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Editorial on the Research Topic

Cancer systems biology

Introduction

Cancer has been a paradigmatic example of a complex disease. It is the second leading cause

of death worldwide. Knowledge acquired on the mechanisms and potential causes underlying

the origins and progression of cancer from single-scale studies have led to the development of

personalized treatments, which in turn have decreasedmortality rates in several types of cancer.

However, because it is not a single and isolated disease, but rather a heterogeneous set of multi-

scale alterations, current research requires computational and systems biology approaches that

deal with complex systems on gene regulatory networks. Multi-omics is one of these

approaches. Aimed at developing multi-scale mathematical modeling, it allows us to

integrate the dynamics of biological perturbations for different types of cancer. Moreover, if

tissue/organ-specific path is studied we are able to create mechanistic models for a particular

type of the disease. That, combined with current low-cost high throughput technologies have

made possible massive cohorts of -omics and clinical data to be publicly available. This

immeasurable amount of information promotes harnessing data science approaches for the

analysis, integration, and mining of multi-omics data. Large and multidisciplinary groups can

now focus on creating models and provide theoretical frameworks that describe cancer in a

variety of ways. Besides cancer cell transformation or cancer evolution, currently single cell

genomics and spatial single cell transcriptomics is moving forward with deeper understanding

of the disease. Also, cancer driver mutations and mutational processes, development of target-

specific treatments have been leading to a prediction of drug responses. Notwithstanding,

several challenges that remain to be undertaken such asmechanisms ofmetastasis, resistance to

treatment, intra-tumoral heterogeneity, molecular, cellular, and metabolic changes during

progression stages, epigenetic modifications, to mention a few. This cross-disciplinary

interaction at these levels of description have contributed to develop more efficient models

that improve the predictive capacity and ultimately help clinicians and medical scientists in the

treatment and therapies.
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The aim of this Research Topic is to discuss and explore state-of-

the-art research on cancer systems biology. Throughout this Research

Topic of articles, several aspects of cancer systems biology are

covered. On the one hand, the cancer-specific point of view,

which tries to identify molecules, pathways, mechanisms that

generate or alter a concrete type of cancer, in one tissue. On the

other hand, the multi-cancer point of view, which tries to observe

generalities, common aspects, or the widely mentioned hallmarks of

cancer. Also, several bioinformatics tools were implemented to

dissect and discriminate between groups and to observe specific

patterns. Among these computational tools we can find language-

specific or web-based bioinformatic packages such as TIMER,

GEPIA2, LinkedOmics, GSCALite, GSEA, CIBERSORT,

ESTIMATE, WGCNA ARACNe, or Infotheo, among others.

Tissue-specific approach was widely used in mainly four

applications: cancer metabolism, biomarkers and prognosis,

immune system-related research and, non-coding regulation. A

highlight of this Research Topic is that the majority of

manuscripts focus on establishing a better prognosis or a more

accurate classification of cancer groups.We summarize the 15 articles

accepted for publication in the systems biology Research Topic.

Cancer metabolism

Zhu et al. studied the relationships between glycolysis, tumor

microenvironment, and therapeutic response in esophageal

adenocarcinoma (EAC). By classifying into low and high risk

groups and based on a glycolysis-related genes signature, these

authors established a correlation between glycolytic and ATP/

ADP metabolic pathways and a poor overall survival. Wang et al.

systematically analyzed the expression patterns of lysyl oxidase family

genes in gastric cancer. They found that LOX and LOX2 may have a

role in tumor prognosis and therefore, in gastric cancer therapy. Sun

et al. investigated the association between COX-2 –1195G/A single

nucleotide polymorphism and lung cancer susceptibility in a

Japanese population. By evaluating the genotype distribution of

COX-2 –1195G/A with a PCR-restriction fragment length

polymorphism assay for 330 lung cancer patients and 162 healthy

controls, they show that COX-2 –1195G/A does not have a

relationship with the risk of developing lung cancer. However,

homozygous COX-2–1195A genotype confers an increased risk

for lung squamous cell carcinoma in Japanese individuals and

could be used as a predictive factor for early detection of lung

squamous cell carcinoma.

Biomarkers and prognosis

Regarding biomarkers and prognosis, Chen et al. evaluated

the correlation between NCKAP1 expression and clinical

features of clear cell renal cell carcinoma. These authors

found that overexpression of NCKAP1 in ACHN cells

reduced proliferation, invasion and migration capacity

in vitro and inhibited tumor growth in vivo. Hu et al.

explored the molecular mechanism of LYPD3 in the

regulation during transformation and throughout the

development of acute myeloid leukemia providing a research

basis for the screening of markers related to the treatment and

prognosis. They specifically suggest, by means of a dataset

analysis and gene knockdown mediated by small interfering

RNA (siRNA), that LYPD3 participates in the development of

AML through the p53 signaling pathway or/and PI3K/AKT

signaling pathway. Zhou et al. assessed the diagnostic and

prognostic significance of ATP binding cassette subfamily C

(ABCC) genes in hepatocellular carcinoma (HCC).

ABCC1,4,5 were found to be positively associated with

infiltration of multiple immune cells, while ABCC6 was found

to be the opposite. In conclusion, they suggest that ABCC1,

ABCC4, ABCC5, and ABCC6might be prognostic biomarkers in

HCC. Zhang et al. explored the expression and carcinogenic

effect of keratin 17 (KRT17) in human tumors. They show that

KRT17 was highly expressed in most tumors (such as esophageal

cancer, lung cancer, cervical cancer, etc.), and the high

expression level correlated with tumor stage and prognosis.

Zheng et al. evaluated the relationship between EFNA3 and

gastric cancer (GC) prognosis and tumor-infiltrating

lymphocytes. The authors suggest based on bioinformatics

analyses, that EFNA3 participates in changes in GC immune

checkpoint markers in a co-linear manner. Turns out that

EFNA3 expression in HGC-27, AGS, MKN45, and NCI-N87

cell lines was higher than that in GES-1 and observed that

patients with high expression of EFNA3 had a worse prognosis.

Cancer and immune system

Among the immune-system related works, Zhang S. et al.

constructed a prognostic model for the response to

immunotherapy in thyroid carcinoma. The authors show that

patients with high tumor mutational burden and low PD-L1

expression levels might respond poorly to immunotherapy. Yang

S. et al. identified three different immune cell infiltration

signatures. The one with the highest risk was characterized by

an enhanced activation of the immune system as well as a

significantly high tumor mutational burden. Xie et al.

evaluated the thymidine kinase 1 (TK1) role in prostate

cancer databases with results validated for in vitro and in vivo

models. They showed that TK1 is a prognostic predictor

correlated with poor outcomes of PCa patients. Moreover,

TK1 inactivation can significantly restrain tumor growth.

Zhang Y. et al. constructed a prognostic model based on

pyroptosis-related genes to provide new insights into the

prognosis of osteosarcoma patients. Based on a pyroptosis-

related signature score, they were able to differentiate patients

with high and low risk of metastasis.
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Non-coding regulation

In terms of gene expression correlating with other omics,

Hernández-Gómez et al. evaluated the role that CNVsmay play in

shaping gene co-expression patterns in luminal B breast cancer.

The authors construct a conditional mutual-information-based

network for gene expression and copy number alterations. They

report that, for luminal B breast tumors, the co-expression

program is not necessarily determined by its CNV structure.

Additionally, by analyzing the network topology, they suggested

that MAF1 and POLR3D may constitute an axis of regulation of

gene transcription, in particular for non-coding RNA species.

Methylation is a widely known mechanism involved in cancer

development. Shi et al. analyzed the m6A RNA methylation in

several types of cancer. The results revealed that the m6A

regulators exhibited widespread dysregulation, genetic

alteration, and the modulation of oncogenic pathways across

cancer types. In addition, most of the m6A regulators were

relevant for prognosis in many cancer types. It has been

recently shown that long non-coding RNAs play a crucial role

in the development of several cancer types. Yang X. et al.

developed a pyroptosis-related lncRNA signature to evaluate

and predict overall survival in breast cancer. The risk model

comprised 10 pyroptosis-related lncRNAs, and was identified as

an independent predictor for overall survival (OS). The low-risk

group had a higher expression of immune checkpoint markers

and exhibited higher fractions of activated immune cells, while the

high-risk group had a higher percentage of TMB. A validation on

a separate cohort of breast cancer samples found that RP11-

459E5.1 was significantly upregulated, while RP11-1070N10.

3 and RP11-817J15.3 were downregulated and significantly

associated with worse OS.

Altogether, this Research Topic of 15 articles provides a

broad overview of the current status of cancer systems

biology, showing promising advances of cancer research

through the application of computational approaches.
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Background: Globally, hepatocellular carcinoma (HCC) is the sixth most frequent
malignancy with a high incidence and a poor prognosis. Immune cell infiltration (ICI)
underlies both the carcinogenesis and immunogenicity of tumors. However, a
comprehensive classification system based on the immune features for HCC remains
unknown.

Methods: The HCC dataset from The Cancer Genome Atlas (TCGA) and International
Cancer Genome Consortium (ICGC) cohorts was used in this study. The ICI patterns of
571 patients were characterized using two algorithms: the patterns were determined
based on the ICI using the ConsensusClusterPlus package, and principal component
analysis (PCA) established the ICI scores. Differences in the immune landscape, biological
function, and somatic mutations across ICI scores were evaluated and compared,
followed by a predictive efficacy evaluation of ICI scores for immunotherapy by the two
algorithms and validation using an external immunotherapy cohort.

Results: Based on the ICI profile of the HCC patients, three ICI patterns were identified,
including three subtypes having different immunological features. Individual ICI scores
were determined; the high ICI score subtype was characterized by enhanced activation of
immune-related signaling pathways and a significantly high tumor mutation burden (TMB);
concomitantly, diminished immunocompetence and enrichment of pathways associated
with cell cycle and RNA degradation were found in the low ICI score subtype. Taken

Edited by:
Jesús Espinal-Enríquez,

Instituto Nacional de Medicina
Genómica (INMEGEN), Mexico

Reviewed by:
Zaoqu Liu,

First Affiliated Hospital of Zhengzhou
University, China

Michael Poidinger,
Royal Children’s Hospital, Australia

*Correspondence:
Shanzhong Tan

fsyy01455@njucm.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 16 September 2021
Accepted: 01 November 2021
Published: 25 November 2021

Citation:
Yang S, Cheng Y, Wang X, Wei P,

Wang H and Tan S (2021) Identification
of the Immune Cell Infiltration
Landscape in Hepatocellular

Carcinoma to Predict Prognosis and
Guide Immunotherapy.

Front. Genet. 12:777931.
doi: 10.3389/fgene.2021.777931

Abbreviations: CDF: Cumulative distribution function; CR: Complete response; DEGs: differentially expressed genes; FDR:
false discovery rate; FKPM: Fragments Per Kilobase per Million; GO: Gene Ontology; GSEA: Gene set enrichment analysis;
HCC: Hepatocellular carcinoma; ICGC: International Cancer Genome Consortium; ICI: Immune Cell Infiltration; KEGG:
Kyoto Encyclopedia of Genes and Genomes; PD: Progressive disease; PR: Partial response; SD: Static disease; TME: Tumor
Microenvironment; TCGA: The Cancer Genome Atlas; TPM: Transcripts Per Million; TMB: Tumor Mutation Burden; TIDE:
Tumor Immune Dysfunction and Exclusion.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7779311

ORIGINAL RESEARCH
published: 25 November 2021

doi: 10.3389/fgene.2021.777931

8

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.777931&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fgene.2021.777931/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.777931/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.777931/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.777931/full
http://creativecommons.org/licenses/by/4.0/
mailto:fsyy01455@njucm.edu.cn
https://doi.org/10.3389/fgene.2021.777931
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.777931


together, our results contribute to a better understanding of an active tumor and plausible
reasons for its poor prognosis.

Conclusion: The present study reveals that ICI scores may serve as valid prognostic
biomarkers for immunotherapy in HCC.

Keywords: carcinoma, immune cell infiltration landscape, immunotherapy, ICI scores, prognosis

INTRODUCTION

HCC is an aggressive malignancy that frequently develops and
progresses in the setting of chronic liver disease or cirrhosis (Park
et al., 2015). Statistics from 2018 indicate that HCC is the sixth
most frequently occurring malignancy and the fourth highest
cause of cancer-related deaths (Kulik and El-Serag, 2019). To
date, approximately 841,000 new cases are registered and more
than 782,000 HCC-related deaths are recorded (Singal et al.,
2020). Alcohol consumption, obesity, fatty liver, and hepatitis
infection are some of the important risk factors for HCC (Caruso
et al., 2021). Current advances in HCC-diagnosis, surgical
treatment, transplantation, chemotherapy, radiotherapy, and
targeted molecular therapies, to some extent, have improved
the prognosis of HCC patients (Fan, 2012), but the majority of
the diagnosed patients are already at an advanced stage and have
only limited conservative treatment options. The rate of cure in
HCC remains low due to its high malignancy, recurrence rate,
increased metastasis, and adverse response to chemotherapy
(Pillai et al., 2020; Farzaneh et al., 2021).

As a treatment for HCC, despite its limited efficacy,
immunotherapy has yielded promising results (Silva et al.,
2020). However, the benefits of immunotherapy are largely
limited to only a small number of HCC patients. Existing
studies have shown that immune-associated genes and
lymphocytes infiltrating tumors play a key role in tumor
oncogenesis and its progression (Wang et al., 2020); the
dynamic interactions between immune cells infiltration into
the tumor microenvironment, cytokines secreted by immune
cell types, and cancerous cells are involved in HCC tumor
progression (Choi and Park, 2017; Sachdeva and Arora, 2020).
A clearer understanding of these specific dynamical patterns may
be beneficial for immunotherapy. Therefore, detailed
investigations of the immune landscape of the tumor
microenvironment (TME) and identification of ideal HCC
subgroups for immunotherapy are important to improve the
immunotherapeutic responses and prognostic prediction
(Hosseinzadeh et al., 2018; Robert et al., 2020).

Extensive studies on the TME indicate the critical functions of
infiltrating immune cells in tumor dissemination, recurrence,
metastatic activity, and immunotherapeutic responses (Jiang
et al., 2018a; Zeng et al., 2018). As an example, CD8+ T cells
are potent regulators of adaptive immunity as they can eliminate
pathogen-infected and tumor cells (Stairiker et al., 2020), and
thus, critically affect tumor immunity (Han et al., 2020). Tumor-
associated macrophages (TAM) exert multiple tumor-beneficial
effects through the secretion of immunosuppressive cytokines,
associated with unfavorable prognoses (De Palma and Lewis,

2013; Noy and Pollard, 2014). Through their inhibitory activity,
M2-type macrophages critically regulate the tumor
microenvironment (Mehla and Singh, 2019). Taken together,
these studies suggest that immune cell interactions in TME
may provide new insights for cancer therapy. However, a
comprehensive and clear understanding of immune landscape
complexity in HCC is still lacking.

Here, we evaluated the immune landscape of HCC using the
CIBERSOFT algorithm. Based on their ICI features, the HCC
patients were classified into four subtypes. Subsequently, based on
immune subtypes, ICI scores were established to further assess
the immune landscape of HCC, for accurate prognostic
prediction of the patients and their immunotherapeutic
responses.

MATERIALS AND METHODS

Hepatocellular Carcinoma Sample and Data
Acquisition
Patients with complete clinical information (Stage, Follow-up
Information, Age and Gender) were selected in this study, after
removing patients who did not meet the criteria. RNA-Seq data of
340 HCC patients and their complete corresponding clinical
information were acquired from The Cancer Genome Atlas
(TCGA) using the GDC API; for the training cohort,
expression data in FPKM (Fragments Per Kilobase per
Million) were subsequently TPM-normalized (Transcripts Per
Kilobase per Million). In addition, RNA-Seq data of 231 HCC
patients and their complete corresponding clinical information
were obtained from the International Cancer Genome
Consortium (ICGC) database (Fujimoto et al., 2016). Similarly,
for the validation set, the raw sequencing data were TPM
normalized.

Evaluation of Immune Infiltration Levels and
Consensus Clustering
The level of infiltration of the 22 immune cells was quantified for
each sample of the HCC-TCGA cohort using the “CIBERSORT”
R package with the LM22 signature (Newman et al., 2015). Next,
the ESTIMATE algorithm was used to compute the scores for
immune and stromal characteristics for each patient (Yoshihara
et al., 2013). Hierarchical consensus clustering for HCC was
performed for each sample based on the individual pattern of
ICI. In this analysis, the PAM unsupervised clustering based on
Pearson’s correlation and Ward’s linkage based on the
“ConsensusClusterPlus” R package, were used (Yu et al., 2012)
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and repeated 1,000 times to reduce sampling errors and ensure a
stable classification. Consensus clustering is a popular
bioinformatics algorithm, which was extensively utilized in
cancer-related studies (Liu et al., 2021a; Liu et al., 2021b; Liu
et al., 2021c; Liu et al., 2021d).

DEGs Identified Based on ICI Phenotype
Patients were subdivided based on ICI and were referred to as the
ICI subgroups. Subsequently, differentially expressed genes
between subgroups were analyzed using the “limma” package,
and genes associated with the ICI patterns were identified.
Significance criteria of p. adjust < 0.05 and | Log2FC | > 1
were set to identify the significant DEGs among the different ICI
subgroups.

Dimensionality Reduction and the
Construction of ICI Scores
The ICI scores were constructed following the work of Zhang
et al. (2020). First, to classify the patients in the training set based
on DEGs, an unsupervised clustering method was used; the
positively and negatively correlated DEGs with the clustering
features were called ICI gene signatures A and B, respectively.
Second, the dimensionality reduction of gene signatures A and B
based on ICI was performed using the Boruta algorithm, followed
by subsequent extraction of the signature score (corresponding to
principal component 1) using the PCA algorithm. Finally, the
computation of ICI scores for each patient was according to the
following equation:

ICI score � ∑PC1A −∑PC1B

Somatic Mutations in the The Cancer
Genome Atlas Cohort
The corresponding data for the patient mutations in the HCC-
TCGA cohort were collated on the Mutect2 platform and were
downloaded using the “TCGAbiolinks” package (Colaprico et al.,
2016). The total number of nonsynonymous mutations in the
samples was calculated to compare the differences in the
mutation burdens between the two ICI score-based subgroups.
Subsequently, using the “maftool” in R, the top 25 driver genes
having the highest mutation frequency were identified and the
mutation differences in the driver genes between the high- and
low-score subgroups were compared (Mayakonda et al., 2018).

Immunotherapeutic Responses of ICI
Subgroup
Since different ICI subgroups may have different sensitivities to
immunotherapy, the TIDE (http://tide.dfci.harvard.edu/)
algorithm was used to predict the anti-PD1 and anti-CTLA4
treatment responses of patients in the TCGA and ICGC cohorts
(Jiang et al., 2018b; Fu et al., 2020). Subsequently, with the aid of
unsupervised subclass mapping (https://cloud.genepattern.org/
gp/) (Hoshida et al., 2007), data from the high- and low-score

subgroups were compared to a published dataset consisting of 47
patients’ responses to anti-PD1 and anti-CTLA4 treatments (Roh
et al., 2017). This analysis predicted the immunotherapeutic
responses of the high- and low-subgroups; FDR < 0.05 was set
as the threshold for a significant response to anti-PD1 and anti-
CTLA4 treatment. Additionally, the independent dataset
IMvigor210 was used to analyze the predictive efficacy of ICI
scores. The IMvigor210 dataset consisting of 298 cases of
uroepithelial carcinoma samples and their corresponding
clinical information, were obtained from the freely available,
fully documented software and data packages under the
Creative Commons 3.0 Attribution License, available at http://
research-pub.gene.com/IMvigor210CoreBiologies.

Statistical Analysis
All statistical analyses and plotting were performed using R
software (version 4.04). For comparisons of more than two
groups, the Kruskal-Wallis test was used, else, we used the
Wilcoxon test. For the subgroups in each data set, the Kaplan-
Meier plotter generated the survival curves, and the log-rank tests
were determined any statistically significant differences. The
correlations between ICI score for the subgroups and
associated somatic mutation frequencies were evaluated and
analyzed by the chi-square test. Unless stated, p < 0.05 (two-
tailed) was considered to be statistically significant.

RESULTS

Immune cell infiltrationICI Landscape in the
TCGA Cohort
Supplementary Figure S1 displayed a brief flow chart of this
study. The execution of the CIBERSORT algorithm quantified the
activity or enrichment of immune cells in the HCC tumor tissues
(Figure 1A, Supplementary Table S1). Based on the 340 tumor
samples and their corresponding ICI features in the training set,
the ConsensusClusterPlus package of R software executed the
unsupervised clustering method. Thus, we classified the HCC
patients into three different ICI subtypes.

There were significant survival differences among the subtypes
(log-rank test, p < 0.0001; Supplementary Figure S2A–E;
Figures 1B,C); ICI cluster 1 was associated with a good
prognosis while ICI cluster 3 had the worst prognosis.
Additionally, to assess the intrinsic differences among the
biological parameters underlying the different clinical
phenotypes, ICI differences were compared between the three
subgroups. ICI cluster 1 showed the highest infiltration of
activated B cells, monocytes, and resting memory CD4 T cells,
and the lowest infiltration of regulatory T cells. A more favorable
prognosis of patients in ICI cluster 2 may be attributed to the high
degree of infiltration of plasma cells, activated memory
CD4T cells, M1 macrophages, and CD8T cells. However, in
ICI cluster 3, higher infiltration of regulatory T cells, MO
macrophages may underlie the poorest prognosis due to
suppressed tumor immunity responses (Figure 1D). We also
plotted the correlation heat maps to depict the interactions
between immune cells in TME (Figure 1E). The expression
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FIGURE 1 | Immune landscape in the TCGA cohort. (A) The immune landscape of 22 ICIs in HCC patients; (B)Unsupervised clustering of tumor-infiltrating immune
cells in the TCGA cohort, where rows represent tumor-infiltrating immune cells and columns represent samples; (C) Kaplan-Meier curves for overall survival (OS) of
patients with different ICI clusters, where log-rank p � 0.018; (D) Proportion of tumor-infiltrating immune cells in the three ICI clusters, where Kruskal-Wallis was used to
test and compare the statistical differences of the three ICI clusters. *p < 0.05; ppp < 0.01; pppp < 0.001; ppppp < 0.0001; (E) Cell interactions of tumor-infiltrating
immune cell types. (F–H) Expression differences in PD-L1 (F), PD1 (G), and CTLA4 (H) between different ICI clusters (Kruskal-Wallis test, p < 0.0001).
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FIGURE 2 | Identification of Immune-Related Gene Subtypes. (A) Unsupervised clustering of common DEGs in the three ICI subgroups, dividing patients into four
groups; (B)Number of DEGs among subgroups as shown by Venn diagram; (C) Kaplan-Meier curves for the three subgroups of patients, where the log-rank test shows

(Continued )
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differences in the different ICI subtypes, for three important
immune checkpoints, PD1, PDL1, and CTLA4, were also
analyzed. ICI cluster 2 had the highest levels of expression of
immune checkpoint genes, while these were lowest in ICI cluster
1 (Figures 1F–H).

Identification of Immunogenic Subtypes
To better understand the underlying biological features of different
immunophenotypes, differentially expressed genes (DEGs) between
these subtypes were identified using the “limma” package of the R
software. A total of 1,038 DEGs were identified (Supplementary
Table S2), and their intersections are shown in the Venn diagram
(Figure 2B). Subsequently, based on DEGs, the
ConsensusClusterPlus package was executed for unsupervised
clustering analysis; thus, the TCGA cohort was divided into four
gene clusters (Supplementary Figure S3A–F); Positively associated
318DEGs in the gene clusters were defined as ICI gene feature A, and

the remaining were defined as ICI gene feature B (Supplementary
Table S3). Moreover, to attenuate noise and gene redundancy,
dimensionality reduction of ICI gene features A and B was
performed using the Boruta algorithm. The transcriptional profiles
of the 78 signatureDEGs identified after dimensionality reduction are
shown in the heat map (Figure 2A). The significantly enhanced
biological processes among theDEGs are shown in Figures 2D,E and
Supplementary Table S4. Kaplan-Meier analysis showed a
significant difference in survival outcomes among the four
subgroups (p � 0.02, Figure 2C). Patients in clusters 1 and 2 had
a better prognosis as compared to those in cluster 3. The presence of
higher infiltration levels of M1 macrophages, monocytes, gamma
delta T cell, and lower infiltration levels of regulatory T cell in clusters
1 and 2, indicated that patients in these two clusters may have a
stronger anti-tumor immune response (Biswas andMantovani, 2010;
Chen and Mellman, 2017). In contrast, the highest levels of
infiltration of regulatory T cell and M0 macrophage, and lowest

FIGURE 2 | an overall p � 0.02; (D,E) Gene ontology (GO) enrichment analysis of ICI-associated signature genes: ICI signature genes A (D) and B (E), where x-axis
indicates the number of genes in each GO term; (F) Proportion of tumor-infiltrating immune cells in the three gene clusters, where Kruskal-Wallis was used to test and
compare the statistical differences of the three ICI clusters. *p < 0.05; ppp < 0.01; pppp < 0.001; ppppp < 0.0001; (G–I) Expression differences of PD-L1 (G), PD1 (H) and
CTLA4 (I) using Kruskal-Wallis test.

FIGURE 3 | Construction of the ICI scores. (A) Alluvial plot of the ICI gene cluster distribution in subgroups with different ICI clusters, ICI scores, and survival
outcomes; (B) Kaplan-Meier curves for the high and low ICI score subgroups in the TCGA cohort, where p � 0.0014 for the log-rank test; (C) Survival status of patients in
the high and low ICI score subgroups in the TCGA cohort; (D)GSEA enrichment results for the high ICI score subgroup; (E)GSEA enrichment results for the low ICI score
subgroup.
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levels of infiltration of all other immune cells in cluster 3, suggested
that this may be an immune desert subtype (Biswas and Mantovani,
2010; Chen and Mellman, 2017). The concordance between the
immune profiles and the prognosis using different gene clusters
suggested that our classification strategy is scientifically sound and
reasonably good. The levels of PD1, PDL1, and CTLA4 expression
among the four clusters, however, were not significantly different
(Figures 2F–H).

Construction of the Immune Cell Infiltration
Scores
PCA analysis was used to quantify the ICI status ofHCCpatients.We
calculated the sum of ICI scores A from ICI signature gene A minus
the sum of ICI score B from ICI signature gene B. Thus, the
prognostic feature scores defined as ICI scores were obtained.
Additionally, ICI scores for the validation cohort, from ICGC
were calculated using the same gene signatures A and B and the
algorithm as described above. Patients were divided into high- or low-
score subgroups based on median ICI score, and the distribution of

patients in the four clusters is shown in Figure 3A. Kaplan-Meier
analysis showed a significant difference in the prognoses between the
two groups; the high-score subgroup had the best prognosis (p �
0.0014, Figure Figure3B). The prognostic efficacy of ICI scores was
also validated in the ICGC cohort (p < 0.001, Supplementary Figure
S4A); the high-score subgroup patients had better survival outcomes
in both the TCGA and ICGC cohorts (Figure 3C; Supplementary
Figure S4B). GSEA analysis showed that NK cell-mediated
cytotoxicity, T cell receptor signaling, and peroxisome-related
pathways were substantially enriched in the high-score subgroup,
while cancer-related, cell cycle, and RNA degradation pathways were
substantially enriched in the low-score subgroup (Figures 3D,E;
Supplementary Table S5).

Correlation of Immune Cell Infiltration
Scores With Immune Landscape
The immunocompetence and stromal content of the TCGA cohort
were quantified using the ESTIMATE algorithm. ICI scores and
immune scores were negatively correlated (Pearson correlation:

FIGURE 4 | Immune landscape of subgroups with different ICI scores. (A) Scatter plots depicting a negative correlation between ICI scores and immune scores in
the TCGA cohort, showing a Pearson correlation between ICI scores and immune scores; (B) Expression of immune checkpoint-related genes (IDO1, CD274, HAVCR2,
PDCD1, CTLA4, and LAG3) and immunoreactive-related genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, and TNF) in high and low ICI score
subgroups; (C) ICI Proportion in different ICI score subgroups; (D) Immune scores of the high and low ICI score groups; (E) ESTIMATEscores of the high and low ICI
score groups; (F) Stromal scores in the high and low ICI score subgroups; (G) Tumor purity in the high and low ICI score subgroups. *p < 0.05; ppp < 0.01; ppppp <
0.001; ppppp < 0.0001.
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R � −0.249, p< 0.001; Figure 4A). Box plots exhibited lower immune
scores and ESTIMATE scores for the high-score subgroups (p < 0.05;
Figures 4B,C), while stromal scores and tumor purity scores did not

differ significantly between the two subgroups (Figures 4D,E). To
assess immunocompetence among subgroups, CD274, CTLA4,
HAVCR2, IDO1, LAG3, and PDCD1 were selected as immune
checkpoint-related features, while CD8A, CXCL10, CXCL9,
GZMA, GZMB, IFNG, PRF1, TBX2, and TNF were selected as
immunocompetence features (Hugo et al., 2016; Ayers et al., 2017).
Our results showed that almost all, immune checkpoint-related and
immunocompetence-related genes (except CD274 and CXCL10),
had a significant overexpression in the high ICI score subgroup
(Figure 4F). Additionally, higher infiltration levels of NK cells,
gamma delta T cells, monocytes, and M1 macrophage and lower
infiltration levels of regulatory T cells were observed in the high-score
subgroups (Figure 4G), which was also consistent in the immune
landscape of the ICGC cohort (Supplementary Figures S4C,D).

Association Between Immune Cell
Infiltration Scores and Somatic Cell
Variation
Previous investigations have revealed that increased infiltration of
CD8T cells in high mutation burden-associated tumor tissues
(nonsynonymous variants) can identify and eliminate these
cancers (McGranahan et al., 2016). Higher tumor mutation
burden (TMB) and somatic mutation rates are associated with
stronger anti-cancer immunity (Rizvi et al., 2015; Rooney et al.,
2015). The KEYNOTE 012 clinical trial showed that TMB
increase was associated with improved PD-1 inhibitors and
prolonged progression-free survival of patients (Seiwert et al.,
2016; Cristescu et al., 2018). Because of the clinical significance of
TMB, the correlation between TMB and ICI scores was analyzed

FIGURE 5 | Correlation between ICI scores and somatic cell variation. (A) Difference in TMB between the high and low ICI score subgroups, where p < 0.001 for
Wilcoxon test; (B) Scatter plot depicting a positive correlation between ICI scores and the mutational burden in the TCGA cohort, showing the Pearson correlation
between ICI scores and themutational burden; (C) Kaplan-Meier curves for the high and low TMB score subgroups in the TCGA cohort, where p � 0.056 for the log-rank
test; (D)Kaplan-Meier curves for patients in the TCGA cohort stratified by TMB and ICI scores, where p � 0.002 for the log-rank test; (E) “oncoplot”showing the high
and low ICI score subgroups for the top 25 mutant genes, with each column representing one patient.

TABLE 1 | The association of ICI scores with somatic cell variation, where chi-
square tests were used to compare statistical differences between high and
low ICI score subgroups.

Gene symbol High ICI score (%) Low ICI score (%) p Value

CTNNB1 53 (32) 30 (18) 0.0054
TP53 37 (22) 56 (34) 0.0147
AXIN1 8 (5) 19 (12) 0.0270
TTN 49 (29) 31 (19) 0.0298
ALB 23 (14) 12 (7) 0.0734
CSMD3 9 (5) 17 (10) 0.1039
LRP1B 18 (11) 9 (6) 0.1074
RYR2 11 (7) 19 (12) 0.1272
ADGRV1 7 (4) 13 (8) 0.1713
APOB 20 (12) 12 (7) 0.1934
HMCN1 15 (9) 8 (5) 0.1945
PCLO 21 (13) 13 (8) 0.2057
CACNA1E 16 (10) 9 (6) 0.2122
ABCA13 18 (11) 11 (7) 0.2441
MUC4 20 (12) 13 (8) 0.2720
FAT3 8 (5) 12 (7) 0.3635
CCDC168 9 (5) 11 (7) 0.6503
MUC16 25 (15) 28 (17) 0.6536
RYR1 10 (6) 12 (7) 0.6638
ARID1A 11 (7) 13 (8) 0.6757
SPTA1 11 (7) 13 (8) 0.6757
FLG 12 (7) 14 (9) 0.6863
OBSCN 15 (9) 12 (7) 0.6892
XIRP2 15 (9) 12 (7) 0.6892
USH2A 11 (7) 10 (6) 1.0000
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in detail. For this purpose, first, the TMB comparison between
patients in the high- and low-score subgroups were analyzed; ICI
score and TMB were positively correlated (Pearson correlation: R
� 0.151, p � 0.009; Figure 5A). TMB was significantly higher in
the high-score subgroup (Wilcoxon test p < 0.001; Figure 5B).
Patients were divided into high- and low-TMB score subgroups
based on the optimal cut-off value of TMB calculated from the
“survminer” package; patients with high TMB scores exhibited
poorer OS (p � 0.056; Figure 5C). Due to the opposing
predictions of OS by ICI and TMB scores, the combined effect
of these scores in the prognostic stratification of HCC was
subsequently evaluated. Stratified survival analyses showed that
TMB did not affect ICI score-based prediction; significant
survival differences for ICI score subtypes were obtained
between the two TMB-based score subgroups (log-rank test,
p � 0.002; High TMB & High ICI score (HH) versus High
TMB & Low ICI score (HL), p � 0.011; Low TMB & Low ICI
score (LH) versus Low TMB & Low ICI score (LL), p � 0.047;
Figure 5D). Overall, our findings suggested that ICI scores may
have implications as an independent predictor of TMB and could
be a reliable parameter for patient prognosis. In addition,
differences in somatic variant driver genes between the low

and high ICI score subgroups were evaluated. The driver
genes for HCC were obtained using “maftools”; among them
the most frequently altered top 25 genes were further analyzed
(Figure 5E). The frequencies of CTNNB1, TP53, AXIN1, and
TTN were significantly altered between the high- and low-score
subgroups (chi-square test; Table 1). Taken together, these results
may provide new insights for future investigations on the
constituents of tumor ICI and the mechanisms of gene
mutations in immune checkpoint blockade therapy.

Predictive Efficacy of Immune Cell
Infiltration Scores for Immunotherapy
Novel immune checkpoint inhibition has shown promising
results in both preclinical trials and real clinic settings.
However, only a small proportion of patients respond to these
therapies (Curran et al., 2010; Grosso and Jure-Kunkel, 2013;
Larkin et al., 2015). Our subsequent analyses assessed the utility
of scores based on ICI in predicting the efficacy of
immunotherapy in HCC. Differences in response to anti-PD1
and anti-CTLA4 therapy between the high- and low-score
subgroups of patients in the TCGA and ICGC cohorts were

FIGURE 6 | Role of ICI scores in predicting the efficacy of immunotherapy. (A) TIDE algorithm showing higher immunotherapy response in patients with high ICI
scores, where p < 0.001 for the chi-square test; (B) Subclass mapping showing higher sensitivity to anti-PD1 treatment in patients with high-score subgroups (FDR �
0.042); (C) ICI scores for subgroups with different anti-PD-1 clinical response status, where p < 0.01 for theWilcoxon test; (D) Kaplan-Meier curves for patients with high
and low ICI scores in the IMvigor210 cohort, where p � 0.025 for the log-rank test; (d) Clinical response rates to anti-PD-L1 immunotherapy in the high or low ICI
score subgroups in the IMvigor210 cohort [complete response (CR)/partial response (PR) and stable disease (SD)/progressive disease (PD)].
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evaluated using the TIDE algorithm. In the high-score subgroup,
the patients had a higher immunotherapy response rate (chi-
square test p < 0.001; Figure 6A; Supplementary Figure S4E).
Subclass mapping analysis predicted the immunotherapy
responses of both subgroups to PD1 and CTLA4 inhibitors.
The high-score subgroups in both the TCGA and ICGC
cohorts were found to be more sensitive to anti-PD1
treatment (TCGA: FDR � 0.042; ICGC: FDR � 0.022,
respectively) (Figure 6B; Supplementary Figure S4F). In
addition, patients in the IMvigor210 cohort administered with
anti-PD-L1 immunotherapy were also assigned the
corresponding ICI scores (high or low). Notably, patients with
high ICI scores in the IMvigor210 cohort survived longer as
compared to those with low ICI scores (log-rank test, p � 0.0017;
Figure 6C). In the IMvigor210 cohort, anti-PD-L1 therapy’s
objective remission rate was significantly higher in the high
ICI score subgroup (Chi-square test, p � 0.002; Figure 6D).
Our results also indicated that higher ICI scores in the
IMvigor210 cohort were associated with objective responses to
anti-PD-L1 therapy (Wilcoxon test, p < 0.01; Figure 6E). Overall,
these findings suggest a possible association between ICI scores
and immunotherapeutic responses.

DISCUSSION

HCC is an aggressive tumor with a high degree of malignancy, and
most patients are diagnosed initially at an advanced stage (Zhou et al.,
2020). High recurrence andmetastasis rates of advancedHCC to a low
possibility for surgical resection (Zhou et al., 2020; Feng et al., 2021).
Within the local area, the complex genomic alterations, differences in
biological behaviors, and heterogeneity of the tumor
microenvironment resulting in a complex HCC process. Currently,
immunotherapy is a promising treatment strategy available for HCC
(Huang et al., 2020). Due to the limitations of surgical resection,
chemotherapy and immunotherapy have received increasing attention
in the treatment of advanced HCC (Brown et al., 2019). However,
immunotherapeutic response rates are highly heterogeneous and
remain considerably low (Feng et al., 2021). Thus, in HCC,
immune-related classification criteria may provide new insights to
assess the efficacy of immunotherapy and predict the patient prognosis.

The high genomic heterogeneity of HCC results in the
complexity of the immune microenvironment (Dal Bo et al.,
2020). Therefore, the identification of novel signatures in HCC
based on immune-related genes provides a new direction for
assessing the efficacy of immunotherapy. Further assessment of
these classifications based on gene signatures may help in
developing immunotherapy strategies with improved sensitivity
for different subtypes of HCC. Zhang et al. characterized the ICI
dynamics in HCC by single-cell sequencing, and thus provided a
new basis for investigations of the immune landscape (Zhang et al.,
2019a). Sia et al. identified active or depleted immune subtypes in
HCC based on immune gene transcriptional profiling. This suggests
that active immune subtypes may be more sensitive to
immunosuppressant therapy (Sia et al., 2017). Zhang et al.
integrated multi-omics data and show new immunophenotypic
classifications in HCC which may be useful for prognostic

prediction and potentially supporting new treatment targets
(Zhang et al., 2019b). Indeed, these studies have their unique
strengths and potential and complement each other. Therefore,
investigations of HCC immune subtypes from different
perspectives hold great promise for research, and a better
classification of immune features would enhance the overall
understanding of HCC immunotherapy.

In the present study, we analyzed the classical HCC dataset from
the TCGA and ICGC cohorts and divided the patients into three
different immune subtypes. Our results suggested that high
infiltration levels of CD4 T cells, CD8 T cells, and M1
macrophage and low infiltration levels of regulatory T cells were
associated with good prognosis, consistent with previous studies
(Rooney et al., 2015; He et al., 2018). Due to the heterogeneity of
immune landscape and prognosis among the three immune subtypes,
we speculated that an integrated ICI profile analysis and evaluation of
immune-based gene expression patterns would be a new approach to
develop patient-customized and tailored treatment strategies. Four
distinct gene clusters were obtained based on differentially expressed
genes between the subtypes; clusters 1 and 2 exhibited a more
favorable immune activation phenotype, exhibited higher
infiltration of M1 macrophages, monocytes, gamma delta T cells,
and lower infiltration levels of regulatory T cells (Biswas and
Mantovani, 2010; Chen and Mellman, 2017); in contrast, the
highest infiltration levels of regulatory T-cells and M0 macrophage
and lowest infiltration levels of other cell typeswere found in cluster 3,
which suggested a general immune failure phenotype (Biswas and
Mantovani, 2010; Chen and Mellman, 2017). TME impact on
patient’s OS has been well documented in previous studies; ICI
differences resulted in cluster 1 and cluster 2 patients having a good
prognosis, while patients in cluster 3 had the worst prognosis,
consistent with previous studies (Chen et al., 2019; Li et al., 2019).
These findings suggested that the gene clusters in this studymay have
a potential role in more accurate predictions of patient outcomes.

Given the differences in patient prognosis and immune landscape
between gene clusters, it was imperative to quantify the individual
patient ICI patterns for improved outcome prediction. Individual
models based on tumor subtype-specific biomarkers show good
efficacy for HCC (Sia et al., 2017; Kurebayashi et al., 2018). In
this study, potential “subtype biomarkers” were obtained using the
Boruta algorithm and ICI scores were calculated to quantify ICI
patterns. GSEA showed that cancer-related pathways including cell
cycle pathways and RNA degradation pathways were significantly
enriched in the low ICI score group. Recently, preclinical trial reports
show the correlation of gene mutations with tolerance or
immunotherapeutic responses (Rizvi et al., 2015; Rooney et al.,
2015). Several genes with significant differences in mutation
frequencies exist between the high and low ICI score subgroups.
All of these play an important role in cancer progression (Mazzoni
and Fearon, 2014;Mantovani et al., 2019;Wen et al., 2019; Yang et al.,
2020). Moreover, the highly immunotherapy-sensitive, TMB, was
significantly lowered in patients with lower ICI scores (correlation
0.151). The stratified analysis could independently predict the
prognostic value of ICI scores for TMB. These results implied that
ICI scores and TMB represented different aspects of tumor
immunobiology and ICI scores could indeed predict patient
responses to immunotherapy in conditions independent of TMB.
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The efficacy of ICI scores in predicting immunotherapeutic
responses was further evaluated by multiple methods; TIDE and
subclass mapping analyses showed that patients with higher ICI
scores were more sensitive to anti-PD1 therapy. After evaluating
patients in the anti-PD1 immunotherapy regime in the IMvigor210
cohort, a significant increase in ICI scores was found which validated
the predictive value of patients’ response. These results indicated that
mono-immunotherapy may benefit patients with high ICI scores.

However, the present study has some limitations. The current
results need to be validated for their efficiency in immunotherapy
clinical trials with larger HCC cohorts. This would confirm the utility
of classification for clinical evaluation and decision-making.
Additionally, transcriptomic information was obtained from post-
surgical liver tissues. Thus, the model may not accurately predict
outcomes prior to the onset of HCC. Therefore, a better
understanding of circulating biomarkers released into the
bloodstream from tumor cells and tumor-associated immune cells
is important. Further in vivo and in vitro experiments should
investigate the potential functional and mechanical differences
between the subtypes. Finally, the findings of this study and ICI
scores may apply to other cancers, and these require further studies.

In conclusion, a comprehensive analysis of ICI patterns in HCC
provides a foundational basis for the regulation of anti-tumor/tumor-
promoting immune responses in HCC. These suggested that
differences in ICI patterns correlated with tumor heterogeneity
and therapeutic complexity. Based on this, a practical model for
quantifying individual ICI patterns was proposed, which could
predict the prognosis of HCC patients and identify potential
candidates for developing immunotherapy regimens.
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Osteosarcoma is a common malignant bone tumor with a propensity for drug resistance,
recurrence, and metastasis. A growing number of studies have elucidated the dual role of
pyroptosis in the development of cancer, which is a gasdermin-regulated novel
inflammatory programmed cell death. However, the interaction between pyroptosis
and the overall survival (OS) of osteosarcoma patients is poorly understood. This study
aimed to construct a prognostic model based on pyroptosis-related genes to provide new
insights into the prognosis of osteosarcoma patients. We identified 46 differentially
expressed pyroptosis-associated genes between osteosarcoma tissues and normal
control tissues. A total of six risk genes affecting the prognosis of osteosarcoma
patients were screened to form a pyroptosis-related signature by univariate and
LASSO regression analysis and verified using GSE21257 as a validation cohort.
Combined with other clinical characteristics, including age, gender, and metastatic
status, we found that the pyroptosis-related signature score, which we named “PRS-
score,” was an independent prognostic factor for patients with osteosarcoma and that a
low PRS-score indicated better OS and a lower risk of metastasis. The result of ssGSEA
and ESTIMATE algorithms showed that a lower PRS-score indicated higher immune
scores, higher levels of tumor infiltration by immune cells, more active immune function,
and lower tumor purity. In summary, we developed and validated a pyroptosis-related
signature for predicting the prognosis of osteosarcoma, which may contribute to early
diagnosis and immunotherapy of osteosarcoma.
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INTRODUCTION

Osteosarcoma is the most common primary aggressive
malignancies of the skeleton, and it occurs mainly in children
and adolescents, in which distant metastasis still leads to a poor
prognosis (Chow et al., 2020; Rojas et al., 2021). With a
combination of neoadjuvant chemotherapy, surgery,
chemotherapy, and biological therapy in the last few years, the
5-year survival rate for osteosarcoma patients has improved
significantly, from 20% to 65–70% (Yao and Chen, 2020;
Gazouli et al., 2021). However, due to the limited efficacy of
current treatment strategies, nearly 30% of osteosarcoma patients
are prone to metastasis or recurrence, with poor prognosis and
low 5-year survival rates (Fan et al., 2021). Recently,
immunotherapy has undergone a dramatic transformation,
demonstrating superior anticancer efficacy in many tumors
and being recognized as a more potent and antigen-specific
form of antitumor therapy (Constantinidou et al., 2019; Shin
et al., 2021). For example, adoptive cellular immunotherapy is a
promising option for tumors resistant to current conventional
therapy, and chimeric antigen receptor T-cell therapy has been
shown to cure 25–50% of patients with previously incurable B-cell
malignancies, revolutionizing the treatment of drug-resistant
hematologic malignancies (Titov et al., 2021). In addition,
specific immune checkpoint inhibitors are being explored as
new immunotherapeutic strategies for osteosarcoma, such as
CTLA-4, LAG3, TIGIT, and PD-1/L1 (Wang S.-D. et al., 2016;
Hashimoto et al., 2020; Judge et al., 2020; Park and Cheung, 2020;
Ligon et al., 2021). However, cancer immunotherapies, including
checkpoint inhibitors, have varying response rates due tomultiple
primary and acquired resistance mechanisms (Bashash et al.,
2021). In order to improve the early diagnosis and treatment of
osteosarcoma, novel biomarkers and therapeutic targets are
needed.

Pyroptosis is a newly discovered form of programmed cell
death that is morphologically distinct from apoptosis and
necrosis while releasing inflammatory mediators in the process
(Wu et al., 2021). Pyroptosis is mediated by pore-forming
proteins, such as the gasdermin family, of which gasdermin D
(GSDMD) is a primary substrate for the caspase family (Li L.
et al., 2021). After cleavage by activated caspases, the N-terminal
fragment of GSDMD oligomerizes in the membrane to form
pores, leading to pyroptosis (Lu et al., 2021). Pyroptosis acts as a
double-edged sword in cancer. On the one hand, pyroptosis can
create a tumor-promoting environment by releasing
inflammatory factors; on the other hand, pyroptosis can
inhibit tumor occurrence and progression as a form of
programmed death (Xia et al., 2019). As research progresses,
the impact of pyroptosis-related genes on the proliferation,
migration, and invasion of tumor cells becomes increasingly
prominent and is strongly associated with cancer prognosis (Ju
A. et al., 2021; LinW. et al., 2021; Shao et al., 2021; Ye et al., 2021).
For instance, Tang et al. (2020) reported that pyroptosis inhibited
metastasis of colorectal cancer cells through activation of NLRP3-
ASC-Caspase-1 signaling by FL118. In another study by Wang Y.
et al. (2016), it was found that the NLRP3 inflammasome can
promote the proliferation andmigration of A549 lung cancer cells

via the caspase-1-IL-1β/IL-18 signaling pathway. Studies have
shown that GSDMD was notably upregulated in osteosarcoma
compared to normal skeletal tissue as well as associated with drug
resistance and prognosis for patients with osteosarcoma (Lin R.
et al., 2020). Alternatively, GSDMD expression was significantly
downregulated in gastric cancer tissues, which may contribute to
the development of gastric cancer through the regulation of cell
cycle transition (Wang et al., 2018). However, the mechanism of
pyroptosis-related genes in osteosarcoma is still not fully
elucidated.

Recently, high-throughput sequencing technologies and
bioinformatics analysis have enabled the exploration of genetic
alterations in osteosarcoma and provided an effective way to
identify potentially beneficial markers and the most appropriate
treatment strategies for other cancer types (Li M. et al., 2021; Na
et al., 2021; Pan et al., 2021). According to Zhang et al. (Xing et al.,
2021), TIMELESS was the most significantly upregulated gene
within the 16 clock-related genes by analyzing The Cancer
Genome Atlas (TCGA) database and promoted cancer cell
proliferation and migration via increasing macrophage
infiltration in ovarian cancer. An analysis of the relationship
between osteosarcoma development and KIF21B using
bioinformatics analysis showed that knockdown of KIF21B
inhibited cell proliferation and reduced tumor formation in
vivo by modulating the PI3K/AKT pathway and that KIF21B
was an independent prognostic factor in osteosarcoma patients
(Ni et al., 2020). The previous success of projects to identify
prognostic target genes suggests that it may be possible to uncover
more molecular mechanisms in osteosarcoma.

We used microarray data from the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) and
Genotype-Tissue Expression (GTEx) database for differential
expression analysis and identified 46 differentially expressed
pyroptosis-related genes (DEPRGs) in osteosarcoma and
normal muscle tissues. We then constructed a six-gene
signature (that could determine the PRS-score) based on
DEPRGs to predict osteosarcoma outcomes. We validated the
signature by evaluating the association between the PRS-scores
and clinical characteristics and immune microenvironment
features in osteosarcoma tumors. The differential genes among
the PRS-score-based subgroups are also enriched for
immunological functions and may be involved in regulating
the composition of the immune microenvironment. These
results reveal that the pyroptosis-related prognostic signature
may provide new insights into osteosarcoma diagnosis and
prognosis prediction.

MATERIALS AND METHODS

Data Acquisition
The workflow chart of this study is shown in Figure 1. We
extracted the RNA sequencing (RNA-seq) data and the
corresponding clinical information of 88 osteosarcoma patients
from the TARGET database (https://ocg.cancer.gov/programs/
target). The RNA-seq data of 396 normal human muscle tissue
samples were obtained from the GTEx database (https://
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xenabrowser.net/datapages/). Both data types were HTseq-
FPKM, and all gene expression levels were processed with log2

(FPKM + 1). The independent cohort GSE21257, which
contained 53 osteosarcoma samples, was downloaded from
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc�GSE21257).

Identification of DEPRGs
We obtained 52 pyroptosis-related genes (PRGs) from prior
reviews (Xia et al., 2019; Zhou and Fang, 2019; Li et al., 2020;
Ju X. et al., 2021; Wu et al., 2021; Ye et al., 2021) and MSigDB
database v7.4 (Subramanian et al., 2005) (listed in
Supplementary Table S1). We identified DEPRGs between
tumor and normal tissues using the “limma” package, with a
p-value < 0.05. A protein-protein interaction (PPI) network of all
DEPRGs was obtained by STRING database (http://www.string-
db.org/). We used Molecular Complex Detection (MCODE), a
plugin for Cytoscape, to cluster the genes and find a densely
connected area based on the following criteria: degree cut-off � 2,
haircut on, node score cut-off � 0.2, Max depth � 100, k-score � 2,
score ≥ 5, and node ≥ 10.

Consensus Clustering Analysis
We downloaded all clinical data from the TARGET dataset and
further analyzed a total of 85 patients with survival time and
status. We performed consensus clustering analysis based on the
clinical characteristics of osteosarcoma patients in the TARGET
dataset using the “ConsensusClusterPlus” package. The clustering
index “k” was increased from 2 to 10 to identify the clustering
index with the minor interference and the greatest difference
between clusters.

Construction of a Pyroptosis-Related
Scoring Signature
We conducted univariate Cox analysis with the “survival”
package to screen for prognosis-related DEPRGs and set 0.1 as
the threshold p-value for omission prevention (Ye et al., 2021).
We then conducted the LASSO Cox regression analysis to narrow
the risk of overfitting to develop a prognostic signature using
“glmnet” package. The TARGET osteosarcoma patients were
divided into low and high PRS-score groups based on the
median PRS-score, and the PRS-score formula was as follows:
PRS-score � Σ (βi × Expi) (β: coefficients, Exp: gene expression
level). We created a Kaplan–Meier survival curve using the R
“survival” and “survminer” packages to determine the OS time
between the two subgroups. The principal component analysis
(PCA) based on the signature was performed using the R package
“Rtsne” and “ggplot2”. The specificity and sensitivity of this
prognostic signature were determined by the receiver
operating characteristic (ROC) curve constructed with the
“SurvivalROC” package. In addition, we identified copy-
number alterations and performed mutation analysis of the
risk genes in sarcomas using the cBioportal database (http://
www.cbioportal.org/). Additionally, 53 osteosarcoma patient
samples from the GSE21257 dataset were used to verify the
reliability of the prognostic model.

Independent Prognostic Analysis and
Clinical Correlation Analysis
We extracted clinical information (gender, age, and metastasis
status) of patients in the TARGET cohort. We implemented the
“survival” package to conduct both univariate and multivariate

FIGURE 1 | Flow chart of the study.
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Cox regression analysis to assess the independence of the PRS-
score from other clinical variables. The R “RMS” package was
then used to generate nomograms to predict survival in patients
with osteosarcoma over the course of 1, 3, and 5 years.
Additionally, osteosarcoma patients were divided into two
subgroups according to age (≤ 18 or > 18 years old), gender
(female or male), and metastasis status (M0 and M1). The R
“Beeswarm,” “limma,” and “pheatmap” package was used to
assess the correlation between the PRGs involved in the
prognostic signature and clinical parameters mentioned above.

Functional Enrichment Analyses
We applied the “limma” R package to identify differentially
expressed genes (DEGs) in the PRS-score-classified subgroups,
with a false discovery rate (FDR) < 0.05 and absolute value of the
log2 fold change (|log2FC|) ≥ 1 as a threshold. We implemented
the “clusterProfiler” package to conduct the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
based on the DEGs between different PRS-score subgroups, with
an adjusted p-value (adj. P) < 0.05. Subsequently, the “GSVA”

package was used to conduct the single sample Gene Set
Enrichment Analysis (ssGSEA) to calculate the enrichment
scores of immunological cells and functions.

Analysis of the Immune Microenvironment
Features and Immune Response
Immunoscore and stromal scores for each osteosarcoma patient
were obtained using the “estimate” and “limma” packages and
were used to derive tumor purity. Using the “ggpubr” and
“limma” packages, we assessed the differential expression of
immune checkpoints (CTLA4, PDL1, LAG3, TIGIT, TIM3,
PDCD1, IDO1, and TDO2) between subgroups to estimate the
predictive power of the signature for immunotherapy response.

Statistical Analysis
We executed all statistical analyses with R software (v4.0.5). The
threshold for statistical significance was taken as p < 0.05 if it was
not explicitly stated.

FIGURE 2 | Expression and interconnectedness of the pyroptosis-related genes in osteosarcoma. (A) The heatmap showed the differential expressed PRGs
between human osteosarcoma samples and normal muscle tissues (red: high expression level, blue: low expression level). (B) PPI network of differentially
expressed PRGs (The red nodes indicate upregulated PRGs and the green nodes indicate downregulated PRGs) (C) Critical modules from the PPI network. (D) The
correlation network of the differential expressed PRGs (red lines indicate positive correlation and blue lines indicate negative correlation). PRGs, pyroptosis-
related genes.
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RESULTS

DEPRGs in Human Osteosarcoma and
Normal Tissues
The expression levels of 52 PRGs were compared in the human
osteosarcoma samples and normal muscle tissues, and we
detected 19 DEPRGs that were upregulated and 27 DEPRGs
that were down-regulated using our threshold criteria (p value <
0.05) (Figure 2A). The PPI network of DEPRGs created with the
minimum required interaction score > 0.9 is presented in
Figure 2B. We then screened out the two most crucial

network modules using MCODE (Figure 2C) and drew the
correlation network of the differentially expressed PRGs
(Figure 2D).

Identification of Subgroups Based on PRGs
by Consensus Clustering
Consensus clustering was used to separate all 85 osteosarcoma
patients into subgroups according to the expression of PRGs. By
increasing the clustering index “k” from 2 to 10, we found that k �
2 seems to be the optimal point to identify the smallest

FIGURE 3 | Classification of osteosarcoma patients based on pyroptosis-related regulators. (A) Consensus clustering of osteosarcoma patients for k � 2. (B) The
prognostic analysis between the two pyroptosis-related clusters. (C) Heatmap of the differentially expressed genes and clinical characteristics between the two
pyroptosis-related clusters.
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FIGURE 4 | Construction of the pyroptosis-related prognostic signature for osteosarcoma. (A,B) Cox regression analysis of pyroptosis-related genes. (A)
Univariate Cox regression analysis. (B) LASSO Cox regression analysis. (C) Selection of the optimal penalty parameter for LASSO regression. (D) The PRS-score
distribution of the patients with osteosarcoma in the TARGET cohort (E) The survival status and survival time distribution of the patients with osteosarcoma in the
TARGET cohort. (F) Kaplan–Meier curves of the high and low PRS-score subgroups in the TARGET cohort. (G) PCA plot based on the PRS-scores in the TARGET
cohort. (H) Time-dependent ROC curve for predicting the 1-, 3-, and 5-year overall survival in the TARGET cohort. (I) Genomic alterations of hub genes.
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interferences and the most significant differences between
clusters (Figure 3A). Consequently, patients with
osteosarcoma in the training group were classified into two
clusters. However, a comparison of overall survival between
the two clusters revealed no significant difference (p� 0.253,
Figure 3B). We also plotted a heatmap to express the
differences in gene expression and clinical characteristics,
including age (≤ 18 or > 18 years old), gender (male or
female), and metastasis status (metastatic, non-metastatic)
between the clusters, but we found there are little differences
(Figure 3C).

Construction of the PRG-Based Prognostic
Signature
To construct a pyroptosis-related prognostic model, we further
screened seven-candidate prognostic PRGs by univariate Cox
regression analysis (Figure 4A). Of the seven prognostic PRGs,
CASP5 and CHMP4C were regarded as high-risk genes based on
their HRs, whereas BAK1, CASP6, GPX4, PYCARD, and GZMA
were regarded as low-risk genes. Subsequently, LASSO Cox
regression analysis was performed to construct a 6-gene signature

according to the optimum penalty parameter (λ) value (Figures
4B,C). We then divided the patients in the TARGET cohort into
high and low scoring subgroups based on a composite signature
score termed the “PRS-score” (PRS-score � [BAK1 expression ×
(−0.325)] + [CASP5 expression× (0.132)] + [CHMP4C expression×
(0.191)] + [CASP6 expression × (−0.475)] + [GPX4 expression ×
(−0.185)] + [GZMA expression × (−0.185)]). The PRS-scores,
survival status, and survival time in the two groups of patients
are shown in Figures 4D,E. The results showed that patients with
higher PRS-scores had worse prognoses than patients with lower
PRS-scores. Kaplan-Meier curves showed that the patients in the
high PRS-score group had worse OS than the patients in the low
PRS-score group (p < 0.001; Figure 4F). Analyses of PCA revealed
that high and low PRS-score patients were separated into two
clusters (Figure 4G). To assess the accuracy of the signature, we
then constructed a time-dependent ROC curve. We found the area
under the ROC curve (AUC) was 0.771 for 1-year OS, 0.738 for 3-
year OS, and 0.742 for 5-year OS, providing evidence that this six-
gene prognostic model performed well as a predictor of OS
(Figure 4H). Mutations and copy number alterations of the six
hub genes (BAK1, CASP6, GPX4, PYCARD, GZMA, CASP5, and
CHMP4C) were analyzed together using the cBioportal database.

FIGURE 5 | Validation of the prognostic signature in the GEO cohort. (A) The PRS-score distribution of the patients with osteosarcoma in the GEO cohort. (B) The
survival status and survival time distribution of the patients with osteosarcoma in the GEO cohort. (C) PCA plot based on the PRS-scores in the GEO cohort. (D)
Kaplan–Meier curves of the high and low PRS-score subgroups in the GEO cohort. (E) Time-dependent ROC curve for predicting 1-, 3-, and 5-year overall survival in the
GEO cohort.
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These six hub genes were altered in 99 of 241 samples (41%)
(Figure 4I). Since the frequency of mutations in GPX4 and
BAK1 exceeded 10%, we hypothesized that these two genes
might be key therapeutic targets (Figure 4I).

Validation of the PRG-Based Prognostic
Signature
To reliability of this six-gene prognostic signature, a total of
53 patients from GSE21257 were used as the test set. Based on

the median cut-off of the PRS-score in the TARGET cohort,
patients with osteosarcoma in the GEO cohort were separated
into high (n � 34) and low (n � 19) scoring groups
(Figure 5A). The survival time and survival status
distribution showed that patients in the low PRS-score
subgroup had a higher possibility of surviving (Figure 5B).
The PCA of the two subgroups showed a clear separation
(Figure 5C). Furthermore, Kaplan-Meier analysis revealed
that osteosarcoma patients with high PRS-scores had a
significantly poorer prognosis than those with low PRS-

FIGURE 6 | Independent prognosis analysis and clinical utility. (A,B) Cox regression analysis of pyroptosis-related genes (A) Univariate Cox regression analysis (B)
Multivariate Cox regression analysis (C) Heatmap (blue: low expression level; red: high expression level) of the correlation between clinical features and the risk groups
(*p < 0.05) (D) Relationship between GZMA and metastasis. (E) Relationship between CASP5 and age category. (F) A prognostic nomogram based on the PRG-related
model for prediction of 1-, 3-, and 5-year survival rates.
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scores (Figure 5D), with AUC � 0.673, 0.657, and 0.585 for 1,
3, and 5 years survival, respectively (Figure 5E).

Independent Prognostic Value and Clinical
Utility of the Prognostic Signature
We then utilized univariate and multivariable Cox regression
analyses to evaluate the independent prognostic value of the
model with other clinical features. The univariate Cox
analysis indicated that the PRS-score (HR � 3.541, 95% CI
� 2.097–5.980, p < 0.001) and M-stage (HR � 4.770, 95% CI �
2.285–9.954, p < 0.001) were significantly associated with OS
(Figure 6A). The multivariate Cox analysis confirmed that
the PRS-score (HR � 3.735, 95% CI � 2.069–6.743, p < 0.001)
and M-stage (HR � 4.877, 95% CI � 2.241–10.615, p < 0.001)
were independent factors affecting the prognosis of
osteosarcoma patients (Figure 6B). We then plotted a
clinical information-related heatmap for the TARGET
cohort and found significant differences in M-stage
distribution between low- and high-scoring subgroups
(Figure 6C). The results of clinical correlation analysis
showed that the M stage of osteosarcoma patients
decreased with increasing GZMA expression (Figure 6D,

p < 0.01), while osteosarcoma patients with high CASP5
expression were younger (Figure 6E, p < 0.01), and all
results are shown in Table 1. Additionally, a pyroptosis-
related signature-based nomogram showed that the OS of
patients at 1, 3, and 5 years decreased with increasing PRS-
score (Figure 6F).

Functional Analysis of DEGs Based on
PRS-Score
To further investigate differences in PRS-score-classified
subgroups, we identified 34 genes that were down-
regulated and 14 genes that were up-regulated in the high
PRS-score subgroup compared with the low PRS-score
subgroup in the TARGET group (Supplementary Table
S2). GO analysis revealed that the 48 DEGs were mainly
involved in the cellular response to interferon-gamma, MHC
class II protein complex, peptide binding, and amide binding
(Figure 7A). According to the KEGG pathway analysis, these
DEGs were primarily associated with staphylococcus aureus
infection, systemic lupus erythematosus, hematopoietic cell
lineage, and complement and coagulation cascades
(Figure 7B).

