554265 1.519343 1.491674 0.965727 0.607932 0.51636 0.488107 0.370485 0.110548 0.02104

PM10 FE 1.412543 4.431981 4.210672 1.61084 0.69924 0.770135 0.408633 0.239158 0.025897 0.00488 0.000646
SE 2.723644 1.099536 2.191735 1.993386 1.239376 0.690948 0.658875 0.400867 0.394307 0.16184 0.019505

SO2 FE 4.267658 5.091819 1.867888 1.2594 0.592948 0.455568 0.253383 0.058592 0.012499 0.002048 0.000226
SE 1.086146 0.337643 1.280924 0.891944 0.725795 0.608708 0.527715 0.387489 0.140906 0.042888 0.014509

NO2 FE 4.322556 5.581931 2.524202 1.441533 0.967665 0.439743 0.194742 0.067011 0.016767 0.00236 0.00E+00
SE 2.394989 0.813402 2.054457 1.785199 0.805091 0.674112 0.549718 0.43341 0.196665 0.075553 0.003059

O3 FE 3.359121 4.02093 2.487006 1.975004 0.654115 0.418519 0.161993 0.037779 0.016124 0.004214 0.005488
SE 1.717077 0.839211 2.102009 1.854934 1.134547 0.629392 0.616712 0.500818 0.197826 0.047921 0.015869

CO FE 6.753463 0.270155 0.981246 0.746559 0.19851 0.052625 0.016649 0.002809 9.54E-05 0 0
SE 0.013549 0 0.02167 0.080561 0.086343 0.0539 0.034768 0.010918 0.00312 0.00199 0.000891
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Table 3, we found that the 11 IMFs were clustered and reintegrated
into 6 clusters. Each cluster is composed of IMF components with
similar characteristics. The IMF components of each cluster are
added together to form the final feature extraction datasets.

Comparison of Forecasting Results
Comparison of Data Preprocessing Methods
In this experiment, the concentrations of six pollutants in
Baoding were predicted and analyzed. This
experiment compares the performance of three preprocessing
models—Hampel-LSTM, CEEMDAN-LSTM, and our proposed
model. Additionally, the evaluation criteria of MSE, MAE, and
MAPE were used to measure the prediction performance of the
models and the results are presented in Table 4. Boldly marked

values are used to indicate the best values of the model in different
evaluation metrics. Further discussion of the experimental results
is as follows.

For the different data processing methods of the LSTM-
based hybrid models, Table 4 shows that Hampel, CEEMDAN,
and SFE-K-Means integrated with the same LSTM have
obvious differences in prediction accuracy. However,
compared with a single LSTM prediction model, the three
hybrid models with signal processing tools—Hampel-
LSTM(Hampel*), CEEMDAN-LSTM(CEEMDAN*), and
SFE-K-Means-LSTM (SFE-K-Means*)—have better
prediction performance. Therefore, it is safe to conclude
that the use of mixed-preprecessing can significantly
improve the data quality for the later hybrid model to

TABLE 3 | Clustering centers and groupings of each pollutant by K-means.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

PM2.5 Clustering
Center

(0.7288,0.7868) (6.3885,0.5542) (8.04749,1.9835) (0.0023,0.0657) (1.4597,1.5055) (0.1143,0.4583)

Group IMF5 IMF6 IMF2 IMF3 IMF10 IMF11 IMF3 IMF4 IMF7 IMF8 IMF9
PM10 Clustering

Center
(0.7346,0.9651) (0.1358,0.3270) (4.4319,1.0995) (1.4125,2.7236) (1.6108,1.9933) (4.2106,2.1917)

Group IMF5 IMF6 IMF7 IMF8 IMF9 IMF10
IMF11

IMF2 IMF1 IMF4 IMF3

SO2 Clustering
Center

(0.0183,0.1464) (5.0918,0.3376) (1.2594,0.8919) (0.4339,0.6207) (1.8678,1.2809) (4.2676,1.0861)

Group IMF8 IMF9 IMF10 IMF11 IMF2 IMF4 IMF5 IMF6 IMF7 IMF3 IMF1
NO2 Clustering

Center
(0.0561,0.2516) (5.5819,0.8134) (4.3225,2.3949) (0.7037,0.7396) (1.4415,1.7851) (2.5242,2.0544)

Group IMF7 IMF8 IMF9 IMF10 IMF11 IMF2 IMF1 IMF5 IMF6 IMF4 IMF3
O3 Clustering

Center
(0.6541,1.1345) (2.2310,1.9784) (4.0209,0.8392) (0.0086,0.0872) (0.2060,0.5823) (3.3591,1.7170)

Group IMF5 IMF3 IMF4 IMF2 IMF9 IMF10
IMF11

IMF6 IMF7 IMF8 IMF1

CO Clustering
Center

(0.01180,0.0176) (6.7419,0.0134) (0.7940,0.0808) (0.1979,0.0863) (0.2685,4.389e-
07)

(1.0444,0.0219)

Group IMF6 IMF7 IMF8 IMF9 IMF10
IMF11

IMF1 IMF4 IMF5 IMF2 IMF3

TABLE 4 | Prediction performance of data preprocessing methods.

Pollutants Criteria LSTM Hampel* CEEMDAN* SFE-K-Means*

PM2.5 MSE 178.5243 187.8801 41.9019 38.4436
MAE 8.3156 8.2933 3.4539 3.4379
MAPE 14.59% 14.95% 7.29% 6.86%

PM10 MSE 421.1828 521.2269 78.2811 75.5773
MAE 13.8984 15.1586 5.1386 4.9915
MAPE 12.52% 13.51% 4.66% 4.93%

SO2 MSE 133.8757 72.4359 32.8127 14.8968
MAE 5.6349 3.9291 2.9422 1.8789
MAPE 23.86% 18.63% 12.32% 7.91%

NO2 MSE 69.0062 64.0526 51.8403 29.8058
MAE 5.7719 5.5731 4.6785 2.8757
MAPE 14.65% 13.35% 12.26% 7.52%

O3 MSE 30.1279 34.0037 8.1717 3.4115
MAE 3.9207 4.2903 2.3501 1.3998
MAPE 16.23% 18.12% 13.18% 6.89%

CO MSE 0.0404 0.0582 0.0091 0.0121
MAE 0.1349 0.1559 0.0568 0.0568
MAPE 11.28% 12.61% 5.71% 6.22%
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obtain better prediction results. Subsequently, three hybrid
prediction models based on different signal processing
tools—Hampel*, CEEMDAN*, and SFE-K-Means*—were
compared, and SFE-K-Means was found to have the highest
prediction accuracy. For example, as for PM2.5, the MAPE
values of LSTM, Hampel*, CEEMDAN*, and SFE-K-Means*
were 14.59, 14.95, 7.29, and 6.86%, respectively. Thus, LSTM
integrated with SFE-K-Means outperforms the other data
preprocessing models.

Comparison of Benchmark Methods
This experiment compares the performances of four single
benchmark prediction models, including BPNN, ENN, and
ELM. The models’ prediction performance was assessed
using the MSE, MAE, and MAPE evaluation criteria; the
results are presented in Table 5. The best results in
the numerous evaluation metrics are emphasized by bold font.
The results of the experiments are summarized below.

Table 5 clearly shows that LSTM seems to have more
substantial predictive power than BPNN, ENN, and ELM. In
the six pollutant concentration predictions, LSTMwas superior to
the other comparative models for all evaluation indexes. For
example, the MAPE values for PM2.5 via BPNN, ENN, ELM,
LSTM and proposed model were 14.45, 18.10,13.90, 14.59 and
6.86%, respectively. The proposed model, which integrates SFE-
K-Means with LSTM, results in the smallest MAE, MSE, and
MAPE values, which says it should outperform the other
benchmark methods to compare with. Notably, as a novel data
preprocessing approaches, SFE-K-Means is critical for enhancing
the forecast accuracy for environmental pollutant concentration.

CONCLUSION

The practical analysis and forecasting of pollutant concentrations are
critical for environmental management and public health. Owing to
the fluctuation and complexity of the pollutant data series, a novel

mode decomposition-recombination technique is proposed to
capture valuable information and characteristics. Six pollutant
concentration series collected from Baoding were used as test
cases to conduct the empirical study. Two experiments were
implemented to compare the performances of the data
preprocessing and forecasting methods, respectively. The
evaluation criteria of MAE, MSE and MAPE were used to
examine the prediction performance of the models. Based on the
results of hourly pollutant concentration forecasting, some vital
conclusions were drawn as follows. First, compared with
Hampel*, CEEMDAN*, and SFE-K-Means*, the proposed SFE-
K-Means* was found to have the highest prediction accuracy.
Shown in Table 4 as for PM2.5, the MAPE values of LSTM,
Hampel*, CEEMDAN*, and SFE-K-Means* were 14.59, 14.95,
7.29, and 6.86%, respectively. These errors explain that LSTM
integrated with SFE-K-Means outperformed the other data
preprocessing models. Second, compared with BPNN, ENN, and
ELM, the proposed model, which integrates SFE-K-Means and
LSTM, obtains lower values of MAE, MSE, and MAPE. This
indicates that the proposed model can obtain the best forecasting
performance among the compared models. Notably, the novel data
preprocessing methods (SFE-K-Means) play an essential role in
improving the prediction accuracy of environmental pollutant
concentration.

In summary, the Hybrid model can change the traditional
passive response of air quality management and provide strong
technical support for urban air pollution early warning decisions,
scientific air quality management, and regional joint prevention.
Further, it can improve the level of air pollution control for air
environment risk prevention.
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TABLE 5 | Comparison of benchmark methods.

Pollutants Criteria BPNN ENN ELM LSTM Proposed Model

PM2.5 MSE 279.2252 326.0792 223.4873 178.5243 38.4436
MAE 9.551 10.9026 8.4289 8.3156 3.4379
MAPE 14.45% 18.10% 13.90% 14.59% 6.86%

PM10 MSE 489.6128 8.93E+02 446.8126 421.1828 75.5773
MAE 13.7485 18.0084 13.4037 13.8984 4.9915
MAPE 11.74% 14.84% 11.74% 12.52% 4.93%

SO2 MSE 142.8222 235.1045 171.601 133.8757 14.8968
MAE 5.9537 7.8745 6.2234 5.6349 1.8789
MAPE 25.87% 33.46% 25.49% 23.86% 7.91%

NO2 MSE 75.7468 94.0673 71.512 69.0062 29.8058
MAE 5.9489 6.5661 5.4114 5.7719 2.8757
MAPE 14.14% 16.13% 13.76% 14.65% 7.52%

O3 MSE 33.7319 44.2665 37.1021 30.1279 3.4115
MAE 4.145 5.1152 4.3318 3.9207 1.3998
MAPE 17.55% 25.35% 19.30% 16.23% 6.89%

CO MSE 0.0404 0.0672 0.0535 0.0404 0.0121
MAE 0.1234 0.1635 0.1358 0.1349 0.0568
MAPE 10.16% 12.14% 10.71% 11.28% 6.22%
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Utilizing a Two-Dimensional
Data-Driven Convolutional Neural
Network for Long-Term Prediction of
Dissolved Oxygen Content
Dashe Li 1,2,3* and Xuan Zhang 1,2,3*
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Intelligent Information Processing, Shandong Technology and Business University, Yantai, China, 3Co-innovation Center of
Shandong Colleges and Universities, Future Intelligent Computing, Shandong Technology and Business University, Yantai, China

It is significant to establish a precise dissolved oxygen (DO) model to obtain clear
knowledge ablout the prospective changing conditions of the aquatic environment of
marine ranches and to ensure the healthy growth of fisheries. However Do in marine
ranches is affected by many factors. DO trends have complex nonlinear characteristics.
Therefore, the accurate prediction of DO is challenging. On this basis, a two-
dimensional data-driven convolutional neural network model (2DD-CNN) is
proposed. In order to reduce the influence of missing values on experimental
results, a novel sequence score matching-filling (SSMF) algorithm is first presented
based on similar historical series matching to provide missing values. This paper
extends the DO expression dimension and constructs a method that can convert a DO
sequence into two-dimensional images and is also convenient for the 2D convolution
kernel to further extract various pieces of information. In addition, a self-attention
mechanism is applied to construct a CNN to capture the interdependent features of
time series. Finally, DO samples from multiple marine ranches are validated and
compared with those predicted by other models. The experimental results show
that the proposed model is a suitable and effective method for predicting DO in
multiple marine ranches. The MSE MAE, RMSE and MAPE of the 2DD-CNN prediction
results are reduced by 51.63, 30.06, 32.53, and 30.75% on average, respectively,
compared with those of other models, and the R2 is 2.68% higher on average than
those of the other models. It is clear that the proposed 2DD-CNN model achieves a
high forecast accuracy and exhibits good generalizability.

Keywords: convolutional neural network, self-attention mechanism, dissolved oxygen, marine ranch, prediction

1 INTRODUCTION

DO content of water quality, is necessary for all kinds of aquatic organisms. And changes in DO can
reflect changes in the water quality of an aquaculture (Ni et al., 2019). Most fish stop feeding when the
oxygen level is lower than 2 mg/L. Large numbers of fish die when the oxygen level is less than 1 mg/
L. A low DO content is also a warning sign of eutrophication (Takahashi et al., 2021). To ensure the
sound development of fisheries, the accurate prediction and control of DO are necessary tasks in the
management of marine ranch fisheries.
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Accurate water quality prediction has been challenging due to
the complex effects of physical, chemical, biological,
hydrometeorological and human-related processes. Some
scholars have used traditional machine learning models to
predict water quality. Tiyasha et al. (2021) used four types of
prediction models, including a random forest (RF), to predict the
DO content in the Klang River, Malaysia. Traditional machine
learning techniques were applied by Valera et al. (2020) to
reconstruct and predict nearshore DO concentrations in small
coastal bays. Ahmed and Lin (2021) used a forest of quantile
regression models to predict the DO levels in three rivers.
Traditional machine learning prediction models can produce
effective predictions for small sample sets with relatively
simple relationships, but they fail to meet the prediction
accuracy requirements for nonlinear, vaguely uncertain water
quality features. In light of these problems with traditional
machine learning models, the parameter optimization of
traditional machine learning models is greatly influenced by
human subjective factors. Some models using a meta-learning
algorithm for local fine searching and pheromone dynamic
updating have emerged. Liu et al. (2014) used an improved
particle swarm optimization algorithm and least squares
support vector regression to predict the DO content in a crab
culture. Heddam and Kisi (2017) proposed an optimally pruned
extreme learning machine (OP-ELM), which was newly applied
to predict DO concentration with and without water quality
variables as predictors. The above literature shows that this
hybrid machine learning model can improve the prediction
accuracy for DO and overcome the defects of traditional
methods. However, its complex modeling methods and steps
are still prone to falling into local minima during optimization, so
the existing DO prediction models are not intelligent and must
still be further improved.

In recent years, many scholars have attempted to predict water
quality using neural networks. Compared to traditional predictive
models, neural network models have a high self-learning ability
and excellent generalizability, allowing them to solve complex
nonlinear approximation problems. These methods yield good
simulation and prediction effects for trends in the water
environment. Zhang et al. (2019) proposed a novel model
based on multilayer artificial neural networks (MANNs) and
mutual information (MI) to predict the trends of DO. proposed a
new clustering-based softplus class-specific extreme learning
machine to predict DO changes in time series. Rozario and
Devarajan (2021) used a fuzzy C-means clustering method to
construct a radial basis function neural network to predict
changes in DO. Wu et al. (2018) presented a new model for
DO content prediction based on a sliding window, particle swarm
optimization, and error backpropagation.

The above models of water quality prediction are based on
shallow networks. However, because of the small number of
shallow network neurons used, the feature extraction ability of
these models is not strong. And the data of some complex
functions cannot be used in learning and training. Therefore,
some scholars have improved the prediction accuracy of
traditional models by developing deep neural network models.
Zhi et al. (2021) applied long short-term memory (LSTM) to

predict DO levels in several rivers. Cao et al. (2021) proposed a
gradient-boosted regression tree algorithm based on an attention
gate recurrent unit to predict DO levels in three dimensions.
Yaqub et al. (2020) propose a long short-term memory (LSTM)-
based neural network and developed to predict the ammonium,
total nitrogen, and total phosphorus. Zhu et al. (2021) proposes a
DO prediction model incorporating deep learning algorithms of
ResNets, BiLSTM, and Attention. The LSTM mentioned above is
a recurrent neural structure commonly used in sequence
modeling. Compared with the traditional recurrent neural
network (RNN), LSTM can alleviate gradient disappearance or
explosion problems. However, due to the relatively complex
internal structure, the training efficiency is much lower than
that of the traditional RNN with the same computational
resources, and the training is more difficult overall.

A convolutional neural network (CNN) (Kim, 2017) is a type of
feedforward deep neural network containing a convolutional layer,
which is composed of five structures: a convolutional layer, a pooling
layer, a fully connected layer and a softmax layer. Due to its
characteristics of local computation, sparse connection and weight
sharing, among the available neural networks, CNNs can effectively
reduce network complexity and are robust and fault tolerant.
Additionally, CNNs are easy to train and optimize and have been
successfully applied in many scientific fields, including computer
vision (Hu et al., 2018; Luo et al., 2018), image classification (Sun
et al., 2020; Pei et al., 2021), speech recognition (Haque et al., 2020;
Song, 2020), natural language processing (Xiao et al., 2020; Yu et al.,
2020) and others. Due to the advantages of CNNs in capturing
features, they have been increasingly applied in hydrology. Khosravi
et al. (2020) used CNN algorithm to develop a flood susceptibility
map for Iran.Chen et al. (2020) designed an improved CNN model
to establish a CNN calibration approach for the quantitative
determination of water pollution with near-infrared data.
Barzegar et al. (2020), Barzegar et al. (2021) improved the
accuracy of forecasts achieved by a hybrid CNN LSTM deep
learning (DL) model. Baek et al. (2020) used a combined CNN-
LSTM model for water level and water quality prediction. Yan et al.
(2021) predicted water quality using a one-dimensional residual
CNN. However, most of the above studies used combined CNN
models, which extracted deep features with a CNN and then used
another model for prediction. These combined the modeling
methods are cumbersome, and they generally adopt a one-
dimensional CNN for data feature extraction; however, this
approach cannot capture all the relevant spatiotemporal
information.

In this paper, an improved 2DD-CNNDO prediction model is
proposed. Amethod for converting a one-dimensional time series
into a two-dimensional image is proposed. With this approach,
the time dependence of the data is preserved, and the spatial
characteristics are obtained. Then, we improve the two-
dimensional CNN to perform regression fitting and increase
the precision of the prediction model by adding an attention
module. The established model strengthens the connections with
DO. The main contributions of this article are as follows.

(1)Amodel-based data-driven two–dimensional model-based
CNN is constructed, which can effectively improve the prediction
accuracy of water quality parameters.
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(2)To solve the problem of discontinuity of feature
information caused by partial missing values in the data set, a
novel sequence score matching-filling (SSMF) algorithm is
proposed. The historical feature sequence is used as the
reference object for missing values, rendering the filled-in data
more reliable.

(3)To solve the problem of discontinuity of feature
information caused by partial missing values in the data set, a
novel sequence score matching-filling (SSMF) algorithm is
proposed. The historical feature sequence is used as the
reference object for missing values, rendering the filled-in data
more reliable.

(4)To resolve the problem of local perception of the
convolution kernel, an attention module is added to the model
to construct a CNN to capture the interdependent features of the
time series.

The rest of this article is organized as follows. Section 2
describes the study area and data sources considered in this
paper and the proposed study method. Section 3 describes the
steps in establishing the 2DD-CNN prediction model. Section 4
analyzes the model prediction performance, compares the 2DD-
CNN model with other models and assesses DO data from
multiple ranches. Section 5 summarizes the study and the
existing modeling problems.

2 MATERIALS AND METHODS

2.1 Study Area and Data Source
Shandong Province, China, is rich in marine resources, with a
coastline length of approximately 2078 kilomiles. The national
marine ranch demonstration area accounts for 40% of China,
ranking first among the demonstration areas in China. This study
included 12 marine ranches along the coastal waters of Shandong
Peninsula(35°05′N ~ 37°50′N, 119°16′E ~ 122°42′E). The
Shandong Peninsula extends into the Bohai Sea and the
Yellow Sea, opposite the Liaodong Peninsula. Twelve marine
ranches are spread along the coastline of Shandong Peninsula at
depths of less than 656 feet. Therefore, the distribution of DO is
different from that in the open ocean and is greatly affected by
climate and land characteristics. The DO level changes constantly
throughout the year, and the changes are complicated. The
characteristics of DO and the locations of marine ranches are
shown in Figure 1.

In the marine ranch environment, DO data are collected for
10 min, with 144 consecutive samples per day. Notably, 55,000
samples are obtained for each ranch between 2019 and 2021,
including 50,000 samples that formed the training set and 5,000
that formed the test set. The same rolling prediction mechanism
is used for the training and test sets.

FIGURE 1 | Research information of the original data.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9049393

Li and Zhang Deep Learning-Based Water Qualiety Prediction

249

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2.2 Data Processing Strategy
Due to the interference from sensor equipment, the environment
and human factors, the collected time series contained some
missing values and outliers. Poor-quality datasets containing
large numbers of missing values and outliers will result in
low-quality forecasting results. Data preprocessing can
improve the quality of the data, thus improving the accuracy
and performance of the subsequent learning process of the model
(Niu and Wang, 2019).

In this paper, we identified the outliers first; then, we removed
the outliers and treated them as missing values. Finally, we filled
missing values based on the sequence score matching-filling
(SSMF) method proposed, as shown in Figure 2. The SSMF
approach divides the data into several sets of sequences,
determines the score of each set of sequences according to the
defined rules, and finds the sequence most similar to the selected
sequence based on a score comparison approach, which is
regarded as sequence score matching. The next feature in the
matching sequence is used to fill the corresponding missing value
in the selected sequence. This method is based on featurization.
Historical data are used for matching, and the time series trend of
historical data is used to estimate the value at the next moment to
fill in the data gap. Thus, the problem of discontinuous feature
information in training datasets can be avoided.

The following symbols are defined for the SSMF process:

• TSbefore = {ts1, ts2, ts3, /tsN−1, tsN}: Original dataset
containing missing values, where N is the sequence length;

• TSafter � {ts1′, ts2′, ts3′,/tsN−1′ , tsN′ } : Dataset after filling
the missing values;

• L: Length of feature sequence;
• numLablem : The number of occurrences of each category in
the overall dataset, whereM is the total number of categories
Lablem = round (tsn, 2), and m ≤ M;

• F [fn−S, fn−S+1, /fn−2, fn−1]: Features dictionary, where f is
feature sequence and n ≤ N;

• Tablef [scoren]: The feature query dictionary;

The procedure for filling missing values is as follows.
Step 1: Determine the length of feature sequence. For a time

series of length N, the shortest length L of the feature sequence
can be obtained according to Eq. 1. To minimize the number of
calculations, the number of methods used per L data
permutations should be greater than or equal to the total
number of time series. Here, L is the length of the feature
sequence before the missing values are filled. Let missn be a
missing value and n be the missing value’s position in a sequence.
In this paper, missing values are postprocessed from L
consecutive values.

L � argminL AL
L ≥N + 1 − L( ) (1)

Step 2: Calculates the probabilities for each category
P(labelm). First, each value is classified based on Labelm =
Label (Tsn),Where, the Label function is used to divide the
number of categories. Each value is regarded as a category,
and two decimal places are retained. The number of
occurrences of each category in the overall dataset is counted
as. Then, the probability of occurrence of each category is
obtained according to Eq. 2.

P labelm( ) � numlabelm

N
m � 1, 2,/M( ) (2)

Step 3: Calculate the feature score of each feature sequence
and establish the feature query dictionaryTablef. Consecutive
values are regarded as a set of feature sequences denoted as Seq
= fn−L, fn−L+1, /fn−2, fn−1, fn. The L+1 value in the feature
sequence is regarded as the feature label of the sequence, e.g., F
[fn−L, fn−L+1, /fn−2, fn−1, fn] = fn. If the first L features of the
feature sequence are known, the corresponding feature scores
can be approximated with Eq. 3. All the feature scores for the
original sequence are calculated, and the feature dictionary is
then established as Tablef [scoren] = fn−L, fn−L+1,/fn−2, fn−1, fn,
where n ∈ (L + 1, N). Eq. 3 is used to determine the final trend
of this set of feature data.

FIGURE 2 | SSMF method for filling missing values.
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scoren � w∏L
i�1

e i( )pP Label fn−S−1+i( )( ), w � 1, fn−1 − fn−2 ≥ 0
−1, fn−1 − fn−2 < 0{

(3)
Step 4: A sliding window is used to traverse the original

sequence, and the dictionary Tablef is queried to fill the
missing values. SSMF fills the missing values in a data
sequence. The sliding window is used to traverse the original
sequence TSbefore, and the corresponding feature score is
calculated according to the L-1 values before the missing
value, which are obtained from querying Tablef. Next, the set
of features with the closest score is obtained. The consistency
among the distribution characteristics of L values and missing
values is assessed to find the feature that yields the highest
matching score in the feature dictionary. This process is
regarded as sequence feature matching, and missn = F [Tablef
[scoren]] = fn. This equation returns the processed sequence
TSafter.

2.3 Two-Dimensional Graph of DO Data
To realize the transformation of a DO sequence from temporal
dependence to spatial dependence, we must reduce the amount of

redundant information in the data transformation process.
Notably, here, we transform one-dimensional data convertting
into two-dimensional images to match the input of the 2DD-
CNN, which is used for feature extraction (Ashourloo et al.,
2020). In this paper, a method of converting DO data into two-
dimensional images is developed, and this approach can
effectively learn the characteristics and structures of time series.

The process of constructing a two-dimensional image of DO
data in this paper is shown in Figure 3. First, the internal rotation
matrix is used to arrange the one-dimensional time series and to
transform the one-dimensional time series into a two-
dimensional matrix D. D is obtained according to Eq. 4,
where k is the number of columns in the matrix.

D �

D 1( ) D 2( ) . D k( )
D 4k−4( ) D 4k−3( ) . D k+1( )

. . . .

. D kpk( ) D k×k−1( ) .

. . . .
D 3k−2( ) . . D 2k−1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Secondly, the value at each position in the two-dimensional
matrix is extended to RGB three-channel form. Specifically, the

FIGURE 3 | Process of constructing two-dimensional image of DO data.
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two-dimensional matrix is transformed into an RGB three-
channel image. In the image, each pixel represents a value.
According to the color in the image, the overall distribution of
pixel values can be intuitively assessed. All values can be
uniformly expressed with different colors. The data are stored
without loss in three RGB channels. RGB is the color of red, green
and blue channels. The R, G, and B channels have 256 levels. Red,
green and blue are abbreviated as R,G,B respectively. The
brightness of the R, G, and B channels ranges from 0 to 255.
Based on these characteristics, this paper divides all the data n
into three sets include n1, n2 and n3, n = n1 + n2 + n3, where
n1 ∈ (0, 99) represents R, n2 ∈ (0.00, 0.99) represents
G,n3 ∈ (0.0000, 0.0099) represents B. To maximize the visual
weight of the first channel, the values in the first set are
uniformly filled in the interval of (0, 255). The value output
by the first channel is Rn:

Rn � � 255
max n1( )� × n1 (5)

The value output by the second channel is Gn:

Gn � n2 × 100 (6)
The value output by the third channel is Bn:

Bn � n3 × 10000 (7)
Finally, the PIL image processing library is used, and the

resulting image is stored in png lossless format.

2.4 Configurations of the Designed CNN
The CNN constructed in this paper consists of three parts,
namely, a convolutional layer, a pooling layer and a fully
connected layer (Jiang et al., 2020; Yang et al., 2021). A linear
weighted filter with a local receptive field, namely, a convolution
layer, is alternately applied with the pooling layer to sample the
extracted features. The fully connected layer distributes the data
according to a nonlinear function. The calculation process
involving these layers is as follows.

