
Edited by  

Rinku Sharma, Josh Clevenger, Mallana Gowdra Mallikarjuna, 

Sudeepto Bhattacharya and Manish Kumar Pandey

Published in  

Frontiers in Genetics

Application of network 
theoretic approaches in 
biology

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/research-topics/23609/application-of-network-theoretic-approaches-in-biology
https://www.frontiersin.org/research-topics/23609/application-of-network-theoretic-approaches-in-biology
https://www.frontiersin.org/research-topics/23609/application-of-network-theoretic-approaches-in-biology


August 2023

Frontiers in Genetics frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3167-9 
DOI 10.3389/978-2-8325-3167-9

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


August 2023

Frontiers in Genetics 2 frontiersin.org

Application of network theoretic 
approaches in biology

Topic editors

Rinku Sharma — Channing Division of Network Medicine, Brigham and Women’s 

Hospital, United States

Josh Clevenger — HudsonAlpha Institute for Biotechnology, United States

Mallana Gowdra Mallikarjuna — Indian Agricultural Research Institute (ICAR), India

Sudeepto Bhattacharya — Shiv Nadar University, India

Manish Kumar Pandey — International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT), India

Citation

Sharma, R., Clevenger, J., Mallikarjuna, M. G., Bhattacharya, S., Pandey, M. K., 

eds. (2023). Application of network theoretic approaches in biology. 

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-3167-9

The authors declare that the research was conducted in the absence of any 

commercial or financial relationships that could be construed as a potential 

conflict of interest.

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3167-9


August 2023

Frontiers in Genetics frontiersin.org3

04 Editorial: Application of network-theoretic approaches in 
biology
Mallana Gowdra Mallikarjuna, Manish Kumar Pandey, Rinku Sharma, 
Josh Clevenger and Sudeepto Bhattacharya

07 A Web Tool for Consensus Gene Regulatory Network 
Construction
Chiranjib Sarkar, Rajender Parsad, Dwijesh C. Mishra and Anil Rai

13 Genome-Wide Identification and Functional Characterization 
of the Chloride Channel TaCLC Gene Family in Wheat 
(Triticum aestivum L.)
Peijun Mao, Yonghang Run, Hanghui Wang, Changdong Han, 
Lijun Zhang, Kehui Zhan, Haixia Xu and Xiyong Cheng

28 PolyReco: A Method to Automatically Label Collinear Regions 
and Recognize Polyploidy Events Based on the K

S
 Dotplot

Fushun Wang, Kang Zhang, Ruolan Zhang, Hongquan Liu, 
Weijin Zhang, Zhanxiao Jia and Chunyang Wang

37 StarGazer: A Hybrid Intelligence Platform for Drug Target 
Prioritization and Digital Drug Repositioning Using Streamlit
Chiyun Lee, Junxia Lin, Andrzej Prokop,  
Vancheswaran Gopalakrishnan, Richard N. Hanna, Eliseo Papa,  
Adrian Freeman, Saleha Patel, Wen Yu, Monika Huhn,  
Abdul-Saboor Sheikh, Keith Tan, Bret R. Sellman, Taylor Cohen, 
Jonathan Mangion, Faisal M. Khan, Yuriy Gusev and Khader Shameer

49 Prediction of herbal medicines based on immune cell 
infiltration and immune- and ferroptosis-related gene 
expression levels to treat valvular atrial fibrillation
Feng Jiang, Weiwei Zhang, Hongdan Lu, Meiling Tan, Zhicong Zeng, 
Yinzhi Song, Xiao Ke and Fengxia Lin

64 Coexpression network analysis of human candida infection 
reveals key modules and hub genes responsible for 
host-pathogen interactions
Surabhi Naik and Akram Mohammed

75 A systems level approach to study metabolic networks in 
prokaryotes with the aromatic amino acid biosynthesis 
pathway
Priya V. K and Somdatta Sinha

86 Analysis of basic pentacysteine6 transcription factor involved 
in abiotic stress response in Arabidopsis thaliana
Zhijun Zhang, Tingting Zhang and Lei Ma

98 KISL: knowledge-injected semi-supervised learning for 
biological co-expression network modules
Gangyi Xiao, Renchu Guan, Yangkun Cao, Zhenyu Huang and Ying Xu

111 CNVs in 8q24.3 do not influence gene co-expression in 
breast cancer subtypes
Candelario Hernández-Gómez, Enrique Hernández-Lemus and 
Jesús Espinal-Enríquez

Table of
contents

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/


Editorial: Application of
network-theoretic approaches in
biology

Mallana Gowdra Mallikarjuna  1*, Manish Kumar Pandey2,
Rinku Sharma1,3, Josh Clevenger4 and Sudeepto Bhattacharya5

1Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India, 2The International
Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India, 3Channing Division of Network
Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States,
4HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States, 5Department of Mathematics,
Shiv Nadar University, Greater Noida, India

KEYWORDS

gene regulatory network, co-expression analyses, network theoretic approaches,
biology, protein–protein interaction, systems biology

Editorial on the Research Topic
Application of network theoretic approaches in biology

Introduction

Biological complexity explicitly occurs through non-linear interactions mostly
entangled in nature. This complexity comprises many interactions among entities
(viz., genes, proteins, metabolites, and species) at various spatial and temporal scales
as complex adaptive systems showing characteristic features like self-organisation,
modularity, emergence, non-linear interactions, collective response, and adaptation.
The theory of complex networks provides an appropriate formal framework for
modelling of such complex systems in order to obtain meaningful insights into
biological complexity at the local or gene family level (Mallikarjuna et al., 2020;
Mallikarjuna et al., 2022) and at the global scale (Sharma et al., 2021). The ocean of
biological data generated by high-throughput technologies in the current genomics era
have led to the application of various network-theoretic empirical investigations, in
which the formal framework is used to obtain meaningful insights into system
complexity. Our effort to pool studies on network-theoretic approaches in biology to
the understanding of biological complexity has resulted in the compilation of ten
research studies in the current Research Topic entitled Application of network
theoretic approaches in biology, which are broadly categorised and highlighted under
the following headings.

Methods and tools

The availability of various user-friendly approaches and software applications has
expanded the use of network-theoretic approaches to understand the complex biological
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process at individual and systems levels. Four articles in the
current Research Topic deal with web tools and methods. A user-
friendly web tool for the construction of gene regulatory
networks, known as the “Consensus Approach for Gene
Regulatory Network Construction” (CAGNC), was developed
using the R programming language. CAGNC provides a
network file with the edge scores representing significant
interactions between each gene pair (Sarkar et al.). A new
method, PolyReco, was developed to provide a reference
model for processing, with automatic labelling of collinear
regions and recognition of polyploidy events (Wang et al.).
Lee et al. propose a hybrid intelligence platform, StarGazer
(https://github.com/AstraZeneca/StarGazer), which provides
an interactive dashboard that allows rapid searching for
potential novel drug targets and the use of repositioning
strategies via the Streamlit tool. Co-expression studies aid in
the discovery of network patterns, functional module
identification, and trait-linked marker mining at the system
level. Finally, Xiao et al. present a knowledge-injected semi-
supervised learning (KISL) method (https://github.com/
Mowonhoo/KISL.git) for the identification of outstanding
modules in a co-expression network. The KISL approach
utilises a priori biological information and semi-supervised
clustering to solve the issues present in contemporary
clustering approaches, such as weighted gene co-expression
network analysis (WGCNA).

Plant and microbial systems

Two articles on plant systems are included in the current Research
Topic, the first reporting on an investigation of chloride channels
(CLCs) and the second presenting a study on the basic
pentacysteine6 transcription factor. CLCs are known to regulate the
pH of Golgi networks in plants. Here, an effort was made to identify the
CLC gene family members in the recently sequenced wheat gnome
(Fecht-Bartenbach et al., 2007). A total of 23CLCswere identified in the
wheat genome and exhibited a functional response to low-nitrogen and
salt stresses (Mao et al.). Furthermore, genome-wide co-expression
analysis in Arabidopsis thaliana indicated a key regulatory
BPC6 regulating responses to various abiotic stresses (Zhang et al.).

In the domain of microbial systems, an agglomerative method
consisting of complex network analysis and flux balance analyses
(FBAs) was employed to examine the energy-intensive aromatic
amino acid biosynthesis pathway (tryptophan, tyrosine, and
phenylalanine) in 29 free-living bacteria and archaea species. The
study identified several common hubs between the connected and
the whole-genome networks, showing that the connected pathway
network can act as a proxy for the whole-genome network in
prokaryotes (Priya and Sinha).

Human systems

At present, the utilization of network-theoretic approaches
plays a significant role in unravelling intricate regulatory

patterns and hubs within the fields of disease genomics and
systems biology in humans (Barabási et al., 2011). In this
Research Topic, one such study demonstrated the
application of network-theoretic approaches to the
identification of herbal medicines that act on immune cell
infiltration and immune- and ferroptosis-associated gene
expression levels to treat valvular atrial fibrillation. The
study concluded that the herbs with rich curcumin content
and resveratrol biochemical compounds (viz., Rhizoma
Curcumae Longae and Curcuma kwangsiensis) mitigate
myocardial fibrosis to improve valvular atrial fibrillation by
modulating the TGFβ/Smad signalling pathway (Jiang et al.).
Co-expression analysis is most widely employed to reveal
highly synergistic sets of genes, functional modules, and hub
genes at a systems level. Here, co-expression analysis of human
Candida infection revealed the important modules and eight
hub genes (JUN, ATF3, VEGFA, SLC2A1, HK2, PTGS2,
PFKFB3, and KLF6) that were found to be enriched with
hypoxia, angiogenesis, vasculogenesis, hypoxia-induced
signalling, cancer, diabetes, and transplant-related disease
pathways mediating host–pathogen interactions (Naik and
Mohammed). Furthermore, co-expression studies with four
molecular subtypes of breast cancer (viz., luminal A, luminal
B, Her2, and basal) showed no correlations between copy
number variations (CNVs) and the co-expression pattern of
the genomic region 8q24.3 (Hernández-Gómez et al.).

Conclusion and perspectives

In conclusion, our Research Topic presents various
statistical methods and tools expanding the utility of
network-theoretic approaches. Other articles demonstrate
the application of various network approaches in developing
our understanding of biological phenomena in plant,
microbial, and human systems. Nevertheless, for large-scale
applications and utilisation of network approaches in biology,
there is a further need to undertake some of the following
measures, although this is not an exhaustive list. First, more
efforts should be made to develop biologist-friendly servers
and tools for various types of network analysis, which can allow
us to derive meaningful information from the ocean of omics
data. Second, there is a need for the development of system-
specific network approaches in order to understand species
interactions from complex ecological and evolutionary
perspectives. Finally, validation of major hubs through
genetic and in-depth network-theoretic approaches could
demonstrate the biological significance of network-theoretic
studies in biology.
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A Web Tool for Consensus Gene
Regulatory Network Construction
Chiranjib Sarkar1*, Rajender Parsad2, Dwijesh C. Mishra2 and Anil Rai2
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Gene regulatory network (GRN) construction involves various steps of complex
computational steps. This step-by-step procedure requires prior knowledge of
programming languages such as R. Development of a web tool may reduce this
complexity in the analysis steps which can be easy accessible for the user. In this study,
a web tool for constructing consensus GRN by combining the outcomes obtained from four
methods, namely, correlation, principal component regression, partial least square, and
ridge regression, has been developed. We have designed the web tool with an interactive
and user-friendly web page using the php programming language.We have usedR script for
the analysis steps which run in the background of the user interface. Users can upload gene
expression data for constructing consensus GRN. The output obtained from analysis will be
available in downloadable form in the result window of the web tool.

Keywords: web tool, PHP, fisher’s weighted method, consensus approach, gene regulatory network

1 INTRODUCTION

Gene regulatory network (GRN) construction is important for understanding complex biological
processes. GRNs are represented as the nodes connected with edges where the nodes indicate the
genes and each edge indicates the strength of the relationship between the genes. GRNs are
constructed from high-dimensional gene expression data containing thousands of genes with
expression values at different conditions or experiments. It is a computationally challenging task
for analyzing high-dimensional gene expression data in a stepwise workflow. Constructing a GRN
from gene expression data involves various steps of data analysis. The steps involved in GRN
construction required use of computational techniques. Prior knowledge of the programming
language is required for analyzing gene expression data as well as network construction. There
are different statistical methods proposed for inferring GRN from high-dimensional expression data,
and these methods are implemented using different R packages available in the CRAN depository.
Some of the proposed statistical methods are implemented with online web tools. R packages like
“BNArray” (Chen et al., 2006), “minet” (Meyer et al., 2008), “dna” (Gill et al., 2014), and “ENA”
(Allen, 2014) are implemented based on the Bayesian network, mutual information, differential
network analysis methods, and ensemble network aggregation, respectively. Instead of executing a
script for each step of GRN construction, web tool development may provide easy accessibility to the
user. There are some web tools developed for GRN construction like MIDER (Villaverde et al., 2014),
NetworkAnalyst (Zhou et al., 2019), CoExpNetViz (Tzfadia et al., 2016), and GeNeCK (Zhang et al.,
2019). For easy accessibility and to provide a more user-friendly procedure, we have introduced a
web tool for constructing consensus GRN. It allows users to provide their own gene expression data
to get the significant edges and nodes of the GRN. In our web tool, we have used Fisher’s weighted
method for combining the output of GRN obtained from correlation, principal component regression
(PCR), partial least square (PLS), and ridge regression (Sarkar et al., 2020). The data analysis part of
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computing the edge score from correlation, PCR, PLS, and ridge
regression has been written in R programming language. The web
pages were designed using the HTML and php languages with a
user-friendly interface. Users can provide the input file in
Microsoft Excel format, and the output of significant edges in
each step will also be provided in Excel format.

2 PROGRAM DESCRIPTION AND
METHODS

Our developed web tool mainly follows three steps—data
uploading, data analysis, and combining the outputs of four
methods. The input data of gene expressions can be provided
in comma separated value (.csv) file format or in Microsoft excel
format containing the list of genes in rows and the conditions or
various experiments in columns. The user-uploaded input data
are renamed with the date and time of data uploading to avoid
repetition in the uploaded file name. The edge scores are
computed using four methods, i.e., correlation, PCR, PLS, and
ridge regression methods. Probability values are computed for edges

from the mixture distribution of edge scores obtained from each
method. The probability values are combined using Fisher’s weighted
method (Figure 1). Different steps of analysis are done using R

FIGURE 1 | Workflow of web tool for consensus GRN construction.

FIGURE 2 | Three layer architecture of web tool for consensus GRN
construction.
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programming. Few R packages like “dna” and “fdrtool” are used in
writing the R script for the analysis. The outputs of the analysis are
available in downloadable format in the result tab. Each output file
contains the names of the interacting genes and the connectivity score.

2.1 Design of the Web Tool
The web tool has been designed using standard three-layer web
architecture (Figure 2). The three layers of web architecture are:

• Layer I—user interface layer (UIL)
• Layer II—application layer (APL)
• Layer III—database layer (DBL)

2.1.1 User interface layer
The UIL for the web tool was developed using HTML (Hyper
Text Markup Language), CSS, and JavaScript. The UIL consists of
forms to interact with users. In UIL, users can upload the gene
expression dataset in excel format and download the result file.

2.1.2 Application Layer
The APL of the web tool has been designed using php and R code.
The R script for constructing GRN has been integrated with php
for analysis of gene expression data. The R script is executed in
the background of the web tool which is not visible to the user.

2.1.3 Database Layer
The DBL has been designed as server side file storage. This layer
stores the user-provided input file, the intermediate files
generated in R script execution, and the final result file.
Intermediate files are like files containing a pairwise scoring
matrix from four individual methods: file containing p-value,
fdr value, and Fw score.

The php scripts and R scripts are given in the
Supplementary File.

2.2 Data Analysis
The expression values of genes in the input data file are considered for
computing the connectivity score of each pair of genes using
correlation, PCR, PLS, and ridge regression. Bootstrap samples are
drawn from the input dataset. The “Sample” function has been used to
draw bootstrap samples in R script. For each bootstrap sample, the
connectivity score is computed using the fourmethods. The probability
values of pair of genes are computed to measure the statistical
significance of the connectivity of gene pair. The probabilities of
gene pairs are obtained from the mixture distribution of the
connectivity scores of all possible pairs of genes (Efron, 2004).

The correlation-based connectivity score (Gill et al., 2010) is:

Sik � xT
i xk������������(xT

i xi)(xT
kxk)√ (1)

where xj and xk are the standardized expression values of the ith

and kth genes, respectively, and Sik is the connectivity score
between the ith and kth genes.

The PCR-based connectivity score (Pihur et al., 2008) is:[sg1, ..., sg,g−1, sg,g+1, ...sgp]T � Vβ̂g (2)

where sgp is the connectivity score between the gth and pth genes and
V is thematrix of eigen vectors computed from gene expression values.

The PLS-Based Connectivity Scoring Is

ŝik �
∑
l�1

v

β̂ilc
(l)
ik +∑

l�1

v

β̂klc
(l)
ik

2
(3)

where

β̂il � (t(l)Ti t(l)i )−1
t(l)

T

i xi

FIGURE 3 | Interface of homepage of web tool.
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t(l)i � ∑p
k≠ i

c(l)ik X
(l)
k

c(l)ik � X(l)Txi�����������
xT
i X(l)X(l)Txi

√
The ridge regression-based connectivity score (Gill et al.,

2010) is:

[sg,1, ..., sg,g−1, sg,g+1, ..., sg,p]T � ( ~XT

g
~Xg + λI)−1

~Xgxg (4)

where sgp is the connectivity score between the gth and pth genes.
The computation of the connectivity scores was implemented

using the “dna” R package.

The mean and standard error (SE) are calculated as (Sarkar
et al., 2020):

�sik �
∑
i≠ k

n ∑
j�1

B

sikj

B
(5)

Se � 1�����
B − 1

√
���∑n
i≠ k

√√ ∑B
j�1
(sikj − �sik)2 (6)

where B is the number of Bootstrap samples.
The computed t-test statistic is as follows:

t � �sik
Se

(7)

FIGURE 4 | The upload option in analysis tab of web tool.

FIGURE 5 | Download tab of results obtained from four methods.
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For the correlation-based scoring method, the t-test statistic is
computed as follows:

t � �sik
�����
n − 2

√�����
1 − �s2ik

√ (8)

The t-statistic values are used for mixture distribution
estimation using the “fdrtool” R package (Klaus and Strimmer,
2015).

The p-values are combinedusing Fisher’sweightedmethod (Hedges
and Olkin, 2014) following the steps as given in Sarkar et al. (2020):

Fw � −2 ln(p1 × p2 × p3 × p4) (9)

2.3 Implementation
The interface of our web tool has four tabs “Home,” “Analysis,”
“Help,” and “Contact Us” (Figure 3). The “Analysis” tab has an
option to upload gene expression data (Figure 4). The input file
format of gene expression values should be in comma-separated
values (csv) or Excel with genes in rows and conditions in columns.
The output files are available in Excel format in the download tab of
each method (Figure 5). The output file consists of edges,
connectivity scores of edges, fdr values, and p-values of each
edge. The p-values of edges computed from the four methods
are combined using Fisher’s weighted method, and the combined
result is available in downloadable format (Figure 6). The final
output file contains the lists of the significant edges with F-score.
The final result file contains the edges for consensus GRN.

DISCUSSION

In this study, a web tool named “Consensus Approach for
Gene Regulatory Network Construction” for GRN

construction has been developed which provides the
network file containing the edge scores of significant
interactions of gene pairs. The output file can be
visualized using network visualization tools like
Cytoscape. In our web tool, we provide the output file
containing all the score and statistic values obtained from
four individual methods which can also be visualized in
Cytoscape. The web tool is easy to use in that it does not
require any prior knowledge of R programming and
computational steps. It will be very easy for users to
construct GRN from gene expression data.
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Genome-Wide Identification and
Functional Characterization of the
Chloride Channel TaCLC Gene Family
in Wheat (Triticum aestivum L.)
Peijun Mao, Yonghang Run, Hanghui Wang, Changdong Han, Lijun Zhang, Kehui Zhan,
Haixia Xu* and Xiyong Cheng*

Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops,
College of Agronomy, Henan Agricultural University, Zhengzhou, China

In plants, chloride channels (CLC) are involved in a series of specific functions, such as
regulation of nutrient transport and stress tolerance. Members of the wheat Triticum
aestivum L. CLC (TaCLC) gene family have been proposed to encode anion channels/
transporters that may be related to nitrogen transportation. To better understand their
roles, TaCLC family was screened and 23 TaCLC gene sequences were identified using a
Hidden Markov Model in conjunction with wheat genome database. Gene structure,
chromosome location, conserved motif, and expression pattern of the resulting family
members were then analyzed. Phylogenetic analysis showed that the TaCLC family can be
divided into two subclasses (I and II) and seven clusters (-a, -c1, -c2, -e, -f1, -f2, and -g2).
Using a wheat RNA-seq database, the expression pattern of TaCLC family members was
determined to be an inducible expression type. In addition, seven genes from seven
different clusters were selected for quantitative real-time PCR (qRT-PCR) analysis under
low nitrogen stress or salt stress conditions, respectively. The results indicated that the
gene expression levels of this family were up-regulated under low nitrogen stress and salt
stress, except the genes of TaCLC-c2 cluster which were from subfamily -c. The yeast
complementary experiments illustrated that TaCLC-a-6AS-1, TaCLC-c1-3AS, and
TaCLC-e-3AL all had anion transport functions for NO3

− or Cl−, and compensated the
hypersensitivity of yeast GEF1 mutant strain YJR040w (Δgef1) in restoring anion-sensitive
phenotype. This study establishes a theoretical foundation for further functional
characterization of TaCLC genes and provides an initial reference for better
understanding nitrate nitrogen transportation in wheat.

Keywords: wheat (Triticum aestivum L.), CLC, gene family, nitrate nitrogen, functional characterization

INTRODUCTION

Nitrogen is the most important nutrient element for plant growth and development. The
composition of more complex compounds such as proteins, nucleic acids and enzymes, which
are crucial for plant functioning, is inseparable from nitrogen itself (Lv et al., 2021). Despite its
benefits, excessive nitrogen application brings serious negative effects, including ground water nitrate
pollution and eutrophication of rivers and lakes. According to available statistical data, 25 million
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tons of nitrogen fertilizer are applied annually in China, three
times the world average. However, the utilization efficiency of
nitrogen fertilizer has only reached 30% of the applied amount (Ju
and Zhang, 2017). Given this, improving nitrogen use efficiency is
of great significance to crops, as better efficiency will reduce
nitrogen fertilizer pollution in surrounding ecosystems.

The main forms of nitrogen absorbed and used by most plants
are nitrate nitrogen (NO3

−) and ammonium nitrogen (NH4
+). In

plants, ammonium nitrogen absorption is mainly regulated by the
ammonium transporter (AMT) genes (Li et al., 2017).
Conversely, nitrate nitrogen uptake is mainly regulated by four
types of NO3

− transporters: low affinity nitrate transporter NRT1,
high affinity nitrate transporter NRT2, chloride channel protein
CLC, and slow anion channel related homologue SLAC1/SLAH
(Liu R. et al., 2020). Of these, the chloride channel (CLC) gene
family is widely distributed across a variety of archaea, microbial
fungi, mammals, and plants (Park et al., 2017). The members of
the CLC family were first discovered in Torpedo California
(electric ray fish) by White and Miller in 1979 (White and
Miller, 1979). The first family gene was isolated from marine
ray (Torpedo marmorata) by Jentsch in 1990 and named CLC-0
(Jentsch et al., 1990). Later, it was discovered that the CLC family
genes also existed in most plants, including Arabidopsis thaliana,
Nicotiana tabacum, Oryza sativa (L.), Poncirus trifoliata (L.) Raf.,
Zea mays (L.), and Glycine max (Lurin et al., 1996; Diedhiou and
Golldack, 2006; Lv et al., 2009;Wang et al., 2015;Wei et al., 2015).
Plants CLC proteins play important roles in turgor maintenance,
stomatal movement, ion homeostasis, as well as enhancing
drought and salt tolerance, and increasing nitrate
accumulation (Wei et al., 2015; Zhang et al., 2018; Liu C.
et al., 2020).

Structurally, the identified CLC genes all have a highly
conserved voltage-gated chloride channel (Voltage-gate CLC)
domain and two conserved Cystathionine beta synthase (CBS)
domains (Xing et al., 2020). At present, the function and
classification of Arabidopsis CLC family genes have been
extensively and deeply studied. Specifically, members of the
AtCLC gene family have been divided into two subclasses (I
and II) and 7 subfamilies (-a, -b, -c, -d, -e, -f, and -g) (Nedelyaeva
et al., 2020). Subclass Ⅰ is mainly composed of AtCLC-a/-b/-c/-d/-
g subfamily, while subclass II is composed of AtCLC-e/-f
subfamily (Nedelyaeva et al., 2020). In addition, it was found
that subclass I contained the patterns GxGIPE (I), GKxGPxxH
(II), and PxxGxLF (III). Comparatively, subclass II did not
contain any of the above conserved motifs. When x in the
conserved region of the gene GxGIPE (I) is a proline (P, Pro)
residue, NO3

− is preferentially transported. However, when x is a
serine (S, Ser) residue, Cl− is preferentially transported. Past work
has also shown that when the x in the conserved region (II) is a
conservative-gated glutamate (E, Glu) and the fourth residue in
the conserved region (III) is proton glutamate (E, Glu) residue,
the protein function is a CLC antiporter rather than a CLC
channel (Subba et al., 2021). The CLC family genes are not only
comprised of channel proteins for anions such as chloride ion and
nitrate ion, but also plays vital functional roles in regulating
stomatal movement, maintaining both the potential balance and
proton gradient in plant cell, transporting and accumulating

nutrients in plants (Zifarelli and Pusch, 2010). In Arabidopsis,
the AtCLC-a gene is located on the vacuolar membrane of plant
vacuole and functions as a NO3

−/H+ exchanger (De Angeli et al.,
2006; Wege et al., 2014). The C-terminus of AtCLC-a can be
combined with ATP and nitrate/proton alkynol to regulate the
specific accumulation of nitrate in the vacuole (De Angeli et al.,
2009). AtCLC-b is located on the vacuolar membrane as the
second vacuolar NO3

−/H+ exchanger (Whiteman et al., 2008; von
der Fecht-Bartenbach et al., 2010). AtCLC-c is involved in
stomatal movement and associated with salt tolerance (Harada
et al., 2004; Jossier et al., 2010).AtCLC-dmediates the transport of
anions such as Cl− or NO3

−, and regulates the luminal pH of the
Golgi network (von der Fecht-Bartenbach et al., 2007). AtCLC-e
and AtCLC-f are related to the thylakoid and Golgi membranes,
respectively (Marmagne et al., 2007). AtCLC-a, AtCLC-b, and
AtCLC-d play important roles in regulating root elongation
(Moradi et al., 2015). OsCLC1 improves rice drought tolerance
and increases yield (Um et al., 2018). The overexpression of the
maize gene ZmCLC-d in Arabidopsis thaliana allows for better
tolerance to cold, drought and salt stresses by an increased
germination rate, root length, plant survival rate, antioxidant
enzyme activities, and a reduced accumulation of Cl− in
transgenic plants (Wang et al., 2015).

Wheat (Triticum aestivum L.) serves as the staple food for 30%
of global population, and is an important cereal crop with a high
demand for nitrogen fertilizer to enable the grain protein
accumulation (Zörb et al., 2018). As a preferred nitrate crop,
wheat mainly absorbs nitrate nitrogen as its nitrogen source.
Studies showed that wheat biomass under conditions of either
single ammonium nitrogen or single nitrate nitrogen was lower
than when combined ammonium nitrogen and nitrate nitrogen
were used (Ijato et al., 2021). Single ammonium nitrogen has a
toxic effect on wheat, while nitrate nitrogen alleviates part of this
toxic effect (Wang et al., 2016). The CLC genes have been shown
to be related to the transportation of nitrate. However, the
functional roles of the Triticum aestivum L. CLC (TaCLC)
genes remain less well known. In this study, 23 wheat TaCLC
genes were identified by a genome-wide search using released
wheat genome data. We analyzed the phylogeny as well as
conserved motifs in TaCLC proteins, gene structures, and
expression patterns under stress condition. In addition, the
part of TaCLC genes were functionally characterized in yeast
mutant. Our study will lay a preliminary foundation for future
research into the functions of TaCLCs gene.

MATERIALS AND METHODS

Identification of Triticum aestivum L. CLC
Gene Family Members in Wheat
Wheat genome (Triticum_aestivum.IWGSC.dna.toplevel.fa,
2021), GFF3 file (Triticum_aestivum.IWGSC.49.gff3, 2021),
and protein sequences (Triticum_aestivum.IWGSC.pep.all.fa,
2021) were downloaded from the ensembl plant website
(http://plants.ensembl.org/index.html).

The Pfam protein family database (http://pfam.xfam.org/) was
used to search the ID number of the CLC gene family and its
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distribution across species (Finn et al., 2006). The Pfam accession
number ID PF00654 was then used to search the sequences with
default parameter settings in the Emsembl Plant database (http://
plants.ensembl.org/index.html, Triticum aestivum IWGSCv1.1)
(Cheng et al., 2018). The Blastp program of TBtools software was
used to compare the amino acid sequence of wheat genome
(http://ftp.ensemblgenomes.org/pub/plants/release-49/fasta/
triticum_aestivum/pep/) with the protein sequence of AtCLC
genes (Supplementary Table S1) and AtCLC used as the reference
sequence (Chen et al., 2020). Then the TaCLC candidate genes
obtained byHMM search and Blastp were compared. The ID of the
same gene obtained by search retained only the longest transcript
sequence. Incomplete gene sequences without either the initial or
termination codon and mutation sequences were removed. The
remaining sequences were detected using the CDD tool in NCBI
(https://www.ncbi.nlm.nih.gov/) and any sequences with
incomplete voltage-gated CLC domains were discarded. The
final genes were members of the wheat TaCLC gene family.
The gene length, encoded amino acid length, intron number,
exon number and other biological information were
downloaded from the Emsembl Plant database. The TaCLC
sequence of wheat was submitted to blast online program in
Ensembl Plant to find homologous genes in Arabidopsis
thaliana genome (TAIR10.1). The GFF annotation information
of TaCLCs gene was downloaded from the Emsembl Plant
database. Subcellular localization of each TaCLC gene was
predicted using WolfPSORT (https://wolfpsort.hgc.jp/) online
tools. The gene structure was analyzed using TBtools software.
We identified 33 conserved motifs of TaCLC based on the HMM
logo in the Pfam database. The conserved motifs of TaCLC protein
were identified byMEME (http://meme-suite.org/). The number of
motifs setting was 33 and the motif length was set to 2–200 aa.
Default parameters were used for all the programmes unless
otherwise stated.

Phylogenetic Analysis of Triticum aestivum
L. CLC Proteins
The protein sequences of AtCLC, OsCLC and GmCLC were
retrieved from NCBI (https://www.ncbi.nlm.nih.gov/), RiceDate
(https://www.ricedata.cn/), and SoyBase (https://www.soybase.
org/), respectively. All these protein sequences are listed in
Supplementary Table S1. The Clustal W tool in MAGA7.0
software was used to compare the reported CLC protein
sequences of Arabidopsis thaliana (At), Oryza sativa L. (Os),
Glycine max (Gm) and the newly identified wheat TaCLC protein
sequences (Kumar et al., 2016). A phylogenetic tree was
constructed using the neighbor-joining (NJ) method with the
bootstrap replicates setting parameter of 1000.

Physical Location on Chromosomes,
Collinearity Analysis, and Transmembrane
Structure Prediction of Encoding Protein
The physical, chromosomal position of each TaCLC gene was
obtained from the IWGSC RefSeq V1.0 database (https://urgi.
versailles.inra.fr/). The physical map was plotted using

MapInspect software according to the starting position and
chromosome length of each gene. One Step MCScanX
program of TBtools software was used to compare and
integrate the whole genome sequence and gene structure
annotation information of wheat and the E-value parameter
setting was 10E-05 (Chen et al., 2020). In order to further
predict the interspecific evolution mechanism of TaCLC family
members, we also used TBtools software to integrate and compare
the whole wheat genome sequence and gene structure annotation
with Arabidopsis thaliana, Oryza sativa L. and Triticum
dicoccoides. The data were from Emsembl Plant database
(http://ftp.ensemblgenomes.org/pub/plants/release-49/fasta/) and
the E-value parameter setting was 10E-05. Dual Systeny Plot
program and Circle Gene View of TBtools software were used
to visualize the collinearity results of TaCLC gene sequences.
PROTTER (http://wlab.ethz.ch/protter/start/) online tools were
used to analyze the transmembrane structure of TaCLCs gene-
encoded proteins.

Expression Prediction of Triticum aestivum
L. CLC Genes in Various Wheat Tissues
Using the wheat expression database ExpWheat (https://wheat.
pw.usda.gov/WheatExp/), the expression patterns of TaCLC
family genes in wheat plant roots, stems, leaves, panicles,
grains, and other tissues were obtained. The expression of
genes at different stages was also predicted. A heat map of
TaCLCs gene expression was drawn by Heml software.

Plant Materials, Growth Conditions, and
Stress Conditions
Wheat (Triticum aestivum L. cv. Yunong 804) seeds were planted
for 5 days in culture dishes containing water in a greenhouse at
22°C with a 16 h light/8 h dark photoperiod. The 5-day-old wheat
seedlings were transplanted into a nutrient solution
(Supplementary Table S2), which was replaced every 3 days
until the seedlings reached the three-leaf stage. The plantlets
were then subjected to low nitrogen (0.4 mM NH4NO3) or salt
stress (100 mMNaCl) treatment. Roots and shoots were collected
at 0, 2, 6, 12, and 24 h after treatment with 0.4 mM NH4NO3.
Whole plantlets were collected at 0, 1, 3, 6, 9, 12, and 24 h after
treatment with 100 mM NaCl. Each treatment was conducted
using three independent biological replicates and samples were
collected from three plants for each treatment at each replication.
All plant samples were immediately collected and frozen in liquid
nitrogen prior to storing at −80°C for further RNA isolation.

Quantitative Real-Time PCR Validation
To understand the expression pattern of TaCLC genes under
short-term stress of different environment conditions, we selected
one gene from each cluster of the TaCLC gene family. In total,
seven genes were screened to validate expression levels. Specific
fluorescence quantitative primers (Supplementary Table S3)
were designed using Primer 5 software (http://www.
premierbiosoft.com/index.html). Total RNA was extracted
from different treatment groups using TransZOL (TransGen

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8467953

Mao et al. Identification and Function of TaCLC

15

http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
http://ftp.ensemblgenomes.org/pub/plants/release-49/fasta/triticum_aestivum/pep/
http://ftp.ensemblgenomes.org/pub/plants/release-49/fasta/triticum_aestivum/pep/
https://www.ncbi.nlm.nih.gov/
https://wolfpsort.hgc.jp/
http://meme-suite.org/
https://www.ncbi.nlm.nih.gov/
https://www.ricedata.cn/
https://www.soybase.org/
https://www.soybase.org/
https://urgi.versailles.inra.fr/
https://urgi.versailles.inra.fr/
http://ftp.ensemblgenomes.org/pub/plants/release-49/fasta/
http://wlab.ethz.ch/protter/start/
https://wheat.pw.usda.gov/WheatExp/
https://wheat.pw.usda.gov/WheatExp/
http://www.premierbiosoft.com/index.html
http://www.premierbiosoft.com/index.html
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Biotech, Beijing, China) according to the manufacturer’s
instructions. Then, cDNA was synthesized using PrimeScript™
RT reagent Kit with gDNA Eraser (Takara, Dalian, China).
Reverse transcription cDNA was used as template for
amplification with Hieff UNICON® qPCR SYBR Green Master
Mix (YEASEN Biotechnology, Shanghai, China) in
Quantstudio™5 (Thermo Fisher, Shanghai, China).
Quantitative real-time PCR (qRT-PCR) thermocycling
conditions were as follows: 95°C for 5 min, followed by 40
cycles of 95°C for 10 s and 60°C for 30 s, and a final extension
at 72°C for 5 min. The expression levels of six genes (TaCLC-c2
cluster genes were removed because they were not expressed and
the relative expression cannot be calculated) selected from the
TaCLC gene family under different stress conditions were
calculated using the 2−ΔΔct method. The wheat β-actin gene
was used as an internal reference control. The average of three
independent biological replicates was used for all data analysis.

Functional Complementation Experiment in
Yeast
Yeast mutant strain YJR040w (Δgef1; MATa; his3Δ1; leu2Δ0;
met15Δ0; ura3Δ0; YJR040w: kanMX4) lacks the only CLC family
protein—GEF1—in Saccharomyces Cerevisiae and is sensitive to
low nitrogen medium. To further illustrate the function of TaCLC
genes, we used the EUROSCARF (http://www.euroscarf.de/
index.php?name=News) yeast mutant YJR040w that
heterologously expressed the TaCLCs. The primer sequences
of TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL used for
gene amplification are listed in Supplementary Table S3. The
selected TaCLCs gene was cloned into the yeast expression vector
p416 by ClonExpress® II One Step Cloning Kit (Vazyme Biotech
Co., Ltd., Nanjing, China). The constructed recombinant plasmid
was then transformed into YJR040w using the lithium acetate
transformation method and uniformly plated on a SD/-Ura Broth
(Coolaber Technology Co., Ltd., Beijing, China) solid plate. The
monoclonal was selected and verified by PCR with p416-F/p416-
R (Supplementary Table S3). The monoclonal containing the
target band was transferred to liquid SD/-Ura medium and
cultured to OD600 = 0.6. These initial yeast cultures were used
to prepare a series of diluents (10−1). From each gradient, 5 μl
samples of each diluted culture were plated into YTD medium
(1% yeast extract/2% tryptone/2% dextrose), YTD medium
supplemented with 1 M KCl, 1 M NaCl, or 1 M KNO3,
respectively. The plates were incubated at 30°C for 3–5 days
and photographed.

RESULTS

Identification of Triticum aestivum L. CLC
Family Genes in Wheat
We used the voltage-gated chloride channel protein conserved
domain PF00654 as a search sequence in conjunction with a
wheat genome database to perform alignment and to remove
incomplete conserved domains. A total of 23 non-redundant
TaCLC candidate gene sequences were identified and named

based on the orthologous relationships of the rice family genes
(Table 1). Information about the chromosome on which the gene
was located was indicated by chromosomal arm symbols on the
gene/protein name. When multiple gene sequences of the wheat
TaCLC family members formed the same cluster as a certain gene
as that seen in rice, a number was added after the gene name to
distinguish these two genes, such as TaCLC-c1-3DS-1 and
TaCLC-c1-3DS-2.