TABLE 1 | The relationship between PRS-scores and clinical characteristics.

Id Gender (female, male) t (p) Age (≤ 18, > 18) t (p) M stage (M0, M1)
t (p)

BAK1 −0.182 (0.856) 1.324 (0.197) 0.091 (0.928)
CASP5 1.257 (0.213) 3.287(0.001) −0.08 (0.936)
CHMP4C 0.84 (0.404) 1.609 (0.115) −0.568 (0.574)
CASP6 −0.724 (0.472) 0.128 (0.899) 1.965 (0.056)
GPX4 0.062 (0.951) 0.32 (0.751) 1.664 (0.107)
GZMA 0.341 (0.734) 1.434 (0.160) 3.293(0.002)
PRS-scores 0.742 (0.461) −0.093 (0.926) −2.58(0.015)

t, t value from Student’s t test; p: p-value from Student’s t test. Bold indicates statistical significance, p < 0.05.

FIGURE 7 | Functional enrichment analysis of DEGs between the two pyroptosis-related subgroups. (A) GO enrichment analysis of DEGs based on PRS-score,
including BP, CC, and MF. (B) KEGG pathway enrichment analysis of DEGs based on PRS-score. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BP, biological processes; CC, cell component; MF, molecular function.
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FIGURE 8 | Immune characteristics analysis of the prognostic signature. (A) Immune scores between high and lowPRS-score groups. (B)Stromal scores between
high and low PRS-score groups (C) ESTIMATE scores between high and low PRS-score groups. (D) Tumor purity between high and low PRS-score groups (E)
Comparisons of the level of immune cell infiltration between high and low PRS-score groups in the TARGET cohort. (F) Comparisons of immune functions between high
and low PRS-score groups in the TARGET cohort. (G) Comparisons of the level of immune cell infiltration between high and low PRS-score groups in the GEO
cohort. (H) Comparisons of immune functions between high and low PRS-score groups in the GEO cohort.
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Analysis of Immune Microenvironment
Characteristics Between Subgroups
Several studies have shown that the tumor immune
microenvironment correlates strongly with malignant behavior;
thus, we investigated the unique features of the tumor
microenvironment (TME) to distinguish between the two
subgroups of patients. Based on the ESTIMATE algorithm, the
overall level of immune cell infiltration and tumor purity were
examined. As shown in Figures 8A–D, the immune score,

stromal score, and ESTIMATE score were significantly higher
in the low scoring group than in the high scoring group, while the
tumor purity was lower. We then explored the distribution
patterns of infiltrating immune cells in different subgroups
using the ssGSEA algorithm. In the TARGET cohort, the
patients in the high PRS-score group had lower levels of
tumor infiltration by CD8+ T cells, dendritic cells (DCs),
macrophages, neutrophils, natural killer cells, plasmacytoid
dendritic cells (pDCs), Th2 cells, Tfh cells, and tumor-
infiltrating lymphocytes (TILs) compared with the patients in

FIGURE 9 | Immune checkpoint molecules expression analysis. (A–H) The expression levels of Immune checkpoint molecules, including PD-L1 (A), LAG-3 (B),
TIGIT (C), TIM-3 (D), IDO1 (E), CTLA-4 (F), TDO2 (G), and PDCD1 (H) between high and low PRS-score groups in the TARGET cohort. (I–P) The expression levels of
Immune checkpoint molecules, including PD-L1 (I), LAG-3 (J), TIGIT (K), TIM-3 (L), IDO1 (M), CTLA-4 (N), TDO2 (O), and PDCD1 (P) between high and low PRS-score
groups in the GEO cohort.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 78078011

Zhang et al. Pyroptosis-Related Genes in Osteosarcoma

31

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the low PRS-score group (Figure 8E). All 13 immune functions
were down-regulated in the patients in the high PRS-score group
in comparison with the patients in the low PRS-score group
(Figure 8F). In the GEO cohort, compared with the patients in
the low PRS-score group, the patients in the high PRS-score
group had lower levels of tumor infiltration by immune cells,
including CD8+ T cells, DCs, macrophages, neutrophils, pDCs,
TILs, T regulatory, Tfh, Th1, and Th2 cells (Figure 8G).
Moreover, in contrast to the type-1 and type-2 interferon
response pathways, the other 11 immune pathways had lower
activity in the high PRS-score group than in the low PRS-score
group (Figure 8H). Our investigation showed that PRS-scores
were associated with immune characteristics and that elevated
immune activity in the low-scoring samples may contribute to the
antitumor effect in osteosarcoma.

In addition, we analyzed the changes in immune checkpoint
expression between the high and low PRS-score groups. Figures
9A–H shows that in the TARGET cohort, LAG3 (p � 1.3e-04),
TIGIT (p � 0.023), TIM3 (p � 0.002), and CTLA4 (p � 0.029)
expressions were down-regulated in the high-scoring group in
comparison to the low-scoring group. On the other hand, as the
PRS-score increased, the expression of LAG3 (p � 0.0035), TIM3
(p � 1.2e-04), IDO1 (p � 0.0082), CTLA4 (p � 0.0028), and
PDCD1 (p � 0.0021) in patients with osteosarcoma also decreased
in the GEO cohort (Figures 9I–P).

DISCUSSION

Pyroptosis, a form of programmed cell death, was found to play a
dual role in both promoting and inhibiting the growth of different
tumor cells (Loveless et al., 2021). Several recent studies have
highlighted the relevance of pyroptosis-related genes as candidate
biomarkers for prognosis and therapeutic response in patients
with different cancer types (Ju A. et al., 2021; Lin W. et al., 2021;
Shao et al., 2021; Ye et al., 2021). In the current study, we
identified the mRNA levels of 52 pyroptosis-related genes in
osteosarcoma and normal tissues based on public databases and
found that most of these genes were differentially expressed.
However, DEPRGs-based consensus clustering analysis produced
two clusters that showed no significant differences in clinical
characteristics. Subsequently, we performed univariate and
LASSO Cox regression analyses to further identify six
prognosis-related RPGs. To further explore their biological
function and clinical significance, we also performed survival
and ROC analyses to develop an accurate pyroptosis-related
prognostic signature in osteosarcoma. Subsequently, ssGSEA
found that the high-scoring group had lower levels of immune
infiltration and fewer immune-related pathways than the low-
scoring group. These results suggest that the novel pyroptosis-
related genes signature has the potential to predict prognosis
accurately and could provide new diagnostic biomarkers and
therapeutic targets for patients with osteosarcoma.

As a result of the present study, we constructed a 6-gene
pyroptosis-related signature, including BAK1, CASP5, CASP6,
GPX4, GZMA, and CHMP4C. Notably, six genes involved in this
signature have been implicated in apoptotic pathways as well (Li

et al., 2015; Skotte et al., 2017; Wu et al., 2019; Zhou et al., 2020;
Darweesh et al., 2021; Ding et al., 2021). Following apoptotic
signals, caspase 8 and caspase 3 initiate pyroptosis by processing
GSDMC and GSDME, respectively (Liu et al., 2021). The close
relationship between pyroptosis and apoptosis may explain the
dual role of these genes. Caspase 5 is an essential player in
canonical or noncanonical inflammasome-induced pyroptosis.
Upon activation, caspase-5 can act on the GSDMD, leading to the
formation of cell membrane pores. Activated caspase-5 can also
interact with caspase-1 to promote its activation, and the latter
cleaves the precursors of IL-1+ and IL-18 to form active IL-1+
and IL-18, which are released through the channels formed by
GSDMD-cNT and lead to pyroptosis (Kayagaki et al., 2015; Xia
et al., 2019). Studies have reported that caspase-5 is associated
with various malignancies, including gastric cancer, cervical
cancer, lung cancer, and human glioblastoma (Babas et al.,
2010; Zhou et al., 2018; Wang et al., 2019). Caspase-6 plays a
vital role in promoting cell death, ZBP1-mediated inflammasome
activation, and host defense during IAV infection (Zheng et al.,
2020; Zheng and Kanneganti, 2020). In addition, caspase-6 can
also be involved in cancer progression by regulating tumor
apoptosis and metastasis (Capo-Chichi et al., 2018). GPX4 was
found to negatively regulate Gasdermin D-mediated pyroptosis
in lethal polymicrobial sepsis by reducing lipid peroxidation; in
contrast, conditional GPX4 knockdown in myeloid cells triggers
macrophage pyroptosis with caspase-1/caspase-11-GSDMD-
phospholipase C gamma 1 axis. (Kang et al., 2018). Chen
et al. (2021a) found that circKIF4A promoted papillary
thyroid tumors by sponging miR-1231 and upregulating GPX4
expression. GPX4 is also a ferroptosis-related factor playing an
essential role in iron-dependent oxidative cell death driven by
lipid peroxidation (Chen X. et al., 2021). Lin H. et al. (2021)
discovered that upregulation of HMOX1 to inhibit GPX4
expression induced ferroptosis in osteosarcoma cells by
increasing reactive oxygen species levels, malondialdehyde
levels, and intracellular ferric ion level. GZMA from cytotoxic
lymphocytes enhances antitumor immunity and promotes tumor
clearance by cleavage of GSDMB triggering pyroptosis (Zhou
et al., 2020). On the other hand, GZMA acts as a pro-
inflammatory cytokine to promote cancer development (van
Daalen et al., 2020); for instance, GZMA deficiency inhibits
colon cancer development and inflammatory response in colon
tissue through the NF-κB-IL-6-pSTAT3 axis (Santiago et al.,
2020). The polymorphism of CHMP4C increased the cancer
susceptibility and was imbalanced in many cancers, including
lung, ovarian, prostate, and cervical cancers (Lin S. L. et al., 2020).
Another study showed that CHMP4C is also an autophagy-
related gene, and its participation in the construction of risk
models could effectively predict the prognosis of cervical cancer
patients and help develop precise treatment strategies (Shi et al.,
2020). Notably, similar to CHMP4C, BAK1 was found to be an
apoptosis and pyroptosis-related gene (Cowan et al., 2020; Deo
et al., 2020). BAK1 is a member of the Bcl-2 family and can induce
mitochondria-mediated apoptosis via regulating the release of
cytochrome c (Vervliet et al., 2016). Recent studies have shown
that miR-125b, miR-410, and miR-103a-3p could all directly
target BAK1 to inhibit apoptosis, and upregulation of BAK1
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may contribute to the treatment of cisplatin-resistant non-small
cell lung cancer (Wen et al., 2018; Wang H. et al., 2021; Zhang
et al., 2021). A prognostic signature based on 14 genes, including
BAK1, was able to predict the survival outcome for patients with
osteosarcoma (Qi et al., 2021). We also found that PYCARD,
although not included in the construction of the model, was also
associated with patient outcomes. PYCARD is an adaptor protein
that helps form inflammasomes, which contribute to
inflammation by promoting the release of the active IL-1β and
IL-18 (Hoffman and Wanderer, 2010; Protti and De Monte,
2020). Inflammation is commonly thought to contribute to
driving tumor growth, metastasis, and immune escape; for
example, IL-1 promotes tumor angiogenesis, recruitment of
myeloid cells and contributes to tumor metastasis by
recognizing endothelial cell adhesion molecules (Mantovani
et al., 2018; Karin and Shalapour, 2021). On the other hand,
PYCARD was found to be silenced by promoter methylation in
various cancer cells, suggesting its anti-tumor role as a pro-
apoptotic factor (Agrawal and Jha, 2020). These studies
further confirmed the potential prognostic value of the
identified pyroptosis-related genes in osteosarcoma. However,
the exact mechanism of their involvement in pyroptosis in
osteosarcoma needs to be verified by further in vivo and
in vitro experiments.

The enrichment analysis results showed that the DEGs between
high and low PRS-score subgroups were mainly enriched in
interferon-gamma mediated signaling pathways, antigen
processing, and peptide antigens presented via MHC class II,
peptide binding. The MHC-II is the critical component of
adaptive anti-tumor immunity, and its upregulation is closely
associated with increased levels of interferon-gamma in tumors
(Dubrot et al., 2014; Cook et al., 2021). During inflammation,
epithelial cells could act as accessory antigen-presenting cells along
with the expression of MHC-II (Ghasemi et al., 2020). Tumor-
specific MHC-II expression is associated with better prognosis,
T-cell infiltration, higher levels of Th1 cytokines, and sensitivity to
anti-PD-1 therapies (Johnson et al., 2020). Lu et al. (2017), used the
adoptive transfer of MHC-II-restricted tumor-reactive T cells in
patients with metastatic cancer (which contained patients with
osteosarcoma) and achieved different degrees of tumor regressions
in these patients. Coincidentally, the ssGSEA results indicated
lower levels of principal anti-tumor infiltrating immune cells in
the high PRS-score group, providing further evidence that these
genes may play a role in anti-tumor immunity. Studies have shown
that chimeric antigen receptor T-cell immunotherapy, a potent
option for drug-resistant tumors, has transformed the treatment of
drug-resistant hematologic malignancies yet remains largely
ineffective against solid tumors, which may be related to the
tumor immune microenvironment, the stromal barrier, and the
lack of surface tumor-specific targets (Titov et al., 2021). Therefore,
we used the ESTIMATE algorithm to examine the distribution of
immune scores, stromal scores, and tumor purity in osteosarcoma
patients in high and low PRS-score groups. We found that the low-
scoring group showed higher immune scores, ESTIMATE scores.
Consistent with these results, the high-scoring group had high
tumor purity. The PRS-score may help assess the immune
microenvironment features of patients and thus predict their

sensitivity to immunotherapy, which will help to guide
individualized anti-tumor treatment strategies. Finally, we
evaluated the differences in immune checkpoint expression
between the two subgroups to determine whether patients
would benefit from immune checkpoint inhibitor therapy.

In previous studies, several prognostic signatures have been
constructed from different perspectives to predict the prognosis
of oeosarcoma. Jiang et al. (2021) created a hypoxia gene-based
signature to predict the survival in childhood osteosarcoma.
Wang et al. developed a new classification system of
osteosarcoma based on immune features and identified
TYROBP as a key immune regulatory gene (Wang X. et al.,
2021). Qi et al. identified a prognostic signature of osteosarcoma
based on 14 autophagy-related genes that can guide clinical
decisions in treating osteosarcoma (Qi et al., 2021).
Nonetheless, no research has so far concentrated on PRGs-
related models, and the current study was designed to fill the
vacancy in PRGs-based models for predicting outcomes. Of
course, there are inevitably some limitations to this study.
Firstly, the verification cohort has a relatively small sample
size due to the inherent property of osteosarcoma. Secondly, it
lacks experimental work, and the molecular mechanisms of its
specific involvement still need further study.

In conclusion, we have developed a novel prognostic model
based on six pyroptosis-related genes through comprehensive
and systematic bioinformatics analysis, providing an essential
foundation for future studies of the association between
pyroptosis-related genes and immunity in osteosarcoma.
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Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China

Background: Esophageal cancer is one of the most leading and lethal malignancies.
Glycolysis and the tumor microenvironment (TME) are responsible for cancer
progressions. We aimed to study the relationships between glycolysis, TME, and
therapeutic response in esophageal adenocarcinoma (EAC).

Materials and Methods: We used the ESTIMATE algorithm to divide EAC patients into
ESTIMATE high and ESTIMATE low groups based on the gene expression data downloaded
from TCGA. Weighted gene co-expression network analysis (WGCNA) and Gene Set
Enrichment Analysis (GSEA) were performed to identify different glycolytic genes in the
TME between the two groups. The prognostic gene signature for overall survival (OS) was
established through Cox regression analysis. Impacts of glycolytic genes on immune cells
were assessed and validated. Next, we conducted the glycolytic gene mutation analysis
and drug therapeutic response analysis between the two groups. Finally, the GEO
database was employed to validate the impact of glycolysis on TME in patients with EAC.

Results: A total of 78 EAC patients with gene expression profiles and clinical information
were included for analysis. Functional enrichment results showed that the genes between
ESTIMATE high and ESTIMATE low groups (N � 39, respectively) were strongly related with
glycolytic and ATP/ADP metabolic pathways. Patients in the low-risk group had
probabilities to survive longer than those in the high-risk group (p < 0.001). Glycolytic
genes had significant impacts on the components of immune cells in TME, especially on
the T-cells and dendritic cells. In the high-risk group, themost commonmutant genes were
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TP53 and TTN, and the most frequent mutation type was missense mutation. Glycolysis
significantly influenced drug sensitivity, and high tumor mutation burden (TMB) was
associated with better immunotherapeutic response. GEO results confirmed that
glycolysis had significant impacts on immune cell contents in TME.

Conclusion: We performed a comprehensive study of glycolysis and TME and
demonstrated that glycolysis could influence the microenvironment and drug
therapeutic response in EAC. Evaluation of the glycolysis pattern could help identify
the individualized therapeutic regime.

Keywords: glycolysis, tumor microenvironment, immunotherapy, drug response, esophageal adenocarcinoma

INTRODUCTION

Esophageal cancer is the eighth most common malignancy and
the sixth cause of cancer death globally, which accounts for more
than 570,000 new cases and 500,000 deaths annually (Bray et al.,
2018; Wang et al., 2018). Esophageal adenocarcinoma (EAC) is
the predominant pathological type in western countries, with an
increasing proportion from 35 to 61% over the past 30 years
(Alsop and Sharma, 2016). The global incidence rate of EAC is
approximately 0.7/100,000 person-years, and the 5-year survival
rate is merely less than 20%, although multidisciplinary
treatments have been applied, including esophagectomy,
radiation, and chemotherapy (Arnold et al., 2015; Markar
et al., 2017; Smyth et al., 2017; Zhao et al., 2019). Considering
the chemotherapeutic resistance, several targeted agents have
been applied in patients with EAC, such as imatinib (Mayr
et al., 2012). Unfortunately, the efficacy is still not satisfactory.
Recently, immunotherapy-targeting PD-1 has revolutionized the
therapy in cancer patients. However, not all patients with EAC
respond to immunotherapy (Däster et al., 2020). Therefore, there
is an urgent necessity to better understand the molecular
characteristics and genetic features that could help predict
accurate survival and identify suitable patients who will benefit
from immunotherapy.

The tumorigenesis and development of EAC is a highly
complex biology, involving the tumor cell-intrinsic and cell-
extrinsic factors (Quante et al., 2018; Talukdar et al., 2018).
Genetic alterations are the primary mechanisms that drive the
initiation and progression of EAC, not only conferring tumor
cells infinite proliferative abilities but also reprogramming
metabolic pathways to adapt to the hostile environment, such
as aerobic glycolysis (Hochwald and Zhang, 2017; Talukdar et al.,
2018). The seminal discovery of tumor glycolysis has been
considered a hallmark of cancer, proposed by Otto Warburg
in 1923 (Warburg and Minami, 1923). The glycolytic phenotype
renders cancer cells selective advantages by unlimited growth and
attenuated apoptosis (Xu et al., 2017). In addition, it is gradually
evident that elevated glycolysis is closely related to the immune
escape by changing the microenvironment and inhibiting the
functions of immune cells (Jiang et al., 2019a). Mounting
evidence from cell-based assays has linked glycolysis to TME,
and preclinical investigations have demonstrated the effectiveness
targeting glycolysis in some cancers (Lim et al., 2017; Kornberg

et al., 2018; Jiang et al., 2019a; Jiang et al., 2019b; Kang et al.,
2020).

Genetic mutation results in the rewire of the glucose
metabolism decreased cancer cell apoptosis and immortal
growth. Consequently, these events bring about the
component reconstruction in the tumor microenvironment
(TME), thus changing the purity of the tumor. Reciprocally,
the intimate interactions between glycolytic cells and the
extracellular matrix further exacerbate the remodeling of TME,
including the stromal and immune cells. It is well accepted that
the tumor is highly dependent on TME, which is preponderant on
prognosis and impacts the therapeutic efficacy profoundly, such
as the immune checkpoint therapy (Wu and Dai, 2017; Alsina
et al., 2018; Taube et al., 2018; Hinshaw and Shevde, 2019; Li et al.,
2020). However, there are few studies exploring the associations
between glycolysis and TME in EAC, and far less is known about
how genetic mutations orchestrate the glycolysis under these
aberrant TME conditions. Herein, we investigated the effects of
glycolysis on immune cells and revealed the genetic mutation
diversity. Our study unraveled that glycolysis could influence
TME under the driver of genetic mutation and could serve as
prognostic biomarkers. Moreover, we constructed the risk score
system to predict drug sensitivity and immunotherapeutic
response. The results hold great promise in targeting glycolysis
and utilizing TME to improve the treatment in patients
with EAC.

MATERIALS AND METHODS

Data Acquisition
Gene expression data and clinical information were downloaded
from the Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). The mRNA expression profiles were log2
normalized for further analysis. Clinical information included
gender, age, stage, survival status, and follow-up time.

Tumor Microenvironment and Glycolysis
TME is composed of resident stromal cells and infiltrating
immune cells (IICs), reflecting tumor purity. With the increase
of stromal cells and IICs, the tumor purity becomes lower. The
stromal score, immune score, and ESTIMATE score were
calculated by applying the ESTIMATE algorithm (Chakraborty
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and Hossain, 2018). The ESTIMATE score is the comprehensive
parameter of the stromal and immune scores. Then, patients with
EAC were classified into ESTIMATE high and ESTIMATE low

groups according to the median of the ESTIMATE score. The
differently expressed genes (DEGs) were screened by the
weighted gene co-expression network analysis (WGCNA) with
the false discovery rate (FDR) ≤0.05 and log2 fold change
(log2FC)| >2.

To explore whether glycolysis affects tumor purity, we
performed gene set enrichment analysis (GSEA) between the
ESTIMATE high and ESTIMATE low groups. Five glycolysis-
related gene sets, namely, Hallmark, BioCarta, KEGG, GO,
and Reactome, were downloaded from the Molecular
Signatures Database (http://www.gsea-msigdb.org/gsea/msigdb)
and analyzed using the GSEA software (version 4.1.0). The
permutation number was set as 1,000 for every phenotype.
The gene sets were considered statistically significant when the
nominal (NOM) p-value ≤0.05, FDR ≤0.05, and normalized
enrichment score |(NES)| >1. Finally, the intersection genes
(IGs) from the WGCNA and GSEA gene sets were identified
for further analysis.

Gene Interaction Analysis and Enrichment
Analysis
Gene interaction analysis was performed through the “corrplot”
package in R software (version 4.1.0). Hub genes were screened
with “cytoHubba” in Cytoscape software.

The IGs based on TME and glycolysis were analyzed for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) by the “clusterProfiler” R package. GO analysis has three
functional parts, including the biology process (BP), cellular
component (CC), and molecular function (MF).

Next, we performed functional similarity analysis, which
was measured through the “GOSemSim” R package (Wang
et al., 2007). Functional similarity could be used for the
purpose of assessing the intimacy and relationship between
each gene and its partners by evaluating the function and
location.

Establishment of Prognostic Signatures
First, univariate Cox regression analysis was used to identify IGs
which were related to patients’ overall survival (OS). Then,
statistically significant IGs (p < 0.05) were enrolled into the
multivariate Cox regression. Finally, patients were divided into
high- and low-risk groups according to the median of the risk
score, in which the risk score was calculated as follows:
risk score � ∑  j

n�1 Coefj pXj, with Coef j indicating the
coefficient and Xj representing the relative expression levels of
each IG standardized by the z-score.

TME and Gene Mutation
Next, we selected the prognostic glycolysis-related genes and hub
genes to investigate their relations with IICs between the two
groups through single-sample gene set enrichment analysis
(ssGSEA) using the “GSVA” R package. The effects of OGG
on immune cells were assessed using the linear regression.

To analyze why glycolysis affects TME, we calculated the
glycolytic gene mutation frequency, variant classification,
variant type, and single nucleotide variants (SNVs) between
the ESTIMATE high and ESTIMATE low groups. Additionally,
to fully understand the role of gene mutation in TME, we
performed tumor mutation burden (TMB) analyses and
explored their relationships with IICs through the simple
nucleotide variation data from TCGA and cBioPortal online
databases (http://www.cbioportal.org/).

Drug Sensitivity Analysis and
Immunotherapy Response
The drug sensitivity of each patient with EAC was predicted by
the Genomics of Drug Sensitivity in Cancer database (GDSC;
https://www.cancerrxgene.org/). The half-maximal inhibitory
concentration (IC50) was calculated through the “pRRophetic”
R package, and the IC50 differences between the high- and low-
risk groups were compared (Geeleher et al., 2014).

The response to immunotherapy was estimated using the
Tumor Immune Dysfunction and Exclusion website (TIDE;
http://tide.dfci.harvard.edu/login/). The TIDE and PDL-1
scores were compared between the high- and low-risk groups.

External Cohort Validation
The impacts of glycolysis on TME in EAC were validated through
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/gds/). The study was considered eligible for
external cohort validation according to the following criteria:
1) studies with Homo sapiens samples and 2) studies with a
sample number more than 50, and 3) studies with detailed
experiment information and complete expression profiles. The
primary goal of validation was to confirm whether the
ESTIMATE algorithm method is suitable for patients with
EAC, and the secondary goals were to determine whether
glycolysis could influence the components of the
microenvironment and affect drug sensitivity. The overall
design of this study is shown in Figure 1.

Statistical Analysis
All statistical analyses were performed by the R software (version
4.1.0). The DEG analysis between the ESTIMATE high and
ESTIMATE low groups was carried out by applying the
unpaired t-test. Cox regression analysis was used to determine
the prognostic factors. Kaplan–Meier (K-M) curves and log-rank
tests were utilized to assess the prognostic outcome. The
Mann–Whitney U test was used to compare the immune
score, immune cell infiltrations, and immune signatures.
Spearman’s correlation analysis was used to evaluate the
interactions. p < 0.05 was considered significant.

RESULTS

Identification of Tumor Purity andGlycolysis
A total of 87 EAC samples and gene expression data were
available from the TCGA database, including 9 normal and 78
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FIGURE 1 | Schematic of the study design. A total of 78 EAC patients were recruited for further study. TME is mainly composed of tumor cells, stromal cells, and
immune cells. With higher stromal and immune cells, the tumor purity is low.

FIGURE 2 | Identification of the intersection genes. (A) 78 EAC sample clustering. All samples were clustered, and difference analysis was performed. (B) Gene
dendrogram and dynamic tree cuts. Each color represents a module, and genes with similar expression patterns will be classified into the samemodule. (C)Module-trait
relationships. Every row represents a module eigengene (ME). The red module corresponds to the significant positive correlation, and blue corresponds to the significant
negative correlation. (D) GO glycolytic process gene set. (E) Reactome glycolysis gene set. (F) Hallmark glycolysis gene set. (G) Biocarta glycolysis pathway. (H)
KEGG glycolysis gluconeogenesis. (I) Venn diagram shows the 34 IGs (intersection genes from WGCNA and GSEA). L: ESTIMATE low; H: ESTIMATE high.
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EAC cases. Based on the ESTIMATE algorithm, the stromal score
ranged from –2,315.387 to 1903.167 and the immune score
ranged from –1,224.491 to 3,362.338. The range of the
comprehensive ESTIMATE score was from –3,375.446 to
5,265.505 (Supplementary Table S1). According to the
median of the ESTIMATE score, 78 patients with EAC were
categorized into the ESTIMATE high and ESTIMATE low groups
(39 cases, respectively). There are 8,135 DEGs between two
groups according to WGCNA results (Figures 2A–C)
(Supplementary Table S2).

Then, GSEA was conducted to assess the glycolytic differences
between the ESTIMATE high and ESTIMATE low groups. The
results showed that the GO glycolytic process (NES � −1.54,
NOM p � 0.050, FDR � 0.050) and Reactome glycolysis (NES �
−1.83, NOM p � 0.008, FDR � 0.008) were significantly enriched
in ESTIMATE high group patients (Figures 2D,E). There were no
significant enrichments in the Hallmark (NES � −1.44, NOM p �
0.067, FDR � 0.067), BioCarta (NES � −1.23, NOM p � 0.227,
FDR � 0.227), and KEGG (NES � −1.20, NOM p � 0.228, FDR �
0.228) pathways (Figures 2F–H). There were 117 DEGs between
GO and Reactome glycolysis gene sets. After screening, a total of
34 IGs were selected from WGCNA and GSEA for further

analysis (Table 1) (Figure 2I). The details about IGs in each
EAC sample are shown in Supplementary Table S3.

Gene Interaction Networks and Functional
Enrichment Analysis
To explore the correlation between the IGs, we calculated their
coefficients. Gene interaction analysis showed that GAPDH and
TPI1 had the strongest positive correlation (coef � 0.81), whereas
PRKACB and RAE1 had the strongest negative correlation (coef
� −0.48) (Figure 3A). To explore the IG functions, we performed
GO and KEGG enrichment analyses using R packages. GO results
showed that IGs were significantly enriched in the glycolytic and
ATP/ADP metabolic pathways. In addition, nuclear-, glucose-,
and carbohydrate-related activities were closely associated with
CC and MF terms (Figure 3B). KEGG results demonstrated that
carbon, gluconeogenesis, and HIF−1 signaling pathways were
enriched (Figure 3C).

Based on the GO analysis and semantic similarities, we ranked
the genes by average functional similarities between IGs and their
partners, with the cutoff value at 0.75. The box plots and
raincloud plots are demonstrated in Figures 3D,E. From the
pictures, we can clearly see that NUP43, NUP37, and DDIT4 had
strong similarities and weak correlation with BPGM.

Prognostic IG Signatures
Univariate Cox regression analysis revealed that NUP88, RAE1,
SEH1L, NUP37, and NUP43 were significantly associated with
patients’ OS (all p < 0.05) (Figure 4A). After multivariate Cox
regression analysis, three IGs (NUP88, SEH1L, and NUP37) were
used to develop the risk score based on the following formula: risk
score � 0.637 * expression of NUP88 + 0.494 * expression of
SEH1L + 0.657 * expression of NUP37. Also, the three genes were
all risk genes with hazard ratio (HR) > 1. A total of 78 patients
with EAC were classified into low- and high-risk groups
according to the median risk score (n � 39). The K-M survival
plot showed that patients in the low-risk group had significant
probabilities to survive longer than those in the high-risk group
(median time � 1.75 vs 0.745 years, p < 0.001) (Figure 4B).

In order to evaluate the prognostic values of clinical
information in OS, we integrated the patients’ clinical features
with IGs. Univariate Cox regression analysis showed that the
tumor stage (HR � 3.308, p < 0.001) and risk score (HR � 1.954,
p � 0.013) were significantly associated with OS (Figure 4C).
Multivariate Cox regression analysis results demonstrated that
tumor stage (HR � 7.971, p < 0.001), metastasis (HR � 0.167, p �
0.033), and risk score (HR � 2.822, p � 0.002) were independent
risk factors for OS (Figure 4D). In addition, the distributions of
each patient and their survival statuses are shown in Figures
4E–G. We can clearly see that patients in the low-risk group had a
better prognosis than those in the high-risk group.

Effect of Glycolytic Genes on IICs
We selected three prognostic genes and five hub genes (NUP88,
SEH1L, NUP37, GCK, NUP62, NUP155, NUP205, and NUP214)
to assess whether glycolysis affects the IICs in TME. The results
demonstrated that NUP62, NUP155, NUP205, and SEH1L had

TABLE 1 | Significant IG expression levels in the ESTIMATE low and ESTIMATE high

tissues.

Gene ESTIMATE low ESTIMATE high logFC p FDR

GAPDH 693.986 509.158 −0.447 0.002 0.011
NUP133 9.617 8.402 −0.195 0.035 0.118
GCK 0.077 0.232 1.595 0.000 0.001
HTR2A 0.037 0.323 3.116 0.000 0.000
NUP205 15.387 12.149 −0.341 0.037 0.122
NUP43 11.641 9.217 −0.337 0.000 0.004
SEH1L 7.027 5.367 −0.389 0.023 0.086
INSR 11.440 15.775 0.464 0.003 0.017
BPGM 5.508 7.941 0.528 0.000 0.000
PRKACB 4.543 6.572 0.533 0.010 0.045
CBFA2T3 0.390 1.505 1.947 0.000 0.000
NUP214 9.564 8.187 −0.224 0.015 0.062
NDC1 16.439 12.273 −0.422 0.001 0.006
HK3 0.409 1.216 1.572 0.000 0.000
NUP62 14.909 12.765 −0.224 0.027 0.096
EIF6 105.279 83.551 −0.333 0.022 0.084
PRXL2C 4.076 5.085 0.319 0.020 0.080
DDIT4L 0.098 0.215 1.134 0.000 0.001
ZBTB20 1.195 1.939 0.699 0.001 0.006
ENO1 227.228 180.617 −0.331 0.006 0.031
MLXIPL 7.779 4.578 −0.765 0.001 0.005
PRKAG1 9.508 8.284 −0.199 0.022 0.084
P2RX7 0.417 1.300 1.641 0.000 0.000
RAE1 10.815 8.043 −0.427 0.002 0.012
GPI 48.943 35.859 −0.449 0.005 0.026
NUP188 19.729 17.185 −0.199 0.037 0.122
HIF1A 49.095 66.493 0.438 0.002 0.014
HKDC1 18.783 12.578 −0.579 0.039 0.127
NUP37 6.737 5.076 −0.408 0.002 0.013
HK1 16.837 20.341 0.273 0.045 0.140
IGF1 0.090 0.414 2.196 0.000 0.000
TPI1 142.420 116.178 −0.294 0.025 0.091
ENO3 1.130 0.929 −0.281 0.022 0.084
NUP88 10.051 8.744 −0.201 0.045 0.140

LogFC: log fold change; FDR: false discovery rate.
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FIGURE 3 | Gene interaction analysis and functional enrichment. (A) Gene interaction network. Red represents positive correlation, while negative correlation is
represented in green. (B)GO enrichment analysis, including the biological process (BP), cellular component (CC), and molecular function (MF). Every term shows top 10
pathways. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the IGs. IG network analysis. (D) Summary of OGG similarities. The boxes
indicated the middle 50% of the similarities, and the upper and lower boundaries show the 75th and 25th percentiles, respectively. (E) Raincloud plots of OGG.
Data are expressed as the mean and standard error. Each dot represents the single gene. The dashed line represents the cutoff value (0.75).
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significant impacts on the IIC expression level, especially on the
T-cells and mast cells (all p < 0.05). The details are shown in
Figure 5A.

To fully explore the relationships between these genes and
IICs, we performed Spearman correlation analysis by using the
“Limma” package. The results showed that NUP62 was strongly
associated with T-cells, dendritic cells, and antigen-presenting
cells (all p < 0.05) (Figure 5B). NUP155 had a close relationship
with T-cells, mast cells, and MHC class I activity (all p < 0.05)
(Figure 5C). NUP205 showed close relationships with T-cells,
mast cells, and type I IFN response (all p < 0.05) (Figure 5D).
SEH1L exhibited significant associations with dendritic cells,
antigen-presenting cells, and chemokine receptors (CCR) (all
p < 0.05) (Figure 5E). Collectively, these findings suggested
that the IGs had profound effects on immune cells and
immunological functions.

Genetic Mutation and the Tumor
Microenvironment
Gene mutations were analyzed for further investigation into the
mechanisms that TME is affected by gene alteration. The genetic
mutations are significantly different between the ESTIMATE high

and ESTIMATE low groups. In the ESTIMATE high group, the five
most common mutant genes were TP53, TTN, HMCN1,
DNAH5, and SYNE1, and the most common mutational type
was missense mutation (Figures 6A,C). In the ESTIMATE low

group, the most common mutant genes were TP53, TTN,
MUC16, SYNE1, and PCLO. The most common mutational
type was also missense mutation (Figures 6B,F). The
frequencies of missense mutation were significantly lower than
that in the ESTIMATE high group, indicating that the glycolytic
level and tumor purity were different from those of the
ESTIMATE high group (Figures 6A,B). Single-nucleotide

polymorphism (SNP) had the highest frequency in the variant
type (Figures 6D,G). G > A was the most frequent type in the
SNV class (Figures 6E,H). The results imply that these mutant
genes drive a higher glycolytic level, consequently changing the
tumor purity in the microenvironment.

To broaden the understanding of the glycolytic gene
mutations, the cBioPortal database was applied to validate
these findings. We selected the most common glycolytic genes
(TP53, TTN, HMCN1, DNAH5, SYNE1, MUC16, and PCLO) for
further verification. Consistent with the above findings, the
results from the cBioPortal database showed that TP53, TTN,
and MUC16 possessed the highest mutation frequencies (87, 42,
and 26%, respectively), and missense mutation was the
commonest type (Figure 7).

Tumor Mutation Burden Analysis and
Immunotherapy Response
TMB refers to the total number of mutations per mega base in
tumor tissues. By analyzing the SNP data downloaded from
TCGA, we calculated the TMB frequency in each patient with
EAC. The range of TMB is from 0.053 to 41.053 in EAC.
Moreover, we further analyzed the effect of TMB on survival
in patients with EAC. A total of 78 patients were classified into
high- and low-TMB groups according to the median TMB. As
shown in the K-M curves, patients in the high-TMB group had
significantly higher mortality than those in the low-TMB group
(p � 0.05) (Figure 8A). To exhibit the relationships between
TMB, glycolysis, and TME (ESTIMATE score), we applied the
Sankey diagram to visualize their correlations with the
“ggalluvial” package in R. The result is shown in Figure 8B.

Low TMB usually implies poor response for immunotherapy
(Chan et al., 2019). To explore whether TMB will influence the
immunotherapy response, we compared the PDL-1 and TIDE

FIGURE 4 | Prognostic signatures of OS in EAC patients. (A) Forest plot of univariate Cox regression analysis based on IGs. (B) K-M survival plot of high- and low-
risk score patients. (C) Forest plot of univariate Cox regression analysis based on the clinical information and risk score. (D) Forest plot of multivariate Cox regression
analysis based on the clinical information and risk score. (E) Heatmap of NUP88, NUP37, and SEH1L in EAC patients. Green represents low gene expression, and red
represents high expression. (F) Risk score curve of high- and low-risk score patients. The dotted line represents every individual, and patients are categorized into
low-risk and high-risk groups at the inflection point. (G) Survival status and time distributed by the risk score. The red dot represents the dead, and blue represents the
living. With an increase in time, more and more patients died. T: tumor; M: metastasis; N: lymph node.
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scores between high- and low-TMB groups. As a result, patients
in the high-TMB group significantly responded to anti–PDL-1
therapy (p � 0.040) (Figure 8C). In Figure 8D, patients with high
TMB had a higher TIDE score than those with low TMB (p �
0.000). In addition, the correlations between the immune
checkpoints are also explored in Figure 8E.

Drug Sensitivity Analysis
We compared the IC50 differences of chemotherapeutic and
targeted drugs between high- and low-risk score groups,

including bexarotene (Figure 9A), camptothecin (Figure 9B),
gemcitabine (Figure 9C), imatinib (Figure 9D), methotrexate
(Figure 9E), and vorinostat (Figure 9F). The results
demonstrated that there were higher IC50 levels of bexarotene
and imatinib in the high-risk score group, which indicated that
patients with a low-risk score were more sensitive to the two
drugs. Oppositely, the IC50 levels of camptothecin, gemcitabine,
methotrexate, and vorinostat were higher in the low-risk score
group, implying that patients in the high-risk score group were
more sensitive to the four drugs.

FIGURE 5 | Analysis of glycolytic gene effects on immune signatures. (A) Heatmap demonstrating the correlation between 8 genes and the ssGSEA scores of 29
immune signatures. (B) NUP62 and immune signatures. (C) NUP155 and immune signatures. (D) NUP205 and immune signatures. (E) SEH1L and immune signatures.
Spearman’s correlation analysis was used to evaluate the relations with p < 0.05.
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Validation of Glycolysis and Its Impact
on TME
For external cohort validation, GSE12898 was employed, which
consisted of 75 EAC samples. Consistent with the classification
result of the ESTIMATE algorithm in TCGA, this method
successfully divided 75 patients with EAC into the ESTIMATE
high and ESTIMATE low groups (n � 38 and 37, respectively).
There were 3,428 genes between the two groups, including 52
significantly different glycolysis-related genes (Supplementary
Table S4). The correlation analysis showed that 28 glycolytic
genes had significant impacts on immune cells in the
microenvironment, and the majority were B-cell and T-cell
subtypes. The details are shown in Table 2.

Furthermore, the drug sensitivities were also analyzed between
the ESTIMATE high and ESTIMATE low groups. The results
showed that the IC50 level of bexarotene (Figure 10A) was
higher in the ESTIMATE high group. However, the IC50 levels
of camptothecin (Figure 10B), gemcitabine (Figure 10C), and
vorinostat (Figure 10F) were lower in the ESTIMATE high group,
implying that the patients in the ESTIMATE high group were
more sensitive to the four drugs. There were no significant
differences regarding IC50 in imatinib (Figure 10D) and

methotrexate (Figure 10E). Taken together, glycolysis directly
changed TME and indirectly influenced drug sensitivity.

DISCUSSION

The abilities of cancer cells to switch metabolisms and evade the
immunity system in TME are well-documented characteristics in
tumors. Elevated glycolysis is commonly observed in cancer
progression and is associated with significant disruptions of a
previous finely tuned microenvironment (Chang et al., 2015;
Jiang et al., 2019a). As the tumors develop, they constantly
interact with neighboring cells, such as stromal cells and
immune cells, under the driver of genetic mutations, thus
altering their phenotypes and functions (Butturini et al., 2019).
In the context of these intricate crosstalks betweenmalignant cells
and non-malignant cells, the impacts of increased glycolysis and a
dysregulated TME on immune response and effective therapy are
of vital importance (Roma-Rodrigues et al., 2019). Although the
research studies focusing on the tumor glycolysis and TME have
exploded exponentially in recent years, the underlying
mechanisms of how they act both independently and

FIGURE 6 | Landscape of gene mutations in EAC patients. (A)Waterfall plot of mutational genes in the ESTIMATE high group. (B)Waterfall plot of mutational genes
in the ESTIMATE low group. The left panel shows the gene mutational frequencies, and the right panel represents the mutational type. (C) Variant classification and
frequency of gene mutations in the ESTIMATE high group. (D) Variant type in the ESTIMATE high group. (E) Frequency of SNV classes in the ESTIMATE high group. (F)
Variant classification and frequency of gene mutations in the ESTIMATE low group. (G) Variant type in the ESTIMATE low group. (H) Frequency of SNV classes in the
ESTIMATE low group.
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FIGURE 7 |Overview of the seven most commonmutant genes in EAC patients. (A) Proportion and mutation type of genes. Different color bars represent different
mutational types. (B) TP53-specific mutation site. (C) TTN-specific mutation site. (D) HMCN1-specific mutation site. (E) DNAH5-specific mutation site. (F) SYNE1-
specific mutation site. (G) MUC16-specific mutation site. (H) PCLO-specific mutation site.
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synergistically still remain elusive. In this study, we explored
systematically the links between glycolysis and TME in patients
with EAC as well as the relations with genetic mutations. In the
present study, we found that the glycolytic level was higher in the
ESTIMATE high group, reasonably reflecting the fact that
glycolysis may change the tumor purity. By constructing the
predictive survival model based on IG signatures, we discovered
that three genes (NUP88, SEH1L, and NUP37) may serve as
independent prognostic biomarkers for OS in EAC. In addition,
we revealed that gene mutation types and frequencies were
distinct between the different ESTIMATE score groups,
lending us a hypothesis that genetic alteration may drive TME

changes. In addition, our data suggested that glycolysis could
influence drug sensitivity and immunotherapeutic response.

Several studies have confirmed the close relationships between
glycolysis and EAC (Lynam-Lennon et al., 2014; Harada et al.,
2020; Kang et al., 2020). Consistent with these findings, our
functional enrichment analysis results showed that IGs were
strongly enriched in the glycolytic processes, ATP generation,
the HIF−1 signal pathway, RNA activities, and so on. The
presence of aerobic glycolysis under normal conditions
efficiently promotes tumor cell growth by the following
mechanisms: 1) the rate of glycolysis is accelerated at
100 times compared to oxidative phosphorylation to

FIGURE 8 | TMB and immunotherapy response. (A) K-M survival plot. Patients with low TMB have significant probabilities to survive longer than those with high
TMB. (B) Sankey diagram showing the relations between TMB, glycolysis, and the ESTIMATE score. (C) PD-L1 score comparison between high- and low-TMB groups.
(D) TIDE algorithm analysis showed that patients with high TMB had better immunotherapeutic response than those with low TMB. (E) Correlations plots between the
immune checkpoints.
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compensate for the mathematical disadvantage in terms of net
ATP production (glucose oxidative phosphorylation although
mitochondria generate 18 times ATP compared to glycolysis)
(Pfeiffer et al., 2001); 2) glycolysis provides sufficient and essential
intermediates, such as NADPH and ribose-5-phosphate, which
are indispensable for biosynthesis to meet avid proliferative
requirements (Boroughs and DeBerardinis, 2015); 3) lactate,
the obligatory product derived from glycolysis, could activate
the HIF−1 signal pathway to induce vascular endothelial growth
factor (VEGF) expression to stimulate angiogenesis in the
microenvironment (Sonveaux et al., 2012). In addition, lactate
is crucial to reorganize the tumor physical architectures in TME,
and the accumulation of extracellular lactate is detrimental for
normal healthy cells, such as immune cells (Romero-Garcia et al.,
2016; Cassim and Pouyssegur, 2019). The study about how RNA
interacts precisely with glycolysis is still in its infancy. However,
Hua Q et al. gave us a hint that long non-coding RNA may
promote glycolysis by sponging miRNA (Hua et al., 2019). Hence,
it is reasonable to speculate that certain mutational genes
regulated and modified by RNA may be involved in the
glycolysis in EAC (Hochwald and Zhang, 2017).

The prognostic signature of glycolysis in EAC was
established based on three genes (NUP88, SEH1L, and
NUP37). NUP88, located at chromosome 17p13, encodes
Nup88 protein (Zhao et al., 2012). Nup88 is a nucleoporin
comprising nuclear pore complexes (NPCs) and plays critical
roles in maintaining the spindle stability and preventing
aneuploidy formation during mitosis (Hashizume et al.,

2010). Unanimously, the GO results in our study also
illustrated that glycolytic genes had intimacy with the
nuclear pore, emphasizing the importance of nuclear
proteins in glycolysis. The Nup88 overexpression is highly
associated with tumor development and decreased survival,
suggesting that NUP88 acts as an oncogene (Martínez et al.,
1999; Naylor et al., 2016). In line with these studies, our
results also proved that NUP88 was a risk factor for OS (HR >
1). Another prognostic gene is NUP37, which shares
similarities with NUP88 and is also a member of NPC. It
exerts primary functions of sustaining NPC integrity and
modulates the cell cycle (Chen et al., 2019). Previous studies
showed that the elevated expression of NUP37 is associated
with worsened survival rates in liver cancer (Uhlen et al.,
2017). In addition, a latest study by Huang L et al.
demonstrates that NUP37 silencing induces inhibition of
lung cancer cell proliferation (Huang et al., 2020). These
findings were in agreement with our results, pointing out that
NUP37 played an oncogenic role in OS (HR > 1).
Nonetheless, the function of NUP37 in EAC has never
been explored and needs further experiments to confirm
in vitro and in vivo. SEH1L, also known as Seh1, is a part
of NPC as well. However, the field is still in its infancy, and
only a handful of animal models have been developed to
investigate the role of SEH1L. Studies have shown that Seh1
could promote oligodendrocyte differentiation (Liu et al.,
2019; Raices and D’Angelo, 2019). However, little is known
about how it works in EAC. Undeniably, more research

FIGURE 9 | Drug sensitivity analysis in the TCGA database. Box plots demonstrate the estimated IC50 values of bexarotene (A), camptothecin (B), gemcitabine
(C), imatinib (D), methotrexate (E), and vorinostat (F). The lower the IC50 value, the higher is the sensitivity to the drug.
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studies are warranted to understand the specific effects of
SEH1L on EAC.

The notion that glycolysis has profound impacts on immune
cells in TME is well recognized. The investigation linking
metabolic demands and immune cells was first documented in
neutrophils and macrophages (Alonso and Nungester, 1956;
Newsholme et al., 1986). Immune cells hold a resemblance
with tumor cells to engage glycolysis, which require rapid
energy sources to produce immune-mediators for migration
and phagocytosis. Our study demonstrated that NUP88 had
significant correlation with B-cells and mast cells (all p < 0.05)
and NUP37 had positive correlation with T-cells and negative
correlation with dendritic cells (DCs) and macrophages (all p <
0.05). These findings enforced the concept that glycolysis
contributes to dramatic alterations of immune cells in TME,
hence influencing the immune response and immune-based
treatments. Glycolytic tumor cells compete with T-cells for
glucose and impair T-cell activation (Peng et al., 2016). In
addition, IFN-γ secreted by Th1 cells is sensitive and is
unstable to lactate. Noteworthily, this could polarize the
T-cells toward differentiating into the Th2 subpopulation that
favors tumor progression by inhibiting the antitumor effect of M1
macrophages (Kareva and Hahnfeldt, 2013). Paradoxically, direct
evidence from in vivo experiments supports that glycolysis could
promote Th1 cell differentiation through an epigenetic
mechanism (Peng et al., 2016). This calls for further studies

aiming to shed light on the characteristics of glycolysis on T-cells.
The divergent effects of glycolysis on DC are also observed.
Glycolysis produces excessive lactate and lowers the pH in
TME. Lactate together with decreased pH suppresses DC
differentiation and consequently abolishes the antigen-
presenting functions to T-cells (Harmon et al., 2020).
However, inhibition of glycolysis also blocks DC maturation
through HIF−1α. This highlights the multiple roles of DC in
glycolysis and needs to be carefully interpreted in a context-
dependent manner.

Gene mutations facilitate tumor cell metabolic plasticity to
create favorable microenvironments beneficial to uncontrolled
proliferation. Deepening our knowledge about the differences of
gene alterations between different TMEs may allow for the
development of therapeutic strategies. Spurred by this
promising target, we explored upon this issue and showed that
ESTIMATE high and ESTIMATE low groups manifested different
gene mutation profiles, in which TP53 and TTN were the most
prevalent mutant genes. Moreover, the most common type is
missense mutation. Mutant TP53 endows tumor cells with
adaptabilities to cope with the harsh microenvironment by
providing adequate nutrients, thereby escaping from antitumor
immune attack. Experimental mice models in the study by Basu S
et al. testified that mutant TP53 could rewire the tumor glycolytic
metabolism and enhance metastasis in TME (Basu et al., 2018).
Mutant TP53 has additional impacts on TME beyond changing

TABLE 2 | Impacts of glycolytic genes on immune cells in TME.

Type B n B m M2 Mono CD4 a CD4 r CD4 n Tfh NK r Neu DC a γδT

ADPGK 0.016* 0.490 0.037* 0.199 0.482 0.728 0.922 0.881 0.336 0.934 0.892 0.768
ALG1 0.037* 0.119 0.254 0.723 0.238 0.376 0.718 0.385 0.762 0.269 0.765 0.670
CACNA1H 0.457 0.535 0.031* 0.805 0.157 0.166 0.372 0.673 0.846 0.676 0.366 0.409
CHST12 0.230 0.739 0.201 0.010* 0.567 0.367 0.713 0.927 0.250 0.159 0.390 0.713
COL5A1 0.080 0.637 0.024* 0.018* 0.129 0.437 0.718 0.653 0.680 0.472 0.514 0.158
CXCR4 0.067 0.856 0.013* 0.339 0.298 0.769 0.718 0.881 0.260 0.678 0.828 0.768
DCN 0.037* 0.446 0.330 0.076 0.312 0.538 0.870 0.976 0.196 0.507 0.532 0.450
DPYSL4 0.259 0.488 0.556 0.527 0.009* 0.727 0.137 0.976 0.361 0.738 0.702 0.120
DSC2 0.123 0.913 0.889 0.178 0.734 0.767 0.197 0.047* 0.719 0.330 0.460 0.155
FUT8 0.007* 0.490 0.126 0.287 0.555 0.320 0.922 0.590 0.196 0.934 0.765 0.974
GALK2 0.012* 0.075 0.303 0.891 0.216 0.689 0.922 0.590 0.492 0.580 0.807 0.870
GPC3 0.039* 0.053 0.300 0.094 0.713 0.267 0.869 0.470 0.455 0.559 1.000 0.120
GPC4 0.016* 0.119 0.277 0.643 0.312 0.347 0.718 0.385 0.237 0.934 0.496 0.577
GUSB 0.132 0.537 0.079 0.643 0.238 0.470 0.158 0.905 0.045* 0.619 0.683 0.224
HSPA5 0.037* 0.637 0.070 0.219 0.978 0.728 0.718 1.000 0.336 0.580 0.807 0.870
KDELR3 0.007* 0.490 0.126 0.287 0.555 0.320 0.922 0.590 0.196 0.934 0.765 0.974
NDUFV3 0.642 0.537 0.277 0.339 0.030* 0.574 0.158 0.255 0.051 0.333 0.978 0.818
NT5E 0.396 0.690 0.015* 0.076 0.555 0.689 0.533 0.491 0.309 0.176 0.957 0.718
NUP210 0.659 0.742 0.110 0.051 0.224 0.979 0.197 0.195 0.489 0.019* 0.956 0.974
PFKFB3 0.508 0.116 0.123 0.564 1.000 0.025* 0.447 0.880 0.934 1.000 0.035* 0.716
PLOD1 0.539 0.970 0.094 0.522 0.197 0.892 0.366 0.329 0.978 0.866 0.868 0.048*
PLOD2 0.870 0.046* 0.597 0.429 0.757 0.437 0.039* 0.072 0.309 0.825 0.870 0.158
SDC2 0.013* 0.361 0.153 0.197 0.224 0.936 0.372 0.833 0.978 0.867 0.622 0.120
STC1 0.338 0.690 0.079 0.604 0.933 0.503 0.224 0.454 0.022* 0.868 0.663 0.670
TGFBI 0.639 0.535 0.053 0.045* 0.045* 0.851 0.372 0.292 0.306 0.303 0.239 0.530
TPST1 0.934 0.635 0.077 0.011* 1.000 0.687 0.574 0.382 0.391 0.182 0.239 0.221
VCAN 0.218 0.856 0.021* 0.067 0.072 0.376 0.718 0.436 0.284 0.376 0.913 0.251
ZBTB20 0.119 0.537 0.172 0.643 0.086 0.810 0.158 0.811 0.039 0.619 0.978 0.577

B n: naïve B-cells; B m: memory B-cells; M2: M2 macrophages; Mono: monocytes; CD4 a: memory-activated CD4 T-cells; CD4 r: memory resting CD4 T-cells; CD4 n: naïve CD4 T-cells;
Tfh: follicular helper T-cells; NK r: resting NK cells; Neu: neutrophils; DC a: activated dendritic cells; cδT: gamma delta T-cells.
*: p<0.05.
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tumor metabolic phenotypes. Myriad studies have indicated that
mutant TP53 can remodel TME by several mechanisms. First,
mutant TP53 could induce neo-angiogenesis by stimulating
VEGF secretion (Kieser et al., 1994). Second, mutant TP53
could regulate chemokines that are involved in the
homeostatic microenvironment (Yeudall et al., 2012). Last but
not the least, mutant TP53 could reprogram the infiltrating
immune cells and reshape the microenvironment (Cooks et al.,
2018). TTN is located on chromosome 2q31, consisting of 364
exons, and it is the longest described coding gene (Chauveau
et al., 2014). TTN ranks the third most abundant protein in both
cardiac and skeletal muscle tissues, followed by actin and myosin
(Chauveau et al., 2014). However, its mutation is not a rare entity
in various cancers. Consistent with prior investigation by Cheng
X et al., we also found that TTN missense mutation was a rather
frequent type (Cheng et al., 2019). In addition, TTN and TP53 co-
mutation is often accompanied during tumorigenesis and may
serve as a prognostic biomarker either alone or in combination
[61-63].

Current guidelines recommend adjuvant chemotherapy
for patients at an advanced stage. However, how to select
suitable patients who will benefit more from the
chemotherapeutic regime is the prior concern. Our data
demonstrated that patients with a high-risk score were
more sensitive to camptothecin, gemcitabine,
methotrexate, and vorinostat, suggesting that targeting
glycolysis may alleviate the chemotherapeutic resistance.
Despite immunotherapy bringing about a breakthrough for

cancer patients, only a minority of patients could reap
survival benefits actually. The TMB analysis in our study
will accurately and effectively identify which patients will
respond to immunotherapy in patients with EAC.
Collectively, the proposed risk score system in our study
has potency to help clinicians devise an individualized
treatment strategy.

The strength of the present study is such that we performed a
systematic analysis about glycolysis and TME in EAC for the first
time based on the National Public Database, which provides
robust data and statistical support. This study draws a close link
between tumor glycolysis and the microenvironment and
tentatively explains the mechanisms from the viewpoint of
genetic alteration. Meanwhile, there are several limitations.
First of all, TME is a complex mixture of parenchymal cells,
the extracellular matrix, and numerous cytokines except for
tumor and immune cells. These are not available from the
public database and may greatly affect the analysis. Second,
the results are not validated in in vitro and in vivo
experiments. Last, the methods proposed in this study may
not be applicable to all tumors as a result of heterogeneity.
Notwithstanding its limitations, our study does provide an
overview of glycolysis and TME in EAC, and this lays the
foundation for further basic research in the area of
metabolism and the microenvironment.

In summary, we found that glycolysis could change the
microenvironment under the driver of genetic mutation and
influence the immunotherapy in EAC. New efforts target that

FIGURE 10 | Validation of drug sensitivity analysis in the GEO database. Box plots demonstrate the estimated IC50 values of bexarotene (A), camptothecin (B),
gemcitabine (C), imatinib (D), methotrexate (E), and vorinostat (F). The lower the IC50 value, the higher is the sensitivity to the drug.
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EAC should incorporate the idea that the glycolytic metabolism
could reshape TME. Further studies are necessary to confirm our
conclusion.
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APPENDIX A:

TABLE A1 | R Glycolytic Effects in Other Cancers

Glycolysis factors Tumor Glycolytic effects

GRG Bladder cancer Influences cell proliferation and cycle
GRG Breast cancer Pro-tumor immunity
glycolysis Cervical cancer Indirect effect
SPAG4, ENO3, et al Colon adenocarcinoma Double effects on prognosis
GRG Colorectal cancer Double effects on prognosis
STC1, CLDN9, et al Gastric cancer Influence the microenvironment and prognosis
GGESS Glioblastoma Poor prognosis and poor chemotherapy
GRGPs Hepatocellular carcinoma Double effects on prognosis and treatments
GRG HNSCC Double effects on prognosis and treatments
HMMR, GPC1, et al Lung cancer Poor prognosis and metastasis
GRG Ovarian cancer Influence the microenvironment and therapy
glycolysis Pancreatic cancer Promote progression and reduce drug sensitivity
GRG Prostate cancer Cell migration and invasion inhibition
CD44, PLOD1, et al Renal cell carcinoma Tumor-promoting
GRG Uveal melanoma Influence the microenvironment, prognosis, and therapy

GRG: glycolysis-related gene; GGESS: glycolytic gene expression signature score; GRGPs: glycolysis-related gene pairs; HNSCC: head and neck squamous cell carcinoma.
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Association of a Novel Prognosis
Model with Tumor Mutation Burden
and Tumor-Infiltrating Immune Cells in
Thyroid Carcinoma
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Although immunotherapy has recently demonstrated a substantial promise in treating
advanced thyroid carcinoma (THCA), it is not appropriate for all THCA patients. As a result,
this study aims to identify biomarkers for predicting immunotherapy efficacy and prognosis
in THCA patients based on a constructed prognostic model. The transcriptomic and
corresponding clinical data of THCA patients were obtained from the Cancer Genome
Atlas (TCGA) database. We identified differentially expressed genes (DEGs) between
THCA and normal samples and performed an intersection analysis of DEGs with immune-
related genes (IRGs) downloaded from the ImmPort database. Functional enrichment
analysis was performed on the chosen immune-related DEGs. Subsequently, Cox and
LASSO regression analyses were conducted to obtain three hub immune-related DEGs,
including PPBP, SEMA6B, and GCGR. Following that, a prognostic risk model was
established and validated based on PPBP, SEMA6B, and GCGR genes to predict
immunotherapy efficacy and THCA prognosis. Finally, we investigated the association
between the constructed risk model and tumor mutational burden (TMB), abundance of
tumor-infiltrating immune cells (TICs) as well as immunotherapeutic targets (PDL-1, PD-1,
and CTLA4) in THCA. THCA patients in the high-risk score (RS) group showed higher TMB
levels and worse prognosis than the low RS group. Patients in the high-RS group had
higher proportions of monocytes, M2macrophages, and activated dendritic cells, whereas
those in the low-RS group exhibited higher numbers of M1 macrophages and dendritic
resting cells. Our data implied that the constructed THCA prognostic model was sound
and we concluded that the THCA patients having high TMB and low PD-L1 expression
levels might respond poorly to immunotherapy. Taken together, we constructed a novel
prognostic model for THCA patients to predict their prognosis and immunotherapy
efficacy, providing a viable option for the future management of THCA patients in the clinic.
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INTRODUCTION

Thyroid carcinoma (THCA) is the fifth most prevalent
malignancy affecting women (Zhang et al., 2019b) and a
major cause of annual endocrine malignancies death
(Aboelnaga and Ahmed., 2015). Over the past decades, the
incidence of THCA has been escalating worldwide (Cabanillas
et al., 2016). THCA is generally classified into four pathological
subtypes: papillary thyroid cancer (PTC, 80–85%), follicular
thyroid cancer (FTC, 10–15%), medullary thyroid carcinoma
(MTC, less than 2%) and anaplastic thyroid carcinoma (ATC,
less than 2%) (Laha et al., 2020). Although most THCA is well-
differentiated PTCwith a 10-years survival rate of over 95%, some
variants of PTC may demonstrate increased aggressive behavior,
particularly in older patients, contributing to significant mortality
(Nath and Erickson., 2018). Therefore, surgical resection and
radioiodine (RAI) therapy were considered standard treatments
for most THCA patients. Nonetheless, survival rates for advanced
thyroid cancer patients remain low. For these reasons, novel
therapeutic strategies, such as immunotherapies and targeted
molecular therapy, are under investigation for treating
advanced or metastatic THCA patients.

In recent years, immune checkpoint inhibitor (ICI) has
achieved remarkable progress in treating breast cancer (Santa-
Maria and Nanda., 2018), lung cancer (Anagnostou et al., 2017),
melanoma (Amaria et al., 2018; Barrios et al., 2020) and
squamous cell carcinoma of the head and neck (HNSCC)
(Ferris et al., 2016; Ferris et al., 2018). It has been shown that
numerous immune cells and their mediators exist in the tumor
microenvironment (TME) of THCA with various interactions
between them (Varricchi et al., 2019). In addition, it was
demonstrated that increased frequency of regulatory and PD-
1+ T cells was associated with the recurrent or aggressive PTC
(French et al., 2012), and that the frequency of PD-1+ T cells was
higher in patients with extranodal invasion than in those without
lymph nodes metastases, indicating that it may be associated with
the THCA prognosis. Furthermore, Gunda and his colleagues
have recently revealed that anti-PD-1/PD-L1 therapy could
beneficially modulate the immune microenvironment in
orthotopic ATC murine model while simultaneously
enhancing the efficacy of lenvatinib, a multi-targeted tyrosine
kinase inhibitor (Gunda et al., 2019). The efficacy of ICIs has also
yielded encouraging results in clinical trials, manifesting potent
antitumor effects and improved tolerability in advanced FTC
patients (Mehnert et al., 2019). However, the expensive cost of
ICIs, which averages around $150,000 per year (Oiseth and Aziz.,
2017), and their unpredictable efficacies (Giannone et al., 2020),
prelude their widespread clinical use. Considering these factors,
screening for appropriate molecular markers to improve
treatment precision is highly demanding.

