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Unsupervised Feature Learning With
Winner-Takes-All Based STDP
Paul Ferré 1,2*, Franck Mamalet 2 and Simon J. Thorpe 1
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We present a novel strategy for unsupervised feature learning in image applications

inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We

show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and

ReLU artificial neurons when applied to non-temporal data. We apply this to images

using rank-order coding, which allows us to perform a full network simulation with a

single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning

rule compatible with training on batches of images. Two mechanisms to stabilize the

training are also presented : a Winner-Takes-All (WTA) framework which selects the most

relevant patches to learn from along the spatial dimensions, and a simple feature-wise

normalization as homeostatic process. This learning process allows us to train multi-layer

architectures of convolutional sparse features. We apply our method to extract features

from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features

are relevant for classification. We finally compare these results with several other state of

the art unsupervised learning methods.

Keywords: Spike-Timing-Dependent-Pasticity, neural network, unsupervised learning, winner-takes-all, vision

1. INTRODUCTION

Unsupervised pre-training methods help to overcome difficulties encountered with current neural
network based supervised algorithms. Such difficulties include : the requirement for a large
amount of labeled data, vanishing gradients during back-propagation and the hyper-parameters
tuning phase. Unsupervised feature learning may be used to provide initialized weights to the
final supervised network, often more relevant than random ones (Bengio et al., 2007). Using
pre-trained weights tends to speed up network convergence, and may also increase slightly the
overall classification performance of the supervised network, especially when the amount of labeled
examples is small (Rasmus et al., 2015).

Unsupervised learning methods have recently regained interest due to new methods such as
Generative Adverserial Networks (Goodfellow et al., 2014; Salimans et al., 2016), Ladder networks
(Rasmus et al., 2015), and Variational Autoencoders (Kingma and Welling, 2013). These methods
reach state of the art performances, either using top layer features as inputs for a classifier or
within a semi-supervised learning framework. As they rely on gradient descent methods to learn
the representations for their respective tasks, computations are done with 32-bits floating point
values. Even with dedicated hardware such as GPUs and the use of 16-bits half-floats type (Gupta
et al., 2015), floating point arithmetic remains time and power consuming for large datasets. Several
works are addressing this problem by reducing the resolution of weights, activations and gradients
during inference and learning phases (Stromatias et al., 2015; Esser et al., 2016; Deng et al., 2017)
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and have shown small to zero loss of accuracy with such
supervised methods. Nevertheless, learning features both with
unsupervised methods and lower precision remains a challenge.

On the other hand, Spiking Neural Networks (SNNs)
propagate information between neurons using spikes, which
can be encoded as binary values. Moreover, SNNs often
use an unsupervised Hebbian learning scheme, Spike-Timing-
Dependent-Plasticity (STDP), to capture representations from
data. STDP uses differences of spikes times between pre and post-
synaptic neurons to update the synaptic weights. This learning
rule is able to capture repetitive patterns in the temporal input
data (Masquelier and Thorpe, 2007). SNNs with STDP may only
require fully feed-forward propagation to learn, making them
good candidates to perform learning faster than backpropagation
methods.

Our contribution is three-fold. First, we demonstrate that
Leaky Integrate and Fire neurons act as artificial neurons
(perceptrons) for temporally-static data such as images. This
allows the model to infer temporal information while none
were given as input. Secondly, we develop a winner-takes-
all (WTA) framework which ensure a balanced competition
between our excitatory neuron population. Third, we develop
a computationally-efficient and nearly parameter-less STDP
learning rule for temporally static-data with binary weight
updates.

2. RELATED WORK

2.1. Spiking Neural Networks
2.1.1. Leaky-Integrate-and-Fire Model
Spiking neural networks are widely used in the neuroscience
community to build biologically plausible models of neuron
populations in the brain. These models have been designed
to reproduce information propagation and temporal dynamics
observable in cortical layers. As many models exists, from the
most simple to the most realistic, we will focus on the Leaky-
Integrate-and-Fire model (LIF), a simple and fast model of a
spiking neuron.

LIF neurons are asynchronous units receiving input signals
called spikes from pre-synaptic cells. Each spike xi is modulated
by the weight wi of the corresponding synapse and added to
the membrane potential u. In a synchronous formalism, at each
time step, the update of the membrane potential at time t can be
expressed as follow:

T
δu(t)

δt
= −(u(t)− ures)+

n
∑

i=1

wixi,t (1)

Where T is the time constant of the neuron, n the number of
afferent cells and ures is the reset potential (which we also consider
as the initial potential at t0 = 0).

When u reaches a certain threshold T, the neuron emits a
spike to its axons and resets its potential to its initial value ures.

This type of network has proven to be energy-efficient Gamrat
et al. (2015) on analog devices due to its asynchronous and sparse
characteristics. Even on digital synchronous devices, spikes can

be encoded as binary variables, therefore carrying maximum
information over the minimum memory unit.

2.1.2. Rank Order Coding Network
Amodel which fits the criteria of processing speed and adaptation
to images data is the rank order coding SNN (Thorpe et al.,
2001). This type of network processes the information with
single-step feed-forward information propagation by means
of the spike latencies. One strong hypothesis for this type
of network is the possibility to compute information with
only one spike per neuron, which has been demonstrated
in rapid visual categorization tasks (Thorpe et al., 1996).
Implementations of such networks have proven to be efficient for
simple categorization tasks like frontal-face detection on images
(Van Rullen et al., 1998; Delorme and Thorpe, 2001).

The visual-detection software engine SpikeNet Thorpe et al.
(2004) is based on rank order coding networks and is used
in industrial applications including face processing for interior
security, intrusion detection in airports and casino games
monitoring. Also, it is able to learn new objects with a single
image, encoding objects with only the first firing spikes.

The rank order model SpikeNet is based on a several layers
architecture of LIF neurons, all sharing the time constant T , the
reset potential ures and the spiking threshold T. During learning,
only the first time of spike of each neuron is used to learn a
new object. During inference, the network only needs to know
if a neuron has spiked or not, hence allowing the use of a binary
representation.

2.2. Learning With Spiking Neural Networks
2.2.1. Deep Neural Networks Conversion
The computational advantages of SNNs led some researchers
to convert fully learned deep neural networks into SNNs
(Diehl et al., 2015, 2016), in order to give SNNs the inference
performance of back-propagation trained neural networks.

However, deep neural networks use the back-propagation
algorithm to learn the parameters, which remains a
computationally heavy algorithm, and requires enormous
amounts of labeled data. Also, while some researches hypothesize
that the brain could implement back-propagation (Bengio et al.,
2015), the biological structures which could support such
error transmission process remain to be discovered. Finally,
unsupervised learning within DNNs remains a challenge,
whereas the brain may learn most of its representations through
unsupervised learning (Turk-Browne et al., 2009). Suffering from
both its computational cost and its lack of biological plausibility,
back-propagation may not be the best learning algorithm to take
advantage of SNNs capabilities.

On the other hand, researches in neuroscience have developed
models of unsupervised learning in the brain based on SNNs.
One of the most popular model is the STDP.

2.2.2. Spike Timing Dependent Plasticity
Spike-Timing-Dependent-Plasticity is a biological learning rule
which uses the spike timing of pre and post-synaptic neurons
to update the values of the synapses. This learning rule is
said to be Hebbian (“What fires together wires together”).
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Synaptic weights between two neurons updated as a function
of the timing difference between a pair or a triplet of pre and
post-synaptic spikes. Long-Term Potentiation (LTP) or a Long-
Term Depression (LTD) are triggered depending on whether a
presynaptic spike occurs before or after a post-synaptic spike,
respectively.

Formulated two decades ago by Markram et al. (1997), STDP
has gained interest in the neurocomputation community as it
allows SNN to be used for unsupervised representation learning
(Kempter et al., 2001; Rao and Sejnowski, 2001; Masquelier and
Thorpe, 2007; Nessler et al., 2009). The features learnt in low-
level layers have also been shown to be relevant for classification
tasks combined with additional supervision processes in the top
layers (Beyeler et al., 2013; Mozafari et al., 2017). As such STDP
may be themain unsupervised learningmechanisms in biological
neural networks, and shows nearly equivalent mathematical
properties to machine learning approaches such as auto-encoders
(Burbank, 2015) and non-negative matrix factorization (Carlson
et al., 2013; Beyeler et al., in review).

We first consider the basic STDP pair-based rule from
Kempter et al. (2001). Each time a post synaptic neuron spikes,
one computes the timing difference 1t = tpre − tpost (relative to
each presynaptic spike) and updates each synapse w as follows:

1w =







A+.e
1t
T+ if 1t < 0

A−.e
1t
T− otherwise

(2)

where A+ > 0,A− < 0, and T+, T− > 0. The top and bottom
terms in this equation are respectively the LTP and LTD terms.

This update rule can be made highly computationally efficient

by removing the exponential terms e
1t
T , resulting in a simple

linear time-dependent update rule.
Parameters A+ and A− must be tuned on order to regularize

weight updates during the learning process. However in
practice, tuning these parameters is a tedious task. In order
to avoid weight divergences, networks trained with STDP
learning rule should also implement stability processes such
as refractory periods, homoeostasis with weight normalization
or inhibition. Weight regularization may also be implemented
directly by reformulating the learning rule equations. For
instance in Masquelier and Thorpe (2007), the exponential term
in Equation (2) is replaced by a process which guaranties that the
weights remain in the range [0...1] :

1w =

{

A+.w.(1− w) if 1t < 0

A−.w.(1− w) otherwise
(3)

Note that in Equation (3), the amplitude of the update is
independent from the absolute time difference between pre
and post-synaptic spikes, which only works if pairs of spikes
belongs to the same finite time window. In Masquelier and
Thorpe (2007) this is guaranteed by the whole propagation
schemes, which is applied on image data and rely on a single
feedforward propagation step taking into account only one spike
per neuron. Thus the maximum time difference between pre and
post-synaptic spikes is bounded in this case.

2.3. Regulation Mechanisms in Neural
Networks
2.3.1. WTA as Sparsity Constrain in Deep Neural

Networks
Winner-takes-all (WTA) mechanisms are an interesting property
of biological neural networks which allow a fast analysis of objects
in exploration tasks. Following de Almeida et al. (2009), gamma
inhibitory oscillations perform a WTA mechanism independent
from the absolute activation level. They may select the principle
neurons firing during a stimulation, thus allowing, e.g., the
tuning of narrow orientation filters in V1.

WTA has been used in deep neural networks in Makhzani and
Frey (2015) as a sparsity constraint in autoencoders. Instead of
using noise or specific loss functions in order to impose activity
sparsity in autoencodermethods, the authors propose an activity-
driven regularization technique based on a WTA operator, as
defined by Equation (4).

WTA(X, d) =

{

Xj if |Xj| = max
k∈d

(|Xk|)

0 otherwise
(4)

where X is a multidimensional matrix and d is a set of given
dimensions of X.

After definition of a convolutional architecture, each layer is
trained in a greedy layer-wise manner with representation from
the previous layer as input. To train a convolutional layer, a WTA
layer and a deconvolution layer are placed on top of it. The
WTA layer applies the WTA operator on the spatial dimensions
of the convolutional output batch and retains only the np%
first activities of each neuron. This way for a given layer with
N representations map per batch and C output channels, only
N.np.C activities are kept at their initial values, all the others
activation values being zeroed. Then the deconvolutional layer
attempts to reconstruct the input batch.

While this method demonstrates the potential usefulness
of WTA mechanisms in neural networks, it still relies on
computationally heavy backpropagation methods to update the
weights of the network.

2.3.2. Homosynaptic and Heterosynaptic

Homeostasis
In their original formulation, Hebbian-type learning rule (STDP,
Oja rule , BCM rule) does not have any regulation process. The
absence of regulation in synaptic weights may impact negatively
the way a network learns. Hebbian learning allows the synaptic
weights to grow indefinitely, which can lead to abnormally high
spiking activity and neurons to always win the competitions
induced by inhibitory circuits.

To avoid such issues, two types of homeostasis have been
formulated.

Homosynaptic homeostasis acts on a single synapse and is
depends on its respective inputs and outputs activity only. This
homeostatic process can be modeled with a self-regulatory term
in the Hebbian rule as in Masquelier and Thorpe (2007) or as
a synaptic scaling rule depending on the activity driven by the
synapse as in Carlson et al. (2013).
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Heterosynaptic homeostasis is a convenient way to regulate
the synaptic strength of a network. The model of such
homeostasis takes into account all the synapses connected to
a given neuron, all the synapses in a layer (like the L2 loss
weight decay in deep learning) or at the network scale. Biological
plausibility of such process is still discussed. Nevertheless, some
evidences of heterosynaptic homeostasis have been observed
in the brain to compensate runaway dynamics of synaptic
strength introduced by Hebbian learning (Royer and Paré, 2003;
Chistiakova et al., 2014). It then plays an important role in the
regulation of spiking activity in the brain and is complementary
to homosynaptic plasticity.

2.4. Neural Networks and Image
Processing
Image processing with neural networks is performed with
multiple layers of spatial operations (like convolutions, pooling,
and non-linearities), giving the nameDeep Convolutional Neural
Networks to these methods. Their layer architecture is directly
inspired from the biological processes of the visual cortex, in
particular from the well known HMAX model (Riesenhuber and
Poggio, 1999), except that the layers’ weights are learnt with
back-propagation. Deep CNN models use a single-step forward
propagation to perform a given task. Even if convolutions on
large maps may be computationally heavy, all the computations
are done through only one pass in each layer. One remaining
advantage of CNNs is their ability to learn from raw data, such
as pixels for images or waveforms for audio.

On the other hand, since SNNs use spikes to transmit
information to the upper layers, they need to perform neuron
potential updates at each time step. Hence, applying such
networks with a convolutional architecture requires heavy
computations once for each time step. However, spikes and
synaptic weights may be set to a very low bit-resolution (down to
1 bit) to reduce this computational cost Thorpe et al. (2004). Also,
STDP is known to learn new representations with a few iterations
Masquelier et al. (2009), theoretically reducing the number of
epochs required to converge.

3. CONTRIBUTION

Our goal here is to apply STDP in a single-step feed-forward
formalism directly from raw data, which should be beneficial in
the cases where training times and data labeling are issues. Thus
we may select a neural model which combines the advantages of
each formalism in order to reduce the computational cost during
both training and inference.

3.1. Feedforward Network Architecture
3.1.1. Neural Dynamics
Here, we will consider the neural dynamics of a spiking LIF
network in presence of image data. Neural updates in the
temporal domain in such neural architecture are as defined by
Equation (1).

Since a single image is a static snapshot of visual information,
all the xi,t are considered constant over time. Hence

∑n
i=1 wi.xi,t

is also constant over time under the assumption of static synaptic
weights during the processing of the current image.

Let us define vin =
∑n

i=1 wi.xi,t ,∀t the total input signal to
the neuron. Let us also determine u(t0 = 0) = ures as an
initial condition. As vin is constant over time, we can solve the
differential equation of the LIF neuron, which gives:

T
δu(t)

δt
= −(u(t)− ures)+ vin

⇒ u(t) = −vin.e
−t
T + ures + vin ∀t > 0

(5)

The precise first spike-time of a neuron given its spiking
threshold T is given by :

ts = −T .log(1+
ures − T

vin
) (6)

Since Equation (6) decreases monotonically wrt. vin, we can
recover the intensity-latency equivalence. The relative order of
spike-times is also known since vin,1 > vin,2 → ts,1 < ts,2.

3.1.2. Equivalence With Artificial Neuron With ReLU

Activation
Thus from Equation (6), for each neuron we can determine the
existence of a first spike, along with its precise timing. Hence,
since we are only concerned with the relative times of first
spikes across neurons, one can replace the computation at each
time-step by a single-step forward propagation given the input
intensity of each neuron.

The single-step forward propagation correspond to LIF
integration when t → ∞. As we are first looking for the existence
of any ts such that u(ts) > T:

lim
t→∞

u(t)− T = lim
t→∞

−vin.e
−ts
T + ures + vin − T

= ures + vin − T
(7)

Having vin =
∑n

i=1 wi.xi and b = ures − T,

lim
t→∞

u(t)− T = b+

n
∑

i=1

wi.xi (8)

which is the basic expression of the weighted sum of a perceptron
with bias.Also, ts exists if and only if b +

∑n
i=1 wi.xi > 0,

which shows the equivalence between LIF neurons with constant
input at infinity and the artificial neuron with rectifier activation
function (ReLU).

This demonstration can be generalized to local receptive fields
with weight sharing, and thus we propose to replace the time-
step computation of LIF neurons, by common GPU optimized
routines of deep learning such as 2D convolutions and ReLU
non-linearity. This allows us to obtain in a single-step all the
first times of spikes -inversely ordered by their activation level-
and nullified if no spike would be emitted in an infinite time.
Moreover, these different operations are compatible with mini-
batch learning. Hence, our model is also capable of processing
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several images in parallel, which is an uncommon feature in
STDP-based networks.

3.1.3. Winner-Takes-All Mechanisms
Following the biological evidence of the existence of WTA
mechanisms in visual search tasks (de Almeida et al., 2009)
and the code sparsity learned with such processes (Makhzani
and Frey, 2015), we may take advantage of WTA to match
the most repetitive patterns in a given set of images. Also,
having to learn only these selected regions should drastically
decrease the number of computations required for the learning
phase (compared to dense approaches in deep learning and SNN
simulations). Inspired by this biological mechanism, we propose
to use three WTA steps as sparsifying layers in our convolutional
SNN architecture.

The first WTA step is performed on feature neighborhood
with a max-pooling layer on the convolution matrix with kernel
size kpool >= kconv and stride spool = kconv. This acts as a lateral
inhibition, avoiding the selection of two spikes from different
kernels in the same region.

Next we perform a WTA step with the WTA operation
(Equation 4) on the channel axis for each image (keeping at each
pooled pixel, the neuron that spikes first). This forces each kernel
to learn from different input patches.

The third WTA step is performed with WTA operation on
spatial axes as in Makhzani and Frey (2015). This forces the
neuron to learn from the most correlated patch value in the input
image.

The WTA operation (Equation 4) is not to be confused with
the Maxout operation from Goodfellow et al. (2013) and the
max pooling operation, since these latter squeeze the dimensions
on which they are applied, while the WTA operation preserves
them.

Then we extract the indexes of the selected outputs along with
their sign and their corresponding input patch. Extracted input
patches are organized in k subsets, each subset corresponding
to one output channel. These matrices will be refered to
as follow :

• Yk : matrices of selected outputs, of dimension (mk, cout)
• Xk : matrices of selected patches, of dimension (mk, cin×hin×

win)
• W : matrices of filters, of dimension (cin × hin × win, cout)

with mk the number of selected indexes and patches for neuron
k ∈ [1...cout], cout the number of channels (or neurons) of the
output layer, and cin, hin,win are the receptive field size (resp.
channel, height and width). Note that at most one output is
selected per channel and per image,mk ≤ N.

The WTA in our model has two main advantages. First, it
allows the network to learn faster on only a few regions of the
input image. Second, classical learning frameworks use the mean
of weights gradient matrix to update the synaptic parameters.
By limiting the influence of averaging on the gradient matrix,
synaptic weights are updated according to the most extreme
values of the input, which allow the network to learn sparse
features.

Note that the network is able to propagate relative temporal
information through multiple layer, even though presented
inputs lack this type of data. It is also able to extract regions
which are relevant to learn in terms of informationmaximization.
The full processing chain for propagation and WTA is shown in
Figure 1.

3.2. Binary Hebbian Learning
3.2.1. Simplifying the STDP Rule
Taking inspiration from the STDP learning rule, we propose a
Hebbian correlation rule which follows the relative activations of
input and output vectors.

Considering the input patch value xn,i ∈ Xn, n ∈ [1...mk], i ∈
[1...cin × hin × win], the corresponding weight value wk,i, the
selected output value yk ∈ Yk and a heuristically defined
threshold Tl, the learning rule is described in Equation (9).

1wk,i =

{

sign(xn,i).sign(yk) if |xn,i| > Tl

−sign(wk,i) otherwise
(9)

The learning rule is effectively Hebbian as shown in the next
paragraph and can be implemented with lightweight operations
such as thresholding and bit-wise arithmetic.

Also, considering our starting hypotheses, where we limit to
one the number of spikes per neuron during a full propagation
phase for each image, it is guaranteed that, for any pair of pre
and post-synaptic neuron, the choice of LTP or LTD exist and
is unique for each image presentation. These hypotheses are
similar to the ones in Masquelier and Thorpe (2007), where these
conditions simulates a single wave of spikes within a range of 30
ms.

3.2.2. Equivalence to Hebbian Learning in Spiking

Networks
In this section we show the Hebbian behavior of this learning
rule. For this, we first focus on the “all positive case” (x, y,w ∈

R+) and will explain in the next section the extension to
symmetrical neurons.

In the case of “all positive,” the Equation (9) can be rewritten
as Equation (10).

1wk,i =

{

1 if xk,i > u(tpost)

−1 otherwise
(10)

This rule tends to increase the weights when the input activity
is greater than a threshold (here the post-synaptic neuron firing
threshold), and decreases it otherwise.

Equation (10) is equivalent to the pair-based STDP rule
presented in Equation (2) removing the exponential term and
using A+ = 1 and A− = −1.

3.2.3. Extension to Symmetric Neurons
We have demonstrated that the proposed learning rule is
effectively Hebbian in the case where x,w, y ∈ R+. Our learning
rule also takes into account negative values of x,w, y. In biological
networks models, negative values do not seem to make much
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FIGURE 1 | Processing chain for the region WTA.

TABLE 1 | Weight update given x, y, and w following the proposed learning rule

(Equation 9).

x < −T −T < x < T x > T

y > 0 −1 −sign(w) +1

y < 0 +1 −sign(w) −1

sense since firing rates and synaptic conductance are expressed
in units defined only in R+.

Nevertheless, negative values are used in many spiking
networks models in the very first layer of visual features. For
instance, ON-centered-OFF-surround and OFF-centered-ON-
surround filters (also known as Mexican hat filters) are often
used to pre-process an image in order to simulate retinal cells
extracting gradients. These two filters are symmetric with respect
to the origin. Hence a common computational optimization is
to apply only one of the two filters over the image, separating
negative and positive resulting values as OFF and ON activities,
respectively.

We extend this computational trick to neurons in any
neural layer under the hypothesis that negative values for x,w, y
corresponds to activities and weights of synaptically symmetric
neurons. For a neuronwith constant input activityX and synaptic
weights W of size n, we can express its output activity y =
∑n

i=1 Xi × Wi. If y < 0, we can convert it to a positive value
using the synaptically opposite weights

∑n
i=1 Xi ×−Wi = −y.

Under the hypothesis of the existence of a pair-wise
competition between neurons with symmetric weights (for
instance with inhibition), this computational trick remains
biologically plausible.

Considering now the proposed learning rule, the weights
update given x, y, and w is shown in Table 1. In this table, the
first spikes (|x| > T) will induce an update of the weight to
increase the |y| (1w = sign(y).sign(x)). Meanwhile, the weights
corresponding to the last spike will be reduced (1w = −sign(w)).

With this framework the choice of the parameter Tl is critical.
Thanks to the WTA mechanism developed, the selection of a
neuron for learning is performed disregarding its firing threshold
T, set to zero in practice. Hence contrary to Masquelier and

Thorpe (2007), we cannot rely on the precise firing threshold
of the neuron. In order to approximate this threshold, we
developed two strategies described in the next paragraphs. These
strategies are made adaptative such that the learning rule can
be invariant to contrast variation. Also the adaptative behavior
of this threshold avoids to tune an additional parameter in
the model.

3.2.4. Hard Percentile Threshold
The first strategy applied follows the STDP learning rule, which
fixes a time constant for LTP and LTD. In our framework this
is implemented as a percentile of the input activity to map their
influence in the spike. For each input vector xn ∈ Xk∀k , we
compute the patch threshold Tl as theminimum value in the local
pn% percentile. pn% is manually set and global for all the patches.

1wk,i =

{

−sign(wk,i) if |xn,i| ≤ pn%

sign(xn,i).sign(yk) otherwise
(11)

However, we have seen experimentally that the threshold
tuning may be cumbersome. As it regulates the sparsity of the
synaptic weight matrix, fixing the sparsity manually may lead
to unsatisfying results. Also, getting the percentiles uses the
index-sorting operation which is time consuming.

3.2.5. Average Correlation Threshold
We propose a second strategy which relies on the computation
of an adaptative threshold between LTP and LTD. For each
input vector xn ∈ Xk∀k we compute the sign correlated input
activation as ˆxn,i = xn,i.sign(wk).sign(yk). Next we compute the
threshold Tl as the mean of x̂n. Then we apply the learning rule
in Equation (9).

With this strategy, the learning rule is also equivalent to
Equation (12), which is straightforward to implement since it
avoids conditional branching.

1wk,i = sign(xn,i.sign(yk).sign(wk,i)− Tl).sign(wk,i) (12)

Using the mean sign corrected input activation as a threshold, the
model is able to be invariant to local contrasts. It also requires the
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calculation of the mean and a thresholding, two operations that
are much faster than sorting. Finally, the adaptative behavior of
such a threshold automate the sparsity of synaptic weights.

3.2.6. Computing Updates From a Batch of Images
Since our method allows the propagation of several images at the
same time through mini-batch, we can also adapt our learning
rule when batches of images are presented. Since biological visual
systems never deal with batches of dozen images at once, the
following proposal is a computational trick to accelerate the
learning times, not a model of any existing biological feature.

When all the update vectors have been computed, the
weight update vector for the current batch is obtained through
the binarization of the sum of all the update vector for the
corresponding kernel. We finally modulate the update vector
with a learning rate λ.

Un,i =

mk
∑

k=1

1wk,i (13)

1Wk,i =

{

−1 if Un,i ≤ 0

1 otherwise
(14)

Wk,i = Wk,i + λ.1Wk,i (15)

3.2.7. Weight Normalization Through Simple Statistics
Since each update step adds +λ or −λ to the weights, a
regularization mechanism is required to avoid the weights
growing indefinitely. Also we want to maintain a fair competition
between neurons of the same layer, thus the total energy of the
weights should be the same for all the neurons.

We propose a simple model of heterosynaptic homeostasis
in order to regulate the weights of each neuron.We chose to
normalize the weights of each neuron k by mean centering and
standardization by variance. Hence, after each update phase, the
normalization is done as follows :

Wk =
Wk − µ(Wk)

σ 2(Wk)
(16)

This way, even neurons which did not learn a lot during the
previous epochs can win a competition against the others. In
practice, we set λ in an order of magnitude of 10−1 and halved it
after each epoch. Given the order of magnitude of λ and the unit
variance of Wk, we know that ninety-five percent of the weights
belongs to the interval [−1.5...1.5]. In fact, only a few batches of
images are necessary to modify the influence of a given afferent.
Two neurons responding to a similar pattern can thus diverge
and specialize on different patterns in less than a dozen training
batches.

As a detail, if the WTA region selected is small, some neurons
may learn parts of patterns already learned by an other one. Since
σ 2(Wk) = 1 and most of the weights are equal to zero, the values
of the remaining weights would grow very large. This can end up
in multiple neurons learning almost identical patterns. We have
observed that clipping weights after normalization between the
range [−2...2] prevents this situation.

3.3. Multi-layer Architectures With Binary
STDP
This proposed approach is able to learn a multi-layer
convolutional architecture as defined by the user. It does
not require a greedy layer-wise training, all the convolutional
layers can be trained in parallel. We can optionally apply a
non-linearity, a downsampling operation or a normalization
after each convolution layer.

Once all the features layers have learned, the whole features
architecture can process images as a classical convolutional
neural network in order to obtain the new representations.

4. EXPERIMENTS AND RESULTS

4.1. Method
The proposed method learns, unsupervised, convolutional
features from image data. In order to validate our approach,
we evaluated the learnt features on four different classification
datasets : MNIST, ETH80, CIFAR10, and STL10. Architectures
and hyper-parameters were tuned separately for each dataset,
details being given in the relevant sections.

The overall evaluation method remains the same for each
dataset. The proposed framework will be used to learn one or
several convolutional layer with the simplified STDP. In order to
show the faster convergence of features with our method, we will
only train these layer with a subset of the full training dataset with
very few epochs.

Once the features are learnt, we show qualitatively the learnt
features for each dataset. To quantitatively demonstrate their
relevance, we use the extracted features as input to a supervised
classifier. Although as state of the art classification are deep
learning systems, we use a simple Multi-Layer Perceptron (MLP)
with zero, one, or two hidden layers (depending on the dataset)
taking as inputs the learnt features with the proposed solution.

For all the experiments, we started with a lightweight network
architecture (the simplest available in the literature if available),
and incrementally added complexity until further additions
stopped improving performance. The classifier on top of the
network starts as linear dense layer with as many neurons as the
number of classes, and is complexified with intermediate layers
as the architectural-tuning goes on.

We compare our results with other state of the art
unsupervised feature learning methods specific for each dataset.

4.2. MNIST
The MNIST dataset contains 60,000 training images and 10,000
testing images of size 28× 28 containing handwritten digits from
0 to 9. MNIST digits are written in white on a black background,
hence pixel values are distributed across two modes. Considering
the data distribution and the limited number of classes, MNIST
may be considered as an easy classification task for current state-
of-the-art methods. As a matter of fact, neural based methods
do not need deep architectures in order to perform well on this
dataset. Light-weight architectures can be defined in order to
explore issues with the developed method. Once the method
has satisfying results on MNIST, more complex datasets may be
tackled.
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FIGURE 2 | Architecture of the network in the MNIST experiment.

FIGURE 3 | Eight 5 × 5 features learned from MNIST dataset on raw images.

To perform classification on this dataset, we defined a
lightweight convolutional architecture of features close to LeNet
LeCun et al. (1998), presented in Figure 2. Since achieving high
classification accuracy on MNIST is easy with a high number of
neurons per layer, the number of neurons per layer was kept as
low as possible in order to actually verify the relevance of the
features.

Unsupervised learning was performed over only 5,000
random images from the dataset for 5 epochs, which only
represents 25,000 image presentations. A visualization of the
learnt features is shown in Figure 3.

Once the features were learnt, we used a two-hidden layers
MLP to perform classification over the whole transformed
training set. The learnt features and classifier were then run on
all the testing set images in order to get the test error rate.

Classification performances are reported in Table 2. While the
best methods in the state-of-the-art reach up to 99.77% accuracy,
we did not report these results since these approaches use
supervised learning with data augmentation, which is outwith the

TABLE 2 | MNIST accuracy.

Method Accuracy (%)

SDNN (Kheradpisheh et al., 2016) 98.40

Two layer SNN (Diehl and Cook, 2015) 95.00

PCA-Net (Chan et al., 2014) 98.94

Our method 98.49

scope of this paper. All the reported results were obtained without
data augmentation and using unsupervised feature learning.

Our approach performs as well as SDNN since they are
structurally close, reaching state-of-the-art performance without
fine-tuning and data-augmentation. While PCA-Net has better
performance, learning was done on twice the number of samples
we used. Doubling the number of samples to match the
same number used for PCA-Net (10,000) did not improve the
performance of our method.

4.3. ETH80
The ETH80 (Leibe and Schiele, 2003) contains 3,280 color images
of eight different object categories (apple, car, cow, cup,dog,
horse, pear, tomato). Each category contains 10 different object
instances taken from 41 points of view. This dataset is interesting
since the number of available images is limited and contains a
lot of variability in 3D rotations. It allows us to evaluate the
generalization potential of the features and their robustness to
changes in viewpoint.

As the number of samples is restrained here, we performed
both unsupervised and supervised learning on half the dataset
(1,640 images chosen randomly). The other half was used as the
test set.

We compare our approach to the classical HMAX model and
to Kheradpisheh et al. (2016). The architectures for unsupervised
and supervised part are shown in Figure 4. Learning visual
features becomes more and more difficult with the proposed
method as we add convolutional layers on top of the network.
Since ETH80 images are large (96 × 96), we apply pooling with
a stride of 4 in order to quickly reduce the dimensions over the
hierarchy.

Results are reported in Table 3. While our approach does not
reach the same performance as Kheradpisheh et al. (2016), it
is able to learn features relevant for a classification task with
multiple points of view of different objects.

4.4. CIFAR-10
The CIFAR-10 dataset (Krizhevsky, 2009) is a dataset for
classification of natural images from 10 classes (airplane,
automobile, bird, cat,deer, dog, frog, horse, ship, and truck). The
dataset is split into three with 60,000 training, 10,000 validation,
and 10,000 testing images. Images are a subset of the 80 million
tiny images dataset (Torralba et al., 2008). All the images are 32
× 32 pixels size with three color channels (RGB).

This dataset is quite challenging, since it contains many
variations of objects with natural backgrounds, in low resolution.
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FIGURE 4 | Architecture of the network in the ETH80 experiment.

TABLE 3 | ETH80 results.

Method Accuracy (%)

HMAX (Riesenhuber and Poggio, 1999) 69.0

SDNN (Kheradpisheh et al., 2016) 82.8

Our method 75.2

Hence in order to tackle this dataset, algorithms must be able to
find relevant information in noisy data.

The architecture used for this dataset is given in Figure 5.
Learnt features are shown in Figure 6A. We observe that
the features are similar to oriented-gabor features, which is
consistent with the results of other unsupervised methods such
as k-means and RBM. Also the weights distribution displayed in
Figure 6B contains a majority of values close to zero, showing
the sparsity of the features. Performances obtained on CIFAR-10,
along with other methods evaluation, are shown in Table 4.

As a performance baseline, we also trained the MLP with
the same architecture but keeping the convolutional layer’s
weights randomly initialized and frozen. The increase of 17% of
classification rate proves the usefulness of the features learnt with
our method in the classification process.

Only a few works related to SNNs have been benchmarked
on CIFAR-10. Cao et al. (2015) and Hunsberger and Eliasmith
(2015) rely on convolutional to SNN conversion to perform
supervised learning on the dataset. Panda and Roy (2016) built a
convolutional feature hierarchy on the principle of auto-encoders
with SNNs, and classified the top level representations with an
MLP.

Also, some works unrelated to SNNs are worth comparing
here. Coates et al. (2011) benchmarked four unsupervised feature
learning methods (k-means, triangle k-means, RBM, and sparse
auto-encoders) with only one layer. Results from the PCA-Net
approach are also included.

FIGURE 5 | Architecture of the network in the CIFAR-10 experiment.

Our approach reached good performance given the
lightweight architectures and the limited number of samples.
It outperforms the CNN with 64 random filters, confirming
the relevance of the learnt features for classification, and also
the Triangle K-means approach with 100 features. Empirically
however, training with more samples without increasing the
number of features does not improve the performance.

Also, due to the low resolution of CIFAR-10 images, we
tried to add a second convolutional layer. The learnt filters
in this new layer were very redundant and led to the same
performance observed with only one layer. Further investigations
might explore ways to force layers above the first to learn more
sparse features.

4.5. STL-10
STL-10 is a dataset dedicated to unsupervised feature learning.
Images were taken from the ImageNet dataset. The training set
contains 5,000 images labeled over the same ten classes as CIFAR-
10. An unlabeled training set of 100,000 images is also provided.
Unlabeled images may contain objects from other classes of
ImageNet (like bear, monkeys, trains...). The testing set contains
8,000 images (800 per class). All images are in RGB format with a
resolution of 96× 96.

We applied the same architecture as for the CIFAR-10
dataset, except the average pooling layer was done over 24 ×

24 sized windows (in order to have the same 4 × 4 output
dimension). As before, we limited the number of samples during
the unsupervised learning step to 5,000.

While some works related to SNNs or STDP have been
benchmarked on CIFAR-10, we were not able to find any
using the STL-10 dataset. Hence our approach may be the first
biologically inspired method trying to tackle this dataset.

Our approach reaches 60.1% accuracy on STL-10, which
is above the lower-bound performance on this dataset.
Performances obtained by other unsupervised methods
range between 58 and 74%.
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FIGURE 6 | (A) Sixty-four filters of size 7 × 7 learned with our method on the CIFAR-10 dataset. (B) The weights distribution of the network’s first layer trained on

CIFAR-10.

TABLE 4 | CIFAR-10 results.

Method Unsupervised Training

samples

Accuracy

(%)

Triangle k-means (1,600 features)

(Coates et al., 2011)

Yes 50,000 79.6

Triangle k-means (100 features)

(Coates et al., 2011)

Yes 50,000 55.5

PCA-Net (Chan et al., 2014) Yes 50,000 78.67

LIF CNN (Hunsberger and Eliasmith,

2015)

No 50,000 82.95

Regenerative Learning (Panda and

Roy, 2016)

Yes 20,000 70.6

Our method (64 features) Yes 5,000 71.2

CNN random frozen filters No 50,000 55.3

5. DISCUSSION

The proposed approach is able to train lightweight convolutional
architectures based on LIF neurons which can be used as a
feature extractor prior to a supervised classification method.
These networks achieve average levels of performance on
four image classification datasets. While the performances are
not as impressive as the ones obtained with fully supervised
learning methods, where features are learnt specifically for the
classification task, interesting characteristics emerge from this
model.

By showing the equivalence between rank-order LIF neurons
and perceptrons with ReLU activation, we were able to borrow
computationally efficient concepts from both neuroscience
and machine learning literature while remaining biologically
plausible enough to allow the conversion of network trained this
way to be converted into SNN.

Binary STDP along with WTA and synaptic normalization
reduces drastically the process of parameters tuning compared to
other STDP approaches. LIF neurons require the tuning of their
respective time constant. STDP also requires four parameters to
be tuned : the time constants T+ and T− as well as the LTP and
LTD factorsA+ andA− for each layer. Ourmodel of binary STDP
on the other hand only needs to set its learning rate λ, set globally
for the whole architecture.

Another advantage over other STDP approaches is the ability
to train the network with multiple images in parallel. While this
ability is biologically implausible, it can become handy in order
to accelerate the training phase thanks to the intrinsic parallel
optimization provided by GPU. Also, the equivalence between
LIF neurons and perceptrons with ReLU activation in presence
of images allows us to perform the full propagation phase of a
SNN in one shot, and to apply our STDP rule without the need of
interpolation precise timing information from the image. Other
approaches using SNNs with STDP requires the interpolation of
temporal information from the image (Masquelier and Thorpe,
2007; Kheradpisheh et al., 2016), with gabor filters for instance,
in order to generate spike trains. This way, STDP can be applied
to learn the correlations between spike timings.

From a deep learning point of view, the main interest
of our model resides in the proposal of a backpropagation-
free training procedure for the first layers. As the backward
pass in deep neural networks implies computationally heavy
deconvolutions to compute the gradients of the parameters, any
prior on visual modelization which can avoid a backpropagation
over the whole network may help to reduce the computational
overhead of this step. The LIF-ReLU equivalence demonstrated
allows a convolutional network to take advantage of the inherent
characteristic of STDP to quickly find repeating pattern in an
input signal (Masquelier and Thorpe, 2007; Masquelier et al.,
2009; Nessler et al., 2009).

With the WTA scheme proposed, we made the assumption
that relevant visual information resides in the most contrasted
patches. It also imposes the neurons to learn a sparse code with
the combination of neighburhood and channel-wise inhibition.
Such hard-coded WTA led to first layers features very similar to
the gabor-like receptive-fields of LGN and V1. Quantitatively,
the performances obtained on classification tasks allows us to
conclude on the relevance of this learning process on such task.
However it is still far from optimality considering the supervised
learning methods (Graham, 2014; Hunsberger and Eliasmith,
2015) and human-level performances. The main drawback of
our method is the difficulty to train more than one or two
convolutional layers with. Since spatial inhibitions are critical in
our WTA scheme to achieve feature sparseness, we suspect that
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the input width and height of one layer must be large enough
to make the competition between neurons effective. Other
competition schemes less dependent on the spatial dimension
have to be explored in order to train deeper architectures with
the proposed framework.

Also our binary variant of STDP rule shows the ability to train
neurons with very low precision updates. Gradients used to be
coded on floating-point variables ranging from 32 bits as these
encoding schemes had the better trade-off between numerical
precision and efficiency on CPU and GPU hardware. Gupta et al.
(2015) showed the possibility to perform gradient descent with
only 16-bits floating-point resolution, a feature implemented
since then in NVidia Pascal and AMD RX Vega GPUs. Studies
on gradient quantization (Zhou et al., 2016; Deng et al., 2017)
showed promising results reducing the precision down to 2
bits without penalizing significantly the performances. The main
advantage of such reduction in resolution is two-fold : the lowest
the resolution, the fastest the computations (under the condition
hardware has sufficient dedicated compute units) and the fastest
the memory transfers. Seide et al. (2014) accelerated learning
speed by a factor 50 quantizing the weight updates gradients on
1 bit, enabling a very fast transfer between the 8 GPU of the
considered cluster. The binary STDP learning rule proposed here
may fit this goal. Further quantization on activations and weights
(even if the distributions obtained on MNIST and CIFAR-10
seem to converge to three modes) are to be studied in such
framework in order to bring massive acceleration thanks to this
biologically inspired method.

In order to better understand the implication of the binary
STDP learning rule from a machine learning point of view,
studies on the equivalence to state-of-the art methods should be
performed as in Hyvärinen et al. (2004) and Carlson et al. (2013).
Further mathematical analysis may help us understanding better
the limits and potentials of our approach in order to combine
it with other approaches. The literature in machine learning
and neuroscience (accurately summarized in Marblestone et al.,
2016) shows that it is unlikely that only one objective function or
algorithm may be responsible for all the learning capabilities of

the brain. Considered combinations include supervised approach
with backpropagation compatible models such as Esser et al.
(2015), reinforcement learning methods (Mnih et al., 2013;
Mozafari et al., 2017), as well as other unsupervised strategies
such as auto-encoders and GANs.

Finally, the binary STDP along with WTA and normalization
has been shown to be successful at learning in an unsupervised
manner low level visual features from image data. Extension
of this learning framework on temporal data is envisaged.
The roles of neural oscillations in the brain are still studied,
and their place in attention-demanding tasks (Dugué et al.,
2015; McLelland and VanRullen, 2016) is still under debate.
Nevertheless, oscillation processes like the theta-gamma model
(McLelland and VanRullen, 2016) shows interesting information
segmentation abilities, and may be incorporated in a network of
spiking or recurrent artificial neurons (such as GRU and LTSM)
as a more hard-coded WTA scheme to evaluate their impact
during learning.
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Neuroscience has long focused on finding encoding models that effectively ask “what

predicts neural spiking?” and generalized linear models (GLMs) are a typical approach.

It is often unknown how much of explainable neural activity is captured, or missed,

when fitting a model. Here we compared the predictive performance of simple models to

three leading machine learning methods: feedforward neural networks, gradient boosted

trees (using XGBoost), and stacked ensembles that combine the predictions of several

methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1)

cortices from standard representations of reaching kinematics, and in rat hippocampal

cells from open field location and orientation. Of these methods, XGBoost and the

ensemble consistently produced more accurate spike rate predictions and were less

sensitive to the preprocessing of features. These methods can thus be applied quickly

to detect if feature sets relate to neural activity in a manner not captured by simpler

methods. Encoding models built with a machine learning approach accurately predict

spike rates and can offer meaningful benchmarks for simpler models.

Keywords: encodingmodels, neural coding, tuning curves,machine learning, generalized linearmodel, GLM, spike

prediction

INTRODUCTION

A central tool of neuroscience is the tuning curve, which maps aspects of external stimuli to neural
responses. The tuning curve can be used to determine what information a neuron encodes in its
spikes. For a tuning curve to be meaningful it is important that it accurately describes the neural
response. Often, however, methods are chosen for simplicity but not evaluated for their relative
accuracy. Since inaccurate methods may systematically miss aspects of the neural response, any
choice of predictive method should be compared with accurate benchmark methods.

A popular predictive model for neural data is the Generalized Linear Model (GLM) (Nelder and
Baker, 1972; Simoncelli et al., 2004; Truccolo et al., 2005; Wu et al., 2006; Gerwinn et al., 2010).
The GLM performs a nonlinear operation upon a linear combination of the input features, which
are often called external covariates. Typical covariates are stimulus features, movement vectors,
or the animal’s location, and may include covariate history or spike history. In the absence of
history terms, the GLM is also referred to as a linear-nonlinear Poisson (LN) cascade. The nonlinear
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operation is usually held fixed, though it can be learned
(Chichilnisky, 2001; Paninski et al., 2004a), and the linear
weights of the combined inputs are chosen to maximize the
agreement between the model fit and the neural recordings. This
optimization problem of weight selection is convex, allowing
a global optimum, and can be solved with efficient algorithms
(Paninski, 2004). The assumption of Poisson firing statistics can
often be loosened (Pillow et al., 2005), as well, allowing the
modeling of a broad range of neural responses. Due to its ease
of use, perceived interpretability, and flexibility, the GLM has
become a popular model of neural spiking.

When using a GLM, it is important to check that the method’s
assumptions about the data are correct. The GLM’s central
assumption is that the inputs relate linearly to the log firing rate,
or generally some monotonic function of the firing rate. It thus
cannot learn arbitrary multi-dimensional functions of the inputs.
When the nonlinearity is different than assumed, it is likely that
the optimal weight on one input will depend on the values of
other inputs. In this case the GLM will only partially represent
the neural response, will poorly predict activity, and may not be
reproducible on other datasets. This drawback has been noted
before, and indeed the GLM has been shown to miss nonlinearity
in numerous circumstances (Butts et al., 2011; Freeman et al.,
2015; Heitman et al., 2016; McIntosh et al., 2016). However,
GLMs are still commonly applied without comparison to other
methods. To test if the linearity assumption is valid, it is sufficient
to test if other nonlinearmethods predict activitymore accurately
from the same features.Many extensions have been proposed that
introduce a specific form of nonlinearity (McFarland et al., 2013;
Theis et al., 2013; Latimer et al., 2014; Williamson et al., 2015;
Maheswaranathan et al., 2017), but these methods ask specific
research questions and are not intended as general benchmarks.
What is needed is are nonlinear methods that are universally
applicable to new data.

Machine learning (ML)methods for regression have improved
dramatically since the invention of the GLM. Many ML methods
require little feature engineering (i.e., pre-transformations the
features) and do not need to assume linearity. These methods are
thus ideal candidates for benchmark methods. The ML approach
is now quite standardized and robust across many domains of
data. As exemplified by winning solutions on Kaggle, an ML
competition website (Kaggle Winner’s Blog, 2016), the usual
approach is to fit several top performing methods, and then
to ensemble these models together. These methods are now
relatively easy to implement in a few lines of code in a scripting
language such as Python, and are enabled by well-supported
machine learning packages, such as scikit-learn (Pedregosa et al.,
2011), Keras (Chollet, 2015), Tensorflow (Abadi et al., 2016),
and XGBoost (Chen and Guestrin, 2016). The greatly increased
predictive power of modern ML methods is now very accessible
and could help to benchmark and improve the state of the art in
encoding models across neuroscience.

In order to investigate the feasibility of ML as a benchmark
approach, we applied several ML methods, including artificial
neural networks, gradient boosted trees, and ensembles to the
task of predicting spike rates, and evaluated their performance
alongside a GLM. We compared the methods on data from

three separate brain areas. These areas differed greatly in the
effect size of covariates and in their typical spike rates, and
thus served to evaluate the strengths of these methods across
different conditions. In each area we found that the ensemble of
methods could more accurately predict spiking than the GLM
with typical feature choices. The use of an ML benchmark
thus made clear that tuning curves built for these features
with a GLM would not capture the full nature of neural
activity. We provide our implementing code at https://github.
com/KordingLab/spykesML so that all neuroscientists may easily
test and compare ML to their own methods on other datasets.

MATERIALS AND METHODS

Data
We tested our methods at predicting spike rates for neurons
in the macaque primary motor cortex, the macaque primary
somatosensory cortex, and the rat hippocampus. All animal use
procedures were approved by the institutional animal care and
use committees at Northwestern University and conform to
the principles outlined in the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
no. 86-23, revised 1985). Data presented here were previously
recorded for use with multiple analyses. Procedures were
designed to minimize animal suffering and reduce the number
used.

The macaque motor cortex data consisted of previously
published electrophysiological recordings from 82 neurons in the
primary motor cortex (M1) (Stevenson et al., 2011). The neurons
were sorted from recordings made during a two-dimensional
center-out reaching task with eight targets. In this task the
monkey grasped the handle of a planar manipulandum that
controlled a cursor on a computer screen and simultaneously
measured the hand location and velocity (Figure 1). After
training, an electrode array was implanted in the arm area of area
4 on the precentral gyrus. Spikes were discriminated using offline
sorter (Plexon, Inc), counted and collected in 50-ms bins. The
neural recordings used here were taken in a single session lasting
around 13min.

The macaque primary somatosensory cortex (S1) data was
recorded during a two-dimensional random-pursuit reaching
task and was previously unpublished. In this task, the monkey
gripped the handle of the same manipulandum. The monkey
was rewarded for bringing the cursor to a series of randomly
positioned targets appearing on the screen. After training, an
electrode array was implanted in the arm area of area 2 on
the post-central gyrus, which receives a mix of cutaneous and
proprioceptive afferents. Spikes were processed as for M1. The
data used for this publication derives from a single recording
session lasting 51min.

As with M1 (described in results), we processed the
hand position, velocity, and acceleration accompanying the S1
recordings in an attempt to obtain linearized features. The
features

(

x, y, ẋ, ẏ
)

were found to be the most successful for the
GLM. Since cells in the arm area of S1 have been shown to have
approximately sinusoidal tuning curves relating to movement
direction (Prud’homme and Kalaska, 1994), we also tested the
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FIGURE 1 | Encoding models aim to predict spikes, top, from input data, bottom. The inputs displayed are the position and velocity signals from the M1 dataset

(Stevenson et al., 2011) but could represent any set of external covariates. The GLM takes a linear combination of the inputs, applies an exponential function f, and

produces a Poisson spike probability that can be used to generate spikes (Left). The feedforward neural network (Center) does the same when the number of

hidden layers i = 0. With i ≥ 1 hidden layers, the process repeats; each of the j nodes in layer i computes a nonlinear function g of a linear combination of the previous

layer. The vector of outputs from all j nodes is then fed as input to the nodes in the next layer, or to the final exponential f on the final iteration. Boosted trees (Right)

return the sum of N functions of the original inputs. Each of the fi is built to minimize the residual error of the sum of the previous f 0 : i−1.

same feature transformations as were performed for M1 but did
not observe any increase in predictive power.

The third dataset consists of recordings from 58 neurons
in the CA1 region of the rat dorsal hippocampus during a
single 93min free foraging experiment, previously published and
made available online by the authors (Mizuseki et al., 2009a,b).
Position data from two head-mounted LEDs provided position
and heading direction inputs. Here we binned inputs and spikes
from this experiment into 50ms bins. Since many neurons in the
dorsal hippocampus are responsive to the location of the rat, we
processed the 2D position data into a list of squared distances
from a 5 × 5 grid of place fields that tile the workspace. Each

position feature thus has the form

pij =
1

2

(

x(t)− µij

)T
6

−1
ij

(

x(t)− µij

)

,

whereµij is the center of place field i, j≤ 5 andΣ ij is a covariance
matrix chosen for the uniformity of tiling. An exponentiated
linear combination of the pij (as is performed in the GLM)
evaluates to a single Gaussian centered anywhere between the
place fields. The inclusion of the pij as features thus transforms
the standard representation of cell-specific place fields (Brown
et al., 1998) into the mathematical formulation of a GLM. The
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final set of features included the pij as well as the rat speed and
head orientation.

Treatment of Spike and Covariate History
We slightly modified our data preparation methods for spike rate
prediction when spike and covariate history terms were included
as regressors (Figure 6). To construct spike and covariate history
filters, we convolved 10 raised cosine bases (built as in Pillow
et al., 2008) with binned spikes and covariates. The longest
temporal basis included times up to 250ms before the time bin
being predicted. This process resulted in 120 total covariates per
sample (10 current covariates, 100 covariate temporal filters, and
10 spike history filters). We predicted spike rates in 5ms bins
(rather than 50ms) to allow for modeling of more precise time-
dependent phenomena, such as refractory effects. The cross-
validation scheme also differs from the main analysis of this
paper, as using randomly selected splits of the data would result
in the appearance in the test set of samples that were in history
terms of training sets, potentially resulting in overfitting.We thus
employed a cross-validation routine to split the data continuously
in time, assuring that no test set sample has appeared in any form
in training sets.

Generalized Linear Model
The Poisson GLM is a multivariate regression model that
describes the instantaneous firing rate as a nonlinear function of
a linear combination of input features (see e.g., Schwartz et al.,
2006; Aljadeff et al., 2016 for review, Pillow et al., 2008; Fernandes
et al., 2014; Ramkumar et al., 2016 for usage). Here, we took
the form of the nonlinearity to be exponential, as is common
in previous applications of GLMs to similar data (Saleh et al.,
2012). It should be noted that it is also possible to learn arbitrary
link functions through histogram methods (Chichilnisky, 2001;
Paninski et al., 2004a). We approximate neural activity as a
Poisson process, in which the probability of firing in any instant
is independent of firing history. The general form of the GLM is
depicted in Figure 1. We implemented the GLM using elastic-net
regularization, using the open-source Python package pyglmnet
(Ramkumar et al., 2017). The regularization path was optimized
separately on a single neuron in each dataset on a validation set
not used for scoring.

Neural Network
Neural networks are well-known for their success at supervised
learning tasks. More comprehensive reviews can be found
elsewhere (Schmidhuber, 2015). Here, we implemented a simple
feedforward neural network and, for the analysis with history
terms, an LSTM, a recurrent neural network architecture that
allows themodeling of time dependencies onmultiple time-scales
(Gers et al., 2000).

We point out that a feedforward neural network with no
hidden layers is equivalent in mathematical form to a GLM
(Figure 1). For multilayer networks, one can write each hidden
layer of n nodes as simply n GLMs, each taking the output of
the previous layer as inputs (noting that the weights of each are
chosen to maximize only the final objective function, and that the
intermediate nonlinearities need not be the same as the output

nonlinearity). A feedforward neural network can be seen as a
generalization, or repeated application of a GLM.

The networks were implemented with the open-source neural
network library Keras, running Theano as the backend (Chollet,
2015; Team et al., 2016). The feedforward network contained
two hidden layers, dense connections, rectified linear activation,
and a final exponentiation. To help avoid overfitting, we allowed
dropout on the first layer, included batch normalization, and
allowed elastic-net regularization upon the weights (but not the
bias term) of the network (Srivastava et al., 2014). The networks
were trained to maximize the Poisson likelihood of the neural
response.We optimized over the number of nodes in the first and
second hidden layers, the dropout rate, and the regularization
parameters for the feedforward neural network, and for the
number of epochs, units, dropout rate, and batch size for the
LSTM. Optimization was performed on only a subset of the data
from a single neuron in each dataset, using Bayesian optimization
(Snoek et al., 2012) in an open-source Python implementation
(BayesianOptimization, 2016).

Gradient Boosted Trees
Apopularmethod inmanymachine learning competitions is that
of gradient boosted trees. Here we describe the general operation
of XGBoost, an open-source implementation that is efficient and
highly scalable, works on sparse data, and easy to implement
out-of-the-box (Chen and Guestrin, 2016).

XGBoost trains many sequential models to minimize the
residual error of the sum of previous model. Each model is a
decision tree, or more specifically a classification and regression
tree (CART) (Friedman, 2001). Training a decision tree amounts
to determining a series of rule-based splits on the input to classify
output. The CART algorithm generalizes this to regression by
taking continuously-valued weights on each of the leaves of the
decision tree.

For any predictive model ŷ(1) = f1(xi) and true response yi, we

can define a loss function l
(

ŷ(1), yi

)

between the prediction and

the response. The objective to be minimized during training is
then simply the sum of the loss over each training example i, plus
some regularizing function Ω that biases toward simple models.

L =
∑

i

l(ŷ
(1)
i , yi)+ Ω(f1)

After minimizing L for a single tree, XGBoost constructs a second
tree f2(xi) that approximates the residual. The objective to be
minimized is thus the total loss L between the true response yi
and the sum of the predictions given by the first tree and the one
to be trained.

L =
∑

i

l(ŷ
(1)
i + f2(xi), yi)+ Ω(f2)

This process is continued sequentially for a predetermined
number of trees, each trained to approximate the residual of the
sum of previous trees. In this manner XGBoost is designed to
progressively decrease the total loss with each additional tree. At
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the end of training, new predictions are given by the sum of the
outputs of all trees.

ŷ =

N
∑

k= 1

fk(x)

In practice, it is simpler to choose the functions fk via gradient
boosting, which minimizes a second order approximation of the
loss function (Friedman et al., 2000).

XGBoost offers several additional parameters to optimize
performance and prevent overfitting. Many of these describe
the training criteria for each tree. We optimized some of these
parameters for a single neuron in each dataset using Bayesian
optimization (again over a validation set different from the final
test set). These parameters included the number of trees to train,
the maximum depth of each decision tree, and the minimum
weight allowed on each decision leaf, the data subsampling
ratio, and the minimum gain required to create a new decision
branch.

Random Forests
We implement random forests here to increase the power of
the ensemble (see below); their performance alone is displayed
in Supplementary Figure 1. It should be noted that the Scikit-
learn implementation currently only minimizes the mean-
squared error of the output, which is not properly applicable
to Poisson processes and may cause poor performance. Despite
this drawback their presence still improves the ensemble scores.
Random forests train multiple parallel decision trees on the
features-to-spikes regression problem (not sequentially on the
remaining residual, as in XGBoost) and averages their outputs
(Ho, 1998). The variance on each decision tree is increased by
training on a sample of the data drawn with replacement (i.e.,
bootstrapped inputs) and by choosing new splits using only a
random subset of the available features. Random forests are
implemented in Scikit-learn (Pedregosa et al., 2011).

Ensemble Method
It is a common machine learning practice to create ensembles of
several trained models. Different algorithms may learn different
characteristics of the data, make different types of errors, or
generalize differently to new examples. Ensemble methods allow
for the successes of different algorithms to be combined. Here
we implemented stacking, in which the output of several models
is taken as the input set of a new model (Wolpert, 1992). After
training the GLM, neural network, random forest, and XGBoost
on the features of each dataset, we trained an additional instance
of XGBoost using the spike rate predictions of the previous
methods as input. The outputs of this “second stage” XGBoost
are the predictions of the ensemble.

Scoring and Cross-Validation
Each of the three methods was scored with the Poisson pseudo-
R2 score, a scoring function applicable to Poisson processes
(Cameron and Windmeijer, 1997). Note that a standard R2 score

assumes Gaussian noise and cannot be applied here. The pseudo-
R2 was calculated as one minus the ratio of the deviances of the
predicted output ŷ to the mean firing rate y.

R2M = 1−
D

(

ŷ
)

D
(

y
)

We can gain intuition into the pseudo-R2 score by writing out
the deviances in terms of log likelihoods L(), and combining the
fraction.

R2M = 1−
log L

(

y
)

− log L
(

ŷ
)

log L
(

y
)

− log L
(

y
) =

log L
(

ŷ
)

− log L
(

y
)

log L
(

y
)

− log L
(

y
)

This expression includes L
(

y
)

, which is the log likelihood of the
“saturated model,” which offers one parameter per observation
and models the data perfectly. The pseudo-R2 can thus be
interpreted as the fraction of the maximum potential log-
likelihood gain achieved by the tested model (Cameron and
Windmeijer, 1997). It takes a value of 0 when the data is as
likely under the tested model as the null model, and a value
of 1 when the tested model perfectly describes the data. It is
empirically a lower value than a standard R2 when both are
applicable (Domencich and McFadden, 1975). The null model
can also be taken to be a model other than the mean firing
rate (e.g., the GLM) to directly compare two methods, in which
case we refer to the score as the “comparative pseudo-R2.” The
comparative pseudo-R2 is referred to elsewhere as the “relative
pseudo-R2,” renamed here to avoid confusion with the difference
of two standard pseudo-R2 scores both measured against the
mean (Fernandes et al., 2014).

We used 8-fold cross-validation (CV) when assigning a final
score to the models. The input and spike data were segmented
into eight equal partitions. These partitions were continuous
in time when spike and covariate history were included as
covariates, and otherwise were segmented randomly in time.
The methods were trained on seven partitions and tested on the
eighth, and this was repeated until all segments served as the test
partition once. Themean of the eight scores are then recorded for
the final score.

Cross-validation for ensemble methods requires extra care
since the inputs for the ensemble are themselves model
predictions for each data point. The training set for the ensemble
must contain predictions frommethods that were themselves not
trained on the validation set. Otherwise, there may be a leak
of information from the validation set into the training set and
the validation score might be better than on a true held-out set.
This rules out using simple k-fold CV with all methods and the
ensemble trained on the same test/train splits. Instead, we used a
nested CV scheme to train and score the ensemble. We create an
outer j = 8 folds to build training and test sets for the ensemble.
On each outer fold we create first-order predictions for each data
point in the following manner. We first run an inner k-fold CV
on just the training set (i.e., 7/8 of the original dataset) with each
first stage method such that we obtain predictions for the whole
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training set of that fold. This ensures that the ensemble’s test set
was never used for training any method. Finally, we build the
ensemble’s test set from the predictions of the first stage methods
trained on the entire training set. The ensemble can then be tested
on a held-out set that was never used to fit anymodel. The process
is repeated for each of the j folds and themean and variance of the
j scores of the ensemble’s predictions are recorded.

RESULTS

We applied several machine learning methods to predict spike
counts in three brain regions and compared the quality of the
predictions to those of a GLM. Our primary analysis centered
on neural recordings from the macaque primary motor cortex
(M1) during reaching (Figure 1). We examined the methods’
relative performance on several sets of movement features with
various levels of preprocessing, including one set that included
spike and covariate history terms. Analyses of data from rhesus
macaque S1 and rat hippocampus indicate how these methods
compare for areas other than M1. On each of the three datasets
we trained a GLM and compared it to the performance of a
feedforward neural network, XGBoost (a gradient boosted trees
implementation), and an ensemble method. The ensemble was
an additional instance of XGBoost trained on the predictions of
all three methods plus a random forest regressor. The application
of these methods allowed us to demonstrate the potential of
a modern approach to be able to identify whether there are
typically neural nonlinearities that are not captured by a GLM.
The code implementing these methods can be used by any
electrophysiology lab to benchmark their own encoding models.

To test that all methods work reasonably well in a trivial case,
we trained each to predict spiking from a simple, well-understood
feature. Some neurons in M1 have been described as responding
linearly to the exponentiated cosine of movement direction
relative to a preferred angle (Amirikian and Georgopulos, 2000).
We therefore predicted the spiking of M1 neurons from the
cosine and sine of the direction of hand movement in the
reaching task. (The linear combination of a sine and cosine curve
is a phase-shifted cosine, by identity, allowing the GLM to learn
the proper preferred direction). We observed that each method
identified a similar tuning curve (Figure 2B) and that the bulk
of the neurons in the dataset were just as well predicted by
each of the methods (Figures 2A,C) {though the ensemble was
slightly more accurate than the GLM, with mean comparative
pseudo-R2 above zero, 0.06 [0.043 – 0.084], 95% bootstrapped
confidence interval (CI)}. The similar performance suggested
that, for the majority of neurons, an exponentiated cosine
successfully approximates the response to movement direction
alone, as has been previously found (Paninski et al., 2004b). All
methods can in principle estimate tuning curves, and machine
learning can indicate if the proper features are used.

If the form of the nonlinearity is not known, machine learning
can still attain good predictive ability. To illustrate the ability
of modern machine learning to find the proper nonlinearity,
we performed the same analysis as above but omitted the
initial cosine feature-engineering step. Trained on only the hand

velocity direction, in radians, which changes discontinuously at
±π, all methods but the GLM closely matched the predictive
power they attained using the engineered feature (Figure 3A).
The GLM failed at generating a meaningful tuning curve, which
was expected since the exponentiated velocity direction is not
equal to cosine tuning (Figure 3B). Both trends were consistent
across the population of recorded neurons (Figure 3C). The
neural net, XGBoost, and ensemble methods can learn the
nonlinearity of single features without requiring manual feature
transformation.

The inclusion of multiple features raises the possibility of
nonlinear feature interactions that may elude a GLM. As a simple
demonstration of this principle, we trained all methods on the
four-dimensional set of hand position and velocity

(

x, y, ẋ, ẏ
)

.
While all methods gained predictive power relative to models
using movement direction alone, the GLM failed to match the
other methods (Figures 4A,C). If the GLM was fit alone, and
no further featuring engineering been attempted, these features
would have appeared to be relatively uninformative of the neural
response. If nonlinear interactions exist between preselected
features, machine learning methods can potentially learn these
interactions and indicate if more linearly-related features exist.

While feature engineering can improve the performance
of GLMs, it is not always simple to guess the optimal set
of processed features. We demonstrated this by training all
methods on features that have previously been successful at
explaining spike rate in a similar center-out reaching task
(Paninski et al., 2004a). These extra features included the sine
and cosine of velocity direction (as in Figure 2), and the speed,
radial distance of hand position, and the sine and cosine of
position direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing the
predictive power of the GLM. Feature engineering improved the
predictive power of all methods to variable degrees, with the
GLM improving to the level of the neural network (Figure 5).
XGBoost and the ensemble still predicted spike rates better
than the GLM (Figure 5C), with the ensemble scoring on
average nearly double the GLM (ratio of population means
of 1.8 [1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative pseudo-
R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI) and was
thus consistently the best predictor. Though standard feature
engineering greatly improved the GLM, the ensemble and
XGBoost still could identify that neural nonlinearity was missed
by the GLM.

It is important to note that the specific ordering of methods
depends on features such as the amount of data available for
training. We investigated this dependence for the M1 dataset
by plotting the cross-validated performance as a function of the
fraction of the data used for training (Supplementary Figure 3).
Some neurons are best fit by the GLM when very little data is
available, while other neurons are best fit by XGBoost and the
ensemble for any amount of data tested. The neural network
is most sensitive to training data availability. This sensitivity to
the domain of data emphasizes the importance of the applied
ML paradigm of evaluating (and potentially ensembling) many
methods.
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FIGURE 2 | Encoding models of M1 performed similarly when trained on the sine and cosine of hand velocity direction. All methods can in principle estimate tuning

curves. (A) The pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3–5 the example neuron is the same, and is not the

neuron for which method hyperparameters were optimized. (B) We constructed tuning curves by plotting the predictions of spike rate on the validation set against

movement direction. The black points are the recorded responses, to which we added y-axis jitter for visualization to better show trends in the naturally quantized

levels of binned spikes. The tuning curves of the neural net and XGBoost were similar to that of the GLM. The tuning curve of the ensemble method was similar and is

not shown. (C) Plotting the pseudo-R2 of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single

neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error bars represent the 95% bootstrap

confidence interval.

FIGURE 3 | Modern ML models learn the cosine nonlinearity when trained on hand velocity direction, in radians. (A) For the same example neuron as in Figure 2, the

neural net and XGBoost maintained the same predictive power, while the GLM was unable to extract a relationship between direction and spike rate. (B) XGBoost and

neural nets displayed reasonable tuning curves, while the GLM reduced to the average spiking rate (with a small slope, in this case). (C) Most neurons in the

population were poorly fit by the GLM, while the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

The single neuron plotted at left is marked with black arrows.
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FIGURE 4 | Modern ML methods can learn nonlinear interactions between features. Here the methods are trained on the feature set
(

x, y, ẋ, ẏ
)

. Note the change in

axes scales from Figures 2, 3. (A) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a strong

encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set. (B) The spike rate in black, with

jitter on the y-axis, again overlaid with the predictions of the three methods plotted against velocity direction. The projection of the multidimensional tuning curve onto

a 1D velocity direction dependence leaves the projected curve diffuse. (C) The ensemble method, neural network, and XGBoost performed consistently better than

the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods. The single neuron plotted at left is marked with black

arrows.

FIGURE 5 | Modern ML methods outperform the GLM with standard featuring engineering. For this figure, all methods were trained on the features
(

x, y, ẋ, ẏ
)

plus the

engineered features. (A) For this example neuron, inclusion of the computed features increased the predictive power of the GLM to the level of the neural net. All

methods increased in predictive power. (B) The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a

high-dimensional dependence. (C) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM, though

the neural net does not. The neuron selected at left is marked with black arrows.

Studies employing a GLM often include activity history as
a covariate when predicting spike rates, as well as past values

of the covariates themselves, and it is known that this allows
GLMs to model a wider range of phenomena (Weber and Pillow,
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FIGURE 6 | ML algorithms outperform a GLM when covariate history and

neuron spike history are included. The feature set of Figure 5 (in macaque M1)

was augmented with spike and covariate history terms, so that spike rate was

predicted for each 5ms time bin from the past 250ms of covariates and neural

activity. Cross-validation methods for this figure differ from other figures (see

methods) and pseudo-R2 scores should not be compared directly across

figures. All methods outperform the GLM, indicating that the inclusion of

history terms does not alone allow the GLM to capture the full nonlinear

relationship between covariates and spike rate.

2016). We tested various ML methods on the M1 dataset using
this history-augmented feature set to see if all methods would
still explain a similar level of activity. We binned data by 5ms
(rather than 50ms) to agree in timescale with similar studies,
and built temporal filters by convolving 10 raised-cosine bases
with features and spikes. We note that smaller time bins result in
a sparser dataset, and thus pseudo-R2 scores cannot be directly
compared with other analysis in this paper. On this problem, our
selected ML algorithms again outperformed the GLM (Figure 6).
The overall best algorithm was the LSTM, which we include
here as it specifically designed for modeling time series, though
for most neurons XGBoost performed similarly. Thus, for M1
neurons, the GLM did not capture all predicable phenomena
even when spike and covariate history were included.

To ensure that these results were not specific to the motor
cortex, we extended the same analyses to primary somatosensory
cortex (S1) data. We again predicted neural activity from hand
movement and speed, and here without spike or covariate history
terms. The ML methods outperformed the GLM for all but three
of the 52 neurons, indicating that firing rates in S1 generally
relate nonlinearly to hand position and velocity (Figure 7A).
Each of the three ML methods performed similarly for each
neuron. The S1 neural function was thus equally learnable by
each method, which is surprising given the dissimilarity of the
neural network and XGBoost algorithms. This situation would
occur if learning has saturated near ground truth, though this
cannot be proven definitively to be the case. It is at least clear from
the underperformance of the GLM that the relationship of S1
activity to these covariates is nonlinear beyond the assumptions
of the GLM.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was characterized by
very low mean firing rates but strong effect sizes. All methods
were trained on a list of squared distances to a grid of place
fields and on and the rat head orientation, as described in
methods. Far more even than the neocortical data, neurons were
described much better by XGBoost and the ensemble method
than by the GLM (Figure 7B). Many neurons shifted from being
completely unpredictable by the GLM (pseudo-R2 near zero) to
very predictable by XGBoost and the ensemble (pseudo-R2 above
0.2). These neurons thus have responses that do not correlate
with firing in any one Gaussian place field. We note that the
neural network performed poorly, likely due to the very low
firing rates of most hippocampal cells (Supplementary Figure
2). The median spike rate of the 58 neurons in the dataset was
just 0.2 spikes/s, and it was only on the four neurons with rates
above 1 spikes/s that the neural network achieved pseudo-R2

scores comparable to the GLM. The relative success of XGBoost
was interesting given the failure of the neural network, and
supported the general observation that boosted trees can work
well with smaller and sparser datasets than those that neural
networks generally require (Supplementary Figure 3). Thus for
hippocampal cells, a method leveraging decision trees such as
XGBoost or the ensemble is able to capture more structure in
the neural response and thus demonstrate a deficiency of the
parameterization of the GLM.

DISCUSSION

We analyzed the ability of various machine learning techniques
at the task of predicting binned spike counts in three brain
regions. We found that of the tested ML methods, XGBoost and
the ensemble routinely predicted spike counts more accurately
than did the GLM, which is a popular method for neural data.
Feedforward neural networks did not always outperform the
GLM and were often worse than XGBoost and the ensemble.
Machine learning methods, especially LSTMs, also outperformed
GLMs when covariate and spike history were included as inputs.
The ML methods performed comparably well with and without
feature engineering, even for the very low spike rates of the
hippocampus dataset. These findings indicate that a standard
ML approach can serve as a reliable benchmark to test if data
meets the assumptions of a GLM. Furthermore, it may be quite
common that standard ML outperforms GLMs given standard
feature choices.

When a GLM fails to explain data as well as more expressive,
nonlinear methods, the current parameterization of inputs must
relate to the data with a different nonlinearity than is assumed
by the GLM. Such situations have been identified several times
in the literature (Butts et al., 2011; Freeman et al., 2015; Heitman
et al., 2016; McIntosh et al., 2016). This unaccounted nonlinearity
may produce feature weights that do not reflect true feature
importance. A GLM will incorrectly predict no dependence on
feature x whatsoever, for example, in the extreme case when
the neural response to some feature x does not correlate with
exp(x). The only way to ensure that feature weights can be reliably
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FIGURE 7 | XGBoost and the ensemble method predicted the activity of neurons in S1 and in hippocampus better than a GLM. The diagonal dotted line in both plots

is the line of equal predictive power with the GLM. (A) All methods outperform the GLM in the macaque S1 dataset. Interestingly, the neural network, XGBoost and the

ensemble scored very similarly for each neuron in the 52 neuron dataset. (B) Many neurons in the rat hippocampus were described well by XGBoost and the

ensemble but poorly by the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing of most neurons

in the dataset (Supplementary Figure 2). Note the difference in axes; hippocampal cells are generally more predictable than those in S1.

interpreted is to find an input parameterization that maximizes
the GLM’s predictive power. ML methods can assist this process
by indicating how much nonlinearity remains to be explained.
New features can then be tested, such as those suggested by
a search for maximally informative dimensions (Sharpee et al.,
2004). In our analysis, then, the GLM underperforms because
we have selected the suboptimal input features. It is always
theoretically possible to linearize features such that a GLM
obtains equal predictive power. ML methods can highlight
the deficiency of features that might have otherwise seemed
uncontroversial. When applying a GLM or any simple model to
neural data, it is important to compare its predictive power with
standard ML methods to ensure the neural response is properly
understood.

There are other ways of estimating the performance of a
method besides benchmark nonlinear methods. For example,
if the same exact stimulus can be given many times in a
row, then we can estimate neural variability without having
to model how activity depends on stimulus features (Schoppe
et al., 2016). This approach, however, requires that we can model
how neural responses vary with repetition (Grill-Spector et al.,
2006). This approach also makes it difficult to include spike
history as an input, since the exact history is rarely repeated. We
note that in some cases it may also be impossible to show the
same stimulus multiple times, e.g., because eyes move. However,
comparing these two classes of benchmark would be interesting
on applications where both are feasible.

Advanced ML methods are not widely considered to be
interpretable. Interpretation is not necessary for performance
benchmarks, but it would be desirable to use these methods as
standalone encoding models. We can better discuss this issue
with a more precise definition of interpretability. Following
Lipton, we make the distinction between a method’s post-hoc

interpretability, the ease of justifying its predictions, and
transparency, the degree to which its operation and internal
parameters are human-readable or easily understandable (Lipton
et al., 2016). A GLM is certainly more transparent than
many ML methods due to its algorithmic simplicity. Certain
nonlinear extensions of the GLM have also been designed to
remain transparent (McFarland et al., 2013; Theis et al., 2013;
Latimer et al., 2014; Williamson et al., 2015; Maheswaranathan
et al., 2017). For high-level areas, though, such as V4, the
linearized features may be difficult to be interpreted themselves
(Yamins et al., 2014), though it may be possible to increase
the interpretability of features (Kaardal et al., 2013). A GLM
is also generally more conducive to post-hoc interpretations,
though this is also possible with modern ML methods. It is
possible, for example, to visualize the aspects of stimuli that
most elicit a predicted response, as has been implemented in
previous applications of neural networks to spike prediction (Lau
et al., 2002; Prenger et al., 2004). Various other methods exist
in the literature to enable post-hoc explanations (McAuley and
Leskovec, 2013; Simonyan et al., 2013). Here we highlight Local
InterpretableModel-Agnostic Explanations (LIME), an approach
that fits simple models in the vicinity of single examples to
allow a local interpretation (Ribeiro et al., 2016). On problems
where interpretability is important, such capabilities for post-hoc
justifications may prove sufficient.

Not all types of interpretability are necessary for a given
task, and many scientific questions can be answered based
on predictive ability alone. Questions of the form, “does
feature x contribute to neural activity?” for example, or “is
past activity necessary to explain current activity?” require no
method transparency. One can simply ask whether predictive
power increases with feature x’s inclusion or decreases upon
its exclusion. Importance measures based on inclusion and
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exclusion, or upon the strategy of shuffling a covariate of interest,
are well-studied in statistics and machine learning (Bell and
Wang, 2000; Strobl et al., 2008). Depending on the application,
it may thus be worthwhile to ask not just whether different
features could improve a GLM but also whether it is enough to
use ML methods directly. It is possible for many questions to
stay agnostic to the form of linearized features and directly use
changes in predictive ability.

With ongoing progress in machine learning, many standard
techniques are easy to implement and can even be automated.
Ensemble methods, for example, remove the need to choose
any one algorithm. Moreover, the choice of model-specific
parameters is made easy by hyperparameter search methods
and optimizers. We hope that this ease of use might
encourage use in the neurosciences, thereby increasing the
power and efficiency of studies involving neural prediction
without requiring complicated, application-specific methods
development (e.g., Corbett et al., 2012). Community-supported
projects in automated machine learning, such as autoSklearn and
auto-Weka, are quickly improving and promise to handle the
entire regression workflow (Feurer et al., 2015; Kotthoff et al.,
2016). Applied to neuroscience, these tools will allow researchers
to gain descriptive power over current methods even with simple,
out-of-the-box implementations.

Machine learning methods perform quite well and make
minimal assumptions about the form of neural encoding. Models
that seek to understand the form of the neural code can test if they
systematicallymisconstrue the relationship between stimulus and

response by comparing their performance to these benchmarks.
Encoding models built with machine learning can thus greatly

aid the construction of models that capture arbitrary nonlinearity
and more accurately describe neural activity.

The code used for this publication is available at https://
github.com/KordingLab/spykesML. We invite researchers to
adapt it freely for future problems of neural prediction.
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Acceptance of novelty depends on the receiver’s emotional state. This paper proposes a

novel mathematical model for predicting emotions elicited by the novelty of an event

under different conditions. It models two emotion dimensions, arousal and valence,

and considers different uncertainty levels. A state transition from before experiencing an

event to afterwards is assumed, and a Bayesian model estimates a posterior distribution

as being proportional to the product of a prior distribution and a likelihood function.

Our model uses Kullback-Leibler divergence of the posterior from the prior, which we

termed information gain, to represent arousal levels because it corresponds to surprise,

a high-arousal emotion, upon experiencing a novel event. Based on Berlyne’s hedonic

function, we formalized valence as a summation of reward and aversion systems that

are modeled as sigmoid functions of information gain. We derived information gain as a

function of prediction errors (i.e., differences between the mean of the posterior and the

peak likelihood), uncertainty (i.e., variance of the prior that is proportional to prior entropy),

and noise (i.e., variance of the likelihood function). This functional model predicted an

interaction effect of prediction errors and uncertainty on information gain, which we

termed the arousal crossover effect. This effect means that the greater the uncertainty,

the greater the information gain for a small prediction error. However, for large prediction

errors, greater uncertainty means a smaller information gain. To verify this effect, we

conducted an experiment with participants who watched short videos in which different

percussion instruments were played. We varied uncertainty levels by using familiar

and unfamiliar instruments, and we varied prediction error magnitudes by including

congruent or incongruent percussive sounds in the videos. Event-related potential P300

amplitudes and subjective reports of surprise in response to the percussive sounds

were used as measures of arousal levels, and the findings supported the hypothesized

arousal crossover effect. The concordance between our model’s predictions and our

experimental results suggests that Bayesian information gain can be decomposed into

uncertainty and prediction errors and is a valid measure of emotional arousal. Our model’s

predictions of arousal may help identify positively accepted novelty.

Keywords: novelty, emotion, information, arousal, valence, uncertainty, P300, surprise
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INTRODUCTION

Novelty is a factor of creativity. Acceptance of novelty, however,
depends on the receiver’s emotions. As the “most advanced yet
acceptable” (MAYA) principle of industrial designer Raymond
Loewy (1951) suggested, an extremely advanced (i.e., novel)
design may not be accepted. In design aesthetics, Hekkert et al.
(2003) observed experimentally that both typicality and novelty
affect product design preferences in ways consistent with the
MAYA principle. Berlyne (1970) suggested that novelty, which
he termed a collative variable, is a source of arousal potential.
According to his theory, an appropriate level of arousal potential
might induce a positive hedonic response, but an extreme
arousal potential might induce negative responses. Several
experimental studies have supported Berlyne’s theory, including
studies on food preferences (Giacalone et al., 2014) and artistic
preferences (Silvia, 2005). However, Berlyne’s model did not
mathematically formalize novelty or its effects on emotions, and
biases due to factors such as one’s prior knowledge and experience
were not exhaustively investigated. Experiments with multiple
participants are required to identify the effect of novelty on the
emotional response to each target and condition. The objective
of this study was to mathematically model emotions elicited
by novelty in order to predict how novelty affects emotions.
In doing so, we aimed to provide fundamental knowledge of
how to achieve acceptable novelty. Most dimensional models of
emotion incorporate dimensions for arousal (or intensity) and
valence (i.e., positivity or negativity) (Russell, 1980; Lang, 1995).
We therefore proposed a mathematical model incorporating
arousal and valence dimensions through an information theory
approach. We used this model to analyze how the uncertainty of
expectations prior to a novel event and the difference between
expectations and reality (i.e., prediction errors) interactively
affect emotional arousal. We tested our model’s predictions by
conducting an experiment in which participants watched short
videos of percussion instruments. In the experiment, we induced
uncertainty of expectations by showing instruments of varying
probable familiarity, and we used inconsistencies between the
instrument shown and the sound played to model prediction
errors. We evaluated participants’ responses to the videos by
analyzing event-related potentials (ERPs) and subjective reports
of feelings of surprise.

MODEL OF EMOTIONAL DIMENSIONS
ELICITED BY A NOVEL EVENT

Overview
Novelty provides new information. We assume that the amount
of information gained from an event represents the degree of
novelty. The information content of an event x can be described
as I(x) = − log px, where px is the probability of x. I(x)
is termed self-information. The self-information averaged over
a probability density is termed information entropy, which
Shannon et al. (1949) defined as follows:

H(X) = −
∑

x∈X
px log px (1)

For the continuous random variable X following a probability
density distribution p(x), information entropy is expressed as:

H(X) = −

∫ ∞

−∞

p(x) log p(x)dx (2)

Assume a state transition from before an event to afterwards.
Let the probability density distribution of a continuous random
variable x before an event occurs, which we term the prior, be
q(x), and let the probability density distribution of x after an event
occurs, which we term the posterior, be p(x). The information
entropy of the prior represents the expectation of information
content gained after an event occurs or the uncertainty of
prior expectations. Information content gained after an event
occurs corresponds to the decrement of information entropy
over the posterior. Thus, the information content gained is
obtained by subtracting prior self-information from posterior
self-information and averaging over the posterior:

〈

− log q(x)− (− log p(x))
〉

p
=

∫ ∞

−∞

p(x) log
p(x)

q(x)
dx ≡ DKL

(

p(x)||q(x)
)

(3)
where <q>p represents the average of density q over density
p. The expression DKL

(

p||q
)

is the Kullback-Leibler (KL)
divergence of p from q (Kullback and Leibler, 1951). Hereinafter,
we term the KL divergence of the Bayesian posterior from the
prior the information gain. The more novel an event is, the more
information one gains. Information gain represents averaged
surprise. Itti and Baldi (2009) defined the KL divergence of
the Bayesian posterior from the prior as surprise and provided
experimental evidence that it attracts visual attention.

Surprise is often used as a typical high-arousal emotion
(Mauss and Robinson, 2009). Thus, we used the information
gain as a mathematical expression of the arousal dimension of
emotion. We then investigated the valence dimensions. An event
with no information causes no arousal and has a neutral valence.
Conversely, excessive information gain, such that one can
hardly cope, should cause discomfort (i.e., a negative valence).
Therefore, we hypothesized that one positively accepts a novel
event providing an appropriate amount of information gain that
can be coped with. Based on the arousal potential model (Berlyne,
1970), we formulated the valence as a function of information
gain.

Bayesian Model
Bayes’s theorem provides a formula for updating the prior
to the posterior. Recent studies have indicated that humans
perform near-optimal Bayesian inference (Ma et al., 2006) in
a wide variety of tasks, ranging from cue integration (Ernst
and Banks, 2002; Kersten et al., 2004; Stocker and Simoncelli,
2006; Yanagisawa, 2016) to decision-making and motor control
(Körding and Wolpert, 2004, 2006). Let a prior be π(θ) in terms
of a parameter θ that one estimates. After one obtains continuous
data x ∈ R by experiencing an event, the prior π(θ) is updated to
the posterior π(θ |x) according to the following formula derived
from Bayes’s theorem:

π(θ |x) =
f (x|θ)π(θ)

∫

θ
f (x|θ)π(θ)dθ

∝ f (x|θ)π(θ) (4)
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FIGURE 1 | Example of Bayesian inference with a prior distribution, a posterior distribution, and a likelihood function. The prediction error is the difference between the

prior expectation and the peak of the likelihood function (i.e., reality). Uncertainty is the variance of the prior. Noise is the variance of the likelihood function.

where f (x|θ) is the likelihood function of θ when data x are
obtained. The posterior is proportional to the product of the
likelihood function and the prior.

Figure 1 shows an example of the relationships between
the prior, the posterior, and the likelihood function. Neural
population activity with Poisson variability can encode any
Gaussian probability distribution (Ma et al., 2006). With Poisson
variability, the posterior with a flat prior converges to a Gaussian
distribution as the number of neurons increases. The mean
of the Gaussian distribution is close to the stimulus at which
the population activity peaks. The variance of the distribution
is encoded as a value that is inversely proportional to the
gain of the population code (i.e., the distribution’s amplitude).
Hence, we assume Gaussian distributions for the prior and the
likelihood function. Assume one obtains n samples of event x
and encodes them as a Gaussian posterior N(µ, σ 2) with a flat
prior. Now assume a non-flat prior of µ that follows a Gaussian
distributionN(η, τ 2). Using Bayes’s theorem, the prior is updated
to a Gaussian distribution N(ηpost , τpost

2), where:

Average : ηpost =
spx̄+ slη

sp + sl
;Variance : σpost

2 =
spsl

sp + sl
(5)

In these formulae, x̄ is the mean of the data, sp = τ 2, and
sl = σ 2/n. Therefore, the prior and the posterior are represented
as the following Gaussian functions, respectively:

π(µ) = N(µ; η, sp) =
1

√

2πsp
exp

[

−
(µ − η)2

2sp

]

, and (6)

π(µ|x) = N(µ; ηpost , σpost
2) =

1
√

2πσpost
2
exp

[

−
(µ − ηpost)

2

2σpost2

]

(7)

A Functional Model of Emotional Arousal
As noted in Overview, we represented emotional arousal as
information gain after experiencing an event. The information

gain from the prior to the posterior DKL(π(µ|x)||π(µ)) ≡ G can
be derived from formulae (2, 5, 6, and 7) as the following formula:

G =

∫ ∞

−∞

π(µ|x) log
π(µ|x)

π(µ)
dµ (8)

=
1

2

{

sp

(sp + sl)
2
δ2 + log

sp + sl

sl
−

sp

sp + sl

}

where δ is the difference between the prior expectation (η) and
the peak of the likelihood function (x̄). δ represents the difference
between expectations and reality, so we term δ the prediction
error (Yanagisawa, 2016) (Figure 1).

Information entropy of the prior is proportional to a
logarithm of τ as follows:

Hprior = −

∫ ∞

−∞

π(µ) logπ(µ)dµ = log
√
2πe log τ ∝ log τ

(9)
Thus, we term sp the uncertainty (Yanagisawa, 2016), and sl
represents the variation of data x. In the case of sensory data
(i.e., stimuli), the variance refers to external noise (Yanagisawa,
2016). From formula (7), we can regard the information gain G
as a function of the prediction error δ , the uncertainty sp, and the
external noise sl:

G = f (δ, sp, sl) (10)

Interaction Effect of Uncertainty and
Prediction Errors on Information Gain
We analyzed how prediction errors, uncertainty, and external
noise affect information gain (i.e., arousal levels). In formula (8),
information gain is a quadratic function of the prediction error δ

when uncertainty and external noise are fixed.

G = αδ2 + β , (11)

α =
sp

2(sp + sl)
2
, and

β =
1

2

(

log
sp + sl

sl
−

sp

sp + sl

)
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The value of α is always greater than zero because sp and sl are
variances that are always greater than zero. Thus, the information
gain is a monotonically increasing function of a prediction error.
This means that the level of an arousal dimension, such as the
degree of surprise, is proportional to the square of the difference
between expectations and reality.

Next, we investigated the effect of uncertainty. We found that
the partial derivative of the intercept β with respect to uncertainty
sp is always less than zero:

∂β

∂sp
=

sp

2(sp + sl)
2

> 0 (12)

Thus, at δ = 0, the greater the uncertainty, the greater the
information gain. We then investigated the case of δ > 0. We
compared any two information gain functions of δ using formula
(10) with constant external noise between different degrees of
uncertainty. If the two functions of different uncertainties have
an intersection, then the information gains change as δ increases.
We then assumed two information gain functions with different
uncertainties, G1 and G2:

G1 = α1δ
2 + β1 and

G2 = α2δ
2 + β2 (13)

A condition where the two functions have an intersection is
α1δ

2 + β1 = α2δ
2 + β2. We derived δ2(α1 − α2)+ (β1 − β2) = 0

under β1 6= β2. Therefore, (α1−α2)(β1−β2) < 0 is the condition.
We found that this condition applies when the relationship
between different uncertainties sp1 and sp2 and constant external
noise sl is as follows:

sp1sp2 > sl
2 (14)

Because the uncertainty of prediction is likely to exceed the
external noise (i.e., the uncertainty of sensory stimuli), the
condition in question is likely to occur. Given formula (12),
the greater the uncertainty, the greater the intercept of the
information gain function. As the prediction error increases,
the difference in information gains between the two functions
changes such that lower uncertainty tends to mean greater
information gain.

Figure 2 shows two functions of information gain with respect
to different uncertainties at constant external noise. The two
information gain functions have an intersection point. The
information gain as an index of arousal (in this case, surprise)
increases as the prediction error increases. The prediction error
and uncertainty have an interaction effect on information gain.
The greater the uncertainty, the greater the information gain for
zero or small prediction errors. The smaller the uncertainty, the
greater the information gain for larger prediction errors.We term
this intersection-related phenomenon the arousal crossover effect.

A Functional Model of Emotional Valence
We next investigated how novelty affects the valence dimensions
of positivity and negativity. Berlyne (1970) proposed collative
variables that consist of stimulus factors, such as novelty,
complexity, uncertainty, and conflict. Each collative variable has

the quality of arousal potential (i.e., the ability to affect the
intensity of arousal). Highly novel stimuli can increase arousal.
Berlyne (1967, 1971) assumed that the hedonic qualities of
stimuli arise from separate biological incentivization systems.
The first system, the reward system, generates positive affect
whenever arousal potential increases. The second system, the
aversion system, generates negative affect whenever arousal
potential increases. The aversion system has a higher absolute
activation threshold than the reward system does. Thus, the joint
operation of these two systems creates an inverted U-shaped
curve, as shown in Figure 3. The valence of a stimulus changes
from neutral to positive as the arousal potential increases but
shifts from positive to negative after the arousal potential passes

FIGURE 2 | Mathematically derived information gain, as a function of

prediction errors, for uncertainty levels varying from 0.2 to 1.0. The external

noise is set at 0.1.

FIGURE 3 | Valence as a function of information gain. The valence is modeled

as a summation of two sigmoidal functions representing reward and aversion

systems.
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the peak positive valence. This inverse U shape is reasonable. One
may feel safe and experience boredom if stimuli are too familiar
(i.e., not novel). Conversely, one may feel uncomfortable if
stimuli are extremely unfamiliar and novel. However, in Bayesian
models, repeated exposure to the same stimulus decreases both
prediction errors and uncertainty. Thus, the iterative information
gain for each update decreases. The decreasing information
gain and the inverse U-shaped function may explain emotional
desensitization, which is the psychological phenomenon of
emotional responsiveness to a negative, aversive, or positive
stimulus diminishing after repeated exposure to it. The positive
hedonic response to a stimulus is diminished by decreasing
information gain after repeated exposure to it, and a negative
hedonic response to an extremely novel stimulus is shifted to a
positive or neutral response by decreasing information gain after
repeated exposure.

As noted in Overview, we formalized the arousal level as
information gain from an event. If an event does not provide
any information, then the valence can be neutral. At the
opposite extreme, if an event provides excessive information
that is difficult for the brain to process, then the valence can
become negative. We can reasonably assume that between these
two extremes there lies a “sweet spot” at which an optimum
information gain maximizes a positive valence. We formalized
valence as a summation of the reward and aversion systems and
used sigmoid functions (Saunders, 2012) to model information
gain for each system:

Valence = Reward + Aversion (15)

where Reward(G) =
hr

1+ exp(−crG+ Gr)
(16)

and Aversion(G) =
−ha

1+ exp(−caG+ Ga)

In these formulae, Gr and Ga represent the thresholds of
information gain that activate reward and aversion systems,
respectively. The variables hr and ha are the maxima of positive
and negative valence levels, respectively, and cr and ca represent
the respective gradients. The condition Gr < Ga must always

be satisfied because the threshold of the reward system is lower
than that of the aversion system. If an extreme information
gain occurs, then the condition hr < ha must be satisfied to
obtain a negative valence. Figure 3 shows the valence, reward,
and aversion functions of formula (15). We can observe that the
valence function is an inverse U-shaped curve.

Model Summary
Figure 4 shows a schematic of our proposed model. We
formalized emotional arousal using information gain from an
event, which we represented as the KL divergence from the prior
to the posterior. We derived the information gain as a function of
three parameters: uncertainty, the prediction error, and external
noise, which are represented as the variance of the prior (or
entropy), the difference between the prior expectation and the
peak of the likelihood function, and the variance of the likelihood
function, respectively. We formulated valence (i.e., positivity
or negativity) as a summation of reward and aversion systems
represented as information gain functions based on Berlyne’s
theory.

In our model, the information gain is a key parameter to
explain the emotional dimensions of arousal and valence. The
information gain increases as the prediction error increases.
Recent neurological studies have shown that dopaminergic
neurons encode the prediction error signal of reward (Schultz
et al., 1997; Bayer and Glimcher, 2005). Our model explains
a reward system as a function of information gain affected
by prediction errors. From a mathematical analysis, we found
that uncertainty and prediction errors have interaction effects
on information gain. Prediction errors increase information
gain. The greater the uncertainty, the more the information
gain for zero or small prediction errors. In contrast, the
smaller the uncertainty, the more the information gain for
large prediction errors. Uncertainty represents the degree of
belief in the prior expectation. The familiarity of an event
or target and one’s knowledge and experience of a target
affect uncertainty. For example, if a product is so familiar
that everyone knows it well, then uncertainty about the
product is small. In contrast, if a product is unfamiliar, then

FIGURE 4 | Proposed model of the dimensions of novelty-elicited emotions. Emotional arousal is expressed as information gain from the Bayesian prior to the

posterior. Valence is a summation of reward and aversion systems, which are functions of information gain.
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uncertainty about the product should be considerable. Thus,
uncertainty represents prior information before experiencing
a target event. Indeed, uncertainty is proportional to the
information entropy of the prior, as in formula (9). This
model suggests that emotion is influenced by prior information,
discrepancies between expectations and reality, and stimulus
attributes.