There were five TaCLC family members, all of which had
homologous genes on the A, B, and D genomes including
TaCLC-a, -c2, -f1, -f2, and -g2. However, TaCLC-c1 cluster
and TaCLC-e cluster members contained only two
homologous sequences. Comparatively, the TaCLC-c1
cluster member had one gene on the A genome and two
genes on the D genome. The amino acid length of the
TaCLC proteins ranged from 573 aa (TaCLC-g2-2AL) to
822 aa (TaCLC-c1-3DS-2). TaCLC proteins contained 8–12
transmembrane regions, of which 14 TaCLC proteins had 11
transmembrane regions and one TaCLC proteins (TaCLC-c1-
3DS) had the least transmembrane regions with 8. The results
of the visualized protein topology diagram are shown in
Supplementary Figure S1.

Phylogenetic and Structural Analyses of
Triticum aestivum L. CLC Proteins
In this study, the CLC family protein sequences of 23 Triticum
aestivum (TaCLC), 7 Arabidopsis thaliana (AtCLC), 8 Oryza
sativa (OsCLC), and 8 Glycine max (GmCLC) were aligned to
construct a phylogenetic tree. This was performed using the
neighbor-joining method with 1,000 bootstrap replication
(Figure 1). According to the clustering criteria of rice and
Arabidopsis, wheat TaCLC proteins were divided into seven
clusters including TaCLC -a, -c1, -c2, -e, -f1, -f2 and -g2.
Among these, the cluster -a was the largest group and
contained six genes; comparatively, cluster -e was the smallest
and only contained two members. The remaining five clusters all
contained only three genes.

Structural analysis showed that cluster -a, cluster -c1, cluster
-c2, and cluster -g2 all contained typical conserved regions
GxGIPE (I), GKxGPxxH (II), and PxxGxLF (III). Cluster -e
and cluster -f1/-f2 did not have this typical structure
(Supplementary Figure S2). These results indicated that
wheat TaCLC genes were divided into subclass I and subclass
II according to the conserved structures of the CLC genes.

Chromosomal Distribution of Triticum
aestivum L. CLC Genes
TaCLC genes were distributed on 12 chromosomes of wheat
(Figure 2). The physical locations of TaCLC genes are shown in
Table 1. The 23 TaCLC genes were unevenly distributed on
chromosomes, of which 3A, 3D, 6A, 6B, and 6D chromosomes
had three gene members. The distribution of the TaCLC genes in
the A (8), B (7) and D (8) subgenomes was relatively balanced.
This was consistent with the fact that nearly half of the family
members have three homologous genes.
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There were tandem repeat events in the cluster -a and
cluster -c1, and they appeared on chromosomes in the form
of tandem gene clusters. For example, TaCLC-a-6AS-1 and
TaCLC-a-6AS-2, TaCLC-a-6BS-1 and TaCLC-a-6BS-2,
TaCLC-a-6DS-1 and TaCLC-a-6DS-2, and TaCLC-c1-3DS-1
and TaCLC-a-3DS-2 all formed different tandem gene clusters
on chromosomes 6A, 6B, 6D, and 3D, respectively. This may
also be the reason the number of TaCLC members was more
than that of other species.

Gene Collinearity Analysis
The results of intraspecies collinearity analysis showed that
the 23 wheat TaCLC genes constituted 15 pairs of collinear
genes (Figure 3). Among them, four genes including TaCLC-
a-6AS-2, TaCLC-a-6BS-2, TaCLC-a-6DS-2, and TaCLC-c1-
6DS-2 had no collinearity with other TaCLC family genes
and had tandem repeats. There was no collinearity between
homologous genes TaCLC-f1-6BL and TaCLC-f1-6DL,
between TaCLC-a-6BS-1 and TaCLC-a-6DS-1, and no gene
of cluster -c1 on the 3B chromosome. This also indicated that

TABLE 1 | Main information of 23 wheat TaCLC genes.

Gene
Name

Ensembl ID Gene
length

Amino
acid
length

Intron
No.

Exon
No.

Location SL TMS Chromosome Accession
of ArabidopsisStart End

TaCLC-a-
6AS-1

TraesCS6A02G098500.2 3,036 796 3 4 65681325 65684847 PM 11 6A AT3G27170
(AtCLC-b)

TaCLC-a-
6AS-2

TraesCS6A02G098600.1 2,813 778 3 4 65797706 65800777 PM 11 6A AT5G40890
(AtCLC-a)

TaCLC-a-
6BS-1

TraesCS6B02G126400.1 3,161 787 4 5 121811989 121815556 PM 11 6B AT3G27170
(AtCLC-b)

TaCLC-a-
6BS-2

TraesCS6B02G126800.1 2,870 784 3 4 122290496 122293648 PM 11 6B AT3G27170
(AtCLC-b)

TaCLC-a-
6DS-1

TraesCS6D02G084300.1 3,146 787 4 5 49218043 49221583 PM 11 6D AT3G27170
(AtCLC-b)

TaCLC-a-
6DS-2

TraesCS6D02G084000.2 2,735 784 3 4 48866564 48869557 PM 11 6D AT3G27170
(AtCLC-b)

TaCLC-
c1-3AS

TraesCS3A02G125300.1 3,435 805 7 8 100885506 100893368 PM 12 3A AT5G33280
(AtCLC-c)

TaCLC-c1-
3DS-1

TraesCS3D02G126600.1 3,913 805 7 8 84568670 84582503 PM 12 3D AT5G33280
(AtCLC-c)

TaCLC-c1-
3DS-2

TraesCS3D02G126700.1 1,722 573 3 4 84587555 84589918 PM 8 3D AT5G33280
(AtCLC-c)

TaCLC-
c2-3AL

TraesCS3A02G390100.1 2,919 795 7 8 638325536 638329362 PM 11 3A AT5G33280
(AtCLC-c)

TaCLC-c2-3B TraesCS3B02G418700.1 2,964 795 7 8 655435367 655439266 PM 11 3B AT5G33280
(AtCLC-c)

TaCLC-
c2-3DL

TraesCS3D02G379600.1 2,862 794 7 8 496503737 496507536 PM 11 3D AT5G33280
(AtCLC-c)

TaCLC-e-3AL TraesCS3A02G253600.3 2,838 717 6 7 474962330 474970320 PM 11 3A AT4G35440(
AtCLC-e)

TaCLC-e-3B TraesCS3B02G285500.1 2,415 717 6 7 457013924 457026915 PM 11 3B AT4G35440(
AtCLC-e)

TaCLC-f1-6AL TraesCS6A02G283600.3 3,223 781 8 9 514703319 514709411 PM 9 6A AT1G55620
(AtCLC-f)

TaCLC-f1-6BL TraesCS6B02G312100.1 2,136 711 7 8 559340524 559348729 PM 9 6B AT1G55620
(AtCLC-f)

TaCLC-f1-6DL TraesCS6D02G264100.1 3,246 785 8 9 372824290 372830240 PM 9 6D AT1G55620
(AtCLC-f)

TaCLC-f2-7AS TraesCS7A02G240700.2 2,776 743 8 9 216343576 216349884 PM 9 7A AT1G55620
(AtCLC-f)

TaCLC-f2-7BS TraesCS7B02G136300.1 2,785 743 8 9 168313998 168321034 PM 10 7B AT1G55620
(AtCLC-f)

TaCLC-f2-7DS TraesCS7D02G239700.3 2,454 764 8 9 204246408 204253040 PM 10 7D AT1G55620
(AtCLC-f)

TaCLC-
g2-2AL

TraesCS2A02G517500.3 2,097 822 8 9 740847366 740855721 PM 11 2A AT5G33280
(AtCLC-g)

TaCLC-
g2-2BL

TraesCS2B02G546000.1 3,033 817 8 9 742813858 742822299 PM 11 2B AT5G33280
(AtCLC-g)

TaCLC-
g2-2DL

TraesCS2D02G519000.2 3,035 818 8 9 608915455 608923751 PM 11 2D AT5G33280
(AtCLC-g)

SL, subcellular location; TMS, transmembrane segments; PM, plasma membrane; Accession of Arabidopsis, Ensembl Plant database accession number of TaCLC genes’ ortholog in
Arabidopsis thaliana.
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homologous fragment loss occurred simultaneously during
evolution of the genes.

The results of collinearity analysis among species showed that
TaCLC genes had collinearity with genes in genome of
Arabidopsis thaliana, Oryza sativa L. and Triticum dicoccoides
(Figure 4; Supplementary Table S4). The number of collinear
gene pairs was different between species. Only two TaCLC genes
between the genome of Triticum aestivum L. and Arabidopsis
thaliana had collinearity, namely TaCLC-f2-7BS and TaCLC-f2-
7DS (Figure 4A). The number of collinearity gene pairs in
Triticum aestivum L. and Oryza sativa L. was 13, and the
collinearity genes were mainly cluster -c2 and subfamily -e, -f,
and -g (Figure 4B). Triticum aestivum L. and Triticum
dicoccoides had 35 collinear gene pairs, which was the largest
number (Figure 4C). Among them, 19 genes in TaCLC had
collinearity with Triticum dicoccoides genes. There were 7, 6 and
6 TaCLC genes in the three subgenomes of A, B, and D of wheat,
respectively, which had a collinearity relationship with the
Triticum dicoccoides genes. This illustrated that the
distribution of these 19 genes in the genome was uniform, and
they were in a relatively conservative state during the evolution
process from Triticum dicoccoides to Triticum aestivum L. Both
TaCLC-f2-7BS and TaCLC-f2-7DS existed in the collinear gene
pairs between Triticum aestivum L. and Arabidopsis thaliana,
Oryza sativa L. and Triticum dicoccoides, indicating that these two
genes may be ubiquitous in monocotyledons and dicotyledons.

They formed before species differentiation and evolved for a
longer time.

Triticum aestivum L. CLCs Gene Structure
and Conservative Motif Analysis
TBtools software was used to compare the CDS sequences of
23 TaCLCs with their corresponding genome sequences. A visual
structure map of the TaCLC genes was then obtained
(Figure 5A). TaCLC genes contained 3–8 introns and 4–9
exons. The introns and exons of TaCLC-a-6AS-1, TaCLC-a-
6AS-2, TaCLC-a-6BS-2, TaCLC-a-6DS-2, and TaCLC-c1-3DS-2
had the smallest number among all identified TaCLC genes with 3
introns and 4 exons. TaCLC-f1-6AL, TaCLC-f1-6DL, TaCLC-f2-
7AS, TaCLC-f2-7BS, TaCLC-f2-7DS, TaCLC-g2-2AL, TaCLC-g2-
2BL, and TaCLC-g2-2DL had the largest number, with 8 introns
and 9 exons. Exon and intron number among the same cluster of
homologous genes also varied. For example, TaCLC-f1-6AL
contained 8 introns and 9 exons, whereas TaCLC-f1-6BL
contained 7 introns and 8 exons.

Using online tools to analyze conservative protein motifs, the
motif structure of the same cluster of homologous genes was
determined to be basically similar (Figure 5B). These 33 motifs
were evenly distributed in 7 clusters, and the number of motifs in
each cluster was also similar (Supplementary Table S5). The
conserved motifs of TaCLC proteins were divided into two
categories. The relatively conserved motifs in cluster -a and
cluster -c1, -c2, and -g2 were different from those in cluster -e
and cluster -f1 and -f2, indicating that the conserved motifs of the
whole TaCLC gene family could be divided into two cases.

Predictive Analysis of Triticum aestivum L.
CLCs Gene Expression at Different
Developmental Stages of Wheat
The expression patterns of TaCLC genes in wheat tissues (roots,
stems, leaves, spikes, and grains) at different developmental stages
were analyzed using available wheat RNA-seq databases
(Figure 6). The developmental stages were as follows: z10
(seedling), z13 (three leaves), z23 (three tillers), z30 (spike at
1 cm), z32 (two nodes), z39 (meiosis), z65 (anthesis), z71 (2
DAA), z75 (14 DAA) and z85 (30 DAA). Of the 23 genes, the
expression data on 21 genes were obtained from RNA-seq
databases. The only missing genes were TaCLC-c1-3DS-2 and
TaCLC-c2-3DL. TaCLC-c2-3AL, TaCLC-c2-3B, TaCLC-a-6BS-1,
TaCLC-a-6DS-1, and TaCLC-f1-6BL had low expression level in
all detected periods and tissues. This was especially true for the
z75 (14 DAA) period, which had very low gene expression. The
expression levels of TaCLC-c1-3AS in roots of z10 (seedling
stage), z13 (three leaves stage), z39 (meiosis stage), and leaves
of z71 (2 DAA stage), as well as TaCLC-c1-3DS-1 in leaves of z13
(three-leaves stage) were all higher in all examined TaCLC genes.

TaCLC-a-6BS-2 had the highest expression level in cluster -a,
while all the genes of cluster -c2 were not expressed. The
expression level of TaCLC-c1-3AS was higher than that of
TaCLC-c1-3DS-1 during all the stages except for the leaves of
z23 (three tillers) in cluster -c1. In cluster -e, the expression levels

FIGURE 1 | The phylogenetic tree of the CLC family of wheat, rice,
soybean and Arabidopsis. The proteins belonging to each of four species are
represented by different shapes and colors. The TaCLC family proteins were
divided into seven subfamilies (-a, -b, -c, -d, -e, -f, and -g) and two
subclasses (I and II), which are indicated with different shapes and colors of
lines. The CLC proteins loci of wheat, rice, soybean, and Arabidopsis are listed
in Supplementary Table S1. Ta, Triticum aestivum; Os, Oryza sativa; Gm,
Glycine max; At, Arabidopsis thaliana.
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of TaCLC-e-3AL and TaCLC-e-3B were similar in all stages and
tissues except in leaves of z10 (seedling) and z13 (three leaves).
Among the three cluster -f1 genes, the expression level of TaCLC-
f1-6AL was the highest and expressed in all tissues at each stage,
while the expression level of TaCLC-f2-7BS was the highest
among the three genes of cluster -f2. In cluster -g2, the
expression levels of TaCLC-g2-2AL and TaCLC-g2-2DL genes
in leaves of z23 (three tillers) and z71 (2 DAA) stages were higher
than those of TaCLC-g2-2BL.

Expression Analysis of Triticum aestivum L.
CLCs Gene Under Low Nitrogen Stress or
Salt Stress
According to the predictive analysis of gene expression heat
map, we selected TaCLC-a-6AS-1, TaCLC-c1-3AS, TaCLC-e-
3AL, TaCLC-f1-6AL, TaCLC-f2-7BS, TaCLC-g2-2DL, and
TaCLC-c2-3AL from each cluster to analyze the expression

patterns under low nitrogen stress or salt stress using qRT-
PCR. The gene expression of this family of genes was
determined to be up-regulated under conditions of low
nitrogen stress or salt stress except for TaCLC-c2-3AL
(Figure 7). This finding was consistent with the data from
the wheat RNA-seq database that the genes of cluster -c2
were not expressed across all stages.

The expression patterns of different genes in different parts
were also diverse under low nitrogen stress (Figures 7A,B).
Among them, the expression of the TaCLC-a-6AS-1 gene was
at its highest level after 2 h in the shoot and at its highest level
at 6 h in the root tissues when compared with the untreated
tissues. Under conditions of low nitrogen stress, expression
patterns in the shoot tissues were mainly divided into three
types (Figure 7A). The expression levels of the other five genes
were the highest after 6 h of low nitrogen stress, except for the
TaCLC-a-6AS-1 gene. The expression patterns of TaCLC-e-
3AL, TaCLC-f1-6AL, and TaCLC-f2-7BS genes were all down-

FIGURE 2 | Distribution of TaCLC genes on chromosomes. The names of each chromosome are shown above. The gene names are indicated on the left and the
starting positions are on the right side of the chromosomes. The TaCLC genes in each subfamily are specified by the same color. The chromosome lengths are shown in
Mb (Millions of bases).
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regulated and then up-regulated. Comparatively, the
expression patterns of the TaCLC-c1-3AL and TaCLC-g2-
2AL genes were slowly up-regulated and then down-

regulated. The expression pattern of the TaCLC-a-6AS-1
gene was completely different from that of the other five
genes, indicating that TaCLC-a-6AS-1 belonged to a gene
type that was stress-induced and involved rapid up-
regulation. Notably, its expression level remained higher
than when without stress. In the root parts and under
conditions of low nitrogen stress, the expression patterns of
the other five genes were first up-regulated and then down-
regulated. This occurred across all genes except for the TaCLC-
g2-2DL gene. The expression of TaCLC-a-6AS-1, TaCLC-c1-
3AS, TaCLC-e-3AL, and TaCLC-f2-7BS all reached their
highest respective levels at 6 h after low nitrogen stress
treatment (Figure 7B). Only TaCLC-f1-6AL reached its
highest expression level at 2 h; the expression pattern of the
TaCLC-g2-2DL gene was first down-regulated, up-regulated,
and finally down-regulated.

As shown in Figure 7C, all six genes reached their highest
respective expression levels after 24 h salt stress treatment. The
relative expression levels of TaCLC-c1-3AS, TaCLC-e-3AL, and
TaCLC-f2-7BS were all higher than those of the other genes. The
other five genes showed a down-regulated expression pattern
under transient salt stress, and began to show an upward
tendency at approximately 6 h treatment, except for the
TaCLC-c1-3AS gene. Three genes—TaCLC-a-6AS-1, TaCLC-e-
3AL, and TaCLC-g2-2DL—were all down-regulated, and finally
up-regulated across 6–24 h. The TaCLC-f1-6AL and TaCLC-f2-
7BS genes were both down-regulated to their lowest levels at 3 h
and then up-regulated to their highest level at 24 h. The
expression of TaCLC-c1-3AS did not change much before 1 h,
and reached its lowest level at 3 h. After a brief up-regulation

FIGURE 3 | Collinearity analysis of TaCLC genes. TaCLC genes in five
subfamilies (-a, -c, -e, -f, and -g) are represented by different colors of lines.
Wheat chromosomes are represented by green boxes with chromosome
names inside.

FIGURE 4 | Collinearity analysis of TaCLC genes between Triticum aestivum L. and Arabidopsis thaliana (A),Oryza sativa L. (B), and Triticum dicoccoides (C). The
chromosomes of wheat, Arabidopsis, rice, and emmer are expressed in red, green, yellow and purple, respectively. The gray line represents all the collinearity gene pairs
between the two species, and the blue bright line represents the collinearity gene pair between the TaCLC genes of wheat and the corresponding species. The names of
each chromosome are shown above and below.
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from 3 to 6 h, its expression began to be down-regulated from 6 to
12 h. Its expression was finally up-regulated to its highest level
from 12 to 24 h.

Functional Complementation of Triticum
aestivum L. CLC Members in Yeast Mutant
The budding yeast S. cerevisiae has been shown to be an
excellent model for studying ion transport properties and
physiological function of ion homeostasis (Xu et al., 2013).
The existence of mutant strains lacking their own transport
systems has provided an efficient tool for the molecular
study of transporters from higher eukaryotes upon
their expression in yeast cells (Xu et al., 2008). In S.
cerevisiae, the GEF1 gene encodes a single putative CLC
chloride channel/transporter. The corresponding mutant
strain—Δgef1—lacks GEF1 gene and is sensitive to
extracellular cations (Lv et al., 2009). Studies have shown
that the AtCLC-c gene compensates for the inhibited growth
of Δgef1 deletion mutant yeast cells on YTD medium
containing high concentrations of either NaCl or KCl (Lv
et al., 2009). The growth of Δgef1 cells is not significantly
different from that of wild type cells, indicating that the
toxicity of these salts on the growth of Δgef1 cells is more
related to the properties of anions than the properties of
cations (Lv et al., 2009). In this study, we investigated the
function of TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-
3AL using the yeast strain YJR040w (Δgef1). The AtCLC-c-
p416 recombinant plasmid vector was transferred into the
yeast strain YJR040w and used as a positive control, while
the p416 vector was transferred into the yeast strain
YJR040w and used as a negative control. The results
illustrated that the three genes TaCLC-a-6AS-1, TaCLC-
c1-3AS, and TaCLC-e-3AL also compensated for the
inhibitory effects of the GEF1 deletion mutant yeast
YJR040w cells on the growth of YTD medium containing
either 1 M NaCl or 1 M KCl (Figure 8). All the test
transgenic CLC genes partially restored the growth
function of mutant yeast cells YJR040w on YTD medium
containing 1 M KNO3, indicating that TaCLC-a-6AS-1,
TaCLC-c1-3AS, and TaCLC-e-3AL in wheat and AtCLC-c

FIGURE 5 |Gene structure and conservation motifs of TaCLC gene. (A)Gene structure. TaCLC genes are displayed in the order based on phylogenetic analysis of
their proteins. Introns, exons and noncoding regions are represented with black lines, yellow boxes and green boxes, respectively. (B) Conserved motifs of TaCLC
proteins. Thirty three motifs were identified and are marked with different colors.

FIGURE 6 | Heat map of TaCLC genes expressed at different
developmental stages in wheat tissues. The values were obtained from the
RNA-seq data of Chinese spring wheat in different tissues and periods
provided by WheatExp database (Pearce et al., 2015). The values of
0–12.5 represent the lowest to the highest expression levels of the
detected genes.
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in Arabidopsis had certain NO3
− transport ability. These

results showed that the three selected TaCLC genes
compensated for the fact that the GEF1 mutant YJR040w
blocks transport of Cl− or NO3

− after the deletion of the CLC
genes. The proteins encoded by these three genes of TaCLC-
a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL exhibited anion
transport activity of Cl− or NO3

−.

DISCUSSION

Themain nitrogen sources for plants are either nitrate nitrogen or
ammonium nitrogen. Under natural field conditions, the content
of nitrate nitrogen in soil is much higher than that of ammonium
nitrogen. Therefore, understanding the efficient absorption
mechanism(s) of nitrate nitrogen in crops would provide a

FIGURE 7 | Quantitative real-time PCR validation of TaCLC genes in wheat seedlings under different stresses. (A) Expression of TaCLC genes in the wheat shoot
tissue after 0.4 mMNH4NO3 treatment for 0, 2, 6, 12 and 24 h. (B) Expression of TaCLC genes in the wheat root after 0.4 mMNH4NO3 treatment for 0, 2, 6, 12 and 24 h.
(C) Expression of TaCLC genes in wheat seedlings after 100 mM NaCl treatment for 0, 1, 3, 6, 9, 12 and 24 h.
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theoretical basis for improving crop absorption—potentially by
using biotechnological approaches (Meng et al., 2019). Currently,
there remains little information on the CLC gene family in plants,
with information relegated to only some species like Arabidopsis
thaliana,Glycine max,Oraza sativa, and Zea mays (Diedhiou and
Golldack, 2006; Lv et al., 2009;Wang et al., 2015;Wei et al., 2019).
For wheat, there remains no previous work regarding a genome-
wide identification and analysis of wheat TaCLC family genes.
With the successful completion of genome sequence of wheat, it is
now possible to identify members of the TaCLC gene family at the
whole genome level (Appels et al., 2018). According to the
homologous relationship of CLC genes in different species, a
total of 23 TaCLC genes in seven clusters were identified using the
wheat genome database. Their homologous relationships, gene
structure, chromosomal localization, and expression pattern were
subsequently analyzed. These results will lay the foundation for
the functional study of TaCLC genes and provide a theoretical
reference for understanding nitrate transport in wheat.

Across species, the name of the CLC protein family remains
confusing because different researchers have updated the data at
different stages. For example, in addition to ZmCLC1, ZmCLC2,
and ZmCLC3 genes in maize, there are also ZmCLC-a, -b, -c, -d
and other genes (Yu et al., 2017). Moreover, the riceOsCLC genes
used in this study were originally named OsCLC 1–7. After
comparing, we corrected the name to OsCLC-a, OsCLC-c1,
and other more consistent gene names (Supplementary Table
S1). In this study the TaCLC genes were named according to the
Arabidopsis classification criteria ( -a, -b, -c, -d, -e, -f, -g). During
the structural analysis of the TaCLC protein, we found that the
TaCLC-a/-c1/-c2/-g2 contained a common conserved domain
that was also found in other species. The x residue in the
conserved region (I) of the TaCLC-a cluster was proline, while
in the TaCLC-c1/-c2/-g2 it was serine. Therefore, we speculated
that the function of the TaCLC-a cluster of genes was similar to
that of the CLC-a cluster of genes in other species. Moreover,
NO3

− was preferentially transported, which may indicate the
gene’s role as a NO3

−/H+ exchanger. The TaCLC-c1/-c2/-g2
cluster genes have a higher affinity for Cl− and preferentially
transport Cl− (Nedelyaeva et al., 2019). This hypothesis is also
consistent with the up-regulation of the TaCLC-a-6AS-1 gene in
our qRT-PCR results.

In plants, the functional research of CLC genes has mainly
focused on the physiological and molecular regulatory functions

of either Cl− or NO3
− absorption, transportation, and chloride

(salt) tolerance (Li et al., 2006; Nakamura et al., 2006; Wei et al.,
2013; Wong et al., 2013; Liao et al., 2018; Nedelyaeva et al., 2018;
Nedelyaeva et al., 2019). Therefore, genetic research into the
CLC-a/-c cluster is more extensive. In Arabidopsis, studies have
found that AtCLC-e and AtCLC-a also have interconnected
transporters in the nitrate assimilation pathway (Monachello
et al., 2009). In addition, AtCLC-a plays a different role in the
regulation of guard cell expansion in that AtCLC-a promotes
anion accumulation during light-induced guard cell expansion
and stomata opening (Wege et al., 2014). The N-terminus of
AtCLC-a is phosphorylated by AtSnRK 2.6 (AtOST1, At4g33950),
which mediates stoma closure by excluding anions (Wege et al.,
2014). AtPP2A-C5 (At1g69960) interacts with AtCLC family
genes, and AtPP2A-5C overexpression in plants increases the
activity of AtCLC-c. This increases the ability of Cl− to enter into
vacuoles and improves salt tolerance of plants (Hu et al., 2017).
Based on the hypothesis of homologous sequence alignment, it
was speculated that the TaSnRK 2.6 (TaOST1,
TraesCS5D02G081700) and TaCLC-a cluster of genes, as well
as the TaPP2A-5C (TraesCS6D02G1714000) and TaCLCs should
be related.

Among plants, only three PtCLC genes have been identified in
Populus trichocarpa (Yu et al., 2017), and 22 GhCLC genes in
upland cotton (Gossypium hirsutum L.) (Liu X. et al., 2020). In
most cases, the number of CLC genes identified in other plants is
5–7, while the number of TaCLC genes identified in wheat is up to
23 genes. The physical location and collinearity analysis of the
gene on its corresponding chromosome indicated that there was a
tandem repeat in the evolution of wheat TaCLC genes, which
might be the reason why there are more TaCLC genes in wheat
than other species. In this study, the TaCLC-b/-d subfamily genes
were not found in the wheat genome, indicating that the fragment
and gene loss of the homologous gene in this family may have
simultaneously occurred. It may also be the artificial deletion
caused by the incompleteness of the conserved domain in the
previous analysis of 34 CLC genes annotated in the Emsembl
Plant database. For example, the CD-search results of proteins
encoded by the AtCLC-b and AtCLC-d genes in NCBI did not
have a complete voltage gated CLC domain (PF00654), so we
removed TaCLC-b/-d in the identification of the wheat TaCLC
gene family. At the same time, we also named the 11 removed
genes which had incomplete domains according to the

FIGURE 8 | Yeast Δgef1mutant complementation experiment. Yeast transformed with empty vector (p416) was used as a negative control and AtCLC-cwas used
as a positive control. The tested YTD (1% yeast extract/2% tryptone/2% dextrose) media supplemented with different concentrations of compounds (1 M KCl/1 MNaCl/
1 M KNO3) are indicated under each panel. Serial dilutions (10−1) of yeast culture were plated.
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phylogenetic tree (Supplementary Figure S3; Supplementary
Table S6). In the CLC genes identified in both Camellia sinensis
andNicotiana tabacum, the number of motifs used was 20 and 24,
respectively (Zhang et al., 2018; Xing et al., 2020). According to
the HMM logo in the Pfam database, the motifs number of
TaCLCs was determined to be 33 and the structure type was
similar to the motif’s position structural type of the CLC which
can be divided into two types. In addition, two different motif
position structure types were also found in tobacco, which
indicated that the functions of the CLC genes have become
diversified. RNA-seq database analysis showed that the
function and expression of each gene were different. Notably,
even homologous genes played different functions at different
development stages, such as TaCLC-a-6AS-1, TaCLC-a-6BS-1,
and TaCLC-a-6DS-1. It seems that evolutionary pressures can
extend the members of the gene family (Abdullah et al., 2021;
Musavizadeh et al., 2021). Moreover, mutations in coding sites
and promoter regions can affect the function of members of the
gene family (Faraji et al., 2021).

To analyze the expression patterns of the TaCLC gene family
under low nitrogen stress or salt stress, seven genes from each
cluster of the TaCLC gene family were selected for fluorescence
qRT-PCR. The results showed that the family genes were up-
regulated under short-term low nitrogen stress or salt stress. This
was true except for the TaCLC-c2 cluster genes, which basically
had no expression across the various periods of stress. The
expression pattern of the CLC gene family in most species has
been focused on across different tissue types as well as during
long-term abiotic stress (Lv et al., 2009; Jossier et al., 2010; Wei
et al., 2015; Zhang et al., 2018; Liu X. et al., 2020). However, the
expression patterns of TaCLC at each time point were different
from those of other species. For instance, AtCLCa-d had a
relatively stable expression abundance at all developmental
stage. The expression level of AtCLC-e was equivalent to that
of AtCLC-f, but was significantly lower than that of subclass I
genes (Wei et al., 2015). In tobacco, all expressed NtCLC genes
had low expression levels in the roots. After 7 days of salt stress
(300 mM NaCl), the expression levels of multiple NtCLC genes
were all significantly up-regulated (Zhang et al., 2018). In
pomegranate (Punica granatum), the expression level of the
PgCLC genes under salt stress was high in leaves and low in
roots. Moreover, PgCLC genes have been shown to affect the
accumulation of Cl−, SO4

2−, and NO3
− in pomegranate tissues

under salt stress (Liu C. et al., 2020). Our results showed that all
TaCLC genes were expressed under low nitrogen stress
conditions over the short term. For low nitrogen stress, the
response of the TaCLC-a-6AS-1 gene revealed it had the
highest expression level. The relative expression levels of the
TaCLC-c1-3AS, TaCLC-e-3AL, and TaCLC-g2-2DL genes were all
higher under salt stress. These results were consistent with the
characteristics that cluster -a had NO3

− transport capacity and
clusters -c1/-g2 had Cl− transport capacity in the CLC gene
family. Based on the results of qRT-PCR analysis, we
speculated that TaCLC genes (except the genes of TaCLC-c2
cluster) could respond to anion deficiency stresses.

The budding yeast, S. cerevisiae allows for large-scale, genome-
wide analyses in a fast and economically efficient manner. Work

with S. cerevisiae allows for the discovery and/or characterization
of many aspects of ion transporter function (Locascio et al., 2019).
Studies have shown that GEF1, as a chloride channel gene,
maintains the charge balance in yeast cells. Through its acidic
interior, the cation can be localized in either the internal organs or
vacuoles of the cell, thus playing a role in cation detoxification
(Gaxiola et al., 1998; Li et al., 2015; Nagatsuka et al., 2017). The
mutant yeast Δgef1 lacks the chloride ion channel gene and is
blocked when transporting Cl− in the intracellular vesicles
(vacuoles or Golgi apparatus) of yeast cells (Hechenberger et
al., 1996). It also has hypersensitivity to several extracellular
cations. At present, Arabidopsis thaliana, Glycine max, Oryza
sativa L., and Suaeda altissima (L.) have been studied using yeast
mutants (Nakamura et al., 2006; Lv et al., 2009; Nedelyaeva et al.,
2019; Wei et al., 2019). In this study, various chlorides, sulfates,
and nitrates were respectively added to SD, SR, YPEG, YPG, YPD,
or YTD media to determine whether TaCLC genes inhibit the
sensitivity of yeast mutant cells to metal cations and to determine
their anion transport function. In these experiments, we found
that the growth of Δgef1 yeast cells with YTD medium as the
culture substrate was most suitable for YJR040w mutation. This
stood in contrast to using SD, SR, YPEG, YPG, or YPD media as
the culture substrate.

Previous studies showed that AtCLC-c gene had the ability
to transport Cl− (Lv et al., 2009). In our study, we found that
when transformed one of the genes TaCLC-a-6AS-1, TaCLC-
c1-3AS, and TaCLC-e-3AL, transgenic yeast mutant strains
had a strong ability to transport Cl− compared with control
yeast strain, albeit they did not reach the tolerance of AtCLC-c
gene transformation (Figure 8). It indicated that a large
number of TaCLC genes may simultaneously play roles in
the transport of anions such as Cl− or NO3

−. For a single
TaCLC gene, its anion transport capacity was not very strong.
In addition, AtCLC-c gene-transformed yeast mutant strains
have not been studied in a medium containing KNO3. In our
study, we found that AtCLC-c gene-transformed yeast mutant
strains could transport NO3

− and inhibit the cation
hypersensitivity in yeast GEF1 mutants (Figure 8). There
was no difference in the growth of TaCLC-a-6AS-1, TaCLC-
c1-3AS, and TaCLC-e-3AL in YTD medium containing 1 M
KNO3, and the three genes had similar NO3

− transport ability
without exogenous Cl− interference. According to the
regularity of the conserved motifs of the CLC and the
analysis of the TaCLC protein sequences, there may be
differences in preferential transport ability of NO3

− or Cl−

among TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL in
the case of exogenous Cl− interference.

CONCLUSION

In this study, a genome-wide identification of CLC genes in wheat
was performed and 23 TaCLC genes were identified. The gene
structure, chromosomal location, conserved motif and expression
pattern of the members of the family were then analyzed. The
family was divided into two main subclasses (I and II) and seven
clusters (-a, -c1, -c2, -e, -f1, -f2, and -g2). The 23 TaCLC genes of
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the family were unevenly distributed on wheat chromosomes and
some genes in the cluster had tandem duplication. TaCLC gene
expression was illustrated using qRT-PCR, and the results
showed that the expression pattern of this gene family was
induced by low nitrogen stress or salt stress except for
TaCLC-c2 which was from subfamily -c. The function of some
TaCLC genes was studied using yeast mutant strains. The results
of yeast mutant complementation experiments showed that
TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL all had
anion transport functions for NO3

− or Cl− and compensated
the hypersensitivity of yeast GEF1 mutants in restoring anion-
sensitive phenotype. Collectively, these results provide theoretical
reference for studying the response of TaCLC family genes to low
nitrogen stress and the physiological functions of anion transport
in wheat.
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PolyReco: A Method to Automatically
Label Collinear Regions and
Recognize Polyploidy Events Based
on the KS Dotplot
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Zhanxiao Jia1 and Chunyang Wang3,4*
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Polyploidization plays a critical role in producing new gene functions and promoting
species evolution. Effective identification of polyploid types can be helpful in exploring the
evolutionary mechanism. However, current methods for detecting polyploid types have
somemajor limitations, such as being time-consuming and strong subjectivity, etc. In order
to objectively and scientifically recognize collinearity fragments and polyploid types, we
developed PolyReco method, which can automatically label collinear regions and
recognize polyploidy events based on the KS dotplot. Combining with whole-genome
collinearity analysis, PolyReco uses DBSCAN clustering method to cluster KS dots.
According to the distance information in the x-axis and y-axis directions between the
categories, the clustering results are merged based on certain rules to obtain the collinear
regions, automatically recognize and label collinear fragments. According to the
information of the labeled collinear regions on the y-axis, the polyploidization
recognition algorithm is used to exhaustively combine and obtain the genetic
collinearity evaluation index of each combination, and then draw the genetic collinearity
evaluation index graph. Based on the inflection point on the graph, polyploid types and
related chromosomes with polyploidy signal can be detected. The validation experiments
showed that the conclusions of PolyReco were consistent with the previous study, which
verified the effectiveness of this method. It is expected that this approach can become a
reference architecture for other polyploid types classification methods.

Keywords: clustering, collinearity fragment, polyploidy, DBSCAN, chromosome

INTRODUCTION

Studying the process of polyploidization is essential for the in-depth understanding of evolutionary
laws (Marcet-Houben and Gabaldón 2015), and exploring the stability and chromosome
rearrangement of the genome. Polyploidization of gymnosperms and almost all angiosperms are
considered to be the main reason for the diversity of land plants (Li et al., 2016; Hao et al., 2017).
Polyploidy can produce a large number of duplicated genes in the genome (Wang et al., 2018). These
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genes may play an important role in functional evolution,
environmental adaptation, and new species formation (Wang
et al., 2017; Wang et al., 2019). The recombination of some
homologous chromosomes after polyploidization often causes
the instability of the genome structure, and processes such as
chromosome breakage and fusion often occur, which can lead to
large-scale duplicated gene loss in the genome (Wang et al., 2007;
Wang et al., 2011). If two species have a common ancestor, after
polyploidization, although there will be differences between the
genomes, the two species still have a relatively close relationship.
This close relationship can be expressed in the form of collinearity.
Themore complete the collinearity fragment, the closer relationship
between the two species is. Exploring the collinearity between
species has big significance in understanding the origin of
species and the evolution of the genome.

Cheng et al. (2019) drew a KS dotplot of homologous genes
within Spirogloea muscicola, and found that it had recently
experienced a whole genome triplication event. Through
collinearity analysis, Wang et al., 2011 found that Brassica
rapa and Arabidopsis thaliana experienced a whole genome
triplication event. By constructing a phylogenetic gene tree,
Dong et al. (2021) revealed that a whole-genome duplication
event occurred in Magnoliales and Laurales. Xu et al. (2020) by
drawing a phylogenetic gene tree, found that Scutellaria
baicalensis and Scutellaria barbata had a whole-genome
duplication event about 13.28 million years ago. Yan et al.,
2021 by drawing the distribution graph of the synonymous
substitution rate (KS), found two WGD events in Juglans

mandshurica and Juglans regia. By drawing the distribution
graph of the synonymous substitution rate (KS).