Tumor mutational burden (TMB), or the number of
nonsynonymous mutations in a genomic region of somatic
cells, is a biomarker employed to predict immunotherapy
efficacy in various cancers (Samstein et al., 2019). As is widely
known, tumor-infiltrating immune cells (TICs), an essential
component of TME, are critical for in tumor initiation and
progression (Bissell and Hines., 2011). Furthermore, gene

locus mutations are observed in many histological subtypes of
THCA, such as anaplastic lymphoma kinase (ALK), neurotrophic
receptor tyrosine kinase 1 (NTRK1) genes rearrangements, BRAF
and GTPase RAS family genes (Bos, 1989; Nikiforov and
Nikiforova., 2011; Cancer Genome Atlas Research Network,
2014; Arndt et al., 2018; Varricchi et al., 2019). As high-
throughput sequencing advances, large-scale acquisition of
relevant cancer genomic data has become possible. However,
few studies have conducted in-depth investigations to evaluate
immunotherapy efficacy and prognosis in THCA.

Herein, based on Cancer Genome Atlas (TCGA) and ImmPort
databases, we screened immune-related differentially expressed
genes (IRDEGs), explored their functional enrichment, and
constructed a prognostic prediction model. Additionally, we
further investigated the association of TMB with immune
infiltration and prognosis in THCA.

MATERIALS AND METHODS

Flow Diagram of Analysis
We designed a flow chart of analysis for the construction,
validation and evaluation of the prognostic model in THCA.
The analysis process was performed strictly according to the flow
chart (Figure 1).

Data Downloading and Processing
We downloaded transcriptomic data with HTSeq-FPKM
workflow type from TCGA of THCA project database (https://
portal.gdc.cancer.gov/), including 510 tumor and 58 normal
samples. Besides, masked somatic mutation data processed by
VarScan software was also acquired from the GDC (Genomic
Data Commons) data portal of TCGA database. Next, we
downloaded clinical data of corresponding patients, including
their age, gender, tumor grade, tumor stage, survival time and
survival status.

Screening of Immune-Related Differentially
Expressed Genes
Firstly, differentially expressed genes (DEGs) between normal
and tumor tissues of THCA were analyzed using R software
“limma” package4, and the screening criteria were false discovery
rate (FDR) < 0.05 and |log2FC| > 1. Immune-related genes (IRGs)
were obtained from ImmPort database (http://www.immport.
org/) and then performed an intersection analysis on DEGs
and IRGs to identify IRDEGs. R “venn” package was used to
visualize to result of intersection analysis and R “pheatmap”
package was performed to manifest the expression levels of
IRDEGs of the THCA samples in the TCGA database.

Functional Enrichment Analysis
We used R package “org.Hs.eg.db” to obtain Entrez-ID of each
IRDEG, and then performed gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
on IRDEGs using “clusterProfiler,” “enrichplot,” and “ggplot2” R
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packages. p < 0.05 and q < 0.05 were utilized as statistical
significance thresholds.

Construction and Validation of a Prediction
Model
For cross-validation, we randomly divided all samples into two
groups with a 2:1 ratio using R package “caret”, referred to as the
training cohort and the test cohort, containing 2/3 and 1/3 of
THCA cases, respectively. First, we determined IRDEGs
associated with THCA survival in the training cohort using
univariate Cox regression analysis with a threshold value of p <
0.001 via R package “survival”. Then, key IRDEGs were
identified using LASSO regression using R package “glmnet”,
and multivariate Cox regression analyses, thus constructing a
THCA prediction model. Following that, we divided all THCA
samples into high- and low-risk score (RS) groups according to
their median RS. For high- and low-RS groups, Kaplan-Meier
survival analysis and time-related receiver operating
characteristic (ROC) curve analysis through R package
“timeROC”, were employed to cross-validate the predictive
power of the model in the training test and the combined
cohorts (containing all THCA samples).

Analysis of Tumor-Infiltrating Immune Cells
We utilized CIBERSORT algorithm (R script v 1.03), a
deconvolution algorithm to quantify immune cell proportions
based on transcriptomic expression profiles (Newman et al., 2015;
Yao et al., 2020), to calculate the relative frequencies of 22 tumor-
infiltrating immune cells (TIC) subtypes in tumor samples with
high and low RS groups. p < 0.05 was utilized as statistical
significance thresholds, and Wilcoxon test was performed to
compare differences in the relative frequencies of various type
of immune cells.

Analysis of High- and Low-RS Groups in
Terms of their Clinical Information
After establishing the prediction model, we conducted the
difference analysis to present the diversity of the clinical
information between the high- and low-RS groups through R
packages “ggpubr” and “limma”. Next, Kaplan-Meier survival
analysis was used to compare the survival outcome of patients
between the two groups, and performed the difference analysis of
TMB levels and immune checkpoint genes (ICGs) expression
levels between high- and low-RS groups to predict their treatment
responses when receiving immunotherapy.

FIGURE 1 | Flow chart for construction and validation the THCA prognostic model. THCA, thyroid carcinoma.
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Statistical Analysis
Statistical analyses were performed using R language (version
4.0.3). Kaplan-Meier survival analysis was used to assess the
differences of the survival outcome between different groups.
Univariate and multivariate Cox regression analyses were used to
identify independent prognostic factors. p value < 0.05 was
considered statistically significant in all tests.

RESULTS

Identification of DEGs and IRDEGs
We first used R software “limma” package4 with false discovery
rate (FDR) < 0.05 and |log2FC| >1 to identify DEGs between
normal and THCA tissues, resulting in 2567 DEGs, as displayed
in the volcano plot (Figure 2A). Then 294 IRDEGs were obtained

FIGURE 2 | Identification of immune-related DEGs in THCA. (A) Volcano plot for DEGs between THCA and normal samples from TCGA database. (B) Intersection
of 2567 DEGs and 1793 IRGs in Venn plot (C) Heatmap showing immune-related IRDEGs. DEGs, differentially expressed genes; IRGs, immune-related genes.

FIGURE 3 | Enrichment analysis of IRDEGs. (A)GO enrichment analysis. (B) KEGG pathway enrichment analysis. IRDEGs, immune-related differentially expressed
gene; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7443044

Zhang et al. Prediction for Thyroid Carcinoma Immunotherapy

57

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


from the intersection analysis of 567 DEGs and 1793 IRGs from
ImmPort database and displayed in a Venn diagram (Figure 2B).
expression levels of 294 IRDEGs between tumor and normal
samples were visualized via a heatmap (Figure 2C).

Functional Enrichment Analysis for IRDEGs
To further investigate relevant pathway, biological process,
cellular component, and molecular function of 294 IRDEGs,
we performed GO and KEGG pathway enrichment analysis
for these IRDEGs, as shown in Figure 3. GO enrichment
analysis indicated that these IRDEGs were mostly involved in
chemotaxis-related activities, cell adhesion regulation and other
immune-related responses (Figure 3A). Besides, KEGG pathway
analysis revealed that these IRDEGs were chiefly enriched in
immune-related pathways, such as cytokine−cytokine receptor
interaction, Viral protein with cytokine receptor, T cell receptor
signaling pathway, Chemokine signaling pathway, Natural killer
cell mediated cytotoxicity, PD−L1 expression and PD−1
checkpoint pathway in cancer (Figure 3B).

Construction and Validation of THCA
Prognosis Model
We first performed univariate Cox regression analysis on 294
IRDEGs to find the key IRDEGs that affect patients’ survival
outcome with a threshold value of p < 0.001, which five genes
(PPBP, RBP4, SEMA6B, VGF and GCGR) were selected as
being significantly associated with THCA patients’ prognosis
in this step (Table 1). Subsequently, LASSO regression was
used for the following analyses (Figures 4A–B), thereby
obtaining four candidate genes (PPBP, RBP4, SEMA6B,
and GCGR). Eventually, three prognostic hub genes
(PPBP, SEMA6B and GCGR) were screened from five
these candidate genes by multivariate Cox regression
analysis (Table 1). Next, we randomly assigned all THCA
cases into training and test cohorts at a 2: 1 ratio for cross-
validation, referred to as the training cohort and the test
cohort, containing 2/3 and 1/3 of THCA cases, respectively.
Additionally, no significant difference was observed in the
clinical characteristics between the training and test cohorts
(p > 0.01, Table 2). The THCA prognostic model was
constructed based on the three hub genes and the RS of
each patient in the prognostic model was calculated using the
following formula: RS � (1.167391 × expression of PPBP) +
(0.900831 × expression of SEMA6B) + (0.471683 ×
expression of GCGR), thereby dividing the patients into
low- and high-RS groups according to their median value
of RS. The heatmap for THCA tissues in the combined, test,
and training three sets (Figures 5A–C) revealed that
expression levels of three prognostic hub genes were
downregulated in the low-RS group. RS distribution
(Figures 5D–F) and RS-related survival status among

TABLE 1 | Cox regression analysis for screening of IRDEGs influencing the THCA
patients’ prognosis.

Gene ID Univariate cox analysis Multivariate cox analysis

HR (95%CI) p-value HR (95%CI) p-value

PPBP 2.49 (1.50,4.13) 4.18E-04 3.21 (1.78,5.79) 1.02E-04
RBP4 3.20 (1.76,5.84) 1.42E-04
SEMA6B 2.61 (1.49,4.62) 8.76E-04 2.46 (1.01,6.00) 4.74E-02
VGF 1.56 (1.22,2.00) 3.94E-04
GCGR 1.75 (1.29,2.39) 3.72E-04 1.60 (1.05,2.44) 2.71E-02

IRDEGs, immune-related differentially expressed genes; THCA, thyroid carcinoma.

FIGURE 4 | Identification of IRDEGs associated with THCA prognosis. (A–B) LASSO coefficient profiles of prognostic-related IRDEGs. LASSO, least absolute
shrinkage and selection operator. IRDEGs, immune-related differentially expressed genes.
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patients (Figures 5G–I) indicated that higher RS
corresponded to higher mortality risk in THCA patients.

To further validate the reliability of THCA prognostic
model, we further performed survival and ROC curves
analyses. Kaplan–Meier survival plots for THCA patients
in the combined, test and training three sets indicated that
patients in the high-RS group had a substantially worse

survival outcome than those in the low-RS group (Figures
6A–C), with p＜0.001, p � 0.023, and p � 0.006, respectively.
Besides, the combined set showed that area under the curve
(AUC) values for 1-, 3-, 5-yearsurvival were 0.847, 0.722,
and 0.781, respectively (Figure 6D). Similarly, each AUC for
1-, 3-, 5-years survival was more than 0.6 in the test and
training sets (Figures 6E, F). In brief, these findings

TABLE 2 | Clinical characteristics between test and training cohorts.

Clinical characteristics Number Test (%) Training (%) p-value

Age ≤65 429 (85.97) 137 (83.54) 292 (87.16) 0.3376
>65 70 (14.03) 27 (16.46) 43 (12.84)

Gender FEMALE 364 (72.95) 111 (67.68) 253 (75.52) 0.0811
MALE 135 (27.05) 53 (32.32) 82 (24.48)

Stage Stage I-II 332 (66.53) 100 (60.98) 232 (69.25) 0.0889
Stage III-IV 165 (33.07) 63 (38.41) 102 (30.45)
unknow 2 (0.4) 1 (0.61) 1 (0.3)

T T1-2 305 (61.12) 99 (60.37) 206 (61.49) 0.8227
T3-4 192 (38.48) 65 (39.63) 127 (37.91)
TX 2 (0.4) 0 (0) 2 (0.6)

M M0 282 (56.51) 93 (56.71) 189 (56.42) 1
M1 9 (1.8) 3 (1.83) 6 (1.79)
MX 208 (41.68) 68 (41.46) 140 (41.79)

N N0 229 (45.89) 70 (42.68) 159 (47.46) 0.2707
N1 220 (44.09) 79 (48.17) 141 (42.09)
NX 50 (10.02) 15 (9.15) 35 (10.45)

TX, unknown T stage; MX, unknown M stage; NX, unknown N stage.

FIGURE 5 | Construction of THCA prognostic model (A–C) Expression levels of three prognostic hub IRDEGs among THCA patients in the combined test, and
training cohorts, respectively. (D–F) The distribution of RS among THCA patients in three cohorts. (G–I) The survival status correlated with RS among THCA patients.
THCA, thyroid carcinoma; RS, risk score.
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demonstrated predictive accuracy and stability of the
constructed model.

Identification of Independent Risk Factors
for Prognosis in THCA Patients
We conducted univariate and multivariate Cox regression analyses
to determine the correlation between RS and clinical features in
THCA patients. The results revealed that prognosis of THCA
patients was linked to three significant risk factors, including the
age at diagnosis, pathological stage andRS (Table 3). Boxplots of the
relationship between patients’ clinical characteristics and RS
revealed that patients aged over 65 years old (Figure 7A), had
advanced pathological stages (Figure 7C), or had a higher T stage

(Figure 7D) showed a higher RS, with p � 0.003, p � 0.014, and p �
0.002, respectively. However, no significant difference was observed
in the correlations of RS with gender (Figure 7B), N (Figure 7E)
and M (Figure 7F)stages, with p > 0.05. These results revealed that
RS was associated with progression and development of THCA
patients.

Associations of TMBWith Prognosis and RS
To examine the value of TMB in THCA prognosis, we analyzed the
associations between TMB and overall survival (OS) time or RS.
The Kaplan–Meier survival plot revealed that THCA patients with
high TMB exhibited shorter OS time than those with low TMB
(Figure 8A, p � 0.033). Besides, THCA patients in the high-RS
group presented higher TMB levels than those in the low-RS group
(Figure 8B, p � 0.0041). Such results indicated a negative
relationship between THCA prognosis model and TMB.
Waterfall plots displayed a landscape of the top 20 somatic gene
mutations in 475 THCA samples from TCGA database, with
different colors signifying different mutation types (Figures 8C,D).

Evaluation of TICs and Immune Checkpoint
Genes Expression
To investigate the effect of constructed prognostic model on TICs
we used CIBERSORT algorithm to calculate the distribution of 22
TIC subtypes in THCA samples. The Wilcoxon rank-sum test was
utilized to compare the proportions of different TIC subtypes in

FIGURE 6 |Cross-validation of a prognostic model in THCA. (A–C)OS analysis of THCA patients with high- and low-RS in the combined test, and training cohorts,
with p < 0.001, p � 0.023, and p � 0.006, respectively. (D–F) ROC curve analysis for 1−, 3−, 5-years validation of RS model in three different cohorts. THCA, thyroid
carcinoma; OS, overall survival; RS, risk score; ROC, receiver operating characteristic.

TABLE 3 | Cox regression analysis for clinical characteristics and RS influencing
prognosis in THCA patients.

Variable Univariate cox analysis Multivariate cox analysis

HR (95%CI) p-value HR (95%CI) p-value

Age 1.16 (1.10,1.22) 2.27E-08 1.16 (1.09,1.22) 2.89E-07
Gender 1.92 (0.69,5.30) 2.09E-01
Stage 2.42 (1.53,3.80) 1.39E-04 1.32 (0.74,2.37) 3.38E-01
Risk Score 1.01 (1.00,1.01) 5.88E-06 1.00 (1.00,1.01) 3.22E-03

RS, risk score; THCA, thyroid carcinoma.
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high- and low-RS groups, and the findings were then visualized
using a violin plot (Figure 9A). The results revealed that the relative
abundance ofmonocytes,M2macrophages, activated dendritic cells
was significantly higher in high-RS group than those in low-RS
group (p � 0.017, p � 0.042 and p ＜ 0.001, respectively), whereas
M1 macrophages and dendritic resting cells in high-RS group
exhibited lower relative abundance (p � 0.036 and p � 0.002,
respectively). According to their median TICs values, we
classified THCA patients into high- and low- RS groups and
then performed Kaplan–Meier survival analysis. The results
displayed that high memory B cells was associated with poor OS
(p � 0.002, Figure 9B).

To further evaluate the effectiveness of immunotherapy on
THCA, we analyzed expression levels of immunotherapy targets
(PD-L1, PD-1 and CTLA4) in the high- and low-RS groups
(Figure 10). The results revealed that the low-risk group
significantly increased PD−L1 expression levels compared with
the high-risk group (p � 0.044, Figure 10A), implying that low-
RS THCA patients might be more susceptible to immunotherapy.

DISCUSSION

THCA is the fifth most prevalent cancer in the United States, with
an annual incidence increase of ∼5% (Varricchi et al., 2019).
Although most THCA patients have a favorable prognosis,

approximately 15–20% of DTC patients, most ATC patients
display resistance to standard treatment methods, such as RAI.
Sorafenib and lenvatinib, two recently approved multikinase
inhibitors (MKIs), have demonstrated encouraging outcomes
in progressive, RAI-refractory DTC. However, adverse
consequences have been identified, restricting their use
(Cabanillas and Habra., 2016; Krajewska et al., 2017). Notably,
the development of ICIs, such as anti–CTLA-4 and anti–PD-1
agents, have revolutionized THCA treatment (Antonelli et al.,
2018; Varricchi et al., 2019). However, not all patients benefit
from them due to individual variances. In the current study, we
constructed a prognostic prediction model by screening IRDEGs
to predict immunotherapy efficacy and survival outcome
of THCA.

In the present study, we first identified 294 IRDEGs between
THCA and normal samples and then explored potential
functional enrichment pathways of these IRDEGs via KEGG
and GO functional enrichment analyses. We discovered that
the IRDEGs were primally enriched in some immune-related
pathways, suggesting that IRDEGs might play a critical role in
alteration of THCA immune microenvironment. Subsequently,
three hub IRDEGs associated with THCA prognosis were
identified, including PPBP, SEMA6B and GCGR. PPBP,
alternatively known as C-X-C chemokine ligand 7, stimulates
various cellular processes, such as DNA synthesis, glucose
metabolism, intracellular cAMP accumulation and fibrinogen

FIGURE 7 | Correlation between RS and clinical characteristics in THCA. (A) age > 65 years old and < 65 years old (B) female and male (C) Stage I-II and stage
III−IV, (D) T stage (E) Nstage (F)Mstage. Age over 65 years old, higher pathological stage, and higher T stage correlated with higher RS, with p � 0.003, p � 0.014, and
p � 0.002, respectively. RS, risk score; THCA, thyroid carcinoma.
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activator synthesis. Some studies have indicated that PPBP and its
encoded proteins might be linked to the progression of Wilms
tumor (Guo et al., 2017) and gastric cancer (Yamamoto et al.,
2019). SEMA6B a member of the semaphorin family, is mainly
involved in developing peripheral and central nervous systems
(Andermatt et al., 2014). SEMA6B has been demonstrated to have
a critical role in the prognosis of various tumors, such as gliomas
(Sun et al., 2019), breast cancer (Murad et al., 2006) and testicular
cancer (Ji et al., 2020). A recent study has shown that SEMA6B
promoted occurrence and development of THCA via regulating
Notch signaling pathway (Lv et al., 2021). GCGR, a member of G
protein-coupled receptor family, is critical in regulating glucose
homeostasis. Previous studies indicated that GCGR aberrant
expression might lead to adverse survival in endometrial
stromal sarcoma (Davidson et al., 2013), renal cell carcinoma
(Schrödter et al., 2016), and non-small cell lung cancer (NSCLC)
(Li et al., 2020). In addition, it has been revealed that GCGR

overexpression results in poor survival of PTC by activating
epithelial-mesenchymal transition (EMT) and P38/ERK
pathway (Jiang et al., 2020). Although we speculated that these
genes might be a potential therapeutic target and/or prognostic
biomarker for treating THCA patients, this hypothesis still
requires additional validation in future studies.

Next, we firstly built a THCA prognostic model using the three
screened hub genes (PPBP, SEMA6B and GCGR), and validated
the reliability of the prognostic model in THCA. The results in the
combined, test, and training sets revealed that THCA patients in
the high-RS group exhibited poor survival outcomes than those in
the low-RS group, and AUC values were over 0.6, implying that
the constructed prognostic model accurately predicted OS in
THCA. Besides, we found that older patients in the more
advanced stage had significantly greater RS levels than younger
ones in the earlier stage, consistent with the conclusion drawn by
Ibrahimpasic et al. (Ibrahimpasic et al., 2019).

FIGURE 8 | Association of TMB with OS and RS (A) Survival analysis of THCA patients with high- and low-TMB (B) Comparisons of TMB in low- and high-RS
groups (C) (D)Waterfall plot for mutation profiles of the top 20 genes in THCA samples of high- and low-RS groups, respectively. Annotations with different colors at the
bottom referred to the variousmutation types and bar chart above presentedmutation burden. The right showed name of mutated genes and the right displayed percent
of gene mutation. TMB, tumor mutation burden; OS, overall survival; RS, risk score.
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TMB, as a novel biomarker, has been recently known to forecast
the clinical efficacy of immunotherapy in many cancers (Samstein
et al., 2019), since it is closely associated with tumor immune
infiltration and microenvironment alteration (Kang et al., 2020).
Zhou et al. (Zhou et al., 2021) discovered that patients in the low-
TMB group exhibited a worse survival outcome and immune
response than those in the high-TMB group in. However, few
studies focused on the predictive value of TMB for immunotherapy
in THCA patients. In this current study we revealed that THCA
patients in the high-RS group possessed higher TMB than those in
the low-RS group. Herein, we speculated that higher TMBmight be
correlated with a worse prognosis in THCA, consistent with the
conclusion drawn by Zhang et al. (Zhang et al., 2019a) in their
work on clear cell renal cell carcinoma. Besides considering the
important roles of TICs in TME on prognosis of numerous
malignancies (Zhang et al., 2003; Tran Janco et al., 2015), we
further assessed the distribution of 22 TIC subtypes in THCA

samples from high- and low-RS groups and the relationship with
survival outcome. The analysis results revealed that patients in the
high-RS group chiefly possessed a higher level of monocytes, M2
macrophages and activated dendritic cells (DCs). In contrast, those
in the low-RS group exhibited higher proportions of M1
macrophages and resting DCs, manifesting that tumor-
associated macrophages were associated with tumor progression
(Jackaman et al., 2017). Nevertheless, the underlying mechanism
remains yet unclear. Similarly, Travers et al. (Travers et al., 2019)
found that increasing tumor-killing M1 macrophages and
decreasing M2 macrophages in TME contributed to reduced
TMB and improved survival in mice with ovarian cancer.
Additionally, a study indicated a strong correlation between
DCs and advanced patients with PTC (Bergdorf et al., 2019),
which might explain why THCA samples in the high-RS group
exhibited advanced pathological stages. Besides, it has been
reported that tumor-infiltrating memory B cells are linked to

FIGURE 9 | TICs profile of THCA cases (A) Violin plot for quantification of 22 TIC subtypes between low- and high- RS groups. (B) Memory B cells influencing
survival outcome of THCA patients. TIC, tumor-infiltrating immune cell; THCA, thyroid carcinoma; RS, risk score.

FIGURE 10 | Expression levels of ICGs in high- and low-RS groups (A) PD-L1 expression of THCA patients in high- and low-RS groups. (B) PD-1 expression of
THCA patients in high- and low-RS groups. (C)CTLA4 expression of THCA patients in high- and low-RS groups. RS, risk score; PD-L1, programmed cell death ligand 1;
THCA, thyroid carcinoma; PD-1, programmed death 1; CTLA4, cytotoxic T lymphocyte-associated protein 4.
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superior clinical outcomes in breast cancer (Garaud et al., 2019). In
contrast, in the present study, we revealed that a high percent of
memory B cells was highly correlated with poor survival in THCA.

Immune checkpoint molecules, such as PD-L1, PD-1 and
CTLA4, have been demonstrated to connect with the efficacy
of immunotherapy (Kalbasi and Ribas., 2020) Hence, we further
investigated these biomarkers, including PD-L1, PD-1 and
CTLA4, expression levels of THCA patients between in the
high- and low-RS group. Results showed that PD-L1
expression was significantly upregulated in the low-RS group
compared to the high-RS group, suggesting that this prognostic
model might have ability to determine THCA patients’ response
to immunotherapy. Based on these findings, we supposed that
high TMB and low PD-L1 expression in THCA patients might
respond poorly to immunotherapy.

CONCLUSIONS

In conclusion, this study constructed and validated a THCA
prognostic prediction model based on TCGA database,
displaying good predictability and reliability for THCA
prognosis. To our knowledge, our group was the first to
screen out three potential therapeutic target genes and
elucidate the association of TICs with RS and OS in THCA.
Additionally, we figured out that THCA patients in the high-RS
group had high TMB and low PD-L1 expression, establishing a
baseline and reference for predicting THCA immunotherapy

efficacy in clinical trials. However, future investigations require
relevant basic experiments and large sample clinical trials.
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Accumulating lines of evidence indicate that the deregulation of m6A is involved in various
cancer types. The m6A RNA methylation is modulated by m6A methyltransferases,
demethylases, and reader proteins. Although the aberrant expression of m6A RNA
methylation contributes to the development and progression of multiple cancer types,
the roles of m6A regulators across numerous types of cancers remain largely unknown.
Here, we comprehensively investigated the expression, genetic alteration, and prognosis
significance of 20 commonly studied m6A regulators across diverse cancer types using
TCGA datasets via bioinformatic analyses. The results revealed that the m6A regulators
exhibited widespread dysregulation, genetic alteration, and the modulation of oncogenic
pathways across TCGA cancer types. In addition, most of the m6A regulators were closely
relevant with significant prognosis in many cancer types. Furthermore, we also
constructed the protein–protein interacting network of the 20 m6A regulators, and a
more complex interacting regulatory network including m6A regulators and their
corresponding interacting factors. Besides, the networks between m6A regulators and
their upstream regulators such as miRNAs or transcriptional factors were further
constructed in this study. Finally, the possible chemicals targeting each m6A regulator
were obtained by bioinformatics analysis and the m6A regulators–potential drugs network
was further constructed. Taken together, the comprehensive analyses of m6A regulators
might provide novel insights into the m6A regulators’ roles across cancer types and shed
light on their potential molecular mechanisms as well as help develop new therapy
approaches for cancers.

Keywords: m6A methylation, bioinformatics, TCGA, cancer, comprehensive analyses

Edited by:
Jesús Espinal-Enríquez,

Instituto Nacional de Medicina
Genómica (INMEGEN), Mexico

Reviewed by:
Qianqian Song,

Wake Forest School of Medicine,
United States
Xinyue Song,

China Medical University, China

*Correspondence:
Jue Li

jueli@tongji.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 07 September 2021
Accepted: 23 November 2021
Published: 23 December 2021

Citation:
Shi X, Zhang J, Jiang Y, Zhang C,

Luo X, Wu J and Li J (2021)
Comprehensive Analyses of the
Expression, Genetic Alteration,

Prognosis Significance, and Interaction
Networks of m6A Regulators Across

Human Cancers.
Front. Genet. 12:771853.

doi: 10.3389/fgene.2021.771853

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7718531

ORIGINAL RESEARCH
published: 23 December 2021

doi: 10.3389/fgene.2021.771853

66

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.771853&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.771853/full
http://creativecommons.org/licenses/by/4.0/
mailto:jueli@tongji.edu.cn
https://doi.org/10.3389/fgene.2021.771853
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.771853


INTRODUCTION

A variety of biological processes are orchestrated by post-
transcriptional modifications including RNA modifications
(Zhao et al., 2017). As the most common type of RNA
methylation modifications, N6-methyladenosine (m6A), first
unraveled in 1970s, modulates the corresponding target RNAs
via influencing RNA translation, degradation, splicing, folding, or
stability (He and He, 2021). Although studies had revealed that
one to two m6A residues were found in an average of one
thousand nucleotides, nearby the 3′ untranslated region
(UTR), stop codon as well as long internal exon might exhibit
the relatively richer m6A in mRNAs (Meyer et al., 2012). In
addition to mRNAs, m6A RNA methylation was also found to be
distributed in other RNAs, such as ribosomal RNA (rRNA) and
RNAs of bacteria and viruses (Ma et al., 2019).

The regulators involved in modulating m6A methylation include
three types of proteins called “writer”, “eraser”, and “reader”,
respectively (Zaccara et al., 2019). The writers consisting of m6A
methyltransferases such as METTL3, METTL14, and their
corresponding cofactors like RBM15 and WTAP exhibit in
cellular nuclei and increase the m6A levels (Meyer and Jaffrey,
2017). On the contrary, the erasers, also being discovered in the
cellular nuclei, are m6A demethylase enzymes such as FTO and
ALKBH5, which remove the m6A and thus result in reducing the
m6A levels (Zhang et al., 2017). Moreover, the readers such as
IGF2BP1 and RBMX, distributing in both cellular nuclei and
cytoplasm, can decode the m6A methylation information via
binding to the m6A sites and further initiate the different
downstream signals (Sun et al., 2019). The processes of m6A
methylation are reversible and dynamic, which are homeostatically
modulated by these writers, erasers, and readers (Chen et al., 2019).

Since the m6A regulators acted as crucial roles in a variety of
biological processes, the abnormalities of m6A methylation might
lead to multiple kinds of diseases including neuronal diseases,
diabetes, immunological disorders, liver metabolic disorders, and
numerus cancer types (He et al., 2019). For example, recent
studies had demonstrated that the decreased RNAmethylation of
critical genes in β-cell markedly contributed to the
pathophysiology of human T2D (De Jesus et al., 2019).
Additionally, METTL3 was found to have dramatical
overexpression in hepatocellular carcinoma (HCC), and the
depletion of METTL3 contributed to the significant
suppression of the HCC growth and metastasis (Chen et al.,
2018). Besides, findings had uncovered that YTHDF2, an m6A
reader, was markedly upregulated in human acute myeloid
leukemia (AML), and targeting YTHDF2 might compromise
the cancer stem cells in AML (Paris et al., 2019).

Although the m6A methylation has been identified as the most
abundant modification of RNAs, and served as crucial regulators in
diverse biological processes and diseases including numerous types of
cancers, the relevant factors involved in that modification are still not
completely discovered, and their associated molecular mechanisms,
expression, and interacting networks remain unclear. Therefore, in
the present study, we comprehensively investigated the expression,
genetic alteration, and prognosis significance of 20 commonly studied
m6A regulators across diverse cancer types using TCGA via

bioinformatic analyses. In addition, we also constructed the
networks between m6A regulators and potential chemical drugs,
miRNAs, or upstream transcriptional factors. These comprehensive
analyses of m6A regulators might provide novel understanding of
thesem6A regulators’ roles across cancer types and shed light on their
potential molecular mechanisms in cancers as well as helping
developing new therapy approaches for cancers.

MATERIALS AND METHODS

The Gene Expression and Methylation
Analyses of m6A Regulators
The expression of the gene set (the 20 m6A methylation regulators)
and m6A regulators’ interacting proteins across diverse cancer types
based on TCGA data was analyzed using the GSCALite database
(Liu et al., 2018). Besides, we also analyzed the expression of 20 m6A
methylation regulators throughR software package usingmicroarray
data (GSE11969, GSE63898, GSE37182, GSE22820, GSE54129,
GSE53757, GSE23036, GSE33630, and GSE11024) from the Gene
Expression Omnibus (GEO) datasets. The heatmaps of these GEO
data were displayed by the R software package pheatmap. The
expression of IGF2BP1, IGF2BP2, IGF2BP3, SP1, ELK1, and
EGR1 across diverse TCGA cancer types was analyzed using the
UALCAN database (Chandrashekar et al., 2017). In addition, the
methylation of the gene set, and the correlation between the
methylation and m6A methylation regulators’ gene expression
were also analyzed using GSCALite database.

The Genetic Alteration Analyses of the m6A
Regulators
The single nucleotide variations (SNVs) and copy number
variations (CNVs) of the m6A regulators across cancer types
were analyzed by the GSCALite database using TCGA data. The
SNV-oncoplot and CNV-percent-profile (CNV pie plots) were
also generated by GSCALite database. In addition, the bubble
plots describing the correlation between CNV and m6A
methylation regulators’ mRNA expression were generated by
GSCALite database based on TCGA data. Besides, the genetic
alterations of the 20 m6A regulators were also analyzed by
cBioportal database (Cerami et al., 2012).

The Oncogenic Pathway Analyses of the
m6A Regulators and Protein–Protein
Interaction Network Construction
The m6A methylation regulators-related oncogenic pathways
were analyzed by GSCALite database. The pathway activity pie
plots, and the interaction map of genes and pathways were also
generated using the GSCALite database. The protein–protein
interaction (PPI) networks were generated by STRING
database (Szklarczyk et al., 2019).

The Overall Survivals Analyses
The overall survivals of them6Amethylation regulators across cancer
types were analyzed by the GSCALite database. The overall survivals
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of the m6A regulators in kidney renal clear cell carcinoma (KIRC)
were evaluated by the GEPIA database based on TCGA data.

The m6A Regulators–Drug Interacting
Network Construction
The potential chemicals targeting each m6A regulator were
obtained by applying the comparative toxicogenomics database
(CTD) (Davis et al., 2021). Thereafter, the chemicals and their
corresponding m6A regulator were inputted into Cytoscape
software (Shannon et al., 2003) to generate the m6A
regulators–drug interacting network.

The Generation of the MiRNAs–m6A
Regulators Network
First, the potential miRNAs targeting each m6A regulator were
predicted by miRDB (Chen andWang, 2020), targetScan (Agarwal
et al., 2015), and starbase (Li et al., 2014). Subsequently, the
overlapping miRNAs (commonly expressed in the prediction of
miRDB, targetScan, and starbase) were obtained using the VENNY
2.1 database (https://bioinfogp.cnb.csic.es/tools/venny/index.
html). Then, the Cytoscape software was utilized for generating
the miRNAs–m6A regulators networks.

Constructing the Transcription
Factors–m6A Regulators Network
The potential TFs targeting each group of m6A regulators
(writers, erases, and readers) were obtained by KnockTF
database (Feng et al., 2020). The erasers–TFs interacting
network, writers–TFs interacting network, and readers–TFs
interacting network were also generated by KnockTF database.
In addition, the top 25 potential TFs were achieved exhibited by
doughnut plots using FunRich software (Pathan et al., 2015).

The Interacting Networks Construction and
Gene Ontology and Biological Pathway
Analyses
The m6A regulators’ interacting proteins were obtained by FunRich
software, and the interacting regulatory network including m6A
regulators and their corresponding interacting proteins was then
constructed by FunRich software. The FunRich software was also
utilized for investigating theGO analyses and biological pathways of
the m6A regulators interacting proteins. The column diagrams
(exhibiting CC: cellular component; MF: molecular function; BP:
biological process) and doughnut plots (exhibiting biological
pathways) were also generated using FunRich software.

RESULTS

The Expression of m6A Methylation
Regulators Across Cancer Types
The m6A methylation regulators could be clarified into three
types: writers, erasers, and readers (Figure 1A). The reports

relevant with m6A methylation regulators in recent years were
reviewed and a total of 20 genes (writers: 7; erasers: 2; readers: 11)
were included in this study (Figure 1B). Next, we sought to
evaluate the expressing levels of these 20 m6A methylation
regulators across diverse cancer types using TCGA datasets.
By searching the GSCALite database, we found that the
expressions of many m6A methylation regulators (especially
IGF2BP1, IGF2BP2, and IGF2BP3) were changed across
multiple cancer types (Figure 1C). Furthermore, the detail
expressing situations of IGF2BP1, IGF2BP2, and IGF2BP3
were evaluated by applying UALCAN algorithm. The results
revealed that the levels of IGF2BP1, particularly IGF2BP2 and
IGF2BP3, were remarkably upregulated in many cancer types
such as bladder urothelial carcinoma (BLCA), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), and lung
squamous cell carcinoma (LUSC) (Figure 1D). In addition, to
further verify the above results using TCGA data, we also
analyzed the expression of 20 m6A regulators using microarray
data from GEO datasets in many cancer types including LUAD,
LUSC, LIHC, colon adenocarcinoma (COAD), breast invasive
carcinoma (BRCA), stomach adenocarcinoma (STAD), kidney
renal clear cell carcinoma (KIRC), head and neck squamous cell
carcinoma (HNSC), thyroid carcinoma (THCA), and kidney
chromophobe (KICH). The results revealed that the expression
of many m6A regulators including IGF2BP1, IGF2BP2, and
IGF2BP3 were notably changed, which was consistent with the
results from TCGA analysis (Supplementary Figure S1). Given
that the methylation of genes was able to influence genes
expression, we next attempted to investigate the methylation
of the 20 m6A methylation regulators across cancer types.
Through searching GSCALite database, we found that the
majority of the 20 m6A regulators’ methylation was lower in
the tumor samples than that of the normal control samples in
prostate adenocarcinoma (PRAD), LIHC, LUSC, KIRC, BLCA,
and THCA (Figure 1E). Besides, the correlation between the
methylation and m6A methylation regulators’ gene expression
was further analyzed using the GSCALite database. According to
the data, we found that most of these m6A regulators’ expression
was negatively correlated with the methylation across diverse
cancer types, which was consistent with the above finding that the
majority of the 20 m6A regulators’ methylation was
downregulated in the tumor samples of many cancer types
(Figure 1F). Overall, our data suggested that the expression
and methylation of the 20 m6A regulators were remarkable
dysregulation across many cancer types.

Genetic Alterations of m6A Regulators
Across Cancer Types
Considering that the alteration of the genome might always affect
the gene expression, we next attempted to explore the genetic
alterations including single nucleotide variations (SNVs) and
copy number variations (CNVs) of the m6A regulators across
cancer types. First, the GSCALite database was utilized for
analyzing the SNVs of the 20 m6A regulators. The results
suggested that the SNVs of the 20 m6A regulators altered in
74.8% TCGA samples across cancer types, and the waterfall plots
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FIGURE 1 | The expression analyses of m6A regulators in TCGA cancer types. (A) A schematic diagram of m6A regulators in cells. (B) The m6A regulators are
divided into writers, erasers, and readers. (C) The GSCALite database revealed the expressing levels of the 20 m6A regulators across diverse cancer types. (D) Details
expressing situations of IGF2BP1, IGF2BP2, and IGF2BP3 were evaluated by applying the UALCAN algorithm. (E) The methylation difference analyzed by GSCALite
between tumor and normal samples of m6A regulators across TCGA cancer types. (F) The correlation between the methylation and m6A methylation regulators’
gene expression were analyzed using GSCALite database.
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presented the top ten SNVs-changed genes, such ZC3H13,
YTHDC2, and IGF2BP1 (Figure 2A). Thereafter, we sought to
investigate the CNVs alteration frequency for the 20 m6A
regulators using the GSCALite database. The CNV pie plots
revealed that several readers (YTHDF1, YTHDF3, IGF2BP1,

IGF2BP2, IGF2BP3, and HNRNPA2B1) exhibited very high
percentages of heterozygous CNVs, particularly amplification
(Hete Amp) in multiple cancer types, while genes like
RBM15B, ALKBH5, METTL14, ZC3H13, and WTAP had high
percentages of heterozygous CNVs with depletion (Hete Del)

FIGURE 2 | The genetic alterations of m6A regulators. (A) The SNVs of the m6A regulators in TCGA samples across cancer types. The waterfall plots presented the
top ten SNVs-changed genes. (B) The CNV pie plots revealed the CNVs alteration frequency of the 20 m6A regulators across diverse cancer types. (C) The bubble plots
from GSCALite database showed that the mRNA expression of the m6A regulators was positively correlated with their corresponding CNVs across most cancer types.
(D) The genetic alterations of the 20 m6A regulators in UCEC and lung cancer using cBioportal analyses.
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FIGURE 3 | The oncogenic pathways related to the m6A regulators. (A) The pathway pie plots analysis of m6A regulators from the GSCALite database. (B) The
interaction map of m6A regulators and pathways in numerous cancer types using GSCALite database. (C) The protein–protein interaction (PPI) network of the 20 m6A
regulators was constructed by STRING database.
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(Figure 2B). Afterwards, we attempted to explore whether these
m6A regulators’ CNVs alterations were able to influence the
expression of their mRNA expression. The bubble plots from
GSCALite database demonstrated that the mRNA expression of
the majority of the m6A regulators was positively correlated with
their corresponding CNVs across most cancer types, which
indicated that CNVs alterations could remarkably promote
m6A regulators’ expression (Figure 2C). In addition, the
genetic alterations of the 20 m6A regulators in TCGA cancer
types were also investigated using cBioportal database. The data
suggested that the genetic alterations of the m6A regulators were
remarkably high in tumor specimens of many cancer types,
particularly uterine corpus endometrial carcinoma (UCEC;
with 78% genetic alterations) and lung cancer (with 48%
genetic alterations) (Figure 2D). Taken together, these results
revealed that the m6A regulators exhibited widespread genetic
alterations across cancer types, and these genetic alterations could
significantly affect their expression.

The Analyses of the Oncogenic Pathways
Relevant With the m6A Regulators
Next, we attempted to investigate whether thesem6A regulators were
associated with oncogenic pathways. According to the results of the
pathway pie plots from GSCALite database, we found that
HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP3, RBM15, and
RBMX were markedly related with the activation of the cell cycle
(Figure 3A). In addition, the pathway pie plots also showed that
FTO was relevant with the inhibition of apoptosis and cell cycle;
HNRNPA2B1 and HNRNPC were significantly correlated with the
inhibition of the RAS/MAPK pathway; RBMX was also related with
the activation of DNA damage response pathway (Figure 3A).
Besides, the 20m6A regulators were divided into two groups
(writer–eraser genes and reader genes) to respectively construct
the interaction map of genes and pathways using the GSCALite
database, and the results further confirmed the above findings that
many m6A regulators were associated with the activation or
inhibition of these famous cancer-related pathways across TCGA
cancer types (Figure 3B). Furthermore, considering that genes
always exerted their functions via interacting with other genes,
we thereby next sought to investigate the interaction among these
writers, erasers, and readers. The protein–protein interaction (PPI)
network of the 20m6A regulators was constructed by the STRING
database, and the PPI network demonstrated that them6A regulators
interacted with each other with very high frequency, which indicated
that the m6A methylation in cancers might be regulated by
collaboration among writers, erasers, and readers (Figure 3C).
Collectively, these data validated that the m6A regulators could
modulate the oncogenic pathways via collaboration.

Prognosis Significance of the m6A
Regulators Across Cancer Types
Since the m6A regulators were dysregulated in many cancer types
and several of them were closely relevant with oncogenic
pathways, we next sought to explore whether the aberrant
expression of the m6A regulators was associated with

prognosis significance. After inputting the gene set of the m6A
regulators into the GSCALite database, we found that most of the
m6A regulators were associated with overall survivals across
TCGA cancer types (Figure 4A). Particularly, more than half
of the 20 m6A regulators were notably correlated with poor or
good prognosis in multiple cancer types, such as KIRC, brain
lower grade glioma (LGG), adrenocortical carcinoma (ACC),
breast invasive carcinoma (BRCA), and sarcoma (SARC).
Therefore, we next attempted to investigate the detailed overall
survivals of the m6A regulators (high or low expression) in KIRC.
The overall survivals of the 20 m6A regulators in KIRC were
analyzed by applying the GEPIA database. The results validated
that 19 of the 20 m6A regulators were dramatically correlated
with significantly good or poor prognosis (Figure 4B). Especially,
high expression of all the erasers (FTO and ALKBH5) and most
writers (METTL14, RBM15, RBM15B,WTAP, and ZC3H13) and
readers (YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1,
HNRNPC, YTHDC1, YTHDC2, and RBMX) was significantly
with poor prognosis, while the high expression of VIRMA (also
named KIAA1429; a writer) and IGF2BPs (IGF2BP1, IGF2BP2,
and IGF2BP3; readers) predicted good prognosis (Figure 4B).
Therefore, these data revealed that the dysregulation of the m6A
regulators was remarkably associated with significant prognosis
in many cancer types, especially KIRC, which indicated that the
aberrant expression of the m6A regulators might be a prognostic
marker in cancers including KIRC.

The Construction of the m6A
Regulators–Potential Drugs Network
Since the above findings revealed that the dysregulation of the
m6A regulators might be correlated with tumor progression, we
next thought to investigate whether there were some potential
chemicals that could increase or decrease the expression of the
m6A regulators. First, the comparative toxicogenomics database
(CTD) was utilized for analyzing the possible chemicals targeting
each m6A regulator. Afterwards, the 20 m6A regulators were
divided into three groups (writers, erasers, and readers) and
we subsequently drew three sub gene–drug interaction
networks (writers–drugs interaction network, erasers–drugs
interaction network, and readers–drugs interaction network),
using Cytoscape software. The m6A regulators–potential drugs
network is presented in Figure 5, and these chemicals were able to
increase or decrease the expression of the m6A regulators
(Supplementary Table S1). Therefore, the m6A
regulators–potential drugs network provided benefits for
potential drugs discovery to target specific m6A regulators.

The Upstream MiRNAs–m6A Regulators
Network
Although our above findings demonstrated that the methylation
and genetic alterations were capable to affect the expression of the
m6A regulators across TCGA cancer types, there might be other
factors such as miRNAs that could also contribute to the
dysregulation of the m6A regulators in cancers. Therefore, we
next sought to investigate the potential upstreammiRNAs, which
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were able to target these m6A regulators. First, we employed three
classical miRNAs predicting databases—miRDB, targetScan, and
starbase—to predict the possible miRNAs that could target each

m6A regulator. Thereafter, the common miRNAs targeting each
m6A regulator in the three databases were selected. Subsequently,
we applied the Cytoscape software to generate the miRNAs–m6A

FIGURE 4 | Prognosis significance of the m6A regulators across cancer types. (A) Overall survivals landscape of the m6A regulators across cancer types was
generated by GSCALite database. (B) GEPIA analyzed the overall survivals of the m6A regulators in KIRC.
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FIGURE 5 | The construction of the m6A regulators–potential drugs network. The potential chemicals targeting m6A regulators were obtained by the comparative
toxicogenomics database (CTD), and the network was generated by Cytoscape software.
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regulators networks, including the writers–miRNAs interaction
network (Figure 6A), erasers–miRNAs interaction network
(Figure 6B), and readers-miRNAs interaction network
(Figure 6C). These miRNAs–m6A regulators networks
provided new supplementary knowledge about the modulation
of the m6A regulators’ dysregulation across cancer types.

The Upstream TFs–m6A Regulators
Networks
Besides, the transcription factors (TFs) could also contribute to the
dysregulation of m6A regulators. Hence, we next sought to uncover
the potential TFs that were capable to modulate the expression of the
m6A regulators. To achieve that, we first utilized an online database,

FIGURE 6 | MiRNAs–m6A regulators network construction. (A) Writers–miRNAs interaction network. (B) Erasers–miRNAs interaction network. (C)
Readers–miRNAs interaction network.
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KnockTF, to analyze the possible TFs of the writers, erases, and
readers, respectively. We generated the TFs–m6A regulators networks
(including three sub-networks: erasers–TFs interacting network,
writers–TFs interacting network, and readers–TFs interacting
network), and they are presented in Figure 7A. The TFs–m6A
regulators networks indicated that a plethora of TFs might regulate
the m6A regulators. For example, there were more than 20 TFs that
were possibly able to target the promoter of RBM15B. In addition,
another software, FunRich, was also utilized for calculating the
potential TFs targeting the m6A regulators. The top 25 potential
TFs (ranked by targeting percentages) were achieved and exhibited by
doughnut plots (Figure 7B). The data demonstrated that SP1 were
possibly able to modulate more than half of the 20m6A regulators

(52.9%), ELK1 regulated 35.3% of the 20m6A regulators, and EGR1
also orchestrated 35.3% of the 20m6A regulators. Indeed, analyses
from the UALCAN database revealed that the expressions of SP1,
ELK1, and EGR1 were remarkably aberrant in many TCGA cancer
types (Supplementary Figure S2). Collectively, these data provided
novel insights into the possible molecular mechanisms of the m6A
regulators’ dysregulation in TCGA cancer types.

The Interacting Regulatory Network of Each
m6A Regulators
Although we had generated the PPI network of the 20 m6A
regulators in the above findings, which demonstrated that

FIGURE 7 | The construction of TFs–m6A regulators networks. (A) The TFs–m6A regulators networks (including three sub-networks: erasers–TFs interacting
network, writers–TFs interacting network, and readers–TFs interacting network) were generated by KnockTF software. (B) The top 25 potential TFs (ranked by targeting
percentages) were achieved and exhibited by doughnut plots using FunRich software.
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these 20 m6A regulators interacted with each other with very high
frequency, the m6A regulators exerted their functions and might
also collaborate with other factors. Therefore, we next attempted
to construct the interacting regulatory network of each m6A
regulator alone. The interacting proteins of each eraser, writer,
and reader were obtained by using the STRING database, and
their corresponding interacting networks are presented in
Figure 8. The results indicated that every m6A regulator had a
complex interacting regulatory network, and these interacting
networks might provide new insights into how the m6A
regulators exerted their modulatory functions.

Furthermore, a more complex interacting regulatory network
including m6A regulators and their corresponding interacting
factors was constructed by applying FunRich software. This
network not only validated that m6A regulators interacted

with other relevant factors, but also revealed that the erasers,
writers, and readers interacted with each other frequently
(Figure 9A). In addition, we then attempted to explore the
expressions of the m6A regulators-related genes in that
network using GSCALite database, because these genes might
be the downstream targets of the m6A regulators or even the
modulators of the m6A regulators, and their dysregulation should
be critical in m6A regulation. According to the data, numerous
genes (such as H2AFX, CDKN2A, TTF2, IKBKE, and UBE2I)
were markedly upregulated in many cancer types, while some
genes (such as ARRB1, LMO3, KHDRBS2, CIRBP, and RALYL)
were remarkably downregulated in multiple cancer types
(Figure 9B). Therefore, these data suggested that the majority
of the m6A regulators-related genes were dysregulated across
many cancer types.

FIGURE 8 | The interacting regulatory network of each m6A regulator. The interacting proteins of each eraser, writer, and reader were obtained by using STRING
database.
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Next, we aimed to investigate the gene ontology analyses (GO
analyses; including three sub-analyses: CC: cellular component;
MF: molecular function; BP: biological process) and biological
pathways of the m6A regulators-related genes. To achieve that,
the FunRich software was utilized. The gene ontology analyses
revealed that the m6A regulators-related genes were significantly
associated with cytoplasm (CC), nucleus (CC), RNA binding
(MF), regulation of nucleobase, nucleoside, nucleotide and
nucleic acid metabolism (BP) (Figure 10A). Moreover, the top
20 biological pathways for m6A regulators-related genes (ranked
by percentages) were exhibited by doughnut plots and the data
showed that these genes were dramatically correlated with many
tumorigenesis-relevant pathways, such as TRAIL signaling
pathway, S1P pathway, and mTOR signaling (Figure 10B).

Therefore, these results indicated that m6A regulators as well
as their relevant genes were potentially associated with cancers.

DISCUSSION

Cancers account for the major public health problems, and it
leads to the second cause of death, ranking behind cardiovascular
diseases, in most countries (Siegel et al., 2019). Therefore, seeking
novel approaches for cancer therapy is urgent. Based on deeply
understanding the molecular mechanisms, several effectively new
methods for treating cancers such as cellular immuno-therapy
and PD1/PDL1 antibodies therapy had emerged currently
(Sharpe and Pauken, 2018). Moreover, epigenetics including

FIGURE 9 | Constructing the interacting regulatory network of m6A regulators and their corresponding interacting factors. (A) The m6A regulators and their
corresponding interacting factors were constructed into a complex network by applying FunRich software. (B) The expressions of the m6A regulators-related genes in
diverse cancer types were analyzed using GSCALite database.
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m6Amethylation, as a popular field of cancer research, might also
emerge as a new approach for cancer treatment if its detailed
molecular mechanisms in tumorigenesis were deeply unraveled
(Zhao et al., 2020). Hence, it is necessary to investigate the effects
of m6A RNA methylation regulators on multiple cancer types. In
the present study, we applied bioinformatics analyses to explore
the expression, genetic alterations, prognosis significance, the
networks between m6A regulators, and potential chemical drugs,
miRNAs, or upstream transcriptional factors in multiple cancer
types, which deeply uncovered the critical roles and molecular
mechanisms of m6A regulators in cancers.

Emerging lines of evidence had indicated that the m6A
regulators served as critical roles in regulating numerous
biological processes, diseases, and especially tumor
development. For example, m6A regulator YTHDF1 was
recently identified as a novel prognostic marker and potential
target for HCC (Bian et al., 2020). Moreover, m6A regulator
HNRNPA2B1 was found to function as an oncogenic factor to
accelerate esophageal cancer (ESCA) progression, and it might be
a promising prognostic biomarker for ESCA (Guo et al., 2020). In
addition, the low expression of METTL3, an important m6A

writer, was found to be correlated with the poor prognosis of
triple-negative breast cancer (TNBC), and METTL3 might serve
as a novel therapeutic target in TNBCmetastasis (Shi et al., 2020).
In the present study, our bioinformatics analysis also revealed
that YTHDF1, HNRNPA2B1, and METTL3 were highly
expressed in colon adenocarcinoma (COAD), lung squamous
cell carcinoma (LUSC), and liver hepatocellular carcinoma
(LIHC), respectively, and the expression of many other m6A
regulators such as IGF2BP1, IGF2BP2, and IGF2BP3 was
remarkably dysregulated across multiple cancer types.

Deeply understanding cancer hallmarks requires the detailed
information of molecular alterations at multiple dimensions such
as gene expression, genetic alteration, epigenomics, clinical
information, and metabolome. Therefore, the multi-omics
analysis approaches were particularly valuable to deeply
discover the molecular alterations in pan-cancer. For example,
a multi-omics approach was applied to characterize brain
metastasis, and the findings revealed that two molecular
subtypes showed notably differential prognosis irrespective of
brain tumor subtype (Su et al., 2020). Besides, single-cell
sequencing was also an important aspect of multi-omics

FIGURE 10 | The analyses of gene ontology and biological pathways of the m6A regulators-related genes. (A) The cellular component (CC), molecular function
(MF), and biological process (BP) analyses for the m6A regulators-related genes. (B) The top 20 biological pathways for m6A regulators-related genes (ranked by
percentages) were exhibited by doughnut plots using FunRich software.
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analysis. Recently, several single-cell datasets, including
CancerSEA and scLM, were developed to facilitate the
mechanism discovery and understanding of complex
biosystems such as in cancers (Yuan et al., 2019; Song et al.,
2020). In the present study, although lacking single-cell
sequencing data, we also applied the multi-omics analysis to
uncover the molecular mechanisms of m6A regulators in pan-
cancer at levels of gene expression, genetic alteration,
epigenomics, and clinical information, which might help to
facilitate the deep understanding of the modulating
mechanisms of m6A regulators in pan-cancer.

Up to now, the great majority of the studies focused on
researching one or several m6A RNA methylation regulators in
one or several cancer types (Barbieri et al., 2017; Huang et al.,
2019). However, the m6A regulators exerted their functions in
tumor development andmight also collaborate with each other or
other factors, and accumulating lines of evidence had indicated
that m6A regulators might play a dual role as tumor promoters or
tumor suppressors in variously different cancer types, implying
that the levels or functions of m6A RNA methylation were
determined by the collaboration of m6A regulators in certain
conditions (Roundtree et al., 2017; Panneerdoss et al., 2018).
Therefore, the comprehensive analyses of all the m6A regulators
but not several of them across all the cancer types might help
supply unique insights into the molecular mechanisms of m6A
RNA methylation in many cancer types. In the present study, the
landscapes of the gene expression, genetic alterations, the
prognosis significance, and interacting networks of the 20 m6A
regulators across dozens of cancer types were revealed by
integrative bioinformatics analyses. These results provided new
supplementary knowledge about the modulation of the m6A
regulators’ dysregulation across cancer types and novel
insights into the possible molecular mechanisms of the m6A
regulators’ dysregulation in TCGA cancer types.

The expression alteration of m6A regulators in various cancer
types might provide novel insight into the molecular mechanisms
of tumorigenesis and new therapy approaches (Chen and Wong,
2020). In addition, many aspects such as genetic alternations,
epigenetics, and transcriptional factors could contribute to the
dysregulation of the m6A regulators in cancers (Li et al., 2019).
For example, the m6A levels were increased through miR-145
targeting YTHDF2, which caused the suppression of cancer cell
proliferation in HCC (Yang et al., 2017). Another study
demonstrated that SPI1, as a transcriptional factor in
hematopoietic cancer cells, could directly suppress the
expression of METTL14 (Weng et al., 2018). Therefore, in this
study, we not only explored that the methylation and genetic
alterations were capable of affecting the expression of the m6A
regulators across TCGA cancer types, but also investigated the
potential upstream miRNAs and transcriptional factors that were
able to target these m6A regulators. Our results including
miRNAs or TF–m6A regulators networks provided new
supplementary knowledge about the modulation of the m6A
regulators’ dysregulation across cancer types.

The dysregulation of m6A regulators was involved in the
procedures of cancer development (Huang et al., 2020).
Hence, discovering novel drugs targeting these m6A regulators

was critical for cancer therapy. For example, a chemical
compound, MA2, as an inhibitor of FTO, could effectively
suppress the tumor progression of glioblastoma (Cui et al.,
2017). Besides, FB23-2 was also capable of inhibiting FTO
expression to suppress the proliferation of AML cells (Huang
et al., 2019). In the present study, we thereby investigated whether
there were some potential chemicals that could increase or
decrease the expression of the m6A regulators. By analyzing
the chemical database, the m6A regulators–potential drugs
network was constructed and it might provide benefits for
potential drugs discovery to target specific m6A regulators.

CONCLUSION

In summary, our results not only systematically analyze the
expression, genetic alterations, oncogenic pathways, and
prognosis significance of m6A regulators across multiple cancer
types, but also constructed the networks between m6A regulators
and potential chemical drugs, miRNAs, or upstream
transcriptional factors. These comprehensive analyses might
provide novel understanding of these m6A regulators’ roles and
shed light on their potential molecular mechanisms in cancers as
well as help develop new therapy approaches for cancers.
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EFNA3 Is a Prognostic Biomarker
Correlated With Immune Cell
Infiltration and Immune Checkpoints
in Gastric Cancer
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Background: Ephrin A3 (EFNA3), like most genes in the ephrin family, plays a central role
in embryonic development and can be dysregulated in a variety of tumors. However, the
relationship between EFNA3 and gastric cancer (GC) prognosis and tumor-infiltrating
lymphocytes remains unclear.

Methods: Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling
Interactive Analysis 2 (GEPIA2) were used to analyze the expression of EFNA3. Kaplan-
Meier plots and GEPIA2 were used to evaluate the relationship between EFNA3
expression and GC prognosis. Univariable survival and multivariate Cox analyses were
used to compare various clinical characteristics with survival. LinkedOmics database was
used for gene set enrichment analysis (GSEA). TIMER database and CIBERSORT
algorithm were used to examine the relationship between EFNA3 expression and
immune infiltration in GC and to explore cumulative survival in GC. The relationship
between EFNA3 and immune checkpoints was examined using cBioPortal genomics
analysis. Finally, EFNA3 expression in GC cells and tissues was assayed using quantitative
real-time polymerase chain reaction.

Results: EFNA3 expression differs in a variety of cancers, and EFNA3 expression was
higher in GC tissue than normal gastric tissue. GC patients with high expression of EFNA3
had worse overall survival, disease-free survival, and first progression. Multivariate analysis
identified EFNA3 as an independent prognostic factor for GC. GSEA identified ribosome,
cell cycle, ribosome biogenesis in eukaryotes, and aminoacyl-tRNA biosynthesis pathways
as differentially enriched in patients with high EFNA3 expression. B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells were significantly negatively
correlated with a variety of immunemarkers. EFNA3 participates in changes in GC immune
checkpoint markers in a collinear manner. EFNA3 expression in HGC-27, AGS, MKN45,
and NCI-N87 was cell lines higher than that in GES-1, and patients with high expression of
EFNA3 had a worse prognosis.

Conclusion: EFNA3 can be used as a prognostic and immune infiltration and checkpoint
marker in GC patients.
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INTRODUCTION

Gastric cancer (GC) is one of the most common cancers
worldwide, and the mortality rate ranks third among all
cancers (Smyth et al., 2020). Surgery is the only cure for GC,
but even if tumors are surgically removed, recurrence is common.
Radiotherapy, chemotherapy, targeted therapy, and
immunotherapy for GC are advancing rapidly, but the
prognosis of patients with advanced GC remains poor.
Therefore, it is very important to identify effective early
diagnostic and prognostic biomarkers.

Ephrin is a general term for a class of cell surface ligands.
Ephrin binds to members of the Eph tyrosine kinase receptor
family and thus plays an essential role in the migration, rejection,
and adhesion of neurons, blood vessels, and epithelial cells during
development (Nievergall et al., 2012). Eph receptors and ephrins
are signaling molecules involved in axon guidance. Recent studies
have shown that they play a critical role in cancer proliferation,
invasion, metastasis, and angiogenesis (Chen, 2012). Therefore,
many members of the ephrin family are abnormally expressed in
cancer cells, and changes in ephrin genes are often associated with
greater likelihood of invasion and metastasis and worse prognosis
(Kou and Kandpal, 20182018). We found that the tumor
microenvironment (TME) promotes tumor growth and
suppresses anti-tumor immunity via complex signaling
pathways. Ephrins expressed in the TME play roles in tumor
invasion, metastasis, and angiogenesis (Janes et al., 2021).
Modulating the expression of ephrins may affect the TME and
ultimately the tumor itself. In the past decade, tremendous
advances in immune-related treatments and technologies have
occurred. Considerable progress has been made in the
development of both treatment methods and treatment
techniques (Pulendran and Davis, 2020), particularly those
related to immune checkpoints. Considerable research has also
focused on the relationship between ephrins and immunity.
Ephrin expression has been detected on both human B cells
and T cells (Alonso-C et al., 2009; Luo et al., 2016), suggesting
that these proteins are involved in immunity.

Our current research primarily focuses on the relationship
between the expression of ephrin family proteins and various
malignant tumors. For example, ephrin-A1 is highly expressed in
hepatocellular carcinoma and associated with poor prognosis
(Wada et al., 2014). We also found the same relationship in
GC and colorectal cancer (Yuan et al., 2009; Yamamoto et al.,
2013). The expression of ephrin-B1 is higher in bladder cancer
tissues than normal urothelial tissue, suggesting that ephrin-B1
can be used as a biomarker of bladder cancer aggressiveness
(Mencucci et al., 2020). Ephrin-B2 is also highly expressed in
endometrial cancer, and patients with low ephrin-B2 expression
have a better prognosis (Alam et al., 2007). As a member of the
Ephrin family, EFNA3 also plays an important role in the
occurrence and development of tumors. EFNA3 promotes the
occurrence and development of oral tumors as well as the
formation of blood vessels in oral cancer (Wang et al., 2020).
EFNA3 also inhibits the proliferation and invasion of Malignant
peripheral nerve sheath tumor(15). Sheath tumor cells (Wang
et al., 2015). The different roles of EFNA3 in different tumors

suggests the protein has diverse functions. To the best of our
knowledge, only two studies examining EFNA3 in relation to GC
have been published, but these studies did not examine the
relationship between expression level and prognosis (Yu et al.,
2020; Pei et al., 2021). In view of the role of EFNA3 in other
tumors, the relationship between EFNA3 and GC requires
further study.

Based on the involvement of ephrins such as EFNA3 in a variety of
tumors, we hypothesized that EFNA3 would be a useful diagnostic
and prognostic marker in GC patients. Although ephrins play a role
in anti-cancer immunity, very little research has focused on this
relationship. We therefore examined the relationship between
EFNA3 expression and the immune microenvironment and
immune checkpoints due to the potential usefulness of
monitoring EFNA3 in clinical treatment.