EFFECTS OF UNCERTAINTY AND
PREDICTION ERRORS ON EMOTIONAL
AROUSAL RELATED TO PERCUSSION
INSTRUMENTS

We investigated the effects of uncertainty and prediction
errors on surprise to validate the arousal crossover effect
derived from the mathematical model in Interaction Effect
of Uncertainty and Prediction Errors on Information Gain.
Specifically, we tested the hypothesis that uncertainty increases
surprise when prediction errors are small and decreases surprise
when prediction errors are large. A set of short videos featuring
percussion instruments and accompanying sounds were used as
stimuli. In each video, a percussion instrument was presented
and then beaten. Different percussive sounds were synthesized.
We assumed a transition from a visual prior (i.e., the appearance
of an instrument) to an auditory posterior (i.e., the percussive
sound). Participants predicted an instrument’s sound from its
appearance and then listened to a sound. We induced prediction
errors by manipulating the congruency between the synthesized
percussive sounds and the instrument shown. We assumed that
prediction errors were large when the synthesized percussive
sounds were incongruent with the instruments shown, and we
assumed that the familiarity or unfamiliarity of the instruments
shown produced different levels of uncertainty. The appearance
of a familiar percussion instrument, such as a hand drum,
produces certainty of expectations concerning its sound (i.e., a
small uncertainty). The appearance of an unfamiliar percussion
instrument, such as the African percussion instrument known
as the jawbone, produces uncertain expectations concerning its
sound (i.e., a large uncertainty).

We used both questionnaires and ERP recordings to assess
participants’ levels of surprise in response to the percussive
sound in each video. We quantified surprise intensities based on
responses to a four-level Likert scale and measurements of ERP
P300 amplitudes (Mars et al., 2008).

Methods
Participants
Nine right-handed healthy male volunteers (mean age ±

standard deviation: 21.7 ± 1.2 years; range: 20–24 years) with
normal or corrected-to-normal vision and hearing participated
in this study. The study protocol was approved by the Ethics
Committee of the Graduate School of Engineering at the
University of Tokyo. In accordance with the principles of
the Declaration of Helsinki, all participants provided written
informed consent prior to their participation in this study. The

TABLE 1 | Combinations of percussion instruments and percussive sounds.

(Video stimuli are available in the Supplementary Material).

Instrument Congruent sound (X) Incongruent sound (Y)

Familiar (A) Clave Clave (AX), (Video S1) Bell (AY), (Video S3)

Hand drum Hand drum (AX), (Video S2) Guiro (AY), (Video S4)

Unfamiliar (B) Jawbone Jawbone (BX), (Video S5) Vibraphone (BY), (Video S7)

Slit drum Slit drum (BX), (Video S6) Snare (BY), (Video S8)

participants were allowed to interrupt the experiment sessions at
their convenience.

Stimuli
The stimuli consisted of eight short videos in which a percussion
instrument was beaten once and a synthesized percussive
sound followed. Table 1 shows the combinations of instruments
shown and the synthesized sounds (Videos are available in
Supplementary Material). The clave and hand drum were
selected as familiar percussion instruments (type A), and the
jawbone and slit drum were selected as unfamiliar percussion
instruments (type B). To create incongruent conditions, we
synthesized percussive sounds that were inconsistent with the
instruments shown. Our stimuli included videos with visually
familiar instruments and congruent sounds (type AX), videos
with visually familiar instruments and incongruent sounds
(type AY), videos with visually unfamiliar instruments and
congruent sounds (type BX), and videos with visually unfamiliar
instruments and incongruent sounds (type BY).

The duration of each video was 2,500ms. First, a percussion
instrument appeared in the center of the screen. The percussion
instrument was then beaten once 500ms into the video while
a percussive sound was presented simultaneously. Each video
had an 18◦ horizontal visual angle and a 10◦ vertical visual
angle and was centrally presented against a black background
on a 29.8-inch display located 100 cm away from the participant.
The participants wore noise-canceling headphones covered by
earmuffs while watching the videos.

Procedure
The participants completed experiments individually in an
electromagnetically shielded dark room. After participants
received instructions for the procedure, they were asked to start
the experiment.

First, we conducted sound-only experiments in which we
attempted to ensure uniform surprise levels in response to the
percussive sounds used in each video type (i.e., AX, AY, BX, and
BY). Achieving this uniformity was necessary so that we could be
sure that our observations in later experiments with audiovisual
stimuli reflected the effects of visual priors. The eight percussive
sounds were presented to the participants via headphones in five
random-order sets without any visual stimuli. This phase of the
procedure consisted of 40 trials (eight sounds× five presentation
sets). The interstimulus interval (ISI) was 1,000–2,000ms, with
an average of 1,500ms.

Second, we conducted additional sound-only experiments in
which we used electroencephalography (EEG) to confirm the
uniformity of the surprise levels evoked by the percussive sounds
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of each video type. The eight percussive sounds were presented to
the participants via headphones in 20 random-order sets without
any visual stimuli. This phase of the procedure consisted of 160
trials (eight sounds × 20 presentation sets). The ISI was 1,000–
2,000ms, with an average of 1,500ms. EEG recordings were
obtained for each trial. A short break was inserted after the tenth
presentation set.

Third, the participants watched videos of a clave or a hand
drum, which we assumed were familiar instruments for our
participants, accompanied by congruent percussive sounds. The
videos thus belonged to type AX. The participants watched
these videos five times to create expectations of certainty and
congruity.

Lastly, we conducted the main experiment in which
participants watched videos while undergoing EEG recordings
and subjectively reporting feelings of surprise. The eight videos
described in Table 1 were presented to the participants in 20
random-order sets. This phase of the procedure consisted of 160
trials (eight videos × 20 presentation sets). The ISI was 1,000–
2,000ms, with an average of 1,500ms. EEG recordings were
obtained for each trial. A short break was inserted after the tenth
presentation set. During the first, tenth, and final presentation
sets, the participants used a four-level Likert scale to report
the intensities of their surprise upon listening to the percussive
sounds. The participants used four push buttons under their
fingers to provide these reports so that they did not have to avert
their eyes from the display.

EEG Recordings
The EEG data were recorded with a portable digital recorder
(Polymate AP1132, TEAC Corporation, Tokyo, Japan) and active
electrodes. The data were obtained from three midline electrodes
positioned at the Fz, Cz, and Pz points as defined by the
international 10–20 system with reference to the nose. The data
were recorded at a sampling rate of 500Hz. The time constant
was set at 3 s. All electrode impedances were below 50 kΩ . A
digital bandpass filter of 0.1–20Hz was applied.

EEG Data Analysis
The ERP waveforms were obtained by averaging data from
the period starting 200ms before the stimulus onset, which we
define as the start of the video in video stimulus sessions, and
ending 1,500ms after the stimulus onset. This averaging was
done separately for each participant, stimulus type (i.e., AX,
AY, BX, and BY), and electrode site for both the sound-only
and video stimuli. For each averaged waveform, the 200-ms
period preceding the stimulus onset was defined as the baseline.
Any epochs containing EEG signals exceeding ± 100 µV were
regarded as eye movement–related artifacts and automatically
removed. The P300 component was designated as the largest
positive peak occurring 250–600ms after the onset of the
percussive sound. The baseline-to-peak P300 amplitudes were
measured at the Pz point, which was the dominant electrode site.

Statistical Analysis
Repeated-measures analysis of variance (ANOVA) was applied
to the ERP and Likert scale data. One-way ANOVA of the P300

data from the sound-only sessions was conducted to examine
how different percussive sound types affected P300 amplitudes.
To identify interaction effects on surprise intensities, we analyzed
the P300 amplitude and Likert scale data from the video sessions
with two-way ANOVA in terms of congruity and familiarity.
Statistical significance was defined as p < 0.05 for all statistical
tests. We compared the experimental results to the simulation
results shown in Figure 2.

Experimental Results
The type of percussive sound did not significantly affect P300
amplitudes in the sound-only sessions (F = 0.35, p= 0.79).

Figure 5 shows the grand mean ERP waveforms for the
four video types in the main video session. Under the
congruent condition, the sounds of unfamiliar percussion
instruments (type BX) elicited larger P300 amplitudes than
the sounds of familiar percussion instruments (type AX) did.
However, under the incongruent condition, the sounds of
familiar percussion instruments (type AY) elicited larger P300
amplitudes than the sounds of unfamiliar percussion instruments
(type BY) did.

Figure 6 shows the averaged P300 amplitude for each
condition (i.e., all combinations of congruity and familiarity)
in the main video session. The interaction effect of congruity
and familiarity on P300 amplitudes was significant (F = 10.99,
p = 0.01). The simple main effect of familiarity was significant
for both congruent (F = 4.7, p = 0.047) and incongruent (F =

11.82, p = 0.004) sounds. When congruent sounds were played,
the average P300 amplitude for the unfamiliar instruments
was larger than that for the familiar instruments, but when
incongruent sounds were played, the average P300 amplitude
for the unfamiliar instruments was smaller than that for the
familiar instruments. The simple main effect of congruity was
significant for the familiar instruments (F = 6.5, p = 0.02) but
not for the unfamiliar instruments (F = 3.09, p = 0.09). Thus,
the average P300 amplitude evoked by incongruent sounds was
larger than that evoked by congruent sounds only when familiar
instruments were shown.

Figure 7 shows the average Likert scale surprise rating for
each stimulus used in the main video session under different
conditions of congruity and familiarity. The interaction effect
of congruity and familiarity was significant (F = 39.06, p
< 0.001), as was the simple main effect of congruity (F =

144.9, p < 0.001). The simple main effect of familiarity was
significant for both congruent (F = 167.14, p < 0.001) and
incongruent (F = 16.72, p < 0.001) sounds. The difference
between Likert scale surprise ratings for the familiar and
unfamiliar instruments was significant under both congruent
and incongruent sound conditions (p < 0.01). These results
show that subjectively rated surprise under the unfamiliar
instrument condition was greater than that under the familiar
instrument condition when the sounds were congruent but
that subjectively rated surprise under the familiar instrument
condition was greater than that under the unfamiliar instrument
condition when the sounds were incongruent. The crossover
in both Figures 6, 7 corresponds to the simulation result in
Figure 2.
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FIGURE 5 | Grand mean event-related potential waveforms for the four different video types measured from frontal (Fz), central (Cz), and parietal (Pz) midline regions.

Open triangles represent the onsets of the videos, and solid triangle represent the onsets of percussive sounds. The horizontal bars show the time range of

250–600ms after the onset of the percussive sound.

FIGURE 6 | P300 amplitudes evoked by percussive sounds that are

congruent or incongruent with the instrument shown. The results for familiar

and unfamiliar instruments are compared.

DISCUSSION

We assumed that information gain from an event, which
can be calculated using KL divergence between the Bayesian
prior and the posterior, represents the intensity of arousal
emotions such as surprise. Prediction errors, which are
differences between prior expectations and likelihood function
peaks, increase information gain and surprise. We conducted

FIGURE 7 | Subjectively reported scores for surprise intensities in response to

percussive sounds that are congruent or incongruent with the instrument

shown. The results for familiar and unfamiliar instruments are compared.

an experiment featuring videos of percussion instruments
accompanied by synthesized percussive sounds. We varied
uncertainty levels by using familiar and unfamiliar instruments,
and we varied prediction error magnitudes by using congruent or
incongruent percussive sounds. We used ERP P300 amplitudes
and subjective reports to assess the participants’ surprise levels
in response to the percussive sounds. Compared to congruent
sounds, incongruent sounds produced greater subjectively
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reported surprise intensities, and this was particularly true
when familiar percussion instruments were shown. Similarly,
incongruent sounds increased P300 amplitudes when familiar
percussion instruments were shown. These results suggest
that prediction errors related to visuoauditory incongruities
increase surprise, attention, and the amount of information
processed in the brain (i.e., the arousal level). Moreover,
instrument familiarity, which induces certainty of expectations
concerning percussive sounds, provides a greater potential
for arousal in the event of visuoauditory incongruity than is
possible with unfamiliar instruments, which induce uncertainty
of expectations concerning sounds. This result supports our
mathematical hypothesis that information gain serves as an index
of arousal.

We mathematically derived a hypothesized effect that we
termed the arousal crossover effect: uncertainty, represented
as variance of the prior, increases information gain when
prediction errors are zero or small, but uncertainty decreases
information gain when prediction errors are large. Both the
P300 amplitude data and the subjectively reported surprise
intensity data supported this hypothesized effect. When
congruent sounds accompanied the instruments shown,
videos featuring unfamiliar instruments evoked greater P300
amplitudes and subjectively reported surprise scores than videos
featuring familiar instruments did. However, when incongruent
sounds accompanied the instruments shown, videos featuring
unfamiliar instruments evoked lower P300 amplitudes and
subjectively reported surprise scores than videos featuring
familiar instruments did.

This concordance between our proposed model’s predictions
and the experimental results suggests that information gain
obtained from a novel event represents the level of emotional
arousal. Previous studies have shown that the KL divergence
represents surprise that attracts human attention (Itti and Baldi,
2009). We newly formalized the information gain, which is
mathematically equivalent to KL divergence, as a function of
prediction errors, uncertainty, and noise and showed both
mathematically and experimentally that an interaction effect of
prediction errors and uncertainty exists. Uncertainty of the prior
depends on an individual’s knowledge and prior experiences
as well as the familiarity of an event. Prior knowledge and
experience produce certainty of expectations. This implies that
our proposed model may explain individual differences in
emotional responses to an identical novel event as resulting from
differences in knowledge and prior experience. For example, an
expert’s expectations should be more certain than those of a
novice. Using our model, we can therefore predict that novices
are more surprised than experts are when an event differs
marginally from prior expectations but that experts are more
surprised than novices are when an event greatly differs from
prior expectations.

We formalized emotional valence as a function of arousal
levels based on Berlyne’s theory (Berlyne, 1970). The functional
model forms an inverse U-shaped curve that has a positive
valence peak at a certain arousal level. Therefore, we can
predict that variable uncertainty levels related to an individual’s
knowledge and experience and the familiarity of an event

modulate the effect of prediction errors on valence responses.
Although our mathematical model is firmly grounded in
Berlyne’s theory, further experimental evidence validating the
ability of our valence model to predict empirical observations
will be more than welcomed. Indeed, the chief limitation of
this study is the reliance on mathematical formulations of both
arousal and valence and the lack of experimental validation of
our formulation of valence. In future studies, we will conduct
experiments to test the validity of our valence model.
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Autism spectrum disorder (ASD) is a developmental disorder, affecting about 1% of
the global population. Currently, the only clinical method for diagnosing ASD are
standardized ASD tests which require prolonged diagnostic time and increased medical
costs. Our objective was to explore the predictive power of personal characteristic data
(PCD) from a large well-characterized dataset to improve upon prior diagnostic models
of ASD. We extracted six personal characteristics (age, sex, handedness, and three
individual measures of IQ) from 851 subjects in the Autism Brain Imaging Data Exchange
(ABIDE) database. ABIDE is an international collaborative project that collected data from
a large number of ASD patients and typical non-ASD controls from 17 research and
clinical institutes. We employed this publicly available database to test nine supervised
machine learning models. We implemented a cross-validation strategy to train and
test those machine learning models for classification between typical non-ASD controls
and ASD patients. We assessed classification performance using accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC). Of the
nine models we tested using six personal characteristics, the neural network model
performed the best with a mean AUC (SD) of 0.646 (0.005), followed by k-nearest
neighbor with a mean AUC (SD) of 0.641 (0.004). This study established an optimal ASD
classification performance with PCD as features. With additional discriminative features
(e.g., neuroimaging), machine learning models may ultimately enable automated clinical
diagnosis of autism.

Keywords: autism spectrum disorder, machine learning, diagnosis, biostatistics, support vector machine

INTRODUCTION

Autism spectrum disorder (ASD) is characterized by impaired linguistic, communication,
cognitive and social skills (Wetherby and Prutting, 1984). Therapies have been developed
to treat the varying degrees of symptoms and improve patient quality of life. However, the
diagnosis of ASD remains challenging, especially for marginal cases, resulting in under-
and over-diagnosis. To date, behavior-based tests are the standard clinical approach to
diagnosing ASD (American Psychiatric Association, 2013). The diagnostic process for ASD
is time-consuming and costly (Galliver et al., 2017). An automated ASD diagnostic approach might
allow for earlier identification of ASD and could help provide a map of high-risk populations.

Abbreviations: ABIDE, Autism Brain Imaging Data Exchange; ASD, Autism Spectrum Disorder; AUC, Area Under the
Receiver Operating Characteristic Curve; PCD, Personal Characteristic Data; SVM, Support Vector Machine.
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Emerging machine learning approaches are showing great
promise for objective evaluation of neuropsychiatric disorders
(Nielsen et al., 2013; Bone et al., 2015; Chen et al., 2015;
Plitt et al., 2015; Ghiassian et al., 2016; Yahata et al., 2016;
Abraham et al., 2017).

Machine learning is a group of statistical techniques that
learn with the distribution of data so as to make decisions
on new data. It is used to devise complex applications to
make accurate classifications/predictions on diverse data (Russell
and Norvig, 2010). Autism diagnosis could be formulated as a
typical classification problem (i.e., ASD vs. typical control/non-
ASD). The constructed model/classifier is then able to evaluate
whether a new unknown subject has ASD or not based on
input features.

Several studies have employed machine learning to improve
ASD diagnosis. Duda et al. (2016) applied machine learning to
distinguish autism from attention deficit hyperactivity disorder
using a 65-item Social Responsiveness Scale. Bone et al.
(2015) trained their models to diagnose autism against healthy
controls using the same Social Responsiveness Scale and the
Autism Diagnostic Interview-Revised scores. More recently, the
Autism Brain Imaging Data Exchange (ABIDE) has gathered
data [i.e., personal characteristic data (PCD), structural MRI,
functional MRI] from over 1,000 subjects and made it available
for the ASD research community (Craddock et al., 2013). This
has facilitated the development of machine learning models
towards the automated diagnosis of ASD (Ghiassian et al.,
2016; Abraham et al., 2017; Heinsfeld et al., 2018; Li et al.,
2018). While most studies have focused on brain neuroimaging
data, few studies have reported automated machine learning
models that solely rely on PCD as input features. As such,
the full potential of PCD on ASD classification has yet to
be comprehensively evaluated. It is important to note that
a true diagnostic classifier of ASD cannot be created due
to the retrospective case-control ABIDE study design. In
this work, we simply set out to assess the predictive power
of PCD for ASD diagnosis and evaluate which machine
learning model is most robust for this task. Specifically,
we employed and validated nine machine learning models
by using PCD, such as age, sex, handedness, and IQ, for
ASD classification of individual subjects. Taking advantage
of such a large PCD dataset from ABIDE, we systematically
evaluated the predictive power of PCD features on ASD
classification and compared the performance of those nine
machine learning models.

MATERIALS AND METHODS

Data
We selected six PCD features of interest—age at testing, sex,
handedness, full-scale IQ, verbal IQ, performance IQ—from
the ABIDE I Preprocessed Database. Only subjects with
information for all 6 features were included (N = 851 of total
of 1,112 subjects in ABIDE I database). Of the 851 subjects,
430 were typical non-ASD controls and 421 had a confirmed
diagnosis of ASD. To control for site effects, we included site

TABLE 1 | Demographic information for our sub-sample of the Autism Brain
Imaging Data Exchange (ABIDE) Database.

Group ASD (N = 421) Control (N = 430) P

Age 16.8 ± 7.7 16.7 ± 6.9 0.858
Full-Scale IQ 105.2 ± 16.8 110.9 ± 12.6 <0.001
Verbal IQ 104.4 ± 17.8 111.3 ± 13.3 <0.001
Performance IQ 105.0 ± 17.2 108.2 ± 13.3 0.003
Sex (%) 0.017

Male 88 82
Female 12 18

Handedness (%) 0.018
Left 13 6
Right 85 92
Ambidextrous 2 1

All data are mean ± SD unless otherwise specified.

of testing in each of the models. Using a two-sided Student’s
t-test (unequal variance), we identified significant differences
between ASD patients and healthy controls in full-scale IQ
(p < 0.001), verbal IQ (p < 0.001), and performance IQ
(p = 0.003); there was no significant group difference in age
(p = 0.8582). Sex (p = 0.017) and handedness (p = 0.018)
were also significantly different between groups (chi-squared
test; Table 1).

A portion of the ABIDE study sites defined handedness as
a score based on the Edinburgh Handedness Inventory while
others coded it as a category (left, right, or ambidextrous). Thus,
we reformatted all handedness data to categorical values. This
study included 15 different ABIDE recruitment sites. These were
included in the features to control for site of testing.

Classification Models
In order to comprehensively evaluate the full potential of PCD for
ASD classification, we tested a variety of approaches, including
k-nearest neighbor (Altman, 1992), linear and nonlinear Support
Vector Machine (SVM; Cortes and Vapnik, 1995), decision
tree (Breiman et al., 1984), logistic regression (Dobson, 1990),
Stacked Sparse Auto-encoder (SSAE)-based neural network
(Hinton and Salakhutdinov, 2006), random forest (Breiman,
2001), and majority voting and weighted average ensemble
models (Cruz and Wishart, 2006; Zhou, 2012). The models are
detailed in the Supplementary Materials.

To optimize the performance of each model, we performed
a parameters grid search (Cuingnet et al., 2011) for each model
(Supplementary Table S1; Supplementary Materials).

Model Evaluation
We applied a k-fold cross-validation scheme to train and test the
models. The whole dataset was randomly divided into 25 equal
sized portions. Of the 25 portions, one portion of data was held
out for model testing, and the remaining 24 portions were used
for model training. In order to create a validation dataset for
model optimization, a 10-fold cross-validation was performed on
the training dataset for each model (Supplementary Materials;
Supplementary Figure S1). This process was repeated until each
of the 25 portions was evaluated once as the testing data. We
evaluated the model based on the concatenated test labels and
ground truth labels across 25 iterations. We repeated this k-fold
cross-validation 30 times.
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The performance of the classification was assessed using
four diagnostic metrics: accuracy, sensitivity, specificity and
area under the receiver operating characteristic curve (AUC).
Accuracy is measured as the percentage of correctly classified
subjects within all subjects. Sensitivity is defined as the
percentage of correctly classified ASD subjects within all ASD
subjects, while specificity is represented by the percentage of
correctly classified healthy subjects within all typical non-ASD
control subjects. Sensitivity is the ability of the classifier to
correctly identify ASD subjects (true positive rate), whereas
specificity is the ability of the classifier to correctly identify
healthy subjects (true negative rate). AUC reflects the diagnostic
ability of a binary classifier system when its discrimination
cutoff varies.

RESULTS

From the models we tested using all six PCD features, we found
that the model with the best AUC was the Stacked Sparse
Auto-encoder (SSAE)-based neural network (p < 0.001) which
correctly classified ASD patients with a mean (SD) accuracy of
62.0% (0.9%) and AUC of 0.646 (0.005; Table 2). The k-nearest
neighbor model displayed an accuracy of 61.8% (0.8%) and the
second highest AUC of 0.641 (0.004), but its sensitivity was
lower than most models. Compared to this, both linear and
non-linear SVM yielded better performance considering overall
diagnostic measures.

Using a feature selectionmethod based on the Student’s t-test,
we noted that the most predictive features were full-scale IQ,
followed by verbal IQ and performance IQ. By using only these
three features, the neural network achieved an AUC (SD) of 0.641
(0.009) which was very comparable to the AUC using all seven
features. By removing females (n = 126) and only considering
male subjects (n = 725), the diagnostic performance for neural
network was also comparable with an accuracy of 61.1% (1.3%)
and AUC of 0.645 (0.014).

DISCUSSION

This study set out to explore the full potential of PCD as
diagnostic features for ASD classification. We developed and
compared nine automated machine learning models by using a
large PCD dataset from the ABIDE repository. In our evaluation,

our neural network model outperformed eight other peer models
by achieving the best AUC of 0.646.

PCD have demonstrated strong predictive power for other
neurodevelopmental disorders. For example, in the ADHD-200
global competition, PCD features outperformed fMRI features
in attention deficit hyperactivity disorder classification (Brown
et al., 2012). This inspired us to test the predictive power of
PCD for ASD classification. Previous studies using PCD for ASD
classification have been limited, and optimal performance for
PCD has not been established. In recent studies, PCD were only
investigated for the purpose of feature fusion or integration.
For instance, Ghiassian et al. (2016) reported an accuracy of
59.6% with non-linear SVM using the same six PCD features
and eye stat (eyes open or closed). However, they investigated
PCD performance only for model comparison. In addition, their
results were based on one classifier whereas we tested multiple
classifiers to determine not only the best performance but also
the model that consistently yielded the best performance. Finally,
when we used the same dataset as Ghiassian et al. (2016) in our
neural network model, we obtained a somewhat higher accuracy
of 62.3%. Nevertheless, these differences might have also resulted
from other factors such as study differences in cross-validation.
The more important takeaway is that the six PCD we tested, and
particularly the three IQ measures, provide significant predictive
power for ASD diagnosis that should be incorporated into future
ASD classification studies.

Our results highlight the advantage of neural networks
over other commonly employed machine learning models in
ASD classification. Traditionally, neural network models have
had a significantly higher computational cost than other peer
models. With recent rapid advances in deep learning techniques,
the current techniques have reduced the optimization process
for neural networks to an acceptable training time. As
shown in Supplementary Table S1, the neural network model
has more hyperparameters which provide the model with
additional flexibility to learn the PCD distribution for ASD
classification. Interestingly, k-nearest neighbor had the second-
best AUC among our nine models, but its sensitivity in our
experiment was not desirable. Compared to this, both linear and
non-linear SVM yielded better performance considering overall
diagnostic measures.

In addition, our results compare favorably to recent
predictions made using fMRI features from a similar sample

TABLE 2 | Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) values for each machine learning model.

Accuracy (%) Sensitivity (%) Specificity (%) AUC

Decision tree 54.7 ± 1.5 53.3 ± 2.0 54.9 ± 1.7 0.562 ± 0.015

Majority model 61.9 ± 0.8 55.4 ± 1.1 69.2 ± 1.3 0.568 ± 0.009

Random forest 57.2 ± 0.8 54.4 ± 1.2 60.4 ± 1.1 0.615 ± 0.007

SVM (linear) 61.4 ± 0.5 57.1 ± 0.6 66.7 ± 0.8 0.622 ± 0.002

SVM (non-linear) 61.9 ± 0.4 52.3 ± 1.5 71.6 ± 1.1 0.623 ± 0.005

Confidence model 61.5 ± 0.9 49.1 ± 1.4 67.1 ± 1.0 0.633 ± 0.008

Logistic regression 59.1 ± 0.5 55.5 ± 0.6 62.6 ± 0.8 0.635 ± 0.001

k-Nearest neighbor 61.8 ± 0.6 46.6 ± 1.0 72.1 ± 0.8 0.641 ± 0.004

Neural network 62.0 ± 0.9 53.3 ± 1.3 71.2 ± 1.9 0.646 ± 0.005

All data are mean ± SD; SVM, Support Vector Machine.
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of the ABIDE database (Abraham et al., 2017). That study
achieved a maximum accuracy (SD) of 66.8% (5.4%). Although
ourmodel with PCD had a lower accuracy of 62.0%, our standard
deviation of 0.9% is substantially lower (i.e., narrower confidence
interval) than their model. Additionally, our model only requires
six simple PCD features which are low-cost and easy-to-
obtain as compared to neuroimaging data. These performance
scores compared to fMRI-based classification emphasize the
importance of PCD in ASD classification.

The main limitations of our study arise from how the ABIDE
data were collected. This international study collected data from
17 unique clinical and research sites. This leads to heterogeneity
in the data that might compromise the machine learning models.
To mitigate the impact of site bias, we controlled for the site
of testing by including it in all the models. However, the
heterogeneity of PCD data may require further investigation
before such models can be utilized in clinical settings. The
small sex difference in ASD vs. controls we observed is likely a
function of the high incidence of ASD in males rather than a
selection bias for this substudy. Even if this was a biased selection
from ABIDE, our secondary analyses in only males from this
subpopulation yielded very similar results to our primary analysis
that included both sexes, suggesting this difference did not affect
performance or bias our results. Another limitation is the size of
the dataset.While 851 subjects are considered a large study in this
field of clinical research, larger datasets may be needed to yield
generalizable machine learning models. Also, our ASD classifiers
specifically focused on the classification of ASD and would not
be effective in detecting the presence of other developmental
disorders. A large prospective study of a more heterogeneous
population would be required to confirm the value of PCD
and/or other promising features to diagnose ASD.

Future efforts could include combining PCD with
neuroimaging data using machine learning models. Along
with the addition of fMRI features, the use of other features,
such as medical tests or past or family history of disease,
might boost the performance of the models to a clinically
useful level. The addition of more features may also increase
the performance of neural networks and allow for the use
of more complex architecture of neural networks. Studies
testing new machine learning models show promising results
using fMRI features (He et al., 2018; Li et al., 2018). A recent
development in machine learning, called transfer learning,
mimics the human brain by using large amounts of available
information unrelated to the disease of interest (e.g., typical
controls) to draw conclusions when presented with a smaller,

less accessible amount of information about the disease
of interest. Transfer learning has already been shown to
improve classification and identify networks in the brains
of high-risk premature birth babies (He et al., 2018) and
diagnose autism on small subsets of the ABIDE database
(Li et al., 2018).

In summary, we developed and compared nine machine
learning models for ASD classification by using PCD as input
features. We conclude that combining PCD with optimized
machine learning models can enhance diagnosis of ASD. When
integrated with additional features (e.g., fMRI features), these
models have the potential to yield a more objective approach for
diagnosing autism.
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We propose an approach for the detection of language expectation violations

that occur in communication. We examined semantic and syntactic violations from

electroencephalogram (EEG) when participants listened to spoken sentences. Previous

studies have shown that such event-related potential (ERP) components as N400 and

the late positivity (P600) are evoked in the auditory where semantic and syntactic

anomalies occur. We used this knowledge to detect language expectation violation from

single-trial EEGs by machine learning techniques. We recorded the brain activity of 18

participants while they listened to sentences that contained semantic and syntactic

anomalies and identified the significant main effects of these anomalies in the ERP

components. We also found that a multilayer perceptron achieved 59.5% (semantic)

and 57.7% (syntactic) accuracies.

Keywords: electroencephalogram, event-related potentials, N400, P600, single-trial analysis, multilayer

perceptron

INTRODUCTION

In speech communication, we often face several types of language expectation violations, such as
prosodic, semantic, and syntactic errors, especially in conversation through machine output (e.g.,
human–computer interaction; Koponen, 2010). Questionnaire-based subjective judgments are
commonly used to rate such language expectation violations as linguistic discrepancies (Dybkjær
et al., 2007). For example, regarding errors in the responses of spoken dialogue systems and
machine translation, human examiners in previous research judged each sentence on an error scale
from 1 to 5, unlike automatic evaluation metrics, e.g., word error rate (Lippmann, 1997; Och et al.,
1999; Papineni et al., 2002). Even though this approach is quick and practical, it suffers from several
problems. For instance, such subjective evaluations of participants contain ambiguity and cannot
guarantee accurate answers. In this paper, we propose a new objective approach that automatically
detects such language expectation violations from physiological signals (Näätänen et al., 2004;
Morikawa et al., 2011; Honda et al., 2018) because participants face more obstacles when they are
manipulating physiological signals. Although our goal is to develop an online detection tool of the
language expectation violations of humans using physiological signals, we simplify the problem by
detecting clear language expectation violations as our first step. We assume that this system can
also be used for assessing people who exhibit the anomalies of semantic context sensitivity (e.g.,
autism spectrum, dementia, Olichney et al., 2008; Pijnacker et al., 2010; O’Connor, 2012; Tanaka
et al., 2012, 2015, 2017a,b, 2018a; Ujiro et al., 2018).

An electroencephalogram (EEG) is a non-invasive tool that records the electrical activity of
the human brain with electrodes placed on the scalp. Regarding real applications using EEGs, in
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the context of motor imagery, which is reflected in event-
related desynchronization [ERD; (Yeom and Sim, 2008)], the
automatic detection of mental states based on convolutional
neural networks (CNNs) has been proposed (Tang et al., 2017).

Unlike ERD, an event-related potential (ERP) is a measured
time-locked brain response that is a direct result of a specific
sensory, cognitive, or motor event. Since ERPs generally have
a low signal/noise ratio in individual trials, many consecutive
trials (e.g., 30 times) are usually averaged to diminish the random
noise. Thus, single-trial detection of ERP components is very
challenging due to their low signal/noise ratios (Blankertz et al.,
2008; Lotte, 2015; Magee and Givigi, 2015). One public dataset
focused on the single-trial detection of P300 components (Hald
et al., 2006; Daubigney and Pietquin, 2011), which were elicited
with relatively high signal/noise ratios. Most previous works have
shown that P300 components can be detected with around 50–
70% accuracy (exceeding the chance rate) using several machine
learning algorithms (Stewart et al., 2014; Akram et al., 2015;
Higashi et al., 2015; Sharma, 2017). Several approaches reached
100% accuracy using four to eight averaged trials in the BCI
Competition 2003 (Cashero, 2012).We also need to consider that
most works created subject-dependent models (within-subjects)
because EEG signals are prone to being subject-dependent, and it
remains challenging to generalize to subject-independent models
(Terasawa et al., 2017).

Even though P300-based single-trial detection is one
successful real application (P300-speller), it failed to detect
language expectation violations including semantic and syntactic
errors. To achieve single-trial detection of such errors, we focus
on other ERP components, e.g., N400 and P600. N400 is a
well-known ERP component that is evoked in auditory and
visual modalities where semantic anomalies occur (Hagoort
and Brown, 2000b). N400 is a phenomenon in which the
potential shift in the negative direction increases around the
brain’s parietal region at around 400ms from the onset of
semantic and syntactic anomalies. Because N400 is strongly
influenced by background noise, artifacts, and variations
among trials, multiple times must be averaged. One study
concluded that N400 is further influenced by a mismatch of
the syntactic case information (Frisch and Schlesewsky, 2001).
P600 (Narumi, 2014), another well-known ERP component
(Hagoort and Brown, 2000a), is evoked in auditory and visual
modalities where rule-governed anomalies generally occur.
P600 is a language-related ERP that is thought to be elicited
by grammatical errors and other syntactic anomalies. Several
works have been done in Japanese (Ueno and Kluender, 2003;
Mueller et al., 2007). P600 is characterized as a positive-going
deflection with an onset around 500ms after the onset of
several types of anomalies. It peaks around 600ms after the
presentation of the stimulus and lasts several 100ms. P600 is
not language-specific, but it can be elicited in non-linguistic
(but rule-governed) sequences [e.g., musical chords; (Patel
et al., 1998)]. There are few P600 studies on Japanese syntactic
violations in auditory modality (e.g., Mueller et al., 2005). To
the best of our knowledge, no studies have addressed semantic
violations in auditory modality in the Japanese language, which
resemble our goal.

Based on our survey, despite the importance of real
speech communication, only one study investigated the single-
trial detection of semantic anomalies. Geuze et al. (2013)
addressed the single-trial detection of semantic priming and
the classification of visually presented related and unrelated
words with an L2 regularized logistic regression algorithm as a
classifier. For more practical applications with such technology,
the work-detection keyboard autocorrection of possible semantic
and syntactic errors from only EEGs identified the accuracy
of the single-trial error detection of around 70% (Putze and
Stuerzlinger, 2017). They used linear discriminant analysis
as a classifier. Although these two studies detected semantic
anomalies in single-trial levels, they did not detect them in
spoken sentences.

In this paper, we propose the single-trial detection (from
subjects who listened to spoken sentences) of semantic and
syntactic anomalies that can be applied to Japanese spoken
communication error evaluations. Such linguistic errors might
be common across languages. Although we evaluated language
expectation violations in Japanese, our approaches may be
generalizable to other languages that include semantic (reflecting
context expectation) and syntactic (reflecting rule-governed)
errors. Understandably, when languages differ, the onset (starting
points) of the time-locked ERPs will also be different.

This paper examined the following three research questions:

1. Do semantic violations while listening to spoken Japanese
sentences elicit ERPs?

2. How does machine learning contribute to single-trial
detection for language expectation violations, including
semantic and syntactic errors?

3. Which classification model more proficiently distinguishes
semantic and syntactic violations?

We recorded EEG data while Japanese participants listened to
sentences that contained semantic and syntactic anomalies and
analyzed the ERP effects. We also detected both anomalies
from single-trial EEGs with a technique that classified them
from multielectrodes and by integrating the time and spectral
information with multiple machine learning algorithms.

This paper is an extension of conference proceedings (Tanaka
et al., 2018b) in which we reported the overall single-trial
detection of semantically incorrect sentences. We added the
analysis of syntactic anomalies as well as participant-independent
models with more participants.

METHODS

Our first aim is to confirm whether not only syntactic but also
semantic violations in listening to Japanese sentences elicit ERPs.
We hypothesized that semantic violations will elicit N400-/P600-
related ERP components and syntactic violations will elicit P600-
related ERP components. We also attempted to detect such
violations from single-trial EEGs. We proposed several machine
learning classifiers and confirmed classification above chance
levels. In this section, we explain how we performed the EEG
experiment and the classification.
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Participants
This study was carried out in accordance with the
recommendations of the research ethical committee of the
Nara Institute of Science and Technology. The protocol was
approved by the research ethical committee of the Nara
Institute of Science and Technology. All participants gave
written informed consent in accordance with the Declaration
of Helsinki.

Nineteen graduate students (16 males and 3 females) between
22 and 41 years of age (mean: 24.2) from the Nara Institute of
Science and Technology participated. All were native Japanese
speakers with no history of psychiatric problems or hearing
disabilities; 18 were right-handed.

Materials
In this study, we prepared two types of violations to elicit
language expectation violations: a selectional restriction (as a
semantic condition) and a double-nominative case (as a syntactic
condition). Semantic violations very often also elicit biphasic
N400 and P600 patterns, particularly when judging linguistic
deviancy tasks (Sassenhagen et al., 2014). Note also that the
double-nominative case violation that we chose for our syntactic
manipulation has elicited N400 effects, including in Japanese
(Mueller et al., 2005).

Japanese semantic and syntactic anomalies were manually
created by referring to Takazawa et al. (2002) and Mueller
et al. (2007). For the semantic condition, we defined error as
a selectional restriction between a verb and its arguments. For
the syntactic condition, error was defined a double-nominative
case of the second phrase. We created an identical number of
semantically and syntactically correct and incorrect sentences.
We separated these sentences, which means that no two parts of
the violated sentences are found in the stimuli.

The following is an example of twomatched types of sentences
(available on the Supplementary Material):

(Semantic)

a. Hanako-ga nikki-o tsuzu-ta
Hanako-NOM a diary-DAT write-PAST
Hanako wrote in her diary .

b. ∗Hanako-ga beer-o tsuzu-ta
Hanako-NOM a beer-DAT write-PAST
Hanako wrote a beer.

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

(Syntactic)

c. Gakusei-ga kenchikuka-o tasuke-ta
Student-NOM architect-DAT help-PAST
The student helped the architect.

d. ∗Gakusei-ga kenchikuka-ga tasuke-ta
Taro-NOM architect-NOM help-PAST

NOM: nominative case marker;
DAT: dative case marker;
PAST: past tense morpheme.

Here, an asterisk indicates semantically (b) and syntactically
(d) incorrect sentences. Matched sentences corresponded in the
first and third phrases. Due to the speech stimulus, we controlled
the phonemes following Hagoort and Brown (2000b) in the
third phrase to begin with plosive sounds:/t/,/k/,/d/, and/g/.
Since such plosive sounds are in the onset position of the ERPs
marked by human annotators, a consistent pattern is required in
the spectrogram.

A group composed of the first author (A), the second author
(B), and a graduate student who did not join our experiment (C)
confirmed and corrected each sentence and reached a consensus
about whether a semantic anomaly occurred. We selected the
following 200 types of sentence from a total of 360 sentences: 40
semantically correct, 40 semantically incorrect, 40 syntactically
correct, 40 syntactically incorrect, and 40 fillers sentences. Fillers
were correct sentences that were used as dummies.

We transcribed them into text and recorded speech that was
naturally spoken by a professional female narrator whom we
instructed to avoid inserting pauses between phrases. The length
of the audio files ranged from 1.8 to 3.0 s.

For the semantic case, the syntactic structure of the sentences
was matched between the two conditions. We used the same
target words in the third phrases. The experiment member A
confirmed that the mean frequency of the third phrases was 1.02
in both conditions. Here, a mora is a unit in phonology that
determines the syllable weight. Themean number of the moras of
the third phrases was 4.25 (SD = 1.35). The difference of the two
conditions was the second phrases with a mean number of moras
of 4.15 (SD= 0.86) in the correct condition and 4.63 (SD= 0.93)
in the incorrect condition.

For the syntactic case, the difference of the two conditions was
the nominative case marker of the second phrases. The mean
frequency of the second phrase was 1 in both conditions. The
mean number of moras in the second phrases was 4.1 (SD= 0.98)
in both conditions.

Moreover, we investigated the predictability of subsequent
words (cloze probability) that affect the N400 amplitudes
(Borovsky et al., 2010). One hundred crowdsourcing workers
were given a list of 40 semantically incorrect sentences from
which the final word had been removed. They read the sentences
and filled in the blanks at the position of the hidden sentence-final
words with the first word that popped into their heads. After that,
we manually changed the present tense to the past tense, revised
minor typing mistakes, and calculated the cloze probability of the
most frequently selected words. The following is the distribution
of the cloze probability: mean, 41%, SD, 16%, range, 14–85%. We
confirmed that no words appeared as semantically incorrect in
our stimuli, whichmeans the cloze probability to the word is zero.

Synchronization
Since ERPs are the time-locked brain response, we explain details
with regard to synchronization between the auditory stimuli and
EEG. Experiment members A and C marked the synchronized
onset (t = 0). For the semantic case, ERP onset is the speech’s
start position of the third phrases. The onset starts with plosive
sounds. The precise beginning position was marked by observing
spectrogram of the speech. For the syntactic case, ERP onset
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is the speech’s start position of the nominative case marker of
the second phrases. The onset also begins with plosive sounds
(only/g/) and was marked by observing spectrogram of the
speech. We used the Wavesurfer (TMH, Speech, Music, and
Hearing) in order to visualize spectrogram of the speech.

Design
The participants entered a soundproof room, sat down, and
were instructed to look at the attention point on the monitor
and to refrain from blinking and moving as much as possible.
The following was the experimental procedure: (1) watch the
“+” mark for 1 s on the screen; (2) listen to one randomly
presented speech sound for 4 s; and (3) press a key and
determine within 2 s whether each speech contains grammatical
or semantic errors. We conducted subjective evaluations and
prepared practice trials before the EEG recordings. All these
steps were completed within 25min. For speech listening, we
used earphones (ER1). This series of experiments was created
using presentation software provided by Neurobehavioral
Systems (Version 18.0, Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com).

The correct answer rates from the behavioral results were
95.8% for semantically correct and incorrect and 96.7% for
syntactically correct and incorrect (error rate is <5%).

Electroencephalogram Recording
and Preprocessing
As an EEG cap, we used ActiCAP by Brain Products with 32 ch
active electrodes according to all the standard positions of the
international 10/20 system (see Figure 1). We used a BrainAmp
DC from the same company as an amplifier. As a recording
filter, we applied a high-pass filter of 0.016Hz and a low-pass
filter of 250Hz. The sampling rate was 1,000Hz, the reference
electrode was FCz, and the ground electrode was FPz. In order to
synchronize the speech signal with EEG, we generated a speech
timing signal and recorded it with the EEG amplifier.

For preprocessing the recorded EEGs, we used FieldTrip
software (Oostenveld et al., 2011) as follows: (1) Re-referencing
was performed on the average of the TP9 and TP10 electrodes.
(2) An FIRfilter was applied through a high-pass filter of 0.3Hz
(order: 6192), which is designed for DC suppression (−60 dB at
DC) to replace the baseline correction (Maess et al., 2006; Wolff
et al., 2008). (3) For each trial condition (excluding fillers), epochs
were extracted at−100 to 900ms of the synchronous onset. Here,
the onset is the speech’s start positions of the third phrases for
the semantic condition and of the nominative case marker of
the second phrases for the syntactic condition. (4) First artifact
rejection was performed on epochs that exceeded a threshold
of −350 and 350 µV in order to remove epochs contaminated
with large amplitude of artifacts. This threshold rejection did
not consider FP1 and FP2 electrodes where eye-related artifacts
mainly contaminated. This large amplitude threshold is to
preserve eye-blink artifact, which will be removed by later
independent component analysis (ICA). (5) We performed an
automatic approach and visual inspection to remove muscle
artifacts: automatically identifying artifacts at Z score = 15 by
considering amplitude distributions of band-pass-filtered epoch

data (110–140Hz), then rejecting epochs contaminated with
muscle artifacts based on visual inspection (Meyer et al., 2017).
(6) The recorded EEGs were downsampled to 250Hz. (7) The
logistic infomax ICA algorithm of Bell and Sejnowski (1995)
was performed to correct eye-related artifacts, and eye-related
components were removed. We identified the components by
calculating the correlations to the FP1 and FP2 electrodes and by
a visual inspection of the topographies and the waveforms. Four
was the maximum number of rejected components because we
only intended to remove as few horizontal and vertical ocular
artifacts as possible. The rejected components had a mean of
2.1 (SD: 1.2). (8) A second artifact rejection was performed on
epochs that exceeded the thresholds of −120 and 120 µV. As a
result of the above artifact rejection procedures, one participant
was removed because of the large number of rejected epochs
(more than 30% of the epochs were rejected). The average rate
of rejected trials across participants was 6.2%. We found no
effects of the number of rejected trials between the semantically
correct and incorrect and the syntactically correct and incorrect
by using paired t-test {semantic: [t(17) = 1.32, p= 0.20], syntactic:
[t(17) = 0.68, p= 0.51]}.

Event-Related Potential Analysis
For further improvement of the signal/noise ratio, we applied
another filtering procedure to the ERP data. Since the N400
components are around 6Hz and the activity in the alpha
frequency band tends to contaminate the EEG data, we used a
two-pass IIR Butterworth filter of order 8 at 8Hz to achieve a
steeper frequency response than the FIR filter and to preserve
the ERP components that also attenuate the alpha activity. Note
that this filter was applied for only visualizing and analyzing
ERPs, meaning that we did not use these filtered signals to the
single-trial analysis.

We computed the grand average of all the participants. Based
on a previous studies (Hagoort and Brown, 2000a,b; Mueller
et al., 2005; Wolff et al., 2008), we selected the following
electrodes in each time window: 100–300, 300–500, and 500–
800ms. These time windows were selected based on the previous
study that analyzed syntax- and semantic-related ERP effects
(Mueller et al., 2005). To assess the topographic differences in
the ERPs, electrodes were summed up in five regions of interest
(ROIs)—left anterior: F3, F7, FC1, FC5; right anterior: F4, F8,
FC2, FC6; left posterior: CP1, CP5, P3, P7; right posterior: CP2,
CP6, P4, P8; and midline: Fz, FCz, Cz, Pz. For the statistical
analyses, we calculated the mean amplitudes in the chosen time
windows (Wolff et al., 2008).

We used two-way repeated ANOVAs to examine the main
effects of the condition and its interaction by ROIs in each
time window. We performed a post hoc multiple comparison
of the interaction between conditions and regions using the
Tukey–Kramer method. Finally, we performed cluster-based
permutation tests (Maris and Oostenveld, 2007) on the ERPs
of the semantic and the syntactic conditions. Regarding the
cluster-based permutation tests, for each time step of interest, we
marked the electrodes that are members of significant clusters.
The significance probability can be calculated by means of the
Monte Carlo method. The Monte Carlo significance probability
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FIGURE 1 | All electrode labels: gray electrodes indicate reference and grand position.

is also called a p-value. If the p-value is smaller than the critical
alpha level (5% in this study), then we conclude that the data
in the two experimental conditions are significantly different.
Overall, we set the significance level to 5%.

Feature and Classifiers
Based on previous work (Hagoort and Brown, 2000b; Roehm
et al., 2004), we extracted the average values of the 100–300,
300–500, and 500–800ms amplitudes from all of the electrodes
(93 time domain features). To avoid overfitting to the training
data, we selected specific time domains (possibly important time
ranges) rather than using all time sampling points (simplifying
the model). We also considered all of the electrodes with
frequency domains for the single-trial detection of EEGs (Putze
and Stuerzlinger, 2017). The delta band has been associated with
N400 and P600 components in language (Correia et al., 2015).
Thus, we performed a fast Fourier transform on the waveform
between 0 and 900ms to the onset and calculated the average
values of the power spectra of δ (1–3Hz), θ (4–7Hz), α (8–12Hz),

and β (13–28Hz) (124 spectral domain features) by referring to
previous work (Hald et al., 2006; Mcmahon et al., 2015). We
concatenated time and spectral features (217 dimensions). The
feature vectors were normalized to a mean of zero and one
standard deviation.

For the classifiers, we used a linear kernel support vector
machine (L-SVM), a radial kernel support vector machine (R-
SVM), a random forest (RF), and multilayer perceptrons (MLPs).
The classifiers were trained on a dataset that combined 13
participants and subsequently tested on five different participants
without further training by following Vareka and Mautner
(2017). We observed how our detection models performed when
they dealt with data from previously unknown participants.

These models were trained using 5-fold cross-validation for
hyperparameter tuning on the training set to optimize the
accuracies. The hyperparameters included the kernel (linear or
radial basis function), C = {10–5, 10–4, . . . , 103}, γ = {0.00,
0.005, . . . , 1.00} (in the case of the RBFkernel) for the SVMs, the
number of variables tried at each split = {5, 10, 15, 20} for the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 1549

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tanaka et al. EEG-Based Single Trial Detection

FIGURE 2 | Grand average of nine representative electrodes of semantic and syntactic conditions. Vertical axis ranges between −4 and +4. Positivity is plotted up.

We plotted −100 to 900ms to the stimuli onset. Topographical map shows a difference wave between incorrect and correct conditions.

RF, and the number of hidden units {5, 10, 50, 100, 150, 200},
the number of hidden layers {1, 2, 3}, and activation function
(logistic, hyperbolic tangent, or rectified linear unit) in the MLP
by referring to Vail et al. (2018). After the parameters were
found, the models were trained on the whole training dataset and
subsequently tested.

By a binomial test, we compared the chance rate (50.4% for
the semantic sentences and 50.4% for the syntactic sentences in
the test set) and the model that achieved the highest accuracy
as well as precision, recall, and F1. We also calculated the
correlation between cloze probability and semantic accuracy
based on Pearson’s correlation coefficient.

RESULTS

Event-Related Potential Effects
Figure 2 plots the ground averages at representative electrodes
in the semantic and syntactic conditions. For the semantic
condition, a potential shift to the negative around 400ms can
be observed under the semantically incorrect condition over the
parietal region, and late positivity (P600) can also be seen.

Based on our assumption, for a time window of 300–
500ms, ANOVAs would show the main effects of the condition
[F(1, 17) = 4.69, p = 0.04]. No significant interaction was
shown between condition by region [F(4, 68) = 1.18, p = 0.32].
Regarding other time windows, for a mean amplitude of 100–
300ms, we found main effects of condition [F(1, 17) = 4.51,
p = 0.04] and also a significant interaction of condition by
region [F(4, 68) = 11.5, p < 0.001]. Since there were significant
interactions of the condition by region, multiple comparisons
were separately calculated for each region. Post hoc analysis by the
Tukey–Kramer method revealed that the left anterior [difference
(incorrect – correct): 0.66, p= 0.02, 95% CI= 0.09–1.23] and the
right posterior (difference: 0.45, p = 0.02, 95% CI = 0.06–0.83)
were significantly different between two conditions. For themean

amplitude of 500–800ms, we found no main effects of condition
[F(1, 17) = 0.82, p = 0.37]. However, we did identify a significant
interaction of condition by region [F(4, 68) = 5.39, p< 0.001]. Post
hoc analysis revealed that the left posterior (difference: 0.54, p =
0.008, 95% CI = 0.003–1.01) and the right anterior (difference:
0.88, p < 0.001, 95% CI = 0.51–1.2) were significantly different
between two conditions.

For the syntactic condition, we observed a potential shift to the
positive after 500ms under the syntactically incorrect condition
over the parietal region. Based on our assumption, for the
time window of 500–800ms, ANOVAs showed no main effects
of condition [F(1,17) = 1.00, p = 0.33]. ANOVAs showed the
interaction of the condition by region [F(4, 68) = 6.03, p < 0.001].
Post hoc analysis revealed that the left posterior (difference: 0.51
µV, p = 0.04, 95% CI = 0.003–1.01 µV) and the right posterior
(difference: 0.45 µV, p = 0.02, 95% CI = 0.06–0.83 µV) were
significantly different between two conditions. Regarding other
time windows, for the mean amplitude of 100–300ms, we found
no main effects of condition [F(1, 17) = 1.28, p = 0.27]. However,
we did find a significant interaction of the condition by region
[F(4, 68) = 6.86, p < 0.001]. Post hoc analysis revealed that the
left posterior (difference: −0.65 µV, p = 0.006, 95% CI = −1.08
to −0.21 µV) and the right anterior (difference: −0.49 µV, p =

0.02, 95% CI = −0.90 to −0.08 µV) were significantly different
between two conditions. For the mean amplitude of 300–500ms,
there were no main effects of condition [F(1, 17) = 0.05, p= 0.82]
and no interaction of the condition by region [F(4, 68) = 0.05,
p= 0.79].

Figures 3, 4 show the results of cluster-based permutation
tests on ERPs of the semantic and the syntactic conditions.

Single-Trial Detection
Table 1 indicates the accuracy of each classifier in the
test sets. For the semantic conditions, MLP achieved
the highest accuracy of 59.5%. Regarding this accuracy,
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FIGURE 3 | Cluster-based permutation tests on the event-related potentials (ERPs) of the semantic condition along with a difference wave between incorrect and

correct conditions. We plotted 0–900ms to the stimuli onset. For each time step of interest (time range: 0.05), we highlighted the electrodes that are members of

significant clusters (cluster alpha value: 0.05). A cluster is significant if its p-value is less than the critical alpha level.

we confirmed a statistical significance compared to the
chance rate (p < 0.05): 44.3% precision, 63.1% recall,
and 52.1% F1.

We found no significant correlation between the cloze
probability or the predicted accuracy in the semantic condition
(all classifiers, r < 0.15, p > 0.05).

For the syntactic conditions, the highest accuracy was also
found when using MLP (57.7%), and we confirmed a statistical
significance compared to the chance rate (p < 0.05): 58.8%
precision, 57.9% recall, and 58.4% F1.

DISCUSSION

The aim of the present study is to observe the time-locked
effects of semantic and syntactic anomalies in spoken Japanese
sentences and to detect them with single-trial EEGs. We
achieved this by focusing on the previous approach: ERPs. We
followed two previous studies that elicited the ERP components
of N400 and P600 in Japanese: Mueller et al. (2007) and
Takazawa et al. (2002). We hypothesized that semantic violations
will elicit N400-/P600-related ERP components and syntactic
violations will elicit P600-related ERP components. We also
attempted to use SVMs, RF, and MLP for single-trial EEGs and
confirmed classification that exceeded chance levels. We next
summarize our discussion regarding ERP analysis and single-
trial detection.

Event-Related Potential Analysis
For the semantic condition, we used such previously proposed
stimuli as selectional restriction (Takazawa et al., 2002). Although
the previous study was performed with visual stimuli, our
experiment confirmed that ERP components were elicited even
in an auditory experimental design.

One of our experiment’s drawbacks is that semantically
incorrect sentences were limited to the anomalies of the
selectional restrictions at the end of sentences. Our 40-filler
setting is limited to natural settings, and naturalistic sentence
processing is a major analysis challenge. We identified several
participants who did not indicate the strong effects of ERPs.
We need to control such related factors as social traits and the
attention of the participants as well as age (Constantino and
Gruber, 2012).

Onset is another critical aspect for analyzing ERPs. We
set the ERP onset to the speech’s start position of the
third phrases for the semantic condition and the speech’s
start position of the nominative case marker of the second
phrases for the syntactic condition. Because this study uses
auditory stimuli (speech sequences), we did not know the
actual timing when the participants perceived the violations.
In the future, we will measure the effects in the onset latency
of a representative range of ERPs and implement artificial
time shifting (Kiesel et al., 2008; Zoumpoulaki et al., 2013;
Sassenhagen et al., 2014).
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FIGURE 4 | Cluster-based permutation tests on the ERPs of the syntactic condition along with a difference wave between incorrect and correct conditions. We

plotted 0 to 900ms to the stimuli onset. For each time step of interest (time range: 0.05), we highlighted the electrodes that are members of significant clusters (cluster

alpha value: 0.05). A cluster is significant if its p-value is less than the critical alpha level.

TABLE 1 | Unweighted accuracies (%) of classifiers.

Violations L-SVM R-SVM RF MLP

Semantic 58.2 56.0 58.2 59.5

Syntactic 54.7 54.7 55.3 57.7

The best model is indicated in bold.

Single-Trial Detection
Our classification model achieved 59.5% (semantic) and 57.7%
(syntactic) detection accuracies in the incorrect conditions and
outperformed the chance rate. MLP outperformed the other
classifiers: SVMs and RF. Such accuracies were similar or superior
to previous related works (Geuze et al., 2013; Higashi et al., 2015;
Putze and Stuerzlinger, 2017). The previous work that detected
semantic priming with 12 subjects showed accuracy between 51
and 63%, which is above chance in a cross-subject study (Geuze
et al., 2013). Although our evaluation was validated by previously
unseen participants, the MLP achieved a similar accuracy.

The N400 amplitude for incongruent words was also
modulated by the cloze probability of the expected congruent
word for that place. Generally, the best predictor of a word’s
N400 amplitude in a given sentence is its cloze probability
(Kutas and Hillyard, 1984). The N400 amplitude is largest for
items with low cloze probability and smallest for items with

high cloze probability. Semantic anomaly thus shows the end
point on a continuum of expectedness in a particular context
(Coulson, 2001). Thus, we hypothesized that detecting low
cloze probability items (large N400 amplitude) is easier because
of the relatively high signal/noise ratios (Hald et al., 2006;
Daubigney and Pietquin, 2011). However, we did not find a
relationship between accuracy and cloze probability. This is
because we did not control the cloze probability of the semantic
incorrect sentences or the semantic correct sentences prior to the
experiment (Borovsky et al., 2010).

This study did not consider the effects of the individuality

of the frequency band. We fixed the frequency bands rather
than individually adapting them based on individual alpha

frequencies. This idea needs to be considered due to the high

individual variability in this domain (Klimesch, 2012).
To improve classification accuracy, we need to increase the

sophistication of the machine learning models, although EEGs
have a low signal/noise ratio. We believe that a participant-
adaptive technique (e.g., maximum likelihood linear regression;
Gales and Woodland, 1996; Pan and Yang, 2010) is one possible
future direction. Due to a large amount of P300 data, such as
for a BCI competition, we applied several types of machine
learning approach to our collected data by transfer learning
(Pan et al., 2016).

Another possible direction to improve the classification
accuracy is to average several trials (not a single trial) whose
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usefulness has already been validated. Several approaches
achieved 100% accuracy using only four to eight averaged trials
on P300 data (Cashero, 2012). We can apply this approach to
detect the language expectation violations toward practical usage.

We will also improve our model using graph regularized
tensor factorization (Maki et al., 2018) as well as non-negative
matrix factorization, which we previously proposed. Automatic
onset detection and the techniques of artificial shifted trials are
also needed for completely automated anomaly detection (Kutas
and Hillyard, 1980).

CONCLUSIONS

This study aims to detect semantic and syntactic anomalies
from a one-shot EEG, using a machine learning technique. We
measured the EEGs of 18 participants while they listened to
semantically anomalous sentences and confirmed N400- and
P600-related ERP components. When using MLP, we achieved
detection accuracies of 59.5% (semantic) and 57.7% (syntactic)
with time and spectral domain inputs. From here, the results
suggest that machine learning might be able to detect semantic
and syntactic anomalies from correct sentences.
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We show that deep networks can be trained using Hebbian updates yielding similar

performance to ordinary back-propagation on challenging image datasets. To overcome

the unrealistic symmetry in connections between layers, implicit in back-propagation,

the feedback weights are separate from the feedforward weights. The feedback weights

are also updated with a local rule, the same as the feedforward weights—a weight is

updated solely based on the product of activity of the units it connects. With fixed

feedback weights as proposed in Lillicrap et al. (2016) performance degrades quickly

as the depth of the network increases. If the feedforward and feedback weights are

initialized with the same values, as proposed in Zipser and Rumelhart (1990), they remain

the same throughout training thus precisely implementing back-propagation. We show

that even when the weights are initialized differently and at random, and the algorithm

is no longer performing back-propagation, performance is comparable on challenging

datasets. We also propose a cost function whose derivative can be represented as a

local Hebbian update on the last layer. Convolutional layers are updated with tied weights

across space, which is not biologically plausible. We show that similar performance is

achieved with untied layers, also known as locally connected layers, corresponding to

the connectivity implied by the convolutional layers, but where weights are untied and

updated separately. In the linear case we show theoretically that the convergence of the

error to zero is accelerated by the update of the feedback weights.

Keywords: Hebbian learning, asymmetric backpropagation, feedback connections, hinge loss, convolutional

networks

1. INTRODUCTION

The success of multi-layer neural networks (deep networks) in a range of prediction tasks as well
some observed similarities observed between the properties of the network units and cortical
units (Yamins and DiCarlo, 2016), has raised the question of whether they can serve as models
for processing in the cortex (Kriegeskorte, 2015; Marblestone et al., 2016). The feedforward
architecture of these networks is clearly consistent with models of neural computation: a hierarchy
of layers, where the units in each layer compute their activity in terms of the weighted sum of the
units of the previous layer. The main challenge with respect to biological plausibility is in the way
these networks are trained.

Training of feedforward networks is based on a loss function that compares the output of the
top layer of the network to a target. Small random subsets of training data are then used to compute
the gradient of the loss with respect to the weights of the network, and these are then updated by
moving a small distance in the opposite direction of the gradient. Due to the particular structure
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of the function represented by these multi-layer networks the
gradient is computed using back-propagation—an algorithmic
formulation of the chain rule for differentiation (Rumelhart et al.,
1986). In the feedforward step the input is passed bottom-up
through the layers of the network to produce the output of the
top layer and the loss is computed. Back-propagation proceeds
top-down through the network. Successively two things occur in
each layer: first, the unit activity in the layer is updated in terms
of the layer above—feedback, then the weights feeding into this
layer are updated. The gradient of each weight is a product of
the activity of the units it connects—the feedforward pre-synaptic
activity of the input unit in the lower layer and the feedback
activity in the post-synaptic unit in the current layer. In that
sense the gradient computation has the form of local Hebbian
learning. However, a fundamental element of back-propagation
is not biologically plausible as explained in Zipser and Rumelhart
(1990) and Lillicrap et al. (2016). The feedback activity of a
unit is computed as a function of the units in the layer above
it in the hierarchy in terms of the same weight matrix used to
compute the feedforward signal, implying a symmetric synaptic
connectivity matrix.

Symmetry of weight connection is an unrealistic assumption.
Although reciprocal physical connections between neurons
are more common than would be expected at random,
these connections are physically separated in entirely different
regions of the neuron and can in no way be the same.
The solution proposed both in Zipser and Rumelhart (1990)
and in Lillicrap et al. (2016) is to create a separate system
of feedback connections. The latter model is simpler in that
the feedback connections are not updated so that the top-
down feedback is always computed with the same weights.
The earlier model proposes to update the feedback weights
with the same increment as the feedforward weights, which
as mentioned above has a Hebbian form. Assuming they are
initialized with the same values, they will always have the same
value. This guarantees that the back-propagation computation
is executed by the network, but in effect reintroduces exact
weight symmetry in the back-door, and is unrealistic. In
contrast, the computation in Lillicrap et al. (2016) does not
replicate back-propagation, as the feedback weights never
change, but the price paid is that in deeper networks it performs
quite poorly.

The main contribution of this paper is to experiment
with the idea proposed in Zipser and Rumelhart (1990), but
initialize the feedforward and feedback weights randomly (thus
differently). We call this updated random feedback (URFB).
We show that even though the feedback weights are never
replicates of the feedforward weights, the network performance
is comparable to back-propagation, even with deep networks
on challenging benchmark datasets such as CIFAR10 and
CIFAR100 (Krizhevsky et al., 2013). In contrast, the performance
with fixed weights -fixed random feedback (FRFB), as in
Lillicrap et al. (2016), degrades with depth. It was noted in
Lillicrap et al. (2016) that in shallow networks the feedforward
weights gradually align with the fixed feedback weights so that
in the long run an approximate back-propagation is being
computed, hence the name feedback alignment. We show in

a number of experiments that this alignment phenomenon is
much stronger in URFB even for deep networks. However,
we also show that from the very initial iterations of the
algorithm, long before the weights have aligned, the evolution
of both the training and validation errors is comparable to that
of back-propagation.

In our experiments we replace the commonly used
unbounded rectified linear unit, with a saturated linearity
σ (x) = min(max(x,−1), 1), which is more biologically plausible,
as it is not unbounded, we avoid normalization layers whose
gradient is quite complex and not easily amenable to neural
computation, and we run all experiments with the simplest
stochastic gradient descent that does not require any memory of
earlier gradients. We also experiment with randomly zeroing out
half of the connections, separately for feedforward and feedback
connections. Thus, not only are the feedforward and feedback
weights different, but connectivity is asymmetric. In a simplified
setting we provide a mathematical argument for why the error
decreases faster with updated feedback weights compared to
fixed feedback weights.

Another issue arising in considering the biological plausibility
of multilayer networks is how the teaching signal is incorporated
in learning. The primary loss used for classification problems in
the neural network literature is the cross-entropy of the target
with respect to the softmax of the output layer (see section 3.2).
The first step in back-propagation is computing the derivative
of this loss with respect to the activities of the top layer. This
derivative, which constitutes the feedback signal to the top layer,
involves the computation of the softmax—a ratio of sums of
exponentials of the activities of all the output units. It is not a
local computation and is difficult to model with a neural network.
As a second contribution we experiment with an alternative loss,
motivated by the original perceptron loss, where the feedback
signal is computed locally only in terms of the activity of the top-
level unit and the correct target signal. It is based on the one-vs.
all method commonly used with support vector machines in the
multi-class setting and has been implemented through network
models in Amit andMascaro (2003), La Camera et al. (2004), and
Amit and Walker (2012).

Finally, although convolutional layers are consistent with
the structure of retinotopic layers in visual cortex, back-
propagation through these layers is not biologically plausible.
Since the weights of the filters applied across space are assumed
identical, the gradient of the unique filter is computed as
the sum of the gradients at each location. In the brain the
connections corresponding to different spatial locations are
physically different and one can’t expect them to undergo
coordinated updates, see Bartunov et al. (2018). This leads us to
the final set of experiments where instead of purely convolutional
layers we use a connectivity matrix that has the sparsity structure
inherited from the convolution but the values in the matrix are
“untied” and undergo independent local updates. Such layers
are also called locally connected layers and have been used in
Bartunov et al. (2018) in experiments with biologically plausible
architectures. The memory requirements of such layers are much
greater than for convolutional layers, as is the computation,
so for these experiments we restrict to simpler architectures.
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Overall we observe the same phenomena as with convolutional
layers, namely the update of the feedback connections yields
performance close to that of regular back-propagation.

The paper is organized as follows. In section 2 we describe
related work. In section 3 we describe the structure of a
feedforward network, the back-propagation training algorithm
and explain how it is modified with separate feedback weights.
We describe the loss function and explain why it requires
only local Hebbian type updates. In section 4 we report
a number of experiments and illustrate some interesting
properties of these networks. We show that performance of
URFB is lower but close to back-propagation even in very
deep networks, on more challenging data sets that actually
require a deep network to achieve good results. We show
that using locally-connected layers works, although not as
well as convolutional networks, and that the resulting filters
although not tied apriori show significant similarity across space.
We illustrate the phenomenon of weight alignment that is
much more pronounced in URFB. In section 5 we describe
a simplified mathematical framework to study the properties
of these algorithms and show some simulation results that
verify that updating the feedback connections yields faster
convergence than fixed feedback connections. We conclude with
a discussion. Mathematical results and proofs are provided
in the Appendix.

2. RELATED WORK

As indicated in the introduction, the issue of the weight
symmetry required for feedback computation in back-
propagation, was already raised by Zipser and Rumelhart
(1990) and the idea of separating the feedback connections from
the feedforward connections was proposed. They then suggested
updating each feedforward connection and feedback connection
with the same increment. Assuming all weights are initialized
at the same value the resulting computation is equivalent to
back-propagation. The problem is that this reintroduces the
implausible symmetry since the feedback and feedforward
weights end up being identical.

In Lillicrap et al. (2016) the simple idea of having fixed
random feedback connections was explored and found to work
well for shallow networks. However, the performance degrades
as the depth of the network increases. It was noted that in
shallow networks the feedforward weights gradually align with
the fixed feedback weights so that in the long run an approximate
back-propagation is being computed, hence the name feedback
alignment. In Liao et al. (2016) the performance degradation of
feedback alignment with depth was addressed by using layer-
wise normalization of the outputs. This yielded results with
fixed random feedback FRFB that are close to momentum based
gradient descent of the back-propagation algorithm for certain
network architectures. However, the propagation of the gradient
through the normalization layer is complex and it is unclear how
to implement it in a network. Furthermore Liao et al. (2016),
showed that a simple transfer of information on the sign of
the actual back-propagation gradient yields an improvement on
using the purely random back-propagation matrix. It is however

unclear how such information could be transmitted between
different synapses.

In Whittington and Bogacz (2017) a model for training
a multilayer network is proposed using a predictive coding
framework. However it appears that the model assumes
symmetric connections, i.e., the strength of the connection from
an error node and a variable in the preceding layer is the same
as the reverse connection. A similar issue arises in Roelfsema
and Holtmaat (2018), where in the analysis of their algorithm,
they assume that in the long run, since the updates are the same,
the synaptic values are the same. This is approximately true, in
the sense that the correlations between feedforward and feedback
weights increase but significant improvement in error rates are
observed even early on when the correlations are weak.

Burbank (2015) implements a proposal similar to Zipser and
Rumelhart (1990) in the context of an autoencoder and attempts
to find STDP rules that can implement the same increment for
the feedforward and feedback connections. Again it is assumed
that the initial conditions are very similar so that at each step the
feedforward and feedback weights are closely aligned.

In a recently archived paper (Pozzi et al., 2018) also goes
back to the proposal in Zipser and Rumelhart (1990). However,
as in our paper, they experiment with different initializations
of the feedforward and feedback connections. They introduce a
pairing of feedback and feedforward units to model the gating
of information from the feedforward pass and the feedback pass.
Algorithmically, the only substantial difference to our proposal is
in the error signal produced by the output layer, only connections
to the output unit representing the correct class are updated.

Here we show that there is a natural way to update all units
in the output layer so that subsequent synaptic modifications in
the back-propagation are all Hebbian. The correct class unit is
activated at the value 1 if the input is below a threshold, and
the other classes are activated as −µ if the input is above a
threshold. Thus, corrections occur through top-down feedback
in the system when the inputs of any of the output units are not
of sufficient magnitude and of the correct sign. We show that this
approach works well even in much deeper networks with several
convolutional layers and with more challenging data sets. We
also present a mathematical analysis of the linearized version of
this algorithm and show that the error converges faster when the
feedback weights are updated compared to when they are held
fixed as in Lillicrap et al. (2016).

Lee et al. (2015) and Bartunov et al. (2018) study target
propagation where an error signal is computed in each hidden
unit as the difference between the feedforward activity of that
unit and a target value propagated from above with feedback
connections that are separate from the feedforward connections.
The feedback connections between each two consecutive layers
are trained to approximate the inverse of the feedforward
function between those layers, i.e., the non-linearity applied to
the linear transformation of the lower layer. In Bartunov et al.
(2018) they analyze the performance of this method on a number
of image classification problems and use locally connected layers
instead of convolutional layers. In target propagation the losses
for both the forward and the backward connections rely on
magnitudes of differences between signals requiring a more
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complex synaptic modification mechanism than simple products
of activities of pre and post-synaptic neurons as proposed
in our model.

Such synaptic modification mechanisms are studied in
Guerguiev et al. (2017). A biological model for the neuronal units
is presented that combines the feedforward and feedback signals
within each neuron, and produces an error signal assuming
fixed feedback weights as in Lillicrap et al. (2016). The idea
is to divide the neuron into two separate compartments one
computing feedforward signals and one computing feedback
signals, with different phases of learning involving different
combinations of these two signals. In addition to computing
an error signal internally to the neuron this model avoids the
need to compute signed errors, which imply negative as well as
positive neuronal activity. However, this is done by assuming the
neuron can internally compute the difference in average voltage
between two time intervals. In Sacramento et al. (2018) this
model is extended to include an inhibitory neuron attached to
each hidden unit neuron with plastic synaptic connections to
and from the hidden unit. They claim that this eliminates the
need to compute the feedback error in separate phases form the
feedforward error.

In our model we simply assume that once the feedforward
phase is complete the feedback signal replaces the feedforward
signal at a unit—at the proper timing—to allow for the
proper update of the incoming feedforward and outgoing
feedback synapses.

3. THE UPDATED RANDOM FEEDBACK
ALGORITHM

In this section we first describe the structure of a multilayer
network, how the back-propagation algorithmworks and howwe
modify it to avoid symmetric connections and maintain simple
Hebbian updates to both feedforward and feedback connections.
We then describe a loss function, whose derivatives can be
computed locally, yielding a Hebbian input dependent update of
the weights connecting to the final output layer.

3.1. Updated Asymmetric Feedback
Connections
A multi-layer network is composed of a sequence of layers
0, . . . , L. The data at the input layer is denoted x0. Each layer
is composed of nl units. Let Wl,ij be the feedforward weight
connecting unit j in layer l − 1 to unit i in layer l. Let
xl, l = 1, . . . , L be the output of layer l, this is computed as

xl,i = σ (hl,i), hl,i =

nl−1
∑

j= 1

Wl,ijxl−1,j, i = 1, . . . , nl.

or hl =Wlxl−1, (1)

where σ is some form of non-linearity and Wl is the nl × nl−1
matrix of weights connecting layer l− 1 to layer l. We denote hl,i
the input of unit i of layer l. For classification problems with C
classes the top layer L, also called the output layer, has C units
xL,1, . . . , xL,C. In this last layer no non-linearity is applied, i.e.,

FIGURE 1 | An illustration of the computations in a feedforward network.

xL,i = hL,i. For given input x0 we canwrite xL = N (x0,W), where
N represents the function computed through the multiple layers
of the network with the set of weights W . The classifier is then
defined as:

ĉ(x0) = argmaxixL,i = argmaxiN (x0,W).

A feedforward network with 3 layers is shown in Figure 1.
We define a loss L(xL, y,W) comparing the activity of the

output layer to a target value, an indicator vector denoting the
correct class of the input. At each presentation of a training
example the derivative ∂L/∂Wl,ij of the loss with respect to each
weight is computed, and the value of the weight is updated as

Wl,ij =Wl,ij − η∂L/∂Wl,ij,

where η is a small scalar called the time-step or learning rate. This
is done in two phases. In the first phase, the feedforward phase,
the input x0 is presented at layer l = 0 and passed successively
through the layers l = 1, . . . , L as described in (1). In the second
phase the derivatives are computed starting with WL,ij for the
top layer and successively moving down the hierarchy. At each
layer the following two equalities hold due to the chain rule
for differentiation:

∂L

∂Wl,ij
=

∂L

∂hl,i

∂hl,i

∂Wl,ij
=

∂L

∂hl,i
xl−1,j

∂L

∂hl,i
=σ ′(hl,i)

nl+1
∑

k=1

∂L

∂hl+1,k
Wl+1,ki.
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If we denote δl,i =
∂L
∂hl,i

we can write this as:

∂L

∂Wl,ij
=δl,ixl−1,j

δl,i =σ ′(hl,i)

nl+1
∑

k=1

δl+1,kWl+1,ki.

or δl =σ ′(hl)W
t
l+1δl+1, (2)

where σ ′(hl) is the diagonal matrix with entries σ ′(hl,i) on the
diagonal. So we see that the update to the synaptic weightWl,ij is
the product of the feedback activity at unit i of layer l denoted
by δl,i, also called the error signal, and the input activity from
unit j of layer l − 1. The feedback activity (error signal) of layer
l is computed in terms of the feedforward weights connecting
unit i in layer l to all the units in layer l + 1. This is the
symmetry problem.

We now separate the feedforward weights from the feedback
weights. Let Rl+1,ik be the feedback weight connecting unit k of
layer l+1 to unit i of layer l. The second equation in (2) becomes:

δl,i = σ ′(hl,i)

nl+1
∑

k=1

δl+1,kRl+1,ik.

If R = Wt we get the original back-propagation update. We
illustrate the general updating scheme computation in Figure 2.

In Lillicrap et al. (2016) the values of R are held fixed
at some random initial value, which we denote fixed random
feedback (FRFB). In contrast, in our proposal, since Rl+1,ik
connects the same units as Wl+1,ki it experiences the same pre
and post-synaptic activity and so will be updated by the same
Hebbian increment - δl+1,kxl,i. We call this method updated
random feedback - URFB. If the initial values of Rl,ik are the
same as Wl,ki then equality will hold throughout the update
iterations resulting in a symmetric system performing precise
back-propagation. This is the proposal in Zipser and Rumelhart
(1990). We experiment with different initializations, so that the
updates are not performing back-propagation, even in the long
run aftermany iterations the weights are not equal, although their
correlation increases. We show that classification rates remain
very close to those obtained by back-propagation. In addition, in
order to increase the plausibility of the model we also experiment
with sparsifying the feedforward and feedback connections by
randomly fixing half of each set of weights at 0.

Remark 1: It is important to note that the feedback activity δl,i
replaces the feedforward activity xl,i and needs to be computed
before the update of the feedforward weights feeding into unit
i and the feedback weights feeding out of that unit, but using
the original feedforward activity xl−1,i of the units in layer l − 1.
This requires a very rigid sequencing of the algorithm from top
to bottom.

Remark 2: The feedback signal propagates by computing a
linear combination of the feedback signals in the higher layers,
but is then multiplied by the term σ ′(hl,i). To simplify as much as
possible we have employed a non-linearity σ of the form

σ (h) = max(−1,min(1, h)),

which is simply a saturated linear function at thresholds −1 and
1, and σ ′(h) = 1 if |h| ≤ 1 and 0 otherwise. Thus, the feedback
activity δl,i is the linear combination of the feedback activities
δl+1,k in the layer above unless

|hl,i| ≥ 1, or |xl,i| = 1. (3)

i.e., bottom-up input hl,i is too high or too low, in which
case δl,i = 0. A local network to compute this thresholding
is described in Appendix 1. The computation of the top level
derivative δL,i = ∂L/∂hL,i will be discussed in the next section.

3.2. Loss Function
The softmax loss commonly used in deep learning defines the
probability of each output class as a function of the activities xL,i
as follows:

softmax(xL)c = pc =
exL,c

∑C
i=1 e

xL,i
, c = 1, . . . ,C.

The loss computes the negative log-likelihood of these
probabilities:

L(xL, y) = −

C
∑

i=1

xL,iyi + log

C
∑

i=1

exL,i ,

where yc = 1 if the class of the input is c and yi = 0, i 6= c. Thus,
the initial feedback signal is:

δL,i =
∂L(xL, y)

∂xL,i
= yi − pi.

This requires the computation of the softmax function pi, which
involves the activity of all other units, as well as exponentiations
and ratios.

The classification loss function used here is motivated by the
hinge loss used in standard linear SVMs. In the simplest case of a
two class problem we code the two classes as a scalar y = ±1 and
use only one output unit xL. Classification is based on the sign of
xL. The loss is given by

L(xL, y) = max(1− xLy, 0).

The derivative of this loss with respect to xL, is simply

∂L

∂xL
=

{

−y if y · xL ≤ 1

0 otherwise.

The idea is that the output xL should have the same sign as y and
be sufficiently large in magnitude. Once the output achieves that,
there is no need to change it and the loss is zero.

Writing xL =WtxL−1, this yields the perceptron learning rule
with margin (see Shalev-Shwartz et al., 2011):

∂L

∂Wi
=











−xL−1,i if y = 1 andWtx0 ≤ 1

xL−1,i if y = −1 andWtxL−1 ≥ −1

0 otherwise

,
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FIGURE 2 | The feedback signals δ3,k from layer 3 are combined linearly and then multiplied by σ ′(h2,2) to produce the feedback signal δ2,2. Then the update to the

feedforward weights coming into unit (2, 2) and feedback weights coming out of that unit is computed. The red arrows indicate the order of computation.

If we think of the supervised signal as activating the output
unit with δL = +1 for one class and δL = −1 for the other,
unless the input is already of the correct sign and of magnitude
greater than 1, then δL = −∂L/∂xL. The update rule can be
rewritten as Wi ← Wi + η1Wi where 1Wi = δL · xL−1,i if
xL = WtxL−1 satisfies δLxL ≤ 1. In other words if the output
xL has the correct sign by more than the margin of 1 then no
update occurs, otherwise the weight is updated by the product of
the target unit activity and the input unit activity. In that sense
the update rule is Hebbian, except for shut down of the update
when xL is “sufficiently correct”.

Onemight ask why not use the unconstrainedHebbian update
1Wi = ηδLxL−1,i, which corresponds to a loss that computes
the inner product of y and x. Unconstrained maximization
of the inner product can yield over fitting in the presence
of particularly large values of some of the coordinates of x
and create an imbalance between the two classes if their input
feature distribution is very different. This becomes all the more
important with multiple classes, which we discuss next.

For multiple classes we generalize hinge loss as follows.
Assume as before C output units xL,1, . . . , xL,C. For an example
x, of class c define the loss

L(xL, y) = max(1− xL,c, 0)+ µ
∑

i6=c

max(1+ xL,i, 0). (4)

where µ is some balancing factor. The derivative has the form:

∂L(xL, y)

∂xL,i
=











−1 if i = c and xL,i ≤ 1

µ if i 6= c and xL,i ≥ −1

0 otherwise.

(5)

Henceforth we will set δL,i = −∂L(xL, y)/∂xL,i. Substituting the
feedback signal δL,i for the feedforward signal xL,i at the top layer

has the following simple form:

δL,i =











1 if i = c and xL,i ≤ 1

−µ if i 6= c and xL,i ≥ −1

0 otherwise.

(6)

and is then applied to compute the feedback to layer L− 1 - δL−1
and the update of the weightsWL,RL. All experiments below use
this rule.

Note that δL,i is precisely the target signal, except when the
feedforward signal has the correct value—greater than 1 if i = c
(the correct class) and less than −µ for i 6= c (the wrong class).
This error signal only depends on the target value and input to
unit i, no information is needed regarding the activity of other
units. One can ask whether a neuron can produce such an output,
which depends both on the exterior teaching signal and on the
feedforward activity. In Appendix 1 we propose a local network
that can perform this computation.

This loss produces the well-known one-vs.-all method for
multi-class SVM’s (see for example Hsu and Lin, 2002), where
for each class c a two class SVM is trained for class c against
all the rest lumped together as one class. Classification is
based on the maximum output of the C classifiers. Each unit
xL,c can be viewed as a classifier of class c against all the
rest. When an example of class c is presented it updates the
weights to obtain a more positive output, when an example of
any class other than c is presented it updates the weights to
obtain a more negative output. Other global multiclass losses
for SVM’s can be found in Hsu and Lin (2002). In Amit
and Mascaro (2003) and Amit and Walker (2012) a network
of binary neurons with discrete synapses was described that
implements this learning rule to update connections between
discrete neurons in the input and output layers and with
positive synapses. Each class was represented by multiple
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FIGURE 3 | (Left) Each row showing 10 images from one of the 10 cifar10 classes. (Right) One image from each of the 100 classes in cifar100.

neurons in the output layer. Thus, classification was achieved
through recurrent dynamics in the output layer, where the
class with most activated units maintained sustained activity,
whereas activity in the units corresponding to other classes
died out.

4. EXPERIMENTS

We report a number of experiments comparing the updated
(URFB) to the fixed feedback matrix (FRFB) and comparing the
multi-class hinge loss function to the cross-entropy with softmax
loss. We restrict ourselves to image data. Since it is quite easy
to obtain good results with the widely used MNIST handwritten
data set (LeCun et al., 1999) we focus on two more challenging
data sets called CIFAR10 and CIFAR100 (Krizhevsky et al., 2013).
Each dataset contains 32x32 color images from 10 classes for
the first and 100 classes for the second. The classes are broadly
defined so that the category bird will contain multiple bird types
at many different angles and scales. Some sample images are
shown in Figure 3. Each data set has 50,000 training images and
10,000 test images.

There are a number of benchmark network architectures that
have been developed over the past decade with good results
on these datasets, see (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; Kaiming et al., 2016). These networks are very
deep and employ a variety of methods to accelerate convergence,
such as adaptive time-steps and batch normalization. These
improvements involve steps that are not easily modeled as neural
computations. For that reason we restrict our learning method to
the simplest form of gradient descent with a fixed time step and
no normalization. We do not perform any pre-processing of the
input data, nor do we employ any methods of data augmentation
to improve classification results. All our weights are initialized
based on the method described in Glorot and Bengio (2010).
Weights are uniformly drawn between [−bl, bl] where bl is a
function of the number of incoming and outgoing connections
to a unit in layer l.

In the experiments we demonstrate the following:

1. With regular back-propagation (BP) hinge loss performs
slightly worse than the softmax loss but results are
comparable.

2. For shallow networks URFB performs somewhat better then
FRFB but mainly converges faster. It never performs as well as
BP but is close.

3. For deeper networks URFB again performs close to BP but
FRFB performance degrades significantly.

4. With locally connected—untied—layers replacing
convolutional layers results are slightly worse overall but
the relationship between the different methods is maintained.

5. In URFB the feedback weights are never the same as the
feedforward weights, although the correlation between the two
sets of weights increases as a function iteration.

6. Even in initial iterations, when the weights are far from being
aligned, training, and validation error rates decrease at similar
rates to back propagation.

We first experiment with a shallow network with only two hidden
layers, one convolutional and one fully connected.

simpnet: Conv 32 5x5; Maxpool 3; Drop .8;

Full 500; Drop .3; Output

The notation Conv 32 5x5 means that we have 32—5x5
filters, each applied as a convolution to the input images,
producing 32 output arrays of dimension 32x32. Maxpool 3

means that at each pixel the maximal value in the 3x3 window
centered at that pixel is substituted for the original value (padding
with 0’s outside the grid), in each of the 32 output arrays, and then
only every second pixel is recorded producing 32 arrays of size
16x16. Drop 0.8 means that for each training batch, a random
subset of 80% of the pixels in each array are set to 0 so that no
update occurs to the outgoing synaptic weights. This step was
introduced in Srivastava et al. (2014) as a way to avoid overfitting
to the training set. It is also attractive as a model for biological
learning as clearly not all synapses will update at each iteration.
Full 500 means a layer with 500 units, each connected to
every unit in the previous layer.
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The Output layer has C output units one for each class.
We use the saturated linearity σ (x) = min(max(x,−1), 1)
and the hinge loss function as given in (4). The update is a
simple SGD with a fixed time step of 0.1, and the network
is trained for 1,000 epochs with batch-size of 500. We make
a point to avoid any adaptive normalization layers as these
require a complex gradient that is not amenable to simple
neural computations. We avoid the more sophisticated time
step adaptations which depend on previous updates and some
normalizations, which again do not seem amenable to simple
neural computations.

The three parameters we adjusted were the time step and two
drop out rates. We experimented with time-steps 0.01, 0.1, and
1.0 for the simpnet and found the best behavior on a held
out validation set of 5,000 samples was with the value 0.1. We
kept this value for all further experiments. We had two dropout

FIGURE 4 | Evolution of error rates for simpnet as a function of epochs.

Solid lines training error, dotted lines validation error. Green–BP, Blue–URFB,

Red–FRFB.

layers in each network. One between convolutional layers and
one before the output layer. The values were adjusted by running
a few tens of iterations and making sure the validation loss was
closely tracking the training loss.

We also experiment with pruning the forward and backward
connections randomly by 50%. In other words half of these
connections are randomly set to 0. The evolution of error rates
for the different protocols for simpnet as a function of protocol
can be seen in Figure 4. Error rates for CIFAR10 and CIFAR100
datasets are shown in Figure 5. We note that the use of the multi-
class hinge loss leads to only a small loss in accuracy relative to
softmax. All experiments with random feedback are performed
with the hinge loss. For CIFAR10 the difference between R fixed
- FRFB - and R updated - URFB - is small, but becomes more
significant when connectivity is reduced to 50% and with the
CIFAR100 database.

Note that in the simple network the only layer propagating
back an error signal is the fully connected layer. The first layer,
which is convolutional, does not need to back-propagate an error.

We experiment with a deep network with multiple
convolutional layers, and observe an even larger difference
between R fixed and R updated. With the deep network FRFB
performs very poorly. The deep architecture is given here.

deepnet: Conv 32 5x5; Maxpool 3; Conv 32

3x3; Conv 32 3x3; Maxpool 3;

Drop .8;

Conv 32 3x3; Conv 32 3x3; Maxpool

3; Drop .3; Full 500; Output

Finally we try an even deeper network with residual layers
as in Kaiming et al. (2016). This means that after every pair
of consecutive convolutional layers at the same resolution
we introduce a layer that adds the two previous layers with
no trainable parameters. This architecture was found to yield
improved results on a variety of datasets.

deepernet: conv 16 3x3; conv 16 3x3;

FIGURE 5 | Error rates for simple network with different update protocols and different losses. (Left) CIFAR10, (Right) CIFAR100. BP, back-propagation with

softmax and cross entropy loss; BP-H, back propagation with hinge loss, all other protocols use the hinge loss as well; URFB, Updated random feedback; FRFB,

Fixed random feedback. 50% refers to random connectivity.
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SUM; conv 32 3x3; conv 32 3x3;

SUM; maxpool 3; drop .5; conv

64 3x3; conv 64 3x3; SUM;

maxpool 3; conv 128 3x3; conv 128

3x3; SUM; maxpool 3; drop .8;

full conn. 500; output

We see in Figure 6 that for the default BP with softmax or hinge
loss the error rate decreases from 50% with deepnet to 42%
with deepernet. URFB also shows a decrease in error between
deepnet and deepernet and again FRFB performs very
poorly. The evolution of error rates for the different protocols as
a function of iteration can be seen in Figure 7.

4.1. Untying the Convolutional Layers -
Locally Connected Layers
We explore “untied” local connectivities determined by the
corresponding convolutional layer. These are also called locally
connected layers (Bartunov et al., 2018). A convolution
corresponds to multiplication by a sparse matrix where the entry
values are repeated in each row, but with some displacement. This
again is not plausible because it assumes identical weights across a
retinotopic layer. Furthermore the back-propagation update of a
particular weight in a convolutional layer computes the sum of all
products

∑

i δl,ixl−1,i+k, where i represents locations on the grid
and k is a fixed displacement. So, it assumes that each one of the
identical weights is updated by information summed across the
entire layer.

To avoid these issues with biological plausibility we instead
assume each of the entries of the sparse matrix is updated
separately with the corresponding product δl,ixl−1,i+k. Only
non-zero elements of the sparse matrix, that correspond to
connections implied by the convolutional operation are updated.
This is implemented using tensorflow sparse tensor operations,
and is significantly slower and requires more memory than the
ordinary convolutional layers. The error rates are similar to
those with the original convolutional layers even with the deeper
networks. In Figure 9 for CIFAR10, we show a comparison
of error rates between networks with convolutional layers to

networks with corresponding untied layers for the different
training protocols. We show comparisons for simpnet and
deepnet_s defined below.

Despite the fact that the weights are updated without being
tied across space, the final connectivity matrix retains a strong
spatial homogeneity. In other words at each location of the
output layer one can restructure the weights to a filter and
inspect how similar these filters are across locations. We presume
that this is due to the fact that in the data local structures are
consistent across space. In Figure 8 we show a couple of these
5x5 filters across four different locations in the 32x32 grid in the
trained simpnet. We see that even after 1,000 iterations there is
significant similarity in the structure of the filters despite the fact
that they were updated independently for each location.

We also experiment with a deeper network:

deepnet_s: conv 16 3x3; conv 16 3x3;

FIGURE 7 | Evolution of error rates for deepernet as a function of epochs.

Solid lines training error, dotted lines validation error. Green–BP, Blue–URFB,

Red–FRFB.

FIGURE 6 | Error rates for the deepnet (Left) and deepernet (Right). BP, back-propagation with softmax and cross entropy loss; BP-H, back propagation with

hinge loss, all other protocols use the hinge loss as well; URFB, Updated random feedback; FRFB, Fixed random feedback. 50% refers to random connectivity.
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FIGURE 8 | Corresponding filters extracted from the sparse connectivity

matrix at four different locations on the 32x32 grid. Each row corresponds to a

different filter.

FIGURE 9 | Experiments with untying the convolutional layers on simpnet

and deepnet_s. Blue–convolutional layers (tied), Red–untied.

SUM;maxpool 3, stride 3; drop .5;

conv 64 3x3; conv 64 3x3; SUM;

maxpool 2, stride 2;

conv 64 2x2; conv 64 2x2; SUM;

maxpool 2, stride 2; drop .5;

full conn. 500; output

Here we could not run all convolutional layers as untied layers
due to memory constraints on our GPUs. Instead we ran
the network for 100 epochs with the regular convolutional
layers, then we froze the first layer and retrained the remaining
layers from scratch using the untied architecture, see Figure 9.
This would mimic a situation where the first convolutional
layer perhaps corresponding to V1 has connections that are
predetermined and not subject to synaptic modifications. Once
more, we see that the untied layers with URFB reach error rates
similar to those of the regular convolutional layers with standard
gradient descent. And again, we observe that with a deeper
network FRFB performance is much worse.

4.2. Weight Alignment
One of the claims in Lillicrap et al. (2016) is that the network
gradually aligns the updated feedforward weights to the fixed
feedback weights. In Figure 10 we show the evolution of the
correlations between the feedforward weights Wl and Rl for
simpnet. Recall that the layer with highest index is the output
layer and typically reaches high correlations in both URFB and
FRFB. We see, however, that the alignment is much stronger
for the URFB. Note that when weights are highly correlated the
network is effectively implementing back-propagation.

In Figure 11 we again show the evolution of the correlations
between Wl,Rl for the seven updated layers of the deeper
network deepnet_s. Note that for some but not all layers
the final correlations are very close to one. However, the
training loss and error rates change very rapidly in the initial
iterations when the correlations are very low. Interestingly
the correlation levels are not a monotone function of
layer depth.

5. MATHEMATICAL ANALYSIS OF
UPDATED RANDOM FEEDBACK

Themathematical analysis closely follows themethods developed
in Saxe et al. (2013) and thus focuses on linear networks, i.e.,
σ (x) = x and a simple quadratic loss. We start with a simple
two layer network.

Let the input x ∈ R
n0 , and the output y =W2W1x ∈ R

n2 with
weightsW1 ∈ R

n1×n0 ,W2 ∈ R
n2×n1 . If X is the n0 × N matrix of

input data and Y the n2×N of output data the goal is to minimize

C(W1,W2) = |Y −W2W1X|
2.

We write T = YXt ∈ R
n2×n0 , and assume that XXt = I,

namely the input coordinates are uncorrelated. The gradient of L
with respect toW1 andW2 yields the following gradient descent
ODE’s, which corresponds to regular back-propagation:

Ẇ2 =(T −W2W1)W
t
1

Ẇ1 =W
t
2(T −W2W1),

with some initial condition W1(0),W2(0). If we implement
the FRFB or URFB described above we get the following
three equations:

Ẇ2 =(T −W2W1)W
t
1

Ẇ1 =R2(T −W2W1) (7)

Ṙ2 =ǫW1(T −W2W1)
t ,

where R2 ∈ R
n1×n2 and ǫ is a parameter. Setting ǫ = 0

corresponds to FRFB, as there is no modification of the matrix
R. The URFB corresponds to ǫ = 1. Our goal is to show that the
larger ǫ the faster the convergence of the error to 0.
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FIGURE 10 | Correlation between Wl and Rl for the three layers in simpnet. (Left) URFB, (Right) FRFB.

FIGURE 11 | Correlation between Wl and Rl for the seven updated layers in deepnet_s. (Left) URFB, (Right) FRFB.

To simplify the analysis of (7) we assumeW1(0) =W2(0) = 0
and R2(0) is random. Then R2 = R2(0) + ǫWt

2 and the system
reduces to

Ẇ2 =(T −W2W1)W
t
1

Ẇ1 =(R2(0)+ ǫWt
2)(T −W2W1). (8)

For deeper networks, and again assuming the Wl matrices are
initialized at 0, we have the following equations for URFB:

Ẇk = EWt
1 · · ·W

t
k−1

...

Ẇi = (Ri+1(0)+ ǫWt
i+1) · · · (Rk(0)+ ǫWt

k)EW
t
1 · · ·W

t
i−1

...