Although the KS distribution graph combined with the
molecular clock (Miyata et al., 1980) can calculate the doubling
time, it is a challenge to determine the collinearity information
between the chromosomes. In addition, the above method, which
injects prior knowledge, manually marks the collinear area by
observing the atlas, and then recognizes the polyploidization
through the combination of the regions. This kind of
recognition method has low recognition efficiency, high
dependence on prior knowledge, as well as strong subjectivity,
and easy to introduce human error. Due to the lack of objective
evaluation criteria, the identification of the polyploid types of is still
very challenging. In terms of the types of polyploidization and the
choice of chromosomes, the same atlas will cause different personal
perceptions. This deviation will affect the subsequent research on
chromosome rearrangement (Zhang et al., 2021). Therefore, we
develop a computational model PolyReco to accurately identify
and characterize some polyploid types in atlas.

Considering only KS values for identifying polyploid types
might be insufficient, we add the gene positional information in
PolyReco. Genes are aligned in sequential order on each of the
chromosomes, so incorporating the gene positional information
on chromosomes with KS values will likely increase the accuracy
of polyploid type classification. In this study, sequence
comparisons were performed based on the whole genome data
of Vitis vinifera and Salix sinopurpurea, combined with whole
genome collinearity analysis, to obtain the summary data of

FIGURE 1 | (A) KS dotplot between Salix sinopurpurea and Vitis vinifera genome homologous genes (B) DBSCAN cluster recognition effect figure (C) Automatic
label result of collinearity fragments based on DBSCAN.
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homology information andKS values between genomes. PolyReco
comprehensively utilizes digital image processing technology and
DBSCAN method, and realizes the automatic recognition and
labeling of the collinear region based on the KS dotplot of
homologous genes. The model uses the collinear area as the
unit and combines the combination strategy to construct the
combination evaluation standard. According to the performance
of the chromosome combination, determine the specific
polyploidization and draw the combined figure of the
polyploidization. This study aims to develop a polyploidization
classification tool, which has the potential to take chromosome
position information into account with the KS values for boosting
polyploid type prediction performance.

MATERIALS AND METHODS

Data Sources
With the whole genome data of Salix sinopurpurea (Spu) and
Brassica rapa (Bra) as the main research materials, comparative
genomics was used to compare the collinearity between Salix
sinopurpurea and the reference genome Vitis vinifera (Vvi),
Brassica rapa and the reference genome Arabidopsis thaliana (Ath).

Genomes and their gene annotations of Salix sinopurpurea
and Vitis vinifera were downloaded from Joint Genome Institute.
Download the required documents for Brassica rapa and
Arabidopsis thaliana at http://brassicadb.org/and http://www.
arabidopsis.org/shangxia, respectively.

Preprocessing of the Data Sources
Due to the huge amount of original genome data, in order to extract
target data from the genome sequence and annotation files, the
downloaded genome data is processed with a custom python script
to obtain the blast results, which is convenient for subsequent
research and analysis. Screen the original data of species
genomes, information was extracted from the genome annotation
files, which include chromosome number, gene start and end
positions, gene transcription direction, and gene ID information,
and then rename the gene ID and the number of the genes was given
in order of their appearance on chromosomes. Map the gene ID in
the CDS sequence and protein sequence file to the new ID of the
corresponding gene in the genome annotation file. Label the
processed genomic data with a unified naming method.

Homologous Sequence Alignment
Blastp was used to explore to align genomic sequences of different
species. Screen out gene pairs with the expected value (E-value) not

greater than 10–5 and score evaluation (Score) higher than 100, so that
the subsequent genome collinearity analysis results are more reliable.

Draw the KS Dotplot of Homologous Genes
The WGDI (Sun et al., 2021) use MAFFT (Wong, Suchard, and
Huelsenbeck 2008) or MUSCLE (Edgar 2004) to perform
multiple sequence alignment, and calculates the synonymous
substitution rate using the yn00 (Yang et al., 2000) or ng86
(Nei and Gojobori 1986) program of the PAML package. Finally,
the visualization is realized by extracting block, and then output
blockinfo file.

Collinear Fragment Labeling Method Based
on Clustering
In this paper, the input for DBSCAN requires the blockinfo file
generated by WGDI and the chromosome length information (len
file) of the two species. By setting the epsilon (eps) and minimum
points (MinPts), cluster analysis is performed on the collinearity
fragments in the KS dotplot. The collinear region was then obtained
from the clustering results combined with certain rules for merging.
And then realizes the automatic identification and labeling of the
collinear region. The comparison result of a chromosome of the
target species and a chromosome of the reference species is shown as
a cell on the KS dotplot, that is, a comparison unit.

The KS dotplot between Salix sinopurpurea and Vitis vinifera
genome homologous genes drawn by wgdi (Figure 1A). The
horizontal axis represents the chromosome of the target species
(Salix sinopurpurea) and the vertical represents the chromosome
of the reference species (Vitis vinifera). On the KS dotplot, the
chromosome number of Salix sinopurpurea is shown from left to
right, and the chromosome number of Vitis vinifera is shown
from top to bottom. The KS value ranges from 0.00 to 2.00. As
shown in the figure, different colored points correspond to
different KS values. It can be observed in Figure 1A, in
addition to the clear and complete homologous fragments of
grape chromosome 4 with Salix sinopurpurea chromosomes 6
and 18, it also has fuzzy and unclear homologous fragments with
Salix sinopurpurea chromosomes 1, 2 and 4. The reason why
these fragments are unclear and incomplete is that they are
doubled by the whole genome triplication events shared by
older dicots. The collinearity of the homologous fragments
produced by the whole genome triplication events shared by
ancient dicotyledons is far inferior to that of the whole genome
duplication events shared by the Salicaceae. The specific
manifestation is that the KS value is significantly large, belongs
to the blue-purple system, scarce and fragmented seriously. The

TABLE 1 | Partial data of grape chromosome 13 cluster.csv file.

chr1 chr2 id l_x l_y num r_x r_y y1-y2 x1-x2

1 13 1 145 354 32 257 228 126 112
4 13 1 1,266 1,153 10 1,310 1,097 56 44
6 13 1 838 1,267 17 913 1,097 170 75
6 13 2 735 994 26 834 840 154 99
8 13 1 592 1,267 56 671 1,155 112 79

TABLE 2 | Partial data of grape chromosome 13 combine.csv file.

chr1 chr2 id l_x l_y num r_x r_y Δy Δx

8 13 1 592 1,267 56 671 1,155 112 79
8 13 2 78 1,089 239 605 446 643 527
9 13 1 378 257 63 478 89 168 100
10 13 1 1,327 1,267 65 1,426 1,157 110 99
10 13 2 1,419 1,088 276 1,934 457 631 515
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results showed the structural similarities and differences between
genomes. The generated data and pictures provide references for
follow-up research.

Using the DBSCAN algorithm, by setting the eps to 50 and the
MinPts to 3, cluster the KS dotplot between Salix sinopurpurea
and Vitis vinifera genome homologous genes. The algorithm
outputs the clustering result figure (Figure 1B), in which each
category is represented by a rectangular box. The DBSCAN can
cluster out complete collinearity fragments, in grape chromosome
14 and Salix sinopurpurea chromosome 5, as well as in grape
chromosome 14 and Salix sinopurpurea chromosome 15. It also
can identify fragmented collinearity fragments in grape
chromosome 4 and Salix sinopurpurea chromosome 5, grape
chromosome 13 and Salix sinopurpurea chromosome 16. These
will accurately reflect the relationship between the collinearity
fragments and improve the subsequent combination effect.

The model sorts the category in the same comparison unit
from top to bottom to generate ID, and calculates the number
of homologous gene points in the box (num), the length of the
box (y1-y2), and the width of the box (x1-x2). The model then
generates cluster.csv files that contain the target species
chromosome number (chr1), the reference species
chromosome number (chr2), ID, and the horizontal and
vertical coordinates of the upper left corner point are l_x
and l_y, respectively, num, the horizontal and vertical
coordinates of the lower right point are r_x and r_y,
respectively, y1-y2, and x1-x2. Part of the data in the
cluster.csv file of grape chromosome 13 is shown in
Table 1. Among them, chromosome 13 and chromosome 1
form a class. The coordinates of the upper left corner of this
class are 145, 354, and the coordinates of the lower right corner
are 257, 228. The number of homologous genes contained is

FIGURE 2 | (A) Collinearity evaluation index line chart of Vitis vinifera Chr.4, Chr.13, and Chr.14 (B) Combination figure of Salix sinopurpurea polyploidy. (A,B)
correspond to each other. (1) The grape chromosome 4 (2) The grape chromosome 13 (3) The grape chromosome 14.
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32. The length of the cluster box is 126 coordinate lengths, and
the width is 112 coordinate lengths.

In order to perform a combined analysis on the identified
collinearity fragments, the model read the cluster.csv file generated
by clustering. The model uses y_gap and x_gap, which represents

the gap in the longitudinal and horizontal directions of adjacent
collinear segments, as the basis for judging overlap. The location
information of the gene is combined to set the parameters gap and
Slen. In the comparison unit, the parameter gap represents the
mean value of y_gap. Through a series of experiments and

TABLE 3 | Vitis vinifera Chr. 13 result.csv file.

chr1 chr2 id l_x l_y num r_x r_y Sumy Δy Δx Comro

8 13 2 78 1,089 239 605 446 947 643 527 1
8 13 1 592 1,267 56 671 1,155 947 112 79 1
16 13 1 1,163 283 42 1,235 91 947 192 72 1
10 13 2 1,419 1,088 276 1,934 457 909 631 515 2
10 13 1 1,327 1,267 65 1,426 1,157 909 110 99 2
9 13 1 378 257 63 478 89 909 168 100 2

FIGURE 3 | (A) Collinearity evaluation index line chart of Arabidopsis thaliana Chr.1, Chr.3 and Chr.5 (B) Combination figure of Brassica rapa polyploidy. (A,B)
correspond to each other. (1) The Arabidopsis thaliana chromosome 1 (2) The Arabidopsis thaliana chromosome 3 (3) The Arabidopsis thaliana chromosome 5
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continuous optimization of parameter selection, it is finally
determined that 1/6 of the corresponding chromosome length
of the target species is the value of parameter Slen. For all
collinearity fragments whose num is greater than the specified
value, one condition is that the collinearity fragments do not
overlap, another is overlap. In the first condition, collinear
fragments will be merged if 0 ≤y_gap ≤ gap and 0 ≤x_gap ≤
Slen. And in the second condition, there is overlap in the y-axis
direction, they will be merged when it meets 0 ≤ x_gap < Slen; if
there is overlap in the x-axis direction, when it meets 0 ≤ y_gap ≤
gap, merge them. Finally, the model output the clustering result
graph (Figure 1C), in which the merged result is marked with a
rectangular box, and the combine.csv file is generated.

The content of the combine.csv file is the same as the cluster.csv
file. Table 2 shows some data of the combine.csv file. Among them,
chromosome 13 and chromosome 8 form two classes. The
coordinates of the upper left corner of the first class are 592,
1,264, and the lower right corner are 671, 1,155. The number of
homologous genes contained in this class is 56. The length of the
labeled box Δy is 112 coordinate length, and the width Δx is 79
coordinate length; the upper left corner coordinate of the second
class are 78, 1,089, and the lower right corner are 605, 446. The
number of homologous genes contained in this class is 239, Δy is 643
coordinate length, Δx is 537.

Polyploidy Recognition Algorithm
In order to determine the polyploid types and related chromosomes
of the species, we develop the polyploidy recognition algorithm. The
algorithm read the generated combine.csv file, look for the labeled
box with the largest Δy, mark it, and then look up and down to find
the labeled box with the length less than it. The result.csv file will be
built by adopting exhaustive above process. Among them, comro
represents the combination round, sumy represents the sum of Δy in
same combination round. In order to determine the specific
polyploidy of the species, the gene collinearity evaluation index
line chart is drawn. The horizontal is the combined round, and the
vertical is the corresponding gene collinearity evaluation index. The
significant inflection point in the line chart represents the
corresponding polyploid type. The gene collinearity evaluation
index (MI) was calculated by dividing the cumulative collinearity
fragments length to the corresponding chromosome length of the
reference species in the len file to describe the performance of the
polyploidy in the corresponding combination round, and the larger
its value, the better the performance.

MI � ∑n
m�1Δym
leni

Where Δym and n are the length and number of collinearity
fragments in the same combination round, respectively; leni is
the corresponding chromosome length of the reference species, i
is the corresponding chromosome number.

After determining the combination round, output the
combined result graph. To describe the analysis of input,
output and fetching the final results of the analysis, we made
pseudo code. The pseudo code of the chromosome collinearity
fragment labeling and polyploidy recognition algorithm is shown
as below for a better understanding of the context and better
assess the relevance of this paper.

Algorithm 1. Chromosome collinearity fragment labeling and
polyploidy recognition algorithm.

RESULTS

Salix sinopurpurea Polyploidy Recognition
Using PolyReco to objectively determine the polyploid types of
Salix sinopurpurea. The model use Vitis vinifera as the reference

TABLE 4 | Arabidopsis thaliana Chr. 3 result.csv file.

chr1 chr2 id l_x l_y num r_x r_y Sumy Δy Δx Comro

3 3 1 2,919 5,436 857 4,001 2,763 4,793 2,673 1,082 1
9 3 1 3,322 1,458 827 4,386 8 4,793 1,450 1,064 1
6 3 1 1,571 2,132 260 2,021 1,462 4,793 670 450 1
1 3 1 2,581 5,431 1,036 3,948 2,863 3,799 2,568 1,367 2
4 3 1 3 1,231 501 631 0 3,799 1,231 628 2
5 3 1 1,955 5,432 1,374 3,668 3,021 3,533 2,411 1,713 3
7 3 1 1,555 1,130 373 1,998 8 3,533 1,122 443 3

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8423876

Wang et al. PolyReco

33

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


genome to identify the target species Salix sinopurpurea polyploid
type, and read the data of Vitis vinifera chromosome 4, 13 and 14.
TheDBSCAN algorithm obtains the collinearity fragments, and get
the combine.csv file. Then using the polyploidy recognition
algorithm to combine the labeled boxes exhaustively, and get
the gene collinearity evaluation index table of each chromosome
in different combination rounds (Supplementary Table S1). In the
colinearity evaluation index line chart (Figure 2A), we can find that
chromosomes 4, 13, and 14 ofVitis vinifera have obvious inflection
points when the combined round is 2. Therefore, it is determined
that the Salix sinopurpurea has a whole genome duplication event
recently. This conclusion can be found in Wang et al., 2011.

After determining the specific polyploidy, we can output the
information of the labeled box participating in the polyploidy,
and obtain the result.csv file of Vitis vinifera chromosomes 4, 13,
and 14, in which the data of chromosome 13 is shown in Table 3.

According to the result.csv file, output the combined figure of
the Salix sinopurpurea polyploidy (Figure 2B). When the
combination round is 2, get the two groups with the highest
scores, among which the chromosomes 5 and 6 of the Salix
sinopurpurea can be combined into a relatively complete
chromosome 4 of Vitis vinifera, the corresponding MI is
67.87%; the chromosomes 2 and 18 of the Salix sinopurpurea
can be combined into a relatively complete chromosome 4 ofVitis
vinifera, and the corresponding MI is 42.19%. The chromosomes
8 and 16 of the Salix sinopurpurea can be combined into a
relatively complete Vitis vinifera chromosome 13 with MI of
73.93%; the chromosomes 9 and 10 of the Salix sinopurpurea can
be combined into a relatively completeVitis vinifera chromosome
4, MI is 70.96%. The chromosomes 5, 15, and 17 of Salix
sinopurpurea can be combined into a relatively complete Vitis
vinifera chromosome 14 withMI of 88.74%; the chromosomes 10,
13, 16, and 17 of Salix sinopurpurea can be combined into a
relatively complete Vitis vinifera chromosome 14, MI is 79.88%.

Brassica rapa Polyploidy Recognition
In order to further verify the universality of the method,
according to the procedure in 3.1, the model uses Arabidopsis
thaliana as the reference genome to identify the polyploidy type
of the target species Brassica rapa. Through reading the data of
chromosomes 1, 3 and 5 ofArabidopsis thaliana, we finally get the
gene collinearity evaluation index table of each chromosome in
different combination rounds (Supplementary Table S2). In the
collinearity evaluation index line chart (Figure 3A), it can be
found that chromosomes 1, 3, and 5 of Arabidopsis thaliana had
an obvious turning point when the combination round was 3.
Therefore, it is determined that the Brassica rapa. had a whole
genome triplication event recently. This conclusion can be found
in Wang (2011a).

After determining the specific polyploidy, the result.csv file of
Arabidopsis thaliana chromosomes 1, 3, and 5 is obtained, in
which the data of chromosome 3 is shown in Table 4.

According to the result.csv file, output the combined figure of
Brassica rapa polyploidy (Figure 3B).When the combination round
is 3, get the three groups with the highest scores, among which the
chromosomes 7, 8, and 9 of theBrassica rapa can be combined into a
relatively complete chromosome 1 of Arabidopsis thaliana, the

corresponding MI is 89.88%; the chromosomes 2, 6, and 9 of the
Brassica rapa can be combined into a relatively complete
chromosome 1 of Arabidopsis thaliana, and the corresponding
MI is 58.31%; the chromosomes 6, 7, and 10 of the Brassica
rapa can be combined into a relatively complete chromosome 1
of Arabidopsis thaliana, and the corresponding MI is 49.38%. The
chromosomes 3, 6, and 9 of the Brassica rapa can be combined
into a relatively complete Arabidopsis thaliana chromosome 3 with
MI of 88.16%; the chromosomes 1 and 4 of the Brassica rapa can
be combined into a relatively complete Arabidopsis thaliana
chromosome 3 with MI of 69.87%; the chromosomes 5 and 7 of
the Brassica rapa can be combined into a relatively complete
Arabidopsis thaliana chromosome 3 with MI of 64.98%. The
chromosomes 2, 6, and 9 of the Brassica rapa can be combined
into a relatively completeArabidopsis thaliana chromosome 5,MI is
83.54%; the chromosomes 6 and 10 of the Brassica rapa can be
combined into a relatively complete Arabidopsis thaliana
chromosome 5, MI is 59.84%; the chromosomes 3 of the
Brassica rapa can be combined into a relatively complete
Arabidopsis thaliana chromosome 5, MI is 51.17%.

In Figure 3B, there are two seemingly identical collinearity
fragments among the four fragments formed by Arabidopsis
thaliana chromosome 3 and Brassica rapa chromosome 4, with
the naked eye. But only one is labeled and used, because it has a small
number of homologous genes. So this method can break through the
limitations of the human eye, and find chromosome fragments with
strong collinearity, as well as provide a basis for objective judgment of
polyploidy.

DISCUSSION

The previous study has mostly used to observe the atlas with prior
knowledge to identify the polyploid types of the species. This
method has some major limitations, such as low efficiency, high
dependence on prior knowledge, strong subjectivity, lack of
objective evaluation criteria, and easy introduction of human
error. In this paper, digital image processing technology was used
to identify polyploid types based on clustering algorithms. The KS

dotplot of homologous genes was used as the research object, and
the DBSCANmethod was used to cluster. Then we can obtain the
collinear fragments and automatically label collinear region.
According to the gene collinearity evaluation index line chart
of each combination, the model can determine the polyploid type
and related chromosome combination. The study mainly focused
on developing a polyploidization recognition algorithm and
providing the method to speed up the evolutionary laws of
gene structure associated with polyploidy research. PolyReco
involves more than a simple labels of collinear regions, but
also gives the polyploidy types through the collinearity
evaluation index line chart and related chromosomes at the
end. Compared with MCScanX (Wang et al., 2012), PolyReco
labels the specific gene segments involved in the polyploidy events
and improves the recognition efficiency of polyploidy. Compared
to traditional methods, PolyReco reduces the dependence on
prior knowledge, solves the limitations of the human eye in visual
space, comply with artificial logic analysis and reasoning process.
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Moreover, the PolyReco can not only provides an effective
method for large-scale rapid identification of genome
polyploidy but also has important application value in distant
hybrid breeding (Rabanus-Wallace et al., 2021).

In summary, the proposed PolyReco provides a reference
model for processing automatically label collinear regions and
recognize polyploidy. However, the KS dotplot is sensitive to the
size of the parameter Eps. When a large value is used for Eps,
the fragmented collinearity segments are easy to cluster
together. On the contrary, it is easy to separate continuous
fragments so that complete collinearity fragments cannot be
clustered. In the next step, we expect to study the DBSCAN
clustering method based on adaptive Eps to further optimize the
clustering effect.
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Target prioritization is essential for drug discovery and repositioning. Applying
computational methods to analyze and process multi-omics data to find new
drug targets is a practical approach for achieving this. Despite an increasing
number of methods for generating datasets such as genomics, phenomics, and
proteomics, attempts to integrate and mine such datasets remain limited in scope.
Developing hybrid intelligence solutions that combine human intelligence in the
scientific domain and disease biology with the ability to mine multiple databases
simultaneously may help augment drug target discovery and identify novel drug-
indication associations. We believe that integrating different data sources using a
singular numerical scoring system in a hybrid intelligent framework could help to
bridge these different omics layers and facilitate rapid drug target prioritization for
studies in drug discovery, development or repositioning. Herein, we describe our
prototype of the StarGazer pipeline which combines multi-source, multi-omics data
with a novel target prioritization scoring system in an interactive Python-based
Streamlit dashboard. StarGazer displays target prioritization scores for genes
associated with 1844 phenotypic traits, and is available via https://github.com/
AstraZeneca/StarGazer.
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INTRODUCTION

Drug repositioning has been rapidly gaining attention in the drug
discovery domain during the past decade (Xue et al., 2018). Drug
repositioning/repurposing describes the act of identifying
alternative uses for a drug beyond the scope of its original
indication, regardless of whether it has been FDA-approved or
has failed in clinical trials (Pushpakom et al., 2019). The reasons
for investing into drug repositioning are very numerous indeed.

Traditionally, a standard drug development cycle is estimated
to take around 10 years and requires billions of dollars of
investment, notwithstanding the still disappointingly high
failure rate at clinical trials (Li et al., 2016). In light of these
problems, drug repositioning holds potential to drastically reduce
the time and money needed to bring a drug to the market: it has
been estimated to reduce the time by half and cut costs by 5-fold
when compared to developing a new drug from scratch (Shameer
et al., 2015). These factors alone highlight the appealing
opportunity to bring medicines to patients faster, and
potentially into areas of unmet therapeutic demand. Moreover,
it allows for the existing arsenal of approved drugs to be more
broadly utilized, and for the opportunity to salvage some costs
involved in the development of drugs that failed in clinical trials.
Finally, the sheer variety in successful and promising
repositioning strategies to date speaks to the potential for
unearthing profound biological links between different
diseases, driving paradigm shifts in our approach to modern
medicine (Lee and Bhakta, 2021).

Drug target prioritization is an essential step for repositioning
as it aims to highlight the potential drug targets for a particular
disease. Applying computational methods to analyze and process
multi-omics data is an effective approach for achieving this
(Ashburn and Thor, 2004; Glicksberg et al., 2014; Shameer
et al., 2018a; Pushpakom et al., 2019; Guo et al., 2021;
Rapicavoli et al., 2022). Whilst there is now a vast wealth of
biochemical and biomedical data in the current era of high-
throughput omics technology, our ability to integrate and
interpret these data has lagged behind and is presenting a
great challenge in disease biology (Shameer et al., 2015). While
machine learning approaches are generally used to develop tools
to integrate, analyze and interpret multi-omics data, it remains a
challenge that mere automation of predicting biological insights
might overrepresent hypotheses that cannot be validated using
function test experiments (Hodos et al., 2016; Peters et al., 2017).
In such a scenario, we recommend the application of a hybrid
intelligence platform that enables visual intelligence, quick
search, contextual interpretations with quantitative approaches
as a way to address this problem. Hybrid intelligence systems
have been developed to address challenging problems in
biomedicine, including remote patient diagnosis (Abu-Doleh
et al., 2012; Li et al., 2014a; Akata et al., 2020; Guo et al.,
2021; Weissler et al., 2021). However, such approaches are not
readily available to address challenges in data integration and
mining associated with drug target prioritization and drug
repositioning.

Data from genome-wide association studies (GWAS) and
phenome-wide association studies (PheWAS) have been used

for drug target prioritization (Ferrero and Agarwal, 2018). Whilst
GWAS aim to identify associations between genetic variants with
a single phenotype, PheWAS interrogate numerous phenotypic
traits at once (Denny et al., 2010). As of 06 October 2021, the
EMBL-EBI GWAS catalog collates associations from 5,370
studies that, in total, identified more than 290,000 associations.
The utility of this GWAS dataset can be further amplified by
narrowing down the genes of interest to only those with known
drug indications (Sanseau et al., 2012). Importantly, a three-step
strategy for drug repositioning using PheWAS data has already
been proposed (Rastegar-Mojarad et al., 2015): (Xue et al.,
2018)—identify all genes with known associations with the
phenotypic trait of interest using PheWAS data; (Pushpakom
et al., 2019);—identify all drugs with associations with the
previously identified genes using data from DrugBank; and (Li
et al., 2016)—return all the drugs identified in the previous step as
candidates for repositioning for the original phenotypic trait of
interest. Others have gone further by incorporating a
combination of data from GWASs (Khosravi et al., 2019),
expression profile analysis (Lau and So, 2020), functional
annotation, biological network analysis, and gene-set
association (Reay and Cairns, 2021).

Taken together, these data highlight the potential of using
GWAS and PheWAS data for drug target prioritization. However,
the field is still young, and integrating disparate data sources
remains relatively limited in scope (Gallo et al., 2021). We
hypothesize that integrating multimodal data sources using a
singular numerical scoring system could accelerate the discovery
and prioritization of drug targets. In light of this, we present our
interactive dashboard, StarGazer, which aims to address these
challenges by integrating three different datatypes (i.e., disease-
target association, target druggability, and target protein-protein
interaction) into a novel scoring system, utilizing real-time API
calls and Python-based Streamlit technology.While these types of
datasets have been used for numerous repositioning studies
separately (Liu et al., 2014; Khaladkar et al., 2017; Hermawan
et al., 2020;Wijetunga et al., 2020; Adikusuma et al., 2021; Attique
et al., 2021; Ghoussaini et al., 2021; Portelli et al., 2021; Tan et al.,
2021; Varghese and Majumdar, 2022; Zhao et al., 2022),
StarGazer represents the first ever integration of the PheWAS
catalog, Open Targets, STRING and Pharos, all of which are well-
curated, well-studied, open access databases. Furthermore,
computational repositioning studies focus largely on singular
diseases, phenotypes or drugs, but StarGazer is equipped for
flexible investigation into any of the 1,844 phenotypes and traits
within the dashboard. Much of the data is up-to-date with the
latest science, as it is loaded in real-time before it is analyzed in
real time. StarGazer’s drug target prioritization mode allows for
rapid identification of potential drug targets for a disease of
interest, also providing immediate analysis of various aspects
surrounding drug development, such as druggability and the
nature of the target-disease association. In addition to this
target prioritization feature, we anticipate that StarGazer’s
ability to display all phenotypes associated with genes or gene
variants of interest in an easily digestible manner to be of great
value to exploratory or analytical workflows. Furthermore,
StarGazer’s other features include the support of initial
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discoveries by interrogating the precise contribution of evidence
from each data source.

DATA

Disease-target data are acquired from the PheWAS catalog
(https://phewascatalog.org/phewas) and OpenTargets (https://
genetics.opentargets.org/). The latest PheWAS catalog was
created in 2013 by generating odds ratios of association
between 3,144 SNPs identified in GWASs and 1,358
phenotypes derived from the electronic medical records of
13,835 individuals of European ancestry, and the data is
loaded locally (Denny et al., 2013). The list of phenotypic
variants from the PheWAS catalog as well as from the
GWASs within the PheWAS catalog were aggregated and
filtered to remove duplicates, producing a list of 1844
phenotypic traits which StarGazer uses for subsequent
analysis. OpenTargets version 22.02 is the latest version at the
time of writing, and provides 7,980,448 target-disease association
scores extracted from 21 public databases containing diverse
forms of evidence, from genetic and drug associations to text
mining and animal model data amongst others (Ochoa et al.,
2021). Data from OpenTargets is acquired in real-time via
API calls.

Target druggability data are acquired in real-time via API
calls through Pharos (https://pharos.nih.gov/) to access the
Target Central Resource Database (TCRD) (Sheils et al.,
2021). The TCRD categorizes 20,412 targets, at the time of
writing, into four groups of increasing druggability evidence:
Tdark, Tbio, Tchem, and Tclin. A variety of evidence is
integrated for classification, such as data from ChEMBL

(Mendez et al., 2019), Guide to Pharmacology (Armstrong
et al., 2019), DrugCentral (Avram et al., 2021), and
antibodypedia (Kiermer, 2008), amongst many more, as
well as gene ontology and text-mining analysis. Tclin genes
are already targets of approved drugs, whilst Tchem genes
have drugs with evidence of sufficient activity against the
gene. Tbio genes have weak evidence for druggability, and
Tdark genes have an unknown level of druggability.

Protein-protein interaction data are acquired in real-time via
API calls from the STRING database (https://string-db.org/).
STRING version 11.5 contains data of 20,052,394,042 protein-
protein interactions from 14,094 organisms, of which only
human genes and orthologous genes were used in StarGazer
(Szklarczyk et al., 2021), which were analyzed using the Python
package, pyvis. Gene ontology enrichment analysis is also
performed by STRING.

METHODS

StarGazer was built using Streamlit (https://streamlit.io/), a
relatively new Python-based tool for developing web
applications for machine learning and data science. It enables
data scientists to build web applications purely from Python
scripts quickly and seamlessly. The Streamlit dashboard allows
for local files to be loaded, as well as data to be requested from
databases via real-time API calls. The StarGazer drug target
prioritization framework considers the following five features
for each disease (Figure 1): (Xue et al., 2018)—the odds ratios of
association between targets and phenotypic variants of interest
from GWAS and PheWAS data; (Pushpakom et al., 2019);—the
target-disease association scores from Open Targets; (Li et al.,

FIGURE 1 | The StarGazer drug target prioritization framework considers the following five features for each of the 1844 diseases in StarGazer’s disease list (Xue
et al., 2018):—the odds ratios of association between targets and phenotypic variants of interest from GWAS and PheWAS data (Pushpakom et al., 2019);—the target-
disease association scores from Open Targets (Li et al., 2016);—the druggability data of genes of interest from Pharos (Shameer et al., 2015);—the degree of nodes in
protein-protein interaction networks of genes of interest from STRING; and (Lee and Bhakta, 2021)—the presence of the gene variant of interest in both PheWAS
and GWAS datasets. All data, except the PheWAS and GWAS data, are loaded in real-time by API calls and therefore present the latest evidence for drug repositioning
strategies. The above five features are then integrated to provide a singular numerical StarGazer score which quantifies the drug repositioning potential of a gene.
StarGazer is built on the Python-based Streamlit platform, which is largely used for building sleek and modern web applications for machine-learning and data science.
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2016);—the druggability data of genes of interest from Pharos;
(Shameer et al., 2015);—the degree of nodes in protein-protein
interaction networks of genes of interest from STRING; and (Lee
and Bhakta, 2021)—the presence of the gene variant of interest in
both PheWAS and GWAS datasets. Each gene was analyzed with
respect to each of these five features, and five scores were
computed corresponding to each of the above features. These
five scores were then normalized to ensure equal maximum
contribution, before summing the five normalized scores to
obtain an overall score (i.e., the StarGazer score) which has a
maximum score of 1. The targets were then ranked in descending
order to facilitate target prioritization.

Processing of Disease-Target Data
Analysis of the PheWAS and GWAS odds ratios involved
identifying risk associations where the odds ratio ≥1
(i.e., more associated with the occurrence of the phenotype),
and protective associations where the odds ratio <1 (i.e., more
associated with the non-occurrence of the disease). In the risk
allele-based target prioritization, odds ratios were taken as they
were. However, in protective-allele-based target prioritization,
odds ratios were subtracted by 1, as the lower ratio implies higher
magnitude of association. An average value was taken for odds
ratios from multiple studies of the same gene, before normalizing
to generate the feature score. Another feature score was generated

by determining if the gene target was present in both the PheWAS
and GWAS datasets, assigning a score of 1 for the PheWAS-
GWAS intersection score, which is otherwise 0. Finally, the
target-disease association feature scores from OpenTargets
were values between 0 and 1, calculated in a similar manner
as the PheWAS catalogue analysis.

Processing of Target Druggability Data
For analysis of the druggability data from Pharos, the number of
distinct druggability levels that a target has was counted, with the
exception of Tdark, e.g., a target with Tbio, Tclin, and Tdark
labels is scored 2 (1 + 1 + 0). These scores were then normalized
against the highest druggability feature score of each gene.

Processing of Protein-Protein Interaction
Data
The degree of the node in the protein-protein interaction
networks from STRING is the number of proteins directly
connected to the target node via functional associations, which
include experimentally confirmed interactions, predicted
interactions and text mining data. Node degrees were
computed for each gene in a network and calculated as a ratio
of the highest node degree in that network, as a gene with higher
interactivity within a STRING network is more likely to be

FIGURE 2 | The StarGazer interface after searching “HLA-G” in Gene mode. At p = 0.05, the first allele returned is rs11206510. The color-coded bar chart shows
the odds ratio of association of the allele with each phenotype. The table on the right is the same data tabulated which can be downloaded as a csv file. The StarGazer
Variant mode is similar in appearance.
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biologically underpinning the molecular pathway that
contributes to a phenotype. The calculation of node degrees
scores this way also reduces effects of false positive interactions.

RESULTS

The StarGazer dashboard (https://github.com/AstraZeneca/
StarGazer) offers eight modes of data exploration for drug
target prioritization using the data analyzed as described in
Methods. The modern yet simple interface allows for rapid
navigation without the need for specialist training or
programming experience. StarGazer allows users to search
by genes or gene variants which displays all associated
phenotypic variants ranked by odds ratio graphically, as
well as in tabular format (Figure 2). Red bars indicate an
odds ratio of greater than 1 (i.e., risk association), whilst blue
bars indicate less than 1 (i.e., protective association). Users
can also search by the PheWAS, GWAS, and GWAS-PheWAS
Union modes of exploration, which returns odds ratios of all
variants of genes associated with the phenotype of interest
from the respective datasets, as well as their corresponding
druggability levels (Figure 3). When searching in the GWAS-
PheWAS Intersection mode, only variants with associations
identified in both GWAS and PheWAS datasets are shown
(Figure 4). For these variants, the dashboard also provides
association odds ratios, druggability data, protein-protein
interaction networks and gene ontology enrichment

analysis for the disease of interest (Figure 5). Finally, when
users search by disease target prioritization, the overall
StarGazer score is shown for each gene with association
with the disease of interest (Figure 6). Contextual
information on any of these genes can be found
immediately using the build-in NCBI search tool. For each
of these exploration modes, users can also modify the p-value
to only display associations of desired statistical significance
assigned by the origin data source.

Use Case: StarGazer for Understanding
Complex Diseases
In the following case study, we posed as someone who was simply
curious about the possible mechanistic causes of insomnia, and
consequently adopted a more exploratory workflow. As insomnia
is a complex and relatively understudied disorder, we set the
p-value to a less stringent 0.05 to prevent issues in, for example,
study sample size or sensitivity frommasking any potentially true
associations. This returned a list of 106 genes with associations
with insomnia, 62 of which had at least one risk-associated allele,
and 46 had at least one protection-associated allele (Table 1).
After searching on NCBI, there were three genes found to have
significant relevance to insomnia. DISC1 encodes a scaffold
protein which is involved in brain development, and its
mutations have been implicated in schizophrenia and other
psychiatric disorders (Dahoun et al., 2017); MAOA encodes a
mitochondrial oxidative deaminase targeting amines such as

FIGURE 3 | The StarGazer interface after searching “Multiple sclerosis” in PheWAS mode. At p = 0.05, 7.37% of genes with associations with multiple sclerosis
were categorized as Tclin, i.e., already targets of FDA-approved drugs. The distribution of genes in each druggability level is shown by pie chart and scatter plot, the latter
of which also showing the odds ratios of each allele of each gene. Some gene names are not shown. This data is re-analyzed to show only risk alleles, or only protective
alleles. Tabulated data can be visualized and downloaded. The StarGazer modes, GWAS and GWAS-PheWAS Union, are similar in appearance.
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dopamine, norepinephrine, and serotonin, and mutations in the
gene can result in Brunner syndrome, a psychiatric and sleep
disorder (Brunner et al., 2007); MEIS1 is a HOX gene thought to
have a pleiotropic effect on chronic insomnia disorder, and have
possible association with restless leg syndrome (Sarayloo et al.,
2019). We also found genes with a variety of functions and
unclear links with insomnia. Tumor suppressor genes,
CMTM7 (Li et al., 2014b), NKAPL (Okuda et al., 2015) and
ATM (encoding ATM checkpoint kinase) (Shiloh and Ziv, 2013)
may allude to aberrant DNA damage responses contributing to
insomnia, and indeed, there are several reports of links between
DNA damage and sleep in the literature (Carroll et al., 2016; Zada
et al., 2021). HLA isoforms indicate a potential immunity-related
cause of insomnia (Choo, 2007). In vitro mutants in vesicular
trafficking protein, dynamin-1, have impaired ability to recycle
neurotransmitter at synapses (Chung et al., 2010), providing a
more obvious potential link with insomnia. Finally, genes with
noticeably pleiotropic effect were also found to have a high

StarGazer score. One such example is estrogen receptor
(ESR1), important for gestation in women but is in addition
expressed in many non-reproductive tissues in both sexes, as it
has roles more broadly in growth and metabolism (Barros and
Gustafsson, 2011). Not only is estrogen receptor linked with
breast cancer but also with osteoporosis (Gennari et al., 2007),
and thus makes for a peculiar hit on the StarGazer analysis.
Although additional investigations are required to ascertain the
link between these genes and phenotypes, it is exciting to
hypothesize about the underlying molecular mechanisms. This
is especially the case for insomnia, a disorder of sleep which is a
biological process we still have a relatively poor understanding of.

DISCUSSION

StarGazer is a novel application built for rapid investigation of
drug repositioning strategies. It combines multi-source, multi-

FIGURE 4 | The StarGazer interface after searching “Type 2 diabetes” in GWAS-PheWAS Intersection mode. At p = 0.05, 23 SNPs were identified to have
associations in both PheWASs and GWASs. Top left: pie chart displaying the proportion of SNPs that were identified in either PheWAS or GWAS datasets, or in both
datasets. Top right: pie chart displaying druggability information of the genes of these SNPs. Tclin in red implies genes already have drugs targeting them available on the
market, whilst Tchem, Tbio, Tdark, and None, indicate progressively decreasing levels of druggability. Bottom left: scatter plot highlighting individually reported
odds-ratios of associations of SNPs from various GWASs. Bottom right: a protein-protein interaction network constructed from the genes of alleles detected in both
GWASs and the PheWAS catalog. The gene ontology enrichment analysis feature is not shown in the figure.
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omics data with a novel target prioritization scoring system in an
interactive Python-based Streamlit dashboard. StarGazer
analyzes and integrates disease-target associations, druggability
data, and protein-protein interaction data before extracting five
features from the data to create an overall StarGazer score for
every potential target associated with StarGazer’s curated list of
1844 phenotypic variants.