In this study, we used the online tools Tumor Immune
Estimation Resource (TIMER) and Gene Expression Profiling
Interactive Analysis 2 (GEPIA2) to analyze the expression of
EFNA3 in GC tissues. Kaplan-Meier plots and GEPIA2 were
employed to explore the relationship between EFNA3 expression
and GC prognosis as well as the relationship between EFNA3 and
immune cell infiltration and immune checkpoints. To examine
the relationship between immune checkpoints and EFNA3, gene
set enrichment analysis (GSEA) was used to identify pathways
enriched in GC patients with high or low expression of EFNA3.
The expression of EFNA3 in GC cells and tissues as it relates to
prognosis was evaluated using quantitative real-time polymerase
chain reaction (qRT-PCR). The results of our research indicate
that EFNA3 plays an important role in GC and clarify the
relationship between EFNA3 and GC immunity.

MATERIALS AND METHODS

Tissue Samples
A total of 50 cancerous and paracancerous tissue samples were
collected from GC patients during surgery in Gansu provincial
Tumor Hospital, and the tissues were stored at −80°C until
analysis. Prior to analysis, tissues were homogenized, and total
RNA was extracted for qRT-PCR. The study was approved by our
institutional Clinical Research Ethics Committee.

qRT-PCR
Cells were collected using a cell scraper and washed twice with
cold phosphate-buffered saline. The cells were then lysed with
TRIzol RNA extraction reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. RNA was reversely
transcribed into cDNA using the RevertAid First Strand cDNA
Synthesis Kit (Thermo-Fisher Scientific, Waltham, MA, USA).
Subsequently, with cDNA as the template, SYBR Premix Ex
Taq™ (TaKaRa, Otsu, Shiga, Japan) was utilized for qRT-PCR.
SYBR Green qPCR was used to evaluate the mRNA levels of
indicated genes. Expression of target genes was normalized to that
of GAPDH, and the data were analyzed according to the 2−ΔΔCT

method. Primers used for qRT-PCR were as follows: GAPDH, 5′-
AGAAGGCTGGGGCTCATTTG-3′ (F), 5′AGGGGCCATCCA
CAGTCTTC-3′ (R); EFNA3, TACTACTACATCTCCACGCCC
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ACTC-3′ (F), 5′-TCCCGCTGATGCTCTTCTCAA-3′(R) (Zhu
et al., 2021). Based on the results of qPCR, we sorted the
expression levels of EFNA3 in all patients from high to low.
Those with higher than the median value were the high-
expression groups, and those below the median were the low-
expression groups.

Cell Culture
GES-1 gastric epithelial cells and the GC cell lines HGC-27, AGS,
MKN45, and NCI-N87 were purchased from the Cell Resource
Center, Peking Union Medical CollegePMUC (Beijing, China). All
cells were maintained in Dulbecco’s modified Eagle’s medium
(RPMI-1640; Gibco, USA) supplemented with 10% fetal bovine

serum (Gibco) and 1% penicillin and streptomycin (Gibco). All
cells were cultured in a 5% CO2 humidified atmosphere at 37°C
(Baust et al., 2017).

GEPIA2 Database Analysis
GEPIA2 (http://gepia2.cancer-pku.cn/) is a newly developed
bioinformatics platform for the analysis and processing of
transcriptome data from The Cancer Genome Atlas (TCGA)
and Genotype-Tissue Expression (GTEx)databases.

Survival Analysis and Prognosis Evaluation
Kaplan–Meier plots (http://kmplot.com/analysis/) were
generated for prognostic analysis. Based on the median

FIGURE 1 | EFNA3 expression levels in different types of human cancers. (A) Expression of EFNA3 in different tumor types from TIMER. (B) Expression of EFNA3 in
different tumor types in GEPIA2. (C)GEPIA2 generates box plots for comparing EFNA3 expression in GC and paired normal tissues (TCGA tumor versus TCGA normal +
GTEx normal). (*P< 0.05, **P< 0.01, ***P< 0.001).
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FIGURE 2 | Correlation of EFNA3 expression with prognostic value in GC. Survival curves of differential EFNA3 expression were analyzed using GEPIA2 (A, B).
Correlation between EFNA3 and prognosis of STAD in the Kaplan-Meier plot database (C–E). OS, overall survival; DFS, disease-free survival; FP, fast progression; PPS,
post-progression survival.
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expression of EFNA3, patient samples were divided into two
groups for analysis with respect to overall survival (OS), fast
progression (FP), and post-progression survival (PPS). The
GEPIA2 database was used to determine the prognostic value
of EFNA3 expression in relation to the OS and disease-free
survival (DFS) of GC patients.

TIMER Database Analysis
TIMER (https://cistrome.shinyapps.io/timer/) is a web server for the
comprehensive analysis of tumor-infiltrating immune cells and
comprehensive analysis of tumor immunity. We verified the
differential expression of EFNA3 between GC samples and
samples of adjacent tissues (Ma et al., 2020). We also used the

TABLE 1 | Correlation of EFNA3 mRNA expression and clinical prognosis in gastric cancer with different clinicopathological factors by Kaplan-Meier plotter
Clinicopathological characteristics. Bold values indicate p < 0.05.

Overall survival (n = 875) First progression (n = 640)

N Hazard ratio p-value N Hazard ratio p-value

SEX — — — — — —

— 236 1.58 (1.09–2.28) 0.015 201 1.58 (1.05–2.37) 0.025
— 534 1.35 (1.09–1.67) 0.006 437 1.36 (1.06–1.76) 0.017
STAGE — — — — — —

1 67 0.63 (0.23–1.74) 0.37 60 0.63 (0.19–2.06) 0.44
2 140 0.58 (0.3–1.1) 0.091 131 1.69 (0.78–3.66) 0.18
3 305 1.5 (1.09–2.08) 0.013 186 1.99 (1.28–3.08) 0.002
4 148 0.68 (0.46–1) 0.049 141 0.62 (0.41–0.94) 0.024

STAGE T — — — — — —

2 241 0.73 (0.47–1.14) 0.16 239 0.71 (0.42–1.17) 0.17
3 204 1.52 (1.07–2.16) 0.019 204 1.35 (0.96–1.89 0.085
4 38 0.44 (0.19–1.02) 0.05 39 0.52 (0.22–1.21) 0.12

STAGE N — — — — — —

0 74 0.54 (0.23–1.26) 0.15 72 0.6 (0.26–1.39) 0.23
1 225 1.98 (1.18–3.31 0.009 222 1.98 (1.18–3.27) 0.008
2 121 2.25 (1.14–3.56) 0.001 125 1.79 (1.15–2.78) 0.009
3 76 0.62 (0.36–1.07) 0.083 76 0.61 (0.35–1.04) 0.068
1 + 2 + 3 442 1.26 (0.96–1.65) 0.096 423 1.29 (0.97–1.72) 0.084

STAGE M — — — — — —

0 444 1.29 (0.97–1.71) 0.08 443 1.25 (0.95–1.65) 0.11
1 241 1.83 (0.98–3.4) 0.054 56 0.7 (0.38–1.31) 0.26

LAUREN CLASSIFICATION — — — — — —

Intestinal 320 1.67 (1.22–2.3) 0.001 263 1.53 (1.08–2.18) 0.017
Diffuse 241 1.38 (0.97–1.98) 0.075 231 1.39 (0.97–1.99) 0.068
Mixed 32 0.42 (0.15–1.19) 0.095 28 0.2 (0.06–0.69) 0.0057

DIFFERENTIATION — — — — — —

Poor 165 0.58 (0.38–0.88) 0.01 121 0.59 (0.37–0.96) 0.03
Moderate 67 2.5 (1.17–5.35) 0.014 67 2.27 (1.1–4.68) 0.023

Well 32 0.35 (0.13–0.97) 0.034 — — —

— First Progression (n � 640) — — — — —

— N Hazard ratio p-value — — —

SEX — — — — — —

— 149 1.63 (1.04–2.53)) 0.03 — — —

— 348 1.67 (1.28–2.17) 0.001 — — —

STAGE — — — — — —

2 105 0.56 (0.28–1.09) 0.001 — — —

3 142 2.77 (1.79–4.27) 0.002 — — —

4 104 0.69 (0.43–1.08) 0.1 — — —

STAGE T — — — — — —

2 196 0.71 (0.42–1.17) 0.17 — — —

3 150 1.35 (0.96–1.89 0.085 — — —

4 — — — — — —

STAGE N — — — — — —

1 169 1.89 (1.11–3.21) 0.017 — — —

2 105 2.64 (1.62–4.32) 0.009 — — —

3 63 0.57 (0.31–1.06) 0.001 — — —

1 + 2 + 3 337 1.44 (1.07–1.94) 0.014 — — —

STAGE M — — — — — —

0 342 1.47 (1.08–2) 0.013 — — —

LAUREN CLASSIFICATION — — — — — —

Intestinal 192 2.39 (1.56–3.66) 0.001 — — —

Diffuse 176 1.34 (0.91–1.98) 0.14 — — —

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7965925

Zheng et al. GC Prognostic Markers

87

https://cistrome.shinyapps.io/timer/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


database to analyze EFNA3 expression in Stomach adenocarcinoma
(STAD) and the correlation between EFNA3 expression and the
abundance of immune infiltrating cells, including B cells, CD4+

T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells.

Gauging the Immune Response of
22 Tumor-Infiltrating Immune Cells in GC
CIBERSORT (Gentles et al., 2015) (http://cibersort.stanford.edu/) is a
deconvolution algorithmbased on gene expression that can be used to
evaluate changes in the expression of a set of genes relative to all other
genes in the sample. We used the CIBERSORT algorithm to examine
the responses of 22 TIICs(B cells naïve,B cells memory,Plasma cells,
T cells CD8,T cells CD4 naïve,T cells CD4 memory resting,T cells
CD4 memory activated,T cells follicular helper,T cells

regulatory(Tregs),T cells gamma delta,NK cells resting,NK cells
activated, Monocytes,Macrophages M0, Macrophages M1,
Macrophages M2,Dendritic cells resting, Dendritic cells activated,
Mast cells resting, Mast cells activated, Eosiniphils and Neutrophils)
in GC in order to assess the correlations with survival and molecular
subgroups.

cBioPortal Analysis
cBioPortal (http://cbioportal.org) providesweb resources for exploring,
visualizing, and analyzing multi-dimensional cancer genome data
(Gao et al., 2013). We used cBioPortal to visualize and compare
genetic changes in the following immune checkpoint molecules: PD-
L1 (CD274), PD-L2 (PDCD1LG2), CD80, CD86, VTCN1, VSIR,
HHLA2, TNFRSF14, PVR, CD112 (NECTIN2), CD200, LGALS9,
ICOSLG, TNFSF9, TNFSF4, CD70, TNFSF18, and CD48.

TABLE 2 | Univariate COX regression analysis and Multivariate COX regression analysis for EFNA3.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Age (>65 vs. ≤65) 367 1.620 (1.154–2.276) 0.005 1.974 (1.364–2.857) <0.001
Gender (Male vs. Female) 370 1.267 (0.891–1.804) 0.188 — —

T stage (T3&T4 vs. T1&T2) 362 1.719 (1.131–2.612) 0.011 1.446 (0.919–2.276) 0.111
N stage (N2&N3 vs. N0&N1) 352 1.650 (1.182–2.302) 0.003 1.542 (1.086–2.190) 0.015
M stage (M1 vs. M0) 352 2.254 (1.295–3.924) 0.004 2.860 (1.593–5.133) <0.001
EFNA3 (High vs. Low) 370 0.703 (0.506–0.978) 0.036 0.625 (0.439–0.889) 0.009

FIGURE 3 | Enrichment plots from GSEA. KEGG pathways of EFNA3 in STAD cohort. FDR, false-discovery rate.
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LinkedOmics Database Analysis of
EFNA3-Related Pathways
The LinkedOmics (http://www.linkedomics.org) database includes
32 cancer types from TCGA project and a total of 11,158 patients
with multiple omics and clinical data. It is also the first multi-omics
database that integrates mass spectrometry–based global
proteomics data generated by the Clinical Proteomics Cancer
Analysis Alliance on selected TCGA tumor samples. We use the
LinkedOmics database to view these pathways. We also conducted
GSEA in LinkInterpreter and KEGG Pathways Enrichment
Analysis of EFNA3-related pathways.

Univariate and Multivariate Cox Regression
Analyses
Univariate and multivariate Cox regression were used to analyze
survival. Multivariate Cox analysis was used to compare the
effects of EFNA3 expression and other clinical characteristics

on survival. Patients were divided into high– and low–EFNA3
expression groups. The statistical significance level for the two-
tailed test was set to 0.05.

Statistical Analysis
Survival curves were generated using GEPIA2 and Kaplan-Meier
plots. The results are displayed with hazard ratio (HR) and P or
Cox p-values from log-rank tests.

RESULTS

mRNA Expression Levels of EFNA3 in
Different Types of Human Cancers
To evaluate differences in EFNA3 expression in tumor and normal
tissues, the EFNA3 mRNA levels in tumor and normal tissues of
patients with multiple types of cancer were analyzed using the
TIMER database. EFNA3 expression was higher in BLCA, CHOL,

FIGURE 4 | (A) Proportion of 22 subpopulations of immune cells. (B) EFNA3 expression level was significantly negatively correlated with levels of infiltrating B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in GC. (C) Cumulative survival was related to macrophages and EFNA3 in GC.
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TABLE 3 | Correlation analysis between EFNA3 and relate genes and markers of immune cells in TIMER.

Description Gene markers None Purity

Cor P Cor P

CD8+ T cell — — — — —

— CD8A −0.207315046 *** −0.20242845 ***
— CD8B −0.149493123 ** −0.143242331 **
T cell (general) — — — — —

— CD3D −0.263887993 *** −0.249219653 ***
— CD3E −0.267123175 *** −0.26059211 ***
— CD2 −0.238296665 *** −0.224033483 ***
B cell — — — — —

— CD19 −0.257111288 *** −0.242635831 ***
— CD79A −0.304089267 *** −0.295011059 ***
Monocyte — — — — —

— CD86 −0.174594623 *** −0.159553219 **
— CD115 (CSF1R) −0.232143121 *** −0.217217322 ***
TAM — — — — —

— CCL2 −0.170170145 ** -0.150541669 **
— CD68 −0.110379646 * -0.10019684 0.051284861
— IL10 −0.151439718 * −0.11591185 *
M1 Macrophage — — — — —

— INOS (NOS2) 0.01731189 0.725113784 0.033387321 0.516974952
— IRF5 −0.058798236 0.231890806 −0.051855302 0.314003055
— COX2(PTGS2) 0.038192905 0.437599325 0.04611645 0.370625499
M2 Macrophage — — — — —

— CD163 −0.117692005 * −0.100753601 *
— VSIG4 −0.128470571 ** −0.108138566 *
— MS4A4A −0.245048757 *** −0.228561813 ***
Neutrophils — — — — —

— CD66b (CEACAM8) −0.038892665 0.429403341 −0.045277856 0.379398546
— CD11b (ITGAM) −0.237196109 *** −0.222545419 ***
— CCR7 −0.328484339 *** −0.303657644 ***
Natural killer cell — — — — —

— KIR2DL1 −0.054005227 0.272356068 −0.046098831 0.370808521
— KIR2DL3 −0.074236678 0.131084612 −0.048572102 0.345664963
— KIR2DL4 0.052175156 0.288960296 0.080487011 0.117752329
— KIR3DL1 −0.047502648 0.33438018 −0.044153189 0.391362199
— KIR3DL2 −0.092480122 0.059793067 −0.081231199 0.11438445
— KIR3DL3 0.002491516 0.959641852 −0.001757506 0.972795818
— KIR2DS4 −0.015480848 0.753189563 −0.036168244 0.482663905
Dendritic cell — — — — —

— HLA-DPB1 −0.25863437 *** −0.235387886 ***
— HLA-DQB1 −0.141898195 * −0.111787485 *
— HLA-DRA −0.155704255 ** −0.124386463 *
— HLA-DPA1 −0.188483029 ** −0.158691397 *
— BDCA-1(CD1C) −0.419921274 *** −0.395322677 ***
— BDCA-4(NRP1) -0.256360056 *** -0.251782132 ***
— CD11c (ITGAX) −0.164137654 ** −0.145959864 *
Th1 — — — — —

— T-bet (TBX21) −0.211737847 *** −0.191068168 **
— STAT4 −0.280788203 *** −0.28766748 ***
— STAT1 0.104556017 * 0.107212799 *
— IFN-γ (IFNG) 0.036859801 0.453928996 0.055368894 0.28229336
— TNF-α (TNF) −0.013194081 0.788624466 0.030997142 0.547439608
Th2 — — — — —

— GATA3 −0.268551295 *** −0.27844804 ***
— STAT6 −0.1308076 * −0.135425002 *
— STAT5A −0.10826853 * −0.101518944 *
— IL13 −0.050161416 0.30800105 −0.042617284 0.408064011
Tfh — — — — —

— BCL6 −0.057315888 0.243998933 −0.049118066 0.340263959
— IL21 −0.006365356 0.897134245 0.018712321 0.716516372
Th17 — — — — —

— STAT3 −0.061558105 0.210680659 −0.057538398 0.263832341
— IL17A −0.019216313 0.696298946 −0.000146833 0.997726758
Treg — — — —

(Continued on following page)
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COAD, KIRC, ESCA, NISC, KIRC, KIRP, LIHC, LUAD, LUSC,
READ, SKCM, STAD, THCA, and UCEC compared with normal
tissues. In addition, lower expression was observed in KICH
(Figure 1A). In GEPIA2, we observed high expression in ACC,
BLCA, RBCA, COAD, KIRC, LUAD, LUSC, OV, PAAD, READ,
STAD, THYM, UCEC, and UCS and low expression in GBM,
LAML, and SKCM (Figure 1B). EFNA3 was highly expressed in
STAD (Figure 1C).

Prognostic Utility of EFNA3 in GC
The prognostic value of EFNA3 expression in GC was evaluated
using Kaplan-Meier plots and GEPIA2. Expression of EFNA3
was significantly associated with the prognosis of GC patients.
The results of GEPIA2 analysis showed that high expression of
EFNA3 was associated with longer OS (HR � 0.63, p � 0.0038)
and DFS (HR � 0.67, p � 0.04) of GC patients (Figures 2A,B)
compared with GC patients with low EFNA3 expression. In
analyses using the KM web tool, the OS (HR � 1.33
[1.11–1.6], p � 0.0016), PPS (HR � 1.64 [1.3–2.06], p � 2.5e-
05), and FP (HR � 1.43 [1.15–1.78], p � 0.0014) of GC patients
with high EFNA3 expression (Figures 2C–E) values were
significantly lower than those of patients with low EFNA3
expression.

In order to better understand the relationship between the
expression of EFNA3 and GC, we examined the expression of
EFNA3 in relation to various clinical characteristics in GC
patients using the KM web tool. High expression of EFNA3 in
males and females with stage 3 disease of intestinal type was
associated with poor OS, PPS, and FP. In terms of differentiation,
high expression of EFNA3 was associated with poor OS,
regardless of high, medium, or low differentiation (Table 1).
Finally, we downloaded GC-related information from TCGA,
remove the missing information. Univariate andmultivariate Cox
analysis identified EFNA3 expression (HR � 0.701 [0.504–0.974],
p � 0.034) as an independent prognostic factor in patients with
GC, (Table 2).

Identification of EFNA3-Related Signaling
Pathways Using GSEA
GSEAwas performed to identify signaling pathways that are activated
in GC. Ribosome, cell cycle, ribosome biogenesis in eukaryotes, and
aminoacyl-tRNA biosynthesis pathways were differentially enriched
and positively correlated with EFNA3 mRNA expression phenotype.
In contrast, hematopoietic cell lineage, Staphylococcus aureus
infection, intestinal immune network for IgA production, and
inflammatory bowel disease pathways were negatively correlated
with EFNA3 mRNA expression (Figure 3).

Relationship Between EFNA3 Expression
and TIICs
We also evaluated whether the expression of EFNA3 is related to
immune cell infiltration in GC using data downloaded from TCGA.
Tumor specimens were divided into groups based on high and low
EFNA3 expression.We used CIBERSORT to calculate and download
the gene expression profiles of the samples to infer the immune

infiltration of 22 immune cells. The results showed that memory
B cells, memory resting CD4 T cells, follicular T helper cells,
regulatory T cells, resting NK cells, monocytes, M0 macrophages,
resting dendritic cells, resting mast cells, activated mast cells, and
neutrophils were the primary immune cells affected by the expression
of EFNA3 (Figure 4A).

TIMER Analysis of Correlation Between
EFNA3 Expression and Immune Cell
Infiltration Level and Cumulative Survival
in GC
As TIICs are independent predictors of cancer prognosis, it is
very important to study the relationship between the expression
of EFNA3 and the level of immune cell infiltration. Using the
TIMER database, we found that EFNA3 expression was
significantly negatively correlated with the infiltration of
B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells (Figure 4B). Macrophage infiltration and
EFNA3 expression were related to the cumulative survival rate
of GC patients over time (Figure 4C).

In order to further characterize the role of EFNA3 expression
and TIICs, we analyzed the relationship between the expression
of EFNA3 and immune marker genes in different types of
immune cells, including CD8+ T cells, T cells (general),
B cells, monocytes, tumor-associated macrophages (TAMs),
M1 and M2 macrophages, neutrophils, NK cells, DCs, Th1
cells, Th2 cells, follicular T helper cells, Th17 cells, Tregs, and
T cell exhaustion. We found that EFNA3 expression was also
related to several immune markers of B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells. These
results were consistent with our previous results. Interestingly,
the expression of EFNA3 was not related to M1 macrophages but
closely related to M2 macrophages. In addition, the expression
levels of most marker sets of monocytes and TAMs were closely
related to the expression of EFNA3 (Table 3).

EFNA3 and Immune Checkpoints
We also explored the genetic changes in the EFNA3 gene and the
immune checkpoints we mentioned earlier in GC. The general
landscape of EFNA3 and immune checkpoint alteration in GC
was compactly visualized, including fusion, amplification, deep
deletion, truncating, and missense mutations (Figure 5). Genetic
alterations in EFNA3 in GC reached as high as 3%, a level higher
than that of other immune checkpoint changes (Figure 5).

Next, we examined the relationship between EFNA3 and each
representative immune checkpoint separately. Mutations in EFNA3
exhibited statistically significant co-occurrences rather than mutual
exclusivity with a variety of immune checkpoints, such as CD48,
TNFSF4, TNFSF18, PVR, NECTIN2, CD274, and TNFRSF14
(Table 4).

Elevated EFNA3 Expression in GCCell Lines
and Tissues
In order to characterize EFNA3 expression in GC tissues and cell
lines, qRT-PCR was performed, and the results showed that EFNA3
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expression was significantly higher in GC tissues than adjacent non-
cancerous tissues (Figure 6B). In GC cell lines, the expression of
EFNA3 was significantly higher than in GES-1 cells (Figure 6A). In
addition, after grouping patients based on high versus low EFNA3
expression, log-rank tests showed that high EFNA3 expression was
associated with poor prognosis (Figure 6C).

DISCUSSION

Cancer cells at different stages of transformation and metastasis
rely on signal transduction between cells. Ephs/Ephrins act as
repulsive and attractive signaling molecules between cells and can
bind to Eph receptors on neighboring cells, resulting in contact-

TABLE 3 | (Continued) Correlation analysis between EFNA3 and relate genes and markers of immune cells in TIMER.

Description Gene markers None Purity

Cor P Cor P

— FOXP3 −0.119564378 * −0.107616351 *
— CCR8 −0.129723551 * −0.115791686 *
— STAT5B −0.204293596 *** −0.202750648 ***
— TGFβ (TGFB1) −0.125655895 * −0.125169215 *
T cell exhaustion — — — — —

— PD-1 (PDCD1) −0.104825489 * −0.084697986 0.099680031
— CTLA4 −0.016864448 0.731835488 0.011626566 0.821508615
— LAG3 −0.065025822 0.186062406 −0.053968224 0.294665055
— TIM-3 (HAVCR2) −0.126420397 * −0.106746361 *
— GZMB 0.096918275 * 0.122835389 *

FIGURE 5 | Landscape of EFNA3 and immune checkpoint changes in GC. Compact visualization of cases with multiple genetic alterations in EFNA3 and immune
checkpoints (derived from 15 studies) shown individually by cBioPortal as indicated, including fusions, amplifications, deep deletions, truncating mutations, and
missense mutations.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79659210

Zheng et al. GC Prognostic Markers

92

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


dependent bidirectional signal transduction between neighboring
cells (Kandouz, 2012). Abnormal signal transduction leads to the
occurrence and development of tumors. Our research focuses on
the ephrin family member EFNA3. Although EFNA3 has not
been extensively studied, available research in sheath tumor and
oral cancers is gratifying (Yuan et al., 2009; Yamamoto et al.,
2013). Here, we studied the expression of EFNA3 in different
cancers, focusing on the high expression of EFNA3 in GC and its
relationship to poor prognosis. In addition, the expression level of
EFNA3 in GC is related to the levels of immune cell infiltration
and different immune markers.

The online data results of our study show that the expression
of EFNA3 in many types of cancers differs from that in normal
tissues. EFNA3 is highly expressed in GC, hepatocellular
carcinoma, and other cancers. We found that KICH
expression was low in the TIMER database, but there was no
difference in the GEPIA2 data. By comparison, SKCM expression
was high in TIMER but low in GEIPA2. Differences in expression
in the same cancer noted in different databases may be related to
differences in data collection methods, statistical analyses, and
biological characteristics. In both databases we examined, EFNA3
was highly expressed in GC, consistent with our qRT-PCR results.
Kaplan-Meier plot analyses of OS between the databases showed
that GC patients with high expression of EFNA3 had a poor
prognosis, which was also closely related to gender and
classification, stages 3 and 4, stage T3, stages N1 and 2,
classification of intestinal, whereas the prognosis of GC
patients with high expression of EFNA3 in GEPIA2 was good.
The prognostic differences between databases may be related to
the study subject inclusion and rejection criteria, the amount of
specimens analyzed, as well as other human or random factors.
Therefore, we grouped GC patients based on EFNA3 expression
from the results of qRT-PCR analyses. Our results show that GC
patients with high expression of EFNA3 have a significantly
worse prognosis than GC patients with low EFNA3 expression

(p � 0.0376). The prognostic utility of EFNA3 for GC patients was
further evaluated using univariate and multivariate Cox analyses,
which indicated that EFNA3 is a useful independent prognostic
factor for GC. These results strongly indicate that EFNA3 is a
promising prognostic biomarker for GC.

Based on our initial results, we sought to identify signaling
pathways that are enriched in GC patients with high expression of
EFNA3, because these patients are at higher risk of poor outcome.
The results of GSEA showed that high expression of EFNA3 was
associated primarily with enrichment of six pathways. The most
markedly enriched pathway was the ribosome pathway. In cancer
cells, increased ribosome synthesis leads to a corresponding
increase in protein synthesis, which plays an important role in
the development of most tumors. Inhibition of ribosome
biosynthesis has become a new target in cancer treatment
(Pelletier et al., 2018; Catez et al., 2019). The change in
EFNA3 expression leads to enrichment of the ribosome
pathway, indicating that EFNA3 expression is closely related
to ribosome biosynthesis in GC cells. Further interactions need
to be verified by related experiments; however, our present
research still provides new insights regarding the treatment
of GC.

Studies of immune cell infiltration have shown that immune
cells in the TME play an important role in the progression of
cancer (Lei et al., 2020). A deeper understanding of immune cell
infiltration in the immune microenvironment could facilitate the
development of new strategies for cancer immunotherapy. Our
results show that the expression of EFNA3 is negatively correlated
with the infiltration of a variety of immune cells, with the highest
correlation withmacrophages (Cor � −0.368, p � 2.51e-13). Based
on that result, we explored tumor-associated macrophages
(TAMs) and genetic markers of M1 and M2 macrophages.
Interestingly, the three genetic markers of M1 macrophages
were not correlated with the expression of EFNA3, whereas
the expression of the three genetic markers of M2

TABLE 4 | Mutual-exclusivity analysis between EFNA3 and multiple-immune checkpoints in gastric cancer.

A B Neither A not B B not A Both Log2
odds
ratio

p-Value q-Value Tendency Significant

EFNA3 CD48 2,374 10 34 51 >3 <0.001 <0.001 Co-occurrence Yes
EFNA3 TNFSF4 2,384 21 24 40 >3 <0.001 <0.001 Co-occurrence Yes
EFNA3 TNFSF18 2,384 25 24 36 >3 <0.001 <0.001 Co-occurrence Yes
EFNA3 PVR 2,347 47 61 14 >3 <0.001 <0.001 Co-occurrence Yes
EFNA3 NECTIN2 2,335 53 73 8 2.271 <0.001 0.004 Co-occurrence Yes
EFNA3 CD274 2,290 53 118 8 1.551 0.011 0.042 Co-occurrence Yes
EFNA3 TNFRSF14 2,346 56 62 5 1.756 0.023 0.071 Co-occurrence Yes
EFNA3 LGALS9 2,353 57 55 4 1.586 0.056 0.145 Co-occurrence No
EFNA3 CD200 2,373 58 35 3 1.81 0.066 0.158 Co-occurrence No
EFNA3 VSIR 2,349 57 59 4 1.482 0.068 0.162 Co-occurrence No
EFNA3 TNFSF9 2,385 59 23 2 1.814 0.125 0.249 Co-occurrence No
EFNA3 CD80 2,360 59 48 2 0.737 0.352 0.503 Co-occurrence No
EFNA3 PDCD1LG2 2,290 57 118 4 0.446 0.356 0.503 Co-occurrence No
EFNA3 CD86 2,357 59 51 2 0.648 0.379 0.512 Co-occurrence No
EFNA3 HHLA2 2,351 59 57 2 0.484 0.432 0.535 Co-occurrence No
EFNA3 CD70 2,378 60 30 1 0.402 0.542 0.59 Co-occurrence No
EFNA3 VTCN1 2,355 60 53 1 −0.433 0.612 0.642 Mutual exclusivity No
EFNA3 ICOSLG 2,361 60 47 1 −0.256 0.666 0.674 Mutual exclusivity No
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macrophages examined were closely related to the expression of
EFNA3. M1 macrophages mainly participate in positive immune
responses such as immune surveillance and inhibition of tumor
growth, whereas M2 macrophages mainly secrete inhibitory
cytokines (such as IL-10 and TGF-β) to down-regulate the
immune response, thereby promoting tumor growth (Cortese
et al., 2020). Therefore, the close relationship between EFNA3
expression and M2 macrophages may be related to its M2
macrophages down-regulation of the immune response. We
know that TAMs are not identical to the M1 and M2
macrophage subtypes, but TAMs are similar to M2
macrophages and promote tumor growth by inducing
immunosuppression (Mehla and Singh, 2019). M2
macrophages also cooperate with Th2 and Treg cells to affect
multiple steps of tumor development (Najafi et al., 2019). The
expression of markers of Th2 cells (GATA3, STAT6, STAT5A)
and Tregs (FOXP3, CCR8, STAT5B, TGF-β [TGFB1]) differed
significantly. These results may indicate that EFNA3 has the
potential to regulate TAMs. We therefore examined the
relationship between high and low expression of EFNA3 and

22 types of immune cells and found that high EFNA3 expression
is correlated is correlated with M2 macrophages (p � 0.034),
consistent with the TIMER results. In our research, we found
many articles related to ephrins and T cells. For example, in GC,
EFNB1 inhibits T cells via follicular T helper cells (Lu et al., 2017).
In experimental autoimmune encephalomyelitis and multiple
sclerosis, the expression of EFNB1 and EFNB2 was found to
be related to the migration of T cells (Luo et al., 2016). Based on
this observation, we explored TIICs because the analysis of TIICs
in human tumors usually focuses on T cells. We found that
EFNA3 is highly expressed primarily by infiltrating activated
CD4 memory T cells and follicular T helper cells, whereas low
EFNA3 expression is primarily associated with infiltrating resting
CD4 memory T cells and Tregs.

The blocking of immune checkpoints is increasingly
considered a primary future method for cancer
immunotherapy. However, at least in current clinical practice,
the treatment of GC is focused primarily on surgery and
radiotherapy (Zhao et al., 2019). Genomic investigations
showed that EFNA3 actually participates in the changes in

FIGURE 6 | EFNA3 expression was significantly up-regulated in cell lines and GC tissues. qRT-PCR showed that EFNA3 expression was up-regulated in GC cell
lines (A) and GC tissues (B). High EFNA3 expression was related to shorter OS time (C). (**P< 0.01, ***P< 0.001, ****P< 0.0001).
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immune checkpoints. Changes of EFNA3 in expression co-occur
with changes in a wide range of immune checkpoints (CD48,
TNFSF4, TNFSF18, PVR, NECTIN2, CD274, and TNFRSF14),
which strongly suggest that EFNA3 is a co-regulator of immune
checkpoints in GC.

Although the present study further elucidated the relationship
between EFNA3 expression and prognosis in GC through
analyses involving multiple databases and experiments, the
pathogenic mechanism of EFNA3 in GC was only examined
to a limited degree using GSEA. Further studies are needed to
verify our present results. In addition, the reasons for the
prognostic differences between the different databases could
not be conclusively determined. In order to eliminate
potentially interfering factors, studies with larger sample sizes
will be needed to minimize potential errors. Our study was
limited by the small sample size and therefore could not fully
elucidate the relationship between EFNA3 expression and GC
prognosis. Finally, although we studied the relationship between
EFNA3 expression and immune checkpoints using online
databases, clearly determining this relationship requires further
confirmation. Although these problems will likely be solved in the
future, our research clearly shows that GC tissues express
significantly higher levels of EFNA3, and high expression of
EFNA3 is associated with a worse outcome in GC, as it is
closely related to immune cell infiltration and regulation of
immune checkpoints. In short, EFNA3 appears to hold
tremendous promise as both a target in GC immunotherapy
and a promising prognostic indicator of GC.
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Background: Gastric cancer (GC) remains the fifth most commonly diagnosed
malignancy worldwide, with a poor prognosis. The lysyl oxidase (LOX) family, a type of
secreted copper-dependent amine oxidases, is comprised of LOX and four LOX-like
(LOXL) 1–4 isoforms and has been reported to be dysregulated in a number of different
type cancers. However, the diverse expression patterns and prognostic values of LOX
family in GC have yet to be systematically analyzed.

Methods: ONCOMINE, GEPIA, UALCAN, Kaplan–Meier Plotter, LOGpc, cBioPortal,
GeneMANIA and Metascape databases were utilized in this study to analyze the
expression, prognostic values, mutations and functional networks of LOX family in GC.

Results: The mRNA expression levels of LOX, LOXL1 and LOXL2 were significantly higher
in GC, the expression level of LOXL3 was contrary in different databases, while the
expression level of LOXL4 made no difference; the expression levels of LOX, LOXL1 and
LOXL3 were higher in stages 2–4 than that of normal tissues and stage 1, while the mRNA
level of LOXL2 in stage 1–4 was higher than normal tissues; patients with high expression
of LOX and LOXL 2-4 had poor OS; the genes correlated with LOX and LOXL2 were
enriched in extracellular matrix organization, vasculature development and skeletal system
development.

Conclusion: Our results indicated that the LOX family, especially LOX and LOXL2, might
play an important role in GC oncogenesis, and they may become biomarkers for predicting
tumor prognosis and potential targets for tumor therapy.

Keywords: gastric cancer, LOX family, bioinformatics analysis, biomarker, prognosis

INTRODUCTION

Even though declines in (GC)incidence and mortality rates have been observed consistently across
world regions, GC remains the fifth most commonly diagnosed malignancy worldwide, with over
1 million estimated new cases in 2018 (Bray et al., 2018). However, due to its advanced-stage
diagnosis, excess mortality from this cancer is high, making GC the third most common cause of
cancer related death with 784,000 deaths globally (Bray et al., 2018). Despite major advances in
understanding the epidemiology, pathology, and molecular mechanisms of GC and in implementing
emerging therapeutic options such as targeted and immune-based therapies, not all patients respond
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to existing molecularly targeted agents developed for certain
acknowledged biomarkers (Chau, 2017). As a result, it is of
great importance to further identify novel diagnostic and
prognostic biomarkers in terms of the biological complexity,
poor prognosis and high reoccurrence of GC (Kang et al., 2018).

The extracellular matrix (ECM) is a complex network of
secreted molecules, the function of which is to program cell
behavior including supporting cell adhesion, survival and
migration. The remodeling of the ECM in cancer plays an
important role in controlling the progression of disease and
influences cell growth, motility and survival (Yamauchi et al.,
2018a). The lysyl oxidase (LOX) family, which are well known as
ECM-modifying proteins, they participate in the crosslinking of
collagens and elastin in the ECM, promoting its maturation
(Yamauchi et al., 2018b; Chitty et al., 2019). The LOX family, a
type of secreted copper-dependent amine oxidases, is comprised
of five homologous members: LOX and lysyl oxidase-like
proteins 1–4 (LOXL1, LOXL2, LOXL3 and LOXL4) (Molnar
et al., 2003). Structurally, these members are all characterized by
a highly conserved C-terminal domain and a variable
N-terminal domain. The composition of C-terminal domain
contains copper binding domain, amino acid residues forming
lysine tryosylquinone (LTQ), cofactor formation, and a cytokine
receptor-like (CRL) domain (Wang et al., 2016). The pro-
domains are existed in the N-terminal region of LOX and
LOXL1, whereas four scavenger-receptor cysteine-rich
(SRCR) domains in the N-terminal are observed in LOXL2-4
(Xiao and Ge, 2012). Mature active forms of LOX and LOXL1
are obtained through a specific cleavage process induced by
bone morphogenetic protein 1 (BMP-1), whereas LOXL2,
LOXL3, and LOXL4 do not require this cleavage process to
mature. In particular, a pre-pro-LOX protein is encoded by LOX
mRNA and converted to the inactive LOX preprotein (pro-
LOX) in the cytoplasm. The Pro-LOX protein is further cleaved
by BMP-1 to form an active LOX with the LOX propeptide
(LOX-PP) to perform its function (Wang et al., 2016). In healthy
tissue, the synthesis of the LOX family is tightly regulated to
control the amount of active LOX family members present.
While the LOX family has been reported to be dysregulated in a
number of different type cancers (Li et al., 2015; Salvador et al.,
2017; Shao et al., 2019; Zeltz et al., 2019; Hu L. et al., 2020). The
changes in LOX family member regulation, expression and
subsequently enzymatic activity are therefore important
factors in cancer progression (Setargew et al., 2021). The
LOX family of enzymes may be favorable targets for anti-
stromal therapeutics due to their importance in cancer
development and progression when compared to healthy
state ECM (Setargew et al., 2021). Additionally, highly LOX
family expressing tumors have increased LOX family levels
detectable in plasma (Rachman-Tzemah et al., 2017), and
thus indicate the potential to be used as tumor serum markers.

The dysregulated expression level of LOX family and their
relationship with clinicopathological features and prognosis have
been partly reported in human GC. With the revolutionized
development of microarray and bioinformatic technology, we
conducted this systematical study using the data from The Cancer
Genome Atlas (TCGA) and other versatile public databases to

analyze the expression levels, mutations, functional networks and
prognostic values of different LOX in GC, so as to reveal potential
diagnostic, therapeutic, and prognostic targets for GC, and the
results in different databases were verified with each other to
make the results more convincible.

MATERIALS AND METHODS

Oncomine Database
The mRNA expression levels of LOX family in various cancers
and their normal tissue counterparts were analyzed using the
Oncomine database (http://www.oncomine.org/) (Rhodes et al.,
2007). A p-value of 0.001, a fold change of 2, and a gene rank in
the top 10% were set as the significance thresholds. The p value
was calculated using the Student’s t-test.

GEPIA Database
GEPIA (http://gepia2.cancer-pku.cn/) is a gene expression
analysis web which contains 9,736 tumors and 8,587 normal
samples from the TCGA and the Genotype-Tissue Expression
(GTEx) project (Tang et al., 2019). Here we used GEPIA to
compare the expression levels between TCGA cancer and
matched TCGA normal and GTEx normal. The results were
expressed as boxplots, and the cutoff criteria were set as p < 0.01
and |Log2FC| > 1.

UALCAN
UALCAN (http://ualcan.path.uab.edu/) is a comprehensive,
user-friendly, and interactive web resource for analyzing
cancer OMICS data (Chandrashekar et al., 2017). In this
study, we used UALCAN to compare the expression levels of
LOX family and their relationship with tumor stages. Student’s
t-test was used to generate a p-value and the p-value cutoff
was 0.05.

Survival Analysis
We used The Kaplan Meier plotter (http://kmplot.com/analysis/)
and LOGpc (http://bioinfo.henu.edu.cn/DatabaseList.jsp) to
evaluate the prognostic value of LOX family mRNA expression
in which cancer patients were split into high and low expression
group based onmedian values of mRNA expression and validated
by K-M survival curves. The Kaplan Meier plotter is capable to
assess the effect of 54 k genes (mRNA, miRNA, protein) on
survival in 21 cancer types including breast, ovarian, lung and
GC (Szász et al., 2016). LOGpc (Long-term Outcome and Gene
Expression Profiling Database of pan-cancers) encompasses 209
expression datasets, provides 13 types of survival terms for 31,310
patients of 27 distinct malignancies (Liu et al., 2018). The log-
rank test was used for computing p-value, with the hazard ratio
(HR) and 95% confidence intervals (CI), and p < 0.05 was
regarded as significant.

cBioPortal
The cBioPortal (https://www.cbioportal.org/) for Cancer
Genomics provides visualization, analysis and download of
large-scale cancer genomics data sets (Cerami et al., 2012).
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The stomach adenocarcinoma (TCGA, Firehose Legacy) dataset
was selected to figure out the alterations of LOX family. We also
estimated the correlations of each LOX family by analyzing their
mRNA expression (RNA Seq V2 RSEM), and then the Spearman
correlation coefficient was put into Microsoft Excel 2016 to draw
the heat maps. Besides, genes with the highest expression
correlation with each LOX protein were generated by
cBioPortal, and the top 50 co-expressed genes with highest
Spearman correlation score were included in the following
functional enrichment analysis.

GeneMANIA Database
GeneMANIA (https://genemania.org/) is actively developed at
the University of Toronto, in the Donnelly Centre for Cellular
and Biomolecular Research, in the labs of Gary Bader and Quaid
Morris, and it can find other genes that are related to a set of input
genes, using a very large set of functional association data
(Warde-Farley et al., 2010). GeneMANIA constructed
protein–protein interaction (PPI) networks in terms of
physical interaction, coexpression, predicted, colocalization,
common pathway, genetic interaction, and shared protein
domains. In this study, GeneMANIA was used to generate and
analyze gene co-expression network.

Metascape
We used the Metascape web (http://metascape.org) (Zhou et al.,
2019) to perform functional enrichment analysis by using the top
50 co-expressed genes of LOX family. The functional process and
pathway, following the default, included Canonical Pathway
(MSigDB), Hallmark Gene Sets (MSigDB), Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway and Gene
Oncology (GO).

RESULTS

Transcriptional Levels of LOX Family in GC
and Other Cancers
The transcription level differences of LOX family between tumor
and normal tissues were analyzed in multiple cancer types using
the Oncomine database. As shown in Figure 1, the expressions of
LOX, LOXL1 and LOXL2 have been up-regulated in most of the
studied tumors, while LOXL3 and LOXL4 only have differences
in expression in a small number of tumors.

The mRNA expression level of LOX was significantly up-
regulated in patients with GC in 4 analyses out of 23 in 2 datasets
out of 7. Chen gastric statistics (Chen et al., 2003) indicated that
LOX is overexpressed in gastric intestinal adenocarcinoma
compared with gastric normal tissue with a fold change of
2.312, diffuse gastric adenocarcinoma with a fold change of
2.004, and gastric mixed adenocarcinoma with a fold change
of 3.232 (Table 1). Wang gastric analysis (Wang et al., 2012)
revealed that LOX is upregulated in GCwith a fold change of
2.287 (Table 1). The transcriptional level of LOXL1 was
significantly up-regulated in GC in 3 analyses out of 23 in 3
datasets out of 7. In Chen’s (Chen et al., 2003) dataset, the
expression of LOXL1 was 2.077 times higher in gastric mixed
adenocarcinoma than normal tissues (Table 1). InWang’s dataset
(Wang et al., 2012), the expression of LOXL1 was 2.083 times
higher in GC tissues than normal tissues (Table 1). In DErrico’s
dataset (D’Errico et al., 2009), the expression of LOXL1 was
2.192 times higher in gastric mixed adenocarcinoma than normal
tissues (Table 1). Upregulation of LOXL2 was observed in 4
analyses in GC tissues compared with normal tissues, with a fold
change of 2.118 in Cui’s dataset (Cui et al., 2011), a fold change of
2.424 in Wang’s dataset, a fold change of 2.039 in Chen’s (Chen
et al., 2003) dataset, and a fold change of 2.681 in DErrico’s
dataset (D’Errico et al., 2009) respectively (Table 1). The analyses
of Oncomine database showed no difference in transcriptional
levels of LOXL3 and LOXL4 in GC (Figure 1).

Furthermore, we used GEPIA to compare the mRNA
expression of LOX family between 408 TCGA GC and 211
matched TCGA normal and GTEx normal, used UALCAN to
compare the expression levels of LOX family between 415
TCGA GC and 34 TCGA normal. The GEPIA analyses showed
that LOX/LOXL1/LOXL2 were higher in GC than in normal
tissues (Figure 2A). The results of UALCAN indicated that
LOX/LOXL1/LOXL2/LOXL3 were over-expressed in GC
(Figure 2B).

FIGURE 1 | Transcription levels of LOX family in different cancer types
(Oncomine).
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Relationship Between the mRNA Levels of
LOX Family and the Cancer Stages of GC
Next, we analyzed the relationship between the mRNA
expression of different LOX family members with patients’
individual cancer stages of GC patients by using UALCAN.
LOX, LOXL1, LOXL2 and LOXL3 groups significantly varied,
whereas LOXL4 groups did not significantly differ (Figure 3).
According to clinical stages, the mRNA level of LOX in stage 2–4
was higher than normal tissues and stage 1, while there is no
difference between stage 2–4 (Figure 3A). The similar result was
found in expression of LOXL1 and LOXL3 (Figures 3B,D). The
mRNA level of LOXL2 in stage 1–4 was higher than normal
tissues and highest expression was found in stage 2 tissues
(Figure 3C). There was no difference in expression of LOXL4
among different stages (Figure 3E).

Prognostic Values of LOX Family in GC
We further explored the prognostic values of LOX family in
patients with GC by using the Kaplan–Meier Plotter database

and LOGpc database. We separated all GC patients into two
groups (high vs. low) based on median expression values for
each LOX protein across all GC samples and compared overall
survival (OS) between the two groups. The Kaplan-Meier
curve and log rank test analyses revealed that all of LOX
family members were significantly associated with the OS
(p < 0.05) in patients with GC (Figure 4A). Meanwhile, the
results of LOGpc analyses indicated that the increased LOX,
LOXL2-4 mRNA expression were associated with low OS (p <
0.05) in patients with GC, but the expression of LOXL1 had no
correction with prognosis (p > 0.05) in patients with GC
(Figure 4B).

Genetic Mutations and PPI Network of LOX
Family
We analyzed the types and frequency of LOX Family alterations
in a cohort of GC patients using cBioPortal. The LOX family were
altered in 55 (14%) samples of 393 patients with stomach

TABLE1 | Remarkable changes of LOX family expression in transcription level between GC and normal gastric tissues (ONCOMINE).

Genes Type of GC
versus normal

Fold change p value t value References

LOX Gastric intestinal type adenocarcinoma 2.312 8.32E-14 9.498 Chen gastric statistics
Diffuse gastric adenocarcinoma 2.004 1.56E-5 5.536 Chen gastric statistics
Gastric mixed adenocarcinoma 3.232 1.79E-4 4.679 Chen gastric statistics
Gastric cancer 2.287 3.13E-4 4.231 Wang gastric statistics

LOXL1 Gastric mixed adenocarcinoma 2.077 5.58E-6 7.664 Chen gastric statistics
Gastric cancer 2.083 3.47E-5 4.767 Wang gastric statistics
Gastric mixed adenocarcinoma 2.192 3.75E-5 7.558 DErrico gastric statistics

LOXL2 Gastric cancer 2.118 7.91E-14 8.084 Cui gastric statistics
Gastric cancer 2.424 2.93E-5 4.838 Wang gastric statistics
Diffuse gastric adenocarcinoma 2.039 6.41E-5 4.880 Chen gastric statistics
Gastric intestinal type adenocarcinoma 2.681 2.19E-9 7.165 DErrico gastric statistics

FIGURE 2 | Boxplot showing the expression levels of LOX family inGC. (A) GEPIA analysis. The number of normal samples are 211 (grey box), and number of
primary tumor samples are 408 (red box), red star means p < 0.01; (B)UALCAN analysis. The number of normal samples are 34 (blue box), and number of primary tumor
samples are 415 (red box) ***p < 0.001.
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adenocarcinoma (Figure 5A). We also calculated the correlations
of LOX family with each other by analyzing their mRNA
expressions (RNA sequencing (RNA seq V2 RSEM)) via the
cBioPortal online tool for stomach adenocarcinoma (TCGA,
Firehose Legacy) and Pearson’s correction was included. The
results indicated significant and positive correlations in the
following pairs: LOX and LOXL2, LOX and LOXL3, LOXL1
and LOXL4 (Figure 5B). The mutation rates of LOX, LOXL1,
LOXL2, LOXL3 and LOXL4 were 4, 2.5, 5, 2.5 and 2.8%,
respectively (Figure 5C).

Next, we used Gene-MANIA to construct a PPI network for
LOX family, and the result is shown in Figure 5D. The most top
20 related genes are as follows: TLL1, BMP1, EGFL7, EFEMP2,
SNAI1, COL1A2, COL1A1, MFAP4, FBLN5, COL3A1, ELN,

JTB, DHDDS, SEPHS2, CD5, SCART1, CD163L1, CD163,
SSC4D and SSC5D.

Functional Enrichment Analysis of Genes
Co-expressed With LOX/LOXL2
Considering the expression level of LOX family in GC tumor
tissues and their prognostic values in GC, LOX and LOXL2 were
taken into next functional enrichment analysis. The top 50 genes,
which had the most significant correlation with LOX/LOXL2
generated by cBioPortal, were included in the following
functional enrichment analysis using Metascape.

The results shown in Figure 6 indicated that the most top 5
significant biological process with LOX and its co-expressed

FIGURE 3 | Transcription levels of LOX family in different stage of patients with GC. LOX (A), LOXL1 (B), LOXL2 (C), and LOXL3 (D) groups significantly varied,
whereas LOXL4 (E) groups did not significantly differ. (UALCAN, ***p < 0.001, **p < 0.01, *p < 0.05).

FIGURE 4 | Prognostic feature of mRNA expression of distinct LOX family members in GC patients. (A) OS of Kaplan–Meier plotter revealed that all of LOX family
members were significantly associated with the OS (p < 0.05); (B) OS of LOGpc indicated that LOX, LOXL2-4 mRNA expression were associated with OS (p < 0.05).
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genes were GO: 0030198 (extracellular matrix organization),
M5884 (NABA CORE MATRISOME), M18 (PID INTEGRINL
PATHWAY), GP: 0001944 (vasculature development), and GO:
0001501 (skeletal system development) (Figure 6A); while the
most top 5 with LOXL2 were GO: 0030198 (extracellular matrix
organization), R-HAS-1474290 (Collagen formation), GO:
0035987 (endodermal cell differentiation), GP: 0001944
(vasculature development), and GO: 0001501 (skeletal system
development) (Figure 6C). Figures 6B,D were networks that
exhibited the interactions among cluster of genes enriched in
biological processes and pathways mentioned above.

DISCUSSION

The LOX family has been reported to be dysregulated in a
number of cancers (Li et al., 2015; Salvador et al., 2017; Shao
et al., 2019; Zeltz et al., 2019; Hu L. et al., 2020). Although the role

of LOX family in tumorigenesis and prognosis of several cancers
has been partially confirmed, further bioinformatics analysis of
GChas yet to be performed. In this study, we used multitalented
public databases to reveal the dysregulated expression of the
LOX family and their relations with tumor stage and prognosis.
We mainly found that the mRNA expression levels of LOX,
LOXL1 and LOXL2 were significantly higher in GC, the
expression level of LOXL3 was contrary in different databases,
while the expression level of LOXL4 made no difference; the
expression levels of LOX, LOXL1 and LOXL3 were higher in
stages 2–4 than that of normal tissues and stage 1, while the
mRNA level of LOXL2 in stage 1–4 was higher than normal
tissues; patients with high expression of LOX and LOXL 2-4 had
poor OS; the genes correlated with LOXL2/4 were enriched in
extracellular matrix organization, vasculature development and
skeletal system development.

LOX is a secreted extracellular matrix protein that plays an
important role in remodeling the extracellular matrix and

FIGURE 5 |Genomic alterations (cBioPortal) and network (GeneMANIA) of LOX family inGC. (A) Distribution of LOX family genomic alterations according to cancer
type. (B) Correlations of different LOX family members with each other inGC. (C) OncoPrint of LOX family alterations inGC. (D) Network of the 20 most frequently altered
neighboring genes of LOX family.
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promoting tumor progression. Higher LOX mRNA expression
was detected in GC tissues than that in adjacent normal gastric
tissues, and was significantly correlated with the invasion depth,
tumor differentiation, lymph node metastasis, lymphatic
invasion, venous invasion, and peritoneal metastasis in GC
patients, predicting a poor prognosis of GC patients with high
expression of LOX (Zhang et al., 2013). Besides, the mRNA and
protein levels of LOX in GC cells and tissues were higher under
hypoxia condition than that under normoxia condition
(Kasashima et al., 2016). The number of migrating and
invading GC cells in hypoxia was significantly decreased after
knockdown of LOX (Kasashima et al., 2016). The mechanism
involved in LOX-mediated proliferation facilitation in GC is
enhancement of Warburg effect through regulation of HIF-1α
and c-Myc (Li et al., 2019). The risk of macrophages high density,
high microvessel density (MVD), low neomicrovessel
maturation, MMP-9 expression and low type IV collagen was
elevated after LOX overexpression, suggesting that LOX activated
cancer stromal cells and facilitated the progression of GC (Peng
et al., 2018). Combining LOX with CEA, CA724, CA199, and
CA125 could increase the sensitivity of predicting lymph nodes
metastasis and peritoneal metastasis in GC (Lai et al., 2014).
Similar results have also been confirmed in our research, however,
one study indicated that LOX expression was downregulated in
GC, and LOX functioned as a tumor suppressor (Kaneda et al.,
2004). Therefore, LOX function in GC needs to be further
explored.

Relatively, few data are available on the role of LOXL1 in
tumorigenesis. LOXL1 was overexpressed in GC cells, and high

LOXL1 expression is a poor prognostic factor in GC patients
(Kasashima et al., 2018). Moreover, LOXL1 is associated with
peritoneal dissemination, potentially via promoting EMT in GC
cells, and high LOXL1 expression was associated with poorly
differentiated histological type, lymph node metastasis, and poor
prognosis in GC (Hu Q. et al., 2020). Our study also revealed that
LOXL1 is highly expressed in GC and may be related to the
prognosis, although the results of the two survival databases are
inconsistent.

It is first reported that LOXL2 promotes tumor progression
and is associated with poor prognosis in breast cancer (Akiri et al.,
2003). LOXL2 was overexpressed in GC versus normal tissues,
and overexpression of LOXL2 was associated with depth of tumor
invasion, lymph node metastasis and poorer overall survival
(Peng et al., 2009). Furthermore, secreted LOXL2 promotes
GC metastasis via Src kinase/Focal adhesion kinase (Src/FAK)
pathway (Peng et al., 2009). LOXL2 expression in stromal cells
was significantly associated with tumor invasion depth, lymph
node metastasis, lymphatic invasion, venous invasion, peritoneal
dissemination, and survival in GC patients (Kasashima et al.,
2014). In our report, we illustrated that the expression of LOXL2
in GC tissues was higher than that in normal tissues, and this
expression was markedly correlated with tumor stage and poor
OS in patients with GC, which was consistent with reports above.

Even though LOXL3 expression was also detected in some
kinds of tumors, studies have been conducted on LOXL3 were
fewer. The expression of LOXL3 was detected mainly in the
nucleus, and the expression of LOXL3 was correlated with tumor
invasion, lymph node metastasis, and poorer prognosis of

FIGURE 6 | Functional enrichment analysis of genes co-expressed with LOX and LOXL2 using Metascape. (A,C) Heatmaps of the molecular functions, biological
processes, or pathways enriched with LOX and LOXL2 co-expressed genes. The bar color shade was decided by the p value, the deeper the shade, the less the p value.
(B,D) Networks exhibiting interactions among the clusters of genes enriched in the molecular functions, biological processes, or pathways presented in the heatmaps.
The points in different colors represented clusters of genes enriched in different molecular functions, biological processes, and pathways.
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patients (Kasashima et al., 2018). Additionally, TGF-induced
LOXL3 upregulation in GC cells, suggesting that LOXL3 was
downstream from the TGF-signaling pathway (Kasashima et al.,
2018). Our research showed that high expression of LOXL3 was
confirmed in GC of TCGA data by using UALCAN database, and
the expression was correlated with tumor stage, while there was
no difference in the results of Oncomine and GEPIA. The survival
analysis also verified that high expression was related to poor
prognosis, we speculate that the prognosis of tumors are related to
a variety of factors and this may be related to the target of certain
drugs in the treatment of gastric cancer. Recently, more studies
about LOXL3 have been published, the roles attributed to LOXL3
should be further determined.

LOXL4 was significantly up-regulated in gastric carcinoma
tissues, and this over-expression is significantly correlated with
tumor size, depth of tumor invasion, lymph node metastasis,
higher TNM stages and poor prognosis (Li et al., 2015). LOXL4
may promote proliferation and metastasis via regulate FAK/Src
pathway in GC cells (Li et al., 2015). The results about LOXL4
conducted by Kasashima et al. were similar with LOXL3
(Kasashima et al., 2018). In contrast, comprehensive
bioinformatics analysis of multiple databases in our study did
not yield positive results in expression of LOXL4. In other aspects,
survival analysis showed that LOXL4 is associated with poor
prognosis, suggesting that LOXL4 is implicated in the progression
of GC. This prognostic-related reasonmay be the same as LOXL3.

In the functional enrichment analysis of genes co-expressed
with LOX/LOXL2, the most significant biological process of
LOX/LOXL2 and their co-expressed genes is ECM. ECM plays
a key role in the occurrence and metastasis of gastric cancer. The
destruction of the tightly coordinated ECM tissue will damage the
structure and function of the gastric tissue, eventually leading to
the progression of gastric cancer (Moreira et al., 2020). We
speculate that LOX and LOXL2 affect the occurrence and
development of gastric cancer by participating in the
regulation of extracellular matrix, but further research is still
needed.

Due to the secreted nature of the LOX family members, their
detectable presence in the blood, and the well-established
correlation between LOX family enzyme expression and
prognosis in many cancers, the LOX family offers promise as
an inexpensive and non-invasive companion biomarker for
cancers (Setargew et al., 2021). The LOX family of enzymes
are favorable targets for anti-stromal therapeutics because of
their importance in cancer development and progression. A
number of studies have examined the use of LOX family
inhibitors in cancer therapy (Jiang et al., 2020; Smithen et al.,
2020). CCT365623 is a LOX inhibitor based on
methylaminothiophene. It has shown that its inhibitory effect
can lead to delayed tumor development and reduced lung

metastasis in mouse breast cancer models. But it has not yet
been tested in a clinical (Smithen et al., 2020). XS-5382A, an
oral LOXL2 inhibitor, has been shown to slow tumor growth
and reduce collagen accumulation in LY2 oral cancer models
and is currently being investigated in Phase 1 clinical trials in
healthy adults (Clinical trial identifier: NCT04183517)
(Mahjour et al., 2019). Although no inhibitors of the LOX
family have currently been approved for routine clinical
practice, the developing LOX family inhibitors have shown
high specificity and low toxicity.

However, there are limitations in our research. Bioinformatics
analysis alone cannot determine the specific mechanism of LOX
family in GC. The role of the LOX family in GC might be
complex, and more clinical studies and in-depth experiments
are needed to verify the diagnostic value of these LOX family and
explore the potential mechanism of LOX family affecting the
development of GC.

CONCLUSION

In this study, through systematically analyzing the expression and
prognostic value of LOX family in GC, we indicated that the LOX
family, especially LOX and LOXL2, might play an important role
in GC oncogenesis, and they may become biomarkers for
predicting tumor prognosis and potential targets for tumor
therapy.
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Clinical Significance and Potential
Mechanisms of ATP Binding Cassette
Subfamily C Genes in Hepatocellular
Carcinoma
Xin Zhou1,2†, Jia-mi Huang1,2†, Tian-man Li1,3, Jun-qi Liu1,2, Zhong-liu Wei1,2, Chen-lu Lan1,2,
Guang-zhi Zhu1,2, Xi-wen Liao1,2, Xin-ping Ye1,2 and Tao Peng1,2*

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 2Key
Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of
Education, Nanning, China, 3Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University,
Yulin, China

The purpose of this investigation was to assess the diagnostic and prognostic significance of
ATP binding cassette subfamily C (ABCC) genes in hepatocellular carcinoma (HCC). The
Student t-test was used to compare the expression level of ABCCs between HCC and
paraneoplastic tissues. Receiver operating characteristic curve (ROC) analysis was applied for
diagnostic efficiency assessment. The Kaplan–Meier method and Cox proportional hazards
model were respectively applied for survival analysis. Genes with prognostic significance were
subsequently used to construct prognostic models. From the perspective of genome-wide
enrichment analysis, themechanisms of prognosis-relatedABCCgeneswere attempted to be
elaborated by gene set enrichment analysis (GSEA). It was observed in the TCGA database
that ABCC1, ABCC4, ABCC5, and ABCC10 were significantly upregulated in tumor tissues,
while ABCC6 and ABCC7 were downregulated in HCC tissues. Receiver operating
characteristic analysis revealed that ABCC7 might be a potential diagnostic biomarker in
HCC. ABCC1, ABCC4, ABCC5, and ABCC6 were significantly related to the prognosis of
HCC in the TCGA database. The prognostic significance of ABCC1, ABCC4, ABCC5, and
ABCC6 was also observed in the Guangxi cohort. In the Guangxi cohort, both polymerase
chain reaction and IHC (immunohistochemical) assays demonstrated higher expression of
ABCC1, ABCC4, and ABCC5 in HCC compared to liver tissues, while the opposite was true
for ABCC6. GSEA analysis indicated that ABCC1 was associated with tumor differentiation,
nod-like receptor signal pathway, and so forth. It also revealed that ABCC4might play a role in
HCC by regulating epithelial-mesenchymal transition, cytidine analog pathway, met pathway,
and so forth. ABCC5might be associated with the fatty acid metabolism and KRT19 in HCC.
ABCC6 might impact the cell cycle in HCC by regulating E2F1 and myc. The relationship
between ABCC genes and immune infiltration was explored, and ABCC1,4,5 were found to
be positively associatedwith infiltration ofmultiple immune cells, while ABCC6was found to be
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the opposite. In conclusion, ABCC1, ABCC4, ABCC5, and ABCC6 might be prognostic
biomarkers in HCC. The prognostic models constructed with ABCC1, ABCC4, ABCC5, and
ABCC6 had satisfactory efficacy.

