About this Research Topic
The issue of non-synaptic (ephaptic) communication that corresponds to the coupling of nerve fibers because of the extracellular local electric fields, carries much importance as far as the neuronal communication is concerned. Nevertheless, so far the exploration of the patterns of neuronal synchrony has been mostly confined to the presence of synaptic interactions. Neuroplasticity, that helps in adaptive change in the nervous system, could also have implications on functional behaviors which are associated with synchronization. Besides, the interdependent network formalism (multilayer or multiplex or modular structures) is specifically relevant in neuronal systems. The possibility in the emergence of non-stationary chimera patterns that evolves over time, is yet to receive its due attention for neuronal ensembles. The incarnation of novel types of chimera-like state as a result of unconventional interactional frameworks of the concerned network also deserves more attentive study. Being immensely relevant, it thus necessitates to bring further development in this subject of research with a dedicated special issue. Although there were past significant attempts, enough scopes are still there that are expected to result in fascinating observations around the subject of neuronal synchrony. The goal of this Research Topic is thus to excerpt original theoretical, computational, and experimental studies that explore the incarnation of different patterns of synchrony in neuronal networks.
This Research Topic invites all contributions ranging from Original Research to Review and Opinion articles that address the aspects of synchronization in neuronal ensembles. Topics include but are not limited to the following:
• Aspects of synchrony in neuronal networks of networks;
• Synchronization patterns including chimeras, solitary and cluster states in neuronal multilayer/multiplex/modular networks;
• Distinctive analysis of spike, burst and complete synchrony in neuronal ensembles including the processes from phase-locking to anti-phase bursting (spiking);
• Exploration of spike chimeras in neuronal systems;
• Chimera states emerging through non-synaptic (ephaptic) communications ;
• Influence of neuroplasticity on diverse patterns of synchronization;
• Synchrony/Chimera-like patterns in time-varying neuronal networks;
• Non-stationary (alternating, traveling etc.) chimeras in neuronal ensembles;
• Synchrony/Chimeras in static or temporal networks with hybrid synapses;
• Time-delay effects on patterns of neuronal synchrony;
• Variants of synchronization in neuronal systems under the synergy of excitation and inhibition;
• Different chimera-like states due to unconventional network topology in neuronal networks, including hyper-networks.
Keywords: Neuronal networks, Synchronization, Synaptic communication, Chimeras, Multilayer networks, Ephaptic coupling, Neuroplasticity, Hybrid synapses
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.