(1) The convolution layer provides local calculations and
sparse connections and applies weight sharing. The
convolution operation process is represented by Eq. 8, which
Wi represents the original matrix and yi represents the
convolutional kernel. F is the convolution operation and
retention factor of the characteristic matrix. The feature map
first performs the F convolution operation and then adds bi. The
convolutional kernel is slid according to the padding threshold
until the entire feature graph has been obtained.

Zi+1 � F Wi, yi( ) + bi (8)
(2) The pooling layer does not contain parameters; it performs

feature selection based on the matrix. The pooling layer retains
important features to reduce the number of subsequent
operations and avoid overfitting. Common pooling layer
operations include maximum pooling and average pooling.

(3) The fully connected layer reshapes the output tensor of the
pooling layer into a one-dimensional vector and then maps it to a
sample label pool.

The goals of the convolution layer and pooling layer in the
CNN are to extract features and reduce the number of
computations. One-dimensional vectors are predicted with the
fully connected layer. The overall architecture of the CNN built in
this paper is shown in Figure 4. This architecture contains two
convolutional layers, two pooling layers and two fully connected
layers. The input image is transformed into an input feature
matrix. This matrix is then passed through the convolution and
pooling layers and then transformed into one-dimensional data
before being passed to the fully connected hidden layer and fully
connected output layer. Finally, the prediction result is output. In
this paper, the CNN architecture shown in Figure 4 is
constructed. No upper limit is set for the input window, and
the lower limit of the input window is a 4 × 4 matrix.

The first convolutional layer adopts a 32-layer convolution
core of 3 × 3. The second pooling layer adopts a maximum
pooling core of 2 × 2. The third convolutional layer uses 64 layers
of size 3 × 3. The fourth pooling layer also adopts 2 × 2 maximum
pooling. The final layer of the feature graph is flattened to connect
the fully connected hidden layer to a one-dimensional vector. The
final result is output with the fully connected output layer. The
activation function used in the middle layer of the proposed
model is a ReLU function. Unlike the traditional classification
model, the proposed model does not use an activation function in
the final layer, which is used to directly output the final results.

3 DISSOLVED OXYGEN PREDICTION
MODEL

In this paper, a 2DD-CNN is proposed to predict the DO level in
marine ranches. Themodel prediction process is divided into four
steps: data preprocessing, constructing the two-dimensional
graph of DO data, applying an self-attention module and
implementing the 2DD-CNN prediction framework. The
process of 2DD-CNN model prediction is shown in Figure 5.

Step 1: Data Preprocessing. The collected DO sequence
contains some missing values and outliers. First, the σ
principle is used to identify the outliers. This principle can be
used to identify low-probability events outside the standard
normal distributed interval (u − 3σ, u + 3σ). Such values
should be removed and regarded as missing values. Second,
the SSMF algorithm proposed previously is used to fill the
missing values. If we find that sequence Seq has a similar
score to the feature sequence Seq, for the target missing value
missn. Then the next value in the similar sequence is used to fill
the missing position missn in the target sequence.

Step 2: Encoding Time Series to Images. This step converts a
DO sequence into an image. First, the DO sequence is
transformed into a two-dimensional matrix by internal
rotation. Then, the two-dimensional matrix is mapped to RGB
channels. Thus, the transformation of the DO sequence from
temporal dependence to spatial dependence is realized.

Step 3: Self-attention Module. To solve the problem, the
prediction effect is limited by the local perception of the CNN
convolution kernel, the global receptive field is added. In this step,
an self-attention mechanism (Wang et al., 2021) is established,
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and the self-attention module is built before the CNN model
(Vaswani et al., 2017; Wang et al., 2018) to mine the influence
weight of the information at each position in the matrix based on
the available prediction results; then, a new weighting matrix is
constructed. The correlation between values is calculated by
matrix multiplication. Then, these correlation scores are
combined to obtain a weighting matrix. The specific steps are
as follows.

Firstly, three 1 × 1 convolution kernels are defined asWq,Wk,
Wv. These kernels are established with the original image to
obtain three feature maps, expressed as Q(x), K(x)andV(x). As
shown in Eq. 9, these three feature maps have a triplet structure.

Q x( ) � Wqx,K x( ) � Wkx,V x( ) � Wvx (9)
Secondly, obtaining the attention map Score,i,j based on the

matrix dotted product of K(x) and Q(x), as shown in Eq. 10, is
obtained with the softmax function. Finally, as expressed in Eq.
11, the self-attention feature map obtained through the dot
product of Score,i,j, and V(x) is Attention(x). Attention(x) is
used as the input of the 2DD-CNN. At this time, our model
captures the characteristics of the input matrix considering the
corresponding weights.

Scorei,j′ � exp Scorei,j( )∑N
i�1 exp Scorei,j( ), where Scorei,j � Q xi( )TV xj( )

(10)
Attention x( ) � Scorei,j′ V xj( ) (11)

The partial perception of the CNN convolutional kernels
results in each kernel only calculating area information. As the
neural network layers deepen, the convolutional kernel region
information is limited to only one area. Thus, the regions outside
of the convolutional kernel area are not considered, and the effect
of prediction is limited. Thus, adding the self-attention module to
the model is a good way to solve this problem.

Step 4: 2DD-CNN Prediction Network Framework. First, the
number and order of convolutional and pooling layers are
determined, and the detailed structure is shown in Figure 4.

Second, the ratio of training data to verification data is set as 16:1,
and the trained back-propagation 2DD-CNN is used. The initial
values of the weight and bias parameters in the input layer and
output layer of 2DD-CNN are set. Then, the input dataset size
and output dataset size are determined according to the 2DD-
CNN features. Finally, the model is optimized by the root mean
square prop (RMSProp) algorithm. Based on repeated
experimental analyses, the prediction effect based on the 2DD-
CNN is the best when the model parameters are learningrate =
0.02, batchsize = 15 and epochs = 100. The trained model is used
in the prediction of DO levels.

4 RESULTS AND DISCUSSION

To verify the model proposed in this paper, the 2DD-CNN is used
to predict the oxygen sequences for 12 ranches. A comparison
experiment with other algorithms and a generalization
experiment involving multiple ranches are performed. The
Python 3.8 language is used in the experiments, and the
hardware included an Inter(R)Core(TM) i5-8265 CPU at3.30
GHz and 8 GB memory.

4.1 Performance Criteria
To verify the excellent performance of the 2DD-CNN model and
analyze the errors between the predicted and observed values of
the model, this paper applies five measurement indices: the mean
square error (MSE), mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE)
and coefficient of determination (R2). The corresponding
mathematical expressions are given in Equations 12–14,
Equation 15 and Equation 16, where ôi is the predicted
values and oi is the observed values. The MSE is generally
used to detect the deviation between the predicted values and
the observed values of the model. It calculates the sum of squares
of the distance between the predicted values and the observed
values. The quadratic form is convenient for derivation, so it is
often used as a loss function in linear. The MAE is the absolute
value of the difference between the observed values and the

FIGURE 4 | Convolutional neural network structure.
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predicted values. It is less affected by outliers (outliers separated
from the sample distribution) and can better reflect the actual
situation of the predicted values error. The RMSE adds the square
root sign on the basis of the MSE, which is more intuitive in
comparison. The range of MAPE is [0, + ∞), MAPE is expressed
as a percentage, for which 0% indicates perfect model, while a
value greater than 100% indicates an inferior model. Further,
MAPE is easier to explain. R2 is indicator used to evaluate the
quality of fitting. The lower the MSE, MAE, RMSE and MAPE
values are, the smaller that the prediction error is. Additionally,

the higher that the R2 value is, the better the fit is between the
predicted and observed values.

MSE � 1
n
∑n
i�1

ôi − oi( )2 (12)

MAE � 1
n
∑n
i�1

ôi − oi| | (13)

RMSE �
������������
1
n
∑n
i�1

ôi − oi( )2
√

, (14)

FIGURE 5 | Flow chart of DO prediction.
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MAPE � 100%
n

∑n
i�1

|ôi − oi
oi

|, (15)

R2 � 1 − ∑n
i�1 ôi − oi( )2∑n
i�1 �oi − oi( )2 (16)

4.2 Single Ranch Prediction Evaluation With
Other Prediction Models
In this case, 55,000 DO values from the Luhaifeng marine ranch
in Qingdao are used as an example, Data from other Marine
ranches were analyzed in the same way as the focus of the study.
The data are divided into a training set and test set at a 10:1 ratio.
Under the same conditions, the 2DD-CNN is compared with
other models. The comparison model includes a CNN, an LSTM
model, CNN-LSTM, a back Propagation Neuron Network (BP)
(Zhang and Lou, 2021), a decision tree (DT) (Anmala and
Turuganti, 2021), a RF (Karijadi and Chou, 2022), dynamic
evolving neural fuzzy inference system (DENFIS) (Adnan
et al., 2019), a group method of data handling (GMDH)
neural networks (Adnan et al., 2020) a hybrid model based on
long short-term memory neural network and ant lion optimizer
(LSTM-ALO) (Yuan et al., 2018), a hybrid model based on an
optimally pruned extreme learning machine (OP-ELM) and a
hybrid model based on the least squares support vector machine
and gravitational search algorithm (LSSVM–GSA) (Zeng et al.,
2021).

Figure 6 shows the prediction results based on 600
observations from the test set and various prediction models.
The 2DD-CNN model and other models exhibit good
performance in predicting trends. For comparison, we enlarge
part of the plot of 71 data points showing the 2DD-CNN
predictions. Notably, among all the predictions, these values

are closest to the observed values. Specifically, the lag of the
neural network prediction model is obvious. The prediction
effects of the LSTM model and the LSTM’s hybrid model are
second to that of the 2DD-CNN. The results in Figure 6 show
that the prediction effect of the 2DD-CNN is generally superior to
that of the other models.

The experimental results of all models are further verified by
comparing the corresponding evaluation indics MSE, MAE,
RMSE, MAPE, and R2. The results are shown in Table 1. The
predicted values of the 2DD-CNN display the lowest MSE, MAE,
MAPE and RMSE and the highest R2, corresponding to the lowest
prediction error. Compared with LSTM, the 2DD-CNN reduces
the MSE, MAE, RMSE and MAPE of the predictions by 45.8,
26.21, 26.4 and 26.3%, respectively. Compared with BP, the 2DD-
CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 13.8, 18.3, 7.2 and 18.95%, respectively.
Compared with RF, the 2DD-CNN reduces the MSE, MAE,

FIGURE 6 | The DO content prediction results.

TABLE 1 | Comparison of evaluation indexes of model prediction error.

Model MSE MAE RMSE MAPE R2

2DD-CNN 0.007595 0.065866 0.087150 1.653,131 0.983,616
CNN 0.015655 0.095538 0.125,120 2.359,237 0.966,227
CNN-LSTM 0.028474 0.138,715 0.168,743 3.268,304 0.942,419
LSTM 0.014010 0.089261 0.118,362 2.241,713 0.967,440
BP 0.008812 0.080576 0.093872 2.039655 0.974,442
GMDH 0.042199 0.150,444 0.205,425 3.866,152 0.906,206
RF 0.043860 0.155,353 0.209,427 4.014477 0.908,870
DT 0.036191 0.140,532 0.190,240 3.637,882 0.922,261
LSTM-ALO 0.018542 0.082875 0.136,168 2.168,491 0.975,121
DENFIS 0.016854 0.087585 0.129,822 2.214,271 0.963,552
OP-ELM 0.018616 0.082947 0.136,439 2.172,834 0.975,097
LSSVM-GSA 0.015000 0.090607 0.122,474 2.323,732 0.967,818

The bold values are the result of the 2DD-CNN model.
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RMSE andMAPE of the predictions by 87.7, 57.6, 58.4 and 58.8%,
respectively. Compared with DT, the 2DD-CNN reduces the
MSE, MAE, RMSE and MAPE of the predictions by 79.0, 53.13,
54.19 and 54.56%, respectively. Compared with DENFIS, the
2DD-CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 54.94, 24.8, 32.87 and 25.34%, respectively.
Compared with GMDH, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 82.00, 56.22,
57.58 and 57.24%, respectively. Compared with the traditional
CNN prediction model, the 2DD-CNN reduces the MSE, MAE,
RMSE and MAPE of the predictions by 51.49, 31.06, 30.35 and
29.9%, respectively. Compared with CNN-LSTM, the 2DD-
CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 73.33, 52.52, 48.35 and 49.42%, respectively.
Compared with LSTM-ALO, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 59.04, 20.52,
36.00 and 23.77%, respectively. Compared with OP-ELM, the
2DD-CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 59.20, 20.59, 31.13 and 23.92%, respectively.
Compared with LSSVM-GSA, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 49.37, 27.31,
28.84 and 1.63%, respectively. On average, the MSE of
predictions obtained with the 2DD-CNN is 51.63% lower
than that obtained with other models, the MAE is 30.06%
lower, the RMSE is 32.53% lower, the MAPE is 30.75% lower
and the R2 is 2.68% higher. From the comparison of the results,
the 2DD-CNN model performs significantly better than the
other models in predicting DO levels. Additionally, the existing
CNN prediction models performed worse than the studied
LSTM and BP models. Nevertheless, the prediction
performance of the improved 2DD-CNN model is better
than that of all of the other models. In summary, improving

the CNN to establish the 2DD-CNN model proposed in this
paper yields a significant improvement in the accuracy of DO
prediction.

Figure 7 shows a box plot of the predicted and observed DO
values for eleven models in individual marine ranches. The 2DD-
CNN predictions are similar to the observed values overall. The
other model results differ from the observed values based on the
upper quartile, mean, maximum andminimum values. The upper
limits of the predicted values of the LSTM model and DT model
are similar to the upper limit of the observed values. However, the
values obtained with the 2DD-CNN are most similar to the
observed values based on the mean value, upper and lower
quartiles and lower limit. The BP model, RF model and
DENFIS model results largely differed from the observed
values based on the upper and lower quartiles and the upper
and lower limits. The range of predicted values of the BP model is
smaller than the range of observed values, with predictions
concentrated near the mean value; this result indicates that the
prediction of maximum and minimum values by the BP model is
not accurate. The prediction range of the RF model exceeds that
of the observed values, and the prediction of extreme values is
inaccurate. The prediction range of RF model exceeds the
observed values, and the prediction of extreme values is also
inaccurate. The DENPFIS model is not very accurate in
predicting the results at lower values. Compared with the
observed values, the values predicted by the CNN model and
CNN-LSTM model moved upward overall. The data of the
predicted values and observed value of the hybrid model had
great similarities on the whole, but some outliers appeared in the
model prediction, which might have been due to model
overfitting. In conclusion, the prediction accuracy of the BP
model, RF model and DT model is not good. Other CNN

FIGURE 7 | Comparison of predicted and observed values of DO for different models.
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models, the CNN-LSTM model and the LSTM-ALO model have
certain deviations in prediction, and the models must be adjusted.
The DENFIS, GMDH, OP-ELM, and LSSVM-GSA models have
poor prediction effects on some outliers and edge values. The data
distributions of the 2DD-CNN-predicted values and observed
values are very close.

Figure 8 shows the Taylor diagram of the performance of
ten models. The scattered dots in the figure represent the
model, the radiating lines represent the correlation
coefficients, the horizontal and vertical axes represent the
standard deviations, and the semicircular dotted lines
represent the RMSE. Figure 8A shows the whole part of
the Taylor diagram, and 8 B shows the enlarged display of
eleven model indicators. For the prediction of DO, the
discrete correlation coefficient, standard deviation and
RMSE proposed in this paper are 0.991,817, 0.988,898 and
0.1280, respectively, and the prediction result is the best.
Based on the observed values, the closer that a value is to the
red dot representing the observed value in the Taylor
diagram, the better that the prediction performance is. In
summary, the prediction of DO proposed in this paper is
the best.

To further analyze the prediction ability of the models, the
prediction results for 144 samples each day with different
models are presented in the form of line charts and density
correlation graphs. Figure 9 shows the values predicted by
each model compared to the observed values. In Figure 9, the
data predicted by the model proposed in this paper are closest
to the observed values, and the prediction effect of peaks and
valleys is the best among all models. We analyze the correlation
between the predicted and observed values based on the
density correlation plot in Figure 9. In this figure, the
closer that a scatter point is to the light-colored dotted line,
the closer that the predicted values is to the corresponding
observed value. The line fit based on the scatter point is the
dark dotted line.

This outcome can be clearly observed in the figure. The
graph in Figure 9A shows that the predicted values of 2DD-
CNN is almost the same as the observed DO, indicating good

performance. The graph on the right of Figure 9A shows that
all points are located near the straight line, and the linear
regression line of these points almost covers the straight line.
This outcome shows that 2DD-CNN can predict DO data with
high accuracy. Figure 9B shows the prediction results of the
CNN. Compared with the curves in Figures 9A,B, the
predicted values of the CNN are more difference from the
observed values than are predicted values of 2DD-CNN.
Compared with the right figure of Figures 9A,B, the fitted
line is farther from the y = x line, and the point dispersion is
greater. This outcome indicates that the prediction effect of
the CNN model is inferior to that of 2DD-CNN. The model in
this paper is an improvement on the CNN model. Compared
with the CNNmodel, the self-attention module is added to the
model in this paper, and two-dimensional convolution is
adopted. The results show that the improved model
improves the prediction accuracy of DO. In the line chart
in Figure 9C, the values predicted by the CNN and CNN-
LSTM models exhibit obvious variations in positions
compared with the positions of the observed values. These
differences are clear in the density correlation diagram in
Figure 9D, which shows the predicted value of the BP model.
As a shallow neural network, the BP has the characteristics of
a simple structure. However, due to limited neurons and
shallow networks, the accuracy is not as good as the
predicted value of the deep neural network in the fitting
experiment of complex DO trends. In Figure 9E, the
prediction accuracy of the LSTM model and LSTM’s hybrid
are second only to that of the 2DD-CNN. As an RNN model,
LSTM can meet most accuracy requirements, but the training
efficiency is not high due to its relatively complex internal
structure. There is some deviation between the predicted and
observed values in the line chart and density correlation
diagram. The values predicted by the BP, DT and RF
models in Figure 9F, Figure 9G and Figure 9H,
respectively, deviate from the observed values, and the
prediction of peaks and valleys is not accurate.
Additionally, the RF can only predict the general trend of
the DO. Two traditional machine learning models, DT and

FIGURE 8 | Comparison of predicted and observed values of DO for different models. (A) is a whole Taylor diagram, and (B) is a partially enlarged Taylor diagram.
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FIGURE 9 |Comparison of predicted and observed values of DO for multiple models. (A) is the result of 2DD-CNN. (B) is the result of CNN. (C) is the result of CNN-
LSTM. (D) is the result of BP. (E) is the result of LSTM. (F) is the result of DT. (G) is the result of RF. (H) is the result of DENFIS. (I) is the result of LSTM-ALO. (J) is the result
of OP-ELM. (K) is the result of LSSVM-GSA. (L) is the result of GMDH.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 90493912

Li and Zhang Deep Learning-Based Water Qualiety Prediction

258

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


RF, perform poorly in fitting complex nonlinear DO data.
Figure 9H shows the predicted value of the DENFIS model.
DENFIS performs poorly in predicting the peak value,

showing a situation of amplifying the peak value and
underestimating the value. In the density correlation
diagram, it can also be observed that the predicted values

FIGURE 9 | (Continued).
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of the DENFIS model deviate greatly from the observed values
compared with the medium-high value segment and the low-
value segment. As a mathematical fuzzy inference model,

DENFIS is not as effective as a deep learning model in
predicting DO. Figures 9I,J,K show the prediction effects
of the LSTM-ALO, OP-ELM and LSSVM-GSA models,

FIGURE 9 | (Continued).
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respectively, in comparison with the hybrid model. The
parameters of the deep learning LSTM model, shallow ELM
neural network, GMDH and LSSVM-GSA machine learning
model were optimized using a metaheuristic algorithm. The
prediction results showed good performance with slight

errors. Although the model parameters were optimized to a
large extent, the structure of the model remained unchanged.
The prediction accuracy is still limited by the model itself,
which is not as accurate as the model proposed in this paper.
The operation process of the hybrid model is complicated.

FIGURE 10 | Application of the model to data from different ranches.
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The above experimental analysis indicates that 2DD-CNN not
only outperforms the other models in predicting DO but also
performs better in predicting peaks and valleys, displaying the
best overall fit to observations.

4.3 Prediction Accuracy Evaluation Based
on Data From Multiple Ranches
DOdata from 12marine ranches are used as samples to verify and
evaluate whether 2DD-CNN could be applied to analyze DO data

from different marine ranches with large environmental
differences. In this paper, the DO level is predicted for 12 h in
12 ranches in the research area. The lowest value reached
approximately 0.2 mg/L, and the highest value reached
approximately 15 mg/L. All the data selected in this paper are
sufficiently representative.

The predicted results are shown in Figure 10, and
comparisons of predicted and observed values for each ranch
are shown through line charts and density correlation plots. The
2DD-CNN displays good performance for all the considered

TABLE 2 | Prediction error evaluation indexes of 12 ranch models.

Ranch Number Marine ranch MSE MAE RMSE MAPE R2

Ranch 1 Qingdao Luhaifeng National 0.010691 0.075311 0.103,396 1.854,217 0.983,372
Ranch 2 Xixiakou Group National 0.009136 0.074883 0.095581 1.026838 0.985,410
Ranch 3 Rongcheng Hongtai Fishing 0.001645 0.033601 0.040560 0.240,704 0.994,178
Ranch 4 Ryongcheng Broussonetia Ranch 0.002021 0.037824 0.044960 0.270,987 0.992,899
Ranch 5 Changdao Xiangyu Reef Casting 0.002888 0.032824 0.053741 0.770,817 0.990,028
Ranch 6 Weihai Yutai Fishing 0.000824 0.022561 0.028698 0.171,321 0.998,891
Ranch 7 Rongcheng Swan Lake Fishing 0.000063 0.004945 0.007967 4.348,656 0.998,488
Ranch 8 Rizhao Aquatic Group Reef Casting 0.039713 0.055784 0.199,281 1.567,903 0.971,123
Ranch 9 Rongcheng Yandunjiao 0.003290 0.034221 0.057354 1.182,211 0.998,119
Ranch 10 Rongcheng Chengshan Hongyuan 0.000086 0.007644 0.009270 0.185,958 0.997,184
Ranch 11 Rizhao Wanbao Fishing 0.005856 0.042857 0.076525 0.708,804 0.976,465
Ranch12 Shandong Oriental Ocean National 0.000426 0.013398 0.020630 0.314,491 0.999,757

FIGURE 11 |Radar diagrams of the prediction error evaluation indexes for 12 ranches based on themodel proposed in this paper. (A) is the value of MSE. (B) is the
value of MAE. (C) is the value of RMSE. (D) is the value of MAPE. (E) is the value of R2.
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ranches, and the blue predictions and red observations exhibit
high overlap. The positive correlation reaches a maximum when
the value is 1 in the density correlation diagram. Generally, when
r exceeds 0.5, a strong correlation exists. The correlation between
the predicted and observed values is more than 0.7 for all ranches
with the 2DD-CNN model.

The correlation between the predicted and observed values for
ranches 2, 3, 4, 5, 6, 7, 10 and 12 reached greater than 0.99. The
fitting lines of the scatter plots in the density correlation map are
very close to y = x, with a small inclination and small intercept.
The line chart and density correlation diagram for each ranch
show that 2DD-CNN exhibits good performance in predicting
peak and valley values, and the agreement between the fitting line
and points in the density correlation diagram is high. The model
best predicts the DO values for ranches 3, 4, 6, 7, 10 and 12, but
the results are not as good for ranches 1, 2, 8, 9 and 11. Notably,
the DO data for ranches 3, 4, 6, 7, 10, and 12 are relatively smooth,
but in other cases, the data contain a small amount of noise.
Although the predicted DO in cases with noise is not as good as
that in other cases, the prediction results still display high
accuracy; thus, even if DO data contain a small amount of
noise, the model can still achieve accurate predictions.

TheMSE, MAE, MAPE, RMSE and R2 are used to measure the
accuracy of the 2DD-CNN in DO prediction for multiple marine
ranches, as shown in Table 2 and Figure 11. The MSE, MAE,
MAPE, RMSE for all ranches are very low, and R2 is greater than
0.97. Figure 11 illustrates a three-part radar diagram. Figure 11A
shows the MSE of the predicted and observed values for 12
ranches. The MSEs vary for different ranches but are all below
0.02. Figure 11B shows the MAE of the predicted and observed
values for 12 ranches. In Figure 11B, the MAEs of multiple
ranches displayed in the radar chart are similar to those in
Figure 11A, with values below 0.08. Figure 11D shows the
RMSE of the predicted and observed values for 12 ranches
with values below 0.2. Figure 11E shows the MAPE of the
predicted and observed values for 12 ranches with values
below 2. Figure 11C shows the R2 results based on the
predicted and observed values for the 12 ranches. In
Figure 11C, an almost circular shape is observed because all
values are close to 1. In summary, by analyzing and evaluating the
predicted DO values for 12 marine ranches, we find that the 2DD-
CNN can effectively forecast DO data in different intervals and in
cases with different influencing factors. Thus, the model displays
strong generalization ability.

4.4 Discussion
In this part, we will discuss the research results of 2DD-cnn from
the aspects of missing value filling, time series transformation
into image work and convolution neural network prediction
model, so as to further discuss the effectiveness and
progressiveness of the proposed dissolved oxygen prediction
method. Each section is discussed below.

4.4.1 The Superiority of the Newly Developed SSMF
Algorithm
Common data filling methods generally include providing
KNN(Qi et al., 2021) data, interpolation, means, medians,

etc., and returning the predicted values for the model. The
former algorithm is simple, and the characteristics represented
by the filled-in data are too singular. Although the predicted
value of the latter filling model can accurately match the changes
in the time series, the modeling process of the algorithm is too
complex. In this paper, we propose a new SSMF algorithm to
provide the missing values. This method uses the sequence
before the missing value to match the historical data, defines
the historical sequence feature as the score formula, considers
the historical feature sequence as the decision reference object of
the missing value, and takes the final entries of the most similar
historical data as the missing value, thereby rendering the
provided data more reliable. Usually, we observe the
sequence according to whether there are similar fragments in
past periods of time. The correlation between the past time
series and the current time series and the subsequences related
to the past will be used for decision-making regarding the
current time point. Similar to this method, the logic is also
the method of providing the predicted value of the model, such
as using a machine learning model like RF (Deng et al., 2019) to
pretest and provide the value after learning the historical data,
but the method proposed in this paper is simpler and does not
require modeling. Our algorithm can capture the sequence
features, and the amount of computation is only O(n). The
accuracy of the provided data is guaranteed, while the
calculation is simple.

4.4.2 The Superiority of the Two-Dimensional Graph of
the DO Data Strategy
In order to obtain more accurate prediction, we should use as
many features embedded in time series as possible in the
prediction model. Recent studies have shown that by
converting one-dimensional time series data into two-
dimensional images in some way, more features embedded
in the original time series can be retained. Therefore, a new
framework is explored to visualize time series, so as to learn the
features and structures of time series with the help of the
success of deep learning in the field of computer vision.
However, at present, most of the research on time series
focuses on the classification of time series. For example, A
time series classification method based on CNN and recursive
graph is proposed (Hatami et al., 2018). In this method, firstly,
the recursive graph is used to convert the time series into two-
dimensional texture images. Yang et al. (2019) proposed a
framework for sensor classification using multivariate time
series sensor data as input, which encodes multivariate time
series data into two-dimensional color images. However, we
propose a novel framework for encoding time series as two-
dimensional images to predict DO, this method preserves the
time series information in the form of matrix arrangement. At
the same time, in addition to the adjacent data, the periodic
data or interval data also contain some rules and
characteristics. We think that the closer the data is, the
more meaningful it is. Therefore, this cyclotron
arrangement method transforms the time information into
spatial information to a certain extent. The method of
transforming sequences into two-dimensional pictures
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proposed in this paper aims to mine various forms of
information, and is also convenient for two-dimensional
convolution kernel to further extract a variety of
information. We use the method of converting dissolved
oxygen data into two-dimensional pictures and inputting
them into convolutional neural network, which rarely
appears in the study of dissolved oxygen prediction.
Moreover, according to the experiment in Section 4.2, the
prediction accuracy of our proposed method is higher than
that of other models.