Keywords: HCC (hepatic cellular carcinoma), ABCCgene family, prognosis (carcinoma), nomogram, GSEA (gene set
enrichment analysis)

BACKGROUND

Hepatocellular carcinoma (HCC) generally followed cirrhosis given
rise by metabolic disorder (Yang et al., 2019), chronic ethanol intake
(Llovet et al., 2016), and hepatitis virus infection (Fujiwara et al.,
2018). The leading metabolic risk factor for HCC is non-alcoholic
fatty liver disease (NAFLD) (Zhang, 2018), which is mainly related to
obesity and type 2 diabetes. Currently, it is acknowledged that
hepatitis B virus (HBV) and hepatitis C virus (HCV) were the
main infectious etiologies for cirrhosis and HCC. It is worth
mentioning that viral hepatitis could skip cirrhosis and induced
HCC directly and independently (El-Serag, 2012; Levrero and
Zucman-Rossi, 2016). Besides the aforementioned factors, the
intake of Aflatoxin B1 (AFB1) was also demonstrated to be
related to HCC (Rushing and Selim, 2019). People in specific
regions entailing relatively high exposure to Aflatoxin B1 were
accompanied by high incidence and mortality of HCC (Long
et al., 2008; Wogan et al., 2012; Zhang W et al., 2017). More than
8million new cases of liver cancer occurred worldwide each year,
which directly or indirectly gave rise to more than 4million deaths
worldwide each year (Torre et al., 2015; Bray et al., 2018). Asia has the
highest incidence of liver cancer in the world, particularly in China,
which accounts for almost half the global cases (Akinyemiju et al.,
2017). At the same time, Asia is the high-incidence area of HBV and
HCV (Gower et al., 2014; Polaris Observatory Collaborators, 2018).
The main treatment methods of liver cancer mainly include surgical
resection, transcatheter arterial chemoembolization (TACE),
ablation, liver transplantation, radiotherapy, and so forth
(Fattovich et al., 2004). Sorafenib, the multi-kinase inhibitor, is
one of first-line drugs approved for the treatment of advanced
HCC. Although it can improve survival, the long-term survival of
HCC patients is limited due to the drug resistance. Hence, the
discovery of new hub genes for developing HCC-targeted drugs
and specific genes that improve and maintain drug susceptibility
might be hopeful for advanced-stage HCC patients.

The ATP binding cassette subfamily C (ABCC) subfamily
includes 13 members whose protein products take effect in
transporters with different functional profiles, including ion
transport, cell surface receptor, and toxin secretion activity
(Childs and Ling, 1994; Dean and Allikmets, 2001; Robey
et al., 2018; Yamada et al., 2018). The ATP-binding domain of
the ABCC product possesses distinctive conserved motifs
(Walker A and B motifs), which are separated by an
uncertain sequence of around 100 amino acids (Dean et al.,
2001). The distinctive interval and conserved motifs
distinguish ABCC members from other ATP-binding
proteins (Higgins et al., 1986). Genetic variations in these
genes are substantiated in numerous research studies to be the
cause or contributor to a variety of complex human diseases,

including cystic fibrosis, neurological diseases, defects in
cholesterol and bile transport, and drug responses. The ABCC
subfamily plays an important role in the pharmacokinetics of
endogenous and exogenous compounds. Studies have shown
that the members of the ABCC family could transport drugs to
the extracellular substances by virtue of ATP energy (Chen and
Tiwari, 2011; Keppler, 2011; Leslie, 2012).

METHODS

Data Acquisition and Specimen Collection
RNA-Seq data (FPKM) of 412 samples, 362 tumors, and 50
paraneoplastic tissues were acquired from the TCGA database
(https://portal.gdc.cancer.gov/, accessed on 22 December 2019).
The limma package was employed for normalization of this RNA-
Seq data in R. Matched prognostic/clinicopathologic data of these
362 patients were acquired from UCSC Xena (http://xena.ucsc.
edu/, accessed on 23 December 2019).

The HCC tissues and matched paracancer tissues of 102
patients hospitalized in the first affiliated hospital of Guangxi
Medical University from September 2016 to December 2018 were
collected after informed consent was obtained. Among them,
excised tissues during surgery of 72 patients were well preserved
in the Department of Pathology. Tissue slices of these patients
were obtained from the Department of Pathology.

Expression Difference and Diagnostic
Efficiency Analysis of ABCC Genes
The expression levels ofABCCs inHCCandparaneoplastic tissueswere
extracted from the RNA-Seq Chip matrix in the TCGA database. The
normality test was assessed using the Kolmogorov–Smirnov normality
test. Student’s t-test was used to assess the statistical significance of
ABCC genes’ expression between HCC and paraneoplastic tissues. The
area under the curve (AUC) of the receiver operating characteristic
curve (ROC) was used to access the diagnostic efficiency of eachABCC
gene in HCC. AUC > 0.8 with p < 0.05 was considered as satisfactory
diagnostic performance (Hosmer et al., 2013).

Immunohistochemistry
Tissue sections were sequentially placed in xylene and graded
concentrations of ethanol to achieve hydration. Antigens were
repaired with a pH 6.0 citrate repair solution (ZSGB-BIO,
Beijing, China). Subsequent antigen–antibody reactions and color
development reactions were performed with the help of a universal
two-step detection kit (Mouse/Rabbit Enhanced Polymer Detection
System). Immunohistochemical scores were assessed by two
experienced pathologists. Antibodies for ABCC1, ABCC4,
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ABCC5, and ABCC6 were diluted according to the recommended
concentrations of the manufacturer (Proteintech, Wuhan, China).

Prognostic Significance Assessment of
ABCC Genes
The patients in the TCGA database were divided into two groups in
terms of themedian value of eachABCC gene expression for survival
analysis. The Kaplan–Meiermethod with a log-rank test was applied
to assess the prognostic significance of each ABCC gene. The Cox
proportional hazards model was applied to adjust the bias caused by
prognosis-related clinicopathologic factors.

In terms of survival analysis results in the TCGA database, the
prognostic significance of ABCC1, ABCC4, ABCC5, and ABCC6
was further validated in the Guangxi cohort.

For better predicting the prognosis and evaluating the
combined effect of ABCCs, prognosis-related ABCCs (ABCC1,
ABCC4, ABCC5, and ABCC6) were integrated in pairs into
combined effect survival analysis. The patients were divided
into four groups in terms of the expression level of ABCCs
with details displayed in Table 2. The Kaplan–Meier method
with the log-rank test and Cox proportional hazards model were
applied to assess the prognostic significance.

Nomogram
Independent prognostic factors, including ABCCs and
clinicopathologic features, were integrated to construct the
nomogram in R with the rms package (Iasonos et al., 2008). In

the nomogram, the risk degree of each variable in the nomogramwas
displayed by the integration line, and the total risk score is obtained
by adding up the risk value of each variable (ZhangZ et al., 2017). The
model was validated for calibration and discrimination using the
bootstrap method (Wang et al., 2013).

Prognostic Signature Construction
The Cox proportional hazards model was used to assess the risk
coefficient of ABCCs in overall survival. Then, the prognostic
signature was constructed in terms of the expression of ABCCs
and the corresponding risk coefficient. The formula of prognostic
signature construction is as follows: Risk score �
∑N

1 (ExpVlueipβi) (Chen M et al., 2017). N is the number of
prognostic genes. ExpVluei is the expression value of each ABCC
gene. βi is the risk coefficient of the corresponding ABCC gene. A
time-dependent ROC curve was constructed in R (version 3.6.2;
www.r-project.org) with the survivalROC package to evaluate the
availability of this prognostic signature (Chen M et al., 2017).

Biological Functional Exploration of ABCC
Genes
The Gene Ontology (GO) database, the integrated database of
calculable information about the functions of genes, was
comprehensively used for identifying unique biological
properties of high-throughput transcriptome or genome data
(The Gene Ontology Consortium, 2017; Chen L et al., 2017).
KEGG is a collection of databases dealing with genomes, diseases,

FIGURE 1 | ABCC1, ABCC2, ABCC4, ABCC5, ABCC6, ABCC7, ABCC9, and ABCC10 were differently expressed between the HCC tissues and paraneoplastic
tissues based on the RNA-seq data of the TCGA database: (A) ABCC1, (B) ABCC2, (C) ABCC4, (D) ABCC5, (E) ABCC6, (F) ABCC7, (G) ABCC9, and (H) ABCC10.
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biological pathways, drugs, and chemical materials (Kanehisa et al.,
2017). DAVID (The Database for Annotation, Visualization, and
Integrated Discovery, https://david.ncifcrf.gov/) is an online
bioinformatics tool to access the GO database and the KEGG
database (Long et al., 2008). DAVID was used to access the
enrichment of biological functions and pathways of ABCC
genes in this investigation. Then, the enrichment biological
functions and pathways were visualized in R Studio (Version 1.
2.5033) with packages Goplot, Hmisc, and ggplot2 (Nolan et al.,
2013; Ito and Murphy, 2013). The Biological Networks Gene
Ontology tool (BiNGO) is an open-source online database,
which was employed to determine the significantly
overrepresented GO terms of ABCC genes (Maere et al., 2005).
Functions and interactions of ABCC genes were performed in
Genemania (http://genemania.org/. accessed on 11 August 2020)
and STRING (https://string-db.org/. accessed on 11 August 2020),
respectively (Szklarczyk et al., 2015; Luo et al., 2020).

Gene Set Enrichment Analysis (GSEA)
GSEA is software with additional resources for analyzing,
annotating, and interpreting standardized chip matrices. In
this investigation, GSEA enrichment was used to analyze the
enriched biological pathways of ABCC1, ABCC4, ABCC5, and
ABCC6 in the TCGA database. The Oncogenic Signatures c2.all.

v7.1.symbols.gmt data set was adopted as the reference data set.
The biological pathways exported from GSEA with p < 0.05 and
FDR < 0.25 were considered as significant results.

Correlation Analysis of Tumor-Infiltrating
Immune Cells and ABCC Gene Expression
TIMER (http://timer.cistrome.org/) is a comprehensive resource for
the systematical analysis of immune infiltrates across diverse cancer
types, which provides immune infiltrates abundances estimated by
multiple immune deconvolution methods. In this investigation,
TIMER was accessed to explore the correlation between infiltrating
immune cells and ABCC expression in HCC.

RESULTS

Expression and Diagnostic Efficiency of
ABCC Genes in HCC
SeveralABCC genes were discovered to be differentially expressed
in HCC and paraneoplastic tissues based on the RNA-seq data of
the TCGA database. ABCC1, ABCC4, ABCC5, and ABCC10
(Figures 1A,C,D,H) were significantly higher expressed in
HCC tissues, but ABCC2, ABCC6, ABCC7, and ABCC9 (Figures

FIGURE 2 | ROC curve for ABCC genes in the TCGA database: (A) ABCC5, (B) ABCC7, (C) ABCC9, and (D) ABCC10.
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1B,E–G) were significantly lower expressed in HCC tissues. No
significant differences in the expression of ABCC3, ABCC8,
ABCC11, ABCC12, and ABCC13 were observed between liver
and HCC tissues (Supplementary Figures S1A–E). The diagnostic
efficacy of the genes differentially expressed between HCC and
paraneoplastic tissues was subsequently evaluated using ROC
curve analysis. Among them (ABCC1, ABCC2, ABCC4, ABCC5,
ABCC6, ABCC7, ABCC9, and ABCC10), high diagnostic
efficiencies of ABCC5 (AUC = 0.905, p < 0.001), ABCC7 (AUC
= 0.878, p < 0.001),ABCC9 (AUC= 0.878, p < 0.001), andABCC10
(AUC = 0.951, p < 0.001) (Figures 2A–D) were observed in HCC.
The results of the diagnostic efficacy analysis of other ABCC genes
are shown in Supplementary Figures S2A–I.

Prognostic Significance of ABCC Genes
Subsequently, the prognostic significance of ABCC genes was
systematically discussed. The clinicopathologic characteristics of

362 HCC tissues in the TCGA database are displayed in
Supplementary Table S1. The expression levels of ABCC1
(log-rank p = 0.002, adjusted p = 0.008, adjusted HR = 1.656),
ABCC4 (log-rank p = 0.026, adjusted p = 0.038, adjusted HR =
1.479), ABCC5 (log-rank p = 0.002, adjusted p = 0.001, adjusted
HR = 1.928), and ABCC6 (log-rank p < 0.001, adjusted p = 0.001,
adjusted HR = 0.534) were significantly associated with the
overall survival of HCC patients in univariate and multivariate
survival analysis (Table 1; Figures 3A–D). In terms of the
prognostic value of a single ABCC gene, patients with high
expression of ABCC1, ABCC4, or ABCC5 tend to be with a
shorter median survival time, while high-expression ABCC6
was associated with longer survival. The results of survival
analysis of other ABCC genes are shown in Supplementary
Figures S3A–I.

To more accurately predict the prognosis of HCC patients,
multivariate survival analysis was integrated into the combined

TABLE 1 | Survival analysis results of ABCC genes in the TCGA database.

Gene expression Patients (n = 362) Overall survival

Number of events Crude HR (95% CI) Crude P Adjusted HR (95% CI) Adjusted P §

ABCC1
Low 181 51 1 1
High 181 78 1.759 (0.235–2.504) 0.002 1.656 (1.137–2.410) 0.008

ABCC2
Low 181 64 1 1
High 181 65 1.079 (0.761–1.529) 0.670 1.210 (0.833–1.758) 0.317

ABCC3
Low 181 64 1 1
High 181 65 1.018 (0.718–1.443) 0.919 0.863 (0.595–1.422) 0.438

ABCC4
Low 181 57 1 1
High 181 72 1.489 (1.046–2.121) 0.026 1.479 (1.021–2.142) 0.038

ABCC5
Low 181 50 1 1
High 181 79 1.759 (0.234–2.508) 0.002 1.928 (1.318–2.820) 0.001

ABCC6
Low 181 81 1 1
High 181 48 0.495 (0.346–0.708) <0.001 0.534 (0.366–0.778) 0.001

ABCC7
Low 181 63 1 1
High 181 66 1.185 (0.836–1.680) 0.340 1.077 (0.743–1.562) 0.695

ABCC8
Low 181 57 1 1
High 181 72 1.306 (0.920–1.853) 0.134 1.227 (0.843–1.785) 0.286

ABCC9
Low 181 71 1 1
High 181 58 0.757 (0.535–1.072) 0.116 0.794 (0.549–1.149) 0.221

ABCC10
Low 181 60 1 1
High 181 69 1.283 (0.907–1.815) 0.157 1.275 (0.883–1.841) 0.195

ABCC11
Low 181 67 1 1
High 181 62 0.893 (0.632–1.263) 0.523 0.832 (0.575–1.205) 0.331

ABCC12
Low 181 58 1 1
High 181 71 1.308 (0.923–1.852) 0.130 1.287 (0.891–1.859) 0.179

ABCC13
Low 181 60 1 1
High 181 69 1.313 (0.928–1.857) 0.112 1.261 (0.871–1.823) 0.220

Notes: § Adjusted for tumor stage. HR, hazard ratio; ABCC, ATP binding cassette subfamily C.
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effect survival analysis. In the combined effect survival analysis, it
was observed that there was an even bigger prognosis difference
among groups in combined effect survival analysis (Table 2).

Group C with high expression of ABCC1 and ABCC4 was
significantly correlated to bad outcome (p = 0.001, Figure 4A),
so were group 3 with high expression of ABCC1 and ABCC5 (p <

FIGURE 3 | Survival curve of ABCC genes in the TCGA database: (A) ABCC1, (B) ABCC4, (C) ABCC5, and (D) ABCC6.

TABLE 2 | Combined effect survival analysis of ABCC1, ABCC4, ABCC5, and ABCC6.

Group ABCC1 ABCC4 ABCC5 ABCC6 Patients No.
of events

MST (days) Crude
HR

(95%CI)

Crude P Adjusted
HR

(95%CI)

Adjusted
P δ

A low low 106 27 2,532 1 1
B low high 150 54 2,116 1.474 (0.928–2.342) 1.500 (0.925–2.432)

high low
C high high 106 48 1,135 2.322 (1.445–3.731) 0.001 2.191 (1.328–3.614) 0.002
1 low low 117 27 3,125 1 1
2 low high 128 47 1,685 1.564 (0.973–2.513) 1.637 (0.985–2.719)

high low
3 high high 117 55 1,135 2.487 (1.568–3.945) <0.001 2.572 (1.565–4.227) <0.001
a low high 116 29 2,532 1 1
b low low 130 41 1791 1.698 (1.053–2.739) 1.813 (1.098–2.993)

high high
c high low 116 59 931 2.574 (1.649–4.018) <0.001 2.315 (1.447–3.704) <0.001
Ⅰ low low 100 23 3,125 1 1
Ⅱ low high 162 61 1852 1.767 (1.093–2.856) 1.897 (1.138–3.162)

high low
Ⅲ high high 100 45 1,149 2.528 (1.522–4.201) 0.001 2.790 (1.618–4.813) <0.001
ⅰ low high 97 21 2,542 1 1
ⅱ low low 168 63 1791 2.009 (1.221–3.307) 2.322 (1.379–3.910)

high high
ⅲ high low 97 45 837 2.988 (1.771–5.042) <0.001 2.792 (1.595–4.887) <0.001
α low high 111 25 3,125 1 1
β low low 140 48 1791 1.628 (1.004–2.641) 1.641 (0.983–2.739)

high high
γ high low 111 56 802 2.850 (1.777–4.571) <0.001 2.939 (1.772–4.874) <0.001

Notes: δ Adjusted for tumor stage. MST, median survival time; No. of events, number of events; HR, hazard ratio; ABCC, ATP binding cassette subfamily C.
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0.001, Figure 4B), group c with high expression of ABCC1 and
low expression of ABCC4 (p < 0.001, Figure 4C), groupⅢ with
high expression of ABCC4 and ABCC5 (p = 0.001, Figure 4D),
group ⅲ with high expression of ABCC4 and low expression of
ABCC6 (p < 0.001, Figure 4E), and group γ with high
expression of ABCC5 and low expression of ABCC6 (p <
0.001, Figure 4F).

NomogramBased onABCC1, 4, 5, and 6 and
Tumor Stage
In the survival analysis, we found that ABCC1.4.5.6 was strongly
associated with the prognosis of HCC. In addition, the clinical
factor tumor stage could also partially distinguish patients with
good and bad prognoses. Thus, a nomogram integrating clinical
elements and ABCC gene expression was constructed in terms of
the COX proportional hazards model. In the nomogram, the
contribution of ABCC1, ABCC4, ABCC5, ABCC6, and
clinicopathologic features to the overall survival of HCC
patients was displayed by virtue of the length of the scales
(Figure 5A). The calibration plot for 1-, 3-, and 5-year
survival after surgery revealed a satisfactory overlap between
calculation and reality (Figures 5B–D).

Prognostic Signature Based on the TCGA
Database
In terms of the expressions of ABCC1, ABCC4, ABCC5, and
ABCC6, the prognostic signature for HCC patients was built in
the TCGA database and Guangxi cohort. Each HCC patient
was assigned with a risk score in terms of the expression of

ABCC1, ABCC4, ABCC5, and ABCC6. In the prognostic
signature built for the TCGA database, the risk score for
each patient was displayed in the upper scatter plot, and the
patients were divided into two groups based on the median
value (Figure 5E). The survival time and survival status of
specific patients can be observed from the middle scatter plot,
which showed that the dots representing patients in the high-
risk group tended to cluster lower (Figure 5F). The expression
levels of ABCC1, ABCC4, ABCC5, and ABCC6 in patients were
presented in the form of heat maps (Figure 5G). A significant
difference in overall survival was observed between the high-
risk and low-risk groups (Figure 5H, p = 0.003). The AUC
value of the prognostic signature for 1-year, 3-year, and 5-year
overall survival prediction was 0.689, 0.619, and 0.598,
respectively (Figure 5I).

Validation in the Guanxi HCC Cohort
A total of 102patients who were hospitalized in the first affiliated
hospital of Guangxi Medical University from September 2016 to
December 2018 were taken into the group for validation. The
baseline information for these patients is presented in Table 3.
The expressions of ABCC in HCC tissues and in paraneoplastic
tissues were detected by immunohistochemical (IHC) and
polymerase chain reaction (PCR) assays, respectively. In the
IHC assay, the expressions of ABCC1, ABCC4, and ABCC5 in
HCC tissues were significantly higher than that of
paraneoplastic tissues, while ABCC6 was higher expressed
in paraneoplastic tissues (Figure 6A). The same expression
trends of ABCC1, ABCC4, ABCC5, and ABCC6 were observed
at the mRNA level (Figures 6B–E). The prognostic
significance of ABCC1, ABCC4, ABCC5, and ABCC6 was

FIGURE 4 |Combined effect survival analysis of ABCC1, ABCC4, ABCC5, and ABCC6 in the TCGA database: (A) combined effect survival analysis of ABCC1 and
ABCC4, (B) combined effect survival analysis of ABCC1 and ABCC5, (C) combined effect survival analysis of ABCC1 and ABCC6, (D) combined effect survival analysis
of ABCC4 and ABCC5, (E) combined effect survival analysis of ABCC4 and ABCC6, and (F) combined effect survival analysis of ABCC5 and ABCC6. The details about
the groups are displayed in Table 2.
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FIGURE 5 | Nomogram and prognostic signature constructed in terms of ABCC1, ABCC4, ABCC5, and ABCC6 in the TCGA database: (A) Nomogram based on
expression of ABCC genes and clinicopathologic features; (B) internal validation for 1-year survival; (C) internal validation for 3-year survival; (D) internal validation for 5-
year survival; (E), scatter plot for risk score; (F) scatter plot for survival time (days); (G), heat map corresponding to the expression of ABCC1, ABCC4, ABCC5, and
ABCC6; (H) survival analysis for high- and low-risk score groups; and (I) AUC for inspecting the efficiency of the prognostic signature for predicting long-term
prognosis.
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also observed in the Guangxi HCC cohort (Figures 6F–I;
Table 4).

In the prognostic signature built for the Guangxi cohort,
patients were divided into two groups in terms of the risk
score (Figure 6J). The same as above-mentioned, the dots
representing patients in the high-risk group also tended to
cluster lower (Figure 6K). The expression levels of ABCC1,
ABCC4, ABCC5, and ABCC6 in patients were presented in
the form of heat maps (Figure 6L). The prognosis of the
high-risk group was significantly worse than that of the low-
expression group (Figure 6M, p = 0.001). The AUC value of
the prognostic signature for 1-year, 2-year, 3-year, and 4-
year overall survival prediction was 0.787, 0.772, 0.838, and
0.788, respectively (Figure 6N). In the nomogram, the
contribution of ABCC1, ABCC4, ABCC5, ABCC6, and
clinicopathologic features to overall survival was displayed
by the length of the corresponding scales (Supplementary
Figure S4A). The calibration plot for 1-, 2- and 3-year
survival after the surgery revealed a satisfactory overlap
between calculation and reality (Supplementary Figures
S4B–D).

Biological Functional Exploration of ABCCs
The enrichment analysis of the ABCC gene by setting Homo
sapiens as the background was performed on the DAVID online
database for obtaining enrichment information about GO
terms. The corresponding relationship between ABCCs and
GO terms is displayed in Figure 7A. The enrichment analysis
of GO showed that ABCCs were mainly related to ATP
binding, ATP activity, transmembrane, and other biological
functions (Figure 7B). The bubble color from red to green
represents the biological function of the –log (p-value) from
high to low. The network diagram of the relationship between
enriched GO terms is shown in Figures 7C,D. Interactions of
ABCCs which were analyzed from STRING and Genemania are
respectively displayed in Figures 7E,F.

GSEA
The GSEA results revealed that the expression of ABCC1 was
associated with tumor differentiation, nod-like receptor signal
pathway, resistance to the bcl2 inhibitor up, and so on (Figures
8A–F). The pathways that ABCC4 might regulate are shown in
Figures 8G–L. ABCC5might impact HCC by regulating the fatty

TABLE 3 | Clinical characteristics of patients in HCC from Guangxi China.

Variables Patients Overall survival

(n = 102) No. of events MST (days) HR (95% CI) P

Age
<60 76 37 23.9
60 26 12 NA 0.956 (0.498–1.834) 0.891

Gender
Female 14 5 NA
Male 88 44 35 0.625 (0.247–1.583) 0.314

BMI
<24.9 81 38 45
>24.9 21 11 40 1.054 (0.539–2.063) 0.876

Alcohol
No 65 34 33
Yes 37 15 NA 1.595 (0.862–2.950) 0.131

Cirrhosis
No 9 3 NA
Yes 93 46 40 1.175 (0.544–5.637) 0.337

Child
No 100 48 45
Yes 2 1 3 6.122 (0.796–47.096) 0.045

BCLC
A 67 32 45 1
B 28 19 NA 3.757 (1.267–4.144)
C 7 5 30 6.677 (5.878–8.201) 0.032
Missing 2

AFP
<200 50 18 NA 1
>200 51 31 30 2.038 (1.139–3.648) 0.030
Missing 1

Radical resection
No 30 16 33 1
Yes 70 32 45 0.807 (0.442–1.473) 0.480
Missing 2

Histological
Low 5 1 48 1
Middle 65 32 35 2.978 (0.407–21.813)
High 22 11 33 3.255 (0.419–25.275) 0.448

Notes: HCC, hepatocellular carcinoma; MST, median survival time; OS, overall survival; HR, hazard ratio; CI, confidence interval.
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FIGURE 6 | Validation for the prognostic significance of ABCC1, ABCC4, ABCC5, and ABCC6 in the Guangxi HCC cohort: (A) expression of ABCC1, ABCC4,
ABCC5, and ABCC6 in HCC tissues and paraneoplastic tissues assessed by IHC assays; (B–E) histogram showing ABCC1, ABCC4, ABCC5, and ABCC6 expression
levels in HCC tissues and paraneoplastic tissues assessed by PCR assays; (F–I) survival curve of ABCC1, ABCC4, ABCC5, and ABCC6 in the Guangxi HCC cohort; the
patients were grouped based on median expression; (J) Scatter plot for risk score; (K) scatter plot for survival time (months); (L) heat map corresponding to the
expression of ABCC1,ABCC4,ABCC5, and ABCC6; (M) survival analysis for high- and low-risk score groups; and (N) AUC for inspecting the efficiency of the prognostic
signature for predicting long-term prognosis.
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acid metabolism and the expression of kt19 and myc (Figures
8M–O). The result of GSEA revealed that high expression of
ABCC6 was accompanied with lower HCC late recurrence
(Figure 8P). It also illustrated that ABCC6 might impact HCC
by regulating E2F1 and myc (Figures 8Q,R).

Correlation Analysis of ABCC Gene
Expression and Tumor-Infiltrating Immune
Cells
The estimation of the abundance of immune cell infiltration
showed that ABCC1, ABCC4, and ABCC5 were significantly
positively associated with infiltration of immune cells, which
include B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells (Figures 9A–C). However,
ABCC6 was negatively associated with the infiltration of
immune cells (Figure 9D).

DISCUSSION

ABCC expressions were analyzed in two data sets, and consistent
results were obtained. Compared with normal tissues, they
revealed that ABCC1, ABCC4, ABCC5, and ABCC10 were
significantly upregulated in HCC tissues, while ABCC6 and
ABCC7 were significantly downregulated in HCC tissues. In
the TCGA database, ABCC5, ABCC7, ABCC9, and ABCC10
were equipped with high diagnostic efficacy for HCC (AUC >
0.8). In GSE76427, the good diagnostic efficacy for HCC was only
discovered in ABCC7. Combining the results of the two data sets,
we consider ABCC7 as a potential diagnostic marker for HCC.

In the TCGA database, ABCC1, ABCC4, ABCC5, and ABCC6
were found to be associated with the prognosis of HCC, while
further verification in GSE14250 indicated that only ABCC6 was
significantly correlated to the prognosis. The results of survival
analysis in the two data sets were very similar, although not
identical. We observed that the expression of ABCC1 and ABCC5
was associated with the prognosis of liver cancer in both data sets.
The reason for the different conclusions may lie in the population

difference and inconformity in the causes of neoplasm. HCC
patients in GSE76427 were mainly in the Asian population, and
the proportion of hepatitis B virus infection was high. However,
the majority of HCC patients in the TCGA database were
Caucasian and the proportion of hepatitis B virus infection
was low. The sample size of both databases is relatively large,
and the follow-up data were also of high quality. The results from
both databases should be reliable but may apply to different
populations. Both clinicopathologic features and biomarker
expression were included in the nomogram as prognostic
dependent variables, with the length of each variable clearly
reflecting its contribution to the prognosis of liver cancer.

Based on the four prognostic biomarkers obtained from the
survival analysis, we further performed combined effect survival
analysis, nomogram, and prognostic signature based on
biomarker expression. The combined survival analysis had
obvious advantages, and the prognostic difference between
groups was more remarkable. The length of each variable in
the nomogram clearly reflects its contribution to the prognosis of
liver cancer.

ABCC1 transports drugs to the extracellular substances,
thereby reducing the drug concentration and generating drug
resistance in cancer (Wlcek and Stieger, 2014). In the liver,
ABCC1 undertakes excretion of the drugs into the bile (Zhou,
2008). The ontogeny, localization, expression, and function of
ABCC1 in HCCwere reported in several research studies, and the
previous reports mainly focused on the role of ABCC1 in HCC
drug resistance (Flens et al., 1996; Nies et al., 2001; Vander Borght
et al., 2005). It was reported that ABCC1 was significantly
upregulated in the tissues of oxaliplatin-resistant, 5-
fluorouracil-resistant, and sorafenib-resistant HCC patients
(Ding et al., 2017; Huang et al., 2018; Ding et al., 2019). In
HCC, increased ABCC1 expression was related to increasing
dedifferentiation, tumor size, and microvascular invasion
(Vander Borght et al., 2008; Zhou, 2008).

Located on the inner surface of the basal side of the liver cells,
ABCC4 undertakes bile salt transport (Borst et al., 2007).
Previous studies have shown that ABCC4 expression is
extremely low in the normal adult liver and fetal liver (Sharma

TABLE 4 | Survival analysis results of ABCC genes in the Guangxi cohort.

Gene expression Patients (n = 102) Overall survival

No. of event MST (months) Crude HR (95% CI) Crude P Adjusted HR (95% CI) Adjusted P ζ

ABCC1
Low 51 20 54
High 51 29 31 1.835 (1.036–3.251) 0.033 1.81 (0.998–3.283) 0.034

ABCC4
Low 51 22 54
High 51 27 27 1.991 (1.124–3.557) 0.005 1.912 (1.063–3.437) 0.03

ABCC5
Low 51 17 NA
High 51 32 27 2.895 (1.594–5.258) 0.001 2.750 (1.509–5.010) 0.001

ABCC6
Low 51 28 31
High 51 21 NA 0.582 (0.329–1.029) 0.034 0.065 (0.303–1.038) 0.046

Notes: ζ Adjusted for child pugh stage, BCLC, stage and AFP; NA, not available; MST, median survival time; HR, hazard ratio.
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FIGURE 7 | Biological function analysis for ABCC genes by bioinformatics: (A) circle plot for displaying the relationship between gene and GO term, (B) bubble plot
for GO terms, (C-D) the network diagram of the relationship between enriched GO terms, (E-F) interactions of ABCCs that were analyzed from STRING andGenemania,
respectively.
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et al., 2013), and ABCC4 expression is significantly increased in
cholestatic hepatocyte cell membranes (Gradhand et al., 2008;
Sharma et al., 2013). Studies have shown that ABCC4 is highly
expressed in HCC tissues (Sekine et al., 2011; Borel et al., 2012;
Luo et al., 2020). Recently, ABCC4 was found to play an
important role in HCC oncogenesis and development
promoted by decreasing the haploid of p53 (Luo et al., 2020).
In addition, ABCC4 could specifically and independently
distinguish the aggressive subtypes of HCC (Gradhand et al.,
2008).

Here are a few reports on ABCC5 in HCC, with the existing
relevant study indicating that ABCC5 is highly expressed in the
liver cancer tissues. Our findings in this investigation also confirm
this conclusion.

T lymphocytes are known as the main cells of the tumor
immunity. Cytotoxic CD8+T cells play a particularly vital role
in anticancer immune response (Vesely et al., 2011; Raskov
et al., 2021). Once successfully activated, CD8+T cells secreted
death-inducing granules to enhance the killing effect of
target cells (Basu et al., 2016). Accumulating evidence
indicates that TRM (tissue-resident CD8+ memory T cells)
is essential for suppressing cancer growth. In a mouse
model, whether generated during tumorigenesis or prior to
tumor challenge, antitumor TRM cells revealed
suppression in cancer growth (Park et al., 2019). Regulatory
T cells inhibit anticancer immunity by preventing the
protective immunosurveillance of neoplasia and hindering
antitumor immune responses in tumor-bearing hosts,
thereby promoting the tumor progression (Sakaguchi et al.,

2010; Wing and Sakaguchi, 2010; Togashi and Nishikawa,
2017).

B cells have a crucial part in the regulation of T cell
response against tumors (Olkhanud et al., 2011; Tadmor
et al., 2011). There is a crosstalk between the B and T
lymphocytes in antitumor immunity (Blair et al., 2010;
DiLillo et al., 2010). Natural killer cells (NK cells) in
cancer are involved in priming a multilayered immune
response to achieving long-lasting immunity against
tumors, in which T cells are involved (Morandi et al., 2012;
Ferlazzo and Moretta, 2014). Moreover, NK cells generate
cytokines and chemokines that regulate immune responses.
The function of non-NK ILCs (innate lymphoid cells, ILCs) in
cancer remains unclear.

Combining this investigation and previous research studies,
we could preliminarily conclude that ABCC1, ABCC4, and
ABCC5 reduce drug sensitivity by influencing drug transport
out of cells, thus resulting in a poor prognosis in these patients
with HCC. In this study, we also found a significant positive
correlation between ABCC1, ABCC4, and ABCC5 expression and
immune cell infiltration.

There were no reports on ABCC6 in HCC before. The role
of ABCC6 in HCC is completely opposite to that of ABCC1,
ABCC4, and ABCC5. We found that ABCC6 expression was
decreased in the liver cancer tissues, and the patients with low
ABCC6 expression had a better prognosis. We speculate that
ABCC6 may function through a completely different
mechanism, and the specific findings need to be further
studied.

FIGURE 8 |GSEA results for the ABCC genes in the TCGA database: (A–F)GSEA results forABCC1 in HCC, (G–L)GSEA results forABCC4 in HCC, (M–O)GSEA
results for ABCC5 in HCC, and (P–R) GSEA results for ABCC6 in HCC.
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LYPD3, a New Biomarker and
Therapeutic Target for Acute
Myelogenous Leukemia
Tingting Hu1, Yingjie Zhang2, Tianqing Yang1, Qingnan He1* and Mingyi Zhao1*

1Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China, 2College of Biology, Hunan
University, Changsha, China

Background: Acute myelogenous leukemia (AML) is nosocomial with the highest pediatric
mortality rates and a relatively poor prognosis. C4.4A(LYPD3) is a tumorigenic and high-
glycosylated cell surface protein that has been proven to be linked with the carcinogenic
effects in solid tumors, but no hematologic tumors have been reported. We focus on exploring
themolecularmechanismofLYPD3 in the regulation of the occurrence anddevelopment of AML
to provide a research basis for the screening of markers related to the treatment and prognosis.

Methods: Datasets on RNA Sequencing (RNA-seq) and mRNA expression profiles of 510
samples were obtained from The Cancer Genome Atlas Program/The Genotype-Tissue
Expression (Tcga-gtex) on 10 March 2021, which included the information on 173 AML
tumorous tissue samples and 337 normal blood samples. The differential expression,
identification of prognostic genes based on the COX regression model, and LASSO
regression were analyzed. In order to better verify, experiments including gene knockdown
mediated by small interfering RNA (siRNA), cell proliferation assays, and Western blot were
prefomed. We studied the possible associated pathways through which LYPD3may have an
impact on the pathogenesis and prognosis of AML by gene set enrichment analysis (GSEA).

Results: A total of 11,490 differential expression genes (DEGs) were identified. Among them,
4,164 genes were upregulated, and 7,756 genes were downregulated. The univariate Cox
regression analysis and LASSO regression analysis found that 28 genes including LYPD3,
DNAJC8, and other genes were associated with overall survival (OS). After multivariate Cox
analysis, a total of 10 genes were considered significantly correlated with OS in AML including
LYPD3, which had a poor impact onAML (p<0.05). The experiment results also supported the
above conclusion. We identified 25 pathways, including the E2F signaling pathway, p53
signaling pathway, and PI3K_AKT signaling pathway, that were significantly upregulated in
AML samples with high LYPD3 expression (p < 0.05) by GSEA. Further, the results of the
experiment suggested that LYPD3 participates in the development of AML through the p53
signaling pathway or/and PI3K/AKT signaling pathway.

Conclusion: This study first proved that the expression of LYPD3was elevated in AML,which
was correlatedwith poor clinical characteristics and prognosis. In addition, LYPD3 participates
in the development of AML through p53 or/and the PI3K/AKT signaling pathway.
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INTRODUCTION

Acute leukemia (AL) is reported to be the 10th most common
cancer all over the world with over 350,000 new cases diagnosed
per year (Voelker, 2019). AL can be roughly divided into acute
lymphoblastic leukemia (ALL) and acute non-lymphoblastic
leukemia (ANLL), and acute myelogenous leukemia (AML) is
a subtype of ANLL (Castagnola et al., 2010). AML is the deadliest
form of hemal tumor worldwide, and according to the reports
from the Global Burden of Disease (GBD), there were 147,000
deaths in 2015 (Mortality, 2016; Fitzmaurice et al., 2017). AML is
more likely to occur in children and adolescents, making up
15–20% of AL in children and about 33% in adolescents (Creutzig
et al., 2018). There is convincing evidence of a link between
abnormal expression, factors of the oxidative stress, activation of
various cytokines, signaling pathways, and proliferation and
metastasis of tumor cells (Milkovic et al., 2014; Wee and
Wang, 2017; Iqbal et al., 2019).

It has been reported that high-glycosylated cell surface proteins
are overexpressed or abnormally expressed in several kinds of
cancers, including breast cancer, pancreatic cancer, colon cancer,
and carcinoma of the ovary. Notably, it is well documented that the
abnormal expressions are related to the poor prognosis
(Hollingsworth and Swanson, 2004; Vincent et al., 2008;
Kitamoto et al., 2011; Gupta et al., 2012; Yang et al., 2015; van
Putten and Strijbis, 2017). Therefore, what do high-glycosylated
cell surface proteins have to do with cancers? According to the
universally accepted views, high-glycosylated cell surface proteins
promote oncogenic effects by their glycosylated extracellular
domains, which might protect cancer cells under harmful
conditions, and by the intracellular domain that is associated
with pathways that regulate inflammation, apoptosis, and cell
differentiation (van Putten and Strijbis, 2017). In addition,
cancer cells appear to utilize the high-glycosylated cell surface
proteins to regulate detachment and reattachment during
metastasis (Maher et al., 2011). Furthermore, there is more
evidence that high-glycosylated cell surface proteins are
associated with cellular growth, differentiation, transformation,
adhesion, invasion, and immune surveillance (Hollingsworth
and Swanson, 2004; Chauhan et al., 2006; Ohtsubo and Marth,
2006; Acar et al., 2008; Maher et al., 2011). However, the molecular
biomarkers which are available for early diagnosing and prognosis
prediction are still required to be further studied and developed.

C4.4A (Ly6/PLAUR domain-containing protein 3, LYPD3), first
reported in 1998, is a tumorigenic and high-glycosylated cell surface
protein that has been proven to be linked with the carcinogenic effects
in different solid tumors (Rösel et al., 1998; Hansen et al., 2004;
Hansen et al., 2008; Jacobsen et al., 2012; Görtz et al., 2017; De Loma
et al., 2020; Yue et al., 2020). The elevated expression of LYPD3 is not
only demonstrated to be associated with lung adenocarcinoma
carcinogenesis and poor prognosis (Jacobsen et al., 2014; Cohen
et al., 2017; Hu et al., 2020) but also there is evidence that LYPD3
can lead to the initiation and development of cancers and the
chemoresistance of metastatic cancers by impacting the
proliferation and apoptosis of the tumor, which are involved in
many important regulatory mechanisms of cancers (Lamouille
et al., 2014; Fischer et al., 2015). Furthermore, the relationship

between the molecule and AML remains unclear. Also, LYPD3
has not been reported to be found in normal blood, and in our
previous bioanalysis, we found that LYPD3 expression was increased
inAML, suggesting that itmay be an emergingmarker. LYPD3 can be
the ideal target for the therapy method and early detection of AML.

In our study, we analyzed the relationship between the
expression of LYPD3 and the clinical variables of AML
according to the data obtained from the public database, and
they were experimentally validated. Based on these studies, we
aimed to determine the clinical value and prognostic significance
of LYPD3 in patients with AML based on our study so as to
provide a theoretical basis and molecular basis for future clinical
and basic research.

MATERIALS AND METHODS

Data Source
Datasets on RNA Sequencing (RNA-seq) and mRNA expression
profiles of 510 samples were obtained from TCGA-GTEx on 10
March 2021, which included the information on 173 AML
tumorous tissue samples and 337 normal blood samples. Among
the AML tumorous tissue samples, the survival time of 12 samples
was 0, and 12 samples had no survival information, which have
been all removed. Finally, a total of 149 AML samples were included
in this study. Also, genes with an expression value of 0, which
occupied more than 60% of all the samples, were excluded. RGene
expression data and phenotype data of 337 normal whole blood
samples were downloaded from the GTEx (https://www.gtexportal.
org/home/) database. The abovementioned databases were obtained
from UCSC XENA (https://xenabrowser.net/) (Figure 1A).

Differential Expression Analysis
The mRNA expression levels between tumor and normal samples
were analyzed by using the DESeq2 package in R software. First,
genes with an expression value of 0 in more than half of the
samples were excluded. Differentially expressed genes were
screened with the cutoff value of adjusted p-value < 0.05 and |
log2-fold change [FC] | > 2.

Identification of Prognostic Genes Based on
the COX Regression Model and LASSO
Regression Analysis
To figure out the prognostic genes of the AML samples, the
related hazard ratios (HRs), 95% confidence intervals (CIs) of the
HRs, and p-values were analyzed using univariate and
multivariate Cox regression. Least absolute shrinkage and
selection operator (LASSO) Cox regression analysis, which
could reduce the dimensionality and select the most robust
markers to predict prognosis, was used after the univariate
Cox analysis to further identify the candidate genes that could
be used to construct the multivariate Cox regression model.
Survival analysis was conducted using the R Bioconductor.
The survival package was used for univariate and multivariate
Cox regression analyses, while the glmnet package was used for
the LASSO regression analysis.
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FIGURE 1 | (A) Entire screening process of the patient cohort; (B) volcano plot of DEGs (4164 genes were upregulated, and 7756 genes were downregulated); (C)
univariate Cox regression analysis of AML; and (D) LASSO regression analysis of AML. (C,D) show that 28 genes were associated with OS.
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Gene Enrichment Analysis
Genes in eachmodule were subjected to Gene Ontology (GO) and
Kyoto Encyclopedia of Genes Genomes (KEGG) pathway
analysis to understand their biological function better. The GO
enrichment analysis and KEGG signal pathway analysis of
differential expression genes (DEGs) were carried out by
clusterProfiler in R software, and the results were visualized.
For this study, we analyzed the gene set named h.all.v6.2
symbols.gmt with the cutoff value of normal p < 0.05.

Single Gene Enrichment Analysis
The Gene Set Enrichment Analysis (GSEA) software was used for
single-gene enrichment analysis aiming at LYPD3. Based on
LASSO regression and Cox regression, survival analysis was
performed to screen out the prognostic genes. Finally, the
receiver operating characteristic (ROC) curve was plotted, and
the 1-, 3, and 5-year survival rates were calculated.

Cell Culture
HL-60 cells (non-adherent human acute myelogenous leukemia
cells), A549 cells (adherent human lung cancer cells), HCT 116
cells (adherent human colon cancer cells), EC cells (human
umbilical vein endothelial cells), and CEM cells (non-adherent
human lymphoma cells) were all obtained from the ScienCell
(San Diego, California, United States). They were all incubated
with RPMI Medium Modified medium (Cytiva, Dana Hector,
United States) containing 10% fetal bovine serum (Gibco,
Thermo Fisher Scientific, Waltham, MA, United States). The
cells were cultured using a previously described method (Chen
et al., 2018).

LYPD3 Gene Knockdown Mediated by
Small Interfering RNA (siRNA)
We obtained LYPD3 siRNA and scrambled negative control
siRNA for transfection from Shanghai GenePharma (China).
The siRNA sequences were LYPD3 siRNA (sense: 5′- GCU
GUAACUCUGACCUCCGCAACAA-3′; antisense: 5′ UUGUUG
CGGAGGUCAGAGUUACA GC-3′) and scrambled negative
control siRNA (sense, 5′-UUCUCCGAACGUGUCACGUTT-3′;
antisense, 5′-ACGUGACACGUUCGGAGAATT-3′). HL-60 cells
(0.4×106 cells/well) were seeded in six-well plates and grown to
30% confluence. The HL-60 cells were divided into three groups:
a control group, a blank group (transfected with negative control
siRNA), and an Si-LYPD3 group (transfected with LYPD3
siRNA). Lip2000 (Invitrogen, China) was used to improve the
transfection efficiency. The transfection mixture was replaced
after 24 h with 1640 with 10% fetal bovine serum (FBS). Then, the
cells were incubated for another 24 h and subjected to Western
blot analysis. Also, LYPD3 knockdown was confirmed by
Western blot.

Cell Proliferation Assays
The effect of LYPD3 onHL-60 proliferation was assayed using the
Cell Counting Kit-8 (CCK8, Beyotime, China). In summary, for
the CCK8 assay, cultured HL-60 were suspended in a culture
medium with 0.1% FBS and inoculated in a 96-well plate (1 ×

104cells/well) along with 0, 5 μM siRNA(Shanghai GenePharma,
China). After 0, 24, 48, and 72 h incubation, 10 μL of CCK8
solution was added to each well. The plate was incubated for an
additional 1.5 h before measuring the absorbance at a 450 nm
wavelength using a microplate reader (Thermo MK3,
United States).

Western Blot
For the analysis of HO-1, Nrf2, Cas-3, Cas-1, PARP-1, akt-1, P-akt,
P53, and β-actin at the protein level, HL-60 cells were seeded in six-
well plates with a density of 7.35 × 105cells per well. After 24 h, the
medium was changed. Each sample was homogenized in 3 mL of
lysis buffer [50 mm Tris (pH 8.0), 150 mm NaCl, and 0.5% NP40]
with protease inhibitors (1 mm phenylmethylsulfonyl fluoride,
10 μg/ml aprotinin, and 10 μg/ml leupeptin), followed by
incubation on ice for 30 min. After centrifugation at 15,000g for
10 min at 4°C, the protein content of the cell lysates was determined
by the Bio-Rad protein assay (Hercules, CA). Twenty-five
micrograms of protein per lane (unless otherwise noted) was
resolved by 7.5% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to the
nitrocellulose membrane. The membranes were blocked with
1% non-fat dried milk in 50mM Tris (pH 7.5) with 150 mM
NaCl and 0.05% Tween-20 and sequentially incubated with
antibodies against LYPD3 (EPR9107, #ab1517-9, ABCAM, MA,
United States), β-actin (SANYING, Wuhan, China), Cas-
1(PROTEINTECH, United States), Cas-3(PROTEINTECH,
United States), PARP-1(PROTEINTECH, United States),
P-akt(PROTEINTECH, United States), akt-1(PROTEINTECH,
United States), P53(PROTEINTECH, United States), and the
appropriate horseradish peroxidase-conjugated, secondary anti-
mouse (for ERα and β-actin), or anti-rabbit (for ERβ)
antibodies (Amersham Biosciences, Piscataway, NJ). Blots were
visualized using enhanced chemiluminescence (ECL Plus) reagents
as recommended by the manufacturer (Amersham Biosciences).
Densitometric analysis of band intensities was conducted using
optical scanning and qualification with ImageJ. After the analysis
was completed, protein expression was normalized to β-actin and
compared to the corresponding vehicle controls.

Statistical Analysis
All experiment data are expressed as mean ± standard deviation
(SD). Graph Prism 8 software was used for statistical analysis.
Mean values of the experimental groups were compared by the
t-test and Chi-square test, and p-value < 0.05 was accepted as
statistically significant. Western blot results were analyzed with
ImageJ software. Experiments were repeated in triplicate, with
similar results each time, and the figures show representative
experimental results.

RESULTS

Differentially Expressed Genes in the AML
Sample and Normal Sample
The DEGs of 149 AML samples obtained from the TCGA
database and 337 normal whole blood controls from the GTEx
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FIGURE 2 | (A) Expression of LYPD3 in cancer lines (the expression of LYPD3 is the highest in HL-60 cells); (B) LYPD3 gene knockdown mediated by siRNA-
induced apoptosis in AML cells (HL-60 cells); (C) LYPD3 gene knockdown mediated by siRNA-suppressed proliferation in AML cells (HL-60 cells); (D) significantly
enriched pathways in AML samples with high LYPD3 expression; (E) significantly enriched pathways (the P53 signaling pathways); (F) significantly enriched
pathways (PI3K_AKT signaling pathway); (G) relationship between LYPD3 and the molecules Akt and P53 (the expression of the LYPD3 gene knockdown-
mediated SiRNA group was obviously increased in p53 and PI3K_AKT signaling).
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database were identified. To sum up, a total of 11,490 DEGs were
identified. Among them, 4164 genes were upregulated and 7756
genes were downregulated (Figure 1B).

Identification of AML-Related Genes
Associated With OS
The univariate Cox regression analysis and LASSO regression
analysis showed that 28 genes were associated with OS (Figures
1C,D). In order to identify the prognosis genes of AML, the
multivariate Cox regression model was performed. Also,
multivariate Cox analysis further narrowed these candidates
into 10 genes, including AC108479.3, FAM207A, GS1-304P7.1,
LINC00540, LYPD3, NDST3, RP11-379P1.4, RP11-615I2.1, RP11-
672L10.6, and TREML2, which were significantly correlated with
OS in AML; AC108479.3, NDST3, RP11-379P1.4, and RP11-
672L10.6 benefited AML, while FAM207A, GS1-304P7.1,
LINC00540, LYPD3, RP11-615I2.1, and TREML2 had a poor
impact on AML (Supplementary Table S1). Surprisingly,
LYPD3 stands out from these 10 genes and shows a
potentially negative impact on AML (p <0.05).

Expression of LYPD3 in Cancer Lines
To validate the expression of the LYPD3 protein with the LYPD3
GPI Ab in cancer lines (see Figure 2A), a Western blot analysis
was performed. This antibody gave prominent bands around
76 kDa in the A549, hct 116, andHL-60 cells, while no bands were
shown in EC and CEM cells, and the results of these are consistent
with the study reported by Ping Hu et al. in 2020, the research
reported by Willuda J et al. in 2017, and the study reported by
Wang L in 2017 (Wang et al., 2017; Willuda et al., 2017; Hu et al.,
2020). As shown in Figure 2A, the color of HL-60 cell bands was
darker than that of the other two bands (that is, HCT116 cell
bands and A549 cell bands), indicating that the expression of
LYPD3 was the highest in the HL-60 cells. It is well documented
that increased LYPD3 expression is related to lung
adenocarcinoma and colon cancer, which is the same as our
experimental results mentioned above. In general, the results are
expected to provide a research basis for the screening of markers
related to the treatment and prognosis of AML.

LYPD3 Gene Knockdown Mediated by
Small Interfering RNA (siRNA) Suppressed
Proliferation and Induced Apoptosis in AML
Cells (HL-60 Cells)
To investigate the function of LYPD3, proliferation and apoptosis
assays were carried out in HL-60 transfected with siRNA-LYPD3.
As shown in Figure 2C, LYPD3 expression was significantly
suppressed in HL-60 cells by siRNA-LYPD3. It is significant
because it has to do with one of the mechanisms of leukemia,
abnormal cell proliferation, which might provide a molecular
basis for future clinical and basic research. After that, one is that
the proliferation of HL-60 cells was evaluated more distinctly
compared with the HL-60 cells by siRNA-LYPD3; that is to say,
LYPD3 gene knockdown mediated by siRNA-LYPD3 suppressed
proliferation. Furthermore, the expression of apoptotic markers

including CAS-1, CAS-3, and PARP-1 was significantly
upregulated, indicating that obvious inducing of cell apoptosis
occurred in HL-60 cells (Figure 2B). This result demonstrated
that knocking down LYPD3 induced multiple cell death modes
including apoptosis, pyroptosis, and parthanatos, which
suppressed the growth of HL-60 cells.

Pathway Analysis of the Effect of LYPD3
on AML
According to the above results, we have definitely confirmed that
LYPD3 should play an important role in AML. Thus, we further
explored the possible related pathways through which LYPD3
affected the pathogenesis and prognosis of AML. As shown in
Figure 2D, the significantly enriched pathways in AML samples
with high LYPD3 expression were analyzed by GSEA. We
identified 25 pathways that were significantly upregulated in
AML samples with high LYPD3 expression (Figure 2D,
normal p < 0.05), including the E2F signaling pathway, the
p53 signaling pathway, the PI3K_AKT signaling pathway, and
so forth. Among them, the two most significantly enriched
pathways were the P53 signaling pathway and the PI3K_AKT
signaling pathway (Figures 2E,F). In conclusion, we thought that
it was doubtful that LYPD3 might affect the clinical features of
AML by regulating the P53 and/or PI3K_AKT signaling pathway.
To further explore our conjecture, Western blot was performed
(Figure 2G). As shown, the expression of LYPD3 gene
knockdown mediated by the siRNA group was obviously
increased in p53 and PI3K_AKT signaling, which was
consistent with our predictions. However, their specific
mechanisms and the upstream and downstream molecules that
regulate them need to be further studied.

DISCUSSION

LYPD3, “C4.4A”, a membrane protein, partially anchored to the
cell surface by glycosylphosphatidylinositol (GPI), which showed
predicted structural homology to other members of the Ly6/
uPAR (LU) protein family (Hansen et al., 2004; Korkmaz et al.,
2008; Fujihara et al., 2013; Gårdsvoll et al., 2013). The genes that
encode these proteins are clustered in a tiny region on
chromosome 19q13. After post-translation processing, LYPD3
was composed of 278 amino acids distributed in a C-terminal
region rich in serine and twoN-terminal Lu domains of threonine
(Jacobsen et al., 2014). In addition, LYPD3 was reported to be
normally mostly expressed in meningioma tissues according to
the study by Mette C in 2011 (Kriegbaum et al., 2011).
Furthermore, LYPD3 has been demonstrated to be highly
expressed in several human malignancies, such as breast
cancer, colorectal cancer, esophageal cancer, renal cell
carcinomas, and so forth (Fletcher et al., 2003; Hansen et al.,
2004; Hansen et al., 2008; Miyake et al., 2015; Cohen et al., 2017;
Hu et al., 2020; Monteiro et al., 2020). It was found that tumor cell
expression of LYPD3 correlates with poor prognosis in non-small
cell lung cancer (NSCLC), esophageal cancer, and renal cell
carcinomas. Thus, the association between LYPD3 and cancer
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development is receiving increasing scientific attention and is well
worth investigating. Also, studies have found that LYPD3 is
consistently associated with tumor progression and wound
healing (Jacobsen and Ploug, 2008). It is also well documented
that LYPD3 can specifically be involved in tumor cell invasion
through its interaction with the extracellular matrix (Paret et al.,
2007). However, the role of LYPD3 expression in the occurrence
and development of AML remains unclear.

In our study, we found that a total of 11,490 DEGs were
identified with 4,164 genes upregulated and 7,756 genes
downregulated. Also, in order to identify the prognosis genes
of AML, the multivariate Cox regression model was performed.
After multivariate Cox analysis, a total of 10 genes including
LYPD3 were significantly correlated with OS in AML, and the
results of univariate Cox regression analysis and LASSO
regression analysis also indicated that LYPD3 is associated
with AML and poor prognosis (p = 0,01), which supported
the theory that the expression of LYPD3 would be closely
correlated with the development of AML and might function
as an oncogene for AML.

To validate the expression of the LYPD3 protein with LYPD3
GPI Ab in cancer lines (see Figure 2A), a Western blot analysis
was performed, and the results also support the above-mentioned
thought. Then, we further explored the possible related pathways
through which LYPD3 affected the pathogenesis and prognosis of
AML. GSEA demonstrated that the P53 signaling pathway and/or
PI3K_AKT were significantly enriched in the high-LYPD3
expression group. The incidence of AML is generally believed
that the reasons for the proliferation and apoptosis of leukemia
cells were inhibited (Heinrich, 2004; Kornblau et al., 2010; Shih
et al., 2013; Elgarten and Aplenc, 2020). In addition, since there is
no evidence that LYPD3 plays a role in proliferative activity or
resistance to apoptosis and the two above-mentioned
characteristics are thought to be associated with AML
pathogenesis according to the above universally recognized
views, the most likely explanation may be that LYPD3 acts as
a coactivator. Moreover, it has been reported that a train of AML
has intact, unaltered P53 alleles (Ley et al., 2013; Papaemmanuil
et al., 2016). Furthermore, the conundrum of infrequent P53
mutations in AML is emphasized by the evidence that
inactivation of P53 potently promotes AML (Barbosa et al.,
2019). Indeed, the study also found that P53 is one of the
most powerful independent indicators of poor outcomes in
AML. Thus, we proved that LYPD3 can be involved in
regulating the occurrence, invasion, and metastasis of AML.
As shown in Figure 2B, the expression of apoptotic markers
including CAS-1, CAS-3, and PARP-1 was significantly
upregulated, which indicated that obvious inducing of cell
apoptosis occurred in HL-60 cells. The view that was widely
approved was that apoptosis, the most widely studied cell death
program, which can be retained as a capacity to undergo, as will
be discussed as follows, contributes to both carcinogenesis and
anticancer processes (Gregory and Paterson, 2018). Studies have
shown that in cancer, separation from neighbors or the substrate
triggers a type of spontaneous apoptotic suicide called nest-loss

apoptosis. In part, nest-loss apoptosis occurs because cells are
deprived of essential integrins and cadherin-mediated survival
signals. However, recent studies have shown that interference
with the intracellular cytoskeleton caused by detachment can
directly trigger apoptosis through the release of pro-apoptotic
BH3 proteins (Evan and Vousden, 2001). In addition, Akt
mutations are activated in the apoptotic survival signaling
pathway in tumors (Russo et al., 2020). Akt is a serine/
threonine kinase that induces strong survival signaling that is
related to the loss of the inhibitor of Akt function PTEN, which is
consistent with the conclusion that the expression of Akt is
increased, as shown in Figure 2G. In summary, the
relationship between LYPD3, apoptosis, and leukemia remains
complex and unclear, and the specific mechanisms and the
upstream and downstream molecules that regulate them need
to be further studied.

CONCLUSION

For the first time, we identified that LYPD3 may promote AML
progress through the PI3K/AKT and p53 pathway, which
provided a brand new potential biomarker and target for the
clinical test and therapy of AML.
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Pyroptosis-Related lncRNAs Predict
the Prognosis and Immune Response
in Patients With Breast Cancer
Xia Yang1, Xin Weng2, Yajie Yang2 and ZhiNong Jiang1*

1Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2Department
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Background: Breast cancer (BC) is the most common malignant tumor and the leading
cause of cancer-related death in women worldwide. Pyroptosis and long noncoding RNAs
(lncRNAs) have been demonstrated to play vital roles in the tumorigenesis and
development of BC. However, the clinical significance of pyroptosis-related lncRNAs in
BC remains unclear.

Methods: Using the mRNA and lncRNA profiles of BC obtained from TCGA dataset, a risk
model based on the pyroptosis-related lncRNAs for prognosis was constructed using
univariate and multivariate Cox regression model, and least absolute shrinkage and
selection operator. Patients were divided into high- and low-risk groups based on the
risk model, and the prognosis value and immune response in different risk groups were
analyzed. Furthermore, functional enrichment annotation, therapeutic signature, and
tumor mutation burden were performed to evaluate the risk model we established.
Moreover, the expression level and clinical significance of the selected pyroptosis-
related lncRNAs were further validated in BC samples.

Results: 3,364 pyroptosis-related lncRNAs were identified using Pearson’s correlation
analysis. The risk model we constructed comprised 10 pyroptosis-related lncRNAs, which
was identified as an independent predictor of overall survival (OS) in BC. The nomogram
we constructed based on the clinicopathologic features and risk model yielded favorable
performance for prognosis prediction in BC. In terms of immune response and mutation
status, patients in the low-risk group had a higher expression of immune checkpoint
markers and exhibited higher fractions of activated immune cells, while the high-risk group
had a highly percentage of TMB. Further analyses in our cohort BC samples found that
RP11-459E5.1 was significantly upregulated, while RP11-1070N10.3 and RP11-
817J15.3 were downregulated and significantly associated with worse OS.

Conclusion: The risk model based on the pyroptosis-related lncRNAs we established
may be a promising tool for predicting the prognosis and personalized therapeutic
response in BC patients.
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INTRODUCTION

Breast cancer (BC) is the most commonmalignant tumor and the
leading cause of cancer-related death in women worldwide (Siegel
et al., 2020). Owing to the development of local control and
systematic treatment, including surgical resection, radiotherapy,
systemic chemotherapy, in combination with targeted therapy,
hormone replacement therapy, and other novel therapeutic
methods, the survival outcome of BCs has significantly
improved in the past decade (Harbeck and Gnant, 2017).
Despite these efforts, the curative rate and prognosis of BC
patients are still unsatisfactory, and up to 15% of cancer-

related deaths occurred after treatment according to
GLOBOCAN 2018 (Bray et al., 2018). In addition, the
heterogeneity of BC results in the diversity of tumor evolution
scenarios and traditional therapeutic response (Holm et al.,
2017). Thus, there is an urgent requirement to identify novel
sensitive biomarkers for predicting prognosis and developing
targeted therapeutic agents in BC patients.

Pyroptosis is a novel programmed cell death mediated by the
gasdermin family, accompanied by inflammatory and immune
responses (Vande Walle and Lamkanfi, 2016). The relationship
between pyroptosis and tumor remains mysterious, and the role
of pyroptosis in cancer vary in different tissues and genetic

FIGURE 1 | Construction of a risk model for BC patients based on the pyroptosis-related lncRNAs. (A,B) The LASSO coefficient profile was constructed from 64
prognostic pyroptosis-related lncRNAs based on the minimum criteria for OS with 10-fold cross-validation. (C) Multivariate Cox regression analysis showed 10
independent prognostic pyroptosis-related lncRNAs. (D) Correlation network between the 23 pyroptosis genes and the 10 prognostic pyroptosis-related lncRNAs.
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backgrounds (Xia et al., 2019; Lu et al., 2021). On the one hand,
pyroptosis as a type of cell death can inhibit the pathogenesis and
development of tumor (Nagarajan et al., 2019; Tan et al., 2021);
on the other hand, pyroptosis can form a suitable
microenvironment for tumorigenesis and chemotherapeutic
resistance by releasing multiple inflammatory mediators (Lee
et al., 2019; Zhou and Fang, 2019; Li et al., 2021).

Recently, solid evidence suggested that pyroptosis plays a vital
role in various tumors by regulating tumor cell proliferation,
invasion, and migration. Lu et al. found that GSDME-mediated
pyroptosis contributed to the drug response in a subset of lung
cancer models, including KRAS-mutant, EGFR-altered, and
ALK-rearranged adenocarcinomas (Lu et al., 2018). IL18, a
pyroptosis-related inflammatory mediator, was observed to
exert inflammation-dependent tumor-suppressive effects by
promoting the differentiation, activity, and survival of tumor-
infiltrating T cells in hepatocellular carcinoma (Markowitz et al.,
2016). In terms of the innate immune microenvironment in
tumor, Storr et al. found that macrophage-derived IL-1β
promoted the migration of breast cancer cell and lymphatic
endothelial cell adhesion, then contributed to the
tumorigenesis and metastasis of BC (Storr et al., 2017; Tulotta
et al., 2019). Moreover, IL-1β activated IRAK4 in cancer-
associated fibroblasts, and then drove tumor fibrosis,
chemoresistance, and poor prognosis in pancreatic cancer
(Zhang et al., 2018). These results pinpoint pyroptosis as an
unrecognized mechanism involved in the tumorigenesis and
development in various tumors, which may have important
implications for the clinical development and optimal
application of anticancer therapeutics.