Ẇ1 = (R2(0)+ ǫWt
2) · · · (Rk(0)+ ǫWt

k)E, (9)

where E = T−Wk · · ·W1, T ∈ R
nk×n0 andWi ∈ R

ni×ni−1 , i =
1, . . . , k. Again our goal is to show that as ǫ increases from 0 to 1,
the error given by e = tr(EtE) converges faster to 0.

The precise statements of the results and the proofs can be
found in Appendix 2. Here we show through a simulation that
convergence is indeed faster as ǫ increases from ǫ = 0 (FRFB) to
ǫ = 1 (URFB).

5.1. Simulation
We simulated the following setting. An input layer of dimension
40, two intermediate layers of dimension 100 and an output layer
of dimension 10. We assume X = I40 so that T = W∗1W

∗
2W
∗
3

with W∗1 ∈ R40×100,W∗2 ∈ R100×100,W∗3 ∈ R100×10. We
choose the W∗i to have random independent normal entries
with sd = 0.2. We then initialize the three matrices randomly
as Wi(0), i = 1, 2, 3 to run regular back propagation. For
comparisonwe initializeWi(0) = 0 and initializeRi(0) randomly.
We run the differential equations with ǫ = 0, 0.25, 0.5, 1.,
where ǫ = 0 corresponds to FRFB and ǫ = 1 to URFB.
We run 1,000 iterations until all 5 algorithms have negligible
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FIGURE 12 | Top: comparison of log-error rates as a function of iteration for original BP and for four different values of ǫ = 0, 0.25, 0.5, 1. Results for three runs of the

experiment. Last three rows, for each level of the network we show the evolution of the correlation between theW and Rt weights, for each of the values of ǫ.

error. We see the results in Figure 12. In the first row, for 3
different runs we show the log-error as a function of iteration,
and clearly convergence rate increases with ǫ. In the three
rows below that we show the evolution of the correlation of
Wl and Rt

l
with the same color code. We see that for FRFB

(green) the correlation of the weights feeding into the last
layer increases to 1 but for the deeper layers that does not
hold. Moreover, as ǫ increases to 1 the correlations approach
higher values at each layer. The top layer always converges to a
correlation very close to 1, lower layers do not reach correlation
1., and interestingly the correlation reached in the input layer
is slightly higher than that of the middle layer. Similar non-
monotonicity of the correlation was observed in the experiments
in Figure 11.

6. DISCUSSION

The original idea proposed in Zipser and Rumelhart (1990)
of having separate feedback weights undergoing the same
Hebbian updates as the feedforward weights yields the original
back-propagation algorithm if the feedforward and feedback
weights are initialized with the same values. We have shown
that even when these weights are initialized differently the
performance of the algorithm is comparable to that of back-
propagation and significantly outperforms fixed feedbackweights
as proposed in Lillicrap et al. (2016). The improvement over fixed
feedback weights increases with the depth of the network and
is demonstrated on challenging benchmarks such as CIFAR10
and CIFAR100. We have also shown that in the long run
the feedforward and feedback weights increase their alignment

but the performance of the algorithm is comparable to back-
propagation even at the initial iterations. We have introduced
a cost function whose derivatives lead to local Hebbian updates
and provided a proposal for how the associated error signal
in the output layer could be implemented in a network. We
have shown theoretically, in the linear setting, that adding the
update to the feedback weights accelerates the convergence of the
error to zero.

These contributions notwithstanding, there are still many
aspects of this learning algorithm that are far from biologically
plausible. First, although we have removed the need for
symmetric connections, we have maintained a symmetric update
rule, in that the update of a feedback and feedforward connection
connecting two units is the same. To use the formulation in
Gerstner et al. (2013) a typical Hebbian update has the form
1W = f (xpre)g(xpost), where f , g are typically not the same
function, however in our setting both f and g are linear which
yields a symmetric Hebbian update. In Burbank (2015) it is
shown that amirrored version of STDP could produce this type of
symmetric update.Whether this is actually biologically realistic is
still an open question.

Another important issue is the timing of the feedforward and
feedback weight updates that needs to be very tightly controlled.
The update of the feedforward and feedback connections between
layer l and l + 1 requires the feedback signal to layer l + 1 to
have replaced the feedforward signal in all its units, while the
feedforward signal is maintained in layer l. This issue is discussed
in detail in Guerguiev et al. (2017). They propose a neural
model with several compartments. One that receives bottom-up
or feedforward input and one that receives top-down feedback
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input. In a transient phase corresponding to the feedforward
processing of the network the top-down input contribution to the
neural voltage at the soma is suppressed. Then in a second phase
this voltage is allowed in and combined with the feedforward
voltage contribution to enable synaptic modifications. In our
proposal, instead of combining the two voltages, the top-down
voltage would replace the bottom up voltage. Still, in a multilayer
network, this would need to be timed in such a way that the
previous layer is still responding only to the feedforward input.

An important component of themodel proposed in Roelfsema
and Holtmaat (2018) are the synaptic tags that maintain the
information on the firing of the pre and post-synaptic neurons
allowing for a later synaptic modification based on some
reinforcement signal. This may offer a mechanism for controlling
the timing of the updates. An alternative direction of research
would be to investigate the possibility of desynchronizing the
updates, i.e., making the learning process more stochastic. If
images of similar classes are shown in sequence it could be
that it is not so important when the update occurs, as long
as the statistics of the error signal and the feedforward signal
are the same.

We have defined the network with neurons that have
negative and positive values, and synapses with negative and
positive weights. Handling negative weights can be achieved
with properly adjusted inhibitory inputs. Handling the negative
neural activity is more challenging and it would be of interest to
explore an architecture that employs only positive neural activity.
Finally we mention the issue of the training protocol. We assume
randomly ordered presentation of data from all the classes, many
hundreds of times. A more natural protocol would be to learn
classes one at a time, perhaps occasionally refreshing the memory

of previously learned ones. Because our loss function is local and

updates to each class label are independent, one could potentially
experiment with alternative protocols and see if they are able to
yield similar error rates.
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Deep neural networks (DNNs) have recently been applied successfully to brain decoding

and image reconstruction from functional magnetic resonance imaging (fMRI) activity.

However, direct training of a DNN with fMRI data is often avoided because the size of

available data is thought to be insufficient for training a complex network with numerous

parameters. Instead, a pre-trained DNN usually serves as a proxy for hierarchical visual

representations, and fMRI data are used to decode individual DNN features of a stimulus

image using a simple linear model, which are then passed to a reconstruction module.

Here, we directly trained a DNN model with fMRI data and the corresponding stimulus

images to build an end-to-end reconstruction model. We accomplished this by training a

generative adversarial network with an additional loss term that was defined in high-level

feature space (feature loss) using up to 6,000 training data samples (natural images and

fMRI responses). The above model was tested on independent datasets and directly

reconstructed image using an fMRI pattern as the input. Reconstructions obtained

from our proposed method resembled the test stimuli (natural and artificial images) and

reconstruction accuracy increased as a function of training-data size. Ablation analyses

indicated that the feature loss that we employed played a critical role in achieving

accurate reconstruction. Our results show that the end-to-end model can learn a direct

mapping between brain activity and perception.

Keywords: brain decoding, visual image reconstruction, functional magnetic resonance imaging, deep neural

networks, generative adversarial networks

INTRODUCTION

Advances in the deep learning have opened new directions to decode and visualize the information
present in the human brain. In the past few years, deep neural networks (DNNs) have been
successfully used to reconstruct visual content from brain activity measured by functional
magnetic resonance imaging (fMRI) (Güçlütürk et al., 2017; Han et al., 2017; Seeliger et al., 2018;
Shen et al., 2019).

The reconstruction studies avoid training a DNN model directly on the fMRI data because
of limited dataset size in fMRI studies. To solve the limited dataset size issue, the feature
representation from a DNN pre-trained on a large scale image dataset is usually used as a proxy
for the neural representations of the human visual system. Hence, these decoded-feature-based
methods involve two independent steps, (1) decoding DNN features from fMRI activity and (2)
reconstruction using the decoded DNN features.
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Different from fMRI studies, DNNs in computer vision for
image generation are usually trained in the end-to-end manner
with large datasets. For instance, Mansimov et al. (2015) trained
a caption-to-image model on Microsoft COCO dataset that
consists of 82,783 images, each annotated with at least 5 captions.
Dosovitskiy and Brox (2016a) trained aDNNmodel on ImageNet
training dataset (over 1.2 million images) to reconstruct images
from corresponding DNN features. Due to availability of large-
scale image datasets, the above image-generation studies can
train DNNs using an end-to-end approach to directly generate
images from a modality correlated with the images. In contrast,
the largest fMRI dataset used for reconstruction in Shen
et al. (2019) consisted of only 6,000 training samples. Thus,
training a DNN to reconstruct images directly from fMRI
data is often avoided and considered infeasible because of the
smaller datasets.

Learning a direct mapping between brain activity and
perception of the outside world or subjective experiences
would be advantageous over the previous decoded-feature-based
methods due to the following reason. Decoding features from
fMRI is constrained by the pre-trained DNN features which were
optimized in a prior without brain data that may not be optimal
for decoding them from brain activity. Therefore, information
loss occurs in the decoding process which affects the quality
of reconstruction. A direct mapping can help in reducing the
information loss mentioned above.

In this study, we sought to evaluate the potential of the
end-to-end approach for directly mapping fMRI activity to
stimulus space given a limited training dataset. In the end-to-
end approach, the input to the DNN is the fMRI activity and
the output of the DNN is the reconstruction of the perceived
stimulus. If reconstruction using the end-to-end approach is
successful, we can avoid the feature-decoding step (step 1 above)
that leads to information loss.

For designing an end-to-end DNN model to reconstruct
images from fMRI data, we considered the models that transform
image representations such as DNN features to original image
as the potential candidates. The motivation behind this is that
the fMRI activity is the neural representation of the perceived
image and thus can be considered as an image representation.
Also, in previous studies (Agrawal et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Güçlü and van Gerven, 2015a,b; Cichy
et al., 2016; Horikawa and Kamitani, 2017) fMRI activity has
already been shown to be correlated to DNN features. Therefore,
for this study, we adopted the model from Dosovitskiy and Brox
(2016b) to reconstruct the image from fMRI activity.

For the end-to-end image reconstruction model used in
this study, the model needs to be optimized with suitable
choice of loss functions relevant to our problem. Dosovitskiy
and Brox (2016a) first proposed a DNN-based method for
reconstructing original images from their corresponding features
by optimization within image space. Loss in image space usually
results in poor reconstruction because it generates an average of
all possible reconstructions having the same distance in image
space, and hence the reconstructed images are blurred. The
feature loss in high dimensional space, also called perceptual
loss, constrains the reconstruction to be perceptually similar to

the original image. Adversarial loss (Goodfellow et al., 2014)
constrains the distribution of the reconstructed images to be
close to the distribution of natural images. In a subsequent
study, Dosovitskiy and Brox (2016b) have also showed that
reconstruction from features is improved by introducing feature
and adversarial loss terms. Thus, we adopted this latter approach
for reconstructing perceived stimuli directly from the fMRI
activity. Specifically, we modified their model to take input
directly from the fMRI activity and trained the model from
scratch with the dataset from Shen et al. (2019).

Here, we present a novel approach to visualize perceptual
content from human brain activity by an end-to-end deep image
reconstruction model which can directly map fMRI activity in
the visual cortex to stimuli observed during perception. Our
end-to-end deep image reconstruction model was accomplished
by directly training a deep generative adversarial network with
a perceptual loss term with fMRI data and the corresponding
stimulus images. We demonstrated that the reconstructions
obtained from our proposed method resembled the original
stimulus images. We further explored the generalizability of our
reconstruction model (trained solely with natural images and
fMRI responses) to artificial images. To understand the effect
of training-dataset size on reconstruction quality, we compared
reconstruction results across gradually increasing dataset sizes
(from 120 to 6,000 samples). Finally, to investigate the effects of
different loss functions used in the reconstruction, we performed
an ablation study that objectively and subjectively compared
reconstruction results as loss functions were removed one at
a time.

MATERIALS AND METHODS

In this section, we briefly describe the methods we used for
our experiments and the details of the dataset. For more details
regarding image reconstruction, please refer to Dosovitskiy and
Brox (2016b), and for details regarding the dataset, please refer to
Shen et al. (2019).

Problem Statement
Let x ∈ Rw×h×3 be the stimulus image displayed in the perception
experiment, where w and h are width and height of the stimulus
image and 3 denotes the number of channels (RGB) of the color
image. Let v ∈ R

D be the corresponding preprocessed fMRI
vector for the brain activity recorded during the perception of
the image, with D being the number of voxels in the visual cortex
(VC). We are interested in obtaining a reconstruction of the
stimulus from fMRI vector v.

To solve this problem, we use a DNN Gθ with parameters θ,
which performs non-linear operations on v to obtain a plausible
reconstruction Gθ(v) of the stimulus image.

Image Reconstruction Model
To reconstruct stimulus images from fMRI data, we modified the
DNNmodel proposed by Dosovitskiy and Brox (2016b).

For each fMRI data vector v corresponding to a stimulus
image x, the model was trained to generate a plausible
reconstructed image Gθ(v). In the training step, the network
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FIGURE 1 | Schematics of our reconstruction approach. (A) Model training. We use an adversarial training strategy adopted from Dosovitskiy and Brox (2016b),

which consists of three DNNs: a generator, a comparator, and a discriminator. The training images are presented to a human subject while brain activity is measured

by fMRI. The fMRI activity is used as input to the generator. The generator is trained to reconstruct the images from the fMRI activity to be as similar as possible to the

presented training images in both pixel and feature space. The adversarial loss constrains the generator so that reconstructed images fool the discriminator into

classifying them as the true training images. The discriminator is trained to distinguish between the reconstructed image and the true training image. The comparator

is a pre-trained DNN that was trained to recognize objects in natural images. Both the reconstructed and true training images are used as input to the comparator,

which compares the image similarity in feature space. (B) Model test. In the test phase, the images are reconstructed by providing the fMRI activity associated with

the test image as the input to the generator.

architecture (Figure 1A) consisted of three convolutional
neural networks: a generator Gθ that transformed the fMRI
vector v to Gθ(v), a discriminator D8 that discriminated the
reconstructed image Gθ(v) from the natural image x, and a
comparatorC that compared the reconstructed imageGθ(v) with
the original stimulus image x in feature space. During test time,
we only need the generator (Figure 1B) to reconstruct images
from fMRI data.

The input to the generator was the fMRI vector v

from the VC and the output was the reconstructed image
Gθ(v). The generator consisted of three fully connected layers
followed by six upconvolution layers that generated the final
reconstruction image Gθ(v). The comparator network C was
Caffenet (Krizhevsky et al., 2012), which was trained on the
ImageNet dataset for the image classification task. The Caffenet
model is a replication of the Alexnet model with the order of
pooling and normalization layers switched andwithout relighting
data-augmentation during training. The network consisted of
five convolutional and three fully connected layers. We used
the last convolutional layer of the comparator to compare the

reconstructed image with the original image in feature space. The
parameters of the comparator were not updated during training
of the reconstruction model.

The discriminator D8 consisted of five convolutional layers
followed by an average pooling layer and two fully connected
layers. The output layer of the discriminator was a 2-way softmax
and the network was trained to discriminate the reconstructed
image from the original image. The generator was trained
concurrently to optimize the adversarial loss function, which
fooled the discriminator into classifying the reconstructed image
as the real stimulus image. The adversarial loss forces the
generator to generate more realistic images that are closer to the
image distribution of the training data.

The generator was modified to take its input from fMRI
data instead of DNN features. The discriminator in Dosovitskiy
and Brox (2016b) was provided two inputs, the image and
corresponding feature from the comparator, however, we
modified the discriminator to receive only the image as the input.
The architecture of the comparator network was the same as in
Dosovitskiy and Brox (2016b).
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Let Xi denote the i th stimulus image in the dataset, Vi

denote the corresponding fMRI data, and Gθ(Vi) denote the
corresponding reconstructed output image of the generator. The
generatorGθ had parameters θ, which were updated to minimize
the weighted sum of three loss terms for a mini-batch that used
stochastic gradient descent: loss in image space Limg, feature loss
Lfeat, and adversarial loss Ladv:

L(θ,8) = λimgLimg(θ)+ λfeatLfeat(θ)+ λadvLadv(θ,8)

where

Limg(θ) =
∑

i

∣

∣

∣

∣ Gθ(Vi)− Xi

∣

∣

∣

∣

2

2

Lfeat(θ) =
∑

i

∣

∣

∣

∣C
(

Gθ(Vi)
)

− C (Xi)
∣

∣

∣

∣

2

2

Ladv(θ,8) = −
∑

i

logD8( Gθ(Vi))

and λimg, λfeat, and λadv denote the weights of the loss
in image space Limg, feature loss Lfeat, and adversarial loss
Ladv, respectively.
The discriminator was trained concurrently with the

generator to minimize Ldiscr:

Ldiscr (8) = −
∑

i

log (D8 (Xi)) + log (1−D8 ( Gθ (Vi))).

The parameters of the comparator C were fixed throughout the
training because it was only used for the comparison in feature
space, and thus did not require any update.

We trained the system using the Caffe framework (Jia et al.,
2014) and modified the implementation of the model provided
by Dosovitskiy and Brox (2016b). The weights of the generator
and discriminator were initialized using MSRA (He et al.,
2015) initialization. The comparator weights were initialized by
Caffenet weights trained on ImageNet classification. We used
Adam solver (Kingma and Ba, 2015) with momentum β1 = 0.9,
β2 = 0.999 and an initial learning rate 0.0002 for optimization.
We used a batch size of 64 and trained for 500,000 mini-batch
iterations in all experiments. Following this training procedure
similar to Dosovitskiy and Brox (2016b), we temporarily stopped
updating the discriminator if the ratio of Ldiscr to Ladv was below
0.1. This was done to prevent the discriminator from overfitting.
The weights of the individual loss functions λimg, λfeat, and λadv
were set to λimg = 2× 106, λfeat = 0.01, and λadv = 100.

We applied image jittering during the training for data
augmentation and to take into account subject’s eye movement
during the image presentation experiment. Generally, eye
movement was approximately one degree of visual angle for a
typical subject. The viewing angle for the stimulus images was
12◦. All training images were resized to 248 × 248 pixels before
training. During training, we randomly cropped a 227 × 227
pixel window from each training image to use as the target image
for each iteration. This ensured that the largest jittering size was
approximately one degree viewing angle.

To analyze the size of the dataset, we trained the
reconstruction model with a variable number of training
samples for 1,000 epochs with a batch size of 60. The rest of the
hyperparameters were the same as in the previous analysis.

Dataset From Shen et al. (2019)
We used an fMRI dataset from our previous reconstruction
study (Shen et al., 2019). This dataset was used to reconstruct
stimulus images from the visual features of a deep convolutional
neural network that was decoded from the brain. The dataset
analyzed for this study can be found in the OpenNeuro (https://
openneuro.org/datasets/ds001506) repository.

The dataset comprises fMRI data from three human subjects.
For each subject, the stimulus images in the dataset are
categorized into four types: training and test natural images,
artificial shapes, and alphabetical letters. The natural images used
for the experiment were selected from 200 representative object
categories in the ImageNet dataset (2011, fall release) (Deng et al.,
2009). The training dataset of natural images were 1,200 images
that were taken from 150 object categories and the test dataset
of natural images were 50 images from the remaining 50 object
categories. Thus, the categories used in the training and test
datasets did not overlap. The artificial shapes were 40 images
obtained by combining 8 colors and 5 shapes. The artificial shapes
stimuli set was controlled by shape and color, but figure-ground
separation and brightness were consistent across all the stimuli.
The alphabetical letters were 10 black letters from the English
alphabet. The alphabetical letters stimuli set had consistent color,
brightness and figure ground separation. The only variable in this
stimuli set was the shape of the alphabet.

The image presentation experiments comprised four distinct
types of sessions that corresponded to the four categories of
stimulus images described above. In one training-session set
(natural images), 1,200 images were each presented once. This
set of training session was repeated five times. In each test-
session (natural image, artificial shape, and alphabetical letters),
50, 40, and 10 images were presented 24, 20, and 12 times
each, respectively. The presentation order of the images was
randomized across runs.

The fMRI data obtained during the image presentation
experiment were preprocessed for motion correction followed by
co-registration to the within-session high-resolution anatomical
images of the same slices and subsequently to T1-weighted
anatomical images. The coregistered data were then re-
interpolated as 2× 2× 2 mm voxels.

The fMRI data samples were created by first regressing out
nuisance parameters from each voxel’s amplitude for each run,
including a linear trend and temporal components proportional
to six motion parameters. These were calculated by the SPM
(http://www.fil.ion.ucl.ac.uk/spm) motion correction procedure.
After that, voxel amplitudes were normalized relative to themean
amplitude of the initial 24 s rest period of each run, and were
despiked to reduce extreme values (beyond ± 3 SD for each
run). The voxel amplitudes were then averaged within each 8 s
(training sessions) or 12 s (test sessions) stimulus block (four
or six volumes), after shifting the data by 4 s (two volumes) to
compensate for hemodynamic delays.
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The voxels used for reconstruction were selected from the VC,
which consisted of lower-order visual areas (V1, V2, V3, and V4)
as well as higher-order visual areas (the lateral occipital complex,
fusiform face area, and parahippocampal place area). The lower-
order regions were identified using retinotopy experiments and
the higher-order areas were identified using functional localizer
experiments (Shen et al., 2019).

The fMRI data from the training image dataset were further
normalized to have zero mean and unit standard deviation for
each voxel. The mean and standard deviation of the training
fMRI data were then used to normalize the test fMRI data.

We performed trial-averaging for the test fMRI data while we
considered each trial as an individual sample for the training
fMRI data. Therefore, to compensate for the statistical difference
between training and test fMRI data, we rescaled the test fMRI
data by a factor of

√
nwhere n is number of trials averaged, before

we use the test fMRI data as the input to the generator.
We train reconstruction models with the training natural

images and their corresponding fMRI data for each individual
subject, and test reconstructionmodels with the test fMRI dataset
of the corresponding subject. For training in the dataset size-
analysis, we initially selected a fixed number of training images
and their corresponding fMRI data from five trials. As we
increased the size of the dataset, we added more training images
and fMRI data. Specifically, we gradually increased the size of
the training dataset from 120 (5 × 24) to 6,000 (5 × 1,200)
training samples.

Evaluation
We evaluated the quality of reconstruction using both objective
and subjective assessment methods. For both methods, we
performed a pairwise similarity comparison, following previous
studies (Cowen et al., 2014; Lee and Kuhl, 2016; Seeliger et al.,
2018; Shen et al., 2019), in which one reconstructed image
was compared with two candidate images: the original stimulus
image from which the reconstruction was derived and a “lure”
image, which was a different test image. The lure image was
randomly selected from the test dataset of the same type as
the original stimulus image. For each reconstructed image, the
pairwise similarity comparison was conducted for all possible
combinations of candidate images: the original stimulus image
and every other stimulus image of the same type in the test
dataset. For example, to evaluate the reconstruction quality for
one of the 50 test natural images, the lure image is randomly
selected from the remaining 49 test natural images. Then, for each
reconstructed natural image, the pairwise similarity comparison
is conducted for all 49 pairs of candidate images.

For the subjective assessment, we conducted a behavioral
experiment similar to Shen et al. (2019). In this experiment, a
group of 13 raters (6 females and 7 males, aged between 19 and
48 years) were presented with a reconstructed image and two
candidate images and were asked to select the candidate image
that appeared more similar to the reconstructed image. The trials
for different test images were presented in a randomized order for
each rater to prevent them frommemorizing the correspondence
between reconstructed and the true images.

For the objective assessment, we conducted pairwise similarity
comparison analysis based on two metrics separately: Pearson
correlation coefficient and structural similarity index (SSIM)
(Wang et al., 2004). We computed the two metrics between the
reconstructed image and each of the two candidate images. For
the pairwise similarity comparison, we selected the candidate
image with the higher Pearson correlation coefficient or higher
SSIM, respectively.

For computing pixel-wise Pearson correlation coefficients, we
first reshaped an image (a 3D array with dimensions of height,
width, and RGB color channels) into a 1-dimensional vector.
During this reshaping, the pixels of different color channels
are concatenated in a vector. Then we calculated the Pearson
correlation coefficient between the reshaped reconstructed and
candidate images.

Since Pearson correlation coefficient considers each pixel as an
independent variable, we also used SSIM to take into account the
similarity of local structures of the spatially close pixels between
two given images.We computed SSIM between the reconstructed
and candidate images in the original 2D form for each of the
RGB color channels, and then average the SSIM across the RGB
color channels.

For both assessments, we calculated the percentage of trials
in which the original stimulus image was selected, and used
this value as the reconstruction accuracy of each reconstructed
image. Trials for each reconstructed image were conducted by
pairing the original stimulus image with every other stimulus
image of the same type. For the study of dataset size, we
reduce the trials for each reconstructed image by randomly
selected 500 trials (10 trials for each test image) from all the
possible trials, while the selected trials are fixed for all the
conditions (here the modes trained with different number of
samples) to be compared. For each type of test images (natural
images, artificial shapes and alphabetical letters), we used the
mean reconstruction accuracy as the quality measure, which was
obtained by averaging across all the samples after pooling the
three subjects.

We compliment the evaluation using pairwise similarity
comparison with modified RV coefficient (Smilde et al.,
2009). We compute the modified RV coefficient between two
matrices: matrix of the reconstructed images and matrix of
the true images. The rows of both these matrices correspond
to test samples and columns correspond to individual pixels.
With this setting, the modified RV coefficient evaluates the
correlation between similarity relation within the true images
and within the reconstructed images. We compared the
results with a baseline of modified RV coefficient computed
with randomly shuffled ordered of reconstructed images
and correctly ordered true images to see whether the
reconstructions preserve the similarity relation among the
true images.

We conducted another behavioral experiment to study the
effect of different loss terms in the proposed approach. Another
group of 5 raters (2 females and 3 males, aged between 25 and
37 years) were presented with one original stimulus image and
two reconstructed images that were generated from different
combinations of loss terms. The raters were asked to judge which
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FIGURE 2 | Reconstruction of natural images. (A) Stimulus and reconstructed natural images. The stimulus images (in black frames) are shown in the top row. Three

corresponding reconstructed images (in gray frames) from each of the three subjects are shown underneath. (B) Reconstruction accuracy for natural images in terms

of the accuracy of pairwise similarity comparison based on Pearson correlation, structural similarity index (SSIM) and human judgment (error bars, 95% confidence

interval (CI) across samples; three subjects pooled, the number of samples (N) = 150; chance level, 50%).

of the reconstructions more resembled the original stimulus
image. This pairwise comparisonwas conducted for 6 pairs of loss
term combinations for each stimulus image in the test dataset.
We used the winning percentage as the quantitative measure for
comparing reconstructions that were generated using different
combinations of loss terms. The winning percentage was the
percentage of trials in which the reconstruction from one
combination was judged better than that of the other. For
computing the winning percentage from objective metrics,
the reconstructions with higher similarity (Pearson correlation
coefficients or SSIM) were selected. For more details regarding
the design of the behavioral experiments, please refer to
Shen et al. (2019).

RESULTS

Image Reconstruction
We trained the reconstruction model on the Shen et al. (2019)
training-session samples of fMRI visual perception data. In the
training session, each stimulus image had been presented to each
subject five times. Here, we treated each stimulus presentation
as a separate training sample for the reconstruction model.
Therefore, the training dataset we used consisted of 6,000
(5× 1,200) samples.

We evaluated reconstruction quality using three test datasets:
natural images, artificial shapes and alphabetical letters. For
generating reconstructions, fMRI samples corresponding to the
same image (24 samples for the natural image session, 20
for the artificial shapes session, and 12 for the alphabetical
letters session) were averaged across trials to increase the
signal to noise ratio. The averaged fMRI samples were used as

input to the trained generator (Figure 1B). Figure 2A shows
example images from the natural image test dataset and their
corresponding reconstructions from three different subjects.
The reconstructions from all three subjects closely resembled
shape of the object in the natural image stimuli. The color,
however, was not preserved in some of the reconstructions. The
reconstruction results from our model show that despite utilizing

a small dataset, training a model from scratch and reconstructing
visually similar images from fMRI data was possible with high
accuracy (Figure 2B) The mean reconstruction accuracy (three
subjects pooled, N = 150) is 78.1% by Pearson correlation
(78.9, 75.3, and 79.9% for Subject 1, 2, and 3), 62.9% by SSIM

(63.0, 61.9, and 63.8% for Subject 1, 2, and 3), and 95.7% by
human judgment (95.6, 95.1, and 96.4% for Subject 1, 2, and
3). Additionally, we calculated modified RV coefficient, which

evaluates the correlation between the similarity relation within
the true images and the reconstructed images to see whether
the reconstructions preserve the similarity relation within the

true images. The higher modified RV coefficients (0.34, 0.32, and
0.32 for Subject 1, 2, and 3) for natural image test dataset as
compared to the baseline calculated by random permutation (p<

0.0001 for all three subjects, permutation test) demonstrate that
reconstructed images from our approach preserve the similarity
relation within the true images.

Further, we evaluated the generalizability of our
reconstruction model (trained solely with natural images
and fMRI responses) using artificial images as similarly
performed by Shen et al. (2019) (Figure 3A). Using the proposed
approach, artificial shapes were reconstructed with high
accuracy (Figure 3B. 69.3% by Pearson correlation, 56.9% by
SSIM, and 92.7% by human judgment) and alphabetical letters
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FIGURE 3 | Reconstruction of artificial images. (A) Reconstruction of artificial shapes. The stimulus images (in black frames) are shown in the top row. Three

corresponding reconstructed images (in gray frames) from each of the three subjects are shown underneath. (B) Reconstruction accuracy for artificial shapes.

(C) Reconstruction accuracy for both shape and color. (D) Reconstruction of alphabetical letters. (E) Reconstruction accuracy for alphabetical letters. For (B,C,E),

reconstruction accuracy is assessed in terms of the accuracy of pairwise similarity comparison based on Pearson correlation, structural similarity index (SSIM) and

human judgment (error bars, 95% CI across samples; three subjects pooled, N = 120 for artificial shapes, N = 30 for alphabetical letters; chance level, 50%).

were also reconstructed with high accuracy (Figures 3D,E;
95.9% by Pearson correlation, 79.6% by SSIM, and 96.4% by
human judgment), even though the model was trained on
natural images.

From the results for artificial shape reconstruction, we
observed that the shape of the stimulus was well preserved in the
reconstructions. However, the color was preserved only for the
red-colored shapes. To evaluate reconstruction quality in terms
of shape and color, we compared reconstructed images of the
same colors and shapes, respectively. The quantitative results are
shown in Figure 3C (shape: 76.5% by Pearson correlation, 57.3%
by SSIM, and 95.0% by human judgment; color: 56.7% by Pearson
correlation, 50.7% by SSIM, and 75.6% by human judgment) and
confirm that the reconstructed images weremore similar in shape
to the original images than in color.

While the main purpose of this study is to evaluate the
potential of the end-to-end method in learning direct mapping
from fMRI data to visual images, we compared the reconstruction

accuracy of the proposed method with that of Shen et al. (2019)
to analyze the difference between the two methods. We observed
that our new method achieved almost same performance as
Shen et al. (2019) on the Pearson correlation metric (natural
images: ours 78.1 vs. 76.1%; two-sided signed-rank test, no
significantly difference, N = 150), whereas our new method did
not outperform Shen et al. (2019) on the subjective judgment
(natural images: ours 95.7 vs. 99.1%; two-sided signed-rank test,
P < 0.006,N = 150). Shen et al. (2019) used a natural image prior
that helps their reconstructions look more natural, which could
explain why that method outperforms our new method in terms
of human judgment. We tried to introduce a natural image prior
through use of a discriminator, but the reconstructions did not
appear as natural as those from Shen et al. (2019).

Effect of Dataset Size
The results of the previous analyses show that it is possible
to reconstruct images from human brain activity by training
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FIGURE 4 | Effect of training-dataset size. (A) Reconstruction from brain activity (Subject 1) using models trained with different dataset sizes. The stimulus images (in

black frames) are shown in the first column. The corresponding reconstructed images (in gray frames) are shown to the right of each stimulus image (from left to right,

the number of training samples increases). (B) Reconstruction accuracy in terms of the accuracy of pairwise similarity comparison based on Pearson correlation,

structural similarity index (SSIM) and human judgment (error bars, 95% CI across samples; three subjects pooled, N = 150, chance level, 50%). The horizontal axis is

scaled using a base 2 logarithm.

an end-to-end model from scratch with only 6,000 training
samples. Next, we sought to investigate the effect of dataset
size on reconstruction quality. We checked how many samples
are enough to achieve recognizable reconstruction and assessed
the possibility of improving reconstruction quality using more
training samples.

We increased the training dataset from 120 to 6,000 (120,
300, 600, 1,500, 3,000, and 6,000) samples. Figure 4 shows a
qualitative comparison of reconstructions (Figure 4A) and the
quantitative objective and human judgment scores (Figure 4B).
Through visual inspection of the reconstruction results in
Figure 4A, we can see that reconstruction quality improved with
the number of training samples. Objective and human judgment
scores quantitatively confirm this trend. The results showed that
the increasing trend in the reconstruction quality is not saturated
for our reconstruction model, which suggests that although
we can obtain highly accurate reconstructions with only 6,000
training samples, better reconstruction quality might be achieved
if larger datasets are available.

Effect of Loss Functions: Ablation Study
We performed an ablation study to understand the effects of
the different loss functions used in training the reconstruction
model. We removed one loss function at a time and compared
the reconstructions with those obtained using all three loss
functions. Visual inspection showed that the best resemblance
to the original images was obtained using all three loss
terms (Figure 5A). To quantitatively compare the reconstruction

quality of different models in the ablation study, the winning
percentage of the pairwise similarity comparisons based on
either objective or human judgment was used. The difference in
winning percentage between the model optimized with all three
loss terms and the model optimized with one loss term removed
indicates the importance of the corresponding loss term. From
Figure 5B, we can observe that the model trained with all three
loss terms showed the highest winning percentage followed by the
model where the loss in the image space is removed. The results
demonstrate that the model trained with all three loss terms was
preferred by the human raters.

Removing the loss in image space resulted in a moderate
drop for both objective and subjective assessments (Pearson
correlation 7.3% decrease, SSIM 13.8% decrease, and human
judgment 18.5% decrease), but the difference in human
judgement was not as pronounced as it was for the other two
loss functions. Removing feature loss produced the highest
drop in winning percentage for human judgment (36.9%
decrease) and a moderate drop in Pearson correlation (5.6%
decrease) and SSIM (11.1% decrease). This demonstrates the
importance of optimization in high dimensional feature space,
as it not only enhances the spatial details, but also makes the
reconstruction more perceptually similar to its corresponding
original stimulus image. Although removing adversarial
dramatically reduced human judgement scores (30.0% decrease)
and SSIM (41.8% decrease), it surprisingly showed improvement
in Pearson correlation (10.9% increase). This suggests that
optimizing adversarial loss forces the reconstruction to appear
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FIGURE 5 | Ablation of loss terms. (A) Reconstruction from brain activity (Subject 1) using reconstruction models with some loss components removed. The stimulus

images (in black frames) are shown in the first column. The corresponding reconstructed images (in gray frames) obtained with different models are shown to the right

of each stimulus image (from right to left, the model is: full reconstruction model (Full), with image loss removed ( −Limg ), with feature loss removed (−Lfeat), and with

adversarial loss removed (−Ladv). (B) Reconstruction accuracy in terms of winning percentage of pairwise similarity comparison based on Pearson correlation,

structural similarity index (SSIM) and human judgment (error bars, 95% CI across samples; three subjects pooled, N = 150, chance level, 50%). The winning

percentage is the percentage of pairwise similarity comparison trials in which the reconstruction from one model was judged better than that of the other.

closer to a natural image distribution and preserve structural
similarity but has a negative impact on preservation of the
spatial details.

DISCUSSION

Here, we have demonstrated that end-to-end training of a DNN
model can directly map fMRI activity in the visual cortex
to stimuli observed during perception, and thus reconstruct
perceived images from fMRI data. The reconstructions of natural
images were highly similar to the perceived stimuli in shape,
and in some cases in color (Figure 2). Although trained only
on natural images, the model generated accurate reconstructions
of artificial shapes and alphabetical letters (Figure 3), thus
showing generalizability that is similar to Shen et al. (2019). We
also demonstrated that reconstruction quality improved as the
number of training samples increased (Figure 4), and thus we
may be able to further improve reconstruction accuracy with
even more training samples.

We performed an ablation study by removing one loss
function at a time to understand the importance of each loss
term used for training the proposed model (Figure 5). The
results showed that the model trained with all three loss terms
achieved the best performance in terms of human judgement
while the model trained without the adversarial loss showed
the best performance in terms of Pearson correlation. The
removal of loss in image space resulted in moderate changes

in winning percentage calculated from behavioral experiments
and both objective measures (Pearson correlation and SSIM).
The removal of feature loss resulted in a drop in all the three
types of winning percentage, although the drop in human
ratings was more pronounced. Although removal of adversarial
loss showed significant increase in winning percentage based
on Pearson correlation, winning percentage based on human
ratings and SSIM dropped significantly. This suggests that the
addition of adversarial loss in the optimization process constrains
the reconstructed images so that their distribution is closer
to that of the training images (natural images). The increase
in Pearson correlation winning percentage, however, suggests
that adversarial loss has negative impact on preserving the
spatial details of the reconstructed image. The results suggest
that both the perceptual and adversarial losses are critical for
our end-to-end deep image reconstruction model to achieve
perceptually similar reconstructions.

Earlier studies on decoding stimuli in pixel space either
searched for a match in the exemplar set (Naselaris et al., 2009;
Nishimoto et al., 2011) or tried to reconstruct the stimulus
(Miyawaki et al., 2008; Wen et al., 2016; Güçlütürk et al., 2017;
Han et al., 2017; Seeliger et al., 2018; Shen et al., 2019). In
the exemplar matching methods, visualization is limited to the
samples in the exemplar set and hence these methods cannot be
generalized to stimuli that are not included in the exemplar set. In
contrast, reconstruction methods are more robust in generalizing
to a new stimulus domain (Figure 3).
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DNN-based reconstruction methods have typically avoided
directly training a DNN model for reconstruction (Güçlütürk
et al., 2017; Han et al., 2017; Seeliger et al., 2018; Shen et al.,
2019). Instead, they have used decoded features as a proxy for
hierarchical visual representations encoded in the fMRI activity
that was used as the input to a reconstruction module. This
method is effective since the decoded features can easily be
plugged into known image reconstruction/generation methods.
It is also thought to be efficient given the lack of large-scale
diverse fMRI datasets (which contrasts with the large computer-
vision datasets used for end-to-end training of vision tasks). The
lack of large fMRI datasets makes learning a direct mapping from
brain activity to stimulus space difficult without overfitting to
the training dataset. Thus, developing a way to learn this direct
mapping from limited numbers of training samples was the main
motivation for this work.

A potential advantage of direct mapping is that it avoids
information loss that occurs in the feature-decoding step. Even
though the decoded features are correlated with the original
image features, in Horikawa and Kamitani (2017) the maximum
correlation coefficient on average was < 0.5. Thus, we argue
that information in the decoded features is not all the visual
information that can be decoded from the brain. Therefore, if
enough training samples are available, direct mapping may help
in preventing this information loss.

Our proposed method can easily be extended to other
modalities such as text, sounds and video. This can be
achieved by a suitable choice of generator, discriminator, and
comparator modules for the corresponding modality. Further,
our approach can be extended for reconstruction of multimodal
data where a single generator module with multiple heads can
generate reconstructions of multiple modalities simultaneously.
Therefore, we believe an end-to-end approach has a wide
potential for transforming the internal representations of the
brain to meaningful visual and auditory contents for brain-
machine interfaces.
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Depth and the Uncertainty of
Statistical Knowledge on Musical
Creativity Fluctuate Over a
Composer’s Lifetime
Tatsuya Daikoku*

Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Brain models music as a hierarchy of dynamical systems that encode probability

distributions and complexity (i.e., entropy and uncertainty). Through musical experience

over lifetime, a human is intrinsically motivated in optimizing the internalized probabilistic

model for efficient information processing and the uncertainty resolution, which has

been regarded as rewords. Human’s behavior, however, appears to be not necessarily

directing to efficiency but sometimes act inefficiently in order to explore a maximum

rewards of uncertainty resolution. Previous studies suggest that the drive for novelty

seeking behavior (high uncertain phenomenon) reflects human’s curiosity, and that the

curiosity rewards encourage humans to create and learn new regularities. That is to

say, although brain generally minimizes uncertainty of music structure, we sometimes

derive pleasure from music with uncertain structure due to curiosity for novelty seeking

behavior by which we anticipate the resolution of uncertainty. Few studies, however,

investigated how curiosity for uncertain and novelty seeking behavior modulates musical

creativity. The present study investigated how the probabilistic model and the uncertainty

in music fluctuate over a composer’s lifetime (all of the 32 piano sonatas by Ludwig van

Beethoven). In the late periods of the composer’s lifetime, the transitional probabilities

(TPs) of sequential patterns that ubiquitously appear in all of his music (familiar phrase)

were decreased, whereas the uncertainties of the whole structure were increased.

Furthermore, these findings were prominent in higher-, rather than lower-, order models of

TP distribution. This may suggest that the higher-order probabilistic model is susceptible

to experience and psychological phenomena over the composer’s lifetime. The present

study first suggested the fluctuation of uncertainty of musical structure over a composer’s

lifetime. It is suggested that human’s curiosity for uncertain and novelty seeking behavior

may modulate optimization and creativity in human’s brain.

Keywords: statistical learning, entropy, mutual information, information theory, Markovian, Bayesian, order,

n-gram
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Daikoku Fluctuation of Uncertainty in Music

INTRODUCTION

Statistical Learning and Uncertainty in
the Brain
The brain models external phenomena as a hierarchy of
dynamical systems that encode probability distributions
and complexity (i.e., entropy and uncertainty) over states
in the world. Based on the internalized hidden model,
it can predict a future state and optimize behavior and
action to resolve the uncertainty (Friston, 2010). Within
predictive-coding framework, this behavior mandates the
suppression of prediction errors (prediction of content)
and uncertainty (prediction of the context or precision of
predictability and uncertainty) through updating internal
model that generates predictions and the belief (Kanai et al.,
2015). It has been considered that aesthetic appreciation of
music can be modulated by these brain function: Through
musical experience over lifetime, a human is intrinsically
motivated in optimizing the internalized probabilistic model
for efficient information processing and the uncertainty
resolution, which has been regarded as rewords. For example,
previous studies demonstrated that the precise prediction
(Przysinda et al., 2017) and uncertainty perception (Hansen
and Pearce, 2014) in music is stronger in proficient musicians
than non-musicians.

This generative model could cover statistical learning (SL)
theory of brain (Saffran et al., 1996; Cleeremans et al., 1998;
Perruchet and Pacton, 2006). The SL is an implicit process
by which the brain automatically calculates the statistical
distribution of sequential phenomena based on Bayesian
inference (Daikoku et al., 2012, 2014, 2016, 2017a, 2018; Yumoto
and Daikoku, 2016; Daikoku and Yumoto, 2017), grasps the
uncertainty (Hasson, 2017), predicts a future state based on
the internal statistical model, and optimize action for achieving
a given goal (Monroy et al., 2017a,b). By SL, generation of
culture (Feher et al., 2016), individuality of creativity (Daikoku,
2018b) can be originated. Although brain tries to realize
valuable behaviors at the lowest possible informational cost
and uncertainty, it also seeks slightly suboptimal solution if
the solution can be afforded at a significantly low uncertainty
(Tishby and Polani, 2011). In other words, human’s behavior
appears to be not necessarily directing to efficiency but
sometimes act unefficiently to explore a maximum rewards of
uncertainty resolution. Previous studies suggest that the drive for
novelty seeking behavior (high uncertain phenomenon) reflects
human’s curiosity and that the curiosity rewards encourage
humans to create and learn new regularities (Kagan, 1972;
Wittmann et al., 2008; Krebs et al., 2009; Schwartenbeck
et al., 2013). Furthermore, a certain degree of uncertainty
generates excitement and pleasure (Shen et al., 2015) because we
explore a maximum curiosity rewards. Although brain generally
minimizes prediction errors and uncertainty (Friston, 2010),
we sometimes derive pleasure from prediction errors under
conditions such as enjoying music listening due to curiosity and
motivation for novelty seeking behavior by which we anticipate
the resolution of uncertainty. Some literatures propose the
hypothesis that the recurrent resolution of uncertainty activates

reward networks that underwrite pleasure induced by listening
to music (Koelsch, 2014; Salimpoor et al., 2015). It has been
suggested that creativity can be explained as by-products of
such intrinsic curiosity rewards (Schmidhuber, 2006). That is,
human seems to look for some forms of optimality between
uncertain and certain situations through action by which we are
expected a maximum curiosity rewards, and hence our action
gives rise to increasing as well as decreasing uncertainty. Recent
studies imply that the curiosity rewards encourage humans to
create and learn new regularities (Schmidhuber, 2006), and the
fluctuations in uncertainty of predictions could contribute to
aesthetic appreciation of art and music (Koelsch, 2014). Thus, it
is hypothesized that human’s intrinsic curiosity and motivation
may modulate optimization and efficiency of prediction and
action involved in SL. Recent computational studies on music
suggest that, from early to late periods in the composer’s
lifetime, the transitional probabilities (TPs) of familiar phrase
that ubiquitously appears in all of his music were gradually
decreased (Daikoku, 2018d). This suggests that the statistical
knowledge (Daikoku, 2018a) may be susceptible to long-term
experience that modulates brain’s probabilistic model (Hansen
and Pearce, 2014). A neurophysiological study also suggested
that sequences with higher entropy were learned based on
higher-order TP, whereas those with lower entropy were learned
based on lower-order TP (Daikoku et al., 2017b; Daikoku and
Yumoto, 2019). Another study suggested that certain regions
or networks perform specific computations of entropy (i.e.,
uncertainty), which are different fromTP (i.e., prediction) of each
content (Hasson, 2017). Thus, interaction between prediction
and uncertainty in perceptive systems is an important topic to
understand whole process of brain SL in both computational and
neurophysiological areas (Daikoku, 2018c; Yumoto andDaikoku,
2018). Nevertheless, to our knowledge, few study examined
relationships between SL, uncertainty and musical creativity
and how curiosity for uncertain and novelty seeking behavior
modulates musical creativity. The present study investigated how
the probabilistic model and the uncertainty in music fluctuate
over a composer’s lifetime (all of the 32 piano sonatas by Ludwig
van Beethoven).

Computational Model
The computational model and simulation have been used
to understand SL systems (e.g., Pearce and Wiggins, 2012;
Rohrmeier and Rebuschat, 2012; Daikoku, 2018a; Wiggins, 2018;
Daikoku and Yumoto, 2019). Although experimental approaches
are necessary for understanding the real-world brain’s function,
the modeling approaches partially outperform experimental
results under conditions that are impossible to replicate in
an experimental approach (e.g., long-term statistical variation
over the decades within a person and across cultures) and
serves an important dual role in providing a quantitative
account of observed empirical effects and in generating novel
predictions to guide empirical research (e.g., Elman, 1990;
Thiessen et al., 2013; Carreiras et al., 2014). Computational
modeling can also express the relevant neural networks and
neural hardware of sensory cortices (Turk-browne et al., 2009;
Roux and Uhlhaas, 2014). For example, simple recurrent
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network (SRN), which is classified as a neural network and
was firstly devised by Elmer Elman (1990), learns sequential
co-occurrence statistics by error-driven learning in which the
gap between the prediction of a next input and the actual
input drives changes to the weights on its internal connections.
The SRN (Rogers and McClelland, 2004) and a modified SRN
(Altmann, 1999; Dienes et al., 1999) implement a similarity
space in which words referring to similar objects or actions
were located more closely to one another than to words
referring to dissimilar objects or actions. The neural network
and deep learning such as Long-Short Term Memory (LSTM)
(Hochreiter and Urgen Schmidhuber, 1997), on the other hand,
is not intended to be a model of the relationship between
human episodic and semantic memory although they proceed
in this direction. Corpus-based approaches such as hyperspace
analog to language (HAL) (Lund and Burgess, 1996), bound
encoding of the aggregate language environment (BEAGLE)
(Jones and Mewhort, 2007), Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997) are based on abstraction of
episodic memory of input information and encoding in a
multidimensional semantic space as semantic memory. Their
models could also generate semantic similarity spaces in the
similar way. For instance, when a verb of “drink” occurs, the
models predict subsequent words that can be drunken. PARSER
(Perruchet and Vinter, 1998), Competitive Chunker (Servan-
Schreiber and Anderson, 1990), Information Dynamics of Music
(IDyOM) (Pearce and Wiggins, 2012), Information Dynamics
of Thinking (IDyOT) (Wiggins, 2018), and other Markovian
models including the n-gram and nth-order Markov models
(Daikoku, 2018b), can implement chunking hypotheses that
learning is based on extracting, storing, and combining small
chunks. Particularly, information-theoretical models including
Markovian processes have been applied to neurophysiological
studies of SL in human brain as well as computational simulation
(Pearce et al., 2010a; Pearce and Wiggins, 2012; Daikoku
et al., 2014, 2016, 2017a, 2018; Yumoto and Daikoku, 2016,
2018; Daikoku and Yumoto, 2017; Daikoku, 2018c). These
neurophysiological experiments showed consistent evidence:
neural activities for stimuli with high information content (i.e.,
low probability) are larger than those with low information
content (i.e., high probability). Furthermore, these SL effects
were larger when humans are exposed stimulus sequence with
less information entropy (uncertainty), compared with when
they are exposed stimulus sequence with high information
entropy (Daikoku et al., 2017c). The mutual information of
information theory, which has been assumed as the reduction
of uncertainty afforded by observations (see section Mutual
Information of nth-order SL model), is also correlated with
neuronal activity in limbic cortex (Harrison et al., 2006). This
neural phenomenon is in agreement with a Bayesian hypothesis
in theoretical neurobiology that the brain encodes probabilities
(beliefs) about the causes of sensory data, and that these beliefs
are updated in response to new sensory evidence based on
Bayesian inference (Kersten et al., 2004; Knill and Pouget, 2004;
Doya et al., 2007; Friston, 2010; O’Reilly et al., 2012; Parr and
Friston, 2018; Parr et al., 2018). Formulations of self-organization
(Karl Friston, 2013; Kirchhoff et al., 2018) and brain connectivity

(Parr and Friston, 2018) are also expressed using an information-
theoretical concept called Markov blankets (Pearl, 1988). The
blanket of a state is the only knowledge necessary to predict
the behavior of that state and the adjacent state. If we know
everything within a blanket, knowledge about things outside
the blanket becomes uninformative about things inside the
blanket. For example, Parr and Friston (2018) hypothesized that a
neuronal population reflecting a given variable only need receive
connections from those populations representing its blanket and
explained this notion from perception, planning, attention, and
movement. The Markov blanket may also represent in part
chunk formation although it’s not sufficient. Markov decision
process (MDP) (Schwartenbeck et al., 2013; Karl Friston et al.,
2014, 2015; Pezzulo et al., 2015), which has often been used
for reinforcement learning in AI and robotics, extends the
simple perceptive process by adding active process (controlling
predictability by choice, called “policy”) and “rewards” (giving
motivation). The IDyOM is also an extension of Markov model
to precisely modeling SL of musical sequence combining several
concomitant information such as pitch, duration, onset, scale
degree, and so on. The SL based on IDyOM could also be
reflected in neurophysiological responses within the predictive-
coding framework (Pearce et al., 2010b). The IDyOT also takes
advantage of information theory to represent domain-general
SL mechanisms that cover both language and music (Wiggins,
2018). Particularly, this model implements semantic and episodic
memory systems, and captures hierarchical SL process from
lower- to higher-level using boundary entropy: spectrum of
auditory sequence is chunked into phonemes, then morphemes,
then words (Wiggins, in press). In summary, information-
theoretical models including Markovian processes can capture
a variety of neurophysiological phenomena on SL such as
prediction, uncertainty, a part of chunk formation, and policy of
action, across domains, and modality.

A previous study reported that SL effects based on TPs
occurs action as well as perception (Monroy et al., 2017c). This
suggests that SL also contributes production of sequences. In
other words, from psychological perspective, TP distribution
sampled from music based on Markov models may also refer
to the characteristics of a composer’s statistical knowledge:
a high-probability transition in music may be one that a
composer is more likely to predict and choose based on the
latest n states, compared to a low-probability transition. Thus,
the Markov model is used in the interdisciplinary realms of
neuroscience, behavioral science, engineering, and informatics.
A computational study using nth-order Markov or n-gram
models suggested that time-course variations of statistics in
music reflect time-course variations of a composer’s statistical
knowledge (Daikoku, 2018d). Neurophysiological studies also
suggested that time-course variations of statistics of auditory
sequence modulate SL effects (Daikoku et al., 2017c) and
that the SL effects of sequences with higher entropy were
lower than those with lower entropy, even when TP itself is
same between these two sequences (Daikoku et al., 2017c).
These studies suggest that time-course variations of TPs and
entropy may partially be able to predict the SL model in
human’s brain.
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FIGURE 1 | Relationship between order of transitional probabilities, conditional entropy, and mutual information illustrated using a Venn diagram. The degree of

dependence on Xi for Xi+1 is measured by mutual information [mutual information (I(X;Y)] = entropy (H(Xi+1))–conditional entropy (H(Xi+1 |Xi ))]. The mutual information

of sequences in this figure is more than 0. Thus, each event Xi+1 in the sequence is dependent on a preceding event Xi .

Mathematical Interpretation of Brain’s
Statistical Learning Based on
Information Theory
Nth-Order Transitional Probability
According to SL theory, the brain automatically computes both
lower- and higher-order TPs in sequences (Furl et al., 2011;
Yumoto and Daikoku, 2016, 2018, grasps uncertainty/entropy
in the whole sequences Hasson, 2017, and predicts a future
state based on the internalized statistical model Friston, 2010.
The TP is a conditional probability of an event B given that
the latest event A has occurred, written as P(B|A). The nth-
order TP distributions sampled from sequential information such
as music and language can be expressed by nth-order Markov
models. The nth-orderMarkovmodel is based on the conditional
probability of an event en+1, given the preceding n events based
on Bayes’ theorem (P(en+1|en)). From psychological perspective,
the conditional probability (P(en+1|en)) can be interpreted as
positing that the brain predicts a subsequent event en+1 based
on the preceding events en in a sequence. In other words,
learners expect the event with the highest TP based on the
latest n states, whereas they are likely to be surprised by an
event with lower TP. Furthermore, TPs are often translated
as information contents (IC) (–log21/P(en+1|en)) of information
theory (Pearce andWiggins, 2006). The lower IC (i.e., higher TPs)
means higher predictabilities and smaller surprising, whereas
the higher IC (i.e., lower TPs) means lower predictabilities and
larger surprising. In the end, a tone with lower IC may be

one that a composer is more likely to predict and choose as
a next tone, compared to tones with higher IC. IC can be
used in computational studies of music to discuss psychological
phenomena involved in prediction and SL.

Entropy and Uncertainty
Entropy as well as TP of each event is used to understand
predictability of a sequence (Pearce, 2005). Entropy (e.g.,
see Figure 1) is calculated from probability distribution,
interpreted as uncertainty (Friston, 2010), and used to evaluate
neurophysiological effects of uncertainty in SL (Harrison et al.,
2006) and curiosity (Loewenstein, 1994). A previous study
reported that neural systems of uncertainty perception were
partially independent of those of prediction of each content
(Hasson, 2017). Some articles, however, suggest that uncertainty
modulates predictability of each content in SL (Daikoku et al.,
2017c). Furthermore, uncertainty of auditory and visual statistics
is coded by modality-general, as well as modality-specific, neural
systems (Strange et al., 2005; Nastase et al., 2014). This suggests
that the neural basis that codes uncertainty as well as prediction,
is a domain-general system. Thus, there seems to be neural
and psychological interactions of perceptions between prediction
and uncertainty.

Mutual Information of nth-order SL Model
Mutual information (MI) and pointwise Mutual information
(PMI) are a measure of the mutual dependence between the
two variables. The PMI refers to each event in sequence (local
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dependence), whereas MI refers to the average of all events
in the sequence (global dependence). In the framework of SL
based on TPs (P(en+1|en)), MI explains how an event en+1

is dependent on the preceding event en. Thus, MI is a key
to understanding order of SL. For instance, conventional
oddball sequence, which consists of a frequent stimulus with
high probability of appearance and a deviant stimulus with
low probability of appearance, has weak dependence between
two adjacent events (en, en+1) and shows low MI, because
event en+1 appears independently of preceding events en. In

contrast, SL sequence based on TPs, but not probabilities of
appearance, has strong dependence between two adjacent events
and shows larger MI. For example, typical SL paradigm that
consists of concatenation of pseudo-words with three stimuli
has large MI until 2nd-order Markov or tri-gram models [i.e.,
P(C|AB))], whereas it has low MI from 3rd-oder Markov or
four-gram models [i.e., P(D|ABC))]. Thus, MI is sometimes
used to evaluate hierarchical SL in both neurophysiological
and computational studies (Harrison et al., 2006;
Pearce et al., 2010b).

FIGURE 2 | Representative sequences of [0,−2,−3,−5,−7], [0,−2,−4,−5,−7], and [0,−1,−3,−5,−6] in Beethoven’s piano sonatas in the early period.
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In this section, the three types of information-theoretical
evaluation of SL models (i.e., IC, entropy, and MI) were
explained from psychological aspects. In sum, (1) IC reflects
surprising/predictability. A tone with lower IC (i.e., higher TPs)
may be one that a composer is more likely to predict and
choose as a next tone, compared to tones with higher IC.
(2) Entropy reflects uncertainty of whole sequences. (3) MI
reflects hierarchy of statistics and is interpreted as dependence
of preceding sequential events in SL. Using them, the present
study investigated how prediction, uncertainty, and the depth of
implicit knowledge in music vary over a composer’s lifetime (all
of the 32 piano sonatas by Ludwig van Beethoven).

Ludwig Van Beethoven’s Piano Sonata
The German composer and pianist Ludwig van Beethoven
(1770–1827) remains one of the most famous and influential of
all composers. It is believed that his music strongly expresses
the psychological variations and visions of his life (Sullivan,
1927; Boucourechliev, 1963). Beethoven’s compositional career
is often divided into the early (around 1802), middle (around
1802–1814), and late periods (from about 1814) (Dahlhaus,
1991; Adorno-Wiesengrund, 1993). It is generally thought that
his works in the early period were strongly influenced by his
predecessors in classicism, such as Wolfgang Amadeus Mozart
(1756–1792) and Franz Joseph Haydn (1732–1809), whereas
his works in the late period show his personal character and
experience (Sullivan, 1927) and accompanying intellectual depth
and personal expression (Dahlhaus, 1991; Adorno-Wiesengrund,
1993). Thus, his psychological variations on thinking and
experience may form the statistical characteristics of his music
that may reflect a composer’s statistical knowledge (Johnson
et al., 1985). It is believed that he always explored new
directions of musical composition and gradually expanded his
scope of music over his lifetime (Dahlhaus, 1991; Adorno-
Wiesengrund, 1993). Using Beethoven’s piano sonatas over his
lifetime, the present study examined time-course variations
of three types of statistics in music: TPs (ICs) of sequential
patterns that appear in all 32 sonatas, entropy of whole TP
distribution, and the MI. It was hypothesized that, because
of his exploration of new directions in musical composition
over his lifetime, TP of phrases that frequently appear
in the early period (i.e., sequences with high TP) might
decrease in the late period (i.e., decreasing TP), whereas
entropy might increase in the late period. It would be very
interesting if the psychological variations in which Beethoven
explored new directions and gradually expanded his scope of
music over his lifetime were reflected in the SL models of
his music.

METHODS

The Piano Sonata with all of its movements by Ludwig van
Beethoven (No.1 in F minor, Op.2-1 to No.32 in C minor,
Op.111, composed 1795–1822) was used in the present study.
Using a scorewriter (Finale version 25, MI Seven Japan, Inc.),
electronic scoring data of the sequences of highest pitch were
extracted from the XML files. The highest pitches were chosen

based on the following definitions: the highest pitches that
can be played at a given point in time, the pitches with slurs
can be counted as one, and the grace notes were excluded.
Although melody is sometimes not highest pitches e.g., bass
melodies), the present study only analyzed the highest pitch
because different melodies could concurrently appear in some
titles of music, and melody is often played in highest pitches.
Using all the sequences of highest pitches in a movement of a
Sonata, sequential patterns based on uni- to four-grams were
extracted. For each type of the sequential patterns, all pitches
were numbered so that the first pitch was 0 in each transition, and
an increase or decrease in a semitone was 1 and −1 based on the
first pitch, respectively. The representative examples were shown
in Figure 2. This revealed interval patterns but not pitch pattern.
This procedure was employed to eliminate the effects of the
change of key on transitional patterns. The interpretation of the
change of key depends on musicians, and it is difficult to define
in an objective manner. Thus, the results in the present study
may represent a variation of statistics associated with relative
pitch rather than absolute pitch. Then, the TPs of the sequential
patterns were calculated based on 0th- to 3rd-order Markov
chains. Furthermore, TPs of all the movements in each piece
of sonata (No.1 to No.32) were weighted averaged: an average
in which probability of each phrase is multiplied by a weight
before summing to a single average value. That is weightings
are the equivalent of having that many like items with the same
value involved in the average. The nth-order Markov chain is
the conditional probability of an event en+1, given the preceding
event en:

P (en+1|en) =
P(en+1 ∩ en)

P(en)
(1)

The ICs (I) and conditional entropy (H) in the nth-order TP
distribution (hereafter, Markov entropy) were calculated using
TPs in the framework of information theory:

I (en+1|en) = − log2 P (en+1|en) (bit) (2)
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where P(bj|ai) is a conditional probability of sequence “ai bj.”
Then, MI (I(X;Y)) were calculated in 1st-, 2nd-, and 3rd-order
Markov models. MI is an information theoretic measure of
dependency between two variables. From entropy values, the MI
can also be expressed as
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−
∑

y

log p(y)(
∑

x

p(x, y))

= −
∑

x

p (x)H (Y|X = x) −
∑

y

p
(

y
)
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(

bit
)

(4)

where p(x,y) is the joint probability function of X and Y, p(x),
and p(y) are the marginal probability distribution functions of X
and Y respectively, H(X) and H(Y) are the marginal entropies,
H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y)
is the joint entropy of X and Y (Figure 1) (Daikoku, 2018a).
Based on psychological and information-theoretical concepts,
the Equation (4) can be regarded that the amount of entropy
(uncertainty) remaining about Y after X is known. That is,
the MI is corresponding to reduction in entropy (uncertainty).
In each order of Markov models, the sequential patterns that
ubiquitously appear in all 32 sonatas (hereafter, familiar phrase)
were extracted. Then, TPs of the familiar phrases were averaged
(0th: 20 phrases, 1st: 37 phrases, 2nd: 12 phrases, and 3rd: 3
phrases) (Table 1). The 32 sonatas were divided based on the
well-known 3 periods: early (No.1 to 12, No19, and No20),
middle (No.13 to 18 and No. 21 to 27), and late (No. 28 to
32). Then, I conducted analysis of variances (ANOVAs) with a
within-subject factor order (0th vs. 1st vs. 2nd vs. 3rd) and a
between-subjects factor composition period of the sonatas (early
vs. middle vs. late) for the TPs of familiar phrases and entropy of
whole music, and an ANOVA with a within-subject factor order
(1st vs. 2nd vs. 3rd) and a between-subjects factor composition
period (early vs. middle vs. late) for the mutual information.
When we detected significant effects, Bonferroni-corrected post-
hoc tests were conducted for further analysis. Then, in each order
of Markov models, the TPs of familiar phrase and the uncertainty
of whole music were compared by Pearson’s correlation analysis.
Statistical significance levels were set at p= 0.05 for all analyses.

RESULTS

TPs of Familiar Phrases
In the TPs of familiar phrases, An ANOVA with a within-
subject factor order (0th vs. 1st vs. 2nd vs. 3rd) and a between-
subjects factor composition period (early vs. middle vs. late) was
conducted. As a result, the main effect of period was significant
[F(2, 29) = 6.02, p = 0.007, partialη2 = 0.29, early > late, p
= 0.005; middle > late, p = 0.032] (Figure 3D). The period-
order interaction was also significant [F(6) = 6.82, p < 0.001,
partialη2 = 0.32] (Figure 3A). The 3rd-order TPs in late period
were significantly lower than those in early (p < 0.001) and
middle periods (p = 0.003). That is to say, the 3rd-order TPs of
familiar phrases in the late period only decrease during lifetime.
The main effect of order was significant [F(3, 87) = 1108.35, p
< 0.001, partialη2 = 0.98]. The 0th-order TPs were significantly
lower than the 1st-, 2nd-, and 3rd-order TPs (all: p < 0.001). The
1st-order TPs were significantly lower than the 2nd-, 3rd-order
TPs (all: p < 0.001). The 2nd-order TPs were significantly lower
than the 3rd-order TPs (p= 0.007).

TABLE 1 | Sequential patterns that appear in all 32 sonatas (i.e., phrases) in each

order of Markov models.

Order Sequential patterns

0th [−2], [−1], [1], [0], [2], [−3], [3], [5],[−4],[4],[−5], [12], [−7], [7], [9],

[−12], [8], [−6], [6], [−9]

1st [1,1], [−1,2], [−1,−1], [1,−2], [0,1], [3,3], [0,2], [1,−4], [0,3], [0,5],

[1,−1], [−2,2], [−2,5]

2nd [−2,−4,−5], [0,0,0], [−1,−3,−5], [2,4,5], [−2,−3,−5], [1,3,5], [2,3,5],

[2,0,−1], [−2,−3,−2], [−1,0,2], [1,3,1], [−1,0,−1]

3rd [−2,−3,−5,−7], [−2,−4,−5,−7], [−1,−3,−5,−6]

Entropy and Uncertainty
In entropy of whole TP distribution, ANOVA with a within-
subject factor order and a between-subjects factor composition
period of sonatas was performed. The main effect of period was
significant [F(2,29) = 7.58, p = 0.002, partialη2 = 0.34, early <

middle, p = 0.005; early < late, p = 0.002] (Figure 3E). The
period-order interaction was also significant [F(6) = 6.68, p
< 0.001, partialη2 = 0.32] (Figure 3B). The entropies of 0th-
order TPs in late period were significantly lower than those in
the middle periods (p = 0.034). The entropies of 1st-order TPs
in late period were significantly higher than those in the early
(p = 0.004) and middle periods (p = 0.014). The entropies
of 2nd-order TPs in late period were significantly higher than
those in the early (p = 0.001) and middle periods (p < 0.001).
The entropies of 3rd-order TPs in late period were significantly
higher than those in the middle periods (p = 0.017). The main
effect of order was significant [F(1.73, 50.30) = 2329.84, p <

0.001, partialη2 = 0.99]. The entropies of 0th-order TPs were
significantly lower than the 1st-, 2nd-, and 3rd-order TPs (all:
p < 0.001). The entropies of 1st-order TPs were significantly
lower than the 2nd-, 3rd-order TPs (all: p< 0.001). The entropies
of 2nd-order TPs were significantly lower than the 3rd-order
TPs (p= 0.007).

Hierarchy of Statistics: Mutual Information
In the mutual information, an ANOVA with a within-subject
factor order and a between-subjects factor composition period
was conducted. Themain effect of period was significant [F(2, 29)
= 9.08, p= 0.001, partialη2 = 0.39, early> late, p= 0.020; middle
> late, p = 0.001] (Figure 3F). The period-order interaction
was also significant [F(4) = 2.80, p = 0.034, partialη2 = 0.16]
(Figure 3C). The mutual information of 1st- and 2nd-order TPs
in late period were significantly lower than those in the early (1st:
p = 0.004; 2nd: p = 0.012) and middle periods (1st: p < 0.001;
2nd: p < 0.001). The mutual information of 3rd-order TPs in late
period was significantly higher than those in the middle periods
(p = 0.008). The main effect of order was significant [F(1.32,38.16)
= 2350.56, p< 0.001, partialη 2 = 0.99]. The mutual information
of 1st-order TPs were significantly lower than the 2nd-, 3rd-order
TPs (all: p < 0.001). The 2nd-order TPs were significantly lower
than the 3rd-order TPs (p < 0.001).

DISCUSSION

Brain encodes probability distributions and the
entropy/uncertainty of musical information (Koelsch et al.,

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 2787

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Daikoku Fluctuation of Uncertainty in Music

FIGURE 3 | The period-order interactions (A–C) and main effects of period (D–F) in the ANOVA of ICs and TPs of familiar phrases, conditional entropy of TP

distribution, and the depth of implicit knowledge (MI) in the early (opened bars), middle (filled bars), and late (dashed bars) periods. IC, information content; TP,

transitional probability; MI, mutual information.

2018) and mandates the suppression of prediction errors
and uncertainty by updating the internal probabilistic model
of music that generates predictions and the belief (Kanai
et al., 2015). In other words, through musical experience over
lifetime, a human generally tries to optimize the internalized
probabilistic model for efficient information processing and the
uncertainty resolution, which has been regarded as rewords.
On the other hand, to explore the maximum rewards of
uncertainty resolution, human’s behavior appears to be not
necessarily directing to efficiency, but sometimes be drove by
unefficient, uncertain, and novelty information, which is thought
as curiosity (Kagan, 1972; Wittmann et al., 2008; Krebs et al.,
2009; Schwartenbeck et al., 2013). Thus, although brain typically
minimizes uncertainty of music structure, we sometimes derive
pleasure from music with uncertain structure due to curiosity
for novelty-seeking behavior by which we anticipate further
rewords by uncertainty resolution. The present study, using all
the Beethoven’s piano sonatas over his lifetime, examined how
the probabilistic model and the uncertainty in music fluctuate
over a composer’s lifetime. The transitional probability and
information content (TP), information content (IC), conditional
entropy, and mutual information (MI) can be calculated based
on nth-order Markov models. Based on psychological and
neurophysiological studies on SL (Harrison et al., 2006; Pearce
et al., 2010b; de Zubicaray et al., 2013; Daikoku et al., 2015;
Monroy et al., 2017c), these three information can be translated
to psychological indices: a tone with lower IC (i.e., higher TPs)
may be one that a composer is more likely to choose as a next
tone, compared to tones with higher IC, whereas the entropy

and MI are interpreted as uncertainty and the order of the SL,
respectively. It was hypothesized that probability, uncertainty,
and the order of SL models is fluctuated over Beethoven’s
lifetime. If so, it may suggest that his curiosity for uncertain and
novelty seeking behavior modulate optimization and creativity
in human’s brain.

The TPs of familiar phrase (i.e., sequences that appear in
all 32 sonatas) were decreased in the late periods (Figure 3D),
whereas the entropies in music were increased in the late periods
(Figure 3E). In other words, there was no significant difference
between early and middle periods, while there was significant
difference between middle and late periods. Particularly, the 3rd-
order TPs in the late period decrease during lifetime (Figure 3A).
According to musicological studies, his works in the early
period were strongly influenced by his predecessors in classicism
whereas his works in the late period show his personal character
and experience (Sullivan, 1927). It is believed that he always
explored new directions of musical composition and gradually
expanded his scope of music over his lifetime (Dahlhaus, 1991;
Adorno-Wiesengrund, 1993). The findings of the present study
may suggest the hypothesis that the psychological variations
over lifetime are reflected in the statistical structure in music.
The decreasing of the TPs of familiar phrase and increasing of
the entropies may imply that, in the late period, he tried novel
composition strategies in which he avoided familiar sequences
in the early period, and tried various transitional patterns by
which nth-order TPs are broadly distributed. The previous
study detected time-course variation of predictability of familiar
phrases over his lifetime (Daikoku, 2018d). The present study,
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furthermore, suggested that there seems to be interactions
between prediction and uncertainty.

The decreasing of TPs of familiar phrase over Beethoven’s
lifetime was obvious in the higher-, but not lower-, order models
(Figure 3A). This may suggest that a higher-, rather than lower-,
order statistical structure reflects specific statistical knowledge
that is susceptible to experience and novelty seeking behavior.
The entropy (i.e., uncertainty) of TP distribution may also
support the hypothesis (Figure 3B). The entropies of higher-
order (1st to 3rd), but not lower-order (0th) models in late period
increased compared with those in early period. Furthermore, MI
in late periods was lower compared with those early and middle
periods (Figure 3F). This suggests that, in the late period, each
event of tone hardly depends on preceding successive events
of tones. Typical Western-classical music has strict syntactic
rules based on music theory. Therefore, a forthcoming tone can
partially be predicted from preceding successive tones based
on the rules. According to previous studies, syntax of musical
sequences is partially expressed by conditional probabilities
(Rohrmeier and Cross, 2008), although it is not sufficient to
account for all of the music syntax. The findings on MI in this
studymay suggest that, in the late period, the composer avoided a
tone that can easily be predicted based on typical transition rules
involved in music syntax.

In sum, the present study detected time-course variation of
predictability of familiar phrases, uncertainty of whole music,
and the depth of SL in music that were composed over
Beethoven’s lifetime. According to corpus studies, the historical
characteristics of music can be extracted based on the era
(e.g., Albrecht and Huron, 2014; Gjerdingen, 2014; White,
2014). This indicates that strategies of composition and musical
knowledge depend on the era. The present study also suggests
that the characteristics of music can be extracted based on the
periods within a composer’s lifetime. In addition, the higher-
order hierarchical structure showed larger time-course variations
of both predictability of familiar phrases and uncertainty of
whole music. From the psychological perspective, it would be
interesting if the higher- (i.e., deep), rather than lower-order
statistical knowledge was susceptible to experience and novelty
seeking behavior. The present study also suggested that there are
interactions between prediction and uncertainty. It is of note,
however, that the present study did not directly investigate the
composer’s statistical knowledge of music, as only the statistics
of musical scores were analyzed. Furthermore, the present

study only analyzed one composer, therefore could not discuss
universal phenomenon on SL. This suggests that there may be
other possible explanations for the findings of the present study.
For instance, it might have been Beethoven’s plan to compose
the sonatas from familiar and lower entropy to unfamiliar and
larger entropy based on the statistical structure of music. Future
study should investigate SL of music frommany composers using
interdisciplinary approaches in parallel.

CONCLUSION

The present study investigated how predictability of familiar
phrases that was used in all of music, uncertainty of whole
structure, and the order of the probabilistic models in music
fluctuates over a composer’s lifetime, and discussed the results
from psychological perspective within SL framework. The results
suggest that the higher-, rather than lower-order statistical
knowledge may be susceptible to experience and novelty seeking
behavior. The present study also suggested that there might be
interactions between prediction and uncertainty. The present
study first suggested that uncertainty may be increased in
a composer’s lifetime, and that the higher-order probabilistic
model may be susceptible to experience and novelty seeking
behavior over the composer’s lifetime. It is suggested that
human’s curiosity for uncertain and novelty seeking behavior
may modulate creativity in human’s brain, and that the
fluctuations of uncertainty could reflect aesthetic appreciation of
music. To more understand brain’s predictive function, future
study is needed to examine relationships between prediction
of familiar phrases and uncertainty perception, using both
modeling and experimental approaches in parallel.
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Clustering is a powerful machine learning tool for detecting structures in datasets. In the

medical field, clustering has been proven to be a powerful tool for discovering patterns

and structure in labeled and unlabeled datasets. Unlike supervised methods, clustering

is an unsupervised method that works on datasets in which there is no outcome (target)

variable nor is anything known about the relationship between the observations, that is,

unlabeled data. In this paper, we focus on studying and reviewing clusteringmethods that

have been applied to datasets of neurological diseases, especially Alzheimer’s disease

(AD). The aim is to provide insights into which clustering technique is more suitable

for partitioning patients of AD based on their similarity. This is important as clustering

algorithms can find patterns across patients that are difficult for medical practitioners

to find. We further discuss the implications of the use of clustering algorithms in the

treatment of AD. We found that clustering analysis can point to several features that

underlie the conversion from early-stage AD to advanced AD. Furthermore, future work

can apply semi-clustering algorithms on AD datasets, which will enhance clusters by

including additional information.

Keywords: clustering, neurological diseases, Alzheimer’s disease, unsupervised learning, machine learning

techniques

INTRODUCTION

There has been an increasing interest in themedical community to usemachine learning techniques
for disease diagnosis (Kononenko, 2001). This is due to the increases in availability of medical
datasets, such as Twinanda et al. (2017), Srivastav et al. (2018), Alzheimer’s Disease Neuroimaging
Initiative (ADNI), and UC Irvine Machine Learning Repository, among others. The accumulation
of large datasets has become more feasible recently due to the advancements in hardware (fast,
cheap computers), the availability of public and private medical and healthcare datasets, and
machine learning classification and clustering methods.

Supervised learning is the process of learning (approximating) a mapping function from a set of
input variables to a target variable. The term “supervised” here refers to the training process of the
algorithm being supervised by having the correct answers (i.e., we know what the target outcome
is). However, when one only has a set of variables and no corresponding output variables (i.e.,
the data are unlabeled), then the learning process is called unsupervised. Thus, in unsupervised
learning, there are no correct answers for the training procedure to learn from and the learning
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algorithm is left to discover the structures in the datasets.
One of the most important unsupervised learning techniques is
clustering, which is the process of partitioning a set of data points
according to some measure of similarity (e.g., distance). The goal
of clustering is to reveal subgroups within heterogeneous data
such that each individual cluster has greater homogeneity than
the whole (Eick et al., 2004). Table 1 summarizes the different
types of machine learning methods and some of their real-world
applications. In many applications, obtaining labeled data is
often difficult, costly, and/or time-consuming, while collecting
unlabeled data may be relatively easy. Such cases result in a
dataset consisting of a large number of unlabeled variables and
a small set of labeled variables. Semi-supervised learning uses
both labeled and unlabeled data to improve the accuracy of the
learning model.

Several studies have used clustering methods to facilitate the
diagnosis of several disorders (Vogt and Nagel, 1992; Nugent and
Meila, 2010; Li and Zhu, 2013; Nithya et al., 2013; Wiwie et al.,
2015). For example, clustering techniques have been applied to
the diagnosis of breast cancer (Chen, 2014), Parkinson’s disease
(Polat, 2012; Nilashi et al., 2016), headache (Wu et al., 2015),
mental health and psychiatric disorders (Trevithick et al., 2015),
heart and diabetes diseases (Yilmaz et al., 2014), andHuntington’s
disease (Nikas and Low, 2011), among many others.

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases, particularly in old age (Ryu et al.,
2010), and is among the most common causes of dementia in
senior individuals (Ryu et al., 2010; Cuingnet et al., 2011). AD
leads to structural and functional loss of neurons in the cortex
and hippocampal regions, among other brain areas. A number of
studies in the past 20 years have pointed out possible biomarkers
for the diagnosis of AD, including brain atrophy revealed by
magnetic resonance imaging (Mueller et al., 2006; Seppi and
Poewe, 2010).

METHOD

In this paper, we summarize prior studies that use clustering
methods on AD datasets to gain more insights into the disease’s
nature, diagnosis, and progression. In the following sections,
we describe the most common clustering algorithms and their
application on AD datasets in the literature. A computer search

TABLE 1 | Types of machine learning methods.

Learning type Supervised Unsupervised Semi-supervised

Type of data Data points have labels. Data points do not have corresponding labels. A subset of the data points is labeled.

Learning process Analyzing the training data to learn a

function that can be used for

predicting the labels of new

examples.

Modeling the structure or the distribution of the

data in order to find patterns and gain new

insights from the data.

Utilizing unlabeled data with labeled data to

learn better models.

Applications Fraud detection, detecting spam

emails, predicting real estate prices.

Clustering customers’ data and market

segmentation, learning rule associations, image

segmentation, gene clustering.

When it is expensive to annotate every data

point (e.g., using humans), this type of learning

is suitable. Examples: web content

classification, medical predictions.

Firstly, the nature of the data is stated, then the objective of the type of learning is discussed, and finally some real-world examples are mentioned.

was carried out, containing the clustering and AD. This search
was performed in PubMed and Google Scholar.

CLUSTERING ALGORITHMS

k-Means
The k-Means clustering algorithm (Forgy, 1965) is a classical
unsupervised learning method. This algorithm takes n
observations and an integer k. The output is a partition of
the n observations into k sets such that each observation belongs
to the cluster with the nearest mean. The following steps
summarize the operations of k-Means.

Initialize k cluster centers. In practice, this can be done by
either randomly selecting k center

1. points from the n observations or random generation of k
center points.

2. Calculate the distance between each observation and the
cluster centers.

3. Assign each point to the cluster whose distance from its center
is minimum of all the cluster centers.

4. Recompute the positions of the k centers as the cluster mean.
5. Recompute the distance between each data point and the

newly computed centers. Repeat steps 3 and 4 until all data
points are assigned to the same cluster (data points do
not move).

The choice of k is usually influenced by prior knowledge

regarding the nature of the data or by using clustering
validity measures.

Escudero et al. (2011) investigated how applying k-Means

clustering to a subject’s medical history may shed light on
the likelihood of conversion from mild cognitive impairment

(MCI) to AD. The dataset used was obtained from the ADNI
database and consists of 375 subjects. The selected features

included the number of ApoE s4 alleles, ADAS-Cog (Alzheimer’s

Disease Assessment Scale-Cog), Mini-Mental State Examination

(MMSE) scores, MRI (magnetic resonance imaging), and CSF

(cerebrospinal fluid) data from cognitively normal (CN), MCI,
and AD individuals. The authors tested the potential of how

having the following five sets of features can better diagnose AD:
(1) ADAS-Cog, MMSE, and ApoE genotype obtained from a
blood sample; (2) CSF; (3) MRI; (4) CSF and MRI; and (5) all
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of the above features. The first analysis involved clustering the
subjects according to each of the five scenarios (i.e., using only
a subset of the variables based on the set of features described
above) using k-Means and approximating the occurrence of the
medical history of AD in each set. More than 69% of the AD
subjects and about half of the MCI individuals were always
assigned to the pathological bioprofile.

In the second analysis, k-Means was applied to the CN and
AD subjects, and the obtained clusters were used to split the
MCI subjects into CN-like and AD-like, that is, which MCI
subjects may stay as healthy individuals and which may convert
to AD. Next, the rate of decline to AD was used to evaluate the
utility of this clustering algorithm in the early diagnosis of AD
at the MCI stage. The fifth set of features (which included all
features) provided larger differences between the evolution of
CN-like and AD-like subjects at the 12-month follow-up. The
number of subjects assigned to CN-like and AD-like was 82
and 96, respectively. This indicates that the combination of all
clinical tests and biomarkers outperformed using any of them
in isolation.

In a recent study, Tosto et al. (2016) applied k-Means
clustering algorithm on a dataset of 3,502 patients with
AD with longitudinal assessments from the National
Alzheimer’s Coordinating Center database, with 394 providing
neuropathological data. The authors were interested in
examining subgroups of patients with variable trajectories
of extrapyramidal sign progression (which include movement
disorders such as postural instability, tremors and rigidity, body
restlessness, and abnormal gait, among others) and their clinical
and neuropathological correlates. Tosto et al. (2016) observed
the following three clusters of extrapyramidal sign progression:
no/low (n = 1,583), medium (n = 1,259), and high (n = 660)
extrapyramidal burden. The high extrapyramidal cluster had
greater cognitive and neuropsychiatric impairment (particularly
hallucinations), relative to the other clusters. Moreover, despite
the three clusters having similar AD pathology, the high
extrapyramidal burden cluster had a significantly greater
number of patients diagnosed with dementia with Lewy bodies.

In another recent study, Price et al. (2015) recruited
participants with AD or vascular dementia and collected MRI
measures of infarction, whole brain volume, and leukoaraiosis
(LA), as well as neurocognitive measures in all participants. A k-
Means cluster analysis derived three cluster-groups characterized
by single-domain amnestic (n= 41), single-domain dysexecutive
(n = 26), and multi-domain (n = 26) phenotypes. The multi-
domain patients scored worse on language measures than the
other clusters, yet they were equally impaired on tests of memory
when compared to the amnestic group. The three cluster-groups
were relatively dissociable in neuroradiological parameters, in
which the amnestic and multi-domain clusters had smaller
hippocampal volume than the third cluster, while the single-
domain dysexecutive cluster had greater deep periventricular
(i.e., between periventricular and infracortical regions) and
whole brain LA. The volume of the caudate and lacunar
infarction did not differ between the three clusters. There
was a negative association between the volume of the caudate
nucleus and total LA in the dysexecutive and multi-domain

clusters. These results suggest the existence of neuroradiological
heterogeneity between patients diagnosed with AD/vascular
dementia spectrum dementia.

k-Means-Mode
This algorithm can deal with both numeric (continuous) and
categorical data. Each cluster center is an array of means and
modes for continuous and categorical attributes, respectively.
The steps of the algorithm is similar to that of the classical k-
Means; the means and modes are calculated for each cluster as
previously stated, and then each point ismoved to the cluster with
minimum distance. For continuous features, Euclidean distance
is often used, and for discrete features, Hamming distance is
often used.

Paul and Hoque (2010) have applied the k-Means-Mode
clustering algorithm to medical datasets to predict the likelihood
of diseases. The likelihood of the disease in a cluster is defined
as the number of patients that have the disease divided by
the total number of points in the clusters. In other words,
it is the probability of finding the disease in the cluster. The
average likelihood of all clusters is the actual probability of
the disease in the data, which can be found by brute-force
methods. Accuracy is the ratio between average likelihood and
actual likelihood. Experimental results show that when the
algorithm was applied on the Zoo dataset from the University
of California at Irvine (UCI) Machine Learning Repository and
a diabetes dataset, an accuracy of about 95% is achieved. Other
algorithms like k-Means and k-Mode achieved lower than 65%
accuracy, suggesting that the k-Means-Mode algorithm is better
at clustering data than k-Means and k-Mode algorithms.

Multi-Layer Clustering
The first step of the multi-layer clustering process is to determine
the similarity between each pair of examples. This is done by
creating an artificial binary classification problem having the
original patient records as the positive example, while negative
examples are generated by randomly mixing the values of the
attributes of the original examples among themselves. Next, a
predictive model is built to distinguish between the positive and
negative examples to determine the similarities between each
pair of examples. The Random rules algorithm (Pfahringer et al.,
2004; Almeida et al., 2013) is applied for each pair of records to
construct an example similarity table (EST) where the number of
rules covering the pair is calculated. An entry ei ,j in the table holds
the similarity value between the ith and the jth example. The
second step is to calculate the clustering-related variability (CRV)
measure for all examples. The single-layer clustering algorithm
starts by assigning each example to a single cluster. It then keeps
merging the most similar clusters in terms of the cluster CRV
score. The procedure stops when no further merge operations are
possible; that is, further merges do not result in a smaller CRV
score. In situations having more than one attribute layer (multi-
layer attributes), the artificial binary classification problem is
constructed for each attribute layer and the ESTs are built. As for
the algorithm, for each pair of clusters, the potential variability
reduction for all attribute layers is computed and the smallest
value for each pair is selected. Merging occurs if this value is
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positive, and if the value is positive for more than one pair, the
pair with the largest minimal value is chosen and these clusters
are merged.

Gamberger et al. (2016a) applied a multi-clustering method
to an AD dataset of both male and female patients comprising
243 biological and clinical features. The clusters obtained
showed differences between male and female patient groups,
including the existence of two male subpopulations with changes
to intracerebral and whole brain volumes. The multi-layer
clustering technique was used to deal with layers of attributes;
that is, a set of attributes is partitioned into several subsets
according to a criterion (e.g., laboratory data features and
clinical data features). The multi-layer clustering technique was
carried out independently on two groups of 317 female and
342 male patients. The first layer consisted of 56 biological
measurements and the second consisted of 187 symptoms and
clinical descriptors. The authors reported key differences between
male and female populations of patients. For example, in the
female population, there were two clusters, while in the male
population, there were four, two for patients having major issues
with dementia (denoted M1 andM2) and two for patients having
mild or no dementia (denoted M0A and M0B). There was one
large cluster in the female population, denoted F1, with patients
having significant problems with dementia, while patients in the
other cluster hadmild dementia symptoms (denoted F0). Patients
in cluster M2 were found to have higher than average intracranial
volume (ICV) and whole brain volumes when compared to
cognitively normal male patients. Such a cluster was not observed
in the female population. The M0A cluster was similar to cluster
F0 in the female population in terms of increased ICV values and
biological features, while cluster M0B had smaller than average
ICV values. This analysis showed that there are significant
gender-specific differences in AD patients and suggests that
taking gender into account may have important implications for
the treatment of AD.

The samemulti-layer clustering algorithm used by Gamberger
et al. (2016a) was also used on a dataset of 218 female and
344 male individuals with MCI. The algorithm first builds an
EST for each attribute layer and then the tables are used by
a bottom-up method to merge similar clusters together until
no further merging of clusters is possible. The goal of this
study is to find homogeneous groups of MCI individuals in
terms of baseline and prognostic features and to discover gender
differences within the groups. The algorithm produced a cluster
of “slow decliners” (i.e., individuals with MCI that slowly develop
dementia symptoms) consisting of 184 subjects that included
a subset of MCI individuals that had favorable baseline data
and prognosis. Another cluster given by the algorithm, termed
“rapid decliners” (i.e., individuals with MCI that rapidly develop
dementia symptoms; n = 240), consisted of a subset of MCI
subjects with a more impaired baseline status and a rapidly
progressing longitudinal cognitive course.Moreover, 138 subjects
did not fit in either of the two clusters. Males and females in
the “rapid decliners” cluster had worse baseline cognitive status
and smaller brain volumes than those in the “slow decliners”
cluster. The rate of progression from MCI to dementia for
females and males in the “rapid decliners” cluster was 69 and

61%, respectively. Conversely, the rate of progression from MCI
to dementia for females and males in the slow decliners cluster
was 9 and 16%, respectively.

Gamberger et al. (2016b) applied the multi-layer clustering
method used by Gamberger et al. (2016a) and Gamberger et al.
(2017) to an AD dataset obtained from ADNI. The dataset
consists of 187 cognitively normal (CN) subjects, 106 patients
with significant memory concern (SMC), 311 patients with early
MCI (EMCI), 164 patients with late MCI (LMCI), and 148
AD patients (916 subjects in total). There are two layers that
make up the features: layer 1 consists of 10 biological features
and layer 2 consists of 23 clinical features. The goal of this
study was to find clusters that are as large and homogeneous
as possible regarding both biological and clinical features. Three
clusters were identified having patients with different levels
of dementia. The first cluster, A, contained patients with low
volumes of hippocampus, entorhinal cortex, fusiform gyrus,
and middle temporal gyrus, as well as small intracerebral and
whole brain volumes. The number of subjects in that cluster
diagnosed with AD, LMCI, and EMCI were 30, 4, and 1,
respectively. Compared to CN subjects, patients in cluster A had
20% lower mean values for fusiform and midtemporal gyrus.
Moreover, patients in cluster A had, on average, a 30% smaller
entorhinal volume than the CN group. The authors regarded
it odd that patients with LMCI and EMCI were assigned to
this cluster, yet offered no explanation for this discrepancy.
It is quite possible that these individuals may be at risk for
converting to AD; this hypothesis should be tested in future work.
Further, patients in cluster A showed high Clinical Dementia
Rating Sum of Boxes (CDRSB), Alzheimer’s Disease Assessment
Scale (ADAS13), and Functional Assessment Questionnaire
(FAQ) scores and low Mini-Mental State Examination (MMSE)
and Montreal Cognitive Assessment (MoCA) scores, which
is consistent with patients suffering from acute dementia.
Importantly, the number of AD, LMCI, and EMCI patients in
the second cluster, B, was 10, 9, and 2, respectively. Patients
in this cluster have, to some extent, had smaller volumes
of entorhinal, hippocampus, fusiform, and midtemporal gyrus
that are about 20, 20, 10, and 10% (respectively) lower than
mean values for CN subjects. However, the intracranial volume
and whole brain volume were normal. Subjects in this cluster
had a moderate or mild type of AD, which is indicated
by a score above 3 in the CDRSB. An interesting feature
of patients in cluster B was that the values for cognitive
functions self-reported by the patients were higher than those
of the other clusters and of the mean values of the entire
AD population.

The third cluster, C, included patients with the lowest
degenerative changes in the hippocampus, entorhinal, fusiform,
and midtemporal gyrus. Moreover, patients in this cluster had
high scores of ventricular and whole brain volumes. Cluster C
patients had larger mean ventricle volume than CN subjects.
The values for the scales of the MoCA, FAQ, fluorodeoxyglucose
imaging (FDG), MMSE, and ADAS13 were all intermediate
between those of clusters A and B. Cluster C patients also showed
impairment, performing the Rey’s Auditory Verbal Learning Test
(RAVLT), and divided attention.
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This study shows that the nature of the cluster of patients
having problems with dementia is non-homogeneous. Moreover,
cognitively normal subjects are even more non-homogeneous as
a population, as the clustering algorithm reported here shows that
there are many clusters of controls as well. The number of AD
patients assigned to clusters A, B, and C is <50% of the entire
AD population. Another important finding of the current study is
the correlation between cognitive impairment and brain atrophy.
The presence of degenerative changes of the brain was found in
the three derived clusters. The greatest degeneration was found
in cluster A and the second greatest degeneration was found in
cluster B. The results obtained from cluster C indicate that brain
changes are responsible for a significant number of problemswith
dementia; however, they are not sufficient for AD development.

HIERARCHAL
AGGLOMERATIVE CLUSTERING

Hierarchal agglomerative clustering is a bottom-up approach
such that each data point begins in a separate cluster, and pairs
of clusters at the bottom are merged together as we go up the
hierarchy. This method can be summarized as follows:

1. Assign each object to a separate cluster.
2. For each pair of clusters, calculate the pairwise distance.

Then, build a matrix whose elements are the distance
values computed.

3. Find the pair of clusters with the shortest distance.
4. Merge the identified pair after removing both clusters from the

distance matrix.
5. Calculate all distances from this new cluster to all other

clusters and update the distance matrix.
6. Repeat these steps until the matrix is reduced to a

single element.

There are several distance metrics that can be used (e.g.,
Euclidean and Manhattan distances); however, the choice of a
metric determines the shape of the clusters produced. This is
because two clusters can be close to each other according to one
metric, but far from each other according to another metric.
It is recommended that an exploratory study be conducted on
several distance measures and the one that yields the best results
according to chosen performance measures is selected. Unlike k-
Means, the number of clusters is not determined by the user, and
generally, smaller clusters are generated, which can be helpful in
many domains.

Noh et al. (2014) collected high-resolution T1-weighted
volumetric MRIs from 152 patients in the early stages of AD.
A hierarchical agglomerative clustering analysis was applied to
measures of cortical thickness in these patients. Three emergent
clusters were compared with an age- and sex-matched control
group. The first cluster (A) was characterized by bilateral
medial temporal-dominant atrophy predominantly involving
anterior and posterior cingulate cortices (n = 52, 32.4%);
the second cluster (B) was characterized by parietal-dominant
atrophy involving bilateral parietal areas, precuneus, and bilateral
dorsolateral frontal areas (n = 28, 18.4%); and the third

cluster (C) was characterized by diffuse atrophy, in which
almost all association cortices demonstrated atrophy (except for
orbitofrontal and occipital areas) (n = 72, 47.4%). Patients in
the parietal-dominant cluster (B) were younger, had a younger
age at onset, and had the highest years of education. Patients
in the diffuse atrophy cluster (C) had the lowest mean cortical
thickness. Patients in the parietal-dominant cluster scored the
poorest across all neurocognitive tests (attention, visuospatial
function, memory, and frontal executive tasks) except for
language function measures. These results suggest that there
is considerable anatomical heterogeneity evident even in early
stages of AD, which may indicate multiple disease processes.

Hwang et al. (2016) conducted several analyses on a dataset
that includes 77 patients with AD recruited via the ADNI.
Patients underwent 3-T MRI, [18F]-fluorodeoxyglucose PET,
[18F]-florbetapir PET, and cerebrospinal (CSF) tests. Hierarchical
agglomerative cluster analysis was applied to measures of cortical
thickness, and the remaining measures were compared across
groups. Consistent with the study byNoh et al. (2014) andHwang
et al. (2016) observed three clusters, dominated by medial–
temporal atrophy (19.5%), parietal atrophy (24.7%), and diffuse
atrophy (55.8%). The parietal-dominant cluster was younger and
showed greater glucose hypometabolism in parietal and occipital
cortices, as well as pronounced amyloid-beta accumulation in
most brain regions. The medial–temporal dominant cluster
had greater glucose metabolism in the left hippocampus and
bilateral frontal cortices and poorer performance on memory
tests. There were no significant differences in CSF tests
between cluster-groups.