4.4.3 The Effectiveness of Self-Attention in the CNN
Module
The long-term dependence of the capture sequence plays an
important role in deep learning prediction models. However, the
convolution operation has a significant weakness in that it only
operates on a local neighbourhood, thus missing global information
(Bello et al., 2019). With the deepening of the network, there has
always been the problem of local calculation, limiting the
performance of the model. To resolve this problem, this paper
uses a self-attention mechanism to improve the CNN. The self-
attention mechanism is a variant of the attention mechanism,
decreasing the dependence on external information. A self-
attention mechanism is used to mine the influence weight of
information at each position in the input matrix on the
prediction results, which can accurately capture the internal
correlation of data or features and better assist the optimization
process of CNN models (Jia et al., 2021). Its application in DO
sequence prediction is mainly through calculating the interaction
between DO sequences, to solve the problem of long-distance
dependence. The self-attention mechanism is a variant of the
attention mechanism, decreasing the dependence on external
information, and it is better at capturing the internal correlation
of data or features. At this time, the CNN prediction model is more
focused on capturing the characteristics of the input matrix.
Through the learning of feedforward neural networks, we can
better consider the context information of time series.

5 CONCLUSION

Because the aquatic environment of marine pastures is affected by
various factors, the change in DO is complex and nonlinear. To
improve the prediction accuracy for DO, the change trend in it
can be accurately predicted. In this paper, an improved 2DD-
CNN DO prediction model is proposed. In the pretreatment
stage, an SSMF method is proposed to provide missing values,
and a new method is used to convert the time series of water
quality parameters into pictures and input them into a two-
dimensional CNN. At the same time, the two-dimensional CNN
model is improved, and a convolutional self-attention module is
added to the network to resolve the long-distance dependence
problem by calculating the interaction between DO sequences.
The model proposed in this paper achieves good improvement in
prediction accuracy. The 2DD-CNN model has a very good
prediction effect and exhibits good generalizability for the
prediction error, fitting degree, peak valley value and data

segments with large and gentle fluctuations. This model is
applicable not only to the prediction of one water quality
parameter but also to the prediction of other water qualities.
The prediction of water quality parameters plays an important
role in marine ranch management by providing quantitative
information for the solution of emerging environmental
problems and the decision-making of sustainable management.

Although 2DD-CNNhas achieved good results in predictingDO,
there remain many aspects that can be improved. First, DO data
preprocessing has a significant impact on the accuracy of data
modeling and is an important method to improve the accuracy
of DO prediction. In the method that the SSMF used to provide
missing values in this paper, parameter optimization is greatly
affected by human subjective factors and cannot ensure the
optimization of set parameters. Therefore, optimizing SSMF
parameters will be the focus of the next improvement. Second,
the research in this paper only involves the prediction of one-
dimensional DO, but due to the interaction of water quality
parameters of marine pastures, DO is affected by many water
quality parameters. To further capture the variation
characteristics of DO, predicting DO according to
multidimensional water quality parameters is an important
research direction. In addition, the method of transforming time
into images designed in this paper could store more feature data, so
further research work could be performed in the direction of feature
expression in the future to better mine the internal relationships of
data and to improve the prediction accuracy.
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Sea ice change is closely related to the change of global atmosphere and ocean circulation, 
which plays an important role in the study of global climate change. Sea ice concentration 
is one of the important parameters to study the temporal and spatial change of sea ice. 
Accurately retrieving sea ice concentration is the innovation of this paper. At present, the 
high-resolution microwave-detected sea ice concentration product was provided by the 
University of Bremen, which was derived by the Arctic Radiation and Turbulence Interaction 
Study (ARTSIST) Sea Ice (ASI) algorithm based on the Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E) 89-GHz brightness temperature data. 
The AMSR-E/AMSR-2 89-GHz brightness temperature data has higher spatial resolution, 
but it is often affected by cloud and water vapor, which affects the recognition and 
subsequent use of ground feature. Although the weather filters can remove some errors in 
the edge regions of the sea water and the sea ice, the errors of the sea ice concentration 
in other regions cannot be removed. The generative model of Conditional Generative 
Adversarial Network (CGAN) increases the utilization of image feature information through 
skip connection, which improves the removal of the influence of cloud and water vapor. 
The discriminative model can retain the image feature information and realize the non-
linear mapping from the image to the image. The loss function can reduce the pixel-
level loss, which can remove the influence of cloud and water vapor. Therefore, this 
paper proposed an improved ASI algorithm based on CGAN. Firstly, the relatively stable 
relationship between the 89-GHz brightness temperature data which is not disturbed or 
less affected by the external environment and the 36-GHz brightness temperature data 
was determined, and the 89-GHz brightness temperature data with large interference 
was screened. Secondly, based on the 36-GHz brightness temperature data with high 
reliability, the 89-GHz brightness temperature data with large interference was corrected 
through CGAN. Finally, the ASI algorithm was used to retrieve sea ice concentration. 
Compared with sea ice concentration retrieved by the ASI algorithm, the results showed 
that the improved ASI algorithm based on CGAN was feasible. Compared with sea ice 
distribution obtained from the Landsat 8 OLI-L1T data, the improved ASI algorithm based 
on CGAN significantly improves the inversion accuracy of sea ice concentration. The 
improved ASI algorithm based on CGAN makes use of the reliable 36-GHz brightness 
temperature data, which greatly reduces the error caused by cloud and water vapor, and 
the method effectively corrects sea ice concentration of the pixels affected by the external 
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1 INTRODUCTION

The polar region is an important indicator of global climate. 
With  the  increasing  severity of  global warming, sea ice is an 
important climate factor in the polar region, and the monitoring 
and the studies of sea ice have attracted more and more attention. 
Sea ice concentration is the most intuitive parameter to study the 
sea ice change. Sea ice concentration plays an important role in 
the monitoring and prediction of sea ice change, and it is of great 
significance to study global climate change. Passive microwave 
data is not limited by day and night, which is less affected by 
clouds and fog, and it has good temporal and spatial continuity. 
Passive microwave data have been used extensively for polar sea 
ice monitoring. Sea ice concentration can provide reliable basic 
data and scientific basis to study the polar region and global 
climate.

Sea ice concentration plays an important role in climate-
change study and ship navigation in the polar regions. Many 
algorithms for retrieving sea ice concentration had been 
proposed in recent decades. Bootstrap algorithm mainly used 
the characteristics of the polarization difference between sea 
water and sea ice, which also uesd the high-frequency data and 
the low-frequency data of passive microwave radiometer to 
retrieve sea ice concentration (Comiso, 1986; Comiso, 1995). 
Based on Special Sensor Microwave/Imager (SSM/I) brightness 
temperature data, Cavalieri et  al. proposed NASA Team (NT) 
algorithm, which can retrieve first-year ice concentration and 
multi-year ice concentration (Cavalieri et  al., 1991). Cavalieri 
et  al. proposed a method for determining sea ice parameters 
using dual-polarized multispectral brightness temperature data 
gathered by the Nimbus 7 Scanning Multichannel Microwave 
Radiometer (SMMR) (Cavalieri et al., 1984). Liu et al. proposed 
a fully constrained least squares algorithm based on NT 
algorithm to retrieve Antarctic sea ice concentration (Liu 
et al., 2015). On the basis of NT algorithm, Markus et al. added 
brightness temperature data at 89-GHz vertical polarization and 
proposed NT 2 algorithm (Markus and Cavalieri, 2000). Based 
on the SSM/I 85.5-GHz brightness temperature data, Lomax 
et al. proposed Lomax algorithm to retrieve sea ice concentration 
(Lomax et  al., 1995). Hao improved the NT algorithm by 
introducing AMSR-E 6.9-GHz brightness temperature data and 
improved the accuracy of multi-year ice concentration (Hao and 
Su, 2015). Kern et  al. proposed the SEA LION (SL) algorithm 
to retrieve sea ice concentration based on 37-GHz polarization 
difference (Kern, 2001; Kern and Heygster, 2001). The ASI 
algorithm was derived from the project “Arctic Radiation and 
Turbulence Interaction Study (ARTIST)” in 1998. Based on the 
concept of “polarization correction temperature”, Svendsen et al. 
proposed a model for retrieving total sea ice concentration from 

a spaceborne dual-polarized passive microwave instrument near 
90 GHz (Svendsen et al., 1987; Spencer et al., 1989). Kaleschke 
et al. improved the algorithm proposed by Svendsen et al., and 
used SSM/I 85-GHz brightness  temperature data to conduct 
mesoscale numerical simulation of the atmospheric boundary 
layer at the edge of Arctic sea ice (Svendsen et al., 1987; Kaleschke 
et al., 2001). One advantage of the ASI algorithm is that, compared 
with other algorithms using 85-GHz brightness temperature data, 
it does not require additional input data (Kern, 2004). The ASI 
algorithm can directly retrieve sea ice concentration based on the 
89-GHz brightness temperature data, and it has a similar result 
with sea ice concentration algorithms using other data channels 
(Kern et al., 2003). Spreen et al. applied the ASI algorithm to the 
AMSR-E 89-GHz brightness temperature data and obtained the 
inversion formula of sea ice concentration (Spreen et al., 2008). 
Wang proposed a multi-year ice concentration algorithm based 
on the different characteristics of the first-year ice, multi-year 
ice and sea water at 89-GHz brightness temperature data (Wang, 
2009). Based on the 89-GHz brightness temperature data and the 
ASI algorithm, Su et  al. carried out a series of experiments on 
interpolation algorithm and weather filter (Su et al., 2013). Zhang 
et  al. proposed an algorithm to retrieve sea ice concentration 
using multichannel and dual-polarized data according to the 
radiation characteristics of sea ice and sea water (Zhang, 2012). 
Wu et  al. proposed an enhanced ASI algorithm which used 
the 19-GHz polarization difference to modify the 91-GHz 
polarization difference (Wu et al., 2019).

The spatial resolution and inversion algorithm of satellite data 
are very important to accurately provide sea ice concentration. 
Although the ASI algorithm has advantages, compared with 
the low-frequency brightness temperature data, the 89-GHz 
brightness temperature data are more affected by cloud and 
water vapor. When the liquid water content in the cloud is high 
or there is a cyclone passing by, it will lead to a large error of 
sea ice concentration in the edge regions of sea water and sea 
ice. Therefore, the ASI algorithm needs weather filter processing 
(Spreen et  al., 2008). Although some errors can be eliminated 
by weather filter, the errors of the sea ice concentration in some 
regions cannot be removed. The generative model of CGAN 
increases the utilization of image feature information through 
skip connection, which improves the removal of the influence of 
cloud and water vapor. The discriminative model can retain the 
image feature information and realize the non-linear mapping 
from the image to the image. The loss function can reduce 
the pixel-level loss, which can remove the influence of cloud 
and water vapor. Therefore, CGAN was used to realize image 
correction in this paper. Firstly, in order to obtain more accurate 
sea ice concentration, the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 

environment. Therefore, the improved ASI algorithm based on CGAN realizes high spatial 
resolution and significantly improves the inversion accuracy of sea ice concentration.

Keywords: Antarctic, sea ice concentration, CGAN, data correction, AMSR-2
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water vapor is screened based on the relatively stable relationship 
between the 89-GHz brightness temperature data not disturbed 
or less affected by the external environment such as cloud and 
water vapor and the 36-GHz brightness temperature data. 
Secondly, this paper used the data correction method based 
on CGAN to correct the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 
water vapor. Finally, based on the correction data obtained in 
the second step, this paper used the ASI algorithm to retrieve 
Antarctic sea ice concentration. This method effectively corrected 
sea ice concentration of the pixels affected by the external 
environment and greatly reduced the error caused by cloud and 
water vapor. The Landsat 8 OLI-L1T data were used to verify sea 
ice concentration retrieved by the improved ASI algorithm based 
on CGAN.

2 DATASETS

The Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E), carried on the NASA satellite Aqua, is a 12-channel, 
6-frequency microwave radiometer that measures brightness 
temperatures at 6.925 GHz, 10.65 GHz, 18.7 GHz, 23.8 
GHz, 36.5 GHz, and 89.0 GHz with vertical polarization and 
horizontal polarization. Spatial resolution of the individual 
measurements varies from 5.4 km at 89.0 GHz to 74 × 43 km at 
6.9 GHz, and it is the lower-frequency channels that provided 
the SST measurement capability. The Advanced Microwave 
Scanning Radiometer-2 (AMSR2) is a multi-frequency total-
power microwave radiometer with dual-polarization channels 
onboard the Global Change Observation Mission (GCOM) 
1st-Water (GCOMW1) (Imaoka et  al., 2010). The basic 
characteristics are almost identical to those of a predecessor 
sensor, AMSR-E. AMSR2 continues AMSR-E observations 
with several improvements. The AMSR-E/AMSR-2 data can 
provide a variety of parameters of land, ocean and atmosphere. 
Such as precipitation rate, sea surface temperature, sea ice 
concentration, soil humidity, wind speed and water vapor in 
the atmosphere. The AMSR-E/AMSR-2 89-GHz brightness 
temperature data and 36-GHz brightness temperature data are 
used in this paper. (https://seaice.uni-bremen.de/).

The Landsat 8 is the eighth satellite in the Landsat series. 
It was originally called Landsat Data Continuity Mission 
(LDCM). The Landsat 8 carries the Operational Land 
Imager (OLI) and the Thermal Infrared Sensor (TIRS). The 
OLI includes 9 bands with a spatial resolution of 30 meters, 
including a 15-meter panchromatic band (Knight and Kvaran, 
2014). In this paper, the Landsat 8 OLI-L1T data released 
by United States Geological Survey(USGS) was selected as 
the verification data (https://earthexplorer.usgs.gov/). In 
this paper, the 89-GHz brightness temperature data and the 
36-GHz brightness temperature data from October 2019 to 
March 2020 were selected as the input of CGAN. The high-
resolution optical data of Landsat 8 satellite were selected to 
verify sea ice concentration obtained in this paper.

3 METHODOLOGY

3.1 ASI Algorithm

The ASI algorithm used the polarization difference between 
the 89-GHz vertical brightness temperature and the 89-GHz 
horizontal brightness temperature to retrieve sea ice concentration 
and used the low-frequency brightness temperature data as the 
weather filters to remove the errors of sea ice concentration in 
the regions of the low sea ice concentration and the sea water 
(Svendsen et al., 1987; Spreen et al., 2008). The AMSR-E/AMSR-2 
89-GHz brightness temperature data is significantly affected 
by cloud and water vapor in the atmosphere. In particular, the 
cyclones in the sea water regions will weaken the polarization 
difference of sea water, make this part of sea water close to the 
polarization difference of sea ice, and it may lead to this part 
of sea water being mistaken for sea ice. Therefore, it is very 
necessary to use the weather filter to remove the errors of sea ice 
concentration due to the external environment such as cloud and 
water vapor.

Up to now, all weather filters basically use low-frequency 
data. In 1986, Comiso used the Gradient Ratio (GR) at 36.5 GHz 
and 18.7 GHz to reduce the influence of cloud and water vapor. 
Because GR (37/19) of the sea water is greater than 0, while GR 
(37/19) of the sea ice is close to 0 or less than 0 (Comiso, 1986). 
In 1995, Comiso improved the weather filter by adding GR 
(23/19) in addition to the original GR (37/19), because the GR 
at 23 GHz and 19 GHz is more sensitive to the water vapor of the 
atmosphere (Comiso, 1995).

3.2 An Improved ASI Algorithm
At present, the weather filter used in the ASI algorithm only 
removes the misjudged sea ice in the open ocean, and it does not 
change sea ice concentration affected by cloud and water vapor. 
Therefore, in order to obtain more accurate sea ice concentration 
with the high spatial resolution, the process is as follows. Firstly, 
we screened the 89-GHz brightness temperature data greatly 
affected by the external environment, such as cloud and water 
vapor. Then we proposed the data correction method based 
on CGAN to correct the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 
water vapor, so as to replace the weather filter used in the ASI 
algorithm.

3.2.1 Data Screening
The external environment such as cloud and water vapor basically 
has no impact on the 36-GHz brightness temperature data, 
but has a great impact on the 89-GHz brightness temperature 
data. Under sunny weather, the Polarization Ratio(PR) of the 
89-GHz brightness temperature data and the 36-GHz brightness 
temperature data is stable (Iwamoto et al., 2013). But when there 
is external interference such as cloud and water vapor, the PR 
of the 89-GHz brightness temperature data and the 36-GHz 
brightness temperature data will be reduced, and the degree of 
reduction is related to the impact of the external environment 
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such as cloud and water vapor. The PR value is obtained as shown 
in equation (1). Therefore, under sunny weather, take the PR of 
the 36-GHz brightness temperature data as the abscissa and the 
PR of the 89-GHz brightness temperature data as the ordinate, 
and draw the PR scatter plot, as shown in Figure 1. In the PR 
scatter plot, the abscissa is equally divided into several intervals, 
and the average value and standard deviation of the ordinate in 
each interval are calculated. Then, the best fitting curve based 
on the least square method is drawn by subtracting the value 
of twice the standard deviation from the average value in each 
interval, which is similar to the quadratic equation.

 PR
TB TB
TB TB

v H

v H

=
−
+  (1)

Where TBv and TBH are the vertical polarization brightness 
temperature data and the horizontal polarization brightness 
temperature data respectively.

 PR a PR b a PR c89 36
2

0 36= ( ) − +* *  (2)

Where PR89 is the PR of the 89-GHz brightness temperature 
data and PR36 is the PR of the 36-GHz brightness temperature 
data. And a, b, c are constants.

3.2.2 Data Correction
CGAN can better fit complex nonlinear noise data and introduce 
additional condition information to guide data generation, so 
that CGAN has better denoising effect. The  generative model 
and the discriminative model of CGAN can get the relationship 
between the data affected by the external environment and 
the data not affected by the external environment through 
confrontation training. If the generative model outputs an 
image with poor correction results, the network parameters are 
continuously updated through the feedback mechanism of the 
discriminative model, to guide the generative model to correct 
the data affected by the external environment. The core idea of 
CGAN model is to achieve Nash equilibrium through the game 
(The game function of CGAN model is shown in equation (3).) 
between the generative model and the discriminative model. The 
purpose of the generative model is to generate data that is not 
affected by the external environment, to improve the generation 
ability and reduce the discrimination ability of the discriminative 
model. The discriminative model judges the difference of input 
data through the loss function, updates the parameters of CGAN 
model through the feedback mechanism, and finally obtains the 
optimal CGAN model.

 
G
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D
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x pdata x

Z p

V G D E log D x y

E log D
z z

( , ) [ ( ( | ))]
[ ( ( (

~ ( )

~ ( )
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Where x is the data affected by the external environment, y 
is the additional information, z is the input random noise, G (z | 
y) is the data that not affected by the external environment and 
that output by the generation network of CGAN, D (G(z | y)) is 
the probability that the discriminative network judges whether 

the input data is false. Since the goal of the generative model of 
CGAN is to make the generated data close to the data that not 
affected by the external environment as much as possible, the loss 
function is set to 1 - (D(G(z | y))) to ensure that the probability 
of judging the output false image of the discriminative network 
as small as possible. The goal of the discriminative model is 
to improve the ability to judge the difference of input data. 
Therefore, the larger D (x | y) is, the better it is. At the same time, 
the smaller the noise impacts, the better it is. The loss function is 
set to D (x | y) + 1 – (D(G(z | y)). Use mi V D GG

n ma
D
x ( , )  to represent 

the process of the game.
The convolutional neural network (CNN) based on the U-Net 

model can integrate the characteristics of different network layers 
by the skip connection and improve the denoising performance, 
and it has strong adaptability and can effectively retain the 
structural information of the image. Thus, the CNN based on the 
U-Net model was used as the generative model in this paper, and 
it includes input layer, convolution layer, pooling layer, activation 
layer, and output layer. We set the size of the pool layer to 2 × 2, 
and set the size of the convolution filter to 3 × 3, and selected 
Rectified Linear Unit (ReLU) as the activation function.

The function of discriminative model is to distinguish 
two sets of relationships, that is, the relationship between the 
89-GHz brightness temperature data with large interference 
and the 36-GHz brightness temperature data obtained by the 
generative model, and the relationship between the undisturbed 
89-GHz brightness temperature data and the 36-GHz brightness 
temperature data with the high reliability. The discriminative 
model adopted the CNN network. Firstly, the image was input 
into the discriminative model, and then the batch normalization 
(BN) operation was performed on the input image. Secondly, 
the feature is extracted through convolution. Thirdly, the ReLU 
activation function is used for the non-linear mapping, and the 
final loss is calculated by cross entropy. Finally, the corrected 
89-GHz brightness temperature data was obtained. So CGAN 
was applied to data correction as follows.

(1) Before the training, adjust the data set, such as rotation, 
translation, to increase the number of data set. After that, the 
training set and the test set are normalized.

(2) Input the training set into the generative model, and then 
perform continuous BN + convolution + ReLU + pooling to 
complete the down sampling operation.

(3) Continuous operations such as deconvolution, ReLU and 
dropout are performed on the feature map obtained by down 
sampling to complete up sampling.

(4) The output characteristic diagram of the down sampling is 
connected with the output characteristic diagram of the up 
sampling (In the same network layer, each neural network 
node of the current neural network layer uses the dense 
jump connections for the feature fusion. In different network 
layers, from top-layer neural network to bottom-layer neural 
network, the output feature maps of the down sampling 
and the up sampling of the next neural network layers are 
fused.). Then the relationship between the 89-GHz brightness 
temperature data and the 36-GHz brightness temperature 
data with the high reliability is obtained.
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(5) The test set data (undisturbed 89-GHz brightness temperature 
data and 36-GHz brightness temperature data) and the 
relationship between the 89-GHz brightness temperature 
data obtained in the previous step and the 36-GHz brightness 
temperature data with the high reliability are input into the 
discriminative model.

(6) Carry out BN + convolution + ReLU + pooling to complete 
the down-sampling operation.

(7) The cross entropy is used to judge the results obtained by the 
discriminative model. If the loss function reaches the minimum 
value, the corrected 89-GHz brightness temperature data is 
output. Otherwise, return to step (2), and repeat the above 
steps until the loss function reaches the minimum value. The 
flowchart of the affected 89-GHz brightness temperature data 
correction based on CGAN model is shown in Figure 2.

4 RESULTS AND VERIFICATION

Based on the AMSR-2 89-GHz brightness temperature data, 
we used the ASI algorithm and the improved ASI algorithm 
based on CGAN to retrieve Antarctic sea ice concentration on 
February 1, 2021 as shown in Figure 3, and then further verified 
sea ice concentration by the Landsat 8 OLI-L1T data.

According to the Landsat 8 OLI-L1T data (resolution: 30m), 
we selected Landsat images for the different regions from 
October 2019 to March 2020 for the further verification. Based 
on the Landsat 8 OLI-L1T data, we used NDSI (normalized 
difference snow index) calculated by the near-infrared  band 
and the short-wave  near-infrared  band to identify the sea ice 
distribution. Because this method can identifiy sea ice and sea 
water according to the reflectivity difference between sea ice and 
sea water (Perovich, 1996; Riggs et  al., 1999; Hall et  al., 2001; 
Riggs and Hall, 2015; Liu et al., 2016).

In order to further verify that the sea ice concentration 
retrieved by the improved ASI algorithm based on CGAN has 

higher accuracy than the ASI algorithm, the Landsat 8 OLI-L1T 
data is used to verify the results retrieved by the improved ASI 
algorithm based on CGAN and the ASI algorithm from. The 
Landsat 8 OLI-L1T data were all used under a clear sky, and 
the errors caused by cloud and water vapor in the processing 
process can be eliminated. Sea ice distribution obtained by the 
ASI algorithm, the improved ASI algorithm based on CGAN and 
the Landsat 8 OLI-L1T data shown in Figures 5A–C (February 
1, 2020), Figures  5D–F (October 16, 2019), Figures  5G–I 
(November 10, 2019), and Figures 5J–L (March 6, 2020).

In Figures  5A–C, the accuracy of the sea ice distribution 
obtained by the improved ASI algorithm based on CGAN is 

FIGURE 1 |   Scatter plot of PR.

FIGURE 2 | Flowchart of the affected 89-GHz brightness temperature data 
correction based on CGAN model.
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about 91%, and the accuracy of the sea ice distribution obtained 
by the ASI algorithm is about 83%. In Figures 5D–F, the 
accuracy of the sea ice distribution obtained by the improved 
ASI algorithm based on CGAN is 83%, and the accuracy of 
the sea ice distribution obtained by the ASI algorithm is about 
33%. In Figures  5G–I, the accuracy of the sea ice distribution 
obtained by the improved ASI algorithm based on CGAN is 
about 83%, and the accuracy of the sea ice distribution obtained 
by ASI algorithm is about 50%. In Figures 5J–L, the accuracy of 
the sea ice distribution obtained by the improved ASI algorithm 
based on CGAN is about 78%, and the accuracy of the sea ice 
distribution obtained by ASI algorithm is about 89%. The 
selected areas in Figure 5 are basically located in the edge areas 
of Figure 3 with the low sea ice concentration or the interface 
between sea water and sea ice. That is to say, the accuracy of the 

improved ASI algorithm based on CGAN is higher than that of 
the ASI algorithm in the arers with the low sea ice concentration. 
Therefore, through the comparison of the above results, we can 
draw a conclusion that the improved ASI algorithm based on 
CGAN has higher accuracy.

5 DISCUSSION

Sea ice concentration was retrieved by the CGAN based 
improved ASI retrieval algorithm based on the Landsat 8 OLI-
L1T data and the AMSR-E 89-GHz brightness temperature data 
in this paper. Compared with the sea ice distribution obtained 
by the ASI algorithm, the sea ice distribution obtained by the 
improved ASI algorithm based on CGAN was closer to the sea 
ice distribution obtained from the Landsat 8 OLI-L1T data, 

FIGURE 4 | Comparison of Antarctic sea ice extent.

A B

FIGURE 3 | (A) Sea ice concentration was retrieved by the ASI algorithm; (B) Sea ice concentration was retrieved by the improved ASI algorithm based on CGAN.
(Projection: polar stereographic projection) Figure 3 showed sea ice concentration retrieved by the ASI algorithm and the improved ASI algorithm based on CGAN, 
respectively. By comparing the results in Figure 3, it can be seen that sea ice concentration are relatively similar. Then the extents of the multi-year ice, first-year ice 
and total sea ice from the U.S. National Ice Center (USNIC) data, the improved ASI algorithm based on CGAN and the ASI algorithm were comared on February 
1, 2021 as shown in Figure 4. It can see from Figure 4 that the sea ice extent of the improved ASI algorithm based on CGAN is between USNIC and the original 
ASI  algorithm.
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so the improved ASI algorithm based on CGAN significantly 
improved the accuracy of sea ice concentration. The improved 
ASI algorithm based on CGAN made use of the reliable 36-GHz 
brightness temperature data, which greatly reduced the errors 
caused by the atmosphere, and the proposed method effectively 
corrected sea ice concentration of the pixels affected by the 
external environment.