Long non-coding RNAs (lncRNAs), a cluster of RNAs that
have no protein-encoding ability, have been widely accepted to

play an important role in the pathogenesis and development of
cancer (Fatica and Bozzoni, 2014; Bhan et al., 2017; Lin and Yang,
2018). Several studies proved the association between lncRNAs
and the progression of breast cancer. Wang et al. found that H19
induced autophagy activation via the H19/SAHH/DNMT3B axis,
which contributed to tamoxifen resistance in BC (Wang et al.,
2019). Using lncRNA/mRNA microarray assays, Qin et al.
observed that lnc030 maintained breast cancer stem cell
stemness and tumorigenesis by stabilizing SQLE mRNA and
increasing cholesterol synthesis (Qin et al., 2021). A study
conducted by Xiu et al. showed that LINC02273 drove breast
cancer metastasis by epigenetically upregulated AGR2 (Xiu et al.,
2019). However, few efforts have been devoted to the role of
pyroptosis regulators in the dysregulation of lncRNAs in breast
cancer. Thus, by performing a comprehensive bioinformatics
analysis, we aimed to construct and validate a risk model
based on the pyroptosis-related lncRNAs to predict prognosis
and immune response in breast cancer.

MATERIALS AND METHODS

Data Acquisition and Preparation
The RNA sequence transcriptome profiling data and mutation
data of BC patients with clinical features and survival
information were downloaded from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/repository). Then,
using the Ensembl human genome browser (http://asia.ensembl.
org/info/data/index.html) by the Perl program, the data were
collated and annotated to protein-coding genes and lncRNAs. In
total, 48,608 genes were annotated, in which 15,058 lncRNAs
were identified.

FIGURE 2 | The distribution of risk score, survival analysis, and the expression level of the 10 pyroptosis-related lncRNAs in the training (A) and testing sets (B).
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Selection of Pyroptosis Genes and
Pyroptosis-Related lncRNAs
Based on previous review (Liu et al., 2021; Yu et al., 2021a), 23
genes (CASP1, CASP3, CASP4, CASP5, CASP6, CASP8, CASP9,
CASP11, GSDMA, GSDMB, GSMDC, GSDMD, GSDME, NAIP,
NLRC4, NLRP1, NLRP3, NLRP6, Pyrin, ASC, IL1β, IL18, AIM2)
were defined as pyroptosis-related regulators. Pyroptosis-related
lncRNAs were defined as lncRNAs that were significantly related
to one or more of the 23 pyroptosis genes (|Pearson R| > 0.3 and
p < 0.001) (Tang et al., 2021; Xu et al., 2021). Finally, 3,364
lncRNAs were identified as pyroptosis-related lncRNAs.

Establishment and Verification of a
Pyroptosis-Related lncRNA Signature
The entire TCGA set was randomized as a training set and a
testing set with a ratio of 7:3. The training set (N = 764) was

utilized to construct a risk model based on the pyroptosis-related
lncRNAs, and the testing set (N = 327) was applied to validate this
established model. Combined with BC survival information in
TCGA, we screened the prognosis value of 3,364 pyroptosis-
related lncRNAs in the training dataset by univariate Cox
regression using the R package “survival”. Then using the R
package “glmnet” (Tibshirani, 1997), we selected the most robust
prognostic pyroptosis-related lncRNAs in LASSOCox regression.
Subsequently, multivariable Cox regression was applied to find
the independent prognostic lncRNAs for overall survival (OS).
Finally, a 10-pyroptosis-related lncRNAs risk signature was
ultimately established (Yu et al., 2021b).

The risk score formula was calculated as follows:

Riskscore�ΣiCoefficient(lncRNA)×Expression(lncRNA)[29]

where coefficient (lncRNA) was the coefficient of lncRNAs
correlated with survival and expression (lncRNA) was the

FIGURE 3 | Estimation of tumor immune microenvironment in the pyroptosis-related lncRNA-based risk groups. CIBERSORT analyses between different risk
groups in the training set (A) and testing set (B). MCP-counter analyses between different risk groups in the training set (C) and testing set (D). ESTIMATE analyses
between different risk groups in the training set (E,F) and testing set (G,H). The expression of immune profiles between different risk groups in the training set (I) and
testing set (J).
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expression of lncRNAs. According to the median risk score,
patients were divided into low- and high-risk groups.

Evaluation of the Immune Landscape
The abundance of 22 immunocytes between the low-risk and high-
risk groups were calculated through CIBERSORT algorithm
(Newman et al., 2015). The immune-related efficiency was
estimated using the “MCPcounter” package (Becht et al., 2016).
Immune and stromal scores of BC patients were estimated applying
the “estimate” package (Yoshihara et al., 2013). Besides, the
expression of key immune profiles between the low-risk and
high-risk groups was compared using the Wilcoxon test.

Exploration of the Overall Gene Mutation
and Tumor Mutation Burden in Different
Risk Groups
Using the R package maftools (Mayakonda et al., 2018), the
overall gene mutation status was analyzed and summarized in the
high- and low-risk groups. Then, TMB scores based on the TGCA
somatic mutation data were calculated to evaluate the mutation
status between different risk groups.

Exploration of Potential Compounds
Targeting the Pyroptosis-Related lncRNA
Model
To identify potential drugs targeting the lncRNA-based risk
model for treating BC patients, we estimated the therapeutic
response based on the half-maximal inhibitory concentration
(IC50) of various molecular data available in the CellMiner
database for each sample (Reinhold et al., 2012).

Functional Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed to
investigate the potential biological process and cellular
pathway between the low- and high-risk groups through the
Clusterprofile package (Subramanian et al., 2005). The FDR
q <0.25 and p <0.05 were considered statistically significant.

Independence of the Pyroptosis-Related
lncRNA Model
The Kaplan–Meier survival curve was performed to compare the
survival diversities of the high-risk and low-risk groups.
Univariable and multivariable Cox regression analyses were
conducted to test whether the risk model we constructed was
an independent risk factor for survival in BC patients.

Establishment and Validation of a
Prognostic Nomogram
To predict the prognosis of BC patients, a nomogram based on
risk model and other clinicopathologic features were constructed
to predict the 1-, 3-, and 5-year OS using the R package “rms”
(Zhang and Kattan, 2017). The concordance index (C-index) and
calibration plots were applied to reflect the predictive accuracy of

the prognostic nomogram we constructed. The area under the
time-dependent receiver operating characteristic curve (AUC)
were performed to evaluate the sensitivity and specificity of the
prognostic nomogram in both the training and validation sets.

Validation of the Bioinformatics Results
Using RT-qPCR Assay
A total of 133 paired BC tissues (T) and adjacent normal tissues
(N) were obtained from Sir Run Run Shaw Hospital of Zhejiang
University from 2014 to 2017. Total RNA was extracted using
TRIzol reagent (Invitrogen, USA). Reverse transcription was
conducted using PrimeScript RT MasterMix (Takara, China).
qRT-PCR was performed using SYBR Green PCR MasterMix
(Takara, China). The qRT-PCR primers are listed in
Supplementary Table S1.1; target lncRNA expression was
normalized to those of GAPDH. The workflow of this study is
shown in Supplementary Figure S1.

RESULTS

Identification of Pyroptosis-Related
lncRNAs
The matrix expression of 23 pyroptosis genes and 15,058 lncRNAs
were abstracted from the TCGA database. Then, applying
Pearson’s correlation analysis with a criteria of |Pearson R| >0.3
and p < 0.001, 3,364 lncRNAs were identified closely related to the
23 pyroptosis-related regulators, and these lncRNAs were defined
as pyroptosis-related lncRNAs.

Construction and Validation of a Risk Model
Based on the Pyroptosis-Related lncRNAs
Next, we screened prognostic-related lncRNAs from
3,364 pyroptosis-related lncRNAs in the training set using
univariate Cox regression analysis. In total, 381 pyroptosis-
related lncRNAs were significantly correlated with OS. Sixty-
four pyroptosis-related lncRNAs were selected by performing the
LASSO Cox analysis (Figures 1A,B). Next, 10 pyroptosis-related
lncRNAs were found as independent predictors for OS in the
training set using multivariate Cox ratio hazard regression
analysis (Figure 1C). Then, a risk model was constructed and
patients were clustered into low- and high-risk groups based on
their risk scores (Supplementary Table S1.2). In addition, the
correlation between the pyroptosis-related lncRNAs and
pyroptosis genes was analyzed, which is shown in Figure 1D.
The distribution of risk score, survival analysis, and the
expression level of the 10 pyroptosis-related lncRNAs in the
training and testing sets are shown in Figures 2A,B.

Estimation of the Tumor Immune
Microenvironment
The enrichment level and activity of infiltrating immune cells
between the different risk groups were further analyzed.
CIBERSORT algorithm (Figures 3A,B) confirmed that patients
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in the low-risk group were qualified with more antitumoral
immune cells (CD8+ T cells, activated memory CD4+ T cells),
while patients in the high-risk group were characteristics of more
regulatory T cells and M2 macrophages. MCP-counter (Figures
3C,D) suggested that patients in the low-risk group had a higher
level of activated immune cells (CD8+ T cells, cytotoxic
lymphocytes, B cells, and NK cells). ESTIMATE algorithm
indicated that the risk model was negatively correlated with the
immune score and the stromal score (Figures 3E–H). Besides, the
low-risk and high-risk groups showed prominent differences in the
expression of immune profiles (Figures 3I,J), and a higher
expression of immune-related profiles, like T cell phenotypic
and functional marker (CD3E, CD4, CD8B, FOXP3, GZMB,
PRF1, and TBX21), activating immune receptors (CD27, CD40,
CD80, ICOS, and TNFRSF4), IFNγ signature (CXCL9, CXCL10,
IDO1, IFNG, and STAT1), and the immune checkpoint markers

(CTLA4, CD274, PDCD1), was observed in the low-risk group,
which indicated that the pyroptosis-based lncRNA signature might
serve as an effective indicator for immunotherapeutic response.

Overall Gene Mutation and Tumor Mutation
Burden Analysis
Then, we calculated TMB scores according to tumor-specific
mutated genes. Patients in the high-risk group showed a
significantly higher TMB than their counterpart in the low-
risk group (Figures 4A,D). Using the R package maftools, we
analyzed the overall gene mutation in different risk groups.
The top 20 driver genes with the highest alteration frequency
were depicted by waterfall plots in the low-/high-risk groups
in the training set (Figures 4B,C) and testing set
(Figures 4E,F).

FIGURE 4 |Overall genemutation and tumor mutation burden analysis based on the pyroptosis-related lncRNAsmodel. The difference of tumor mutational burden
between the high- and low-risk subtypes in the training set (A) and testing set (D). Waterfall plots of top 20 mutated genes in the low-/high-risk groups in the training set
(B,C) and testing set (E,F).
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Identification of Novel Candidate
Compounds Targeting the
Pyroptosis-Related lncRNA Model
To identify potential compounds for the treatment of BC, we
calculated the IC50 of compounds obtained from the CellMiner
database. Robust negative correlation has been found between the
expression level of GNG12-AS1 with IC50 of CB-839, amuvanitib,
cabozantinib, (+)-JQ1, and MK-0731 (all p < 0.001). A significant
positive correlation was observed between the expression of
SCAT1 and IC50 of fostamatinib, CC-90003, GDC-0032,
parthenolide, ONX-0914, asparaginase, and dromostanolone
propionate (all p < 0.005). The expression level of AC104653.1
was significantly positively associated with the IC50 of 6-(4-
pyrimidinyl)-1H-indazole derivative, decitabine, R-1530, and
serabelisib (all p < 0.005), which is shown in Figure 5.

Functional Enrichment Analysis
Gene set enrichment analysis (GSEA) revealed that apoptosis and
JAK-STAT signaling pathway were significantly enriched in the
high-risk group in both training and testing sets. In terms of gene

annotation (GO) analysis, protein transmembrane import into
intracellular organelle, mitochondrial membrane part, and
plasma membrane receptor complex were the most relevant
biological process (BP), cellular component (CC), and
molecular function (MF) of pyroptosis-related lncRNAs,
respectively. Pertaining to cancer hallmark, IL6-JAK-STAT3
signaling pathway and inflammatory response were the most
relevant cancer hallmarks (Figure 6).

Evaluation of the Prognostic Value of the
Risk Model
To further evaluate the prognostic value of the risk model,
univariate and multivariate Cox regression models that
contained the clinicopathologic features and the risk model
were analyzed in the training and testing sets. As shown in
Supplementary Table S2, the risk model was an independent
risk factor for OS in BC patients. Moreover, the expression level
and prognostic value of these pyroptosis-related lncRNAs were
further analyzed using GEPIA dataset (http://gepia.cancer-pku.
cn/). Kaplan–Meier survival analyses showed the survival

FIGURE 5 | Identification of novel candidate compounds targeting the pyroptosis-related lncRNA model.
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diversity of the pyroptosis-related lncRNAs (Supplementary
Figure S2). The expression of these pyroptosis-related lncRNA
signatures is depicted in Supplementary Figure S2. Results
showed that RP11-756J15.2, RP11-1070N10.3, RP11-817J15.3,
RP11-459E5.1, and RP11-141M3.6 were lowly expressed in
tumor tissues and positively associated with OS in BC patients.

Construction and Evaluation of the
Pyroptosis-Related lncRNA-Based
Nomogram
A nomogram comprising the risk model and clinicopathologic
features was established to predict the 1-, 3-, and 5-year OS. By
comparison with other clinicopathologic parameters, the risk
model showed predominant predictive ability in the
nomogram (Figure 7A). The AUC value (Figures 7B,C) and
calibration plots (Figures 7D–I) showed excellent consistency

between the actual and nomogram-predicted survival
probabilities for 1-, 3-, and 5-year OS in the training and
testing sets.

The Expression Levels and Prognostic
Value of 10 Selected Pyroptosis-Related
lncRNAs in Our Cohort
The expression levels of 10 selected pyroptosis-related lncRNAs
(AC104653.1, GNG12-AS1, RP11-141M3.6, RP11-631N16.2,
RP11-459E5.1, RP11-756J15.2, RP11-817J15.3, RP11-
1070N10.3, CTA-384D8.34, and CTD-2357A8.3) were
examined by qRT-PCR. In detail, RP11-141M3.6, RP11-
1070N10.3, and RP11-817J15.3 were downregulated, while
RP11-459E5.1 was significantly upregulated in tumor tissues
compared with that in the paired normal tissues (Figure 8A).
The four differentially expressed lncRNAs were further analyzed

FIGURE 6 | GSEA of enriched potential biological process and cellular pathway between the high- and low-risk groups in the training set (A–J) and testing
set (K–T).
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in different breast cancer subtypes (Figures 8B–E). Importantly,
Kaplan–Meier survival analysis showed that high expression of
RP11-459E5.1 was significantly associated with worse OS
(Figure 8G), while RP11-1070N10.3 and RP11-817J15.3 high
expression (Figures 8H,I) were correlated with better survival in
breast cancer, which is in accord with the bioinformatics results.

DISCUSSION

Breast cancer is the most frequent malignant tumor and the leading
cause of cancer-related death in women globally. Although
dramatic improvements in early diagnosis and effective
treatment have been made for this malignant tumor, a
considerable proportion of patients still succumb to metastasis
and recurrence due to therapeutic failure. It is well established
that breast cancer displays extreme heterogeneity in histology and
molecular analysis, which contributes to significant diversities in
incidence,malignant procession, treatment response, and prognosis
(Holm et al., 2017; Yeo and Guan, 2017). Thus, more insights are
required to identify critical signaling molecules that contribute to
the tumorigenesis and malignant procedure of breast cancer.

Pyroptosis is a novel type of programmed cell death
characterized by gasdermin-mediated and proinflammatory
factor release (Shi et al., 2015). Increasing evidence suggested
that pyroptosis may play a critical role in the pathogenesis and
development of various tumors, including BC. However, studies
on the pathological role of pyroptosis in BC progression remain
limited. Similarly, lncRNAs, the largest class of noncoding RNA,
modulate chromatin functions through interactions with DNA,
RNA, and proteins (Qian et al., 2019; Statello et al., 2021).
Numerous studies have explored the correlation of lncRNA
with various cancers, including BC. However, studies on the
biological mechanisms and prognostic biomarkers of BC
concerning pyroptosis-related lncRNAs are still lacking.

In the present study, we were inspired by the biological function
of pyroptosis and lncRNAs in BC; thus, we attempted to construct
a risk model based on pyroptosis-related lncRNAs for predicting
prognosis and immune response in BC patients. First, we identified
3,364 pyroptosis-related lncRNAs in the TCGA cohort. Then,
using univariate and multivariate Cox regression analyses, and
LASSO cox regression analysis, a risk model based on
10 pyroptosis-related lncRNAs were constructed and patients
were classified into high- and low-risk groups based on the
median risk score. Results showed that the high-risk group had
apparently poorer OS than the low-risk group. Multivariate Cox
regression analysis showed that the pyroptosis-related lncRNA
model was an independent risk factor of OS. Then, a nomogram
was established to predict the 1-year, 3-year, and 5-year OS of BC
patients. The calibration plots and AUC value showed excellent
consistency between the actual and nomogram-predicted survival
probabilities for 1-, 3-, and 5-year OS in the training and testing
sets. Moreover, the expression level and clinical significance of the
selected pyroptosis-related lncRNAs were further validated in our
cohort, which is in accord with the bioinformatics results.

Next, we explored the relationship of the riskmodel and tumor
microenvironment in BC. Results showed that patients in the
low-risk group had a higher expression of immune-checkpoint
markers (like CTLA4, CD274, and PDCD1) as compared with the
high-risk group. Similarly, we observed that the low-risk group
had higher infiltration levels of activated immune cells than their
counterpart (CD8+ T cells, B cells, NK cells, etc.). The results were
consistent with previous findings that immune checkpoints
executed a vital role on tumorigenesis and development in
tumors by inducing tumor immune-suppressive activities, and
patients with high PD-L1 expression in tumor cells and stromal
immune cells are more likely to respond to chemotherapy and
immunotherapy (Gibson, 2015; Kwapisz, 2021). Liu et al.
reported that the aberrant expression of CTLA4 and PDCD1
was associated with tumorigenesis and immunocyte infiltration

FIGURE 7 | The expression levels and prognostic value of 10 selected pyroptosis-related lncRNAs in our cohort. (A)Comparison of expression levels of 10 selected
pyroptosis-related lncRNAs in tumor tissues (T) and adjacent normal tissues (N) by RT-qPCR assay. The expression level of RP11-141M3.6, RP11-459E5.1, RP11-
817J15.3, and RP11-1070N10.3 in different breast cancer subtypes, respectively (B–E). Kaplan–Meier curve shows the survival diversity between different expressions
of RP11-141M3.6 (F), RP11-459E5.1 (G), RP11-817J15.3 (H), and RP11-1070N10.3 (I) in our cohort. Non-significant (ns) p > 0.05, *p < 0.05, **p < 0.01, and
***p < 0.001.
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FIGURE 8 | Construction and evaluation of a pyroptosis-related lncRNA-based nomogram. (A) The nomogram predicts the probability of 1-, 3-, and 5-year OS for
individual patients. AUC values of the risk score and clinical characteristics in the training set (B) and testing set (C). Calibration plots evaluate the prediction accuracy of
the nomogram in the training set (D–F) and testing set (G–I).
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in pan-cancer, including breast cancer (Liu et al., 2020). Another
study conducted by Park et al. showed that the expression level of
CD274 was associated with prognosis in breast cancer patients
who received neoadjuvant chemotherapy (Park et al., 2020).
Moreover, Tekpli et al. (2019) found an immune
infiltration–based subtype of breast cancer to predict
therapeutic response and prognosis in breast cancer patients.

Furthermore, we estimated the TMB and overall gene mutations
in different risk groups. TMB is defined as the total number of
somatic mutations per megabase of interrogated genomic sequence,
which related to the emergence of neoantigens that trigger antitumor
immunity (Sha et al., 2020). Recent studies revealed that breast cancer
patients with high TMB were more likely to benefit from PD-L1
inhibitors (Thomas et al., 2018; Barroso-Sousa et al., 2020; Chumsri
et al., 2020). The results of our study showed that the difference in the
amount of overall gene mutations between the high- and low-risk
groups, and the TMB in the low-risk group exceeded that in high-risk
group. In terms of chemotherapy response, the expression of
GNG12-AS1 was negatively associated with IC50 of CB-839,
amuvanitib, cabozantinib, (+)-JQ1, and MK-0731. Also, significant
positive correlations were observed between the expression of
SCAT1(CTD-2357A8.3) and AC104653.1 with IC50 of other
agents, which may be potential compounds for the treatment of
BC by targeting these specific pyroptosis-related lncRNAs.

In addition, as revealed in the GSEA results, the tumor
functional patterns including apoptosis and JAK-STAT
signaling pathways were enriched in the high-risk group.
Pertaining to cancer hallmark, IL6-JAK-STAT3 signaling
pathway and inflammatory response were the most relevant
cancer hallmark. It is well established that JAK-STAT
signaling is involved in breast cancer cell proliferation,
metastasis, and chemotherapeutic sensitiveness. For instance,
Wang et al. reported that CircNOL10 suppressed breast cancer
progression by sponging miR-767-5p to regulate SOCS2/JAK/
STAT signaling (Wang et al., 2021). Several studies found that
JAK-STAT signaling was involved in the chemotherapeutic and
endocrine therapeutic resistance in breast cancer (Lui et al., 2017;
Zhu et al., 2020). Considering that, the 10 pyroptosis-related
lncRNAs and their relative pathways may be involved in the
tumorigenesis and development of breast cancer.

Among the lncRNA signatures, GNG12-AS1 has been found
to coregulate with DIRAS3, and then inhibit cell cycle progression
and migration in various tissues (Stojic et al., 2016). Moreover,
GNG12-AS1 caused allele-specific splicing in breast cancer,
which may contribute to the tumorigenesis and development
of breast cancer (Niemczyk et al., 2013). Xiang et al. observed that
GNG12-AS1 induced glioma cell proliferation and migration
through AKT/GSK-3β/β-catenin signaling (Xiang et al., 2020).
Zheng et al. found that SCAT1(CTD-2357A8.3) served as a
predictive biomarker for pathologic complete response of
chemotherapy in esophageal squamous cell carcinoma (Zhang
et al., 2020). A previous study by Fan et al. found that
SCAT1(CTD-2357A8.3) could be a novel prognostic
biomarker for esophageal cancer (Fan and Liu, 2016).
Similarly, Lei et al. established a risk model, which contained
AC104653.1 to predict the prognosis of glioblastoma, and results
showed that the model was a powerful tool for survival prediction

in this malignant tumor (Lei et al., 2018). Furthermore, pan-
cancer analysis of S-phase enriched lncRNAs identified that
SCAT1(CTD-2357A8.3) was differentially expressed in several
cancers, SCAT1(CTD-2357A8.3) induced cell proliferation and
correlated with poor prognosis in lung cancer (Ali et al., 2018),
and these publications provided a novel biological function and
mechanism of these lncRNAs in tumors.

It is an undeniable fact that several limitations existed in this
study. Due to lack of available data about lncRNAs in other
databases, like the Gene Expression Omnibus (GEO) database, we
could not validate the results of our study in other public datasets.
In this background, we collected BC samples in our cohort to
further explore the expression level and clinical significance of
these pyroptosis-related lncRNAs, which validated the clinical
significance of the selected pyroptosis-related lncRNAs. However,
further experimental studies are needed to elucidate the
underlying biological function and mechanism of these
pyroptosis-related lncRNAs in breast cancer.

In conclusion, the established pyroptosis-related lncRNA model
provides a newmethod for prognostic prediction in BC patients, and
may help elucidate the important role of these pyroptosis-related
lncRNAs in the tumorigenesis and development of breast cancer. In
addition, our study provides new insight in identifying BC patients
who may benefit from immunotherapy.
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The Role of Copy Number Variants in
Gene Co-Expression Patterns for
Luminal B Breast Tumors
Candelario Hernández-Gómez1, Enrique Hernández-Lemus1,2* and
Jesús Espinal-Enríquez1,2*

1Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico, 2Centro de Ciencias de la
Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico

Gene co-expression networks have become a usual approach to integrate the vast
amounts of information coming from gene expression studies in cancer cohorts. The
reprogramming of the gene regulatory control and the molecular pathways depending on
such control are central to the characterization of the disease, aiming to unveil the
consequences for cancer prognosis and therapeutics. There is, however, a multitude
of factors which have been associated with anomalous control of gene expression in
cancer. In the particular case of co-expression patterns, we have previously documented a
phenomenon of loss of long distance co-expression in several cancer types, including
breast cancer. Of the many potential factors that may contribute to this phenomenology,
copy number variants (CNVs) have been often discussed. However, no systematic
assessment of the role that CNVs may play in shaping gene co-expression patterns in
breast cancer has been performed to date. For this reason we have decided to develop
such analysis. In this study, we focus on using probabilistic modeling techniques to
evaluate to what extent CNVs affect the phenomenon of long/short range co-expression in
Luminal B breast tumors.We analyzed the co-expression patterns in chromosome 8, since
it is known to be affected by amplifications/deletions during cancer development. We
found that the CNVs pattern in chromosome 8 of Luminal B network does not alter the co-
expression patterns significantly, which means that the co-expression program in this
cancer phenotype is not determined by CNV structure. Additionally, we found that region
8q24.3 is highly dense in interactions, as well as region p21.3. The most connected genes
in this network belong to those cytobands and are associated with several manifestations
of cancer in different tissues. Interestingly, among the most connected genes, we found
MAF1 and POLR3D, which may constitute an axis of regulation of gene transcription, in
particular for non-coding RNA species. We believe that by advancing on our knowledge of
the molecular mechanisms behind gene regulation in cancer, we will be better equipped,
not only to understand tumor biology, but also to broaden the scope of diagnostic,
prognostic and therapeutic interventions to ultimately benefit oncologic patients.
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1 INTRODUCTION

It is difficult to exaggerate the negative impact that cancer has, not
only as a global health burden, but also as a phenomenon with
enormous societal and economic consequences. Last year, cancer
was the cause of death for 10 million people, mainly in poor and
developing countries. Of all tumor types, breast cancer is the
malignant neoplasm with the largest incidence worldwide (Siegel
et al., 2020). Many survivors of the disease (five or more years
after diagnosis) still have to live with physical and psychological
problems that persist over time (Stein et al., 2008) and drastically
reduce their quality of life and productivity.

Breast cancer is also a highly complex and heterogeneous
disease, both from the molecular and from the clinical/
phenotypic standpoints. It is known that breast cancer
diagnosis, response to treatment, relapse, and outcome are
largely dependent on the molecular features that have been
associated with the so-called breast cancer subtypes (Liu et al.,
2007; Kittaneh et al., 2013; de Anda-Jáuregui et al., 2016):
Luminal A, the most common, estrogen and progesterone
receptor positive but, in general, epidermal growth factor 2
receptor negative; Luminal B subtype is positive for estrogen
receptor and epidermal growth and negative for progesterone;
HER2+, these tumors are negative for estrogen and progesterone
and positive for epidermal growth factor 2; finally the Basal
subtype tumors, which are mostly (around 80%) triple
negative, i.e., negative for estrogen, progesterone, and
epidermal growth factor 2. These classifications are useful to
determine the origin, evolution and treatment to be followed in
each case, although each patient is unique and each subtype has
peculiarities.

Of the estrogen-positive subtypes, Luminal B is often the most
aggressive and although luminal breast tumors are susceptible to
be treated with targeted therapy (a fact that commonly, but not
always, is associated with better outcomes), in some cases present
the worst prognosis for patients. This is so, due to several
molecular and functional features that have been related to
higher proliferation rates and pharmacological resistance
(Cheang et al., 2009; Tran and Bedard, 2011; Creighton, 2012;
Ades et al., 2014), or even due to metabolic alterations (Serrano-
Carbajal et al., 2020).

Luminal B breast cancer subtype is hormone-receptor positive
(estrogen-receptor and/or progesterone-receptor positive), and
either HER2 positive or HER2 negative. This subtype presents
high levels of Ki-67. In general, Luminal B tumors grow slightly
faster than those from Luminal A subtype. Additionally, the
prognosis is commonly worse (Li et al., 2016).

Luminal B breast tumors are characterized by a lower
expression of estrogen receptor, and low expression of
progesterone receptor (Harbeck et al., 2013). It is also defined
by aggressive clinical behavior; its prognosis is similar to that of
non-luminal cancers (Tran and Bedard, 2011). Bone metastasis
appears more often in Luminal B patients than in non-luminal
ones. However, recurrence or metastasis in this subtype have a
better prognosis after treatment than non-luminal tumors. It has
also been shown that Luminal B subtype presents high metabolic
deregulation (Li et al., 2016; Serrano-Carbajal et al., 2020).

Luminal B subtype tumors accounted for nearly 40% of all
breast cancers (Metzger-Filho et al., 2013). Therefore,
understanding the molecular basis of the luminal B subtype is
a matter of current concern.

One of the most actively investigated genomic regions in the
manifestation of breast cancer is cytoband 8q24.3 (Wokolorczyk
et al., 2008; Dorantes-Gilardi et al., 2021). This region results
particularly relevant to study in the present context, since 8q24
has been repeatedly reported to harbor multiple variants
associated with the incidence of breast cancer and other type
of neoplasms (Tong et al., 2020). Indeed, genomic variants in
8q24 have been ascertained to be associated with risk of breast
cancer on systematic reviews and meta-analyses (Wang et al.,
2020). Particularly interesting is the fact that larger genomic
alterations (including copy number variants, CNVs) have been
linked to breast cancer onset (Jia et al., 2019), often via disruption
of healthy breast cells transcriptional programmes (Ibragimova
et al., 2020). Indeed, such effects have been actually linked via
clinical and pathological features to breast tumors of the Luminal
B subtype (or related: ER+, PR- and HER2-) giving rise to basal-
like and endocrine resistant phenotypes (Liu et al., 2018).

It has been argued that some of these genomic alterations have
relevant consequences for transcriptional regulation anomalies
associated with cancer. Gene regulatory programmes are known
to be altered, a fact that has been linked with the onset and
development of tumor phenotypes (de Anda-Jáuregui et al., 2016;
Hernández-Lemus et al., 2019). In this regard, our group has
thoroughly described how the more relevant gene-gene co-
expression interactions in several cancer types often occur
between genes from the same chromosome (cis-), even in
proximal chromosomal locations. Conversely, inter-
chromosome (trans-) interactions (or even long distance intra-
chromosome co-expression interactions) are comparatively less
abundant and have lower values of diverse statistical dependency
measures (Espinal-Enríquez et al., 2017; de Anda-Jáuregui et al.,
2019; Dorantes-Gilardi et al., 2020; García-Cortés et al., 2020;
Zamora-Fuentes et al., 2020; Andonegui-Elguera et al., 2021;
Dorantes-Gilardi et al., 2021; García-Cortés et al., 2021).

Since a large number of molecular players and processes are
known to be involved in (normal and) anomalous transcriptional
regulatory patterns, establishing which, among the multitude of
potential causes of this phenomenon in tumors are actually more
relevant given the available experimental evidence becomes
desirable. Particularly important has been the discussion on
the effects that CNVs have on gene expression patterns in
several diseases (Stranger et al., 2007; Henrichsen et al., 2009),
including breast cancer (Kumaran et al., 2017; Ohshima et al.,
2017; Safonov et al., 2017; Sun et al., 2018; Shao et al., 2019).

With this in mind, we have decided to investigate the effect
that CNVs may have on the phenomenon of distance-associated
gene co-expression in breast cancer. For the reasons already
discussed we have chosen to perform a detailed study centered
in the chromosome 8 and the 8q24 region in Luminal B breast
tumors. In this study, we implemented a probabilistic modeling
approach to evaluate how CNVs affect long and short range co-
expression profiles in Luminal B breast tumors. We analyzed the
co-expression patterns in chromosome 8, since it is known that
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amplifications and deletions in that chromosome may influence
cancer development. We found that CNV signatures in
chromosome 8 of Luminal B network do not significantly alter
the co-expression patterns, hence the co-expression program in
this tumor phenotype is not determined by CNV structure.
Additionally, we found that the 8q24.3 region is highly dense
in co-expression interactions, as well as p21.3. The most
connected genes in this network belong to those cytobands
and have been associated with several tumor types.
Interestingly, among the most connected genes, we found
MAF1 and POLR3D, which may constitute an axis of
regulation of gene transcription, in particular for non-coding
RNA species. We believe that by advancing our knowledge of the
molecular mechanisms behind gene regulation in cancer, we will
be improving, not only to understand tumor biology, but also the
scope of diagnostic, prognostic and therapeutic interventions to
ultimately benefit oncologic patients.

This article is organized as follows: Section 2 explains what
conditional mutual information (CMI) is and why it is
appropriate in the present investigation; the Kolmogorov-
Smirnov method is also presented to quantify the difference
between two probability distributions. In section 3, the
method used to build the networks is explained. It is also
established (via conditional mutual information distributions),
that CNVs are not significantly associated with the structural
features (in particular distance-dependent co-expression
patterns) of the analyzed co-expression networks. The results
are analyzed in section 4. There, the genes with the highest
connectivity as well as their possible relationship in the
development of cancer are identified and discussed. Finally, in
section 5 the conclusions and some consequences of this work are
presented.

2 METHODS

2.1 Data Acquisition
The complete collection of The Cancer Genome Atlas (TCGA)
breast RNA-Seq samples was downloaded in January 2019 from
the GDC repository https://portal.gdc.cancer.gov/repository.
This collection included 113 solid tissue, normal samples and
1,102 primary tumor samples. From these samples, 192
corresponded to Luminal B tumors. Data acquisition was
carried out by using the TCGABiolinks R package (Colaprico
et al., 2016).

2.2 Data Integration
An integrity check was carried out in raw expression files using
gene annotations from BioMart. Only protein coding genes
belonging to conventional chromosomes (1, 2, . . . , 22, X and
Y) were kept. The CNVs of the micro-RNAs were masked from
the 8q24.3 region and excluded from the analysis.
Supplementary Materials S1, S2 contains gene expression and
genetic information of chromosome 8 genes. Pre-processing and
quality control of the gene expression samples were performed as
in (Espinal-Enríquez et al., 2017). In brief, we used for NOIseq R
library for quality control (Tarazona et al., 2011, 2015). For batch

effect removal, normalization, transcript length and GC content
correction, EDASeq library was implemented (Risso et al., 2011).
Finally, for multi-dimensional noise reduction we used ARSyN R
library (Nueda et al., 2012).

2.3 Conditional Mutual Information
Measures
We considered information theoretical measures of statistical
dependency as follows: Let X, Y and Z denote discrete random
variables having the following features:

1 Finite alphabets X , Y and Z, respectively
2 Joint probability mass distributions p (X, Y, Z), and partial-
joint probability mass distributions p (X, Y), p (X, Z), etc.,

3 Marginal probability mass distributions p (X), p (Y) and p (Z)

Let also X̂, Ŷ and Ẑ denote additional discrete random
variables defined on X, Y and Z respectively, the associated
probability mass distributions will be p̂(X), p̂(Y) and p̂(Z),
their joint probability mass distribution ̂p(X, Y, Z) defined on
J , the joint probability sampling space; J � X × Y × Z. For
particular realizations, we have p(x) = P (X = x),
p̂(y) � P(Ŷ � y), etc., It is possible to define the
Conditional Mutual Information (CMI) function I (X; Y|Z)
as follows:

I X;Y|Z( ) � ∑
z∈Z

∑
y∈Y

∑
x∈X

pX,Y,Z x, y, z( )log
pZ z( )pX,Y,Z x, y, z( )
pX,Z x, z( )pY,Z y, z( )

(1)
Formally I (X; Y|Z) is a measure representing the expected

value of the mutual information of two random variables X
and Y given the value of a third random value Z. Thus I (X; Y|
Z) represents the expected value (w.r.t. Z) of the Kullback-
Liebler divergence from the conditional joint distribution P
(X, Y|Z) to the product of the conditional marginals P (X|Z)
and P (Y|Z).

CMI calculations were performed with R infotheo library
(Meyer and Meyer, 2009).

2.4 Assessment of the Impact of Copy
Number Variant in Gene Co-Expression
Programs
In order to ascertain to what extent the CNVs are able to influence
the gene co-expression programs, we performed Kolmogorov-
Smirnov (KS) tests to evaluate the differences among the diverse
CMI distributions. The KS statistic between 2 distributions is
defined as:

Dn,m � supx|F1,n x( ) − F2,m x( )| (2)
here, F1,n (x) and F2,m (x) are the empirical distribution functions
of the first and the second sets. Statistical significance of the KS
tests is asymptotically given as follows.

The null hypothesis is rejected (at significance level α),
whenever
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Dn,m > c α( )
�����
n +m

n ·m
√

(3)

with c(α) �
��������
−ln(α2) · 12

√

KS tests were performed with the ks. test library in R.
Circos plots visualizations were made using the BioCircos

JavaScript library (Cui et al., 2016).

3 IMPLEMENTATION

It has been argued that mutual information (MI) is a reliable
measure to establish links between genes in co-expression
networks (Margolin et al., 2006a,b; Hernández-Lemus and
Siqueiros-García, 2013; Lachmann et al., 2016). Given that
there is generally a sufficient amount of data available to
reconstruct the probability distributions associated with the
expression of genes, it is possible to use it without major
restrictions when measuring the statistical dependency
structures between them (Hernández-Lemus and Rangel-
Escareño, 2011). It is also a measure that takes into account
the non-linear contributions of interdependence in the series,
which makes it more appropriate in the context of the complex
regulatory patterns of gene expression.

The adoption of MI-based network deconvolution methods
has opened the entrance of the tenets of information theory in the
analysis of biomolecular networks. However, when, as in the
present work, it is necessary to evaluate the mutual information
between two random variables (corresponding to each of the
individual gene expression profiles in the present case), given a
third, potentially influential feature, one relevant alternative is the
evaluation of the Conditional Mutual Information measures.
Indeed CMI has already been used in the construction of
regulatory networks in a different but related context to the
one presented here (Liang and Wang, 2008; Zhang et al., 2012).

An underlying problem when applying MI and CMI to
establish the dependency between variables is choosing the
method for reconstruction of the associated probability
distributions. There are two main ways to do this, using the
k-nearest neighbor non-parametric method (Kraskov et al., 2004)
and through kernel density estimation (Terrell and Scott, 1992).
In this work we have chosen the second method, in particular
with a Gaussian kernel estimation. The implementation used is
the one corresponding to the R package Infotheo.

The role of CNVs has been pointed out as a possible element
causing the loss of co-expression with the distance that is
observed in cancer and that has been reported previously
(García-Cortés et al., 2021). Ideally, a non-cancerous person
has two copies of each gene, however many disorders of
genetic origin are caused by the deletion, repetition or
insertion of DNA segments, sometimes as long as the arm of a
chromosome or a complete chromosome. Given that in the past,
they have been found to be responsible for genetic diseases, to
think that they may also have a relevant role in the loss of co-
expression is an appealing idea.

To systematically evaluate the contribution of CNVs in gene
co-expression in cancer, it is convenient to use an area of the

genome that is particularly active in its manifestation and to
calculate the influence of CNVs both in that region and in the
surrounding areas. As previously mentioned, 8q24.3 has been
identified as particularly active and connected in co-expression
networks, mainly in breast cancer tissues. Thus, we chose the
Luminal B breast cancer subtype, given the poor prognosis
compared with the Luminal A subtype. Furthermore, gene
expression patterns have shown altered metabolic pathways
even more evident than in Basal-like or HER2+ phenotypes
(Serrano-Carbajal et al., 2020). We took the CNV values of
183 coding genes from the 8q24.3 region (Supplementary
Materials S3, S4), we take them one by one as conditional
and calculate the CMI of 442 genes, including not only those
of this region but of the entire chromosome 8. Supplementary
Materials S3–S6 show the copy number alteration map of all
samples for chromosome 8.

We repeated the above calculation for the same genes with
control tissue samples assuming a number of CNVs equal to two
in all samples as conditional. From the obtained values we
construct co-expression networks. For each of the 183
conditional layers there are 97,461 links. The question behind
this analysis is: How important is the difference obtained between
the different conditional layers? For control tissue networks the
question becomes trivial, since all the conditionals are essentially
the same, but for those corresponding to Luminal B this
difference may be relevant due to the already documented
anomalous CNV structure in the region.

To quantify the differences between each of the 183
conditional layers obtained, we calculated the difference
between the distributions of CMI values for all possible pairs
of them (16,653 comparisons) using the Kolmogorov-Smirnov
test. In essence, this test compares the cumulative functions of
two distributions and it establishes as a measure, the D statistic,
i.e. the maximum vertical difference between them
(Supplementary material S5). In Figure 1 we show
graphically the workflow for this project.

4 RESULTS AND DISCUSSION

4.1 Contribution of CopyNumber Variants to
the Co-Expression Program is Marginal
Figure 2 shows a heatmap with the values of the D statistic of the
Kolmogorov-Smirnov test for each different pair of the 183
distributions of CMI values obtained. The largest of them,
which occurs between the layers corresponding to the CNVs
of the COL22A1 gene (ENSG00000169436) and
(ENSG0000016943), is less than 0.06. This result indicates that
the contribution of 8q24.3 CNVs in the co-expression networks
of genes on chromosome 8 in the luminal B subtype of cancer is
marginal.

This result acquires relevance since copy number alterations
are a mesoscopic phenomena, which can affect large parts of the
genome. On the other hand, changes in the co-expression
landscape are considered a microscopic event, since those
changes may affect specific genes and their regulatory
relationships. Hence, with this result we provide evidence that
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a large-scale event such as amplifications/deletions of large
portions of chromosome 8 do not significantly alter the gene
co-expression program in cancer.

4.2 Conditional Mutual Information is Higher
in Luminal B Than in Controls
Since all the layers corresponding to Luminal B samples have
essentially the same distribution of CMI, we take the first, whose
conditionals are the CNVs of the COL22A1 gene, as

representative of the entire family of networks and proceed to
analyze it. Figure 3 shows the difference between CMI from the
Luminal B subtype network and the one from the control
network. As it can be clearly observed, the control CMI values
are lower than the cancer counterpart.

In (Espinal-Enríquez et al., 2017), we observed that mutual
information values from control gene co-expression networks are
higher than in the cancer-derived network. However, the
calculation was taken over all the gene-gene co-expression
interactions, i.e. intra and inter-chromosomal gene

FIGURE 1 | Workflow of this study. RNASeq obtained from tumor and control adjacent tissue biopsies (coming from the TCGA/GDC collaboration database)
serves as a basis for conditional co-expression and CNV analysis. Samples were pre-processed for quality control and normalization, batch effect removal and mlti-level
noise reduction. Copy number variation and RNA expression data were used to perform the conditional mutal information, Finally, spatial co-expression analysis was
implemented.
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correlations. In this case, the CMI is taken between chromosome
8 genes only, i.e., just intra-chromosome interactions.

Taking into account that the loss of long-range co-expression
phenomenon has been previously reported in networks form
different cancer types (Zamora-Fuentes et al., 2020; Andonegui-
Elguera et al., 2021), and also for breast carcinoma (Espinal-
Enríquez et al., 2017; Alcalá-Corona et al., 2018; de Anda-
Jáuregui et al., 2019; Dorantes-Gilardi et al., 2020), and in
particular for breast cancer subtype networks (de Anda-
Jáuregui et al., 2019; García-Cortés et al., 2020; Dorantes-
Gilardi et al., 2021), the finding of a higher average co-
expression in intra-chromosome 8 of Luminal B breast cancer
compared with the control one, reinforces the fact that this
phenomenon is a common trait in several types of cancer.

4.3 Cancer Network Grows in Small Local
Regions, but not in Control
Figure 4 corresponds to Luminal B subtype interactions. Top-left
to bottom-right shows the Top-500, 1,000, 2,000, and 3,000
interactions in chromosome 8. As it can be appreciated,

interactions appear local in the first place, markedly in
cytobands q24.3 (yellow arcs) and p11.23. Subsequently, inter-
cytoband and inter-arm interactions occur, but in a small fraction
(top-right). For the top-2,000 edges, it is clear that several
interactions appear from q24.3. Finally, for the top-3,000 edges,
8q24.3 region is strongly connected with the rest of chromosome 8,
and more inter-arm and inter-cytoband edges appear.

On the other hand, the Figure 5 shows the existence of a non-
localized connectivity for the control network; since for the first
500 highest connections, interactions occur between genes from
different cytobands, or even from different arms, much more
often than in the cancer phenotype. The same effect is shown in
the top-1,000 and 2,000 interaction circos plots. It is worth
noticing the small number of intra-cytoband interactions, even
in the top-3,000 edges (830 out of 3,000, dark blue edges).

We believe that this pattern where the highest correlations
appear between physically close genes, is in agreement with other
phenomena observed in breast and other cancers in which the
loss of long-distance co-expression is evident, such as kidney
(Zamora-Fuentes et al., 2020) or lung (Andonegui-Elguera et al.,
2021).

FIGURE 2 | Heatmap corresponding to the values of the D statistic for the Kolmogorov-Smirnov test. Both axes represent the same CNV layers. As it can be
observe from the color code at the right part of the figure (very low values of D), none of the CNV layers present a larger KS statistics, which reflects that copy number
alterations do not significantly change gene co-expression values.
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4.4 Extreme Regions Exhibit a High
Connectivity Pattern in Luminal B Network
We decided to analyze the topology of the resulting networks, but
we only kept the highest interactions for this purpose. We set 0.35
as a threshold for CMI in the Luminal B network. This threshold
resulted in a network with 11,449 edges and 420 genes. For
comparison, we conserved the same number of edges in the
control network. Taking into account the highest CMI values in
the Luminal B phenotype, a very intriguing phenomenon
appears: the first (8p11.21–23) and last (8q24.3) codifying
regions of the chromosome 8 exhibit strong connections.
Additionally, this strength decrease towards the centromere.
Conversely, in the control network, the strength of
interactions does not depend on the location of genes. This
remarkable difference between the breast cancer and the non-
tumor adjacent phenotype can be appreciated in Figure 6

Regarding the Luminal B chromosome 8 network, the genes of
the extreme regions also constitute themost connected nodes of the
network. The case of cytoband q24.3 is the most emblematic one.
Cytoband q24.3 is the one with more intra-cytoband edges (1,640
out of 11,449). It is also the cytoband with more genes in the
network (79 out of 420). Regarding the inter-cytoband edges, the
large majority of interactions from any cytoband also correspond
to those fromq24.3. That is the reason for which the average degree
of region q24.3 is the highest of the network (52). The non-extreme
region p11.23 is an exception that has strong interactions.

It is important to mention that in region p11.23, there are
some crucial genes in terms of cell maintenance, as well as for
cancer development. For instance, four genes, namely BAG4,
LSM1, ASH2L and BRF2 serve as housekeeping genes. On the
other hand, FGFR, a keystone gene in cancer development, has
been observed to be amplified in luminal B breast tumors (Erber
et al., 2020; Voutsadakis, 2020; Amina et al., 2021).

4.5 Highly Connected Genes and Their
Possible Relationship With Cancer
In Table 1 we show the most connected genes in the Luminal B
network. As it can be observed, most of the genes belong to region
q24.3. However, three genes, KCTD9, POL3RD, and ATP6V1B2
belong to the region p21.3. The gene with the highest
Betweenness Centrality (BC) is KCTD9. Below we will provide
a brief summary of what it is known of those genes in Luminal B
breast cancer or other carcinomas.

ZNF7 (Zinc Finger Protein 7) has been indicated as a
biomarker of survival in glioblastoma Esteve-Codina et al.
(2021) and Burkitt’s lymphoma (Gallego and Lazo, 1994).
ZNF7 is the most connected gene in the Luminal B breast
cancer co-expression network, and it is slighlty overexpressed
(Table 1).

Many genes on chromosome 8 have been associated with
mental illnesses, mainly schizophrenia, and their mutations are
presumed to be involved in the development of our mental
abilities. This is the case of the coding genes for the KCTD
(Potassium Channel Tetramerization Domain) proteins.
However, it has recently been indicated (Angrisani et al.,
2021) that the 25 members of this family are potentially
involved in a second fundamental activity: 13 of them have an
exclusive pro-tumor function, 5 an exclusive anti-tumor function,
5 a pro/anti-tumor role, and 2 with a function not yet determined.
KCTD9 has a pro-tumor function not yet reported in the
literature, but inferred through databases. However, in this
case, KCTD9 is underexpressed (−1.16) which may implicate a
dual role in the phenotype.

MAF1 gene is known for its regulatory effect on the
polymerase III, although it has also been associated with
cancer, given that it activates the expression of the PTEN
protein, which is an important tumor suppressor (Zhang et al.,

FIGURE 3 |Conditional Mutual Information for normal adjacent tissue (black) and Luminal B tumors (red). We can notice that Luminal B tumors present distinctively
higher values of CMI than Controls.
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2018). Interestingly POLR3D is also one of the most connected
genes in the Luminal B breast cancer network. POLR3D gene
encodes an RNA polymerase 3 subunit D, and synthesizes small
RNAs, such as 5S rRNA and tRNAs, which, when inhibited by
TRIPLIDE (TPL) influence the control of colorectal cancer (Liang
et al., 2019). POLR3D is also inhibited by miR-320 (Ramassone
et al., 2018).

The fact that MAF1 and POLR3D genes were highly
connected could be an indicator of alterations in the
transcriptional regulation program. Since MAF1 regulates
polymerase III, and POLR3D encodes an RNA polymerase III
subunit, the emergence of an axis of transcriptional regulation of

non-coding RNA species results appealing. The latter may imply
that in the Luminal B subtype, transcriptional regulation
mediated by non-coding RNAs could affect the gene
regulatory program. The latter coincides with the fact that
POLR3D abnormal activity is characteristic of cancer cells
(White, 2004).

ADCK5 has been indicated as an intermediary in the growth
and metastasis of lung cancer. This gene promotes invasion and
migration of lung cancer cells through the ADCK5-SOX9-
PTTG1 pathway Qiu et al. (2020).

Regarding PTK2, this gene in association with KCNMA1 gene
has been reported as a tumor suppressor in gastric cancer Ma

FIGURE 4 | Top interactions of Luminal B CMI network at different cut-offs (500, 1,000, 2,000, and 3,000 edges). At first, the intra-cytoband interactions dominate,
mainly in q24.3, p21.3, p11.21 and p11.23; secondly, the inter-cytoband interactions (particularly in p-arm), and finally, the inter-arm edges. Red arc at the external circle
represents the centromere of Chr8. Color code of the co-expression interactions are also described. The take-homemessage is that for the top interactions, the location
of participating genes is very close between them, in particular, at cytoband q24.3.
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et al. (2017). Additionally, the SMARCE1 gene regulates
metastasis in breast cancer through its interaction with HIF1A
and PTK2 Sethuraman et al. (2016). It has also been associated
with hepatocarcinoma (Okamoto et al., 2003). Additionally,
PTK2/FAK is considered a driver of radio-resistance in HPV-
negative head and neck cancer (Skinner et al., 2016).

Recently, the FAM83H gene (also located on chromosome 8,
specifically in the 8q24.3 region) has been related to Zinc Finger
Proteins (ZNFs) genes, specifically ZNF16. Gallbladder cancer is
highly associated with the expression of these two genes Ahn et al.
(2020).

ATP6V1B2 gene has been identified as a possible biomarker
(from controlled-to-aggressive growth with invasion of muscle

tissue) for bladder cancer. Specifically, it is underexpressed in the
early stages of the disease and over-expressed in the advanced
stages Fang et al. (2013). Additionally, it has been associated with
follicular lymphoma, activating autophagic flux and mTOR
pathway (Wang et al., 2019).

ZNF707 has recently been Kim et al. (2020) identified as highly
overexpressed in the Japanese population. High expression has
also been shown in kidney and luminal B cancer patients
Machnik et al. (2019) which suggests that ZNF707 could be
involved in the development of cancer in general, regardless of the
tissue.

In brief, we can establish that the most connected genes in the
chromosome 8 network for Luminal B breast cancer are

FIGURE 5 | Top interactions of control tissue CMI network at different cut-offs. In this figure, analogue to Figure 4, although both, expression and co-expression
are not uniform, many of the strongest links correspond to inter-arm interactions. The color code is the same than in Figure 4. It is clear the difference between the area
covered by top-3,000 interactions in control circos-plot and the one observed in the Luminal B case. The density of links in the control network is larger than in Figure 4.
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significantly related to the oncogenic phenotype. Particularly
interesting is the case of MAF1, which in turn regulates
POL3RD expression, suggesting an axis of non-coding RNA
regulation.

As it can be also observed in Table 1, the differential
expression in the large majority of hub genes is not significant.
However, the co-expression patterns of these genes are
importantly different than in the control case. We have
observed previously, in clear cell renal carcinoma progression,

that the gene expression patterns do not change significantly over
progression stages, however, the co-expression networks are
clearly different between those stages (Zamora-Fuentes et al.,
2020). Therefore, slightly different gene expression patterns may
implicate a dramatical alteration in the co-expression landscape.
The differential expression of all Chr8 genes is provided in
Supplementary Material S6.

5 CONCLUSION

The understanding of the intricate relationship between copy
number alterations, which can be seen as a mesoscopic
dimension, with the regulation of the gene co-expression
program, which can be understood as a microscopic
phenomenon, is a highly promissory pathway for intense
research in the near future. In this work, we have shown, for
the case of Chromosome 8 in Luminal B breast cancer, that
the Copy Number Alteration scenario does not influence, in a
relevant manner, the Conditional Mutual Information
program. That is independent on which region is
analyzed. As a summary of findings, we can establish the
following:

FIGURE 6 | Top CMI values between genes of Chromosome 8 for Luminal B (upper) and control (lower) networks. In this figure, the genes are placed according to
its start position. Yellow-to-blue arcs represent co-expression interactions between the connecting genes. The size and color of the genes are proportional to the degree.
As it can be observed, for the case of Luminal B, the extreme left and right sides contain the majority of highest CMI interactions (dark arcs), in particular, cytobands q24.3
and p11.21–23. Conversely, in the control network, interactions are not particularly biased to a specific region. Top-degree genes are indicated with black arrows.
ZNF7, MAF1 and LRRC14 genes are overlapped in the figure.

TABLE 1 | The most connected genes belong to q24.3 and p21.2.

Gene Band Degree BC Log2FC

ZNF7 q24.3 109 0.00544 0.47
KCTD9 p21.2 106 0.00656 −1.16
MAF1 q24.3 105 0.00562 0.07
LRRC14 q24.3 102 0.00512 0.34
ADCK5 q24.3 101 0.00523 0.93
PTK2 q24.3 99 0.00516 −0.03
POLR3D p21.3 97 0.00508 −0.36
ZNF16 q24.3 97 0.00518 0.38
ATP6V1B2 p21.3 96 0.00579 −0.15
ZNF707 q24.3 96 0.00410 0.99
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• CNVs do not influence Conditional Mutual Information (as
observed in Figure 2).

• Co-expression program in the chromosome 8 for Luminal B
breast cancer shows localized hotspots regions in certain
cytobands.

• The large majority of Chromosome 8 gene co-expression
interactions shows low CMI values, meanwhile the extreme
parts of the chromosome show higher values.

• Cytoband q24.3 has the highest values of MI, is the most
dense in terms of interactions, and its genes have the highest
degree.

• In the control phenotype there is a homogeneous CMI
distribution regarding the location of genes in the top
interactions, contrary to the case of Luminal B network.

• Taking into account a growing of the networks from highest
to lowest CMI values, in the case of Luminal B network, the
top CMI values appear between intra-cytoband genes; after
that, between inter-cytoband and same-arm genes; finally
between inter-arm genes. In the case of the control network,
there is no clear localization pattern.

• Genes such as ZNF7, KCTD9, MAF1, or POLR3D have the
highest degree centralities. Those genes have been reported
to have influence in cancer.

• MAF1 and POLR3D could form an axis of non-coding RNA
regulation, which can be a possible complex for future
research.

Further steps towards a whole understanding of how copy
number alterations may affect the co-expression program in
breast cancer must include the analysis of the conditional
mutual information of all chromosomes in Luminal B breast
cancer. A similar study in the other molecular subtypes is also
needed. The influence of the progression stage must be also taken
into account. Finally, this analysis over other cancer tissues will
provide a solid and robust landscape of the role of copy number
alterations in the rise and development of cancer.
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The single nucleotide polymorphisms of COX-2 gene, also known as PTGS2, which
encodes a pro-inflammatory factor cyclooxygenase-2, alter the risk of developing multiple
tumors, but these findings are not consistent for lung cancer. We previously reported that
the homozygous COX-2 –1195A genotype is associated with an increased risk for chronic
obstructive pulmonary disease (COPD) in Japanese individuals. COPD is a significant risk
factor for lung cancer due to genetic susceptibility to cigarette smoke. In this study, we
investigated the association between COX-2 –1195G/A polymorphism and lung cancer
susceptibility in the Japanese population. We evaluated the genotype distribution of COX-
2 –1195G/A using a polymerase chain reaction-restriction fragment length polymorphism
assay for 330 newly diagnosed patients with lung cancer and 162 healthy controls. Our
results show that no relationship exists between the COX-2 –1195G/A polymorphism and
the risk of developing lung cancer. However, compared to the control group, the
homozygous COX-2 –1195A genotype increased the risk for lung squamous cell
carcinoma (odds ratio = 2.902; 95% confidence interval, 1.171–7.195; p = 0.021),
whereas no association is observed with the risk for adenocarcinoma. In addition,
Kaplan-Meier analysis shows that the genotype distribution of homozygous COX-2
–1195A does not correlate with the overall survival of patients with lung squamous cell
carcinoma. Thus, we conclude that the homozygous COX-2 –1195A genotype confers an
increased risk for lung squamous cell carcinoma in Japanese individuals and could be
used as a predictive factor for early detection of lung squamous cell carcinoma.

Keywords: cyclooxygenase-2, single nucleotide polymorphism, promoter region, lung cancer risk, squamous cell
carcinoma, Japanese
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1 INTRODUCTION

Lung cancer has the highest morbidity and mortality among
cancers worldwide (Bray et al., 2018). There are many
environmental risk factors for lung cancer and the most
common is tobacco smoking (de Groot et al., 2018). However,
exposure to environmental risk factors and genetic susceptibility
are necessary for the development of lung carcinogenesis (Barta
et al., 2019). Therefore, identifying genetic variants is vital for
early prevention and screening of lung cancer.

Chronic inflammation plays an important role in
carcinogenesis. Airway injuries related to inflammation caused
by tobacco smoke or other environmental exposures increase the
risk of developing lung cancer (Hecht, 2008). Moreover,
inflammation-related genetic variants are highly associated
with carcinogenesis for various cancers, including lung cancer
(Rudnicka et al., 2019; Tan et al., 2019; Xiong et al., 2019).

The expression level of cyclooxygenase-2, a pro-inflammatory
factor encoded by the COX-2 gene, is negligible in normal cells
(Gurram et al., 2018). However, it is commonly overexpressed in
various types of cancers and is implicated in the tumorigenesis,
proliferation, metastasis, prognosis, and treatment of cancers
(Tomozawa et al., 2000; Liu et al., 2001; Patti et al., 2002; Li
et al., 2020). COX-2 is also involved in themolecular pathogenesis
of chronic lung diseases (Park and Christman, 2006).
Polymorphisms in the COX-2 gene alter the risk for chronic
lung disease (Szczeklik et al., 2004; Xaubet et al., 2010). Three
single nucleotide polymorphisms (SNPs) of the potential
function, –1290G/A (rs689465), –1195G/A (rs689466), and
–765G/C (rs20417), were identified in the COX-2 gene in
esophageal cancer (Zhang et al., 2005). We previously reported
that the homozygous COX-2 –1195A genotype is associated with
an increased risk for chronic obstructive pulmonary disease
(COPD) in the Japanese population (Chen et al., 2013). COPD
is the single risk factor identified for the development of lung
cancer after smoking exposure (Young et al., 2009). Chronic
inflammation increases the risk for lung cancer by 2- to 3- fold in
patients with COPD (Koshiol et al., 2009; Schwartz et al., 2016).
Meta-analysis suggests that the emphysema detected visually on
chest computed tomography (CT) and reduced forced expiratory
volume in 1 s (FEV1) have strong effect on the increased odds of
developing lung cancer (Wasswa-Kintu et al., 2005; Smith et al.,
2012). Genetic analysis suggests that the genetic risk factors
predisposing smokers to COPD and lung cancer may overlap
(Young and Hopkins, 2011), and the key inflammatory-related
genes and pathways impact the risk for lung cancer in a COPD-
dependent manner (Watza et al., 2020). COX-2 is reported to be
one of the candidate susceptibility genes related to inflammation
involved in both COPD and lung cancer (Sekine et al., 2012).

The COX-2 –1195G/A gene polymorphism is functional and
associated with an increased risk for various human cancers;
however, the results are controversial in lung cancer (Zhang et al.,
2005; Dong et al., 2010; Coskunpinar et al., 2011; Tang et al., 2011;
Moraes et al., 2017). Therefore, this case-controlled study aimed
to investigate the association between the COX-2 –1195G/A gene
polymorphism and lung cancer susceptibility in the Japanese
population.

2 MATERIALS AND METHODS

2.1 Study Design and Participants
This study included 492 participants from the Japanese
population. The enrolled 330 patients with lung cancer were
newly diagnosed at the Shimane University Hospital or Higashi
Hiroshima Medical Center between 2009 and 2012. The lung
cancer cases consisted of 221 patients with lung adenocarcinoma,
85 patients with lung squamous cell carcinoma, 9 patients with
small cell lung cancer, and 15 patients with the other types. The
162 healthy controls were randomly selected from participants
who received an annual health screening at the Shimane Institute
of Health Science between 2009 and 2012. Those who were
diagnosed with any cancer or any respiratory disease should
be excluded from the controls. Ethical approval was obtained
from the Institutional Review Board at the Shimane University
Faculty of Medicine and the Higashi Hiroshima Medical Center
(approved number 1022). Each enrolled participant signed an
informed consent form.

2.2 DNA Preparation and Genotype
Determination
DNA from enrolled participants was isolated from whole blood.
A polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) assay was used for COX-2
polymorphism determination. The PCR reactions were
performed in a reaction mixture system volume of 50 μl that
contained 2.5 U Taq and 1 μl template DNA at a concentration of
50–150 ng/ml. The genotype of COX-2 –1195G/A was
determined using the following specific primers: 5′- CCC TGA
GCA CTA CCC ATG AT -3′ (forward) and 5′- GCC CTT CAT
AGG AGA TAC TGG -3′ (reverse). The PCR cycling program
was as follows: incubation at 96°C for 5 min followed by 32 cycles
of 96°C for 20 s, 52°C for 30 s, and 72°C for 30 s with a final
extension at 72°C for 6 min. The COX-2 273 bp PCR product was
digested into 220 bp and 53 bp fragments with PvuII for the
–1195G allele (restriction products: AA, 273 bp; GG, 220 bp + 53
bp; GA, 220 bp + 53 bp + 273 bp). The digested products were
observed in a 2% agarose gel stained with ethidium bromide, and
images were obtained under ultraviolet light.