Racine et al. (2015) studied a sample of 103 asymptomatic
adults with genetic risk and parental family history of AD.
Participants underwent [C-11] Pittsburgh Compound B (PiB)
amyloid imaging, MRI, lumbar puncture, and neurocognitive
assessment at baseline, with 79 participants also undergoing
follow-up PiB imaging 2 years later. The hierarchical
agglomerative cluster analysis derived four cluster-groups
based on three biomarkers, including CSF total-tau, CSF Aβ42,
and average PiB burden across 8 AD-sensitive regions of
interest. All clusters were compared on amyloid accumulation
(controlling for PiB baseline, age, sex, and APOE4 status) as
well as on cognitive changes on tests of memory and executive
control (controlling for baseline scores, age, sex, APOE4 status,
education, and duration between testing visits). Cluster 4 showed
the greatest AD-like characteristics (low CSF Aβ42 and high
PiB), with greater amyloid accumulation over 2 years relative to
the other three clusters in regions affected by AD (precuneus,
posterior cingulate, and lateral temporal and parietal cortices).
Moreover, individuals in cluster 4 scored worse than those in
cluster 1 on immediate recall and worse than all three clusters
on delayed recall. Individuals in cluster 2 scored better than
individuals in cluster 3 on delayed recall and better than both
clusters 1 and 2 on total recall. These results suggest that
clustering at-risk individuals across validated biomarkers may
provide novel insights into those at greatest risk for amyloid
accumulation and cognitive decline.

Cappa et al. (2014) recruited 23 patients with posterior
cortical atrophy (PCA) and 16 patients with dementia of
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Alzheimer’s type (AD). First, a principal component analysis
was used to reduce 15 neurocognitive variables to the
following five factors: memory, language, perceptual processes,
visuospatial processes, and calculation (addition, subtraction,
and multiplication). These factors were then entered into
a hierarchical agglomerative cluster analysis. Four clusters
were derived and were characterized by visuospatial/perceptual,
memory, perceptual/calculation, and language performance.
Four clusters were derived, Cluster 1 (n= 9, 100% PCA), Cluster
2 (n = 10, 20% PCA), Cluster 3 (n = 6, 50% PCA), and Cluster
4 (n = 14, 64% PCA). The authors noted that AD pathology
appears to produce multiple distinct syndromal subtypes
involving impairment inmemory (classically associatedwith AD)
and visuospatial deficits (classically associated with PCA), as
well as in visual perception and language, which may indicate
heterogeneity in vulnerability of specific functional networks.

Armstrong and Wood (1994) applied hierarchical cluster
analysis to a group of 78 patients with AD. The dataset consisted
of 47 neuropathological measures, including the density and
distribution of senile plaques and neurofibrillary tangles. The
analyses indicated that an initial splitting of the sample could
be made, characterizing one large group (68%) who had a
relatively small distribution of senile plaques and neurofibrillary
tangles across the brain and a second smaller cluster (15%) who
had more diffusely spread lesions throughout the neocortex.
These clusters could be further divided based on the extent
of capillary amyloid angiopathy. Moreover, patients with a
limited development of senile plaques, neurofibrillary tangles,
and capillary amyloid angiopathy could be further split into an
early- and a late-onset group. Patients with familial AD were not
assigned to a single cluster; rather, they were distributed across
four of the five groups. Some patients with familial AD had
unique combinations of pathological features that did not closely
resemble the other clusters.

McCurry et al. (1999) recruited a population-based sample
of 205 patients with AD from the Alzheimer’s Disease Patient
Registry to investigate patterns of sleep problems. The authors
applied hierarchical cluster analysis (Lance and Williams, 1967)
to patients who were reported to have awakened their caregivers
from sleep. They identified one cluster with daytime inactivity
but few behavioral problems, another cluster with higher levels of
fearfulness, fidgeting and occasional sadness, and a third cluster
with multiple behavioral problems that included frequency bouts
of sadness, fearfulness, inactivity, fidgeting, and hallucinations.
The results demonstrate the heterogeneity of sleep disturbances
in AD, which may have implications for the direction of
interventions to homogeneous subgroups experiencing similar
patterns of sleep problems.

DISCUSSION

In this study, we were able to identify and review 13 articles
that applied clustering methods on mainly AD datasets. To our
knowledge, these are the only existing studies on clustering AD
datasets. The distribution of these articles over time is presented
in Figure 1.

Across all of these studies, there are four clustering algorithms
used: k-Means, k-Means-Mode, multi-layer clustering, and

hierarchical agglomerative clustering (see above sections for
description of these clustering algorithms). As Figure 2 shows,
hierarchical agglomerative was the most commonly used method
throughout the reviewed papers, followed by k-Means andmulti-
layer clustering and finally k-Means-Mode.

The reviewed studies vary across various dimensions
including the clustering algorithm used, the dataset used,
variables included in the dataset, and groups included in the
datasets (i.e., AD, controls, MCI). Some of the studies have
highlighted differences among males and females with AD
(Gamberger et al., 2016a,b). Noting that AD is more common
in females than in males (Viña and Lloret, 2010; Mazure and
Swendsen, 2016), it is possible that there are gender-specific
factors underlying the progression of AD in females. The
Gamberger et al. studies have highlighted several neural changes
between females and males with AD, suggesting that these
neural changes may be the underlying reason behind AD
being more common in females than in males. Some clustering
analyses have shown that AD is not a homogeneous disorder
and there are subtypes of AD patients. For example, Noh
et al. (2014) have shown that there are three clusters of AD
patients that differ in their neural damage. This is important
as it may suggest different treatment for each subgroup of
patients. Similar findings were also reported in Hwang et al.
(2016), thus confirming the existence of subtypes of AD patients.
Unlike other clustering studies, Racine et al. (2015) conducted
clustering analysis on a dataset that includes individuals at
risk for developing AD. The study was able to find several
features that explain why some individuals may convert to AD
while others do not. These features include low CSF Aβ42 and
impaired immediate recall. Cappa et al. (2014) also reported
the existence of several subtypes of AD patients that differ in
memory and visuospatial impairment. Price et al. (2015) found
that there were three groups of AD patients that are characterized
by memory, executive dysfunction, or multiple impairments.
Similarly, Tosto et al. (2016) found that there are three clusters
of AD patients that vary in their extrapyramidal symptoms.
According to Armstrong and Wood (1994), AD patients can be
subdivided into several groups based on the distribution of senile
plaques and neurofibrillary tangles in their brains. McCurry
et al. (1999) also reported that there are subtypes of AD patients
depending on their sleep disturbances. One problem with the
abovementioned studies is that they subtyped AD patients
based on very different features varying from neural, cognitive,
and clinical variables. Accordingly, it is thus unclear what the
subtypes of AD patients are, given the different features reported
in every study.

Further, to our knowledge, there were only three studies
that have used an MCI population in the clustering analysis
(Escudero et al., 2011; Gamberger et al., 2016a,b). Gamberger
et al. (2017) found that converting to dementia in individuals
with MCI is related to worse baseline cognitive dysfunction
as well as having smaller brain volumes. In another study,
Gamberger et al. (2016a) found that few individuals with EMCI
and some with LMCI were assigned to the same cluster as
most AD patients. While the authors did not explain these
results, it is possible that these MCI individuals may be at risk
of developing AD, and thus were assigned to the AD cluster.
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FIGURE 1 | A summary of the number of articles and their corresponding year of publication.

FIGURE 2 | The frequency of usage of clustering algorithms on Alzheimer’s disease data.

Escudero et al. (2011) evaluated several analytic approaches for
determining which MCI individuals are likely to convert to AD.
They found that by using a large dataset that includes clinical tests
and biomarkers in the clustering algorithms, greater accuracy
is achieved compared to using smaller numbers of variables
in isolation.

Further, to our knowledge, none of the existing studies on
clustering analysis have used a dataset that includes early-stage vs.
late-stage AD patients. Several experimental studies have shown
that these two groups differ profoundly in terms of clinical,
cognitive, and neural damage (Kauer-Sant’Anna et al., 2009). Like
MCI conversion to AD, clustering analysis can point to several
features that underlie the conversion from early-stage AD to
advanced AD.

Importantly, while some other medical studies have used
semi-clustering algorithms, to our knowledge, there are no
studies on using semi-clustering algorithms in AD. While

traditional clustering algorithms (as described in this article)
work on datasets in which there is no outcome (target) variable
nor is anything known about the relationship between the
observations (i.e., unlabeled data), semi-clustering enhances
clustering by using additional information as constraints
in the clustering process. This is helpful in identifying
clusters that are linked to a particular target variable. Such
additional information is often existent in the dataset or
provided by neurologists/clinicians to guide the clustering
process. Future work should apply semi-clustering methods
on AD.

FUTURE RESEARCH

As mentioned above, only three studies have used an MCI
population in the clustering analysis (Escudero et al., 2011;
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Gamberger et al., 2016a,b). Future research should use more
than three populations: healthy controls, individuals with MCI,
and AD patients. For example, none of the clustering used
subpopulations with MCI, such as amnestic vs. non-amnestic
MCI. Such populations are increasingly being studied in the
literature, as patients with amnestic MCI are more likely to
develop AD than patients with non-amnestic MCI (Mauri et al.,
2012; Monacelli et al., 2015).

Another type of clustering is known as fuzzy clustering, in
which the classification function causes the class members to
become a relative one and an object can belong to several classes
at the same time but with different degrees (Ahmadi et al., 2018).
Fuzzy clustering has many applications to health sciences, as
some individuals may or may not be diagnosed with a certain
disorder, depending on different conditions. This is quite relevant
to AD. Fuzzy clustering can help us understand the nature of
MCI, as some of these individuals may convert to AD, but others
may stay healthy.

Further, to our knowledge, different kinds of clustering
methods, such as latent profile analysis, were rarely applied to
AD datasets. These algorithms do not use a distance function,
but instead attempt to produce normally distributed clusters.

The latent profile analysis has been applied to several disorders
with some success. In one study, Aldridge and Roesch (2008)
used latent profile analysis to classify subgroups of adolescents
and examine rates of depression and anxiety in these different
groups. They observed three clusters of adolescents who vary
greatly in their depressive and anxiety symptoms. As another
example, Mitchell et al. (2007) used latent profile analysis to
subgroup individuals with eating disorders. The analysis revealed
five subtypes that have very different profiles. Future research
should use latent profile analysis clustering methods to better
understand the nature of MCI and their conversion to AD.
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Emotion recognition using electroencephalogram (EEG) signals has attracted significant

research attention. However, it is difficult to improve the emotional recognition effect

across subjects. In response to this difficulty, in this study, multiple features were

extracted for the formation of high-dimensional features. Based on the high-dimensional

features, an effective method for cross-subject emotion recognition was then developed,

which integrated the significance test/sequential backward selection and the support

vector machine (ST-SBSSVM). The effectiveness of the ST-SBSSVM was validated on a

dataset for emotion analysis using physiological signals (DEAP) and the SJTU Emotion

EEG Dataset (SEED). With respect to high-dimensional features, the ST-SBSSVM

average improved the accuracy of cross-subject emotion recognition by 12.4% on the

DEAP and 26.5% on the SEED when compared with common emotion recognition

methods. The recognition accuracy obtained using ST-SBSSVM was as high as that

obtained using sequential backward selection (SBS) on the DEAP dataset. However,

on the SEED dataset, the recognition accuracy increased by ∼6% using ST-SBSSVM

from that using the SBS. Using the ST-SBSSVM, ∼97% (DEAP) and 91% (SEED) of the

program runtime was eliminated when compared with the SBS. Compared with recent

similar works, the method developed in this study for emotion recognition across all

subjects was found to be effective, and its accuracy was 72% (DEAP) and 89% (SEED).

Keywords: EEG, emotion recognition, cross-subject, multi-method fusion, high-dimensional features

1. INTRODUCTION

Emotion is essential to humans, as it contributes to the communication between people and plays
a significant role in rational and intelligent behavior (Picard et al., 2001; Nie et al., 2011), which
is critical to several aspects of daily life. Therefore, research on emotion recognition is necessary.
It is difficult to define and classify emotion due to the complex nature and genesis of emotion
(Ashforth and Humphrey, 1995; Horlings et al., 2008; Hwang et al., 2018). To classify and represent
emotion, several models have been proposed. Moreover, there are two main models. The first
assumes that all emotions can comprise primary emotions, similar to how all colors can comprise
primary colors. Plutchik (1962) related eight basic emotions to evolutionarily valuable properties,
and then reported the following primary emotions: anger, fear, sadness, disgust, surprise, curiosity,
acceptance, and joy. Ekman (Power and Dalgleish, 1999; Horlings et al., 2008) reported other
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emotions as a basis set and found that these primary emotions,
in addition to their expressions, are universal. The Ekman
list of primary emotions is as follows: anger, fear, sadness,
happiness, disgust, and surprise. The second main model is
composed of multiple dimensions, and each emotion is on a
multi-dimensional scale. Russell (1980) divided human emotions
into two dimensions: arousal and valence. Arousal represents the
strength of the emotion with respect to arousal and relaxation
and valence represents positive and negative levels. Among
several emotional models, the Russell model (Russell, 1980) is
generally adopted, in which two dimensions are represented
by a vertical arousal axis and horizontal valence axis (Choi
and Kim, 2018). In both dimensions of emotion, the ability to
measure valence levels is essential, as the valence level is a more
critical dimension for distinguishing between positive emotions
(e.g., excitement, happiness, contentment, or satisfaction) and
negative emotions (e.g., fear, anger, frustration, mental stress,
or depression; Hwang et al., 2018). It is necessary to effectively
classify and identify positive and negative emotions. For example,
the accurate identification of the mental stress (a negative
emotion) or emotional state of construction workers can help
reduce construction hazards and improve production efficiency
(Chen and Lin, 2016; Jebelli et al., 2018a). The focus of this
study was on improving the classification accuracy of positive
and negative emotions. In daily human life, communication and
decision-making are influenced by emotional behavior. Formany
years, the brain-computer interface (BCI) has been a critical
topic with respect to biomedical engineering research, allowing
for the use of brain waves to control equipment (Nijboer et al.,
2009). To achieve accurate and smooth interactions, computers
and robots should be able to analyze emotions (Pessoa and
Adolphs, 2010; Zheng et al., 2019). Researchers in the fields of
psychology, biology, and neuroscience have directed significant
attention toward emotional research. Emotional research has a
preliminary development trend in the field of computer science,
such as task workload assessments and operator vigilance (Shi
and Lu, 2013; Zheng and Lu, 2017b). The automatic emotion
recognition system simplifies the computer interface and renders
it more convenient, more efficient, and more user-friendly.
Human emotion recognition can be studied using questionnaires
(Mucci et al., 2015; Jebelli et al., 2019), facial images, gestures,
speech signals and other physiological signals (Jerritta et al.,
2011). However, the questionnaire method interfered with this
study. In addition, it exhibited a significant deviation and yielded
inconsistent results (Jebelli et al., 2019). There was an ambiguity
with respect to emotion recognition from facial images, gestures,
or speech signals, as real emotions can be mimicked. To
overcome the ambiguity, an electroencephalogram (EEG) could
be employed for emotion recognition, as it is more accurate
and more objective than emotional evaluation based on facial
image and gesture-based methods (Ahern and Schwartz, 1985).
Therefore, EEG has attracted significant research attention.
Moreover, EEG signals can be used to effectively identify different
emotions (Sammler et al., 2007; Mathersul et al., 2008; Knyazev
et al., 2010; Bajaj and Pachori, 2014). For effective medical
care, it is essential to consider emotional states (Doukas and
Maglogiannis, 2008; Petrantonakis and Hadjileontiadis, 2011).

Due to the objectivity of physiological data and the ability
to model learning principles from heterogeneous features to
emotional classifiers, the use of machine learningmethods for the
analysis of EEG signals has attracted significant attention in the
field of human emotion recognition. To improve the satisfaction
and reliability of the people who interact and collaborate with
machines and robots, a smart human-machine (HM) system
that can accurately interpret human communication capabilities
is required (Koelstra et al., 2011). Human intentions and
commands mostly convey emotions in a linguistic or non-
verbal manner; thus, the accurate response to human emotional
behavior is critical to the realization of machine and computer
adaptation (Zeng et al., 2008; Fanelli et al., 2010). At this stage, the
majority of HM systems cannot accurately recognize emotional
cues. Emotional classifiers were developed based on facial/sound
expressions or physiological signals (Hanjalic and Xu, 2005;
Kim and André, 2008). Emotion classifiers can provide temporal
predictions of specific emotional states. Emotional recognition
requires appropriate signal preprocessing techniques, feature
extraction, and machine learning-based classifiers to carry out
automatic classification. An EEG, which captures brain waves,
can effectively distinguish between emotions. The EEG directly
detects brain waves from the central nervous system activities
(i.e., brain activities), whereas other responses (e.g., EDA, HR,
and BVP) are based on peripheral nervous system activities
(Zhai et al., 2005; Chanel et al., 2011; Hwang et al., 2018).
In particular, central nervous system activities are related to
several aspects of emotions (e.g., from displeasure to pleasure,
and from relaxation to excitement); however, the peripheral
nervous system activities are only associated with arousal and
relaxation (Zhai et al., 2005; Chanel et al., 2011). Therefore,
the EEG can provide more detailed information on emotional
states than other methods (Takahashi et al., 2004; Lee and Hsieh,
2014; Liu and Sourina, 2014; Hou et al., 2015). Moreover, EEG-
based emotion recognition has a greater potential with respect
to research than facial and speech-based methods, given that
internal nerve fluctuations cannot be deliberately masked or
controlled. However, the improvement of the performance of
cross-subject emotional recognition has been the focus of several
studies, including this study. In previous studies, cross-subject
emotion recognition was difficult to achieve when compared
with intra-subject emotion recognition. In Kim (2007), the
method of bimodal data fusion was investigated, and a linear
discriminant analysis (LDA) was conducted to classify emotions.
The best recognition accuracy across the three subjects was 55%,
which was significantly lower than the 92% achieved using the
intra-subject emotion recognition method (Kim, 2007). In Zhu
et al. (2015), the authors employed differential entropy (DE) as
features, and a linear dynamic system (LDS) was applied to carry
out feature smoothing. The average cross-subject classification
accuracy was 64.82%, which was significantly lower than the
90.97% of the intra-subject emotion recognition method (Zhu
et al., 2015). In Zhuang et al. (2017), a method for feature
extraction and emotion recognition based on empirical mode
decomposition (EMD) was introduced. Using EMD, the EEG
signals were automatically decomposed into intrinsic mode
functions (IMFs). Based on the results, IMF1 demonstrated
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FIGURE 1 | Analysis process.

the best performance, which was 70.41% for valence (Zhuang
et al., 2017). In Candra et al. (2015), an accuracy of 65% was
achieved for valence and arousal using the wavelet entropy
of signal segments with periods of 3–12 s. In Mert and Akan
(2018), the advanced properties of EMD and its multivariate
extension (MEMD) for emotion recognition were investigated.
The multichannel IMFs extracted byMEMDwere analyzed using
various time- and frequency-domain parameters such as the
power ratio, power spectral density, and entropy. Moreover,
Hjorth parameters and correlation were employed as features
of the valence and arousal scales of the participants. The
proposed method yielded an accuracy of 72.87% for high/low
valences (Mert and Akan, 2018). In Zheng and Lu (2017a),
deep belief networks (DBNs) were trained using differential
entropy features extracted from multichannel EEG data, and
the average accuracy was 86.08%. In Yin et al. (2017), cross-
subject EEG feature selection for emotion recognition was
carried out using transfer recursive feature elimination. The
classification accuracy was 78.75% in the valence dimension,
which was higher than those reported in several studies that
used the same database. However, from the calculation times
of all the classifiers, it was found that the accuracy of the t-
test/recursive feature extraction (T-RFE) increased at the expense
of the training time. In Li et al. (2018), 18 linear and non-
linear EEG features were extracted. In addition, the support
vector machine (SVM) method and the leave-one-subject-out
verification strategy were used to evaluate the recognition
performance. With the automatic feature selection method, the
recognition accuracy rate using the dataset for emotion analysis
using physiological signals (DEAP) was a maximum of 59.06%,
and the recognition accuracy using the SEED dataset was a
maximum of 83.33% (Li et al., 2018). In Gupta et al. (2018), the
aim of the study was to comprehensively investigate the channel
specificity of EEG signals and provide an effective emotion
recognition method based on the flexible analytic wavelet
transform (FAWT). The average classification accuracy obtained
using this method was 90.48% for positive/neutral/negative
(SEED) emotion classification, and 79.99% for high valence
(HV)/low valence (LV) emotion classification using EEG
signals (Gupta et al., 2018). In Li et al. (2019), the accuracy
of multisource supervised STM (MS-S-STM) for emotion

recognition accuracy was 88.92%, and the multisource semi-
supervised selective transfer machine (STM) (MS-semi-STM)
experimental data was used in a transmissive manner, with
a maximum accuracy of 91.31%. The methods of emotion
recognition across subjects, as employed in the previous studies,
require improvements. A method for improving the accuracy
of emotion classification is therefore necessary, which requires
only a small computational load when applied to the analysis
of high-dimensional features. In this study, multiple types of
features were extracted. In addition, a two-category emotion
recognition method across subjects is proposed. In particular, 10
types of linear and non-linear EEG features were first extracted,
and then combined into high-dimensional features. With respect
to high-dimensional features, a method for improving the
emotion recognition performance across subjects based on high-
dimensional features was proposed. Moreover, the significant
test/sequential backward selection/support vector machine (ST-
SBSSVM) fusion method was proposed and then used to identify
and classify the high-dimensional EEG features of the cross-
subject emotions.

2. MATERIALS AND METHODS

Figure 1 presents the analysis process in this study. First, 10
types of high-dimensional features were extracted from both
the DEAP and SEED. The features were then combined into
high-dimensional features, as follows:

DEAP, 1280(trials, rows)× 320(features, cols) (1)

SEED, 450(trials, rows)× 620(features, cols) (2)

For further details, refer to section 2.2. Furthermore, the
proposed method (ST-SBSSVM) was used to analyze the
high-dimensional features and output the classification and
recognition accuracy of positive and negative emotions.

2.1. DEAP Dataset and SEED Dataset
Two publicly accessible datasets were employed for the
analysis, namely, the DEAP and SEED. The DEAP dataset
(Koelstra et al., 2011) consisted of 32 subjects. Each subject was
exposed to 40 1-min long music videos as emotional stimuli
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TABLE 1 | Structure of the DEAP dataset.

Array

name

Array shape Array contents

Data 40× 40× 8, 064 (Videos/trials)×channels×data (128 Hz×63 s)

Labels 40× 4 (videos/trials)×

labels (Valence, arousal,dominance, liking)

TABLE 2 | Structure of the SEED dataset.

Array

name

Array shape Array contents

Data 3× 15× 62× 48, 000 (Experiments)× (Videos/trials)× channels

× data (200 Hz × 240 s)

Labels 3× 15× 3 (Experiments)× (videos/trials)× labels

(positive, neutral, negative)

while their physiological signals were recorded. The resulting
dataset includes 32 channels of EEG signals, four-channel
electrooculography (EOG), four-channel electromyography
(EMG), respiration, plethysmography, galvanic skin response
and body temperature. Each subject underwent 40 EEG trials,
each of which corresponded to an emotion triggered by a music
video. After watching each video, the participants were asked
to score their real emotions on a five-level scale: (1) valence
(related to the level of pleasure), (2) arousal (related to the
level of excitement), (3) dominance (related to control), (4)
like (related to preference), and (5) familiarity (related to the
awareness of stimuli). The score ranged from 1 (weakest) to 9
(strongest), with the exception of familiarity, which ranged from
1 to 5. The EEG signal was recorded using Biosemi ActiveTwo
devices at a sampling frequency of 512 Hz and down-sampling
frequency of 128 Hz. The data structure of DEAP is shown
in Table 1. The SEED (Zheng and Lu, 2017a) consisted of
15 subjects. Movie clips were selected to induce (1) positive
emotions, (2) neutral emotions, and (3) negative emotions; each
of which were distributed over five segments of each movie. All
subjects underwent three EEG recordings, with two consecutive
recordings conducted at a two-week interval. At each stage, each
subject was exposed to 15 movie clips, each of which was ∼4
min long, to induce specific emotions. The same 15-segment
movie clip was used in all three recording sessions. The resulting
data contained 15 EEG trials. Each subject underwent 15 trials
with 5 trials per emotion. The EEG signals were recorded using
a 62-channel NeuroScan electric source imaging (ESI) device at
a sampling rate of 1,000 Hz and down-sampling rate of 200 Hz.
The data structure of SEED is shown in Table 2 (the duration
of the SEED videos varied: each video was about 4 min = 240 s;
thus, the data were about 200Hz× 240s = 48, 000). In this study,
only experiments with positive emotions and negative emotions
were carried out to evaluate the ability of the proposed method
to distinguish between these two emotions. For consistency with
the DEAP, 1 min of data extracted at the middle of each trial was
employed using the SEED.

TABLE 3 | Ten-type EEG features.

Feature type Extracted features

The linear features 1. Hjorth activity 2. Hjorth mobility 3. Hjorth complexity

4. The standard

deviation

5. PSD-Alpha 6. PSD-Beta

7. PSD-Gamma 8. PSD-Theta

The non-linear

features

9. Sample entropy 10. Wavelet entropy

2.2. Data Processing
2.2.1. Data Preprocessing
The EEG signal considered in this study was a neurophysiological
signal with a high dimensionality, redundancy, and noise.
After the EEG data were collected, the original data were pre-
processed, i.e., the removal of EOG, EMG artifacts, and down-
sampling; to reduce the computational overhead of feature
extraction. For the DEAP, the default pre-processing technique
was as follows: (1) the data was down-sampled to 128 Hz; (2)
the EOG artifacts were removed, as achieved in Koelstra et al.
(2011); (3) a bandpass filter with a throughput frequency range
of 4.0–45.0 Hz was applied; (4) the data were averaged to the
common reference; and (5) the data were segmented into 60-
s trials and a 3-second pre-trial baseline. For the SEED, the
default preprocessing technique was applied as follows: (1) the
data was down-sampled to 200 Hz; (2) a bandpass filter with a
throughput frequency range of 0–75 Hz was applied; and (3) the
EEG segments corresponding to the duration of each movie were
extracted. Prior to the extraction of the power spectral density
(PSD) features, four rhythms were extracted, namely, theta (3–7
Hz), alpha (8–13 Hz), beta (14–29 Hz), and gamma (30–47 Hz)
(Koelstra et al., 2011). Other features were extracted on the data
preprocessed by the dataset.

2.2.2. Label Processing
For label processing using the DEAP, the subjects were divided
into two categories according to the corresponding scores of the
subjects with respect to valence. A score higher than 5 was set
as 1, which represented positive emotions; and a score below
5 was set as 1, which represented negative emotions. In the
SEED, the trials were divided into positive emotions, neutral
emotions, and negative emotions. However, for consistency with
the DEAP, only positive and negative emotion samples were
investigated using the SEED. Moreover, binary classification
tasks were employed to carry out emotional recognition across
the subjects.

2.3. Feature Extraction
Ten types of linear and non-linear features were extracted,
as shown in Table 3. Several features [Hjorth activity, Hjorth
mobility, Hjorth complexity, standard deviation, sample entropy
(SampEn), and wavelet entropy (WE)] were directly extracted
from the dataset pre-processed EEG signals. The extraction
processes of the remaining features (the four PSD frequency
domain features) were divided into two steps. First, four types
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FIGURE 2 | DEAP data analysis and feature extraction process.

of rhythms were extracted from the EEG signals pre-processed
using the dataset, and the PSD features were then extracted from
the four rhythms. The detailed analysis of the data and feature
extraction is shown in Figures 2, 3.

2.3.1. The Linear Feature
Hjorth parameters were indicators of statistical properties used
in signal processing in the time domain, as introduced by
Hjorth (1970). The parameters are as follows: activity, mobility,
and complexity. They were commonly used in the analysis
of electroencephalography signals for feature extraction. The
parameters are normalized slope descriptors (NSDs) used in
EEGs. The standard deviation feature was the standard value of
the EEG time-series signal. The four PSD Features were extracted
as follows: PSD-alpha was extracted from the alpha rhythm,
PSD-beta was extracted from the beta rhythm, PSD-gamma was
extracted from the gamma rhythm, and PSD-theta was extracted
from the theta rhythm. The power spectrum Sxx(f ) of a time
series x(t) describes the power distribution with respect to the
frequency components that compose that signal (Fanelli et al.,

2010). According to Fourier analysis, any physical signal can be
decomposed into several discrete frequencies, or a spectrum of
frequencies over a continuous range. The statistical average of a
certain signal or signal type (including noise), as analyzed with
respect to its frequency content, is referred to as its spectrum.
When the energy of the signal is concentrated around a finite
time interval, especially if its total energy is finite, the energy
spectral density can be computed. Moreover, the PSD (power
spectrum) is more commonly used, which applies to signals
existing over a sufficiently large time period (especially in relation
to the duration of a measurement) that can be considered as
an infinite time interval. The PSD refers to the spectral energy
distribution per unit time, given that the total energy of such a
signal over an infinite time interval would generally be infinite.
The summation or integration of the spectral components yield
the total power (for a physical process) or variance (in a statistical
process), which correspond to the values that are obtained by
integrating x2(t) over the time domain, as dictated by Parseval’s
theorem (Snowball, 2005). For continuous signals over a quasi-
infinite time interval, such as stationary processes, the PSD)
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FIGURE 3 | SEED data analysis and feature extraction process.

should be defined, which describes the power distribution of a
signal or time-series with respect to frequency.

2.3.2. The Non-linear Feature
The SampEn is a modification of the approximate entropy
(ApEn), and it is used for assessing the complexity of
physiological time-series signals in addition to the diagnosis
of diseased states (Richman and Moorman, 2000). Moreover,
SampEn has two advantages over ApEn, namely, data length
independence and a relatively simple implementation. Similar
to ApEn, SampEn is a measure of complexity (Richman and
Moorman, 2000). The Shannon entropy provides a useful
criterion for the analysis and comparison of probability
distributions, which can act as a measure of the information of
any distribution; namely, the wavelet entropy (WE) (Blanco et al.,
1998). In this study, the total WE was defined as follows:

SWT ≡ SWT(p) =
∑

j<0

pj · In[pj] (3)

TheWE can be used as a measure of the degree of order/disorder
of the signal; thus, it can provide useful information on the
underlying dynamical process associated with the signal.

2.4. ST-SBSSVM
The ST-SBSSVM method is a combination of the significance
test, sequential backward selection, and support vector
machine. In this study, the SVM based on the radial basis
function (RBF) kernel was employed. The detailed fusion
process is shown in Figure 4. Ten types of features from
both public datasets were extracted, and high-dimensional
features [DEAP, 1280(trials, rows) × 320(features, cols); and
SEED, 450(trials, rows) × 620(features, cols)] were formed. If
the sequential backward selection (SBS) method was directly
employed for the analysis of the high-dimensional EEG
features and SVM was used to determine the accuracy of
the emotion classification of each feature combination, the
computational overhead would be significantly large. Therefore,
a method was developed to achieve a higher emotional
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FIGURE 4 | Processes of ST-SBSSVM method: (A) generation of column features of positive and negative halves along with the division of trials (rows), and (B) the

ST-SBSSVM analysis of all column features.

recognition accuracy across the subjects than the SBS, namely
the ST-SBSSVM. Moreover, the proposed method requires a
significantly lower computational overhead for the analysis of
high-dimensional EEG features. As shown in step 1 of Figure 4,
each trial (row) of 1280(trials, rows) × 320(features, cols)
and 450(trials, rows) × 620(features, cols) was in one-to-one
correspondence with the positive and negative emotion labels. In
step 2, according to the labels, all the trials (rows) were divided
into two parts. The objective was to simultaneously divide
each column feature into two parts. In step 3, the significance
test was carried out from the first column feature to the final
column feature for the column features that were divided into
two positive and negative parts (the last column of the DEAP
feature was the 320th column, and the last column of the SEED

feature was the 620th column). It was then determined whether
the majority of EEG column features, which were divided, were
in accordance with the normal distribution. If the majority of
EEGs were subject to the normal distribution, the student’s t-test
(T-test) was used for the divided column features; otherwise, the
Kolmogorov–Smirnov (KS) test was used. The corresponding
column features of the positive and negative significant difference
(h = 1) were then selected. In step 4, after the significance test, the
high-dimensional feature set was simplified, and the following
was obtained:

M1 = 1280(trials, rows)× 68(features, cols) (4)

M2 = 450(trials, rows)× 227(features, cols) (5)
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FIGURE 5 | Accuracy results of valence classification using DEAP and SEED.

TABLE 4 | Comparison of Valence classification accuracy between ST-SBSSVM

and common methods.

Difference from Difference from

ST-SBSSVM

accuracy (DEAP)

ST-SBSSVM

accuracy (SEED)

SVM +17% +39%

PCA-SVM +17% +39%

SBS –0.42% +6%

KNN +10% +28%

PCA-KNN +11% +31%

RF +20% +16%

The average difference

from ST-SBSSVM accuracy +12.4% +26.5%

In step 5, M1 and M2 were inputted into the SVM-based
SBS program. Sequential backward selection is a process that
decreases the number of features, in which a feature is repeatedly
eliminated until a final feature is remaining. In this manner,
all the feature combinations were separately classified by the
SVM. The data was normalized prior to the use of SVM
modeling for emotion classification recognition, which helped to
improve the convergence rate and accuracy of the model. In the
SVM-based SBS program, a “leave-one-subject-out” verification
strategy was employed. During each process, the data of one
subject was considered as the test set, and the data of the
other subjects were considered as the training set. The feature
selection was carried out on the training set, and the performance
was then evaluated on the test set. This procedure was iterated
until the data of each subject had been tested. Moreover,
this strategy can eliminate the risk of “overfitting”. In step 6,
the average classification accuracy of the employed “leave-one-
subject-out” verification strategy and SVM-based SBS program
was outputted.

FIGURE 6 | Comparison of runtime between ST-SBSSVM and SBS methods.

3. RESULTS

Figure 5 and Table 4 present a comparison between the
valence classification recognition results of the ST-SBSSVM
and those of common methods using the DEAP and SEED.
For the consistency of the analysis of the two datasets,
only cross-subject emotional recognition was carried out for
the valence classification. The ST-SBSSVM method is an
improvement of the SBS method; thus, the two methods were
compared. Figure 5 and Table 4 present a comparison of the
recognition accuracies of the two emotions. Therefore, Figure 6
presents a runtime comparison between the ST-SBSSVM and
corresponding SBS program (using the corresponding method
for emotion recognition on the same computer “DELL, intel(R)
Core (TM) i5-4590 CPU @ 3.30 GHz, RAM-8.00 GB”). As
shown in Figure 5 and Table 4, with respect to high-dimensional
features, the accuracy of the ST-SBSSVM was improved by 12.4%
(DEAP) and 26.5% (SEED) when compared with the common
emotion recognition methods. From Table 4, it can be seen
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FIGURE 7 | Comparison between valence classification accuracies of similar studies.

that with respect to high-dimensional features, the cross-subject
emotion recognition accuracy of the ST-SBSSVM decreased by
0.42% (almost unchanged) using the DEAP, and it improved
by 6% using the SEED. Figure 6 shows that the ST-SBSSVM
decreased the program runtime by∼97 and 91% when compared
with the SBS method.

4. DISCUSSIONS

In this paper, a method that can effectively promote emotion
recognition is proposed, namely, the ST-SBSSVM method. The
proposed method was used to effectively analyze the high-
dimensional EEG features extracted from the DEAP and SEED.
The results of this study confirmed that the ST-SBSSVM
method offers two advantages. First, the ST-SBSSVM can classify
and identify emotions, with an improved emotion recognition
accuracy. Because ST-SBSSVM performed the Significant Test
by comparing the same column feature that had significant
difference between positive and negative trials, a “leave-one-
subject-out” verification strategy and SVM-based SBS program
were then employed to carry out feature selection for those
features with significant differences, and the best emotion
classification accuracy was obtained. Second, the ST-SBSSVM
and SBSmethods exhibited similar emotion recognition results to
those of the common emotion classification methods. Moreover,
when using ST-SBSSVM and SBS to analyze high-dimensional
features, ST-SBSSVM decreased the program runtime by ∼90%
when compared with SBS. The limitations of this study were as
follows. The features extracted were relatively common, and these
features were not the new features that significantly promoted
emotion recognition in the most recent studies. In future work,
the new features combined with ST- SBSSVM will be employed
to investigate emotion recognition among subjects. In recent
years, several EEG devices and data technologies were developed,
such as using wearable EEG devices, for the collection of data
in actual working environments (Jebelli et al., 2017b, 2018b;

Chen et al., 2018). High quality brainwaves can then be extracted
from the data collected by wearable EEG devices (Jebelli et al.,
2017a). A stress recognition framework was proposed, which
can effectively process and analyze EEG data collected from
wearable EEG devices in real work environments (Jebelli et al.,
2018c). These new developments comprise the scope of future
research. Similar works are as follows. In (Ahmad et al., 2016),
the empirical results revealed that the proposed genetic algorithm
(GA) and least squares support vector machine (LS-SVM) (GA-
LSSVM) increased the classification accuracy to 49.22% for
valence using the DEAP. In Zheng and Lu (2017a), DBNs
were trained using differential entropy features extracted from
multichannel EEG data. As shown in Figure 7, the proposed
method demonstrated a good performance and its accuracy was
similar to those of achieved in similar studies with respect to
the emotion classification recognition of the cross subjects using
the same datasets. In summary, when compared with the most
recent studies, this method developed in this study was found to
be effective for emotional recognition across subjects.

5. CONCLUSIONS

For emotion recognition, a method is proposed in this paper that
can significantly enhance the two-category emotion recognition
effect; with a small computational overhead when using the
corresponding program to analyze high-dimensional features. In
this study, 10 types of EEG features were extracted to form high-
dimensional features, and the proposed ST-SBSSVM method
was employed, which can rapidly analyze high-dimensional
features and effectively improve the accuracy of cross-subject
emotion recognition, namely the ST-SBSSVM. The results
of this work revealed that ST-SBSSVM demonstrates better
accuracy with respect to emotion recognition than common
classification methods. Compared with the SBS method, the ST-
SBSSVM exhibited a higher accuracy of emotion recognition
and significantly decreased the program runtime. In comparison
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to recent similar methods, the method proposed in this
study is effective for emotional recognition across subjects. In
summary, the proposed method can effectively promote the
emotional recognition across subjects. This method can therefore
contribute to the research of health therapy and intelligent
human-computer interactions.
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Increased beta-band oscillatory activity in the basal ganglia network is associated with

Parkinsonian motor symptoms and is suppressed with medication and deep brain

stimulation (DBS). The origins of the beta-band oscillations, however, remains unclear

with both intrinsic oscillations arising within the subthalamic nucleus (STN)—external

globus pallidus (GPe) network and exogenous beta-activity, originating outside the

network, proposed as potential sources of the pathological activity. The aim of this

study was to explore the relative contribution of autonomous oscillations and exogenous

oscillatory inputs in the generation of pathological oscillatory activity in a biophysically

detailed model of the parkinsonian STN-GPe network. The network model accounts for

the integration of synaptic currents and their interaction with intrinsic membrane currents

in dendritic structures within the STN and GPe. The model was used to investigate

the development of beta-band synchrony and bursting within the STN-GPe network

by changing the balance of excitation and inhibition in both nuclei, and by adding

exogenous oscillatory inputs with varying phase relationships through the hyperdirect

cortico-subthalamic and indirect striato-pallidal pathways. The model showed an

intrinsic susceptibility to beta-band oscillations that was manifest in weak autonomously

generated oscillations within the STN-GPe network and in selective amplification

of exogenous beta-band synaptic inputs near the network’s endogenous oscillation

frequency. The frequency at which this resonance peak occurred was determined by

the net level of excitatory drive to the network. Intrinsic or endogenously generated

oscillations were too weak to support a pacemaker role for the STN-GPe network,

however, they were considerably amplified by sparse cortical beta inputs and were

further amplified by striatal beta inputs that promoted anti-phase firing of the cortex and

GPe, resulting in maximum transient inhibition of STN neurons. The model elucidates a

mechanism of cortical patterning of the STN-GPe network through feedback inhibition

whereby intrinsic susceptibility to beta-band oscillations can lead to phase locked

spiking under parkinsonian conditions. These results point to resonance of endogenous

oscillations with exogenous patterning of the STN-GPe network as a mechanism of

pathological synchronization, and a role for the pallido-striatal feedback loop in amplifying

beta oscillations.

Keywords: basal ganglia, subthalamic nucleus, Parkinson’s disease, beta-band oscillations, synchronization,

globus pallidus, multi-compartmental neuron model
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INTRODUCTION

Pathological oscillations in the basal ganglia-thalamocortical
(BGTC) network have long been implicated in the motor
symptoms of Parkinson’s disease. Beta-band (13–30 Hz)
oscillations are consistently strengthened with dopamine
depletion both in individuals with Parkinson’s disease (PD)
and parkinsonian animal models (Sharott et al., 2005; Kuhn
et al., 2008; Mallet et al., 2008b), and are reduced by deep
brain stimulation (DBS) and pharmacological interventions
that alleviate parkinsonian motor symptoms (Kühn et al.,
2006; Weinberger et al., 2006; Ray et al., 2008; Eusebio et al.,
2011). The magnitude of subthalamic nucleus local field
potential beta oscillations is also correlated with the severity
and degree of improvement of bradykinetic/akinetic motor
symptoms and rigidity (Kühn et al., 2006; Bronte-Stewart et al.,
2009). Although beta-band oscillations may not be causal to
bradykinetic/akinetic symptoms (Leblois et al., 2007), they
offer potential as a biomarker for symptom severity and the
underlying network pathophysiology in advanced Parkinson’s
Disease. The origin of beta-band oscillations in the BGTC
network, however, remains unclear. The most prominent
hypotheses emphasize the importance of dopamine-modulated
strengthening of particular feedback loops within the BGTC
network. Computational models have provided a valuable
tool with which to explore various hypotheses regarding the
mechanisms by which oscillatory activity with the network is
generated. Different models have placed the origin of beta and
sub-beta band oscillations in the STN-GPe network (Terman
et al., 2002; Gillies and Willshaw, 2007; Holgado et al., 2010;
Pavlides et al., 2012), in cortical and thalamo-cortical circuits
(Pavlides et al., 2015; Sherman et al., 2016; Liu et al., 2017; Reis
et al., 2019), in striatal or pallidostriatal circuits (McCarthy et al.,
2011; Corbit et al., 2016), or in the full BGTC loop (Leblois,
2006; Kang and Lowery, 2013; Pavlides et al., 2015; Kumaravelu
et al., 2016). These models show that under many conditions the
network is prone to oscillate, through intrinsic pacemaking or
susceptibility to an extrinsic rhythm.

The reciprocally connected subthalamo-pallidal (STN-GPe)
network is a key site in the basal ganglia in which beta-band
oscillations are manifest in Parkinson’s disease (Mallet et al.,
2008a,b). This network was an early focus of modeling studies
due to its reciprocally connected structure and ability to generate
low frequency oscillations in tissue cultures (Plenz and Kital,
1999). Models of the STN-GPe as a pacemaker initially focused
on the generation of low frequency oscillations within the
frequency range of parkinsonian tremor (Gillies et al., 2002;
Terman et al., 2002), with focus shifting to the beta-band
with increasing evidence of a link between beta activity and
parkinsonian motor symptoms (Holgado et al., 2010; Pavlides
et al., 2012).

More recent experimental evidence suggests that, rather

than the STN-GPe network operating in a pacemaking mode,

patterning by cortex may play a critical role in the generation

of pathological beta-band oscillations in Parkinson’s disease.
This is supported by observations of high functional coupling
between cortex and STN (Magill et al., 2004; Sharott et al.,

2005; Mallet et al., 2008a; Litvak et al., 2011; Moran et al.,
2011), and that oscillatory activity in STN-GPe is contingent
on inputs from the cortex and can be abolished by disrupting
them (Magill et al., 2001; Drouot et al., 2004; Tachibana et al.,
2011). Cortical patterning of the STN-GPe network by means
of feedback inhibition provides a proposed mechanism for this
functional coupling (Baufreton et al., 2005; Bevan et al., 2006;
Mallet et al., 2008a, 2012; Tachibana et al., 2011). According to
this hypothesis, weak oscillatory activity arriving via cortico-STN
afferents is amplified in the STN-GPe network when feedback
inhibition from the GPe is offset in phase with cortical excitation.
While such feedback-mediated oscillations have been observed in
vivo (Paz, 2005) and in slices (Baufreton et al., 2005), the ability of
the network to generate autonomous oscillations and its resonant
response properties are still poorly understood. Specifically, it
is not clear whether the STN-GPe network plays an active part
in generating beta-band oscillations, nor whether it amplifies or
merely sustains them. Neither is it fully understood how beta-
band oscillations relate to other pathological patterns of neural
activity in the subthalamic nucleus (STN) and external globus
pallidus (GPe) that correlate more strongly with parkinsonian
motor symptoms, notably increased neural bursting (Sanders
et al., 2013; Sharott et al., 2014). It is clear, however, that
interventions in the loop and its afferents that reduce beta-
band oscillations (Tachibana et al., 2011) or bursting (Gradinaru
et al., 2009; Pan et al., 2016; Sanders and Jaeger, 2016) lead to
improvements in motor symptoms. Similarly, the STN (Benabid
et al., 2009) and GPe, in non-human primates (Vitek et al., 2012),
are effective targets for DBS.

Previous modeling studies have focused on alterations in
connection patterns and strength within or between nuclei,
typically represented by mean-field or single-compartment
spiking neuron models. While such models are computationally
efficient, theymay not fully capture the role of intrinsic properties
of neurons in shaping pathological activity patterns. Although
cell-specific ion channels can be used, single-compartment
neuron models lump together ion channels and synapses in one
isopotential compartment in a way that may not capture the
complex dynamics that arise when non-uniformly distributed
ion channels (Gillies and Willshaw, 2005) interact with synapses
associated with distinct subcellular regions (Bevan et al., 1995;
Galvan et al., 2004; Pan et al., 2016). Hence they may not
fully account for the mechanisms contributing to pathological
activity within the STN and the role that synaptic-ionic
current interactions play in sustaining beta-band oscillations and
excessive burst firing.

It has recently been demonstrated that following dopamine
depletion the balance of excitatory and inhibitory synaptic
currents in STN neurons is shifted toward inhibition (Chu et al.,
2017; Wang et al., 2018), known to promote burst responses
by increasing the availability of Ca2+ and Na+ channels de-
inactivated at hyperpolarized potentials (Baufreton et al., 2005).
In the GPe increased inhibition, caused mainly by strengthening
of striato-pallidal afferents, is also believed to play a role in
generating pathological oscillations as demonstrated in model
simulation (Gillies et al., 2002; Terman et al., 2002; Holgado
et al., 2010; Kumar et al., 2011). Increased GPe inhibition
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has been suggested to cause increased engagement of HCN
channels (Chan, 2004), which are involved in phase resetting and
controlling the regularity of firing. However, whether functional
coupling between BG nuclei is also moderated by the excitation-
inhibition balance is not fully understood.

The aim of this study was, therefore, to examine the relative
contributions of intrinsic, endogenously generated oscillations
and patterning by exogenous oscillatory inputs in the generation
of synchronous beta-band oscillatory activity in a biophysically
detailed model of the parkinsonian STN-GPe network and
the underlying biophysical mechanisms. A second aim was to
understand how pathological oscillations and bursting patterns
are related to the balance of excitation and inhibition in
the STN and GPe. The STN-GPe network was modeled
using biophysically detailed multi-compartmental cell models
of STN and GPe neurons that capture the interaction between
synaptic and intrinsic currents distributed within the dendritic
structure and involved in autonomous pacemaking and bursting
(Gillies and Willshaw, 2005; Gunay et al., 2008). The generation
of oscillations both autonomously within the network and in
response to beta frequency inputs from the cortex (CTX) and
indirect pathway striatal medium spiny neurons (iMSN) was
examined as the balance of excitation and inhibition within the
network was systematically varied, and oscillatory inputs with
varying phase relationships were added. A better understanding
of the relative contribution of these different factors and their
interaction has the potential to improve understanding of the
mechanism of action of existing anti-parkinsonian therapies,
including DBS and to guide the development of more effective
circuit interventions.

METHODS

Model Architecture
The network model of the STN-GPe network consisted of four
populations of neurons (Figure 1): the STN and GPe neurons,
modeled as multi-compartmental conductance-based models,
and their cortical and striatal inputs, modeled as Poisson or
bursting spike generators.

Population sizes were chosen to preserve the decrease in
population sizes and convergence of projections along the
indirect and hyperdirect pathways in the basal ganglia. The
STN and GPe populations consisted of 50 and 100 multi-
compartmental cells, respectively, to approximate the ratio
of 13,000 STN cells to 30,000 GPe prototypic cells (Oorschot
et al., 1999; Abdi et al., 2015) unilaterally in the rat. As a source
of synaptic noise, an additional 10% of the cells in the STN and
GPe populations were modeled as Poisson spike generators firing
at a mean rate equal to the experimentally reported rate for the
modeled state.

The cortical and striatal populations consisted of 1,000 and
2,000 cells, respectively, modeled as spike generators. These
numbers were chosen to have 20 independent pre-synaptic spike
generators per post-synaptic cell to model convergence along the
hyperdirect CTX-STN and indirect iMSN-GPe projection. For
the iMSN-GPe projection, convergence from all medium spiny
neurons (MSN) to GPe, ignoring subpopulations, is 2,800,000

MSN cells to 46,000 GPe cells (Oorschot, 1996) resulting in a
convergence factor of 60. Assuming that convergence is similar
between iMSN and GPe prototypic neurons, our number is an
underestimation by a factor three. Because iMSN cells in our
model spike independently and since the number of synapses per
cell was lower than in reality, this was considered acceptable.

Stochastic connectivity profiles for the connections illustrated
in Figure 1 were generated by randomly selecting a fixed number
of afferents from the pre-synaptic population for each post-
synaptic cell. The ratios of number of afferents from each
source population were determined, where possible, based on
the reported number of synaptic boutons per afferent type and
the number of contacts per axon (Table 1). Each multi-synaptic
contact was represented by a single synapse to reduce the number
of simulated synapses to a more tractable number.

Conductance-Based Models
The membrane potential vj (mV) in each compartment j of a
multi-compartmental cable model is governed by:

cm
δvj

δt
=

d

4Ra

δ2V

δx2
− gm(V − Em)−

∑

Iion,j −
∑

Isyn,j (1)

where x (cm) is the position along the cable, cm (µF/cm2) is
the specific membrane capacitance, d (cm) is the cable diameter,
Ra is the specific axial resistance (�cm), gm (S/cm2) is the
passive membrane conductance, Em (mV) the leakage reversal
potential, Iion,j (mA/cm2) are the ionic currents flowing across
the membrane of compartment j, and Isyn,j (mA/cm2) are the
synaptic currents at synapses placed in the compartment. Each
ionic current is governed by an equation of the form:

Ix = gxm
p
xh

q
x(V − Ex) (2)

where gx is themaximum conductance of the channel (S/cm2), Ex
is the reversal potential (mV), and mx and hx the open fractions
of the activation and inactivation gates. The dynamics of the
activation and inactivation gatesm and h are governed by

dm

dt
=

m∞(v)−m

τm(v)
, (3)

withm∞(v) and τm(v) representing the voltage-dependent steady
state value and time constant of the gate. For some currents
the gating dynamics are described in terms of the opening and
closing rates αm and βm related through τm = 1

αm+βm
, m∞ =

αm
αm+βm

:

dm

dt
= αm(v) · (1−m)− βm(v) ·m. (4)

Reversal potentials are assumed constant unless otherwise
noted. The reversal potential for Ca2+ currents was calculated
using the Nernst equation from the intra- and extracellular
ion concentrations:

ECa =
RT

zF
ln

[

Ca2+
]

o
[

Ca2+
]

i

(5)
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FIGURE 1 | Network architecture: population and subcellular connectivity. (A) Neuronal populations and their projections modeled in the network. Subthalamic

projection neurons (STN) and prototypic neurons of the external globus pallidus (GPe) were modeled using multi-compartmental neuron models. Cortical projection

neurons (CTX) and indirect pathway striatal medium spiny neurons (iMSN) were modeled as spike generators. (B) Branching structure of the STN neuron model and

representative synapses by afferent type, indicating subcellular distribution of synapses. Cortical glutamergic afferents synapse primarily onto thin dendrites, distally

relative to the soma, but NMDA receptors with faster NR2A subunits mainly target the soma and proximal areas. Pallidal GABAergic afferents target proximal areas of

the cell. (C) Branching structure of the GPe neuron model and representative synapses by afferent type. GABAergic GPe-GPe collaterals mainly target somata and

proximal dendrites, whereas glutamergic afferents were placed in distal regions. Full details of the model are provided in the section Methods.

where T is the temperature in Kelvin, R is the universal gas
constant, F is the Faraday constant, and z is the valence of
the calcium ion (+2). Intracellular calcium buffering in a sub-
membrane shell is modeled as:

d
[

Ca2+
]

i

dt
= − (ICaL + ICaN + ICaT)

c

2Fd
−

[

Ca2+
]

i0
−

[

Ca2+
]

i

τCa
(6)

where c is a unit conversion constant, d is the thickness of the
sub-membrane shell, and τCa is the time constant of decay.

Synaptic connections between cells were modeled by spike
detectors in the somatic compartments, coupled to synapses
in the target cells by a time delay. As no interactions
between axons and other biophysical processes such as electric
fields were required, axonal structures were omitted from the
model and represented as delays between connected neurons.
This constrained the computational complexity of the model,
avoiding the requirement to simulate large number of additional
compartments without altering the network behavior. Synapses
were modeled by a dual exponential profile with rise and decay
times τrise and τdecay modulated by the fraction of synaptic
resources in the active state which was governed by Tsodyks-
Markram dynamics (Tsodyks et al., 1998):

Isyn = gsyn(B− A)(v− Esyn) (7)

dA

dt
=

−A

τrise
+ fpeak · USE · R · δ(t − tspk) (8)

dB

dt
=

−B

τdecay
+ fpeak · USE · R · δ(t − tspk) (9)

dR

dt
=

1− R

τrec
− USE · R · δ(t − tspk) (10)

dUSE

dt
=

−USE

τfacil
+ U1 · (1− USE) · δ(t − tspk) (11)

fpeak =
1

exp(−tpeak/τdecay)− exp(−tpeak/τrise)
(12)

tpeak =
τrise · τdecay

τdecay − τrise
log(

τdecay

τrise
) (13)

where, gsyn is the peak synaptic conductance, B-A represents

the synaptic gating variable, fpeak is a normalization factor so
that B-A reaches its maximum at time tpeak after the time
of spike arrival tspk, R is the fraction of vesicles available for
release, USE is the release probability, and τrec and τfacil are
the time constants for recovery from short-term depression and
facilitation, respectively. The synaptic reversal potentials Esyn
were 0 mV for AMPA and NMDA, −80 mV for GABAA, and
−95 mV for GABAB. For NMDA synapses there is an additional
voltage-dependent gating variable representingmagnesium block
(Jahr and Stevens, 1990):

m(v) = 1/(1+ exp(−0.062v) ∗ (1/3.57)) (14)

The metabotropoc GABAB receptor-mediated current was
modeled as an intracellular signaling cascade based on the model
by Destexhe and Sejnowski (1995). The equations describing G-
protein activation and the synaptic current were retained, but the
bound receptor fraction including the effects of desensitization
was represented by the fraction of resources in the active state
in the Tsodyks-Markram scheme (B-A). The equation governing
the G-protein production rate thus became

dG

dt
= K3 ∗ (B− A)− K4 ∗ G (15)
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TABLE 1 | Experimentally reported connection parameters used to calibrate the model.

Target Source Afferent neurons Synaptic

contacts

Subcellular

targets

Short-term plasticity Delay Effect of dopamine

depletion

STN (all) 300 (Baufreton

and Bevan, 2008)

N.A. N.A. N.A. N.A.

CTX distal (Bevan et al.,

1995; Mathai

et al., 2015; Pan

et al., 2016),

depression (Chu et al.,

2015)

5.9 ms (Kita and Kita,

2011)

weakened (Chu et al.,

2017; Wang et al.,

2018)

proximal (Pan

et al., 2016)

GPe 57 (Atherton et al.,

2013)

883 (Baufreton

et al., 2009)

proximal (Smith

et al., 1990)

depression (Atherton

et al., 2013)

4 ms (Fujimoto and

Kita, 1993)

strengthened (Chu

et al., 2015)

prolonged decay (Fan

et al., 2012)

GPe GPe proximal,somatic

(Chan, 2004;

Sadek et al., 2007)

depression (Miguelez

et al., 2012)

strengthened (Miguelez

et al., 2012)

STN 135 (Kita and

Jaeger, 2016)

dendritic,distal

(Shink and Smith,

1995)

facilitation, 2 ms (Kita and Kitai,

1991)

strengthened

(Hernández et al.,

2006)
depression (Hanson

and Jaeger, 2002)

MSN 10622 (Kita and

Jaeger, 2016)

dendritic, distal

(Chan, 2004)

facilitation (Miguelez

et al., 2012)

5 ms (Kita and Kitai,

1991)

where G is the G-protein concentration, and K3 and K4 are the
rates of G-protein production and decay, respectively. The G-
protein concentration G gates the peak synaptic conductance
according to a sigmoid activation function represented by the
Hill equation:

IGABAB = gsyn
Gn

Gn+Kn
d
(v− EGABAB ). (16)

STN Cell Model
STN neurons were modeled using the rat subthalamic projection
neuron model by Gillies and Willshaw (2005) (ModelDB
accession number 74298). The neuron morphology is based
on quantitative characterization of the dendritic trees of STN
neurons in vitro. The model includes 10 intrinsic ionic currents
(Table 2) :

Iion,j = INaF + INaP

+ IKDR + IKv31 + IsKCa

+ ICaT + ICaL + ICaN

+ IHCN + IL

(17)

where INaF and INaP are the transient fast-acting and persistent
sodium current, IKDR, IKv31, and IsKCa the delayed rectifier, fast
rectifier and calcium-activated potassium current, ICaT , ICaL, and
ICaN the low-voltage-activated T-type, high-voltage-activated L-
type, and high-voltage-activated N-type calcium currents, IHCN
the hyperpolarization-activated cyclic nucleotide (HCN) current,
and IL the leak current. The equations governing the dynamics
of the gating variables are listed in Table 2. The channel density
distributions are described extensively in Gillies and Willshaw
(2005). As a source of noise, a current with a Gaussian amplitude

distribution, mean zero and standard deviation 0.1 was added to
the somatic compartment.

The synaptic currents included an excitatory glutamergic
input from cortex, acting through AMPA and NMDA receptors,
and an inhibitory GABAergic input from the GPe, acting through
GABAA and GABAB receptors (Table 3):

Isyn,j = ICTX−STN,AMPA + ICTX−STN,NMDA

+ IGPE−STN,GABAA + IGPE−STN,GABAB

(18)

In the control condition STN neurons had 20 excitatory
afferents from CTX neurons and 8 inhibitory afferents from GPe
neurons. The location of synapses on STN neurons and axonal
propagation delays were based on experimental observations
(Table 1). Cortico-subthalamic (CTX-STN) synapses were
modeled as conductance-based synapses with Tsodyks-Markram
dynamics (Tsodyks et al., 1998). On each of its target cells, a
cortical axon had one synapse located distally in the dendritic
tree and one located proximally near the soma. Distal synapses
had both an AMPA and slower NMDA conductance component.
The latter represented slower-kinetics NMDA receptors with
majority NR2B and NR2D subunits that have dendritic punctual
expression (Pan et al., 2016). Proximal synapses had only an
NMDA component and represented NMDA receptors with
fast-kinetics NR2A subunits. Synaptic parameter values are
listed in Table 3. Synaptic rise and decay time constants τrise
and τdecay for AMPA and NMDA NR2A constants were based
on traces reported in Chu et al. (2015). For the slower NMDA
NR2B synapses, values were based on Flint et al. (1997). The
propagation delay td was taken from Kita and Kita (2011).
Synapses were made to exhibit short-term depression upon
high-frequency activation, based on observations by Froux et al.
(2018). The ratio of the total AMPA to NMDA conductance were
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TABLE 2 | STN model intrinsic current equations from Gillies and Willshaw (2005).

Current Equation Gating variables Parameters

INaF gNaFm
2h(v− ENa) αm = 0.32 (13.1−v)

exp((13.1−v)/4)−1 βm = 0.28 (v−40,1)

exp(v−40.1)−1 gNaF = 14.83e−3 (soma)

αh = 0.128 exp
(

17−v
18

)

βh = 4
exp((40−v)/5)+1 gNaF = 1e−7 (dendrite)

INaP gNaP (v− ENa) gNaP = 1.11e−5 (soma)

gNaP = 8.10e−6 (dendrite)

IKDR gKDRn(v− EK ) αn = 0.016(35.1−v)
exp((35.1−v)/5)−1 βn = 0.25 exp ((20− v) /40) gKDR = 3.84e−3 (soma)

gKDR ∈ [4.22, 9.32]× 105 (dendrite)

IKv31 gKv31p(v− EK ) p∞ = 1
1+exp(−(v+5)/9)

τ∞ = 18.71
exp(−(v+28)/6)+exp((v+4)/16) gKv31 = 1.34e−2 (soma)

gKv31 ∈ [8.91, 10]× 104 (dendrite)

IsKCa gsKCaw(v− EK ) w∞ = 0.81

1+exp
− log[Ca2+]

i
−0.3

0.46

τw = 40 gsKCa = 6.84e−5 (soma)

gsKCa = 3.92e−5 (dendrite)

IHCN gHCN f (v− EHCN ) f∞ = 1
1+exp(v+75)/5.5]

τf =
1

exp(−14.59−.086v)+exp(−1.87+.07v)
gHCN = 1.01e−3 (soma)

gHCN = 5.10e−4 (dendrite)

ICaT gCaT r
3 s (v− ECa) αr =

1
1.7+exp(−(v+28.2)/13.5)

βr =
exp(−(v+63)/7.8)

1.7+exp(−(v+28.8)/13.5)
gCaT = 0 (soma)

αs = exp [− (v+ 160.3) /17.8] βs =

(

√

.25+ exp v+83.5
6.3 − .5

)

ks gCaT ∈ [1.17, 1.67]× 103 (dendrite)

αd =
1+exp[ (v+37.4)

30 ]

240

(

0.5+
√

0.25+exp[ (v+83.5)
6.3 ]

) ks = exp [− (v + 160.3) /17.8]
[

Ca2+
]

i0
= 1e−4

βd =

(

√

0.25+ exp v+83.5
6.3 − 0.5

)

αd (v) τCa = 185.7

ICaL gCaT q
2h (v− ECa) h∞([Ca2+]

i
)=0.53+ 0.47

1+exp(
[Ca2+]

i
−0.7

0.15
)

τ∞
(

[Ca2+]
i

)

= 1220 gCaL = 9.50e−4 (soma)

q∞ (v) = 1
1+exp[−(24.6v)/11.3]

τq (v) = 1.25
cosh[−0.03(v+37.1)]

gCaL ∈ [1.21, 18.7]× 104 (dendrite)

ICaN gCaN q
2 (v− ECa) u∞

(

vj
)

= 1

1+exp[(vj+60)/12.5]
τu (v) = 98+ cosh [0.021 (10.1− v)] gCaN = 1.15e−3 (soma)

gCaN = 4.79e−4 (dendrite)

based on the ratios reported in Shen and Johnson (2005) for the
normal and dopamine-depleted conditions, taking into account
the reduction of synaptic terminals reported in Chu et al. (2017).
Absolute values for the synaptic conductances were hand-tuned
to bring the mean population firing rates into the reported
range for the rat in dopamine-depleted condition (Mallet et al.,
2008b; Kita and Kita, 2011). Synapses from GPe neurons were
located proximally, close to the soma. Synapses of GPe-STN
afferents had a fast GABAA and a slower GABAB component.
Rise and decay time constants for the GABAA conductance
were based on Fan et al. (2012). Short-term plasticity parameters
were chosen so that synapses exhibited short-term depression,
as shown in Atherton et al. (2013). Parameters for the GABAB

synapse were taken from the model by Destexhe and Sejnowski
(1995), and the decay time constant K4 was adapted so that
the GABAB conductance exhibited depression upon continued
pre-synaptic stimulation.

GPe Cell Model
GPe neurons were modeled using the baseline rat GPe neuron
model by Gunay et al. (2008) (ModelDB accession number
114639). The model is based on a reconstructed morphology
from the adult rat and contains nine types of ion channels with
varying densities in the soma, dendrite, and axon initial segment:

Iion,j = INaF + INaP + IKv2 + IKv3

+ IKv4,f + IKv4,s + IKCNQ + IsKCa

+ ICaHVA + IHCN,f + IHCN,s + IL

(19)

where INaF and INaP are the transient fast-acting and persistent
sodium current, IKv2 and IKv3 the slow and fast delayed
rectifier potassium current, IKv4f and IKv4s the fast and slow
component of the A-type, transient potassium current, IKCNQ
the M-type potassium current, IsKCa the calcium-dependent
potassium current, ICaHVA the high-threshold, non-inactivating
calcium current (reflecting a mixture of L, N, and P/Q-type
calcium channel types), and IHCN,f and IHCN,s the fast and
slow component of the HCN channel. The equations governing
the dynamics of the gating variables are listed in Table 4. The
channel density distributions are those described in Gunay et al.
(2008) for model t9842. As a source of noise, a current that
with a Gaussian amplitude distribution, mean zero and standard
deviation 0.0075 was added to the somatic compartment, to
represent membrane voltage noise of similar amplitude the STN
cell model, given the lower somatic input resistance of the
STN model.

GPe neurons each had 10 excitatory afferents from STN
neurons, 6 inhibitory afferents from GPe-GPe collaterals, and
30 inhibitory afferents from iMSN (Table 5). The location of
synapses on GPe neurons and axonal propagation delays were
based on experimental observations reported in the literature
(Table 1). Relative magnitudes of synaptic conductances were
chosen to bring the population firing rate into the reported
range for the rat (Mallet et al., 2008b; Kita and Kita, 2011).
Rise and decay time constants for AMPA conductances were
set to 1 and 4 ms, respectively, and for GABAA conductances
they were set to 2 and 5 ms, respectively. Synapses from
STN neurons were located distally, in the dendritic tree.
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TABLE 3 | STN model synaptic current equations.

Current Equation Location Parameters

ICTX−STN,AMPA gsyns(v−

EAMPA)

distal:

x ≥ 100µm

τrise = 1 τrec = 200

τdecay = 4 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 4.44e−3

ICTX−STN,NMDA1 gsynms(v−

ENMDA)

distal:

x ≥ 100µm

τrise = 3.7 τrec = 200

τdecay = 212 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 5.04e−3

ICTX−STN,NMDA2 gsynms(v−

ENMDA)

proximal:

x < 120µm

τrise = 3.7 τrec = 200

τdecay = 80 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 5.04e−3

IGPE−STN,GABAA
gsyns(v−

EGABAA )

proximal:

x < 120µm

τrise = 2 τrec = 400

τdecay = 7 τfacil = 1

td = 2.0 U1 = 0.2

gsyn = 18e−3

IGPE−STN,GABAB
gsyn

Gn

Gn+Kn
d
(v−

EGABAB )

proximal:

x < 120µm

τrise = 5 τrec = 400

τdecay = 25 τfacil = 1

td = 2.0 U1 = 0.2

gsyn = 3.75e−3 K3 = 0.098

n = 4 K4 = 6.25e−3

Kd = 1.4

They consisted of an AMPA component and were modeled
using Tsodyks-Markram dynamics. The parameters describing
short-term plasticity dynamics were chosen to match traces
reported in Hanson and Jaeger (2002). Synapses from GPe
were located proximally, near the soma and had both a fast
GABAA component with Tsodyks-Markram dynamics, and a
slow metabotropic GABAB component. Short-term plasticity
parameters were chosen so that synapses exhibited short-term
depression (Miguelez et al., 2012). Synapses from striatal neurons
had a GABAA component and were made to exhibit short-term
facilitation based on Miguelez et al. (2012).

Modeling the Parkinsonian State
Tomodel the parkinsonian state, the biophysical properties of the
network and cell models were modified based on experimental
observations made in the dopamine depleted and control
conditions as reported in the literature. Various biophysical
parameters, including synaptic strengths and time constants are
affected by dopamine depletion, and were adjusted as detailed
below. Scaling factors for synaptic and ionic conductances were
set to experimentally reported values where available. Otherwise
they were chosen to bring the mean population firing rates into
physiological ranges reported for the rat in a state of cortical
activation during light anesthesia (Mallet et al., 2008b; Kita and
Kita, 2011).

The mean firing rate of STN surrogate spike sources was
increased from 14.6 to 29.5 Hz in the parkinsonian state (Mallet
et al., 2008b). The peak GABAA and GABAB conductance of GPe

to STN synapses was increased by 50% and the GABAB decay
time constant increased by 2 ms to model the increase in the
number of contacts, vesicle release probability, and decay kinetics
of GPe afferents (Fan et al., 2012). To model the reduction in
cortico-STN axon terminals and their dendritic targets (Chu
et al., 2017; Wang et al., 2018) the number of CTX-STN afferents
was reduced to 70% of the normal condition, corresponding to
the ratio of vGluT1 expression in the normal and dopamine
depleted condition used to label axon terminals (Chu et al., 2017).
To model functional strengthening of remaining synapses, the
AMPA and NMDA peak conductances of remaining synapses
were multiplied by the ratio of the current scaling factors
reported in Shen and Johnson (2005) to the fraction of
remaining synapses. The effect of functional strengthening and
weakening of the CTX-STN projection was further investigated
by systematically varying the peak synaptic conductances in the
simulations experiments. Finally, HCN currents were reduced by
50% to model reduced depolarization and spontaneous activity
after dopamine depletion (Zhu et al., 2002; Cragg et al., 2004) and
modulation of HCN current by D2R receptors (Yang et al., 2016).

In GPe neurons the peak AMPA conductance of STN
afferents was increased by 50% to model the modulatory
effect of dopamine on glutamergic excitatory currents (Johnson
and Napier, 1997; Hernández et al., 2006; Kita, 2007). The
strengthening of GPe-GPe collaterals (Miguelez et al., 2012;
Nevado-Holgado et al., 2014) wasmodeled by increasing the peak
GABAA and GABAB conductances by 50%. The mean firing rate
of GPe surrogate spike sources was decreased from 33.7 to 14.6
(Mallet et al., 2008a). Finally, the HCN channel conductance was
decreased by 50% in accordance with experimental data (Chan
et al., 2011).

In simulations without oscillatory inputs, cortical projection
neurons were modeled as Poisson spike generators firing at
10 Hz, a multiple of the experimentally reported rate of 2.5
Hz (Li et al., 2012), so that each synapse represented the
combined inputs of four pre-synaptic neurons (making use of
the additive property of the Poisson distribution). In simulations
with oscillatory inputs, oscillatory spike trains were generated as
follows: on top of the aforementioned background firing pattern,
bursts were added in each period of a regular oscillation at the
chosen oscillation frequency. In each period of the oscillation
10% of neurons were selected randomly to emit a burst. The
onset time of the burst was the same in each selected neuron,
so that bursts occurred in-phase between neurons, but the
number of spikes in a burst was variable with inter-spike intervals
sampled from the interval [5, 6] ms. All background spikes
occurring in a time window centered on a burst were deleted
to prevent unrealistically high inter-spike intervals. Figure 7D
shows a rastergram with representative spike trains generated
using this method.

The increase in excitability and spontaneous activity of iMSN
(Kita and Kita, 2011; Fieblinger et al., 2014) was modeled by
increasing the mean firing rate of the Poisson spike generators
from 1.5 to 6.64 Hz. In experiments where iMSN cells fired
oscillatory bursts the same algorithm as described for cortical
projection neurons was used. The modulation of GABAergic
transmission from iMSN to GPe neurons (Cooper and Stanford,
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TABLE 4 | GPe model intrinsic current equations from Gunay et al. (2008).

Current Equation Gate m0 θm∞
σm∞

τ0 τ1 θmτ σm0 σm1 Additional parameters

INaF gNaFm
3hs(v− ENa) m 0 –39 5 0.028 0.028 N/A N/A N/A gNaF = 0.035 (soma)

h 0 –48 –2.8 0.025 4 –43 10 –5 gNaF = 0.035 (dendrite)

s 0.15 –40 –5.4 10 1000 –40 18.3 –10 gNaF = 0.5 (axon)

INaP gNaPm
3hs(v− ENa) m 0 –57.7 5.7 0.03 0.146 –42.6 14.4 –14.4 gNaP = 10.15e−3 (soma)

h 0.154 –57 –4 10 17 –34 26 –31.9 gNaP = 10.15e−3 (dendrite)

s 0 –10 –4.9 N/A N/A N/A N/A N/A gNaF = 4e−3 (axon)

IKv2 gKv2m
4h(v− EK ) m 0 –33.2 9.1 0.1 30 –33.2 21.7 –13.9 gKv2 = 0.1e−3 (soma, dendrite)

h 0.2 –20 –10 3400 3400 N/A N/A N/A gKv2 = 64e−3 (axon)

IKv3 gKv3m
4h(v− EK ) m 0 –26 7.8 0.1 14 –26 13 –12 gKv3 = 1e−3 (soma, dendrite)

h 0.6 –20 –10 7 33 0 10 –10 gKv3 = 128e−3 (axon)

IKv4,f gKv4,fm
4h(v− EK ) m 0 –49 12.5 0.25 7 –49 29 –29 gKv4,f = 2e−3 (soma)

h 0 –83 –10 7 21 –83 10 –10 gKv4,f = 4e−3 (dendrite)

gKv4,f = 160e−3 (axon)

IKv4,s gKv4,sm
4h(v− EK ) m 0 –49 12.5 0.25 7 –49 29 –29 gKv4,s = 3e−3 (soma)

h 0 –83 –10 50 121 –83 10 –10 gKv4,s = 6e−3 (dendrite)

gKv4,s = 240e−3 (axon)

IKCNQ gKCNQm
4h(v− EK ) m 0 –61 19.5 6.7 100 –61 35 –25 gKCNQ = 20e−5 (soma, dendrite)

gKCNQ = 4e−5 (axon)

ICaHVA gCaHVAm(v− ECa) m 0 –20 7 0.2 0.2 –20 N/A N/A gCaHVA = 3e−5 (soma, thick dendrites)

gCaHVA = 4.5e−5 (medium dendrites)

gCaHVA = 9e−5 (thin dendrites)
[

Ca2+
]

i0
= 5e−5

τCa = 1

IHCN,f gHCN,fm(v− Eh) m 0 –76.4 –3.3 0 3625 –76.4 6.56 –7.48 gHCN,f = 1e−4 (soma, dendrite)

IHCN,s gHCN,sm(v − Eh) m 0 –87.5 –4 0 6300 –87.5 8.9 –8.2 gHCN,f = 2.5e−4 (soma, dendrite)

TABLE 5 | GPe model synaptic current equations.

Current Equation Location Parameters

ISTN−GPE,AMPA gsyns(v−

EAMPA)

distal:

x ≥ 100µm

τrise = 1 τrec = 200

τdecay = 4 τfacil = 800

td = 2 U1 = 0.1

gsyn = 3.75e−4

IGPE−GPE,GABAA
gsyns(v−

EGABAA )

proximal:

x < 200µm

τrise = 2 τrec = 400

τdecay = 5 τfacil = 1

td = 0.5 U1 = 0.2

gsyn = 2e−4

IGPE−GPE,GABAB
gsyn

Gn

Gn+Kn
d
(v−

EGABAB )

proximal:

x < 200µm

τrise = 5 K3 = 0.098

τdecay = 25 K4 = 6.25e−3

td = 0.5 Kd = 1.4

gsyn = 0.4e−4 n = 4

IiMSN−GPE,GABAA
gsyns(v−

EGABAA )

proximal:

x < 200µm

τrise = 2 τrec = 1

τdecay = 5 τfacil = 200

td = 5 U1 = 0.3

gsyn = 3e−4

2001; Shin et al., 2003) was modeled by increasing the initial
release probability and the peak GABAA conductance of synapses
by 50%.

Simulation Details
The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented
in Python. The default fixed time step integrator with a time
step of 0.025 ms was used for all simulations. Compartmental
membrane voltages were initialized to a random value between
−63 and −73 mV in GPe and between −60 and −70 mV in
STN cells. Gating variables were initialized to their equilibrium
values for the initial membrane voltage. Simulation data for
the first 2,000 ms of each simulation were discarded, and the
analyzed intervals were of duration 4,000 ms unless otherwise
noted. Simulations were run on the UCD Sonic cluster using 8
parallel processes per simulation on a single computing node,
consisting of two Intel Ivybridge E5-2660 v2 CPUs (10 cores
per CPU).

Signal Analysis
Signal analyses were performed using the SciPy toolbox (Jones
et al., 2001) for Python. Power spectral densities (PSDs) were
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calculated usingWelch’s periodogrammethod, using overlapping
segments of 2 s duration with 50% overlap and a Hanning
window. Given the sampling period of 0.05 ms this led to
a frequency resolution of 0.5 Hz. The population PSD was
calculated as the mean PSD of all somatic membrane voltages.
The instantaneous phase of each population was estimated by
applying the Hilbert transform to the average somatic membrane
voltage of cells in the population, after band-pass filtering using
a neutral-phase filter (Butterworth filter, 4th order, command
sosfiltfilt) in an 8 Hz wide frequency band centered on the
dominant oscillation frequency. For populations that were
modeled as surrogate spike trains (cortex and striatum), artificial
membrane voltage signals were first constructed by convolving
the spike trains with a typical action potential waveform. Bursts
were detected using a simple algorithm where a burst consisted
of a minimum of four spikes with inter-spike intervals (ISIs) ≤
20 ms.

RESULTS

The STN-GPe pacemaker hypothesis was first investigated
by modeling cortical inputs to the STN as Poisson spike
generators without any periodic or oscillatory component.
Cortical patterning of neural activity in the STN-GPe network
via the hyperdirect pathway was then investigated by modeling
cortical input to the STN inputs as periodically bursting spike
trains. To investigate whether changing the excitation-inhibition
balance in STN and GPe contributed to changes in spontaneous
synchronization and functional coupling between nuclei, the
ratio of excitation and inhibition was systematically increased
by altering the strength of individual projections between nuclei.
The ratio of total excitatory to inhibitory synaptic currents (E/I
ratio) was altered by scaling the peak conductance of all synapses
belonging to a given projection known to be strengthened
or weakened by dopamine depletion. The role of additional
oscillatory inputs entering the STN-GPe network via the indirect
striato-pallidal pathway and their phase relationship to cortical
inputs were then investigated.

The Balance of Excitation and Inhibition
Balance in the STN Affects the Oscillation
Frequency of the STN-GPe Network and
Firing Mode of STN Neurons
Increasing the strength of the CTX-STN projection by increasing
the conductance of cortico-subthalamic synapses revealed
parameter regimes that favored low frequency bursting in STN
neurons and phase-locking to an emergent beta-band rhythm
in the STN-GPe network (Figures 2A–D). For lower values
of synaptic conductance the network exhibited synchronous
oscillatory activity at 12–13 Hz (Figure 2A), with both STN and
GPe neurons entrained to the oscillation (Figures 2Bi–iii). This
high entrainment regimen coincided with low neuronal firing
rates (Figure 2E) where short spike sequences, mostly singlets
and doublets, showed a high phase preference as evidenced by

the high population and individual neuronal phase vector lengths
(Figure 2Bii).

Increasing the synaptic conductance caused a proportional
increase in excitatory current to the STN (Figure 2E, blue area),
with a corresponding increase in inhibition (red area) as a
result of the negative feedback structure of the STN-GPe loop.
However, because the GPe population exhibited a saturating
population firing rate curve (Figure 2Eii), feedback inhibition to
STN was outpaced by cortical excitation, resulting in a shift to
net excitation (E/I > 1). This saturating firing rate curve in the
GPe was a result of two negative feedback mechanisms that have
a homeostatic effect on the GPE’s E/I ratio: reciprocal inhibition
through intra-GPe colaterals and short-term depression of STN
to GPe synapses (Hanson and Jaeger, 2002). The increase of
excitatory drive in the network increased the frequency at which
oscillations emerged within the network (Figure 2Aii, peak in the
PSD is shifted), though the level of synchronization of neurons
was relatively weak. This was particularly the case in the STN, as
evidenced by the low phase vector lengths (Figures 2Cii,Dii,Eii).
Despite the lower vector lengths, reflecting more dispersed spike
timings within a period of the oscillation, spikes in both STN
and GPe neurons showed a consistent phase preference with
respect to the ongoing oscillation, as evidenced by the alignment
of individual neuronal and population phase vector. The STN
population vector led that of GPe by 45 degrees indicating that
STN neurons excited GPe neurons which responded with a delay
of 10 ms, resulting in a wave of inhibition to the STN with
a long recovery period comparable to the oscillation period.
Although excitation outpaced inhibition in STN neurons, higher
inhibitory currents resulted in increased transient inhibition
of STN dendrites, engaging the ion channels underlying burst
responses. This brought STN neurons into a slow burst firing
mode characterized by sparse, strong bursts (Figure 2Ci). These
low-frequency fluctuations in firing rate were transmitted to
GPe neurons as evident in the power spectra of both nuclei
(Figures 2Ai,ii).

Increasing the strength of GPe-GPe colaterals (Figure 3)
similarly increased the level of excitation of STN neurons
but by a different mechanism. By increasing self-inhibition
within the GPe, and thereby decreasing inhibition of targets
in the STN (Figure 3D, red area), the E/I ratio in both
populations moved in opposite directions. As the E/I ratio
in STN increased toward dominant excitation (Figure 3D),
neural activity shifted from strong low-frequency bursting
(characterized by a high intra-burst firing rate and high low-
frequency power) (Figures 3Ai,Bi,F) toward more regular firing
with decreasing coefficient of variation of inter-spike intervals
(CVISI) and intra-burst firing rate (Figures 3Ci,F). The E/I ratio
and population firing rate in the GPe showed a saturating
characteristic (Figure 3Dii) caused by the negative feedback
structures inherent in the loop as before (Figure 3D) as it was
progressively disinhibited. GPe neurons were more strongly
entrained to the emergent oscillation (17–26 Hz) whereas STN
spiking showed a weaker phase preference (Figures 3Bii,Cii,E).
This result was the same whether the instantaneous phase was
extracted from the STN or GPe population.
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FIGURE 2 | The level of excitation by cortex determines firing patterns and oscillation frequency in the autonomous STN-GPe network. Behavior of the autonomous

STN-GPe network for increasing values of the CTX to STN synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii)

neurons. (B–D) Representative spike trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for three different scale factors of the CTX

to STN conductance [scale 0.2; 0.7; 1.3 in rows (C–E), respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively,

mean population vectors plotted as thick solid lines and cell vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. Phase vectors

were measured with respect to the instantaneous phase of the GPe population extracted using a bandpass filter with passband of 8 Hz centered on the frequency bin

with maximum power in the 13–30 Hz band. (E) Balance of excitation and inhibition in the STN (Ei) and GPe (Eii) based on synaptic currents recorded in three

neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). Shaded areas represent estimated total synaptic current from one

pre-synaptic population during a simulation. Total current was estimated by recording all synapses on 3 randomly selected cells in each population and adjusting for

the true number of cells.

Strength and Time-Course of GPe-STN
Inhibition Controls Bursting and
Phase-Locking in STN Neurons
Following dopamine depletion the inhibitory GPe-STN

connection is strengthened by a proliferation of synapses and

increased decay kinetics of GABA currents (Fan et al., 2012).

Moreover, the expression of both GABAA (Fan et al., 2012)

and GABAB (Shen and Johnson, 2005) receptors is upregulated

leading to larger evoked synaptic currents. To investigate the
effects of increased inhibition and altered kinetics of inhibitory
post-synaptic currents (IPSC) in STN neurons on network
activity patterns, an increase in the GABAA and GABAB

conductances was simulated and the relative contribution of
both currents was altered.

Increasing the conductance of both GABAA and GABAB

synapses lead to an increase in low-frequency bursting of
STN neurons (Figures 4A–C). Bursting was periodic at
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FIGURE 3 | Increasing the level of collateral GPe-GPe inhibition shifts the excitation-inhibition balance in STN and GPe in opposite directions. Behavior of the

autonomous STN-GPe network for increasing values of GPe-GPe synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii)

neurons. (B,C) Representative spike trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for two values of the GPe to GPe

conductance [scale 0.33; 2.0 in rows (B,C), respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively, mean

population vectors plotted as thick solid lines and cell vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. (D): Balance of

excitation and inhibition in the STN (Di) and GPe (Dii) based on synaptic currents recorded in three neurons. Mean population firing rate (brown), E/I ratio (purple), and

net synaptic current (blue). Shaded areas represent estimated total synaptic current from one pre-synaptic population during a simulation. (E) Population vector length

and angle of STN and GPe population (green; red, respectively). (F) Metrics that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and

coefficient of variation of ISIs across all STN cells.

low frequencies (∼ 2–5 Hz) but was not synchronized
between cells (Figure 4Ci). Increasing the conductance
also shifted the firing mode of STN neurons toward longer
bursts with higher intra-burst firing rate against a lower
background firing rate, characterized by a high coefficient
of variation of ISIs (Figures 4D,F). Bursting with high
intra-burst firing rates is mediated by a shift toward net

inhibition in STN neurons (Figure 4D), leading to increased
availability of voltage-sensitive Na+ and Ca2+ channels
through de-inactivation at hyperpolarized membrane voltages
(Baufreton et al., 2005; Gillies and Willshaw, 2005; Hallworth
and Bevan, 2005). The GPe neuron model does not possess
the same high density of Ca2+ channels that underlies
plateau potentials and strong bursting, and therefore has
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FIGURE 4 | Increasing the level of GPe-STN inhibition shifts STN to a low-frequency burst firing mode. Behavior of the autonomous STN-GPe network for increasing

values of the GPe to STN synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii) neurons. (B,C) Representative spike

trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for two values of the GPe to STN conductance [scale 0.33; 2.0 in rows (C,D),

respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively, mean population vectors plotted as thick solid lines and cell

vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. (D) Balance of excitation and inhibition in the STN (Di) and GPe (Dii) based

on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). Shaded areas represent estimated total

synaptic current from one pre-synaptic population during a simulation. (E) Population vector length and angle of STN (green) and GPe (red) population. (F) Metrics

that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and coefficient of variation of ISIs across all STN cells.

a lower tendency toward burst firing. While STN neurons
were more weakly entrained to the beta oscillation they
preferentially fired in an interval leading the GPe by 65
degrees (Figures 4B,C,E). The shift toward low-frequency, fast
bursting coincided with an increase in synchronization in the

network, as measured by the population vector length of the
STN and GPe.

To investigate the effect of IPSC kinetics on the generation
of beta oscillations within the network, the relative strength
of the GABAA and GABAB-mediated current was changed by
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FIGURE 5 | Endogenous oscillations in the STN-GPe network are strengthened by shifting the GPe-STN synaptic current from slow GABAB receptors to fast GABAA

receptors. Behavior or the STN-GPe network for increasing values of the GABAA to GABAB conductance ratio. The GABAB conductance of the GPe to STN

projection was decreased by 50% and the GABAA conductance was increased progressively. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe

(Aii) neurons. (B,C) Representative spike trains and phase histograms of STN (green) and GPe neurons (red) in baseline model without scaling of conductances (B)

and model where GABAA conductance was scaled by a factor 6 and GABAB conductance was scaled by factor 0.2, chosen so that the E/I ratio was close to that in

the baseline model (B: baseline model, E/I ratio was 0.89; 0.97 in STN, GPe respectively; C: scaled conductances, ratio was 0.89; 0.93). The presence of stronger

GABAB currents results in higher phase dispersion (B) compared to the case with weaker GABAB currents and stronger, fast GABAA currents (C). (D) Mean PSD of

somatic membrane voltages of STN (Di) and GPe (Dii) neurons for increasing CTX-STN conductance and adjusted GABAA to GABAB ratio. The GABAB conductance

of GPe to STN synapses was halved, and the GABAA conductance was doubled.

decreasing the GABAB conductance by 50% and increasing the

GABAA conductance progressively (Figure 5). As this increased
the level of inhibition in STN neurons, it resulted in a small

shift in the oscillation frequency across the parameter sweep
(Figure 5A). The simulations results showed that the slow nature

of the GABAB-mediated current prevented GPe neurons from
patterning their targets with short duration IPSC required for

strong entrainment in the 20–30 Hz range. When the GABAA

conductance was increased, and the GABAB conductance

decreased accordingly, both STN and GPe neurons entrained
strongly to the beta rhythm as evident in phase histograms and

spike trains (Figures 5B,C). When the experiment of Figure 2
was repeated in the adjusted network with a higher GABAA to

GABAB ratio, the oscillation frequency in both STN and GPe

also showed a clear sensitivity to the strength of the Poisson
distributed cortical excitatory input (Figure 5D).

STN-GPe Network Shows Resonant
Properties and Phase Locks to Cortical
Beta Inputs
The degree of phase locking of the STN-GPe network to
synchronous cortical rhythms and its sensitivity to intrinsic
network parameters was then examined. The network was
simulated with cortical inputs modeled as spike trains exhibiting
sparse, synchronous bursts. The frequency of the synchronous
cortical inputs was first increased from 3 to 60 Hz and the
frequency response and phase locking strength of the STN-
GPe loop was estimated (Figures 6A–C). Spectral power and
phase locking, measured by the population vector length, were
strongest when the cortical oscillation frequency was close to
the network’s endogenous oscillation frequency (Figures 6B,C),
indicating a resonance effect. Spectral power at the oscillation
frequency was increased considerably above that observed for
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FIGURE 6 | Frequency response and phase locking of the STN-GPe network to cortical oscillatory bursting inputs. Sweep of cortical oscillation frequency (top row)

and phase locking to cortical oscillations for increasing CTX-STN synapse strength (bottom row). (A) Mean PSD of somatic membrane voltages in STN (Ai) and GPe

(Aii) for increasing oscillatory bursting frequency. (B) Mean PSD of the somatic membrane voltages of STN (green) and GPe (red) neurons, averaged within a 5 Hz

wide frequency band centered on the cortical oscillation frequency. (C) Population vector length, indicating strength of phase locking to the cortical oscillation of STN

(green) and GPe (red) neurons. (D) Change in population vector length (solid lines) for a fixed cortical oscillation frequency (20 Hz, 25 hz, 30 Hz in green, blue, orange,

respectively) and increasing CTX-STN input synaptic conductance, reflected in an increased ratio of excitation to inhibition (E/I ratio). Endogenous oscillation power in

simulations without oscillatory cortical input is plotted for comparison (dotted lines, power integrated in 5 Hz band centered on cortical frequency in equivalent

simulation with cortical inputs). An increased E/I ratio results in maximum phase locking at a higher oscillation frequency, and power of endogenous oscillations follows

trend of phase locking strength.

Poisson distributed cortical inputs (compare Figures 6Ai,ii to
Figures 2Ai,ii). Moreover, the frequencies that were amplified
by the STN-GPe network corresponded well to the beta-
band, i.e., 13–30 Hz (Figure 2B). To study the dependence
of the resonance peak on the excitation-inhibition balance in
the STN, the cortical input strength was then varied while the
oscillation frequency remained fixed (Figure 6D). The range of
synaptic conductances was chosen so that the STN population
firing rate traversed the experimentally reported range of 17–
37 Hz (Mallet et al., 2008b; Kita and Kita, 2011) in the
dopamine depleted state during cortical activation (Figure 7C).
Maximum phase locking coincided with frequency of maximum

endogenous oscillation power observed in the absence of

oscillatory inputs (Figures 2Di,ii). The results demonstrate how

the resonant frequency of the network can be shifted by

changing the excitation-inhibition balance, biasing the network

toward a slower or faster oscillation. GPe neurons synchronized
stronger to the oscillatory input compared to STN neurons
(Figures 6B,C, 7Bi,ii), which showed a tendency to burst,
mirroring the results for spontaneous synchronization in the
autonomous STN-GPe network. Analogous to the autonomous
loop, when the slow bursting behavior was reduced by shifting
the GPe to STN synaptic current from GABAB to faster GABAA

receptors, synchronization and phase locking of both STN and
GPe neurons was greatly increased.

Influence of Phase Relationship Between
Cortical and Striatal Beta Inputs
Striatal microcircuits exhibit beta-band oscillations in healthy
primates (Feingold et al., 2015) and parkinsonian rodent models
(McCarthy et al., 2011; Sharott et al., 2017) and have been
hypothesized to be part of the pacemaking circuit that generates
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FIGURE 7 | Response of STN-GPe network to cortical oscillatory bursting at 20 Hz. (A) Mean PSD of somatic membrane voltages in STN (Ai) and GPe (Aii) as a

function of the synaptic conductance (scale factor) of CTX-STN inputs. The peak at 20 Hz reaches a maximum when synapses are at 70% of their baseline strength,

whereas the peak in low-frequency power (2-5 Hz) occurs at 50%. (B) Representative spike trains of STN (Bi, green) and GPe neurons (Bii, red) in simulation with

synaptic conductances scaled to 70%, corresponding to maximum phase locking and 20 Hz power. (C) Balance of excitation and inhibition in the STN (Ci) and GPe

(Cii) based on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). (D) Cortical oscillatory

bursting pattern illustrated using representative spike trains. In each cycle of the oscillation 10% of cells were selected at random to fire a burst in phase with the

oscillation, with a variation of 1 ms on the onset and spike timings.

them. In the previous section, the STN-GPe network was
shown to generate weak beta-band oscillations in the absence
of exogenous beta inputs (Figures 2, 3, 4), and to phase lock
to cortical beta-band inputs which amplified oscillatory activity
(Figure 6). A potential role of the pallido-striatal loop could be to
amplify beta-band oscillations in the STN-GPe network to amore
pathological level, as part of a double resonant loop converging
on the GPe. A suggested mechanism is that altered striatal
activity in PD could shift the phase of firing of the GPe relative
to the STN to one that supports STN phase locking through
increasing the availability of Na+ and Ca2+ channels post-
inhibition and pre-excitation (Baufreton et al., 2005; Mallet et al.,
2008a, 2012). Alternatively, oscillations that originate in striatal
circuits could be transmitted via the striato-pallidal projection
and thus introduced into the STN-GPe network (McCarthy et al.,
2011; Corbit et al., 2016). Of the two loops converging on GPe
neurons, inhibitory striatal afferents would be better suited to
interrupt ongoing activity and influence the phase compared to
excitatory STN afferents. Hence, the iMSN to GPe projection

could play an important role in patterning neural activity in the
STN-GPe network.