At present, many scholars had studied the ASI algorithm for 
retrieving the sea ice concentration from the 89-GHz brightness 
temperature data. Although the ASI algorithm has advantages 
due to its higher spatial resolution, compared with the low-
frequency brightness temperature data, the 89-GHz brightness 
temperature data are more affected by cloud and water vapor, 
which will lead to some errors in the edge regions of sea water 
and sea ice. Although some errors can be eliminated by the 

weather filter, the most of the errors in some regions cannot be 
removed. Based on the previous studies and the above reasons, we 
proposed the improved ASI algorithm based on CGAN. That is, 
we used CGAN to replace the weather filter in the ASI algorithm. 
The generative model of CGAN increases the utilization of 
the image feature information through the skip connection 
operation, which improves the removal of the influence of cloud 
and water vapor. The discriminative model can retain the image 
feature information and realize the non-linear mapping from the 
image to the image. The loss function can reduce the pixel-level 
loss, which can remove the influence of cloud and water vapor. 
The improved ASI algorithm based on CGAN can corrected the 
89-GHz brightness temperature data affected by the external 
environment in the process of training. And the improved ASI 
algorithm based on CGAN greatly reduced the errors caused by 

B C

D E F

G H I

J K L

A

FIGURE 5 | (A) Sea ice distribution was obtained by the ASI algorithm on February 1, 2020 (B) Sea ice distribution was obtained by the improved ASI algorithm 
based on CGAN on February 1, 2020 (C) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on February 1, 2020. (D) Sea 
ice distribution was obtained by the ASI algorithm on October 16, 2019 (E) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on 
October 16, 2019 (F) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on October 16, 2019. (G) Sea ice distribution was 
obtained by the ASI algorithm on November 10, 2019 (H) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on November 10, 2019 
(I) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on November 10, 2019. (J) Sea ice distribution was obtained by the 
ASI algorithm on March 6, 2020 (K) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on March 6, 2020 (L) Sea ice distribution was 
obtained by the Landsat8 OLI-L1T data through the NDSI method on March 6, 2020 (Projection: polar stereographic projection; The white area is sea ice, and the 
black area is sea water).
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the atmosphere and significantly improved the accuracy of sea 
ice concentration.

However, the improved ASI algorithm based on CGAN 
has some limitations. Firstly, in the data screening stage, the 
relatively stable relationship between the 89-GHz brightness 
temperature data which is not disturbed or less affected by the 
external environment and the 36-GHz brightness temperature 
data is limited by the sample points. Secondly, there are the time 
difference between the Landsat 8 OLI-L1T data and the AMSR-E/
AMSR-2 data, resulting in a certain error in the inversion of sea 
ice concentration. Finally, using the Landsat 8 OLI-L1T data 
has obvious advantages in verifying local small regions, but the 
Landsat 8 OLI-L1T data is not very suitable for large-scale and 
long-time series sea ice detection. Therefore, we will strive for 
breakthroughs in the following two aspects in future studies. 
Firstly, collect more representative sample points in order to get a 
more accurate screening model. Secondly, find more appropriate 
verification data (such as on-site data) to verify the results of sea 
ice concentration retrieved by the improved ASI algorithm based 
on CGAN.

6 CONCLUSIONS

In this study, the data correction method based on CGAN was 
used to correct the 89-GHz brightness temperature data affected 
by the external environment by the relatively stable relationship 
between the 89-GHz brightness temperature data which is not 
disturbed or less affected by the external environment and the 
36-GHz brightness temperature data. This method effectively 
corrected sea ice concentration of the pixels affected by the 
external environment, which greatly reduced the errors caused 
by the atmosphere. The sea ice concentration was verified by 
the Landsat 8 OLI-L1T data. Firstly, the study determined the 
relatively stable relationship between the 36-GHz brightness 
temperature data and the 89-GHz brightness temperature data 
that were not disturbed or less affected by external environment, 
and we screened out the 89-GHz brightness temperature data 
with the large interference. Then, the data correction method 
based on CGAN corrected the 89-GHz brightness temperature 
data which was greatly affected by the external environment 
such as cloud and water vapor. Finally, the ASI algorithm 
was used to retrieve Antarctic sea ice concentration. Sea ice 
concentration obtained by the improved ASI algorithm based 
on CGAN was compared with sea ice concentration obtained by 
the ASI algorithm. The results showed that sea ice concentration 

retrieved by the improved ASI algorithm based on CGAN was 
close to that obtained by the ASI algorithm. We used sea ice 
concentration obtained from the Landsat 8 OLI-L1T data using 
the NDSI method to further verify the sea ice concentration 
retrieved by the improved ASI algorithm based on CGAN. The 
improved ASI algorithm based on CGAN significantly changed 
the sea ice concentration of the pixels affected by the external 
environment, so as to reduce the impact of cloud and water vapor 
on high-frequency data. Compared with sea ice concentration 
obtained by the ASI algorithm, sea ice concentration retrieved 
by the improved ASI algorithm based on CGAN had higher 
accuracy. The sea ice distribution obtained by CGAN does not 
need to design features in advance. For different data products, 
CGAN has the strong robustness and the migration ability.
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The spatial distribution pattern of the economic development amongcounties is an

important external representation of a balanced and sustainable regional

development in China. With the rapid development of globalization and

localization, spatial pattern of economic growth is increasingly obvious. The

mechanisms of regional economic growth in China are also gradually gaining

attention. However, there is still a lack of research at the province and county levels.

As a result, based on the per capita GDP of each county in Hubei province from

2005 to 2020 as the research index, the spatial autocorrelation and the spatial

variation function are used to analyze the spatial pattern evolution and the county

economy mechanism in Hubei province. The results show that 1) there is a

remarkable phenomenon of county-level economic spatial agglomeration in

Hubei province. The urban area of Wuhan and its surrounding counties are

high–high (HH-type) county agglomeration areas. The low–low (LL-type)

counties are mainly distributed in the western parts of Hubei province and

scattered in the northeastern and southern parts of Hubei province; 2) the

county economy of Hubei province presents a spatial distribution pattern of

“high in the east and low in the west.” The hot areas of the county economy

are primarily located in the urban area of Wuhan and its surrounding areas. In the

process of development, the hot spot areas tend to shift to Yichang, Jingmen, and

Xiangyang. The cold spot areas are located on the edges of the western,

northeastern, and southeastern areas of Hubei province; 3) the spatial continuity

and self-organization of the county economic development are strengthened. The

structural differentiation trend caused by spatial autocorrelation is also

strengthened. The county economy is relatively balanced from the southeast to

the northwest, and the spatial difference in economic development in other

directions is increasing; and 4) the spatial evolution of county economic

development in Hubei province is the result of the comprehensive effects of

historical and cultural background, economic development, traffic location, and

policy system, and the A-shaped point-axis structure is a reliable spatial structure

for regional development in Hubei province.
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Introduction

The unbalanced distribution of economic activities and

economic phenomena is a persistent problem for both

developed and developing nations (Candelaria et al., 2009),

which exhibits spatial and temporal patterns in geography.

The spatial process and pattern make a difference to broad

social, economic, and political processes (Massey, 1985). The

objective existence of regional economic differences is

determined by the local development path, economic

structure, spatial linkages, and local resource endowments

among different regions. China’s economic prosperity over the

past 40 years has made its crowded cities and metropolises rich,

but rest of the countries, especially the counties with a

predominantly agricultural and rural economy, has remained

relatively poor (He et al., 2019), more intensifying inequalities are

mainly demonstrated across prefectures and counties. Different

regional economic spatial patterns are formed because of this

objective existence (Jin et al., 2007; Li and Li, 2018). Hence, a

need to focus on “enhancing the county-level economy” was

proposed in 2002 and was emphasized in the “National territorial

planning framework (2016–2030),” approved by Premier Li,

which aims to extend urban development beyond urban areas

and promote the development of county economy. As the most

basic administrative unit and industrial undertaking carrier of

China’s economic development, the county is the basis of the

construction of the regional economy, instead of the economic

zone, province, city, etc. This specific pattern could be regarded as

an important reference factor to promote a balanced and

sustainable regional development and formulate the macro-

control policy of the government (Ward, 2016). However, the

ways in which regional economic differences is spatially

formulated and connected at the county scale remains

unknown. The research on the county spatial differences and

its economic development mechanism is of great significance for

understanding the regional economic pattern and its evolution

and has become a major strategic problem that China’s economic

macro-control is committed to solving (Xu et al., 2005; Jin and

Lu, 2009; Zhao and Dong, 2012).

The literature on regional economic differences is popular

with terms related to geography, such as region, spatiality,

locality, district, and neighborhood effect. Scholars have found

that regional economic difference is sensitive to geographical

clustering and agglomeration, as corroborated in many empirical

analyses at regional, provincial, and city levels (Liao and Wei,

2012; Wei and Kim, 2002), and that changing trajectories and

fortunes of leading or lagging regions often have a huge impact

on regional inequality (Yu and Wei, 2003; Ye and Wei, 2005).

Regional differences have become a burning issue in the

development of the social economy and have attracted

tremendous concern and scholarly attention (Li and Qiao,

2001; Xu et al., 2005). From the perspective of space, regional

economic differences are spatially represented by the economic

spatial structure of the region in a certain period of time. Most of

the studies conducted internationally have focused on the

theoretical level and have provided the basis for a classical

theoretical system (Czako et al., 2014). Perroux (1950)

proposed the theory of the regional growth pole in 1955,

which is regarded as a great theoretical contribution to the

study of regional development from the perspective of

economics, and Friedman (1966) proposed the “core-

periphery” structure based on the simulation of urban system

formation and development to explain the evolution of regional

economic spatial structure. New economic geography places

increasing return to scale and agglomeration at the center of

regional development (Fujita et al., 1999). Initial studies by

foreign scholars have suggested that the regional differences in

economic development were ultimately reflected in the problem

of social polarization between rich and poor populations, so early

scholars used the Gini coefficient to measure polarization

(Atkinson, 1970). Esteban et al. (2007) measured the average

annual Esteban–Ray polarization index of five OECD countries

(Canada, Germany, Sweden, the United Kingdom, and the

United States) from 1970 to 2000. Fedorov (2002) calculated

and decomposed Russia’s Esteban–Ray’s and Kanbur–Zhang’s

polarization indexes of income inequality and consumption

expenditure differences from 1990 to 1999. Ezcurra et al.

(2006) used the Gini coefficient, Theil index, coefficient of

variation, and Esteban–Ray polarization index to

quantitatively analyze the overall differences and polarization

level of the per capita income distribution dynamics in Europe

from 1977 to 1999. Gasparini et al. (2006) found that the

economic development of Latin American countries showed a

highly polarized trend, while that of Caribbean countries was

relatively flat (except Mexico, Nicaragua, and Peru). Zhang and

Kanbur carried out a series of studies on regional economic

differences and polarization, respectively, in China (Zhang and

Kanbur, 2001, 2005; Kanbur and Zhang, 2005). Wan and Zhou.

(2005) showed that since the 1980s, the differences in per capita

net income among farmers in different regions, within regions,

within provinces and cities, and even among farmers in the same

township have been increasing.

At present, the research on regional economy in China

mainly embodies the following aspects. ① The research object

has changed from the differences between the east and the west

(Lu et al., 1999; Wu D. Y., 2001; Lu and Xu, 2005), between the

north and the south (Wu D. T., 2001), between urban and rural

areas (Xu and Liu, 2012) to the differences between provinces
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(Zhang et al., 2010; Xiong et al., 2011; Fang et al., 2013a; Tian and

Zhao, 2013), and between economic zones and urban

agglomerations (Ma et al., 2007; Sun et al., 2009; Hu and

Zhang, 2010; Sun et al., 2013). ② The research scale has

changed from the macro-level province (city, autonomous

region) (Chen and Zhu, 2012) to the micro prefecture-level

city and county and has begun to focus on mechanism

analysis (Ke and Lu, 2011; Ke et al., 2013a; Wang and Gao,

2014). ③ Research methods have been integrated, including the

traditional standard deviation (Wu and Ding, 2011), coefficient

of variation (Xu et al., 2015), Gini coefficient (Cai et al., 2011),

Theil coefficient (Zhong and Lu, 2010; Zhou and Zhang, 2011),

and other introducedmathematical analysis methods such as GIS

(Feng et al., 2015), ESDA (Fang et al., 2013b), wavelet analysis

(Xu et al., 2005), and other methods to explore the spatial

dependence and heterogeneity of the county economy. ④

There has been a shift from an emphasis on quantity to a

focus on quality, and the factors and structure of the county

have also become an important issue. Rozelle et al. (2002) have

examined how rural China is successful in participating in the

sequence of economic activities that will lead to modernization

and emphasize the significance of the state of China’s county

economy. This issue has also been favored by some scholars (Ke

et al., 2013b; Zhu andWu, 2015), mainly focusing on research on

land (Li and Fang, 2014), industry (Chen et al., 2016),

urbanization (Liu and Yang, 2012), transportation (Liu and

Zeng, 2011), ecology (Li et al., 2014), etc.

Regional economic difference is multi-scale in nature, and

spatial agglomeration is an essential feature of geographical

space. The significance of the spatial perspective has

motivated a new round of methodological advances. With

increasing amount of data and fast developing analytical

methodologies, our understanding of regional economic

differences (inequality) and spatial pattern is increasing

drastically. This is particularly true when scholars started to

apply spatial analytical approaches to understand the issue since

the spatial distribution of economy is essentially a geographical

problem (Dou et al., 2016; Ortega et al., 2018). World

Development Report 2009 highlights the importance of

economic geography in regional economic development

(World Bank, 2009). Affected by various socioeconomic

contexts, regional economic differences demonstrate many

spatial features such as spatial heterogeneity (S. He, Fang,

et al., 2017), spatial dependence (Anselin, 2013), spatial

agglomeration (F. H. Liao and Wei, 2015), spatial mobility

(Rey, 2016), spatial hierarchy, and spatial causation (Wei,

2015). Therein, spatial heterogeneity and spatial dependence

are the two fundamental issues in social sciences (Goodchild,

2009). Regional economic differences are heterogeneous in both

space and time. The effect of spatial dependence is also significant

to understand structural instability in regional sciences.

Geographical space or regions are heterogenous in nature,

while a traditional inequality index measures the spread of the

income distribution and fails to distinguish between convergence

to the global mean and clustering around local means (Esteban

and Ray, 1994). Declining overall inequality can mask rising

polarization, with related concepts of geographical

concentration, club convergence, and poverty trap. The

development of GIS and spatial analysis has provided

powerful tools to uncover the significant impact of spatial

association and spatial heterogeneity on regional economic

differences. Moreover, geographers also tend to pay less

attention on rural economic differences, including inequality

across counties and villages. Analyzing spatial association/

heterogeneity and mechanisms of county-level can better

explain the evolution trend of regional economy and deepen

the understanding of regional inequality.

A spatial view is crucial for regional economic differences

analysis, particularly in the case of the county-level China

(Zhang and Dang, 2016). The relationships between regional

inequality and its geospatial dimensions have been examined

by a number of studies (Rey and Le Gallo, 2009; Liao and Wei,

2015). These studies investigate spatial distributional

dynamics of regional economic differences, which conclude

that space does matter in shaping uneven regional

development. Spatial dependence, scale, and hierarchy are

all significant for better understanding the complexity of

China’s regional economic differences. For example, Rey

(2015) suggests that the role of spatial context does

influence the distributional dynamics of regional inequality

by comparing the case of Mexico and the United States. Wei

(2015) found that mechanism of regional economic

differences in China is mainly demonstrated in terms of

first nature (physical geography) and second nature

(agglomeration). Although these studies have investigated

the county-level inequality, most of them mainly focus on

an individual coastal province in China, and no formal

consensus has been reached to date and a geospatial

analysis on the county-level economic differences in central

China is lacking. Meanwhile, the new-type urbanization is

required to realize regionalization and optimize spatial

patterns of regional development in China. Hence, a

spatially explicit view of development dynamics in the

county-level central China requires further research, how

the intra-county spatial inequality has evolved over time

and whether these development strategies of regions

became effective remains unknown.

In the new era, the implementation of rural revitalization

and the development and study of the county economy play an

important role in promoting the overall planning of urban and

rural areas, coordinating regions, and accelerating the

development of the national economy. Hubei is one of the

most developed areas in China, making it an important

component of development strategies of the “Yangtze River

economic zone” and “Triangle of central China.” In 2020, the

county population and total economic volume were
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36.7536 million and 2,554.772 billion yuan, accounting for

59 and 60% of the province, respectively. With the rapid

development of economy, the level of urbanization in

Hubei has been continuously improved. Meanwhile, the

spatial difference of county economic development in

Hubei province is apparent. In the plain area along the

Yangtze River in eastern Hubei with Wuhan as the core,

large amounts of land resources are developed for

industrial, commercial, residential, and infrastructure

purposes. Conversely, the land development is restricted or

forbidden in most counties of the middle and western Hubei.

So there is an obvious regional gradient of economic growth

from the eastern to the central and to the western Hubei,

which is extremely similar to that of China. As such, Hubei

province can be considered a miniature of economic

development in China. In addition, Hubei province is one

of the first regions to implement the reform of the financial

system of the province directly governing county. This region

could be regarded as a typical case for research. Moreover, the

previous research works on the county economic differences

in Hubei province only focused on the absolute spatial

differences of the regional economy in different time

sections, and there were few quantitative studies on the

randomness, correlation, and structural factors affecting the

spatial differences within the region, which failed to better

reveal the spatial evolution process and mechanism of

economic growth differences in Hubei province. Therefore,

this study attempts to make contributions in the following

aspects. First of all, a spatiotemporal analysis of county

economy in Hubei province is conducted to examine their

dynamic changes. Second, this study combines spatial

heterogeneity and spatial dependence with spatial

variability functions to analyze the formation mechanisms

causing county-level economic differences. Finally, the results

can offer novel thoughts for drafting future political strategies

for regional development and rural revitalization.

FIGURE 1
Location of the study area.
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2 Materials and methods

2.1 Study area and data source

Hubei province is located in the middle reaches of the

Yangtze River, covering an area of 185,900 km2, with a high

terrain in the west and low terrain in the east (Figure 1). At the

end of 2020, the total population was 57.75 million, with a GDP

of 4,344.34 billion yuan, ranking eighth in China. The highest per

capita GDP was that of Huangpi District (87,988 yuan), and the

lowest was that of Hefeng County (14,583 yuan), with a

difference of six times. This indicates that there is a large

imbalance between county economies in Hubei province.

In this article, we chose the years 2005–2020 as the study

period. During 2005 to 2020, the urbanization of Hubei province

was developing rapidly, and the gap between urban and rural

areas was more remarkable. For better revealing the change

characteristics of county-level economy, we selected the year

of 2005, 2010, 2015, and 2020 as the study time point to present

their spatial–temporal changes. Then a county of Hubei province

is taken as the research unit, and the per capita GDP of the county

is used as the research indicator to reflect the level of economic

development of the county; based on the integrity, scientificity,

and availability of the data, some municipal jurisdictions are

subjected to the merge application, and a total of 91 county units

are obtained from 10 prefecture-level urban areas, 17 municipal

districts, 24 county-level cities, and 40 counties. For the changed

administrative division unit (such as the establishment of Suixian

county in Zengdu District in 2009, and the transformation of

Yunxian County to Yunyang District in 2014), the corresponding

processing is performed in ArcGIS. The data used in this article

were obtained from the China Statistical Year Book for Regional

Economy, Hubei Statistical Year Book, and the China County

Statistical Yearbook from 2006 to 2021.

2.2 Research method

2.2.1 Measurement method of county economic
differences
1) Standard deviation and coefficient of variation: the absolute

difference in per capita GDP of counties in Hubei province is

calculated with the standard deviation, and the formula is

σ �
��������������
[∑n

i�1(yi − �y)2]/n
√

. The coefficient of variation

represents the relative degree of change in geographical

data, which can measure the degree of differences between

regions. Therefore, the coefficient of variation is used to

measure the relative difference in per capita GDP of

counties in Hubei province. The formula is CV ���������������
[∑n

i�1(yi − �y)2]/n
√

/�y.

2) Gini coefficient and skewness coefficient: the Gini coefficient

is the most commonly used index to measure the degree of

regional imbalance. The geographical concentration of

economic development is actually a kind of regional

imbalance. The formula is as follows:

G � 1
2n2μ

∑n
i�1
∑n
j�1

∣∣∣∣∣yi − yj
∣∣∣∣∣. (1)

The value range of the Gini coefficient is [0, 1]. The more

uniform the geographical distribution of county economic

development is, the smaller the Gini coefficient of location is;

the higher the concentration of county economic development is,

the greater the Gini coefficient of location is.

The skewness coefficient measures the asymmetric

distribution of geographic data distribution and describes the

skewness centered on the average value. The formula is

g � ∑n
i�11n(yi−�yσ )3. A value of the skewness coefficient greater

than zero indicates that the economic differences of each

county are distributed in a right state; a value of the skewness

coefficient less than zero indicates that the economic differences

of each county are distributed in a left state.

In the aforementioned measurement methods, yi is the per

capita GDP of the j -th county, �y is the per capita GDP of the i -th

county, yj is the average per capita GDP of all counties, n is the

number of counties, and μ is the average value of county yi.

2.2.2 Exploratory spatial data analysis
The exploratory spatial data analysis is a combination of

statistical principles and graphical charts to study the non-

randomness or spatial autocorrelation of spatial information

and reveal the spatial pattern of regional economic

development, including global autocorrelation and local

autocorrelation.

1) Global autocorrelation: global autocorrelation is used to

describe the spatial distribution characteristics of object

attributes in the whole region. It is measured by the global

indexMoran′I and the calculation formula for this index is as

follows:

I �
∑n
i�1
∑n
j�1
wij(yi − �y)(yj − �y)

S2∑n
i�1
∑n
j�1
wij

, (2)

where S2 � 1
n∑n

i�1(yi − �y)2; wij are the spatial weights; n is the

total number of counties; yi and yj are the average per capita

GDP of counties i and j, respectively; and �y is the mean of the

average per capita GDP of all counties. Moran′I varies between
-1 and 1. If Moran′I > 0 and passes the significance test, it

indicates that there is a positive correlation in the spatial

distribution of county economy. If Moran′I < 0 and passes

the significance test, it indicates that there is a negative

correlation in the spatial distribution of county economy. If

Moran′I is close to 0, it indicates a random pattern or

absence of spatial autocorrelation.

Frontiers in Earth Science frontiersin.org05

Jiang et al. 10.3389/feart.2022.918123

280

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.918123


2) Local autocorrelation: local autocorrelation is used to analyze

the degree of association among each spatial element attribute

and its adjacent spatial element attribute, which is measured

by the index Moran′I and the local G statistic. The

calculation formula of Moran′I is as follows:

Local I �
(yi − �y)

S2
∑n
j�1
wij(yj − �y). (3)

WhenMoran′I> 0 and passes the significance test, the counties

with high per capita GDP in Hubei province are adjacent to each

other (this type of cluster was recorded as HH-type), or the counties

with low per capita GDP are adjacent to each other (this type of

cluster was recorded as LL-type); whenMoran′I < 0 and passes the

significance test, the counties with high per capita GDP are adjacent

to the counties with low per capita GDP (this type of cluster was

recorded as HL-type), or the counties with low per capita GDP are

adjacent to the counties with high per capita GDP (this type of

cluster was recorded as LH-type).

The Local G statistics can further detect the local spatial

dependence and determine the location of high value or low-

value elements clustering in space, and the calculation formula

for this statistic is as follows:

Gp
i �

∑n
j�1
wij(d)yj

∑n
j�1
yj

. (4)

Standardized G*
i Z(G*

i ) � (G*
i −

E(G*
i ))/(

�����
VAR

√ (G*
i )), E(G*

i ) and VAR(G*
i ) represent

mathematical expectations and variation coefficients, and

wij(d) represents spatial weights. A significant positive Z(G*
i )

value indicates that counties with high per capita GDP tend to

gather and form hot spots, while a significant negative Z(G*
i )

value indicates that counties with low per capita GDP tend to

gather and form cold spots.

2.2.3 Spatial variogram
A spatial variogram is a basic means to describe the

randomness and structure of regionalized variables (Liu et al.,

2009). Let Z(x) be the value of system attribute Z at the spatial

position x, and Z(x) be a regionalized random variable. h is the

space separation distance of two sample points, and Z(xi) and
Z(xi + h) are the observation values of regionalized variable

Z(x) at space position xi and xi + h, respectively; (x = 1,2,...,

N(h)), thus, the spatial variogram can be expressed as:

γ(h) � 1
2N(h)∑

N(h)

i�1
[Z(xi) − Z(xi + h)]2, (5)

where N(h) is the total number of sample point pairs when the

separation distance is h. For different space separation distance h,

the corresponding γ(h) value can be calculated. When the γ(h)

value becomes larger, the spatial autocorrelation tends to weaken.

Taking h as the abscissa and γ(h) as the ordinate, the spatial

variation function graph can be drawn to represent the spatial

variation characteristics of the regionalized variableZ(x) (Figure 2).
With the increase in h, when the variogram γ(h) reaches a

relatively stable constant from a non-zero value, the constant is the

sill value (C + Co), and C is the structural variance; when h = 0 and

γ(h) = C0, the value represents the nugget value, which represents

the discontinuous variation in the regionalized variable when it is

smaller than the observation scale. α is the range of variation, that is,

the interval distance when the variogram γ(h) reaches the sill value.
After the range α≥ x, the spatial correlation of regionalized variables

disappears. The fourth parameter of the variogram is the fractal

dimension, which is used to express the characteristics of the

variogram. It is determined by the relationship between the

variogram γ(h) and the interval distance h.

2γ(h) � h(4−2D). (6)

The fractal dimension D is the slope in the linear regression

equation of double logarithm. Its size represents the curvature of the

variogram. It can be used as a measure of random variation. The

intensity of spatial autocorrelation between different variables is

compared. The closer its value is to 2, the more balanced the spatial

distribution among variables is. The variogram is theoretically

unknown and can be fitted by calculation. Commonly used

fitting models include the linear model, exponential model,

spherical model, Gaussian model, and power function model.

3 Results

3.1 Temporal characteristics of county
economic differences

The change trend of county economic differences in Hubei

province from 2005 to 2020 is shown in Figure 3. Among them, the

FIGURE 2
Model variogram.
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standard deviation continued to expand from 0.420 in 2005 to

3.075 in 2020, which reflected the absolute difference in county

economic development in Hubei province have been on the rise

trend. Based on the change trend of the coefficient of variation and

the Gini coefficient, the relative difference in county economic

development in Hubei province have been decreased generally

during the study period. Meanwhile, 2010 was an important

node of relative difference change. From 2005 to 2010, the Gini

coefficient and coefficient of variation increased from 0.323 to

0.627 and from 0.365 to 0.793, respectively, and the relative

difference in economic development among counties in Hubei

province has expanded. After 2010, the relative difference in the

county economy shrank steadily, and the Gini coefficient and

coefficient of variation shrank to 0.329 and 0.615 in 2020. The

main reason is that after 2010, with the implementation of the rise of

central China, the Belt and Two Circles (the Yangtze River

Economic Belt, Wuhan Metropolitan Area, and Western Hubei

Eco-cultural TourismCircle) and the construction of provincial sub-

central cities, these development strategies and policies have

effectively promoted the coordination of regional development in

the province and continuously reduced the relative difference of

county economy. Regarding the skewness coefficient, its value is

greater than zero and declines in fluctuations, indicating that the

economic differences among the counties in Hubei province present

a right-skewed distribution, and the number of counties greater than

the average GDP per capita of the province gradually increased,

further indicating that the relative difference in economic

development between the two countries has been shrinking.

3.2 Spatial characteristics of county
economic differences

Figure 4 depicts the spatiotemporal patterns of county

economy in Hubei province from 2005 to 2020. Although

county economy has gained significant increase since 2000s,

the spatial pattern was imbalanced and spatial agglomeration

of county economy could be observed during this time period.