StarGazer is adapted to facilitate exploration of the human
biology landscape from a birds-eye view, allowing rapid digestion
of information from PheWASs/GWASs, which otherwise
contains many tens of thousands of complex multivariate
datapoints. Streamlit, as a user interface package adapted for
complex data visualization and user interactivity, was considered
to be a well-suited technology for such a task. Indeed, the
importance of the flexibility in visualization methods, and live

data retrieval and analysis is becoming increasingly clear, with
their applications ever-expanding (Badgeley et al., 2016;
Moosavinasab et al., 2016).

We demonstrate the utility in integrating several omics
datasets and returning easy-to-interpret analysis metrics in an
interactive dashboard. One can easily imagine the power of such a
strategy as we incorporate state-of-the-art, machine learning-
based, multi-omics integration techniques, as well as a wider
variety of high quality data. In an era where the speed at which we
can generate data is accelerating at a higher rate than we can
analyze it, we anticipate that integrative scores and visualization
tools will grow increasingly essential in biology, and that we must
begin to break away from the more rigid, single-use analysis
framework that forms the modern paradigm for analyzing not
just GWAS and PheWAS data (Diogo et al., 2018; Ferrero and

FIGURE 5 | The StarGazer interface after searching “ASCVD” in Protein-protein interaction mode. Protein-protein interaction networks are shown of all alleles, risk
alleles, and protective alleles. The node degree of the genes of these alleles are computed, and gene ontology enrichment analysis is performed on the right.
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Agarwal, 2018; Robinson et al., 2018; Lau and So, 2020), but
multi-omics data in general (Subramanian et al., 2020).

StarGazer has been built with the goal of pushing multi-omics
integration towards upward scalability by providing users with
immediate access to contextual information on genes of potential
interest by automatically performing several steps of follow-up
analysis on all genes - this saves a considerable amount of time
from performing speculative follow-up analysis. These follow-up
analysis steps are completed in bulk through the processing of the
single-omic layers, which removes the need for users to analyze
every gene separately for various properties and then later
compare the results to make sense of the evidence. Not only
does integrating single-omic layers increase the speed of
exploratory data analysis, but it also provides additional value
from combining multiple pieces of evidence as opposed to

focusing on individual single high-confidence pieces of
information, especially when the different types of data are
likely to have an intimate biological relationship, e.g.,
combining a gene’s DNA, RNA and protein information
together is likely to be more valuable than analyzing them
independently as they are functionally coupled. This approach
may be our best strategy for uncovering complex and profound
relationships and hence, the phrase “the whole is greater than the
sum of its parts” holds particularly true in the context of multi-
omics data analysis. A more integrated strategy may also be more
useful in helping us understand the genetic basis of complex
diseases driven by genes and gene variants with pleiotropic
functions or effects. Applying the latest ideas on pleiotropy in
biological systems to future work may allow us to obtain a more
complete understanding of genome-phenome relationships and

FIGURE 6 | The StarGazer interface after searching “Breast cancer” in Disease Target Prioritization mode. At p = 0.05, 140 genes are returned to have association
with breast cancer. Genes are ranked in StarGazer score, which describes how suitable a gene is for drug repositioning. The subsequent five columns are the individual
scores of the five features extracted from all of the data that contribute to the StarGazer score. Data are separated into all alleles, risk alleles, then protective alleles, and
can be downloaded as csv files.
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thus drive novel discoveries previously inaccessible in the
biomedical field (Shameer et al., 2021).

Limitations
This should, of course, highlight to the reader the current co-
dependence between broader exploratory analytical approaches,
such as StarGazer, with those that possess stronger statistical
power, aimed at target confirmation at the cost of breadth and
fewer omics layers, and of course, experimental confirmation.
Moving forwards, we should hope that the field develops more
sophisticated strategies for these types of analysis. All in all, we
anticipate StarGazer to be potentially useful in providing insights
into many types of biological pathways, as long as the molecular
perturbations that are linked with disease lie close to the genetic
level. Whilst it is easy to imagine StarGazer’s utility for studying
diseases caused by variants of proteins or nucleic acids due to
their more direct connection to genome-level information,
studying metabolic disorders of carbohydrates and lipids
would be possible but more difficult.

We wish to highlight that, although the barrier to entry for
multi-omics data analysis is low, there seems yet a limitless space
for improvement in the field at the time of writing. In the future,
we aim to incorporate gene ontology terms enrichment analysis,
gene semantic similarity, and gene expression data into our target
prioritization framework, and improve on the implementation of
protein-protein interaction networks (Shameer et al., 2016; Peters

et al., 2017). Whilst the current version of StarGazer extracts
several features for target-disease associations, the assessment of
target druggability uses only one dataset to generate one feature.
Although the knowledge-based classification of the genome that
Pharos provides is very high quality data, it is less indicative of
future potential developments as it reflects only the current status
of the druggability landscape of human biology. Therefore, more
predictive datasets, such as computational docking predictions
using structural data frommolecular techniques or even AI-based
computational prediction, may provide more robust insight into
the future (Baek et al., 2021; Jumper et al., 2021).

StarGazer’s use of API calls allows for themajority of its data to be
updated automatically with the latest relevant studies, aside from the
PheWAS catalog which was performed in 2013—it would be
invaluable if a similar study was repeated to include the GWAS
datawhichwas generated during the decade that has elapsed since the
original effort. Furthermore, a variety of machine learning strategies
have been applied to multi-omics data analysis and show great
promise in assisting precision medicine and repositioning
(Shameer et al., 2018b; Nicora et al., 2020; Reel et al., 2021), and
is therefore an area we are interested in developing for StarGazer.
Another avenue for future development is to improve on the
standardization of clinical terms between the different datasets,
which is a problem not unique to StarGazer but found
ubiquitously in healthcare-related work (Wears, 2015; Beck et al.,
2019). This problem manifested itself as data from OpenTargets

TABLE 1 | Top 30 hits from Disease Target Prioritization mode analysis of “Insomnia” using StarGazer.

Gene Name StarGazer Score Odds-
Ratio

OpenTargets
Associations

Indicator Phe/GWAS Druggability Score Network Degree
Score

HLA-DRB1 0.456 0.725 0.000 0.000 1.000 0.556
ESR1 0.433 0.655 0.009 0.000 0.500 1.000
GRIN2B 0.407 0.756 0.000 0.000 0.500 0.778
MEIS1 0.395 0.251 1.000 0.000 0.500 0.222
MAOA 0.344 0.888 0.000 0.000 0.500 0.333
DNM1 0.337 0.630 0.000 0.000 0.500 0.556
HLA-DQB1 0.320 0.653 0.000 0.000 0.500 0.444
BMP4 0.307 0.591 0.000 0.000 0.500 0.444
ATM 0.293 0.188 0.000 0.000 0.500 0.778
CMTM7 0.288 0.941 0.000 0.000 0.500 0.000
NKAPL 0.288 0.938 0.000 0.000 0.500 0.000
GRIA1 0.286 0.263 0.000 0.000 0.500 0.667
TOMM40 0.280 0.677 0.000 0.000 0.500 0.222
NR5A2 0.278 0.668 0.000 0.000 0.500 0.222
HDAC9 0.276 0.768 0.000 0.000 0.500 0.111
MS4A6A 0.271 0.631 0.000 0.000 0.500 0.222
DISC1 0.267 0.166 0.000 0.000 0.500 0.667
ST6GAL1 0.265 0.716 0.000 0.000 0.500 0.111
SLC22A3 0.264 0.600 0.000 0.000 0.500 0.222
EFNA5 0.264 0.600 0.000 0.000 0.500 0.222
NRGN 0.263 0.706 0.000 0.000 0.500 0.111
DRD2 0.263 0.000 0.150 0.000 0.500 0.667
RNASET2 0.263 0.591 0.000 0.000 0.500 0.222
FGFR2 0.263 0.257 0.000 0.000 0.500 0.556
UBE2L3 0.262 0.701 0.000 0.000 0.500 0.111
YDJC 0.260 0.690 0.000 0.000 0.500 0.111
CDC42BPB 0.260 0.690 0.000 0.000 0.500 0.111
LAMP3 0.258 0.791 0.000 0.000 0.500 0.000
ARG1 0.254 0.660 0.000 0.000 0.500 0.111
CCND3 0.251 0.643 0.000 0.000 0.500 0.111
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being underrepresented in the overall StarGazer score. We
hypothesize that using a combination of standardized codes for
clinical terms, such as ICD-9/-10 (https://www.cdc.gov/nchs/icd/
icd9.htm, https://www.cdc.gov/nchs/icd/icd10.htm), and EFO
(https://www.ebi.ac.uk/efo/faq.html), would help with this
problem, as well as further curate our list of 1844 phenotypic
variants. Currently, the code for installation can be found on
GitHub (https://github.com/AstraZeneca/StarGazer).

CONCLUSION

We have created StarGazer (https://github.com/AstraZeneca/
StarGazer), an interactive dashboard that facilitates rapid
investigation of potential novel drug targets and repositioning
strategies. It integrates three different types of data (disease-target
data, target druggability data, and protein-protein interaction
data) from four different knowledgebases (the PheWAS catalog,
OpenTargets, Pharos, and STRING) to extract five features that
are then processed to return a singular normalized “StarGazer”
score. All genes with associations with any of the 1844 phenotypic
variants in the StarGazer disease list are then ranked in suitability
for drug repositioning strategies for the disease of interest.

We demonstrate the utility in integrating several omics
datasets to return easy-to-interpret analysis metrics in an
interactive dashboard. One can easily imagine the power of
such a strategy as we incorporate machine learning techniques
as well as a wider variety of high quality data. It is anticipated that
such integrative analysis strategies will become commonplace as
biomedical data science grows to explore more multi-disciplinary
and multi-omic datasets. Integrative scores and visualization

tools for high dimensional data will become essential as we
navigate science in this era where we are generating data at a
such an enormous pace, thus we have positioned StarGazer to
push multi-omics integration towards upward scalability.
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Prediction of herbal medicines
based on immune cell infiltration
and immune- and
ferroptosis-related gene
expression levels to treat valvular
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Inflammatory immune response is apparently one of the determinants of progressive

exacerbation of valvular atrial fibrillation(VAF). Ferroptosis, an iron-dependentmodality

of regulated cell death, is involved in the immune regulation of cardiovascular disease.

However, the relevant regulatorymechanismsof immune infiltration and ferroptosis in

VAF have been less studied. In the current study, a highly efficient system for screening

immunity- and ferroptosis-related biomarkers and immunomodulatory ability of

herbal ingredients has been developed with the integration of intelligent data

acquisition, data mining, network pharmacology, and computer-assisted target

fishing. VAF patients showed higher infiltration of neutrophils and resting stage

dendritic cells, while VSR patients showed higher infiltration of follicular helper

T cells. In addition, six (e.g., PCSK2) and 47 (e.g., TGFBR1) ImmDEGs and one

(SLC38A1) and four (TGFBR1, HMGB1, CAV1, and CD44) FerDEGs were highly

expressed in patients with valvular sinus rhythm (VSR) and VAF, respectively. We

further identified a core subnetwork containing 34 hub genes, whichwere intersected

with ImmDEGs and FerDEGs to obtain the key gene TGFBR1. Based on TGFBR1,

14 herbs (e.g., Fructus zizyphi jujubae, Semen Juglandis, and Polygonum cuspidatum)

and six herbal ingredients (curcumin, curcumine, D-glucose, hexose, oleovitamin A,

and resveratrol) werepredicted. Finally, TGFBR1was found todockwellwith curcumin

and resveratrol, and it was further verified that curcumin and resveratrol could

significantly reduce myocardial fibrosis. We believe that herbs rich in curcumin and

resveratrol such as Rhizoma curcumae longae and Curcuma kwangsiensis, mitigate

myocardial fibrosis to improve VAF by modulating the TGFβ/Smad signaling pathway.

This strategy provides a prospective approach systemically characterizing phenotype-

target-herbs relationships based on the tissue-specific biological functions in VAF and

brings us new insights into the searching lead compounds from Chinese herbs.
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Introduction

Atrial fibrillation (AF), a common cardiovascular

disorder, shows considerably high prevalence across the

world, with age being the most important risk factor

(Kornej et al., 2020). AF (Table 1) is the most common

persistent arrhythmia (Chiang et al., 2013) and an important

contributor to stroke, which is the second leading cause of

death worldwide (Pistoia et al., 2016). AF has been found to

be present in approximately 10% patients with stroke at the

time of the attack (Freedman et al., 2017). In fact,

considering gaps in monitoring, this percentage is bound

to be higher. Haeusler et al. on continuous surveillance

detected AF in >30% patients with cryptogenic stroke

(Haeusler et al., 2018). It is notable that cardiogenic

stroke is more severe than other stroke subtypes (Kamel

and Healey, 2017). AF is a significant contributor to

cardiovascular mortality (Hohendanner et al., 2018), such
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as myocardial infarction and heart failure (Ruddox et al.,

2017; Carlisle et al., 2019). AF and heart failure reportedly

co-exist in up to 30% patients owing to numerous shared

pathophysiological mechanisms that facilitate the

maintenance of each condition (Prabhu et al., 2017). AF

can be divided into valvular and non-valvular AF, the former is

typically associated with worse prognosis. Valvular atrial

fibrillation (VAF) is one of the common clinical manifestations

of valvular heart disease (VHD), and VAF can in turn exacerbate

VHD (Gaborit et al., 2005). The timing of intervention in

asymptomatic patients with VHD remains controversial,

interventions are usually initiated when a decline in exercise

capacity is observed or when there is shortness of breath

(Baumgartner et al., 2020). Consequently, the risk of death

always persists when patients develop severe VAF symptoms

(e.g., panic palpitations and restricted activity). Anticoagulation

therapy is the most basic method to treat VAF, but treatment

efficacy becomes limited with disease progress (Lip et al., 2019).

Valve replacement is another commonly used treatment

method, but complications such as re-thrombosis and

recurrent AF pose a challenge. Valvular sinus rhythm (VSR)

represents the early stage of VHD, and as the disease progresses,

it evolves into VAF, which is one of the most severe stages of

VHD. The pathogenesis of AF remains poorly understood,

inflammatory signals are apparently one of the determinants

of progressive exacerbation of AF (Nattel et al., 2020). The

accumulation of immune cells, such as macrophages, in atrial

tissue mediates inflammatory responses, resulting in atrial

electrophysiology remodeling (Sun et al., 2016). This

inflammatory pathological response increases the incidence of

AF, and a mutually reinforcing vicious circle is created (Hu et al.,

2015). In addition, ferroptosis plays a potential role in AF.

Ferroptosis, an iron-dependent modality of regulated cell

death, is distinctly different from cell death mechanisms such

as apoptosis, necrosis, and autophagy (Li J. et al., 2020; Tang et al.,

2021). Ferroptosis and inflammatory responses promote each other

(Sun et al., 2020). Inhibition of ferroptosis has been reported to reduce

susceptibility to frequent excessive alcohol consumption-induced AF

(Dai et al., 2022). However, only few studies have explored

inflammatory responses and mechanisms underlying ferroptosis in

VAF. Therefore, we aimed to detect differences in immune cell

infiltration and immune- and ferroptosis-related gene expression

levels in patients with VAF. Our core goal was to determine how

to delay VAF progression. Herbal medicines, a natural treasure trove,

contain dozens or even hundreds of ingredients; their mechanisms of

action often involve multiple pathways and are thus complex.

Numerous herbal medicines have been proven to be effective to

prevent and treat cardiovascular diseases (e.g., hypertension) in several

TABLE 1 Nonstandard Abbreviations and Acronyms.

Full name Abbreviation

Atrial fibrillation AF

Valvular atrial fibrillation VAF

valvular heart disease VHD

Valvular sinus rhythm VSR

differentially expressed genes DEGs

Immune-related DEGs ImmDEGs

Ferroptosis-related DEGs FerDEGs

Protein–protein interaction PPI

Biological process BP

Cellular component CC

Molecular function MF

TABLE 2 List of all software and websites used in this study.

Name Entrance

GEO database https://www.ncbi.nlm.nih.gov/geo/

R soft and main plug-in package Version: R 4.1.1; Package: limma, clusterprofiler

ImmPort database https://www.immport.org/home

String databse https://cn.string-db.org/

Cytoscape Version: Cytoscape_v3.9.0; Plug-in: Degree

FerrDb database http://www.zhounan.org/ferrdb/

KEGG Mapper–Color https://www.kegg.jp/kegg/mapper/color.htmlv

HERB database http://herb.ac.cn/

PubChem database https://pubchem.ncbi.nlm.nih.gov/

ChemOffice Chem3D 19.0

Uniprot database https://www.uniprot.org/

PDB database https://www.rcsb.org/

Autodock vina Autodock vina 1.1.2
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randomized controlled trials (Hao et al., 2017). With recent

advancements in technologies, methods such as high-throughput

sequencing have been widely adopted to study the active

ingredients of herbal medicines and to identify target genes

regulated by them.

Herein we used the Gene Expression Omnibus (GEO) database

to obtain information pertaining to local gene expression profiles of

patients with VAF andVSR and compared differences in immune cell

infiltration and immune- and ferroptosis-related gene expression

levels, from the data thus collated, we sought to predict effective

herbal medicines to treat VAF.

Materials and methods

Gene expression profile of patients with
VAF and VSR

Gene expression profile of patients with VAF and VSR was

obtained by searching the GEO database (Table 2); gene IDs were

collected and then converted into gene symbols.

Analyses of immune cell infiltration and
differentially expressed genes (DEGs)

The CIBERSORT deconvolution method was used to study

immune cell infiltration. The gene expression profiles were

normalized and screened for DEGs using the limma R package

based on the cutoff criteria of |logFC| ≥ 1 and adjP value ≤0.05.

Immune-related DEGs (ImmDEGs) and
ferroptosis related DEGs (FerDEGs)

In addition to immune cell infiltration analysis, we studied

the differential expression of immune-and ferroptosis-related

genes in patients with VAF and VSR. Immune- and

ferroptosis-related genes were separately identified from the

ImmPort and FerrDb databases, respectively; subsequently,

they were intersected with DEGs to obtain a list of ImmDEGs

and FerDEGs, respectively.

Protein-protein interaction (PPI), hub
genes, and enrichment analyses

We used the STRINGdatabase to subject DEGs to PPI analysis

and top 30 genes were filtered based on the MCODE plugin of

Cytoscape, these genes were considered to be hub genes. DEGs

were also subjected Gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses

using the R package clusterprofiler (cutoff: p ≤ 0.05 and q ≤ 0.05).

For the enrichment results, in addition to visualizing them as

bubble plots, DEGs were tagged in the interested enrichment

pathway of by using the color tool of the KEGG database.

Key genes and herbal medicine prediction

A key gene was defined as a gene that was a ImmDEG,

FerDEG, and hub geneenriched in an immune-related pathway.

Based on the identified key genes, we reverse predicted target

herbal medicines and ingredients using the HERB database.

Molecular docking for validation

The protein structure of key genes encoded were downloaded

from the PDB database and the structure of predicted herbal

ingredients required from Pubchem database. Using Autodock

vina tools to molecularly dock the key genes with herbal

ingredients and the model of lowest binding free energy was

regarded as the best bond way.

Experimental design

The HL-1 cells were used to construct the AF model (Hu et al.,

2021). The HL-1 cell line was purchased from Shanghai (TongPai,

China), used for in vitro research and cultivated in DMEM

containing 10% foetal bovine serum (Gibco, MA, United States)

and 0.1 mM norepinephrine in a 37 °C cell incubator with 5% CO2.

Prior to each experiment,HL-1 cells were inoculated in six-well plates

and treated as described below when cells reached 70% confluency.

Normal control group (NC): HL-1 cells were cultured in DMEM for

48 h. AngII group (AG): HL-1 cells were incubated with 200 nM

AngII for 48 h. Curcumin group (CG): HL-1 was first incubated with

curcumin for 2 h in a concentration gradient (0, 5, 25, 50, 100, 250,

400, 1000ug/mL) and then 200 nM AngII was added for 48 h.

Resveratrol group (RG): HL-1 was first incubated with Resveratrol

for 2 h in a concentration gradient (0, 10, 50, 100, 200, 800, 1600ug/

mL) and then 200 nM AngII was added for 48 h.

TABLE 3 List of primers for Real-time PCR.

Target Primer Sequence (5–39)

VIMENTIN FP CTGCTTCAAGACTCGGTGGAC

RP ATCTCCTCCTCGTACAGGTCG

Collagen I FP AAGTCACCGAGAGAATTGTCAC

RP AGAGAGCCTGTCTTAGCATATCC

α-SAM′ FP GGACGTACAACTGGTATTGTGC

RP TCGGCAGTAGTCACGAAGGA
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FIGURE 1
(A) Each bar represents a sample, and each color represents a type of immune cell. Area of the color represents the percentage of immune cell
infiltration responsible for total immune cell infiltration. (B) Each column represents a sample, and each row represents a type of immune cell. Color
transition from green to red represents an increase in immune cell infiltration level. (C) Red and green violin columns represent patients with VAF and
VSR, respectively. The vertical axis represents the ratio of immune cell infiltration responsible for total immune cell infiltration. p value, obtained

(Continued )
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Assays of CCK8

The growth status of each group of cells was detected by

CCK8 and the effect of each herbal medicine on the viability of

HL-1 cells was counted and observed to select the optimal

concentration for drug intervention. The method was as

follows: approximately 5 × 103 cells were cultiviated in 96 well-

plates.Cellswere incubatedwith theCCK8reagent (10ul) for2 hat

37°C, followbyobservationat anabsorbanceof450 nmof lightbya

Thermomax microplate reader(Molecular devices, CA,

United States).

Detection of qPCR

Total RNA was extracted from cultivated cells by

using Trizol regents. cDNA was synthesized by using

the EvoM-MLV Kits. RT-PCR was performed using 2X

SYBR Green qPCR Master Mix (K1070-500,

APExBIO, US) on a CFX96 Real-Time PCR Detection

System (Bio-Rad Laboratories) following the

manufacturer’s protocol, and analyzed by delta-delta-CT

method and given as ratio compared with vehicle

control. The following optimized conditions were used:

95 °C for 30 s, 95 °C for 5 s, and 40 cycles at 60 °C for

5 s. The levels of mRNA were normalized in relevance

to endogenous GAPDH, and the expression of target

genes was analyzed by the method of 2-ΔΔct. The

above experiments were repeated three times

independently. The primer sequences used in this study

are listed in Table 3. All experiments were performed in

triplicate.

Statistical analyses

Data were expressed as mean ± standard error of the mean

(SEM). Graphpad Prism 9.3.1 software was used to perform

unpaired Student’s t-tests to analyse differences in

quantitative variables between groups and to construct

statistical histograms. p value ≤ 0.05 was considered as

indicating statistically significant differences.

Results

Gene expression profiles

We downloaded the gene expression matrix of GSE41177

(Yeh et al., 2013) (GPL570 platform) from the GEO database.

This data matrix contains gene expression level data for patients

with VAF(32 samples) and VSR(6 samples), with samples from

both the left atria and pulmonary vein and the surrounding left

atrial junction.

Immune cell infiltration and DEGs

On analysis of immune cell infiltration, we initially found

differences between patients with VAF and those with VSR (see

Figures 1A,C). Subsequently, performing Wilcoxon test, we

found that neutrophils (p = 0.001) and resting stage dendritic

cells (p = 0.043) were highly expressed in patients with VAF,

while follicular helper T cells (p = 0.007) were highly expressed in

those with VSR (Figure 1B). We could also identify 585 DEGs:

210 genes were down- and 375 were upregulated (Figure 1D).

ImmDEGs and FerDEGs

On analyzing immune-related gene expression levels, we

identified 53 ImmDEGs: six of them (e.g., PCSK2) were

highly expressed in patients with VSR and 47 (e.g., TGFBR1,

IL1R2, and CD48) were highly expressed in those with

VAF(Figure 1E). Similarly, on analyzing ferroptosis-related

gene expression levels, we identified five FerDEGs: one of

them, i.e., SLC38A1, was highly expressed in patients with

VSR and four (TGFBR1, HMGB1, CAV1, and CD44) were

highly expressed in those with VAF (see Figure 1F).

PPI network construction, hub gene
selection, and enrichment analysis

STRING database was used to perform the PPI analysis of

DEGs with the medium confidence ≥0.4 and the top three

FIGURE 1
using theWilcoxon test, represents the difference between the immune cell infiltration level in patients with VSR and VAF. (D)UpregulatedDEGs
are highlighted in red and downregulated DEGs in blue. Criteria: |logFC| ≥ 1 and adjP value ≤0.05. (E) Expression levels of 53 ImmDEGs are shown; the
darker the red color, the higher the expression level, and the darker the green color, the lower the expression level. (F) Expression levels of five
FerDEGs are shown; the darker the red color, the higher the expression level, and the darker the green color, the lower the expression level.
Contrast group = patients with VSR; trial group = patients with VAF.
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FIGURE 2
(A) PPI network. The three innermost circles represent the top three core subnetworks (A–C). In the network, each node represents a DEG, and
the edges represent the correlation between the nodes. In general, themore edges a node had, the greater the role of that node. (B) This map shows
the core subnetwork (B). Each node represents a hub gene, and the edges represent the correlation between the nodes. In general, themore edges a
node had, the greater the role of that node. (C) Top 10 GO enrichment results. The horizontal axis represents the gene ratio, i.e., the ratio of the
number of DEGs to number of total genes. Dot size is proportional to the gene ratio, and dot color from blue to red that the adjusted p value is
smaller. (D) Association among the top five immune-related biological processes was identified by analyzing co-enriched DEGs.
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FIGURE 3
(A) Enriched KEGG pathways (n = 36) are shown. The horizontal axis represents the ratio of the number of DEGs enriched in a pathway to the
total number of genes in the pathway. Dot size is proportional to the gene-ration, and dot color from blue to red implies that the adjusted p value is
smaller. (B) Th17 cell differentiation pathway. Red nodes represent upregulated DEGs, blue nodes represent downregulated DEGs; the pathway
marked in yellow is the TGFβ/Smad signaling pathway. (C) TGFBR1 at the intersection of ImmDEGs, FerDEGs, and hub genes. TGFBR1 and

(Continued )
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core subnetworks were screened using the MCODE plugin of

Cytoscape (Figure 2A), and hub genes were subsequently

selected. The largest core subnetwork, subnetwork B, which

contains 34 hub genes (Figure 2B). GO enrichment

analysis(see Figure 2C) revealed that DEGs were enriched

in 209 biological processes (GO-BP) mainly associated with,

for example, immune response-activating cell surface

receptor signaling pathway and lymphocyte-mediated

immunity. DEGs were also enriched in 62 cellular

components (GO-CC), and the major categories

represented included, for example, MHC class II

protein complex and immunoglobulin complex; similarly,

DEGs were enriched in 12 molecular functions(GO-MF),

with the major categories being structural constituent of

ribosome and immunoglobulin receptor binding. In

addition, we explored the connection among immune-

related BP by analyzing co-enriched DEGs found that

some DEGs, such as FCN1 and FPR2, were co-enriched

in multiple BP; they were observed to participate in

neutrophil-mediated immunity, immune response-

activating cell surface receptor signaling pathway, as well

as complement activation (Figure 2D). With regard to KEGG

pathway enrichment analysis, 36 pathways, such as Th17 cell

differentiation and endocytosis, were enriched (Figure 3A).

We chose the TGFβ signaling pathway for further

analysis, which is important for Th17 cell differentiation

(Figure 3B).

Key genes and predicted herbal medicines

On intersecting ImmDEGs, FerDEGs, and hub genes, we

obtained two common genes: TGFBR1 and HMGB1 (Figure 3C).

We selected TGFBR1 as the key gene after comprehensive

analyses of pertinent immune-related KEGG pathway, and

14 herbs (Fructus zizyphi jujubae, Curcuma kwangsiensis,

Semen Juglandis, Polygonum cuspidatum, Curcuma

xanthorrhiza, Rhizoma curcumae longae, Rhododendron

ovatum, Datura metel, Datura innoxia, Fructus Corni, Semen

aesculi, Rhizoma Smilacis Glabrae, Radix Curcumae, and Caulis

genkwa) and six ingredients (curcumin, curcumine, D-glucose,

hexose, oleovitamin A, and resveratrol) were consequently

predicted (Table 4). There was a correspondence between

herbs and herbal medicines ingredients, such as curcumin, in

Rhizoma curcumae longae and Curcuma kwangsiensis, Semen

Juglandis and Radix Curcumae, amongst others. A visual

network diagram (Figure 3D) was constructed to clearly

present the relationship between TGFBR1 and herbs/ingredients.

Molecular docking

Our molecular docking results showed that curcumin and

resveratrol docked well with TGFBR1, while D-glucose and oily

vitamin A did not bind very tightly to TGFBR1(Figures 4A–D).

Unfortunately, we were failed to complete the molecular docking of

FIGURE 3
CAV1 were the intersecting genes between hub genes and FerDEGs, andCD28, ENG, S100A12, HLA-DPB1, HLA-DQA1, TGFBR1, TGFBR2,
TYROBP, CSF1R, FCGR3B, FCER1G, and S100A8 were the intersecting genes between hub genes and ImmDEGs. (D) This network displays the
correspondence between herbal medicines and herbal ingredients. The blue hexagon represents our key genes, TGFBR1. Brown rectangles
represent the six predicted herbal ingredients and green ovals represent the 14 predicted herbal medicines. The lines between the herbal
medicines and herbal ingredients show that they have some correspondence.

TABLE 4 List of 14 herbal medicines and six herbal ingredients predicted in this study.

Herbal ingredients Herbal medicines

curcumin Curcuma kwangsiensis Caulis Genkwa Curcuma xanthorrhiza

Radix Curcumae Fructus Corni Semen Aesculi

Semen Juglandis Rhizoma Curcumae longae

curcumine Rhizoma Curcumae longae Radix Curcumae Fructus Corni

Semen Aesculi Caulis Genkwa Semen Juglandis

resveratrol Polygonum cuspidatum Rhizoma Smilacis Glabrae

oleovitamin a Datura metel Datura innoxia

D-glucose Rhododendron ovatum

Hexose Rhizoma Smilacis Glabrae
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FIGURE 4
(A) The best binding model of curcumin to TGFBR1 with a minimum binding free energy of 8.6 kcal/mol. (B) The best binding model of
D-glucose to TGFBR1 with a minimum binding free energy of 5.7 kcal/mol. (C) The best binding model of oleovitamin A to TGFBR1 with a minimum
binding free energy of 7.2 kcal/mol. (D) The best binding model of resveratrol to TGFBR1 with a minimum binding free energy of 8.5 kcal/mol (E)
CCK-8 assays was used to measure the viability of HL-1 cells. (F) Quantitative reverse transcription-PCR was used to measure the key gene
expression levels. Data are shown as mean ± standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001. (G) The potential underlying
mechanism map.
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curcumin and hexose to TGFBR1 due to the unavailability of the 2D

or 3D structures of curcumine and Hexose. Usually, lower binding

free energy results in higher binding model stability. Apparently, it

was easy to find that curcumin and resveratrol boundmost strongly to

TGFBR1, so we selected these two active ingredients as the target

components for subsequent CCK8 and qPCR experiments.

Assays of CCK8

The CCK8 results showed that the intervening concentration

of curcumin increased HL-1 cell activity at 50umol/L, did not

affect HL-1 cell viability at the remaining low to medium

concentrations (≤250umol/L), and significantly inhibited HL-1

activity at high concentrations (≥400umol/L). Resveratrol had no

significant effect on HL-1 cell activity at low concentrations

(≤50umol/L) and significantly inhibited HL-1 cell activity at

high concentrations (≥100umol/L) (see Figure 4E). Therefore,

both curcumin and resveratrol were selected at a concentration of

50umol/L in subsequent qPCR experiments.

Detection of qPCR

At this intervention level, the qPCR results showed that the

expression of TGFBR1, vimentin, α-SMA and collagen I was

significantly lower in NC, CG and RG than in AG. Surprisingly,

vimentin, α-SMA and collagen I in CG and RG were not

significantly different from NC. However, although

TGFBR1 was significantly lower in CG and RG compared to

the AG group, it was still higher compared to NC (Figure 4F).

Discussion

We herein found that patients with VAF and VSR showed

differences in gene expression and immune cell infiltration levels.

In comparison to patients withVSR, 375 up- and 210 down-regulated

genes were identified in those with VAF. Further, in local cardiac

tissue, patients with VAF showed higher infiltration of neutrophils

and resting stage dendritic cells, while those with VSR showed higher

infiltration of follicular helper T cells. Neutrophil-mediated

inflammatory responses are involved in a variety of cardiovascular

diseases (e.g., AF,myocardial infarction, heart failure), which ismainly

associated with neutrophil extracellular traps (NETs) that recruit

other inflammatory cells such as macrophages to amplify the

inflammatory response and promotes collagen synthesis in cardiac

tissue leading to fibrosis (Warnatsch et al., 2015; Döring et al., 2020;

He et al., 2021; Ling and Xu, 2021).

Dendritic cells are most powerful antigen-presenting

cells derived from bone marrow and are essential for

stimulating adaptive immunity produced by T cells as

well as an important bridge between innate and adaptive

immunity, and has been found to be associated with cardiac

valve tissue inflammation (Skowasch et al., 2005; Waisman

et al., 2017; Collin and Bigley, 2018). Dendritic cells in

damaged heart tissue can also secrete inflammatory

factors and directly activate fibroblasts to proliferate (Lee

et al., 2018), a process that promotes the production of

collagen fibres. Resting stage Dendritic cells are

predominantly found in peripheral tissues and are

specifically responsible for antigen capture rather than

antigen presentation, which reserving them for the future

initiation of T cell-mediated immune responses (van

Duivenvoorde et al., 2006; Tiberio et al., 2018). High

infiltration of resting Dendritic cells in VAF without

activation may indicate that the local tissue immune

response is not strong, persistent low levels of

inflammation may be an explanation. Unfortunately,

Chronic inflammation leads to tissue damage and this

damage process is usually accompanied by fibrotic repair,

thus creating a vicious cycle of inflammatory damage and

fibrotic repair, which eventually leads to continuous cardiac

fibrosis that is closely associated with the development of AF

(Abe et al., 2018; Smolgovsky et al., 2021). Follicular helper

T cells are a specific subset of T cells that are essential for

germinal centre formation, differentiation and maturation

of B-cell (Choi and Crotty, 2021). This sort of T cells are

usually found in inflamed tissues of secondary lymphoid and

non-lymphoid organs and provide auxiliary support to

B cells such as stimulating them to produce antibodies

(Hutloff, 2018; Yoshitomi and Ueno, 2021). It has been

reported that such cells are significantly associated with

pulmonary fibrosis, skin fibrosis and systemic sclerosis,

and that the main mechanism may be related to immune

disorders leading to excessive accumulation of antibodies to

form inflammatory fibrotic repair after immune damage

(Clark, 2018; Beurier et al., 2021; Zhang et al., 2021).

However, it is still very poorly studied in cardiac tissue

fibrosis, and only very few studies have reported finding that

this cell is associated with the cardiac inflammatory

response such as in heart transplants, where it enhances

the function of B cells to promote a chronic inflammatory

response (Wang Y. et al., 2020). Interestingly, in the VSR

group, there was a high infiltration of Follicular helper

T cells but not B cells, suggesting at least that the

accumulation of antibodies formed during the VSR period

was not too high, possibly reflecting, to some extent, only

mild fibrosis in the heart tissue during this period. Thus, the

immune infiltration findings were more prone to suggest

chronic inflammation in both VSR and VAF, with post-

inflammatory damage followed by fibrotic repair throughout

the evolution of VSR to VAF.

Furthermore, we discovered 47 ImmDEGs that were highly

expressed in patients with VAF (e.g., TGFBR1, IL1R2, and CD48)

and six that were lowly expressed (e.g., PCSK2). Four FerDEGs
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(TGFBR1, CAV1, HMGB1, and CD44) were also highly expressed in

the VAF group, whereas one (SLC38A1) was lowly expressed.

Interestingly, TGFBR1 and HMGB1, two intersecting genes

between ImmDEGs and FerDEGs, were both highly expressed in

the VAF group. The crosstalk between immune response and

ferroptosis was well established and it has been investigated for the

treatment of tumours such as using activation of CD8+ to induce

ferroptosis in tumour cells (Tang et al., 2020). The crosstalk between

immune cells and ferroptosis can occur in three ways: by the immune

cells themselves produce ferroptosis when immune disorder; by

tissue cells where ferroptosis is recognised by immune cells and

produces an inflammatory clearance response; above both are

simultaneously exist (Chen et al., 2021; Yao et al., 2021). In

essence, both of way are inflammatory responses, with a sustained

inflammatory response leading to further tissue damage and

subsequent repair, this repair process that inevitably

involves increased secretion and even accumulation of

collagen fibres leading to tissue fibrosis. It is clear that this

mechanism is likely to be present in the process of evolution from

VSR to VAF.

On further analyses, we found that TGFBR1 was the

intersecting gene between not only ImmDEGs and

FerDEGs but also hub genes. Therefore, we herein

considered TGFBR1 as the key gene. TGFBR1, a

pleiotropic cytokine, plays a pivotal role in immune

response and mediates a vicious cycle of inflammation and

tissue fibrosis (Bonniaud et al., 2005; Esebanmen and

Langridge, 2017). In fact, TGFBR1 is also involved in

tissue fibrosis during ferroptosis. Li et al. reported that

ferroptosis inhibitor liproxstatin-1 alleviates radiation-

induced lung fibrosis via TGFBR1 downregulation (Li

et al., 2019). An increasing body of evidence indicates that

AF development is associated with atrial myocardial fibrosis,

which presumably underlies the pathology of this persistent

arrhythmia (Dzeshka et al., 2015; Jalife and Kaur, 2015;

Sohns and Marrouche, 2020). In cardiac tissue, TGFBR1 is

evidently involved in the process of tissue fibrosis that can

cause VAF and it has been found to cause or exacerbate AF by

promoting atrial tissue fibrosis (Khalil et al., 2017; Liu Y.

et al., 2021). Wang et al. suggested that quercetin alleviates

AF by inhibiting fibrosis of atrial tissues through inhibiting

the TGF-β/Smads signaling pathway (Wang et al., 2021).