Phase vector plots in the previous section show that STN and
GPe neurons settle into a particular phase relationship where
STN leads GPe by 60–90 degrees which contributed to sustaining
beta-band oscillations. We hypothesized that inhibitory inputs
from the striatum would either disrupt this phase relationship,
thereby suppressing beta-band oscillations, or reinforce them
depending on where in the phase of the beta oscillation they
arrive. To investigate this hypothesis, surrogate striatal spike
trains exhibiting beta frequency bursts were generated and the
phase with respect to the incoming cortical oscillation was
increased in increments of 45 degrees by varying the onset time
of bursts. As iMSN-GPe synapses exhibit short-term facilitation,
bursts administered through this projection led to an increase in
inhibition to the GPe that was greater than the relative increase
in spike rate. To compensate for this effect and maintain a
physiological firing rate range of the GPe neurons, the peak
conductance of iMSN-GPe synapses was reduced by 60%.
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Varying the phase of striatal relative to cortical bursts revealed
that populations connected by an inhibitory projection, i.e.,
iMSN, GPe, and STN maintained a rigid phase relationship with
respect to the cortical oscillation (Figure 8: population vectors in
green, red, purple formed a rigid frame that rotated relative to the
cyan-colored cortical population vector). The local maximum in
phase locking occurred when excitatory CTX and inhibitory GPe
afferents to STN fired in anti-phase, occurring when the CTX-
iMSN phase difference was set to 225 degrees (Figures 8B,D,Ei).
This supports the feedback inhibition hypothesis where cortical
patterning is promoted when GPe-STN inhibition is offset in
phase relative to cortical excitation in PD (Baufreton et al.,
2005; Mallet et al., 2008a, 2012). The changing phase relationship
of cortical spiking relative to the three other populations also
shifted the balance of excitatory and inhibitory currents in the
STN (Figure 8Ai). Maximum phase locking occurred where the
STN was maximally inhibited (E/I ratio ≈ 1.1, population firing
rate ≈ 21 Hz), whereas minimum phase locking coincided with
maximum excitation (E/I ratio ≈ 1.3, population firing rate
≈ 40 Hz). In the GPe this relationship between phase locking
strength and firing rate was reversed (Figure 8Ai) whereas
the relationship with E/I ratio showed no clear trend. The
optimal phase relationship of 225 degrees further strengthened
phase locking to the applied beta rhythm compared to the
situation with only cortical oscillatory inputs. Maximum vector
length was increased by a factor of two, confirming increased
synchronization, in both populations when compared to the
case where only cortical beta frequency inputs were simulated.
Maximum power at the oscillation frequency was also increased
by a factor of 2.7 in STN and 5.2 in GPe.

Mechanism of Phase Locking
To further illustrate the interaction between synaptically coupled
STN and GPe neurons in the model under conditions of
synchronous oscillatory beta-band activity, the mechanism of
phase locking of STN cells is presented in Figure 9. Pooled
cortical spike trains (Figures 9A,B, green) illustrate how sparse
cortical beta bursts (Figure 7B) result in distributed synaptic
inputs to individual STN neurons that are not tightly phase
locked, but have a combined firing rate that is modulated at
the beta frequency. While these exogenous cortical inputs had
high spike timing variability, STN and GPe spikes became
highly structured and tightly locked to the beta oscillation
through the feedback inhibition mechanism. The cortical beta
modulation is transmitted to the STN and then to the GPe
through their excitatory projections (see phase vectors in
Figure 8Dii). When the inhibitory feedback arrives back in
STN this shuts down spiking (Figure 9A) and simultaneously
primes the cell for the next period of increased cortical
excitation by de-inactivating Ca2+ channels (Figure 9C) and
Na+ channels. As the cortical firing rate rises again, synaptic
currents (Figure 9B) combine with dendritic Ca2+ currents to
overcome any lingering inhibition and cause the next wave
of phase-locked STN spikes. The striatal beta inputs further
decreased spiking variability of GPe neurons by narrowing their
time window of firing through phasic inhibition (purple phase
vector in Figure 8Dii).

DISCUSSION

A new model of the STN-GPe network is presented that
incorporates biophysically detailed multi-compartment cell
models. The individual STN and GPE cell models capture
the interaction of intrinsic and synaptic membrane currents
with non-uniform subcellular distributions across the dendritic
structure, which can not be captured in single compartment
models. The model illustrates how phase locking of STN and
GPe neurons, and increased bursting of STN neurons, can
arise from the interaction of these currents when their relative
strengths and temporal relationships are altered. The STN-
GPe model network showed an intrinsic susceptibility to beta-
band synchrony that manifest as weak, autonomously-generated
endogenous oscillations and selective amplification of exogenous
beta-band synaptic inputs at the network’s preferred oscillation
frequency. The frequency at which endogenous beta oscillatory
activity occurred varied with the ratio of excitatory to inhibitory
currents to the STN. Varying the phase relationships between
external beta-frequency inputs to the network through cortical
and striatal pathways further increased or suppressed the level of
amplification of cortical beta inputs by modulating the temporal
dispersion of action potentials in STN neurons and thereby
influencing the precision of phase locking. Varying synaptic
strengths within the network affected the balance of excitation
and inhibition in both STN and GPe neurons and produced a
rich set of behaviors, not only modulating firing rates but also
affecting synchronization and bursting properties of neurons.
Homeostatic mechanisms mediated by feedback connections
and short-term synaptic plasticity dynamics served to stabilize
the excitation-inhibition balance in the GPe and reduced the
sensitivity of its population firing rate to variations in pre-
synaptic rates.

Oscillatory Properties of the
Multi-compartmental STN-GPe Network
In the autonomous STN-GPe network, under conditions of
Poisson distributed external synaptic inputs, STN neurons
exhibited weak synchronization to the endogenous beta rhythm
but retained a weak phase preference with respect to the
stronger oscillation in the GPe population (Figures 2–4). The
synchronization strength of STN neurons was found to depend
on the relative strength of GABAA and GABAB receptors in
STN dendrites (Figure 5), with an increase in the proportion
of fast-acting GABAA receptors resulting in an increase in the
strength of oscillation. The endogenous oscillation frequency of
the STN-GPe network was further influenced by the balance
of excitatory and inhibitory currents in the STN. This balance
affected the net level of excitatory drive in the network,
shifting the oscillation frequency toward the higher beta range
for increased levels of excitatory drive (Figures 2A, 5D).
Besides affecting population firing rates and the frequency of
synchronous oscillations, the excitation-inhibition balance also
strongly influenced the firing pattern of STN neurons: for a
low ratio of excitation to inhibition and sufficiently strong
inhibitory currents, STN neurons transitioned to a firing mode
characterized by low-frequency tight bursts (high intra-burst
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FIGURE 8 | The phase relationship between cortical and striatal beta-band inputs to the STN-GPe network affects the strength of phase-locking by setting the relative

timing of excitatory and inhibitory STN afferents. Response of the STN-GPe network to oscillatory bursting inputs applied via both cortico-subthalamic (CTX-STN) and

striato-pallidal (iMSN-GPe) afferents. The phase difference between cortical and striatal oscillatory bursts was increased in steps of 45◦. All phase vectors were

measured with respect to the instantaneous phase of the cortical oscillation. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii) neurons,

showing weakening and strengthening of oscillations as relative phases of inputs are rotated. (B,C) Representative spike trains and phase vectors of STN (column i,

green) and GPe population (column iii, red) for CTX-iMSN phase difference of 90◦ (C) and 225◦ (D). Column ii shows phase vectors of the STN, GPe, CTX, iMSN

populations (in green; red; blue; purple, respectively; mean population vectors plotted as thick solid lines and cell vectors as thin transparent lines). (D) Balance of

excitation and inhibition in the STN (Di) and GPe (Dii) based on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net

synaptic current (blue). Shaded areas represent estimated total synaptic current from one pre-synaptic population during a simulation. (E) Population vector length

and angle of STN (green) and GPe (red) population. (F) Metrics that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and coefficient of

variation of ISIs across all STN cells.

firing rate, Figures 2–4). Low-frequency bursting was periodic
at 2–5 Hz but was not synchronized between cells. This shift in
firing pattern toward sparse, tight bursting is in correspondence

with changes in burst-related measures such as intra-burst
firing rate and sub-beta band power that are most predictive
of akinetic-bradykinetic symptoms in humans (Sharott et al.,
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FIGURE 9 | Mechanisms contributing to phase locking of STN cells to cortical beta oscillations. Recordings of synaptic currents and T-type calcium (CaT) channel

inactivation from an identified phase-locked STN cell during a simulation with high phase locking (analogous to Figure 8D, cortical and striatal beta bursts at 20 Hz

with phase difference of 225 degrees). Inactivation variables were recorded from each compartment with CaT ion channels and averaged over all compartments in the

cell. Zero-crossings of the instantaneous beta phase are indicated using vertical dotted lines. (A) Somatic membrane voltage during phase-locked interval (blue).

Spike trains from excitatory (green) and inhibitory (red) afferents to the cell were pooled. (B) Total excitatory and inhibitory synaptic current (in green; red, respectively)

and pooled spike trains underneath. (C) Mean CaT channel inactivation across the cell’s dendritic tree. High values correspond to de-inactivation. Transient

de-inactivation approximately one half period after an inhibitory barrage engages depolarizing T-type Ca2+ current and contributes to phase-locked spiking.

2014) and monkeys (Sanders et al., 2013). The firing rate and
pattern of GPe neurons was less sensitive than that of STN
neurons to variations in its excitatory or inhibitory drive due
to the contribution of negative feedback control by homeostatic
mechanisms that operated in synergy to stabilize its E/I ratio.
However, GPe neurons did synchronize more strongly under
conditions of low excitatory drive from the STN enabling them
to act more autonomously and synchronize through inhibitory
collaterals within the GPe network.

When beta-band spiking inputs were applied to the STN-GPe
network via cortico-STN afferents, the STN-GPe network phase
locked to the beta rhythm. Frequencies near the autonomous

oscillation frequency for a given E/I ratio were preferentially
amplified, reflected in increased phase locking and power of
the somatic membrane voltage at that frequency (Figure 6).
This is supportive of experimental observations that oscillatory
activity in STN is contingent on cortical oscillations (Magill
et al., 2001), likely transmitted though the hyperdirect pathway
(Tachibana et al., 2011). Phase locking and beta frequency power
were further strengthened by the addition of striatal oscillatory
inputs with a particular phase relationship to cortical oscillatory
inputs (Figure 8). Maximum phase-locking occurred when GPe
spiking was aligned in anti-phase with cortical inputs to the
STN (Figures 8C,E). When excitation and inhibition occurred
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in anti-phase, inhibition was likely more effective at transiently
hyperpolarizing the membranes of STN neurons, suggested
by the local minimum in their E/I ratio (Figure 8Di). Strong
hyperpolarization can evoke low-latency, temporally precise
responses to an excitatory stimulus by de-inactivating Ca2+ and
Na+ channels, and thereby priming them to respond to excitatory
cortical inputs (Bevan et al., 2007). This mechanism may be
responsible for the increase in phase locking under this phase
relationship. In contrast, phase alignment of cortical and GPe
neurons, corresponding to coincident firing, desynchronized
STN neurons (Figure 8C). These findings are in agreement
with recent experimental observations which demonstrate that
co-stimulation of GABAergic and glutamergic STN afferents
disperses STN spiking and has a desynchronizing effect on the
population (Amadeus Steiner et al., 2019). Overall, the simulation
results are consistent with the hypothesis of cortical patterning
and resonance of beta activity within the STN-GPe network
through feedback inhibition, whereby GPe inhibition arriving in
anti-phase to cortical excitation promotes phase locking of STN
neurons to beta-band cortical inputs (Baufreton et al., 2005).

Relation of Mechanism of Oscillations to
Other Models of Oscillatory Activity in the
STN-GPe Network
The mechanism by which oscillatory neural activity can be
generated in the STN-GPe network, by alternating phases of
excitation and inhibition in a delayed negative feedback loop, has
been described in previous models (Terman et al., 2002; Holgado
et al., 2010; Kumar et al., 2011). The mechanism of oscillation
in the model presented here is consistent with this, and the
model additionally illustrates the dual role of precisely timed GPe
inhibition in transiently reducing STN neuron excitability and
hyperpolarizing them such that they are primed to respond with
bursting to excitatory cortical inputs (Figure 9). Furthermore,
it highlights the sensitivity of the network oscillation to the
excitation-inhibition balance in each population and synaptic
current properties.

In the multicompartment model, endogenously generated
beta frequency oscillations were generated within the STN-GPe
network when the strength of short duration GABAA-mediated
currents was increased. Since the slow timescale, signaling
cascade-mediated GABAB currents are typically not modeled,
this result can be easily reconciled with results from single-
compartment and firing rate models where high gain within the
closed-loop is a necessary condition for strong endogenously-
generated oscillations in the STN-GPe network (Holgado et al.,
2010; Park et al., 2011; Pavlides et al., 2012; Wei et al., 2015).
The strength of the endogenous oscillations in our model was
relatively weak, except when inhibitory GPe-STN currents were
strongly dominated by fast-acting GABAA-mediated currents
and GABAB-mediated slow currents were weak. The oscillation
frequency of the network could bemodulated by varying the ratio
of excitation to inhibition in STN and GPe, and increased as this
ratio increased (Figure 6).

The oscillation frequency of the network has been shown
to be sensitive to model parameters in previous computational
models of the BGTC network. Specifically, in mean field models

of the STN-GPe loop the oscillation frequency showed a strong
sensitivity to transmission delays and neuronal membrane time
constants (Holgado et al., 2010; Liénard et al., 2017), and a weaker
sensitivity to coupling strengths (Holgado et al., 2010; Pavlides
et al., 2015; Liu et al., 2017), also demonstrated in a spiking model
(Wei et al., 2015). In the multicompartment model presented
here, where active ion channels on the dendrites contribute to
synaptic integration, synaptic strength and effective membrane
time constant are interdependent since the membrane charging
speed is affected by transient activation of ion channels as a
response to synaptic inputs. In biological neurons the balance
of excitation and inhibition is tightly regulated through multiple
adaptive processes (Turrigiano, 2011), and likely maintains the
range of possible oscillation frequencies within a narrow range.

Other than the condition where GPe-STN currents
were dominated by fast-acting GABAA currents, strongly
synchronized beta-band oscillations appeared only when
exogenous beta-band inputs were introduced to the network
(Figures 6, 8). These results, therefore, support a role for
resonance with oscillations throughout other basal ganglia
loops in the generation of increased STN-GPe beta activity in
Parkinson’s disease. Such an oscillatory drive can be provided
either by an extrinsic oscillator, assumed to originate within the
cortex in the present model, or by reverberation of oscillations
in connected feedback loops such as the pallido-striatal loop
(Corbit et al., 2016), intra-striatal loops (McCarthy et al.,
2011), or the larger thalamocortical loop (Dovzhenok and
Rubchinsky, 2012; Kang and Lowery, 2013; Pavlides et al.,
2015; Reis et al., 2019). The model exhibited clear resonance in
response to excitatory synaptic inputs to the STN within the
beta frequency range (Figure 6). The frequency at which the
maximum resonance occurred increased with increasing ratio
of excitation to inhibition, similar to the increase in frequency
observed in the case of endogenously generated oscillations.
Resonance phenomena in the beta-band have previously been
reported in computational models of basal ganglia networks,
consistent with our modeling results: Pavlides et al. (2015) fitted
mean field rate models to experimental data from non-human
primates and found that the models that best explained the
data relied on a strong cortical oscillation to sustain beta-band
oscillations (∼ 15 Hz) in the network. In a comparable mean-
field model, Liu et al. (2017) found that upper beta-band (21–35
Hz) oscillations in the STN-GPe loop originated from cortical
oscillatory inputs and supported a lower beta-band (12–20 Hz)
oscillation that was endogenously generated. Ahn et al. (2016)
using 10 single compartment STN and GPe neurons observed
multiple resonances in the beta-band when varying the strength
of striato-pallidal and pallida-subthalamic inhibition, with
resonant peaks occurring consistently between 18 and 21 Hz.
Similarly, Fountas and Shanahan (2017) found that STN neurons
in their model exhibited high spontaneous beta-band power
(18–30 Hz) and synchronized selectively with cortical input in
this frequency range.

Model Complexity and Limitations
One of the main advantages of the biophysically detailed model
presented here is that the model can capture the non-uniform
distribution of afferent inputs from different pre-synaptic
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populations across the dendritic tree (Tables 3, 5). This targeting
of specific regions of the dendrites by different populations can
lead to variations in synaptic integration properties within the
structure. This feature is potentially of particular importance in
the generation of pathological oscillations given that neuronal
phase response curves, used to quantify the tendency of neurons
to synchronize to their inputs, differ when stimuli are applied
to different subcellular regions in STN and GPe neurons
(Schultheiss et al., 2010; Farries and Wilson, 2012). Hence, a
model that incorporates a full complement of ion channel and
the synapse groups that interact with them may be expected
to yield a more realistic representation of how synchronization
arises in the network. In future studies, this could also contribute
to a better understanding of neuronal currents contributing
to the local field potential in synchronized and asynchronous
states, as synaptic and ionic transmembrane currents combine
to form the extracellular currents that underpin this signal
(Buzsáki et al., 2012).

A second advantage of such detailed multicompartment
models is that parameters have a clear relationship to the
underlying biophysical system and are more meaningful in
terms of physiological processes compared to models where
parameters are lumped, as in single-compartment conductance-
based models, or abstracted as in mean-field or generalized
integrate-and-fire models. This allows for a more direct
translation of experimental findings to parameter variations in
the model. On the other hand, detailed cell models are more
sensitive to correct estimation of these parameters which is
limited by measurements performed for the purpose of model
fitting as well as the fitting procedures themselves. Biophysically
detailed models offer new ways to study factors contributing
to the development of synchrony. Such models provide a
means to investigate the relative contributions of physiological
mechanisms to the development of synchrony while controlling
other factors in a manner that is not possible in vivo. Though
the model presented incorporates a higher level of physiological
detail than previous models of the STN-GPe network, several
simplifications were necessary due to the model complexity,
which should be considered.

Downregulation of HCN channel currents with dopamine
depletion was modeled as a decrease in its peak conductance.
However, dopamine is known to interact with several more ion
channels that are involved in linearizing the current-firing rate
curve and regularizing autonomous pacemaking of STN neurons
(Loucif et al., 2008; Ramanathan et al., 2008; Yang et al., 2016)
which are not included in the STN cell model used here (Gillies
and Willshaw, 2005). Recent evidence suggests that the loss of
autonomous spiking is a necessary condition for the exaggerated
cortical patterning of STN related to motor dysfunction (McIver
et al., 2018). Better characterization of the ion channels involved
in pacemaking and their response to dopamine depletion will
enable the systematic exploration of their contribution to STN
response properties and pathological firing patterns.

In our network model the main sources of firing rate
variability were randomness in the input spiking patterns, the
presence of surrogate Poisson spike sources in STN and GPe,
membrane noise, and randomness in connection patterns and

the position of synapses. However these factors do not capture
the full biological variability in morpho-electric cell types,
synaptic strength distributions, and resulting firing patterns in
each population. In the GPe, two distinct populations have
been identified based on their molecular profile and axonal
connectivity (Mallet et al., 2012). Only the prototypic sub-
population projecting mainly to STN and preferentially firing
in anti-phase to it was modeled here, with the arkypallidal sub-
populations projecting back to striatum omitted. Moreover, the
GPe cell model used was only one representative candidate out
of a large set of models with varying ion channel expression
and morphology that matched a corresponding database of
electrophysiological recordings (Gunay et al., 2008). Similarly,
the STN model represents a stereotypic characterization rather
than a reconstruction of a specific STN cell and does not
capture variability in firing properties and receptor expression.
In particular, STN neurons in vivo are known to have variable
expression of GABAB receptors (Galvan et al., 2004) which
cause strong hyperpolarization responses and longer pauses in
some but not all STN neurons (Hallworth and Bevan, 2005)
and a strong rebound burst response (Galvan et al., 2004) in
a subset of these. A model that accounts for the biological
variability in GABAB expression and that of channels underlying
the rebound response may reveal a wider range of responses
to increased inhibition among STN neurons. In such a model,
beta rhythms could be transmitted to a subset of STN neurons
whereas others would show longer pauses with stronger rebound
bursts. Moreover, the GABAB synapse model used does not fully
account for activation of extrasynaptic GABABR due to GABA
spillover (Galvan et al., 2004) which is mediated by tonic high-
frequency and coincident firing of afferents (Bevan et al., 2006).
A model where multiple GABAergic synapses act on a shared
pool of extrasynaptic GABABR might increase the importance of
synchronized pre-synaptic activity in switching STN neurons to
a burst-firing mode.

The effect of the correlation between cortical and striatal
inputs to the network was explored by varying the relative phases
of both populations when firing in a synchronous oscillatory
pattern (Figure 8). Uncorrelated firing between both populations
was also explored (Figures 2–7). In reality, beta activity in both
populations is likely to be correlated as the striatum receives
topographic inputs from the same cortical areas projecting to the
STN. Such correlation could lead to transient synchronization
effects not explored here, that could promote or counteract
additional oscillatory synchronization depending on the exact
phase relationships. The effect of varying connectivity patterns
between neuronal populations was not directly explored here.
The development of neural synchronization and oscillatory
activity are known to be dependent on network topology (Zhao
et al., 2011), and this effect has previously been studied in a
single compartment model of the STN-GPe network (Terman
et al., 2002). The network topology used in the present study is
closest to the random, sparsely-connected topology in Terman
et al. (2002) which was shown to develop synchronized bursting
patterns at lower frequencies. Choosing different randomly-
generated connection matrices did not qualitatively change our
results, however altering the connection topology would likely
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lead to different synchronization properties. Moreover, it is
known that connection patterns within the basal ganglia are
altered with dopamine depletion, particularly within the striatum
(Cho et al., 2002), leading to a loss of input specificity in neuronal
responses (Bronfeld and Bar-Gad, 2011). These alterations in
connection patterns and resulting effects on spike correlations
were not taken into account as we did not consider cortico-
striatal connectivity in our model. As arkypallidal GPe neurons
were not modeled, the pallido-striatal feedback loop was not
captured. This additional feedback loop has also been suggested
as a candidate pacemaker circuit for beta-band oscillations
(Corbit et al., 2016), however, blocking of striatal inputs was
not found to reduce the power of beta oscillations in rat GPe
(Tachibana et al., 2011).

Finally, while there is consistent evidence of increased beta-
band oscillatory activity in Parkinsons disease (Sharott et al.,
2005; Mallet et al., 2008b) and a reduction of pathological beta
band activity with interventions that improve symptoms in
patients and animal models of the disease (Kühn et al., 2006;
Weinberger et al., 2006; Ray et al., 2008; Eusebio et al., 2011),
strong evidence in support of a causal role for pathological beta
activity in the symptoms of Parkinsons disease has yet to be
established. Indeed, recent studies failed to find evidence of any
causal link between artificially induced beta band activity and
motor impairment in parkinsonian rats (Swan et al., 2019), nor
between the reduction of beta band activity and alleviation of
motor symptoms (Pan et al., 2016). A lack of causality, however,
may not necessarily be incompatible with the use of beta-band
oscillations as a clinical biomarker, particularly for akinetic-
bradykinetic forms of Parkinson’s Disease at advanced stages of
disease progression. Initial trials of adaptive or closed-loop DBS
strategies targeted at suppression of beta-band activity have been
successful in demonstrating simultaneous reductions in patient
symptoms (Little et al., 2013; Velisar et al., 2019). Beta-band
power may thus still be a suitable biomarker to indirectly gauge
underlying physiological changes that are more directly related to
network dysfunction such as alterations in synaptic strengths and
functional connectivity within the network.

Sharott et al. (2005), Mallet et al. (2008b), and Kuhn
et al. (2008), and are reduced by DBS and pharmacological
interventions that alleviate parkinsonian motor symptoms
(Kühn et al., 2006; Weinberger et al., 2006; Ray et al., 2008;
Eusebio et al., 2011).

Conclusion
In summary, a biophysically detailed model of the parkinsonian
STN-GPe network is presented which captures non-uniform
distribution of ion channels and synapses in neuronal dendrites.

The network model exhibited an intrinsic susceptibility to
synchronous neural oscillations within the frequency range of
pathological beta-band activity observed in Parkinson’s disease.
Oscillations in the autonomous STN-GPe network, however,
were too weak to support a pacemaker role as the sole
origin of beta-band oscillations in the wider BGTC network
in Parkinson’s disease. In particular in the STN, autonomous
beta-band oscillations and phase locking of individual cells were
weak unless slower GABAB-mediated currents were substantially
reduced. Beta-band oscillations were considerably amplified by
a relatively sparse cortical beta input, with clear resonance
occurring within the beta frequency range. The frequency at
which the resonant peak occurred increased with increasing ratio
of excitatory to inhibitory STN inputs. beta-band oscillations
were further amplified by striatal beta inputs that promoted anti-
phase firing of cortex and GPe. These results support the cortical
patterning and network resonance hypothesis for the generation
of pathological beta-band oscillatory activity in Parkinson’s
disease in a multi-compartment model of the STN-GPe network.
They also illustrate the potential of the pallido-striatal feedback
loop in further amplifying beta oscillations within the network.
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Patterns of Large Scale Networks in
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Kosuke Takagi*
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Successive patterns of activation and deactivation in local areas of the brain indicate

the mechanisms of information processing in the brain. It is possible that this process

can be optimized by principles, such as the maximization of mutual information and the

minimization of energy consumption. In the present paper, I showed evidence for this

argument by demonstrating the correlation among mutual information, the energy of

the activation, and the activation patterns. Modeling the information processing based

on the functional connectome datasets of the human brain, I simulated information

transfer in this network structure. Evaluating the statistical quantities of the different

network states, I clarified the correlation between them. First, I showed that mutual

information and network energy have a close relationship, and that the values are

maximized and minimized around a same network state. This implies that there is an

optimal network state in the brain that is organized according to the principles regarding

mutual information and energy. On the other hand, the evaluation of the network structure

revealed that the characteristic network structure known as the criticality also emerges

around this state. These results imply that the characteristic features of the functional

network are also affected strongly by these principles. To assess the functional aspects

of this state, I investigated the output activation patterns in response to random input

stimuli. Measuring the redundancy of the responses in terms of the number of overlapping

activation patterns, the results indicate that there is a negative correlation betweenmutual

information and the redundancy in the patterns, suggesting that there is a trade-off

between communication efficiency and robustness due to redundancy, and the principles

of mutual information and network energy are important to network formation and its

function in the human brain.

Keywords: functional connectome, information processing, mutual information, network energy, activation

pattern, large scale brain network
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1. INTRODUCTION

Interactions of ∼100 billion neurons, which are a part of the
human brain, maintain its functions within a hierarchical and
modular network structure (Azevedo et al., 2009; Meunier et al.,
2010; Park and Friston, 2013). Empirical evidence demonstrate
that a stimulus for local excitatory neurons at a cellular level can
be etiologically associated with large-scale brain activity, which
may propagate through numerous neuronal interconnections
(Beggs and Plenz, 2003; Beggs, 2008; Lee et al., 2010; Fenno et al.,
2011; Tagliazucchi et al., 2012). Over the years, studying task
evoked brain activity via whole-brain imaging has been successful
in mapping specific cognitive functions onto distinct regions of
the human brain (e.g., Kanwisher et al., 1997).

Furthermore, several studies that have examined the brain’s
responses to more complex tasks, reported that various cognitive
functions arise from interactions between regions of the brain
rather than independent single activities in distinct regions of
the brain (Ghazanfar and Schroeder, 2006; Bressler and Menon,
2010). In the large-scale networks of the human brain, activation
signals from segregated and specialized regions are integrated in
information processing (Tononi et al., 1994; Hilgetag and Grant,
2000; Sporns, 2013). Thus, the brain can be conceptualized as
an information processing system, hereby successive patterns
of activation and deactivation in multiple distributed regions
constitute integrated information processing. Furthermore, the
brain must adapt to changing environments, so these processes
might be optimized to ensure rapid and flexible response (Bassett
et al., 2006; Kitzbichler et al., 2009; Clark, 2013; Park and Friston,
2013; Mnih et al., 2015). On the other hand, the brain is limited
by its energy requirements and by other biological realities
(Bullmore and Sporns, 2012). Thus, the need to maximize
efficiency of information processing and minimize total energy
consumption may regulate the mechanisms underlying the
structure and the function of the brain (Linsker, 1990; Friston,
2010; Bullmore and Sporns, 2012).

This argument is known as the energy efficiency hypothesis,
which covers a wide range of activities from the cellular level of
neurons to the global level observed at the scale of the whole
brain (Bullmore and Sporns, 2012; Yu and Yu, 2017). Evidence
for this hypothesis has shown that the energy constraints and
limitations may affect multiple aspects of the brain neurons
by inducing efficient activities (e.g., Niven and Laughlin, 2008;
Tomasi et al., 2013; Yu and Yu, 2017). The energy consumption
models of neurons have especially been studied in detail, and they
have revealed the requirements from energy efficiency effects on
neuronal activities or on those at the cortical level follow the
energy efficient principle (Wang et al., 2008, 2015, 2018; Wang
and Wang, 2014).

In the present paper, I present evidence that this pattern
is especially the case in the information integrating processes
in a large scale network, demonstrating that maximization
and minimization principles guide the network structure and
activation patterns of the human brain. Based on functional
connectome data acquired using resting-state functional MRI
(fMRI) (Sporns, 2002; Fox and Raichle, 2007; van den Heuvel
et al., 2008; Greicius et al., 2009; Biswal et al., 2010; Van Dijk

et al., 2010; Brown et al., 2012), I simulated information transfer
by applying randomly activated signals to a network represented
by brain connectivity matrices (Takagi, 2018). I measured mutual
information (Linsker, 1990) between random stimulus signals
and their responses and also quantified the network energy
associated with these activities (Hopfield, 1984; Hinton and
Salakhutdinov, 2006). By varying the functional connectivity
network between noisy and sparse states, I showed an explicit
correlation between these quantities. The results suggest that
there is an optimal intermediate between these states, whereby
mutual information is maximized and the network energy
is minimized.

On the other hand, evaluation of the network structure
around this optimal intermediate state revealed some features
that are characteristic of the functional connectome, such as
small-world and criticality (Watts and Strogatz, 1998; Achard
et al., 2006; Bassett and Bullmore, 2006; Hagmann et al.,
2008; van den Heuvel and Sporns, 2011; Takagi, 2017, 2018).
These characteristic attributes are thought to explain the
brain’s rapid adaptive responses to external stimuli and the
robustness of its internal communication (Kitzbichler et al.,
2009; Chialvo, 2010; Tagliazucchi et al., 2012). Experiments at
a cellular level demonstrated that neuronal firing successively
propagated similar to neuronal avalanches; however, their size
has no characteristic scale (Beggs and Plenz, 2003; Beggs,
2008). However, analyzing the fMRI dynamics revealed that
the dynamic and statistical properties which regulate activation
events on a scale of the whole brain were identical (Tagliazucchi
et al., 2012). This feature of the dynamics appeared across
multiscale from the cellular level to the brain macro scale
is explained by the feature of the criticality, the absence of
the characteristic scale (Beggs and Plenz, 2003; Beggs, 2008;
Tagliazucchi et al., 2012). Additionally, optogenetic methods
combined with fMRI facilitate direct visualization of the global
level activity caused by local neuronal excitation (Lee et al.,
2010; Fenno et al., 2011). Besides the absence of a characteristic
scale for these dynamical activation events, an identical feature
that is predicted from the criticality can be confirmed in
the functional network structure, which was constructed using
the spatio-temporal correlations between brain regions. To
illustrate, network node degree statistics exhibit the distribution
characteristic similar to the critical phenomenon (Achard et al.,
2006; Bassett and Bullmore, 2006; Hagmann et al., 2008; Takagi,
2017). Moreover, within these networks, strongly connected
pathways compose core structures with highly connected hub
regions that modulate information processing in the brain
(Hagmann et al., 2008; van den Heuvel and Sporns, 2011).
Processing in these regions may control multiple brain functions
(Rubinov and Sporns, 2011). The results show that, to ensure
optimal efficiency and energy use, the network structure
converges on this characteristic state exhibiting small-world
and criticality.

Further analyses of the simulation results of the information
transfer model revealed direct evidence that this characteristic
state regulates activation patterns (Takagi, 2018). In the
simulation, response patterns exhibited redundancy in that
they contained repeatedly co-activated regions with different
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stimulation signals. In the cerebral cortex, activation patterns
exhibit overlapping that can be measured as the proportion of
regions activated equally in the different patterns. This can in
turn be related to cognitive processes, such as memory retrieval
(Haxby et al., 2001; Kumaran et al., 2016). While functionally
overlapped regions may offer robustness in communication and
facilitate adaptation (Whitacre, 2010; Bassett et al., 2018), excess
overlapping causes interference. This can result in decoding
difficulties that can be costly in terms of metabolic consumption
(Kumaran et al., 2016). In the present study, the average of the
overlapping numbers depended on the mutual information and
the network energy. It showed the negative correlation to the
mutual information and the correlation to the network energy.
The results imply that the principles of mutual information and
network energy strongly affect the activation patterns and the
underlying structure of the functional network in the brain.

On the other hand, it is known that the functional connectivity
is flexible within certain dynamics; for example, alterations
in diseased brains, or the break-down from criticality in the
unconsciousness, have been reported (Tagliazucchi et al., 2016;
Song et al., 2019). As such, the robustness of the simulation
results in this paper are validated, in comparison to different
datasets, such as those with different sized matrices with different
sets of nodes and those that were constructed from the structural
connections based on diffusion tensor imaging (DTI) (Sporns
et al., 2005; Brown et al., 2012). They also indicate that the
relationships between the mutual information, the energy of the
activation, and the activation patterns that emerge are stable
within these networks as well.

2. MATERIALS AND METHODS

2.1. Connectome Datasets and Information
Transfer Model
2.1.1. Functional Connectome Datasets
I modeled information transfer in the large scale network of the
human brain using a functional connectivity matrix constructed
from fMRI observation (Takagi, 2018). As explained in the
introduction, a stimulus at the cellular level can trigger avalanche
events at a whole-brain scale due to the characteristic features
of the critical phenomenon. Whole-brain scale observation
through fMRI revealed that neighboring voxels overlapping in
their dynamics show similarities in time series data, because of
successive appearances of these events (Calhoun et al., 2009;
Smith et al., 2011; Smith, 2012; Tagliazucchi et al., 2012).
Therefore, it is possible that the information relevant to the
underlying brain activity is compressed (Tagliazucchi et al.,
2012). Furthermore, a relevant network model is constructed by
extracting nodes, through independent component analysis or
clustering voxels on the basis of the similarity (Calhoun et al.,
2009; Smith et al., 2011; Smith, 2012; Tagliazucchi et al., 2012).

To accurately analyze the network in the whole-brain scale,
hundreds of nodes are typically utilized to construct a network
from fMRI time series data (Smith, 2012; Finn et al., 2015).
The validity of the network construction is then indicated by
the robustness for different individual subjects (Smith, 2012;

Finn et al., 2015). Here, the validation of the pre-processed
network datasets was demonstrated by the results of my
previous study using the same dataset, which reported a stable
statistical significance regarding the network structure (Takagi,
2018). Additionally, the robustness of the current study and
the consistency with other studies will be discussed in the
final section.

For each combination of single regions in the brain, the
connectivity matrix was described as a matrix (wij), whereby (i, j)
represented the connection weight between regions denoted as i
or j. For the time series data of the fMRI image, the connectivity
was calculated as the Pearson correlation coefficient between
voxels corresponding to these regions. In the present study, I
used the preprocessed connectivity matrices, which are available
from http://umcd.humanconnectomeproject.org/: the website of
the USC Multimodal Connectivity Database (Brown et al.,
2012), which contains matrices constructed from the functional
connectome datasets of the “1,000 connectome project” (Biswal
et al., 2010). The original datasets in this project were obtained
using resting-state fMRI (R-fMRI), which records activation
patterns in brain regions during the resting state and is thought to
describe the common architecture of the human brain (van den
Heuvel et al., 2008; Greicius et al., 2009; Biswal et al., 2010;
Van Dijk et al., 2010; Brown et al., 2012). The matrices comprised
N × N elements with N = 177 brain regions and were assumed
to cover the entire brain. The details of the processing sequence
to construct these matrices are shown in the above website and,
in this analysis, I use 986 matrices for different individuals, which
are available from the same site (Brown et al., 2012).

Brain activity naturally fluctuates and the connectivity matrix
contains noise and artifacts (Eguiluz et al., 2005; Fox and Raichle,
2007; Brown et al., 2012). To construct the network structure
with significant elements, threshold was applied to the matrix
(wij) (Eguiluz et al., 2005; Brown et al., 2012; Zuo et al., 2012).
Because strongly connected pathways form core structures that
are relevant to the network structure of the brain (Eguiluz
et al., 2005; Brown et al., 2012), I removed connections with
small connectivity weights using a threshold and constructed
the network with the residual connections. After introducing
the threshold wt for the connectivity weight wij, I obtained a
network description consisting of connections corresponding
to the |wij| > wt elements. In this analysis, considering the
differences between individuals, I defined the threshold value
of each individual connectivity matrix wt based on the average
connectivity< |w| > and the standard deviation σ|w|. I calculated
< |w| > and σ|w|, and defined the cut-off threshold in terms of
the following equation:

wt =< |w| > +n · σ|w|, (1)

with a parameter of n.

2.1.2. Structural Connectome Dataset
The simulation results based on the above functional connectome
datasets were compared to the structural connectome, and the
other connectome datasets describing the physical connection
between brain regions. The structural connectome datasets are
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constructed by the diffusion tensor imaging (DTI) method,
which traces the fiber tracts between brain regions and forms
another network at the whole brain scale, known as the structural
connectome (Sporns et al., 2005). The dataset is available from
the above website (http://umcd.humanconnectomeproject.org/)
with the pre-processed matrix of the connectivity strength being
the same to the fMRI cases (Brown et al., 2012). The DTI dataset
is taken from a subsect of the “1,000 connectome project,” tagged
as “NKI_Rockland” for the “Study Name” item, from the Nathan
Kline Institute (NKI)/Rockland sample in the web site. It contains
the matrices of 196 individuals, and each matrix has N = 188
matrix elements (188 × 188).

2.1.3. Information Transfer
Information in the brain is transferred by successive signal
propagation; this can be represented by the activated state of
each site (Tononi et al., 1994; Hilgetag and Grant, 2000; Beggs
and Plenz, 2003; Ghazanfar and Schroeder, 2006; Beggs, 2008;
Bressler and Menon, 2010; Sporns, 2013; Takagi, 2018). For
each node in the functional network, three states {1,−1, 0}
were assigned because the responses of neuronal activity can be
categorized as positive and negative (Fox et al., 2005; Shmuel
et al., 2006). In this representation, the inactivated regions were
assigned the 0 state, while the two states at ±1 represented
positive and negative activation states, respectively.

When considering information transfer, I represented a whole
state of the brain as S = (s1, . . . , sN) for a network size N,
whereby the i-th node was assigned as si ∈ {1,−1, 0}. I could
then calculate the responses R = (r1, . . . , rN) ri ∈ {1,−1, 0} for
a given connectivity matrix and threshold. For the given set of
S and connectivity matrix (wij), the response state was evaluated
using the following equation:

rj = σ (
∑

i∈N

wijsi). (2)

I denoted
∑

i∈N wijsi as r̂j, so a threshold of wt , σ (r̂j) was defined
as rj = 1,−1, 0 for cases r̂j > wt , r̂j < −wt , and |r̂j| ≤ wt . In this
simulation, I calculated the information transfer of stimuli S. The
input signals were taken randomly, although I did use the same
probability for positive and negative activation. I then assigned 1
and −1 to each input signal si, with the probability p being set to
0 in the other cases with the probability 1−2p. Each condition in
this simulation was repeated 100 times with each input signal.

2.2. Statistical Quantities of Information
Transfer Model
2.2.1. Mutual Information
To measure information transfer from the imposed stimuli to
the responses, I evaluated the mutual information for the set
of stimulus signals S and the corresponding responses R. It is
defined as H(R) − H(R|S) with H(R), the information of the
response R, and H(R|S), the conditional entropy. This quantity
was used to assess the efficiency of information transfer in the
neural network models and in real biological data (Beggs and
Plenz, 2003; Beggs, 2008).

In the analysis, themutual information of the transfer between
i and j nodes was estimated using the following equation:

m(i, j) = H(si)+H(rj)−H(si, rj), (3)

where the entropy H(si) and H(rj), as well as the joint entropy
H(si, rj), were calculated using the probabilities of each state:
si, rj ∈ {±1, 0}. Next, this quantity was estimated for the whole
network as follows: m =

∑

j < m(j)) > /N, with averaging as

< m(j) >= (
∑

im(i, j))/(N − 1) for all possible connections of
each node j.

2.2.2. Network Energy
The energy of the brain network is described in different ways,
which are mainly categorized into wiring costs for organizing the
network structure and those related to their activity. The total
number of connections determine the wiring cost to organize the
network structure (Achard and Bullmore, 2006; Bullmore and
Sporns, 2012). Thus, the wiring cost based on the topological
structure basically describes the energy demands of the brain
functional network. It is assumed that many characteristic
attributes of the brain network can be explained by minimizing
the wiring cost (Bullmore and Sporns, 2012).

Hence, I defined this energy, the wiring cost denoted as EW ,
using the following equation:

EW =
∑

i,j

ai,j, (4)

where ai,j denotes the element of the adjacency matrix. For an
undirected topological graph of a given matrix, the connection
for each pair of i and jwas represented using the adjacencymatrix
element, which is connected as ai,j = 1 for |wij| > wt , with
threshold wt , and disconnected as ai,j = 0 in other cases.

On the other hand, the Hopfield energy gives a definition
related to the dynamics and the associated information of
the neural networks. For a given network state of activation,
the Hopfield energy provides one definition of the network
energy. It models the network state of the neurons and can
also be applied to artificial neuronal networks (Hopfield, 1984;
Hinton and Salakhutdinov, 2006). Hopfield networks and similar
types of energy representation have been introduced to describe
the energy state of neural networks, modeling the spin glass
network (Hopfield, 1984). One example of the artificial learning
models that use this type of function is the restricted Boltzmann
machine, which evolves by adjusting the network variables
according to rules learned from the energy function (Hinton and
Salakhutdinov, 2006). It is defined as

EH = −(
∑

i,j

riwi,jrj) (5)

whereby I took a bias-free case in accordance with the
transfer model Equation (2).

In the original definition of the Hopfield energy (Hopfield,
1984) bias terms are present, such as those expressed as

∑

i ribi
with constant bias bi assigned the value for each node. In

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 86139

http://umcd.humanconnectomeproject.org/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Takagi Information, Energy, Patterns, and Brain

this simulation, they are excluded as the constants under
the assumption of homogeneity of nodes. According to this
simplification, the simulation is given in the bias-free form, and
takes 0 for the cases, such as the random state as well as negative
values, especially in the low energy states.

However, as the indicator of total activity cost, the Hopfield
energy would be estimated as small as the positive and
negative terms were not included in the definition. To avoid
this cancelation and estimate the total energy cost for the
activity, I introduced a definition of the activity cost using
the absolute values of each term and compared them with the
values mentioned above Equation (5). The definition given was
as follows:

EA =
∑

i,j

|riwi,jrj| (6)

represents the total energy cost for the activation dynamics. It
assesses the contributions from the positive and the negative
signal equally and then evaluates the total amount of signal
activations with their weights. In the discussion, I assessed the
energy of the functional brain network based on these definitions.

2.2.3. Overlapping Number in the Activation Patterns
I analyzed the pattern of the response signals R = (ri) using
the overlapping numbers of the different signals. I evaluated it in
terms of the number of regions activated or deactivated equally
with the different patterns. For the set of response patterns Rj =

(r
j
i), whereby j is an index of the input state, I counted the number

of the same responses r
j
i = r

j′

i for the pair j and j′. I normalized
this overlapping number by the total number of regionsN. I then
wrote it down as

h(j, j′) =
∑

i

π(r
j
i , r

j′

i )/N (7)

where π(r
j
i , r

j′

i ) is 1 for r
j
i = r

j′

i and 0 was taken in the other cases.

I then took the averages of all the pairs of Rj and Rj
′
.

The definition of the overlapping number (Equation 7) is the
same as that of the Hamming distance of the information theory.
It is used, for example, to measure the error in the signal transfer.
In the analysis, it was used to analyze the relationship between
the activation patterns and efficiency of the information transfer.
As excess overlapped states indicated that the variation in the
response S is lost, they resulted in the decrease in the mutual
information entropy.

The program for this network model is available at https://
github.com/coutakagi/fcn2019.git.

2.3. Network Structure and Statistical
Evaluation
The functional connectome is often described in topological or
weighted terms. Different measures are required to assess the
topological network structure, especially in terms of criticality.
To specify the criticality in the activation dynamics, the
characterization is given by the statistics of the avalanche events.
One measure is the mutual information entropy, such as defined

above, which is maximized in this state in comparison to the
super-critical state (in which excess activation is saturated) and
the sub-critical state (in which activations die out due to poor
sensitivity to the stimulus) (Beggs and Plenz, 2003; Beggs, 2008).
This is contrasted to the criticality of the topological structure,
which is usually characterized by appearances of the giant
connected component or other states, such as the small-world
topology (Watts and Strogatz, 1998), which are evaluated by
quantities, such as degree or the clustering coefficients.

Besides the total number of connections, topological
structures were measured in terms of the largest connected
component to provide a basic measure of the topological
network. With using the adjacency matrix, the size of each
connected component was then measured in terms of the
number of nodes in each connected subgraph, and these values
determined the largest connected component of each network.
In the present paper, I measured this quantity using R-package
igraph (Barrat et al., 2004).

On the other hand, to account for connectivity strength
wij, I took the absolute node strength value nsi =

∑

j |wij|

in each node and evaluated its statistical features using a
distribution model (Takagi, 2017, 2018). Due to the criticality
of the brain (Achard et al., 2006; Bassett and Bullmore, 2006;
Hagmann et al., 2008; van den Heuvel and Sporns, 2011; Takagi,
2017, 2018), the distributions of network variables, such as
degree, exhibit a characteristic shape similar to the power law.
However, when I adapted the power law to the distributions, this
straightforward application was prohibited because the energy
constraints on brain activity constitute an upper limits (Takagi,
2017, 2018). In the present study, the same assumption was
applied, and I introduced an upper strength limit of nsmax.
Following this assumption, I obtained an expression for the
normalized variable s̃ = (nsmax − ns) as

p(ns) ∝ (ñs)γ = (nsmax − ns)γ , (8)

with a constant γ (Takagi, 2017, 2018).
Next, I assessed the strength distribution ns in terms of

deviations from this model using the Kolmogorov-Smirnov
(KS) distance (Clauset et al., 2009; Klaus et al., 2011). For the
cumulative distribution pe(ns), which was experimentally given,
and that of the model pc(ns), which was fitted to the data, the KS
distance D was defined using the following equation:

D = max
w

|pe(ns)− pc(ns)| (9)

which measures the maximum distance of the model from
the experimental data. If this value was sufficiently small, the
network probably exhibits the feature characterized by this
distribution model.

Finally, I measured the clustering coefficient C, also known
as transitivity, for each adjacency matrix. This is another
important topological quantity which is often used as an
indicator of the small-world network (Watts and Strogatz, 1998).
It is defined as the probability that the adjacent vertices of
a vertex are connected (Watts and Strogatz, 1998). Here, it
is measured for each adjacency matrix, using the R-package
igraph (Barrat et al., 2004).
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FIGURE 1 | Activation and deactivation patterns in the local regions, and the information transfer associated with these patterns. (A) Activation and deactivation in the

brain is illustrated. In this figure, each circle represents the states of local regions in the brain, with solid lines corresponding to the connection between regions.

Activated regions are represented by red circles, while negatively activated ones are colored in blue. The residual white circles correspond to other inactivated states.

(B) The information transfer associated with these patterns is illustrated. The pattern state in the upper side, which is shown on the line, consists of signals transferred

to the lower sides, where each region state is changed according to the upper input patterns and the connection strengths between the regions.

3. RESULTS

3.1. Information Transfer Model
To analyze the information processing in the large scale network
of the human brain, I simulated information transfer using
successive activation patterns. Because activity in the brain can
be observed as activation and deactivation in local regions,
signal transmission associated with information processing can
be described in terms of successive changing at each site, with
positive or negative activation (Beggs and Plenz, 2003; Fox
et al., 2005; Ghazanfar and Schroeder, 2006; Shmuel et al., 2006;
Beggs, 2008; Bressler and Menon, 2010; Takagi, 2018). In the
model, the given brain state sites, as illustrated in Figure 1A,
were transferred to successive states, which were determined
by the correlation among the sites given by the matrix (wij)
as Figure 1B.

In the simulation, I calculated the response state R = (ri)
of the randomly stimulated signals S = (sj), as represented
by Equation (2), using the connectivity matrices (wij) of the
human connectome. Next, as shown in Figure 2, I evaluated
the efficiency of transfer of the mutual information, defined
as the average of Equation (3). As part of the preliminary
evaluation, I used randomly selected 100 individual matrices
for calculation. I compared this quantity among the different
states, which were varied in terms of the connectivity strength
threshold value wt and the activation probability of the input

stimuli. As shown in this figure, information transfer depended
on these parameters, while the activation probability p =

0.05 gave the maximum values for these different conditions.

Starting from the flatten values for lower thresholds due to its
negative threshold value on the left end, the measurements of the
mutual information entropy increased to their maximum values
in the intermediate states. Moreover, the standard deviations
for the thresholds n = 1.0, 0,−1.0 were evaluated for p =

0.05 as 9.11 × 10−2, 7.45 × 10−2, 1.34 × 10−1. These values
were smaller than their mean values, and these results were
stable. Because I were interested in the state with maximum
mutual information, I used this value, p = 0.05, in the
following simulation.

FIGURE 2 | Mutual information with different activation probabilities. Three

different values of the activation probability are shown: p = 0.1, 0.05, 0.01.

These conditions are shown with the dotted, the dashed, and solid lines,

respectively. The different states are measured, with the threshold values on

the x-axis being varied. I took the threshold as < |w| > +n · σ|w| with the

connectivity average < |w| > and its standard deviation σ|w| for each

connectivity matrix. Following this, the mutual information is evaluated by

taking the average of Equation (3).

3.2. Network Energy and Efficiency of the
Information Transfer
Constraints regarding energy would be a major factor regulating
network structure and activity in the brain (Bullmore and Sporns,
2012). Hence, I evaluated the network energy of each brain
state, which is a basic parameter to analyze brain activity.
Then, I showed the results of the measured energies using three
different definitions in Figure 3; in each graph, the connectivity
strength threshold differed. Further, I compared these values
with those of the random networks, which were considered as
the null model. The random networks with the same network
size were determined together with the randomly taken weights
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FIGURE 3 | The three different types of energies, the wiring cost (Equation 4), the Hopfield energy (Equation 5), and the activity cost (Equation 6) are shown in (A–C),

respectively, with the solid lines on each graph. They are compared with the results of the random network, which are shown in the dashed lines. I applied the same

threshold set of values to Figure 2.

wi,j ∈ [−1, 1], and 1,000 random matrices were obtained. On
the contrary, the results for the brain network were measured
using the whole datasets, which contained 986 matrices of
different individuals.

The wiring cost defined in Equation (4) is shown in Figure 4A.
It was compared with the wiring cost of the random network,
which appeared as a straight line proportional to n of the
threshold value defined in Equation (1). In comparison with
these networks, it was found that the plotted curve of the brain
network has a relatively long tail for higher values of wt , which
indicated the well-known attributes of the brain network, such as
the scale-free and small-world network, as will be discussed.

The difference between the brain network and the random
one was enhanced in comparison with the values of the Hopfield
energy. Figure 4B shows the relatively large values for the brain,
while it took almost 0 for the random network due to the
cancellation of the positive and negative terms. To avoid this
cancellation and evaluate the total amount of the activity cost,
I calculated the energy with another definition given in Equation
(6) and plotted it in Figure 3C. The energy for each range except
for 0 states had higher wt values; the activity cost for the random
model was higher than those of the brain network as expected.

3.3. Normalized Energy and the Mutual
Information Entropy
Due to energy constraints, it was assumed that the activities for
the information transfer is required to be efficient (Bullmore and
Sporns, 2012). One description of the network efficiency for a
given cost was based on the energy consumed during the activity,
which was normalized by the wiring cost to organize the network
structure (Takagi, 2017). Then, at first, the Hopfield energy
was normalized with the wiring cost as EH/EW and shown in
Figure 4A. With regards to mutual information, the correlations
are depicted in Figure 4B, which indicates a negative correlation,
whereby decreasing the network energy resulted in increases in
mutual information. The same figure shows that there was a
peak around the maximum point of mutual information, where

mutual information was maximized and the network energy
associated with activity was minimized.

To clarify the cost performance of the activity in the brain,
I took another quantity, EW/EA, the wiring cost (Equation 4)
normalized by the activity cost (Equation 6). This normalized
quantity represents the wiring cost required to maintain a
unit amount of activity. The measurement is then shown in
Figure 4C, and its correlation with the mutual information
entropy is presented in Figure 4D. It shows the clear correlation
with a sharp peak, around which the mutual information is
maximized and the normalized wiring cost is minimized. These
results (Figures 4B,D) for different definitions of the normalized
energy exhibit the similar behavior and the clear dependency
of the mutual information entropy on the network energy.
Thus, these peaks on correlations define the optimal state of the
brain functional network, in which the efficiency of information
transfer for a given network energy cost was maximized.

3.4. Network Structure and the Optimal
State
I analyzed the network structure around this peak state. At
first, the topological network structure of each state around this
point was characterized in terms of the largest component size:
a basic quantity of the network topology. This result is shown in
Figure 5A, wherein the component size is shown normalized to
the network size. In the same graph, the largest component size
of the connected subgraph decreases with increasing threshold,
with the normalized size being 1, which corresponds to the fully
connected graph. Next, I took the correlation between mutual
information and this quantity in Figure 5B. The sharp peak on
this graph indicates that maximum information was realized in
the fully connected graph with minimum connections.

As shown in Figure 6, the topological network graph contains
excess connections in the lower threshold. In this state, signals
with information transfer also contain noise due to these excess
elements. At the higher threshold value, the network loses this
fully connected structure, and the graph is fragmented into
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FIGURE 4 | Network energy and the correlation with mutual information. (A) The Hopfield energy EH defined in Equation (5) is normalized by wiring cost EW , Equation

(4), and this normalized energy EH/EW is shown for the different threshold values. I applied the same threshold set of values to Figure 2. (B) showed a correlation

between mutual information and the normalized Hopfield energy. On the x-axis, I took the mutual information calculated using the whole datasets of matrices by

applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). I plotted the corresponding points of each threshold value with the network energy on the

y-axis, as given in (A). (C) Another normalized energy, EW/EA where the wiring cost EW is defined as Equation (4) and the activity cost EA is defined as Equation (6), is

shown. The threshold is the same as that of the case of (A). Its correlation with mutual information entropy on (D) is the same as the case of (B).

multiple disconnected sub-components, as shown in Figure 6A.
In this state, mutual communication between disconnected
nodes is hindered, so the efficiency of the information transfer
might be reduced. The sharp peak on Figure 5B corresponds
to the boundary state between these two states, where the
network preserves the fully connected structure with minimum
connections. Combined with the correlation between mutual
information and network energy (Figures 4B,D, 5B), this result
can be interpreted as showing that efficiency and energy

consumption are optimized in this state, with a fully connected
structure that eliminates transfer noise.

Because this optimal state resides in the boundary state
between the fully connected and fragmented phases, it constitutes
a critical state, whereby connectivity strength, another important
variable of network structure, shows a characteristic distribution.
To introduce a distribution model for this critical state (Equation
8), I measured the statistical deviation of the total connectivity
strength of each node ns in Figure 7 using the KS distance,
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FIGURE 5 | The largest component size of the functional network and the mutual information (A). I showed the largest component size of the topological

representation for each threshold values. I took the average of the values of the largest component size, which are normalized by the total number of nodes in the

topological graph. (B) I show the relation between the mutual information and the largest component size. On the x-axis, I took the mutual information calculated

using the whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). Then I plot the corresponding points for each

threshold value with the largest component size on the y-axis, which are given in (A).

FIGURE 6 | I illustrate the three different states of the topological network structures. (A) I show an example of the fragmented sate which contains the disconnected

components. (B) I show the critical state of the network topology, all components of which are fully connected with the minimum connections. (C) This state is also

the fully connected network, but it contains excess connections.

defined as Equation (9). As shown in Figure 7B, the KS distance
measured about 0.07 around its minimum value, which was
a sufficiently small fitting. Moreover, the model fitting was
validated by comparison to other distribution models (Takagi,
2017, 2018). In the case of node strength, the KS distance
values of this model 6.6 × 10−2 and of the normal distribution

8.5 × 10−2 support this model, with its lower value. In
addition, the correlation with mutual information is shown in
Figure 7C, which indicates that the characteristic distribution of
ns depends on this quantity, as is the case with larger component
sizes (Figure 5B) and with energy (Figures 4B,D). Therefore,
around the optimal state defined for efficiency and energy, the
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FIGURE 7 | I evaluated the distribution of node strength in terms of deviation from the distribution model using Kolmogorov-Smirnov (KS) distance. I showed a

correlation with mutual information. (A) I also showed KS distance values from the distribution model for different threshold values. I assessed this value in terms of

node strength, as well as the sum of the absolute values of connectivity strength for each node, using the distribution model. The threshold values were taken as the

same as in the other cases in Figure 2. (B) Using an example, I compared empirical distribution and the distribution model. The distribution was taken as the

threshold < |w| > with n = 0, at which the average KS distance was evaluated as 6.64× 10−2. (C) I showed a correlation between mutual information and KS

distance. On the x-axis, I took the mutual information calculated using whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05)

(Figure 2). I then plotted the corresponding points for each threshold value with KS distance on the y-axis, as given in (A).

distribution of the node strength converges on this model, and
the characteristic network structure emerges.

3.5. Activation Patterns and Overlapping
To analyze how this characteristic state regulates information
transfer, I investigated the overlapping patterns of the response
signals, applying the results of the information transfer model
to Equation (2). As explained above, the repeatedly co-activated
regions of different stimulation signals are related to cognitive
processes (Haxby et al., 2001; Kumaran et al., 2016). For the set
of response signals to random stimuli, the number of overlapping
co-activated regions between different response signals was
quantified in terms of Equation (7). The results for different
network states are shown in Figure 8A, where the average of the
overlapping numbers is taken for all combinations of responses.
From lower thresholds to higher ones, the overlapping number
decreased with decreasing excess connections.While it took large
values at higher thresholds, it took the minimum value at the
intermediate state.

The correlation to efficiency of information transfer is shown
in the next panel (Figure 8B), in which the mutual information
and the number of the overlapping sites has a strong correlation.
As indicated by this graph, the overlapping number took the
minimum value for maximummutual information. On the other
hand, the same number reduced network energy, as shown
in Figures 8C,D, which show negative correlation. Therefore,
the activation patterns evaluated in terms of the overlapping
numbers are correlated strongly with the statistical quantities,
network efficiency and energy.

The relation between the overlapping number and the
network topological structures were also analyzed in Figure 9,
which shows the direct relation to the small world topology.
As described in the introduction, the small-world structure is
considered as another relevant attribute of the brain network.

The clustering coefficient was measured for each threshold
value in Figure 9A. The correlation to the overlapping number
was plotted on Figure 9B, in which a sharp peak around
the minimum overlapping number indicated that the phase
transition occurs around this point (with respect to the
topological structure). The further evidence for the relation to
small-world topology is given by the changes of this value.
According to the observation in theWatts-Strogatz model (Watts
and Strogatz, 1998), the clustering coefficient is stable near the
state of the small-world topology, which is accompanied by the
phase transition. The changes to the clustering coefficient C
were taken as the difference from the neighbor value, and were
plotted in Figure 9C (Takagi, 2018). The correlation against the
corresponding overlapping number is shown in Figure 9D. This
result explicitly shows the dependency of the stability of the
clustering coefficient and the phase transition of the topological
structure. Thus, the minimization of the overlapping number can
be correlated to the small-world topology.

3.6. Comparison to the Different Datasets
In order to verify the robustness of the above results, the
simulation results based on other matrix datasets are presented.
The first set is the sub-matrix, which is taken with randomly
selected nodes from the original matrix of the functional
connectome. The other set is the structural connectome, which
is constructed using the physical connections of fiber tracts in the
brain with the DTI method.

At first, the results with the sub-matrix were analyzed
(Figures 10A,B). This simulation uses the connectivity matrices
size in 100 nodes, which are selected randomly from the
total 177 nodes in each original matrix. Comparison of
Figures 4D, 10A shows the relations between the wiring cost and
the mutual information, and the minimization/maximization
relations between these quantities are exhibited adequately in
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FIGURE 8 | I show the number of overlapping patterns in the response signals, as well as their correlation with the mutual information (A). I showed the average of the

number of overlapping co-activated regions defined as Equation (7). I took different network states by varying the threshold, as with the cases in the other figures. (B) I

showed the correlation between the overlapping patterns given in (A) with the mutual information. On the x-axis, I took the mutual information calculated using the

whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). Then I plotted the corresponding points of each threshold

value by overlapping numbers on the y-axis, which are given in (A). (C) There was a correlation between the overlapping patterns given in (A) and the normalized

Hopfield energy. On the x-axis, I measured the normalized Hopfield energy given in Figure 5A. I plotted the corresponding points of each threshold value with the

network energy on the y-axis, as given in (A). (D) A correlation was observed between the overlapping patterns given in (A) and the wiring cost performance given in

Figure 5C, similar to (C).

these panels. The other relation (Figure 8D) is also supported by
Figure 10B, which displays the relation between the overlapping
numbers and the wiring cost. These results with the sub-
matrices show that important properties between the overlapping
numbers and the wiring cost are stably obtained. The results
suggest that these values are independent to other factors, such as
the connectivity matrix size or the specific location of the brain
regions taken as nodes.

The results with the structural connectome are displayed
in Figures 10C,D. The results observed in the functional
connectome can be confirmed with Figures 10C,D, where the
simulation results exhibit similar properties to those given with

the fMRI datasets (Figures 4D, 8D), respectively. They also agree
with the similarity between the functional and the structural
connectome, in that the functional connectivity in the restring-
state has close relation to the physical connections, such as the
fiber tracts which organize the structural connectivity (Biswal
et al., 2010). Thus, the robustness and the stability of the major
properties obtained in this paper are given more strong evidence
by the results of the structural network datasets. Because the
structural network is comprised of the fiber tracts, the network
structure is more stable compared to the functional connectivity
based on the temporal dynamics correlations. In addition, the
results obtained with the physical connections further clarify the
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FIGURE 9 | Clustering coefficient and overlapping number. (A) The clustering coefficient C for the topological description with the adjacency matrix is averaged and

shown. The threshold values in the x-axis and the corresponding adjacency matrices are taken to be the same as those in Figure 4. The datasets of the matrix are

also the same to those used in Figure 4. (B) The correlation of the clustering coefficient C (shown in A) to the overlapping number is shown. The overlapping number

is the same to those in Figure 8A. The threshold range in this panel is taken in [−1.0,−2.0] so as to exclude the flat values in the lower thresholds. (C) The differences

of the clustering coefficient in (A) is shown. The difference 1C is calculated as 1C = C(i)−C(i+ 1), where the difference is taken with the next value in the graph and i

is the number of the threshold position counted from the lower side. (D) The correlation of the clustering coefficient difference 1C (shown in C) to the overlapping

number is shown. The values of the overlapping numbers are the same as those in Figure 8A. The threshold range (which was the same as C) is taken.

meaning of the energy. In particular, wiring cost can be explicitly
related to the real energy cost of the brain for network formation.

4. DISCUSSION

In the present paper, I modeled information transfer in the
brain based on a dataset of the human functional connectome.
As illustrated by Figure 1A, I represented brain activity using
the activation patterns of multiple regions. That is, information
processing was modeled in terms of the dynamics of successive
patterns of activation. These dynamics were described in terms
of the changing of activation states, as illustrated in Figure 1B,

wherein positively or negatively activated states were transferred
by activating or inactivating connected regions.

4.1. Information Transfer Model and Basic
Statistical Quantities
In this simulation, I calculated the information transfer of
randomly activated signals using Equation (2). Using this model,
I evaluated the mutual information, defined as the average of
Equation (3), and the network energy, defined as Equations
(4–6). They are shown in Figures 2, 4A, respectively. On
the other hand, numerous empirical studies have suggested
that information transfer in the brain is optimized, under
constraints, such as the energy consumption, by maximizing
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FIGURE 10 | Correlations in the small size functional network and the structural network. In (A,B), the correlation between the quantities shown in Figures 4D, 8D

are estimated, respectively for the small size functional network. The small size network, 100× 100 matrix, is taken from the original 177× 177 matrix with randomly

selected 100 nodes. The calculation methods for each panel is same to corresponding ones in each figure. The threshold range in this panel is taken in [−1.0,−2.0],

the same as in Figure 9 to exclude lower threshold ranges which are almost flat. In panels (C,D), the correlation between the same quantities are estimated for the

structural network. The connectivity matrix constructed from DTI images are downloaded from the same website as those of the functional connectome dataset

(http://umcd.humanconnectomeproject.org/) (Brown et al., 2012). The evaluation methods are the same as those for the above panels (A,B).

mutual information in the communication between brain
regions (Linsker, 1990; Friston, 2010; Bullmore and Sporns,
2012). Therefore, I assessed the correlation between these two
quantities. In these results given in Figures 4B,D, the energy is
evaluated in terms of its cost performance, then the Hopfield
energy normalized by the wiring cost and the wiring cost per
total activity cost are shown, respectively and the decreasing
of these quantities indicates the improvement of the cost
performance. I showed these relationships in Figures 4B,D, in
which I plotted the corresponding values of each network state.
The figure indicated a negative correlation between the values,
whereby increases in mutual information led to decreases in

network energy, and vice versa. Thus, these two quantities must
be correlated.

In particular, the peak around the maximum mutual
information in Figures 4B,D shows that information transfer
is optimized at this point by maximizing the quantity and
minimizing the energy. According to the theory of the brain
economy (Bullmore and Sporns, 2012), the efficiency of
information processing in the brain is likely optimized by trading
off with energy consumption. Although biological and empirical
requirements regarding efficiency and energy are independent
of each other, the result indicates that they are correlated, so
there may be a mechanism that controls information transfer
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while satisfying these two principles regarding the efficiency and
the energy.

4.2. Network Structure and Information
Transfer
Network analyses around this optimal state may explain the
mechanism by which information transfer is organized in
the brain. In Figure 5A, to allow topological representation,
I estimated the largest component size of the network. The
correlation with mutual information (Figure 5B) indicated that
the efficiency of information transfer is maximized at the critical
point between the fully connected network and the fragmented
network state, which contains disconnected subcomponents. At
this optimal state, the network maintains its fully connected
structure with the minimum number of connections (Figure 6).
This can be contrasted with the fragmented states, which inhibit
efficient communication due to disconnections between regions.
On the other hand, excess connections generate noise in the
response. Therefore, in the intermediate phase at the optimal
state, information transfer is cost effective, suppressing excess
signals, and preserving fully connected structure.

As illustrated in Figure 6, this state can be described as the
topological phase transition between the fully connected and
fragmented phases. In this way, it constitutes a critical state.
The distribution shape of node strength, another variable of
the network, corroborates the notion that mutual information
is maximized at the critical state. As shown in Figure 7A, the
distribution of node strength converges in the model Equation
(8), which assumes criticality and energy constraints (Takagi,
2017, 2018). This correlation shows that mutual information
(Figure 7C) increases as the values converge upon the critical
state. This result, along with the weighted network description
(Figure 7B), also suggests that topological states are also
correlated (Figures 4B,D). Both of these results indicate that
the optimal state regarding the efficiency of the information
transfer emerges in the critical state, suggesting that there is
criticality in the brain, as has been confirmed empirically in
various studies (Beggs and Plenz, 2003; Achard et al., 2006; Beggs,
2008; van den Heuvel and Sporns, 2011).

Although the state, which was specified as optimal, depends
on the parameters, such as the threshold value, the criticality that
supports its generality. Because the critical state was obtained
without adjusting or fine-tuning multiple system parameters, it
indicates that this state has the generality, which was obtained
regardless of the details of the parameters. In fact, the stable
results for the large samples about 1,000 individuals imply that
these features around the optimal state are general ones, which
emerge commonly and stably for different individuals.

This statistical features of node strength provide further
information about the mechanism of the information transfer
in this optimal state. The distribution of node strength
exhibits a characteristic shape, as illustrated in Figure 7B. The
cumulative distribution curve on the log-log plot indicates
that the network contains a large number of higher strength
nodes, which correspond to hubs in the functional network
and comprise the core structure within networks (Hagmann

et al., 2008; van den Heuvel and Sporns, 2011). Thanks
to such core networks, whole networks can acquire the
attributes of a small-world structure, allowing efficient
communication with shortened distance between the nodes
(Bassett and Bullmore, 2006) and improved robustness of
information transfer.

4.3. Activation Patterns and Principles of
Energy and Efficiency
The importance of these network states in regulating activity in
the brain can be evaluated using activation patterns. According
to the definition of the information transfer (Equation 2),
the response signals for the random input stimuli might be
determined, reflecting the network structure. For example, the
response probabilities are determined by the combination of
wi,j 6= 0 elements for each i, and then the overlapping number
would be given accordingly. Then, the overlapping number was
an indicator, which reflects the network structure, activation
patterns, and information transfer.

In Figure 8A, I evaluated the number of overlapping
activated regions between different response signals. The
correlation with efficiency of information transfer and
energy are shown in Figures 8B–D, which show that network
structure behaves in a similar way (Figures 5B, 7C), indicating
that these quantities depend strongly on the overlapping
number. Increase in this quantity to the higher threshold
was explained by the over-inactivated states with many 0
signals. The saturation of the activated signals, the higher
density of the signals shown in Figure 3C, explains the same
tendency, that is, increasing this quantity from the lower
threshold. In each case, the overlapping number is increased
at this state than during the intermediate states, at which
activated and inactivated signals are balanced. Thus, the
correlation between the mutual information entropy and the
activation patterns can be explained by this quantity, the
overlapping number.

As discussed above, increased overlapping may improve
robustness in signal transfer and facilitate rapid response to
the outer environment, with shortened communication distance
between nodes. Despite these advantages, excess overlapping in
the activation phase reduces the efficiency of the information
transfer and causes the energy loss (Figures 8B–D). This implies
that excess overlapping causes loss of efficiency and increases the
energy consumption related to information transfer. Thus, these
features have a trade-off relationship; that is, the robustness and
the rapidity of responses are balanced with loss of efficiency and
energy in information transfer.

In summary, the present results suggest that the principles of
efficiency and energy consumption are important to information
transfer. These principles affect multiple aspects of the functional
network in the brain, and I have shown the connectivity
strength (Figure 7C), activation patterns (Figures 8B–D), and
topological network of such structures (Figure 5B). The same
figures show the contribution of these principles to statistical
quantities, in which sharp peaks indicate a strong tendency
toward these quantities. Thus, these principles regarding
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efficiency and of information transfer are important factors
in regulating the characteristic attributes of the functional
network in the human brain, such as network structure and
activation patterns.
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People living with schizophrenia (SCZ) experience severe brain network deterioration.

The brain is constantly fizzling with non-linear causal activities measured by

electroencephalogram (EEG) and despite the variety of effective connectivity methods,

only few approaches can quantify the direct non-linear causal interactions. To circumvent

this problem, we are motivated to quantitatively measure the effective connectivity by

multivariate transfer entropy (MTE) which has been demonstrated to be able to capture

both linear and non-linear causal relationships effectively. In this work, we propose

to construct the EEG effective network by MTE and further compare its performance

with the Granger causal analysis (GCA) and Bivariate transfer entropy (BVTE). The

simulation results quantitatively show that MTE outperformed GCA and BVTE under

varied signal-to-noise conditions, edges recovered, sensitivity, and specificity. Moreover,

its applications to the P300 task EEG of healthy controls (HC) and SCZ patients further

clearly show the deteriorated network interactions of SCZ, compared to that of the HC.

The MTE provides a novel tool to potentially deepen our knowledge of the brain network

deterioration of the SCZ.

Keywords: network deterioration, schizophrenia, non-linear causal interaction, multivariate transfer entropy,

granger causality, bivariate transfer entropy

INTRODUCTION

The brain usually fizzles with the non-linear causal activity of electroencephalogram (EEG) at a
microscopic level (Gourévitch et al., 2006; Sabesan et al., 2010; Mehta and Kliewer, 2018). The
complex nature of the brain makes its non-linear causal dynamics unknown, and how the brain
matches its rhythm as well as its metabolic processes and a causal relationship is still under
investigation. The brainmight be attackedwithmany psychosomatic diseases such as schizophrenia
(SCZ), leading to deteriorated brain network, which eventually affects its cognitive functions
(Shovon et al., 2017; Li et al., 2018). Researchers have explored the EEG non-linearity in multiple
psychiatric disorders, for example, in epileptic patients probably due to low dimensional chaos
during a seizure (Lee et al., 2001; Henderson et al., 2011; Liu et al., 2017). Thus, the behavioral and
psychological attitudes of people with psychiatric disorders call for the need to effectively investigate
the transient information exchange in the brain (Zhang et al., 2011; Mehta and Kliewer, 2016).
Multiple techniques or measures for linear and non-linear brain connectivity such as structural,
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functional, and effective connectivity are in use for this purpose
(Selskii et al., 2017; Hristopulos et al., 2019). Exploring the
linear and non-linear interactions, more importantly when the
system structure is unknown, holds promise for deepening the
knowledge of the causal mechanism in the brain for the SCZ
(Pereda et al., 2005; Zhao et al., 2013).

SCZ is the most prevalent functional psychotic disorder, and
people living with the disorder can present with a variety of
symptoms and manifestations that can be seen in their behaviors.
The disease is a chronic psychotic disorder that disrupts the
patient’s thoughts and affect their total well-being (Patel et al.,
2014; Ure et al., 2018). Previous studies have demonstrated
a coherent or uniform reduction in the brain regions of the
SCZ patients, including the insula, superior temporal gyrus,
amygdala, parahippocampus, inferior and medial frontal gyri,
hippocampus, and anterior cingulate cortex (ACC) (Ehrlich et al.,
2014; Alonso-Solís et al., 2015; Domínguez-Iturza et al., 2018). In
neurophysiological research, it is more interesting to explore the
specific performance of the SCZ under certain task like oddball
paradigm involving the P300 (Alvarado-González et al., 2016), as
the P300 serves as the reliable biomarker to identify the SCZ from
healthy control (HC) (Somani and Shukla, 2012). For example,
during working memory, the P300 amplitude decreases with
increasing the load for HC but remains low in all conditions for
the SCZ (Gaspar et al., 2011). Besides the P300 amplitude, the
occurrence of the SCZ is also accompanied by the abnormal task
brain network (Krusienski et al., 2006; Pérez-Vidal et al., 2018).
For example, we have previously found a crucial role of the ACC
in regulating the P300 (Li et al., 2018), especially a compensatory
pathway from the dorsolateral prefrontal cortex to intraparietal
sulcus for the SCZ.

Effective connectivity in the brain brings in the element of
causal interactions or causation. Consequently, a signal activation
in one area of the brain directly causes a change or signal,
activation or depression, in another area (Mastrovito et al.,
2018; Zhu et al., 2018). Effective connectivity in a domain
of data-driven approaches such as Granger causality analysis
(GCA) which performs poorly in non-linear context rely on its
past to formulate linear causal interactions in the EEG signal
(Venkatesh and Grover, 2016; Li et al., 2017). The GCA is
initially formulated for linear models and later extended to non-
linear systems by applying to local linear models. Despite its
success in detecting the direction of interactions in the brain, it
either makes assumptions about the structure of the interacting
systems or the nature of their interactions and as such, it may
suffer from the shortcomings of modeling systems/signals of
unknown structure (Lainscsek et al., 2013; Sohrabpour et al.,
2016; Bonmati, 2018). Even though much has been achieved
with the GCA, a different data-driven approach which involves
information theoretic measures like Transfer entropy (TE) may
play a critical role in elucidating the effective connectivity of
non-linear complex systems that the GCA may fail to unearth
(Schreiber, 2006; Madulara et al., 2012; Dejman et al., 2017).
Mathematically, the TE uses its entropy to quantitatively infer
the coupling strength between two variables (Liu and Aviyente,
2012; Shovon et al., 2017) and has the potential for capturing
both the linear and non-linear causal interactions effectively.

Thus, TE works in bivariate fashion where information transfer
is quantified between all source-target pairs but bivariate analysis
has spurious, redundant and synergistic interaction problems
(James et al., 2016; Wollstadt et al., 2019).

To quantify the effective connectivity and exploring the
corresponding network aberration in the SCZ, the reliable
estimation of the brain network seems to be of great urgency. In
this work, we used the TE in a multivariate fashion (Lainscsek
et al., 2013; Alonso-Solís et al., 2015; Bonmati, 2018), i.e.,
multiple TE (MTE) (Montalto et al., 2014; Novelli et al.,
2019; Wollstadt et al., 2019). The MTE has great ability to
handle problems that the GCA and the BVTE cannot, such
as spurious or redundant interactions, where multiple sources
provide the same information about the target, the MTE also
cannot miss synergistic interactions between multiple relevant
sources and the target, where these multiple sources jointly
transfer more information into the target than what could be
detected from examining source contributions individually. The
MTE is designed to remove redundancies and capture synergistic
interactions and account for all relevant sources of a target,
unearth both the linear and non-linear dynamics in the brain;
thus making it a powerful tool over GCA and BVTE (Stokes et al.,
2018;Wollstadt et al., 2019). Herein, we first proposed to infer the
linear and non-linear simulations of the GCA, BVTE, and MTE
under various conditions, including varied signal-to-noise(SNR)
conditions, edges recovered, sensitivity, and specificity, to explore
their performances; thereafter, we also applied both methods
to P300 task EEG of the SCZ and HC to investigate the brain
network deterioration for the SCZ.

TRANSFER ENTROPY

If a signal X directly interacts with signal Y, then the past
information of X should possess ample information that can
help predict Y beyond the information possessed in the history
of Y only. That is, there is a Granger-causal interaction from
X to Y (Sørensen and Causality, 2005). The GCA paves a
way for the examination of the directed interaction between
variables. In essence, GCA is designed to measure the linear

FIGURE 1 | Estimation of MTE into a target node Y. Blue arrows show the

estimation of MTE into a target node.
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coupling among time series, which determines that the GCA
can only capture the linear causality well, and may not work
for the non-linear cases (Bose et al., 2017). In addition, the
neural coupling in the brain is far from the linearity, and the
conventional GCA may not capture this hidden coupling in
the brain.

To capture the non-linear interactions in the brain,
we alternatively used the TE to measure the directed
information exchange.

Let X = {x1, x2..., xT} and Y =
{

y1, y2, ..., yT
}

denote the
time series of two brain areas with T observations, we define
an entropy rate which is the amount of additional information
required to represent the value of the next observation of X as:

h1 = −
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2p(xn + 1|xn, yn) (1)

Also, we define another entropy rate assuming that xn + 1 as:

h2 = −
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2p(xn + 1|xn) (2)

Therefore, the TE from Y to X is given by h2 − h1, and this
corresponds to information transfer from Y to X:

TEY→X = h2 − h1,

=
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2

(

p(xn + 1|xn, yn)

p(xn + 1|xn)

)

(3)

Similarly, we can define the transfer entropy from X to Y as:

TEX→Y =
∑

yn+1,xn ,yn

p(yn + 1, xn, yn)log2

(

p(yn + 1|xn, yn)

p(yn + 1|yn)

)

(4)

Then, we compute the TE by writing (3) and (4) using conditional
probabilities as:

TEY→X =
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2

(

p(xn + 1, xn, yn)p(xn)

p(xn, yn)p(xn + 1, xn)

)

(5)

FIGURE 2 | Original or predefined 8 nodes simulated network and estimated linear networks by GCA, MTE, and BVTE with Y = A× B.
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TEX→Y =
∑

yn+1,xn ,yn

p(yn + 1, xn, yn)log2

(

p(yn + 1, xn, yn)P(yn)

p(xn, yn)p(yn + 1, yn)

)

(6)

Where xn, and yn, are the stochastic variables obtained by
sampling the processes at the present time n (Gilmour et al., 2012;
Wollstadt et al., 2014; Shao et al., 2015).

TE estimator can detect both linear and non-linear causality.
However, because of the bivariate nature of TE, its outcome
may infer spurious or redundant causality and may also miss
synergistic interactions between multiple relevant sources and
the target (Wollstadt et al., 2019). Hence, we need to have a
tool or method that can accommodate these challenges. MTE
has proven to be a better option to measure both the linear and
inherent non-linear brain signals and their causal relationships
effectively. Importantly, theMTE is an extension of the TE, which
is a direct measure of information transfer between a source and
a target process in a dynamic or composite system. Unlike TE,
however, MTE does not give spurious, redundant information
and also may not miss synergistic interactions (Montalto et al.,
2014; James et al., 2016; Wollstadt et al., 2019).

Let at a given instance the dynamic system be composed of a
source system X, a destination system Y and remaining systems

Z =
{

Zk
}

k=1,....M−2
. Here, we are interested in evaluating the

information flow from a source system X to a destination system
Y. Then, MTE models the information flow from the source
system to the destination system in the presence of the remaining
systems, as shown in Equation (7).

TEX→Y|Z

=
∑

p(y1 : n,x1 : n−1,z1 : n−1) log
p(yn|x1 : n−1,y1 : n−1,z1 : n−1)

p(yn|y1 : n−1,z1 : n−1)

(7)

Where x, y, and z are the state visited by the systems X, Y, and Z
over time. Let xn, yn, and zn be the stochastic variables obtained
by sampling the processes at the present time n. Furthermore, we
denote xtn as the vector variable describing all the states visited
by X from time t up to n (assuming n as the present time and
setting the origin of time at t = 1, x1 : n−1 represents the whole
past history of the process x).

In our case, the dynamic system is composed of the brain
regions, Frontal (F), Parietal (P), Temporal (T), and Occipital (O)
lobes. In other words, the source system X and the destination
system Y are the brain regions involved in a given information
flow, e.g., it could be F and P or T and O. The information flow
between any two brain regions is also affected by the states of
remaining brain regions, which are not part of the information
flow (Wang et al., 2011; Adhikari and Agrawal, 2013; Anil et al.,
2015). Hence, MTE is a good estimator to measure the linear and
non-linear directed information flow in the brain.

For an illustration, let’s demonstrate MTE brain network
algorithm analysis as shown in Figure 1. Here the nodes
or channels represent (stochastic) processes and the arrows

represent causal connections or interactions between processes.
It has target of interest and relevant sources.

Thus if Y is the current target of interest, then nodes
highlighted in red represent the set of relevant sources
Z =

{

X1,X3,X4

}

, i.e., the sources that contribute to the
target’s current value Yn. In order to estimate the MTE
into the target Y, it requires inferring the set Z containing
the relevant sources (or parents) of Y. Once Z is inferred,
we compute the MTE from a single process into the
target as a conditional transfer entropy, which accounts
for the potential effects of the remaining relevant sources.
Formally, the MTE from a single source (e.g., X3) into Y
is defined as the TE from X3 to Y, conditioned on Z
and excluding X3: TE(X3 → Y|Z\X3) as shown in Figure 1

(Srivastava, 2002; Flecker et al., 2011; Wollstadt et al., 2019).

VALIDATION ANALYSIS

Simulation Study
Simulated Network
We generated and simulated a random time series with 7 and 8
nodes/process and 500 observations (Figures 2, 5). A network
structure with unidirectional and bidirectional couplings and
nodes with input and output degrees or domain were considered.
Two network structures were simulated, i.e., linear and non-
linear. Out of the linear equation, we modeled the non-linear
networks by adding five different types of non-linear functions
to the linear equation (Khadem and Hossein-Zadeh, 2014;
Dong et al., 2015; Li et al., 2017). When estimating the MTE
and the BVTE, we used the toolbox IDTx (Wollstadt et al.,
2019) and GCCA-toolbox for GCA, to estimate the parameters
of the MVAR models and the Akaike Information Criterion
(AIC) for model order selection (Sohrabpour et al., 2016). We
applied the conventional multivariate Granger Analysis for our
computation and analysis for GCA. The performance of the
GCA, BVTE, and MTE are statistically tested under multiple
strategies including the effective connectivity, edges recovered,
sensitivity, and specificity on the 8 nodes time series.

To see which method performs better by suppressing the
turbulent noise condition, we added Gaussian noise (Ozaki,
2012) with a varying SNR in a range of −10, −5, 5, and 10 dB
to the generated time series. With different realizations of the

TABLE 1 | Causal interactions parameters and explanation.

Parameter Description of parameter

TN TN denotes the number of direct interactions that were not

available and were truly marked as non-existent.

TP TP describes causal interactions that were available and truly

labeled as existent.

FN FN denotes the number of causal interactions that were incorrectly

marked as not existing.

FP FP denotes the number of directed interactions that were

incorrectly marked as existing or indicates the number of pairs that

were identified to have false causal relationships.
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FIGURE 3 | Original or predefined 8 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with (r = f (x), r = (2.40×9x)
1+exp(−4x)

).

driving noises, each of the network simulations was repeated 200
times for each linear and non-linear equations.

To know the percentage of available causal connections
that are correctly detected as existent and the percentage of
unavailable causal connections that are really detected as non-
existent, the sensitivity and specificity analysis were calculated,
respectively. Confusion matrix function is used for the sensitivity
and specificity calculations. It is made up of a target matrix
and the actual matrix. The confusion matrix compares the
relationship between the target matrix and the actual matrix by
comparing the rows of the target matrix with that of the actual
matrix and returns four parameters (Table 1) including True
Negative (TN), True Positive (TP), False Negative (FN), and False
Positive (FP).

Sensitivity (%) = 100× TP/(TP + FN) (8)

Specificity (%) = 100× TN/(TN + FP) (9)

The adjacency matrix linkage bias and network patterns are
estimated using the GCA, BVTE, and MTE under various SNR
conditions. Based on the simulated networks, we also compute
the edges recovered and the adjacency matrix linkage bias.

Adjacency matrix linkage bias can be defined as follows:

1Y =
‖ Yc − Yb ‖

‖ Yc ‖
(10)

where Yc is the adjacency matrix linkage estimated without
any added noise effect, and Yb is the corresponding parameter
subjected to noise condition.

We also evaluated the strength of the networks produced
by GCA, BVTE, and MTE by considering the total number of
edges in the network. The 8 nodes network comprises 56 causal
linkages, those edges with directed causal consistent with the
originally defined edges are described as correct linkages.

Simulation Performance
As displayed in Figures 2, 5, under the linear condition, under
most cases, the GCA, MTE, and BVTE could correctly estimate
the network structures (Figures 2, 5), respectively just the same
with the original or predefined ones. Unfortunately, under the
various non-linear conditions of varied SNRs, the GCA failed to
capture the predefined network structure (Figures 3, 4, 6, 7). In
contrast, the MTE outperformed the GCA and BTE. Figures 3,
4, 6, 7 depict two of the non-linear simulation conditions(r =

f (x),r = (2.40×9x)
1+exp(−4x) ), r = S (x),r = 1

(1+exp(−x))
, estimated by

GCA, MTE and BVTE, respectively. These figures are similar
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FIGURE 4 | Original or predefined 8 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with r = S (x), r = 1
(1+exp(−x))

.

to the other three non-linear simulation conditions. All the
simulated figures have the similar structure, which includes
original, GCA, MTE, and BVTE results. Besides, the results
from left to right are under the SNR of −10, −5, 5, and
10 dB, by row, respectively. In each figure, the green arrows
show unidirectional causal interactions and the red lines depict
bidirectional connections.

To further demonstrate the advantages of MTE on the
network edges recovery over GCA and BVTE, we added few
more networks to the already demonstrated figures in Figures 2–
4 by simulating additional 7 nodes with networks of structures
different from that in Figures 2–4. This is shown in Figures 5–7.
It could be noticed from the figures again that MTE was able to
recover the network edges better than GCA and BVTE both in
linear and non-linear states.

Thereafter,Tables 2, 3 quantitatively display the performances
of the average results from 200 runs with parameters of adjacency
matrix linkage bias, edges recovered, sensitivity, and specificity
under varied SNRs on the 8 nodes simulation. The values
highlighted depict the estimator or method which had the least
adjacency matrix linkage bias, the highest consistent linkage
edges or recovery edges, and also the highest sensitivity and
specificity. Out of the six simulations, the MTE outperformed the

GCA and BVTE in both linear and non-linear conditions, which
is validated by the independent paired t-test with a significance
level of 0.05.

Real P300 EEG
Participants
This experiment included 48 right-handed (self-reported)
participants, which consisted of 23 SCZ patients (10 females, age
28.87 ± 7.68) and 25 HCs (11 females, age 29.44 ± 5.75). All
participants had the normal or corrected-to-normal vision. None
of them had used anymedication, and there had been no personal
or family history of psychiatric or neurological disease. The
Ethics Committee of Peking University Sixth Hospital approved
this study. Before experiments, all participants gave the written
informed consent with their names signed on it.

Experimental Protocol
Before the commencement of the experiment, all participants
were instructed to be seated comfortably, stay relaxed and were
also asked to control their eye blinks and body movements in
the experiments. A square with a thin cross in the center and
a circle with a thin cross in the center were defined as the
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FIGURE 5 | Original or predefined 7 nodes simulated network and estimated linear networks by GCA, MTE, and BVTE with Y = A× B.

standard and target stimulus, respectively. We included a 5-
min, eye-closed resting-state session and four runs of P300 tasks
during the experiments. In each P300 run, a total of 100 stimuli,
80 standards, and 20 targets, were randomly presented on the
computer screen. Figure 8 depicts the timeline of a given P300
trial. In detail, a bold-cross cue was first presented and lasted
750ms to warn participants to focus their attention and to inform
them that a standard (or target) stimulus would appear very soon.
Either a standard or target stimulus then appeared on the screen
for 150ms. Participants were asked to press the “1” key on a
standard keyboard when they noticed a target stimulus appeared
at the same time. A 1,000-ms break was given after and the next
trial began.

EEG Recording
We recorded the EEG datasets with the Symtop amplifier
(Symtop Instrument, Beijing, China) and a 16-channel Ag/AgCl
(i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, and T6) electrode cap (BrainMaster, Inc., Shenzhen, China).
We positioned all the electrodes used in accordance with the
10–20 international electrode placement system and digitized
with a sampling rate of 1,000Hz and online bandpass filtered at
0.05–100Hz. Electrode AFz was used as the reference and was

grounded during online recording. The total impedance during
the whole task of all electrodes was kept below 5 KΩ , during
the recording.

Effective Network
Since, we aimed to investigate the brain network deterioration of
the SCZ in the oddball task, in this study, only the EEG datasets
of the four runs of P300 tasks were included in the following
analyses. To construct an effective network, we used multiple
standard procedures to preprocess the task datasets. The multiple
procedures comprise [0.5Hz, 30Hz] offline bandpass filtering, 1-
s length data segment (ranging from 200ms before and 800ms
after targets onset [−200ms, 800ms]), [−200ms, 0ms] baseline
correction, artifact-trial removal using a threshold of ±100 µv,
and Reference Electrode Standardization Technique (REST).
Thereafter, based on the EEG time series we generated, the
GCA, MTE, and BVTE were used to construct the corresponding
weighted effective network for the HC and SCZ.

The effective network is a square asymmetric adjacencymatrix
where the number of rows and columns is equal to the number
of electrodes. The GCA, MTE, and BVTE are then applied
to estimate the adjacency matrix per task trial per subject.
Thereafter, the final weighted rest (also task), a 16× 16 adjacency
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FIGURE 6 | Original or predefined 7 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with (r = f (x), r = (2.40×9x)
1+exp(−4x)

).

matrix, directed brain network for each subject was acquired
by averaging matrices across all artifact-free segments (also
task trials), and eventually, we conducted independent t-test to
unearth the potential difference (p < 0.05) in the brain networks
of HC and SCZ for both methods.

Topological Differences in HC and SCZ
Figure 9, visually demonstrates differential network topology
between HC and SCZ (P < 0.05, FDR corrected) estimated
by the methods-GCA and MTE. As displayed in Figure 9, the
GCA (Figures 9A,B) and MTE (Figures 9C,D) showed much
denser connectivity for the HC, compared to that of the SCZ,
which extended on the frontal and parietal lobes. In specific,
the corresponding stronger and denser causal connectivity can
be found to flow from prefrontal/frontal to parietal lobes. In
addition, compared to the GCA, the MTE gives more causal
linkages, shows the dense edges in the frontal lobe.

Statistical Comparison for the Topographical

Difference Between HCs and SCZ Patients
We conducted further analysis on Figure 9 to prove our method
MTE over the GCA using out degree in Figure 10. The node out-
degree can be defined as the number of edges pointing out or

going out of the node. The number of edges connecting the node
with any or all other nodes is termed Node degree. If the nodes
are more connected, it means they have greater degree and vice
versa (Fornito et al., 2016). The degree of a node could be in-
degree or out-degree. For example1 in directed network, if we
have an edge with a path from node i to node j, then Node i’s
out-degree is

∑

jgij .

This has important influence on the brain network. This
information flow can influence the properties of dynamical
systems that evolve on the brain network, such as the
synchronization of networked oscillators. Moreover, different
nodes play or serve distinct topological roles in the brain
network, with highly connected nodes exerting a particularly
important influence over network function (Fornito et al., 2016).
Thus, in our study after the construction of the differential
network topology, we based our analysis on the information flow
out of the node to further explain Figure 9.

After the out degree analysis, our proposed method-MTE
still proved to be better than the conventional method GCA. In
Figure 10, our method proved better because it could help locate

1Network/Graph Theory Graph-based representations Protein-Protein

Interaction.
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FIGURE 7 | Original or predefined 7 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with r = S (x), r = 1
(1+exp(−x))

.

the network channels well which the GCA method couldn’t.
There are significant differences between the HCs and SCZ for
all the methods. However, MTE showed more outgoing degrees
compared to GCA. The out degree for MTE could help locate the
brain regions or channels better than the GCA and with this we
could see the nodes which are highly connected and those with
less or no connections. In Figure 10, MTE has more variation
of information between all the channels compared to GCA. The
colors correspond to a variation of information between the
regions or channels (Van Den Heuvel and Fornito, 2014; Yang
et al., 2017). GCA has the following results for its out degrees for
HCs and SCZ patients, respectively:

Channels (Fp1 of HC and Fp1 of SCZ, Fp2 and Fp2, F3 and
F3, F3 and F3, F4 and F4), have no difference in their channels.
Meanwhile, the channels (F7 and F7, F8 and F8, C4 and C4, T3
and T3, T4 and T4, T5 and T5, T6 and T6, P3 and P3, P4 and
P4, O1 and O1, O2 and O2) had a difference between them. The
highest out degree for HCs is 2 for the channels- C2, C4, P3, and
O1. SCZ patients had 1 as the highest out degree.

For MTE, only the channels (F8 and F8, C4 and C4) had no
difference in between them. The channels (Fp1 and Fp1, Fp2 and
Fp2, F7 and F7, F3 and F3, F4 and F4, T3 and T3, T4 and T4,
C3 and C3, P3 and P3, P4 and P4, T5 and T5, T6 and T6, O1

and O1, O2 and O2) had a difference between their channels. In
all, channels F3, P3 T3 and T5 had the highest out degrees for
HCs whiles channel T4 also had the highest out degree for SCZ
patients (Rubinov and Bullmore, 2013; van Straaten and Stam,
2013). The analysis above clearly show that our methodMTE still
had the best performance in the out degree condition. It hadmore
information flow from out of the nodes and also more channel
influence than the GCA method.

DISCUSSION

Non-linearity characterizes our daily activities. Biological
systems, such as EEG, is linear and inherently non-linear.
Although linear methods are important and have obtained
satisfying findings in EEG analysis, they compromise the
underlying non-linearity characteristics or non-linear causal
dynamics. The applications of non-linear methods in EEG
analysis will, therefore, pave a way for logical steps that can
be used to enhance the characterization of these signals. The
GCA has the problem of model dependency, statistical and
conceptual problems, and it ignores the system dynamics (Stokes
et al., 2018). BVTE analysis also lead to spurious and redundant
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TABLE 2 | A consistent number of edges recovered by GCA, BVTE, and MTE methods.