Overall, the group of rich counties in red tended to cluster in

Wuhan, Yichang, and Xiangyang, which explained the strong

positive association between geographic agglomeration and

economic growth documented by some scholars (Van Oort,

et al., 2012). As the economic core area and growth pole of

Hubei province, Wuhan was very stable; Yichang and

Xiangyang were gradually taking shape as the growth poles

of southwest and northwest Hubei. These three regions

attracted the agglomeration of economic activities in

metropolitan regions. Indicated by endogenous growth

theory, the localized spillover effect would bring economic

activities concentrating in neighboring rural counties because

of low transport cost and easy access to innovation

technologies. The group of poor counties in blue tended to

cluster in mountainous areas of northwest, southwest, and

northeast Hubei. Spatial agglomeration of these poor counties

largely increases regional poverty because of their lack of

growth poles and little mobility of capital and labor. These

spatially clustered poor areas were mainly located in ecology

fragile regions, such as mountainous areas, hilly areas, and

restrictive/prohibited development areas.

In addition, the urban constellation theory indicates that the

strategic design of sustainable regional development cannot

ignore the differences between urban and rural areas, but

should take the city (county) as the “star” of regional

development, and connect many urban stars by the

transportation axis to form a ring-shaped belt called the “City

Constellation System” (Lewis, 1996). Figure 5A shows a night

light map of cities (counties) in Hubei province in 2020 (http://

59.175.109.173:8888/app/login.html, accessed on 21 December

2020), where the brightness of night lights can reflect the level of

regional economic development and the scale of city stars. It can

be seen that the brightest “first-class star” is Wuhan, and the

second-brightest “second-class stars” include cities such as

Xiangyang, Yichang, Ezhou, Shiyan, and Jingzhou. Among

these bright cities, there were also bright lines along highways

and railways. Connecting these bright cities along the bright lines

constituted the “urban constellation system” of Hubei province:

the ring-shaped belt connects almost all cities in Hubei, with

dense cities and towns and intensive economic activities, and the

central area surrounded by the ring-shaped belt is the Jianghan

Plain. Therefore, with Wuhan as the vertex, an axis connects

Yichang and Enshi to the southwest hinterland of Hubei, and an

axis connects Xiangyang and Shiyan to the northwest hinterland

of Hubei, forming an “A-shaped point-axis” spatial structure

(Figure 5B). “A-shaped point-axis” covers 65 counties in Hubei

province, not only connecting the three gradient regions of east,

middle, and west of Hubei province but also taking into account

the synchronous advancement of southwest and northwest

Hubei, which is conducive to the coordinated development of

Hubei province.

FIGURE 3
Changes of county economic differences in Hubei province
from 2005 to 2020.
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3.3 Spatial connection of the county
economy

3.1.1 Global spatial characteristics
The global Moran’s I was computed to capture the overall

tendency of geographical concentration of county economic

development in Hubei (Figure 6). We can see that the global

Moran’s I fluctuated slightly but maintained a gradual rising

trend, increased from 0.318 in 2005 to 0.444 in 2020 and all are

significant at the 0.05 level. On the one hand, this result implied

that the spatial distribution of county economy in Hubei is not

random but showed a significant spatial agglomeration, that is,

counties with high (or low) level tend to be adjacent to each other,

and this agglomeration trend continues to strengthen over time.

On the other hand, the increasing clustering of county economy

possibly implied that the localized regional inequality across

counties was decreasing. The reason is that the spatial pattern

of county economic development in Hubei province is that

developed areas are concentrated in eastern Hubei and

relatively underdeveloped areas are concentrated in western

Hubei. The reduction of the internal spatial difference

between eastern and western Hubei makes the overall spatial

difference of the county continuously narrow. This conclusion is

that for the county-level spatial scale, it is the reduction of the

spatial difference between counties (cities and districts) in the

average sense, which is not contradictory to the expansion of the

spatial difference on other scales. The localized spatial spillovers

through rich counties pulling neighboring poor counties domake

effective, resulting in the agglomeration extent of rich or well-

developed counties being increased. Meanwhile, the localized

clustering of poor counties tends to decrease by some poor

counties getting rid of poverty. Combining coefficient of

variation and Gini coefficient, they have been decreased from

2005 to 2020 despite one slight increase from 2005 to 2010. It

indicated that the regional economic difference in Hubei

province showed a decreasing trend at the county-level. With

FIGURE 4
Spatial patterns of county economy in Hubei province from 2005 to 2020. (blue denotes the poor counties; gray denotes the less-developed
counties; yellow denotes the well-developed counties; orange denotes the more-developed counties; and red denotes the rich counties).
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the economic transformation and development of Hubei and the

implementation of the national targeted poverty alleviation

strategy and eco-compensation mechanism, in the long run,

the localized regional inequality across counties tends to be

narrowing.

3.3.2 Local spatial characteristics
To further analyze the spatial agglomeration characteristic of

economic development across counties, we draw their

distribution maps with 2005, 2010, 2015, and 2020 as time

nodes. Specifically, high–high (HH) means the counties with

high per capita GDP are surrounded by other counties with high

value, low–low (LL) means the counties with low per capita GDP

are surrounded by other counties with low value; low–high (LH)

indicates that the counties with low per capita GDP are

surrounded by other counties with high value. High–low (HL)

shows that the counties with high per capita GDP are surrounded

by other counties with a low value.

Results in Figure 7 showed that most counties were

distributed in HH and LL. This implied that county economy

had a positive spatial correlation. 1) Spatial clustering patterns

observed in Wuhan were dominated by HH; HH is continuously

strengthened in this region and it did not undergo any apparent

changes from 2005 to 2020. Wuhan, as a primary and provincial

capital city, is better able to access various forms than ordinary

counties in Hubei; its economic development has been more

rapid, and industrial development has more diversification than

those observed in the other areas. To support socioeconomic

development, such cities must exert their influence to

agglomerate various production factors and direct policy-

making. HH in Yichang city and its surrounding counties was

also strengthened except the year of 2010. Yichang showed

inherent advantages based on a collection of production

factors due to their status, the “Bottom-up” urbanization has

strengthened linkages between local counties. In addition,

infrastructure is developing rapidly to form a complete and

competitive transportation network, which has benefitted

regional spatial integration and coordinated development. 2)

LL patterns were observed in southwest, northwest, and

northeast Hubei, this is likely related to natural features in the

west and east Hubei, which is characterized by mountainous

terrain and large spatial distances between counties. 3) The LH

pattern only fall in Yuan’n County in 2005, whereas the regions

transform into Nanzhang County and Caidian District; the HL

pattern was distributed in Shishou City in 2005 and Shiyan City

FIGURE 5
Fitting figure of city lights map and A-shaped point-axis structure in Hubei. (A) City Lights Map, (B) A-shaped Point-axis Structure.

FIGURE 6
Global Moran’s I of county level GDP per capita in Hubei,
2005–2020.
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in 2010, but not in other years. Shiyan City is the central city in

the hinterland of northwest Hubei, with automobile and tourism

as the leading industries. It has the geographical advantage of

connecting Hubei, Shaanxi, and Henan provinces and the policy

advantage of the water source of the mid-route south-to-north

water diversion project, which exhibited HL.

3.3.3 Hot spots characteristics
This article used Getis-ord GI* in ArcGIS to identify the

location of the high-value (hot spots) and low-value (cold spots)

spatial clustering of counties in Hubei province. We divided the

spatial agglomeration of economic development in

2005–2020 into four categories by the natural breakpoint

method: hot spot area, sub-hot spot area, sub-cold spot area,

and cold spot area. As illustrated in Figure 8, the spatial pattern of

county economy in Hubei province is relatively stable, showing

an obvious circle structure: Wuhan and its neighboring counties

were hot spots, which form “hot spots, sub-hot spots, sub-cold

spots, and cold spots” from outward to the edge of the province.

Specifically, Wuhan and its neighboring such as Huanggang,

Xiaogan, and Ezhou were always hot spots of the county

economy from 2005 to 2020, and the economic development

level of these counties was similar and higher than that of

surrounding counties. By 2020, the number of the hot spots

increased to 14. In the meantime, the hot spots moved to the

southwest, adding Yichang, Zhijiang, Yuan’an, and Dangyang,

which became a new core area of county economic development.

The cold spots were mainly distributed in the western,

northeastern, and southeastern of Hubei. From 2005 to 2020,

the edge of western Hubei extended from Yunxi, Zhushan, and

Zhuxi in the north to Xianfeng and Laifeng, forming a stable

continuous strip covering 13 counties. In 2005, Guangshui, Anlu,

Dawu, Xiaochang, Macheng, Luotian, and Yingshan in the

northeastern of Hubei were cold spots. After 2005, the area

presented strip-like distribution, increasing Hongan, Qichun,

Wuxue, and Huangmei. In the southeastern of Hubei,

Gongan, Jiangling, Shishou, Jianli, Chongyang, and Tongshan

have been cold spots.

The sub-hot spots and sub-cold spots changed significantly,

showing the characteristics of mutual transformation among

FIGURE 7
Local indicators of spatial association (LISA) of county economy in Hubei province.
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counties. In 2005, there were three sub-hot spots: one was the

surrounding areas of Wuhan in eastern of Hubei, which was

composed of six counties; the next was the central areas, which

was composed of eight counties, including Yichang and

Zhongxiang, to the west of the hot spots; and the third was

Danjiangkou and Xiangyang in northwestern of Hubei. In 2010,

Xinzhou withdrew from the sub-hot spots, adding Yangxin, and

the number of central sub-hot spots increased to 10. However,

the sub-hot spots in the northwest moved northward, increasing

to five counties. In 2015, the sub-hot spots in the northwest

disappeared, leaving only two regions in eastern and central of

Hubei. In 2020, the sub-hot spots expanded again, from

Danjiangkou and Laohekou to Yichu and Songzi and other

14 counties southward, covering most of the central counties.

The sub-hot spots in eastern of Hubei were basically stable.

Based on the aforementioned analysis, the hot spots analysis

demonstrated that the county economic development in Hubei is

becoming more closely related in space, and the relationship

between county economic development in neighboring areas has

mutual influence and infiltration. Overall, the county economy of

Hubei presents a spatial distribution pattern of “low in the west,

high in the east” and “dual core structure.” In terms of the change

of years, the hot spots tend to move to

Jingzhou–Xiangyang–Yichang urban agglomeration,

demonstrating that the central and western Hubei economic

circle will gradually become the growth pole of county economy,

reflecting the trend of the gradual narrowing of county economic

differences in Hubei province.

3.4Mechanism of spatial pattern evolution
of the county economy

“Pattern–process–mechanism” is the basic paradigm of

geographical research on geographical phenomena and laws

(Fu, 2014). The spatial variation function is used to

investigate the internal mechanism of the spatial pattern

evolution of the county economy in Hubei province. In 2005,

2010, 2015, and 2020, with the GDP per capita as the research

data, the sampling step is set as 40 km (the size of the step

FIGURE 8
Distribution of county economy hot spots with different confidence levels from 2000 to 2016.
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multiplied by the number of steps is approximately 0.5 times the

maximum distance between sample points), and the

experimental variogram is calculated (that is, the experimental

variogram is fitted from the effective spatial samples). For the

sample data, the sphere model, Gaussian model, exponential

model, linear model, and other models are used for fitting.

Finally, the model with the highest fitting degree is selected,

and the fractal dimension on different sides of each year is

calculated, and then Kriging interpolation is carried out. The

results are as follows:

1) It can be seen from the changes in the sill value, nugget value,

and nugget coefficient that the spatial differences in county

economic development in Hubei increased, the sill value

increased from 0.242 in 2005 to 0.428 in 2020, and the

nugget value increased from 0.058 in 2005 to 0.082 in

2020. However, the nugget coefficient showed a declining

trend, from 0.239 in 2005 to 0.191 in 2020, which showed that

in the spatial pattern evolution of the county economy in

Hubei, the spatial differentiation of the economy caused by

random factors such as data variation was decreasing, while

the structural differentiation of the economic spatial pattern

caused by spatial autocorrelation was increasing, and the

significant spatial agglomeration exists in county economy

(Table 1). Meanwhile, the parameters of the range were

increasing, indicating that the scope of the spatial effect of

the county economy in Hubei province was gradually

expanding.

2) From the variance fitting chart, we can see that the per capita

GDP of 4 years decreased first and then increased under the

given step length, showing that the scope of the spatial

correlation effect caused by the structural spatial gradient

of county economic development in Hubei province is

expanding, and the economic development tends to spread

to the hot spots. According to the fitting equation of the

spatial variation function selected by the least square method,

the fitting effect of the spherical model and the Gauss model

was better. The development of the county economy in Hubei

province had different structural characteristics in different

periods. The decision coefficient of model fit first decreased

and then increased, indicating that the randomness of county

economic development is obvious, but with the passage of

time, the spatial self-organization of county economic

development is strengthened, and the spatial differentiation

of the economy is obvious.

The spatial differentiation of regional economy originates

from the spatial heterogeneity or heterogeneity of factors

affecting economic activities. Krugman. (1991) pointed out

that an accidental event in history may lead to spatial self-

organization behavior because this accidental event will

inevitably bring about changes in certain factor endowments,

and the heterogeneous space generated by such changes in factor

endowments is suitable for the development of certain industries.

This spatial self-organization promotes the economic growth and

development of the region and become hot spots. There are

structural characteristics in the development of county economy

in Hubei province. Economic elements are linked together in a

certain form of organization or combination and interact with

each other to produce spatial correlation. This spatial correlation

and self-organization structure dynamic system act on the

regional economic system and promote the evolution and

development of the regional economic system. With the

continuous improvement of the level of social and economic

development, the form of regional economic spatial organization

has gradually evolved from low-level to high-level, and the

pattern of regional economic spatial differentiation has shown

the law of evolution and replacement from low-level equilibrium

to high-level equilibrium or network. In addition, the

institutional change within the country or region is an

important mechanism that affects the spatial differentiation of

regional economy. The marketization process in various regions

of Hubei province has an asymmetric impact on the regional

spatial pattern, forming a differentiated economic spatial

gradient.

3) According to the fractal dimension of the spatial variation

function (Table 2), the fractal dimension of all directions first

increased and then decreased and increasingly deviated from

the ideal value 2, and the determination coefficient first

decreased and then increased, indicating that the difference

in county economic development in Hubei province

decreased before 2010 and gradually increased after 2010,

and the spatial differentiation scale is also rising. In addition,

the decrease in the degree of homogeneity in all directions

showed more of the spatial difference at the macro and meso

scale in Hubei province, and the spatial difference at the

micro scale became less obvious. Observing the fractal

dimension of each direction, aside from the fractal

dimension of the southeast to northwest direction

increased the fractal dimension of other directions

decreased, which showed that the county economic

development of Hubei province was relatively balanced in

TABLE 1 Parameters of the variogram model on the spatial pattern of
county economy in Hubei province.

Year 2005 2010 2015 2020

Range 82.6 55.59 92.2 114.2

Nugget value 0.058 0.078 0.079 0.082

Sill value 0.242 0.344 0.393 0.428

Nugget coefficient 0.239 0.226 0.201 0.191

Fitting model Spherical Gaussian Spherical Spherical

Coefficient of determination 0.731 0.589 0.697 0.811
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the southeast to northwest direction, and the spatial

difference in economic development in other directions is

increasing. The main reason is that after 2010, with the rapid

social and economic development of Hubei province, the

construction of Wuhan metropolitan area, Western Hubei

eco-cultural tourism circle, and Hanjiang ecological economic

belt has been proposed successively. The absolute difference

in the total amount of county economy is expanding, which

shows that the fractal dimensions in all directions are

decreasing. With the opening of

Wuhan–Xiangyang–Shiyan high-speed railway and the

development of economy around the axis, the economic

spatial difference from southeast to northwest is relatively

balanced, and the economic development is of good

homogeneity.

4) The kriging interpolation 3D fitting chart was depicted based

on per capita GDP of each county in Hubei province. By

observing the graph (Figure 9), we can see that there is a

certain regularity in the development pattern of the county

economy in Hubei province, and the distribution pattern has

structural characteristics. The 4 years showed obvious

correlation in all directions. There were obvious multi peak

slope structures in the 4 years, among which the slope in

2010 was relatively steep, and the slope in the other 3 years

was relatively gentle. Over time, the number of peaks tends to

be stable, and the height gradually increased. The spatial

structure of slope was consistent with the spatial structure of

urban and economic development of “One Main and Two

Deputy (One is Wuhan, the provincial central city; two are

Yichang and Xiangyang, the provincial sub-central cities)” in

Hubei Province, and the vast county periphery presents a

plain structure. The results showed that the county economic

pattern of Hubei province was relatively stable, and the peak

value was mainly concentrated in three regions: the east,

including Wuhan City and its surrounding counties; the

northwest, including Xiangyang, Jingmen, and Shiyan; and

the southwest, including Yichang city and its surrounding

counties. The peak growth rate of Yichang city and its

surrounding counties in the southwest was relatively high.

In general, the spatial structural difference in county

economic development in Hubei province is very significant.

4 Discussion

4.1 Driving forces of economic spatial
pattern evolution

The driving factors of county economy development refer

to the internal and external factors and their mutual relations

that promote the occurrence and development of county

economy. The county economic system is a complex and

open regional system. Its formation, development, and

evolution involve a variety of influencing factors, and

different influencing factors have different modes of action.

This article uses statistical analysis methods to analyze the

spatial pattern and mechanism of county economy in Hubei

province. In terms of driving factors, this article mainly starts

from systematic theory, combined with the aforementioned

empirical research, and finds that the driving forces of county

economy evolution is mainly the result of four important

factors: historical and cultural background, economic

development, traffic location, and policy system, which

together form a relatively complete driving system

(Figure 10).

Historical and cultural background is a basic driving force.

The evolution of spatial pattern of economic development has its

inherent historical basis. Since the economic reform starting in

1978, the regional economic pattern of Hubei is centered on

Wuhan, the hot spots are mainly distributed stably inWuhan and

its neighboring counties. With the approval of the State Council,

Wuhan also implements separate plans and is endowed with

provincial economic management authority. The starting point

of development of eastern Hubei represented by Wuhan is

obviously higher than that of central and western Hubei,

which makes eastern Hubei rely on good material foundation

and achieve rapid economic development, while central and

western Hubei develop relatively slow due to their own basic

TABLE 2 Fractal of variogram on spatial pattern of county economy in Hubei province.

year All directions South—north Northeast—
southwest

East—west Southeast—
northeast

D R2 D R2 D R2 D R2 D R2

2005 1.895 0.528 1.897 0.251 1.913 0.345 1.943 0.187 1.753 0.599

2010 1.918 0.297 1.956 0.056 1.963 0.049 1.925 0.184 1.763 0.535

2015 1.905 0.432 1.995 0.532 1.848 0.569 1.889 0.275 1.898 0.44

2020 1.878 0.617 1.873 0.408 1.685 0.84 1.902 0.372 1.917 0.232

Note: D stands for fractal dimension; R2 stands for coefficient of determination.

Frontiers in Earth Science frontiersin.org13

Jiang et al. 10.3389/feart.2022.918123

288

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.918123


FIGURE 9
Evolvement of variogram on spatial pattern of county economy in Hubei province (left: covariance fitting chart and right: kriging interpolation
3D fitting chart).
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problems. A cold spot for economic development has been

formed for a long time.

Economic development is a core driving force. Economic

development is the most important factor affecting the evolution

of economic pattern in Hubei. The advantages and disadvantages

of the economic level will lead to the difference of development

order and degree, as well as the difference of other economic

growth factors. The higher the level of regional economic

development is, the more employment opportunities can be

provided and the more population can be accommodated,

thus promoting the expansion of production space and living

space and the continuous evolution of the urban and rural

settlement system. Selecting urbanization level indicators to

represent economic development and by analyzing the

correlation between per capita GDP and urbanization level in

each county, it is found that there is a significant correlation

between the two at the level of 5%, and the overall trend is

increasing year by year (Figure 11). The changes of population

scale and structure directly promote the transformation of

county economy and the reconstruction of settlement space

and directly affect the different spatial changes of county

(district) area, town area, and village land, thus promoting the

FIGURE 10
Driving forces of the spatial evolution of the county economy in Hubei province.

FIGURE 11
Correlation coefficient between per capita GDP and the urbanization level in Hubei province, 2005–2020.
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continuous evolution of the county economic spatial pattern. In

addition, under market economy conditions, the industries in the

southeast coastal areas are transferred to the central and western

regions, and Hubei is at the node of transfer. Guided by the

concept of unbalanced development, in accordance with the

principle of combining the regional tilt with industrial tilt,

regional production specialization with comprehensive

development, together with “opening up and developing the

Hubei Yangtze River Economic Belt.” The economic pattern

extends to northwest and southwest Hubei, forming the “big

triangle” regional economic layout of Wuhan–Huangshi,

Yichang–Jingzhou, and Xiangyang–Shiyan.

Traffic location is a catalytic force. The transportation

network constitutes an important channel for the flow of

elements and resource exchange between counties, and it is

also an important guarantee for the external connection of

urban–rural integration. A developed transportation network

means more convenient logistics, flow of people, and more

development opportunities. The land rent difference in the

county area is gradually changed to be determined by the

transportation location. As a result, the county area usually

expands along the two sides of the transportation line or

around the transportation hub. The transportation network

and its convenience have an important catalytic effect on the

county settlement system and spatial evolution. The eastern

Hubei represented by Wuhan is located in the Jianghan Plain,

with a dense transportation network and frequent flow of various

elements, making it always the core driving area of economic

development. Except for Xiangyang and Yichang in central and

western Hubei, the traffic conditions are relatively backward, the

location is not good, and the economic development is in the

cold spot.

Policy system is an external control force. Regional

development positively relates to effective local state initiatives

and favorable local conditions. The macro policy of the national

and provincial governments is a special instrumental “resource,”

which itself contains a specific right of preemption, especially the

direct input of the government shows the orientation of its

administrative behavior. It reflects the decision maker’s

intention or goal of regional economic development, that is,

balanced or unbalanced regional development. The

spatiotemporal pattern evolution of economy is related closely

to a series of Hubei regional development policies. From 2005 to

2015, Hubei province put forward the development strategy of

“Wuhan metropolitan area” and “One Main and Two Deputy,”

the spatial agglomeration trend is relatively stable. Although

there is a switch between hot spots and cold spots in the

economy, the switch has an obvious “trajectory.” The eastern

Hubei region, represented by Wuhan, is attributable to their

incomparable policy privileges and superior socioeconomic

development advantages to other regions, thus their economic

development reached the top level. Yichang and Xiangyang took

special advantage of their optimal physical conditions, location,

and socioeconomic factors, becoming the key areas of industrial

construction in Hubei. In 2015, the GDP of two cities was

164.732 billion yuan and 163.830 billion yuan, respectively,

accounting for 10.8% of the GDP of Hubei province,

respectively, which is the intermediate bridge to promote the

regional cascade development. Together with the adoption of

trickle-down growth strategy by the government, the county

economic differences in Hubei province have eased; From

2015 to 2020, under the guidance of the concept of balancing

urban and rural development, Hubei province put forward the

construction of the Yangtze River Economic Belt and the Han

River ecological economic belt, as well as the construction of

Jingzhou “waist-strengthening project,” which have significant

spatial spillover effects. The hot spots and sub-hot spots of

economic growth move to the central Hubei and concentrated

in contiguous distribution, further narrowing the county

economic differences in Hubei province.

4.2 Optimization of the economy spatial
pattern guided by the “point-axis”
development model

The point-axis theory is an extension of the growth pole

theory. It not only attaches importance to the role of “point” of

growth pole but also emphasizes the role of “axis” to drive

regional economic growth. With the formation of growth

poles in different regions, the diffusion of multiple growth

poles will form the aggregation of elements facing each other

between growth poles, thus generating relatively dense element

flow on the “axis” between growth poles, forming a relatively

developed axis in the region relative to the growth poles. This axis

is generally developed along the trunk lines of traffic, once it is

formed, it is more favorable to develop the development potential

of areas along the trunk lines of traffic. The axis area with its

location advantage, adsorption enterprises, and economic sectors

form secondary development advantage, which will eventually

become a wider growth zone.

This article shows that the “point-axis” development model

may be an effective form of economic spatial organization in

Hubei province in the future. The spatial continuity and self-

organization of the county economic development are

strengthened. The aforementioned analysis showed that Hubei

province has formed Wuhan, Yichang, and Xiangyang three

economic growth points. Several economic growth points and

key development axes can be identified in eastern, central,

southwest, and northwest Hubei, so as to gradually spread

and develop, and promote coordinated regional development

in an all-round way. Specifically, east Hubei to southwest Hubei

can form a southern horizontal development axis along the

Yangtze River, Hu-Han-Rong expressway, and Hu-Han-Rong

expressway and national highway 318, the area has a high density

of towns and cities with close links to transportation and
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industry. The northern horizontal development axis from eastern

Hubei to northwest Hubei can be formed along Han-Shi

Expressway, Handan–XiangYu railway, and 316 national road.

The central and southern part of Hubei province is centered on

Jingmen and Jingzhou, with the Jianghan Plain as its vast

hinterland and highway 318 as its core development axis. In

addition, Xiangyang and Shiyan are the centers in the northwest

of Hubei, which can take the Handan line and the Han River as

the development axis. The southwest of Hubei province is

sparsely populated, with uneven distribution of traffic lines

and traffic jams. We should take Yichang as the center and

the Yangtze River as the development axis, expand westward

along the Qingjiang River and speed up traffic construction.

The A-shaped point-axis structure is a reliable transportation

framework for regional development in Hubei province. It also

has a significant spatial effect surface, which is conducive to

giving full play to the role of central cities at all levels and

realizing the optimal spatial combination between the

production layout and linear infrastructure. It is beneficial to

realize the specialization and cooperation between regions and

urban and rural areas, and form an organic regional economic

network, so as to make the region get the best development.

4.3 Limitations of the study

This article only takes per capita GDP as the measurement

index, which cannot fully reflect the comprehensive economic

strength of the county, and it only takes the county as the

research unit, rather than smaller scales, such as township

economic differences. In addition, the economic development

has the spatial spillover effect, and the county economy will also

be affected by the surrounding areas. Therefore, in future

research, we can use the multi index evaluation system of

economic differences, extend the research time range, try to

explore the spatial differentiation of regional economic

differences on a smaller scale, and further explore the effect

intensity and regional differences in the influencing factors of

economic development in Hubei province and its different

regions.

5 Conclusion and policy implications

Taking Hubei province as an example and based on spatial

autocorrelation and a spatial variogram, this article revealed the

spatial pattern evolution and mechanism of the county economy

in Hubei province. The conclusions are as follows:

1) The absolute economic differences among the counties in

Hubei province expanded from 2005 to 2020, the relative

differences tended to narrow, and the number of counties

larger than the average per capita GDP of the province

gradually increased. On the whole, this reflects the trend of

narrowing economic differences among counties. There has

been significant spatial agglomeration in the development of

the county economy, and the degree of agglomeration has

increased. From the perspective of local spatial

autocorrelation analysis, HH-type counties are mainly

concentrated in the Wuhan urban area and surrounding

areas, LL-type counties are mainly distributed in most

counties in western Hubei, and the types are scattered in

northeastern and south Hubei. The distribution of HL- and

LH-type in counties is very small, and there is no obvious law.

2) The county economy in Hubei province presents a circular

structure as a whole. From the Wuhan urban area to the edge

of the province, a hot area, sub-hot area, sub-cold area, and

cold area have successively formed. The Yichang urban area

and its surrounding counties form another hot area of

economic development in the province, and the sub-hot

counties in the middle of the province have increased. The

cold area concentrates in the edge counties of western,

northeastern, and southeastern of Hubei. During the study

period, the sub-hot area and the sub-cold area changed

greatly, and they transformed each other.

3) The spatial self-organization and spatial autocorrelation of

the county economic pattern in Hubei province have

strengthened; the structural differentiation trend caused by

the spatial autocorrelation has also strengthened, and the

economic spatial differentiation is obvious. The southeast to

northwest direction has the largest quantile, the county

economy is relatively balanced in the southeast to

northwest direction, and the spatial differences in other

directions have increased. In addition, having multiple

peaks is a feature of the evolution of spatial patterns of the

county economy. Over time, the number of peaks has tended

to be stable.