Khalil et al. reported that TGFBR1 participates in tissue

fibrosis primarily via the TGFβ-/Smad signaling pathway

(Khalil et al., 2017). In traditional Chinese medicine, some

herbs, such as Taohong Siwu, have been also observed to

significantly attenuate myocardial fibrosis by inhibiting

fibrosis proliferation and collagen deposition via this

pathway (Tan et al., 2021). In the present study, we also

found TGFβ-/Smad signaling pathway to be significantly

enriched as a sub-pathway of Th17 cell differentiation.

Based on TGFBR1, we predicted six herbal ingredients

and 14 herbal medicines. Some of the herbal ingredients

identified herein reportedly alleviate tissue fibrosis by

modulating the TGF-β/Smad signaling pathway; for example,

curcumin has been reported to attenuate pulmonary, hepatic, and

renal interstitial fibrosis (Saidi et al., 2019; Wang Z. et al., 2020; Kong

et al., 2020). Moreover, curcumin has been found to be effective for

treating cardiovascular diseases, such as heart failure, myocardial

infarction, atherosclerosis (Li H. et al., 2020), and and it can

significantly inhibit the duration of atrial fibrillation episodes,

attenuate cardiac fibrosis (Yue et al., 2021). However, there are

fewer studies on curcumin’s anti-fibrotic effects through its action

on TGFBR1. Therefore, using in vitro models and qPCR assays, we

found that curcumin significantly reduced the expression of

TGFBR1 and fibrosis indicators that Vimentin, α-SMA, collagen I

are common indicators of myocardial fibrosis (Ma et al., 2018; LiuM.

et al., 2021), which tentatively confirmed the potential of this

substance to improve VAF by interfering with TGFBR1 to reduce

atrial tissue fibrosis. Curcumin has also been shown to exert anti-

inflammatory effects by inhibiting neutrophil infiltration (Antoine

et al., 2013), which may also be one of mechanism for reducing

myocardial fibrosis.

Resveratrol, another popular herbal ingredient, has also

shown good efficacy in the treatment of several

cardiovascular diseases (Baczko and Light, 2015; Chong

et al., 2015; Yousefian et al., 2019). Resveratrol can

effectively improve atrial fibrillation by inhibiting NADPH

oxidase and ion channels (Barangi et al., 2018), and like curcumin,

it also acts as an anti-inflammatory agent by inhibiting neutrophil

activation (Tsai et al., 2019), and attenuates myocardial ischemia-

reperfusion injury by inhibiting ferroptosis (Li et al., 2022). However,

direct evidence that resveratrol ameliorate atrial myocardial fibrosis is

still lacking, so we evaluated their efficacy by intervening in fibrotic

HL-1 cells with resveratrol. Same as curcumin, the qPCR results

confirmed that resveratrol significantly reduced the expression of

TGFBR1 as well as the indicator of fibrosis including Vimentin, α-
SMA and collagen I in HL-1 induced by AngII, which given a robust

evidence for this potential candidate to act as a treatment for AVF.

Therefore, curcumin and resveratrol have great potential to improve

AF by acting on TGFBR1 expression to reduce myocardial fibrosis.

Oleovitamin A and D-glucose are readily available from daily foods,

they have been less studied in AF and VHD, and our molecular

docking results suggest that they do not bind very strongly to

TGFBR1, and thus we believe they might have less potential to

treat VAF.

Conclusion

We believe that herbs rich in curcumin, resveratrol, such as

Rhizoma curcumae longae, Curcuma xanthorrhiza, and Caulis

genkwa, attenuate myocardial fibrosis to alleviate VAF by acting

on TGFBR1 (see Figure 4G for the potential underlying

mechanism), they seem to be effective treatment strategy

for VAF.
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Coexpression network analysis of
human candida infection reveals
key modules and hub genes
responsible for host-pathogen
interactions
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Tennessee Health Science Center, Memphis, TN, United States, 2Center for Biomedical Informatics,
College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States

Invasive fungal infections are a significant reason for morbidity and mortality among

organ transplant recipients. Therefore, it is critical to investigate the host and candida

niches to understand the epidemiology of fungal infections in transplantation.

Candida albicans is an opportunistic fungal pathogen that causes fatal invasive

mucosal infections, particularly in solid organ transplant patients. Therefore,

identifying and characterizing these genes would play a vital role in

understanding the complex regulation of host-pathogen interactions. Using

32 RNA-sequencing samples of human cells infected with C. albicans, we

developed WGCNA coexpression networks and performed DESeq2 differential

gene expression analysis to identify the genes that positively correlate with

human candida infection. Using hierarchical clustering, we identified 5 distinct

modules. We studied the inter- and intramodular gene network properties in the

context of sample status traits and identified the highly enriched genes in the

correlated modules. We identified 52 genes that were common in the most

significant WGCNA turquoise module and differentially expressed genes in

human endothelial cells (HUVEC) infection vs. control samples. As a validation

step, we identified the differentially expressed genes from the independent

Candida-infected human oral keratinocytes (OKF6) samples and validated 30 of

the 52 commongenes.We then performed the functional enrichment analysis using

KEGG and GO. Finally, we performed protein-protein interaction (PPI) analysis using

STRING and CytoHubba from 30 validated genes. We identified 8 hub genes (JUN,

ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6) that were enriched in

response to hypoxia, angiogenesis, vasculogenesis, hypoxia-induced signaling,

cancer, diabetes, and transplant-related disease pathways. The discovery of

genes and functional pathways related to the immune system and gene

coexpression and differential gene expression analyses may serve as novel

diagnostic markers and potential therapeutic targets.

KEYWORDS

host-pathogen interaction, correlation network, RNA-sequencing, immune response,
candida albican, WGCNA, transplantation
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Introduction

Solid organ transplant (SOT) patients are exposed to various

complications, e.g., invasive fungal infection and organ failure,

which are the major challenge in SOT and affect the morbidity

and mortality in transplant patients. The most prevalent invasive

fungal infection in SOT is Candidiasis, which includes about 60%

of infections, followed by aspergillosis accounts for up to 25% of

fungal infections (Shoham and Marr, 2012).

An opportunistic fungal pathogen, Candida albicans, is part

of healthy human gut microbiota. However, when immunity is

compromised or suppressed, particularly in organ transplant

individuals, AIDS patients, chemotherapy-treated patients, and

neonates, the mucosal layer becomes more susceptible to fatal

invasive C. albicans infections such as candidiasis (Sangeorzan

et al., 1994; Rhodus et al., 1997; Revankar et al., 1998; Redding

et al., 1999; Willis et al., 1999), (Sobel, 1985). C. albicans can

switch from an avirulent commensal yeast form to a virulent

invasive hyphal form in which hyphae invade through the

mucosal layer and disseminate/propagate through the blood,

infecting other organs as well as developing multidrug

resistance (Klepser, 2006; Cowen et al., 2015; Arendrup and

Patterson, 2017; Pendleton et al., 2017; Nishimoto et al., 2020). In

the process of C. albicans infection, the first site of host-pathogen

interactions is epithelial and endothelial cells (Barker et al., 2008;

Liu et al., 2015a). The development of invasive fungal diseases

relies on the synergy between the host immune response and

fungal virulence. Comprehensive network analysis is vital to

understanding the regulatory network and rewiring to

respond to these infections.

Recent efforts have been made for the functional and

molecular characterization of C. albicans genes using RNA

sequencing (Wu et al., 2016; Brown et al., 2019; Romo et al.,

2019; Zhang et al., 2019; de Vries et al., 2020; Thomas et al., 2020;

Xu et al., 2020). Numerous studies suggest gene biomarkers as

potential therapeutic targets and diagnostic markers in various

fungal infections (Dix et al., 2015; Huppler et al., 2017; Díez et al.,

2021; Hamam et al., 2021). Weighted gene correlation network

analysis (WGCNA) has been widely used in disease diagnosis

(Liu et al., 2017; Liang et al., 2018; Tang et al., 2018; Li et al., 2019;

Yin et al., 2019), physiology (Kadarmideen et al., 2011; Zuo et al.,

2018; Chen et al., 2019), drug targets (Puniya et al., 2013;

Maertens et al., 2018), and cross-species (Mueller et al., 2017)

but has never been applied in the context of candida pathogenesis

(Thomas et al., 2020). Therefore, we developed a novel approach

to identify host-pathogen interactions in C. albicans and humans.

In this work, we applied WGCNA to analyze 32 RNA-seq

samples from in vitro infection of C. albicans on human

endothelial and oral epithelial cells after 1.5, 5, and 8-h of

infection and controls. We identified 5 modules in human

endothelial cells (HUVEC) human cell lines in infection vs.

control status and separately identified differentially expressed

genes (DEG). We reported the common genes across the two

methods (WGCNA and DEG). We then validated a subset of

genes using differential gene expression analysis of candida-

infected human cell lines OKF6. Finally, we performed

protein-protein interaction network analysis and identified

hub genes that could be novel targets to investigate C.

albicans infection in humans. Through these central genes’

biological and molecular functions, we gained insights into the

signaling pathways previously not correlated with the fungal

pathogen-host response and other diseases.

Materials and methods

Data collection

All processed gene expression datasets were collected from

publicly available NCBI Gene Expression Omnibus GSE56093

(Liu et al., 2015a). The raw sequence data was aligned to the

human and candida reference genomes separately by Liu et al.

(Liu et al., 2015a), and the resultant count matrices were utilized

for the WGCNA and DEG analyses. This dataset was comprised

of 88 samples from in vitro and in vivo experiments. Of those, we

only utilized 32 in vitro samples of human cell lines (endothelial

and epithelial) infected with C. albicans (SC5314 and

WO1 strains) and their controls at three different time points.

More information is given in Supplementary Table S1. The

overall methodology steps are shown in Figure 1.

Data normalization and transformation

We performed normalization on the RPKM (reads per

kilobase of transcript, per million mapped reads) values using

the GCRMA limma package (Gautier et al., 2004) by first

removing features with counts <10 in 90% of the samples, as

these could be a potential cause of the noise. Then, we

performed and compared three data transformation

techniques, logarithmic, regularized logarithmic, and

variance stabilizing transformation (Lin et al., 2008), to

stabilize the variance across sample mean values. We chose

the regularized log transformation due to stability

(Supplementary Figure S1).

Weighted gene coexpression network
framework

We constructed the weighted gene coexpression network

using the RWGCNA package (Langfelder and Horvath, 2008).

The normalized data were used as input for network

construction and gene module detection. It uses correlation

to find functional modules of the highly correlated gene

networks. First, we evaluated the soft threshold power (β)
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to convert coexpression into weight with a scale-free topology

index of 0.9. We chose soft threshold powers of 8 to calculate

the correlations between the adjacent genes (Supplementary

Figure S2). Pearson correlations between each gene pair were

calculated. We then converted this adjacency matrix into a

topological overlap matrix (TOM) to define gene clusters that

show the amount of overlap in shared neighbors of the gene

network. The dissimilarity measure was determined for

hierarchical clustering and module detection. Modules of

clusters of genes with high topological overlap were

selected using a dynamic tree-cut algorithm. Several

modules were identified, and the modules with similar

expression levels were merged by calculating their

eigengenes corresponding to their correlations. We further

determined the association of these modules with the external

traits. We identified the genes with high gene significance (GS)

and module membership (MM) in the turquoise and blue

modules in HUVEC data. Last, intramodular connectivity was

analyzed in human modules using MTR>0.35 and p-value <
0.05. All the categorical variables were binarized for the

analyses.

Identification of differentially expressed
genes

Differentially expressed genes were identified using

DESeq2 R Bioconductor package (Love et al., 2014). We

used raw counts that were fed to the DESeq2 since it

corrects for library size. The variance stabilizing

transformations (VST) function estimated the sample

differences (Lin et al., 2008). The statistical significance for

the differentially expressed genes was set to q-value < 0.05 and

log2 fold change (log2FC) > 1.

FIGURE 1
The schematic representation of the overall methodology: The discovery dataset was analyzed using two independent methods (WGCNA and
DESeq2). Their intersecting genes were overlapped with the DEG list from the independent validation set to build the PPI network and identify the
hub genes.
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Functional enrichment analysis of genes

We performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses to study the role of the genes and identify their

biological functions and pathways. Gene Ontology analysis

was performed to determine the biological process. We

considered an adjusted p-value threshold of ≤ 0.05 and a

minimum gene count of 3 for the KEGG pathways and GO

functional terms. As the contribution of all the genes is not the

same, we identified hub genes and further investigated their

function.

FIGURE 2
Weighted Gene Coexpression Network Analysis and VennDiagram (A)Hierarchical clustering of 4,669 genes fromHUVEC discovery dataset (B)
Module-trait relationship exhibiting associations of module eigengenes with the clinical trait (infection status). (C) Relationship between turquoise
module membership (MM) and gene significance (GS). (D) Venn diagram representing the overlapping genes from the turquoise module genes and
differentially expressed genes. (E) Venn diagram representing the common genes between the discovery set genes (overlapping genes from
WGCNA turquoise module and DEG genes) and differentially expressed genes from the validation set.
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Statistical analysis and data visualization

The R programming language (Horgan, 2012) was used to

normalize the RNA-seq data. We conducted Fisher’s exact tests

to identify the statistically significant Gene Ontology terms and

functional classes. Enrichment analysis based on a

hypergeometric test was implemented, and Benjamini

Hochberg multiple testing was used to correct the p-value.

Data visualization to show differentially expressed genes

between infected and uninfected groups for top selected genes

was plotted using the complex Heatmap function in R. The data

visualization was performed using the cluster profiler package in

R (Yu et al., 2012).

Protein-protein interaction network
analysis

The validated genes are uploaded into the STRING database,

and high confidence interaction score ≥ 0.7 was used to reduce

false-positive interactions (Bozhilova et al., 2019). The resultant

network output was loaded into Cytoscape. CytoHubba (Chin

et al., 2014) was used with the Maximal Clique Centrality (MCC)

algorithm to discover the hub genes in the PPI network (Li and

Xu, 2019).

Results

Network construction and module
identification

Weighted Gene Correlation Network Analysis was

conducted on HUVEC data. We performed hierarchical

clustering of genes using a topological overlap matrix and

merged modules with similar expression profiles (Figure 2A).

Each leaf corresponds to a gene, and branches correspond to the

cluster of highly coexpressed genes. After cutting tree branches,

we identified five different modules, turquoise, yellow, black,

blue, and green, with 1,365, 459, 261, 1829, and 755 genes in

HUVEC (Supplementary Table S2). A total of 4,669 genes were

identified from the HUVEC data set, and in each module, the

number of genes ranged between 261 and 1829.

Module association with external traits

We further analyzed the module trait relationship (MTR)

between the module eigengene and clinical traits, where each

cell represents the correlation strength (red is positively

correlated, and green is negatively correlated) with their

corresponding p-value (Figure 2B). We demonstrate that

some module eigengenes are highly correlated with

infection (status traits). We observed that the turquoise

(r = 0.55, p = 0.03) and blue (r = −0.52, p = 0.04) modules

were highly correlated with the infection status in HUVEC

cells. Since the turquoise module, with 1,365 genes, is the most

significantly correlated with the clinical trait, we focused on

this module for further analysis.

Intramodular connectivity using gene
significance and module membership

We quantified genes with high significance for the trait status

of HUVEC and high module membership by comparing their

similarities in every module. There was a highly significant

correlation between gene significance and module

membership in the turquoise module. Figure 2C represents

the correlation between turquoise module membership and

gene significance (r = 0.45, p = 5.1e-69).

Differentially expressed genes and
intersection with WGCNA

We used DESeq2 as a second independent method on the

entire HUVEC dataset to identify 54 genes that were

differentially expressed in the HUVEC (infection vs. control)

samples (q-value < 0.05 and log2FC > 1). From the WGCNA

analysis, we identified 1,365 genes in the most significantly

correlated turquoise module (Figure 2B). When we further

investigated the intersection of WGCNA and DEGs, 52 genes

were common between the turquoise module and the DEG list

(Figure 2D). The list of turquoise module genes, DEGs, and

intersecting genes is given in Supplementary Table S4.

Validation of candidate genes

In order to validate these 52 common genes, we utilized a

validation dataset comprised of candida-infected human oral

keratinocytes (OKF6 cell line). We performed the differential

gene expression analysis on infection vs. control and identified

101 DEGs. When we overlapped these 101 genes with

52 common genes from the discovery dataset, we found

30 genes that were differentially expressed in the

OKF6 validation dataset (Figure 2E and Supplementary

Table S3). The following are the 30 validated genes:

SLC2A1, ATF3, JUN, KDM7A, DUSP1, PTGS2, NAB2,

PIM1, MAFF, ADM, PFKFB3, KLF6, BNIP3, CSRNP1,

VEGFA, ENO2, ANKRD37, PPP1R15A, KDM3A, ANGPTL4,

BHLHE40, ARRDC3, SLC2A3, KLF7, DDIT4, ERRFI1, KLF4,

FOSL2, EFNA1, and HK2. The list of genes from the discovery

set, validation set, and intersecting genes are given in

Supplementary Table S4.
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FIGURE 3
Functional enrichment analysis for the 30 validated genes. (A) KEGG pathway (B) Gene Ontology.

FIGURE 4
Protein-Protein interaction networks. (A) STRING analysis of validated genes. (B) CytoHubba with Maximal Clique Centrality analysis showing
8 hub genes.
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Integrating network analysis with
functional enrichment analyses

To understand the biological roles of these 30 validated

genes, we performed GO and KEGG pathway analyses to

identify the biological pathways that were significantly

enriched (FDR ≤ 0.05) in these modules.

KEGG analyses revealed that the genes were highly enriched

in the HIF-1 signaling pathway, microRNAs in cancer, renal cell

carcinoma, and AGE-RAGE signaling pathway in diabetes

complications, as shown in Figure 3A (Detailed information is

provided in Supplementary Table S3). Gene Ontology analyses

elucidated that these genes were enriched in response to hypoxia,

monosaccharide metabolic process, angiogenesis regulation,

vasculature development, reproductive process, and epidermis

development, as shown in Figure 3B. Additional details are given

in Supplementary Table S3.

Protein-protein interaction network
analysis

From the 30 validated genes, we first performed the protein-

protein interaction (PPI) analysis using the STRING database

(Figure 4A). The resultant data is then imported to the Cytoscape

plugin CytoHubba, and the top 8 genes with the highest Maximal

Clique Centrality (MCC) score were considered hub genes: JUN,

ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6

(Figure 4B and Supplementary Table S3).

Discussion

The interaction between host cells and Candida is central to

the immunopathology of candidiasis in transplant patients; a

comprehensive understanding of this synergy will identify new

treatment strategies. Here, we investigate how human epithelial

and endothelial cells communicate with different Candida

species during infection. In this study, we constructed a

weighted gene correlation network and performed differential

gene expression analysis to identify genes that are important in

host‒candida interactions.

Comparative network analysis could rank genes for further

investigation of their connectivity (Schadt et al., 2005). A distinct

advantage of WGCNA is that it considers modules or gene

clusters for constructing interactions, and the genes in a

module are likely to be connected by the same regulatory

pathways. Therefore, in this study, we aim to discover novel

genes and molecular pathways in human-candida infection and

to understand the regulation due to cell dynamics using the

WGCNA and DESeq2 algorithms. Network depictions provided

immediate insight into the relationships between the correlated

modules. The construction of a gene coexpression network and

differential gene expression analysis of the discovery and

validation data set facilitated the identification of genes with

similar biological functions by GO and KEGG analyses.

According to the results of functional enrichment analysis,

the top 3 GO terms and topmost KEGG pathway were a response

to hypoxia, response to decreased oxygen, response to oxygen

levels (Figure 3B), and hypoxia-inducible factor 1 (HIF-1)

signaling pathway (Figure 3A). HIF-1 is a transcription factor

that functions as a master regulator of oxygen homeostasis. It has

been shown that suppressing HIF-1 helps treat cancer and

ischemia (Ziello et al., 2007). All organs during the process of

transplantation undergo hypoxic and ischemic injury. Low

oxygen levels trigger the colonization of candida infection in

the human host, resulting in complications like allograft rejection

in SOT patients (Akhtar et al., 2014). We identified eight hub

genes using PPI network analysis. Four hub genes (HK2,

PFKFB3, SLC2A1, and VEGFA) are involved in the HIF-1

signaling pathway. The hexokinase isoenzyme (HK2) elevates

innate immunity in hepatocellular carcinoma (Perrin-Cocon

et al., 2021). HK2 and PFKFB3 are involved in glycolysis

which affects the immune response against fungal infection

(Perrin-Cocon et al., 2021); specifically, after transplantation,

the PFKFB3 gene increase the risk of invasive pulmonary

aspergillosis (Gonçalves et al., 2021). Huang et al. showed in

their omics analysis that SLC2A1 is involved in ischemic

reperfusion injury in liver transplant patients and forms the

core gene network (Huang et al., 2019a). Vascular Endothelial

Growth Factor A (VEGFA) is associated with an increased risk of

chronic kidney disease (Anderson et al., 2018) but induces

vasculogenesis. Kidney vasculature comprises vascular smooth

muscle and endothelial cells (Udan et al., 2012). One of the most

challenging components to handle during a kidney transplant is

through vasculogenesis and angiogenesis processes (Munro and

Davies, 2018; Lebedenko and Banerjee, 2021). HIF-1 stimulates

the VEGFA to maintain oxygen delivery and protect the kidney

(Hunga et al., 2013).

The other top enriched KEGG pathways in our analysis were

microRNAs in cancer (hsa05211) and renal cell carcinoma

(hsa05206). MicroRNAs play a diverse role in cancer and

infections (Yong and Dutta, 2009). Recent advances in

microRNA therapeutics have shown the extensive use of

microRNAs for cancer and infections (Rupaimoole and Slack,

2017). There has been increased support for microRNA

therapeutics in solid organ transplantation, including kidney

(Wilflingseder et al., 2015; Jin et al., 2017; Ledeganck et al.,

2019), lung (Benazzo et al., 2022), and heart transplantation

(Hamdorf et al., 2017). Candida albicans have been linked to

cancerous processes by taking advantage of the compromised

immune system (Ramirez-Garcia et al., 2016; Chung et al., 2017;

Sultan et al., 2022). Our PPI network analysis identified four hub

genes (SLC2A1, VEGFA, JUN, and PTGS2) enriched in the

cancer-related pathways. SLC2A1 belongs to a glucose

transporter family and has been reported to be associated with
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HCC (Kim et al., 2017). SLC2A1 is also essential to IRI during

liver transplantation (Huang et al., 2019b) and a diagnostic

biomarker for colorectal cancer (CRC) (Liu et al., 2022). In

CRC, the SLC2A1 gene infiltrates the CD4+ T cell, neutrophil,

dendritic cells, and B cells (Liu et al., 2022). Candidiasis is one of

the risk factors for Oral squamous cell carcinoma (OSCC). The

transcriptomics data analysis revealed that VEGFA and JUN are

highly regulated in OSCC invasion and metastasis (Vadovics

et al., 2022). JUN is a member of the activator protein-1 family of

oncogenic transcription factors, which is involved in various

cancer-related and cell signaling pathways such as tumorigenesis,

cell differentiation, and angiogenesis (Brennan et al., 2020). Post

renal transplantation, the activation of c-JUN affects acute

humoral rejection and acute T-cell-mediated rejection

(Kobayashi et al., 2010). c-JUN is also associated with reduced

graft function and plays an important role in renal

pathophysiological events (Kobayashi et al., 2010).

Prostaglandin E2 (PGE2) is an inflammatory mediator

produced by the Prostaglandin-endoperoxide synthase

(PTGS2) enzyme, and PGE2 promotes candida

morphogenesis. In response to candida infection,

PTGS2 activation promotes NF-kB and MAPK signaling

pathways (Deva et al., 2003). In OSCC, PTGS2 involves an

inflammatory response to infection by promoting

tumorigenesis (Cacina et al., 2018) and activating

transcription factor 3 (ATF3), one of the 8 hub genes that

regulate the PTGS2 during acute inflammation (Hellmann

et al., 2015) and helps in the homeostasis of the metabolism

and immune system (Sha et al., 2017). Zhu et al. also showed that

ATF3 is one of the top hub genes in samples infected with

4 different candida species (Zhu et al., 2022). Using

bioinformatics omics analysis, ATF3 and Kruppel-like factor 6

(KLF6, hub gene) are shown to be the central players in ischemic

reperfusion injury in liver transplant patients (Huang et al.,

2019b). KLF6 promotes inflammation and oxidative stress by

regulating HIF-1 expression in macrophages (Kim et al., 2020).

Another enriched KEGG pathway was the AGE-RAGE

signaling in diabetes complications (hsa04933).

Endoplasmic reticulum stress due to AGE-RAGE plays an

essential role in renal inflammation, diabetic nephropathy

(Pathomthongtaweechai and Chutipongtanate, 2020) and

early-stage renal disease (Meerwaldt et al., 2009).

Advanced glycation end products (AGEs) may also play a

role in the hardening of arteries after renal transplantation

(Liu et al., 2015b). Our two hub genes, JUN and VEGFA,

showed enrichment in the AGE-RAGE signaling pathway in

diabetes complications. Poorly controlled diabetes increases

the risk of fungal infections (Rodrigues et al., 2019). Some

diabetes-related complications include cardiovascular

disease, kidney disease, neuropathy, hearing loss, vision

loss, Alzheimer’s, liver disease, etc. (Deshpande et al.,

2008; Prasad et al., 2016). VEGFA and JUN were identified

as the central players in diabetic nephropathy (Oltean et al.,

2015; Wang et al., 2021) and Alzheimer’s disease (Zu et al.,

2021) whereas, VEGFA was associated with diabetic

retinopathy (Bucolo et al., 2021), cardiac autonomic

neuropathy (Ravichandran et al., 2019), and non-alcoholic

fatty liver disease-hepatocellular carcinoma (Shen et al.,

2022). Each hub gene plays a vital and diverse role in the

pathways and biological processes. Therefore, more research

is warranted on the divergent roles of these genes’ signaling

and regulatory mechanisms during infection, cancer, and

transplantation.

Limitations

WGCNA lacks resolution as it decomposes a group of

genes into a single eigenvalue that may not correctly

represent a single gene’s expression profile or pathway

changes. Further analysis may be needed to detect changes

in the expression of individual processes. Another limitation

of the study is the small sample size; therefore, we present

this study as a proof of concept to be validated in a larger

cohort. The current study used cell lines from epithelial and

endothelial cells; thus, the identified gene markers should be

validated from the peripheral blood transcriptome of

candidiasis patients for non-invasive clinical relevance.
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A systems level approach to study
metabolic networks in prokaryotes
with the aromatic amino acid
biosynthesis pathway
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1National Institute of Technology Calicut, Kattangal, Kerala, India, 2Indian Institute of Science Education and
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Metabolism of an organism underlies its phenotype, which depends onmany factors,
such as the genetic makeup, habitat, and stresses to which it is exposed. This is
particularly important for the prokaryotes, which undergo significant vertical and
horizontal gene transfers. In this study we have used the energy-intensive Aromatic
Amino Acid (Tryptophan, Tyrosine and Phenylalanine, TTP) biosynthesis pathway, in a
large number of prokaryotes, as a model system to query the different levels of
organization of metabolism in the whole intracellular biochemical network, and to
understand how perturbations, such asmutations, affects themetabolic flux through
the pathway - in isolation and in the context of other pathways connected to it. Using
an agglomerative approach involving complex network analysis and Flux Balance
Analyses (FBA), of the Tryptophan, Tyrosine and Phenylalanine and other pathways
connected to it, we identify several novel results. Using the reaction network analysis
and Flux Balance Analyses of the Tryptophan, Tyrosine and Phenylalanine and the
genome-scale reconstructed metabolic pathways, many common hubs between
the connected networks and the whole genome network are identified. The results
show that the connected pathway network can act as a proxy for the whole genome
network in Prokaryotes. This systems level analysis also points towards designing
functional smaller synthetic pathways based on the reaction network and Flux
Balance Analyses analysis.

KEYWORDS

metabolic pathways, aromatic amino acids biosynthesis, network analysis, flux balance
analysis (FBA), systems biology

1 Introduction

Biochemical pathways in cells underlie cellular functions, and hence its phenotype. These
are regulated by many direct and indirect, and hardwired and transient factors. Evolution of
multi-step biochemical pathways in any species depends upon how natural selection shapes the
evolution of a set of enzyme-coding genes catalysing the constituent chemical reactions, such
that the required end-product is made (Flowers et al., 2007; Invergo et al., 2013). However, the
genes, enzyme and pathways do not function independently. In each species, they exist in the
context of a large biochemical network, consisting of other genes, enzymes and pathways
interacting with each other, and with the intra- and extra-cellular environments. Hence in order
to understand the interactions and effects in functionally related pathways, we need to study the
properties of subsets of metabolic networks at different levels.

To study how pathways regulate their function with respect to each other, we chose the
highly branched aromatic amino acid (Tryptophan-Tyrosine-Phenylalanine, TTP) biosynthesis
pathway as an example. This pathway is responsible for the production of three aromatic amino
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acids; Tryptophan, Tyrosine and Phenylalanine–all requiring high
energy for their synthesis. The TTP pathway has been studied
previously for its role in the production of secondary metabolites
(Herrmann 1995; Herrmann andWeaver 1999), and its usage as target
for several antibiotics, fungicides and herbicides (Roberts et al., 2002;
Abell et al., 2005; Webby et al., 2005). The TTP pathway is present in
most of the prokaryotes, but is lost in higher eukaryotes and mammals
(Xie et al., 2003), thus requiring higher organisms to get some of these
amino acids as food additives. Even in the TTP prototrophs, the
evolutionary history of the pathway is convoluted due to instances of
horizontal gene transfer and is characterized by many isozymes, bi-
functional enzymes and gene fusions (Bentley and Haslam 1990; Xie
et al., 2003; Richards et al., 2006; Priya et al., 2014).

Traditionally, specific pathways such as, the Tryptophan
biosynthetic pathway, have been studied in depth both
experimentally and theoretically using mathematical models
(Yanofsky et al., 1987; Sinha 1988; Santillan and Mackey 2001;
Castro-López et al., 2022). However, in the post-genomic era, most
of the studies have focussed on network modelling and analysis of the
whole cellular metabolism (Fairlamb 2002; Ma and Zeng 2003; Gerlee
et al., 2009). In recent times, the principles of Systems Biology have
been used extensively to study metabolic pathways at different scales
(Nielsen 2017), and reconstruction of whole genome metabolic
networks from their genome sequences has been an active area of
study (Khodayari et al., 2016; Norsigian et al., 2018; Bagheri et al.,
2019).

From the perspective of the intracellular biochemical network, the
maze of neighbouring pathways, that are connected through sharing
one or more metabolites, can influence the function and evolution of
each other. Yet, study of pathways in the context of each other is rarely
done across species. Hence in order to study the contextual influence
of the inter-connected pathways, we use complex network analysis on
the TTP pathway reactions network in 29 Bacteria and Archaea.
Several FBA and network models have shown how various
reactions are connected and used smaller subsystems to improve
production or for finding new drug targets. But in these networks,
the pathways present in one particular organism were studied, for
example the network for disease associated pathway cluster for
Huntington disease (Kakouri et al., 2019) or the network of
interacting pathways to find drug targets (Raman et al., 2005; Chen
et al., 2016). Our study is different from these since we are using data
from 29 species of free-living Bacteria and Archaea from diverse
environments and metabolic activities and we have formed a network
of pathways that are connected to the TTP pathway that is common
across the 29 species. This is a novel method to understand how the
pathways are interconnected and function in context to each other.
We have assessed the variations in the topological properties of the
TTP reaction network nodes after adding the neighbouring pathways,
in the combined reaction networks. Our results show the contextual
variations of the topological properties of the TTP reaction network
nodes in the combined network, and study their similarity across
bacteria and archaea.

Network representation and analysis of metabolic pathways offers
a convenient and useful mode for understanding the role of the
connectivity patterns of the reaction nodes in interconnected
pathways. However, the chemical reactions at each step decide the
function of the pathway. Flux Balance Analysis (FBA), a constraint-
based approach to model organisms based on mass-energy balance,
and flux limitations (Kauffman et al., 2003) are used to understand

how the reaction product flux functioned in the pathway. The FBA has
been used previously for representing and modeling the growth of
many organisms such as, E. coli (Edwards and Palsson 2000; Burgard
and Maranas 2001), L. lactis (Flahaut et al., 2013), S. coelicolor A3(2)
(Borodina et al., 2005), G. oxydans (Wu et al., 2014), etc.We used the
FBA to study the effect of mutation or deletion of genes/reactions,
present in the TTP pathway and other connected pathways - on the
flux through the TTP pathway. This study yielded information on
those reaction steps that have a direct effect on the production of
aromatic amino acids, in the context of the larger reaction network.
Comparing the network and FBA analysis results, we show that, at the
systems level, the pathway activities are dependent on a smaller set of
reactions that are important for its biochemical activities. This also
indicates that a smaller reaction network of the important reactions
and enzymes may be chemically engineered for a functional pathway
instead of the existing whole metabolic pathway that has evolved
through a step-by-step evolutionary historical contingency.

2 Results

The TTP Pathway:A reconstructed common TTP pathwaymodel
for Bacteria and Archaea is shown in Figure 1. The pathway is divided
into four sections (see Figure 1 legend) where the additional reactions
specific to bacteria are shown in red and that for Archaea in blue
boundaries at the top.

2.1 Network analysis

The directed reaction networks were constructed for the TTP
pathway for 29 organisms (Supplementary Table S1), and their
network properties such as Degree, Clustering Coefficient,
Closeness Centrality and Betweenness Centrality were studied.

2.1.1 TTP pathway network and its network
properties

The TTP reaction pathway is a linear network (Figure 2) with very
few connections other than due to consecutive dependence. The
Archaeal and Bacterial TTP networks are topologically similar.
Figure 2 shows E. coli and N. pharaonis TTP networks as examples
for the Bacterial and Archaeal organisms. The major difference
between the two networks lies in the input region, since in many
Archaea the DKFP pathway provides the precursors for the formation
of 3-dehydroquinate, whereas in Bacteria it is from the Pentose
phosphate pathway and Glycolysis (see Figure 1). The number of
reaction nodes and edges varies among both bacterial and archaeal
species. For example, in Bacteria, the reaction nodes vary between 18
(for S. thermophilus) and 25 (for E. coli), and the number of edges
between 30 (S. thermophilus) and 50 (E. coli).

The difference in the number of nodes between the organisms is
because there are multiple reactions that provide different paths for
the production of the same metabolite. Due to this, the number of
connected pathways also differs across the organisms under study.
For further analysis, only those reactions and pathways are chosen
that are common across all the 29 organisms (Supplementary Table
S2 and S3).

The average Degree in these TTP networks is between 2.86
(Synechocystis sp. PCC 6803) and 4 (E. coli), which further shows
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how sparsely connected the network is. Based on these properties, the
Bacteria and Archaea networks do not differ much. Amongst the
Bacteria, the Proteobacteria tend to have higher number of nodes and
edges. The Gamma-proteobacteria, E. coli and P. putida has the
highest number of nodes, edges and average degree for their TTP
pathway network (Figure 3).

Connected Pathway of TTP:A connected pathway is one in which
at least one reaction of that pathway either produces or consumes a
metabolite that is either consumed or produced by the TTP pathway.
Even though there is a slight difference between the bacterial and the
archaeal TTP pathway, the entire metabolic network of these
organisms may differ greatly from each other. This may cause the
pathways associated with the TTP pathway to differ between
organisms. Therefore, only the reactions and associated pathways
that are common among all the 29 organisms under study are
discussed here (Supplementary Table S2 and S3).

2.1.2 Network properties of connected pathway
networks

The average network properties of the connected networks, i.e., the
TTP network combined with each of the connected networks (as given
in Supplementary Tables S2 and S3), were calculated for all organisms.
First the global properties of the connected pathway networks are
given, and then local node-level properties are discussed.

Global properties of connected networks
Nodes: The number of nodes of the combined pathways are

significantly different from their TTP network in all the Bacteria
and Archaea (Wilcoxon test, p-value <.05) (Supplementary Figure S1).
The highest number of nodes is in Microbial metabolism in “diverse
environments” (map01120), Biosynthesis of Amino Acids
(map01230), Purine metabolism (map00230) and Carbon
metabolism (map01200). Except for the 2-Oxocarboxylic acid
metabolism (map01210) and Methane metabolism networks
(map00680) all the other connected networks of Archaea have
lower number of nodes than its Bacterial counterpart. In Bacteria,
the highest variation in the number of nodes is in map00330,
map01120, map00230 and map00240.

Bacterial networks show larger variation (std dev range:
1.67–16.18) in node numbers than Archaeal networks (std dev
range: 1.34–8.49), and the main contributor to this are the
Proteobacteria. Except for TTP, and the other 7 out of
17 connected pathways (e.g., map00340, map01230, map00020,
map01200, map00010 and map00260), the rest of the connected
networks differ significantly between Bacteria and Archaea
(Wilcoxon test, p-value <.05). Bacterial networks have significantly
higher number of nodes compared to the Archaeal networks in few
pathways, but in map01210 and map00680 they are significantly more
in Archaea (Wilcoxon test, p-value <.05).

FIGURE 1
The TTP Pathway studied with the sections indicated. Red and blue shapes are specific to Bacterial and Archaeal TTP pathway. The Green substrates are
part of the Shikimate section. Orange is for Tryptophan and Blue and Pink are for the Phenylalanine and Tyrosine parts. INPUT SECTION: In bacteria; E4P
(D-Erythrose-4-phosphate), PEP (Phosphoenol pyruvate), DAHP (2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate), QA (Quinate), DKFP (6-deoxy-5-
ketofructose-1-phosphate). In archaea; ASPSA (Aspartate semi aldehyde). SHIKIMATE SECTION: DHQ (3-dehydroquinate), SHK (Shikimate), SHKP
(Shikimate 3-phosphate), 3PSME (5-O-(1-Carboxyvinyl)-3-phosphoshikimate), CHA (Chorismate). TRYPTOPHAN SECTION: AA (Anthranilate), PRAA (N-(5-
Phospho-D-ribosyl)anthranilate), CPAD5P (1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate), IGP (Indoleglycerol phosphate), INDOLE, Trp
(Tryptophan). PHENYLALANINE AND TYROSINE SECTION: PHEN (Prephenate), PHPYR (Phenylpyruvate), 4HPP (4-Hydroxyphenylpyruvate), AGN
(L-Arogenate), Phe (Phenylalanine), Tyr (Tyrosine).
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Edges: A similar distribution is seen in the edge numbers and
degree in both Bacteria and Archaea (Supplementary Figure S2 and
S3). In Archaea, for example, the Glycolysis pathway adds a higher
number of edges than in Bacteria, suggesting larger number of
connections between the nodes in Archaea. The addition of
connected pathways significantly changes the degree in all the
pathways, except map00330 and map00051 in Bacteria, and
map00970 and map00051 in Archaea. Here also the variation is
more in Bacteria than in Archaea. Contrary to all the other
properties, the variation in the degree is slightly more in Archaea
(std. dev. range: .03–.99) than in Bacteria (std. dev. range: .1–.87), and

significant differences are observed in map00970, map01120,
map01210, map00020, map00010, map00680, map00230,
map00240 and map00030 between Bacteria and Archaea
(Wilcoxon test, p-value <.05). Furthermore, addition of sparsely
connected map00340, map00970 and map00270 decreases the
average degree of the combined networks (Supplementary Figure S3).