Causal relationship

function and

description

Linear/Non-

linear

Gaussian noise

SNR (dB)

GCA BVTE MTE

Bias Edges recovered BVTE bias Edges recovered Bias Edges recovered

Y = A× B Linear −10 0.98 ± 0.09 48.01 ± 1.08 0.99 ± 0.08 47.86 ± 1.09 0.61 ± 0.13 53.37 ± 0.79

−5 0.95 ± 0.07 48.81 ± 1.04 0.97 ± 0.05 48.74 ± 1.06 0.59 ± 0.12 53.39 ± 0.78

5 0.75 ± 0.05 51.22 ± 1.01 0.76 ± 0.04 50.65 ± 1.03 0.48 ± 0.11 53.58 ± 0.67

10 0.62 ± 0.02 53.36 ± 0.78 0.65 ± 0.02 52.78 ± 0.80 0.36 ± 0.09 54.12 ± 0.41

r = C (x)

r = cos (x) + sin (x)

Non-linear −10 0.99 ± 0.08 38.81 ± 3.23 0.98 ± 0.05 42.95 ± 3.15 0.64 ± 0.08 44.58 ± 0.10

−5 0.97 ± 0.06 38.91 ± 3.03 0.82 ± 0.03 45.97 ± 3.01 0.60 ± 0.07 47.99 ± 0.07

5 0.78 ± 0.04 39.98 ± 3.01 0.73 ± 0.03 48.99 ± 2.47 0.52 ± 0.04 50.18 ± 0.04

10 0.72 ± 0.01 42.28 ± 2.88 0.64 ± 0.02 50.13 ± 2.70 0.51 ± 0.02 51.30 ± 0.01

r = f (x)

r = (2.40×9x)
1+exp(−4x)

Non-linear −10 0.98 ± 0.08 42.58 ± 2.55 0.78 ± 0.08 44.89 ± 2.43 0.58 ± 0.09 47.99 ± 0.12

−5 0.95 ± 0.07 45.69 ± 2.48 0.65 ± 0.05 47.67 ± 2.22 0.55 ± 0.07 49.68 ± 0.10

5 0.69 ± 0.03 47.82 ± 2.58 0.58 ± 0.02 49.32 ± 2.14 0.53 ± 0.04 51.04 ± 0.08

10 0.63 ± 0.02 49.21 ± 2.45 0.54 ± 0.01 51.16 ± 1.25 0.52 ± 0.02 52.06 ± 0.05

r = cos inusoidal (x)

r = cos (2πx)

Non-linear −10 0.99 ± 0.05 38.78 ± 3.33 0.73 ± 0.08 46.18 ± 3.29 0.67 ± 0.14 48.96 ± 0.25

−5 0.89 ± 0.04 43.71 ± 2.25 0.67 ± 0.03 47.71 ± 2.55 0.65 ± 0.13 48.99 ± 0.24

5 0.71 ± 0.02 45.01 ± 2.20 0.59 ± 0.02 48.01 ± 2.10 0.62 ± 0.11 49.70 ± 2.03

10 0.68 ± 0.01 46.86 ± 2.17 0.56 ± 0.01 50.86 ± 1.13 0.59 ± 0.07 51.42 ± 0.01

r = H (x)

r = exp (sin (2πx))

Non-linear −10 0.99 ± 0.08 44.79 ± 1.79 0.68 ± 0.06 46.99 ± 0.32 0.69 ± 0.15 48.97 ± 0.29

−5 0.98 ± 0.03 44.99 ± 0.99 0.67 ± 0.04 47.87 ± 0.11 0.68 ± 0.14 48.99 ± 0.09

5 0.70 ± 0.02 46.28 ± 0.89 0.64 ± 0.02 48.23 ± 0.72 0.61 ± 0.10 50.02 ± 0.05

10 0.59 ± 0.01 46.99 ± 0.61 0.59 ± 0.10 49.89 ± 0.45 0.58 ± 0.07 51.88 ± 0.02

r = S (x)

r = 1
(1+exp(−x))

Non-linear −10 0.97 ± 0.09 47.55 ± 1.14 0.63 ± 0.07 47.67 ± 0.38 0.66 ± 0.11 48.98 ± 0.74

−5 0.95 ± 0.07 48.32 ± 1.12 0.61 ± 0.03 49.42 ± 0.15 0.60 ± 0.09 50.12 ± 0.68

5 0.79 ± 0.05 49.34 ± 1.08 0.58 ± 0.09 49.78 ± 0.60 0.54 ± 0.07 51.03 ± 0.20

10 0.56 ± 0.02 49.99 ± 0.06 0.55 ± 0.07 51.88 ± 0.23 0.52 ± 0.04 52.45 ± 0.18

interactions and may miss synergistic interactions between
multiple relevant sources and the target (Wollstadt et al., 2019).
In the current study, we thus proposed to apply the MTE to the
task EEGs of the SCZ and HC, to investigate the mechanism
explaining the cognitive deficits in the SZ, from the perspective
of effective connectivity.

GCA computation or estimation encounter many problems.
It can either be severely biased or have high variance and these
shortcomings lead to spurious, redundant, etc. results. GCA
estimation or computation alone are not interpretable without
examining the component behaviors of the system model even if
these estimations are done correctly and also ignoring the critical
components system’s dynamics. On the basis of these analysis,
the idea or notion of causality quantified is not compatible
with the objectives of many neuroscience research investigations
and this has led to highly counterintuitive and potentially
misleading results with GCA (Stokes et al., 2018). GCA in time
domain cannot correctly determine how strongly one time series
influences the other especially when there is directional causality
between two time series. In other words a larger GCA value does
not necessarily mean higher real causality, or vice versa (Hu et
al., 2016). Moreover, many connectivity measures like GCA that
are based on the autoregressive model do not always reflect true
neuronal connectivity (Schindler, 2011). TE was also formulated
for the bivariate case; that is between a single source and a single
target. However, in a multivariate setting, bivariate analysis may

lead to false positive or false negative results inferring spurious or
redundant causality or interactions and also missing synergistic
interactions between important sources and the target. Usually,
these many sources together send more information into the
target than what could be detected from examining source
contributions individually (Tanaka et al., 2013; James et al., 2016;
Wollstadt et al., 2019). These findings are confirmed by our study
in Tables 2, 3 and Figures 2–7, 9, 10, especially the networks
revealed by the methods on the real data.

The MTE could detect both linear and non-linear signals
better than the GCA and the BVTE and is able to account for all
relevant sources of a target. By predefining the simulated network
structure as well as the corresponding time courses, we applied
the GCA, BVTE, and MTE methods to estimate the defined
flow matrix and the directed networks under the influence of
Gaussian noise in order of −10, −5, 5, and 10 dB, and evaluated
the performance of the GCA, BVTE, and MTE under adjacency
matrix linkage bias, edges recovered, sensitivity, and specificity.
Figures 2, 5 demonstrate that the GCA,MTE, and BVTE have the
potential for effectively estimating the originally defined network
patterns under the linear condition of varied SNRs, respectively.
However, as displayed in Figures 3, 4, 6, 7 corresponding to
two of the various non-linear conditions, the GCA was not able
to recover the original defined network patterns and produced
many false linkages. Even though, BVTE was able to recover the
predefined network but in contrast, the MTE outperforms the

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 85161

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Harmah et al. Non-linear Directed Information Flow in Schizophrenia

TABLE 3 | Sensitivity and specificity analysis by GCA, BVTE, and MTE methods.

Causal relationship

function and

description

Linear/Non-

linear

Gaussian noise

SNR(dB)

GCA BVTE MTE

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Y = A× B Linear −10 89.59 ± 9.61 87.33 ± 2.62 85.53 ± 9.74 86.92 ± 2.62 91.92 ± 7.12 88.57 ± 5.69

−5 92.64 ± 4.56 89.45 ± 5.66 89.74 ± 7.66 87.67 ± 5.71 93.98 ± 4.34 90.75 ± 3.32

5 94.72 ± 7.70 92.57 ± 6.72 93.83 ± 6.50 91.71 ± 7.43 95.88 ± 4.20 93.79 ± 5.51

10 95.98 ± 3.56 94.81 ± 5.52 94.87 ± 4.64 93.63 ± 7.33 97.99 ± 2.33 96.49 ± 3.61

r = C (x)

r = cos (x) + sin (x)

Non-linear −10 68.34 ± 14.59 74.58 ± 5.34 85.34 ± 4.31 84.87 ± 5.56 88.54 ± 1.14 88.21 ± 2.42

−5 75.52 ± 7.31 76.88 ± 6.43 87.43 ± 6.23 88.12 ± 4.40 91.49 ± 1.07 91.98 ± 2.32

5 83.74 ± 5.17 84.89 ± 3.26 90.61 ± 7.30 91.77 ± 4.17 93.91 ± 1.50 94.67 ± 3.12

10 91.07 ± 2.48 92.33 ± 1.16 93.11 ± 3.50 94.04 ± 1.82 96.01 ± 0.15 96.99 ± 1.04

r = f (x)

r = (2.40×9x)
1+exp(−4x)

Non-linear −10 48.84 ± 2.41 72.68 ± 5.72 76.94 ± 3.54 82.87 ± 4.78 79.51 ± 3.86 85.96 ± 3.68

−5 51.92 ± 1.39 78.96 ± 3.47 83.96 ± 2.87 87.31 ± 4.60 86.78 ± 2.91 89.10 ± 5.71

5 69.98 ± 2.89 87.88 ± 4.87 89.93 ± 1.78 87.72 ± 5.13 93.78 ± 0.98 91.09 ± 3.77

10 74.69 ± 2.76 91.21 ± 1.87 93.91 ± 2.19 90.88 ± 1.40 95.04 ± 1.58 93.16 ± 0.83

r = cos inusoidal (x)

r = cos (2πx)

Non-linear −10 40.22 ± 21.25 82.40 ± 4.48 47.69 ± 2.71 83.54 ± 3.63 52.83 ± 1.28 87.67 ± 3.56

−5 48.78 ± 2.96 89.31 ± 5.69 64.35 ± 1.50 90.09 ± 0.14 66.14 ± 0.89 92.18 ± 1.16

5 67.09 ± 4.58 93.17 ± 0.97 85.95 ± 5.66 91.08 ± 0.30 88.29 ± 4.09 93.99 ± 2.21

10 74.42 ± 2.84 94.98 ± 1.78 90.87 ± 1.11 92.20 ± 0.61 93.14 ± 0.89 94.58 ± 5.10

r = H (x)

r = exp (sin (2πx))

Non-linear −10 49.71 ± 17.20 69.36 ± 4.66 69.88 ± 2.54 86.12 ± 0.41 72.26 ± 1.42 87.85 ± 1.28

−5 57.12 ± 6.53 71.06 ± 1.77 84.63 ± 2.20 86.92 ± 0.13 86.07 ± 1.50 88.96 ± 0.88

5 68.09 ± 3.36 74.91 ± 0.82 86.12 ± 4.14 88.98 ± 0.94 89.81 ± 0.23 91.74 ± 1.65

10 77.82 ± 5.63 79.99 ± 0.74 91.90 ± 1.72 93.87 ± 2.19 94.51 ± 1.11 95.83 ± 1.32

r = S (x)

r = 1
(1+exp(−x))

Non-linear −10 34.85 ± 7.86 66.87 ± 2.85 70.91 ± 3.13 83.73 ± 1.77 73.18 ± 2.63 86.98 ± 2.84

−5 42.74 ± 5.83 71.93 ± 4.59 76.89 ± 1.25 86.42 ± 3.87 79.99 ± 0.82 88.79 ± 4.63

5 53.42 ± 6.73 76.89 ± 2.96 85.33 ± 0.84 87.75 ± 4.44 87.78 ± 1.14 90.03 ± 3.50

10 74.38 ± 7.42 79.61 ± 1.13 88.15 ± 2.37 89.56 ± 1.41 91.27 ± 1.08 92.11 ± 0.24

GCA and the BVTE under same conditions (Figures 3, 4, 6, 7).
The MTE is able to suppress the turbulent noise contaminated
and efficiently estimated most of the original or predefined
network linkages, which is unlike the GCA affected by the noise
and thus performed badly. Specifically, the strength of edges
recovered and the reduction of edges strength with bias errors,
sensitivity, and specificity are shown in Tables 2, 3 which reveals
clearly how these three methods are influenced by noise in linear
and non-linear conditions. With consistency, MTE always held
a good performance in all the functional indexes with less or
lowest bias errors to GCA and BVTE in a mean of 200 runs.
That is, in the linear and five non-linear simulations under all
the SNR conditions, the MTE could recover highest linkages
closed to the predefined network structure, compared to the
GCA and BVTE, as well as the highest sensitivity and specificity.
As illustrated previously, the MTE is capable of overcoming
spurious or redundant interactions and is also able to reveal
synergistic interactions between multiple relevant sources that
the GCA and BVTE lack. The topological differences between the
three methods indeed show clearly that the MTE method could
estimate the networks better than the GCA and BVTE both in the
simulation and the real task EEG computation.

A research by Bassett and Bullmore (2009) reported
that the causal interactions between the components of the
prefrontal-limbic system determines the global trajectories
of the individual’s brain activation, with the strengths and

modulations of these causal interactions being potentially key
components determining or underlying the differences between
HC individuals and those with SCZ. Research also has it that
SCZ patients have significant reduction in strength of functional
connectivity and increased diversity of functional linkages.
Meanwhile topologically, functional brain network has a
reduction on clustering and small-worldness, probability of high-
degree hubs, but increased robustness in the SCZ group. The
medial parietal, premotor and cingulate, and right orbitofrontal
cortical nodes of functional networks in SCZ also locally saw a
reduction in degree and clustering (Lynall et al., 2010). A research
conducted in Jalili and Knyazeva (2011) and Ray et al. (2017)
indicated that many higher deficits in cognition in SCZ may be
as a result of dysfunction of cognitive control deficits in SCZ. In
a comparative analysis between SCZ and HCs, SCZ individuals
demonstrated a reduced activation in the dorsolateral prefrontal
cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), dorsal
anterior cingulate cortex (ACC), pre-SMA, ventral premotor
cortex, posterior areas in the temporal and parietal cortex, and
sub-cortical areas. Further meta-analysis also revealed disrupted
and decreased resting-state functional connectivity (rsFC) within
the self-referential network and default mode network which play
roles in the malfunction of information processing in SCZ, while
the core network might act as a dysfunctional hub of regulation
(Li S. et al., 2019). These meta-analysis results are consistent with
our present studies in Figures 9, 10.
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FIGURE 8 | The timeline of a given P300 trial. In each P300 trail, a 750-ms

cue, 150-ms stimulus, and 1,000-ms break were added. The squares and

circles with a thin cross in the center represent the standard and target stimuli

in that order.

FIGURE 9 | Statistical analysis for the differential network topology between

the HC and SCZ estimated by the GCA (A,B) and MTE (C,D). The first column

depicts that the connectivity of HC is stronger than that of SCZ, whereas the

second column depicts that the connectivity of SCZ is lesser or weaker than

that of HC. In each subfigure, the red and green lines depict bidirectional and

unidirectional connectivity, respectively.

Based on our analysis and other findings, SCZ patients
most often find it difficult to retain their attention during
tasks unlike the HC. Usually the altered brain regions affect
the information processing in the SCZ and these disruptions
give rise to P300 malfunctions, which eventually disturbs the
brain at rest in terms of abnormalities (Li F. et al., 2019). As
a result of the malfunctioning of neurotransmitters, the ability
of the SCZ patients to perceive reality is dumped (Karlsgodt

FIGURE 10 | Statistical comparison for the topographical difference between

HCs and SCZ using out degree, estimated by the GCA (A,B) and MTE (C,D).

The first column depicts the connectivity of HC is stronger than that of SCZ,

whereas the second column depicts the connectivity of SCZ is weaker than

that of HC.

et al., 2010; Alonso-Solís et al., 2015). In fact, people living
with psychiatry or mental problems have severe brain network
deterioration (Fogelson et al., 2014). The disruption of large-
scale brain regions can largely account for the dysfunction of
brain function in people living with the SCZ, and this disruption
of the interregional connection may give rise to failure of the
functional integration in the SCZ, thus paving a way for proper
explanation of the abnormal behavior and cognitive impairment
in patients with the SCZ (McKiernan et al., 2014; Zhang et al.,
2019). Our findings in Figures 9, 10 indeed show the differential
network topology and its comparison which show clearly the
complete disruption of the multiple brain regions of the SCZ in
relation to the HC agreeing with these studies. In specific, the
HC showed the denser connectivity compared to that of the SCZ
and these connections are extended on the frontal and parietal
lobes. In essence, an alteration in causal connectivity between
parts of the prefrontal cortex and the limbic system is found in
Menon (2011), Qiu et al. (2014). The prefrontal cortex, the basal
ganglia, and limbic system, etc. are interconnected and hence an
attack of infection on one region will eventually affect the others.
These above considerations drive us to conclude that the directed
causal connectivity from prefrontal/frontal to parietal lobes is
deteriorated, which then leads to the deficits in the P300, e.g.,
decreased P300 amplitudes.

Specifically, Figures 2–7, 9, 10 again show clearly that the
MTE method could estimate the networks better than the GCA
and BVTE not only in the simulation (Figures 2–7, Tables 2, 3),
but also in the real EEG application with GCA in Figures 9, 10.
It holds its superiority over the GCA and BVTE in simulation
and with GCA in real EEG analyses by giving a more satisfying
performance. Our study and other studies (Gourévitch et al.,
2006; Liu and Aviyente, 2012) have found that the GCA is not
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robust enough in detecting non-linear linkages but it seems to be
effective in detecting linear linkages. Also though BVTE could
detect the non-linear causality better than GCA, in contrast,
the MTE can address this problem. The MTE is able to handle
spurious or redundant interactions and also unearth synergistic
interactions between multiple relevant sources (Stokes et al.,
2018; Wollstadt et al., 2019). Thus, when exploring the brain
network deterioration in the SCZ patients, the MTE indeed
outperforms the GCA and BVTE and seems to be a good choice.

CONCLUSION

In summary, we testified to the fact that non-linear dynamics
can give clearer information for better understanding of
the causal dynamic issues surrounding EEG signals when
it comes to its inherent non-linearity. Compared to the
GCA and BVTE, the MTE was remarkably helpful in
marking the causality either in a linear or non-linear
system, which uncovered the brain dysfunction in effective
connectivity for the SCZ that is deteriorated at the frontal and
parietal lobes.
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Objective: Previous studies have shown that the performance of the famous face

P300-speller was better than that of the classical row/column flashing P300-speller.

Furthermore, in some studies, the brain was more active when responding to one’s own

face than to a famous face, and a self-face stimulus elicited larger amplitude event-related

potentials (ERPs) than did a famous face. Thus, we aimed to study the role of the self-face

paradigm on further improving the performance of the P300-speller system with the

famous face P300-speller paradigm as the control paradigm.

Methods: We designed two facial P300-speller paradigms based on the self-face

and a famous face (Ming Yao, a sports star; the famous face spelling paradigm) with

a neutral expression.

Results: ERP amplitudes were significantly greater in the self-face than in the famous

face spelling paradigm at the parietal area from 340 to 480ms (P300), from 480 to 600ms

(P600f), and at the fronto-central area from 700 to 800ms. Offline and online classification

results showed that the self-face spelling paradigm accuracies were significantly higher

than those of the famous face spelling paradigm at superposing first two times (P <

0.05). Similar results were found for information transfer rates (P < 0.05).

Conclusions: The self-face spelling paradigm significantly improved the performance

of the P300-speller system. This has significant practical applications for brain-computer

interfaces (BCIs) and could avoid infringement issues caused by using images of other

people’s faces.

Keywords: brain-computer interface (BCI), event-related potential, famous face, P300-speller, self-face

INTRODUCTION

A brain-computer interface (BCI) is a communication technology based on brain activity. BCIs
allow severely disabled patients, especially patients with amyotrophic lateral sclerosis, to send
messages or control external devices without physical actions (Thompson et al., 2013; Rosenfeld
and Wong, 2017; Lazarou et al., 2018). BCIs can also help restore function in patients with severe
motor disabilities, including patients with spinal cord injury, stroke, neuromuscular disorder, and
limb amputation (Takeuchi et al., 2015; Carelli et al., 2017; Wang et al., 2019). In recent years,
some studies have used BCIs for enhancing clinical communication assessments in patients with
disorders of consciousness (Wang et al., 2017; Jeunet et al., 2018). BCIs are commonly based on
electroencephalogram (EEG) that is recorded non-invasively via electrodes placed on the surface of
the head (Waldert, 2016).
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The P300 event-related potential (ERP) induced by an oddball
paradigm is commonly used in non-invasive BCI systems (Bernat
et al., 2001). Farwell and Donchin (1988) first applied the P300
potential to a BCI system; they achieved a character-spelling
system based on the P300, which was called the P300-speller
system. The users attend to a cell of the matrix (that is, a target
character) and count the number of times it is intensified. In this
system, the probability of the intensified row/column containing
the target character is 1/6 (a matrix of 6 rows and 6 columns),
which is an oddball event, which therefore would induce P300
potentials; the system can then output a character by analyzing
the P300 potentials. However, the system was not satisfactory due
to its low speed and variable accuracy.

A number of studies have attempted to design different
paradigms to improve the performance of the P300-speller
system (Allison and Pineda, 2003, 2006; Sellers et al., 2006;
Salvaris and Sepulveda, 2009; Li et al., 2019). Kaufmann et al.
(2011) introduced the famous face paradigm into the P300-
speller system and found that its performance was markedly
superior to that of the conventional P300-speller system,
because the face stimulus also induced other ERPs (e.g., the
N170) in addition to an increased P300 amplitude, which
enhanced the waveform difference between the target and non-
target characters. Subsequently, Jin et al. (2012) compared
the performance of P300-speller system between the stimulus
types involving a famous face, character flashing, and character
movement, and the results showed that the system performed
significantly better under the famous face condition than under
the other two conditions. Recently, Speier et al. (2017) compared
the stimulus types in an online classification of the P300-
speller, and the results showed that famous faces stimuli yielded
superior results than that with both standard and character
inversion stimuli. Some researchers have attempted to optimize
the face paradigm to improve the performance of the P300-
speller system. For example, Jin et al. (2014b) designed a new
stimulus presentation based on facial expression changes, to
reduce adjacent interference annoyance and fatigue. Li et al.
(2015) combined chromatic properties and the famous face
spelling paradigm, which improved the performance of the P300-
speller system.

Studies on human face recognition have shown that the
brain has specialized cognitive processing for one’s own face as
compared with other faces. When participants searched for their
own face vs. another face, they consistently processed their own
face faster than other faces (Tong and Nakayama, 1999). Prior
fMRI studies have shown that neural activity was enhanced over
the frontal central area for self-face recognition as compared to
other face recognition (Kircher et al., 2001). Some ERP studies
on human face recognition have shown that the self-face induced
greater ERP amplitudes than did other faces. The P300 is more
sensitive to the self-face than to other faces (Ninomiya et al.,
1998). For example, several studies have found that one’s own
face elicits a larger P300 amplitude than does a famous face
(Caharel et al., 2005; Sui et al., 2006; Miyakoshi et al., 2008; Keyes
et al., 2010; Tacikowski et al., 2011). The N170 is face-specific
component that reflects facial perception (Bentin and Deouell,
2000; Schweinberger et al., 2002; Herzmann et al., 2004; Carbon

et al., 2005). In Caharel et al.’s (2005) study on face processing,
the self-face induced a larger N170 amplitude than did famous
and unknown faces, distinguishing the self-face from famous and
unknown faces. Other studies have also found that the self-face
induced a larger N170 amplitude than did other faces (Miyakoshi
et al., 2008; Keyes et al., 2010).

Thus, existing studies of face recognition have suggested that
the brain is more active in response to the self-face than to a
famous face. In the present study, we designed a new spelling
paradigm based on self-face stimuli, in which we replaced the
famous face with the self-face, to investigate whether the use
of the self-face could improve the performance of the P300-
speller system. The control paradigm was that of the famous face
spelling paradigm. We analyzed the ERP waveforms induced in
the self-face and famous face spelling paradigms and compared
the classification accuracies between the two spelling paradigms.

MATERIALS AND METHODS

Subjects
A total of 20 subjects participated in the study; of these,
one group (n = 10, three men, aged 20–28 years, mean 24.4
years) participated in the offline experiment, and the other
group (n = 10, six men, aged 22–29 years, mean 25.6 years)
participated in the online experiment. The subjects did not
have any known neurological disorders and had a normal
or corrected-to-normal vision. This study was carried out in
accordance with the recommendations of the ethics committee
of Changchun University of Science and Technology, which
approved the protocol. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. All
subjects were native Chinese speakers but were familiar with the
Western characters used in the display.

Spelling Paradigms
We designed two P300-speller paradigms based on the
conventional P300-speller paradigm. For each paradigm, 36
characters were presented in a 6 × 6 matrix subtended at a
13.4◦ × 19.4◦ (24 × 1.5 cm) visual angle on a 19-in screen
with a refresh rate of 60Hz (Figure 1). In the first paradigm,
the rows or columns of the characters were covered with
pictures of the subject’s self-face while they were intensified
(self-face spelling paradigm, as shown in Figure 1; the subject
has provided permission to publish his facial photograph in
Figure 1). In the control spelling paradigm (the famous face
spelling paradigm), the characters were covered with the famous
face, and the paradigm’s setup was the same as that of the self-face
spelling paradigm.

We chose a picture of Ming Yao, a sports star, as the
famous face. The subjects’ self-face was photographed with a
digital camera for the self-face paradigm. All facial images were
frontal and showed a neutral expression. These photographs
were processed to remove the background and everything below
the neck in Adobe Photoshop (Adobe Systems, Inc. San Jose,
CA, USA).

In our study, the characters were intensified according to the
rows and columns of a virtual matrix (Figure 1, right). In the
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FIGURE 1 | The spelling paradigm. The left figure is the actual spelling matrix, and the right figure is a virtual matrix of the spelling paradigm. The figure shows the

self-face paradigm in which the facial photograph is that of a subject.

FIGURE 2 | Diagrammatic representation of the time-course of the

experiment.

virtual matrix, the characters were randomly rearranged into a
new matrix in which the characters of the same row or the same
column in the traditional matrix were positioned as far away
as possible. Therefore, the rows or columns were six random
characters in the actual matrix (Figure 1, left), which mitigates
the problem of adjacency flashing (Townsend et al., 2010). The
rows and columns of the virtual matrix flashed consecutively in
a pseudo-random order. The stimulus onset asynchrony of each
paradigm was set to 250ms, in which each character was covered
with a picture of a face for 200ms and then reverted to a gray
character for 50 ms.

Procedure
Each subject sat in a comfortable chair, ∼70 cm from the front
of the computer monitor, in a shielded room. During data

FIGURE 3 | Configuration of electrode positions.

acquisition, subjects were asked to relax and avoid unnecessary
movement. The subjects’ task was to focus on the target character
and silently count the number of times the target characters were
covered with faces during stimulus presentation.

In the offline experiment, one flash of a row or column was
referred to as a sub-trial. The flash of a row or column that
included the target character was defined as a target sub-trial,
and the flash of a row or column without the target character
was defined as a non-target sub-trial. Six rows and six columns
flashed once (12 flashes) as a trial, and the trial was repeated 15
times as a sequence. Thus, each sequence consisted of 180 flashes
of rows or columns to output a target character. During the
experiment, each spelling paradigm was conducted four times,
and each time, a five-character word was spelled out, which was
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considered a run (Figure 2). The runs of the two paradigms
were counted alternately to control for potential habituation
effects. Participants were allowed to take a 5-min break
between runs.

In the online experiment, each subject completed training
and testing phases for the famous face and self-face spelling
paradigms. In the training phase, there were four runs, and
each run contained 20 sequences (whereby one character
was revealed per sequence); that is, there were 20 characters
in a run and a total of 80 characters in the training
phase for each spelling paradigm, which were used to
obtain the classifier. The test phase output a total of 30
characters by the trained classifier. In addition, trials were only
repeated twice in each sequence for both the training and
testing phases.

Data Acquisition
EEG signals were recorded with a NeuroScan amplifier
(SynAmps 2, NeuroScan Inc., and Abbotsford, Australia). All
signals were digitized at a rate of 250Hz, and band-pass filtered
between 0.1 and 100Hz. Fourteen-channel (Fz, F3, F4, C3, Cz,
C4, P7, P8, P3, P4, Pz, O1, Oz, and O2, Figure 3) EEG data
were recorded with the AFz as the ground and the right mastoid
as the reference electrode position. Horizontal eye movements
were measured by deriving the electrooculogram (EOG) from a
pair of horizontal EOG (HEOG) electrodes placed at the outer
canthi of both the left and right eyes. Vertical eye movements
and eye blinks were detected by deriving an EOG signal from
a pair of vertical EOG (VEOG) electrodes placed ∼1 cm above
and below the subject’s left eye. The impedance was maintained
below 5 K�.

FIGURE 4 | Superimposed grand-averaged event-related potentials elicited by the target and non-target stimuli over 14 electrodes in the self-face and famous face

spelling paradigms.
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FIGURE 5 | R2 values of ERPs in response to the target and non-target stimuli between 0 and 800ms from EEG data of all subjects in the famous face and self-face

spelling paradigms. (A) R2 values of ERPs for the famous face spelling paradigm. (B) R2 values of ERPs for the self-face spelling paradigm.

Feature Extraction Procedure
For offline data, the classification performance of the speller
depends not only on the amplitude of ERPs elicited by the target
stimulus but also on the difference in ERP amplitudes elicited by
the target and non-target stimuli. Thus, the analysis of R2 values
can provide the mathematic foundation for selecting channels
and the features of each channel. The r-squared is calculated by
formula (1)

r2 =

(
√
N1N2

N1 + N2
×

mean(x1)−mean(x2)

std(x1
⋃

x2)

)2

(1)

whereN1 andN2 represent the sample size of the target and non-
target stimuli, respectively; x1and x2 are features vector of the
target and non-target stimuli, respectively.

According to the results of the r-squared values, ERP data
of different time windows were down-sampled from 250 to
62.5Hz by selecting every four samples, and the feature vector
was Np × Nc, where Np represents the sample points within the
selected time window, andNc represents the number of channels.
For online data, the EEG data were first filtered between 0.1
and 30Hz using a third-order Butterworth bandpass filter, then
down-sampled from 250 to 50Hz. We extracted the EEG data
from 200 to 800ms after stimuli onset as the vector feature.

Classification Scheme
Bayesian linear discriminant analysis (BLDA) was used to classify
the EEG data in the experiment. BLDA is an extension of Fisher’s
linear discriminant analysis that avoids over-fitting. The details
of the algorithm have been described elsewhere (Hoffmann et al.,
2008; Jin et al., 2014a). We used 4-fold cross-validation to
calculate the individual accuracy in the offline experiment.

Information Transfer Rate
Information transfer rate (ITR) is generally used to evaluate
the communication performance of a BCI system and is a
standard measure that accounts for accuracy, the number of

possible selections, and the time required to make each selection
(Thompson et al., 2013). The ITR (bits min−1) can be calculated
as follows:

ITR =
60(P log2(P)+ (1− P) log2

1−P
N−1 + log2N)

T
(2)

where P denotes the probability of recognizing a character, T is
the time taken to recognize a character, and N is the number of
classes (N = 36).

Data Analysis
A one-way repeated measure ANOVA with the within-subjects
two factors of spelling paradigm (self-face and famous face
spelling paradigms) and electrodes (electrodes were based on
the waveform of ERPs elicited by target stimuli) was used to
compare the difference in ERP amplitudes between self-face
and famous face spelling paradigms acquired by subtracting
the waveforms elicited by non-target stimuli from that by
target stimuli. The comparison of classification accuracy and
ITR in offline and online experiments was conducted by a
paired T-test. The statistical analyses were conducted using
the SPSS version 19.0 software package (SPSS Inc., Chicago,
IL, USA).

RESULTS

ERP Results
Figure 4 displays the superimposed grand-averaged waveform
elicited by target and non-target stimuli in the self-face and
famous face spelling paradigms. A clear negative peak was
observed at O1, Oz, and Oz between 150 and 200ms, which is
indicative of the N170 potential. In addition, we observed a clear
positive peak at all electrodes between 200 and 500ms, which is
indicative of the P300 potential, and the other positive peak was
observed between 500 and 600ms, at F3, Fz, F4, C3, Cz, C4, P3,
Pz, and P4, which is similar to the P600f potential.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 93171

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lu et al. Improving the Performance of P300-Speller System

FIGURE 6 | Comparison of waveforms (ERPTarget – ERPNon−target ) elicited by the target and non-target stimuli in the self-face and famous face spelling paradigms, and

scalp topographies from difference waveforms. Difference waveforms were calculated by subtracting the ERPs of the famous face spelling paradigm from those of the

self-face spelling paradigm. (A) The fronto-central-parietal area at 340–480ms. (B) The parietal-central area at 480–600ms. (C) The fronto-central area at

700–800ms.
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Feature differences in the ERPs elicited by target and non-
target stimuli in the famous face and self-face spelling paradigms
were indicated by the r-squared values (Figure 5). As seen in
Figure 5, we observed that the feature differences in the ERPs
elicited by target and no-target stimuli were mainly between 200
and 800ms at all electrodes for both the famous face and self-
face spelling paradigms. To represent the positive and negative
deflections of ERP amplitude and to allow for richer visual
information, we set the R2 value corresponding to the negative
ERP amplitude value as a negative value.

Figure 6 displays the scalp topographic regions that
corresponded to significant differences between the waveforms
elicited in the self-face and famous face spelling paradigms.
Significant differences were observed in three regions
corresponding to three time periods after stimulus presentation,
as follows: the fronto-central-parietal area from 340 to 480ms
[F(1,9) = 14.54, P < 0.005; Figure 6A]; the parietal-central area
from 480 to 600ms [F(1,9) = 8.018, P < 0.05; Figure 6B]; and
the fronto-central area from 700 to 800ms [F(1,9) = 6.023,
P < 0.05; Figure 6C].

Classification Results
Based on the results of the r-squared values, we compared the
classification accuracies based on two feature vectors, as follows:
the feature vector A was 25 × 12 (time window of 200–700ms,
channels F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O4);
the feature vector B was 45 × 14 (time window of 0–800ms,
14 channels). The results of classification accuracies based on
feature A and feature B are shown in Figure 7, which shows the
average accuracies across all subjects at each sequence in famous
face and self-face spelling paradigms. There was no significant
difference in accuracy between feature A and feature B in the two
spelling paradigms.

Previous work has shown that the frequency band for the P300
is mainly between 1 and 10Hz (Basar-Eroglu et al., 1992) and
different band passes have been used to filter EEG data to acquire
better classification accuracy, such as 1–4, 1–12, and 1–30Hz
(Jin et al., 2017). In this study, we compared the classification
accuracies at the first three superpositions (superposition times
represent the number of trials, that is, the repeating times of
6 rows/columns flashing) between 1–4, 1–12, and 1–30Hz for
the famous face and self-face spelling paradigms (Figure 8). We
found that the average accuracy at 1–12Hz was larger than that
at 1–4Hz, and the average accuracy at 1–30Hz was larger than
that at 1–4/1–12Hz for the first three superpositions in the two
spelling paradigms except for the accuracies between 1–12 and 1–
30Hz at two superpositions in the famous face spelling paradigm.
The paired t-test results revealed a significant difference for
classification accuracy between 1–4 and 1–12 Hz/1–30Hz in the
famous face and self-face spelling paradigms.

Figure 9 shows the individual and average offline accuracies in
the two face spelling paradigms based on the feature vector B and
a 1–30Hz frequency band filter. The accuracies increased with
the increase in the number of superpositions in both paradigms;
the average spelling accuracy of the self-face spelling paradigm
was greater than that in the famous face spelling paradigm at 1–
15 superpositions. The average number of superpositions when

FIGURE 7 | The comparison of classification accuracies based on feature

vector A and feature vector B. (A) The average accuracies across all subjects

in the famous face spelling paradigm. (B) The average accuracies across all

subjects in the self-face spelling paradigm.

the accuracies reached 100% for all subjects was 2 in the self-face
spelling paradigm; thus, we conducted a t-test on the accuracies
only for the first two superpositions between the self-face and
famous face paradigms.We found significant differences between
the self-face and famous face spelling paradigms at both one
superposition (t = −2.331, P < 0.05; Figure 10A) and two
superpositions (t =−2.25, P < 0.05; Figure 10B).

Table 1 shows the ITRs for each subject and the averages in
the self-face and famous face spelling paradigms. The best ITR
result, 31.4 bits min−1 at one superposition, was found with
the self-face spelling paradigm. The average ITR was greater at
two superpositions than at one superposition. The paired t-tests
showed that the ITR was significantly greater in the self-face
paradigm than in the famous face paradigm at one superposition
(t = −2.414, P = 0.039 < 0.05) and two superpositions (t =
−2.345, P = 0.044 < 0.05).

The online accuracies and ITRs of each subject for the famous
face and self-face spelling paradigms are shown in Table 2.
We found that the average accuracy and ITR in the self-
face spelling paradigm were higher than those in the famous
face spelling paradigm. Paired t-tests showed that there were
significant differences in the accuracy and ITR between the two
spelling paradigms (accuracy: t = −2.643, P < 0.05; ITR: t =
−3.140, P < 0.05).

DISCUSSION

In the present study, we proposed a new P300-speller using self-
face stimulus and assessed the grand-average ERP waveforms
elicited by target stimuli in the new and control spelling
paradigms, analyzed the different ERP waveforms and the scalp
topographies corresponding to significantly different waveforms
elicited by the target minus non-target stimuli, and compared the
classification accuracy and ITR of offline and online experiments
between the self-face and famous face spelling paradigms.

ERPs
Previous work has found that the performance of the
P300-speller system could be improved by enhancing the
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FIGURE 8 | Average offline classification accuracies across all subjects at the first three superpositions for 1–4, 1–12, and 1–30Hz. (A) The comparison of accuracies

between three frequency band filters in the famous face spelling paradigm. (B) The comparison of accuracies between three frequency band filters in the self-face

spelling paradigm. *A significant difference in accuracy between two frequency bands.

FIGURE 9 | Individual and average accuracies of the self-face and famous face spelling paradigms for 10 subjects.

difference between target trials and non-target trials (Jin et al.,
2012). Therefore, we compared the waveforms (ERPTarget –
ERPNon−target) elicited during the two face paradigms and found
a significant difference between the two. The first significantly

different waveform was from 340 to 480ms over the fronto-
central-parietal area (Figure 6), i.e., the P300. The P300 is not
only associated with attention and cognitive processing (Polich,
2007) but also reflects the involvement of higher-order cognitive
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FIGURE 10 | Accuracies of each subject and mean accuracy of 10 subjects at one superposition and two superpositions for the famous face and self-face spelling

paradigms. (A) Accuracies at one superposition. (B) Accuracies at two superpositions.

functions, including self-relevance (for one’s own face, e.g.,
Ninomiya et al., 1998; Tanaka et al., 2006). Ninomiya et al. (1998)
found that the P300 amplitude in response to one’s own face
was significantly larger than that in response to other stimuli.
The authors, therefore, suggested that enhancement of the P300
in response to one’s own face is not only due to an orienting
response to a physically deviant stimulus but also due to the
additional effect of relevance to the subject. Thus, the P300
can serve as an index of self-relevance, whereby higher self-
relevance corresponds to a larger P300 amplitude (Kok, 2001).
In Miyakoshi et al.’s study, the P300 amplitude elicited by the
self-face stimulus was greater than that elicited by a famous face,
and the P300 could distinguish the self-face from a famous face,
and the authors, therefore, suggested that the P300 amplitude
was sensitive to self-relevance (Miyakoshi et al., 2008). Therefore,
the larger amplitude P300 in the self-face spelling paradigm than
in the famous face spelling paradigm may be due to the higher
self-relevance of the self-face than of the famous face for subjects.

The second significant difference in positive waveform was
observed from 480 to 600ms at the parietal-central area
(Figure 6); this was similar to the P600f, which is related to
processes involved in the recollection of faces (Eimer, 2000;
Curran and Hancock, 2007). Some studies have suggested that
perception of an individual’s face may induce spontaneous
activation of the characteristic and information associated with
the individual (Bargh et al., 1996; Todorov and Uleman, 2002).
The ERPs between 500 and 700ms with a larger amplitude
in response to a familiar face as compared to an unfamiliar
face may indicate that the perception of the familiar face
automatically generated more of one’s personal traits or other
episodic information than the perception of an unfamiliar face
(Sui et al., 2006). Curran and Hancock (2007) also reported
that a familiar face elicited a larger positive waveform between
500 and 700ms (P600f) than did a stranger’s face. Thus, we
speculate that the larger P600f amplitude observed in the self-
face spelling paradigm than in the famous face spelling paradigm

indicates that the self-face induced more recollection, including
characteristic or episodic information about the self than did the
famous face.

The third significant difference in positive waveforms was
from 700 to 800ms at the fronto-central area (Figure 6). In ERP
studies of face recognition, attending to the self-face induced
a larger amplitude waveform between 600 and 800ms at the
prefronto-central area than did attending to a familiar face; it
was speculated that this component was affected by the allocation
of attentional resources in face recognition (Sui et al., 2006).
Miyakoshi et al. (2008) found that the self-face was more likely
to attract the attention of participants than a familiar face. In
our study, the increased amplitude between 700 and 800ms for
the self-face than for the famous face paradigm may indicate that
subjects paid more attention to their own faces.

In addition, our results showed that there was no significant
difference in the N170 amplitude between the two spelling
paradigms. This may be due to differences in experimental design
(Keyes et al., 2010; Alonso-Prieto et al., 2015). Alonso-Prieto
et al. (2015) reported that the sensitivity of the N170 to faces
with different levels of familiarity is affected by the experimental
settings, such as faces with different facial angles or faces with
emotional information. For example, there was a difference in the
N170 between a famous face and the self-face in studies of the
influence of facial angle (Miyakoshi et al., 2008) and of emotional
expression (Caharel et al., 2005), while Tacikowski et al. (2011)
found no difference in the N170 amplitude between the self-face
and a famous face when using frontal and neutral face images.
In our study, the famous face and self-face comprised frontal
and neutral images; thus, our results are consistent with those
of Tacikowski et al. In addition, the type of familiarity of the
face has also been found to affect the sensitivity of the N170
(Alonso-Prieto et al., 2015). For example, Sui et al. (2006) found
that the N170 did not differ between self-faces and familiar faces
(classmates), while Keyes et al. (2010) showed an increased N170
amplitude to the self-face relative to familiar faces (good friends).
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TABLE 1 | The information transfer rate of each subject for the famous face and

self-face spelling paradigms at one and two superpositions.

One superposition Two superpositions

Subject Famous face Self-face Famous face Self-face

Subject 1 14.0 18.3 13.3 22.8

Subject 2 14.0 14.0 22.8 22.8

Subject 3 23.1 18.3 27.5 27.5

Subject 4 12.0 18.3 22.8 25.2

Subject 5 16.1 16.1 20.7 25.2

Subject 6 8.4 20.6 18.7 25.2

Subject 7 25.7 31.4 27.5 27.5

Subject 8 14.0 16.1 16.8 18.7

Subject 9 18.3 25.7 20.7 20.7

Subject 10 25.7 28.4 25.2 25.2

Avg. ± SD 17.1 ± 5.9 20.7 ± 5.8 21.6 ± 4.6 24.1 ± 2.8

p-value t = −2.414; p = 0.039 t = −2.345; p = 0.044

The unit of information transfer rate is bit/min.

TABLE 2 | The online accuracies and ITRs for all subjects in the famous face and

self-face spelling paradigms.

Accuracies (%) ITRs (bit/min)

Subject Famous face Self-face Famous face Self-face

Subject 1 96.7 100.0 31.9 33.6

Subject 2 80.0 93.3 22.8 29.8

Subject 3 60.0 66.7 14.3 17.0

Subject 4 70.0 76.7 18.3 21.3

Subject 5 73.3 83.3 19.8 24.4

Subject 6 80.0 73.3 22.8 19.8

Subject 7 86.7 93.3 26.1 29.8

Subject 8 90.0 96.7 27.9 31.9

Subject 9 83.0 90.0 24.3 27.9

Subject 10 80.0 80.0 22.8 22.8

Avg. ± SD 80.0 ± 10.4 85.3 ± 11.0 23.1 ± 5.0 25.8 ± 5.4

p-value t = −2.643, P < 0.05 t = −3.140, P < 0.05

In the present study, the reason we found no difference in the
N170 between the two paradigms may be that the difference in
familiarity level between the famous face (Ming Yao) and the self-
face may not have been enough to induce a statistically significant
difference in N170 amplitude.

Classification Accuracies and ITR
Offline classification results showed that the average accuracies
of the self-face spelling paradigm were higher than those of the
famous face spelling paradigm at all numbers of superpositions
(Figure 9). A significant difference was found between the self-
face and famous face spelling paradigm at one superposition
(P < 0.05; Figure 10A) and at two superpositions (P <

0.05; Figure 10B). The offline accuracies demonstrated that
use of the self-face improved the performance of the facial

spelling paradigm because the self-face stimulus induced larger
ERP components than did the famous face. In addition, the
improvement and stability of spelling accuracy required stimuli
to be repeated several times because of the low signal-to-
noise ratios; however, increasing the number of repetitions
may reduce the spelling speed. Thus, the ITR depended on
both classification accuracy and speed character output, which
is an important statistical metric for the performance of the
P300-speller system. Our results indicated that the ITR of
the self-face spelling paradigm was significantly greater than
that of the famous face spelling paradigm at the first two
superpositions (P < 0.05). The best result, 31.4 bits min−1 for
subject 7, was obtained with the self-face spelling paradigm, in
which subject 7 achieved 90% accuracy with one superposition
only. Yet, the average ITR at two superpositions was larger
than that at one superposition, and the standard deviation at
one superposition was greater than that at two superpositions
in both spelling paradigms (Table 1). This indicated that the
spelling stability and performance is better at two superpositions.
Therefore, in the online experiment, we set the trial to repeat
only twice (that is, two superposition for 6 rows/columns) to
acquire the accuracies and ITRs of character spelling. The online
results showed that accuracy and ITR of the self-face spelling
paradigm were significantly larger than those of the famous face
spelling paradigm (Table 2). In summary, the proposed self-face
spelling paradigm significantly improved the performance of the
P300-speller system.

In addition, we compared the offline classification accuracies
based on different feature vectors and frequency band passes.
For feature vector A (25 × 12) and feature vector B (45 × 14),
there was no significant difference at all superposition times,
which indicates that the feature vector from amplitude difference
between target and non-target stimuli can acquire classification
results that are comparable to the feature vector in the 0–800ms
time window and at all channels (Figure 7). The classification
results based on three frequency band passes showed that the best
classification result was at 1–30Hz at first three superpositions in
both spelling paradigms (Figure 8), which indicated that a filter
of 1–30Hz could be a good choice for the classification accuracy
of the P300-speller system.

Future Work
The analysis of ERPs, classification accuracies, and ITRs between
the two spelling paradigms showed that the self-face stimulus
elicited significantly increased ERP amplitudes compared to the
famous face stimulus and improved the spelling accuracy and
ITR of the P300-speller system.Moreover, the use of self-face also
avoided the copyright issues caused by using a famous face. Thus,
the proposed self-face paradigm promotes practical applications
of BCIs system. Some recent studies have shown that the brain
responded more positively to a happy face and which could elicit
increased ERP amplitudes, compared to a neutral face stimulus
(Denefrio et al., 2017; Lu et al., 2019). In future work, we intend
to use the subject’s own happy face to investigate whether the self-
face with happy emotion can further improve the performance
and practicability of the P300-speller system.
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CONCLUSION

This study investigated whether the use of the self-face could
improve the performance of the P300-speller system as compared
to the use of a famous face. We found a significant improvement
in classification accuracy and ITR for the self-face spelling
paradigm at the first two superpositions, as compared to the
famous face spelling paradigm, which may have a significant
impact on increasing the speed and accuracy of spelling.
Moreover, this has significance in practical BCI applications
because the use of a famous face may involve copyright
infringement problems.
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Neural processing of sounds in the dorsal and ventral streams of the (human) auditory
cortex is optimized for analyzing fine-grained temporal and spectral information,
respectively. Here we use a Wilson and Cowan firing-rate modeling framework to
simulate spectro-temporal processing of sounds in these auditory streams and to
investigate the link between neural population activity and behavioral results of
psychoacoustic experiments. The proposed model consisted of two core (A1 and
R, representing primary areas) and two belt (Slow and Fast, representing rostral and
caudal processing respectively) areas, differing in terms of their spectral and temporal
response properties. First, we simulated the responses to amplitude modulated (AM)
noise and tones. In agreement with electrophysiological results, we observed an area-
dependent transition from a temporal (synchronization) to a rate code when moving
from low to high modulation rates. Simulated neural responses in a task of amplitude
modulation detection suggested that thresholds derived from population responses in
core areas closely resembled those of psychoacoustic experiments in human listeners.
For tones, simulated modulation threshold functions were found to be dependent on
the carrier frequency. Second, we simulated the responses to complex tones with
missing fundamental stimuli and found that synchronization of responses in the Fast area
accurately encoded pitch, with the strength of synchronization depending on number
and order of harmonic components. Finally, using speech stimuli, we showed that the
spectral and temporal structure of the speech was reflected in parallel by the modeled
areas. The analyses highlighted that the Slow stream coded with high spectral precision
the aspects of the speech signal characterized by slow temporal changes (e.g.,
prosody), while the Fast stream encoded primarily the faster changes (e.g., phonemes,
consonants, temporal pitch). Interestingly, the pitch of a speaker was encoded both
spatially (i.e., tonotopically) in Slow area and temporally in Fast area. Overall, performed
simulations showed that the model is valuable for generating hypotheses on how the
different cortical areas/streams may contribute toward behaviorally relevant aspects of
auditory processing. The model can be used in combination with physiological models of
neurovascular coupling to generate predictions for human functional MRI experiments.
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INTRODUCTION

The processing of sounds in primate auditory cortex (AC)
is organized in two anatomically distinct streams: a ventral
stream originating in areas located rostrally to the primary
auditory core and projecting to the ventral regions of the
frontal cortex, and a dorsal stream originating in areas located
caudally to the primary core and projecting to dorsal frontal
regions. Processing in these separate streams is hypothesized to
underlie auditory cognition and has been linked respectively to
specialized mechanisms of sound analysis for deriving semantic
information (“what” processing) or processing sound location
and sound movement (“where” processing) (Kaas et al., 1999;
Romanski et al., 1999; Belin and Zatorre, 2000; Kaas and Hackett,
2000; Rauschecker and Tian, 2000; Tian et al., 2001; Arnott
et al., 2004). Interestingly, the basic response properties (e.g.,
frequency tuning, latencies, temporal locking to the stimulus) of
neurons in areas of dorsal and ventral auditory streams show
marked differences (Rauschecker et al., 1996; Bendor and Wang,
2008; Oshurkova et al., 2008; Nourski et al., 2013, 2014), and
differences have been reported even for neurons from areas
within the same (dorsal) stream (Kuśmierek and Rauschecker,
2014). A consistent observation is that neurons in the rostral
field, in comparison to primary and surrounding auditory areas,
exhibit longer response latencies and narrower frequency tuning
(Recanzone et al., 2000; Tian et al., 2001; Bendor and Wang,
2008; Camalier et al., 2012), whereas neurons in the caudal
fields respond with shorter latencies, comparable to or even
shorter than those in A1, and have broader frequency tuning
(Recanzone et al., 2000; Kuśmierek and Rauschecker, 2014). How
this organization of neuronal properties within AC contributes
to the processing of spectro-temporally complex sounds remains
unclear and poses an interesting question for computational
endeavors (Jasmin et al., 2019).

Recent results of neuroimaging studies in humans have put
forward the hypothesis that fine-grained spectral properties
of sounds are analyzed optimally in ventral auditory regions,
whereas fine-grained temporal properties are analyzed optimally
in dorsal regions (Schönwiesner and Zatorre, 2009; Santoro et al.,
2014). It is, however, unlikely that the neural processing of
spectral and temporal properties of sounds is carried out through
completely independent mechanisms. Several psychophysical
phenomena such as pitch perception based on temporal cues
(Houtsma and Smurzynski, 1990; Bendor et al., 2012) or the
frequency dependence of amplitude modulation (AM) detection
thresholds (Sek and Moore, 1995; Kohlrausch et al., 2000) suggest
an interdependence between neural processing mechanisms for
spectral and temporal properties.

Therefore, in this study, we aim to introduce a simple,
stimulus-driven computational framework for modeling the
spectral and temporal processing of sounds in AC and examine
the role of the different processing streams. We use the firing
rate model of Wilson and Cowan (Wilson Cowan Cortical
Model, WCCM; Wilson and Cowan, 1972, 1973; Cowan
et al., 2016) which simulates complex cortical computations
through the modeling of dynamic interactions between excitatory
and inhibitory neuronal populations. Over the years, WCCM

has been successfully implemented for simulating neuronal
computations in the visual cortex (Ermentrout and Cowan,
1979; Wilson and Kim, 1994; Wilson, 1997). More recently,
WCCM has been applied to the AC as well to describe
the propagation of activity in the interconnected network of
cortical columns and to generate predictions about the role
of spontaneous activity in the primary AC (Loebel et al.,
2007), and the role of homeostatic plasticity in generating
traveling waves of activity in the AC (Chrostowski et al.,
2011). Furthermore, WCCM has been proposed for modeling
stimulus-specific adaptation in the AC (May et al., 2015; Yarden
and Nelken, 2017) and to generate experimentally verifiable
predictions on pitch processing (Tabas et al., 2019), etc. While
WCCMs are less detailed than models of interconnected neurons,
they may provide a right level of abstraction to investigate
functionally relevant neural computations, probe their link with
psychophysical observations, and generate predictions that are
testable using invasive electrocorticography (ECoG) as well
as non-invasive electro- and magneto-encephalography (EEG,
MEG) and functional MRI (fMRI) in humans.

Here, we used the WCCM to simulate the dynamic cortical
responses (population firing rates) in the AC to both synthetic
and natural (speech) sounds. After filtering from the periphery,
the proposed model processes the spatiotemporally structured
(i.e., tonotopic) input in two primary auditory core areas. The
output of the core areas is then fed forward to two secondary
auditory belt areas, which differ in terms of their processing
of spectral and temporal information and thereby represent the
dorsal and ventral auditory processing streams. In a number
of simulations, we used this model to examine the coding of
amplitude modulated (AM) broadband noise and tones using
metrics derived from the electrophysiology (firing rate and
temporal synchronization with the stimulus). We also simulated
three psychoacoustic experiments to study the role of the multiple
information streams that may underlie behavioral AM detection
thresholds observed for noise (Bacon and Viemeister, 1985) and
tones (Kohlrausch et al., 2000), as well as pitch perception with
missing fundamental stimuli (Houtsma and Smurzynski, 1990).
Lastly, we investigated the processing of speech stimuli in the
model in order to generate predictions on how this cortical
spectro-temporal specialization (represented by the four areas)
may encode the hierarchical structure of speech.

MATERIALS AND METHODS

Model Design and Architecture
Figure 1A provides an anatomical schematic of the modeled
cortical areas with approximate locations shown on the
left supratemporal plane. Figure 1B illustrates the overall
architecture of the model, consisting of a peripheral processing
stage and a cortical processing stage. The peripheral processing
stage simulates the peripheral auditory processing in two steps.
First, the tonotopic response of the cochlea is estimated using
a set of band-pass filters (Gammatone filterbank, N = 100)
(Patterson, 1986; Patterson et al., 1992). The gains of the
filters represent the transfer function of the outer and middle
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FIGURE 1 | Model design and architecture. (A) Anatomical schematic of the modeled areas shown on top view of the left supratemporal plane (with the parietal
cortex removed). Heschl’s sulcus (HS) and first transverse sulcus (FTS) are marked to provide anatomical references while Heschl’s Gyrus is highlighted in blue.
(B) The sound waveform is filtered with a Gammatone filterbank and passed through a Lateral Inhibitory Network (LIN) in the peripheral processing stage, which
serves as input to the cortical stage. The neural responses of the simulated core areas (A1, R) are fed forward as input to two simulated belt areas (Slow and Fast),
which differ from each other in their spectral and temporal properties. (C) Connections between model stages are shown. The output of Lateral Inhibitory Network
(LIN) projects to excitatory units of A1 and R, which in turn project to excitatory units of Fast and Slow, respectively. While the convergence through A1 to the Fast
area is high (i.e., many excitatory units of A1 provide input to a single unit of the Fast area), convergence through R to the Slow area is low (i.e., the units in areas R
and Slow receive input from only one unit). (D) Model output for a sample speech sound is shown at different stages of processing as a spectrogram. The panels at
right and bottom of the output of cortical processing stage show mean firing rates across time and tonotopic axis respectively.

ear (4th order Gammatone filterbank implementation by Ma
et al., 2007). Following the results from psychoacoustics,
the center frequencies of the filters are equally spaced on
an ERBN number scale and their bandwidth increases with
center frequency, so as to have a constant auditory filter
bandwidth (Glasberg and Moore, 1990). Thus, bandwidth of the
100 rectangular filters is set as 1 ERB (Equivalent Rectangular
Bandwidth, based on psychoacoustic measures; for a review of

critical bandwidth as a function of frequency, see Moore, 2003).
The filter frequencies are centered from 50 to 8000 Hz, equally
spaced with a distance of 0.3 Cams (on the ERBN number scale,
ERBN is the ERB of the auditory filters estimated for young people
with normal hearing; Glasberg and Moore, 1990).

Second, the basilar response of the Gammatone filterbank is
spectrally sharpened using a Lateral Inhibitory Network (LIN)
implemented in three steps by taking a spatial (tonotopic)
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derivative, half-wave rectification and temporal integration (Chi
et al., 2005). The output of extreme filters (i.e., first and last
filter) is removed to avoid any boundary effects of filtering, thus
reducing the output of the peripheral processing stage to 98
units (60–7723 Hz).

For the cortical processing stage, the filtered tonotopic
cochlear input is processed in two primary auditory core areas
(A1 and R) and then fed forward to two secondary auditory belt
areas (Slow and Fast; Figure 1). These four areas approximate
the known architecture of human (Galaburda and Sanides, 1980;
Rivier and Clarke, 1997; Wallace et al., 2002) and non-human
primates (Hackett et al., 1998; Kaas and Hackett, 2000; Read
et al., 2002) AC. Simulated areas primarily differ in their temporal
and spectral (spatial) response properties. Specifically, neuronal
units in the Fast area (approximating caudomedial-caudolateral
areas) are characterized by fast temporal dynamics and coarse
spectral tuning, whereas units in the Slow area (approximating
middle lateral-anterolateral areas) are characterized by slow
temporal dynamics and fine spectral tuning. It is important to
note that these units represent an abstraction at the level of
neural population behavior and are not always indicative of
single-neuron properties.

In addition, we introduce an interdependence between
temporal and spatial (tonotopic) processing within the two belt
areas, as the variable that determines the temporal dynamics
of the responses varies with frequency. Consequently, the units
corresponding to lower frequencies in the tonotopic axis respond
more slowly than those corresponding to higher frequencies (see
Scott et al., 2011; Simpson et al., 2013; Heil and Irvine, 2017).
Each simulated area comprises 98 units, which are modeled by
excitatory and inhibitory unit pairs. Each of the excitatory core
units receives tonotopic input from the corresponding frequency-
matched peripheral stage. This input only targets the excitatory
units of A1 and R. Excitatory responses of A1 and R act as
tonotopic input for Fast and Slow areas, respectively (Figure 1C).
The output (excitatory responses) at different stages of the model
is shown in Figure 1D.

The WCCM
Neuronal units of the cortical areas were simulated using the
WCCM in MATLAB (The MathWorks, Inc.). The WCCM is a
recurrent firing rate model where neural population processes are
modeled by the interaction of excitatory and inhibitory responses.
The model dynamics are described by Wilson (1999):

τ
dEn(t)

dt
= −En(t) + SE

(∑
m

wEEmn En (t)

−

∑
m

wIEmn In (t) + Pn (t)
)

(1)

τ
dIn(t)

dt
= − In(t) + SI

(∑
m

wEImn En (t) −
∑

m
wIImn In (t)

)
(2)

where En and In are the mean excitatory and inhibitory firing
rates at time t at tonotopic position n, respectively. Pn is the

external input to the network and τ is the time constant. The
sigmoidal function S, which describes the neural activity (Sclar
et al., 1990), is defined by the following Naka-Rushton function:

S(P) =
MP2

θ2 + P2 (3)

θ is the semi-saturation constant and M is the maximum
spike rate for high-intensity stimulus P. The excitatory and
inhibitory units are connected in all possible combinations
(E–E, E–I, I–E, I–I). The spatial spread of synaptic connectivity
between the units m and n is given by the decaying exponential
wij (i, j= E, I) function:

wijmn = bij exp
(
− |m− n|

σij

)
(4)

In Equation (4), bij is the maximum synaptic strength and σij is
a space constant controlling the spread of activity. The equations
were solved using Euler’s method with a time step of 0.0625 ms.

Parameter Selection and Optimization
Model parameters were selected and optimized based on the
following procedure. First, the stability constraints of the model,
as derived and implemented by Wilson (1999) were applied.
Second, parameters range were chosen so that the model operates
in active transient mode, which is appropriate to simulate activity
in sensory areas (Wilson and Cowan, 1973). In active transient
mode, recurrent excitation triggers the inhibitory response,
which in turn reduces the network activity. The balance of
excitation and inhibition was achieved by fixing the parameters
as described in Table 1 (for the derivation of these parameters
see Wilson, 1999). As shown in previous modeling endeavors
(Loebel et al., 2007; May et al., 2015), it is crucial to understand
the behavior generated through the interaction of various model
properties rather than the exact values of the parameters. In our
case, we are interested in the interaction of spectral selectivity and
temporal dynamics in neural populations constrained by known
physiological response properties of the AC. Thus, while most
of the parameters were fixed, further tuning was performed to
find the combination of spatial spread (σ), connectivity between
areas and time constant (τ) such that the areas reflected the
general spectral and temporal constraints, as derived from the
electrophysiology literature (see following subsections).

Spatial Resolution of the Model
Model parameters, spatial spread (σ) and connectivity between
areas, were determined by matching the sharpness of the model’s
resulting frequency tuning curves (FTCs) with values reported
in the literature. FTCs represent the best frequency of auditory
cortical neurons as well as their frequency selectivity (i.e., the
sharpness of frequency tuning; Schreiner et al., 2000). In primate
AC, the sharpness of neuronal FTCs varies from sharp to broad.
Quality factor (Q) has been used to express the sharpness of the
FTCs

(
Q = Best Frequency

Bandwidth

)
. The Q-values for sharply and broadly

tuned auditory cortical neurons have been reported to be around
12 and 3.7, respectively (Bartlett et al., 2011). Also, the core areas
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TABLE 1 | Fixed parameters of the model.

Parameters Values

M 100

θ inhibition 60

θ excitation 80

bEE 1.5

bEI = bIE 1.3

bII 1.5

σII 10

M is the maximum spike rate, θ the is semi-saturation constant. Parameters bEE,
bII bEI, and bIE, represent the maximum synaptic strength between excitatory
units, between inhibitory units, from excitatory to inhibitory units, and vice versa,
respectively. All the listed parameter values are same across the four simulated
areas.

TABLE 2 | Model parameters across the four simulated areas.

Parameters Values

A1 R Slow Fast

τ (ms) 10 20 300–200 3–1

σEE 40 40 20 200

σEI = σIE 160 160 80 300

For the four simulated areas, the values for varying parameters, time constant τ

(reported over the tonotopic axis from low to high best frequencies of the units),
spatial spread parameter σ (EE, EI/IE) are listed.

have been described as having narrower tuning bandwidths than
belt regions (Recanzone et al., 2000). In order to generate narrow
FTCs of A1, R, and Slow areas and broad FTCs for Fast area, we
iteratively changed spread of activity within the simulated area
(final values are listed in Table 2). When changing the spread of
activity (σ) within an area did not affect the Q of the area, the
connectivity across the areas was manipulated. It should be noted
that the projections act as a filter, which is then convolved with
the spatial input per unit time. To avoid any boundary effects,
symmetric kernel filters (odd number of elements) were used
and the central part of the convolution was taken as a result.
Final connectivity across regions (i.e., distribution of input units
projecting from one area to another) is shown in Figure 1C.

The narrower tuning in the Slow area results from the smaller
spread of excitation (σEE, see Table 2), and from the one-to-
one projection from R units (Figure 1C). The broader tuning
in the Fast area is simulated by a many-to-one projection from
the Gammatone filterbank to a single unit of A1 (three to one)
and from A1 to the Fast areas (nine to one). The strength of
these connections is shown in Figure 1C. The FTCs across areas
are quantified using Q at half-maximum bandwidth. The units
tuning in the simulated A1 and R areas have mean Q = 6.32
(std = 1.43), units in the Fast area have mean Q = 4 (std = 0.87),
while units in the Slow have Q = 8.35 (std = 2.1). In line with the
experimental observations (Kuśmierek and Rauschecker, 2009),
the Q-values increased with increasing center frequencies, while
maintaining the general trend of broad tuning in Fast and
narrow tuning in Slow area. Figure 2 shows FTCs across the four
simulated areas for a single unit with best frequency at 4.3 kHz.

FIGURE 2 | Frequency tuning curves (FTCs) of the unit with best frequency at
4.3 kHz across simulated areas. Areas A1 (blue line) and R (red line) are
sharply tuned, with Q of 7.3 and 7.7, respectively. The Slow area (yellow line)
has the sharpest tuning curves with Q of 10.3, while Fast (purple line) has the
broadest tuning with Q of 4.9. Q is measured as the ratio of the best
frequency and the half-maximum bandwidth in Hz.

Temporal Resolution of the Model
Temporal structure represents an important aspect of natural
acoustic signals, conveying information about the fine structure
and the envelope of the sounds (Giraud and Poeppel, 2012).
In several species, a gradient of temporal responses has been
observed in AC, with higher stimulus-induced phase locking
(synchrony) and lower latencies in area AI compared to adjacent
areas (AI vs. AII in cats: Bieser and Müller-Preuss, 1996;
Eggermont, 1998; AI vs. R and RT in monkeys: Bendor and
Wang, 2008). Correspondingly, model parameters determining
the temporal properties of population responses in the simulated
areas were adjusted to match such electrophysiological evidence.
Table 2 shows the resulting time constant τ for the simulated
areas. Note that the values of parameter τ do not represent the
latency of the first spike measured for single neurons but affect
the response latencies and dynamics at a population level.

Temporal latencies
As neurons in core area R have longer latencies than A1 (Bendor
and Wang, 2008), we selected a higher value of τ for simulated R
than A1. Based on the evidence of the caudomedial field showing
similar latencies to A1 (Recanzone et al., 2000; Kuśmierek and
Rauschecker, 2014), we adjusted τ of the Fast area so that the area
is as fast as A1. In contrast, we set τ of the Slow area such that
this region generates a more integrated temporal response, with
the firing rate taking longer to reach the semi-saturation point.
These τ values, in combination with the spatial connectivity
constraints, cause the simulated belt area to display a spectro-
temporal tradeoff. Additionally, in both Slow and Fast areas τ

decreases linearly along the spatial axis (maximum and minimum
values are reported in Table 2) with increasing best frequency,
following electrophysiological evidence of interaction of the
temporal and frequency axis where shorter latencies have been
found to be correlated with high best frequencies in macaques
(Scott et al., 2011).
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Temporal synchrony
To further refine parameter τ, next we examined stimulus-
driven phase locking of the simulated neural activity.
Electrophysiological measurements report synchronization
in the neural response to the sound carrier and envelope for a
limited range of frequencies, and the upper limit of this phase
locking has been found to decrease along the auditory pathway
(Joris et al., 2004). At the level of cortex, while the strongest
synchronization is reported for modulation rates up to 50 Hz
(AM stimuli: Liang et al., 2002, Clicks: Nourski et al., 2013),
weaker synchronization to even higher rates (up to 200 Hz) has
been observed for a subset of units (Steinschneider et al., 1980;
Bieser and Müller-Preuss, 1996; Lu et al., 2001; Nourski et al.,
2013). In light of the evidence above, we adjusted τ to mimic this
behavior and have strongest temporal synchronization for the
low range of modulation rates (up to 50 Hz), with some residual
synchronization to higher rates.

Model Evaluation
The model performance was evaluated in three stages. First,
we simulated the electrophysiological coding of AM (for both
noise and tone carriers). Second, we evaluated the model’s ability
to predict results of human psycho-acoustical tasks, including
the determination of amplitude modulation detection threshold
functions, tMTFs and perception of missing fundamental. Lastly,
we used speech stimuli to investigate the representation of pitch
and AM features of a complex sound across the simulated
areas. All artificial stimuli (AM noise, AM tones and missing
fundamental complex tones) were generated using MATLAB
with a sampling rate of 16 kHz and 1 s duration). Speech stimuli
were taken from LDC TIMIT database (Garofolo et al., 1993). In
all cases, the key readouts of the model were synchronization to
stimulus features and firing rates. The pitch estimates matched
against model output, where relevant, were computed using the
YIN algorithm (de Cheveigné and Kawahara, 2002).

Coding of AM Stimuli: Evidence From
Electrophysiology
To evaluate the model’s coding of AM, sinusoidally amplitude
modulated (sAM) stimuli were used. AM sounds were defined
by (1+m sin 2πgt)∗carrier, where m is the modulation depth,
g is the modulation rate and t is time. The modulation rates
were chosen to be 2–9 Hz (linearly spaced), and 10–1000 Hz
(logarithmically spaced). Broadband noise was used as carrier to
study the response of all units working together while pure tones
(500 Hz–3 kHz–5 kHz) were employed to evaluate carrier-specific
effects on amplitude modulation coding.

To quantify synchronization of responses to the temporal
structure of AM sounds, we employed two measures from
the electrophysiology literature (Eggermont, 1991; Joris
et al., 2004; Bendor and Wang, 2008): vector strength(

VS = Strength of Fourier Component at the Modulation Rate
Average Firing Rate

)
(Goldberg

and Brown, 1969), and rate modulation transfer function
(rMTF), which is the average firing rate as a function of
modulation rate. VS was computed for all modulation rates (and
three harmonics), for both tone and noise carriers, across the

four simulated areas. We considered a simulated area as being
synchronized to a modulation rate when VS was greater than 0.1
(this is an arbitrary threshold chosen to compare phase-locking
across conditions and areas).

rMTFs were calculated from the average firing rates (i.e., the
Fourier component at 0 Hz) and normalized for all areas. For the
computation of rMTFs, the modulation depth is fixed at 100%
across all AM stimuli. For noise carriers, the computation of
the VS and rMTF is based on the mean across all 98 excitatory
channels. For the tone carriers, only the channel maximally tuned
to the carrier frequency is considered.

Simulating Psychoacoustical Observations
The model was tested using three paradigms approximating
human psychoacoustic studies. The first two experiments
simulated temporal modulation transfer functions (tMTFs:
quantifying the modulation depth required to detect different
modulation rates) for broadband noise (Bacon and Viemeister,
1985) and tones (Kohlrausch et al., 2000). The third experiment
simulated pitch identification with missing fundamental stimuli
(Houtsma and Smurzynski, 1990).

For the simulated tMTFs, AM sounds with incremental
modulation depths (from 1 to 100%) were presented to the
model and the oscillations in the model’s output were measured.
In the psychoacoustic measurements, the lowest modulation
depth at which subjects can detect the modulation is considered
the detection threshold. In the model, using synchronization
as output measure, the lowest value of modulation depth at
which the output is synchronized to the modulation rate (i.e.,
the strongest Fourier component was at the modulation rate)
is considered as the detection threshold for that AM rate. This
procedure was repeated for all the modulation rates and, for
all simulated areas. For noise carriers, the mean across the
excitatory units across each area is analyzed and compared to data
collected by Bacon and Viemeister (1985). The model response
was simulated for modulation rates at 2–9 Hz (linearly spaced),
and 10–1000 Hz (logarithmically spaced).

For AM tones, the analysis of the waveform shows
spectral energy at the carrier frequency and at the carrier
frequency ± modulation rate. These accompanying frequency
components are called “spectral sidebands” of the carrier
frequency. If the modulation rate is high enough, these sidebands
activate distinctively different auditory channels than the carrier
frequency and can be detected audibly apart from the carrier
frequency. Thus, for the tone carriers (1 and 5 kHz) the active
part of the population (comprising the best frequency channel
and spectral sidebands) was used to compute tMTFs based on
temporal synchronization to the modulation rate (temporal code)
and detection of sidebands (spatial code). As before, for the
temporal code, the lowest value of modulation depth at which the
output is synchronized to the modulation rate (i.e., the strongest
Fourier component was at the modulation rate) is considered as
the detection threshold for that AM rate. For the spatial code,
the modulation depth at which the side-band amplitude (mean
firing rate over time) is at least 5, 10, 15, or 20% of the peak
firing rate (firing rate of the channel with CF closest to carrier
frequency) are calculated. The best (lowest) value of modulation
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depth is chosen from both coding mechanisms. The combination
of these coding mechanisms is then compared to tMTFs (at 30 dB
loudness) reported by Kohlrausch et al. (2000). The modulation
rates tested were 10–1600 Hz (logarithmically spaced).

Pitch of missing fundamental complex tones has been shown
to be coded by temporal and spatial codes, depending on
the order of harmonics and frequency of missing fundamental
(Bendor et al., 2012). Here we replicated this finding by
simulating the model response to complex tones with low order
(2–10) and high order harmonics (11–20) and varying missing
fundamental frequency from 50 to 800 Hz. The synchronization
to the missing F0, measured in VS, is computed from the
mean responses over time in each of the four simulated
areas. Furthermore, to evaluate the role of synchronization in
pitch perception, we simulated model responses to complex
tones with unresolved harmonics of a missing fundamental
frequency by approximating a pitch identification experiment
by Houtsma and Smurzynski (1990). The missing fundamental
tone complexes vary in two aspects: the number of harmonic
components (2–11) and the lowest harmonic component (10
and 16) while the fundamental frequency (F0) is fixed at 200
Hz. For each combination of lowest harmonic component and
number of components in the harmonic complex, we computed
the synchronization to the F0 (in VS) and mean firing rates for
all four regions.

Model Responses to Speech
Model responses to the speech stimuli were analyzed in two
stages. The speech stimuli (630 sentences, all spoken by different
speakers; mean duration 3.4 s) were randomly selected from the
LDC TIMIT database (Garofolo et al., 1993). To study how key
temporal features of speech waveforms are represented in the
modeled areas, we compared the temporal modulations in the
output of all four simulated areas to the temporal modulations
of the input signals. To this end, we computed the input-output
magnitude spectrum coherence (mscohere in MATLAB with a
2048 point symmetric hamming window and overlap of 1500
samples) between the input speech signal (after LIN) and the
output of all four areas. The coherence values are then scaled
across the four areas using the mean spatial activity along the
tonotopic axis (i.e., the mean firing rate over time for all sounds).
To highlight the difference in spectrum coherence between the
spectro-temporal processing streams in the model, the difference
between the scaled input-output coherence is computed to
compare the two core (R–A1) regions to each other and the two
belt areas (Slow–Fast).

RESULTS

Coding of AM Stimuli
We investigated the model’s AM coding using both broadband
noise and tone carriers. By using broadband noise as carrier,
we simulated general responses for each of the four areas, and
then used pure tone carriers to study the dependence of the
synchronization and rate coding on the tonotopic location (i.e.,
the best frequency of the units).

Sinusoidal AM Noise
Figure 3 shows the response of the four simulated cortical areas
(A1, R, Fast, and Slow) as a function of the modulation rate
of sinusoidally amplitude modulated (sAM) noise. We analyzed
the mean response of all units for each area. Across regions,
the response synchronization (measured as VS) decreases with
increasing modulation rate (solid lines in Figures 3A–D for
A1, R, Fast, and Slow areas respectively). The decrease in
synchronization is observed to be rapid above an area-specific
modulation rate (8 Hz for A1, R and Fast areas, 2 Hz for Slow).
Taking the lower limit for synchronization as VS = 0.1, the highest
AM rate to which the areas synchronize is 54 Hz in A1, 33 Hz in
R, 4 Hz in Slow and 54 Hz in Fast. Overall, the observed responses
to modulation rates show a low-pass filter profile.

Instead, the firing rate [rate Modulation Transfer Functions
(rMTFs), dash-dotted lines] shows different behavior across the
four areas in response to AM noise. For A1, R and Fast areas
(Figures 3A,C respectively), the firing rate does not change for
lower modulation rates (until 10 Hz for A1 and Fast, until 6 Hz
for R) and then rapidly increases until a maximum limit (54 Hz
for A1, R and Fast) and does not further change in response to
higher modulation rates. In contrast, the firing rate in the Slow
area (Figure 3D) shows a band-pass profile between 6 and 100
Hz, peaking at∼20 Hz.

Sinusoidal AM Tones
Next, we explored the frequency dependence of AM processing.
As the use of broadband noise as a carrier provides no
information about the temporal properties of different frequency
channels along the tonotopic axis, we simulated model
responses to AM pure tone carriers. Figure 4 shows response
synchronization (VS, left column) and firing rate (rMTFs,
right column) across cortical areas as a function of AM rate,
separately for units best responding to a low (solid lines), middle
(dashed lines), and high (dash-dotted lines) frequency pure tone
carriers (500, 1k and 3k Hz respectively). For each area, the
responses in the model’s frequency channel matching the tone
carrier are shown. The synchronization shows a low-pass filter
profile consistently for all three carriers. With increasing carrier
frequency, the A1, R, and Slow areas (Figures 4A,C,E) are
synchronized (VS cut-off at 0.1) to higher modulation rates (A1:
33 Hz for 500 Hz, 54 Hz for 1 kHz and 3 kHz, R: 26 Hz for
500 Hz, 33 Hz for 1 kHz and 3 kHz, Slow: 3 Hz for 500 Hz,
4 Hz for 1 and 3 kHz). This behavior is consequence of the
relationship between the temporal and spatial axis (a property
of the model), with temporal latencies reducing with increasing
center frequencies of the units allowing phase-locking to higher
modulation. The Fast area (Figure 4G) shows a similar cutoff for
all carriers at 54 Hz. The rMTFs (Figures 4B,D,F,H for areas A1,
R, Slow, and Fast respectively), however, show more complex and
varied behavior for different carriers (including monotonically
increasing, band-pass, and band-stop behavior). This behavior
is in line with rMTFs from electrophysiological studies, where
instead of singular behavior (like low-pass filter profile reported
for tMTFs), rMTFs show variety of response profiles (Schreiner
and Urbas, 1988; Bieser and Müller-Preuss, 1996; Liang et al.,
2002; Bendor and Wang, 2008).
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FIGURE 3 | Model responses to sAM noise across simulated areas. A dual coding mechanism for modulation rates, i.e., temporal (measured as Vector Strength, VS,
solid lines) and rate codes (quantified as the rate Modulation Transfer Functions, rMTFs, dash-dotted lines), are shown for A1, R, Fast, and Slow areas in (A–D)
respectively. In A1, R, and Fast areas, the synchronization decreases for higher modulation rates and is complimented by increasing firing rate. While very little
synchronization is observed in the Slow area, the respective rMTF shows an interesting band-pass profile.

Simulating Psychoacoustic Observations
Next, the model was tested using three experimental paradigms
similar to those employed in human behavioral studies. The
first two experiments tested the temporal modulation transfer
functions (tMTFs characterizing the modulation depth required
to detect different modulation rates) for broadband noise (Bacon
and Viemeister, 1985) and tones (Kohlrausch et al., 2000).
The third experiment examined the effects of the number of
harmonics in pitch identification with missing fundamental
stimuli (Houtsma and Smurzynski, 1990).

Temporal Modulation Transfer Functions for
Broadband White Noise
Similar to the behavioral task of Bacon and Viemeister (1985),
we measured responses of the model to AM sounds with variable
modulation depth and recorded the minimum modulation depth
where the output signal was synchronized to the modulation rate
(i.e., the strongest Fourier component was at the modulation
rate) of the AM noise. Figure 5 illustrates the simulation results
(solid colored lines), along with human psychoacoustic data

(dash-dotted black lines with circles, adapted from Bacon and
Viemeister, 1985). Lower values depict higher sensitivity to the
modulation rates. A1 and R show lower thresholds for slower
than for faster modulation rates. In the Fast area, the detection
profile is similar to A1 and R, but the minimum detection depth
is higher than in the other areas. The broad tuning of the Fast
area reduces the precision of the temporal structure of the input
signal. Thus, the Fast area performs worse than the other areas
across modulation rates. In the Slow area, modulation detection
is observed to be limited to rates below 10 Hz. Thus, the core
areas outperformed the belt areas in the detection of amplitude
modulations. The modulation depth detection profile of the core
areas resembles the results from human psychophysics suggesting
that primary auditory cortical processing may underlie tMTFs
reported in psychophysics. In comparison with synchronization,
rate coding is difficult to quantify as observed before with
varying response profiles for rMTFs along the frequency axis
(Figures 4F,H). The difference between our simulations and
psychophysical findings at faster rates may be explained by
the fact that our simulations only considered coding through
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FIGURE 4 | Model responses to sAM tones across simulated areas. A dual coding mechanism for modulation rates, i.e., temporal (measured as Vector Strength,
VS, left panels) and rate codes (quantified as the rate Modulation Transfer Functions, rMTFs, right panels), are shown for A1, R, Fast and Slow areas in respective
panels (A1: A,B, R: C,D, Slow: E,F, Fast: G,H). For the three different carriers, synchronization to higher modulation rates is observed with increasing carrier
frequencies across areas (A,C,E,G). Rate coding, however, shows more varied profiles with different carriers (B,D,F,H).

response synchronization and ignored the contribution of rate
coding contributing to the detection of higher modulation rates.

Temporal Modulation Transfer Functions of
Sinusoidal Carriers
We then investigated the model’s detection threshold function
of sAM tones. Psychoacoustic studies have shown that human
performance does not change across the lower modulation rates,
becomes worse for a small range and then improves after the side-
bands introduced by the modulation become detectable (Sek and
Moore, 1995; Kohlrausch et al., 2000; Moore and Glasberg, 2001;

Simpson et al., 2013). We obtained model responses to sAM tones
as a combination of temporal and spatial codes. To characterize
an area’s modulation detection threshold represented by temporal
code, the lowest modulation depth at which the best frequency
unit or the spectral sideband synchronized to the modulation
rate was chosen. Additionally, the spatial code was quantified
by detection of spectral sideband. Figure 6 shows the lowest
modulation depth for which A1 (solid lines in Figures 6A,C) and
R (solid lines Figures 6B,D) code modulation rates of sAM tones
and the psychoacoustic data for 1 and 5 kHz sinusoidal carriers
at 30 dB (dash-dotted lines with circles, Kohlrausch et al., 2000).
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FIGURE 5 | Modulation detection with sAM noise. The temporal Modulation
Transfer Functions (tMTFs), illustrating the minimum depth required to detect
the amplitude modulation in sAM noise, are shown for the four model areas
(in colored lines) and for a psychoacoustic study (black line and circles;
adapted from Bacon and Viemeister, 1985). Lower values depict higher
sensitivity to modulation rate. Modulation depth, m (dB) of the signal is plotted
on y-axis.

The initial increase in depth values indicates the contribution
of temporal coding of the modulation rates that gets worse
with higher modulation rates. With increasing modulation rates,
however, the spectral sidebands dissociate from the carrier
channel and the contribution of spectral coding is observed.
The modulation depths at which the sideband amplitude (mean
firing rate over time) is detectable (multiple threshold cut-offs
are shown where sideband activity is 5, 10, 15, and 20% of the
firing rate of the channel with CF closest to carrier frequency)
are also shown in Figure 6. No synchronization is observed in
the Slow and Fast areas. Overall, model results show a clear
frequency dependence as detection of higher rates was observed
for the higher carrier (maximum for A1: 500 Hz for 1 kHz
carrier, 1.2 kHz for 5 kHz carrier; R: 1.2 kHz for 1 kHz carrier,
1.6 kHz for 5 kHz carrier). The modulation detection by the
model slightly worsened with increasing modulation rate but
improved (lower m values) as the sidebands introduced by the
modulation became detectable (after 100 Hz for the 1 kHz carrier
in A1 and R, after 400 Hz for 5 kHz carrier in A1). This
improvement of AM detection threshold for high AM rates is
in accordance with human psychophysics, where observations
show a decrease in performance with increasing modulation
rates is followed by a performance increase accompanied
with side-band detection (Sek and Moore, 1995; Kohlrausch
et al., 2000; Moore and Glasberg, 2001; Simpson et al., 2013).
Additionally, matching the model results, human psychophysics
show improved performance (i.e., detection of higher rates) with
increasing carrier frequencies.

Pitch of Missing Fundamental Sounds
Missing fundamental sounds are harmonic complexes that,
despite lacking energy at the fundamental frequency (F0), induce

the percept of a pitch corresponding to F0 (Yost, 2010; Oxenham,
2012). If the harmonic components in the missing fundamental
sound are resolved (i.e., each component produces a response on
the basilar membrane that is distinct from that of neighboring
harmonic components), the pitch information can be extracted
through a spectral (spatial) mechanism, or a temporal mechanism
if harmonics are unresolved, or a combination of the two (Yost,
2009). Bendor et al. (2012) have shown that low F0 sounds with
higher-order harmonics are primarily represented by temporal
mechanisms. Thus, we tested the effect of harmonic order on
the detection of missing F0 through temporal synchrony across
simulated areas. Figure 7 shows synchronization (temporal
code, measured as VS) to missing F0 of complex tones with
lower-order and higher-order harmonics in panels A and B
respectively. Stronger synchronization is observed for higher-
order harmonics compared to lower-order harmonics for lower
missing F0 complex tones in A1, R, and Fast areas. The effect is
most pronounced in the Fast area. However, the synchronization
drops with increasing missing F0, and very little to none
synchronization is observed after 400 Hz irrespective of the order
of harmonics in the complex tone.

For low pitch missing fundamental sounds, psychophysics
experiments employing sounds with unresolved harmonics
have shown that humans are better at identifying a missing
fundamental pitch when the sound consisted of lower (lowest
harmonic = 10) compared to higher unresolved harmonics
(lowest harmonic = 16), yet the performance reaches a
plateau as more harmonics components are included for the
sound consisting of lower but not higher-order harmonics
(Houtsma and Smurzynski, 1990). To evaluate whether temporal
mechanisms play a role in these findings we simulated a pitch
identification experiment (Houtsma and Smurzynski, 1990) and
explored the effects of the number of harmonic components
and lowest order harmonic in the missing fundamental complex
tone on the model’s behavior. As already established, simulated
populations could only successfully synchronize to lower missing
F0 (Figure 7), thus the task employed complex tones with low
missing F0 (200 Hz). Figure 8 shows the model’s synchronization
(VS) to the missing F0 (200 Hz and the first three harmonics)
across the simulated regions (in blue lines), along with the results
from the psychophysics experiment (in red lines, data adapted
from Houtsma and Smurzynski, 1990).

While we did not observe any differences due to harmonic
order in VS measured in A1, R, and Slow areas (Figures 8A,B,D),
the Fast area (Figure 8C) showed clear dissociation in
synchronization code when the lowest order harmonic changed
from 10 to 16. That is, the synchronization to the missing F0 in the
Fast area was stronger when the lowest order harmonic was 10.
Additionally, for both complex tones, the performance of the Fast
area improved with an increasing number of components. The
improvement in synchronization was rapid when the number of
components changed from 2 to 4 for the lowest order harmonic
at 10. These observations are in line with the pitch identification
data shown in the red lines. Thus, neural response properties
similar to those of the Fast area are optimized to temporally detect
the F0 from missing fundamental sounds, and responses in the
Fast area follow human behavior.
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FIGURE 6 | Modulation detection with sAM tones. The solid lines show the temporal Modulation Transfer Functions (tMTFs), illustrating the minimum depth required
to detect the amplitude modulation in sAM tones (1 kHz in top panels, 5 kHz in bottom panels), are shown for the two core areas (A1 in A,C, R in B,D). The model
output is a combination of temporal and spatial codes for modulation detection. Variation in the spatial code is shown at four different cut-off values, represented by
the solid lines in different gray-scales. Data from a psychoacoustic study are shown in dash-dotted lines with circles (adapted from Kohlrausch et al., 2000). Lower
values depict higher sensitivity to modulation rate. Modulation depth, m (dB) of the signal is plotted on y-axis.

FIGURE 7 | Synchronization to missing fundamental frequency across harmonic order. The model performance in detecting missing fundamental of complex tones
(measured as vector strength) with (A) low-order harmonics, and (B) high-order harmonics. Simulated responses in the four areas are shown in different colors.

Unlike synchronization, the simulated firing rate
(Supplementary Figure S1) did not show a pattern that
matched the behavioral data. Specifically, the simulated firing
rate increased monotonically as a function of the number
of components in the complex tone, irrespective of the
lowest order harmonic.

Model Responses to Speech
Speech signals encode information about intonation, syllables,
and phonemes through different modulation rates. We explored
the processing of speech sounds across simulated cortical areas

to study the importance of simple spectro-temporal cortical
properties, as reported by electrophysiology and represented
by the model, in coding these temporal features of speech.
To this end, we analyzed model output in response to
630 speech stimuli by computing the magnitude spectrum
coherence between these sounds (the output of the LIN
stage) and the simulated model responses for each of the
four areas. Figure 9 shows the normalized coherence plots
(scaled by the normalized time-averaged activity). In all regions,
we observed model synchronization to slow changes in the
stimuli (<20 Hz).
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FIGURE 8 | Model performance on a missing fundamental task. The model performance in detecting missing fundamental of complex tones (synchronization to
missing fundamental frequency at 200 Hz, measured as Vector Strength) is shown for areas A1, R, Fast, and Slow (blue lines in A–D, respectively). Human
behavioral data on pitch identification (%) task (Houtsma and Smurzynski, 1990) is plotted in orange lines. Solid lines show complex tones with lowest harmonic at
10 while the dash-dotted lines show the lowest harmonic component at 16.

Next, in order to highlight differences in the temporal
response properties between regions, we computed difference
plots for the simulated core and belt areas. While we observed
no differences in coding of temporal features between A1 and
R, Figure 10 shows that differences are present in the belt
stream (comparing the coding of temporal features in the Fast
to those in the Slow area). The difference between the coherence
(Slow–Fast) across 630 stimuli (mean: -0.0332, SEM: 0.0041)
was used to compute the data distribution in four percentiles
(65, 75, 85, and 95%). These percentiles are shown along the
color bar in Figure 10 (with the distribution) to provide a
threshold for the significance to the difference between input-
output coherence of the Slow and Fast area. Shades of blue
show stronger input-output coherence in the Slow area, while the
warmer colors indicate stronger input-output coherence in the
Fast stream. The Slow area represents the slower changes (4–8
Hz) in the speech envelope better than the Fast area. The Fast
area, on the other hand, highlights faster changes in the temporal
structure of speech in two frequency ranges (30–70 Hz, and
around 100–200 Hz).

We hypothesized that the higher of these two frequency
ranges (100–200 Hz) may reflect the presence of temporal pitch
information in the Fast area. The temporal code for pitch in
the simulated areas was estimated by computing short-time the
Fourier Transform (window length: 300 ms, overlap: 200 ms)
over length of the signal. The resulting power spectral density

estimates showed temporal synchronization to the frequencies
approximating the pitch in A1, R and Fast areas over time. For the
purpose of comparison across simulated areas, the pitch estimates
and contour obtained for voiced portions of the sounds (using
the YIN algorithm) were correlated with the oscillatory activity
of individual simulated areas for all 630 speech stimuli. Mean
correlation values were A1: 0.46 (SEM: 0.02), R: 0.47 (SEM: 0.02),
Slow: -0.14 (SEM 0.01), Fast: 0.59 (SEM 0.01), and showed that
the Fast area best represented the pitch information through
synchronization to instantaneous F0.

Figure 11 highlights the presence of a dual mechanism for
coding pitch, as pitch information is present in both spectral
(i.e., spatially, by different units) and temporal (by different
oscillatory activity) model responses for a sample sound (male
speaker, sentence duration 3.26 s; selected from LDC TIMIT
database; Garofolo et al., 1993). In Figure 11A, the time-averaged
response to the speech sentence across the tonotopically-
organized channels in the four simulated areas is shown. In all
the areas, a peak in the response profile can be observed in
those frequency channels that matched the F0 of the speaker
(best estimate computed using YIN algorithm: 109 Hz). This
spectral (i.e., spatial) representation of the speech signal’s pitch is
strongest in the Slow area and weakest in the Fast area. A1 and R
show similar profiles with respect to each other. Contour tracking
of pitch in the Fast area with the sample sound (correlation
0.74) is shown in Figure 11B (pitch contour of the speech signal

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 95190

https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-13-00095 January 13, 2020 Time: 16:56 # 13

Zulfiqar et al. A Two-Stream Computational Model of Auditory Cortex

FIGURE 9 | Mean magnitude spectrum coherence between speech sounds and model output. The coherence values in A1, R, Fast, and Slow areas are shown in
(A–D), respectively (scaled by the normalized mean spatial response of the model to 630 speech sounds). All areas show high coherence with the slow oscillations
present in the input signal (indicated by red and yellow colors).

measured by YIN algorithm is shown as the white boxes). The
simulated belt regions show functional specialization to represent
pitch spectrally (in the Slow area) and temporally (in the Fast
area) in parallel streams.

Overall, the model responses to speech sounds highlight the
presence of a distributed code for representing different temporal
features of speech signals at the level of belt regions, but not for
the core regions. Each belt area showed a functionally relevant
specialization, as the temporal features highlighted by Slow and
Fast areas are key structures of speech signals.

DISCUSSION

In this study, we presented a computational model of the AC
that consists of information processing streams optimized for
processing either fine-grained temporal or spectral information.
The model is employed to investigate the contribution of the
different cortical streams in the representation and processing of
basic acoustic features (i.e., temporal modulation, pitch) in the
context of artificial and natural (speech) stimuli.

We started by simulating responses to artificial AM sounds.
Electrophysiological studies have characterized AM coding by a
dual mechanism of temporal (synchronization) and rate coding

(Joris et al., 2004). In comparison with the phase-locking in
the auditory nerve (reported up to 1.5–8 kHz in humans;
Verschooten et al., 2019), the synchronization code has been
measured to be comparatively diminished at the level of the
cortex for human and non-human primates. The preferred AM
rates have been reported as ranging from 1 to 50 Hz in monkeys
(Steinschneider et al., 1980; Bieser and Müller-Preuss, 1996; Lu
et al., 2001), despite neurons have been shown to synchronize
as high as 200 Hz in monkeys (Steinschneider et al., 1980)
and similar weak synchronization could be detected in humans
with electrocorticography (Nourski et al., 2013). In agreement
with these electrophysiology studies, our model exhibited a
dual coding mechanism. While the contribution of a temporal
code (synchronization) was strong up to a maximum of 50 Hz,
synchronizations became weaker for higher modulation rates and
were complemented with a rate code mechanism.

Furthermore, in electrophysiology, the maximum AM rate
for which a temporal code is present has been reported to
differ across fields of the AC (Liang et al., 2002). Caudal fields
(i.e., regions belonging to the dorsal processing stream) are
reported to be as fast as or even faster than the primary AC
and synchronize with the stimulus envelope up to high AM
rates. Instead the rostral field (i.e., part of the ventral processing
stream) does not show a temporal code for AM sounds but
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FIGURE 10 | Mean difference in magnitude spectrum coherence between belt regions. The Slow area showed higher coherence with slow oscillations in speech
(4–8 Hz, indicated by blue colors). Instead, the Fast area showed greater coherence to faster oscillations of speech (30–70 Hz, around 100 and 150–200 Hz,
indicated by the warmer colors). The distribution of difference in magnitude spectrum coherence between Slow and Fast area for all 630 sounds is shown in gray,
adjacent to the color bar, with percentiles marked to indicate the statistical significance.

FIGURE 11 | A dual code for pitch estimation. For a sample sound, (A) Mean firing rate of all units in the four simulated areas (A1, R, Slow, and Fast, colored lines) is
shown. Sound frequency profile (scaled) is plotted in black dashed line for reference. The gray highlighted portion of the plot indicates estimates of pitch by YIN
algorithm (distribution over time, with best estimate of F0 plotted with dash-dotted line; de Cheveigné and Kawahara, 2002). A spectral code is observed in model
outputs with firing rate peaks overlapping with YIN estimates. (B) Temporal code for pitch is observed as weak synchronization to pitch contour in oscillatory activity
(measured as Vector Strength) of the Fast area unit corresponding to spectral peak corresponding to best pitch estimate by YIN algorithm. The pitch contour
estimates over time computed by YIN algorithm are depicted by white boxes. The correlation between YIN estimates and the temporal profile of the Fast area is 0.74.

instead codes AM with changes in firing rate (i.e., a rate code)
(Bieser and Müller-Preuss, 1996). In the simulated responses, the
relative contribution of the temporal and rate coding mechanisms
also varied across the simulated cortical areas, depending upon
the areas’ temporal and spectral processing properties. While
the temporal code displayed a low-pass filter profile, the shape
of the rate code varied from low-pass to band-pass and band-
stop patterns. Evidence for such variation in rate coding pattern
has been reported in electrophysiological studies as well with

sAM stimuli (Schreiner and Urbas, 1988; Bieser and Müller-
Preuss, 1996; Liang et al., 2002; Bendor and Wang, 2008). In
our model, this observation was highlighted when the firing
rate was examined within carrier-matched frequency channels.
The interaction of spectral and temporal response properties
underlies these observations.