4) Our results have significant policy implications for county

economic development in Hubei province. Through a

spatiotemporal perspective, we find that spatial

agglomeration is obvious, which indicates regional inequality

will be continued. Therefore, we proposed some suggested

countermeasures in this article. ① Build the economic

development axis of “Wuhan–Yichang–Xiangyang” in

central Hubei. On the axis of economic development, the

first is to support Wuhan to speed up the construction of a

national central city, optimize and adjust the administrative

divisions in a timely manner, incorporate the corresponding

surrounding cities (counties) into the territory of Wuhan, and

expand the “waist circumference” of Wuhan; the second is to

lead the construction of the “Xiang–Shi–Sui” urban belt and

promote regional cooperation in the Han River basin; the third

is to lead the construction of the “Yi–Jing–Jing” urban

agglomeration and promote the ecological and economic

cooperation of the Three Gorges, and forming an “A-shaped

point-axis” spatial structure of economic development.② The
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local county-level government in the western region should

take more measures to adjust the industrial structure and

improve farmers’ income such as enhancing infrastructure,

developing ecological tourism, and selling agricultural products

through e-commerce. Enhancing regional cooperation and

coordinated development across counties is helpful to

reinforce the spatial spillover effect between counties and

then narrow the localized regional inequality.
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Dissolved oxygen (DO) is one of the main prerequisites to protect amphibian

biological systems and to support powerful administration choices. This

research investigated the applicability of Shannon’s entropy theory and

correlation in obtaining the combination of the optimum inputs, and then

the abstracted input variables were used to develop three novel intelligent

hybrid models, namely, NF-GWO (neuro-fuzzy with grey wolf optimizer), NF-

SC (subtractive clustering), and NF-FCM (fuzzy c-mean), for estimation of DO

concentration. Seven different input combinations of water quality variables,

including water temperature (TE), specific conductivity (SC), turbidity (Tu), and

pH, were used to develop the prediction models at two stations in California.

The performance of proposed models for DO estimation was assessed using

statistical metrics and visual interpretation. The results revealed the better

performance of NF-GWO for all input combinations than other models

where its performance was improved by 24.2–66.2% and 14.9–31.2% in

terms of CC (correlation coefficient) and WI (Willmott index) compared to

standalone NF for different input combinations. Additionally, the MAE (mean

absolute error) and RMSE (root mean absolute error) of the NF model were

reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%, respectively.

Therefore, NF-GWO with all water quality variables as input can be considered

the optimal model for predicting DO concentration of the two stations. In

contrast, NF-SC performedworst for most of the input combinations. The violin

plot of NF-GWO-predicted DO was found most similar to the violin plot of

observed data. The dissimilarity with the observed violin was found high for the

NF-FCM model. Therefore, this study promotes the hybrid intelligence models

to predict DO concentration accurately and resolve complex hydro-

environmental problems.
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1 Introduction

The evaluation of water assets and the administration of

water quality and quantity have become a debated issue in

hydroecology with population growth and environmental

changes. Water pollution rather than water availability is often

the main challenge due to its multifaced impact ranging from

biodiversity to public health. Therefore, water-quality

monitoring is one of the most emphasized topics in water

research. Numerous chemical, physical, and biological

parameters determine river water quality. All the water quality

parameters directly or indirectly affect dissolved oxygen (DO)

concentration in water bodies, and thus DO is considered an

integrated water-quality indicator (Ahmed and Shah, 2017;

Hameed et al., 2017). Therefore, precise forecasts of DO are

prerequisites to protect amphibian biological systems and

support powerful administration choices (Wen et al., 2013;

Elkiran et al., 2019; Nourani et al., 2019).

Traditionally, physically based models are used for DO

prediction (Radwan et al., 2003; Wu and Yu, 2021). The

models generally use advection and dispersion theories to

simulate the biological and chemical processes in water for

DO prediction. For example, Radwan et al. (2003) used

Mike11 for modeling DO in river water. Wu and Yu (2021)

used a modified version of the Streeter–Phelps model coupled

with the shallow water equation model to simulate mass

transportation and DO distribution. The studies indicated the

need for a large amount of data and computational time to

predict DO reliability. Radwan et al. (2003) reported that a

simplified conceptual model can provide a similar DO

prediction with much less resources and time. In addition,

statistical models can be used to predict DO with less amount

of data and resources. Pham et al. (2020) developed several

generalized linear models to predict DO. They showed that

statistical models can predict DO with reasonable errors.

However, conceptual models simplify real physical processes

and fail to provide accurate predictions when river water DO

concentration follows a non-linear and complex pattern. The

linear statistical models experience similar drawbacks when DO

is non-linearly related to its controlling factors (Chen and Liu,

2014; Elkiran et al., 2018).

Artificial Intelligence (AI)-based models have been utilized in

recent decades in various hydro-natural investigations (Abba

et al., 2017; Yavari et al., 2018; Maroufpoor et al., 2019b;

Seyedzadeh et al., 2020; Meidute-Kavaliauskiene et al., 2021).

The rapid evolution of AI techniques also helped in accurate DO

simulations to resolve complex hydro-environmental problems.

Artificial neural networks (ANNs) have helped hydrologists in

predicting variations in water quality accurately. The other AI

models also showed promising results in predicting water quality

and DO (Zaher et al., 2015; Elkiran et al., 2018; Nourani et al.,

2018; Pham et al., 2019; Banadkooki et al., 2020; Abba et al., 2021;

Pham et al., 2021a; Pham et al., 2021b). For example, Chen and

Liu (2014) used neuro-fuzzy (NF), back propagation neural

network (BPNN), and multiple linear regression (MLR)

approaches to estimate DO in the reservoir. The outcomes

indicated that the NF model outperformed BPNN. Xiao et al.

(2017) employed BPNN to simulate DO in Beihai, Guangxia

aquaculture, using various inputs. The prediction results showed

the superiority of BPNN against autoregression (AR), curve

fitting (CF), grey model (GM), and SVR models. Elkiran et al.

(2018) employed the combinations of NF, feedforward neural

network (FFNN), andMLR to predict DO atmultiple locations in

India using different input combinations. Their results showed a

slight prediction increment of NF over FFNN. Other recent DO

prediction studies using AI-based models include Antanasijević

et al. (2019), Cao et al. (2019), Liu et al. (2019), Kisi et al. (2020),

and Rahman et al. (2020). The studies revealed AI-based models

as promising tools owing to their capability to handle non-linear

systems.

The literature overview revealed no specific AI-based

models tend to be incomparable to others due to the

anthropogenic nature of complex aquaculture in different

geographical locations. According to Abba et al. (2020),

Hadi et al. (2019), and Yaseen et al. (2020), the estimation

outcomes produced by some computational models were still

grieving from the degree of inadequacy, particularly when a

highly chaotic hydro-environmental system is employed.

Therefore, hydrologists continuously explored better AI

models for DO prediction more efficiently. NF integrates

neural networks and fuzzy systems to join their advantages

for a better solution to complex problems. The capability of

NF to learn data patterns using fuzzy rules has made it highly

adaptable to different kinds of data and thus superior to many

other AI algorithms in solving a wide range of problems from

different fields (Atmaca et al., 2001). However, the major

drawback of NF is that its performance significantly is

susceptible to the selection and optimization of the input

variable’s fuzzy membership function. The state-of-the-art

hybrid AI model displayed promising prediction results

over standalone models in different hydrological studies

(Maroufpoor et al., 2019a; Pham et al., 2019; Maroufpoor

et al., 2020; Mohammadi et al., 2020; Ebtehaj et al., 2021;

Malik et al., 2021; Sammen et al., 2021). Therefore, such

models may be a suitable alternative to standalone models

in DO prediction. The optimizations and chemometric

approaches were introduced in several fields of science and

engineering, for instance Shojaei et al. (2019), Shojaei and

Shojaei, (2019), Pourabadeh et al. (2020), Shojaei et al. (2021),

and Yang et al. (2022).
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In order to overcome the inherent limitations established

by standalone models. This research aims to predict the DO

concentration using three hybrid models, namely, NF-GWO,

NF-SC, and NF-FCM, and compare them with the standalone

NF model. The entropy method was used to evaluate each

input variable’s effect and uncertainty on the models’

performance to select the best prediction model structure.

The entropy theory, developed by Shannon (1948), has been

used in a wide range of studies (Singh, 2013a; Singh, 2013b;

Ellenburg et al., 2018; Maroufpoor et al., 2020). There is no

technical research in which the aforementioned techniques

are used for predicting DO concentration to the best of the

author’s knowledge.

2 Methodology and materials

2.1 Case study and data sets

This research aimed to develop an intelligent hybrid

paradigm for predicting DO concentration in river water

using three hybrid models, NF-GWO (neuro-fuzzy with grey

wolf optimizer), NF-SC (subtractive clustering), and NF-FCM

(fuzzy c-mean). The newly proposed models’ efficacy was

established by comparing their performance with the

standalone neuro-fuzzy (NF) model.

In this study, four water quality parameters, namely,

specific conductance (SC, μS.cm-1), water temperature

(TE,°C), pH of the water, and turbidity (Tu, Formazin

Nephelometric Units: FNU) were used as inputs for the

prediction of DO. Two stations (i.e., Station-A and

Station-B) in California were selected for the case study

(Figure 1). Hourly water quality data at these two stations

for the period 1 January 2019–31 December 2019 were

collected from the United States Geological Survey

(USGS). The descriptive statistics of the data are shown in

Table 1. Furthermore, the entropy theory, based on statistical

measurements introduced by Shannon (1948), was used to

evaluate the significant input variables. Seven different input

combinations of water quality variables, including water

temperature (TE), specific conductivity (SC, turbidity

(Tu), and pH, were used to develop the prediction models

at two stations in California. Finally, data were randomly

divided into two parts: training (70%) and test (30%).

2.2 Input combinations

The entropy theory, based on statistical measurements

introduced by Shannon (1948), was used to evaluate the

significant input variables. In this theory, “information”

indicates the level of stochastic. The entropy is calculated

based on the following steps:

The G matrix is introduced as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G11 G12 . . . G1N

G21 G22 / G2N

..

. ..
.

1 ..
.

GM1 GM2 / GMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where N (i = 1, 2, 3 . . . . . . N) and M (j = 1, 2, 3 . . .M) represent

the number of samples in each variable and the number of

variables, respectively. Eq. 2 applied to normalize the G matrix:

FIGURE 1
Location map of the selected stations.
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Oij �
Gij − (Gij)Min(Gij)Max

− (Gij)Min

, (2)

where Oij, (Yij)Max, and (Yij)Min are the normalized, maximum,

and minimum parameters, respectively. The next step is to

calculate the probability of each parameter:

Kij �
(Gij + 0.0001)
∑M
i�1
(Gij + 0.0001), (3)

where Kij is the probability of each parameter.

Ej � − 1
ln(M)∑

M

i�1
Kij ln(Kij), (4)

EWj � 1 − Ej

∑N
j�1
(1 − Ej), (5)

where Ej is the information entropy and EW is the entropy

weight (relative importance). A variable with a weight close to

one indicates more importance.

Seven scenarios of inputs were investigated to assess their

influence on DO concentration prediction, as described in

Table 2. The input combinations are termed C1 to C7 in

Table 2. The comparison of model performance for different

input combinations helped find a suitable model based on data

availability. Absolute correlation coefficient and entropy

TABLE 1 Statistical description of data sets at study stations.

Station Variable Mean Maximum Minimum SD CV

A TE (oC) 15.99 23.95 7.80 4.63 3.45

SC (μS/cm) 168.97 375.50 97.25 46.39 3.64

pH 7.58 8.30 7.08 0.17 44.99

Tu (FNU) 20.67 309.25 2.35 32.82 0.63

DO (mg/L) 8.92 11.10 7.30 0.82 10.82

B TE (oC) 16.11 23.33 8.33 4.58 3.52

SC (μS/cm) 2104.22 14700.00 104.50 2774.84 0.76

pH 7.68 8.30 7.20 0.20 39.28

Tu (FNU) 22.74 174.75 4.83 19.73 1.15

DO (mg/L) 9.08 10.85 7.75 0.71 12.86

FNU, formazin nephelometric units, SD, standard deviation, CV, coefficient of variation.

TABLE 2 Selected input combinations for DO prediction at study
stations.

Combination

1 2 3 4 5 6 7

TE TE TE TE TE TE TE

SC SC SC pH SC pH Tu

Tur pH Tu Tu

pH

TE, water temperature; SC, specific conductance; Tu, turbidity

FIGURE 2
Absolute correlation coefficient and entropy weight for the
input variables at Station-A and Station-B.
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weight were used to select the input combinations (Figure 2).

The first combination includes the four variables (TE, SC, pH,

and Tu). Other combinations include fewer inputs to find a

parsimonious model for its easy application in the data

scarcity regions. For Station-A, the highest correlation

coefficient and entropy were found for TE, 0.85 and 0.75,

respectively. The SC showed the second-highest correlation of

0.46, but a low entropy of 0.11. The lowest entropy was

recorded for Tu (0.03), which showed a correlation

coefficient of 0.24. For Station B, the highest correlation

coefficient and entropy were also noticed for TE, 0.88 and

0.72, respectively. The pH showed the second-highest

correlation, 0.54, and the entropy of 0.17. In this study,

data were randomly divided into two parts: training (70%)

and test (30%). It should be noted that outlier data were

removed by statistical methods, and also raw data were

normalized for modeling.

2.3 Applied AI models

2.3.1 Neuro-fuzzy system
The NF model, which combines ANN and fuzzy logic, was

designed by Jang (1993). The most important benefit of fuzzy

logic is that it can give an intermediate answer to zero-one

programming problems. It can be used when there is no

complete understanding of the system’s physical and

fundamental relationships. The NF structure is formed based

on the membership functions of input and output, fuzzy rules,

and the number of membership functions (Tanaka, 1997).

Parameters related to membership functions need to be

selected so that they are most consistent with the

input–output data. Three algorithms, including SC, FCM, and

GWO were used in this research to optimize the rules in the

model training process. The flowchart of the proposed

methodology is shown in Figure 3.

2.3.2 Subtractive clustering
In the NF model, the number of rules to determine the

optimal system increases with the number of membership

functions and parameters of the model. Therefore, it is

necessary to optimize the NF rules to reduce computational

costs. To this end, the subtractive cluster is integrated with the NF

system, where the modeling process consists of two stages. First,

the fuzzy inference system is determined using the subtractive

clustering method. Then, NF is used to adjust the fuzzy inference

system and train it based on input–output data.

In subtractive clustering, each cluster’s center represents

the behavior of a part of the data and represents a rule.

Therefore, to determine the optimal structure, cluster

information is used to determine the number of basic rules

and membership functions. Choosing a small radius increase

the number of rules and make the computations more

complicated. In this study, the effective radius within the

range of zero to one was selected based on the least root mean

square error (RMSE).

2.3.3 Fuzzy C-means clustering
FCM is a clustering technique where each point belongs to a

cluster with a certain degree. Bezdek (1973) introduced this

technique to improve the efficiency of previous clustering

methods. In FCM, a certain number of different clusters

describe the data clustering in multi-dimensional space. The

FCM starts from an initial hypothesis as the centers of the

FIGURE 3
Flowchart of applied models.
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clusters. Usually, this initial hypothesis is incorrect and does not

specify the correct location of the centers. The FCM tries to link

each point to one of the clusters by the level of its

membership. The centers gradually move to their actual

position in the data-set through repeated updating of the

cluster centers and membership levels for clusters. These

updates are based on decreasing the distance between each

point to the center of the clusters. The least RMSE

was the basis for selecting the optimal number of clusters in

the FCM.

FIGURE 4
Diagram of GWO.

TABLE 3 Performance of models in predicting DO concentration in the test phase (Station-A).

Model Metrics C1 C2 C3 C4 C5 C6 C7

NF-GWO MAE 0.250 0.295 0.475 0.315 0.503 0.332 0.407

RMSE 0.320 0.365 0.565 0.391 0.625 0.438 0.508

CC 0.869 0.812 0.590 0.800 0.381 0.791 0.610

WI 0.908 0.894 0.657 0.872 0.594 0.826 0.763

Structure (30,1500) (40,1500) (35,1500) (40,1500) (20,1000) (25,1000) (30,1000)

NF MAE 0.463 0.481 0.443 0.478 0.612 0.448 0.442

RMSE 0.609 0.592 0.590 0.597 0.757 0.566 0.558

CC 0.523 0.508 0.478 0.609 0.149 0.642 0.491

WI 0.692 0.681 0.671 0.663 0.501 0.639 0.664

Structure -- -- -- -- -- -- --

NF-SC MAE 0.637 0.452 0.449 0.477 0.545 0.456 0.596

RMSE 0.808 0.575 0.550 0.565 0.671 0.575 0.770

CC 0.639 0.643 0.501 0.477 -0.046 0.648 -0.074

WI 0.683 0.662 0.653 0.662 0.304 0.667 0.345

Radii 0.4 0.5 0.75 0.7 0.6 0.3 0.5

NF-FCM MAE 0.504 0.348 0.463 0.577 0.521 0.412 0.485

RMSE 0.634 0.441 0.565 0.765 0.695 0.534 0.625

CC 0.563 0.752 0.500 0.411 0.618 0.624 0.365

WI 0.646 0.825 0.658 0.619 0.754 0.789 0.606

Cluster 3 5 3 3 4 3 2
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2.3.4 Grey wolf optimizer
GWO is an evolutionary algorithm introduced by Mirjalili

et al. (2014). This algorithm follows the leadership hierarchy

structure, which consists of an average of 5–12 wolves. The

leadership hierarchy is based on four types of grey wolves,

namely, alpha (α), beta (β), delta (δ), and omega (ω). The

order of the solutions in this algorithm after alpha is

considered β, δ, and ω. Therefore, the major stages of grey

wolf hunting are as follows. The alpha wolf (α) plays the main

role which includes hunting, sleeping, and waking hours. The β is
responsible for performing alpha commands over the pack. On

the other hand, ω is seen as a victim in the group and therefore

follows other wolves and can eat after all of them. Finally, δ
wolves must follow β and α wolves, while they dominate ω
wolves. Figure 4 shows the diagram of GWO.

Grey wolf hunting behavior modeling assumes that alpha,

beta, and delta have sufficient knowledge of prey position.

Therefore, three optimal solutions, including alpha, beta, and

delta are obtained, and the other solutions (wolves) must change

their position based on the optimal solutions.

2.3.5 Proposed hybrid method
The coupled NF and GWO were developed as NF-GWO to

predict the DO concentration. In the NF-GWO model, GWO

optimizes NF parameters for best performance. NF-GWO consists

of five layers. The first layer’s nodes represent the input variables. The

second and third layers represent the membership functions for the

input variables and the fuzzy logic rules, respectively. In the fourth

layer, Takagi-Sugeno-Kang’s model adjusts the performance of the

nodes. Finally, the DO concentration is predicted in the last layer

(output layer). During the training phase, the GWO generates the

initial population of wolves and updates the solutions based on the

DO concentration prediction accuracy. The solutions are

continuously updated unless the algorithm reached the maximum

number of iterations or errors less than the sill value. The parameters

found in the last step are transferred to the structure of the NFmodel.

The initial population and the number of iterations for each

combination were determined through the trial-and-error method.

The initial population and the number of iterations are listed in the

structure row of the results table. Population values ranged from 20 to

40 and iterations from 1,000 to 1,500.

2.4 Performance statistics for the
evaluation of the models

Four statistical metrics named root mean squared error

(RMSE), mean absolute error (MAE) correlation coefficient (CC),

andWillmott Index (WI), were applied to assess the performance of

the applied models in predicting DO. Among the four metrics, two

TABLE 4 Performance of models in predicting DO concentration in the test phase (Station-B).

Model Metrics C1 C2 C3 C4 C5 C6 C7

NF-GWO MAE 0.346 0.352 0.386 0.346 0.414 0.401 0.44

RMSE 0.413 0.416 0.459 0.417 0.475 0.454 0.508

CC 0.563 0.453 0.215 0.497 0.280 0.359 0.387

WI 0.713 0.607 0.438 0.644 0.440 0.486 0.53

Structure (20,1500) (30,1500) (25,1500) (40,1500) (20,1000) (25,1000) (30,1000)

NF MAE 0.407 0.392 0.531 0.471 0.514 0.436 0.440

RMSE 0.490 0.481 0.626 0.557 0.585 0.536 0.506

CC 0.339 0.424 0.303 0.350 0.266 0.371 0.375

WI 0.580 0.641 0.522 0.516 0.455 0.610 0.516

Structure -- -- -- -- -- -- --

NF-SC MAE 0.434 0.332 0.607 0.454 0.383 0.396 0.537

RMSE 0.526 0.419 0.690 0.562 0.479 0.479 0.612

CC 0.464 0.398 0.441 0.354 0.236 0.595 0.288

WI 0.678 0.611 0.540 0.607 0.492 0.740 0.481

Radii 0.7 0.9 0.7 0.6 0.7 0.7 0.8

NF-FCM MAE 0.395 0.411 0.422 0.420 0.430 0.458 0.499

RMSE 0.469 0.521 0.510 0.500 0.487 0.537 0.584

CC 0.465 0.446 0.433 0.409 0.270 0.419 0.103

WI 0.642 0.643 0.653 0.634 0.432 0.629 0.388

Cluster 2 4 3 3 4 3 2

Frontiers in Environmental Science frontiersin.org07

Maroufpoor et al. 10.3389/fenvs.2022.929707

302

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.929707


(MAE andRMSE)were used to evaluate the error in themodels, and

two (CC and WI) were utilized to assess the models’ ability to

simulate the temporal pattern of observed DO. They are defined as:

RMSE �

�������������
1
/n∑N

i�1
(Oi − Pi)2

√√
, (6)

MAE � 1
n
∑n
i�1
|Oi − Pi|, (7)

CC � ∑N
i�1(Oi − �O)(Pi − �P)������������∑N

i�1(Oi − �O)2√ �����������∑N
i�1(Pi − �P)2√ , (8)

WI � 1 − ∑n
i�1(Oi − Pi)2

∑n
i�1(∣∣∣∣∣∣∣Pi − Oi

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣|Oi − Oi|

∣∣∣∣∣∣∣)2, (9)

where Oi and Pi are observed, and the predicted DO value for ith

observations. �O and �P are themean of observed and the predicted

DO, and n is data points. Four statistical metrics and visual

inspection using scatter plot, box plot, violin plot, and Taylor

diagram were used to assess the performance of the applied

models. Different statistical metrics and plots provide different

measures of model performance, including error, association,

and distribution. Therefore, they were used in this study for a

complete assessment of model performance.

FIGURE 5
Box-whisker plot showing the relative performance of (A)
NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in the test
phase at Station-A.

FIGURE 6
Box-whisker plot showing the relative performance of (A)
NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in the test
phase at Station-B.
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3 Results and discussion

3.1 Assessment of the models

In order to assess the performance of the proposed hybrid

model, its results have been compared with the results of the

standalone NF model. The hybrid models are adopted in order to

adjust the hyper-parameters of the standalone model. In this

study, different optimization algorithms including GWO, SC,

and FCM are used to adjust the parameters of the NF model

where these algorithms examine different regions of the search

space which has several local minima, and then minimize the

range of search to the region that includes the global minima.

Obtained results at Station-A and Station-B are presented in

Tables 3 and 4, respectively. The results at Station-A showed

large variability in model performance for different input

combinations. All the models, except NF-GWO, also showed

different performances in terms of different metrics. For

example, NF for input combination, C7 showed the best

performance based on MAE and RMSE, while it showed the

best performance in terms of CC andWI with input combination

C4. Similar inconsistency was noticed for NF-SC and NF-FCM.

However, NF-GWO performed best in terms of all metrics for

first input combination, C1 (MAE = 0.250 mg/L, RMSE =

0.320 mg/L, CC = 0.869, and WI = 0.908). Comparison model

performance revealed the better performance of NF-GWO for all

input combinations compared to other models. Therefore, NF-

GWO for the input combination of C1 can be considered the best

model for predicting DO at Station-A. Different models showed

the worst performance for different input combinations. For

example, NF-SC performed the worst for C1 while NF-FCM

performed the worst for C5. Overall, NF-SC performed the worst

FIGURE 7
Scatter plot of observed and predicted dissolved oxygen by (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels during the testing phase at
Station-A.
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for most of the input combinations and in terms of different

metrics.

The performance of the models at Station-B was found very

similar to that at Station-A (Table 4). Large variability in model

performance for different input combinations was also noticed at

this station. Only NF-GWO showed consistent performance in

terms of all metrics. It also showed better performance compared

to other models for all input combinations. Comparison of model

performance for different input combinations revealed best

performance of NF-GWO for C1 (MAE = 0.346 mg/L,

RMSE = 0.413 mg/L, CC = 0.563, and WI = 0.713) at this

station. Like Station-A, NF-SC showed the worst performance

at this station for most of the input combinations. The

C1 scenario considers all variables (TE, SC, Tu, and pH) as

inputs, while other scenarios omit one to more variables. The

better performance of NF-GWO for C1 indicates all variables are

required to consider for better prediction of DO because the use

of a few water quality parameters may drive to missing the

required information about the effect of these parameters on

dissolved oxygen concentration. Therefore, to obtain more

realistic results and in order to investigate the effect of each

water quality parameter on DO concentration, all possible input

combinations should be considered.

The observed and predicted DO by different models for

different input combinations at Station-A and Station-B are

presented using box–-whisker plots in Figures 5, 6,

respectively. A box with a whisker presents mean

(horizontal line within the box), 25th and 75th percentiles

(lower and upper bound of the box), range without outliers

(spread of the whiskers), and outliers (dots). Therefore, a

comparison of the whisker–boxes provides a model

performance assessment in terms of median, range, and

outliers. The box plot of different models was found

similar to the observed one for different input

combinations. For example, the whisker–box of NF-GWO

for C1 was found more similar to the observed one, while the

FIGURE 8
Scatter plot of observed and predicted dissolved oxygen by (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels during the testing phase at
Station-B.
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whisker–box of NF was found more similar to the observed

one for C5. A comparison of whisker–box plots of all models

for all input combinations revealed the best performance of

NF-GWO for C1. The results were found a bit different at

Station-B. The best performance was noticed for NF-FCM

with C4. It was able to replicate the median, interquartile

range, and the range of the data more accurately. However,

the simulated data by NF-FCM for C4 was found a bit right-

skewed compared to observed data. The NF-GWO for C1,

which showed the best performance at Station-A, also

performed well at this station but underestimated the DO

values.

The scatter plots of observed and predicted DO are

presented in Figures 7, 8, respectively. Different plots in

each figure show the performance of a model for different

input combinations. Different colors are used to show the

model performance for different input combinations. The

scatter plots at Station-A (Figure 7) showed better

performance of NF-GWO for C1, NF for C1, NF-SC for

both C1 and C2, and NF-FCM for C2. Overall, most of the

models showed better performance for the input combination

(C1). The performance comparison of the models revealed a

much higher performance of NF-GWO compared to other

models. The NF-GWO for C1 replicated the observed DO

with R2 (determination coefficient) = 0.75. The NF-GWO

predicted DO for C1 was found more aligned to the plots’

diagonal line compared to other models. Though an

underprediction for high values and overprediction for low

values was noticed, the model could still predict most of the

high and low values.

The scatter plots of the models’ predictions at Station-B

(Figure 8) showed more inconsistency than at Station-A. The

NF-GWO performed best for C1, NF for C2, NF-SSC for C6,

and NF-FCM for C1 at this station. All models showed a

lower performance at this station compared to that found at

Station-A. However, NF-GWO for C1 showed the best

performance at this station like Station-A. Though it

underestimated many observed values, it was most aligned

to the scatter plot’s diagonal line compared to other models

for different input combinations.