Average Path Length: Addition of new nodes to the existing TTP
pathway does not always increase the average path length of the
network proportionately (Supplementary Figure S4), except for the
addition of map00020 in Bacteria and map01210, map00020,
map00010, map00260, map00270 and map00051 in Archaea. For
all other pathways, the addition significantly changes the Average Path
Length (APL) of the network (Wilcoxon test, p-value<.05). There are
significant differences in the APL between Bacteria and Archaea in
map01120, map01210, map01230, map00010, map00680,
map00240 and map00030.

These results indicate that as the metabolic networks expand, due
to addition of nodes, the network properties do not change
proportionately–they depend on the connection point to the TTP
pathway, and the topology of the added pathway. They also differ
between and within Bacterial and Archaeal species for the same
connected pathway even though the basic TTP pathway do not
differ much between the two types of Prokaryotes.

Local properties of connected networks
The addition of the connected networks to TTP pathway network

not only changes the global properties of the combined pathway
networks, but also the properties of the individual TTP network nodes.

Degree: The comparison of Degree across the different
connected networks show that there is no consistent difference
between Bacterial and Archaeal networks. The 3 out of
15 common reactions showed no variations in degree, while 5 out
of 15 have significantly different Degree in connected networks
(>2 std dev) across different organisms in the connected
pathways. Addition of certain pathways such as the
map01230 introduces fairly large variations in the Degree for
E. coli. (shown in Supplementary Figure S5), and C. glutamicum,
C. acetobutylicum, M. barkeri, R. perfringens in the TTP reaction
network nodes. The same in H. turkmenica show the least variability

FIGURE 2
TTP network in (A) bacteria E. coli and (B) Archaea N. pharaonis. The double edges indicate reversible reactions.

FIGURE 3
Number of Nodes, Edges (left Y-axis) and average degree (right
Y-axis) of TTP pathway network in (A) Bacteria and (B) Archaea. See
Supplementary Table S1 for the three lettered species names.
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in their degree across all pathways. This result, interestingly, clearly
demonstrates that individual reactions change their connectivity
pattern on addition of pathways, and this is not necessarily due
to direct attachment of the connecting pathway to that node. It could
also be due to changes in their biochemical interactions facilitated
due to the new pathway topology in different organisms.

Clustering Coefficient (CC): The CC of the TTP pathway
reactions also change due to the addition of the connected
networks (see Supplementary Figure S6). Although, out of
17 connected pathways, the CC of 4 remain the same, but 3 show
significant differences (>2 std dev). These are for the addition of
map01230, map00230, and map01120 as the addition of new nodes
in these networks reduces the CC of these nodes. Bacteria and
Archaea show similar variation in their CC. A summary of
changes in Degree and Clustering Coefficient in TTP nodes are
shown in Table 1.

Closeness centrality: Addition of pathways tends to change the
path length, which is reflected in the parameter Closeness centrality.
The TTP pathway has a high Closeness centrality, and the addition of
other pathways increase the number of Nodes and the Closeness
centrality of the overall network. Analysis showed that most of the
connected networks, with the exception of map00970, have a
significantly different Closeness centrality when compared to the
isolated TTP pathway. Addition of map01230 increases Closeness
centrality while addition of map00250, map00330, map01120,
map01210, map01200, map00260, map00230 - decreases it for the
TTP nodes. The pathways, such as, map01120 and map01200 have
varying results in different organisms due to the diverse
environments in which these organisms survive. This increase
and decrease in the network parameter Closeness centrality
indicates that the local network properties of the TTP pathway
reactions nodes can change in a non-consistent manner even
when the network is expanding due to the addition of nodes (see
Supplementary Figure S7).

Betweenness centrality (BC): BC of a node is an important
property, as it signifies the central position of the node in the
network in terms of transfer of information from all other nodes.
There is a general decrease in this network parameter for most
connected pathways across all TTP nodes. However, the addition of
map01230 and map00970 also significantly alter the BC of the
common reactions (z-score >3) across all organisms. R00674 show
almost no variation in its BC among the combined pathways of

different organisms, since it is at the terminal end of the network.
The analysis of the change in BC in TTP nodes showed that, across
organisms, most of the variation is observed in the map00030. The
addition of this pathway to TTP changes the topology of the
combined network in such a manner that it induces changes in
the BC in several nodes. The reaction node R01073 in TTP pathway
shows considerable increase in BC on addition of map00030 and
map00340 due to the addition of pathways that are linear. BC of the
terminal reactions, such as R00674 and R02722 in the TTP
pathway, increases significantly due to the addition of the
connected pathways which occur in very few cases. BC of a
node being an important property in terms of transfer of
information from all other nodes, our results show that only
those pathways change the BC of the TTP nodes, which change
the topology of the combined network based on where the added
pathway is connected to the TTP network (Supplementary
Figure S8).

2.1.3 Combined Connected Network (CCN) of TTP
Till now the network properties of the TTP pathway network, in

combination with each of the connected pathways (as in
Supplementary Table S2 and S3), have been studied. The Combined
Connected Network (CCN) is the combined network of the TTP
pathway with all the connected pathways added together. It gives
an integrated view of the TTP pathway embedded in the metabolic
network of the 17 reaction pathways directly connected to it for each of
the organisms under study. The question addressed here is how the
network properties of the individual nodes of the TTP pathway
network change in such a combined network, because of the

TABLE 2 Average Betweenness and average Closeness values (for 29 organisms)
for the nodes in the TTP pathway - in isolation and in the Combined Connected
Network (CCN). The standard deviations are not shown as the values are
very low.

Betweenness Closeness

TTP CCN TTP CCN

R02412 .156 .007 .012 1.16 × 10−05

R03460 .183 .008 .014 1.16 × 10−05

R01373 .084 .007 .013 1.16 × 10−05

R01714 .205 .009 .016 1.17 × 10−05

R01715 .18 .017 .016 1.17 × 10−05

R00674 0 0 .008 1.17 × 10−05

R02722 .011 .047 .009 1.17 × 10−05

R02340 .05 .001 .009 1.17 × 10−05

R03508 .15 .045 .011 1.17 × 10−05

R03509 .178 .045 .012 1.17 × 10−05

R01073 .196 .065 .014 1.17 × 10−05

R00985 .102 .015 .016 1.17 × 10−05

R00986 .102 .015 .016 1.17 × 10−05

R03084 .085 .006 .009 1.16 × 10−05

R02413 .116 .006 .01 1.16 × 10−05

TABLE 1 Changes in Degree and Clustering Coefficient in nodes.

Degree Clustering coefficient

No significant variation R03508 R03460

R03509 R03508

R02340 R03509

R02340

R02722

Significant variation (Std. dev. >2) R02722 R01073

R01073

R03460 R01373

R01714

R00674 R01714

R01073
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change in the topology and connectivity patterns in the CCN.
Combining the connected pathway networks to TTP added new
nodes and edges to the TTP pathway. As will be shown below,
some of these additions significantly change the topological
properties of the TTP pathway reactions (Table 2). For example,
the TTP reaction node R02722 is the only one that shows increase in
Betweenness Centrality in the CCN. This is due to the addition of the
highly interconnected Glycine, Serine and Threonine pathway in the
CCN through that node. The addition of the highly interconnected
pathways, such as the amino acid biosynthesis pathway, or addition of
a few nodes, as in the case of map00970, could significantly alter the
properties of the TTP nodes (Figure 4).

Figure 4 shows the comparison of a few network properties
among each connected pathway in all organisms (see
Supplementary Table S2 for pathway names) and the CCN.
Network size (number of Nodes), total number of Edges, and
the average Degree of each connected networks are shown along
with that of the CCN. Figure 5 shows the topology of the TTP
reaction network (Yellow nodes) when connected with A)
Aminoacyl t-RNA biosynthesis pathway (map00970), B)
Alanine, Aspartate and Glutamate metabolism (map00250), and
C) Combined Connected Network (CCN). It is clear that
increasing the number of Nodes does not necessarily increase
the average Degree of the network (Figure 4; Figure 5).

FIGURE 4
Network size (number of Nodes), Number of Edges, and the Average Degree of each connected networks and the CCN (Refer Supplementary Table S2
for pathway names).

FIGURE 5
Network of TTP (with Yellow Nodes) with connected networks of (A) Aminoacyl tRNA biosynthesis pathway (map00970), (B) Alanine, Aspartate and
Glutamate metabolism (map00250) and (C) Combined Connected Network (CCN).
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For CCN, the average degree is 4.15 - quite low even though the
average network size is large (321 Nodes). The number of Edges, though
not additive, is also quite large (1479). This indicates, as is seen in Figures
5A–C also, that the CCNhas a topology that is largely branchedwithmany
linear sections. The TTP pathway is largely linear and is a non-redundant
network. Hencemost of the nodes are equally important for the pathway to
function, even though each of them has different network properties (as
mentioned in the previous sections). Addition of other pathways can cause
nodes to change their local network properties. Low Centrality measures
point towards the fact that theCCNhas a non-compact topologywith large
linear sections. This is due to the underlying chemical basis of the network,
where substrate-product reactions are quite specific to their chemical
nature, and the same chemical species cannot be obtained through
different chemical reactions.

The “hubs” of the network parameters - Degree, Betweenness
Centrality and Closeness Centrality - are reaction nodes in the
network with the highest value of the respective parameters. We use a
cut off for selecting Hubs as the “Nodes in top 20%” of each of the
measures. The CCN have few Degree hubs, since these networks are
characterized by a large number of Nodes with low degrees, and very
small number of Nodes with high degrees, and non-redundant routes for
metabolism. There are 66 reaction nodes in the CCN that are found as
hubs common to all organisms. Most of them are either Betweenness
Centrality or Closeness Centrality hubs (Supplementary Table S4). Since
these hub reactions in the CCN are important for the network, these
might also be important for the functioning of the TTP pathway in the
integrated network. It is clear that many (9 of 15) of the TTP reactions
have now increased their Betweenness Centrality andCloseness Centrality
when in the context of other connected pathways. The nature of these
networks is generally linear sequence of chemical reactions leading to
formation of specific products. However, these specific reaction pathways
interact to facilitate cross-talk to promote coordinated response of the cell.
Therefore, increasing the centrality measures seems to be a functionally
suitable strategy, since increasing degree may not be chemically possible.
The changed network parameters of the TTP nodes in the combined
network (CCN) points towards their role in changing/modifying their
function when in context of other pathways. This can lead to change in
their biochemical attributes (such as, reaction velocity, flux,
regulation, etc.).

2.2 Flux balance analysis (FBA)

FBA is done in order to analyze the flux passing through the reaction
steps of the TTP pathway during wild-type growth, and after perturbations

(e.g., loss of reaction due to deletion mutation, or lowering of efficiency of
the reaction), in order to understand the influence of different reactions on
the working of the TTP pathway. The flux analysis (see Methods section),
for the TTP pathway was done on the complete genome scale models of
E. coli (Feist et al., 2007) and M. barkeri (Gonnerman et al., 2013). The
genome scale E. coli model, considered here, consisted of a total of
2382 reactions, 1261 genes, and 1668 metabolites; and, the M. barkeri
model consisted of 815 reactions, 750 genes, and 718 metabolites.

2.2.1 Flux analysis in TTP pathway
Production of aromatic amino acids (TTP) in the cell is a high

energy consuming process (Akashi and Gojobori 2002). This energy
cost is reflected in their low usage in the polypeptide chain, and in the
flux passing through the TTP pathway in almost all the organisms. All
the flux mentioned here on will be in mmolgDW−1h−1. The
Tryptophan section has the least amount of flux passing through it:
.0418 for E. coli, and .0013 for M. barkeri. The Phenylalanine section
(.1296 for E. coli and .0041 for M. barkeri), and Tyrosine section
(.1018 for E. coli and .0035 for M. barkeri) have higher fluxes
(Supplementary Figure S9 and S10). The list of reactions present in
E. coli and M. barkeri is given in Supplementary Table S5.

Fluxes through the TTP pathway for E. coli and M. Barkeri are
different

1) In both the organisms, fluxes through the Input and Shikimate
section are higher than the rest of the sections, because the flux is
undivided in these sections. At Chorismate synthase reaction
(CHORS), the flux is distributed between the two branches
depending on the coefficients of Trp and Phe-Tyr in the
biomass equation. All the flux passes through TRPAS2 of the
Trp section in E. coli. InM. barkeri, it takes the reaction TRPS1 to
produce the same metabolite Tryptophan.

2) Compared to Bacteria E. coli, the Archaea M. barkeri has a lower
flux. It may be noted that the growth rate for E. coli is higher than
that of M. barkeri, which also shows up in the differences in the
media and biomass equations of the two organisms. Out of
1339 unique reactions (as mentioned in section 2.2 of CCN of
E. coli) present in the whole FBA, deletion of 175 reactions was
found to be adversely affecting the production of the aromatic
amino acids. We reduced the efficiency of the E. coli TTP pathway
genes to find the effect of such changes in the production of the
aromatic amino acids. A 100% reduction (deletion) of the TTP
pathway genes is shown in (Supplementary Figure S11;
Supplementary Table S8). Deletion of genes in the TTP
pathway leads to no flux through any of the reactions except
for TRPAS2, TRPS1, TRPS2 and TRPS3 which are alternate
pathways to each other. If the bounds of the flux of the
reactions are reduced to 90% of the flux one by one through
the reactions, then a marked reduction is seen in the flux through
the network (Supplementary Table S9). Suggesting that even
though the amount of flux passing through the reactions are
very low, they still play a major role in the biomass formation
of the organisms. For example, constraining the flux through
PHETA1 to −.117 (reversible reaction) leads to a reduction of
the flux through the Input and Shikimate section to .247 (.274 in
Wild type-WT) and .038 through the tryptophan section (.042 in
WT) and .117 in Phenylalanine (.13 in WT) and .092 through
Tyrosine (.102 in WT) (Supplementary Figure S12).

TABLE 3 Percentage of Network hub reactions from CCN, which were shown to be
essential in the FBA models. Organism specific: hubs of E. coli and M. barkeri;
Common: common hubs of 29 Bacteria and Archaea).

Network Organism Degree
hubs

Betweenness
Centrality
hubs

Closeness
Centrality
hubs

Organism
specific

E. coli 0% 19.6% 8.26%

M. barkeri 62.5% 72.72% 45.45%

Common E. coli 16.7% 25.50% 24.4%

M. barkeri 16.7% 41.18% 39%
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In M. barkeri, out of the 815 reactions present in the FBA model,
the deletion of 250 reactions shows adverse effect on the production
of TTP. Many of these pathways are common between E. coli and
M. barkeri, but some of them are unique to either Bacteria or
Archaea, as the metabolism of these two organisms are different–in
some cases. For example, the pathway for Glycerophospholipid
biosynthesis pathway influences TTP production in E. coli, while
the Methanofuran B biosynthesis and Methanogenesis pathways
influences TTP production in Archaea M. barkeri.

3) Reducing single gene efficiency does not significantly affect TTP
production in M. barkeri because there are alternative reactions
for some reactions, which provide other routes for producing the
same metabolite. This indicates that the TTP pathway is more
robust in this organism in terms of random gene/reaction
deletions. Deletion of genes involved in all reactions, except
ANS, ANS2, TRPS1, TRPS2, TRPS3, leads to no flux through
the TTP pathway (Supplementary Table S10; Supplementary
Figure S13). The reactions ANS has the alternate path
ANS2 and TRSP1 has the alternate route formed by
TRSP2 and TRSP3 because of which the flux flows through
the pathway even in case of deletion of any one of them.
Constraining the flux through the TTP reactions to 90% of
the flux through those reactions has an effect on the growth
rate and flux through the reactions (Supplementary Table S11).
In the E. coli pathway, reduction in the efficiency of the input and
shikimate pathway affects the flux, but not for the reactions ANS,
ANS2, TRSP1, TRSP2 and TRSP3 due to the alternate routes, as
previously mentioned. Decrease in the efficiency of reactions in
the Phe and Tyr section also reduce the flux, out of which the
reaction CHORM (chorismate mutase) affects the most, since the
flux for the synthesis of Phe and Tyr pass through it. Reduction to
90% of the flux through the reaction has interesting results, for
example, when the flux through CHORM is .0072 (.0077 in WT),
the flux through the input and Shikimate section is .0084 (.009 in
WT), through the Tryptophan section is .0012 (.0013 in WT) and
through Phenylalanine is .0039 (.0042 in WT) and Tyrosine is
.0033 (.0035 in WT) (Supplementary Table S11; Supplementary
Figure S14).

2.3 Comparison of network analysis and FBA
studies for the TTP pathway

Deletion of hubs can cause a network to lose its structural and
functional integrity (Barabási and Oltvai, 2004). Our results
(Supplementary Table S4) yielded TTP Network hubs (Nodes
having high Degree, Betweenness Centrality, and Closeness
Centrality). The reaction deletion studies using FBA analysis
also provided a set of the reactions that, when deleted
individually, affects the flux through the TTP pathway
(Supplementary Table S7 and S12). These two results obtained
using different theoretical approaches were compared with each
other to find if the Network hubs (of high Degree, BC, and
Closeness Centrality) and the essential genes (obtained from
FBA reaction deletion analysis) overlap. Table 3 shows the
percentage of Degree hubs, BC hubs and Closeness Centrality
hubs that were identified using network analysis and also found to
be essential reactions for TTP pathway using FBA. Organism
specific reactions are those hubs that were identified from the

CCN of either E. coli or M. barkeri. The Common hubs are the
hubs that were identified to be common across all the
29 organisms that were used in the network analysis. The
reactions that are common between Network hubs and the
essential reactions from FBA mostly belong to Purine and
Pyrimidine biosynthesis, Threonine and Lysine biosynthesis
and TTP pathway.

The Network analysis of the CCN can predict some of the
important nodes obtained from FBA analysis. It may be kept in
mind that the CCN takes into account only 18 pathways and the
reactions present in them, and gives equal weightage to all the
reactions and connections. Whereas, in the genome scale FBA, the
flux does not flow through all the reactions equally, and hence those
reactions and the connections are not reflected in the essential
reactions. This indicates that a reduced collection of connected
networks can be used to find essential reactions. The list of
common hubs across the 29 organisms can be used as a reference
list for further studies for finding reactions essential for functioning of
TTP pathway and to increase its productivity, since they provide
similar result to organism-specific hubs. The list of Network hubs that
were shown to be essential by the FBA analysis is given in
Supplementary Table S6.

3 Discussion

The important role of “context” has been of long-standing
empirical and theoretical interest in biological systems because of
their multi-scale and interacting modular structures. Understanding
context representations and its interaction with functional outcome in
behaviour is an area of immense interest to both neurobiologists and
in psychology (Rudy, 2009). In an interesting article, the multi-scale
and modular structure of metabolic network was analysed to identify
the context in which evolutionary processes may occur (Spirin V et al.,
2006).

Studies involving molecular interactions of single genes or
proteins in the context of their downstream partners and gene
context-based modules have been done to evaluate their role in
cellular response mechanisms in signalling, amino acids and
carbohydrate metabolism pathways (Lan et al., 2013; Bhatt et al.,
2018). We started with a general question; do the topological features
(as studied using network analysis) of a metabolic pathway vary when it
is embedded in the larger network of other connected pathways, and
does this variation affect the pathway function? We approached to
answer this query from a different perspective using two systems
biology methods - topological properties (network analysis) and
metabolic activity (Flux Balance Analysis) - of the aromatic amino
acid biosynthesis (TTP) pathway in many species of Bacteria and
Archaea. This pathway consists of quite high energy consuming
reactions in the cell. It takes an equivalent of 52, 50 and 74.3 high-
energy phosphate bonds for the production of Phenylalanine,
Tyrosine and Tryptophan, respectively (Akashi and Gojobori
2002). This energy cost is thus reflected in their usage in the
polypeptide chain, and in the metabolic flux passing through the
TTP pathway.

The control of the production of aromatic amino acids is
traditionally done by means of metabolic engineering in
organisms such as E. coli and C. glutamicum (Katsumata and
Ikeda 1993; Ikeda 2006). In these studies, systematic control of
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genes in the TTP pathway (such as, aroG, aroF, aroH, anthranilate
synthase, pheA etc.), which respond to the production of the end
products, were mutated to increase the production of the aromatic
amino acids. Here we have looked at the TTP pathway individually,
as well as, when embedded at the larger metabolic network in
Bacteria and Archaea. Such studies require various sources of
genetic and biochemical information, such as, stoichiometry,
structure of reaction pathways and alternative routes of
reactions, along with genes and genomes of different organisms.
The results presented highlight the fact that functioning of a
biochemical reaction in the cell is intimately connected to its
“context” (i.e., position of the pathway in the total biochemical
network), and the topology of its connectivity to the larger set of
reactions - both in the pathway and in the larger biochemical
network.

Based on these analyses we are able to arrive at several
conclusions. The Network analysis was undertaken to analyse
the changes in network properties of TTP pathway reaction
network in isolation and in combination with other pathways
directly connected to it through sharing of metabolites as
incoming or outgoing reactants. The TTP pathway, which is a
predominantly linear and a sparse network, shows a low average
degree in all organisms. The nodes in the centre of the network
possess high Betweenness and high Closeness Centrality values,
while the nodes at the extremities show the opposite
characteristics. Out of the many pathways that are connected
to the TTP pathway, the 17 pathways that were common among
the 29 organisms were considered in this study. The network
analysis with all connected pathways in all the organisms
showed that - changes in the properties of the 15 TTP
reaction network nodes not only depended on the topology of
the added network, but also on the nodes to which the pathway
was added. The Complete Combined Network (CCN),
consisting of the TTP pathway and all the 17 connected
networks, showed that the properties of the TTP nodes is not
the same when considered in the context of the larger connected
network. Nodes with low Degree, Betweenness Centrality or
Closeness Centrality, either acquire more connections, or by
virtue of the new connections that alter the resulting topology,
change their network properties, and become hubs in the CCN.
The different Degree, Betweenness Centrality and Closeness
Centrality hubs were found for the CCN for all the
organisms, and the common hubs were ascertained from
them. Hence, analyzing pathways in isolation, and in
combination with other networks, gives varying properties to
the nodes in the network. How these changes in network
topology and parameters of the TTP nodes
influence the chemical activity leading to end
product formations was analyzed using the Flux Balance
Analysis.

The Flux Balance Analysis was done to study the flow of
metabolites through the metabolic reaction network of the TTP
pathway, and to compare it between Bacteria and Archaea, by
taking E. coli and M. barkeri as representatives from the two
phyla. The flux through TTP is very low in both the organisms
with M. barkeri being lower than E. coli. In silico gene deletion
studies of TTP pathway genes showed that fluxes inM. barkeri is
more resistant to random attack than E. coli, due to the presence
of isozymes. In both the organisms, the deletion or reduction of

efficiency of the gene for Phenylalanine and Tyrosine
production greatly affected the overall flux though the
network. Deletion of reactions in the whole network showed
that many pathways such as, Glycolysis, Histidine metabolism,
etc, affect the production of these aromatic amino acids in both
the groups of organisms. There are also differences in the
pathways, affecting TTP between Bacteria and Archaea, due
to their differences in metabolism, such as the Methanogenesis
pathway.

A comparison between the network analysis and flux balance
analysis of the isolated TTP and CCN of TTP pathways showed
that many of the important reaction nodes or “hubs” (in terms of
higher network parameters) in the TTP network were common
with the essential reactions found by FBA. This points towards
identifying a smaller set of reaction steps that can be used for
experimental manipulation of the TTP pathway in the cell. This
combined Network-FBA approach can be used to predict
important reaction steps before attempting any engineering
of any pathway for increase or suppression of functionality.
Until now, whole genome metabolic networks have been studied
by breaking them down into modules using network science
(Alcalá-Corona, et al., 2021). This study endeavored to give an
integrative view of pathway function and evolution across many
prokaryotes, both at a single reaction pathway level, and also
when embedded in the larger scheme of biochemical networks.
Both the static network approach and the dynamic flux balance
analysis offered different perspectives of the same pathway
function by arriving at important reaction sets (hubs and
essential reactions) that promises to have important
applications. Thus, even though the proximate goal of this
study (with the PPT pathway as an example) is to understand
the contextual role of a specific pathway - in isolation and when
embedded in the larger biochemical network of the cell - this
approach to study biochemical pathways to understand their
systemic properties in the context of biochemical functions
inside the cell, may also offer better insight for
identifying essential genes, reactions for drug targets,
and mutations for improving pathway functions in any
organism.

4 Materials and methods

4.1 Organisms under study

29 Archaeal and Bacterial species (Supplementary Table S1) were
considered for the analysis, which consist of Proteobacteria,
Halobacteria and Methanomicrobia. Details are given in
Supplementary Information.

4.2 Division of the pathway

The TTP pathway was broken down into different levels; the
lowest level being the individual reactions, thus at individual gene
level. The next level was created by dividing the pathway into
individual branches or sections that end with the production of
important compounds, and the final level was the whole pathway.
Figure 1 shows the schematic of a typical TTP pathway. For the
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ease of understanding and analysis, the TTP pathway is divided
into four sections. The first section is the Input section, where the
genes for the enzymes that catalyze the reactions for the
conversion of the initial precursors to 3-dehydroquinate is
present. In bacteria, the pathway begins from Erythrose-4-
phosphate and Phospho-enol-pyruvate. In many archaea, due
to the absence of the oxidative Pentose Phosphate Pathway in
several archaeal species (Soderberg 2005), the 3-dehydroquinate
necessary for the initial steps of TTP production is produced by
DKFP (Porat et al., 2006; Gulko et al., 2014). The second section is
the Shikimate section of the pathway (Green substrates) which
consists of five steps, in which dehydroquinate gets converted to
chorismate. The third section is the Tryptophan section (Orange
substrates), which converts Chorismate, the end product of
Shikimate section to Tryptophan. The last section is the
Phenylalanine and Tyrosine section (Purple and Pink
substrates), which consist of genes for the enzymes that
sequentially convert Chorismate to Phenylalanine and Tyrosine
(Dosselaere and Vanderleyden 2001).

4.3 Network analysis

In this analysis, 29 organisms (Bacteria and Archaea) were
selected for the study. The details of forming the reaction
networks and the list of organisms is given in Supplementary
Table S1. The networks were generated using in-house Perl
programs. Network parameters such as Degree, Clustering
Coefficient, Closeness centrality, Betweenness Centrality
(Oldham et al., 2019) were calculated using the igraph package
(Csardi and Nepusz 2006) of R (R Core Team 2014). Statistical
analysis of the networks was carried out using R and in-house Perl
programs.

4.4 Flux balance analysis

Flux balance analysis was conducted on E coli whole genome
model (Feist et al., 2007), as a representative of Bacteria, and, the M.
barkeri whole genome model (Gonnerman et al., 2013), as a
representative of Archaea. The E. coli model (iAF1260) consists of
1261 metabolism associated genes, 2382 reactions, and
1668 metabolites. The M. barkeri model (iMG746) consists of
746 metabolism associated genes, 815 unique reactions and
718 metabolites. Both the models were simulated in minimal
media. The FBA analysis was carried out using Cobrapy .26.0
(Ebrahim et al., 2013), Cobra package for MATLAB and
calculations were carried out using in-house python and perl
programming. All the data used in this study are available on request.
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pentacysteine6 transcription
factor involved in abiotic stress
response in Arabidopsis thaliana

Zhijun Zhang, Tingting Zhang* and Lei Ma*

College of Life Science, Shihezi University, Shihezi City, Xinjiang, China

Background: Abiotic stress is a significant environmental factor that limits plant
growth. Plants have complex and diverse mechanisms for dealing with abiotic
stress, and different response mechanisms are interconnected. Our research aims
to find key transcription factors that can respond tomultiple non -biological stress.

Methods: We used gene expression profile data of Arabidopsis in response to
abiotic stress, constructed a weighted gene co-expression network, to obtain key
modules in the network. The functions and pathways involved in these modules
were further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses. Through the enrichment analysis of
transcription factor, the transcription factor that plays an important regulatory role
in the key module. Through gene difference expression analysis and building
protein interaction networks, the important role of key transcription factors is
verified.

Result: In weighted gene co-expression network, identified three gene modules
that are primarily associated with cold stress, heat stress, and salt stress. Functional
enrichment analysis indicated that the genes in these modules participate in
biological processes such as protein binding, stress response, and others.
Transcription factor enrichment analysis revealed that the transcription factor
Basic Pentacysteine6 (BPC6) plays a crucial regulatory role in these threemodules.
The expression of the BPC6 gene is dramatically affected under a variety of abiotic
stress treatments, according to an analysis of Arabidopsis gene expression data
under abiotic stress treatments. Differential expression analysis showed that there
were 57 differentially expressed genes in bpc4 bpc6 double mutant Arabidopsis
relative to normal Arabidopsis samples, including 14 BPC6 target genes. Protein
interaction network analysis indicated that the differentially expressed genes had
strong interactions with BPC6 target genes within the key modules.

Conclusion: Our findings reveal that the BPC6 transcription factor plays a key
regulatory function in Arabidopsis coping with a variety of abiotic stresses, which
opens up new ideas and perspectives for us to understand the mechanism of
plants coping with abiotic stresses.
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1 Introduction

Adverse environmental factors, such as abiotic stress, severely
limit agricultural production, reduce crop yield and quality, and
affect plant growth and development, thereby threatening food
security. Extreme temperatures and soil salinity are common
extreme environmental conditions in nature, and climate change
further complicates these adverse factors (GONG et al., 2020).
Therefore, it is crucial to understand the response mechanism of
plants to abiotic stress.

Arabidopsis is widely used as a model organism for research in
plant genetics, developmental biology and molecular biology. And it
is an ideal experimental material for exploring the mechanisms of
plant response to abiotic stresses (KILIAN et al., 2007). In previous
studies, some important Arabidopsis genes and metabolic pathways
have been shown that they are involved in the process to respond to
abiotic stress with Arabidopsis. For example, the C-repeat Binding
Transcription Factor3 (CBF3) transcription factor plays a key role in
the cold response pathway (HE et al., 2008). Cold-inducible RNA
helicase Regulator of CBF gene expression1 (RCF1) regulates cold-
responsive genes and enhances the cold tolerance of plants by
clipping pre-mRNA (GUAN et al., 2013). Exogenous application
of jasmonate significantly enhances Arabidopsis freezing tolerance
(HU et al., 2013). Humic acid (HA) significantly inducesHeat Shock
Protein-encoding (HSP) genes, including HSP101, HSP81.1,
HSP26.5, HSP23.6, and HSP17.6A, which promotes heat tolerance
in Arabidopsis (CHA et al., 2020). The Arabidopsis Temperature-
Induced Lipocalins1 (TIL1) gene (AT5G58070) is an important
component of thermotolerance (CHI et al., 2009). Sanguinarine
affects heat tolerance in Arabidopsis by enhancing the expression of
heat shock protein genes such asHSP17. 6C-CI,HSP70, andHSP90.1
(HARA and KURITA, 2014). The Arabidopsis histone
acetyltransferase General Control Non-Derepressible5 (GCN5) is
also an important component of Arabidopsis thermotolerance
(HU et al., 2015). The Arabidopsis regulator RCF2, expressed by
the C-repeat Binding Factor (CBF) gene, has been shown to be an
integrator of hyperthermia signaling and a mechanism ofHeat Stress
Transcription Factor (HSF) andHSP activation (GUAN et al., 2014).
Overexpression of Arabidopsis Stress-Induced BTB Protein 1 (SIBP1)
genes increases salt tolerance in transgenic Arabidopsis (WAN et al.,
2019). MADS-box transcription factor Agamous-Linke16 (AGL16)
acts as a negative regulator in stress response in Arabidopsis. The
absence of AGL16 makes Arabidopsis resistant to salt stress (ZHAO
et al., 2021). Different members of the Phosphoglycerate
Dehydrogenase (PGHD) gene family have different effects on salt
tolerance in Arabidopsis, and the response to salt stress depends on
the specific gene (ROSA-TELLEZ et al., 2020). Many genes or
pathways are also involved in the response to multiple abiotic
stresses in Arabidopsis. Overexpression of Cysteine2/Histidine2
(C2H2)-Type Zinc Finger of Arabidopsis Thaliana6 (ATZAT6) in
Arabidopsis can increase resistance to pathogen infection, salt,
drought and freeze stress (SHI et al., 2014). DNA methylation is
also an important mechanism to regulate abiotic stress resistance in
plants (OGNEVA et al., 2019).

Despite the fact that these studies have discovered numerous
genes and biological processes in response to abiotic stress, most of
these studies have focused on the link between a single gene and a
single abiotic stress scenario. However, in nature, stress conditions

are frequently layered on a range of unfavorable environmental
circumstances. Therefore, the biological processes by which plants
respond to different abiotic stresses are not completely independent.
Responses to various abiotic stresses are both independent and
highly interrelated. Plants possess genes that can respond to
several different abiotic stressors simultaneously. To improve
plant yield and quality and expand agricultural production,
research must be conducted on genes that can adapt to multiple
abiotic stresses.

In this study, we retrieved expression data from Arabidopsis
plants that were subjected to abiotic stress treatments to identify
genes that respond to these stressors. We then used the Weighted
Gene Co-expression Network Analysis (WGCNA) method to
identify the gene modules that are mostly related to cold stress,
heat stress, and salt stress. We used a comprehensive bioinformatics
approach to analyze the molecular function, signaling pathway, and
transcription factor enrichment results of the modules. Finally, we
identified a transcription factor, BPC6 (Basic Pentacysteine), that is
highly related to these three stresses. The expression data of BPC6
under abiotic stress showed that it is involved in Arabidopsis
responding to various abiotic stresses. Our study will improve the
understanding of plant abiotic stress response mechanisms and may
play an important role in improving plant yield and quality and
promoting agricultural production.

2 Result

2.1 Data pre-processing

The 18 gene expression profile data associated with abiotic stress in
Arabidopsiswere preprocessed, and only wild-typeArabidopsis samples
from all datasets were retained, for a total of 97 samples. All data were
normalized. Each dataset contained 20,642 genes. After removing batch
effects and putting the 18 datasets together into a new matrix file, all
54 stress-related samples from the new matrix file were selected and
control samples were removed. The results of an analysis of Median
Absolute Deviation (MAD) are shown in Supplementary Table S1. For
building the weighted gene co-expression network, the top 10,000 genes
with the most variable expression levels were selected as input genes
(mad ≥ 0.390897091). The clustering analysis showed that the
54 Arabidopsis samples were close to each other, with no significant
outliers (Figure 1), and the overall effect was good.

2.2 Weighted gene co-expression network
analysis

To build the scale-free network, we optimized the appropriate
network weighting coefficient β. The βwas calculated using the “pick
Soft Threshold” function of the WGCNA package. When the
threshold β was set to 3, the topology analysis showed that the
scale-free topology fitting index (R2) was close to 90%
(Supplementary Figure S1), indicates that the network was close
to being a scale-free network. We established a co-expression
network with a soft threshold β of 3. The genes with similar
expression patterns were grouped into modules in the network,
and a total of seven modules were identified (Figure 2). For
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FIGURE 1
Sample cluster analysis diagram. Sample clustering analysis showed that no samples were outliers.

FIGURE 2
Identification diagram of gene co-expressionmodule. Identification of gene co-expression modules via hierarchical average linkage clustering. The
color row underneath the dendrogram shows the module assignment determined by the Dynamic Tree Cut.
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visualization, modules were named with colors: Black (258 genes),
Blue (1,415 genes), Brown (882 genes), Green (654 genes), Red
(571 genes), Turquoise (5,392 genes), and Yellow (827 genes).

The seven modules are primarily divided into three clusters
(Figure 3A). Compared to the other modules (Figure 3B), the red
module is most closely associated with cold stress, the black module is
most closely associated with heat stress, and the blue module is most
relevant to salt stress. The results demonstrate that the red (MM= 0.62,
p = 6e-7), black (MM = 0.33, p = 0.01), and blue (MM = 0.35, p = 0.01)
modules play crucial roles in the Arabidopsis response to abiotic stress.
Therefore, these three modules are identified as the key modules.

2.3 Functional enrichment analysis of key
modules

To better understand the biological functions of genes in key
modules, the red, black, and blue modules were analyzed for GO
function enrichment and KEGG pathway enrichment. The 93 GO
terms are significantly enriched in the red module (Figure 4A). For
biological processes, genes are mainly concentrated in the response to
water shortage, abscisic acid and light stimulation, and signal
transduction. For cellular components, genes are mainly enriched in
membrane components, the plasma membrane, and cytoplasm. For
molecular functions, genes are mainly enriched in protein binding.

The 24 GO terms are significantly enriched in the black module
(Figure 4B). For biological processes, genes are mainly enriched in cell
differentiation, root development, tissue development, defense responses,
and plant epidermis development. For cellular components, genes were
mainly enriched in the extracellular region. For molecular functions,
genes were mainly enriched in protein transport, transcription factor
activity, and sequence-specific DNA binding.

The 178 GO terms are significantly enriched in the blue module
(Figure 4C). For biological processes, genes were mainly enriched in
response to water shortage, defense response to bacteria, response to
injury, and defense response to fungi. For cellular components,
genes were mainly enriched in membrane components, the plasma
membrane, extracellular region, and Golgi apparatus. For molecular
functions, genes were mainly enriched in protein binding,
transcription factor activity, sequence-specific DNA binding, and
transcriptional regulatory region sequence specific DNA binding.

According to the KEGG pathway analysis, the red module is
primarily involved in metabolic pathways (Figure 4D), the black
module is mainly associated with phenylpropionic acid biosynthesis
(Figure 4E), and the blue module is mainly involved in metabolic
pathways and secondary metabolite synthesis (Figure 4F).