In order to assess the relationship between neural
population activity (i.e., synchronization and firing rate)
with human behavior, we next used the model to simulate
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psychoacoustic experiments. We were able to successfully predict
psychoacoustically-determined modulation detection thresholds
(i.e., modulation detection transfer functions, tMTFs) for AM
noise and tones (Bacon and Viemeister, 1985; Kohlrausch et al.,
2000). The model suggested a role for auditory core areas, rather
than belt areas, in coding modulation detection with simple AM
stimuli. The tMTF for AM noise was replicated by computing
temporal synchronization. However, for AM tones, we observed
the best prediction of the psychoacoustical tMTF by using a
combination of synchronization and spatial (sideband detection)
code. Additionally, we observed that compared to low-frequency
carriers, high carriers allowed modulation detection up to faster
rates. This replicated psychoacoustic observations of detection
up to faster modulation rates with a higher carrier frequency (Sek
and Moore, 1995; Kohlrausch et al., 2000; Moore and Glasberg,
2001; Simpson et al., 2013). Our simulations indicate that these
frequency-specific responses, which arise at the periphery, are
inherited by the cortex, especially in the core areas.

We further evaluated the contribution of temporal coding
mechanisms to psycho-acoustical phenomena. While current
views on pitch perception suggest that the role of synchronization
is limited to auditory periphery and cortex might use information
from individual harmonics (Plack et al., 2014), there is evidence
of temporal cues being used especially for unresolved harmonics
for low pitch sounds (Bendor et al., 2012). The model successfully
decoded the low frequency missing fundamentals of complex
tones and showed dependence of strength of synchronization
on the order of harmonics. By simulating a psychoacoustic task
employing missing fundamental complex tones with varying
unresolved harmonics, we further investigated the role of
synchronization and its dependence on number and order of
harmonics. The model output matched the previously reported
human behavior performance through synchronization in the
simulated neural responses, but not by a rate coding mechanism.
That is, we could successfully replicate three key findings from
Houtsma and Smurzynski (1990). First, the synchronization
to the missing F0 was stronger for the lower compared to
higher-order harmonic sounds and second, it improved with
an increasing number of components of complex tone. Third,
only for the lower order harmonic sounds, the improvement in
model performance was sharp when the number of components
was increased from two to four and displayed a plateau
when further components were added. Interestingly, the match
between psychoacoustics and the model output was limited to
the Fast area, suggesting a role for this fine-grained temporal
processing stream in the extraction of the pitch using temporal
cues. Additionally, using speech sounds, we further observed a
strong spatial (spectral) pitch correlate (observed in all areas,
strongest in Slow area) along with weaker oscillations tracking
pitch contour (only in Fast area). However, the spatial code is not
observable in model output for pitch with missing fundamental
complex tones and suggests need for a more complex network
to effectively detect pitch just from harmonic information in
space. Moreover, the temporal code for pitch can benefit from
feedback connectivity (Balaguer-Ballester et al., 2009) while
precise interspike intervals can shed light on phase sensitivity of
pitch perception (Huang and Rinzel, 2016). Thus, future model

modifications can move from general (current) to more specific
hypotheses of auditory processing.

Coding of pitch in the AC has been extensively investigated
with fMRI, resulting in somewhat conflicting findings. While
some studies pointed to lateral Heschl’s Gyrus (HG) as a pitch
center (Griffiths and Hall, 2012; Norman-Haignere et al., 2013;
De Angelis et al., 2018), other studies showed that pitch-evoking
sounds produced the strongest response in human planum
temporale (PT) (Hall and Plack, 2009; Garcia et al., 2010).
This disagreement may be due to differences between studies
in experimental methods and stimuli. Our computational model
provides an opportunity to merge these fMRI-based findings, as
it allows for the efficient and extensive testing of model responses
to a broad range of sounds. Based on the sounds we tested,
observations of a pitch center in PT, part of the Fast stream, may
be dominated by temporal pitch. Instead, human fMRI studies
reporting a pitch area in lateral HG (Griffiths and Hall, 2012;
Norman-Haignere et al., 2013; De Angelis et al., 2018), which
is part of the Slow stream), maybe reflecting the spectral rather
than the temporal processing of pitch. Our simulations suggest a
functional relevance for temporal representations albeit through
weak synchronization. These predictions are in line with evidence
of synchronization in the AC contributing to the percept of
pitch (up to 100 Hz) observed with MEG (Coffey et al., 2016)
and require future studies with both high spectral and temporal
precision data from the AC.

The distributed coding pattern shown by the different regions
(i.e., coding of modulation detection thresholds by the core
regions, coding of temporal pitch by the Fast area and spectral
acuity by the Slow area of the belt stream) reflected a hierarchical
processing scheme based on varying spectro-temporal properties
of the neural populations. We then applied this modeling
framework to the analysis of (continuous) speech with the aim
of exploring the influence of basic neural processing properties
on the representation and coding of speech. All modeled areas
represented the slow oscillations present in speech (<20 Hz).
In the belt areas, an additional distributed coding of temporal
information was observed. That is, the optimization for coding
slow temporal changes with high spectral precision in the Slow
stream resulted in the coding of temporal oscillations in the lower
4–8 Hz frequency range. Processing properties similar to those of
the Slow stream may thus be suited for coding spectral pitch and
prosody in speech signals. Instead, optimization for processing
fast temporal changes with low spectral precision in the Fast
stream resulted in coding of temporal oscillations in the higher
30–70 and 100–200 Hz frequency ranges. Processing properties
similar to those of the Fast stream may therefore instead be
optimal for coding phonemes (consonants), and temporal pitch.
In sum, we showed that the hierarchical temporal structure
of speech may be reflected in parallel and through distributed
mechanisms by the modeled areas, especially by simulated belt
areas. This is in line with the idea that the temporal response
properties of auditory fields contribute to distinct functional
pathways (Jasmin et al., 2019).

The “division of labor” observed between the simulated
processing streams provides predictions regarding cortical speech
processing mechanisms. Specifically, the slowest oscillations,
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representing the speech envelope, were coded in parallel across
regions with different processing properties and may serve to
time stamp the traces of different speech aspects belonging
to the same speech utterance across streams. This may serve
as a distributed clock: A binding mechanism that ensures the
unified processing of different components of speech (Giraud
and Poeppel, 2012; Yi et al., 2019) that are instead coded
in a distributed fashion. Such a temporal code can also
underlie binding of auditory sources in stream segregation
(Elhilali et al., 2009). While in the current implementation
of the model the responses are driven by stimuli, the model
could be extended to include stimulus-independent oscillatory
cortical activity. As the oscillations inherent to AC processing
that occur on multiple timescales are known to decode
complimentary informational structures in speech processing
(Overath et al., 2015) and auditory scene analysis, such a model
extension may in the future be used to study the effects on
these ‘inherent’ oscillations on responses to speech and other
structured inputs.

To summarize, we have presented a recurrent neural
model built on simple and established assumptions on general
mechanisms of neuronal processing and on the auditory cortical
hierarchy. Despite its simplicity, the model was able to mimic
results from (animal) electrophysiology and was useful to link
these results to those of psychophysics and neuroimaging
studies in humans. As the response properties of the AC
(tonotopic organization, phase-locking, etc.) are inherited from
the periphery, it remains possible that the model actually depicts
earlier stages in the auditory pathway rather than AC. In future
implementations of the model, the distinction between peripheral
and cortical stages can benefit from a more detailed peripheral
model (Meddis et al., 2013; Zilany et al., 2014). Ultimately,
establishing a clear distinction between peripheral and cortical
contribution would require simultaneous high-resolution (spatial
and temporal) recordings across multiple locations of the
auditory pathway and cortex. Furthermore, how the model
dynamics shape up in presence of intrinsic noise in the system
can also provide interesting insights into sound processing.

Nonetheless, the model is valuable for generating hypotheses
on how the different cortical areas/streams may contribute
toward behaviorally relevant aspects of acoustic signals. The
presented model may be extended to include a physiological
model of neurovascular coupling (Havlicek et al., 2017) and thus
generate predictions that can be directly verified using functional
MRI. Such a combination of modeling and imaging approaches
is relevant for linking the spatially resolved but temporally
slow hemodynamic signals to dynamic mechanisms of neuronal
processing and interaction.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

IZ and EF designed the model. IZ wrote the manuscript. All
authors analyzed the model output. The manuscript was reviewed
and edited by all authors.

FUNDING

This work was supported by the Netherlands Organization
for Scientific Research (NWO VICI Grant No. 453-12-002 to
EF, and VENI Grant No. 451-15-012 to MM) and the Dutch
Province of Limburg.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2019.00095/full#supplementary-material

REFERENCES
Arnott, S. R., Binns, M. A., Grady, C. L., and Alain, C. (2004). Assessing the

auditory dual-pathway model in humans. Neuroimage 22, 401–408. doi: 10.
1016/j.neuroimage.2004.01.014

Bacon, S. P., and Viemeister, N. F. (1985). Temporal modulation transfer functions
in normal-hearing and hearing-impaired listeners. Audiology 24, 117–134. doi:
10.3109/00206098509081545

Balaguer-Ballester, E., Clark, N. R., Coath, M., Krumbholz, K., and Denham, S. L.
(2009). Understanding pitch perception as a hierarchical process with top-down
modulation. PLoS Comput. Biol. 5:e1000301. doi: 10.1371/journal.pcbi.1000301

Bartlett, E. L., Sadagopan, S., and Wang, X. (2011). Fine frequency tuning in
monkey auditory cortex and thalamus. J. Neurophysiol. 106, 849–859. doi: 10.
1152/jn.00559.2010

Belin, P., and Zatorre, R. J. (2000). “What”, “where” and “how” in auditory cortex.
Nat. Neurosci. 3, 965–966. doi: 10.1038/79890

Bendor, D., Osmanski, M. S., and Wang, X. (2012). Dual-pitch processing
mechanisms in primate auditory cortex. J. Neurosci. 32, 16149–16161. doi:
10.1523/JNEUROSCI.2563-12.2012

Bendor, D., and Wang, X. (2008). Neural response properties of primary, rostral,
and rostrotemporal core fields in the auditory cortex of marmoset monkeys.
J. Neurophysiol. 100, 888–906. doi: 10.1152/jn.00884.2007

Bieser, A., and Müller-Preuss, P. (1996). Auditory responsive cortex in the squirrel
monkey: neural responses to amplitude-modulated sounds. Exp. Brain Res. 108,
273–284.

Camalier, C. R., D’Angelo, W. R., Sterbing-D’Angelo, S. J., de la Mothe, L. A.,
and Hackett, T. A. (2012). Neural latencies across auditory cortex of macaque
support a dorsal stream supramodal timing advantage in primates. Proc. Natl.
Acad. Sci. U.S.A. 109, 18168–18173. doi: 10.1073/pnas.1206387109

Chi, T., Ru, P., and Shamma, S. A. (2005). Multiresolution spectrotemporal analysis
of complex sounds. J. Acoust. Soc. Am. 118, 887–906. doi: 10.1121/1.1945807

Chrostowski, M., Yang, L., Wilson, H. R., Bruce, I. C., and Becker, S. (2011). Can
homeostatic plasticity in deafferented primary auditory cortex lead to travelling
waves of excitation? J. Comput. Neurosci. 30, 279–299. doi: 10.1007/s10827-010-
0256-1

Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., and Zatorre, R. J.
(2016). Cortical contributions to the auditory frequency-following response
revealed by MEG. Nat. Commun. 7:11070. doi: 10.1038/ncomms11070

Frontiers in Computational Neuroscience | www.frontiersin.org 16 January 2020 | Volume 13 | Article 95194

https://www.frontiersin.org/articles/10.3389/fncom.2019.00095/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncom.2019.00095/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2004.01.014
https://doi.org/10.1016/j.neuroimage.2004.01.014
https://doi.org/10.3109/00206098509081545
https://doi.org/10.3109/00206098509081545
https://doi.org/10.1371/journal.pcbi.1000301
https://doi.org/10.1152/jn.00559.2010
https://doi.org/10.1152/jn.00559.2010
https://doi.org/10.1038/79890
https://doi.org/10.1523/JNEUROSCI.2563-12.2012
https://doi.org/10.1523/JNEUROSCI.2563-12.2012
https://doi.org/10.1152/jn.00884.2007
https://doi.org/10.1073/pnas.1206387109
https://doi.org/10.1121/1.1945807
https://doi.org/10.1007/s10827-010-0256-1
https://doi.org/10.1007/s10827-010-0256-1
https://doi.org/10.1038/ncomms11070
https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-13-00095 January 13, 2020 Time: 16:56 # 17

Zulfiqar et al. A Two-Stream Computational Model of Auditory Cortex

Cowan, J. D., Neuman, J., and van Drongelen, W. (2016). Wilson–cowan equations
for neocortical dynamics. J. Math. Neurosci. 6:1. doi: 10.1186/s13408-015-0034-
5

De Angelis, V., De Martino, F., Moerel, M., Santoro, R., Hausfeld, L., and
Formisano, E. (2018). Cortical processing of pitch: model-based encoding and
decoding of auditory fMRI responses to real-life sounds. Neuroimage 180(Pt A),
291–300. doi: 10.1016/j.neuroimage.2017.11.020

de Cheveigné, A., and Kawahara, H. (2002). YIN, a fundamental frequency
estimator for speech and music. J. Acoust. Soc. Am. 111, 1917–1930. doi:
10.1121/1.1458024

Eggermont, J. J. (1991). Rate and synchronization measures of periodicity coding
in cat primary auditory cortex. Hear. Res. 56, 153–167. doi: 10.1016/0378-
5955(91)90165-6

Eggermont, J. J. (1998). Representation of spectral and temporal sound features in
three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol.
80, 2743–2764. doi: 10.1152/jn.1998.80.5.2743

Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., and Shamma, S. A. (2009).
Temporal coherence in the perceptual organization and cortical representation
of auditory scenes. Neuron. 61, 317–329. doi: 10.1016/j.neuron.2008.12.005

Ermentrout, G. B., and Cowan, J. D. (1979). A mathematical theory of visual
hallucination patterns. Biol. Cybern. 34, 137–150. doi: 10.1007/bf00336965

Galaburda, A., and Sanides, F. (1980). Cytoarchitectonic organization of the human
auditory cortex. J. Comp. Neurol. 190, 597–610. doi: 10.1002/cne.901900312

Garcia, D., Hall, D. A., and Plack, C. J. (2010). The effect of stimulus context on
pitch representations in the human auditory cortex. Neuroimage 51, 808–816.
doi: 10.1016/j.neuroimage.2010.02.079

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., Dahlgren,
N. L., et al. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus
LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium.

Giraud, A. L., and Poeppel, D. (2012). Cortical oscillations and speech processing:
emerging computational principles and operations. Nat. Neurosci. 15, 511–517.
doi: 10.1038/nn.3063

Glasberg, B. R., and Moore, B. C. (1990). Derivation of auditory filter shapes from
notched-noise data. Hear. Res. 47, 103–138. doi: 10.1016/0378-5955(90)90170-
t

Goldberg, J. M., and Brown, P. B. (1969). Response of binaural neurons of
dog superior olivary complex to dichotic tonal stimuli: some physiological
mechanisms of sound localization. J. Neurophysiol. 32, 613–636. doi: 10.1152/
jn.1969.32.4.613

Griffiths, T. D., and Hall, D. A. (2012). Mapping pitch representation in neural
ensembles with fMRI. J. Neurosci. 32, 13343–13347. doi: 10.1523/jneurosci.
3813-12.2012

Hackett, T. A., Stepniewska, I., and Kaas, J. H. (1998). Subdivisions of auditory
cortex and ipsilateral cortical connections of the parabelt auditory cortex in
macaque monkeys. J. Comp. Neurol. 394, 475–495. doi: 10.1002/(sici)1096-
9861(19980518)394:4<475::aid-cne6>3.0.co;2-z

Hall, D. A., and Plack, C. J. (2009). Pitch processing sites in the human auditory
brain. Cereb. Cortex 19, 576–585. doi: 10.1093/cercor/bhn108

Havlicek, M., Ivanov, D., Roebroeck, A., and Uludað, K. (2017). Determining
excitatory and inhibitory neuronal activity from multimodal fMRI data using
a generative hemodynamic model. Front. Neurosci. 11:616. doi: 10.3389/fnins.
2017.00616

Heil, P., and Irvine, D. R. F. (2017). First-spike timing of auditory-nerve fibers
and comparison with auditory cortex. J. Neurophysiol. 78, 2438–2454. doi:
10.1152/jn.1997.78.5.2438

Houtsma, A. J., and Smurzynski, J. (1990). Pitch identification and discrimination
for complex tones with many harmonics. J. Acoust. Soc. Am. 87, 304–310.
doi: 10.1121/1.399297

Huang, C., and Rinzel, J. (2016). A neuronal network model for pitch selectivity and
representation. Front. Comput. Neurosci. 10:57. doi: 10.3389/fncom.2016.00057

Jasmin, K., Lima, C. F., and Scott, S. K. (2019). Understanding rostral–caudal
auditory cortex contributions to auditory perception. Nat. Rev. Neurosci. 20,
425–434. doi: 10.1038/s41583-019-0160-2

Joris, P. X., Schriener, C. E., and Rees, A. (2004). Neural processing of amplitude-
modulated sounds. Physiol. Rev. 84, 541–577. doi: 10.1152/physrev.00029.
2003

Kaas, J. H., and Hackett, T. A. (2000). Subdivisions of auditory cortex and
processing streams in primates. Proc. Natl. Acad. Sci. U.S.A. 97, 11793–11799.
doi: 10.1073/pnas.97.22.11793

Kaas, J. H., Hackett, T. A., and Tramo, M. J. (1999). Auditory processing in primate
cerebral cortex. Curr. Opin. Neurobiol. 9, 164–170.

Kohlrausch, A., Fassel, R., and Dau, T. (2000). The influence of carrier level and
frequency on modulation and beat-detection thresholds for sinusoidal carriers.
J. Acoust. Soc. Am. 108, 723–734. doi: 10.1121/1.429605
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Recent research in neuroscience indicates the importance of tripartite synapses and

gliotransmission mediated by astrocytes in neuronal system modulation. Although

the astrocyte and neuronal network functions are interrelated, they are fundamentally

different in their signaling patterns and, possibly, the time scales at which they

operate. However, the exact nature of gliotransmission and the effect of the tripartite

synapse function at the network level are currently elusive. In this paper, we propose

a computational model of interactions between an astrocyte network and a neuron

network, starting from tripartite synapses and spanning to a joint network level. Our

model focuses on a two-dimensional setup emulating a mixed in vitro neuron-astrocyte

cell culture. The model depicts astrocyte-released gliotransmitters exerting opposing

effects on the neurons: increasing the release probability of the presynaptic neuron while

hyperpolarizing the post-synaptic one at a longer time scale. We simulated the joint

networks with various levels of astrocyte contributions and neuronal activity levels. Our

results indicate that astrocytes prolong the burst duration of neurons, while restricting

hyperactivity. Thus, in our model, the effect of astrocytes is homeostatic; the firing rate

of the network stabilizes to an intermediate level independently of neuronal base activity.

Our computational model highlights the plausible roles of astrocytes in interconnected

astrocytic and neuronal networks. Our simulations support recent findings in neurons and

astrocytes in vivo and in vitro suggesting that astrocytic networks provide a modulatory

role in the bursting of the neuronal network.

Keywords: simulation, neuron, astrocyte, network, calcium signaling, gliotransmission
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INTRODUCTION

Neuroscience research has focused for long on neurons and
their interacting networks. However, the brain also consists of
a large number of other different cell types, among which glial
cells represent roughly 50% of the brain cells (Kettenmann
and Verkhratsky, 2008; Azevedo et al., 2009). Among glial
cells, astrocytes offer metabolic support to neurons, regulate
the extracellular ions like potassium and calcium released
upon neuronal activity (Dallérac et al., 2013; Hertz et al.,
2015) and uptake neurotransmitters (Bezzi et al., 1998; Araque
et al., 2001; Perea and Araque, 2007; Volterra et al., 2014).
Indeed, some of the synapses of the central nervous system are
contacted by astrocytes that wrap around them, thus forming
a structural ensemble called the tripartite synapse: presynaptic
neuron, post-synaptic neuron and the ensheathing astrocyte
(Araque et al., 1999).

Intracellular calcium (Ca2+) transients are a prominent
readout signal of astrocyte activity, and happens at different
time scales (Kastanenka et al., 2019). They may be triggered
by neuronal activity (Di Castro et al., 2011; Dallérac et al.,
2013). At glutamatergic synapses, inositol 1,4,5-trisphosphate
(IP3) is released in the astrocyte cytoplasm after some of
the presynaptically released glutamate binds to metabotropic
glutamate receptors in the astrocytic plasma membrane. The
released IP3 binds to IP3- and Ca2+-gated Ca2+ channels in
the membrane of the endoplasmic reticulum, thus leading to
a Ca2+ elevation in the astrocyte cytosol. In return, these
transient changes in the level of free cytoplasmic Ca2+ lead
to the opening of further IP3 channels in a Ca2+-induced
Ca2+ release (CICR) mechanism that further amplifies Ca2+

release from the endoplasmic reticulum. The internal calcium
pathways may also be linked to the release by the astrocyte of
so-called gliotransmitters—like glutamate, D-serine, adenosine
triphosphate (ATP), and GABA (γ-aminobutyric acid)—that
influence the activity of the contacted neurons (Pasti et al., 2001;
Henneberger et al., 2010; Zorec et al., 2012; Araque et al., 2014;
Sahlender et al., 2014).

Neuron-astrocyte interactions are thought to occur—
or be initiated—at the thinnest astrocytic processes/branchlets
(Bazargani and Attwell, 2016; Bindocci et al., 2017). Furthermore,
astrocytes themselves form interconnected networks via gap
junctions. Gap junctions formed by connexins build a pore
through the cell membranes of two adjacent astrocytes,
joining their cytosols and letting through certain sized
molecules, including IP3 and potassium ions (Fellin, 2009;
Giaume et al., 2010). The modulating effect of astrocytes
on neuronal network activity has been shown in several
in vitro experiments. Tukker et al. (2018) showed that the
spike and burst rates were reduced in matured networks
with glutamatergic neurons and astrocytes compared to
glutamatergic neurons only. Co-cultured human stem
cell-derived neurons and astrocytes exhibited a marginal
decrease in the spike rate and an increase in the burst rate
and duration, while the number of spikes per bursts was
constant when more astrocyte were present in the network
(Paavilainen et al., 2018).

Dedicated computational models of the cross-talk between
neuron networks and astrocytes have been successfully employed
to explore specific issues related to neuron-astrocyte interactions
(for a review, see Oschmann et al., 2018). For example, Amiri
et al. (2013) combined two coupled Morris-Lecar neuron models
and the dynamic astrocyte model of Postnov et al. (2009).
They simulated 50 pyramidal neurons, 50 interneurons, and 50
astrocytes, connected in a chain-like manner, with each astrocyte
connected to one pyramidal cell, one interneuron, and one
neighboring astrocyte via gap junctions. This study suggested
that increasing the influence of the astrocytes toward the neurons
leads to a reduction of the synchronized neuronal oscillations.
Valenza et al. (2013) developed a transistor-like description of
the tripartite synapse and also included short-term synaptic
plasticity for excitatory synapses. They simulated a network
containing 1,000 neurons and 1,500 astrocytes where at least one
astrocyte was linked to each neuron. This model was able to
produce spontaneous polychronous activity—i.e., reproducible
time-locked but not synchronous firing—in neural groups.

More recently, Aleksin et al. (2017) presented neural network
simulation software called ARACHNE, which is partially based
on the NEURON environment. This model includes a chain-like
structure in ring form, basic equations for the internal astrocytic
dynamics and extracellular diffusion of gliotransmitters (volume
transmission). Additionally, Stimberg et al. (2019) recently
presented how the Brian 2 simulator can be used to model
networks of interacting neurons and astrocytes. The authors
notably showed how, after a period of high external stimulation
of the neurons, gliotransmission can maintain a high level of
neuronal activity and firing synchrony for several seconds after
the end of the external stimulation. Although those modeling
studies clearly advanced our understanding of the interaction
between neuron networks and astrocyte networks, few of them
included all three of the following significant ingredients of
astrocyte networks: (i) Astrocytes form gap junction-based
networks that convey calcium-based signals as waves (Charles
et al., 1996; Fellin, 2009); (ii) each astrocyte contacts a large
number of synapses, estimated to be up to 100,000 synapses
per astrocyte in rat hippocampus (Bushong et al., 2002); and
(iii) astrocytes can release distinct types of gliotransmitters
(Di Castro et al., 2011; Sahlender et al., 2014; Schwarz et al.,
2017), for instance, a single hippocampal astrocyte can co-release
both excitatory (glutamate) and depressing gliotransmitters
(adenosine), thus exerting a biphasic control of the synapse
(Covelo and Araque, 2018).

In this work, we develop a mathematical model of combined
astrocyte-neuron networks to study the role of astrocyte
networks on the modulation of the neuronal firing rate. In
our model, which we call INEXA, astrocytes regulate neuronal
communication through the tripartite synaptic function, and
they can release both excitatory and depressing gliotransmitters
in response to synaptic activity. We moreover introduce the
biological property that each astrocyte is connected to hundreds
of synapses. In a two-dimensional spatial setup emulating
neuron-astrocyte co-cultures, we study how astrocytes control
the homeostasis in neuronal networks by increasing the ratio
of astrocytes. Further, we assess how the level of neuronal
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FIGURE 1 | Schematic of the INEXA model. The colors represent different parts of the simulator. In the INEX model by Lenk et al. (green), the spike has an effect on

the spiking rate of the post-synaptic neuron through the synaptic weight. We added the Tsodyks-Markram (gray) synapse model together with De Pittà’s astrocyte

gliotransmitter interface (yellow). To monitor the synapse activity, a local calcium dynamics simulator (red) was added to each synapse, which is controlled by an

astrocyte. Local astrocyte dynamics control gliotransmission to the synapse. All the local calcium simulators can have an effect on the whole cell calcium signaling

modeled in the UAR model (purple) by Lallouette et al. In the UAR model, the calcium activity can spread across cells, mimicking calcium wave propagation through

gap junction-mediated IP3 diffusion. A whole cell calcium signal sets the local calcium dynamics to a high calcium state and ATP (quickly degraded into adenosine,

orange part) is released into the extracellular space by the astrocyte to restrict the spiking of neurons nearby.

input can alter both the neuronal firing rate and the astrocytic
calcium activity.

METHODS

We developed a computational model that integrates the key
components of astrocyte-neuron modulation (Figure 1). In
section INEXA: A Computational Framework to Model Neuron-
Astrocyte Networks, we describe the full INEXAmodel including
the neuronal and astrocytic components and the manner in
which they are coupled with each other. In section Numerical
and Analysis Methods, we describe the numerical methods for
analyzing the simulated neuronal and astrocytic activity. The
outline of the simulations is specified at the end of section
Numerical and Analysis Methods.

INEXA: A Computational Framework to
Model Neuron-Astrocyte Networks
Neuronal Components

Neuronal activity
Our goal was to develop a model of neuronal spiking in primary
mixed cultures (i.e., containing neurons and astrocytes) grown
on multielectrode arrays (MEAs). We based our model on
the phenomenological INEX model (Lenk, 2011), since it was

initially built for in vitro neuronal networks. INEX is a stochastic
cellular automaton in which inhibitory and excitatory neurons
are connected to each other via synapses. Moreover, noise is
applied to each neuron to reproduce background activity. In this
fashion, INEX is a computationally-light model that has also
been shown of well-reproducing neuronal dynamics of neuronal
cultures plated on MEAs (Lenk, 2011; Lenk et al., 2016). For all
these reasons, we adopted it as a starting platform for neuronal
networks to be complemented by astrocytic coupling.

Briefly, INEX is a discrete-time model with a time step tk =

1t. The instantaneous firing rate λi of neuron i in time slice tk is
calculated as (Lenk, 2011):

λi (tk)= max

(

0, ci+
∑

j
yijsj(tk – 1)

)

(1)

where ci is the noise of neuron i and yij the synaptic strength
from presynaptic neuron j to post-synaptic neuron i. For each
neuron, the value of ci was set independently by sampling from
a triangular distribution between 0 and an upper bound, Cmax.
The value of Cmax depends on the simulation, in order to explore
the effects of the noise level (see Table 1). The term sj indicates
whether a spike has been emitted by neuron j in the previous time
step (sj = 1 if a spike has been emitted, else sj = 0).
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TABLE 1 | Basic simulation parameters.

Parameter Value Unit Definition

Cmax 0.01; 0.02; 0.03 – Upper boundaries for the

three noise levels

Y+
max 0.7 – Upper boundary for

excitatory synaptic weights

Y−
max −0.7 – Upper boundary for

inhibitory synaptic weights

�d 4.0405 s−1 Recovery rate of synaptic

vesicles

�f 2.0 s−1 Rate of synaptic facilitation

α 0.7 – Effect parameter of

astrocyte regulation of

synaptic release

�g 0.077 s−1 Recovery rate of

gliotransmitter receptors

gr 0.3 – Fraction of unbound

receptors recruited by

gliotransmission

Cath 0.1 – Calcium threshold for

gliotransmitter release

�acc 0.05 – Accumulation rate between

IP3 and Ca2+

�IP3
152.3 s−1 IP3 degradation rate

Astrocytes 28; 63; 107 – Number of astrocytes for

NN+A(10%), NN+A(20%)

and NN+A(30%),

respectively

M 5 – Multiplier between

astrocyte near synapse

and whole astrocyte

self-induced IP3 flux

Connection

distance

100 µm Maximum distance

between two connected

astrocytes

τA 1.5 s Average activation time of

an astrocyte

τR 7.0 s Average refractory time of

an astrocyte

τU 5.0 s Average time needed to

activate an astrocyte

b0 0.02 – Slope of the activation

threshold

b1 0.205 – Intercept of the activation

threshold

yAstro 0.01 – Depressing signal applied

by astrocytes

Culture area [750 750 10] µm Resamples MEA electrode

area for each dimension

Min. neuron

distance

10 µm Minimum distance between

randomly placed neurons

Min. astrocyte

distance

30 µm Minimum distance

between randomly placed

astrocytes

σN 200 µm Standard deviation of

neuronal connections

σA 150 µm Standard deviation of

astrocyte-neuron

connections without limiter

(Continued)

TABLE 1 | Continued

Parameter Value Unit Definition

dA 70 µm Limiter cutting the

Gaussian standard

deviation connection

probability set by standard

deviation

T 300 s Simulation time

To keep the model as computationally light as possible and to maintain biological

plausibility, the previously introduced models are combined using relatively simple

components that are not accurate descriptions of the processes, but rather descriptive.

The parameters in INEX are phenomenological and were fixed using brute force to find

sets of parameters that produced results in reasonable ranges (Lenk et al., 2016). By

adding the Tsodyks-Markram presynapse model, we introduced short-term memory at

the level of individual synapses. The parameters are adapted from the model of De Pittà

et al. (2011), which uses approximations of the local astrocytic calcium and IP3. For the

implementation of the UAR model, the parameters described in the supplementary part

of the paper by Lallouette et al. (2014) are used. The values of the adenosine depression

are chosen in such a way, that the astrocyte can reduce the probability of the neuronal

spiking but cannot shut it down completely (Yoon and Lee, 2014). The basic principle of

building our neuronal and astrocytic network topologies is that it reasonably represents a

cultured network on an in vitro multielectrode array (Wallach et al., 2014; Paavilainen et al.,

2018; Tukker et al., 2018). The figure of 250 neurons was found to be computationally fast

enough, since several runs are needed to optimize parameters and produce comparable

statistics. Astrocytes are set randomly but at least 30µm apart. The simulation does not

take into account the exact microdomains (Bushong et al., 2002; Agarwal et al., 2017)

occupied by astrocytes, but assumes that the shape of the astrocytes allows them to

occupy spaces that are non-uniformly spread around the cell soma.

Note that, in our model, each excitatory presynapse is
connected to an astrocyte with a probability that decreases with
the distance between the synapse and the soma of the astrocyte
(see Neuron and Astrocyte Network Spatial Topologies). We
thus have thus adapted Equation (1) to account for the effect of
astrocytes on the synapse (see Glial Components).

The probability Pi(tk) for neuron i to emit a spike during
time step k—i.e., between tk and tk + 1t—is then modeled as
an inhomogeneous Poisson process with rate λi(tk):

Pi (tk )= e−λi(tk )1t·λi (tk ) 1t. (2)

Here, we used 1t = 5ms to cover the typical duration of an
action potential and the subsequent refractory period. Thus,
we neglected the probability that more than one spike may be
emitted by a given neuron during a single time step. At the benefit
of computational efficiency, a time step as large as 1t = 5ms
can be adopted and the INEX network model can still reliably
simulate neuronal activity recorded inMEA cultures (Lenk, 2011;
Lenk et al., 2016).

Presynaptic dynamics
For the dynamics of presynaptic neuronal release, we used the
Tsodyks-Markram (TM) presynapse model (Tsodyks et al., 1998).
The TM model consists of two variables, x and u, describing
the fraction of neurotransmitters available in the presynaptic
terminal and the fraction of these available neurotransmitters
that are ready for release (which can be seen as the release
probability), respectively. We have discretized the original TM
equations and thus, for each synapse ij applied:
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xij (tk) =
(

xij (tk−1)−RRij (tk)
)

+
[

1−
(

xij (tk−1)−RRij (tk)
)] (

1−e−�dt
)

, (3)

uij (tk) =
[

(

1−uij (tk−1)
)

U
∗

ij (tk) sj (tk)+uij (tk−1)

]

e−�f1t,

(4)

RRij (tk) = xij (tk−1)

[

(

1−uij (tk−1)
)

U
∗

ij(tk)sj (tk)

+uij (tk−1)

]

sj (tk) , (5)

where Ωd represents the rate of reintegration of
neurotransmitters in the presynaptic terminal, Ωf the rate
of decrease of release probability, RRij the fraction of released

neurotransmitters, and U
∗

ij denotes the maximal increment

of the ready-for-release fraction triggered by the arrival of a
presynaptic spike.

The discretization of the TM equations was achieved by
assuming that neuronal spikes happen at the very start of the 5ms
time steps. Just after a spike at the start of time step tk, the release
probability u takes the value

(

1− uij
(

tk−1

))

U
∗

ij(tk)sj (tk) +

uij
(

tk−1

)

: the sum of its previous values at the end of time

slice tk−1 and the additional recruitment of a fraction U
∗

ij of

the previously non-recruited available resources. This temporary
value u just after a spike is used to compute: (1) the value of
u at the end of the time step tk (Equation 4) by applying a
simple exponential decay term, and (2) the released resources
for this time slice (Equation 5) by simply multiplying it by the
fraction of available resources x at the end of time step tk−1.
The available resources at the end of time step tk are then
computed (Equation 3) by subtracting the released resources
from the available resources at the end of time step tk−1 and then
applying an exponential term accounting for the reintegration
of resources. In our model, the value of U

∗

ij in turn varies with

time depending on gliotransmitter release by the astrocyte that
enwraps the synapse (see Glial Components).

The strength of the synapse yij was chosen to be directly
proportional to the fraction of released resources RRij:

yij (tk) = Ymax·RRij (tk) , (6)

where Ymax represents the largest value that the inhibitory (Y
−
max)

or excitatory (Y+
max) strength of a synapse can take.

Glial Components

Regulation of synaptic dynamics by gliotransmission
The questions of whether gliotransmitters are actually released
by astrocytes and whether released gliotransmitters do contribute
to the modulation of neuronal activity are still debated (see
e.g., the two main perspectives expressed in Fiacco and
McCarthy, 2018; Savtchouk and Volterra, 2018). In particular,
the mechanisms by which gliotransmitters can be released are
unclear, although both calcium-dependent vesicular release and
channel-based release have been evidenced (Sahlender et al.,
2014). However, an increasing number of experiments confirm
that astrocytes are not just passive read-out units; they are
heavily involved in the modulation of neuronal synapses and
their activity (Fellin et al., 2004; Perea et al., 2009; Clarke and
Barres, 2013). These results show that depending on the type

of receptors expressed by the presynaptic and post-synaptic
neurons, astrocyte-released glutamate can either potentiate (via
presynaptic or extrasynaptic NMDAR) or depress the synapse
(via presynaptic mGluR; Jourdain et al., 2007; Fellin, 2009;
Bonansco et al., 2011; Min et al., 2012; Papouin and Oliet,
2014).

In addition to glutamate, astrocytes can also release purines
such as ATP and adenosine (Newman, 2003; Bowser and
Khakh, 2007; Lorincz et al., 2009; Hines and Haydon, 2014).
Moreover, extracellular ATP of astrocytic origin could also
be hydrolyzed into adenosine. By binding to A1 receptors
on the presynaptic terminal, adenosine has been shown to
reduce synaptic strength (Boddum et al., 2016; Savtchouk and
Volterra, 2018). In a very similar way, astrocytes have also been
reported to release GABA, a phenomenon involved in tonic
inhibition (McIver et al., 2013), probably via calcium-regulated
channels (Lee et al., 2010). Therefore, converging experimental
evidence suggests that astrocytes release gliotransmitters that
can either increase or decrease synaptic activity. In neurons,
segregation between inhibitory and excitatory transmission is
the rule. Excitatory neurons usually release glutamate, whereas
inhibitory neurons release GABA, although exceptions exist,
including the co-release of GABA and glutamate by the same
presynaptic synapse (Shrivastava et al., 2011). However, the only
available related experimental report on astrocytes concluded
against segregation: in hippocampal slices, it was shown that a
single astrocyte can release both glutamate and adenosine, thus
mediating an initial potentiation of the synapse, followed by
longer-lasting depression (Covelo and Araque, 2018). Lorincz
et al. (2009) and Newman (2003) suggested in their studies that
adenosine could also bind to A1 receptors post-synaptically and
trigger neuronal inhibition through G protein-coupled inwardly
rectifying K+ channels.

In the present work, we explore the effects of such
a non-segregated gliotransmitter release, assuming that a
single astrocyte can release both potentiating and depressing
gliotransmitters. Therefore, we assumed that gliotransmitter
release is not segregated in astrocytes—i.e., a single astrocyte can
release both potentiating and depressing gliotransmitters at the
same synapse. To model the effect of depressing gliotransmitters,
we added to each excitatory synapse contacted by an astrocyte
an additional depressing signal from the astrocyte that could be
mediated by adenosine (Newman, 2003; Lorincz et al., 2009).
This was accounted for in the model by a term modulating the
synaptic weights yAstro, that modified Equation (1) to:

λi (tk)= max

(

0, ci+
∑

j
yij·sj (tk−1)−

∑

j
yAstro·Aija (tk−1)

)

,

(7)

where Aija = 1 if synapse ij is enwrapped by astrocyte “a” and if
astrocyte “a” was in the active state at the previous time-step, else
Aija = 0 (the conditions for astrocyte activation are detailed in
section Astrocytic network dynamics). Therefore, if an astrocyte
is close enough to synapse ij to enwrap it, the astrocyte exerts a
depressing effect, yAstro, on the synapse as long as the astrocyte
is in the active state. Note that the duration of the resulting
depression is set by the time spent by the astrocyte in the active
state. In our simulations, this activation time is usually large
(seconds, Figure 5D).
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To model the effects of potentiating gliotransmitter release on
the presynaptic part, we followed a paper by De Pittà et al. (2011),
wherein a single parameter, α, is used to describe the effects of
the co-operation of multiple receptors. We considered that ATP
and glutamate are released in a single release event and that their
binding kinetics to their receptors are fairly similar. As in De Pittà
et al. (2011) and De Pittà (2019), α modifies the value of U

∗

ij (tk),

which describes the effect of gliotransmission on the synaptic
release probability (see section “Presynaptic dynamics”):

U
∗

ij (tk) =
yijbase
Ymax

·
(

1−gij (tk)
)

+α·gij (tk) , (8)

where gij(tk) is the fraction of bound presynaptic gliotransmitter
receptors (see section Astrocyte response to presynaptic
stimulations). In the absence of gliotransmission, i.e., for the
synapses that are not connected by an astrocyte, gij(tk)= 0 for all

time steps tk, so that U
∗

ij is set to a constant value (U
∗

ij =
yijbase
Ymax

).

The value of α sets the influence of gliotransmission on
presynaptic release: depending on its value, α can account for

depressing gliotransmission (0 < α <
yijbase
Ymax

) or potentiating

gliotransmission (
yijbase
Ymax

< α <1). Here, our focus is on the
non-segregated gliotransmitter release as reported by Covelo and
Araque (2018), where a single astrocyte can sequentially elicit
sequentially a potentiation of the synaptic weights followed by
a longer-lasting depression. The latter phase is accounted for by
the term yAstro Aija in Equation (7). We thus emulate the initial
potentiation phase by setting α to a potentiating value (α = 0.7

while
yijbase
Ymax

< 0.7; see below and Table 1). The parameter yijbase
is the basal synaptic strength of synapse ij in the absence of
gliotransmission: a spike arriving at the presynaptic terminal of
synapse without an adjacent astrocyte that has fully recovered
from its previous activity (i.e., xij(tk−1) = 1 and uij(tk−1) = 0),
yields yij(tk) = yijbase from Equations (5–7) above. In our model,

gij (tk)=

{
(

gij (tk−1)+
(

1−gij (tk−1)
)

·gr
)

·e−�g1t if [Ca2+]ija (tk−1)<[Ca2+]th<[Ca2+]ija (tk)

gij (tk−1) ·e
−�g1t otherwise

, (11)

yijbase was sampled randomly from a triangular distribution (0≤
yijbase≤ 0.7). The triangular distribution was a simplification of
the Gaussian distribution, which guaranteed the positivity of
the values.

Astrocyte response to presynaptic stimulations
Calcium transients in astrocytes can be classified into at least
two main types. Transient calcium elevations can happen
independently of neuronal activity (spontaneous transients) or
they can be triggered by the activity of nearby presynaptic
neurons (activity-driven transients) (Perea et al., 2009; Wallach
et al., 2014). Although astrocytic calcium signals can invade the
whole cell (Volterra et al., 2014; Bindocci et al., 2017) and even
be transmitted to coupled astrocytes (Parri et al., 2001), some
calcium signals are restricted to the neighborhood of their origin.
Thus, they cause calcium elevation locally, at a range of only
one or a few synapses (Perea et al., 2009; Di Castro et al., 2011;
Bindocci et al., 2017).

To account for the response of the astrocyte to glutamate
release by the presynaptic element of the tripartite synapse, we

modeled each astrocyte as a multi-compartment cell with local
areas and a soma. Local area ija of astrocyte “a” represents the
subpart of the astrocyte that is in direct contact with synapse
ij and is associated to its own local IP3 and calcium dynamics.
Here, we expressed those local IP3 and calcium transients
using a simplified version of the astrocyte IP3/calcium dynamics
described by De Pittà and co-workers (De Pittà et al., 2008,
2019). The variables [IP3] and [Ca2+] denote the concentrations
of IP3 and Ca2+, respectively in local area ija of astrocyte “a”.
Upon emission of a presynaptic spike by neuron j, [IP3]ija (tk)
is incremented by a value that depends on the amount of
resources released into the synaptic cleft, RRija (tk). [IP3]ija (tk)
then decreases exponentially fast at rate �IP3 :

[IP3]ija (tk) = [IP3]ija (tk−1) ·e
−�IP31t

+
(

1−[IP3]ija (tk−1) ·e
−�IP31t

)

·RRij(tk). (9)

To express the local calcium dynamics, we simplified the
dynamics further and chose to focus on amplitude-modulated
(AM) astrocyte responses to stimulation (De Pittà et al., 2008).
Thus, larger IP3 concentrations translate into larger calcium
concentrations and not larger oscillation frequencies (De Pittà
et al., 2008). To account for the expected slow time scale of the
calcium-release machinery (up to seconds), we made the local
calcium dynamics [Ca2+]ija(tk) converge to [IP3]ija (tk) with
time scale �acc:

[Ca2+]ija(tk) = [Ca2+]ija(tk−1)+�acc·([IP3]ija(tk)

− [Ca2+]ija(tk−1)). (10)

Gliotransmission occurs when the local calcium concentration
exceeds the threshold [Ca2 +]th:

where the condition for [Ca2+]ija ensures the absence of a
new gliotransmission event when calcium drops back below
the threshold. In this equation, gij(tk) is the fraction of bound
presynaptic gliotransmitter receptors, gr the fraction of unbound
receptors recruited, and �g the recovery rate of gliotransmitter
receptors. For simplicity, and unlike in De Pittà et al. (2008), we
consider a constant gliotransmission recruiting fraction.

Astrocytic network dynamics
To model astrocyte-astrocyte calcium signaling, we used the
UAR model introduced by Lallouette et al. (2014, 2019). In the
network model, each astrocyte is a node, and gap junctions
are links between the nodes. In the UAR model, an astrocyte
“a” can have three possible states Sa: active state (A), inactive
dormant state (U), and refractory (R), during which the cell
cannot transmit calcium signals. At any time, the cell will
be in one of these states. Transitions between states are
probabilistic and depend on the propagation efficiency of coupled
astrocytes. The propagation efficiency of an active astrocyte “a” is
(Lallouette et al., 2014, 2019):
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βa (tk)=

{ 1
Ia(tk)

if Sa (tk)= A

0 else
, (12)

where Ia(tk) is the number of astrocytes that are gap junction-
coupled to “a” and are not in the active state A. The activation
propensity of “a” is then obtained with:

γa (tk) = θa

∑

b∈N ( a)
βb (tk)+

∑

[Ca2+]ija

N
·M, (13)

whereN (a) is the set of astrocytes that are gap-junction-coupled
to “a” and θa is the astrocyte activation threshold. The sum in the
second term of the right-hand side of Equation (13) runs over
all local areas ija composing astrocyte “a,” thus effectively adding
up the calcium [Ca2+]ija of each of the astrocyte’s regions. These
local responses are averaged over the whole astrocyte (N is the
number of excitatory connections to astrocyte “a”) and scaled
by a factor M to arrive at their contribution to the activation
propensity. If the activation propensity of an astrocyte is larger
than the threshold θa, this astrocyte can activate. Following
Lallouette et al. (2014), this threshold changes with the number
of astrocyte neighbors na as:

θa(na) = b0na+b1, (14)

where b0 denotes the slope of the activation threshold and b1
as the intercept of the activation threshold. The probability for
astrocyte “a” to become active (U → A) at time step tk is finally
calculated as:

P(U→A)a (tk) =

{

1t
τA
if γ

a
(tk)> θa (na)

0 else
, (15)

where τA is a parameter that sets the time scale of the activation
transition. Moreover, the activation of astrocyte “a” is signaled
back to all its local areas by the following additional rule: The
IP3 concentration [IP3]ija of every local area ij composing “a” is
forced to its maximum value ([IP3]ija = 1) for the entire duration
of the active state of “a.” Note that, as described by Equation
(3), activated astrocytes also release adenosine during the entire
duration of the active state.

Finally, transitions from the active to refractory (A→ R)
and from the refractory to inactive state (R → U)
happen spontaneously:

P(A→R) = 1t/τR , (16)

P(R→U) = 1t/τU . (17)

Neuron and Astrocyte Network Spatial Topologies
Astrocytes were randomly placed on a virtual 2D MEA culture
surface area of 750 × 750 µm2 (with uniform distribution).
If the distance between two astrocyte somas was smaller than
30µm, one of the two astrocytes was randomly relocated until
all inter-soma distances were larger than 30µm. Each astrocyte
was connected by gap junctions to every neighboring astrocyte
whose inter-soma distance was smaller than 100µm. Hence, the
diameter of one astrocyte is∼100µm in our model (Figure 2A).

The spatial distribution of the neurons on the virtual MEA
was chosen the same way as for astrocytes. However, the method
for connecting the neurons differed. Since neurons form long
distance connections, we used a connection probability set by a
scaled Gaussian distribution:

PNN (d) = e
−

d2

2σN2
, (18)

where d is the (inter-soma) distance between two neurons. Each
synapse was connected to the nearest astrocyte in a similar
probabilistic way, except that a synapse cannot connect to an
astrocyte that is farther than a certain cut-off:

PAN (d) = e
−

d2

2σA2 ·H (dA−d) , (19)

where d is the distance between the cell body of the nearest
astrocyte and the synapse. H() denotes the Heaviside function
(H(x) = 1 if x > 0, otherwise H(x) = 0) and dA is the cutoff
distance, which we set to 70µm (Figure 2A). If the synapse does
not connect to the nearest astrocyte, the next-nearest astrocyte is
tried and so forth. Note that, in our model, an excitatory synapse
can end up without an astrocyte.

Numerical and Analysis Methods
Spike and Burst Detection
In this paper, we analyzed neuronal activity in the form of
spikes and bursts which are cascades of spikes. Synchronous
population bursts are characteristics of matured and well-
connected networks (Giugliano et al., 2004; Wagenaar et al.,
2006; Lenk et al., 2016). Spike and burst features were calculated
using a modified version of the cumulative moving average
(CMA) algorithm (Kapucu et al., 2012; Välkki et al., 2017). The
threshold used to decide whether a spike belongs to a burst
was set by the skewness of the cumulative moving average of
the interspike interval distribution. Using the CMA algorithm,
we calculated the spike rate in spikes/minute, the burst rate in
bursts/minute, the average burst duration in milliseconds, and
the average spikes per burst at the post-synapse. Figure 3 depicts
an example spike train from our simulations with detected bursts.
For each spike/burst feature and noise level, we performed a one-
way ANOVA (GraphPad Prism v8.2.1, GraphPad Software Inc.,
California, USA) to confirm that the features were statistically
different for each model scenario.

Frequency and Activity Analysis
We constructed multiple parameter sets describing different
neuron or neuron-astrocyte networks. The total spike count of
the neuronal network was calculated for each run. The resulting
signal was then centered by subtracting its mean, and a discrete
Fourier transform (DFT) was applied. We only considered
the modulus of the Fourier transform coefficients. For each
simulation, we applied the DFT to each of the five conducted
runs (see section Simulations) and calculated the corresponding
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FIGURE 2 | Connection distances between cells and spatial neural network topology. (A) Neuron-neuron connections (red) are Gaussian based on distance.

Astrocyte-neuron connection probability (blue) follows Gaussian until it reaches a limiter. Astrocyte-astrocyte connections (green) form as long as the two cells are

closer than a set limiter. (B–D) The graphics show the neuronal network with (B) 10%, (C) 20%, and (D) 30% astrocytes on a “virtual” multielectrode array (units are in

µm). The neuronal network is represented by the position of the neurons (green circles), and the astrocytic network includes the cells (red triangles) and the

connections between them (red lines).

average frequency spectra. The average frequency spectrum was
then smoothed by convolution with a Gaussian kernel:

ζs (f) =

∫ +∞

−∞

ζ (x) e
−

(f− x)2

2σ 2

∫ +∞
−∞ H(y)e

−

(

x− y
)2

2σ 2 dy

dx (20)

with ζ (f ) the DFT coefficients and H(y) = 1 if y is between the
minimum and maximum frequencies obtained from the DFTs,
and 0 otherwise. This allows a correction of border effects. For all
frequency spectra shown in this paper, we used σ = 0.025 Hz.

Cross-correlation between neuronal and astrocytic activities
was computed by smoothing the neuronal (respectively,
astrocytic) activities by

Ls (t) =

∫ +∞

−∞

L (τ ) e
−

(t− τ)2

2ρ2

∫ +∞
−∞ F(y)e

−

(

τ − y
)2

2ρ2
dy

dτ , (21)

FIGURE 3 | Example spike train (spikes in blue) with detected bursts (red bars)

using the cumulative moving average (CMA) algorithm. The simulated spike

train stems from a data set with NN+A(30%) and Noise = 0.01. The y-axis

shows time in minutes.

with L the original pooled neuronal or astrocytic activity signal,
and Ls the smoothed signal. F(y) is equal to 1 if y is between
0 and the maximum time of simulation (usually 300 s), and
0 otherwise. We used ρ = 3 s. For each run, we computed
the cross-correlation using the crosscorr function in Matlab
(version R2017b, MathWorks, USA). The cross-correlation was
then averaged across the five runs for each relevant scenario.

Average astrocyte activation ratios were computed for
simulations in which astrocytic networks were used. As for
neuronal activity, the astrocyte activity was pooled in 5ms bins;
at each time step, the total number of currently active astrocytes
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in the simulation was recorded. The average astrocyte activation
ratios AR were then computed by:

AR =
〈B〉

nA

τRt+τU+τA

τR
(22)

with 〈B〉 the average number of astrocytes activated at any given

time and nA the total number of astrocytes. 〈B〉
nA

was thus the
average fraction of astrocytes that were activated at any given
time. The average transition times between astrocyte states were
used to scale the activity such that a value of 1 corresponded to the
highest average activity possible (when astrocytes continuously
changed from inactivated (τU), to activated (τA) to refractory (τR)
states).When applicable, Spearman’s rank correlation coefficients
and associated p-values were computed using the corr function
in Matlab.

The homeostatic effects of astrocytes can further be
investigated by looking at how the average neuronal spike
rate changes when astrocytes activate faster (represented by
parameter τA), or when the strength of their presynaptic effect
is changed (represented by �g). Low values for τA lead to high
activation while high values prevent activation [see Equation
(15)]. On the other hand, parameter �g controls the presynaptic
effect of astrocyte processes: high values lead to fast recovery
of glutamate receptor (and thus low presynaptic effects) while
low values lead to slow recovery (and thus high presynaptic
potentiation). Therefore, we ran NN+A(30%) simulations with
noise ci = 0.02 and varied τA between 1.0 and 4.5 s and �g

between 0.077 and 51.29 s−1.

Simulations
To illustrate how the INEXA network model and what the
astrocyte contribution to its dynamics is, astrocytic signaling was
progressively added, starting from the original INEX model in
four sequential stages:

- Noise only: we only included the neuronal background noises
ci (Equation 7), i.e., all synaptic weights and the astrocytic
depressing terms were set to zero (yij = yAstro = 0 in Equation
7). This scenario therefore is to be considered as a reference
where the neurons are connected neither to each other nor to
the astrocytes.

- NN only: we set the synaptic weights to constant values
(i.e., −0.7 ≤ yij ≤ 0.7), keeping yAstro = 0. This stage thus
corresponds to a pure neuronal network response with no
influence of the astrocytes on the neurons.

- NN + PSA: each excitatory presynapse was connected to
an astrocyte (PSA). In this scenario, however, the astrocytes
themselves did not form a network (i.e., the term βa of
Equation 12 was set to zero for all astrocytes at all times) and
no adenosine was released into the extracellular space (i.e., we
keep yAstro = 0 in Equation 7).

- NN+A(x%): the complete INEXA model was tested and
compared to the second and third phase (i.e., βa was computed
according to Equation 12 and yAstro was set to the value
found in Table 1). Furthermore, to test the effect of the
number of astrocytes on the network activity, we simulated

TABLE 2 | Statistics of the neuronal network.

Measure Value

Maximum amount of neuronal network connections 62,250

Average number of connections to other neurons 72.12

Network connectivity in % 28.96

Average length of connections in micrometer 211.57

Number of bidirectional connections 5,284

cultures composed of roughly 10% [called “NN+A(10%)”],
20% [“NN+A(20%)”], and 30% [“NN+A(30%)”] astrocytes.

In all simulations, the network consisted of 250 neurons, of which
200 were excitatory (80%) and 50 inhibitory (20%). Each of the
above described simulation phases was run five times with three
different noise levels (the upper boundaries of ci were set to Cmax

= 0.01, 0.02, or 0.03). The same neuronal network was used
in all simulations. However, if present, the astrocytic network
was resampled at each run. In total, these four phases produced
18 scenarios. A total simulated time of 5min was chosen. The
values of the parameters used in the simulations are given
in Table 1.

Topology
Table 2 summarizes the statistics of the simulated neuronal
and astrocyte networks. The connectivity within the neuronal
network was 29%. Each astrocyte was to connected to between
130 and 250 excitatory synapses depending on the ratio of
astrocytes in the network [“NN+A(10%),” “NN+A(20%),” and
“NN+A(30%),” more astrocytes yielding less synapses per
astrocyte, see Table 3]. Likewise, each astrocyte was connected
to one to five neighboring astrocytes through gap junctions
depending on the astrocyte ratio (more astrocytes yielding more
gap junction couplings per astrocyte).

Figures 2B–D shows the spatial topology of neurons and the
astrocytic network resulting from the spatial rules described in
section Neuron and Astrocyte Network Spatial Topologies. In the
case of “NN+A(10%)” (Figure 2B), only a few astrocytes formed
connections, and half of the excitatory synapses (51.1%) were
not controlled by an astrocyte. In “NN+A(20%)” (Figure 2C),
almost all astrocytes were connected to at least one neighboring
astrocyte. However, the number of astrocytes used was not
enough to reach all synapses, and 15.2% of the excitatory synapses
were left without any astrocyte. Finally in “NN+A(30%)”
(Figure 2D), a widely interconnected astrocytic network spread
all over the entire neuronal network, and only 3.8% of the
excitatory synapses were not connected to an astrocyte.

RESULTS

Single Synapse-Astrocyte Interaction
We first use simulation results to illustrate how communication
between neurons and astrocytes shapes the dynamics of our
INEXA model. Figure 4 shows three time series from a
simulation with 30% astrocytes [“NN+A(30%)” scenario]. The
release of resources (Figure 4B) was induced by the activity
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TABLE 3 | Statistics of the astrocytic network: mean value and standard deviation

over the five runs for NN+A(10%), NN+A(20%), and NN+A(30%), respectively.

Measure NN+A(10%) NN+A(20%) NN+A(30%)

Connections of an

astrocyte to nearby

excitatory synapses

252.05 ± 13.16 194.22 ± 6.15 129.68 ± 1.88

Gap junction

connections between

astrocytes

1.42 ± 0.56 2.55 ± 0.27 4.86 ±0.31

Lowest and highest

gap junction amount

(rounded)

0 ± 0–4 ± 1 0 ± 0–5 ± 1 0 ± 1–9 ± 1

Distance between

connected astrocytes

in µm

68.65 ± 4.78 70.92 ± 1.35 70.14 ± 0.87

Number of excitatory

synapses without an

astrocyte (rounded)

7363 ± 368 2185 ± 387 544 ± 201

Percent of “naked”

(without astrocyte)

excitatory synapses

51.06 ± 2.55 15.15 ± 2.68 3.77 ± 1.40

of the presynaptic terminal (Figure 4A), but the amount
of neurotransmitters released into the synaptic cleft varied,
depending on the fraction of available vesicles (Equation 3) and
the fraction of these vesicles that were ready for release (Equation
4). The amount of neurotransmitter in the cleft was directly
linked to the post-synaptic activity as described by Equations (5)
and (7). Accordingly, more frequent post-synaptic spikes were
elicited when larger amounts of neurotransmitters were released
(compare Figures 4B,F).

In our model, spike-induced neurotransmitter release had
an impact not only on the neuronal network, but also on the
astrocytic network. The astrocytes were able to detect synaptic
activity through the resources released by the presynaptic
terminal in the synaptic cleft. Hence, in response to presynaptic
activity, the local astrocyte IP3 level increased, which led to
the release of calcium from the astrocytic ER (Figures 4C,D).
When the astrocyte local calcium concentration exceeded a
threshold (the red line in Figure 4D), gliotransmission took place
(as indicated by the black diamonds) and a sudden increase
in the gliotransmitter concentration was detected (Figure 4E).
Gliotransmission signaled back to the synapse, affecting the
internal dynamics of the presynaptic terminal: the amount
of resources released into the synaptic cleft was therefore
higher on average when the gliotransmitter concentration was
large (compare Figures 4B,E). Therefore, gliotransmission was
release-increasing or potentiating for this particular synapse (see
Glial Components). Upon activation of the whole astrocyte, both
IP3 and calcium levels switched to a high state (Figures 4C,D;
the local IP3 level is set to 1 upon astrocyte activation). Once
activated, the astrocyte released adenosine into the extracellular
space, reducing the activity of the post-synaptic neuron, which
progressively decreases the spike rate (Figure 4F). In addition,
the presynaptic neuron was also indirectly affected by astrocyte
activation. The level of local calcium was maintained above the

release threshold while the astrocyte was active, which prevented
new releases of gliotransmitter. Thus, temporarily canceling
the potentiating effect of gliotransmission on the presynaptic
terminal [see Equations (5–7)].

As described in theMethods section, the dynamics of astrocyte
activation is governed by two variables in our model: the local
Ca2+ activity from the enwrapped synapses and the contribution
to this activity by intercellular Ca2+ wave propagation (Equations
12–17). Figure 5 shows the excitation dynamics of the astrocyte
connected to the synapse shown in Figure 4. Figures 5A,B

demonstrate how the global calcium signal generally increased
upon periods of high presynaptic activity. However, the global
calcium signal could reach high values even when the presynaptic
activity in this particular neuron was weak. This is due to
calcium release triggered by other synapses to which the astrocyte
was connected. Moreover, the activation propensity of the
astrocyte (Figure 5C) depended on the number of its neighboring
astrocytes [see Equations (12–13)]. Most of the time, both
signals were needed to activate the astrocyte. That means, to
activate the astrocyte usually demanded that both the amount
of global calcium becomes larger than its threshold and that the
activation propensity of the coupled astrocytes crosses over its
own threshold. This is for example the case slightly after t =
20 in Figure 5, where activation occured when both the calcium
trace (panel B) and the propensity trace (panel D) overcame their
respective thresholds (red lines). However, having both signals
crossing over their thresholds was not mandatory to activate the
astrocyte, since astrocyte activation could also be triggered by
only one of them. For instance, the activation occurring around
t = 55 in Figure 5 was triggered when the global astrocyte Ca2+

crossed over its threshold, at a time step where the propensity
trace was still well below its own threshold.

Figure 5D shows the astrocyte state [inactive (U), active
(A), or refractory (R)] along the simulation time. When the
astrocyte became activated, the global calcium signal switched
to a high state. Those active periods also corresponded to the
high state periods observed in the local IP3 and calcium signals
in Figure 4. The post-synaptic activity was clearly reduced as a
consequence of the depression exerted during astrocyte active
periods regardless of the activity at the synapse (Figure 5E).

Spike and Burst Detection
To understand how the local dynamics of the tripartite synapses
in the models impacted the dynamics of the whole network,
we next quantified the bursting behavior of the neuronal
network for each simulation scenario (see section simulations
above), especially when presynaptic astrocyte signaling and the
formation of astrocytic networks were added to the model.
Figure 6 shows the burst and the spike rates as well as the number
of spikes per burst and the burst duration in each of the studied
simulation scenarios (except for the “noise only” scenario that, as
expected, exhibited no remarkable bursting).

When the neuronal network was formed via synaptic
connections that did not depend on astrocyte activity (“NN
only,” the blue bars in Figure 6), the spike rate increased with
the noise level, since the noise level determined basal firing
activity. Those spikes proportionally contributed to the burst
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FIGURE 4 | Signaling process governing single tripartite synapse activity. (A) Single presynaptic neuronal activity. (B) Resources released to the synaptic cleft. The

correlation between the release process and the presynaptic activity indicates that this is a spike-induced process. (C) Astrocytic local IP3 and (D) calcium

concentration. The levels of local calcium follow those of IP3 with a small delay. The different timescales for the neuronal and astrocytic networks are detectable

(Equation 9). The red line represents the threshold level for the gliotransmitter release and the green diamonds indicate that gliotransmission has occurred. (E)

Gliotransmitter glutamate released from the astrocyte controlled by local calcium dynamics. (F) Single post-synaptic neuronal activity.

FIGURE 5 | Signaling process governing single astrocyte activity. (A) Single presynaptic neuronal activity. (B) Astrocytic global calcium dynamics corresponding to the

averaged and scaled local responses from all enwrapped synapses. The red line indicates the threshold set for the activation of the astrocyte. (C) IP3 influx that the

current astrocyte receives from all its active neighbors. Again, the red line is the threshold for the activation of the astrocyte. (D) State signal of the UAR model

astrocyte: inactive dormant state (U), active signaling state (A), and refractory period (R). (E) Single Post-synaptic neuronal activity.
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FIGURE 6 | Spiking and bursting behavior features. The features are displayed for the three noise levels in cases of “NN only” (blue), “NN + PSA” (green), “NN +

A(x%)” (yellow, orange, red) averaged across five runs, respectively. Error bars plot the 25th and 75th percentiles. Individual plotted points represent extreme data

points not considered within the percentiles. (A) Average spike rate per neuron per minute. (B) Burst rate per neuron per minute. (C) Average spikes per burst. (D)

Average burst duration in milliseconds.

development as indicated also by the higher burst rate. However,
Figures 6C,D shows that the characteristics of the bursts
(number of spikes per burst, burst duration) were not affected by
noise level.

In the “NN+PSA” case, where the astrocytes were connected
to the presynaptic terminals of the neuronal network but not to
each other (the green bars in Figure 6), the network as a whole
became more active as a result of the potentiating effect of the
astrocytes on the excitatory synapses. As one might expect, the
spike rate increased with the noise level/basal rate (Figure 6A).
Moreover, the burst duration decreased since the number of
spikes per burst was constant, but the burst rate increased. These
changes were the consequences of the gliotransmitters released
from the astrocytes. On average, gliotransmission increased the
presynaptic release probability [see Equation (7)], which led to
a larger amount of resources released into the synaptic cleft [see
Equation (5)], and thus a larger firing rate of the post-synaptic
neuron compared to the “NN only” scenario.

The addition of the astrocytic network to the model strongly
changed the bursting behavior of the neuronal network. In
those “NN+A(x%)” scenarios, we both introduced astrocyte to
astrocyte coupling via gap junction, but also the depressing
impact of astrocytes on the post-synaptic firing rate. The
immediate effect of the addition of the astrocytic network was
that both the spike rate and the burst rate were much lower than
those obtained in the “NN+PSA” case (Figures 6A,B) while the
mean number of spikes per burst was not altered (Figure 6C).

Interestingly, the spike rate was almost constant regardless of
the number of astrocytes [compare the different “NN+A(x%)”
scenarios] because of the trade-off between the effect of glutamate
transmission and adenosine depression. However, as can be
seen in the inset of Figure 6B, the burst rate slightly increased
with the number of astrocytes, which suggested that one of the
consequences of the astrocytic networkmight be the introduction
of bursting behavior.

Analyzing the effects on burst duration was more complex.
In the case of “NN+A(10%)” (the yellow bars in Figure 6), the
average burst duration did not significantly change with the
introduced noise levels. However, the high number of outliers
for the average burst duration revealed the existence of two types
of behaviors within the neural network for intermediate-to-high
noise levels (Figure 6D). This might result from an astrocytic
network that was too sparse to compensate for the high activity
of the neural network with high noise. Indeed in “NN+A(20%)”
and “NN+A(30%),” the burst duration increased with increasing
noise and with respect to “NN+A(10%).” These results support
our above interpretation: as the number of astrocytes increased,
the astrocytic network was also strengthened. Thus, it was able
to control the whole neuronal network by preventing it from
overexcitation, even at high noise levels.

One-way ANOVA confirmed that the spike and burst features
were significantly different for each model scenario (p < 0.0001).
We performed the test for each feature and noise level separately.
Taken together, Figure 6 shows that the astrocyte network

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 92208

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lenk et al. Neural Network Model

FIGURE 7 | Effect of presynapse-astrocyte processes on neuronal activity. Raw frequency spectrums for (A) “NN-only” (B) “NN + PSA” and (D) “NN+A(30%)” were

averaged across five runs and smoothed as described in the Methods section. The inset shows the average DFT coefficients for different noise intensities and for two

frequency bands: 0.01–0.1Hz (dark gray) and 1–10Hz (light gray). Error bars plot the standard deviation of band averages across runs. Significance was assessed by

double-sided Mann-Whitney tests (comparing distributions of band averages). *p < 0.05, **p < 0.01. (C) Relationship between average activity per neuron and the

ratio between band averages. Each circle represents a run, a darker circle denotes a higher noise intensity; blue data corresponds to “NN only” and green data

corresponds to “NN + PSA”.

downregulated the activity of the neural network by decreasing
its burst and spike rates while increasing burst duration.

Activity and Frequency Analysis
To further analyze how the addition of presynaptic astrocyte
signaling and full astrocytic networks affected neuronal activity,
we next quantified the changes in the overall activity levels and
in specific frequency bands of the neuronal network activity.
Therefore, we applied discrete Fourier transforms (DFT) on the
pooled neuronal activity signals (details in the Methods section).

Effect of Presynapse-Astrocyte Processes
The “NN only” scenario is a natural comparison point for
understanding the effect of astrocytes on neuronal activity.
Figure 7A shows the frequency spectra corresponding to the
“NN only” scenario for different levels of noise. The frequency
spectra display a slight increase for two frequency decades: very
low frequencies, between 0.01 and 0.1Hz (the dark gray band);
and medium frequencies between 1 and 10Hz (the light gray

band). As noise intensity increased (the light to dark blue curves),
the amplitude of both frequency bands increased. However, as
can be seen in the inset of Figure 7A, in which both frequency
bands were averaged, the gap between them seemed to decrease
as the noise intensity increased.

When presynaptic astrocytes were added (“NN+PSA”), the
average intensity of both bands strongly increased (see the green
bars in Figure 6A). Gliotransmitter release from the astrocyte
increased the value of the basal release probability U

∗

ij of TM

synapses (De Pittà et al., 2011), which thus increased the amount
of released resources. The corresponding frequency spectrums
can be seen on Figure 7B. While the power in the 1–10Hz
band seemed to increase with noise intensity, the power in the
0.01–0.1Hz band actually decreased. The increase of the average
neuronal activity evidenced by Figure 6 is thus not uniformly
distributed across frequencies.

Since noise intensity was linked to increased average activity,
we checked whether the changes in medium and low frequency
bands could be linked to average activity in both the “NN
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FIGURE 8 | Effect of astrocytic networks. (A) Changes in neuronal activity introduced by the addition of astrocytes (compared with “NN only” simulations). Values

were averaged across runs and error bars plot the standard deviation across runs. (B) Changes in neuronal activity introduced by the addition of astrocytes

(compared with “NN only” simulations) as a function of the average astrocyte activation ratio (a value of 1 denotes the highest possible activity in the astrocytic

network). Each circle represents a run. Darker circles denote higher noise intensity and the hue (yellow to red) denotes the amount of astrocytes in the simulation

(10–30%). Crossed error bars indicate averages and the standard deviation across the runs. (C) Average cross correlations between neuronal and astrocytic

smoothed activities for a constant noise intensity of 0.02 and for “NN+A(10%)” (yellow), “NN+A(20%)” (orange), and “NN+A(30%)” (red). (D) Cross correlation

between neuronal and astrocytic smoothed activities for varying noise intensity (light to dark red) in the “NN+A(30%)” scenario. Cross correlation values were

computed as described in the Methods section.

only” and “NN+PSA” scenarios. We thus examined how the
ratio between the 1–10Hz and the 0.01–0.1Hz bands changed
as a function of average activity. Figure 7C shows these values
for both “NN only” (blue) and presynaptic astrocyte signaling
(“NN+PSA,” green) scenarios. In both cases, increases in
average activity were significantly correlated with increased band
amplitude ratios, meaning that increased spiking activity mostly
influenced the higher medium frequencies as opposed to low
frequencies. This agreed with the spike and bursts analysis since
in the “NN only” and “NN+PSA” scenarios, the increase in the
burst rate per neuron with the noise seen in Figure 6 could
be associated with the increase in the amplitude of the 1–10
Hz band.

Effect of Astrocytic Networks
The addition of a full astrocytic network—which could
potentially synchronize distant synapses and depress the whole
neuronal network through adenosine release—changed how
the neuronal network behaved. With respect to “NN only”

simulations (the blue bars in Figure 6A), the average activity of
the neural network (the yellow to dark red bars) was slightly
increased by the astrocyte network for low noise intensity (the
left-most bars of each group), but it was strongly decreased for
high noise intensities.

Figure 7D shows the average frequency spectra obtained
when 30% of astrocytes were present (corresponding figures
for 10 and 20% show similar results). In contrast to the
above results, when the noise intensity increased, the frequency
spectrums did not change greatly and stayed close to the
frequency spectrums of “NN only” simulations (Figure 8A). As
the average band intensity increased with the noise intensity,
as shown in the inset, the strength of both low (dark gray)
and medium (light gray) frequency bands slightly increased
as well. In contrast to the “NN+PSA” scenario, the 1–10Hz
frequency band did not increase much with increasing noise.
Figure 8A shows how astrocytic networks affected neuronal
activity by displaying the change (in %) between “NN only” and
“NN+Astr(x%)” simulations (yellow to red corresponds to 10
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to 30% astrocytes) for increasing noise intensities. Increasing
the number of astrocytes in the networks had two opposing
effects: (1) It introduced more enwrapped synapses, which,
as already mentioned, increased the average neuronal activity.
(2) It decreased neuronal activity by releasing ATP/adenosine
upon astrocyte activation. In case astrocytes were not stimulated
enough to be consistently activated, adenosine release was rare
and effect (2) was weak compared to (1). With low noise, the
low average neuronal activity therefore explains the increase of
activity seen in Figure 8A, because effect (1) was greater than (2).
On the other hand, when the noise increased (noises 0.02 and
0.03), adenosine signaling was more frequently activated, and the
overall effect of the astrocyte network was to decrease activity
when compared to the “NN only” scenario.

The interplay between astrocyte activation and changes
in neuronal activity can clearly be seen in Figure 8B: high
astrocyte activity clearly correlated with decreased neuronal
activity while low astrocyte activity correlated with increased
neuronal activity. The higher the number of astrocytes, the
steeper this relationship became (yellow to red curves). With
enough astrocytes, the interplay between neuronal and astrocytic
networks even impacted the cross-correlation between average
neuronal activity and average astrocyte activity. Figure 8C shows
the average cross-correlation between neuronal and astrocytic
activities for increasing number of astrocytes (yellow to red)
at a constant noise intensity. Figure 8D shows the same cross-
correlation but only for the “NN+A(30%)” scenario and for
increasing noise intensities (light to dark red). In all cases,
neuronal and astrocytic activities were negatively correlated with
lags around −5 s (global minimum of the mean correlation
coefficient) and positively correlated with lags around 10 s (global
maximum of the mean correlation coefficient). This means that
high astrocyte activity was followed by low neuronal activity∼5 s
later, while high neuronal activity was followed by high astrocyte
activity ∼10 s later (which is of the order of the time needed by
an astrocyte to activate).

To explore if astrocytes contribute to network firing stability
as a homeostatic modulator, we varied the recovery rate of
the gliotransmitters, �g , and the average activation time of
an astrocyte, τA (Figure 9). As expected, increasing τA led
to a decreased neuronal activity across the whole range of
�g values. Increasing �g resulted in a decreased presynaptic
potentiation, and thus in a decreased average spike rate. No
further changes could be seen for �g > 1 s−1, since presynaptic
glutamate receptors recover very fast and prevent any presynaptic
potentiation. The resulting average spike rate thus resulted from
a trade-off between local astrocyte processes (whose potentiating
effect is controlled by�g) and global astrocyte activations (whose
depressing effect is controlled by τA).

To summarize, our simulations revealed that astrocytes
exerted two opposite effects on neuronal activity. The activation
of presynaptic astrocyte processes increased the neuronal
activity through the release of potentiating gliotransmitters like
glutamate. When neuronal activity became high enough to
elicit significant astrocyte activation, depressing gliotransmitters
like ATP/adenosine were released, leading to a decrease of the
neuronal activity. Overall, these results show that astrocytic

FIGURE 9 | Network firing stability. The recovery rate of the gliotransmitters,

�g, varies between 0.077 and 51.2 s−1 and the average activation time of an

astrocyte, τA, between 1.0 and 4.5 s. For this simulation, the NN+A(30%)

model and ci was fixed to 0.02 was used. For each run, the average across

the resulting spike rates of all 250 neurons was calculated.

networks promoted stabilization of the average neuronal activity,
boosting low average neuronal activity through the effect of
presynaptic astrocyte processes while reducing high activity levels
through adenosine release.

DISCUSSION

We developed an in silico description of connected neuronal and
astrocytic networks and assessed their interactions combining in
a biologically plausible fashion previously introduced models for
different parts of those networks (De Pittà et al., 2011; Lenk,
2011; Lallouette et al., 2014). Our goal was to study the role of
astrocyte networks when coupled to neuronal networks. To assess
the effects of the astrocyte networks on the neuron network, we
quantified spike and burst features and used pooled spike trains
as indicators of frequency based activity at the network level.
The frequency analysis of the pooled spike trains allowed us to
identify changes in the signaling patterns of the network.

Astrocytes may play a role on short-term and long-term
synaptic plasticity (De Pittà et al., 2016). Short-term plasticity
includes the potentiation or depression of neurotransmitter
release, which occurs in the milliseconds to minutes range.
Astrocytes were also connected to influence long-term
potentiation or depression (Turrigiano, 2008; De Pittà et al.,
2016). Memory and learning related changes of the global
synaptic strengths could be a result of adjustments to an
increasing or decreasing firing rate. However, they could also be
related to more local homeostatic effects (Turrigiano, 2008).

With our model, we have mainly investigated short-term
effects. Comparing the spike and burst features between the
pure neuronal network (“NN only”) and the neuronal network
where each excitatory presynapse was connected to an astrocyte
(“NN+PSA”), our simulations show that more noise means
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more activity, because of the absence of depression mechanisms
stronger than the short-term depression introduced by the
Tsodyks-Markram synapses. When astrocytes are introduced
to the model, we can observe two types of responses from
the network as compared to “NN only.” On the one hand,
when the average activity is low (noise = 0.01), the astrocytes
promote neuronal activity, since the presynaptic effect of the
astrocytes prevails over adenosine depression. On the other hand,
when the average activity is higher (noise = 0.02 and 0.03),
neuronal activity decreases due to astrocyte effects, meaning
that the depression effect prevails over the presynaptic signaling.
Additionally, the longest bursts are obtained in simulations
where the astrocytes form a significantly coupled network
[especially “NN+A(20%)” and “NN+A(30%)”].

Our results therefore suggest that astrocytes may stabilize the
activity of the neuronal network on a short-term (De Pittà et al.,
2016): the astrocyte network would decrease neuronal activity
through adenosine release when it is high or increase it through
release-increasing presynaptic signaling when it is low. This
homeostaticmechanism is based on the competition between two
short-term synaptic plasticities regulated by gliotransmission: (1)
gliotransmitter-based short-term increase of glutamate release
by the presynaptic element and (2) short-term depression of
the synapse via depressing gliotransmitters like adenosine. The
system is homeostatic because (1) dominates (2) when neuronal
activity is low, whereas (2) dominates (1) when neuronal activity
is very large. That astrocytes could act as homeostatic regulators
of the neuronal network activity has already been suggested based
on the experimental observation that astrocytes release TNFα in
response to prolonged periods of neuronal inactivity (De Pittà
et al., 2016). At long time scales (hours to days) the released TNFα
is expected to strengthen excitatory synapses while depressing
inhibitory ones, thus contributing to the restoration of activity
in the neuronal network (De Pittà et al., 2016). Our model adds
to this possibility suggesting that astrocytes could also bring
forth a further homeostatic mechanism based on competing
processes of synaptic plasticity that could occur on fast time
scales of the order of second or minutes. Consequently, future
studies are required to better understand how astrocyte-mediated
homeostasis on different time scales could ultimately mold
neuronal network activity.

To investigate further if astrocytes contribute to network firing
stability, we altered the recovery rate of the gliotransmitters
and the average activation time of an astrocyte in case of
“NN+A(30%).” As expected, the firing rate increased when the
astrocytic activation time was increasing. Thus, the inhibiting
effect of astrocytes—that dominates over the potentiating
one—was diminished. For a longer recovery rate of the
gliotransmitters, the astrocytes did not seem to have a clear
effect on the network firing. The reason might be that the
recovery/degradation was much faster than the time scale of
neuronal activity.

Savtchenko and Rusakov (2014) presented a ring-like
network model including pyramidal neurons and fast-spiking
interneurons as well as volume-limited regulation of the synaptic
efficacy. They used this latter mechanism as a way to emulate the

spatially constrained effects of gliotransmission. The depression,
e.g., upon astrocytic adenosine release, of the excitatory signals
to the interneurons resulted in a decreased firing rate and
network synchronization. In contrast, the facilitation. e.g., upon
glutamate release, increased the firing rate while not altering
much the network synchronization. In our simulations, the
synaptic regulation from each astrocyte was also volume-limited
but the astrocytes were inter-connected, allowing sequential
activation of neighboring astrocytes. In addition, Savtchenko
and Rusakov (2014) decoupled the potentiation or depression
of synapses from the actual neuronal activity. In contrast, our
simulations implemented a feedback loop between neuronal
and astrocytic activity. Taken together, these differences make
it unclear whether the same effects on network synchronization
could be observed once the feedback loop is closed.

Recently, Paavilainen et al. (2018) compared hiPSC co-
cultures aged 8+ weeks with hiPSC co-cultures aged 15+ weeks
containing neuron and astrocyte networks. They observed a
slight decrease in the spike rate for the hiPSC co-cultures aged
15+ weeks, together with an increase of the burst rate and
duration, while the number of spikes per bursts was constant.
Importantly, the hiPSC co-cultures aged 8+ weeks contained
about 5% astrocytes and the hiPSC co-cultures aged 15+ weeks
contained about 25 % astrocytes. Comparing our simulation
results with 30% astrocytes to those with 10% astrocytes produces
similar results (increased burst rate and duration, no change in
spike count per burst), although the spike rates are similar in our
case. Therefore, our model predicts that the change in activity
observed in Paavilainen et al. (2018) could be due to the change in
the astrocyte/neuron ratio. Currently, our computational model
is established in 2D to resemble experimental in vitro data.
However, it can be easily extended to 3D, and thus can give more
insights on in vivo data.

While all of the mechanisms, pathways, and released
gliotransmitters described in this paper have been adapted from
astrocyte studies, the biological evidence that they co-exist in a
single astrocyte is still sparse (Covelo and Araque, 2018). It is
thus possible that the effects are a result of separate astrocyte
populations or even astrocytes in different brain regions, just as
neurons differ from one area to another. However, our model
can simulate many of the subsets of astrocytic and neuronal
mechanisms. Predictions about the functional role of astrocytes
in neural networks are conceivable. In the future, it will be
possible to adjust the model to specific combinations or even
brain areas with differently functioning neurons and astrocytes.

To conclude, we have developed a neural network model
in order to study the effect of astrocytes on neuronal
network behavior. Our simulations show that astrocyte networks
can act as homeostatic controllers with release-increasing
and depressing effects on the synapse. These effects act on
two different time scales for astrocytes and neurons. Our
simulations suggest that tripartite synapses alone are not enough
to produce these effects, and thus, the astrocytic network
dynamics based on IP3-controlled calcium waves are essential for
understanding how astrocytes modify neuronal communication.
The model presented here provides a basis for further studies
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of neural interaction and the relevance of this interaction for
brain function.
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Chronic Fatigue Syndrome (CFS) is a debilitating condition estimated to impact at least

1 million individuals in the United States, however there persists controversy about

its existence. Machine learning algorithms have become a powerful methodology for

evaluating multi-regional areas of fMRI activation that can classify disease phenotype

from sedentary control. Uncovering objective biomarkers such as an fMRI pattern is

important for lending credibility to diagnosis of CFS. fMRI scans were evaluated for 69

patients (38 CFS and 31 Control) taken before (Day 1) and after (Day 2) a submaximal

exercise test while undergoing the n-back memory paradigm. A predictive model was

created by grouping fMRI voxels into the Automated Anatomical Labeling (AAL) atlas,

splitting the data into a training and testing dataset, and feeding these inputs into a

logistic regression to evaluate differences between CFS and control. Model results were

cross-validated 10 times to ensure accuracy. Model results were able to differentiate

CFS from sedentary controls at a 80% accuracy on Day 1 and 76% accuracy on Day 2

(Table 3). Recursive features selection identified 29 ROI’s that significantly distinguished

CFS from control on Day 1 and 28 ROI’s on Day 2 with 10 regions of overlap shared with

Day 1 (Figure 3). These 10 shared regions included the putamen, inferior frontal gyrus,

orbital (F3O), supramarginal gyrus (SMG), temporal pole; superior temporal gyrus (T1P)

and caudate ROIs. This study was able to uncover a pattern of activated neurological

regions that differentiated CFS from Control. This pattern provides a first step toward

developing fMRI as a diagnostic biomarker and suggests this methodology could be

emulated for other disorders. We concluded that a logistic regression model performed

on fMRI data significantly differentiated CFS from Control.

Keywords: functional magnetic resonance imaging (fMRI), Chronic Fatigue Syndrome (CFS), logistic regression,

machine learning, recursive feature elimination (RFE)
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INTRODUCTION

Chronic Fatigue Syndrome (CFS) is a debilitating condition
estimated to affect at least 1 million individuals in the
United States that causes $9.1 billion in annual losses
in productivity (Centers for Disease Control Prevention,
2006). CFS is characterized by chronic persistent fatigue
that is not alleviated with rest as well as pain, cognitive
dysfunction, sleep abnormalities, and symptom relapse after
minimal exertion (post-exertional malaise) (Fukuda et al.,
1994; Carruthers et al., 2003; Centers for Disease Control
Prevention, 2006; Committee on the Diagnostic Criteria for
Myalgic Encephalomyelitis/Chronic Illness, 2015).

Controversy persists about the underlying etiology and
pathophysiology of CFS, and there remains a need for objective
measures of dysfunction to distinguish CFS from psychosocial
etiologies like neurasthenia and depression (Pichot, 1994;
Pearce, 2006; Committee on the Diagnostic Criteria for Myalgic
Encephalomyelitis/Chronic Illness, 2015). Functional magnetic
resonance imaging (fMRI) of the brain has shown to be
a promising diagnostic tool because CFS subjects may have
reduced gray matter thickness and cortical volume losses
compared to age-matched controls (Okada et al., 2004), utilize
more frontal and parietal regions during cognitive tasks than
age-matched controls (cognitive compensation) (Lange et al.,
2005), and have different activation patterns when making
mistakes (De Lange et al., 2004). CFS subjects are less responsive
than age-matched controls on tasks of auditory responsiveness
(Tanaka et al., 2006) and demonstrate additional dysfunction
following a light exercise task that may provide evidence for
post-exertional malaise (Cook et al., 2017). Performance on n-
back tasks indicated dysfunction on working memory (Caseras
et al., 2006). The results of these studies provided a rationale to
investigate if fMRI and the post-exertional malaise experienced
by subjects with CFS could differentiate CFS subjects from a
sedentary control.

Standard fMRI analysis seeks to compare univariate regions
of brain activation at rest or during a task between CFS and
control groups. However, multivariate classification methods
have become an increasingly popular tool for identifying patterns
of brain activity that can differentiate disease physiology (Cox
and Savoy, 2003; Kriegeskorte et al., 2006; Haynes et al., 2007;
De Martino et al., 2008; Ryali et al., 2010). Machine learning
algorithms such as logistic regression, support vector machines,
and random forests combined with feature selection can be
applied to clustered voxel data to determine patterns of brain
regions that may characterize a disorder (Mourão-Miranda et al.,
2005; Pereira et al., 2009). We hypothesized that an acute
physiology stressor such as a light exercise task combined with
the implementation of a machine learning algorithm would
allow us to identify a pattern of predominant behavior during
fMRI scanning of CFS subjects while performing the n-back
memory paradigm.

Subjects underwent fMRI scans on consecutive days while
performing the continuous version of the n-back working
memory test before (Day 1) and after (Day 2) a bicycle
exercise stress test (Rayhan et al., 2013). Blood oxygenation

level dependent (BOLD) signals were compared between groups
on both days. We followed a standard approach of predictive
model building for fMRI data involving feature extraction, model
build, validation, and evaluation of performance (Sen et al.,
2018). Voxel maps of activations from each subject were mapped
to the Automatic Anatomical Labeling (AAL) atlasAAL using
SPM12SPM. Predictive model features were created from the
number of significantly activated voxels for each AAL region for
each subject run through a recursive features selection algorithm
to identify importance. Data points were iteratively split into
training and testing sets to create a logistic regression model
(training set) and then validate the results (testing set). Model
results were cross-validated to ensure performance. The output of
this model was a multivariate pattern of activation that signified
the cognitive differences between groups of CFS and sedentary
control subjects. This strategy differs from the traditional fMRI
analysis technique that quantify significant BOLD differences
on voxel-by-voxel and regional basis. The outcomes provide a
proof of concept for the implementation of a machine learning
algorithm on fMRI data to create a diagnostic tool for CFS.

METHODS

Ethics
Subjects gave written informed consent for participation
and use of all data for publication purposes. Studies were
approved by the Georgetown University Institutional Review
Board (IRB 2009-229, 2013-0943, 2015-0579) and U.S. Army
Medical Research and Material Command (USAMRC) Human
Research Protection Office (HRPO A-155547.0, A-18749), and
registered on clinicaltrials.gov as NCT01291758, NCT03560830,
and NCT03567811. All clinical investigations were conducted
according to the principles expressed in the Declaration
of Helsinki.

Subjects
Data was collected from candidates who responded online or
by phone or personal contact. Telephone screening after verbal
informed consent was performed with 216 subjects, but 105
declined to participate or were excluded from participation after
protocol explanation and assessment of chronic medical and
psychiatric disease (Jones et al., 2009; Nater et al., 2009). Chronic
Fatigue Syndrome was assessed by 1994 Fukuda CDC criteria
by having 6 months of debilitating fatigue without medical or
psychiatric cause plus at least for of the following eight criteria:
problems with memory or concentration, sore throat, sore lymph
nodes, myalgia, arthralgia, headache, sleep disturbance, and post-
exertional malaise (Fukuda et al., 1994). Veterans with Gulf War
Illness were examined by the same process and were excluded
(Steele, 2000; Haynes et al., 2007).

Subjects were admitted to the Georgetown Howard
Universities Clinical Translation Science Clinical Research
Unit and were tested for the N-back working memory task in a
3TMRI scanner on two separate days. They underwent their first
fMRI scan and N-back working memory task after overnight rest
and then performed a submaximal exercise stress test. Subjects
cycled at 70% of age-predicted maximum heart rate (220-age)
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for 25min, the ramped up their effort to reach 85% of predicted
heart rate. On the next day they had that same submaximal
exercise test followed by the second fMRI scan with n-back
testing. This study reports on 38 subjects with Chronic Fatigue
Syndrome and 31 sedentary controls.

N-Back Task
Subjects practiced the complete n-back task with blocks of 0-back
and 2-back loads in a mock scanner until they felt satisfied with
their performance. fMRI data were collected on the non-exercise
day (Day 1) and about 1 h after the second submaximal bicycle
exercise stress test (Day 2).

The continuous version of the verbal N-back task is a
challenging test of subject attention, memory, retrieval, and
updating (Owen et al., 2005; Rayhan et al., 2013). Each 1min
long block had three components: 0-back task, 2-back task, and
fixation between tasks. Subjects began each block with fixation by
viewing a blank screen for 8 s. They proceeded to 0-back testing
by viewing a string of nine letters (A, B, C, D) presented in
random order for 2 s per letter. Subjects used both hands to press
the button on a fiber-optic button box (ePrime software) that
corresponded to the letter being viewed1. After another fixation
period, they viewed a second string of nine letters for the 2-
back task. Subjects had to remember the 1st and 2nd letters.
When the 3rd letter was presented, they had to press the button
corresponding to the letter seen “2-back” (the 1st letter seen 4 s
before). The task was designed such that subjects orient, reorder,
and engage their working memory to focus their attention in
preparation for the next letter. Subjects used individual strategies
to remember single letters in series (e.g., A-B-C-D) or through
“chunks” (AB-BC-CD, or ABC-BCD). The 1-min blocks were
repeated five times which produced time-series scans for 45
letters for 0-back stimulus response measurements (five blocks×
nine responses) and 35 responses for the 2-back task (five blocks
× seven responses each).

Functional Magnetic Resonance Imaging
(fMRI) Data Acquisition
fMRI acquisition was performed in a Siemens 3T Tim
Trio scanner equipped with a transmit-receive body coil
and a commercial 12-channel head coil array. Structural
3D T1-weighted Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) image parameters were: TR/TE =

1,900/2.52ms, TI = 900ms, field-of-view(FoV) = 250mm, 176
slices, slice resolution = 1.0mm, and voxel size 1 × 1 × 1mm.
Functional T2∗-weighted gradient-echo planar imaging (EPI)
parameters were: number of slices = 47, TR/TE = 2,000/30ms,
flip angle = 90◦, matrix size = 64 × 64, FoV = 205 mm2, and
voxel size= 3.2 mm2 (isotropic).

Data Pre-processing
BOLD data was pre-processed through the default pipeline
of the CONN version 17 toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). Data underwent processing and spatial
smoothing with a spatially stationary Gaussian filter of 6mm

1http://www.pstnet.com/eprime.cfm

full-width half maximum (FWHM) size through the SPM12
software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
SPM12 was used to account for movement artifacts between
scans and functional anatomic differences not otherwise
already compensated for. Spatially normalized images were
converted into the Montreal Neurological Institute (MNI)
standard stereotactic space (Mazziotta et al., 1995). Pre-
processing included a slice-timing correction, outlier detection
for Framewise Displacement based on Artifact Detection Tools,
and realignment and unwarping of functional images. Spatial
normalization resulted in a voxel size of 2.0 mm3 (isotropic).

Preprocessed EPI data from individuals were modeled with
the following events: instruction, fixation, 0-back, and 2-back.
The 2-back > 0-back contrast was analyzed by one-sample t-
test with motion parameters as covariates of no-interest. The
residual 2-back > 0-back condition identified voxels that were
significantly more activated during the high cognitive load 2-
back than the low cognitive load 0-back periods. The optimal
threshold t-value to identify significantly activated voxels was
determined by plotting the number of significant voxels per
subject as a function of T-values. The T value of 3.17 (p < 0.001
uncorrected) was selected.

Voxel data from the T-statistic maps were charted to MNI
coordinates and grouped into regions defined by the Automated
Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer et al., 2002)
using a custom MATLAB program and functions from SPM12
and xiView 9.62. The AAL atlas was chosen due to its widespread
use and recognizability in SPM12, python, and the general fMRI
community. The catalog of AAL regions with centers of mass and
voxels per region was shown in Table S1 and Figure S13. The
numbers of significant voxels per AAL region for each individual
were the independent input variables that were fed into the
feature selection process and logistic regression learner model.
Our approach utilized a machine learning algorithm applied to
the 3-D matrix of voxel data split using the binary outcome
variable of CFS vs. control status.

Feature Extraction
Model features (AAL regions with total activated voxels) were
selected by a multistep feature reduction process.

Pearson’s correlation coefficients were used as a preliminary
variable selection methodology to determine highly correlation
regions of brain activity. The number of significant voxels in
every AAL region in the entire dataset (Testing + Training)
was compared to every other AAL region to determine
multicollinearity or which regions, if any, could be linearly
predicted from the others with a substantial degree of accuracy.
This created a matrix of correlations depicting Pearson’s
Correlation Coefficient for every region. When regions have
a Pearson’s Correlation Coefficient (R) of ≥0.9, it can be
assumed that multicollinearity exists and that these regions
should be removed or combined. Multicollinearity may not
affect the overall predictive power of a model, but can impact

2http://www.alivelearn.net/xjview/
3https://figshare.com/articles/_Abbreviations_and_MNI_coordinates_of_AAL_/

184981

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2020 | Volume 14 | Article 2218

http://www.pstnet.com/eprime.cfm
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.alivelearn.net/xjview/
https://figshare.com/articles/_Abbreviations_and_MNI_coordinates_of_AAL_/184981
https://figshare.com/articles/_Abbreviations_and_MNI_coordinates_of_AAL_/184981
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Provenzano et al. Characterization of CFS by Machine-Learning

the residual calculations of individual predictors and render
the overall coefficients invalid (Belsley, 1991; O’Brien, 2007).
Perfect multicollinearity causes the design matrix to have one
less full rank and does not allow the ordinary least squares
estimator to be inverted (Farrar and Glauber, 1967). Eliminating
multicollinearity prevents against inaccurate machine learning
algorithms, excessive standard errors for coefficients, and
overfitting of models (Kumar, 1975; O’Hagan and McCabe,
1975). Multicollinearity was tested for three times on the training
set, testing set, and training and testing set combined due to the
small number of samples to ensure no multicollinearity existed
for any combination of variables and that ordinary least squares
(OLS) estimators could be obtained. The matrix depicting the
training and testing set is depicted in the results.