2.3 Statistical Analysis
Data are presented as the number (%) of participants. All statistical
analyses were performed using SPSS Statistics version 27.0 (IBM,
Armonk, NY, United States). Demographic characteristics were
analyzed using a Mann-Whitney U-test or a Chi-squared test.
The distribution of genotypes was assessed using the Hardy-
Weinberg equilibrium. Differences in the genotype distribution
of COX-2 gene were analyzed using a Chi-squared test. The
association between the genotype distribution of COX-2
–1195G/A and lung cancer risk was estimated using odds
ratios (ORs) and a 95% confidence interval (95% CI) that
were computed using logistic regression analysis. Survival
distributions were estimated using Kaplan-Meier analysis and
compared using the log-rank test. P < 0.05 was considered
statistically significant.
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3 RESULTS

The demographic characteristics of all study participants are
summarized in Table 1, which includes age, sex, and smoking
history. We observed the lung cancer group had a higher median
age than that of the control group (p < 0.001).Moreover, there was a
higher prevalence ofmen and smoking in the lung cancer group than
in the control group (all values of p < 0.001). The clinicopathology
and the disease stages for the patients with lung cancer are listed in

Table 2. Adenocarcinoma, squamous cell carcinoma, small cell
carcinoma, and the others represented 67, 25.8, 2.7, and 4.5% of
all patients with lung cancer, respectively. Stage I + II, stage III, and
stage IV represented 3.9, 35.1, and 60.9% of all patients with lung
cancer, respectively. The 330 patients with lung cancer and 162
healthy controls were genotyped for the COX-2 –1195G/A
polymorphism (Table 3). The genotype distribution in the
control group was consistent with the Hardy-Weinberg
equilibrium. Moreover, for the genotype distribution of COX-2
–1195G/A, there is no significant difference between lung cancer
patients and the controls (p = 0.17), and also no significant difference
was obsearved between the adenocarcinoma group and the
squamous cell carcinoma group (p = 0.158).

4 OUTCOME

No association on the risk of developing lung cancer with the
genotype distribution of COX-2 –1195G/A was observed between
the lung cancer and the control groups in both unadjusted
analyses and adjusted analyses with age, sex, and smoking
status (Table 3). Even though stratified by smoking status or
sex in this study, we did not observe any association on the
genotype distribution of COX-2 –1195G/A with the risk for lung
cancer in both unadjusted and adjusted analyses with their
respective factors (Table 4 and Table 5). In addition, no
significant difference of the genotype distribution of COX-2
–1195G/A was found among the disease stages and the
controls (Table 6). In the subgroup analyses, no increased risk
was obsearved on the genotype distribution of the homozygous
–1195A compared to the homozygous –1195G in the patients
with stage IV (OR = 0.664; 95% CI, 0.346–1.272; p = 0.271).
However, the multinomial logistic regression analysis represented
that the genotype distribution of COX-2 –1195G/A was
associated with the increasing risk for squamous cell
carcinoma while not associated with adenocarcinoma
(Table 7). The homozygous –1195A genotype increased the
risk of 2.902 times for squamous cell carcinoma than the
homozygous –1195G genotype (OR = 2.902; 95% CI,
1.171–7.195; p = 0.021). While no significant difference was
observed from the heterozygous –1195G/A genotype for
developing squamous cell carcinoma (OR = 1.618; 95% CI,
0.681–3.843; p = 0.275). To assess whether the prognosis was
affected by the genotype of COX-2 –1195G/A, we compared the
overall survival (OS). The median OS did not correlate with the
genotype distribution of COX-2 –1195G/A among patients with

TABLE 1 | Demographic characteristics of the study participants.

Lung cancer
(n = 330)

Control
(n = 162)

p-value

Age

Median 71 51
Range 35–96 18–86 <0.001

Sex

Male (%) 255 (77.3) 99 (61.1)
Female (%) 75 (22.7) 63 (38.9) <0.001

Smoker

No (%) 82 (24.8) 85 (52.5)
Yes (%) 248 (75.2) 77 (47.5) <0.001

Note: p-values are presented for the comparison between the lung cancer group and the
control group.

TABLE 2 | Baseline clinicopathology and stage characteristics for patients with
lung cancer.

Number (%)

Histology

Adenocarcinoma 221 (67.0)
Squamous cell carcinoma 85 (25.8)
Small cell carcinoma 9 (2.7)
Others 15 (4.5)

Stage

I 9 (2.7)
II 4 (1.2)
IIIA 38 (11.5)
IIIB 78 (23.6)
IV 201 (60.9)

Note: values represent the number (%) of participants.

TABLE 3 | The genotype distribution of COX-2 –1195G/A in patients with lung cancer and control participants.

Lung cancer
(n = 330)

Control
(n = 162)

Unadjusted
OR (95% CI)

p-value Adjusted
OR (95% CI)

p-value

Overall lung cancer

Homozygous G 52 (15.8) 28 (17.3) 1 1
Heterozygous G/A 167 (50.6) 93 (57.4) 0.967 (0.572–1.634) 0.9 0.949 (0.469–1.921) 0.884
Homozygous A 111 (33.6) 41 (25.3) 1.458 (0.814–2.610) 0.2 1.316 (0.608–2.845) 0.486

Note: OR: odds ratio; 95% CI: 95% confidence interval. The model is adjusted for the distributions of age, sex and smoking status in all the participants.
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TABLE 4 | The genotype distribution of COX-2 –1195G/A gene stratified by smoking status.

Lung cancer
(n = 330)

Control
(n = 162)

Unadjusted
OR (95% CI)

p-value Adjusted
OR (95% CI)

p-value

Non-smokers

Homozygous G 18 (22.0) 18 (21.2) 1 1
Heterozygous G/A 45 (54.9) 45 (52.9) 1.000 (0.462–2.166) 1.0 0.975 (0.346–2.749) 0.962
Homozygous A 19 (23.1) 22 (25.9) 0.864 (0.352–2.117) 0.749 1.039 (0.329–3.279) 0.948

Smokers

Homozygous G 34 (13.7) 10 (13.0) 1 1
Heterozygous G/A 122 (49.2) 48 (62.3) 0.748 (0.343–1.631) 0.465 0.983 (0.373–2.590) 0.972
Homozygous A 92 (37.1) 19 (24.7) 1.424 (0.602–3.368) 0.421 1.522 (0.533–4.343) 0.433

Note: OR: odds ratio; 95% CI: 95% confidence interval. The model is adjusted for the distributions of age and sex in the respective participants.

TABLE 5 | The genotype distribution of COX-2 –1195G/A gene stratified by sex.

Lung cancer
(n = 330)

Control
(n = 162)

Unadjusted
OR (95% CI)

p-value Adjusted
OR (95% CI)

p-value

Male

Homozygous G 40 (15.7) 18 (18.2) 1 1
Heterozygous G/A 122 (47.8) 56 (56.6) 0.980 0.517–1.859) 0.952 1.253 (0.526–2.985) 0.611
Homozygous A 93 (36.5) 25 (25.3) 1.674 (0.823–3.406) 0.155 1.802 (0.707–4.588) 0.217

Female

Homozygous G 12 (16.0) 10 (15.9) 1 1
Heterozygous G/A 45 (60.0) 37 (58.7) 1.014 (0.394–2.608) 0.978 0.620 (0.181–2.127) 0.447
Homozygous A 18 (24.0) 16 (25.4) 0.938 (0.320–2.750) 0.906 0.676 (0.171–2.669) 0.576

Note: OR: odds ratio; 95% CI: 95% confidence interval. The model is adjusted for the distributions of age and smoking status in the respective participants.

TABLE 6 | The comparison on the genotype distribution of COX-2 –1195G/A gene among lung cancer patients with different disease stages and control participants.

Stage IV
(n = 201)

Stage IIIB
(n = 78)

Stage IIIA
(n = 38)

Stage I + II
(n = 13)

Control
(n = 162)

p-value

Homozygous G 29 (14.4) 17 (21.8) 4 (10.5) 2 (15.4) 28 (17.3)
Heterozygous G/A 108 (53.7) 35 (44.9) 19 (50.0) 5 (38.5) 93 (57.4) 0.371
Homozygous A 64 (31.8) 26 (33.3) 15 (39.5) 6 (46.2) 41 (25.3)

Note: p-values are presented for comparison among lung cancer patients with different disease stages and control participants.

TABLE 7 | The genotype distribution of COX-2 –1195G/A in adenocarcinoma and squamous cell carcinoma.

Lung cancer
(n = 330)

Control
(n = 162)

OR
(95%CI)

p-value

Adenocarcinoma

Homozygous G 39 (17.6) 28 (17.3) 1
Heterozygous G/A 110 (49.8) 93 (57.4) 0.849 (0.486–1.484) 0.566
Homozygous A 72 (32.6) 41 (25.3) 1.261 (0.679–2.341) 0.463

Squamous cell carcinoma

Homozygous G 8 (9.4) 28 (17.3) 1
Heterozygous G/A 43 (50.6) 93 (57.4) 1.618 (0.681–3.843) 0.275
Homozygous A 34 (40.0) 41 (25.3) 2.902 (1.171–7.195) 0.021

Note: OR: odds ratio; 95% CI: 95% confidence interval.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7964444

Sun et al. Cyclooxygenase-2 -1195G/A in Lung Cancer

161

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


squamous cell carcinoma (log-rank: p = 0.299) (Figure 1). In
addition, the clinicopathology and sex were not related to the OS
in patients with lung cancer (Supplementary Figure S1 and
Supplementary Figure S2). Furthermore, there is no significant
difference in the OS between the genotype of COX-2 –1195G/A
stratified by sex (Supplementary Figure S3 and Supplementary
Figure S4). Based on the above outcome, we summarized that the
homozygous COX-2 –1195A genotype might increase the risk for
lung squamous cell carcinoma in the Japanese population but no
effect on the prognosis of squamous cell carcinoma.

5 DISCUSSION

This study analyzed the association between genotypes of the
COX-2 –1195G/A polymorphism and different clinicopathology
of lung cancer, and the results demonstrate that the homozygous
COX-2 –1195A genotype was associated with the increased risk
of developing lung squamous cell carcinoma. To date, the related
studies have inconsistent results. The homozygous COX-2
–1195A genotype increased the risk of lung cancer
development in the Turkish population, wherein patients with
lung squamous cell carcinoma represented 53.2% (Coskunpinar
et al., 2011). By contrast, a study from the Brazilian population
concluded that the COX-2 –1195G/A polymorphism was not
associated with the risk for lung cancer (Moraes et al., 2017),
which is in agreement with the results from our present study.
On the other hand, the number of patients diagnosed with lung
squamous cell carcinoma observed in the Brazilian study is 39.4%
(Moraes et al., 2017), and that of our study is 25.8%. Based on these
results, we hypothesized that the discrepancy observed in the
number of patients with homozygous COX-2 –1195A might be
due to the different distribution of lung cancer clinicopathology.
Indeed, our results reveal that the homozygous COX-2 –1195A
genotype increases the risk for lung squamous cell carcinoma.

Increased levels of COX-2 expression were observed in
bronchial precursors of squamous cell carcinoma using
immunohistochemistry (Petkova et al., 2004; Mascaux et al.,

2005). The substitution of –1195G>A creates a binding site
for a transcription factor c-MYB in the COX-2 promoter
region, which regulates the balance among cell division,
differentiation, and survival, resulting in facilitation of COX-2
transcription (Ramsay et al., 2003; Zhang et al., 2005). Moreover,
the homozygous COX-2 –1195A genotype exhibit a significant
increase in the mRNA level of COX-2 expression than the
genotypes of homozygous –1195G and/or the heterozygous
–1195 GA in esophageal tissue (Zhang et al., 2005). In lung
cancer, a Brazilian study demonstrated that the homozygous
–1195A did not increase the mRNA expression of COX-2
compared to the other genotypes (Moraes et al., 2017).
However, the 34 lung tumor specimens comprised 19 (55.9%)
adenocarcinoma cases and 15 (44.1%) squamous cell carcinoma
cases in the Brazilian study. The association between COX-2
-1195G/A polymorphism and the risk for lung cancer may be
pathologically and ethnically dependent. Further studies with
larger sample sizes that include populations of different races and
analyses stratified by histology classifications are necessary to
investigate the controversial results.

We previously demonstrated that the homozygous COX-2
–1195A genotype increased the risk for COPD in Japanese
individuals (Chen et al., 2013). A Swedish study showed that
the association with a lower FEV1 was higher for patients with
lung squamous cell carcinoma than those with lung
adenocarcinoma (Purdue et al., 2007). Further, the presence of
emphysema, a typical manifestation of COPD on a chest CT scan,
is associated with significantly increased odds of developing
squamous cell carcinoma (Wang et al., 2018). Moreover,
smoking is a major risk factor in the pathogenesis of lung
squamous cell carcinoma and COPD, and it upregulates
inflammation-related genes, including COX-2, in tracheal
smooth muscle cells (Yang et al., 2009). Therefore, a potential

FIGURE 1 | Kaplan-Meier analysis of overall survival in patients with lung
squamous cell carcinoma stratified by the genotype of COX-2 –1195G/A.

FIGURE 2 | Potential function of the COX-2 single nucleotide
polymorphisms in lung cancer. The genotype of homozygous COX-2 –1195A
in the COX-2 promoter region affects gene transcription, thereby increasing
the expression of COX-2 in lung cells. The inflammatory response is
related to mRNA stability. Both factors enhance the level of differentiation of
lung cells and promote the development of lung squamous cell carcinoma.
The inflammatory response also leads to chronic obstructive pulmonary
disease and lung cancer.
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link might exist between the functional COX-2 SNPs, COPD, and
lung cancer, particularly for lung squamous cell carcinoma
(Figure 2) (Lee et al., 2009). Considering the possible
relationship between pulmonary function, emphysema CT
scan parameters, smoking status, and COX-2 –1195A
homozygosity, further studies are required.

We did not observe any association between the risk for lung
cancer and the COX-2 –1195G/A polymorphism stratified by
smoking status. By contrast, a previous study from the Taiwanese
population reported that the enrolled patients who smoked and
carried the A allele of rs2066826 in the COX-2 intron 6 had an
increased risk of 2.21 for lung cancer. (Liu et al., 2010). Further
studies are needed to comprehensively analyze the functional
COX-2 polymorphisms in addition to geographic populations.

The relationship between COX-2, COPD, and lung cancer is
complicated. Epithelial-to-mesenchymal transition (EMT) is
critical for lung carcinogenesis and observation of a malignant
phenotype, and inhibition of COX-2 reverses EMT-induced
changes in lung cancer patients (Dohadwala et al., 2006;
Peebles et al., 2007). EMT in COPD and the resultant
association with the risk for lung cancer have not been
completely elucidated. Fundamental research is necessary to
identify the molecular mechanisms linking these diseases.

Genotyping patients and identifying those with homozygous
COX-2 –1195A could be combined with identifying emphysema
using chest CT scans to serve as predictive markers for the early
prevention and screening of lung squamous cell carcinoma. The
increased odds of developing lung cancer in the presence of
emphysema on CT may prove to be useful in targeting resources
for the prevention and screening of lung squamous cell
carcinoma. In addition, our findings suggest that either shared
host susceptibility or an uncharacterized novel mechanism
promotes the pathogenesis of both COPD and lung squamous
cell carcinoma. It is necessary to further explore the benefit of
clinical interventions to prevent or detect lung cancer after a
patient is diagnosed with emphysema.

On the other hand, it has been reported that high levels of
COX-2 mRNA transcription are associated with a more
aggressive phenotype and poor prognosis for patients with
non-small cell lung cancer (NSCLC) (Brabender et al., 2002).
The homozygous COX-2 –1195A genotype is associated with
poor overall survival in Chinese patients with NSCLC treated
with chemoradiotherapy or radiotherapy alone (Bi et al., 2010).
Although the homozygous COX-2 –1195A increased the risk for
lung squamous cell carcinoma, this genotype did not correlate
with poor prognosis in our study when evaluated using median
overall survival. One reason for this discrepancy might be the fact
that certain genetic markers are ethnicity-specific; another reason
might be that different treatment regimens play a role in the
prognosis of lung cancer and influence the effects of the COX-2
genotypes.

The three limitations of this study are listed as follows: the
number of enrolled participants was low; only patients from the

Japanese population were included; it was an imbalance of the
baseline characteristics between the patients with lung cancer and
the control participants.

In conclusion, the homozygous COX-2 –1195A increased the
risk of developing lung squamous cell carcinoma and might be
used as a predictive marker for early detection and screening of
lung squamous cell carcinoma in Japanese individuals, but not as
a predictive marker for the prognosis.
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Background: It has been reported that thymidine kinase 1 (TK1) was up-regulated in
multiple malignancies and participated in the regulation of tumor malignant behavior.
However, its specific role in prostate cancer (PCa) remains unclear.

Methods: TK1 expression in PCa patients and cell lines was identified via crossover
analysis of the public datasets. A series of in vitro experiments and in vivo models was
applied to investigate the function of TK1 in PCa. Functional enrichment analyses were
further conducted to explore the underlying mechanism. Additionally, TISIDB was applied
to explore the correlation between TK1 expression and tumor-infiltrating lymphocytes,
immune subtypes, and immune regulatory factors.

Results: TK1 expression was significantly up-regulated in PCa patients and cell lines. TK1
ablation inhibited tumor cell proliferation and migration potential, and in vivo experiments
showed that TK1 inactivation can significantly restrain tumor growth. Functional
enrichment analysis revealed TK1-related hub genes (AURKB, CCNB2, CDC20,
CDCA5, CDK1, CENPA, CENPM, KIF2C, NDC80, NUF2, PLK1, SKA1, SPC25,
ZWINT), and found that TK1 was closely involved in the regulation of cell cycle.
Moreover, elevated mRNA expression of TK1 was related with higher Gleason score,
higher clinical stage, higher pathological stage, higher lymph node stage, shorter overall
survival, and DFS in PCa patients. Particularly, TK1 represented attenuated expression in
C3 PCa and was related with infiltration of CD4+, CD8+ T cells, and dendritic cells as well as
immunomodulator expression.

Conclusion: Our study indicates that TK1 is a prognostic predictor correlated with poor
outcomes of PCa patients, and for the first time represented that TK1 can promote the
progression of PCa. Therefore, TK1 may be a potential diagnostic and prognostic
biomarker, as well as a therapeutic target for PCa.
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INTRODUCTION

According to the latest American Cancer Society’s statistics,
prostate cancer (PCa) ranks first among estimated new cases
and second in the number of estimated deaths (Siegel et al., 2020).
Furthermore, with an estimated nearly 1.4 million new cases and
375,000 deaths worldwide, PCa is the second most frequent
cancer and the fifth leading cause of cancer death among men
in 2020 (Sung et al., 2021). At present, fully curative treatment
still has not been found for the terminal stage of PCa, castration
resistant prostate cancer (CRPC) (Wong et al., 2014). Meanwhile,
numerous microarray and next-generation sequencing
technologies have been applied to explore the etiology of PCa
and to find the specific drug targets (Barbieri et al., 2017).
Although important insights have been gained through the
efforts, the underlying mechanisms are still not fully clarified.
Cumulative evidence suggested that the carcinogenesis and
development of PCa is a process involving multiple genes and
signaling pathways (Taylor et al., 2010; Grasso et al., 2012;
Latonen et al., 2018). Therefore, it is urgent to determine
effective molecules to better perform PCa management.

Thymidine kinase 1 (TK1) is a cytosolic enzyme involved in
pyrimidine metabolism that catalyzes the addition of a gamma-
phosphate group to thymidine and in regenerating thymidine for
DNA synthesis and DNA damage (Malvi et al., 2019; Bitter et al.,
2020). Among the four deoxyribonucleoside-specific kinases in
mammalian cells, TK1 is the only one with the most restricted
substrates specificity (Eriksson et al., 2002). Its expression is
S-phase dependent and elevated expression of TK1 has been
noted in cell proliferation. Since Ki67 is present in all phases of
the cell cycle and PCNA is mainly present in later G1, TK1 is
more informative because it peaks in S phase expression, closely
mimicking the rate of DNA synthesis (Bitter et al., 2020).
Recently, it has been applied as an important biomarker for
the diagnosis of various cancers, including breast cancer,
esophageal cancer, and lung cancer (Li et al., 2005; He et al.,
2010; Nisman et al., 2014; Jagarlamudi et al., 2015; Weagel et al.,
2018; Malvi et al., 2019). TK1 upregulation was indicated as an
early event in a study of breast cancer and further studies
demonstrated a positive correlation between TK1 and cancer
stage (He et al., 2010; Alegre et al., 2012). Subsequent studies
support the potential of utilizing TK1 clinically to identify
treatment effectiveness, cancer stage, and prognoses (Nisman
et al., 2014; McCartney et al., 2019). Nisman et al. demonstrated
that increased serum TK1 levels after chemotherapy for NSCLS
indicate treatment failure and poor overall survival (Nisman et al.,
2014). As for PCa, a few studies reported that TK1 can be used as
a diagnostic biomarker through bioinformatic analysis and
serological TK1 may be a potential proliferating biomarker for
early detection (Li et al., 2018; Wang et al., 2018; Jagarlamudi
et al., 2019; Song et al., 2019; Wang et al., 2020). Wang et al.
identified TK1 as a core gene directly related to the recurrence
and prognosis of PCa via bioinformatics analysis in multiple
databases (Wang et al., 2020). Jagarlamudi et al. found that serum
TK1 protein was significantly higher in patients with PCa than in
patients with benign urological conditions and that TK1 protein
determinations together with PHI or PSAD could be a valuable

tool in PCamanagement (Jagarlamudi et al., 2019). In addition, Li
et al. found that serum TK1 levels correlated with Gleason scores
of prostate cancer patients whereas PSA levels did not (Li et al.,
2018). However, the specific function of TK1 in PCa and
the underlying mechanism are still lacking experimental
verification.

In the present research, we first systematically investigated the
function of TK1 in PCa via in vivo and in vitro experiments. Cox
regression model analysis revealed that the expression of TK1 is
significantly correlated with the pathology of PCa and associated
with poor survival. Our study revealed that TK1may be applied as
a potential biomarker for PCa.

MATERIALS AND METHODS

Bioinformatic Analysis
The mRNA expression profiles and clinical data were obtained from
the cancer genome atlas (TCGA), Gene Expression Omnibus (GEO),
Prostate Cancer Transcriptome Atlas (PCTA), and PRAD-TCGA
datasets (Rotinen et al., 2018; Cancer Genome Atlas Research, 2015).
The PCTA dataset included 1321 clinical specimens. The PRAD
dataset refers to the Prostate Adenocarcinoma (TCGA, TCGA
Provisional) dataset and contains 497 PCa samples with fully
collected data. GEPIA2 (http://gepia2.cancer-pku.cn/) was used to
analyze data from the TCGA dataset (Tang et al., 2019). Most gene
expression and clinical data were downloaded from cBioPortal
(http://cbioportal.org). Also, two PCa microarray datasets were
obtained from NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/)
(Edgar et al., 2002): GSE70769 (Ross-Adams et al., 2015) and
GSE21032 (Taylor et al., 2010). The status of neoadjuvant therapy
was not considered as a criterion when selecting samples for analysis.
For the PCa specimen shown in the figures, TK1 antibody (Atlas
Antibodies, Cat# CAB004683) and AURKB antibody (Atlas
Antibodies, Cat#CAB005862) were applied. Immunohistochemical
staining of PCa specimens represented moderate cytoplasmic and
nuclear positivity in the Human Protein Atlas database1 (Uhlen et al.,
2010; Uhlén et al., 2015).

Since co-expressed genes may act synergistically with TK1 to
play a similar biological function in PCa, we screened the co-
expressed genes via Spearman correlation analysis in the PRAD
dataset from the cBioPortal2 (Cerami et al., 2012). Then
Metascape (https://metascape.org)3 (Zhou et al., 2019) was
applied to conduct further gene enrichment analysis using
positively co-expressed genes (r ≥ 0.7, p < 0.01, q < 0.01) and
TK1. The protein-protein interaction (PPI) enrichment analyses
were explored via The Molecular Complex Detection (MCODE)
algorithm.

To investigate the correlation between TK1 expression and
gene-level copy number variation, the PRAD dataset from
TCGA was obtained from cBioPortal online dataset. TIMER
was used to analyze the association between TK1 and tumor

1https://www.proteinatlas.org/
2http://cbioportal.org
3https://metascape.org
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immune infiltration, immune subtype of PCa4 (Li et al., 2017).
TISIDB was used to investigate the expression of TK1 in PCa
patients with different immune subtypes, as well as the
correlation between tumor immune infiltration and TK15

(Ru et al., 2019).

Cell Culture and Transfection
7PCa cells applied in all experiments including BPH-1, LNCaP,
C4-2, 22RV1, and DU145 were all derived from ATCC and
cultured in RPMI 1640 (Gibco, United States) with 10% fetal
bovine serum (FBS, Gibco, United States) in 5% CO2 at 37°C. TK1
shRNA was used to target TK1 mRNA region (GCACAGAGU
UGAUGAGACG) following the manufacturer’s instructions.

RNA Isolation, Reverse Transcription, and
Quantitative RT-PCR
TRIzol reagent (Sigma, United States) was applied to conduct
RNA extraction. RNA reverse transcription was conducted
following the protocol by using RevertAid First Strand cDNA
Synthesis Kit (ThermoFisher, United States). Quantitative RT-
PCR was performed using Fast SYBR Green Master Mix (Roche,
United States) on LightCycler 480 System (Roche). Gene
expression levels were identified via the Ct method and further
normalized to GAPDH levels. The primer sequences are listed in
Supplementary Table S1.

Western Blot
RIPA buffer was applied to extract total cellular protein. The
concentration of the protein was quantified by BCA analysis.
Then sodium dodecyl sulfate-polyacrylamide sodium gel
electrophoresis (SDS-PAGE) and PVDF membrane (Millipore,
Bedford, MA) were used to separate the protein. The PVDF
membrane was blocked with 5% skim milk for 1 h and incubated
overnight with anti-GAPDH (1:2000, ab8245, Abcam) and anti-
TK1 (1:1000, ab76495, Abcam) antibody at 4°C. The next day, the
membrane was washed and incubated with HRP-conjugated goat
anti-rabbit IgG antibody at room temperature for 1 h.
Visualization and photography were performed using
immobilon western chemilum hrp substrate (WBKLS0100,
Millipore).

Cell Growth Assay
Cell Counting Kit-8 (CCK8, Dojindo, Japan) was applied to
analyze cell viability following the corresponding protocols.

Transwell
For migration assessment, standard transwell chambers
(Corning, United States) were used. There were 1.5 × 104 cells
with RPMI 1640 medium added to the upper chamber and the
lower chamber and was supplemented with 10% fetal bovine
serummedium of a 24-well plate. After incubating for 2 d in 37°C,
cells were washed with cool PBS twice, fixed with methanol for

30 min at room temperature, stained with 0.2% crystal violet for
20 min, and observed under microscope. Each experiment was
conducted in triplicate and repeated three times.

Flow Cytometry
The effects of TK1 ablation on PCa cell cycle were explored via
flow cytometry (FC5000, BD, United States). There was 1 ug/ml
propidium iodide (BD Biosciences, Germany) used to stain
cancer cells.

Colony Formation Assay
First, about 1000 cells were seeded in a 6-well plate. After 10 d
incubation, the cells were washed with cold PBS, fixed with 4%
paraformaldehyde, and stained with 1% crystal violet solution for
10 min. Then the colonies were counted under an optional
microscope.

Tumor Xenograft
All animal experiments were approved by the ethics committee of
the Second Hospital of Tianjin Medical University. Eight-week-
old nude mice were obtained from Beijing HFK Bioscience Co.
Ltd. (Beijing, China). In brief, a total of 10 mice were randomly
allocated to 2 groups, and 2 × 106 TK1 knockdown and control
cells were suspended in 0.1 ml PBS and injected subcutaneously
into the right groin of nudemice. Then the speed of tumor growth
was measured every other day.

Statistics
All statistical analysis was conducted via R-4.0.0 and SPSS 22.0.
The following R package were used: edgeR, WGCNA, survival,
and ggplot2. Independent Student t-test and ANOVA were both
applied for comparison. The Cox regression was used to explore
the prognostic value of TK1 expression for OS, as well as DFS.
Survival analysis was calculated and carried out by Kaplan-Meier
method, and log-rank test was used to determine the distinctions.
The data was demonstrated as mean ± standard deviation (SD). A
p value < 0.05 was considered statistically significant.

RESULTS

Elevated Expression of TK1 in Human
Prostate Cancer and Cancer Cells
Previously studies have reported that TK1 took a key role in
tumor initiation and progression. We first explored the
expression pattern of TK1 in certain tumors using the TCGA
dataset. We found that TK1 was upregulated in most human
cancers, including PCa (Figures 1A,B, p < 0.05). We also
identified elevated expression of TK1 in the Chinese cohort
population (Figure 1C) (Ren et al., 2018). Moreover, the
expression of TK1 was also elevated in mCRPC patients
comparing with primary PCa (Figure 1D). To further assess
the expression pattern of TK1 expression in PCa, the correlation
between tumor Gleason score and TK1 expression was also
explored. As depicted in Figures 1E,F, the expression of TK1
increased with the increase of tumor Gleason score (p < 0.001).
Next, we explored the TK1 protein expression via The Human

4https://cistrome.shinyapps.io/timer/
5http://cis.hku.hk/TISIDB/index.php
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Protein Atlas. As showed in Figure 1G, a high-grade PCa patient
(ID:3458) showed significantly higher intensity level of TK1
protein expression relative to a low-grade PCa patient (ID:3453).

To validate the findings in the above datasets, we evaluated the
expression of TK1 among multiple human prostate cancer cell
lines using the CCLE dataset and quantitative RT-PCR analysis.
The data from the CCLE dataset exhibited a certain amount of
TK1 expression in PCa cells, and PCR verification demonstrated
that its expression was dramatically elevated compared with
BPH1 (Figures 2A,B).

TK1 Inactivation in Prostate Cancer Cells
Inhibits Tumor Malignant Behavior
To explore the specific function of TK1 in PCa cells, shRNA-
mediated assay was applied to ablate TK1 function. We used

shRNA-containing lentiviruses to target TK1 (PC-3 and C4-2)
and the knockdown efficacy was verified via qPCR and Western
blot (Figures 2C,D). Then all cell lines were tested for their tumor
malignant behavior including proliferation, migration, and
invasion. As Figures 2E,F show, CCK8 assays were performed
to determine the cell proliferation viability, and cells from the
shTK1 group grew significantly slower than the control group.
Moreover, TK1 ablation also significantly inhibited colony
formation and brought about a dramatic reduction in the rate
of colony formation (Figure 2G). In addition, transwell assay
further revealed the potential stimulative role of TK1 on tumor
cell mobility in C42 and PC-3 cells. As depicted in Figure 2H,
cells that knocked down TK1 failed to cross over the chambers
because of their impaired migration capability. Furthermore,
xenograft model assay suggested that knockdown TK1 in PC-3
cells significantly inhibited tumor growth compared with

FIGURE 1 | TK1 expression in PCa patients. (A) TK1 expression in various cancer tissues and normal tissues. (B) TK1 expression in TCGA PRAD cohort. (C,E) TK1
expression across several independent clinical studies. (D,F) TK1 mRNA expression in the PCTA dataset. (G) TK1 protein expression showed by immunohistochemical
staining in high-grade and low-grade patient. The pictures were taken from the Human Protein Atlas dataset. *p < 0.05, **p < 0.01, ***p < 0.001; GS, Gleason score;
mCRPC, metastatic castration resistant prostate cancer.
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scramble cells (Figures 2I,J). All results indicated that TK1 is
closely involved in the malignant behavior of PCa cells.

Enrichment Analysis and PPI
To explore the potential biological significance and underlying
mechanism of TK1 in PCa, gene co-expression analysis was
performed via cBioPortal dataset. Biological functions and
related signaling pathways were determined using the top
50 co-expressed genes (r > 0.75, p-value <0.05, Table 1). As
demonstrated in Figure 3A and Table 2, pathway enrichment
analysis revealed the 18 most statistically significant clusters
(p-value <0.05 and enrichment factor >1.5). Cell cycle, cell
division, and chromosome segregation were the top 3 clusters
with the most enrichment. Meanwhile, the top-level Gene

Ontology biological processes were also demonstrated
(Figure 3B). To prove the results of enrichment analysis and
further explore the function of TK1 in PCa, cell cycle
distributions were identified via flow cytometry. The results
indicated that TK1 ablation in prostate cancer cells leads to
cell arrest in G2/M phase compared to control cells
(Figures 3C,D).

PPI enrichment analyses were also carried out with the
MCODE algorithm to determine densely connected network
components. As depicted in Figures 4A,B, the MCODE
results were gathered and demonstrated. Fourteen hub genes
(AURKB, CCNB2, CDCA5, CDK1, CENPA, CENPM, KIF2C,
NDC80, CDC20, NUF2, PLK1, SKA1, SPC25, ZWINT)
constituted the MCODE-1 component. The expression

FIGURE 2 | TK1 ablation inhibits tumor cell growth both in vitro and in vivo. (A) TK1 mRNA expression of prostate cancer cell lines in the CCLE dataset. (B) TK1
mRNA expression in prostate cancer lines validated by qPCR. (C,D) TK1 knockdown efficacy validated by qPCR (C) and Western blot (D). (E,F) The cell proliferation
capacity in shTK1 cells is significantly suppressed compared to control cells. Both PC-3 and C4-2 cell lines were applied. (G) TK1 silencing dramatically inhibits the
colony formation of prostate cancer cells. (H) The migration ability in shTK1 cells is significantly inhibited compared to control cells. (I) Tumor growth curves of the
TK1-silenced and control groups. (J) The photograph of tumors implanted with TK1-silenced PC-3 cells and control tumors from nude mice. **p < 0.01, ***p < 0.001.
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relationship between TK1 and all the hub genes was also shown in
Supplementary Figure S1, respectively. Moreover, we confirmed
that the expression of some hub genes was suppressed in shTK1
cells via RT-PCR (Figure 4C), and the protein co-expression of
TK1 and AURKB in a same patient sample in the Human Protein
Atlas was depicted in Figure 4D. All the above results indicated
that the function of TK1 in PCa was closely involved in cell cycle
regulation, which was also in accordance with the phenotypic
results characterized previously.

TK1 Is Correlated With Clinical Features of
PCa and Elevated Expression of TK1
Represents a Prognostic Factor for PCa
Given the crucial capacity of TK1 in PCa, we examined the
potential relationship between TK1 expression and clinical
features, including multiple clinic-pathological characteristics and
survival of PCa patients. Data from the TCGA dataset showed that
patients with elder age (>60 years; p = 0.003), higher Gleason score
(>7; p < 0.005), higher clinical stage (≥T3a; p < 0.005), higher
pathological stage (≥T3a; p < 0.001), lymph node metastasis (p <
0.005), shorter OS (p < 0.005), and shorter DFS (p < 0.005) had
higher levels of TK1 expression (Table 3). Moreover, the Kaplan-
Meier curve method was conducted to determine the correlation
between TK1 expression level and OS and DFS (Figures 5A,B). The
quartile TK1 mRNA expression level was used as the cutoff point to
divided patients into the low TK1 (n = 246, TCGA dataset) and high
TK1 (n = 246, TCGA dataset) group and conducted statistically
significant validation of survival analyses in both groups. As Figures
3A,B show, patients in the high TK1 class had a shorter probability
of OS (p = 0.017) and DFS (p < 0.001) compared to the low TK1
group. Moreover, we also investigated the prognostic role of TK1
across several independent clinical data sets (Taylor et al., 2010;
Ross-Adams et al., 2015). As depicted in Figures 5C,D, the time to
biochemical relapse was significantly shorter in the group of PCa
patients with higher TK1 expression.

To explore the prognostic significance of TK1 in PCa, the Cox
regression method was applied. As demonstrated in Table 4, clinical
stage (p < 0.005), Gleason score (p < 0.001), pathological stage (p <
0.005), lymph node stage (p = 0.014), and TK1 mRNA expression
(p< 0.001) were suitable to be regarded as prognostic factors for DFS
by univariate analysis. In addition, we also found that Gleason score
(p = 0.007), clinical stage (p = 0.01), and TK1mRNA expression (p <
0.001) could be taken as prognostic factors for OS. Furthermore,
multi-variate analyses suggested that Gleason score was an
independent factor predicting the shortened survival of DFS (p <
0.001) andOS (p< 0.05), and the clinical stage predicted shorter DFS
(p = 0.003). Perhaps because of the finite number of deceased in the
PRAD dataset, TK1 mRNA expression showed limited prognostic
value for survival via multi-variate analysis.

Immune Analysis of TK1 in Prostate Cancer
Next, the correlation between tumor immune infiltration and TK1
expression was analyzed. The results demonstrated that TK1
expression was closely correlated to immune subtypes of PCa,
and TK1 was dramatically downregulated in the C3 subtype of
PCa (Figure 6A). We further explored the genetic variations of TK1
in 497 cases of PCa in PRAD datasets via cBioPortal. As depicted in
Figure 6B, amplification, deletion, and mRNA high were the main
genetic variation types in TK1 in all samples. The overall variation
rates of TK1 were also represented. In addition, Figure 6C presented
the correlation of TK1 mRNA expression and the copy number in
PCa. Using TIMER, the correlation between the TK1 copy number
and tumor-infiltrating lymphocytes (TILs) was investigated. As
shown in Figure 6D, high amplification of TK1 significantly
decreased the TILs in PCa (p < 0.05). TK1 expression of
immune cells in normal tissues and prostate tumor was also

TABLE 1 | Gene positively correlated with TK1 mRNA expression in the PRAD
dataset (Top 50 ranked by Spearman’s correlation coefficient).

Correlated gene Spearman’s correlation p-Value q-Value

MCM2 0.857687 3.20E-109 6.42E-105
GINS1 0.837886 1.40E-99 1.41E-95
CDCA5 0.836338 6.99E-99 4.68E-95
KIF2C 0.833796 9.46E-98 4.75E-94
TROAP 0.82942 7.57E-96 3.04E-92
CDC20 0.829119 1.02E-95 3.41E-92
CDC45 0.828222 2.46E-95 7.06E-92
RAD54L 0.826461 1.37E-94 3.43E-91
CHAF1B 0.823953 1.52E-93 3.40E-90
SPC25 0.823389 2.60E-93 5.23E-90
CDT1 0.82312 3.36E-93 6.14E-90
ZWINT 0.822677 5.11E-93 8.56E-90
KIFC1 0.822012 9.58E-93 1.48E-89
NCAPG 0.821661 1.33E-92 1.91E-89
FANCG 0.820582 3.66E-92 4.90E-89
OIP5 0.818721 2.06E-91 2.58E-88
RAD51 0.81848 2.57E-91 3.04E-88
FEN1 0.818403 2.76E-91 3.08E-88
EXO1 0.816745 1.26E-90 1.29E-87
KIF4A 0.816725 1.28E-90 1.29E-87
CDC6 0.816016 2.44E-90 2.34E-87
KIF18B 0.815072 5.74E-90 5.24E-87
CCNB2 0.814834 7.11E-90 6.21E-87
NDC80 0.814465 9.92E-90 8.30E-87
CENPM 0.813052 3.51E-89 2.82E-86
TPX2 0.8123 6.86E-89 5.30E-86
HJURP 0.81152 1.37E-88 1.02E-85
MYBL2 0.810855 2.46E-88 1.76E-85
E2F1 0.810435 3.55E-88 2.46E-85
SKA1 0.810176 4.46E-88 2.92E-85
FANCI 0.810163 4.51E-88 2.92E-85
NUF2 0.808864 1.40E-87 8.79E-85
CENPA 0.807952 3.09E-87 1.88E-84
SKA3 0.807729 3.74E-87 2.21E-84
CDCA3 0.807196 5.93E-87 3.40E-84
FANCD2 0.807027 6.86E-87 3.83E-84
DTL 0.805966 1.70E-86 9.24E-84
MCM10 0.805741 2.06E-86 1.09E-83
TEDC2 0.805711 2.12E-86 1.09E-83
CDK1 0.805485 2.57E-86 1.29E-83
CCNF 0.804815 4.54E-86 2.22E-83
MCM7 0.804701 5.00E-86 2.39E-83
ORC1 0.804614 5.38E-86 2.51E-83
ASF1B 0.802442 3.35E-85 1.53E-82
FAM72B 0.801841 5.54E-85 2.47E-82
PLK1 0.801381 8.13E-85 3.55E-82
PTTG1 0.799776 3.07E-84 1.31E-81
AURKB 0.79901 5.77E-84 2.42E-81
CDC25C 0.798915 6.24E-84 2.56E-81
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FIGURE 3 | Enrichment analysis and verification of the co-expressed genes. (A,B) Bar graph of enriched pathways (A) and top-level Gene-Ontology biological
processes (B) cross the co-expressed genes. (C,D) TK1 silencing increases the percentage of cells in the G2/M phase. Cell cycle distributions were investigated by flow
cytometry.
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shown in Figure 6E. The expression of TK1 in prostate tumors was
significantly elevated in Treg cells and decreased in B cells and
activated dendritic cells compared with normal tissues (all p < 0.05).

We further determined the correlation between TK1 expression,
immunomodulators (immunostimulators and immunoinhinitors),
and TILs via TISIDB. Figures 6F–H respectively showed the top
three TILs and immunomodulators with a Spearman’s correlation
coefficient greater than 0.2 with TK1 expression. Activated CD4+ (r

= 0.307, p = 3.4e-12) and CD8+ (r = 0.208, p = 2.97e-06) T cells
depicted the densest association with TK1 (Figure 6F). As depicted
in Figures 6G,H, the greatest related immunostimulators with TK1
expression in PCa were interleukin 6 receptor (IL6R, r = −0.414, p <
2.2e-16), 5′-nucleotidase ecto (NT5E, r = −0.372, p < 2.2e-16), and
TNF receptor superfamily member 18 (TNFRSF18, r = 0.348, p =
1.75e-15) and the most relevant immunoinhibitors correlated with
TK1 expression in PCa were CD274 (r = −0.279, p = 2.93e-10),

TABLE 2 | Top 18 clusters with their representative enriched terms by Metascape.

Category Description LogP Log
(q-value)

Symbols

Reactome Gene
Sets

Cell cycle 41.0644 −36.706 CDK1, CDC6, CDC20, CDC25C, CENPA, E2F1, FEN1, MCM2, MCM7,
MYBL2, ORC1, PLK1, RAD51, CDC45, CCNB2, EXO1, AURKB, PTTG1,
GINS1, NDC80, KIF2C, ZWINT, OIP5, TPX2, HJURP, MCM10, SPC25,
NCAPG, CENPM, CDT1, NUF2, CDCA5, SKA1, KIFC1

GO Biological
Processes

Cell division 30.1137 −26.233 CCNF, CDK1, CDC6, CDC20, CDC25C, CENPA, KIFC1, PLK1, CCNB2,
AURKB, PTTG1, NDC80, KIF2C, ZWINT, OIP5, TPX2, KIF4A, SPC25, NCAPG,
CDT1, CDCA3, NUF2, CDCA5, KIF18B, SKA1, SKA3, MYBL2

GO Biological
Processes

Chromosome segregation 28.9194 −25.164 CDC6, CDC20, FANCD2, FEN1, KIFC1, PLK1, AURKB, PTTG1, NDC80,
KIF2C, ZWINT, OIP5, KIF4A, HJURP, SPC25, NCAPG, CDT1, NUF2, CDCA5,
KIF18B, SKA1, SKA3, CDC25C, MYBL2, RAD51, RAD54L, CCNB2, TPX2,
CCNF, CDK1, E2F1, MCM2, MCM7, ORC1, CDC45, DTL, MCM10, FANCI

WikiPathways DNA IR-damage and cellular response
via ATR

17.8918 −14.813 CDK1, CDC25C, E2F1, FANCD2, FEN1, MCM2, PLK1, RAD51, CDC45,
EXO1, FANCI, CDC6, ORC1, DTL, CDT1, MCM7, CCNB2, CENPA, AURKB,
MYBL2, TPX2, NCAPG, CCNF

WikiPathways Cell cycle 17.7783 −14.721 CDK1, CDC6, CDC20, CDC25C, E2F1, MCM2, MCM7, ORC1, PLK1, CDC45,
CCNB2, PTTG1, FEN1, RAD51, CHAF1B, EXO1, GINS1, DTL, MCM10, CDT1,
FANCG, KIF4A, MYBL2, CDCA5, AURKB

GO Biological
Processes

DNA repair 13.5907 −10.876 CDK1, FANCD2, FANCG, FEN1, MCM2, MCM7, RAD51, CHAF1B, CDC45,
RAD54L, EXO1, PTTG1, DTL, FANCI, CDCA5, AURKB, E2F1, PLK1

GO Biological
Processes

DNA conformation change 12.5687 −9.967 CENPA, MCM2, MCM7, RAD51, CHAF1B, RAD54L, OIP5, HJURP, ASF1B,
NCAPG, CENPM, CDCA5, CDC45, CDT1, FEN1

GO Biological
Processes

Meiotic cell cycle 10.7912 −8.368 CDC20, CDC25C, FANCD2, PLK1, RAD51, RAD54L, CCNB2, EXO1, PTTG1,
NUF2

GO Biological
Processes

Positive regulation of cell cycle process −9.9885 −7.656 CDK1, CDC6, CDC25C, E2F1, FEN1, AURKB, NDC80, DTL, CDT1, CDCA5,
ORC1, PLK1, CCNB2, TPX2, KIF18B, CDC20

Canonical Pathways PID PLK1 pathway 9.74329 −7.423 CDK1, CDC20, CDC25C, PLK1, NDC80, TPX2, CENPA, AURKB, CDT1,
CDCA5, CDC6, KIF4A, CCNF, E2F1, KIF2C

Reactome Gene
Sets

DNA strand elongation 8.59771 −6.337 FEN1, MCM2, MCM7, CDC45, GINS1, RAD51, FANCD2, RAD54L, CDCA5,
EXO1, MCM10

Reactome Gene
Sets

Transcriptional regulation by TP53 6.67593 −4.538 CDK1, CDC25C, E2F1, FANCD2, EXO1, AURKB, TPX2, FANCI, CENPA,
KIF2C

GO Biological
Processes

Positive regulation of chromosome
segregation

6.38871 −4.266 CDC6, FEN1, AURKB, CDT1, E2F1, PLK1, HJURP, CDCA5, RAD51

GO Biological
Processes

Microtubule polymerization or
depolymerization

−5.7257 −3.647 KIF2C, TPX2, KIF18B, SKA1, SKA3, KIFC1, KIF4A, CDK1, PLK1, CCNB2

GO Biological
Processes

Gamete generation 5.55847 −3.493 CDC25C, E2F1, FANCD2, FANCG, KIFC1, PLK1, CCNB2, PTTG1, ASF1B

GO Biological
Processes

Regulation of microtubule cytoskeleton
organization

4.73284 −2.715 CCNF, PLK1, TPX2, SKA1, SKA3

KEGG Pathway HTLV-I infection 4.08352 −2.118 CDC20, E2F1, MYBL2, CCNB2, PTTG1
GO Biological
Processes

Telomere maintenance 3.74684 −1.825 FEN1, RAD51, EXO1, AURKB, DTL
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kinase insert domain receptor (KDR, r = −0.278, p = 3.49e-10), and
adenosine a2a receptor (ADORA2A, r = 0.222, p = 5.89e-07).

DISCUSSION

In this research, we expanded the capacity of TK1, and
explored the specific function of TK1 in PCa, as well as its
underlying mechanism for the first time. Moreover, we also
found that the functions of TK1 were strongly associated with
related signaling pathways, including cell cycle, cell division,
and mitotic cell cycle phase transition, thereby promoting
tumor malignant behavior.

TK1 is a cytosolic enzyme involved in salvage pathway and
plays a vital role in pyrimidine deoxynucleotide synthesis during
the cell cycle. Thymidine is transferred from the extracellular
space to the cell membrane by facilitated diffusion and is
converted to the monophosphate form (dTMP) by TK1 at the
cell membrane (Bello, 1974; Johnson et al., 1982). In addition to

DNA synthesis, TK1 is also essential for cell repair following
DNA damage due to its vital role in nucleotides formation beyond
the S phase (Chen et al., 2010; Jagarlamudi and Shaw, 2018). The
expression level of TK1 increases significantly after cellular
damage caused by radiation or chemotherapeutic agents, and
depletion of TK1 in cells exposed to DNA damage can lead to cell
death (Chen et al., 2010; Fischer et al., 2016; Jagarlamudi and
Shaw, 2018). Multiple studies have reported that regulation of cell
cycle factors, including TK1, is critical for cell homeostasis and
that mutations or dysregulation of cell cycle proteins is a major
cause of tumorigenesis (Collins et al., 1997; Levine and Holland,
2018; Wenzel and Singh, 2018). Moreover, TK1 has been
identified as a malignant biomarker in multiple malignancies
due to its close correlation to cell proliferation, including lung,
breast, and colorectal (Li et al., 2005; He et al., 2010; Nisman et al.,
2014; Jagarlamudi et al., 2015; Weagel et al., 2018; McCartney
et al., 2020). As for PCa, only several studies speculated that TK1
can be used as a diagnostic biomarker via bioinformatics analysis
(Song et al., 2019; Wang et al., 2020). Song et al. integrated 10

FIGURE 4 | Protein networks and the correlation between TK1 and the hub genes. (A,B) Molecular Complex Detection (MCODE) components of the hub genes.
(C) The expression of serval hub genes was down-regulated in the TK1-silencing cells verified by RT-PCR. (D) TK1 and AURKB protein expression showed by
immunohistochemical staining in the same high-grade and low-grade patient. The pictures were taken from the Human Protein Atlas dataset.
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eligible PCamicroarray datasets via the Robust Rank Aggregation
method and identified four candidate biomarkers, including TK1,
for the diagnosis and prognosis of PCa (Song et al., 2019).
Similarly, by informatic analysis of four PCa microarray
datasets, Tian et al. identified six core genes including TK1
directly involved in the recurrence and prognosis of PCa
(Wang et al., 2020). Although the above research has noted
that TK1 is involved in PCa progression, experimental
verification and potential mechanisms are still limited. In this
study, the expression profile of TK1 was examined and results
suggested that TK1 was up-regulated in PCa patients and cell

lines, especially those with higher Gleason scores (> 7). We
also identified the role of TK1 in PCa proliferation and
migration via a series of experiments. In addition, 14 hub
genes were identified via enrichment analysis and PPI network
analysis, and their functions indicated that TK1 was closely
involved in cell cycle-related signaling pathways, which was in
accordance with the phenotypic results characterized
previously. Moreover, we conducted the Kaplan-Meier
survival analysis and Cox regression model and found that
elevated TK1 expression was dramatically correlated with
worse clinical survival.

FIGURE 5 | Survival analysis of TK1 expression in PCa. (A,B) The TK1mRNA expression level represented a prognostic value in OS (A) and in DFS (B) in the PRAD
dataset. (C,D) Kaplan-Meier plots of the risk of biochemical recurrence in PCa patients with high or low expression of TK1 in several cohorts of human prostate tumors.
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The management of PCa still imposes an urgent challenge
on society. Prostate specific antigen (PSA) screening has been
performed for PCa diagnosis and relapse monitoring. But this
could also lead to a series of problems such as overdiagnosis
and overtreatment due to lack of specificity and poor
indication of aggressiveness (Diamandis, 1998; Hayes and
Barry, 2014). Therefore, new prognostic factor
identification for biomedical recurrence and overall survival

of PCa patients is crucial and urgent. Recently, many efforts
have been made to find better biomarkers for PCa. Prostate-
specific membrane antigen (PSMA), a type II transmembrane
protein, has been found to be significantly overexpressed on
prostatic cancer cells, including advanced-stage prostate
carcinomas, but a low expression in normal tissues. It can
be considered as ideal for developing small and low-
molecular-weight targeted radiopharmaceuticals for

TABLE 4 | Prognostic value of TK1 mRNA expression level for the disease-free survival (DFS) and overall survival (OS) via Cox proportional model.

DFS OS

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

Univariate analysis

Age 1.027 (0.996–1.060) 0.09 1.053 (0.955–1.160) 0.032
TK1 mRNA 1.001 (1.000–1.001) <0.001 1.002 (1.001–1.003) <0.001
Clinical stage 1.437 (1.263–1.635) <0.001 1.666 (1.130–2.459) 0.01
Pathological stage 1.801 (1.437–2.259) <0.001 1.630 (0.766–3.467) 0.205
Gleason score 2.227 (1.794–2.764) <0.001 2.981 (1.346–6.601) 0.007
Lymph node stage 1.831 (1.130–2.969) 0.014 3.523 (0.778–15.942) 0.102

Multivariate analysis

Age 0.997 (0.962–1.034) 0.885 1.041 (0.931–1.163) 0.480
TK1 mRNA 1.000 (1.000–1.001) 0.373 0.999 (0.997–1.002) 0.673
Clinical stage 1.255 (1.079–1.459) 0.003 1.278 (0.761–2.145) 0.353
Pathological stage 1.117 (0.794–1.572) 0.525 0.772 (0.255–2.335) 0.647
Gleason score 1.801 (1.310–2.474) <0.001 3.489 (1.035–11.758) 0.044
Lymph node stage 0.994 (0.558–1.769) 0.983 2.537 (0.447–14.391) 0.293

The bold values in Table 4 represent values less than 0.05 and are statistically significant.

TABLE 3 | The correlation between clinicopathological characteristics and TK1 expression in the PRAD dataset.

Characteristics N TK1 expression (mean ± SD) P

Age
0.003≤60y 224 296.5 ± 306.8

>60y 275 384.6 ± 345.2

Clinical stage
<0.001<T3a 352 328.5 ± 296.3

≥T3a 55 513.4 ± 557.4

Pathological stage
<0.001<T3a 188 253.4 ± 189.5

≥T3a 304 394.0 ± 340.0

Gleason score
<0.001≤7 293 263.7 ± 187.7

>7 206 460.8 ± 439.6

Lymph node stage
<0.001N0 346 324.6 ± 282.4

N1 80 462.9 ± 379.4

Overall survival
<0.001Alive 489 337.4 ± 298.7

Decease 10 717.8 ± 1034.2

Disease-free survival
0.001Disease-free 401 317.2 ± 286.9

Recurred/progressed 92 435.9 ± 333.6

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 77885011

Xie et al. TK1 Prognostic and Immunological Biomarker

176

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


diagnosis and treatment in imaging (Haberkorn et al., 2016).
Therefore, it is more of a diagnostic and therapeutic target for
imaging rather than a prognostic biomarker. Combined
RankProd with genetic algorithm optimized artificial neural
network (GA-ANN), Hou et al. identified a 15-gene signature
that exhibited a great capacity for diagnosis and prognosis of
PCa and found that C1QTNF3 was a good predictor for PCa
diagnosis (Hou et al., 2018). However, the underlying
mechanism lacks experimental validation, and more studies
are warranted. Herein, we systemically demonstrated the
function of TK1 in PCa and found that it can be applied as

a prognostic biomarker. Similar to our results, much research
has investigated the clinical value of serological TK1 in the
diagnosis of PCa. Wang et al. determined the mean values and
the concentration distribution of serological TK1 protein in a
cohort of 56,178 persons consisting of people with different
disease stages, and found that serological TK1 was a
proliferating biomarker for early discovery of malignancy
in the prostate (Wang et al., 2018). Jagarlamudi et al.
demonstrated that there were inconsistencies in the
particular activities as well as the subunit compositions of
serological TK1 in different cancers. Meanwhile, serological

FIGURE 6 | Immune analysis of TK1 in PCa. (A) Relationships between TK1 expression and immune subtype in TCGA prostate cancer dataset. (B) The
mutation types and mutation frequencies of TK1 in PCa. (C) Correlation between mRNA expression of TK1 and the copy number in PCa. (D) Correlation between
TK1 copy number and tumor-infiltrating lymphocytes (TILs). (E) TK1 expression of immune cells in the prostate tumor and normal tissues. (F) Correlation between
TK1 expression and TILs (TISIDB). (G,H) Correlation between TK1 expression and immunostimulators (G) and immunoinhibitors (H). In the heatmaps of (F-H),
the red and blue squares represent positive and negative correlations, respectively. The scatter plots show TILs or immunomodulators with the strongest correlation
with TK1 expression.
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TK1 protein assays can distinguish early-phase cancer
formation in prostate and breast cancer more usefully than
serological TK1 activity assays (Jagarlamudi et al., 2015).
Furthermore, by collecting and analyzing serum samples
from 140 patients, they also demonstrated that TK1 protein
determinations together with Prostate Health Index (PHI) or
PSA density (PSAD) can be worthy additional tools for PCa
treatment (Jagarlamudi et al., 2019). However, the present
study did not further determine the function of serological
TK1 protein in PCa.

Tumor immune response plays a vital role in cancer
formation and development. Though increasing evidence has
proved the non-negligible role of immune system in PCa
management, few approved immunotherapy exists (Bilusic
et al., 2017; Cha et al., 2020). Using the TCGA database,
Vesteinn Thorsson et al. classified tumors into six immune
subtypes (Thorsson et al., 2019). Dramatic dissimilarities in
lymphocyte infiltration, prognosis, and immune regulation gene
expression existed among distinct subtypes. The present studies
indicated that TK1 expression was dramatically decreased in C3
subtype of PCa, which had the best prognosis. This suggested that
TK1 can be applied for immunophenotyping and prognosis
prediction. The data from TISIDB also revealed that TK1 was
significantly related with TILs and immunomodulators. Since the
accumulation of TILs and immunomodulators expression in PCa
was associated with patient prognosis, TK1 may be involved in
immune tolerance via interacting with TILs and
immunomodulatory molecules, and can be used as a potential
marker for prostate immunotherapy (Steele et al., 2018; Pérez-Ruiz
et al., 2020; Yang et al., 2021).

In conclusion, our research systematically explored the capacity
of TK1 in PCa for the first time. Elevated expression of TK1 in PCa
patients can be applied as a valuable prognostic biomarker for
predicting poor survival (both DFS and OS). TK1 ablation
inhibits tumor malignant behavior and may serve as a
therapeutic target for PCa.
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Objective: We aimed to explore the expression and carcinogenic effect of KRT17 in
human tumors and provide useful information for the study of KRT17.

Methods: We used databases including the Cancer Genome Atlas, Gene Expression
Omnibus, GTEx, and GEPIA2 to analyze the expression, mutation, and prognosis of
KRT17 in human tumors. Through webservers, including UALCAN, TIMER2.0, and
STRING, we learned about the genetic variation, immune cell penetration, and
enrichment analysis of KRT17-related genes.

Results: KRT17 was highly expressed in most tumors (such as esophageal cancer, lung
cancer, cervical cancer, etc.), and the high expression level correlated with tumor stage
and prognosis. In addition, amplification was the main type of KRT17 tumor variation, with
an amplification rate of about 9%, followed by mutation, with a mutation rate of 4%.
Moreover, KRT17 was strongly associated with tumor-infiltrating immune cells (such as
macrophages, CD8+T, Tregs, and cancer-associated fibroblasts). KEGG analysis
suggested that KRT17 may play a role in tumor pathogenesis following human
papillomavirus infection, and the gene ontology enrichment analysis indicated that the
carcinogenicity of KRT17 can be attributed to cadherin binding, intermediate
fibrocytoskeleton and epidermal development.

Conclusion: KRT17 may play an important role in the occurrence, development, and
prognosis of malignant tumors. We provided a relatively comprehensive description of the
carcinogenic role of KRT17 in different tumors for the first time.

Keywords: Krt17, carcinogenesis, mechanism, prognosis, cancer

INTRODUCTION

Malignant tumors are a serious threat to human health and one of the major causes of death
worldwide. In recent years, the morbidity and mortality rates of malignant tumors have increased
significantly (Yao et al., 2019). Moreover, with the increase of population and poor lifestyle choices,
the number of new cases and deaths related to malignant tumors is expected to increase rapidly
(Torre et al., 2016). Early detection, early diagnosis, and treatment have become the goals for
prevention and treatment of malignant tumors (Jemal et al., 2010). With the development of science
and technology and the arrival of the era of precision medicine, searching for sensitive biomarkers
and prognostic indicators of malignant tumors and exploring their molecular mechanisms are
important for prevention and treatment. Given the complexity of malignancies, it is important to
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conduct pan-cancer expression analysis of any gene of interest
and assess its correlation with clinical prognosis and its potential
molecular mechanisms. With the rapid development of
genomics, transcriptomics and proteomics, and the
establishment of databases [The Gene Expression Omnibus

(GEO), The Cancer Genome Atlas (TCGA), and The Human
Protein Atlas (HPA)], the data can be conveniently accessed,
allowing us to perform a pan-cancer analysis.

KRT17 is a triplet structure protein comprising 432 amino
acids: a non-helical head (1–83), an α helical rod (84–392), and a

FIGURE 1 | Expression status of KRT17 in various malignant tumors was analyzed through TIMER2; the figure showed that KRT17 expression in most malignant
tumor tissues was higher than that in normal tissues, and it was statistically significant (pp < 0.05; ppp < 0.01; pppp < 0.001) (TCGA dataset).

FIGURE 2 | Expression of KRT17 in total protein of COAD, LUAD, UCEC, BRCA, and KIRC. The expression of KRT17 in COAD, LUAD and UCEC tumor tissues
was higher than that in normal tissues, while in BRCA and KIRC, the expression of KRT17 in normal tissues was higher than that in tumor tissues (pp < 0.05; ppp < 0.01;
pppp < 0.001) (CPTAC dataset).
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non-helical tail domain (393–432) (Yang et al., 2019). The KRT17
gene is located on chromosome 17q21.2 (Kurokawa et al., 2011).
The KRT17 is a multifunctional protein that regulates numerous
cellular processes, including cell proliferation and growth
(Depianto et al., 2010; Mikami et al., 2015). In addition,
KRT17 can promote the release of inflammatory cytokines and
promote the occurrence and development of tumors (Lo et al.,
2010; Chung et al., 2015). Our team found that KRT17 expression
was significantly different before and after cervical cancer
radiotherapy when screening radiotherapy sensitivity genes
(GSE6213). Considering that KRT17 may be a gene related to
the radiotherapy sensitivity of cervical cancer, we assessed KRT17
and found that it was abnormally expressed in a variety of tumors
after reviewing the literature. This abnormal expression is related
to the occurrence, development, treatment, and prognosis of
tumors (Ide et al., 2012; Ujiie et al., 2020). Moreover, despite
the large number of clinical data, there is no pan-cancer evidence
of a relationship between KRT17 and various tumor types.
Therefore, we used databases or webservers such as TCGA,
Tumor Immune Estimation Resource 2.0 (TIMER2.0), GEO,
and Gene Expression Profiling Interactive Analysis 2
(GEPIA2) to conduct pan-cancer analysis of KRT17 and
explore the potential molecular mechanisms by which it
relates to the occurrence, development, and clinical prognosis
of different cancer types.

MATERIALS AND METHODS

Gene Expression Analysis
We searched the TIMER2.0 (http://timer.cistrome.org/)
webservers in the Gene_DE KRT17 module input and found
differences in KRT17 expression in tumor and normal tissues in
TCGA database. There were no matched normal tissues in TCGA
database. We obtained tumor tissues from the GEPIA2 (http://
gepia2.cancer-pku.cn/) database and normal tissues from the
Genotype-Tissue Expression (GTEx) database to assess the
expression differences between the two tissue types. The p
value cut-off was below 0.01, and the log fold change (logFC)
cut-off was equal to 1. We selected “match TCGA normal and
GTEx data” in the field of “match normal data.” With UALCAN
tools (http://ualcan.path.uab.edu/index.html) and TCGA data
analysis, we obtained KRT17 expression profiles for different
tumor stages. UALCAN protein expression analysis (http://
ualcan.path.uab.edu/home), via the “CPTAC analysis” module,
was used to obtain the gene and protein expression profiles of
KRT17 in tumor tissue and normal tissue.