2.4 Transcription factor enrichment analysis
of key modules

To further investigate the common biological mechanisms
behind the three key modules responding to abiotic stress,
transcription factor enrichment analysis of genes in the three key
modules was performed using transcription factor enrichment in
PlantTFDB (5.0). Figure 5A shows the enrichment results of the red
module, Figure 5B shows the enrichment results of the black
module, and Figure 5C shows the enrichment results of the blue
module. Supplementary Tables S2–S4 show the regulatory
relationship between genes and transcription factors in the red,
black, and blue modules, respectively. The intersection of the three
enrichment results (Figure 5D) showed that the BPC6 transcription
factor synthesized by the AT5G42520 gene played a key regulatory
role in all three modules simultaneously.

FIGURE 3
Hierarchical clustering dendrogram of module eigengenes and heatmap plot of the adjacencies in the eigengene network (labeled by their colors).
(A) In the heatmap, the green color represents low adjacency (negative correlation), while a red represents high adjacency (positive correlation). (B)
Correlation between sample grouping and gene modules. Each row of the table corresponds to a gene module, and each column corresponds to a
group.
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2.5 Expression of the BPC6 gene in
Arabidopsis under different abiotic stresses

To test whether the BPC6 gene plays a key role in Arabidopsis
responses to multiple abiotic stresses, we analyzed Arabidopsis
expression profile data from the AtGenExpress project under
different abiotic stresses and obtained the expression of the BPC6
gene under different abiotic stresses (Figure 6). According to the
expression profile data. The expression of the BPC6 gene in
Arabidopsis decreased significantly during the continuous cold stress
period of 4°C. After 6 h of stress, the expression of the BPC6 gene in
plants began to increase significantly, and the change of expression in
leaves wasmore significant. The expression level of theBPC6 gene in the

root continued to decrease initially, but after 6 h, the expression level
began to increase and returned to the level before the stress.

During the 38°C/3 h heat stress period, the expression level of the
Arabidopsis BPC6 gene slowly decreased. After the stress was stopped,
the expression level first increased, then decreased, then increased
again, and then decreased once more. At 24 h, the expression level of
the BPC6 gene in the leaves was still low, while the expression level in
roots returned to the level before the heat stress.

During the 150mM/L NaCl salt stress, the expression of the
BPC6 gene in Arabidopsis firstly decreased within half an hour of salt
stress, then increased within 1 h, then decreased within 6 h, and then
increasedwithin 12 h.After 24 h, the expression of theBPC6 gene in leaves
recovered to the pre-stress level, but the expression in roots was

FIGURE 4
GO and KEGG enrichment analysis diagram. (A) GO Enrichment results of genes in the red module. (B) GO enrichment results of genes in the black
module. (C) Enrichment results of genes in the blue module. (D) KEGG pathway enrichment results of genes in the red module. (E) KEGG pathway
enrichment results of genes in the black module. (F) KEGG pathway enrichment results of genes in the blue module.
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significantly lower than that before stress. These results indicated that the
Arabidopsis BPC6 gene is involved in the Arabidopsis response to various
abiotic stresses, which confirms our data analysis results.

2.6 Effect of BPC mutant

After comparing bpc4 bpc6 double mutant Arabidopsis with
normal samples, a total of 57 genes were differentially expressed
(DEG), with 27 genes being downregulated and 30 genes being
upregulated (refer to Supplementary Figure S2, Supplementary
Table S7). Out of the 30 upregulated genes, five were identified
as BPC6 target genes according to the plantregmap database,
accounting for 20% of all upregulated genes. Similarly, eight of
the 27 downregulated genes were BPC6 target genes, accounting for
29.6% of all downregulated genes (Figure 7B). However, the
expression of genes regulating BPC6 remained unchanged
(Figure 7A). These findings suggest that a substantial proportion
of the DEGs were target genes regulated by BPC6, underscoring the

critical role of the BPC gene in modulating the expression of these
genes.

To ensure the accuracy of our findings, we analyzed the Protein-
Protein Interaction (PPI) network from both a global and regional
perspective. The results of the PPI network analysis of DEGs and
target genes controlled by BPC6 in key modules revealed a
significant overall interaction link between these genes
(Figure 8A). The PPI network has 48 DEGs, accounting for 84%
of the total differential genes. The PPI network contains 157 of the
188 BPC6 target genes in the red module, accounting for 84% of the
total. The PPI network contains 59 of the 80 BPC6 target genes in the
black module, accounting for 74% of the total. The PPI network
contains 337 of the 431 BPC6 target genes in the blue module,
accounting for 78% of the total.

PPI network analysis was performed on DEGs and the
different key modules. The PPI network analysis results of the
red module and 57 DEGs showed that 115 (64%) of the 180 target
genes had obvious interactions with 42 (74%) DEGs (Figure 8B).
The PPI network analysis results of the black module and

FIGURE 5
Transcription factor enrichment analysis results. (A) Transcription factor enrichment results of genes in the red module. (B) Transcription factor
enrichment results of genes in the black module. (C) Transcription factor enrichment results of genes in the blue module. (D) Transcription factor
enrichment results are intersected.
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57 DEGs showed that there were obvious interactions between 42
(53%) of the 80 target genes and 38 (67%) DEGs (Figure 8C). The
PPI network analysis results of the blue module and 57 DEGs
showed that 313 (73%) of the 431 target genes had obvious
interactions with 46 (81%) DEGs (Figure 8D). For different
key modules, most of the target genes were regulated by BPC6
and most of the DEGs had obvious interactions.

3 Discussion

The ever-increasing global population and the hard-to-increase
arable land have aggravated the negative impact on human survival.
The best solution to this problem is to increase crop yield per unit
area. However, abiotic stress has a strong negative impact on plant
growth and crop yield. Abiotic stress factors such as extreme

FIGURE 6
Expression of BPC6 gene under different abiotic stresses.

FIGURE 7
Venn diagram of differentially expressed genes and BPC upstream regulatory genes and downstream target genes. (A) Venn diagram of differentially
expressed genes and upstream regulatory genes of BPC. (B) Venn diagram of differentially expressed genes and target genes regulated by BPC.
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temperatures and soil salinization seriously affect crop production
every year, making it significant to improve plant tolerance to abiotic
stress. As a model plant, Arabidopsis exhibits strong adaptability to
environmental stress and is widely used to study various abiotic
stress response mechanisms. Most of the previous work has focused
on studying Arabidopsis response mechanisms to a single stress.
However, many extreme climatic conditions occur simultaneously
in nature, and the mechanisms by which plants responding to
different stresses are not independent of each other. At present,
the shared response mechanisms of plants to cope with multiple
abiotic stresses are unclear. The BPC6 transcription factor is an
important regulatory transcription factor, and studying its
mechanism of participation in coping with abiotic stress is
significant.

In this study, we constructed a weighted gene co-expression
network using Arabidopsis gene expression data and identified three
modules that were most associated with cold, heat, and salt stress.
The GO enrichment analysis showed that the blue module was
mainly involved in the response to water shortage, and had a
superior response to bacteria and fungi. The red module was
mainly involved in the response to water shortage, abscisic acid,
and so on. The black module was mainly involved in cell
differentiation, plant development, protein transport, and
transcription factor activity. The KEGG pathway enrichment
analysis showed that the blue and red modules were mainly
involved in the metabolic pathway, while the black module was
mainly involved in the phenyl-propionic acid synthesis pathway.
The three modules were then enriched for transcription factors, and

the results showed that most of the genes in the three modules were
simultaneously regulated by the BPC6 transcription factor. The
expression of the BPC6 gene in Arabidopsis was analyzed under
different abiotic stresses, and the results showed that the expression
of the BPC6 gene changed significantly under different abiotic
stresses.

The DEGs between the bpc4 bpc6 double mutant Arabidopsis
samples and normal samples were analyzed. The differential
expression analysis shows that compared with normal samples,
the bpc4 bpc6 double mutant Arabidopsis must have a total of
57 DEGs. Sequence analysis showed that the BPC gene family
has a total of 7 genes in Arabidopsis, which are divided into
three classes: class I proteins BPC1 (AT2G01930), BPC2
(AT1G14685) and BPC3 (AT1G68120); class II proteins BPC4
(AT2G21240), BPC5 (AT4G38910) and BPC6 (AT5G42520); and
class III protein BPC7 (AT2G35550). They are all ubiquitously
expressed transcriptional activators and repressors, except for
BPC5, which is considered a pseudogene (MEISTER et al., 2004).
There is functional overlap between different classes. Single gene
mutations do not produce visible phenotypic effects, and severe
morphological phenotypes occur only in higher-order mutants
between class I and class II members. Therefore, to study the
function of the BPC6 gene through gene mutant, it is necessary
to knock out all BPC genes that are similar to the BPC6 gene
function. The control group samples and gene mutant samples used
in sequencing are cultivated in normal environments without
coercion. Therefore, the only reason for generating differential
genes is the mutant of the BPC4 and BPC6 genes. The number

FIGURE 8
PPI Network Diagram. (A) PPI network diagram of three keymodules and differentially expressed genes. (B) The PPI network diagram of target genes
regulated by BPC6 and differentially expressed genes in the redmodule. (C) The PPI network diagram of target genes regulated by BPC6 and differentially
expressed genes in the black module. (D) The PPI network diagram of target genes regulated by BPC6 and differentially expressed genes in the blue
module.
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of different genes is very small. It may be due to the overlapping
function of other unintended BPC genes with BPC6, which caused
the physiological biochemical activity of gene knocking Arabidopsis
not be significantly affected. There are 13 genes among the DEGs
that are direct or indirect targets of the BPC6 transcription factor,
accounting for 23% of the total number of different genes. The PPI
network analysis of the BPC6 target genes and DEGs in the key
modules can be seen that most of the differences can have a strong
interaction with most of the differential genes in the key module in
the key module. This proves that the analysis results of the weighted
gene co-expression network.

Cytokinin plays an important role in plant growth and
development and also participates in the response process of
plants to non-biological stress. Research indicates that cytokinins
can regulate ion channels, antioxidant enzyme activity, protect
chlorophyll and cell membrane stability, and modulate the
balance of hormones in plants. The promotes the growth and
differentiation of roots, thus increasing plant adaptability to
abiotic stress (Sabagh et al., 2021). In addition, cytokinins can
also regulate plant abiotic stress responses by interacting with
other signaling molecules such as ABA, SA, and ROS (GUPTA
and HUANG, 2014; GAO et al., 2019). The type-B Arabidopsis
response regulator (ARR) transcription factors have emerged as
primary targets of cytokinin signaling and are required for
essentially all cytokinin-mediated changes in gene expression. By
cooperating with other transcription factors, ARR can affect the
process and effect of cytokinin in plants (ARGUESO et al., 2010).
BPC transcription factors are a potential set of coregulators
regulating cytokinin responses. Disruption of multiple BPC genes
in Arabidopsis thaliana reduces its sensitivity to cytokinin. Further, a
significant number of BPC6 regulated genes are also direct targets of
the type-B ARRs (SHANKS et al., 2018). Therefore, cytokinin is
likely to be a key substance involved in Arabidopsis’s response to
abiotic stress by the BPC6 transcription factor.

The BPC transcription factor family plays a crucial role in
regulating gene expression in plants. These proteins are located
in the nucleus and regulates the transcription process by specifically
binding to the GA dinucleotide repeat sequence of the gene. BPC
proteins were first discovered in barley in 2003 (SANTI et al., 2003),
and subsequently in Arabidopsis in 2004 (MEISTER et al., 2004).
BPC genes have a broad expression pattern in Arabidopsis, more
than 3,000 Arabidopsis genes contain at least one GA-rich segment
in their regulatory region. BPC transcription factors are essential for
normal plant growth and development. The Arabidopsis BPC1
transcription factor has been shown to bind to a GA-rich
consensus sequence in the Seedstick (STK) promoter in vitro, and
this binding induces conformational changes. Vivo BPCs also bind
to the consensus boxes, and when these were mutated, expression
from the STK promoter was derepressed, resulting in ectopic
expression in the inflorescence. GA consensus sequences in the
STK promoter to which BPCs bind are essential for the recruitment
of the corepressor complex to this promoter (SIMONINI et al.,
2012). Shootmeristemless (STM) and Brevipedicellus/Knat1 (BP)
genes are both direct targets of BPCs, and BPC transcription
factors also play an important role in the fine regulation of
cytokinin content in meristem (SIMONINI and KATER, 2014).
BPC6 can interact with two Arabidopsis Polycomb-Repressive
Complexes (PRC1.PRC2) to affect the expression of a large

number of genes (HECKER et al., 2015). BPCs can bind to the
promoter of transcription factors Abscisic Acid Insensitive4 (AAI4),
inhibit the expression of ABI4 in roots, and promote lateral root
(LR) development in Arabidopsis (MU et al., 2017). BPCs also
significantly affect the function of cytokinins in Arabidopsis, and
disruption of multiple BPCs in Arabidopsis results in reduced
sensitivity to cytokinins (SHANKS et al., 2018). BPCs may also
promote Arabidopsis ovule and seed development by limiting the
transcription of Fusca3 (FUS3) (ROSCOE et al., 2019; CARELLA,
2020). Class I BPC works by directly binding to the GA/CT cis-
element in FUS3 and limiting its expression (Wu et al., 2020).

Previous studies have demonstrated that the BPC transcription
factor family plays an important role in regulating plant growth and
development. However, from the perspective of abiotic stress, our
study expounds a brand-new research result, that is, the BPC6
transcription factor is involved in the process of plants
responding to various abiotic stresses. Compared with previous
studies, our advantages lie in the large sample size, abundant
data, novel research angles, and diverse research methods. We
illustrate new findings with existing data.

Base on further discussion of the results of this study, the
following points can be paid attention to: First of all, the
specificity and regulatory mechanism of BPC6 transcription
factor in various abiotic stresses can be further explored.
Additionally, the interactions and regulatory networks between
BPC6 and other regulators can be studied to gain a deeper
understanding of its role in plant abiotic stress responses.

Second, this study found that the blue and red modules were
mainly involved in themetabolic pathway, and the blackmodule was
mainly involved in the phenylpropionic acid synthesis pathway.
This suggests that metabolic and synthetic pathways have important
roles in plant responses to abiotic stresses. Therefore, future studies
can further focus on the key genes and regulatory mechanisms in
these pathways to better understand the physiological and metabolic
regulation of plants under abiotic stress.

In addition, the results of this study indicated that different
modules have different response characteristics to abiotic stresses.
For example, blue modules are mainly involved in the response to
water deprivation, while red modules are mainly involved in the
response to abscisic acid. This suggests that plants may require
different adaptive mechanisms for optimal growth and survival in
response to different abiotic stresses. Therefore, future studies could
delve deeper into these adaptive mechanisms and response traits to
guide plant breeding and planting practices to improve plant
adaptability and stress resistance.

Finally, the results of this study demonstrate that key genes and
regulatorymechanisms in plants under abiotic stress can be effectively
identified using the WGCNA approach. Therefore, future research
can apply the WGCNA method to more plant species and different
types of abiotic stress to establish a more comprehensive and accurate
plant abiotic stress response network, and provide a more scientific
basis for plant breeding and cultivation. In addition, by combining
other bioinformatics methods, such as gene expression profiling and
functional annotation, deeper information and mechanisms of the
abiotic stress response network can be further explored. At the same
time, since Arabidopsis is a model organism, our research results can
also guide the study of other plants, which is of great significance for
agricultural production and food security.
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4 Conclusion

The BPC transcription factor family is very important in plants
and can regulate various plant growth and development processes.
From the perspective of abiotic stress, this study explored the role of
the BPC6 transcription factor inArabidopsis response to abiotic stress.
It confirmed that Arabidopsis BPC6 transcription factor can
participate in coping with various abiotic stresses by regulating the
expression of many genes. Analysis of Arabidopsis gene expression
data validated this result. This study proves that the biological
processes of Arabidopsis in response to different abiotic stresses are
not isolated, but have commonality at the level of transcription factors.
This work provides new ideas and perspectives for the study of plant
responses to abiotic stress.

5 Materials and methods

5.1 Data acquisition

In order to study the mechanism of Arabidopsis response to
abiotic stress, we searched the GEO (https://www.ncbi.nlm.nih.
gov/geo/) database using “Arabidopsis” as the keyword. To query
gene expression profiles associated with abiotic stress in
Arabidopsis, we downloaded 18 groups of gene expression
profiles related to abiotic stress. These included 6 groups related
to salt stress, 6 groups related to heat stress, and 6 groups related to
cold stress. We only retained wild-type Arabidopsis expression
data in the gene expression profiles, resulting in a total of
97 samples. The detailed information of all gene expression
profiles is shown in Supplementary Table S8. We also searched
the GEO database using “Arabidopsis” and “BPC” as keywords and
obtained gene expression data of Arabidopsis thaliana with BPC
gene mutant (GSE68437). This data set contains eight samples, of
which two bpc4 bpc6 double mutant Arabidopsis samples and two
control samples were retained. All data used whole plants as
material to be sequenced.

5.2 Data pre-processing

Gene expression profiles were downloaded in TXT format
from the GEO database. The R software package was used to
process the matrix files and filter out low-quality data. The probe
ID was converted to a gene symbol, invalid expression data were
deleted, and the expression data of duplicate gene symbols were
averaged. The expression profiles without log2 transformation
were log2 transformed using R language. We used the combat
package to remove batch effects from all expression profiles, and
merged them into a matrix file. The expression data from all
stress-treated Arabidopsis samples in the matrix file were merged
into a new matrix file. Subsequently, we performed WGCNA
using the new matrix files containing only stress-treated
Arabidopsis samples. The GSE68437 dataset was used for gene
differential expression analysis.

5.3 Weighted gene co-expression network
analysis

In statistics, the median absolute deviation (MAD) is a robust
measure of sample bias on univariate numerical data. At the same
time, it can also represent the population parameters estimated by
the MAD of the sample. We used the MAD algorithm to select the
expression data of the top 10,000 genes as input data for WGCNA.

WGCNA is regarded as a methodology to reconstruct a free-scale
gene co-expression network and concurrently identify modules
consisting of highly correlated genes to appraise connectivity
between external clinical traits and the module. Eigengene is used
for summarizing relationships among internal gene membership. In
this study, we applied the one-step network construction and module
detection function of the WGCNA package (https://horvath.genetics.
ucla.edu/html/Co-expressionNetwork/Rpackages/WGCNA/Tutorials/)
in R to handle the analysis of the expression profiles of Arabidopsis,
which contained 20 cold-treated samples, 18 heat-treated samples, and
15 NaCl-treated samples. We correlated gene clusters with each other
and external sample features. The weighted adjacency matrix was
calculated to represent the connection strength of each pair of genes.
According to the scale-free topology network, the soft thresholding
power was set to 4. Then, a hierarchical clustering dendrogram
composed of rich branches was established. The dynamic tree-
cutting method was used to complete module identification, the
minimum size of the gene dendrogram is 25, and the grouping
information of samples is made by setting the value of 1 under
stress and 0 under no stress as the grouping standard. Finally,
modules were associated with groups using module-group
associations based on Module Membership (MM) and Gene
Salience (GS).

5.4 Identification of key modules

We evaluate the relationship between module and sample
grouping by using the correlation between module eigengenes
and sample grouping. When dealing with sample features,
statistical significance measures between module feature genes
and features can be defined. For example, using correlation
values or p-values, modules with high feature significance values
are considered to be associated with sample grouping.

5.5 Functional and pathway enrichment
analysis of key modules

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses of genes
in key modules were performed using the online DAVID (https://
david.ncifcrf.gov/). The gene list of key modules was uploaded to the
DAVID database to obtain the GO enrichment and KEGG pathway
enrichment results. Results with p < 0.05 were considered
significant, and the obtained enrichment analysis results were
visualized using the ggplot2 package.
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5.6 Transcription factor enrichment analysis

Transcription factor enrichment analysis of genes in key modules
was performed using the online plantTFDB database (http://planttfdb.
gao-lab.org/). The gene list of key modules was uploaded to the
plantTFDB database, and the enrichment results of transcription
factors of key modules were obtained. R language was used for
subsequent analysis of transcription factor enrichment results.

5.7 Analysis of key gene expression

Arabidopsis eFP Browsers (http://bar.utoronto.ca/
#GeneExpressionAndProteinTools) from the AtGenExpress
project were used to analyze the expression profiles of
Arabidopsis genes under different abiotic stresses, using the
Arabidopsis eFP in the BAR database (KILIAN et al., 2007).

5.8 Gene expression data validation

To verify our data analysis results, we used the plantregmap
database (http://plantregmap.gao-lab.org/) to obtain all target genes
regulated by BPC6 and all genes that regulate BPC6 in Arabidopsis.
We also used the limma package (https://bioconductor.org/
packages/release/bioc/html/limma.html) to analyze the gene
differential expression of the which two bpc4 bpc6 double mutant
Arabidopsis samples and normal samples in the GSE68437 dataset (|
log2

FC| > 2, adj.p < 0.05). Additionally, we utilized the STRING
(https://string-db.org/) to perform PPI networks analysis on DEGs
and key genes within the three modules, and then used Gephi V0.10.
1 to visualize the PPI network. Finally, we took the intersection of
BPC6-related genes and DEGs to verify our data analysis results.
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KISL: knowledge-injected
semi-supervised learning for
biological co-expression network
modules
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Ying Xu3*
1College of Computer Science and Technology, Jilin University, Changchun, China, 2School of Artificial
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The exploration of important biomarkers associated with cancer development is
crucial for diagnosing cancer, designing therapeutic interventions, and predicting
prognoses. The analysis of gene co-expression provides a systemic perspective on
gene networks and can be a valuable tool for mining biomarkers. The main
objective of co-expression network analysis is to discover highly synergistic
sets of genes, and the most widely used method is weighted gene co-
expression network analysis (WGCNA). With the Pearson correlation
coefficient, WGCNA measures gene correlation, and uses hierarchical
clustering to identify gene modules. The Pearson correlation coefficient
reflects only the linear dependence between variables, and the main drawback
of hierarchical clustering is that once two objects are clustered together, the
process cannot be reversed. Hence, readjusting inappropriate cluster divisions is
not possible. Existing co-expression network analysis methods rely on
unsupervised methods that do not utilize prior biological knowledge for
module delineation. Here we present a method for identification of
outstanding modules in a co-expression network using a knowledge-injected
semi-supervised learning approach (KISL), which utilizes apriori biological
knowledge and a semi-supervised clustering method to address the issue
existing in the current GCN-based clustering methods. To measure the linear
and non-linear dependence between genes, we introduce a distance correlation
due to the complexity of the gene-gene relationship. Eight RNA-seq datasets of
cancer samples are used to validate its effectiveness. In all eight datasets, the KISL
algorithm outperformed WGCNA when comparing the silhouette coefficient,
Calinski-Harabasz index and Davies-Bouldin index evaluation metrics.
According to the results, KISL clusters had better cluster evaluation values and
better gene module aggregation. Enrichment analysis of the recognition modules
demonstrated their effectiveness in discovering modular structures in biological
co-expression networks. In addition, as a general method, KISL can be applied to
various co-expression network analyses based on similarity metrics. Source codes
for the KISL and the related scripts are available online at https://github.com/
Mowonhoo/KISL.git.
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biological co-expression network, factor analysis, semi-supervised learning algorithm,
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1 Introduction

To study the functions of genes at a system level, a key is to
understand how genes work together. A basic assumption is that co-
expressed genes tend to work in the same subsystem. Co-expression
networks (GCN) (Yip and Horvath, 2007a) are commonly used to
describe such subsystems based on statistical correlations among the
expressions of the relevant genes. Typically, each node in such an
undirected network represents a distinct gene and a weighted edge
between two nodes denotes the two genes with correlated
expressions while the edge weight represents the correlation level.

One goal when studying such a network is to discover densely
connected subnetworks, also referred to as functional modules or
clusters, as co-expressed genes tend to be transcriptionally
coregulated. WGCNA (Zhang and Horvath, 2005) is a most
widely used software for GCN construction, and can be used to
identify modules of highly co-expressed genes. Briefly, WGCNA
constructs a weighted co-expression network based on the Pearson
correlation coefficients among provided gene expressions; uses a
topological overlap structure measure (TOM) (Ravasz et al., 2002) of
nodes to identify modules; and utilizes eigengene and intramodule
hub genes to summarize such modules (Langfelder and Horvath,
2008). WGCNA identifies gene modules by using hierarchical
clustering, giving rise to a tree-like structure. The advantage of
the hierarchical clustering method is its simplicity, but the process
for generating a hierarchical clustering tree is irreversible.

Multiple developments have been made aiming to improve the
TOM measure. Among them, Li et al. proposed a bottom-up multi-
node topological overlap measure (MTOM) that selects nodes with
the highest neighborhood size to form modules based on multiple
nodes. (Yip and Horvath, 2007b) developed a generalized
topological overlap measure, called GTOM. Compared to TOM
that considers only the nodes directly adjacent to the target gene
pair, GTOM considers neighboring nodes that are within K steps
away from the target gene pair, where K is a parameter to be selected
by the user. Thus, GTOM is more sensitive to higher-order
connections. Hou et al. (2021) introduced the K-means method
to WGCNA to add additional steps to improve the module-
identification results of WGCNA. A few other algorithms have
been deployed to analyze gene co-expression networks, such as
the flow simulation-based module discovery method (MCL)
(Hwang et al., 2006), the graph partitioning-based method (Qcut)
(Ruan and Zhang, 2008), and the density model-based method
(MCODE) (Bader and Hogue, 2003).

One common issue with all these methods is: they use only
unsupervised methods for clustering or module identification, but
do not make effective use of prior biological knowledge. In addition,
WGCNA uses hierarchical clustering to identify gene modules. One
drawback of hierarchical clustering is that once two objects are
clustered together, the process cannot be reversed. Therefore,
regrouping of inappropriately clustered items is not doable.
Analyses of the improved methods of WGCNA for refining its
module identification results shows that the methods could not solve
the problem of generating an unreasonable number of clusters. The
purpose of this paper is to develop an effective method for module
identification in a co-expression network to improve the of these two
issues in existing methods.

Here we present a method for identification of outstanding
modules in a co-expression network using a knowledge-injected
semi-supervised learning approach (KISL), which utilizes apriori
biological knowledge and a semi-supervised clustering (Basu et al.,
2004) method to address the issue existing in the current GCN-
based clustering methods. A comparative analysis of our algorithm
with the WGCNA method on eight human cancer datasets has
revealed the effectiveness of our algorithm in discovering modular
structures in co-expression networks, paving the way for more
accurate and useful GCN analysis.

2 Methods

2.1 WGCNA and KISL algorithms

We sought to identify modules consisting of highly functionally
related genes. The structure of our algorithm is shown in Figure 1,
consisting of three main stages. The first stage covers data
preprocessing, variance analysis and feature selection to generate
a gene expression profile matrix. The second stage is to construct
clustering constraints by using factor analysis, to perform Gene
Ontology (GO) enrichment analysis, and to perform factor analysis
based on gene expression profiles for the set of genes covered by
enriched GO/BP pathways. The result is a factor-loading matrix.
The factor coefficients are binarized through thresholding, a subset
of genes affected by a single factor is screened to form the “must-
link” gene clusters, and all gene clusters from the pathway screening
together form the apriori constraints for module identification in the
co-expression network. The third stage is to construct the GCN and
then use a semi-supervised algorithm in combination with the
apriori constraints for identification of the GCN functional modules.

The inputs to the semi-supervised algorithm are the GCN
network, the apriori constraints and the number of clusters k
(the value of k is set according to the learning curve by the user
given a value interval for k). The main purpose of the algorithm is to
calculate the connectivity of genes to the module mean vector in
each module and to assign genes to the modules that are most highly
connected to them. Here, the mean vector μj of module j is defined
as in Eq. (1).

μj �
1

Cj

∣∣∣∣ ∣∣∣∣∑xϵCj
xi (1)

where xi is the expression profile of gene i,Cj is the set of all genes in
module j, and |Cj| denotes the number of genes in module j. We
calculate the distance dij � ‖xi − μj‖2 between the sample xi and
each mean vector μj(1≤ j≤ k). We count countj(j � 1, 2, . . . , k) of
other samples in the constraint set containing sample xi in each
clustering cluster. The distance dij � dij + countj between sample xi

and module j is adjusted according to the constraint. For each gene i
we set its module label to the label of the mean vector that minimizes
dij. We then recalculate the mean vector of genes in each module
and repeat the previous steps until no cluster assignment changes or
the preset maximum number of iterations is reached. Additionally,
tool KISL includes several additional functions designed to aid the
user in visualizing input data and results. These functions rely on
basic plotting functions provided in python and the R packages
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WGCNA (Langfelder and Horvath, 2008). The code of the KISL
algorithm are available online at https://github.com/Mowonhoo/
KISL.git.

2.2 Construction of the gene co-expression
network

Measuring the co-expression relationship between genes is a key
issue in the construction of gene co-expression networks. However,
commonly used correlation measures, including linear (e.g., Pearson
correlation) and monotonic (e.g., Spearman correlation)
dependence measures, are not sufficient to observe the nature of
real biological systems. Szekely et al. (Székely et al., 2007; Székely and
Rizzo, 2009) proposed distance correlation for both linear and non-
linear dependencies. Distance correlation reveals more about the
complex biological relationships between gene profiles than other
correlation metrics, which helps to provide more meaningful
modules in the analysis of gene co-expression networks.
However, the time complexity associated with computing the
distance is high and requires more computational resources (Hou
et al., 2022). However, for biological analysis we seek higher
reliability and completeness of information mining, therefore, in
this study, we use distance correlation to measure the relationship
between genes. To optimize the time spent by the algorithm, the

features can be optionally downscaled by using the principal
component analysis (PCA) method before calculating the
correlation coefficients between genes, and feature retention is
filtered by setting a threshold based on the PCA variance
interpretation rate.

The distance correlation coefficient can reveal an arbitrary
relationship between the variables. When the Pearson correlation
coefficient is 0, we cannot determine whether the two variables are
independent, but if the distance correlation coefficient is 0, then we
can conclude that the two variables are independent of each other
(Pearson and Galton, 1895; Székely et al., 2007; Székely and Rizzo,
2009). The distance correlation coefficient of two variables u and v is
denoted as d̂corr(u, v). When d̂corr(u, v) � 0, the two variables are
independent of each other. The larger d̂corr(u, v) is, the stronger the
correlation between u and v. Let the random sample of the overall
(u, v) be (u, v), i � 1, 2, . . . , n{ } and Szekely et al. (Székely et al.,
2007; Székely and Rizzo, 2009) defined the sample estimate of the
distance correlation coefficient between two random variables u and
v as Eq. 2.

d̂corr u, v( ) � d̂cov u, v( )�����������������
d̂cov u, u( )d̂cov v, v( )

√ (2)

where d̂cov2(u, v) � Ŝ1 + Ŝ2 − 2Ŝ3 , Ŝ1, Ŝ2 and Ŝ3 are shown in Eqs 3,
4, 5, respectively.

Ŝ1 � 1
n2

∑n

i�1∑n

j�1 ui − uj

���� ����du vi − vj
���� ����dv (3)

Ŝ2 � 1
n2

∑n

i�1∑n

j�1 ui − uj

���� ����du 1n2 ∑n

i�1∑n

j�1 vi − vj
���� ����dv (4)

Ŝ3 � 1
n3

∑n

i�1∑n

j�1∑n

l�1 ui − ul‖ ‖du vi − vl‖ ‖dv (5)

Similarly, d̂cov(u, u) and d̂cov(v, v) can be calculated.
The gene adjacency matrix is obtained by power-lawing the gene

correlation matrix with a “soft” threshold power, and then the TOM
of the adjacency network is calculated to construct the gene co-
expression network. The construction of gene co-expression
networks based on the TOM metric has been shown to have
better results than direct module identification based on the
adjacency graph (Langfelder et al., 2008).

We have kept the Pearson correlation coefficient for measuring
the interrelationship between genes among the optional parameters
of the functional function used to construct the co-expression
network in order to increase the applicability and scalability of
our algorithm and to meet the various needs of users. We have also
given the mutual information method (MI) as an optional
parameter, so that users can choose the parameters according to
their needs. A MI measures the entropy of gene interactions to
evaluate their relationship. In comparing linear and non-linear
methods for measuring gene dependence, Zhang et al. found that
the mutual information method combined linear and non-linear
interactions has some advantages over linear or non-linear methods
(Jiang and Zhang, 2022). Moreover, the MI between two variables is
symmetric, which means that MI-based methods infer undirected
interactions (Jia and Zhang, 2022). Additionally, we simulated and
generated 10 pairs of high-dimensional variables with different
dependencies, and then used them to measure the relationship
between these variable pairs in order to compare the

FIGURE 1
Overview of the algorithm. This flowchart briefly describes the
main. steps of the KISL algorithm.
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characteristics of distance correlation, mutual information, and
Pearson correlation coefficient to capture the complex relationship
between variables. Calculations are performed using Python packages
sklearn (Pedregosa et al., 2011), dcor (Ramos-Carreño and Torrecilla,
2022), and scipy (Virtanen et al., 2020). The supplementaryMaterial 6
(Supplementary Figure S1) contains the pertinent results.

2.3 Topological characteristics of GCN

Network topology analysis is an important tool for
understanding network characteristics at the system level.
Network centrality analysis and global network topology analysis
are two levels used to analyze the network from the system level. A
key concept in network analysis is node connectivity (centrality). A
central node (called a hub) is a node that is densely connected to
other nodes. Co-expression networks have global topological
properties of scale-free distributions, functional modular
networks, and small-world properties. For weighted networks,
Zhang and Horvath et al. (Zhang and Horvath, 2005) also
defined the corresponding connectivity, intramodule connectivity
metric and generalized scale-free topology for weighted networks.

1) Connectivity in weighted networks

The connectivity metric based on the weighted adjacency
network is defined as Eq. 6.

Wi � ∑n

j�1wij (6)
wherewij is the adjacency between two nodes i and j. Thus, if a node
has high adjacency with many other nodes, then it has high
connectivity Wi based on the weighted adjacency network.

A network connectivity metric is defined for a specific module’s
genes (intramodule connectivity). The intramodule connectivity
(unweighted network node connectivity also commonly referred
to as “degree”) of gene i within module q is calculated as in Eq. 7.

within(k(q)i ) � ∑
j
wij (j � 1, 2, . . . , n q( )) (7)

where n(q) denotes the number of genes within module q.

2) Module density

The dense connectivity property between genes within module q
can bemeasured by the average neighboring degree of module genes,
defined as the module density, as shown in Eq. 8.

Density A q( )( ) � ∑i∑j≠iw
q( )

ij

n q( ) n q( ) − 1( ) (8)

where A(q) denotes the n(q) × n(q) adjacency matrix corresponding
to the subnetwork formed by the genes of module q.

3) Generalized scale-free topology

The frequency distribution p(k) of node connectivity in a gene
neighborhood network follows the power law p(k) ~ k−γ. where k is the
node connectivity (Langfelder et al., 2008). The square of the correlation

between log10p(k) and log10k can be used to measure the degree to
which the network satisfies the scale-free topology, i.e., themodelfit index
R2 for a linear model regressing log10p(k) on log10k. If the R

2 value is
close to 1, there is a linear relationship between log10p(k) and log10k.

2.4 Construction methods for a priori
constraints

Thanks to the results of work in related fields of research it has been
possible to obtain many biological explanations of the relationships
between genes. The Gene Ontology (GO) database is one of the
common gene annotation systems used in bioinformatics research,
and it defines a structured standard biological model that allows the
description of gene and protein functions in various organisms in terms
of cellular components, biological processes and molecular functions.

The enrichment analysis enables the annotation and
classification of genes to obtain a subset of genes grouped
according to different gene functions, and the annotated results
can be transformed to constitute a priori constraints for module
identification algorithms to improve the modular biological
interpretation of functional module identification of co-
expression networks. We introduced factor analysis (Swisher
et al., 2004; Ferrando, 2021), a statistical method for extracting
common factors from groups of variables, to construct intergenic
correlation constraints. The British psychologist C.E. Spearman first
proposed it. Factor analysis can identify the common influences
embedded in multiple variables. By grouping variables of the same
nature into a common factor, the number of variables can be
reduced. as shown in Eq. 9 below.

X1 � a11F1 + a12F2 + . . . + a1mFm + ϵ1
X2 � a21F1 + a22F2 + . . . + a2mFm + ϵ2

/
XP � ap1F1 + ap2F2 + . . . + apmFm + ϵp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)

where F denotes the common factor,X denotes the original variable,
and ϵ denotes the part of the original variable that cannot be
represented by the common factor. The number of original
variables is generally satisfied as greater than or equal to the
number of factors (i.e., m≤p). The factors F are independent of
each other and have a variance of 1. The correlation between the
common factor and ϵ is 0 and the correlation between ϵ is 0.

Before performing factor analysis, the Kaiser-Meyer-Olkin test
(KMO test) and Bartlett’s test of sphericity were performed on the
features to determine whether the gene expression profile was
suitable for factor analysis. Then, by calculating the eigenvalues
of the gene correlation matrix and ranking them, the common
factors with eigenvalues greater than 1 were extracted according to
Kaiser’s principle, and the cumulative total variance contribution
rate was ensured to be greater than 0.85 according to the variance
contribution rate accumulation principle. This process ensures that
the extracted common factors cover enough information contained
in the original gene expression profile and better replace the original
gene characteristics. The factor loading coefficients are then derived
and transformed by orthogonal rotation of the loading coefficients
to obtain the factor loading matrix and then to analyze the
characteristics of the factor coefficients for each gene. The factor
loading coefficient matrix is then binarized to filter out the subset of
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genes that depend on a certain common factor in the same pathway,
and these genes are only highest correlated with this main factor.
The constrained gene set is obtained by performing factor analysis
on all GO terms enriched in the gene expression profile and then by
merging the subsets with common overlapping genes.

2.5 Clustering evaluation metrics

The silhouette coefficient (RousseeuwSilhouettes, 1987), the
Calinski-Harabasz index (Caliński and Harabasz, 1974) and the
Davies-Bouldin index (Davies and Bouldin, 1979) are common and
valid internal measures to evaluate the validity of clustering. The
silhouette coefficient is a measure of how similar an observation is to
its own cluster compared to other clusters, and it takes values
from −1 to 1. A value of 1 indicates that the clusters are far from
each other and clearly distinguished, a value of 0 indicates that the
distance between clusters is non-significant, and a value
of −1 indicates that the clusters are incorrectly assigned. The
Calinski-Harabasz index is also known as the variance ratio
criterion. For cluster q, the Calinski-Harabasz index is given by
the ratio of the between-cluster dispersion mean to the within-
cluster dispersion, and a higher Calinski-Harabaz index indicates
better clustering. The physical meaning of the Davies-Bouldin index
is the ratio of the sum of the mean sample distance (i.e., intracluster
sample distance) of each cluster to the distance between the
centroids of the two clusters (i.e., intercluster sample distance);
given two clusters, the smaller the value is, the better.