The capability of the models to reconstruct the distribution

of observed DO was estimated using violin plots. The plots for

the models at Station-A and Station-B are presented in Figures

9, 10, respectively. If the shape of a model’s violin is similar to

the violin of observed DO, the model is considered good. The

violins of different models’ predicted DO showed large

variability in shape and size (Figure 9). None of the models

was able to replicate the shape of the observed violin accurately.

FIGURE 9
Split–violin plot showing the relative performance of (A) NF-GWO; (B) NF; (C) NFSC; and (D) NF-FCM models in replicating probability
distribution of observed data during testing phase at Station-A.

Frontiers in Environmental Science frontiersin.org11

Maroufpoor et al. 10.3389/fenvs.2022.929707

306

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.929707


Overall, the violin of NF-GWO for C1 was most similar to the

violin of the observed data. The dissimilarity with the observed

violin was more for NF-FCM. The dissimilarity between

models’ predicted and observed violins was more at Station-

B (Figure 10) than that noticed at Station-A. In most of the

cases, the models failed to reconstruct the distribution of

observed DO. Overall, NF-GWO for C1 has the best

performance at this station.

Finally, the Taylor diagram was developed to show the

relative accuracy of model predictions. Taylor diagram

graphically compared association, the similarity invariance,

and the mean difference between observed and model output.

Therefore, it is considered a composite way to compare model

performance. Taylor diagrams of the models for Station-A and

Station-B are presented in Figures 11, 12, respectively. The black

dot on the diagram’s x-axis represents observed data, while

different colors present model performance for different input

combinations. A model nearest to the observed point indicates

better performance. The Taylor diagram also showed large

variability in models’ performance for different input

combinations at Station-A (Figure 11). However, all the

models, except NF-FCM, performed best for the first input

combination (C1). The NF-FCM performed best for C6. The

NF-GWO models were nearest to the observation compared to

other models for different input combinations. Overall, the

results identified NF-GWO for C1 as the best model at

Station-A. Inconsistency in model performance was noticed at

Station-B (Figure 12), similar to that noticed using the scatter

plot and the box plot. The NF-GWO showed the best

performance for C1, NF for C2, NF-SC for C6, and NF-FCM

for C1. The performance of the models at Station-B was poor

compared to that found at Station-A. However, the best model

was still NF-GWO for C1 at this station. It showed a correlation

of 0.58 and an RMSE of less than 0.40. The variability of

predicted DO by NF-GWO for C1 was 0.38, which was very

near the observed DO variability (0.44).

3.2 Discussion

The performance of NF-GWO compared to standalone

NF was improved by 24.2–66.2% and 14.9–31.2% in terms of

FIGURE 10
Split–violin plot showing the relative performance of (A) NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in replicating the probability
distribution of observed data during the testing phase at Station-B.
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CC and WI for different input combinations. The MAE and

RMSE of the NF model were reduced using the NF-GWO

model by 9.9–46.0% and 8.9–47.5%, respectively. A similar

improvement in DO concentration prediction was achieved

using NF-GWOmodels compared to NF-SC and NF-FCM for

most input combinations. However, the improvement was

not consistent in terms of all statistics, as mentioned earlier.

The performance of NF-GWO compared to NF-SC was

improved for all input combinations except for C3 at

Station-A. The improvement in MAE and RMSE was in

the range of 7.7–60.7 and 6.8 to 60.4, respectively.

However, MAE and RMSE were decreased for C3 by 5.7%

and 2.7%. Significant improvement in NF-GWO prediction

compared to NF-FCM was also noticed for all input

combinations, except C3 and C5 at Station-A. The MAE

and RMSE were reduced by 3.4–50.3% and 10.1–49.5%,

while CC and WI were increased by 7.9–94.6% and

4.6–40.8%. The most significant improvement in NF-GWO

performance was for C1. The MAE, RMSE, CC, andWI values

of NF-GWO prediction were improved by 46.0, 47.5, 66.1,

and 31.2% compared to standalone NF, 60.7, 60.3, 35.9, and

32.9% compared to NF-SC, and 50.4, 49.5, 54.4 and 40.5%

compared to NF-FCM at Station-A.

Improvement in DO prediction using NF-GWO was also

noticed compared to other models for most of the input

combinations at Station-B. However, the improvement was

not as great as it was noticed for Station-A. For the best input

combination (C1), the improvement in NF-GWO prediction

compared to NF was 14.9, 15.7, 66.1, and 22.9% in MAE,

RMSE, CC, and WI, respectively. Those values were 20.3,

21.5, 21.3 and -5.2%, respectively for NF-SC, and 12.4, 11.9,

21.1, and 11.1%, respectively, for NF-FCM. Here, it should be

noted that, like Station-A, the biggest improvement in the

NF-GWO model was not for C1 for all input combinations.

FIGURE 11
Taylor diagram of the models used to compare the capability of (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels in the testing phase at
Station-A.
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For example, the most significant improvement in NF-GWO

compared to NF in MAE, RMSE, and WI were for C4.

However, the highest improvement in CC was for C1.

Overall, the results revealed that only NF-GWO for

C1 showed consistent DO concentration prediction

improvement in all statistics. It means all the statistical

metrics used in this study showed better performance of

NF-GWO for C1. The NF-GWO also showed improvement

in prediction for almost all input combinations. The best

performance of NF-GWO for C7 was also consistent for both

locations. Therefore, the results presented in this study

revealed the ability of the GWO to enhance the

performance of the standalone NF model and this agrees

with results obtained by Ewees and Elaziz (2018) and

(Dehghani et al., 2019). In addition, the results of the

proposed model undoubtedly establish the efficacy of the

NF-GWO model in predicting DO concentration.

NF integrates neural networks and fuzzy systems to join

their advantages for a better solution to complex problems.

The capability of NF to learn data patterns using fuzzy rules

has made it highly adaptable to different kinds of data, and

thus, superior to many other AI algorithms in solving a wide

range of problems from different fields (Atmaca et al., 2001).

However, the major drawback of NF is that its performance

significantly is susceptible to the selection and optimization

of the input variable’s fuzzy membership function. In this

study, it was solved by integrating NF with optimization

algorithms. Therefore, the performance of NF-GWO was

found better than the other version of NFs (Sremac et al.,

2019). The major challenge in selecting and adjusting NF

FIGURE 12
Taylor diagram of the models used to compare the capability of (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels in the testing phase at
Station-B
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hyperparameters is finding the global optimum solution

(Negi et al., 2021).

Among varieties of optimization algorithms developed so

far, the GWO, a metaheuristics optimization technique

developed based on wolf behavior for preying, has shown

its capability in solving complex optimization problems. This

population-based or trajectory-based algorithm can search

for a solution over a large complex space, thus less susceptible

to being trapped in local minima. The recent review of GWO

by Negi et al. (2021) showed the capability of GWO in

optimizing a wide variety of engineering problems. The

optimization of NF intern parameters using GWO has

made the NF-GWO highly capable of predicting DO

concentration.

It should be noted that an AI algorithm’s performance depends

on the problem to be solved and the kinds of input data used as

predictors. Similarly, a particular optimization algorithm is always

not the best for the optimization of an AI model hyperparameters.

Different optimization algorithms can perform differently in the

optimization of an AI algorithm in solving different problems. In

this study, optimization of NF parameters using GWO made it

highly capable in DO prediction. However, it does not guarantee

that the NF-GWO model performs well in predicting other

hydrological variables or the prevision of DO in other regions.

Therefore, it is always suggested to compare different AI and

optimization algorithms’ performance to find the best empirical

model for selecting the best model.

The sensitivity analysis of different input variables was

conducted through the evaluation of best models’ (NF-

GWO) performance for different input combinations. First,

the performance for C1 with the three input models (C2 to C4)

was analyzed. The model performance for C2 to C4 was reduced

due to the drop of an input variable. The highest drop in

prediction accuracy was for C3 when the pH was dropped from

the input combination. The MAE and RMSE of C3 were 90 and

76.6% higher, and CC and WI were 32.1 and 27.6% lower than

C1 at Station-A. A similar result was also obtained at Station-B.

The increase in prediction error was the highest for

C3 compared to the other three-input models. This could be

attributed to that the pH has a valuable impact on DO

concentration and the absence of pH in C3 caused a large

drop in model prediction accuracy. Therefore, pH can be

considered the most sensitive input after TE in predicting

DO concentration. The analysis of two input NF-GWO

models’ performance (C5 to C7) with the NF-GWO model

for C1 showed the highest decrease in model performance for

C5 at both stations. The results indicate that the reduction of

prediction accuracy was due to the absence of Tur as input. This

indicates Tur is the third most crucial variable for the prediction

of DO concentration. Overall and according to the sensitivity of

DO prediction accuracy to different input variables, it can be

said that the TE has the highest influence on DO, followed by

the pH, Tur, and SC variables, respectively.

4 Conclusion

The present study assessed the ability of hybrid NF models in

predicting DO concentration at two stations located in California.

Different combinations of water quality parameters including

temperature, specific conductivity, turbidity, and pH parameters

were formulated and used as input to these models. Entropy and

the correlation coefficient were used to evaluate these parameters

in order to obtain the optimum input combination. The result

showed that the best-input combinations are four input variables,

namely, TE, SC, Tu, and pH. Among the four models developed in

this study, only the NF-GWO showed consistent performance for

all input combinations at both stations in terms of all metrics. The

NF-GWO attained the highest performance (MAE = 0.256 mg/L,

RMSE = 0.320 mg/L, CC = 0.869, and WI = 0.908) at Station-A

and (MAE = 0.346 mg/L, RMSE = 0.413 mg/L, CC = 0.563, and

WI = 0.713) at Station B. Also, the performance of NF-GWO

compared to standalone NF was improved by 24.2–66.2% and

14.9–31.2% in terms of CC and WI for different input

combinations and the MAE and RMSE of the NF model were

reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%,

respectively, for Station-A, while for Station B, the improvement in

NF-GWO prediction compared to NF was 14.9, 15.7, 66.1, and

22.9% in MAE, RMSE, CC, and WI, respectively. The sensitivity

analysis of input parameters revealed that water temperature

followed by pH and specific conductivity is the most important

for DO concentration prediction in the study area. Using direct

methods to measure DO concentration is costly and time-

consuming. The hybrid AI models can be used for reliable

estimation of DO concentration in such a situation. Finally,

although the developed hybrid AI models in this study achieve

high performance, there are still some limitations due to practical

factors. The most important one is the data used, where the data of

only 1 year was used in the study. Therefore, the capability of the

suggested model should be evaluated using long-term data. In

addition, other metaheuristics optimization algorithms can be

used for the optimization of the NF model to evaluate their

relative performance in improving prediction accuracy.
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The middle-income trap (MIT) is often accompanied by the decline or stagnation of
economic growth, unreasonable domestic industrial structure, and serious polarization
between the rich and the poor. However, due to different international environments,
different specific national conditions, and different development policies adopted by each
country, how to get out of the MIT varies. This study carries out an analysis of different
economic growth factors of Latin American countries (we selected 19 MIT countries out of
33) and compared them with Singapore and Korea, which are in a high-income range. We
used a regression model to find the relationship of variables in each country and the impact
on the economic growth due to these variables. The study finds using correlation and
regression analysis, that trade and foreign direct investment (FDI) play a major role in
avoiding the MIT by having a strong regression (R2 = 1.481*** for S. Korea, R2 = 0.65 for
Singapore) with the gross domestic product (GDP) for high-income countries while having
a weak regression in Latin American countries. Another factor is that industrialization and
services export play a vital role in avoiding the MIT in Singapore and South Korea, and the
same model should be used in Latin American countries to avoid the MIT. Furthermore,
using the panel ARDL model we validated the results of a regression model and
established that similar factors are impacting Latin American countries’ MIT.
Correlation analysis is used to determine the relationship of selected factors and their
impacting strength on the growth of an economy. In the final section, we present Latin
American countries, and their main policy gaps according to their unique characteristics
and recommend a policy with suggestions for avoiding the MIT by comparing their
economies with those of high-income countries.
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1 INTRODUCTION

The concept of the “middle-income trap” (MIT) has gradually become
familiar to development agencies and policymakers. MIT refers to a
state in which the per capita income level of a country (region) cannot
change smoothly after reaching the middle-income level, resulting in
economic stagnation (Yavuz Tiftikçigil et al., 2018). Middle-income
countries caught in the trap lose their competitive edge with low-
income countries in industries that require a lot of cheap labor, can’t
competewith high-income countries inR&D-intensive industries, and
lose their economic growth momentum (Dui, 2020). A country must
avoid or escape this trap, otherwise, it cannot become a fully developed
economy. Among the 101 middle-income economies in 1960, only
15 entered the high-income economy by 2014, while other countries
or regions remained in the middle-income stage, and some even
returned to the low-income stage (Cherif and Hasanov, 2019).

Many economies can easily grow from a low-income country to
middle-income country, but it is difficult to cross themiddle-income
stage and become a high-income country. Latin American countries
such as Brazil, Argentina, and Mexico jumped from low-income
countries tomiddle-income countries in a very short period, creating
a miracle of growth in the national economy and per capita income,
but they experienced economic regressions one after another
between 1970 and 1980 (Silva, 2018). Among Asian economies,
only Japan has successfully overcome the “middle-income trap” and
achieved a leap in economic development. After being hit by the
Asian financial turmoil, Indonesia, the Philippines, India, and other
countries have remained in the middle-income ranks because they
could not resume their previous prosperous economic development
(Paus, 2018). MIT is a common economic phenomenon that occurs
in countries with different historical, cultural, and economic
backgrounds, accompanied by declining economic growth and
fragile financial systems. To help countries avoid falling into or
escape from the MIT many research institutions and scholars have
studied its development theories, causes, and avoidancemechanisms
(Kotarski and Petak, 2019). Keep in view the significance of MIT the
countries should focus on different economic parameters.

A similar issue ofMIT has been observed in Latin America due to a
low focus on growth factors. Latin American countries were all
historically colonies of European countries, and it was not until the
19th and 20th centuries that independent governments were gradually
established. Therefore, the economic development of these countries
started relatively late. Despite a late start, Latin American countries have
their economic advantages. In the process of economic construction,
Latin American countries can rely on the advantages of low labor costs
and abundant natural resources to gain benefits in the international
market. Relying on unique natural conditions and cheap labor, many
Latin American countries have achieved excellent economic results in
the export of agricultural products, mineral mining, machinery
industry, etc., and completed the process from poverty and adverse
conditions to poverty alleviation and prosperity (Ortiz et al., 2018).
However, as the nation’s wealth grows, so does the labor income, and
increasingly, machines could replace human labor. Thus, the labor
advantage of Latin American countries is gradually disappearing which
is a major cause of MIT in Latin American countries.

Several studies highlight different causes of MIT in Latin
American countries. Failure to develop a high-quality labor force

is one of the reasons why Latin American economies are gradually
losing their edge. To improve the quality of the labor force, it is
necessary to strengthen investment in education and scientific
research and encourage high technology. Nevertheless, following
the economic development of Latin American countries, little
attention has been paid to education. The illiteracy rate remains
high, and ordinary people who wish to go to school cannot afford
tuition fees. Conversely, child labor is rampant in Latin America
(Máttar, 2019). Many people cannot afford to send their children to
school, so their only option is to let their children go out to work
early. In addition, economic growth leads to a widening gap between
the rich and the poor. The rich occupymost of society’s property and
monopolize a large number of social resources and relationships.
They can quickly realize “money begets money” through investment
and other means. The poor can only earn income by selling their
labor, which remains constant. Therefore, if matters continue in such
a way, the gap between the rich and the poor will widen.

Many Latin American countries have managed to improve the
national economy but have failed to narrow the gap between the rich
and the poor and provide social welfare. Latin America, where child
labor is rampant, has never had strict labor laws, and ordinary people
generally have to pay for services such as education, pensions, and
public facilities. The widening gap between the rich and the poor can
easily create a social crisis. Under such social conditions, left-wing
governments representing the interests of the middle and lower
classes usually gain more support and replace the original
government. The left-wing government may not perform well in
driving economic growth, and itmay gradually lose the trust of voters.

The MIT is not only an issue for Latin American countries; it is
also a great challenge worldwide. Figure 1 shows the change of the
MIT in the last few years, and it highlights higher-income countries
decreasing in the MIT and middle-income countries sustaining the
MIT together with similar and a consistent number of countries. A
country must avoid or escape theMIT, otherwise, it will be unable to
become a fully developed economy. Among 101 middle-income
economies in 1960, only 15 had entered a high-income economy by
2014, while other countries or regions remained in the middle-
income stage, and some even returned to the low-income stage
(Rowe et al., 2018). Many economies can easily grow from a low-
income countries to middle-income country; however, it is difficult
to bridge the middle-income stage and become a high-income
country (Canuto, 2019). Latin American countries such as Brazil,
Argentina, and Mexico escalated from low-income countries to
middle-income countries in a very short period, creating a
miraculous growth in the national economy and per capita
income; nevertheless, they experienced economic regressions
continually between 1970 and 1980 (Lee and Kim, 2018). Among
Asian economies, only Japan has successfully overcome the “middle-
income trap” and achieved a leap in economic development
(Hartwell, 2018). After being hit by the Asian financial turmoil in
1997, Indonesia, the Philip-pines, India, and other countries have
remained in themiddle-income ranks as they could not resume their
previous prosperous economic development (Estrada et al., 2018).

Different researchers around the globe highlight theseMIT issues
in different studies with causes and avoidance mechanisms. Oreiro
et al. (2020) proposed the development of a list model that highlights
how natural resources and an external savings growth strategy may
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lead to an exchange rate overvaluation. Lebdioui et al. (2021) find
how Chile and Malaysia escaped from the MIT by focusing on
foreign direct investment (FDI), trade (petroleum, rubber, etc.), and
research and development (R&D). Justine et al. highlight that
industrialization and increasing production have a huge impact
on escaping from the MIT in different countries (Lin and Wang,
2020). Vidra et al. focused on the analysis of the impact of science
and technology (S&T) development in high-income countries and
shows that S&T growth is one of the major components that can
help in escaping from the MIT (Klingler-Vidra and Wade, 2020).
The MIT is a ubiquitous economic phenomenon and even if not all
countries or regions fall into the MIT, they will always be affected by
the MIT to varying degrees in the process of their economic
development. In addition to the MIT occurring in developing
countries, similar phenomena have also occurred in some
developed countries, such as the United States and the
United Kingdom, in the early stages of development (Ozturk, 2016).

The fundamental reason for the occurrence of the MIT is the
mechanism that supported economic growth in the past was
unsustainable. Eichengreen et al. (2013) show that if a country
wishes to make a breakthrough in economic development and
enter the ranks of high-income countries, it needs to change its
stagnant or even retrogressive economic state, adjust the backward
growth mechanism, and inject new impetus into economic
development. From the perspective of international trade, Han
and Wei (2017) highlight to avoid MIT the countries should
focus on rapid social and economic development, middle-income
countries have ushered in development opportunities. Once the
economy grows to a certain level, the advantages of labor no
longer exist, and labor remuneration continues to increase;
however, the economic structure has not been upgraded, and
international competitiveness has been further weakened.
Therefore, the international trade situation has not only failed to
improve year-on-year, but has deteriorated, and the industrial
structure has not been improved. To optimize and adjust,
economic development has fallen into difficulties, which has
caused social turmoil and intensified social contradictions, and the
economic development of middle-income countries has fallen into
difficulties. Ohno (2009) suggest that foreign trade is the best way to

connect the internal economy with the external economy. Improving
the foreign trade structure can help solve the problems encountered
in the process of industrial structure optimization.

Different researchers used different statistical methods for
relationship extraction, e., Irfan et al. (2022) used AHP and
G-TOPSIS approach to finding energy barriers. Tang et al.
(2022) used the ARDL model for finding the relationship
between natural resources and financial growth. Xie et al.
(2022) used a frequency-domain approach to get the
relationship between economic performance on forest
resources. Irfan et al. (2022) in another work investigate the
impact of trilemma energy by using correlated panel corrected
standard errors (PCSEs) (Khan et al., 2022a). Other studies
(Muhammad and Khan, 2021; Khan et al., 2022b; Shahzad
et al., 2022; Zhang et al., 2022) also highlight the statistical
approaches to get the relationship between different variables.
Therefore, this study used regression, correlation, and panel
ARDL models to find the relationship between variables of
MIT. Bhatti et al. (2022), Bhatti et al. (2021) used regression
and correlation models to extract the relationship between
variables. Therefore, this study used Correlation, regression
and panel ARDL model to extract the relationship.

In the context of the globalized economy, it is of practical
significance to actively turn the perspective to the external
economy and explore ways to optimize the industrial structure
through trade structure optimization. Keeping in view the
significance of MIT and how to escape that in Latin
American countries, this study’s main contributions and
objectives are:

• This study attempts to study the factors that affect countries
falling into the MIT from the perspective of trade, health,
education, and investment (FDI), and puts forward policy
recommendations based on the research conclusions to help
the country’s economy achieve sustainable growth.

• This study finds the influence mechanism of different
economic factors such as health, FDI, education, and
trade structure on the income level of trapped (Latin
American) countries and non-trapped countries

FIGURE 1 | Change of income level in all countries from 2012 to 2020.
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(Singapore and Korea). This study helps affected countries
to optimize trade structure, transform industrial structure,
adjust economic development mode, and achieve
sustainable growth.

• Based on different statistical analyses like regression,
correlation, and autoregressive models this study
compares the high-income countries such as Singapore
and Korea with MIT countries of Latin America.

1.1 Research Questions
This research addresses the sustainability and current economic
performance of Latin American countries by highlighting the
indicators that need to be focused on for avoiding the MIT. The
following research gaps were identified, which are lacking in other
studies, and our study kept a focus on these gaps:

• What are the basic indicators for economic development
that need to be focused on by Latin American countries to
escape the MIT?

• Which indicators of high-income countries are resulting in
a better impact for avoiding the MIT?

• What is the economic development progress in Singapore
and Korea towards sustainability in the MIT?

• How do correlation, regression, and the Auto Regressive
Distributed Lag (ARDL) model help to determine the most
impacting factors among all Latin American countries?

• What are our policy recommendations for governments,
stakeholders, business owners, etc.?

2 MATERIALS AND METHODS

Complete flowchart of this study implementation as shown in
Figure 2:

2.1 Study Area
Latin America refers to Central America, the Caribbean, and
South America, all south of the United States. It is named for
the fact that most countries use Spanish and Portuguese, both
of which belong to the Latin family, as their national languages
(Heinicke et al., 2007). Located in the central and southern
parts of the Western Hemisphere, it is bordered by the Atlantic
Ocean in the east, the Pacific Ocean in the west, bordering
North America (United States) in the northwest, and facing
Antarctica across the Drake Passage in the south. There are a
total of 33 countries in Latin America, out of which we selected
a total of 19 countries and categorized them according to their
income level i.e., upper middle-income and lower middle-
income (Goldie et al., 2008). We selected two higher
income countries, Singapore, and Korea, as models for
comparison as they had escaped the MIT. Table 1 shows
the list of the selected countries. Figure 3 shows the
geographic location of countries.

FIGURE 2 | Flowchart of the proposed study.

TABLE 1 | List of selected countries with income level and region.

Country name Income level Region

Argentina Upper middle income Latin America
Belize Lower middle income
Bolivia Lower middle income
Brazil Upper middle income
Colombia Upper middle income
Costa Rica Upper middle income
Dominica Upper middle income
Dominican Republic Upper middle income
Ecuador Upper middle income
Grenada Upper middle income
Guatemala Upper middle income
Guyana Upper middle income
Honduras Lower middle income
Jamaica Upper middle income
St. Lucia Upper middle income
Mexico Upper middle income
Nicaragua Lower middle income
Panama Upper middle income
Peru Upper middle income
Paraguay Upper middle income
El Salvador Lower middle income
Suriname Upper middle income
Venezuela, RB Lower middle income
Korea, Rep High income
Singapore High income Southeast Asia
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2.2 Data Selection
Data for different factors has been selected from the World Bank
website for the period from 2000 to 2020 for the selected countries
(World Bank). The focused factors that impact MIT are
education, health, GDP, travel services/tourism, trade [high-
technology exports, information and communication
technology (ICT) exports etc.], and foreign direct investment
(FDI). Descriptive analysis of the data is shown in Table 2.
Statistical analysis of the data was performed using SPSS software
(version 25; IBM).

2.3 Regression Model
A regression model is a method of statistical analysis that
studies the dependence of a dependent variable on an
independent variable in regression, with the aim of
estimating or predicting the mean of the dependent
variable from a given value of the independent variable. It
can be used for forecasting, modeling time series, and
discovering causal relationships between various variables
(Florax and de Graaff, 2004). This study utilized the

regression model to predict the impact of variables on the
growth of economic development. The benefits of using
regression analysis are as follows:

1) It indicates a significant relationship between the independent
variable and the dependent variable.

2) It indicates the strength of the influence of multiple
independent variables on a dependent variable.

Regression analysis can also be used to compare the
interaction between variables measured by different measures,
such as the link between price changes and the number of
promotions. These benefits allow market researchers, data
analysts, and data scientists to exclude and measure the best
set of variables for building predictive models.

The simplest regression model can be represented as the data
object to be fitted is X � {x1, x2, . . . , xm}, the corresponding real
value is Y � {y1, y2, . . . , ym}, the linear model can be written as:

ŷ � Xw (1)

FIGURE 3 | Study area with selected countries’ geographical location.
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Where w is the regression coefficient, we use a square error to
measure the fitting error:

L(X) � ∑m

i�1(yi − xT
i w)2 � (y −Xw)2 (2)

The above formula is equal to 0 to the w.

zL(X)
zw

� z(yTy − wTXTy − yTXw − wTXTXw)
zw

� 2XT(y −Xw) � 0 (3)
It can determine:

ŵ � (XTX)−1XTy (4)
The above is easy to interact with training data; a good solution

is partial weighted linear regression, increasing a weight wi for
each error (here w is not the above ŵ ), at this time, the error
function can be written:

L(X) � ∑m

i�1wi(yi − xT
i w)2 � [W(y −Xw)]2 (5)

Among them,W is a diagonal matrix, also called the core; the type
of core can choose freely, and the most common is the Gaussian
nucleus. The weight corresponding to the Gaussian nucleus is as
follows:

W(j, j) � exp(���xi − xj���2
−2k2 ) (6)

Similarly, the new error function L (X) is governed to obtain
the regression coefficient at this time:

ŵ � (XTWX)−1XTWy (7)
The W here is actually WTW, but using W replaces the same
meaning and is simple.

2.4 Granger Causality Test
This analysis is to test the causality of the time series data, and this
model was established by Granger (1969) (Engle and Granger,
1987). A variable xt is caused by yt, incase if it can forecast the xt
with greater number of accuracy with the usage of yt past value.
The first step of this test is the calculation by the VAR model and
given as follows:

yt � α1 +∑n

i�1βixt−i +∑m

j�1βjyt−j + e1t (8)
xt � α2 +∑n

i�1δixt−i +∑m

j�1δjyt−j + e2t (9)

Where e1t and e2t are known as the uncorrelated white noise error
expressions. Here null hypothesis shows that xt is not caused by
yt. If there is a situation that value of F computed > F critical
value, thenceforth, the null hypothesis rejected, and it is finalized
that xt is caused by yt.

2.5 Panel Auto Regressive Distributed Lag
Model
ARDL model has been in use for decades to model the
relationship between economic variables in a single-equation
time series setup. Its popularity also stems from the fact that
cointegration of nonstationary variables is equivalent to an error
correction (EC) process, and the ARDL model has a
reparameterization in EC form (Hassler and Wolters, 2006).
The existence of a long-run/cointegrated relationship can be
tested based on the EC representation. A bounds testing
procedure is available to draw conclusive inference without
knowing whether the variables are integrated of order zero or
one, I (0) or I (1), respectively (Pesaran et al., 2001).