Analysis of Protein Expression
Weentered “KRT17” into the “search”module of theHPA (https://
www.proteinatlas.org/) network database, clicked the “search”
button, and then selected the “tissue” and “pathology” modules

FIGURE 3 | Immunohistochemical (IHC) images of normal and tumor tissues of KRT17 from patients with breast cancer, cervical cancer, and colorectal cancer, and
the intensity of the IHC of KRT17. The bar graph shows the IHC intensity of KRT17 (breast cancer: 11 patients, cervical cancer: 11 patients, and colorectal cancer: 11
patients). All IHC images and patient information were derived from the HPA.
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to obtain KRT17 expression data for human tumor tissue samples
and normal tissue samples and evaluate the protein expression of
KRT17 on clinical specimen images. Staining reports included

information of intensity, subcellular localization, single-cell
variability, and antibodies. The staining intensity was classified
into four categories (strong, moderate, weak, and negative) by

FIGURE 4 | KRT17 expression in OS in KIRC, LIHC, LUAD, PAAD, UCEC, and BRCA.We obtained a relationship between KRT17 and survival prognosis of cancer
from Kaplan–Meier Plotter. Kaplan–Meier curves were all positive. The solid red line represents the high expression of KRT17 in tumor tissues, and the solid black line
represents the low expression of KRT17 in tumor tissues.

FIGURE 5 | Alteration frequency of KRT17 in a variety of malignancies. The figure showed that KRT17 was the main type of amplification in esophageal cancer, the
main type of mutation in UCEC, and the main type of deep deletion in ACC (TCGA dataset).
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using image capture and visualization techniques. The protein
expression score was determined by the staining intensity from the
immunohistochemistry (IHC) data and the proportion of stained
cells as follows: negative–not detected; weak <25%–not detected;
weak combined with either 25–75% or 75%–low; moderate
<25%–low; moderate combined with either 25–75% or
75%–medium; strong <25%–medium; and strong combined
with either 25–75% or 75%–high (Ta et al., 2021).

Survival Prognosis Analysis
In the “start KM plotter for pan-cancer” list of the Kaplan–Meier
Plotter (https://kmplot.com/analysis/), we obtained the overall
survival (OS) and relapse-free survival (RFS) data of patients with
various human malignancies sorted according to KRT17
expression. The median value was set as the cut-off. A Cox
proportional hazards (PH) model was used to calculate the
risk ratio. The log-rank sum test was used for hypothesis
testing, and the OS plots and RFS plots were obtained via
Kaplan–Meier Plotter survival analysis.

Genetic Variation Analysis
In the cBioPortal (https://www.cbioportal.org/) dataset, we chose
“TGCA extensive cancer atlas research” and searched for
“KRT17” genetic variation characteristics. All the changes,
mutational results, and copy number changes in TGCA
tumors were reviewed in the cancer type summary. We also
used the comparison/survival module to assess the differences in
overall survival and disease-free, progression-free, and disease-
free survival for cancer patients from TCGA database.
Kaplan–Meier survival plots were generated by the log-rank
sum test, and p < 0.05 was considered to indicate significance.

Immune Infiltration Analysis
On the TIMER (http://timer.cistrome.org/) website “immune”
template “gene expression” input (“KRT17”) and “immune

infiltrates” [“CD8 + T cells”, “regulatory T cells” (Tregs), and
“cancer-associated fibroblasts”] were selected to determine the
relationships between KRT17 and tumor immune infiltration.
The TIMER, CIBERSORT, CIBERSORT-abs, Quantiseq, Xcell,
MCPCounter, and EPIC algorithms were used to estimate
immune infiltration. The p values and bias correlation values
were obtained by Spearman’s rank correlation test with purity
adjustment. The data are presented as a scatter plot.

Enrichment Analysis
First, the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (https://string-db.org/) was used to screen 50 proteins
that are experimentally verified to bind to KRT17. In the STRING
webserver, we selected the column of “protein name”, entered
“KRT17”, and selected “Homo sapiens”; the parameters were set
as follows: "full network”, “evidence”, “experiments”, “low
confidence (0.150)", and “no more than 50 interactors in the first
shell”. After parameter setting, we continued to follow the
instructions for the next step to obtain the binding proteins of
KRT17. GEPIA2 was used for similar gene detection, and the first
200 similar genes were obtained. In addition, we used Jvenn, a Venn
diagram viewer (http://bioinformatics.psb.ugent.be/webtools/Venn/
), for cross analysis of KRT17 and its interacting genes, GEPIA2 was
used for correlation analysis, Pearson’s correlation analysis was used
for paired genes, and log2 transcripts per million (TPM) was applied
to the dot plot to obtain the p value and correlation coefficient. In the
Gene_cor module of the TIMER2.0 website, KRT17 was input as the
gene of interest, and KRT5, KRT6a, KRT6b, KRT6c, and SFN gene
expressions were analyzed. After execution, we generated a heatmap.
The data included p values and bias correlation values obtained by
purity-adjusted Spearman’s rank correlation test. For the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we
uploaded the data to theDatabase for Annotation, Visualization, and
Discovery (DAVID) and then selected the settings “official_gene_
symbol” and “Homo sapiens” to obtain the functionally annotated

FIGURE 6 |Mutation site and number of cases of KRT17. G22Afsp93 was the site with the highest mutation frequency. There were three cases in UCEC and two
cases in COAD (TCGA dataset).
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map data. The enriched pathways were analyzed using the “Tidyr”
(https://cran.r-project.org/web/packages/tidyr/index.html) and
“ggplot2” (https://Cran.r-project.org/web/packages/ggplot2/index.
html) R language packages (version: version number: 3.6.2). In
addition, we used the " clusterProfiler” (http://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) R language
package for the Gene Ontology (GO) enrichment analysis. p < 0.
05 was considered to indicate statistical significance.

RESULTS

Gene Expression Results
We determined the difference in the expression of KRT17
between various cancer types in TCGA database via the
TIMER2.0 webserver (Figure 1). KRT17 expression was higher

in cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), liver
hepatocellular carcinoma (LIHC), lung squamous cell
carcinoma (LUSC), lung adenocarcinoma (LUAD), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
skin cutaneous melanoma (SKCM), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), uterine corpus endometrial
carcinoma (UCEC) (p < 0.001), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC) (p < 0.01), and
pheochromocytoma and paraganglioma (PCPG) (p < 0.05)
tissues than in normal tissues. In breast invasive carcinoma
(BRCA) and kidney chromophobe (KICH), the expression of
KRT17 was higher in normal tissues than in tumor tissues (p <
0.001). There was no difference in KRT17 expression between

FIGURE 7 | Correlation between KRT17 mutation status and overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) of ACC. The
solid red line represents the KRT17-altered group in tumor tissues, and the dash-dotted blue line represents KRT17-unaltered group in tumor tissues (TCGA dataset).
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tumor and normal tissues in bladder urothelial carcinoma
(BLCA), kidney renal papillary cell carcinoma (KIRP), and
pancreatic adenocarcinoma (PAAD) (p > 0.05). TCGA,
adrenocortical carcinoma (ACC), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), brain lower grade glioma
(LGG), acute myeloid leukemia (AML), ovarian serous
cystadenocarcinoma (OV), sarcoma (SARC), mesothelioma
(MESO), testicular germ cell tumors (TGCT), thymoma
(THYM), uterine carcinosarcoma (UCS), and uveal melanoma
(UVM) datasets did not include matched normal tissues.
Therefore, we looked for matched normal tissues in the GTEx
database and used them as controls for tumor tissues in TCGA.
We analyzed the previously mentioned tumors, and the
expression of KRT17 in OV, THYM, and UCS tissues was
higher than that in normal tissues (p < 0.05), while in LGG
and TGCT, the expression of KRT17 in tumor tissues was lower
than that in normal tissues (p < 0.05) (Supplementary Figure
S1A). There was no significant difference in expression between
ACC, DLBC, AML, and SARC tumor tissues and normal tissues.
Unfortunately, there were no matched normal tissues for MESO
and UVM.

Next, we obtained the total protein expression data for KRT17
in BRCA, LUAD, COAD, UCEC, OV, and KIRC in tumor tissues
and normal tissues in the CPTAC dataset, and the total protein
expression data for the other cancers were not included in the
CPTAC dataset. The total protein levels in COAD, LUAD, and
UCEC tissues were higher than those in normal tissues, and the
difference was statistically significant (p < 0.05); the levels in

normal tissues were higher than those in tumor tissues in BRCA
and KIRC, and the difference was statistically significant (p <
0.05); no significant difference was seen in OV (Figure 2). Since
there were only six tumors with available total protein expression
data in the CPTAC database, we obtained the expression data for
BLCA, CESC, ESCA, HNSC, leukemia, LUSC, PAAD, and STAD
from the oncomine database, and the differences in expression
between these tumor tissues and their corresponding normal
tissues were statistically significant (Supplementary Figure S1B).

We then analyzed the correlation between KRT17 expression in
normal tissues and that in tumor tissues at different stages. The
expression of KRT17 in CESC, HNSC, LUAD, LUSC, READ, and
UCEC tissues of all stages was higher than that in normal tissues,
and the differences were statistically significant (p < 0.05)
(Supplementary Figure S1C); differences were also observed
for BLCA (normal vs. Stage 1 and 2), COAD (normal vs. Stage
1, 3, and 4), ESCA (normal vs. Stage 2 and3), KIRP (normal vs.
Stage 1 and 3) (LIHC (normal vs. Stage 1 and 2), and STAD
(normal vs. Stage 2, 3, and 4), and THCA) (Normal vs. Stage 1 and
4). The expression of KRT17 in some stages was higher than that in
normal tissues (Supplementary Figure S1D), while in BRCA,
KICH and KIRC, the expression of KRT17 in each stage was
lower than that in normal tissues, and the difference was
statistically significant (p < 0.05) (Supplementary Figure S1E);
no significant differences were found in other tumors (some of
which did not have available data for matched normal tissue
comparison; these included ACC, DLBC, MESO, UVM, OV,
TGCT, and UCS) (Supplementary Figures S1F,H).

FIGURE 8 |Correlation between KRT17 expression and immune infiltration of CD8+T cells. In LUSC, SKCM, SKCM-metastasis, SKCM-primary, STAD and THYM
and KRT17 expression was negatively correlated with CD8+T cell expression (TCGA dataset).
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Protein Expression Outcomes of KRT17 in
Human Clinical Specimen
We investigated the protein expression of KRT17 in the HPA
database, and we obtained IHC images of 19 types of cancer
tissues and corresponding normal tissues; we also obtained
corresponding clinicopathological parameters, such as patient
ID, sex, age, and antibody. We found that KRT17 was
overexpressed in BRCA, CESC, and colorectal cancer tissues
versus normal tissues, and the difference was statistically
significant (Figure 3). Moreover, KRT17 was overexpressed
in BLCA, but there was no significant difference in the
expression between cancer and normal tissues. In addition,
the expression of KRT17 was low in glioma, LIHC, renal
cancer, testicular cancer, and melanoma tissues, but
significant differences were still observed between tumor and
normal tissues. KRT17 was not expressed in lymphomas or
normal lymph nodes. Other tumors showed moderate
expression (Supplementary Figures S2A,B,C;
Supplementary Table S1).

Survival Outcomes Related to KRT17
Expression in Tumors
We obtained the survival prognosis information of patients
sorted according to KRT17 expression level (high or low) for
various cancer types through the Kaplan–Meier plotter. The
correlation between KRT17 expression levels and survival
prognosis of patients with different tumors was studied
(Figure 4). The OS of KIRC, LIHC, LUAD, PAAD, and
UCEC patients with high expression of KRT17 was lower than
that of those with low expression of KRT17 (p < 0.05); however,
the OS rate in BRCA was higher for patients with high expression
of KRT17 than for those with low expression of KRT17 (p < 0.05).
High expression of KRT17 was associated with favorable RFS in
THCA, KRIC, and UCEC, while unfavorable RFS was associated
with BLCA and PAAD (p < 0.05) (Supplementary Figure S3).

Genetic Variation Results for KRT17
From TCGA database, we learned the expression state of KRT17
gene genetic variation in different tumors (Figure 5). Among all

FIGURE 9 | Correlation between KRT17 expression and immune infiltration of Tregs cells. In ESCA, HNSC, and HNSC-HPV+ and LUSC, KRT17 expression was
negatively correlated with Treg expression (TCGA dataset).
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the variation expression states, the amplification type was
associated with the highest expression, and the amplification
rate was approximately 9% and was the highest in ESCA and
STAD. Mutation was the dominant type of genetic variation in
UCEC, with a mutation frequency of approximately 4%. In
addition, KRT17 gene copy deletion was found in both ACC
and MESO. Furthermore, we learned about the type, locus, and
number of cases of genetic variation in KRT17. The main type of
genetic variation in KRT17 was frameshift mutation. In addition,
we noted that the KRT17 protein exhibited a change from glycine
(G) to alanine (A) at site 22 in three UCEC cases and two COAD
cases (Figure 6). We also explored the correlation between
KRT17 gene mutation and survival prognosis of patients with
different tumors. Compared with patients without KRT17
mutations, the overall survival (P = 2.582e-3), disease-specific
(P = 9.757e-4), and progression-free (P = 7.266e-4) rates for ACC
were lower for the KRT17 mutant group than for the non-mutant
group (Figure 7). In addition, KRT17 mutations were found to be
associated with survival in CESC (progression-free survival),
THCA (progression-free survival and disease-free), and THYM
(overall survival and survival). However, in SKCM (progression-
free survival), the prognosis of the KRT17 mutant group was

superior to that of the KRT17 mutant group (Supplementary
Figure S4).

Results of Immune Cell Infiltration Analysis
To further clarify the relationship between KRT17 and tumor-
infiltrating immune cells, we used the TIMER, CIBERSORT,
CIBERSORT-abs, Quantiseq, Xcell, MCPCounter, and EPIC
methods to investigate the potential relationship between the
level of infiltration of different immune cells and the expression of
the KRT17 gene in different types of cancer in TCGA database.
We found that KRT17 expression and macrophage infiltration
were positively correlated in LIHC, THCA, THYM, and UVM
(Supplementary Figure S5A). KRT17 expression and
CD8+T cell infiltration were negatively correlated in LUSC,
SKCM, SKCM-metatasis, SKCM-primary, STAD, and THYM
(Figure 8). KRT17 expression was negatively associated with
Treg infiltration in ESCA, HNSC, HNSC- human papilloma virus
positive (HNSC-HPV+), and LUSC (Figure 9) but positively
associated with Treg infiltration in THCA (Supplementary
Figure S5B). In addition, we found that KRT17 expression
was positively correlated with cancer-associated fibroblast
infiltration in COAD, DLBC, KIRC, OV, TGCT, THCA, and

FIGURE 10 | Correlation between KRT17 expression and immune infiltration of cancer-associated fibroblasts. In THYM, TGCT, KIRC, COAD, THCA, OV, and
DLBC, KRT17 expression was positively correlated with cancer-associated fibroblasts expression; however, in HNSC-HPV-, KRT17 expression was negatively
correlated with cancer-associated fibroblast cells (TCGA dataset).
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THYM and negatively correlated with cancer-associated
fibroblast infiltration in HNSC (Figure 10).

Results of Enrichment Analysis
To further clarify the mechanism by which KRT17 mediated the
pathogenesis of tumors, we screened the binding proteins
interacting with KRT17 and the genes related to KRT17
expression. Using the STRING tool, we obtained 50
experimentally confirmed KRT17 binding proteins and
generated an interaction network of these proteins

(Figure 11). We combined the tumor expression data of
TCGA and GTEx with the GEPIA2 tool to obtain the top 200
genes related to KRT17 expression. To further screen genes, we
analyzed the intersection between 50 binding proteins interacting
with KRT17 and the top 200 genes related to KRT17 expression.
Five genes (KRT5, KRT6A, KRT6B, KRT6C, and SFN) were
obtained (Figure 12). Through the GEPIA2 tool, we obtained the
correlation between the expression of KRT17 and that of KRT5,
KRT6a, KRT6b, KRT6c, and SFN, and the results showed that the
expression of KRT17 was positively correlated with that of these

FIGURE 11 | Fifty experiments confirmed the binding proteins interacting with KRT17 and their interaction networks.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 80169810

Zhang et al. KRT17 in Human Tumors

190

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


five genes (Figure 13). In addition, we used TIMER2.0 to obtain a
heatmap between KRT17 and KRT5, KRT6A, KRT6B, KRT6C,
and SFN, and the corresponding heatmap results also showed
that KRT17 was positively correlated with the abovementioned
five genes in most tumors (Figure 14).

We combined 50 binding proteins interacting with KRT17
with two datasets of the top 200 genes related to KRT17
expression and carried out KEGG and GO enrichment
analyses. Through KEGG analysis, we learned that KRT17
may play a role in the pathogenesis of tumors mainly
through HPV infection (Figure 15). GO enrichment analysis
showed that these two sets of genes were mainly involved in
cadherin binding, intermediate cytoskeleton filament
formation, and epidermal development (Supplementary
Figures S6A–C).

DISCUSSION

Keratin is a member of the intermediate filament superfamily that
makes up the cytoskeleton and is encoded by 54 evolutionarily
conserved genes. According to gene substructure and nucleotide
sequence homology, keratin can be divided into two types: 28 type I
acidic proteins and 26 type II basic proteins (Jacob et al., 2018).
Keratin 17 (KRT17) belongs to the type I intermediate family and is
an intermediate filament of the cytoskeleton, involved in structural
support, metabolism, and various developmental processes
(McGowan and Coulombe, 1998; Pan et al., 2013). KRT17 is
mainly found in epithelial appendages, such as hair follicles,
sebaceous glands, and other glands (Kurokawa et al., 2011).
KRT17 is not expressed in the epidermis of normal skin, but its
expression can be induced under stress conditions, such as skin
injury (Kim et al., 2006) and virus infection (Proby et al., 1993).
KRT17, as an intermediate filament, has long been thought to play
a role in the cytoplasm. However, recent studies have shown that

due to the presence of nuclear localization signals and nuclear
output signals, KRT17 can move both inside and outside the
nucleus, suggesting that KRT17 may regulate additional cellular
processes (Hobbs et al., 2016a). In recent years, there have been an
increasing number of reports on the relationship between KRT17
and malignant tumors, especially the functional association
between tumors (Chivu-Economescu et al., 2017; Liu et al.,
2018; Chen et al., 2020; Yan et al., 2020). However, it is still
unclear whether KRT17 has a commonmolecular mechanism that
plays a role in the occurrence and development of different tumors.
To date, there have been no reports of KRT17 in pan-cancer
studies. Therefore, we analyzed KRT17 in 33 different tumors by
employing TCGA, TIMER2.0, GEO, GEPIA2, and HPA databases
or websites and analyzed and summarized its molecular
characteristics such as gene expression and gene mutation and
its associations with clinical prognosis and immune infiltration.
KRT17 is highly expressed in most malignant tumors, suggesting
that KRT17 may play a role as an oncogene in cancers. Among the
total proteins, KRT17 expressionwas higher in COAD, LUAD, and
UCEC than in normal tissues, while KRT17 expression was higher
in BRCA and KIRC normal tissues than in tumor tissues. In
addition, we analyzed the expression of KRT17 protein in
human tumor tissues and normal tissues in HPA and found
that KRT17 was overexpressed in breast cancer, cervical cancer,
colorectal cancer, and bladder cancer, but there was no statistical
significance between bladder cancer tissues and normal tissues. The
mRNA and total protein expressions of KRT17 in normal tissues
were higher than those in tumor tissues, while the
immunohistochemical results showed that KRT17 was highly
expressed in tumor tissues, which may be related to the selected
specimens, tumor heterogeneity, and detection technology, so it is
necessary to continue to expand clinical samples for research. In
glioma, liver cancer, kidney cancer, testicular cancer, and
melanoma, KRT17 expression is low but higher than that in
corresponding normal tissues. However, KRT17 is moderately
expressed in thyroid cancer, lung cancer, gastric cancer, prostate
cancer, ovarian cancer, head and neck cancer, and endometrial
cancer. These results were consistent with the mRNA expression
results, suggesting that KRT17 may play an oncogenic role in the
occurrence and development of malignant tumors (except for
BRCA). The results of the in vitro experiments were consistent
with the previously mentioned results. KRT17 was found to be
highly expressed in cervical cancer, esophageal cancer, lung cancer,
gastric cancer, and colorectal cancer cell lines. KRT17 knockout
was also found to inhibit cell proliferation and migration and
increase sensitivity to cisplatin chemotherapy in cervical cancer
cells (Escobar-Hoyos et al., 2015). Similarly, in esophageal cancer,
lung cancer, gastric cancer, and colorectal cancer, KRT17 knockout
can inhibit cancer cell proliferation, migration, invasion, and
colony formation and induce apoptosis (Chivu-Economescu
et al., 2017; Wang et al., 2019; Liu et al., 2020; Ujiie et al.,
2020). The previously mentioned results confirmed that the
knockout of KRT17 inhibited the growth, migration, and
invasion of tumor cells, while the overexpression of KRT17 had
the opposite effect, suggesting that KRT17 may be involved in the
occurrence and development of malignant tumors and play an
oncogenic role in malignant tumors.

FIGURE 12 | Cross analysis of KRT17 binding protein and related
genes. An intersection analysis of the abovementioned two groups showed
five common members, namely, KRT5, KRT6A, KRT6B, KRT6C and SFN.
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Subsequently, the expression of KRT17 at various tumor
pathological stages was analyzed, and the expression of KRT17
inmost tumors at various pathological stages was higher than that
in normal tissues, while the expression in normal tissues was
higher than that in BRCA, KICH, and KIRC tissues at different
stages. According to GEPIA2, high expression of KRT17 in most
tumors is associated with poor prognosis, while high expression
of KRT17 is associated with a favorable prognosis in BRCA.
These results indicate that KRT17 may play a role as a tumor
suppressor gene in BRCA; this finding could also be explained by
other reasons. The prognosis of BRCA is related not only to stage
and treatment but also to molecular type. In BRCA, the prognosis
of triple-negative breast cancer is worse than that of other types of
breast cancer. Merkin et al. studied tissues from 164 breast cancer
patients, among which 82% (28/34) of triple-negative [estrogen
receptor [ER]/progesterone receptor/human epidermal growth
factor receptor-2 (HER2) negative] breast cancers showed
positive KRT17 expression. The positive expression rate of
KRT17 in non-triple-negative breast cancer was 46% (52/112).
High expression of KRT17 was associated with reduced 5-year

DFS in patients with advanced cancer. Studies have shown that
high KRT17 expression is associated with triple-negative status
and reduced survival (Merkin et al., 2017). However, the
Kaplan–Meier plotter indicated that high expression of KRT17
has good prognostic implications in breast cancer. Considering
that the proportion of triple-negative breast cancer cases included
in TCGA is small (approximately 14% of all breast cancer cases),
high expression of KRT17 seems to indicate a good prognosis.
Similarly, in lung cancer, high expression of KRT17 is not
associated with OS in LUSC (Wang et al., 2019), while in
LUAD, high expression of KRT17 is associated with survival
(Liu et al., 2018), indicating that the expression status and clinical
prognosis implications of KRT17 may be related to pathological
classification. However, only 239 patients were included in the
two studies, so a larger sample size is needed to confirm the role of
KRT17 in survival outcomes in patients with different types of
lung cancer. In addition, in KIRC and UCEC, high expression of
KRT17 was negatively correlated with OS, while in RFS, high
expression of KRT17 was positively correlated with RFS.
Considering that KRT17 may play different roles in the

FIGURE 13 | Correlation between KRT17 and KRT5, KRT6a, KRT6b, KRT6c and SFN. The results showed that the expression of KRT17 was positively correlated
with the expression of KRT5, KRT6a, KRT6b, KRT6c and SFN.
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development of tumor diseases, how it affects the survival and
mechanism of the disease still needs to be further explored.

Our study also showed that the expression state of KRT17
genetic variations in various tumors, with gene amplification,
gene mutation, and gene deletion as the main variation type.
Analysis of TCGA–ACC dataset revealed that the KRT17
mutation status of ACC was associated with OS, DSS, and
PFS, In ESCA, STAD, and UCEC, a correlation was not
found, indicating that tumor development and clinical
outcomes are not simply influenced by mutation status but
rather by a complex genetic process. Among human diseases,
mutations in KRT17 have been reported to be associated with
congenital thyroid disease. Among KRT17mutations, c.275A >G
missense mutations that cause asparagine to be replaced by serine

(Asn92Ser) are the most common (Cogulu et al., 2009; Ofaiche
et al., 2014). In UCEC and COAD, we found that KRT17
translation from G (glycine) to A (alanine) (Gly22Ala) at site
22 is the most common; the change at this point may be the main
reason for the occurrence and development of malignant tumors
caused by KRT17, but the specific molecular mechanism is still
not clear and needs further study. Cancer-related immunology is
complex and poorly understood, partly reflected in the diversity
of immune responses and the spatial and temporal heterogeneity
of developing tumors (Melero et al., 2014). Studies have shown
that during the occurrence of cervical cancer, the expression of
some inflammatory cytokines and immune cytokines in tumors is
significantly dependent on KRT17 (Hobbs et al., 2016b). In
addition, KRT17 can activate different macrophage

FIGURE 14 | Heatmap data between KRT17 and KRT5, KRT6A, KRT6B, KRT6C, and SFN. The heatmap results showed that the expression of KRT17 was
positively correlated with the expression of KRT5, KRT6a, KRT6b, KRT6c, and SFN.

FIGURE 15 | Results of KEGG pathway analysis of KRT17 interaction binding and expression-related genes.
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populations and subtypes (such as M1 and M2) through
interferon γ, tumor necrosis factor-α and interleukin 10, which
play an important role in tumor proliferation and differentiation
(Sica and Mantovani, 2012). Therefore, we used the Quantiseq,
Xcell, Mpcounter, and EPIC methods to analyze the relationship
between KRT17 expression and the infiltration of macrophages,
CD8+T cells, Tregs, and cancer-related fibroblasts. There was a
positive correlation between KRT17 expression and macrophage
infiltration in LIHC, THCA, THYM, and UVM, but no positive
correlation was found in cervical cancer. Considering that the
expression of interferon γ, tumor necrosis factor-α and
interleukin 10 may be different in different patients with
cervical cancer, KRT17 may have little effect on stimulating
the production of macrophages through the abovementioned
factors. KRT17 expression was negatively associated with Treg
infiltration T-regulatory cells in ESCA, HNSC, HNSC- human
papilloma virus positive (HNSC-HPV+), and LUSC but
positively associated with Treg infiltration in THCA. THCA is
an endocrine gland. Considering that the high expression of Tregs
may be related to hormones secreted by endocrine glands, studies
have shown that Tregs infiltration is greater in THCA and the
increase of Tregs tissue infiltration is positively correlated with
advanced disease (Gogali et al., 2012). Therefore, the expression
of Tregs may be used as a biomarker and prognostic indicator of
THCA. This also indicates that there are multiple ways in which
KRT17 acts in malignant tumors. In addition, we proposed the
relationship between KRT17 and CD8+T cells, Tregs, and cancer-
related fibroblasts for the first time, suggesting that KRT17 and
immune cells are involved in the formation and development of
tumors, However, the specific mechanism of action is still unclear
and needs further study.

Next, GO enrichment analysis was performed on the binding
proteins interacting with KRT17 and the genes related to KRT17
expression. Through the analysis, we learned that the expression
of KRT17 was positively correlated with the expression of KRT5,
KRT6a, KRT6b, KRT6c, and SFN. We also found that HPV
infection, the estrogen signaling pathway, cadherin binding, and
intermediate cytoskeleton filament formation may affect
KRT17-mediated tumor pathogenesis and development.
Recent studies have shown that KRT17 has a variety of
mechanisms of action in malignant tumors and can inhibit
tumor cell proliferation, migration, and invasion by regulating
the Akt/mTOR pathway, glucose uptake (Khanom et al., 2016),
Wnt signaling pathway, epithelial–mesenchymal transition
(EMT) (Wang et al., 2019), and mTOR/S6K1 signaling

pathway (Li et al., 2020). This suggests that the mechanism
of action of KRT17 in malignant tumors is complex and diverse,
that there may be multiple mechanisms in one tumor, and that
multiple tumors may share similar mechanisms (Li et al., 2019;
Liu et al., 2020; Zeng et al., 2020).

To summarize, the correlation between KRT17 expression and
clinical prognosis, genetic variation and immune cell infiltration
were analyzed for the first time. These results are helpful for
understanding the role of KRT17 in tumorigenesis and
development and exploring its potential clinical application
value, providing useful information for KRT17 research and
drug development.
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Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney
cancer. Nck-associated protein 1 (NCKAP1) is associated with poor prognosis and tumor
progression in several cancer types, but the function and prognostic value of NCKAP1 in
ccRCC remain poorly understood.

Methods: Using the Ualcan database, we evaluated the correlation between NCKAP1
expression and clinical features of ccRCC. These data were validated by
immunohistochemical staining for NCKAP1 in a cohort of ccRCC patients. We
assessed the prognostic value of NCKAP1 using GEPIA2 survival analysis. NCKAP1
function was characterized in vitro and in vivo using NCKAP1-overexpression ACHN cell
lines. The LinkedOmics and GSCALite databases were used to investigate identify
potential NCKAP1-targeted medicines that may play a role in the treatment of ccRCC.
The impact of NCKAP1 expression on immune infiltration was also evaluated.

Results: NCKAP1 was significantly downregulated in ccRCC and correlated with
advanced clinicopathological features and poor prognosis. Overexpression of NCKAP1
in ACHN cells reduced proliferation, invasion and migration capacity in vitro and inhibited
tumor growth in vivo. According to the LinkedOmics, GSCALite and TIMER databases,
NCKAP1 and related genes function primarily in ribosomal signaling, oxidative
phosphorylation, TGF-β, and EMT-related signaling pathways. NCKAP1 was also
shown to positively correlate with immune cell types, biomarkers, and immune
checkpoints in ccRCCs.

Conclusions: NCKAP1 may play a vital tumor-suppressive role in ccRCC and is
potentially a useful prognostic biomarker.

Keywords: clear cell renal cell carcinoma, Nckap1, biomarkers, prognosis, progression

INTRODUCTION

Renal cell carcinoma (RCC) is a malignant tumor of the urinary system and accounts for about 3% of
cancers worldwide (Kotecha et al., 2019). Based on the World Health Organization (WHO)
classification system, RCC in adults is classified into four types: clear cell, papillary, pigmented,
and collecting duct type, of which clear cell RCC (ccRCC) is the most common type worldwide (Patel
et al., 2012). Over the past few decades, the incidence of RCC has increased by 2% per year, due in
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part to the difficulty of early diagnosis, and approximately 25% of
patients present with metastatic disease (Perazella et al., 2018;
Capitanio et al., 2019). There is a tremendous unmet need for
developing novel diagnostic biomarkers and therapeutic targets
that have the potential to improve the prognosis of RCC patients.

NCK-associated protein 1 (NCKAP1) is a protein found in
sporadic Alzheimer’s disease (AD) as part of the WAVE complex
along with ABI1-2, BRK1, CYFIP1-2, and WASF1-2 proteins
(Suzuki et al., 2000; Innocenti et al., 2004). NCKAP1 regulates
various intracellular processes such as apoptosis, migration, and
invasion, and plays an essential role in disease pathogenesis
(Whitelaw et al., 2020). NCKAP1 expression is highly tissue-
specific, and its expression has been found in colon, breast, and
lung cancers (Teng et al., 2016; Xiong et al., 2019a; Rai et al., 2020;
Zhang et al., 2020). On the other hand, we previously showed that
downregulation of NCKAP1 in liver cancer patients is associated
with poor prognosis (Zhong et al., 2019). These data suggest that
NCKAP1 may have tumor-promoting or suppressive effects on
certain types of cancer. However, the clinicopathological
characteristics and function of NCKAP1 in ccRCC have not
yet been confirmed.

In this study, we aimed to determine the function of NCKAP1
in ccRCC using bioinformatics analysis portal tools and
immunohistochemical validation, to examine the relationship
between NCKAP1 expression and clinicopathological features
of ccRCC, and to determine the in vitro and in vivo NCKAP1
expression was measured to characterize the clinicopathological
features of ccRCC. We also determined the in vitro and in vivo
role of NCKAP1 in a related cell line (ACHN). In addition, the
predicted functions of NCKAP1 and tumor immune infiltrating
cells were discussed.

MATERIALS AND METHODS

Patients and Samples
Shanghai Xinchao Biotechnology (Shanghai, China) was the
commercial source of renal cell carcinoma tissue microarray
(TMA). The staging of tumors was done employing the 2010
revised TNM system and the TMA consisted of stages I-II disease
(n = 52) and stage III-IV (n = 23) disease. TheWHO criteria were
utilized to specify the histological grades of tumors as mentioned,
low grade (Grade I and II; n = 55) and high grade (Grade III and
IV; n = 20).

Bioinformatics Analysis
NCKAP1 mRNA, protein expression and the associated clinical
features were examined in ccRCC using the UALCAN database
(Chandrashekar et al., 2017) (http://ualcan.path.uab.edu/). Gene
Expression Profiling Interactive Analysis (GEPIA) (Tang et al.,
2017) (http://gepia.cancer-pku.cn/index.html) was used to
analyze the survival information between NCKAP1 and
ccRCC. The LinkedOmics database (Vasaikar et al., 2018)
(www.linkedomics.org) was used to analyze the genes that
significantly correlated with NCKAP1, GO enrichment, KEGG
pathways, kinase targets and miRNA targets in ccRCC. GSCALite
(www.bioinfo.life.hust.edu.cn/web/GSCALite/) was used to

analyze and visualize the gene sets correction with pathway
activity in our study with TCGA ccRCC sample. TIMER (Li
et al., 2017) (www.cistrome.shinyapps.io/timer/) was employed to
probe components of tumor immune cell characteristics.
Immune Checkpoints, TMB, MSI R package were
implemented by R foundation for statistical computing (2020)
version 4.0.3 and software packages ggplot2 and pheatmap
(Thorsson et al., 2019).

Immunohistochemical Analysis
Immunohistochemical (IHC) staining of NCKAP1,Ki-67 and
E-cad were carried out as previously reported (Zhong et al.,
2019). The TMA and xenograft tumor sections were incubated
with the NCKAP1, Ki-67, E-cad antibody (1:100; Proteintech,
China). Stained sections were then independently assessed by two
pathologists.

Cell Culture and Transfections
The American Type Culture Collection (ATCC, Manassas, VA,
United States) was the source of human RCC cell lines ACHN,
786-O, and 769-P. The OS-RC-2 cell line was received as a gift
from the Cancer Research Center of Shantou University Medical
College (Shantou, China). Culture of the cell lines was done in
Roswell Park Memorial Institute medium (RPMI-1640, Gibco,
Gaithersburg, MD) supplemented with 10% fetal bovine serum
(FBS; Gibco, United States) and maintained in an atmosphere of
5% CO2 atmosphere at 37°C.

Hanbio Biotechnology Co., Ltd. (Shanghai, China) was the
commercial source of alentiviral NCKAP1 overexpression vector
and an empty vector. ACHN cells were transfected using
Lipofectamine 2000 and Opti-MEMI (Gibco, United States) in
accordance with the prescribed protocol of the manufacturer.

qRT-PCR Analysis
Trizol reagent (Tiangen Biotech, China) was employed to extract
the total RNA and cDNA synthesis performed using a Revert Aid
First Strand cDNA Synthesis Kit (Thermo Scientific,
United States). qRT-PCR analysis for the expression of
NCKAP1 was performed in triplicate using SYBR Green I
(Tiangen Biotech, China) in accordance with the prescribed
protocol of the manufacturer. The internal control was
GAPDH. The primer sequences for NCKAP1 and GAPDH
were as follows:

NCKAP1
5′-TCCTAAATACTGACGCTACAGCA-3′(forward)
5′-GCCTCCTTGCATTCTCTTATGTC-3′(reverse)

GAPDH
5′-GTCTCCTCTGACTTCAACAGCG-3′(forward)
5 ′-ACCACCCTGTTGCTGTAGCCAA-3′(reverse)

Western Blotting
Proteins were isolated using a whole-cell lysis assay (Beyotime
Biotechnology, Jiangsu, China). Following the resolution of the
protein samples by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) transfer to polyvinylidene
difluoride (PVDF) membranes was done for western blotting.
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Membranes were blocked with skimmed milk followed by
NCKAP1 primary antibody (1:1,000; Proteintech, China)
overnight incubation at 4°C. Subsequent secondary antibody
(1:5,000; Abcam) was done at room temperature following
membrane washing. Blots were developed using a
chemiluminescence detection kit. GAPDH (1:1,000;
Proteintech, China) was used as the loading control.

Cell Viability Assay
A Cell Counting Kit-8 (Beyotime Biotechnology, Jiangsu, China)
was employed to quantify the cell viability in accordance with the
prescribed approach. Briefly, 96 well plates were used to seed 2 ×
103 cells followed by 5 days of culture under normal conditions.
At the end of each period (1, 2, 3, 4 or 5 days), incubation of the
plates was done at 37°C for 2 hours following the addition of
10 μL of CCK-8 to each well. Absorbance values measured at
540 nm to quantify the cell viability. Triplicate assays were
conducted and repeated three times.

Colony Formation Assay
6 well plates were employed to seed 1 × 103 cells followed by
incubation at 37°C. After 2 weeks of culture, 4%
paraformaldehyde was utilized to fix colonies and subsequent

crystal violet (0.5%) staining at room temperature. Enumeration
of the colonies was done utilizing digital images of the well
obtained from each of the three replicate wells.

Wound Healing Assay
This was done to evaluate the ability of the cells to migrate.
Briefly, 24 well plates were utilized to seed 5 × 105 cells and
allowed to adhere overnight. Cells grew to confluence and then
artificial wounds were introduced using to mark a line down the
center of the cell layer. Cells were then cultured in serum-free
medium. The wounded areas were imaged right away (0 h) and at
24 h after the wound was introduced using an inverted
microscope (Olympus Corp). Triplicate experiments were done.

Transwell Assay
In order to quantify cell invasion this assay involved the coating of
Transwellinserts (8 μm pore size, Corning, NY, United States)
withmatrigel (BD Biosciences, NJ, United States) and 5 × 104 cells
were added into the upper compartment. RPMI-1640 containing
20% FBS was then added to the lower chamber of the transwell
and the cells followed by a 24-h incubation. Post-migration of
cells to the lower chamber from the upper chamber, the
membranes were then stained and the migrated cells were

FIGURE 1 | Analysis of NCKAP1 expression and survival curve in ccRCC on the basis of the UALCAN database and GEPIA survival analysis platform. (A) mRNA
expression and (B) protein expression of NCKAP1 in ccRCC and normal tissues. The overall survival (C) and disease-free survival (D) curve of NCKAP1 in ccRCC. *p <
0.05 is statistically significant.
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enumerated. The number of cells was scored from five randomly
selected fields of view on the lower membrane. The assay was
performed in triplicate.

Animal Experiments
Male BALB/c athymic nude mice (4–6 weeks old) were purchased
from Hunan SJA Laboratory Animal Co., Ltd. 3.0 × 106 cells
transfected with ACHN-NCKAP1 or ACHN-vector were injected
subcutaneously into mice to set up the ccRCC xenograft model.
When tumors were palpable, their sizes were measured every
3 days for 14 days. 2 weeks post-monitored, the sacrifice of both
groups of animals was done and tumors were isolated for growth
and IHC analyses. Tumor dimensions were gauged employing
calipers and the volumes were calculated utilizing the expression
V = (shorter diameter2 × longer diameter)/2. These experiments
were approved by the Ethics Committee of Shantou University
Medical College.

Statistical Analysis
The outcomes of the survival curve, GEPIA databases are
represented by the HR and p or the COX P-values of a log-

rank test. Assessment of the correlation of gene expression
was done using the LinkedOmics, GSCALite and TIMER
databases and compared with Pearson Correlation analysis.
The Pearson χ2 test was utilized for quantifying the
correlation between the expression of NCKAP1 and the
patient clinic-pathological parameters. Other data were
statistically evaluated using a Student’s t-test. Significance
was at P-values of < 0.05.

RESULTS

NCKAP1 Expression is Significantly
Decreased in ccRCC and Correlated With
Patient Outcomes
Using the UALCAN database, we evaluated NCKAP1 mRNA
and protein expression in ccRCC. We found that NCKAP1
mRNA expression was decreased in ccRCC tissues compared
to normal tissues, consistent with NCKAP1 protein
expression data (Figures 1A,B). To investigate the

FIGURE 2 |Correlation between NCKAP1 expression and clinicopathologic characteristics in ccRCC tissues. mRNA expression of NCKAP1 in ccRCC sub-groups
based on individual cancer stages (A), tumor grade (B), node metastasis (C) and ccRCC subtypes (D); protein expression of NCKAP1 in ccRCC sub-groups based on
individual cancer stages (E) and tumor grade (F). Promoter methylation level of NCKAP1 in normal tissues and ccRCC (G); Promoter methylation level of NCKAP1 in
ccRCC of individual tumor stage and tumor grade (H,I). *p < 0.05 and **p < 0.001 are statistically significant.
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prognostic value of NCKAP1, we used the GEPIA database to
determine NCKAP1 OS and DFS between mRNA expression
and ccRCC were analyzed. Figures 1C,D show that low
expression of NCKAP1 mRNA may indicate worse OS and
DFS in ccRCC.

Correlation of NCKAP1 Expression With
Clinical Features of ccRCC
Using the UALCAN database, we examined the correlation
between NCKAP1 expression and various clinicopathological
features of ccRCC and found that NCKAP1 mRNA expression
was significantly associated with tumor grade, TNM stage, and
lymph node metastasis (Figures 2A–C). These data were similar
to the results observed for NCKAP1 protein expression (Figures
2E,F); NCKAP1 mRNA expression was lower in advanced
cancers compared to early-stage cancers (ccA subtype vs. ccB
subtype; p < 0.001). Furthermore, methylation levels of the
NCKAP1 promoter were increased in ccRCC compared to
normal tissue (Figure 2G), confirming that this was the
opposite of NCKAP1 expression. ccRCC stages, tumor grades
1, 2, 3, and 4 also showed elevated NCKAP1 promoter
methylation levels (Figures 2H,I).

To confirm the association between NCAKP1 expression and
the clinical features in ccRCC, IHC staining of tissue microarrays
was performed. Division of the 75 specimens on the TMA was
done into a negative NCKAP1 expression group (n = 53) and a
positive NCKAP1 expression group (n = 22) (Figure 3A). The
correlations between NCKAP1 expression and clinical features
are summarized in Table 1. A significant association was
observed between low NCKAP1 expression and TNM stage,
tumor size and pathological grade, whereas NCKAP1
expression displayed no apparent associations with age, gender
and tumor position.

FIGURE 3 |NCKAP1 expression in ccRCC tissues and cell lines. (A) Positive (upper) and negative (lower) expressions of NCKAP1in ccRCC. (×100 left, ×400 right).
(B)Western blotting and (C) Quantitative real-time PCR (qPCR) results show that ACHN cells exhibited low expression compared to that of 786-O, 769-P and OS-RC-2
cells. GAPDH was used as a loading control. Overexpression of NCKAP1 (OE) in a transfected ACHN cell line verified by western blotting (D) and qPCR (E) compared to
that of ACHN cells transfected with the control vector (Vector). GAPDH was used as a loading control.

TABLE 1 | Relationship between NCKAP1 expression and clinicopathological
factors in ccRCC.

Characteristics Number Negative Positive P Value

n 75 53 22
Age 0.144
&55 28 17 11
〉55 47 36 11
Gender 0.525
Male 47 32 15
Female 28 21 7
Position 0.776
Left 36 26 10
Right 39 27 12
TNM Stage 0.039
I + II 52 33 19
III + IV 23 20 3
Tumor Size 0.315
&7 cm 41 27 14
〉7 cm 34 26 8
Grade 0.027
I + II 55 35 20
III + IV 20 18 2
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NCKAP1 Expression in ccRCC Cell Lines
and Overexpression of NCKAP1 in ACHN
Cells
A significant association was found between low expression of
NCKAP1 and clinicopathological features, suggesting that
NCKAP1 may be very much involved in ccRCC tumorigenesis.
We examined the expression of NCKAP1 in the ccRCC cell lines
described above and found that ACHN cells had significantly lower
levels of NCKAP1 expression at the mRNA and protein levels
relative to other cell lines (Figures 3B,C). Next, for further
functional verification, an overexpression plasmid (pEZ-Lv201-
NCKAP1) or control vector (pEZLv201) was transfected into
ACHN cells. After transfection, qRT-PCR and Western blotting
were employed to confirm the expression levels of NCKAP1
mRNA and protein, respectively (Figures 3D,E).

Overexpression of NCKAP1 Targets the
Ability of ACHNCells to Proliferate, Migrate,
and Invade
To explore the functional role of NCKAP1, we characterized the
ability of ACHN cells overexpressing NCKAP1 to proliferate, migrate,
and invade. As shown in Figures 4A–C, overexpression of NCKAP1

in ACHN cells suppressed the cell growth rate and reduced the
number and size of colonies formed. The number and size of colonies
formed were reduced compared to the vector control group.
Overexpression of NCKAP1 also reduced wound closure (Figures
4D,F) and invasiveness (Figures 4E,G) relative to vector controls.
These data indicate a potentially significant effect of NCKAP1 on the
ability of ACHN cells to proliferate, migrate, and invade.

Overexpression NCKAP1 inhibits RCC
Progression in vivo
We investigated the impact of NCKAP1 overexpression on the
tumor growth properties of ACHN cells by establishing a
xenograft model established in nude mice. We found that
overexpression of NCKAP1 inhibited the formation of tumors
compared to vector cells (Figure 5A). The growth rate and
weights in the ACHN-OE mice were distinctly lower against
the control group (Figures 5B,C, p < 0.05) indicating that
NCKAP1 can suppress the growth of RCC tumor xenografts.
Morever, in contrast with the NCKAP1-Vector, the NCKAP1-OE
group significantly decreased expression of Ki-67 and E-cad in
tumor tissues (Figure 5B). Taken together, these results
demonstrated that NCKAP1 inhibited the growth and
metastasis of ACHN tumor.

FIGURE 4 | NCKAP1 inhibited cell growth, migration and invasion in vitro. CCK-8 assay results showed the cell viability in (A) ACHN-OE cells compared with
ACHN-Vector cells. Cell colony formation assay showed a statistically significant decrease of (B,C) ACHN-OE cells compared with ACHN-Vector cells. Wound-healing
assay results showed a statistically significant decrease of migration (D,F) ACHN-OE cells compared with ACHN-Vector cells. Scale bar = 50 μm. Transwell invasion
assay results showed a statistically significant decrease of invaded (E,G) ACHN-OE cells compared with ACHN-Vector cells. Scale bar = 50 μm. The results are
mean ± SD values from three independent experiments, *p < 0.05.
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Enrichment Analysis of NCKAP1-Related
Co-expressed Genes in ccRCC
To explore potential molecular mechanisms of NCKAP1 in
ccRCC, we investigated NCKAP1-related coexpressed genes and
determined their enrichment function in LinkedOmics using data
from 533 TCGA ccRCC patients. Volcano plots showing these up-
and down-regulated genes are shown in Figure 6A; the top 50
genes positively and negatively associated with NCKAP1 are
shown as heat maps in Figures 6B,C. As shown in
Supplementary Figure S1, STAM2 (Cor = 0.7816, p = 6.515e-
111), ATF2 (Cor = 0.7585, p = 8.011e-101) and LANCL1 (Cor =
0.7568, p = 3.944e-100) showed strong positive correlation with
NCKAP1; IRF3 (Cor = −0.7433, p = 8.929e-95), OGFR (Cor =
−0.7132, p = 5.77e-84) and C9orf142 (Cor = −0.7126, p = 8.602e-
84) showed strong negative correlation with NCKAP1

GO Enrichment Analysis Was Performed to
Explore the Cellular Components,
Biological Processes, and Molecular
Functions of NCKAP1
The results (Figures 6D–F) revealed that genes significantly
correlated with NCKAP1 are primarily involved in the liquid
immune response, ribosomal NADGH dehydrogenase,
mitochondrial respiratory chain complex assembly, and ATPase
activity. KEGG pathway analysis (Figure 6G) revealed that
NCKAP1 is involved in the enriched in ribosomal signaling,
oxidative phosphorylation, TGF-β signaling pathway,
cytoplasmic DNA-sensing pathway, and IgA synthesis immune
network in the intestine. In addition, NCKAP1 and the top three

significant positive or negative genes, including STAM2, ATF2,
LANCL1, IRF3, OGFR, and C9orf142, were selected as hub genes
for pathway analysis by the GSCALite platform. We explored the
role of hub genes in well-known cancer-related pathways including
TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, hormone ER,
hormone AR, EMT, DNA damage response, cell cycle, and
apoptosis pathway. We found that NCAKP1 is involved in the
activation of PI3K/AKT, RTK, Hormone ER, RAS/MAPKpathway,
and Hormone AR, DNA Damage Response, Cell Cycle pathway,
whereas NCAKP1 is involved in the inhibition of EMT and TSC/
mTOR pathways. Furthermore, by using GEPIA2 database,
NCKAP1 expression was found to be significantly positively
related to the expression of EMT signaling genes VIM (p =
3.9e-07), E-cad (p = 3.2e-05), and N-cad (p = 0) in the TCGA-
KIRC cohort (Supplementary Figure S4). These results are shown
in Supplementary Figure S2, S4.

Regulatory Factor NCKAP1 Network in
ccRCC
The NCKAP1 network of kinase targets in ccRCC was examined.
As shown in Supplementary Table S1, the top five kinases are
mainly Ataxia Telangiectasia Mutated (ATM), Ribosomal Protein
S6 Kinase B1 (RPS6KB1), cyclin-dependent kinase 1 (CDK1),
cyclin-dependent kinase 5 (CDK5) and Large Tumor Suppressor
Kinase 1 (LATS1). We also explored potential miRNA targets of
NCKAP1 in ccRCC (Supplementary Table S1). The top five
miRNA targets were identified as (ATGTTAA) MIR-302C,
(CTTGTAT) MIR-381, (ATAGGAA) MIR-202, (GTATTAT)
MIR-369–3P and (ATATGCA) MIR-448.

FIGURE 5 | NCKAP1 suppressed RCC progression in vivo. (A) Representative Data showed that NCKAP1-OE significantly inhabited tomor growth in nude mice
xenograft. (B) Immunohistochemistry (IHC) staining showed that the expression of Ki-67 and E-CAD differed in tumor tissues. (Scale bar = 50 μm) (C) Tumor volume and
(D) tumor weight was decreased significantly in NCKAP1-OE cells’ mice model, *p < 0.05.
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Characterization of Immune Cells and
NCKAP1 Expression in CcRCC
Tumor immunity is extremely involved in tumorigenesis and
prognosis in ccRCC Using the TIMER web portal, we correlated
NCKAP1 expression with the intensity of immune infiltrating
cells NCKAP1 expression was found in B cells (Cor = 0. 216, p =
3.16e-06), CD8+ T cells (Cor = 0. 175, p = 2.31e-04),
macrophages (Cor = 0.308, p = 2.61e-11), neutrophils (Cor =
0.283, p = 6.88e-10) and dendritic cells (Cor = 0.234, p = 4.27e-
07), showing a clear positive correlation (Figure 7A).
Furthermore, somatic copy number changes of NCKAP1 can
indeed inhibit the infiltration of immune cells such as CD8+

T cells, B cells, neutrophils, dendritic cells, macrophages and
CD4+ T cells in ccRCC (Figure 7B). After adjusting by tumor
purity, we found an important biomarker of immune cell
correction by NCKAP1. As shown in Table 2, markers of
Monocyte (CD86, CSF1R), TAM (IL10), M1 macrophage
(NOS2, PTGS2), M2 macrophage (CD163, VSIG4, MS4A4A)
and Dendritic cell (NRP1) which showed significant
correlations with NCKAP1 were obtained. Similar results
were obtained for Th1 (STAT1), Th2 (STAT6), Tfh (BCL6),
Th17 (STAT3), and Treg (CCR8, STAT5B). In summary, we

expected a specific correlation between NCKAP1 expression
and the intensity of immune infiltration.

Immune Checkpoint, TMB, MSI, and
NCKAP1 Expression in ccRCC
Immune checkpoints play an essential role in targeted
immunotherapy and are considered an important method of
tumor therapy. In this study, we analyzed the expression of
NCKAP1 and SIGLEC15, HAVCR2, CTLA4, TIGIT, PDCD1LG2,
CD274, LAG3, and PDCD1 immune checkpoint-related genes. The
results showed that immune checkpoint markers (HAVCR2, CTLA4,
TIGIT, CD274, LAG3, PDCD1) were significantly correlated with
NCKAP1 expression; TMB and MSI were considered prognostic
markers to predict response to immunotherapy in CCRCC (Pang
et al., 2016).However, our results showed that TMBandMSIwere not
significantly correlated with NCKAP1 (Figure 8B).

DISCUSSION

ccRCC is one of the universal urinary tract malignancies (Chen
et al., 2016; Pang et al., 2016). ccRCC is challenging to diagnose

FIGURE 6 | Significant genes correlated with NCKAP1 and enrichment analysis in RCC (LinkedOmics). (A) The positive and negative genes correlated with
NCKAP1 in ccRCC (Pearson test). (B) The top 50 positive genes and (C) the top negative genes correlated with NCKAP1 in ccRCC. Red indicated positively correlated
genes, while green indicated negatively correlated genes. (D) Cellular components. (E) Biological processes. (F) Molecular functions. (G) KEGG pathway analysis.
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early, and patients often present with advanced metastatic cancer
(Rydzanicz et al., 2013). Therefore, identifying new biomarkers in
ccRCC that can be used as a therapeutic system for early diagnosis
and new treatment design is much needed.

Previous studies have shown that NCKAP1 is associated with
multiple cancer types; high NCKAP1 levels are clearly associated
with the clinical features of human non-small cell lung cancer
(NSCLC) (Zhu et al., 2021). NCKAP1 also interacts with HSP90
(heat shock protein 90) and is highly implicated in NSCLC cell
invasion and metastasis (Xiong et al., 2019a). John et al. used a
mouse xenograft breast cancer metastasis model to show that
NCKAP1 plays a critical role in invasion and metastasis by
regulating WASF3 stability and function (Cowell et al., 2017),
and Karthic et al. found that targeted deletion of NCKAP1
inhibited melanoma progression using a BRAF/PTEN-deficient
mouse model (Swaminathan et al., 2021). Zhu et al. also analyzed
gene expression profiles in the GEO database and showed that
NCKAP1 is an autophagy-related gene and is significantly associated
with event-free survival in several melanoma patients (Zhu et al.,
2019). Xiao et al. found that the miR-34c-3p target NCKAP1
promotes the progression of hepatocellular carcinoma and is
associated with poor prognosis (Xiao et al., 2017). These results
indicate that NCKAP1 may function as an oncogene in a variety of
cancer types. On the other hand, NCKAP1 has been shown to have
tumor suppressor activity that regulates the HCC cell cycle through
the regulation of Rb1/p53, but not theWASF pathway (Zhong et al.,
2019). These differences may be due to selective activation of target
genes of NCKAP1-related pathways in specific tissues.

The association between NCKAP1 expression and clinical
features in ccRCC patients remains largely unknown. We first
detected NCKAP1 mRNA and protein expression levels using the
TCGA and CPTAC datasets and found that NCKAP1 expression

was downregulated in tumors compared to normal tissues. When
compared between NCKAP1 expression, tumor grade, TNM stage,
and lymph node metastasis, a negative correlation was observed,
suggesting that NCKAP1 may have an antitumor effect in ccRCC.
Other studies have shown that transcriptional repression of tumor
suppressor genes occurs with tumor progression due to
hypermethylation of promoter regions (Ruiz de la Cruz et al.,
2021). Therefore, we speculated that low expression of NCAKP1
might be associated with high methylation levels in ccRCC, which is
consistent with our previous results. Our IHC results showed that
low expression of NCKAP1 correlated with tumor size, stage, and
grade, confirming our previous findings. GEPIA survival analysis
showed that low NCKAP1 expression was significantly associated
with poor prognosis in ccRCC patients. Functional assays also
showed that NCKAP1 affects cancer cell proliferation, migration,
and invasion, as well as inhibits tumor growth in vivo.

Next, we examined the expression of genes significantly
associated with NCKAP1 and its function in ccRCC. The
results showed that genes associated with NCKAP1 function
primarily in humoral immune responses, NADH
dehydrogenase and mitochondrial respiratory chain complex
assembly, oxidative phosphorylation, cytoplasmic DNA sensing
and TGF-β signaling pathways. It has been shown that among
these biological processes, immune response and metabolic
alterations played essential functions in tumorigenesis (Smith
et al., 2018; Monette et al., 2019; Chakraborty et al., 2021). The
TGF-β signaling pathway is frequently downregulated in tumor
cells and may increase or hinder tumor growth (Bao et al., 2021).
Prior studies have shown that TGF-β can modify tumor activity
by inhibiting host tumor immune surveillance and directly
regulating oncogenic metabolism in EMT, cellular invasion
and metastasis (Huber-Ruano et al., 2017; Lee et al., 2017;

FIGURE 7 | Correlation between NCKAP1and immune cell infiltration in ccRCC. (A) The correlation between NCKAP1 and the immune infiltration level in ccRCC
(TIMER). (B) The correlation between copy number alteration of NCKAP1 and immune cell infiltration in ccRCC.
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Ungefroren, 2019). Epithelialmesenchymal transition (EMT),
which play vital roles intumor cell migration and invasion, is
essential step in the process of metastasis. To our best knowedge,

WAVE complex has been shown to be a promoter of cell invasion
in various cancer cell types. NCKAP1, as a part ofWAVE complex,
it is therefore required for WAVE function and its regulation of

TABLE 2 | Correlation analysis between NCAKP1 and gene biomarkers of immune cells in ccRCC (TIMER).

Immune Cells Biomarkers None Purity

Cor p-Value Cor p-Value

CD8+T cell CD8A −0.096 2.62e-02 0.009 8.50e-1
CD8B −0.195 * −0.067 1.52e-01

T cell (general) CD3D −0.234 ** −0.104 2.60e-02
CD3E −0.252 *** −0.126 7.22e-03
CD2 −0.159 * −0.002 9.72e-01

B cell CD19 −0.159 * −0.056 2.32e-01
CD79A −0.235 ** −0.134 3.98e-03

Monocyte CD86 0.013 7.82e-01 0.196 *
CD115(CSF1R) −0.004 9.27e-01 0.156 *

TAM CCL2 −0.063 1.74e-01 0.074 1.12e-01
CD68 0.02 6.57e-01 0.125 7.64e-03
IL10 0.07 1.32e-01 0.218 **

M1 macrophage INOS(NOS2) 0.004 9.37e-01 0.01 8.29e-01
IRF5 −0.104 2.47e-02 0.033 4.81e-01
COX2(PTGS2) 0.201 ** 0.251 ***

M2 macrophage CD163 0.147 1.44e-03 0.299 ***
VSIG4 0.036 4.34e-01 0.162 *
MS4A4A 0.057 2.14e-01 0.213 **

Neutrophils CD66b(CEACAM8) 0.113 1.45e-02 0.112 1.61e-02
CD11b(ITGAM) 0.003 9.41e-01 0.128 6.20e-03
CCR7 −0.177 * −0.029 5.38e-01

NK KIR2DL1 −0.109 1.79e-02 −0.037 4.25e-01
KIR2DL3 −0.128 5.24e-03 −0.027 5.64e-01
KIR2DL4 −0.17 * −0.067 1.54e-01
KIR3DL1 −0.149 1.21e-03 −0.065 1.68e-01
KIR3DL2 −0.199 ** −0.086 6.48e-02
KIR3DL3 −0.108 1.93e-02 −0.077 1.02e-01
KIR2DS4 −0.161 4.4e-04 −0.098 3.60e-02

Dendritic cell HLA−DPB1 −0.174 * −0.029 5.41e-01
HLA−DQB1 −0.167 2.8e-04 −0.031 5.02e-01
HLA−DRA −0.105 2.33e-02 0.061 1.31e-01
HLA−DPA1 −0.14 2.29e-03 −0.003 9.41e-01
BDCA−1(CD1C) −0.075 1.02e-01 0.062 1.88e-01
BDCA−4(NRP1) 0.313 *** 0.4 ***
CD11c(ITGAX) −0.084 6.91e-02 0.04 3.90e-01

Th1 T−bet (TBX21) −0.16 4.86e-04 −0.016 7.27e-01
STAT4 0.018 6.92e-01 0.176 *
STAT1 0.267 *** 0.399 ***
IFN−γ(IFNG) −0.047 3.04e-01 0.104 2.59e-02
TNF−α(TNF) −0.098 3.31e-02 0.046 3.27e-01

Th2 GATA3 −0.137 2.84e-03 0.035 4.50e-01
STAT6 0.249 *** 0.25 ***
STAT5A 0.076 9.76e-02 0.086 6.69e-02
IL13 −0.056 2.25e-01 −0.005 9.13e-01

Tfh BCL6 0.168 * 0.239 **
IL21 0.03 5.21e-01 0.125 7.25e-03

Th17 STAT3 0.389 *** 0.438 ***
IL17A −0.033 4.8e-01 −0.008 8.65e-01

Treg FOXP3 −0.211 ** −0.08 8.68e-02
CCR8 0.092 4.53e-02 0.264 ***
STAT5B 0.298 *** 0.31 ***
TGFβ(TGFB1) −0.034 4.57e-01 0.059 2.09e-01

T cell exhaustion PD−1(PDCD1) −0.228 ** −0.11 1.84e-02
CTLA4 −0.073 1.14e-01 0.042 3.67e-01
LAG3 −0.203 * −0.085 7.03e-02
TIM3(HAVCR2) −0.029 5.34e-01 0.15 1.30e-03
GZMB −0.214 ** −0.086 6.50e-02

*p < 0.05. **p < 0.01. ***p < 0.001
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invasion. Targeting NCKAP1 is thus reported to lead to the
suppression of metastasis (Teng et al., 2016). Taken together,
NCKAP1 and its related genes are primarily involved in tumor-
related functions and playing important roles in EMT-related
signaling pathways, suggesting that NCKAP1 may mediate
ccRCC tumorigenesis and development.

Tumor-infiltrating immune cells are a crucial element in the
tumor microenvironment and have been found to influence
proliferation, invasion, and metastasis in various cancer types
(Bremnes et al., 2016; Xiong et al., 2019b; Yang et al., 2020).
Tumor-infiltrating immune cells and immune checkpoints are
thought to play an essential role in immunotherapy, making them
hotspot studies in ccRCC treatment (Xu et al., 2021; Wu et al.,
2022). Our results revealed a clear correlation between NCKAP1
levels and immune cell counts and biomarker levels.
Furthermore, the association with various immune
checkpoints (HAVCR2, CTLA4, TIGIT, CD274, LAG3, and
PDCD1) strongly suggested that NCKAP1 is a co-regulator of
immune checkpoints in ccRCC. These results suggest that
NCKAP1 may play an essential role in regulating tumor
immune invasion and immunotherapy, which in turn may
affect the prognosis of ccRCC.

This study has several limitations, and future studies should
validate these results in a more significant number of cases and
thoroughly investigate the detailed mechanisms by which
NCKAP1 is involved in ccRCC.

CONCLUSION

In this study, using multiple portal databases, we found that
low NCKAP1 expression levels were negatively correlated
with clinical features and prognosis of ccRCC. Furthermore,
our results indicate that NCAKP1 may play an important role
in oncogenesis in vitro and in vivo. In addition, NCKAP1 and
its related genes function primarily in metabolic-related
signaling pathways and immune cell infiltration,
predictably suggesting that NCKAP1 is a prognostic
biomarker for ccRCC.
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