2.6 Gene function annotation tools

The database for annotation, visualization and integrated
discovery (DAVID) provides researchers with a comprehensive
set of functional annotation tools to understand the biological
significance behind large lists of genes (Huang et al., 2009).
DAVID integrates biological data and analysis tools to provide
systematic, integrated biofunctional annotation information for
large-scale gene and protein lists to help users extract biological
information. Here, we used the rich scores from the DAVID
functional annotation clustering tool—the geometric mean
(logarithmic scale) of the p values of the members of the
corresponding annotation clusters for ranking their biological
significance. The clusterProfiler R package was used to obtain the
Gene Ontology terms of all differentially expressed genes (Yu et al.,
2012).

2.7 Datasets

The tumor sample dataset used in this experiment was
obtained from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) database, including BLCA (bladder
urothelial carcinoma), BRCA (breast invasive carcinoma),
COAD (colon adenocarcinoma), KIRC (kidney renal clear cell
carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma), PAAD (pancreatic
adenocarcinoma) and STAD (stomach adenocarcinoma) RNA-

Seq data for eight tumors, and normal samples for each tumor
were obtained from the Genotype-Tissue Expression (GTEx)
database. The GTEx project aims to establish a repository of
samples and data for studying the relationships between genetic
variants, gene expression and other molecular phenotypes in a
wide range of human tissues (GTEx Consortium, 2013; GTEx
Consortium, 2015). First, the eight cancer datasets obtained from
TCGA and GTEx databases were analyzed for differences by
using the R package DESeq2 (Gentleman et al., 2004; Love et al.,
2014). We set the screening criteria for differential genes as
padj< 0.05, |log2FoldChange|> 1, followed by variance filtering
to screen out genes with variance less than or equal to 0,
i.e., consistent expression activity on all samples. The selection
of features is then done using the mutual information method.
The sample type is the phenotype (clinical trait) that we employ
for gene screening. After feature selection filtering, the final
retained samples and gene counts are provided in
Supplementary Material 1 (Supplementary Table S1). Source
codes for the KISL and the related scripts are available online
at https://github.com/Mowonhoo/KISL.git. The datasets from
Gene expression RNA-seq were performed using TCGA:
https://www.cancer.gov/tcga.

3 Results and DISCUSSION

3.1 Effect of distance correlation on various
datasets

(Székely and Rizzo, 2009) verified that the value of the
distance correlation is always smaller than the absolute value
of the Pearson correlation for bivariate normal data. Therefore,
if the distance correlation coefficient between two random
variables is greater than the Pearson correlation coefficient
then a complex relationship exists between them - non-binary
normal data and non-linear nonmonotonic relationship. In general,
correlation values greater than 0.8 are described as strong correlation,
while values less than 0.5 are described as weak correlation
(Castro Sotos et al., 2009). To measure the proportion of
complex relationships in the dataset, we selected gene pairs
with distance correlation coefficients greater than 0.5 from
eight datasets. Next, we analyzed the distribution of Pearson
correlation coefficients for the retained gene pairs. In the PAAD
dataset, 70.88% of the gene pairs had Pearson correlation
coefficients less than 0.5 (Figure 2G). In addition, the ratios
in the LUSC dataset (Figure 2F), LUAD dataset (Figure 2E) and
STAD dataset (Figure 2H) were 66.37%, 61.04% and 50.62%,
respectively, as shown in Supplementary Material 2
(Supplementary Table S2). Both our algorithm and the
standard WGCNA method use a ‘soft’ threshold power in the
construction of the GCN, which amplifies the difference between
strong and weak correlations. When using Pearson correlation
coefficients, gene pairs with complex relationships have small
correlation coefficient values, and the presence of the soft
threshold further leads to a smaller weight of the two genes
and increases the error, making the clustering results inaccurate.

It has been reported that biological networks show scale-free
topology (STF) (Langfelder and Horvath, 2008; Barabási et al.,
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2011). It is important in SFT networks to identify the dominant
hub nodes because they usually have significant influence on the
network. In the case of biological networks it may mean that the
genes, proteins or metabolites represented by these nodes are
biologically important (Albert, 2005; Andrecut et al., 2008;
Nafis et al., 2015; Atiia et al., 2020). Therefore, we
investigate the SFT of the two correlation coefficients for the
eight datasets. The closer the SFT fit index is to 1, the better. In
Figure 3 the left panel shows the histogram of network
connectivity and the right panel shows the logarithmic plot
of the corresponding histogram. The approximate linear
relationship (high R2 values) indicates the approximate scale-
free topology. We find that for eight datasets, both Pearson
correlation coefficients and distance correlation coefficients
achieve SFT when a suitable “soft” threshold power is chosen
to define the adjacency matrix, and in five of them (Figures
3A–E), distance correlation shows an advantage in the scale-
free fit index.

3.2 Constructing clustering constraints

The KMO test and Bartlett’s test of Sphericity were used to
determine whether a gene expression profile was suitable for factor
analysis before all GO terms enriched in the gene expression profile
were subjected to factor analysis. In this paper, the number of
contained genes is greater than 5, the threshold value set by KMO
test is greater than 0.6, and the p-value of Bartlett’s test of
sphericity is set to less than 0.05 (p-value is less than the
significance level value of 0.05, indicating a high correlation
between genes in the expression profile data) of GO term for
factor analysis to construct constrained gene sets. From Figure 4,
we can see that the percentage of GO terms enriched in each gene
expression profile data that were evaluated to be suitable for factor
analysis ranged from approximately 40%–72%, which indicates
that we can effectively extract a priori biological knowledge by
introducing factor analysis methods. The factor loading matrix is
binarized by setting an appropriate factor screening threshold (we

FIGURE 2
Histogram of correlation coefficients for interactions with high distance correlation scores (>0.5). The bright blue borders in each panel represents
the Pearson correlations, and the dark blue borders represents the distance correlations. When using the criterion that the Pearson correlation coefficient
must be greater than 0.5, more than 50% of the complex correlated data information on four of the datasets (Figures 2E–H) would be lost.
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set the threshold to 0.2, then each gene factor coefficient greater
than 0.2 is set to 1, and less than that is set to 0). Finally, the set of
constrained genes that significantly depend on a single common
factor in the same pathway is obtained from the binarized factor
loading matrix. All subsets of genes in all GO terms that depend on
a single principal factor are filtered out, and the subsets with
common overlapping genes are merged to obtain the constrained
gene set. According to the clustering constraint construction
process described above, the final constrained gene sets based
on a priori biological knowledge are obtained on each dataset, and

the constrained gene sets are summarized as shown in
(Supplementary Table S3).

3.3 Evaluation based on internal metrics of
clustering algorithms

In this section, we use the silhouette coefficient, the Calinski-
Harabasz index and the Davies-Bouldin index to evaluate the quality
of the WGCNA and KISL clustering results. As shown in Figure 5, the

FIGURE 3
shows the scale-free topological properties of the co-expression network. The left panel shows the histogram of the network connectivity, and the
right panel shows the logarithmic plot of the corresponding histogram. The approximate linear relationship (high R̂2 values) represents the approximate
scale-free topology. The scale-free topology is at least approximately satisfied when a suitable “soft” threshold is chosen to define the adjacency matrix
for the eight selected real datasets.
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KISL algorithm obtained the highest silhouette coefficient and Calinski-
Harabasz index evaluation values in all eight datasets, while obtaining
the lowest Davies-Bouldin index evaluation value. Taking the silhouette
coefficient evaluation metric as an example, three of the datasets,
COAD, LUAD, and LUSC, obtained a boost of more than 0.3 on
the dataset, and two datasets, BRCA and STAD, obtained a boost of
more than 0.15 with the smallest evaluation value on the BLCA dataset
but also slightly improved. It is also important to note that the silhouette
coefficient value obtained by the base method is negative onmost of the
datasets, especially on the LUAD dataset, where it is the worst and even
reaches−0.17, whichmeans thatmany sample points are assigned to the
wrong cluster. Our algorithm also obtained the best evaluation values
for both the Calinski-Harabasz index and Davies-Bouldin index
evaluation metrics. The clusters obtained by KISL have better
clustering evaluation values and better aggregation of the obtained
gene modules. The details of the three evaluation values of the clusters
are shown in (Supplementary Table S4). In Figure 6, we plot the results

of the silhouette coefficient analysis for the KISL algorithm (the left side)
and the Pearson-based WGCNA (the right side) corresponding to the
eight datasets. The closer the silhouette coefficient to 1, the better the
clustering result. The evaluation value obtained by the KISL algorithm
was the highest in all the datasets.

3.4 Analysis of the nature of the recognition
module

The module significance measure was defined as the average
gene significance of all genes in the module. We used absolute
values to define the relevance-based gene module significance
metric. The results of the significance of each module identified
on the eight datasets are shown in Figure 7. We use a gene module
significance of 0.4 (the red dashed line) as the threshold, and we
find that our algorithm obtains more high gene significance

FIGURE 4
KMO and Bartlett’s test. The blue bars below the figure indicate the proportion of gene expression profiles of GO Term suitable for factor analysis
after the KMO test and Bartlett‘s test of sphericity.

FIGURE 5
Silhouette coefficient, Calinski‒Harabasz score and Davies‒Bouldin index for theWGCNA and KISL algorithms. The evaluation value obtained by the
KISL algorithm was the best in all the datasets.
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modules on five of the datasets BLCA, BRCA, KIRC, LUAD, and
STAD (Figures 7A, B, D, E, H), while on the other three datasets
our method obtains the same number of high significance modules
as the base method.

A network connectivity metric is defined for module-specific
genes (intramodule connectivity). The intramodular connectivity of

genes within a module is calculated, and the dense connectivity
property between genes within a module is measured by the average
adjacency of the module genes, defined as the module density.
Figure 8 shows the comparison between the density of each
module obtained by the KISL algorithm and the base method,
where a larger average module density is obtained on seven of

FIGURE 6
Silhouette coefficient analysis for the WGCNA and KISL algorithms. The left panel shows the results of silhouette coefficient analysis of the clusters
obtained by the KISL. The right panel shows the results obtained by the basemethodWGCNA on the corresponding dataset. The evaluation value (the red
dashed line) obtained by the KISL algorithm was the highest in all the datasets. In each panel, the left part represents the silhouette coefficient value of
each sample, the y-axis represents the sample sequence, and the x-axis represents the silhouette coefficient size. UMAP visualization results are
displayed on the right side of each panel.
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the datasets and a larger number of modules with greater density are
possessed. In addition, the top 3 modules with the highest module
density on all eight datasets are found by our algorithm.

3.5 Comparison of module gene enrichment
analysis

Co-expressed genes often act synergistically and participate in the
same biological processes (van Dam et al., 2012). Therefore, algorithms
that identify modules that are highly enriched for specific gene classes
are more reasonable (Rau et al., 2013). To compare the average
enrichment scores and stability of the algorithms, we use the
recommended parameters of the WGCNA package for module
identification, and to keep the number of modules identified by the
two algorithms equal, the number ofmodules obtained by theWGCNA
method is used to initialize the K values of our algorithms.

In the current analysis, we obtained the enrichment scores of each
cluster in the functional annotation clustering of DAVID. The higher the
enrichment score, the lower the p-value and therefore the more
significant the enrichment. The module enrichment score is an
important indicator to evaluate the rationality of a module. We
discuss the average enrichment scores of modules from gene co-
expression networks constructed by two different algorithms to
measure the degree of enrichment of co-expression networks. As
shown in Table 1, the modules from KISL have higher DAVID
average enrichment scores in the six data sets, indicating that the

division of their modules is more reasonable. Higher DAVID
enrichment scores for each module can be viewed in (Supplementary
Table S5), where the modules identified by KISL have the highest top
3 enrichment scores in the five datasets, and the top 3modules have one
or two enrichment scores in the other three datasets.

To verify whether the identification modules obtained by KISL
are biologically meaningful, the highly enriched (Top 5) biological
process (BP) terms of the network modules in GO terms were
summarized for the LUSC sample, as shown in Table 2. Overall, the
enrichment of GO terms shows the biological significance of the
modules obtained by KISL.

4 Conclusion

Co-expression analysis is useful for exploring patterns of gene
networks, identifying gene functional modules, and mining cancer-
associated markers at the system level. By using the enriched
information of the current sample as a constraint, we aim to perform
semi-supervised clustering. Other clustering methods only take into
account the algorithm parameters, not the sample itself. Therefore, we
propose the KISL method to try to improve these methods. KISL
algorithm measures linear and non-linear dependencies between
genes by using distance correlation, which is appropriate for the
complexity of the relationship between genes. In cases where outliers
significantly influence the correlation coefficient value, distance
correlation is a better alternative because it is distribution-free and

FIGURE 7
Module significance metric. The gene module significance threshold is set to 0.4 (the red dashed line), and our algorithm obtains more high gene
significance modules on five of the datasets, BLCA, BRCA, KIRC, LUAD and STAD (Figures 7A,B,D,E,H), while on the other three datasets our method
obtains the same number of high significance modules as the base method.
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FIGURE 8
Module density. The brown bar plot indicates the module density obtained by the KISL algorithm on each dataset, and the blue bar plot indicates the
results of the widely used method WGCNA. Our method obtains a larger average module density on seven of the datasets and has a larger number of
modules with a larger density. In addition, the top 3 modules with the highest module density on all eight datasets are obtained by our algorithm.

TABLE 1 Average DAVID enrichment score for each dataset.

BLCA BRCA COAD KIRC LUAD LUSC STAD PAAD

WGCNA 5.20 9.53 3.88 4.29 6.25 2.82 3.64 5.98

KISL 6.11 8.44 4.12 5.64 7.36 6.55 4.63 5.58

The bold words in Table 1 indicate the maximum value of the column, and the KISL algorithm obtains the maximum value on most data sets.

TABLE 2 GOTERM BP on LUSC dataset.

Module GOTERM BP

module0 O-glycan processing; innate immune response in mucosa; antibacterial humoral response; antimicrobial humoral immune response mediated by
antimicrobial peptide; protein O-linked glycosylation

module1 DNA replication; DNA unwinding involved in DNA replication; spliceosomal snRNP assembly; mitochondrial translation; DNA-dependent DNA
replication

module2 epithelial cell differentiation; epidermis development; intermediate filament organization; immunoglobulin production; keratinization

module3 cilium movement; flagellated sperm motility; microtubule-based movement; cilium assembly; outer dynein arm assembly

module4 cell division; chromosome segregation; mitotic spindle assembly checkpoint; mitotic cell cycle; mitotic spindle organization

module5 immunoglobulin production; immune response; positive regulation of B-cell activation; phagocytosis, recognition; phagocytosis, engulfment

module6 signal transduction; vasculogenesis; angiogenesis; positive regulation of angiogenesis; cell adhesion
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better suited to complex relationships. Moreover, using biological
knowledge based on GO terms to construct clustering constraints, a
semi-supervised method is used to identify network modules, which can
more effectively partition the network.

After comparing the silhouette coefficient, the Calinski-Harabasz
index and the Davies-Bouldin index evaluation metric values of the
modules identified by KISL with the widely used WGCNA, our
algorithm obtained the best performance on eight real-world
cancer sample datasets. The clustering produced by the method in
this paper has a better clustering evaluation value, and the obtained
gene modules have better aggregation. Based on enrichment analysis,
the identified modules were effective in discovering modular
structures in biological co-expression networks. The KISL method
is a general method for analyzing biological co-expression networks
based on similarity metrics.

In addition, we plan to incorporate more useful biological
knowledge in the future, such as protein‒protein interaction
networks and gene regulatory networks, which could allow us to
better identify co-expressed gene modules. Genomics and
transcriptomics are increasingly being applied to aid in clinical
diagnosis and prognosis; thus, in addition to discussing module
identification in co-expression network analysis, it is also important
to develop effective methods for comparative network analysis. As
part of our future research, we plan to explore how co-expression
networks can be compared. It is our future goal to examine
comparative methods of co-expression networks.
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CNVs in 8q24.3 do not influence
gene co-expression in breast
cancer subtypes
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and Jesús Espinal-Enríquez1,2*
1Computational Genomics Division, National Institute of GenomicMedicine, México City, Mexico, 2Center
for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico

Gene co-expression networks are a useful tool in the study of interactions that
have allowed the visualization and quantification of diverse phenomena, including
the loss of co-expression over long distances in cancerous samples. This
characteristic, which could be considered fundamental to cancer, has been
widely reported in various types of tumors. Since copy number variations
(CNVs) have previously been identified as causing multiple genetic diseases,
and gene expression is linked to them, they have often been mentioned as a
probable cause of loss of co-expression in cancerous networks. In order to carry
out a comparative study of the validity of this statement, we took 477 protein-
coding genes from chromosome 8, and the CNVs of 101 genes, also protein-
coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the
appearance of breast cancer. We created CNVS-conditioned co-expression
networks of each of the 101 genes in the 8q24.3 region using conditional
mutual information. The study was carried out using the four molecular
subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a
case corresponding to healthy samples. We observed that in all cancer cases, the
measurement of the Kolmogorov-Smirnov statistic shows that there are no
significant differences between one and other values of the CNVs for any case.
Furthermore, the co-expression interactions are stronger in all cancer subtypes
than in the control networks. However, the control network presents a
homogeneously distributed set of co-expression interactions, while for cancer
networks, the highest interactions are more confined to specific cytobands, in
particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite
copy number alterations in the 8q24 region being a common trait in breast cancer,
the loss of long-distance co-expression in breast cancer is not determined
by CNVs.

KEYWORDS

gene co-expression networks, breast cancer subtypes, copy number variations,
conditional mutual information, luminal breast cancer, HER2+ breast cancer, basal
breast cancer

Introduction

Regulation of gene expression involves several processes by which the information
contained in the genome is transformed into proteins. These processes within eukaryotic cell
include signaling, chromatin remodeling, covalent histone modification, and transcription
initiation, among others. Impairing of those processes are fundamental for the development
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of cancer, promoting tumor growth, cell proliferation, angiogenesis,
or evasion of the immune response (Bian et al., 2022).

According to the World Health Organization, in 2020 around
685,000 people died from breast cancer (World Health
Organization, 2020). It is the fifth cause of death from cancer.
However, it is the first place in new diagnoses, with 2.26million. This
apparent contradiction between cases of death and those detected
for breast cancer is largely explained by early detection (more than
90% of breast tumors are detected without metastases) and the
relative good knowledge of the disease. Although breast cancer
patients have a survival rate greater than 80% 5 years after
diagnosis, this depends on the subtype.

The most commonly used classification system for breast cancer
is the PAM50 gene expression signature, which divides breast cancer
into four main subtypes: Luminal A, Luminal B, HER2+ and Basal-
like subtypes Perou et al. (2000). The molecular classification of
breast cancer arises from advances in genomic sequencing, taking
into account the gene expression signature of 50 genes relevant for
the disease. This classification has allowed a better evaluation,
diagnosis and treatment of breast cancer.

The luminal A subtype is the most diagnosed breast cancer
(between 40% and 50% of all cases) and is also the one with the best
prognosis, with hormone receptor suppressors being a good therapy.
The luminal B subtype is less common (between 20% and 30% of
cases) but more aggressive, although with a good response to
chemotherapy. About 15% of breast cancers have an
overexpression of the Her2 gene and this makes them
particularly aggressive. The worst prognosis is for patients with
triple-negative cancer, which represent about 15% of diagnosed
cases Tsang and Tse (2020).

Copy number variations (CNVs), refer to genomic changes that
involve deletions or duplications of large DNA segments ranging in
size from 1 KB to several megabases. Typically, a person has two
copies of each gene inherited from their parents, but there are
naturally occurring variations to this number. These genetic variants
can include deletions, duplications, or insertions in the paternal or
maternal chromosomes, or both, and are present in healthy
individuals. In a more standardized definition, CNVs are
stretches of DNA larger than 1 kb that display copy number
differences in the normal or reference population (Scherer et al.,
2007).

In cancer, CNVs can have a significant impact on gene
expression and contribute to the development and progression of
the disease, for instance, in oncogene amplification (Gajria and
Chandarlapaty, 2011; Swain et al., 2023), tumor suppression gene
deletion (Ried et al., 2019; Gupta et al., 2021), genomic instability
(Duijf et al., 2019; Kalimutho et al., 2019; Neuse et al., 2020), or even
drug resistance (Lim and Ma, 2019; Pös et al., 2021).

The 8q24 genomic region is a specific location on the long (q)
arm of human chromosome 8. Amplifications and deletions of this
region are involved in the development of certain types of cancer,
such as prostate (Gu et al., 2020; Wilson and Kanhere, 2021), colon
(Killian et al., 2006; Anauate et al., 2019; Nait Slimane et al., 2020), or
bladder cancer (Kiltie, 2010). Research has identified several genetic
variations within the 8q24 region that are associated with an
increased risk of developing these cancers. In particular, the
8q24.3 region has previously been identified as one with
significant activity in various types of cancer (Mahmood et al.,

2014; Brusselaers et al., 2019; Ambele et al., 2020; Zheng et al., 2021),
including breast cancer (Dorantes-Gilardi et al., 2021).

To analyze next-generation sequence data, contemporary
biology often uses correlation networks to integrate the multiple
sources of data. One of the most commonly implemented tools are
the Gene co-expression networks (GCNs). GCNs are mathematical
constructions based on the patterns of statistical correlation between
genes across different phenotypes. These networks can help identify
functionally related genes and pathways and provide insights into
the underlying mechanisms of complex biological processes, such as
cancer.

Previous studies found that the gene co-expression networks of
cancerous samples differ significantly from those of healthy samples
(Rai et al., 2017; Dorantes-Gilardi et al., 2021; Dorantes-Gilardi et al.,
2020). In adjacent-to-tumor breast tissue, gene co-expression networks
show a higher connection between genes from different chromosome,
indicating coordination and cooperation between genes. However, this
co-expression is dramatically lost in cancer GCNs, both when all
subtypes are analyzed together (Espinal-Enríquez et al., 2017) and
for subtype-specific GCNs (Alcalá-Corona et al., 2017; García-Cortés
et al., 2020; González-Espinoza et al., 2021). The genes in cancerous
samples tend to co-express mainly with their nearest neighbors and lose
co-expression relations with medium and long distance genes. This
phenomenon has been observed in lung cancer (Andonegui-Elguera
et al., 2021), clear cell renal carcinoma (Zamora-Fuentes et al., 2020;
Zamora-Fuentes et al., 2022), as well as other thirteen types of cancer
(Garcia-Cortes et al., 2022).

The cause of the loss of co-expression in cancerous sample
networks is still unknown. However, a general alteration in the
transcriptional regulatory program could be underlying this effect.
Therefore, assessing the influence that CNVs may exert on gene co-
expression networks results appealing. In a previous work
(Hernández-Gómez et al., 2022), we demonstrated that in
Luminal B breast cancer molecular subtype, the copy number
alterations of chromosome 8 influences marginally the gene co-
expression landscape. Notwithstanding, the intrinsic heterogeneity
of breast cancer molecular subtype could be differentially affected by
CNVs, and concomitantly, the associated co-expression network.

Taking into account the previous studies that found differences
in gene co-expression networks between cancerous and healthy
samples, in this work, we proposed to analyze the influence of
CNVs of the 8q24.3 region in the gene co-expression networks for
each breast cancer molecular subtype. We analyzed the topological
influence, the association of CNVs with network hubs, and the role
of such hubs in a subtype-specific fashion.

Materials and methods

Cancer and healthy samples were obtained from The Cancer
Genome Atlas Consortium (TCGA) and preprocessed according to
(Espinal-Enríquez et al., 2017). All samples were classified according
to (Dorantes-Gilardi et al., 2021), resulting in 210 samples for
Luminal A, 189 samples for Luminal B, 101 samples for HER2+,
215 samples for Basal, and 113 samples for normal adjacent-to-
tumor tissues. The expression of 477 genes coding for proteins on
chromosome 8 and the CNVs of 101 genes in the 8q24.3 region were
analyzed for each sample.
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We used the copy number alteration observed in chromosome
8 for the five phenotypes. A total of 101 CNVs were obtained using
ascat data. For each of these CNV values, we constructed a CNV-
specific gene co-expression network. To infer the conditional mutual
information (CMI) for all phenotypes, we calculated as in
(Hernández-Gómez et al., 2022), taking into account the co-
expression between genes depending on the CNV values of
chromosome 8 to observe the effect of variations in copy number
on the co-expression of the entire genome. In this way, we obtained
one network per CNV value, each of which can be considered a layer
of a multi-CNVs co-expression network.

CMI calculations are thus the core of our analytic approach. In
brief, CMI reflects the degree to which a random variable (here, the
expression level gi of a given gene i) is statistically dependent on another
random variable (the expression level gj of gene j) given a third random
variable (the copy number landscape in the given genomic region k,
CNVk) potentially affecting the relationship between gi and gj.

CMI(gi, gj|CNVk) thus reflects the amount of information we
have about the expression of gene i given our knowledge of the
expression of gene j in the presence of copy number alterations in
the region k. For the present case, CMI(gi, gj|CNVk) answers the
following question: is the copy number landscape in the regions
changing the way two genes are locally co-expressed or not?

To provide a statistically meaningful response to this question, it is
necessary, nor only to provide systematic calculations of CMI(gi, gj|
CNVk) for all the considered genes i and j and all the regions k, but also to
perform rigorous hypothesis testing. To do this, we have resorted to the

quite general and non-parametric, Kolmogorov-Smirnov test; since no
assumptions need to be made in the nature of the probability
distributions for gene expression nor copy number variants.

Hence, after constructing the networks, we calculated the
Kolmogorov-Smirnov statistic to quantify differences between
CMI layers. Once the CMI networks were constructed, we
compared the number of intra-cytoband, inter-cytoband, and
inter-arm cis-gene pairs for all chromosomes in the five
phenotypes. We also evaluated the variations of these numbers
depending on the CMI cutoff values and observed whether the
intra-cytoband, inter-cytoband, and inter-arm numbers changed in
accordance with the cutoff values.

Finally, we analyzed the most relevant genes in terms of their
topological properties. We identified those genes that are both relevant
for the structure and relevant for the proper function of a given phenotype.

Conditional mutual information

Mutual information I(X; Y) is a measure of the mutual
dependence between two random variables. It quantifies the
amount of information that one random variable contains about
the other. In other words, it measures the amount of reduction in
uncertainty about one random variable given knowledge of the other
random variable. Conditional mutual information, I(X; Y|Z), is the
value of the mutual information between two random variables X
and Y given (i.e., conditional to) the value of a third random value Z.

FIGURE 1
CMI comparison between control network and the four breast cancer subtypes. The abrupt cut in the left tail is due to the fact that we take, for each
analysis, a pre-specified number of links, always stayingwith those that have the highest conditional mutual information values. In the distributions shown
here, the cut selects only the first 3,500 links.
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Conditional mutual information measures the amount of reduction
in uncertainty about one random variable given knowledge of the
other random variable, but only in the context of a specific value of
the third random variable.

I X;Y|Z( ) � ∑
z∈z

∑
y∈Y

∑
x∈X

p x, y, z( )log pz z( )p x, y, z( )
px,z x, z( )py,z y, z( )( ) (1)

Where p(x, y, z) is the joint probability of X, Y and Z, p(x, y) is the
joint probability of X and Y and so on. It is worth noticing that
conditional mutual information can only provide information
about the dependence between the random variables, and
cannot provide information about the causality between them.

Conditional mutual information calculations in this work were
made with the infotheo library of the R programming language
(Meyer and Meyer, 2009).

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test is a statistical test used to
determine whether a sample of data comes from a known
distribution. It is a non-parametric test, meaning that it makes
no assumptions about the form of the distribution of the data. The
test compares the empirical cumulative distribution function of the

FIGURE 2
The heat maps show the values of the D statistic between the different distributions of the CMI values for the four molecular subtypes analyzed.
5,050 comparisons were made in all cases. The lowest values of D were obtained for the Luminal A subtype while the highest occurred in the
Her2 subtype.
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sample data to the cumulative distribution function of the known
distribution, and quantifies the (maximal) difference between the
two. If the difference is large enough, the null hypothesis that the
sample data comes from the known distribution is rejected.

The KS test hence compares the cumulative distributions F1 and
F2 of two probability functions f1 and f1 by quantifying the K-S
statistic, defined as

Dn,m � supx|F1,n x( ) − F2,m x( )| (2)
The null hypothesis is rejected (at significance level α),

whenever:

Dn,m > c α( )
�����
n +m

n ·m
√

(3)

where c(α) �
��������
−ln(α2) · 12

√
In the present context the KS test is appropriate since the sample

sizes are sufficiently large and the CMI distributions can be safely
assumed to be continuous. All tests were done using the ks.test
library of the R programming language.

Results and discussion

Here we report the main results of analyzing the conditional
mutual information distributions associating the pairwise co-
expression of genes conditional on the copy number landscape of
the respective regions. These are data-based probabilistic tools to
assess to what extent gene co-expression is affected by the
underlying CNV structure in the same samples.

Copy number alterations in 8q24.3 do not
influence gene co-expression in breast
cancer

Each of the 101 genes of the 8q24.3 region for which the CNVs
were used as the conditional variable in Eq. 1 producing
101 different distributions of CMI values, whose typical profile
can be seen in Figure 1. Since the distributions suggest that the
differences between them are minimal for all subtypes, we

FIGURE 3
Top interactions of the five CMI networks at different cut-offs (100, 500, 1,000, and 1,500 edges). At first, intra-cytoband interactions dominate,
mainly in q24.3, p21.3, p11.21 and p11.23; afterwards, inter-cytoband interactions (particularly in p-arm) grow, and finally, inter-arm edges arise. Red arcs
at the external circle represents the centromere of Chr8. It can be clearly appreciated that for the normal tissue network, the distribution of interactions is
remarkably more homogeneous than any cancer network, where interactions are preferentially located to neighboring regions. Circos plots were
made with the R programming language package circlize (Cui et al., 2016).
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performed the K-S test in each case. For each subtype we take each of
the 101 distributions and compare them with the remaining 100;
sinceDn,m =Dm,n, we have 101 × 100/2 = 5,050 comparisons for each
subtype. This is, we tested the null hypothesis that the distributions
of CMI values are the same for each layer.

The values obtained are shown in Figure 2 where it can be seen
that the maximum values of the D statistic for any subtype are low,
the larger values are for the Her2 subtype and are approximately
equal to 0.05, and the minima correspond to Luminal A, with values
of around 0.008. Based on these values, we conclude that CNVs
within the 8q24.3 region do not significantly affect the expression of
genes located on chromosome 8.

It is worth noting that there is no significant variation between
conditional layers for any of the phenotypes analyzed here. With
this, we show that copy number alterations are not a significant
factor altering the gene co-expression landscape in breast cancer or
in healthy tissue in this region of chromosome 8.

Copy number variation is indeed one of several aspects that can
influence (either individually or on a cooperative fashion) gene
expression and co-expression patterns. Since we have been studying
local gene co-expression phenomena and intuitively, one expects
that the influence of CNVs on gene expression will also be
predominantly local, we decided to perform a comprehensive
analysis looking at all the pairwise co-expression relationships
within chromosome 8, conditional on the full CNV variant
landscape of the 8q24.3 region.

Intra-chromosomal co-expression analysis

Intra-chromosomal gene co-expression refers to the simultaneous
expression of genes that are located on the same chromosome. This
means that they are physically close in the DNA sequence.

Intra-chromosomal gene co-expression can occur for different
reasons. For example, genes that are physically close to one another

on a chromosome may be regulated by the same regulatory
elements, such as enhancers or promoters. This can lead to the
coordinated expression of these genes.

The following results aim to present a broader view of this
phenomenon in the context of breast cancer molecular subtypes.

The networks shown in Figure 3 were constructed using the first
distribution and are representative of the behavior of all conditional
layers. There, circos plots of gene co-expression interactions in
chromosome 8 for the top-100, 500, 1,000 and 1,500 highest
CMI values are depicted for all phenotypes.

We can notice that Figure 3 is better understood when compared to
Figure 4, which shows the cumulative growth of intra-cytoband and
inter-arm links. By observing the growth line corresponding to the
network of healthy samples as a reference, it can be seen how each
subtype differs from the healthy reference network in terms of the
growth of intra-cytoband and inter-arm interactions. Firstly, there is a
lineal growth of intra-cytoband and inter-arm interactions in the
healthy case, which is not the case of any breast cancer subtype.
Additionally, all subtypes behave similarly in both panels, but with
small differences. In Figure 4A, all breast cancer co-expression networks
have a fast growth of intra-cytoband links, which is inversely
proportional to the slow increase in the inter-arm edges.

In (García-Cortés et al., 2020) we demonstrated that the loss of
inter-chromosomal interactions in breast cancer is evident in all
phenotypes. Furthermore, the intensity of this loss is in agreement
with the malignancy of the subtype: the most remarkable difference
with respect to the healthy tissue network was observed in the Basal
subtype, followed by HER2, then Luminal B, and finally, the most
similar behavior to the control phenotype was observed in
Luminal A.

Despite the Basal subtype being the most aggressive and the one
with the worst prognosis, in the particular case of Chr8 intra-
chromosomal edges, the most different behavior compared with
the healthy case is observed in the Luminal B network (red lines in
Figure 4).

FIGURE 4
The distribution of the links in three categories is shown. (A) Intra cytoband. Co-expression with nearest neighbors is something that genes do in
both healthy and cancerous phenotypes, although this tendency ismarkedly greater in the latter case. (B) Inter arm. In this category the behavior between
the healthy phenotype and the cancerous ones is verymarked, indeed Luminal B and Basal cases overlap throughout almost the entire range. It should be
noted that the order of appearance of the links is determined by the magnitude of the CMI.
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In Figure 4 the total number of links ranges from 1 to (the top)
10,000, which gives a good sample of the behavior we want to
illustrate. Intra-cytoband links grow a lot in the first few hundred
larger CMI values in cancers but then they tend to saturate (see
change of curvature in the plots). Eventually, all possible links will be
formed and the curves will reach their maximum value. Finally, all
link saturation lines are well above/below (panels A and B in
Figure 4, respectively) the behavior of the healthy phenotype,
thus showing the deficit of links at long distances as previously
reported.

Another relevant aspect that we noticed in the cancer chr8 gene
co-expression networks is the location of highest co-expression

values. This can be appreciated in Figure 5. In the case of the
healthy network (labeled Control at the top) the vast majority of
interactions present similar co-expression values, that is the reason
for which several edges in the network present similar color. On the
other hand, in the case of all breast cancer subtypes, highly dense
regions of strong co-expression values are evident. Importantly, in
all cancer cases, the q24.3 region contains a hotspot of strong
interactions. Importantly, in all cancer cases, a hotspot of strong
interactions is present in the q24.3 region. On the one hand, luminal
networks present a large region from p23.3 to p11.23, while
HER2 and Basal subtypes present a much more localized p-arm
hotspot at p21.1-p21.3

FIGURE 5
Chromosome 8 co-expression interactions for the five phenotypes are shown, with the genes placed according to its gene start position. The size of
the genes is proportional to its degree. The color of co-expression interactions is related to the CMI values. Notice that for all cancer networks, the
strongest interactions occur in the extreme places, in particular, 8p21 and 8q24.3.
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Additionally, in the cancer networks, the degree of nodes is
clearly higher than in their healthy counterparts. That is represented
by the length of bars depicted below for each network of Figure 5.

Interestingly, the most connected genes in all cancer networks
are located at 8p21.3, except in the HER2 network, where the most
connected genes belong to the 8q24.3 region. Conversely, the healthy
network’s most connected genes belong to q13 and q22 regions.

We have previously reported the appearance of a highly
connected region located at 8q24.3 in breast cancer subtypes
Dorantes-Gilardi et al. (2021). There, we showed that 8q24.3 is
the only region in the entire genome in which all breast cancer
subtypes present the same set of highly co-expressed interactions
(top-100,00). That results is one of the motivations of this work,
being focused in Chromosome 8. Here, we demonstrate that
8q24.3 is still important in terms of co-expression in breast
cancer subtypes, but also 8p21 emerges as a relevant region.

In the case of HER2 network, it is worth noting that the HER2-
enriched subtype was indeed named so, because of the amplification
of a specific part of chromosome 17. In this work, we observe that
8q24.3 and 8p21.3 regions are also important but they do not depend
on the copy number alterations, such as the case of amplification of
17q12 region, which is also related with global genomic instability
(Ellsworth et al., 2008).

We want to stress that all of these results were obtained with
TCGA-derived data. Further research must include other datasets in
order to corroborate that these results are consistent independently
of the data source.

Conclusions and perspectives

The main conclusions of this work can be recapitulated in the
form of a summary of findings, as follows:

1. Copy number alterations in the 8q24.3 region do not significantly
affect gene co-expression in chromosome 8. Therefore, the loss of
long-distance co-expression must be triggered by a different
mechanism.

2. Basal and Luminal B breast cancer subtypes have the most
remarkable loss of long-distance co-expression in this region.

3. HER2+ subtype has a worse prognosis than Luminal B, however,
Luminal B behaves more differently from the healthy tissue.
Perhaps, Luminal B has another mechanism involved in the co-
expression program and the observed behavior in the
chromosome 8 co-expression network is a manifestation of that.

For our dataset, CNVs does not influence gene co-expression
networks in breast cancer in this region. However, copy number
alterations are known to affect gene expression at different levels.
The loss of long distance co-expression is strongly maintained in all
cancer phenotypes, but in a different intensity.

The analysis performed here has been implemented for breast
cancer molecular subtypes. Another classification approaches such
as the TNM system, which is based on the tumor progression,
should be incorporated to broaden the implications of copy number
alterations in terms of their role on tumor progression. Further
research in this line must be addressed to evaluate other aspects of
CNVs in breast cancer.

Finally, this kind of analyses using different omic-approaches will
definitively enhance our perspective and understanding of complex
diseases such as breast cancer. We can envision to perform similar
analysis at a whole genome scale in the future, though this endeavor will
imply a high computational burden due to combinatorial effects.
However, it is necessary to determine whether or not the copy
number alterations observed in cancer are associated with the
appearance of the phenomenon of loss of long-distance co-expression.
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