The regression model studies the analysis of univariate series,
while the ARDL model, models multivariate time series. In the
ARDL model, there is not only the lag part of the original data,

TABLE 2 | Descriptive statistical data.

Countries Descriptive
statistics

Education
(US$)

Health
expenditure

GDP (current
US$)

Travel
services

High-
technology
exports
(US$)

Service
exports
(US$)

FDI (US$)

Latin American Countries Mean 93.13 6.16 1.71E + 11 8.34 43891276 47534758 −5485593
Median 95.76 5.85 2.23E + 10 4.19 0.44 542.41 95.05
Standard Deviation 7.08 1.43 4.03E + 11 17.05 25708751 2.34E + 09 2.09E + 09
Minimum 60.89 3.06 3.01E + 10 −3.09 0 145.81 −1.4E + 10
Maximum 100 10.44 33.01E + 10 254.95 2.015E + 09 1.55E + 10 100

Singapore Mean 94.26 3.52 2.302E + 11 1.49 0.32 2573.43 88.15
Median 95.67 3.35 2.4E + 11 0.96 0.32 2321.71 87.8
Standard Deviation 3.64 0.48 1.025E + 11 1.92 0.05 950.44 3.08
Minimum 87.75 2.84 8.979E + 10 −0.53 0.24 1384.79 83.37
Maximum 97.84 4.39 3.76E + 11 6.63 0.43 4102.27 93.78

Korea Mean 85.93 5.72 1.168E + 12 2.33 2.94 1851.67 82.25
Standard Error 0.17 0.27 8.237E + 10 0.27 0.19 185.6 0.19
Median 85.93 5.85 1.173E + 12 2.26 2.93 1792.55 82.25
Standard Deviation 0.24 1.21 3.775E + 11 1.22 0.84 830.02 0.26
Maximum 86.1 8.16 1.725E + 12 4.67 4.21 3521.33 82.44
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but also other influencing factors are added to adjust the
autoregressive results. The method is simple and effective for
small samples or limited sample data. Its general expression is:

B(L, P)yt � ∑k

i�1βi(B, qi)xit + ut (10)
Among,

B(L, P) � 1 − φ1B − φ2B
2 − . . . − φpB

p (11)
βi(B, qi) � 1 − βi1B − βi2B

2 − . . . − βiqiB
qi (12)

In Eqs 11, 12, P represents the delay order of the explanatory
variable yt, qi represents the delay order of the i-th explanatory
variable xit, i = 1, 2, . . . , k. B is the delay operator, ut is the
random item. ARDL models are generally written as:

yt � ∑p

i�1φiyt−i +∑k

j�1 ∑qj

lj�0 βjljxj, t − lj + ut (13)

The ARDL model is widely used for a multivariate time series
model, and it requires less data; it is a simple idea, and it is a good
model construction method.

Traditional panel data analysis assumes that the relationship
between Y and X is homogeneous for all individuals, and the
heterogeneity is mainly reflected in the intercept term. When we
examine the dynamic panel data model, the variable intercept
model can be written as:

Y(it) � aY(it − 1) + bX(it) + c(i) + u(it), (14)
where i represents the i-th cross-sectional unit, t represents the
observation value of the t-th period, and c(i) is the intercept term
that changes with individual i. The estimation method of model
parameters a and b is to use the system GMMor difference GMM
method introduced in the last tweet. In this article, Pesaran et al.
(1999) assumed that all coefficients may vary with individual i, so
not only the intercept but also the slope, such as:

Y(it) � a(i)Y(it − 1) + b(i)X(it) + c(i) + u(it), (15)
The reason why this heterogeneous panel model is considered

is that in macroeconomic research, unobservable factors such as
the institutional culture of each region or country often show
systematic differences, and these differences will not only affect
the intercept term c(i), may also affect the sensitivity of Y to
changes in X.

Panel Auto Regressive Distributed Lag (ARDL) model or
Pooled Mean Group (PMG) technique for analyzing non-
stationary dynamic panels was given by Pesaran and Shin
(1995), Pesaran et al. (1999). PMG has both averaging and
pooling, hence it is considered as an intermediate estimator
between Dynamic Fixed Effect (DFE) and Mean Group (MG).
PMG has an advantage over the Dynamic OLS model that it
allows the short run dynamic specification to differ among
cross section, while the long run coefficients are constrained to
be the same. Hence, panel ARDL/PMG model is used to
investigate the heterogeneous dynamic issue across cross
sections as well as to estimate the long and short run
relationship among variables. So, panel ARDL/PMG model
can be specified as:

Yit � ∑p

j�1λijYi,t−j +∑q

j�0δ′ijXi,t−j + μi + εit (16)

Where, Yit reports dependent variable, Xit represents (k × 1)
vector of explanatory variables, μi shows the fixed effects, λij
shows the coefficient of the lagged dependent variable, δij
represents (k × 1) coefficient vector of independent variables,
εit denotes the error tern, i (1, 2, . . ., N) is number of cross section,
and t (1, 2, . . ., T) is number of time.

3 RESULTS AND DISCUSSION

A generally accepted view as to the cause of the MIT is: that with
economic growth, labor costs increase, and the comparative
advantage of cheap labor costs is lost; a new economic growth
model guided by knowledge and innovation has not yet been
formed, thus making economic growth momentum insufficient.
Therefore, the causes of the MIT can be roughly divided into the
following three levels: first, the direct impact variables of
sustained economic growth, such as health (Paus, 2014),
education, industrial structure (Kanchoochat, 2014) and its
changes; second, the internal and external environmental
variables affecting economic growth, such as trade (Engel and
Taglioni, 2017), macroeconomic policies, demographic factors
(Jayasooriya, 2017), and FDI (Nguyen-Huu and Pham, 2021);
and the third is the fundamental reason that affects long-term
economic performance, such as social and economic systems, for
example, tourism and services. In view of this, education, health
expenditure, travel services, high-technology exports, service
exports, and FDI are selected as independent variables
affecting a country’s per capita GDP, and economic growth is
represented by per capita GDP (y) as a dependent variable.

According to the above analysis, with ln(free), ln(open),
ln(con), ln(ind), ln(hon), ln(tec), inf, ln(lab), ln(inv) and ln(ci)
as the independent variables and ln(y) as the dependent variable,
establish the following panel data econometric model:

In(yit) � c0 + αi + c1ln(tecit) + c2ln(freeit) + c3infit

+ c4ln(openit) + c5ln(heait) + c6ln(eduit)
+ c7ln(inv it) + c8ln(indit) + c9ln(honit) (17)

where i represents the countries’ element, i = 1, 2, in the “trap
group” country model. . . , 14 (here Singapore and Korea are also
considered for evaluation); i = 1, 2, . . . , 26, t represents time, c0 is
the intercept term, and αi is the difference intercept term. In(yit)
is the logarithm of a country’s per capita GDP, ln(tecit) is the
logarithm of a country’s technological level, ln(freeit) is the
logarithm of economic freedom, and infit is the logarithm of the
inflation rate. ln(openit) represents the logarithm of the
proportion of trade volume in GDP, ln(heait) represents the
logarithm of health, ln(eduit) represents the logarithm of the
proportion of education in GDP, ln(inv it) represents the
logarithm of the proportion of FDI in GDP, ln(indit)
represents the logarithm of the proportion of secondary
industry output in GDP, ln(ciit) is the logarithm of the
urbanization rate, and εit is the random error term.
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The results of the Hausman test found that the fixed effects
model was the most suitable for the data in this paper. However,
the static panel ignores the dynamic influence of the lag term of
the independent variable on itself, which may lead to large
deviations in the estimation results. Since the economic
growth of the previous period has an impact on the economic
growth of the current period, it is necessary to introduce the lag
term of economic growth to reflect the dynamic lag effect. On the
basis of the static panel model, the first-order lag term of the
dependent variable is incorporated into the model to obtain the
dynamic panel model as follows:

In(yit) � c0 + αi + c1ln(tecit) + c2ln(freeit) + c3infit + c4ln(openit)
+ c5ln(labit) + c6ln(conit) + c7ln(inv it) + c8ln(indit)
+ c9ln(honit) + c10ln(ciit) + c11ln(yi,t−1) + εit

(18)
Using the lagged term of the dependent variable as an

independent variable will cause endogeneity problems in the
regression model. In order to better deal with the correlation and
endogeneity between cross-sections, regression analysis was

performed on the data. First, by using correlation analysis
between different factors highlights that for high income countries
such as Singapore the impact of GDP is strongly correlated with FDI
(0.6) and education (0.61) while travel/tourism has a weak negative
correlation with GDP (−0.02). Exports of services (0.66) and
technology (0.8) are highly correlated with GDP, which shows
that Singapore’s GDP is greatly impacted by trade services.
Similarly, results are observed for South Korea where GDP has a
strong positive correlation with FDI (0.44); however, services (0.69)
and technology (0.57) exports also play a major role in economic
development by having a positive correlation. In South Korea, travel/
tourism is strongly negatively correlated with GDP, which shows that
the impact of the tourism sector needs to be improved to further
strengthen the economy. Nevertheless, for Latin American countries,
both GDP and FDI (−0.12) have a negative correlation, which is one
of the reasons thatmany of the remaining countries in that region are
in the MIT. Another reason is the trade and exports that are weakly
correlated with GDP (0.13). These are areas where Latin American
countries need to focus on by increasing industrialization. Figure 4
shows further detailed comparisons of correlation between regions or
countries.

FIGURE 4 | Correlation analysis of different factors in different countries.
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Next step is to apply regression analysis to further check
regression results. Table 3 shows the regression between different
models with the significance between their relationship with the
GDP of each country. From Table 3, it can be seen that health
expenditure has a significant negative impact on Korea
(β = −2.281***), Grenada (β = −0.957***), Dominica
(β = −0.773***), Venezuela (β = −5.620**and Honduras
(β = −0.748**). Observing the developing countries as models for
escaping the MIT, their main focus is health expenditure, which is
not focused on by many Latin American countries. Similarly,
education expenditure has a significant impact on Argentina
(β = −3.864*) while other countries show a weak negative
relationship with GDP thus not having a major impact on
economic growth. High technology exports (trade services) have
a positive impact on the GDP in the high-income countries, Korea
(β= 0.062) and Singapore (β = 0.65), while LatinAmerican countries
show a negative relationship with GDP such as Argentina
(β = −0.353), Belize (β = −0.020*), Bolivia (β = −0.017), Jamaica
(β = −0.005), Dominica (β = −0.017*), Nicaragua (β = −0.009),
Grenada (β = −0.066) and Guyana (β = −0.044). Some Latin
American countries have a positive impact on the GDP such as
Dominican Republic (β = 0.007), Brazil (β = −0.207), Colombia (β =
0.042), Costa Rica (β = 0.008), Ecuador (β = 0.209), Guatemala (β =
0.001), Honduras (β = 0.02), St. Lucia (β = 0.015), Mexico (β =
0.015), Panama (β = 0.009), Paraguay (β = 0.127), Suriname (β =
0.028) and Venezuela, RB (β = 0.057). Services export have a
significant positive impact on the GDP in Korea, Rep. (β =
1.481***) while a similar impact is also observed in some Latin
American countries such as Mexico (β = −0.856***), Nicaragua (β =

0.815***), Panama (β = 0.930***), Dominica (β = 0.909***), Bolivia
(β = 0.511*), Venezuela, RB (β = 5.571*) and Costa Rica (β = 0.549*)
while a weak positive impact is observed in other countries. Travel
and tourism has a significant negative impact onKorea (β=−0.057*)
while a similar impact is also observed in some countries in Latin
America such as Colombia (β = −0.203*), Costa Rica (β = −0.069*),
Dominican Republic (β = −0.047*), Honduras (β = −0.161*) and
Panama (β = −0.030*). However, FDI has a weak negative impact on
the GDP in high-income countries Korea, Rep. (β = −1.352) and
Singapore (β = −1.452). Most of the Latin American countries show
a positive relationship [Brazil (β = 3.878), Colombia (β = 28.89),
Jamaica (β = −0.236) and St. Lucia (β = -0.494)], which is contrary to
high-income countries.

After getting significant factors from correlation and regression
models next step is to validate results by checking with panel ARDL
econometric model. Table 4 shows the results of long-run estimation
using PMG,MG andDFE estimators. The results of theHausman test
to choose either PMG or MG show that it is not significant, and thus
PMG is better thanMG.The results of theHausman test for PMGand
DFE show that PMG is still preferable as the p-value is higher than the
significance level. The results of the three estimators (PMG, MG and
DFE) inTable 5 and Table 5 are elaboratedmore in detail by keeping
GDP as the dependent variable. InTable 5 usingDFE, the relationship
of travel services, and FDI is negative while other factors show a
positive relationship with GDP. Similarly, using PMG travel services
(−1.07), services exports (−2.22) and education (−0.108) show a
negative relationship while other show a positive
relationship. Similarly for MG the results for FDI and Health is
negative on GDP while other factors are creating a positive impact on

TABLE 3 | Regression model for Latin American and other countries.

Country name Education
expenditure

Health
expenditure

Travel/Tourism
services

High technology
exports

Service
exports

FDI R2

Argentina −3.864* 1.085 −1.088 −0.353 1.099* −0.000 0.986***
Belize 0.141 0.468 0.131 −0.020* −0.226 0.001 0.971***
Bolivia 0.01 −0.702* −0.031 −0.017 0.511* 0.154 0.998***
Brazil −0.71 −1.63 −0.147 −0.207 0.357 3.878 0.987***
Colombia −27.73 0.136 −0.203* 0.042 0.318 28.89 0.991***
Costa Rica −0.305 −0.253 −0.069* 0.008 0.549* 0.745 0.997***
Dominica 0.154 −0.773*** −0.009 −0.017* 0.909*** 0.131 0.990***
Dominican
Republic

0.507 −0.661* −0.047* 0.007 0.686** -0.657 0.997***

Ecuador 0.997 −1.972 0.038 0.209 2.006 0.412 0.999*
Grenada 0.111 −0.957*** 0.003 0.000 1.213*** 0.131 0.994***
Guatemala −0.159 −3.230 0.043 0.001 2.522* 0.645 0.988***
Guyana 1.785 −2.708 0.00 −0.044 10.063 0.230 0.996
Honduras 0.141 −0.748** −0.161* 0.020 0.387 0.211 0.981***
Jamaica 0.530 0.196 −0.115 −0.005 0.048 −0.236 0.992***
S.Korea, Rep 0.512 −2.281*** −0.057* 0.062 1.481*** 0.171 0.990***
St. Lucia −0.106 −1.621 −0.009 0.015 1.421 −0.494 0.997
Mexico 1.395 0.243 0.012 0.015 −0.856*** −3.404* 0.995***
Nicaragua 0.155 −0.603 −0.034 −0.009 0.815*** 0.214 0.994***
Panama 0.154 −0.755* −0.030* 0.009 0.930*** 0.131 0.997***
Paraguay −0.558* −0.143 0.009 0.127 0.594 0.071 0.997***
Singapore −1.834 −0.345 −0.030 0.650 0.651 −1.452 0.998
Grenada −0.862 −0.290 −0.032 −0.066 0.477 −2.439 0.999*
Suriname 0.31 −1.554 −0.000 0.028 1.108 0.211 0.838*
Venezuela, RB 0.112 −5.620** 0.141 0.057 5.571* 0.117 0.960***

*, **, ***, **** represents the Significance level.
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TABLE 4 | Panel Data Analysis using MG, DFE, and PMG for high-income Countries.

Panel high-income countries

Mean group estimation (MG) Dynamic fixed effects (DFE) Pooled mean group estimation (PMG)

Parameters Coef Std.
Err

Z p > z Coef Std.
Err

Z p > z Coef Std.
Err

z p > z

Travel service −1.93E + 10 1.93E + 10 −1.00E + 00 3.17E−01 −5.13E+09 1.15E+10 −4.50E−01 6.54E−01 −1.07E+00 4.51E−01 −2.00E−01 8.41E−01
Services exports −3.55E + 00 2.04E + 00 −1.74E + 00 8.20E−02 2.50E−01 1.59E+00 1.60E−01 8.75E−01 −2.22E+00 2.67E+00 −1.10E−01 9.12E−01
FDI −6.24E−01 2.21E + 00 −2.80E−01 7.78E−01 −5.81E−01 1.16E+00 −5.00E−01 6.16E−01 1.39E+00 1.57E+00 −1.90E−01 8.49E−01
High technology exports 4.14E + 00 2.18E + 00 1.90E + 00 5.80E−02 9.65E−01 8.93E−01 1.08E+00 2.80E−01 4.26E+00 3.77E+00 −1.80E−01 8.57E−01
Education 1.85E−01 3.71E−01 −3.20E−01 7.46E−01 7.40E−01 2.07E−01 3.58E+00 0.00E+00 −1.08E−01 3.96E−01 1.83E+00 6.70E−02
Health −3.59E−02 1.11E−01 9.50E−01 3.43E−01 −2.51E−01 1.38E−01 3.08E+00 2.00E−03 6.05E−02 9.48E−02 1.15E+00 2.49E−01
Error correction estimation 2.05E−02 5.43E−02 3.80E−01 7.05E−01 −1.28E−01 1.79E−01 −7.10E−01 4.76E−01 3.99E−02 8.78E−02 −2.00E−01 8.44E−01

TABLE 5 | Panel Data Analysis using MG, DFE, and PMG for Latin American Countries.

Panel B (Latin American countries)

Mean group estimation (MG) Dynamic fixed effects (DFE) Pooled mean group estimation (PMG)

Parameters Coef Std.
Err

Z p > z Coef Std.
Err

z p > z Coef Std.
Err

z p > z

Travel Service −1.44E + 10 1.44E + 10 −1.00E + 00 3.17E−01 −5.81E + 09 1.07E + 10 −5.40E−01 5.88E−01 −1.07E + 00 4.51E−01 −2.36E + 00 1.80E−02
Services exports −2.34E + 00 1.88E + 00 −1.24E + 00 2.14E−01 2.20E−01 1.42E + 00 1.50E−01 8.77E−01 −2.22E + 00 2.67E + 00 −8.30E−01 4.07E−01
FDI −5.51E−01 1.57E + 00 −3.50E−01 7.25E−01 −5.04E−01 9.99E−01 −5.00E−01 6.14E−01 8.42E + 00 9.65E−01 8.90E−01 3.75E−01
High technology exports 3.03E + 00 1.90E + 00 1.60E + 00 1.10E−01 2.12E + 09 6.10E + 08 1.23E + 00 2.20E−01 1.81E−01 7.40E−01 1.13E + 00 2.59E−01
Education 9.53E + 08 9.53E + 08 1.64E + 00 1.02E−01 7.59E−01 1.75E−01 4.34E + 00 0.00E + 00 1.62E−01 −2.51E−01 6.40E−01 5.23E−01
Health 1.64E−01 2.63E−01 1.00E + 00 3.17E−01 7.59E−01 1.75E−01 −2.20E + 00 2.80E−02 1.27E−01 −1.28E−01 1.40E−01 8.86E−01
Error correction estimation −6.16E−02 9.06E−02 −6.80E−01 4.97E−01 −1.25E−01 1.53E−01 −8.20E−01 4.15E−01 3.99E−02 8.78E−02 4.50E−01 6.50E−01
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GDP. For Latin American countries using DFE, travel services and
FDI producing the negative impact while other factors are having
positive impact on GDP, For PMGmodel results for FDI are positive
for GDP, while travel services and other factors are creating negative
relationship. Using MG model, the travel services, services exports,
FDI are having negative impact on GDP.

Our main findings can be summarised as follows: 1) there is a
negative effect of the public debt ratio on economic growth, both
in the short-run and long-run, 2) the negative relationship is
more significant when we use common correlated factors to
address the issue of cross-sectional dependence, 3) an
asymmetric response of a change in public debt is found to be
significantly negative in the short-run. As such, rises in short-run
public debt negatively affect economic growth in the short-run
but falls public debt do not have a correspondingly positive effect
on economic growth in the short-run.

Kuchiki et al. (2017) highlights the same factors as our research,
i.e., tourism and service exports are important components in avoiding
the MIT and growing industrialization. Developing countries
purchase relatively modern technical equipment from developed
countries and introduce comparatively advanced management
concepts to develop their somewhat backward industries, improve
capital accumulation, and improve technical efficiency.However, once
a country develops to a certain stage, new difficulties will appear, such
as the establishment of technical barriers by advanced countries, the
formulation of trade barriers, the implementation of intellectual
property protection, and the change of world trade rules and
regulations. Sim and Ali (1998) agree with our study, which shows
that trade is important and export-oriented economies can improve
production technology by imitating foreign products in the early
stages. Therefore, the improvement of the R&D capabilities of
enterprises and the core competitiveness of products will help
them in a smooth transition. Judging from indicators such as the
proportion of R&D investment in each country and the number of
scientific researchers, countries such as Japan, South Korea, and
Singapore have successfully broken through the MIT by having
higher economic and social benefits from R&D investment, while
Brazil, Mexico, and other Latin American countries are trapped due to
the contribution of low scientific research for economic development
within the MIT countries (Lall, 2000). The study of Dahlman et al.
(1987) shows that FDI and industrialization for labor growth plays an
important role in a country’s development. Therefore, these countries
stay in a low-end position for a long time when participating in global
trade and are unable to achieve sustained and stable economic growth
across the middle-income quagmire. Due to the lack of core
competitiveness, the ability of low- and middle-income countries
to take risks is relatively low. In the face of external risks such as
short-term economic downturn, technological monopoly, and the
rewriting of trade rules in developed countries, the domestic economy
is turbulent, and accumulated political and social conflicts erupt
(Austin, 2002). On the other hand, our results compare with
Mahul et al., who highlight that the labor force and new local
products are important factors for avoiding the MIT. The MIT
shows that countries that rely on low value-added and high-
polluting low-end products have the risk of an internal industrial
structure transformation, and the external risk of increasing the
division of labor in the global value chain (Mahul and Stutley, 2010).

Some countries in Latin America and Africa as well as other
countries caught in the MIT have a relatively single export
structure, a high proportion of low value-added primary
product exports, and limited export targets (Clarke et al.,
2003) (Agosin and Bravo-Ortega, 2009). Our study highlights
the similar fact that the trade component is avoided in these
countries. The uncertainty of the world economy and the
economic instability of exporting countries will cause price
fluctuations of the export products of these countries. During
the downturn of the world economy, since there is no bargaining
power, the foreign exchange earnings of low- and middle-income
countries will be greatly weakened, and the fragile domestic
economic system will definitely be implicated (Sabel et al.,
2012). Such a vicious circle will cause these countries to be
unable to upgrade their industrial structures and to be at the
lower end of the globalized division of the labor system, thus
preventing them from entering the ranks of high-income
countries. For developing countries, foreign trade is an
important factor in promoting economic growth. Basically, it
is necessary to develop foreign trade with comparative advantages
based on the national conditions of the country (Fahim et al.,
2021). It is necessary to speed up the transformation of the
industrial structure, vigorously develop tertiary industry, and
accelerate the change of industrial focus. In the process of
developing tertiary industry, the importance of secondary
industry cannot be ignored. Secondary industry is still an
important sector for creating social wealth and stabilizing
economic growth (Besedes and Blyde, 2010).

3.1 Policy Recommendations
This study is significant for middle-income countries by focusing
on different factors which can help in avoiding the MIT. A few
suggestions and policy recommendations for stockholders and
government are:

3.1.1 Strengthen Exports
This can be done by managing capital goods and attaching
importance to the export of high-tech products. The content of
capital goods is great, and its export price plays an important role in
regulating the development of a country’s foreign trade. It not only
intuitively reflects the laws of internal industrial production, but also
acutely reflects changes in the external economy. There-fore, only by
strengthening reform of the capital goods export management
system can economic and technological value be exerted more
effectively, and greater wealth can be created. In addition, capital
goods with high technology content are evenmore critical in current
international competition. The development of economic
globalization has promoted the development of the diversification
of global trade. There are increasinglymore trade exchanges between
countries, which promote the development of world trade towards a
virtuous circle and accelerate the flow of world factor resources. The
research and development, production and sales of high-tech
products has become a worldwide industry. High-tech products,
as a means of further strengthening the competition of a country’s
foreign trade in capital goods, are rising in status in today’s
international trade. In the current world situation, developing
countries such as China, which are on the disadvantaged side of

Frontiers in Environmental Science | www.frontiersin.org August 2022 | Volume 10 | Article 93740511

Galvan et al. Evidence of the Middle-Income Trap in Latin America

323

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


scientific and technological resources, while exerting their
comparative advantages of the “catch-up effect”, absorb the
advanced scientific research achievements of developed countries,
improve scientific literacy, increase production skills, and cultivate
independent innovation capabilities, using the limited resources of
the country to harvest greater output and optimize the industrial
structure.

3.1.2 Consumer Goods and Industrialization
In the world market, highly competitive industrial products are
mainly concentrated in labor-intensive items such as textiles, toys,
and consumer goods. These products have low added value and
short product chains, which are not conducive to China’s
competitive advantage in the international market. The export
growth of consumer electronics and electrical appliances in
recent years shows that China is making great efforts to improve
the added value and foreign exchange earning capacity of traded
products, and to participate more actively in the division of labor in
the global value chain. The current global trade pattern is
undergoing profound changes; on the one hand, European and
American countries have implemented the strategy of
“industrialization” to seize the commanding heights of
international trade; on the other hand, emerging economies such
as India and Vietnam have used their comparative ad-vantages in
labor prices to accelerate the process of industrialization. From the
perspective of long-term development, China’s export of consumer
goods must find a new development path, reshape new advantages
in international competition, realize industrial upgrading, and
become a “manufacturing power.”

3.1.3 Foreign Direct Investment Involvement for
Quality Products
The employment population and trade activities involved in
processing trade are highly considerable. Therefore, while
stabilizing the advantages of traditional processing trade,
countries should enhance the innovation ability of processing
trade, cultivate new advantages in processing trade, change the
original pattern of relying solely on abundant labor to obtain
comparative advantages, allowing enterprises to better participate
in the global division of labor, and improving the awareness of
independent R&D. Foreign direct investment can help in
improving the quality of labor by R&D and continuous
training in the latest methods. The production of high-end
industrial products is of great significance to the promotion of
China’s trade status and the realization of sustainable economic
development.

4 CONCLUSION

This study compares and analyzes different criteria for
determining the MIT in Latin American countries and
provides possible reasons for the MIT. Our research finds that
the social and economic development of Latin American MIT
countries contains some com-mon characteristics, and the
findings help us understand the mechanism of the “middle-
income trap.” In South Korea and Singapore, through an

analysis of the proportion of trade exports of various types of
export commodities, a reasonable explanation for the difference
in the export commodity structure between “middle-income
trap” and non-“middle-income trap” countries is obtained. For
non-“middle-income trap” countries, the industrial upgrading
process seems to be consistent with the flying geese pattern of
development. It follows that industrial upgrading through
backward linkages between consumer goods and capital goods
is more successful in high-income countries that are not in MITs.
For countries that are in MITs, there is a tendency to rely on
exports of primary products, while industrialization is driven by
forward linkages of finished products. A weak industrial base is a
possible factor in the MIT. These analyses can describe the MIT.
The policy implications of the findings of this study are very
direct. It is necessary to develop the consumer goods industry and
maintain competitiveness in promoting the up-grading of
industries to capital goods through backward linkages.
Although there are many problems in the economic
development of Latin America, these difficulties can be
improved through economic and social policies. Based on the
reasons analyzed above, Latin American governments can
implement the following policies:

• Raise the national education level and train workers with
advanced technology.

• Increase scientific research funding and encourage R&D
innovation.

• Promote industrial upgrading.
• Create a favourable environment for foreign investment and
encourage overseas in-vestment to stimulate the economy.

• Improve the role of taxation; allow taxation to facilitate the
reduction of the gap be-tween the rich and the poor and
increased social welfare.

Future work of this study is to increase the variables and find
in more dept relationship to improve the economic growth
substantially.
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