Next the list of variables for model inputs was reduced
using recursive feature elimination (RFE). Only data from the
training set was fed into RFE and later, the logistic regression
model. RFE is a feature selection method that fits a model by
removing the weakest model input (feature) until a specified
number of attributes remains or total accuracy level is reached.
By eliminating a small number of inputs per loop in an iterative
process, RFE attempts to reduce variable dependencies and
collinearity that could otherwise impact a model. This data
reduction step used the default recursive feature elimination
(RFE) algorithm in the scikit-learn python package4. The
principle of Occam’s razor governs that the simplest set of
inputs into a machine learning algorithm often leads to the most
accurate result, as such this process attempted to whittle down the
variables to as few as possible while still controlling for accuracy
(Gauch, 2003).

Recursive feature elimination is a greedy feature elimination
algorithm similar to sequential backward selection as found in
a stepwise logistic regression. It was ultimately determined to
use recursive feature elimination to remove excess inputs rather
than use stepwise logistic regression to decrease bias in R2 values,
increase standard errors of the parameter estimates, increase
confidence intervals, increase p-values, and unbias parameter
estimates. Stepwise logistic regression can also exacerbate
collinearity problems, which was especially important to account
for given the small sample size.

Predictive Model Build
Multiple predictive models were initially tested and evaluated
before final presentation of results. These included a Support
Vector Machine (SVM), Random Forest, Decision Tree, and
Neural Net. Logistic Regression was the algorithm ultimately
selected as it fast to build, repeatedly produced the most
accurate and generalizable results, and is easy to implement in
practice. Logistic regression is an algorithm used to determine
the probability of a binary response to be dependent on one or
more independent input variables (Walker and Duncan, 1967).
A logistic regression works by attempting to fit a model that
minimizes coefficients assigned to model inputs and maximizes
total differentiated subgroups that fall into the classification
region. Coefficients estimate the logarithm of the odds (log-odds)

4http://scikit-learn.org/stable/modules/feature_selection.html#rfe

for a dependent variable based on the independent variables
(Biondo et al., 2000). Corresponding coefficients for input
variables are “regressed” from the data (Freedman, 2009). The
model fits the data to the logit equation:

p(x) = 1/
(

1+ e−(β0+β1x1+β2x2...+βixi)
)

where β0 is the intercept (constant term), and β1 and β2 are the
coefficients for variables x1 and x2, and βi represents coefficients
for all subsequent variables (http://www.alivelearn.net/xjview/).
Features fed into the model are assigned a coefficient that is
reduced according to stochastic gradient descent until the best
possible model (highest accuracy) remains. Stochastic gradient
descent is a first order optimization algorithm that seeks to find
the minimum of a function by taking steps proportional to the
negative gradient of the function at every point (Barzilai and
Borwein, 1998). The model was trained on a subgroup of the
total dataset that was split into a stratified sample of disease
and control subjects and tested on the remaining subgroup. This
created a designated “training” and “testing” set. Each testing
set was a distinct validation set created for each training set
that did not overlap with the training set used to build the
predictive model. Recursive feature elimination was run before
each predictive model build on each respective training set. The
ratio of training to test subjects was varied from 50:50 to 90:10
with the grouping of 70:30 selected to give the optimal model
validation. This optimal ratio was determined by evaluating the
final predictive power on the model. For example if a model
rebuilt twice on two overlapping separate samples with a 90:10
ratio resulted in 89% accuracy and subsequent 15% accuracy on
each respective 10% testing set, it was determined that this ratio
resulted in overfitting and lack of generalizability once validated
on the testing set. In contrast, the final selected ratio of 70:30
gave similar accuracies upon testing set validation across multiple
re-sampled training and testing sets and multiple predictive
model rebuilds.

Validation and Evaluation of Performance
Model accuracy was tested by examining the total false positive
rates, specificity, sensitivity on the designated testing set. Model
generalizability was tested by cross validation on the testing
set. Cross validation is a resampling method used to evaluate
machine learning models such as logistic regression on limited
data samples. Cross-validation seeks to understand the model’s
ability to predict new data that was not used in creation of the
model. Cross-validation helps identify common problems such
as overfitting and selection bias to evaluate how the predictive
model might perform in practice. The model was cross validated
10 times using 10 subgroups (k-cross validation with k = 10)
randomly drawn from the 30% test set (out-of-sample testing)
to ensure generalizability. This cross-validation was done only
within the testing set and included no data from the training
set. Although for each partition the same training data and
model is used, the 10 subgroups sampled from the test set are
non-overlapping. Cross-validation was done for every predictive
model rebuild on every ratio of training:testing set data and
every re-sampled training set. The average results from the
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cross-validations was used to estimate the model’s predictive
performance on future datasets. The averaged set of cross-
validated outcomes provides a more accurate estimate of a
model’s predictive capability (Grossman et al., 2010).

The predictive model was iteratively re-built until the best set
of inputs and model coefficients remained to allow for a high
rate of accuracy and generalizability, or ability to be applied
to new populations and maintain the same result. This means
that the predictive model was built on multiple different re-
sampled ratio’s of training: testing set samples. For each training
to testing split, the training set was also re-sampled from the
original sample and subsequently validated and cross-validated
on its respective testing set. The final result and model outcome
was the ability of the combination of independent variables
(model features) to predict the dependent binary variable (CFS
vs. control status).

To test the significance of model accuracy, the models were
then subjected to a “Shuffle Test.” The labels on the subjects (CFS
or SC) were shuffled in python using the built in sample function
and passed through the model process 1,000 additional times to
test if the original accuracy could be incurred by random chance.
Each of the 1,000 runs trained the original model coefficients on a
randomly selected stratified sample of 70% of each respective new
shuffled sample (training set) and then tested the resultant model
on a 30% randomly selected stratified sample (testing set) from
this shuffled set tomimic the original conditions. The process was
repeated on the entire shuffled sample 1,000 times. This process
was repeated an additional 10,000 times if no accuracy greater
than or equal to the original model accuracy could be obtained.
If the Shuffle Test produced the model accuracy greater than or
equal to the original model accuracy <5% of the time, it was
determined the model was significant at the p < 0.05 level.

Logistic model coefficients must be treated with care. The
logistic coefficient quantifies the rate of change in the “log odds”
of the dependent variable as the input variable changes. The y-
intercept term (β0) is the log-odds of an outcome variable when
all predictors are 0. In a multivariate model, the coefficients
represented by β1 to βi show the increase in log-odds relative
to each other. For example, a coefficient of βi = 1 multiplies
the odds of xi by 101 = 10, while a coefficient of 2 multiples
the odds by 102 = 100. These coefficients are highly dependent
on other variable inputs to the model. A negative coefficient
could indicate a negative relationship with the outcome variable
and surrounding variables just as a positive coefficient could
indicate a positive relationship, however one cannot ascertain
the direction of correlation between any pair of variables in
the outcome due to the nature of multivariate models and
interactions between multiple variables.

Visualization
The Wake Forest PICK ATLAS was used to select the AAL
regions that contributed to each significant model and then data
were imported intomarsbar. These were displayed as color-coded
axial slices (MRIcron).

Pearson’s correlation coefficient was used to visually examine
differences between CFS and sedentary control on Days 1 and 2
(Before and after exercise).

RESULTS

Demographics
All subjects had a sedentary lifestyle with <40min of active
aerobic work or exercise per week. The subjects spanned a similar
age and BMI range, however due to the wider range of ages in
the control group, age and gender were controlled in the final
model build. CFS had significantly worse symptoms (Baraniuk
et al., 2013) and quality of life (Ware and Gandek, 1998; Table 1).

Selection of Threshold
Significant voxels were identified by calculating the number of
voxels per brain scan at different levels of significance. Ultimately
it was determined to use a threshold of T ≥ 3.17 (p ≤ 0.001)
(Figure 1) due to its ability to allow a workable number of voxels
while preserving significance.

Feature Selection
Pearson’s correlation coefficients were calculated between all
AAL regions in the combined CFS and control dataset. All
correlation coefficients were below 0.8 indicating that there
was no collinearity between AAL regions or no significant
dependency within model parameters on Day 1 and Day 2 for the
groups (Figure 2). All regions were retained in themodel because

TABLE 1 | Demographics (mean ± SD).

Group SC CFS

N 31 38

Age 43.9 ± 16.3 47.74 + 16.46

BMI 28.4 ± 4.5 26.20 + 4.52

Male 19 (61.3%) 10 (26.3%)†

White 23 (74.2%) 34 (89.4%)†

CFS symptom severity scores

Fatigue 1.2 ± 1.0 3.4 + 0.8**

Memory and concentration 1.0 ± 1.2 2.9 + 0.9**

Sore throat 0.2 ± 0.6 1.0 + 1.0*

Sore lymph nodes 0.1 ± 0.4 1.0 + 1.1*

Muscle pain 0.6 ± 0.9 2.5 + 1.3**

Joint pain 0.8 ± 1.0 1.8 + 1.4*

Headaches 1.0 ± 1.3 2.0 + 1.3*

Sleep 1.7 ± 1.4 3.2 + 0.9**

Exertional exhaustion 0.5 ± 1.0 3.5 + 0.8**

MOS SF-36

Physical functioning 88.8 ± 21.1 46.2 ± 26.3**

Role physical 86.8 ± 31.5 9.2 ± 25.0**

Bodily pain 85.9 ± 19.2 46.7 ± 26.7**

General health 73.8 ± 21.9 34.6 ± 23.4**

Vitality 64.9 ± 20.8 18.9 ± 15.7**

Social functioning 85.3 ± 22.1 32.6 ± 27.0**

Role emotional 90.2 ± 27.9 70.2 ± 44.4

Mental health 76.1 ± 16.9 67.6 ± 16.8

Chalder fatigue score 12.1 ± 4.5** 22.8 ± 6.4**

*Scale: 0 = none, 1 = trivial, 2 = mild, 3 = moderate, 4 = severe. Mean ± SD.

*p < 0.001 and **p < 0.000001 by 2-tailed unpaired Student’s t-tests with Bonferroni

corrections; †p < 0.001 by Fisher’s Exact Test.
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R was less than the cutoff point of 0.9 needed to justify removal.
Although all regions were included, ultimately many of the 117
AAL regions were later removed in the recursive feature selection
step and logistic regression.

Model Results
Significantly Activated Regions
Region of interest analysis identified areas that were significantly
activated in each group (Figure 3). BOLD patterns for the 2-back
> 0-back residual condition (2 > 0-back condition) were similar
between CFS and controls and between Days 1 and 2 (Figure 4).
Bilateral dorsolateral prefrontal cortex extending to the anterior
insulae, dorsal anterior cingulate cortex, lateral parietal, and

FIGURE 1 | Number of significant voxels plotted vs. T-values for each group.

The number of significant voxels decreases at higher T-values and more

rigorous p-values. T of 3.17 indicated p < 0.001.

dorsal medial precuneus were activated. These match frontal
parietal executive control, anterior salience, and dorsal attention
networks (Laird et al., 2011; Rottschy et al., 2012). Exercise did
not cause significant changes in BOLD of these regions.

Differentially Activated Regions Found by Predictive

Model Build
Logistic regression and recursive feature elimination identified
three general patterns for regions that were differentially
activated between CFS and controls. Ten AAL regions were
selected by the logistic regression models on both days (Table 2),
suggesting these ten regions may represent persistent indicators
of CFS pathologies. In addition, 19 were significant only on Day
1, and 18 only on Day 2.

These 10 AAL regions were the right caudate, left and right
putamen, left supramarginal gyrus (SMG), right postcentral
gyrus (POST), right parahippocampus (PHIP), left inferior
frontal gyrus orbital (F3O), right middle temporal gyrus (T2),
left temporal pole; superior temporal gyrus (T1P), and the right
cerebellum 8.

The 19 regions significant on Day 1 only were the left superior
frontal gyrus; dorsolateral (F1), right superior frontal gyrus;
dorsolateral (F1), right superior frontal gyrus; medial (F1M),
right middle frontal gyrus; orbital (F2O), right gyrus rectus
(GR), left middle frontal gyrus; orbital (F2O), right temporal
pole; middle temporal gyrus (T2P), right supramarginal gyrus
(SMG), left cerebellum 4 5, right vermis 6, left cerebellum 6, right
supplementary motor area (SMA), left paracentral lobule (PCL),
right rolandic operculum (RO), right cuneus (Q), right lingual
gyrus (LING), left superior occipital lobe (O1), right middle
occipital lobe (O2), right fusiform gyrus (FUSI).

The 18 regions significant onDay 2 only were the left and right
pallidum (PAL), left and right calcarine fissure and surrounding
cortex (V1), left middle occipital lobe (O2), left inferior occipital

FIGURE 2 | Heat maps depicting Pearson’s correlation coefficients (R) for all AAL regions in CFS and control datasets. The diagonal white line indicates R = 1. The x

and y axis correspond to different regions of the brain according to the AAL atlas respectively, such that the diagonal line should be a perfect correlation (One region

measured against itself) and the remaining are the cross product of the rest.
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FIGURE 3 | Significantly elevated BOLD activity during the 2 > 0 back condition in CFS and control groups before and after exercise.

lobe (O3), right superior temporal gyrus (T1), right inferior
frontal gyrus opercular (F3OP), right inferior gyrus triangular
(F3T), right superior frontal gyrus orbital (F10), right superior
frontal gyrus medial orbital (F1MO), left and right precuneus
(PQ), left middle temporal gyrus (T2), left rolandic operculum
(RO), left postcentral gyrus (POST), right cerebellum crus 1, and
left cerebellum 9.

Another indication of significant differences was shown by
looking at the patterns of Pearson’s correlation coefficients
between individual AAL regions between groups and days
(Figure 5). SC on Day 1 had the highest number of correlations
with R ≥ 0.7 suggesting that control subjects were focused on
the task on Day 1. SC subjects had fewer correlations with
R > 0.7 on Day 2 suggesting that they exhibited learning,
automaticity, and required a lower level of focus to complete
the n-back task. CFS had fewer correlations on the pre-
exercise MRI scan, different patterns of correlations from SC
on both days, and poor similarity between Days 1 and 2.
The different patterns of correlations between AAL regions
supported the logistic regression analysis and demonstrated
differences in connectivity between brain regions for CFS and
SC before and after exercise. These outcomes predict that
more advanced measures of functional connectivity (Rubinov
and Sporns, 2010) will differ between CFS and SC before

and after exercise and when depicting changes related to
post-exertional malaise.

The composite multivariate pattern of activation
differentiated CFS from Control with 80.9% accuracy on
Day 1 and 76.1% accuracy on Day 2. Cross validation performed
better than random on both days with a 65% accuracy on
Day 1 and 57.5% accuracy on Day 2 (Table 3). Both the Day
1 and Day 2 models were able to correctly predict CFS from
a SC greater than random chance (>0.5) due to this high
predictive performances, however the Day 1 predictive model
showed greater predictive power than the Day 2 model upon
cross-validation. More samples in a future study would assist in
validating this predictive performance.

The Shuffle Test reproduced an accuracy of 65% on 0 of the
1,000 shuffled test runs for Day 1. The Day 1 Shuffle Test had
an average of 44% accuracy and mode of 37.5% accuracy for the
1,000 test runs. To ensure the statistical rigor of this method, the
Shuffle Test was repeated for an additional 10,000 permutations
on Day 1. A maximum accuracy of 69% was obtained and results
for 65% accuracy or greater were found 11 times of 10,000 runs.
Thus, it was determined the Day 1 model was significant at a p <

0.01 level. The Shuffle Test for Day 2 reproduced an accuracy of
57% or higher on 40 of 1,000 test runs. The Day 2 Shuffle Test had
an average of 46% accuracy and mode of 43.5% accuracy for the
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FIGURE 4 | Overall pattern depicting the difference in brain activation between CFS and sedentary control groups on Day 1 and Day 2. Axial slices show the pattern

of 29 AAL regions that had significantly different numbers of activated voxels (t > 3.17, p < 0.001) in the 2 > 0-black condition based on logistic regression analysis.

The complete pattern reflects the overall changes in all regions. Individual AAL regions are color coded for clarity. The colors do not indicate differences in BOLD signal

intensity, t-values, logistic regression coefficients or Pearson’s correlation coefficients for any single region between the two groups.

1,000 test runs. As both tests reproduced the model accuracy on
<5% of 1,000 shuffled runs, it was determined that each model
was significant at p < 0.05.

DISCUSSION

This machine-learning approach was able to uncover a pattern
of activated neurological regions that differentiated CFS from
control subjects. The results of these two models indicate that
machine learning algorithms combined with the voxel counts
for activated regions grouped into the AAL Atlas was able to
differentiate CFS from sedentary controls with good accuracy.

The outcome indicates that analysis of fMRI data by machine
learning algorithm(s) may lead to their use as part of a diagnostic
tool that relies on cognitive aspects of CFS and their response to
the physiological stressor of exercise. This may provide objective
support for the concept of post-exertional malaise that is a central
tenet of current subjectively defined CFS diagnostic criteria
(Fukuda et al., 1994; Carruthers et al., 2003).

Ten AAL regions were significantly different according to the
predictive model between SC and CFS before and after exercise
and may represent persistent indicators of CFS pathologies. Left
and right putamen and right caudate of the basal ganglia may
be part of the Affective Network that has been identified by
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TABLE 2 | AAL regions and logistic regression coefficients.

AAL ID AAL abbreviation Day 1 Day 2

72 R Caudate_R (CAU) 0.054 0.010

73 L Putamen_L (PUT) −0.375 0.065

74 R Putamen_R (PUT) −0.449 0.010

63 L Supramarginal gyrus (SMG) 0.294 −0.008

58 R Postcentral gyrus (POST) −0.379 −0.161

40 R Parahippocampus (PHIP) 0.092 0.015

15 L Inferior frontal gyrus, orbital (F3O) 0.142 0.214

86 R Middle temporal gyrus (T2) −0.106 −0.153

83 L Temporal pole; superior temporal gyrus (T1P) −0.128 −0.427

104 R Cerebellum 8 0.115 −0.028

3 L Superior frontal gyrus, dorsolateral (F1) −0.117

4 R Superior frontal gyrus, dorsolateral (F1) 0.107

24 R Superior frontal gyrus, medial (F1M) 0.303

10 R Middle frontal gyrus, orbital (F2O) −0.262

28 R Gyrus rectus (GR) −0.081

9 L Middle frontal gyrus, orbital (F2O) 0.193

88 R Temporal pole; middle temporal gyrus (T2P) 0.000

64 R Supramarginal gyrus (SMG) 0.206

97 L Cerebellum 4 5 0.340

112 R Vermis 6 −0.374

99 L Cerebellum 6 −0.278

20 R Supplementary motor area (SMA) −0.145

69 L Paracentral lobule (PCL) −0.176

18 R Rolandic operculum (RO) 0.534

46 R Cuneus (Q) 0.566

48 R Lingual gyrus (LING) −0.292

49 L Superior occipital lobe (O1) 0.290

52 R Middle occipital lobe (O2) −0.262

56 R Fusiform gyrus (FUSI) 0.269

75 L Pallidum_L (PAL) −0.172

76 R Pallidum_R (PAL) −0.062

43 L Calcarine fissure and surrounding cortex (V1) −0.134

44 R Calcarine fissure and surrounding cortex (V1) 0.122

51 L Middle occipital lobe (O2) 0.203

53 L Inferior occipital lobe (O3) −0.209

82 R Superior temporal gyrus (T1) 0.252

12 R Inferior frontal gyrus, opercular (F3OP) 0.139

14 R Inferior frontal gyrus, triangular (F3T) −0.148

6 R Superior frontal gyrus, orbital (F1O) −0.039

26 R Superior frontal gyrus, medial orbital (F1MO) −0.178

67 L Precuneus (PQ) −0.172

68 R Precuneus (PQ) 0.107

85 L Middle temporal gyrus (T2) 0.091

17 L Rolandic operculum (RO) 0.542

57 L Postcentral gyrus (POST) 0.071

92 R Cerebellum crus 1 0.086

105 L Cerebellum 9 0.095

Ten regions were differentially activated between CFS and SC on both Days 1 and 2, with

17 regions only on Day 1 and 16 other regions only after exercise.

meta-analysis of studies in anxiety (Xu et al., 2019). The primary
sensory region (right S1) has been associated with heightened
sensory awareness in panic disorder (Kim and Yoon, 2018). AAL

regions of the ventromedial prefrontal cortex, temporal lobe, and
parahippocampus overlapped with nodes from the default mode
network (DMN) (Fox et al., 2015). Theymay bemore related with
subsets of the DMN related to rest and retrieval than forward
thinking (Bellana et al., 2017). The left cerebellar hemisphere
region eight has motor functions but is adjacent to regions having
cognitive effects (Schmahmann, 2019).

Nineteen regions distinguished CFS from control only
on Day 1 before exercise. They fit into several general
patterns. Ventromedial and dorsomedial prefrontal cortex,
parahippocampus and temporal pole regions are part of the
default mode network (Mazziotta et al., 1995; Fox et al., 2015;
Bellana et al., 2017). Cerebellar regions mediated working
memory and emotional processing, and may have interacted
with supplementary motor areas in pain and interoceptive
dysfunction (Schmahmann, 2019). Occipital regions implicated
visual functions. Bilateral supramarginal gyri suggested a role in
the systemic hyperalgesia found in CFS (Lanz et al., 2011).

These 29 regions were differentially activated in CFS and
controls before exercise. They included six ventromedial and
dorsomedial frontal cortex regions of the anterior division of the
DMN, and the right cuneus, right middle temporal gyrus (T2P),
and right supramarginal gyrus from the posterior DMN (Laird
et al., 2009; Fox et al., 2015). Heightened sensory awareness was
implicated by activation of five regions of the visual network,
right Rolandic operculum, supplementary motor areas (SMA),
and cerebellum. The Rolandic operculum is the “little lid” of the
parietal lobe that folds over the posterior insula. The bilateral
Rolandic operculum integrates exteroceptive and interoceptive
signals that are necessary for bodily self-consciousness and
interoceptive awareness (Wager et al., 2013; Blefari et al., 2017)
and is activated for maintenance of vigilant attention during
simple tasks such as the stimulus-response 0-back task and
discrimination tasks that require continuous decisions about
alternative responses (e.g., go vs. no-go tasks) (Langner and
Eickhoff, 2013).

The right supplementary motor area (SMA) and left
paracentral lobule are functionally connected to cerebellar
regions during pain processing (Coombes and Misra, 2016).
Left cerebellar hemispheres 4, 5, and 6 have been implicated in
workingmemory and generalized aversive processing, while right
vermis six functions in emotional processing (Schmahmann,
2019). Visual regions may be differentially activated for attention
(Vossel et al., 2014) or visual memory (Baldassano et al., 2016)
during the n-back task.

After exercise, 18 other regions were activated. They
included bilateral pallidum, precuneus, and superior frontal
gyri, and visual cortex. These 28 regions were differentially
activated on Day 2. Left and right pallidum joined other
basal ganglia regions of the affective network (Xu et al.,
2019). Bilateral precuneus, anterior insula, and sensorimotor
cortex (Vossel et al., 2014), ventromedial frontal cortex and
temporal regions suggest activation of the rostromedial frontal—
lateral temporal subnetwork of the DMN (Bellana et al., 2017).
Left and right precuneus may indicate DMN activation, or
recruitment for cognitive compensation during the challenging
2-back task. Even though the dorsal precuneus is a node
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FIGURE 5 | Pearson’s correlation coefficients between the BOLD activities in AAL regions that were differentially activated in SC and CFS on Days 1 and 2. AAL

regions were listed in alphabetical order on the x- and y-axes for the 10 regions that were activated on Days 1 and 2 (yellow), on only on Day 1 or Day 2. Correlations

were color coded in orange (R > 0.7), red (R > 0.8) and dark red (R > 0.9). As predicted by the logistic regression, CFS and SC had different patterns of correlations

for the 10 shared regions (green) on Days 1 and 2, and between CFS and SC for the regions that were significantly different on Day 1 and Day 2.

in the DMN, it can be recruited into task systems during
n-back testing (Rzucidlo et al., 2013). This is in contrast
to the ventral precuneus that is only associated with DMN
functions. Sensory activation was suggested by activation of
bilateral postcentral gyri (S1) as found in panic disorder (Kim
and Yoon, 2018). Occipital lobe visual network regions were
particularly noteworthy and may indicate heightened vigilance,
visual and memory analysis, or general sensory hypersensitivity.
The ventral attention network was suggested by activation of

the right ventrolateral prefrontal cortex (Fox et al., 2015).
Attention and vigilance were implied from the activation of
visual regions that can interact with dorsal attention network
nodes in the intraparietal sulcus, and the right temporal
parietal junction of the ventral attention network (Vossel
et al., 2014). The left Rolandic operculum had the highest
coefficient of any region, and was notable for its association
with bodily self-consciousness, interoceptive and pain networks
(Blefari et al., 2017).
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TABLE 3 | Model results for day 1 (pre-submaximal exercise) and day 2 (post

submaximal exercise).

Pre-exercise

(day 1)

Pre-exercise

(day 2)

Accuracy 80.9% 76.1%

10x cross validation frequency 65% 57.5%

Sensitivity 87.5% 76.9%

Specificity 76.9% 75%

PPV 70% 83.3%

NPV 90.9% 66.7%

Significance as determined from Shuffle Test p < 0.01 p < 0.05

Shuffle test average 44% 46%

Shuffle test mode 37.5% 43.5%

The accuracy and 10x cross validation frequency represent the corresponding model

accuracy and accuracy after being ran through 10 smaller sub samplings of the initial

testing set.

The specific AAL regions that were differentially activated
and selected by the logistic regression model were different
between CFS and control on Days 1 and 2, but many of
the regions were closely related because they belonged to the
same functionally defined brain networks. Many belonged to
the default mode network (DMN). Differential activation was
found in the ventromedial and dorsomedial prefrontal cortex,
hippocampus, lateral and temporal poles of the DMN, but with
no significant differences for the medial posterior DMN nodes
in the retrosplenial and posterior cingulate cortex regions (Laird
et al., 2011; Fox et al., 2015). Affective network regions included
basal ganglia, dorsal precuneus, sensorimotor regions, dACC and
anterior insulae (Kim and Yoon, 2018). However, the amygdala
was not differentially activated in CFS vs. control. The logistic
regression included cerebellar and supplementary motor regions
involved in working memory suggesting they were recruited as
cognitive compensation or because of their interactions with
sensorimotor regions during pain processing (Schmahmann,
2019). Cognitive compensation was suggested by the inclusion
of the dorsal precuneus in the logistic regression on Day 2.
Multimodal sensory intergration was suggested by visual and
sensorimotor nodes, and on Day 2 by the addition of the ventral
attention network. The Rolandic operculum, affective, cognitive,
sensory, and attention network changes on Day 2 after exercise
provocations may point to regions involved in post-exertional
malaise in CFS. Involvement of these networks in the logistic
regression was consistent with attention, memory and other
cognitive dysfunction, chronic pain, systemic hyperalgesia and
allodynia, negative emotion, and labile arousal that are part of
the clinical presentation of CFS.

A limitation was the small sample size that created relatively
small training and validation sets. The results of this pilot study
can now be used to power larger studies to test the hypotheses
proposed above. The nature of logistic regression means that
individual regions of activation or deactivation of pathological
significance for CFS cannot be determined from themodel results
alone. The coefficients assigned to input features are the “log
odds” for the statistical models and not actual representations

of increased or decreased BOLD activities. Because the variables
depend on one another, it is the collective grouping of all AAL
regions from the regression that ultimately show the difference
between CFS and control. It is the entire pattern that transforms
the fMRI data into a potential diagnostic biomarker. This
methodology may be generalizable to allow sharing of fMRI data
and creation of a diagnostic tool.

CONCLUSION

The logistic regression model performed on fMRI data
significantly differentiated CFS from control withmodel accuracy
of 80.9% on Day 1 before exercise and 76.1% on Day 2 during
the period of post-exertional malaise. Before exercise, CFS and
control groups were different because of differential activation in
default mode network nodes, and sensory perception networks
involving visual, somatic, supplementary motor areas and
cerebellar regions. These differences suggested dysfunction of
attention and potential distraction by sensory processing in
pain and interoception. Differential activation after exercise may
indicate objective alterations related to post-exertional malaise
involving frontal and lateral temporal nodes of the default mode
network, sensory hypervigilance and attention using the left
Rolandic operculum, visual network and the ventral attention
network, and basal ganglia in the Affective Network.
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Optogenetics is revolutionizing Neuroscience, but an often neglected effect of light

stimulation of the brain is the generation of heat. In extreme cases, light-generated heat

kills neurons, but mild temperature changes alter neuronal function. To date, most in vivo

experiments rely on light stimulation of neural tissue using fiber-coupled lasers of various

wavelengths. Brain tissue is irradiated with high light power that can be deleterious

to neuronal function. Furthermore, absorbed light generates heat that can lead to

permanent tissue damage and affect neuronal excitability. Thus, light alone can generate

effects in neuronal function that are unrelated to the genuine “optogenetic effect.” In

this work, we perform a theoretical analysis to investigate the effects of heat transfer

in rodent brain tissue for standard optogenetic protocols. More precisely, we first use

the Kubelka-Munk model for light propagation in brain tissue to observe the absorption

phenomenon. Then, we model the optothermal effect considering the common laser

wavelengths (473 and 593 nm) used in optogenetic experiments approaching the

time/space numerical solution of Pennes’ bio-heat equation with the Finite Element

Method. Finally, we then modeled channelrhodopsin-2 in a single and spontaneous-firing

neuron to explore the effect of heat in light stimulated neurons. We found that, at

commonly used light intensities, laser radiation considerably increases the temperature

in the surrounding tissue. This effect alters action potential size and shape and causes an

increase in spontaneous firing frequency in a neuron model. However, the shortening of

activation time constants generated by heat in the single firing neuron model produces

action potential failures in response to light stimulation. We also found changes in the

power spectrum density and a reduction in the time required for synchronization in

an interneuron network model of gamma oscillations. Our findings indicate that light

stimulation with intensities used in optogenetic experiments may affect neuronal function

not only by direct excitation of light sensitive ion channels and/or pumps but also by

generating heat. This approach serves as a guide to design optogenetic experiments

that minimize the role of tissue heating in the experimental outcome.

Keywords: optogenetics, bio-heat, temperature, finite element method, Hodgkin-Huxley model
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INTRODUCTION

Optogenetics refers to a group of techniques that rely on genetics
and optics for the deterministic control or study of (generally
excitable) cells from a similar genetic background (Fenno et al.,
2011). The radical idea of using light-driven ion channels and
pumps from unicellular organisms to modulate neurons was
pioneered by Deisseroth, Nagel, and Boyden and has now spread
to neuroscience laboratories throughout the world (Knöpfel et al.,
2010; Fenno et al., 2011). Limiting factors of the technique
include the availability of genetic markers (Lerchner et al., 2014),

the invasiveness of the gene delivery and especially difficulties

of delivering light throughout large brain volumes (Lerchner

et al., 2014). Perhaps for these reasons, optogenetics studies are
vastly more common in small animals, especially mice and rats
(Aravanis et al., 2007; Madisen et al., 2012).

To date, most in vivo experiments rely on light stimulation of
neural tissue using fiber-coupled lasers of various wavelengths.
Blue and yellow lasers are broadly employed for optogenetic
experiments, but due to poor penetration of these light
frequencies in the brain, high laser power and/or fibers of
high numerical aperture are often used to achieve functional
stimulation of deep brain regions (Adamantidis et al., 2014;
Adelsberger et al., 2014). Hence, brain tissue is irradiated
with high light power that can be deleterious to neuronal
function, but surprisingly little attention has been paid on the
effects of light stimulation itself in optogenetic experiments.
Absorbed light generates heat that can lead to permanent tissue
damage. Additionally, neuronal excitability is acutely affected by
temperature through the changes in Nernst equilibrium potential
and by altering the gating properties of ion channels (Andersen
and Moser, 1995; Kim and Connors, 2012). Thus, light alone can
generate effects in neuronal function that are unrelated to the
genuine ‘optogenetic effect’. In modeling studies, an empirical
factor (Q10) is used to multiply rate constants to add temperature
dependence to the classical Hodgkin and Huxley formalism
(Fitzhugh, 1966).

Fiber optics delivered light in biological tissues is partially
reflected at the fiber-tissue interface and partially transmitted
through the tissue. A previous study (Stujenske et al., 2015)
demonstrates that light emitted into the brain through fiber
optic delivery is sufficient to increase local temperature and
cortical firing rates of single neurons during optogenetics
experiments. They also show that in vivo temperature recordings
validate model predictions of heat induction. They provide an
optogenetics MATLAB package for predicting light and heat
spread in human brain tissue. On the other hand, the study of
Arias-Gil and colleagues (Arias-Gil et al., 2016) uses thermal
imaging to directly measure temperature rises at the surface of
live mouse brains during laser illumination, with wavelengths
and intensities typically used for optogenetics. They use a simple
logarithmicmodel to validate their empirical model by predicting
the temperature rise caused by pulsed stimulation paradigms.

The absorbed light is converted to heat, radiated in the form
of fluorescence and/or consumed in photobiochemical reactions.
The time-dependent heat production in brain tissue can be
described by the bio-heat equation (Pennes, 1948), in which

changes in tissue temperature can be calculated in time and space.
These equations can also account for the buffering of temperature
by blood perfusion. Furthermore, laser radiation increases stored
energy that results in the diffusion of heat away from the
irradiated area in proportion to the temperature gradients
generated within the tissue (Welch and Van Gemert, 2011).
Therefore, the conclusion drawn from optogenetic experiments
may be hindered if the direct heat effect of light stimulation is
not accounted for.

In this work, we model the optothermal effect in mice brain
tissue produced by visible light laser sources (with a Gaussian
profile) in both continuous and pulsed modes (Aravanis et al.,
2007; Bernstein et al., 2008) to understand how heat can affect
the transfer function of single neurons and how it can alter
their response to photocurrents.We first approach the time/space
numerical solution of Pennes’ bio-heat equation comprising
the effects of blood perfusion and metabolism with the finite
element method (FEM) (Zimmerman, 2004). We then simulate
the effect of varying heat in two single neuron models (Wang and
Buzsáki, 1996; Rothman and Manis, 2003) that include a voltage
and light-dependent current based on the channelrhodopsin-2
dynamics (Williams et al., 2013) to demonstrate that heat itself
can considerably alter neuronal dynamics.

METHODS

Absorption
Absorption is a process involving the extraction of energy from
light by a molecular species. It is important in diagnostic and
therapeutic applications in biomedical photonics. The concept
of the cross section is used for absorption, where the power
absorbed is part of the incident intensity. Therefore, for a given
absorber, the absorption cross-section, σa, can be defined as
(Welch and Van Gemert, 2011; Vo-Dinh, 2014):

σa(â) =
Pa

Iw
, (1)

where, â is the propagation direction of the plane wave relative
to the absorber, Pa is the absorbed power, and Iw is the intensity
of the wave. Therefore, a medium with absorbing particles can be
characterized by the absorption coefficient, µa:

µa = ρaσa , (2)

where, ρa represents the numeric density (m−3) of the absorbers.
Similar equations are found in the literature to explain the
scattering phenomenon (Welch andVanGemert, 2011; Vo-Dinh,
2014).

Refraction
The relation between the angle of incidence, θ1, and the angle
of refraction, θ2, for the transmitted light is given by Snell’s law
(Balanis, 2012; Peatross and Ware, 2015):

sin(θ2) =
n1

n2
sin(θ1) . (3)
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Similarly, the relation between the incident wavelength (medium
1) and the refracted wavelength (medium 2) can be obtained by
(Vo-Dinh, 2014):

λ2 =
n1

n2
λ1 . (4)

Photon Flux
Since light frequency does not depend on the refractive index,
the photon energy is always the same as in a vacuum, according
to (Welch and Van Gemert, 2011; Vo-Dinh, 2014):

E = hf , (5)

where, h = 6.626 · 10−34 J · s is Planck’s constant and f is the
photon frequency (Hz).

Photon flux in a laser light beam is defined as the total number
of photons crossing a particular section of the light beam, per unit
area and per unit time (Svelto and Hanna, 2010). The number of
photons emitted per second is given by:

Np/s = P
λ

hc
, (6)

in which, P is the laser power. Then, the photon flux, φp, can be
obtained as a function of the cross section area (A,m2) of the
light beam as well as the intensity (I,W/m2) of the light beam,
according to (Svelto and Hanna, 2010):

φp =
P

A

λ

hc
= I

λ

hc
. (7)

Gaussian Laser Beam
Assuming that a laser beam in the z direction attenuates
exponentially with the distance d in the tissue (Welch and
Van Gemert, 2011), the irradiance can be defined as the radiant
energy flux incident on the point of the surface, divided by
the area of the surface. Many laser sources emit beams that
approximate a Gaussian profile, in which case the propagation
mode of the beam is the fundamental transverse electromagnetic
mode (TEM00) (Balanis, 2012; Sadiku, 2014).

Gaussian functions can assume multidimensional forms by
composing the exponential function with a concave quadratic
function (Weisstein, 2015). A particular example of a two-
dimensional Gaussian function, in the x− y plane, is:

f (x, y) = A exp

[

−

(

(x− x0)
2

2σ 2
x

+
(y− y0)

2

2σ 2
y

)]

. (8)

Considering a bell curve shape for the Gaussian function, the
parameter A is the maximum amplitude of the curve, x0 and
y0 are the center position of the curve in x and y axis, and σx
and σy are the x and y spreads or standard deviations of the
Gaussian curve.

Light Propagation in Brain Tissue
In vitro and in vivo optogenetic experiments commonly use a
relatively simple setup that consists of laser sources coupled to

optical fibers to deliver light to a region of interest (ROI) in the
tissue, in an accurate and efficient manner. In vivo experiments in
deep regions of the brain, for example, also require a stereotactic
surgery to position the tip of the optical fiber in the ROI into
the brain (Zhang et al., 2015). Depending on the distance from
the fiber tip and the optical properties of the surrounding tissue,
the emitted light can propagate with uneven intensity.

The transmittance, T, is the relationship between the light
intensity measured in the tissue at a distance d, and the light

intensity measured without tissue, I(d)
I(d=0)

, considering both

scattering and absorption effects, and is given by (Vo-Dinh,
2014):

T =
b

a sinh(bdµs)+ b cosh(bdµs)
, (9)

in which, µs is the scattering coefficient and can be given in
mm−1 (Aravanis et al., 2007; Bernstein et al., 2008), d is the
distance in the brain tissue (mm), and a and b are given by
(Vo-Dinh, 2014):

a = 1+
µa

µs
, (10)

b =
√

a2 − 1 . (11)

here, µa can also be given in mm−1 (Aravanis et al., 2007;
Bernstein et al., 2008).

The light intensity can be estimated by the product between
the transmittance T and the geometric loss gloss due to light
spreading in the tissue. The geometric loss is obtained by the
decrease in light intensity due to the conical shape observed from
the fiber tip (d = 0) to a certain distance d in the tissue. The
divergence angle, θdiv, for a multimode fiber is given by (Aravanis
et al., 2007):

θdiv = sin−1

(

NAfib

nt

)

, (12)

where, nt is the refractive index of the tissue and NAfib is
the numerical aperture of the optical fiber. Considering the
conservation of energy, we can calculate the geometric loss, gloss,
to a given distance, d, in the tissue as (Aravanis et al., 2007):

gloss =
ρ2

(d + ρ)2
, (13)

with,

ρ = r

√

√

√

√

(

nt

NAfib

)2

− 1 , (14)

in which, r is the fiber core radius. In this way, the expression
for the normalized light intensity, IN (mW/mm2), considering
scattering, absorption and geometric loss is given by:

IN =
I(d)

I(d = 0)
= gloss · T . (15)
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TABLE 1 | Parameters used in scattering and absorption simulations.

Parameters Values References

Fiber core radius (r) 0.2 mm dat, 2015

Fiber numerical aperture (NA) 0.48 dat, 2015

Fiber core refractive index (n1) Blue: 1.4644 Yellow: 1.4587 dat, 2015

Scattering coefficient (µs) Blue: 10.0 mm−1 Yellow:

9.0 mm−1

Bernstein et al.,

2008

Absorption coefficient (µa) Blue: 0.070 mm−1 Yellow:

0.027 mm−1

Bernstein et al.,

2008

Laser input power (P) 20 mW

Laser coupling fraction (η) 1 or 100%

We can consider I(d = 0) as the light intensity at the fiber tip that
can be obtained inmW/mm2 simply by:

I(d = 0) =
P

Aη
, (16)

where, P is the power emitted by the light source (mW),
A = πr2 is the area of the optical fiber (mm2), and η is
the coupling efficiency between the optical fiber and the light
source (dimensionless). We chose η = 1 for all the scattering and
absorption simulations.

Finally, the light intensity (mW/mm2) at a region of interest
in the tissue, assuming a distance d (mm) from the fiber tip, is
given by:

I(d) = I(d = 0) · IN . (17)

We used MATLAB commercial software to simulate scattering
and absorption characteristics in mice brain tissue. Table 1 shows
the parameters and respective values used for these simulations.

Heat Transfer in Mice Brain Tissue
Heat transfer is a known physical problem already modeled in
many areas of knowledge (Ahmed et al., 2019; Taheripour et al.,
2019). For biology, heat is inevitable when light propagates and is
absorbed by biological tissues.

The traditional bio-heat equation describes the change in
tissue temperature over time that can be expressed at a distance
d in the tissue. Furthermore, blood perfusion occurs in living
tissues, and the passage of blood modifies the heat transfer
in tissues. Pennes (1948) has established a simplified bio-heat
transfer model to describe heat transfer in tissue by considering
the effects of blood perfusion, ωb, and metabolism, Hm (Elwassif
et al., 2006; Vo-Dinh, 2014):

ρCp
∂T

∂t
= ∇(k∇T)− ρbωbCb(T − Tb)+Hs +Hm , (18)

where, ρ is the tissue density (kg/m3), Cp is the specific heat
of the tissue (J/kg◦C), k is the thermal conductivity of the
tissue (W/m◦C), ρb is the blood density (kg/m3), ωb is the
blood perfusion (1/s), Cb is the specific heat of the blood
(J/kg◦C), T is the temperature of the tissue (◦C), Tb is the blood
temperature (◦C),Hs is the heat source due to photon absorption

(W/m3), and Hm is the term that represents heat generated by
metabolism (W/m3). Equation (18) is almost linear for small
temperature changes, therefore, it is expected that temperature
rises are approximately proportional to the energy input (that is,
duty cycle).

The interaction between metabolic heat generation and
blood perfusion was investigated, and it was proved that the
temperature increases during Deep Brain Stimulation (DBS).
Other environmental interactions that can affect the stored
energy include radiation and convection from the sample surface,
the loss of vapor phase water from the sample, and convection
with blood that is perfused through the vascular network from
arterial and venous sources. This network has a very specific
geometry that is unique to a tissue or organ and can affect
significantly the capability to exchange heat with the tissue in
which it is embedded (Welch and Van Gemert, 2011).

Additionally, thermal boundary interactions occur over the
surface area with the environment and are often characterized
as convective and irradiative processes. Laser irradiation process
increases the stored energy from its initial state and, as a result, it
diffuses the heat away from the irradiated area in proportion to
the temperature gradients developed in the tissue. A quantitative
characterization of the formation of these gradients and the heat
flow that they drive are the focus of heat transfer analysis (Welch
and Van Gemert, 2011).

In the case of convective boundary conditions, heat transfer
occurs when a solid substrate is in contact with a fluid at
a different temperature (Welch and Van Gemert, 2011). The
magnitude of the heat exchange can be calculated according to
Newton’s law of cooling, that describes the convective flow,Hconv

(W/m2), at the surface in terms of the convective heat transfer
coefficient, h (W/m2◦C) and the temperatures of the sample, T,
and the external environment, Text , in

◦C:

Hconv = h(T − Text) . (19)

We consider the geometry and shape of the boundary layer region
of the fluid in which convection occurs, to calculate the free
convective flow. Convective effects are hard to estimate once
different process characteristics must be considered depending
on the convective transport problem. Typical values of h
for free convection in liquids are in the range of 20–1,000
(W/m2◦C) (Welch and Van Gemert, 2011). It is important to
choose small values of h, such as 25 W/m2◦C, so that the
temperature variations between the environment and the sample
are properly evidenced.

Heating generated within the biological material is governed
by the following expression (Elwassif et al., 2006):

H(x, y, z) = P(1− R)
µa

πσxσy
exp

[

−

(

(x− x0)
2

2σ 2
x

)

+
(y− y0)

2

2σ 2
y

]

exp(−µaz) , (20)

in which, the first exponential function represents the two-
dimensional Gaussian distribution in x − y plane, in accordance
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TABLE 2 | Parameters and material properties used in heat transfer simulations.

Parameters Values References

Refractive index of the tissue (nt ) 1.36 (gray

matter)

Vo-Dinh, 2014

Specific heat of the tissue (Cp) 3650 J/kg◦C Elwassif et al., 2006

Density of the tissue (ρ) 1040 kg/m3 Elwassif et al., 2006

Thermal conductivity of the

tissue (k)

0.527 W/m◦C Elwassif et al., 2006

Metabolic heat (Hm) 13698 W/m3 Elwassif et al., 2006

Blood density (ρb) 1057 kg/m3 Elwassif et al., 2006

Blood perfusion (ωb) 0.012 1/s Elwassif et al., 2006

Specific heat of the blood (Cb) 3600 J/kg◦C Elwassif et al., 2006

Temperature of the tissue (T ) 37◦C Elwassif et al., 2006

Blood temperature (Tb) 36.7◦C Elwassif et al., 2006

Heat transfer coefficient (h) 25 W/m2 ◦C Welch and Van Gemert, 2011

Standard deviations in x and y

axis (σx , σy )

0.5

Reflection coefficient (R) 0

to Equation (8). The second exponential function represents the
exponential decay due to absorption (Yang and Miklavcic, 2005).

Some considerations in using Equation (20) are: the reflection
(R) and absorption coefficients are assumed to be constant; the
sample is assumed to have a planar surface aligned with the xy-
plane of the global coordinate system and whose top matches
z = 0 (distance at the fiber tip); the center of the beam can be
easily shifted by changing x0 and y0; the beam width can be easily
controlled by the standard deviation parameters σx and σy. We
assumed R = 0 and σx = σy = 0.5 for the analysis of heat transfer
performed in this work.

Heat transfer simulations were accomplished using the
computational modeling software, COMSOL Multiphysics 4.4,
that allows numerical solutions for partial differential equations
based on the Finite Element Method (FEM) (Zimmerman,
2004). Laser heating was simulated considering two stationary
conditions: continuous mode and pulsed mode. We used
biological material with mice brain tissue characteristics (gray
matter). Thematerial properties were assumed to be constant and
are shown in Table 2.

Channelrhodopsin-2 and Neuron Models
We first modeled the effect of temperature alone in a pyramidal
cell model and in a network of basket cells known to generate
gamma oscillations. We have implemented a single compartment
CA1 neuron model described by Migliore (Migliore, 1996). He
has implemented a multicompartment model in his original
work, but here we only employ the soma with an inactivating
sodium conductance (max. 30 nS), a delayed rectifier K+

conductance (max. 10 nS), conductance from anM current (max.
0.6 nS) and from an H current (max. 0.3 nS). Kinetics for all
currents were download from ModelDB (https://senselab.med.
yale.edu/modeldb/, Accession:2937).

In addition, we have used the same Q10 values for all voltage-
gated currents as the original publication (Wang and Buzsáki,
1996). Temperature values from the heat transfer simulation

were fed to the neuron model by a “look up time/temperature
table” where each rounded ms value corresponded to a single
temperature value. Simulations were run for 90 s (30 s for
stabilization with constant temperature and 60 s with variable
temperature). The model was solved inMATLAB using the built-
in solver “ode23”. The interneuron network gamma model was
simulated using Neuron with no changing in parameters from
the model available from ModelDB (Accession:26997) exception
by setting the temperature to 37 or 39◦C. These simulations
were run for 500 ms with a constant temperature. Note that
the original study of Wang and Buzsáki did not account for
temperature; however, the uploaded model in ModelDB includes
Q10 for kinetic variables (Wang and Buzsáki, 1996).

Power spectrum density analysis and cross-correlation of
action potentials were calculated from spike trains transformed
in a series of 0 s (no spike) and 1 s (spike) with 0.1 ms-
precision (Hilscher et al., 2013). Power spectral density analysis
of binary spike series was performed using Welch’s method
(pwelch command in MATLAB). Cross-correlograms (CCGs)
were calculated as described previously (Hilscher et al., 2013)
and then smoothed by a moving average filter with a span of 10
ms (Hilscher et al., 2013). Cross-correlations over a lag range of
±0.1 s. Synchrony index (SI) is defined as the maximum value of
the CCG.

We have implemented the channelrhodopsin-2 empirical
model (Williams et al., 2013) in two single neuron models
to test the interaction of temperature and optocurrents: a
single basket cell from Wang and Buzsaki network model
(Wang and Buzsáki, 1996) and an anteroventral cochlear
nucleus bushy cell model (Rothman and Manis, 2003). The
equations and parameters from the neuron models can be
found in the original publications (Wang and Buzsáki, 1996;
Rothman and Manis, 2003) and equations and parameters for
channelrhodopsin optocurrents are found in (Williams et al.,
2013). All models were implemented in MATLAB (Mathworks),
and the codes can be downloaded from https://github.com/
cineguerrilha/Neurodynamics/tree/master/Cell_Models.

RESULTS

In this work, we first simulated the light propagation and
absorption in the brain of mice in a typical optogenetic setup.
Figure 1A shows a diode pumped solid state - DPSS laser source
coupled to a multimode optical fiber that transmits light directly
to the region where the brain implant was performed (Zhang
et al., 2015).

Subsequently, we simulated the effect of heat in single neurons
and networks. We have also examined the additive effect of
heat and light in simulations that included a channelrhodopsin-
2 model (Williams et al., 2013). The bio-heat transfer was
solved numerically using Pennes’ equation with the finite element
method and temporal changes in temperature at a given point in
space were applied to a single compartment neuron model (with
Hodgkin and Huxley formalism).

We first simulated beam geometry and light spreading.
A DPSS laser emits a Gaussian beam that the propagation
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FIGURE 1 | Light propagation properties when interacting with brain tissue. (A) Diagram showing a typical optic stimulation setup used in freely moving animals. The

setup consists of a computer, a data acquisition (DAQ) board, and a laser source coupled to a fiber transmitting light to a target region into the mouse brain at a

divergence angle (θdiv ) calculated using Equation (12). (B) Transversal electromagnetic fundamental propagation mode (TEM00) of the laser source. (C) Gaussian beam

shape. (D) 2D view of the geometric loss due to light spreading in the tissue (conical shape) at a certain distance from the fiber tip. (E) The flux of irradiated photons as

a function of distance during 15, 60, and 100 ms light pulses considering a region of unit area. (F) Wavelength shift during light propagation through different media.
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mode is the fundamental transversal electromagnetic (TEM00)
(Figures 1B,C and Equation 8). Figure 1D shows the normalized
geometric loss due to light spreading in z-x plane within the
tissue as a function of the distance from the fiber tip in z
direction. The divergence angle is determined by the optical
fiber numerical aperture, according to Equation (12). After light
power at a given point is calculated, photon flux (number of
irradiated photons per unit time and per unit area) at that
point can be obtained by Equation (7). Photon flux can then be
correlated to photocurrents in channelrhodopsin models (Foutz
et al., 2012). Photon flux simulations are shown in Figure 1E,
in which, a 20 mW, 473 nm laser is pulsed with durations of
15, 60, and 100 ms. The different pulse durations were chosen
to illustrate that the pulse width changes alter the amount of
photons passing through a surface. Light speed is altered during
propagation because of the difference of refractive indices and
their dependence with wavelength. Consequently, the wavelength
can change during propagation and this effect is not only
observed in the interface between fiber and tissue, but also
within the tissue, due to its anisotropic refractive indexes between
different brain regions. The wavelength change between two
different media, which is calculated using Snell’s law (Equation
3), is illustrated in Figure 1F. Assuming that light propagates
from an optical fiber (medium 1) to the tissue (medium 2), where
N is a perpendicular line to the surface of separation between
the two media, and considering n1b = 1.4644 as the refractive
index of the fiber core at 473 nm, n1y = 1.4587 the refractive
index of the fiber core at 593 nm, and n2 = 1.36 the refractive
index of the tissue (mouse brain, gray matter), the wavelength
shifts for blue (473 nm) and yellow (593 nm) lights due to
refraction are 36 nm and 43 nm, respectively, according to
Equation (4). Yet small, wavelength shifts have to be considered
specially in modeling studies as there is an obvious relationship
between wavelength and light absorption in both light-sensitive
ion channels and fluorescent proteins (Zhang et al., 2015), even
if the photon energy remains the same, once small changes in the
wavelength affect the response of the light-sensitive ion channels
and fluorescent proteins.

We then used the Kubelka-Munk model to calculate light
intensity vs. distance considering absorption (Mobley and Vo-
Dinh, 2003). Light absorption by the tissue has no direct relation
to the production of photocurrents by channelrhodopsin;
however, absorption produces heat, a side effect of light
stimulation (Shapiro et al., 2012). Light absorption also changes
(although slightly) the relation between light intensity and tissue
depth (Figure 2A). Assuming a threshold of 10mW/mm2 (green
line), which is a sound intensity value when stimulating a large
group of stimulated cells (Bernstein et al., 2008), the depth
for channelrhodopsin-2 activation is 0.39 mm (473 nm) and
for halorhodopsin activation is 0.42 mm (593 nm). Figure 2B
shows the transmittance (Equation 9) as a function of distance
d, considering both scattering and absorption effects. These
simulations indicate that only cells and neurites at the vicinity
of the fiber are affected by light stimulation and are in agreement
with a previous study (Stujenske et al., 2015).

We next computed the production of heat in the tissue
caused by light absorption using FEM. For heat transmission

simulations, we used a rectangular prism of dimensions equal
to 3.5 × 3.5 × 5 (mm3) representing a mouse brain tissue.
Optogenetic experiments often use specific stimulation protocols
with yellow light to activate halorhodopsin and blue light to
activate channelrhodopsin (Cardin et al., 2009; Mikulovic et al.,
2016). We, therefore, simulated the interaction between the
mouse brain and the yellow light radiation (593 nm wavelength),
with the laser source operating in continuous mode, while the
blue light radiation (473 nm wavelength) laser source operating
in pulsed mode.

Temperature changes at a distance d = 10 µm from the fiber
tip caused by continuous light radiation (593 nm) as a function
of time are shown in Figure 3A. We simulated heat transfer due
to continuous yellow light for different values of power emitted
by the laser source: 1, 10, 20, 30, and 40 mW. According to
Figure 3A, during the first 5 s, the rate of temperature variation
is higher. After that, the temperature continues to increase more
slowly moving toward the steady state condition. For light power
up to 10mW, temperature increases about 0.5◦C. For 20, 30, and
40 mW, the increase in temperature after 1 min of radiation is
between 1 and 2◦C. Figure 3B shows a temperature distribution
in 3D view, 2D top view (x-y), and 2D slice center view (z-
x, constant y), for continuous yellow light radiation (20 mW
and 60 s, indicated by the red asterisk shown in Figure 3A and
pulsed blue light radiation (473 nm), 12 Hz and 18% of duty
cycle-percentage of a period in which the light is turned on
(black asterisk indicated in Figure 3C). We have also computed
temperature changes for 20 mW blue light, at 60 s and 10 µm
from the fiber tip, for frequencies varying from 1 to 40 Hz with
duty cycles varying from 1% to 100% (Figure 3C). These results
show that lower duty cycles minimize temperature changes by
light stimulation.

Currents produced by voltage-gated ion channels are directly
influenced by temperature. It is known for decades that channel
opening and closing are generally faster in higher temperatures
and conductance/voltage relationship and ion reversal potential
are also be affected by temperature (Fitzhugh, 1966). To illustrate
the effect of temperature in firing, we used a basket cell model
(Wang and Buzsáki, 1996). For these simulations, we used
two temperatures (37◦C and 39◦C the latter can be quickly
produced by a pulsed laser at 40 Hz and 90% duty cycle and
at 10 µm distance from the center of the fiber tip Figure 4). In
the model implemented here, action potentials become smaller
and briefer (Figures 4A,B). Spontaneous firing frequency of
the neuron used in this simulation also increases (Figure 4C).
Optogenetics has been used to study the mechanisms behind
neuronal synchrony and brain rhythm generation (Cardin
et al., 2009). Hence, we further investigated the effect of heat
generated by light stimulation itself (rather than photocurrents
in channelrhodopsin-expressing neurons) in a network model
comprised solely by basket cells that synchronize in gamma
frequency (Wang and Buzsáki, 1996). The model is composed
of 100 interconnected fast spiking interneurons (same as in
Figure 4) (Wang and Buzsáki, 1996). In the Wang and Buzsákis
model (Wang and Buzsáki, 1996), neurons in the network
take around 200–300 ms to fire in gamma frequency from a
relatively asynchronous onset (Figures 4A,D). If the temperature
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FIGURE 2 | Scattering and absorption effects as light propagate into mouse brain tissue. (A) Light intensity vs. penetration distance for 473 nm (blue) and 593 nm

(yellow) wavelengths. At a distance d = 0.4 mm from the fiber tip (dashed green line), a reference value for light intensity of 10 mW/mm2 (solid green line) was chosen

for blue and yellow light with (solid lines) and without (dashed lines) absorption. Inset. Distance in which light decays to 10 mW/mm2 in simulations with and without

absorption. (B) Transmittance vs. penetration distance for blue and yellow lights, including scattering and absorption effects.

is raised by 2◦C the network is synchronized in less than
50 ms (Figures 4A,D) from the onset of simulation. Firing
frequency of the interneurons in the network also increased
by raising the temperature in 2◦C (Figure 4C). This changing
in frequency caused a shift in the peak of ‘gamma oscillation’
in the power spectrum (Figure 4C). Hence, heat itself can
theoretically facilitate the generation of oscillations and/or alter
their frequency.

We further assess the effect of raising the temperature
in neuronal synchronization using previously described
synchrony metrics (Leao et al., 2005; Hilscher et al., 2013).
Autocorrelation histograms of all 100 neurons in the model
are shown in Figure 5A for 37◦C and at 39◦C. Heating the
network model caused neurons to fire at greater rhythmicity
(Figure 5A). In addition, cross-correlogram also showed
greater synchrony when simulations were executed at 39◦C
(compared to 37◦C). This increase in synchrony is reflected by
a significant rise in the synchronization coefficient (Figure 5B).
The mean synchronization index (SI) for all possible neuron pair
combinations (9,900 pairs) was equal to 0.16 for 37◦C and 0.22
for 39◦C. These results show that heating can, not exclusively,
change the frequency of brain oscillations but also alter the
coordination and synchrony of neuronal firing.

We then combine temperature and irradiation in modeled
neurons that also contained a channelrhodopsin-2-driven
photocurrents (Wang and Buzsáki, 1996; Williams et al., 2013).
We have used two distinct cell models to illustrate the interaction
of channelrhodopsin photocurrents with other ionic currents
in the neuron. The basket cell shows high-frequency firing
that increases proportionally to the injected current (Martina
et al., 1998) and a bushy cell of the dorsal cochlear nucleus
that show single action potentials in response to continuously
injected currents (Leao et al., 2006). At 1 mW power, the

basket cell model fired action potentials at the beginning of
each pulse whether at 37◦C or 39◦C (Figure 6A). However, the
bushy cell model only fired APs at physiological temperature
(Figure 6A). The tissue reaches 39◦C quickly for duty 50% or
90% duty cycles, but the temperature only rises mildly for 10%
duty cycle (Figure 6B). Nevertheless, even at 10% duty cycle,
bushy cell light-elicited AP amplitude is still affected by the
small increase in temperature (Figures 6C,D). Taken together,
this data suggests that temperature can alter the efficiency of
photocurrents in eliciting APs. Most importantly, the effect of
temperature and light stimulation interaction in the membrane
is greatly dependent on native voltage-gated channels.

DISCUSSION

In the context of optogenetics, the first study that addressed the
interaction of light emanating from an optical fiber with brain
tissue omitted absorption (Aravanis et al., 2007). Aravanis and
colleagues argued that the effect of light (400–900 nm) absorption
could be neglected when simulating light transmission in the
brain (Aravanis et al., 2007). However, while absorption does
not affect significantly the spatial computation of light intensity
(as most of the loss occurs through scattering), it is through
absorption that heat is generated. Also, we opt to use the simpler
Kubelka-Munk model for light transmission instead of a more
accurate Monte Carlo method as the former generates values
that approximate empirical results for short distances (∼ 1 mm)
(Aravanis et al., 2007; Džimbeg-Malčić et al., 2011).

Our bio-heat transfer results corroborate with recent studies
found in the literature (Stujenske et al., 2015; Arias-Gil et al.,
2016). These authors were the first to explores heat generation
by light in optogenetic experiments and compare simulations
with empirical measurements. Our work, instead, explore
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FIGURE 3 | Heat transfer simulations for blue and yellow light in mouse brain tissue. (A) Temperature variations for 593 nm wavelength as a function of time for 1, 10,

20, 30, and 40 mW of continuous radiation. The red asterisk indicates continuous yellow light radiation for 20 mW and 60 s. (B) Temperature distribution in space for

593 nm and 473 nm. Right. Top. 2D Gaussian beam (x-y) for the top view and with z → 0. Bottom 2D slice view (z-x) of the temperature distribution. (C) Heat map for

the temperature distribution (473 nm) as a function of frequency (1–40 Hz, bin size of 1 Hz) and duty cycle (1–100%, bin size of 10%) at 60 s of light radiation (10 µm

from the fiber tip). The black asterisk indicates pulsed blue light radiation, 12 Hz and 18% of duty cycle. The dashed black line shows a pulse width of 10 ms.

the effect of bio-heat transfer in neurons and networks, in
particular, with a few differences compared to the study by
Stujenske and colleagues (Stujenske et al., 2015). For instance,
these authors used light absorption and scattering coefficients
obtained from human brain tissue interpolated from different
wavelengths while here we employ coefficients obtained from
rodent brains in specific wavelengths used in optogenetic
experiments (Bernstein et al., 2008; Stujenske et al., 2015).
Besides, we have calculated temporo-spatial photon flux in
brain tissue. Ultimately, photon flux determines the opening
of channelrhodopsin pores, and these values could be directly
used for simulation of channelrhodopsin activation (Zhang et al.,
2015).

We used homogeneous absorption coefficients for a given
wavelength, but it is clear from optical measurements that
light is unevenly absorbed in the brain (Jacques, 2013).
Thus, the temperature can also increase unevenly based on
anisotropic absorption coefficients. Besides, blood vessels are not
homogeneously distributed in all brain regions; therefore, spatial
differences in temperature buffering will further complicate

the network effect of heat generation by optical stimulation.
In other words, the effect of the increase in temperature in
optogenetic experiments will depend on the region, neuron type,
and connections and can significantly affect neuronal processing.
Minimizing stimulation time may help to prevent unwanted
heat effects in neuronal function. In experiments where long
stimulation times are desirable, step-function opsins may be
the tool of choice for avoiding heat-related changes in firing
and behavior.

The temperature effect in the gating of voltage-dependent
channels is classically modeled by using an empirical factor
(Q10) to multiply rate constants (incorporating temperature
dependence to the classical Hodgkin and Huxley formalism)
(Thompson et al., 1985). In addition, ion reversal potentials
in semipermeable membranes are directly proportional to
temperature. We simulated the effect of a 2◦C change in a
classical model of interneuron network gamma (ING) oscillation
(Wang and Buzsáki, 1996). The idea that gamma oscillation arises
from the interaction of fast spiking interneurons originated from
slice and modeling studies (Whittington et al., 1995; Wang and
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FIGURE 4 | A 2◦C raise in temperature increases the firing frequency of neurons in a network model of gamma oscillations. (A) Membrane potential of two neurons

from a network of 100-interneuron network when simulation was executed with temperatures of 37◦C (gray and black traces left) and 39◦C (blue and dashed dark

blue right). (B) Phase plots from one action potential of one interneuron at 37◦C and at 39◦C (black and dark blue traces, respectively). (C) Mean firing power

spectrum density (see section Methods) of the 100 interneurons in the network at 37◦C and at 39◦C (black and dark blue traces, respectively). (D) Scatter plots

showing the action potential firing of the gamma network at 37◦C (left) and at 39◦C (right).

Buzsáki, 1996) and it was demonstrated by a highly influential
optogenetics study (Cardin et al., 2009). Cardin and colleagues
elicited gamma oscillation in the neocortex by rhythmical optical
stimulation of cells expressing the enzyme Cre recombinase (and
channelrhodopsin) in a Parvalbumin-Cre animal (Cardin et al.,
2009). To generate gamma oscillations, the authors optically
stimulated neurons at the same frequency as the recorded local
field potential (Cardin et al., 2009). It is known that rhythmical
stimulation is likely to interfere with the local field potential
recording due to the optoelectric effect (Mikulovic et al., 2016).
However, the effect of temperature caused by optical stimulation

in network responses is largely unexplored. Parvalbumin is
especially found in soma targeting fast spiking interneurons
(but it is also found in several other types of interneurons)
(Klausberger et al., 2005; Mikulovic et al., 2016). UsingWang and
Buzsaki’s model of ING (1996), we found that an increase of two
degrees significantly organizes the inhibitory neuron network.
At 39◦C, firing in gamma can be observed in less than 50 ms
from the simulation onset (when firing of individual neurons is
random) while at 37◦C, that network takes almost 5 times longer
to organize its spikes at gamma frequency. Also, network firing
frequency increases in several Hz. Changes in gamma oscillation
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FIGURE 5 | Synchrony is greatly increased in a gamma oscillation network model by a 2◦C raise in temperature. (A) Top, Normalized autocorrelograms of all 100

neurons in the network at 37◦C (left) and at 39◦C (right). Bottom, Normalized crosscorrelograms of all 100 neurons crosscorrelated with all 100 neurons in the network

at 37◦C (left) and at 39◦C (right). (B) Peak normalized correlation index between all 100 neurons when simulations were performed at temperatures of 37◦C (left) and

39◦C (right).

frequency by temperature has been observed experimentally
(Leao et al., 2009), and as the increase in temperature depends
on the proximity of targeted neurons to the optical fiber,
light stimulation could generate small networks that oscillate
incoherently from non-heated networks and this effect is not
directly associated to opsin expression.

Here, we show that different types of neurons can have very
different responses to similar light pulses. There has been little
concern in optogenetic experiments regarding native currents
of neuronal populations of interest (Adamantidis et al., 2015).
However, we show that native voltage-gated currents can have
a huge impact on how neurons fire to light stimulation. For
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FIGURE 6 | Temperature changes caused by light absorption affects membrane response to photocurrents. (A) Membrane potential of a basket cell (BC) and a dorsal

cochlear nucleus bushy cell (GBC) models to 10 mW-473 nm light pulses at 37◦C (top) and 39◦C (bottom). (B) Temperature at 10 µmfor 4 Hz stimulation (20 mW) for

10% (blue), 50% (magenta) and 90% (red) duty cycles (inset shows 0.5 s pulses with the three different duty cycles). (C) BC and GBC responses for 10% duty cycle

(4 Hz) light pulses with fixed temperatures (37◦C black and 39◦C red) and when temperature raises (green) in response to light pulses (black trace in B). (D) Action

potential amplitude evolution in time of GBC model in response to light pulses in (C). The red square is the amplitude of the single AP the GBC model fired when

temperature was set to 39◦C.

example, neurons that express strong low threshold K+ currents
to avoid repetitive firing when currents are injected will only
fire one to a couple of spikes independent of the duration
of the light pulse (Leao et al., 2008). On the other hand,
fast spike neurons expressing high-threshold K+ currents like
basket cells (Martina et al., 1998) will respond, most likely,
with multiple spikes after each light pulse. Neurons with strong
inward currents activated by hyperpolarization (e.g., Ih) could
also produce strong depolarizations (and action potentials) by
activation of Ih rather than the reversal of Cl− gradients (Leao
et al., 2011; Adamantidis et al., 2015). It is important to note
that the simple ChR2 model used here describes well the
behavior of macroscopic photocurrents for short periods (that
cover a large number of optogenetic experiments) (Williams
et al., 2013). Hence, this ChR2 model could be added to
specific cell models that are readily available in databases like

the ModelDB (McDougal et al., 2017) for optimization of light
protocol design.

Finally, temperature affects the transfer function of a given
neuron according to the diversity of ion channels in it (Cao
and Oertel, 2005). For that reason, while some neuron types
increase spontaneous firing, other populations may become quiet
when the temperature is changed (Kim andConnors, 2012).Most
importantly, changes in temperature and native channels may
hinder optogenetic stimulation. Our optogenetic simulations
using the bushy cell model showed that light pulses are unable
to elicit spikes when the cell is heated to 39◦C. Bushy cells
are known to express low threshold potassium channels (Kv1)
(Rothman and Manis, 2003), and these channels prevent the
firing of multiple APs in response to tonic currents (Couchman
et al., 2011). Thus, accelerating the opening of Kv1 channels
could prevent spike generation by photocurrents. However,
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the interaction of channelrhodopsin photocurrents with native
voltage-gated currents of a given cell is a subject largely explored,
especially when changes in temperature caused by the light
stimulation affects the gating dynamics of native channels. Future
studies should assess the interaction of photocurrents with native
voltage-gated currents and examine the effect of temperature.

CONCLUSION

In this work, we have used the finite element method to
address brain temperature changes caused by light stimulation
in optogenetics and its effect in neuron firing. We found that
temperature can increase by about 2.6◦C in 1 min for blue
light stimulation (20 mW of power, Figure 3C). A two-degree
change in temperature, when applied to amodel of a spontaneous
firing neuron, caused a dramatic increase in firing frequency
and change in action potential shape. Conversely, a 2◦C-increase
in temperature in a fast spiking interneuron network model
of gamma oscillation produced a large increase in neuronal
synchrony and oscillation frequency. Moreover, the effect of
channelrhodopsin-driven photocurrents on membrane potential
is dramatically affected by temperature changes provoked by light
stimulation itself, especially in the single-firing cell model.

In summary, we have shown that temperature increase
caused by brain optical stimulation, with light intensities
commonly used in optogenetic experiments (Cardin et al.,
2009; Adamantidis et al., 2011) can considerably affect neuron
and network properties independently of opsin expression.
Moreover, the temperature can alter cellular responses to
optical stimulation. As the usage of channelrhodopsin becomes
widespread, studies tend to assume that optical stimulation elicits
spiking activity without assessing cellular responses (Ahlbeck
et al., 2018; Almada et al., 2018). Thus, the whole cell current-

and voltage-clamp assessment of the cell response to optical

stimulation may still be necessary to determine optimal light
stimulation protocols.
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Automatic segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance

Imaging (MRI) images is essential for clinical assessment and treatment planning of MS.

Recent years have seen an increasing use of Convolutional Neural Networks (CNNs)

for this task. Although these methods provide accurate segmentation, their applicability

in clinical settings remains limited due to a reproducibility issue across different image

domains. MS images can have highly variable characteristics across patients, MRI

scanners and imaging protocols; retraining a supervised model with data from each

new domain is not a feasible solution because it requires manual annotation from

expert radiologists. In this work, we explore an unsupervised solution to the problem

of domain shift. We present a framework, Seg-JDOT, which adapts a deep model so

that samples from a source domain and samples from a target domain sharing similar

representations will be similarly segmented. We evaluated the framework on a multi-site

dataset, MICCAI 2016, and showed that the adaptation toward a target site can bring

remarkable improvements in a model performance over standard training.

Keywords: MS lesion segmentation, deep learning, convolutional neural networks, unsupervised domain

adaptation, optimal transport

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous
system. Magnetic Resonance Imaging (MRI) is fundamental to characterize and quantify MS
lesions; the number and volume of lesions are used for MS diagnosis, to track its progression and to
evaluate treatments (Smith and McDonald, 1999). Current MRI protocols in MS consists in Fluid-
Attenuated Inversion Recovery (FLAIR) and T1-weighted (T1-w) images, offering complementary
contrasts that allows to identify different types of lesions. Accurate identification of MS lesions in
MRI images is extremely difficult due to variability in lesion location, size, and shape, in addition
to anatomical variability across patients. Since manual segmentation requires expert knowledge,
it is time consuming and prone to intra- and inter-expert variability, several methods have been
proposed to automatically segment MS lesions (García-Lorenzo et al., 2013; Commowick et al.,
2018; Galassi et al., 2018).
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In recent years, Convolutional Neural Networks (CNNs) have
showed better performances in MS lesion segmentation than
the traditional unsupervised methods (Commowick et al., 2018;
Galassi et al., 2019). Yet, their clinical use remains limited due
to a reproducibility issue across different sites or image domains.
MRI MS imaging data can have high or subtle variations across
individuals, MR scanners, and data acquisition protocols (Galassi
et al., 2019; Kushibar et al., 2019; Onofrey et al., 2019). In
research, the data used to train and test CNN models are
never fully representative of all clinical scenarios, resulting in
supervised models that suffer from poor generalization when
applied to a new target image domain (Commowick et al., 2018).

A few studies have proposed methods to facilitate model
re-training and re-use, such as Transfer Learning strategies
(Kushibar et al., 2019), where the weights of an already trained
network are tuned to adapt to a new target domain, decreasing
the training time and demanding fewer training annotated
samples than full training. Recent studies in computer vision
propose Unsupervised Domain Adaptation strategies that do not
require ground truth segmentation for the target dataset (Kouw
and Loog, 2019). Our work deals with this more challenging and
common scenario.

Unsupervised Domain Adaptation includes adversarial loss
functions and adversarial image generation based methods
(Sankaranarayanan et al., 2017; Tzeng et al., 2017). Generative
adversarial approaches may generate image samples that are
highly different from the actual MRI MS images and therefore
make the network learn useless representations. One of the most
recent works in Unsupervised Domain Adaptation proposes a
solution for a classification task based on Optimal Transport,
which learns a shared embedding for the source and target
domains while preserving the discriminative information used
by the classifier (Damodaran et al., 2018). Our framework is
based on the latter approach. Learning a shared representation
is suitable and relevant to our task where the aim is segmenting
the same objects, MS lesions, within the same structure, the
human brain.

In the sections that follow, we describe the use of Optimal
Transport for Unsupervised Domain Adaptation and our
original proposal, the Seg-JDOT framework. Seg-JDOT performs
domain adaptation in a segmentation task thus alleviating the
issue of low generalization ability in MS lesions segmentation.
We demonstrate the effect of the adaptation on the classifier
performance over standard training when training a model using
data from a single site only and from multiple clinical sites.
We employed the MICCAI 2016 dataset, which includes MRI
MS images acquired with different scanners and protocols, and
comprises patients with variable size and number of lesions.

2. METHODS

2.1. Problem Statement
The problem of generalizing across domains can be formally
defined. Let � ∈ R be an input space of dimension d, C the
set of labels, and P(�) the set of all probability measures over
�. Let X be the instance space and Y the label space. The
differences between domains can be characterized by a change

in the marginal feature distributions P(X) and in the conditional
distributions P(Y|X).

In standard learning for a classification task, one assumes the

existence of a source dataset (Xs, Ys), where Xs = {xsi}
Ns
i=1 is the

instance data and Ys = {ysi}
Ns
i=1 ∈ C is the corresponding class

labels, and a target datasetXt = {xtj}
Nt
j=1 with unknown labels Yt .

To infer the labels on the target dataset, one learns an empirical
estimate of the joint probability distributionP(X,Y) ∈ P(�×C)
from (Xs, Ys) by learning a classifier f , under the assumption that
the source and target data are drawn from the same distribution
µ ∈ P(�). However, if the target set is drawn from a slightly
different distribution, the learned classifier might under-perform
on the target set. If the drift between the two distributions is not
too large, a domain adaptation approach can be used to improve
learned model generalization.

In our work, we deal with a domain adaptation problem
that assumes the existence of two distinct joint probability
distributions, Ps(X,Y) and Pt(X,Y), corresponding respectively
to the source domain and to the target domain, with respective
marginal distributions µs and µt over �. We aim at leveraging
the available information {Xs, Ys, Xt} to learn a classifier f , that

is a labeling function f̂ which approximates fs and is closer to ft

than any other function f̂s. In order to solve this unsupervised
domain adaptation problem, the Optimal Transport theory can
be employed (Courty et al., 2017; Damodaran et al., 2018).

2.1.1. Optimal Transport for Unsupervised Domain

Adaptation
Optimal Transport is a theory that allows to compare and align
probability distributions by seeking for a transport plan between
them (Villani, 2008). Optimal Transport has been adopted in
Unsupervised Domain Adaptation in order to compare the
source and target distributions and bring them closer. Earlier
use of Optimal Transport in Unsupervised Domain Adaptation
involves finding a common latent space between the source and
target domains where to learn a unique classifier, or finding
a transport plan between the marginal feature distributions µ

under the assumption of label regularity, i.e., the conditional
probability remains unchanged (Gopalan et al., 2011; Courty
et al., 2015).

Recently, Courty et al. proposed an approach that handles a
shift in both the marginal and conditional probabilities, the Joint
Distribution Optimal Transport framework (JDOT) (Courty
et al., 2017). Formally, following the formulation of Optimal
Transport given by Kantorovich (1942), their approach seeks for
a transport plan between the two joint distributions Ps and Pt , or
equivalently a probabilistic coupling, γ ∈ 5(Ps, Pt) such that:

γ0 = argmin
γ∈5(Ps,Pt)

∫

�×�

D(xs, ys; xt , yt)dγ (xs, ys; xt , yt), (1)

where D is a joint cost function measuring both the dissimilarity
between samples xs and xt, and the discrepancy between ys

and yt. Because it is an unsupervised problem, the labels yt are
unknown and replaced by a proxy f (xt). Hence, they devised
an efficient algorithm that aligns jointly the feature space and
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label-conditional distributions, by optimizing simultaneously for
a coupling γ between Ps and Pt and a predictive function f
embedded in the cost function. The classifier f on a target domain
is learned according to the following optimization problem:

min
f ,γ∈5

∑

ij

D(xsi , y
s
i; x

t
j , f (x

t
j ))γij, (2)

where

D(xsi , y
s
i; x

t
j , f (x

t
j )) = αc(xsi , x

t
j )+ βL(ysi , f (x

t
j )) (3)

is a weighted combination of the distances in the feature space
and the loss L in the label space, for the i-th source and the j-th
target sample.

Two limitations can be identified in the JDOT framework: (i)
the cost c is computed in the image space which can be poorly
informative of the dissimilarity between samples, and (ii) the
problem becomes intractable for large datasets since the coupling
γ scales quadratically with the number of samples.

Subsequently, Damodaran et al. proposed a deep learning
strategy to solve these two drawbacks (Damodaran et al., 2018).
Their Deep-JDOT framework (i) minimizes the cost c in a
deep layer of a Convolutional Neural Network, which is more
informative than the original image space, and (ii) solves the
problem with a stochastic approximation via mini-batches from
the source and target domains. The Deep-JDOT model is thus
composed of an embedding function g : x → z which maps the
input space into a latent space, i.e., the output of a deep layer in
the CNN, and a classifier f : z → y which maps the latent space
into the output space. The optimization problem in Equation (2)
therefore becomes:

min
γ∈5,f ,g

∑

ij

D(g(xsi), y
s
i; g(x

t
j ), f (g(x

t
j )))γij, (4)

where

D(g(xsi), y
s
i; g(x

t
j ), f (g(x

t
j )) = α||g(xsi)− g(xtj )||

2

+βLt(y
s
i , f (g(x

t
j ))). (5)

The first term in Equation (5) compares the embeddings for the
source and the target domain, the second term considers the
classification loss in the target domain and its regularity with
respect to the labels in the source domain.

Equation (5) optimizes jointly the embedding function and
the classifier to provide a model that performs well on a target
domain. However, because Equation (5) takes into account
the classifier learned in the target domain only, f (g(xt)), a
performance degradation in the source domain might happen.
To avoid such a degradation, they reintroduce the loss function
Ls evaluating the classifier learned on the source domain, f (g(xs)),
yielding the following optimization problem:

min
γ ,f ,g

1

ns

∑

i

Ls(y
s
i , f (g(x

s
i))) +

∑

i,j

γij(α||g(x
s
i)− g(xtj )||

2

+βLt(y
s
i , f (g(x

t
j )). (6)

With this formulation, the framework learns a common latent
space that conveys information for both the source and target
domain. The final objective of Deep-JDOT is then to find an
embedding function g (which is equivalent to finding a latent
space z), a classifier f and a transportation matrix such that
inputs from the source and target domains that are similar in
the latent space z are similarly classified. Importantly, solving the
optimization problem with a stochastic approximation yields a
computationally feasible solution which can be easily integrated
into a deep learning framework. This approach is the starting
point of our work and it will be further recalled and detailed in
the next sections.

2.2. The Seg-JDOT Framework
We designed the Seg-JDOT framework to perform
simultaneously a segmentation and an adaptation task. An
overview of the framework is illustrated in Figure 1.

We employed a state-of-the-art deep learning architecture
for brain lesion segmentation, a 3D-Unet (Isensee et al., 2018).
The architecture was presented at the MICCAI BRATS 2018
segmentation challenge as an optimization of the original 3D-
Unet proposed by Ronneberger et al. (2015).

The downward context pathway is a succession of context
modules, with each module comprising two convolutional
layers. The upward localization pathway combines the deepest
representation with spatial information, brought by skip
connections. This is achieved by first up-sampling the low
dimensional representation and then combining it with the
features from the corresponding output of the context pathway.
To obtain the final segmentation maps, three different feature
maps are combined through element-wise summation. Hence,
from a compact representation with a low spatial dimension,
a segmentation map with the same dimension as the input
is obtained.

The model is composed of an embedding function g: x → z,
which maps the input x into the bottleneck representation z,
and a segmenter f : z → y, which maps the latent space z into
the segmentation space y. Seg-JDOT optimizes jointly the latent
space and the segmenter to provide a model that performs well
on a target domain. In the sections that follow we provide a
thorough description of the framework and the solution to the
optimization problem.

2.2.1. Defining the Probability Distributions and the

Representation Space
As described in the previous section, Optimal Transport allows to
align the probability distribution in the source domain, µs, and
the probability distribution in the target domain, µt . Defining
the two probability distributions and the space where to compute
their coupling γ is not trivial and needs attention.

In a statistical context, we hardly have access to the true
distribution µ; instead, we work with an empirical distribution
µ̂n. The number of samples n needed for µ̂n to be a reasonable
proxy of µ grows with the number of dimensions d of the space
in which the distribution lies, a limit known as the curse of
dimensionality (Bellman, 1961). The Wasserstein distance can
be used to quantify the convergence of µ̂n to µ. Dudley (1969)
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FIGURE 1 | The Seg-JDOT framework. g(·) is the embedding function, f (·) is the segmenter and, in between them, the bottleneck representation is the latent space z

where we perform the adaptation. We report the terms of the Equation (8) at the levels where they are applied. We represent the output source images with a blue

square and the output target images with a red square.

showed thatµ absolutely continuous with respect to the Lebesgue
measure on R

d satisfies

E[W1(µ, µ̂n)] . n−1/d (7)

when d > 2. Equation (7) indicates that the expectation of the
Wasserstein distance between µ̂n andµ grows exponentially with
the number of dimensions d, a critical aspect in defining the
probability distributions to be aligned.

In our work, we compute the Optimal Transport coupling in
a deep layer of the CNN where the representation is compact and
rich, which is the bottleneck layer of the 3D-Unet. The use of a
compact latent space z allows to greatly reduce the original input
dimensions. Moreover, solving the problem using mini-batches
acts as a regularizer, which is important when working in high
dimension (Genevay et al., 2019).

In order to define the probability distributions, we employ
image patch samples rather than image samples as in Damodaran
et al. (2018). The use of image patches enables an higher number
of samples and, therefore, a more precise estimation of the true
distribution µ. Indeed, five image samples per domain would
be insufficient to adequately represent a distribution in z. It is
important to notice that aligning patches rather than images
is more reasonable for our task: two patches having similar
lesions do not necessarily share the same location within the
brain anatomy.

2.2.2. Defining the Global Loss Function
Damodaran et al. designed the Deep-JDOT framework to solve
a classification and adaptation task simultaneously (Damodaran
et al., 2018), so that samples from the source and target domain
having similar representations in the latent space will be similarly
classified by the network. The assumption is that if two images
share the same label then they should have similar, if not equal,
activation maps at some depth in the network. In their work,
the loss functions Ls and Lt in Equation (6), respectively the loss
in the label space in the source and in the target domain, were
chosen to be the same i.e., the cross-entropy.

In our segmentation task, however, the correspondence
between two similar activation maps and two similar
segmentation maps is harder to establish. The variety of
segmentation maps is generally much higher than the number
of classes in a classification task. We cannot expect exact
correspondence both in the latent space and in the segmentation
space. While we chose the Dice Score as loss Ls, the choice of the
loss Lt was not trivial.

In order to define Lt , we conducted experiments involving
the use of the Dice Score and the Squared Euclidean
Distance. Results indicated an improved network performance in
completing the task when using the Squared Euclidean Distance.
Results involving the use of the Dice score can be found in
Supplementary Material. This behavior might be explained by
the fact that if two patches comprise a lesion of similar size and
shape but different location within the patch, the Dice Score
computed in the output space might be low because sensitive
to a lesion location. On the contrary, the distance ||g(xsi) −

g(xtj )||
2 computed at the bottleneck layer of the network, where

there is no spatial information, might indicate that the two
representations are similar. Yet, for the framework to perform
correctly the segmentation and adaptation task simultaneously,
there must be an agreement between the distance in the latent
space, c, and the loss in the output space, Lt . The Squared
Euclidean distance is less sensitive to a lesion location than the
Dice Score and therefore more appropriate for our task. On
the basis of such considerations, we formulated the global loss
function as:

min
γ ,f ,g

1

ns

∑

i

Ls(y
s
i , f (g(x

s
i))) +

∑

i,j

γij(α||g(x
s
i)− g(xtj )||

2

+β||ysi − f (g(xtj ))||
2). (8)

2.2.3. Learning With Seg-JDOT
In Equation (8) two groups of variables need to be optimized: the
optimal transport matrix γ and the functions g and f induced
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by the network. As suggested by Courty et al., the problem can
be addressed by alternatively solving Equation (8) for γ , with
fixed g and f , and computing g and f , with fixed γ (Courty et al.,

2017). When fixing ĝ and f̂ , solving Equation (8) is equivalent
to solving a classic Optimal Transport problem with cost matrix

Cij = α||ĝ(xsi) − ĝ(xtj )||
2 + β||ysi − f̂ (ĝ(xtj ))||

2; similarly, when

fixing γ̂ , solving for g and f is a standard deep learning problem.
Damodoran et al. proposed to solve this optimization problem

with a stochastic approximation using mini-batches from the
source and target domains, so to ease the computation of the
Optimal Transport (Damodaran et al., 2018). Using a mini-batch
of sizem leads to the following optimization problem:

min
f ,g

E





1

m

m
∑

i=1

Ls(y
s
i , f (g(x

s
i)))+ min

γ∈Ŵ(µs ,µt)

m
∑

i,j=1

γij
(

α||g(xsi)

−g(xtj )||
2 + β||ysi − f (g(xtj ))||

2
)]

, (9)

with E the expected value with respect to the mini-batches from
the source and target domains. We summarize this approach
in Algorithm 1.

Algorithm 1: Seg-JDOT stochastic optimization

Require: xs: source domain images, xt : target domain images, ys:
source domain segmentation maps
for each source batch (xs

b
, ys

b
) and target batch (xs

b
) do

fix ĝ and f̂ , find γ for the given batch

fix γ̂ , and use gradient descent to update f̂ and ĝ
end for

In order to implement Algorithm 1, we separated the global
loss function in Equation (9) into two loss functions that are
computed at two different levels of the network.

We name the first loss function representation alignment loss
function and compute it at the output of the bottleneck layer:

m
∑

i,j=1

γijα||g(x
s
i)− g(xtj )||

2. (10)

TABLE 1 | The MICCAI 2016 MS lesion segmentation challenge dataset contains

MR images of MS patients from four different MRI scanners.

Site MRI scanner Modality Train subjects Test subjects

01 GE Discovery 3T 3D FLAIR 3D T1 5 10

03 Philips Ingenia 3T 3D FLAIR 3D T1 0 8

07 Siemens Aera 1.5T 3D FLAIR 3D T1 5 10

08 Siemens Verio 3T 3D FLAIR 3D T1 5 10

Total 15 38

Sites 01, 07, and 08 include 5 train images and 10 test images; site 03 contains 8

test images.

The representation alignment loss function ensures that a source
sample and a target sample that are heavily connected (high γ

value) have representations not far in the Euclidean distance
sense. By back-propagating through all the shallower layers, we
ensure a domain independent representation.

We name the second loss function segmentation
alignment loss function and compute it at the final
output layer:

FIGURE 2 | Intensity profiles in the brain area of the FLAIR images in the

MICCAI 2016 train set. The blue dashed line represents the intensity

distribution of each image, the red solid line represents the mean intensity

distribution of the site images. (A) Site 01. (B) Site 07. (C) Site 08.
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FIGURE 3 | Variability in MS lesion volume and number. Lesion load per patient per site (Left) and Number of lesions per patient per site (Right).

1

m

m
∑

i=1

Ls(y
s
i , f (g(x

s
i)))+

m
∑

i,j=1

γijβ||y
s
i − f (g(xtj ))||

2. (11)

The first term of the segmentation alignment loss function allows
to avoid a degradation of the performances in the source domain;
the second term ensures that a source sample connected to
a target sample has an output which is not too far from
the true segmentation of the target sample in the Euclidean
distance sense.

3. EXPERIMENTS AND RESULTS

3.1. Dataset
Proper selection of the dataset for the unsupervised domain
adaptation experiments is crucial because the domain difference
should be present to confirm the framework’s robustness. In
this work, we employ a well-known dataset, the MICCAI
2016 MS lesion segmentation challenge dataset (Commowick
et al., 2018). It contains 53 MRI images of patients suffering
from MS, split into 15 train and 38 test images. For each
patient, high quality segmentationmaps are provided—they were
computed from seven independent manual segmentations and
using LOPSTAPLE (Akhondi-Asl et al., 2014) so to minimize
inter-expert variability.

Images were acquired in four different clinical sites,
corresponding to four different MRI scanner models (Table 1).
Each clinical site includes 5 train and 10 test patients (sites 01,
07, 08), except one site that contains 8 test patients only (site 03).
In our experiments, we used the test images for testing purpose
only and we never included them in the training or validation or
adaptation process.

All MRI imaging protocols included 3D FLAIR and 3D T1-
w anatomical images. Image size and resolution were different
across the four MRI scanners (more details on the imaging
protocol are available on the challenge website1). As illustrated
in Figure 2, the intensity profiles in the brain area vary across
the MRI scanners. Sites 01 and 07 follow a similar profile with
a maximum intensity ≈ 200, while they vary drastically from

1https://portal.fli-iam.irisa.fr/msseg-challenge/data

site 08, where the intensity reaches up to ≈ 2,000 (a similar
distribution was observed for site 03, test images). This behavior
in intensity distribution was observed for both the imaging
modalities, train and test patients.

Moreover, patients show a variability inMS lesion volume and
number of lesions (Figure 3). The median lesion load in the train
(test) dataset is for site 01≈ 30(≈ 16) cm3, for site 03≈ (5) cm3,
for site 07 ≈ 5(6) cm3, and for site 08 ≈ 10(12) cm3. A similar
variation across sites was observed in the number of lesions.

Considering these variations across the four clinical sites,
the MICCAI 2016 dataset does fit the challenge of the domain
shift problem.

3.2. Implementation Details
3.2.1. Image Pre-processing
Before extracting the patch samples from the image volumes to
train the network, we performed a few standard pre-processing
steps on the raw MRI images. For each patient, (i) MRI images
were denoised (Coupe et al., 2008), (ii) rigidly registered toward
the FLAIR modality (Commowick et al., 2012), (iii) skull-
stripped (Manjón and Coupé, 2016), and (iv) bias corrected
(Tustison et al., 2010). These steps involved the use of Anima, an
openly available toolkit for medical image processing developed
by the Empenn research team, Inria Rennes2.

In order to preserve the challenge of the domain shift, we did
not standardize intensities across sites. However, as the drastic
variation in the intensity profiles wouldmake the training process
unnecessarily hard, we adjusted the intensities of each patient
image to have zero mean and unit variance.

3.2.2. CNN Training
Images were resampled to the same size 128 × 128 × 128; 3D
patches of size 16 × 16 × 16 were extracted. We employed
a patch overlap of 50%, resulting in 4,096 patches per image.
Although overlapping 3D patches contain more surrounding
information for a voxel, it is memory demanding; training on
patches containing lesions allowed to reduce training time while
reducing class imbalance.

2https://github.com/Inria-Visages/Anima-Public
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CNN training was performed in batches containing 256
source and 256 target samples, with a total batch size of 512—
the maximum size that the employed GPU can handle. Since
the quality of approximation of the true optimal transport
coupling depends on the number of samples, we chose to use the
maximum batch size possible.

3.2.3. Technical Details
The Seg-JDOT framework was implemented in Python using the
Keras library and the POT library (Flamary and Courty, 2017)
which contains helpful functions for the Optimal Transport

solver. Experiments were conducted on the GPU NVIDIA
Quadro P6000, 24 GB.

3.3. Results on the MICCAI 2016 Dataset
We evaluated the segmentation performance when training both
on a single site and on multiple clinical sites. The first experiment
represents the worst case scenario, with training data acquired
on a unique MR scanner; the second experiment reflects a more
recurrent situation in the real practice, with training data coming
from more than one MR scanner and a model that shall be more
robust to variability.

FIGURE 4 | Continued
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FIGURE 4 | (A–F) Performance of Seg-JDOT with single-site source and single-site target domain adaptation. Each row corresponds to a combination of source and

target. Dice score (left column) and F1 score (right column) are computed with no adaptation (00) and with Seg-JDOT, where the direction of the domain adaptation is

indicated (07, 08, or 01). For each combination of source and target, performances are given for all the four testing sites. Each point is a patient of a given site;

performances of a patient with and without Seg-JDOT are tracked. For each site, the p-value of the paired Wilcoxon test is reported.

3.3.1. Single-Site Training
First, we evaluated the segmentation performance when training
on a single site only. Hence, we applied the Seg-JDOT
framework with one site as the source domain and any
other site as the target domain. We did not perform
adaptation toward the site 03 because it does not contain a
train dataset.

The segmentation performance was assessed in terms of Dice
score and F1 score. The Dice score is a measure of spatial

overlap between the output and the ground truth; the F1 score
is a weighted average of the lesion sensitivity and the positive
predictive value, hence a metric that is independent of the lesion
contour quality.

For each combination source/target, we compared the scores
as obtained with the standard training (source only) with
the scores as obtained with the adapted model. While the
main focus of our study is the variation in performance on
the target domain, we also evaluated the scores achieved by
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the adapted classifier on the other clinical sites. This allowed
us to assess a possible degradation in the source domain
performance and the overall effect of the adaptation on themodel
generalization ability.

Boxplots of the Dice and F1 scores (Figure 4) illustrate the
effect of the domain adaptation. For each site, we assessed the
significance between pair-wise comparisons of the performances
of the two learned classifiers. The Shapiro-Wilk’s test of normality
indicated a non-normal distribution of the samples and thus
a paired Wilcoxon test was used (Rey and Neuhäuser, 2011).
Reported p-values were computed using the pairedWilcoxon test
and indicate whether the variations are statistically significant: if
the p-value is lower than the significance level of 0.05, then we
can state that the scores as computed with the two approaches
are significantly different.

In Figure 5, we report the overall percentage of variation in
performance on the target site. A positive variation indicates an
improvement in the score. More detailed information can be
found in Supplementary Material.

Results indicate that target site performances generally
improve when applying the Seg-JDOT framework. The domain
adaptation toward the site 07 yields the most significant
improvement in target performance (Figures 4B,D), while
the adaptation toward the site 08 yields minor variations
only (Figures 4A,F).

The highest improvement is registered for the combination
source site 08 and target site 07 (Figure 5), with a variation in
the Dice score and F1 score of about 338 and 295%, respectively.

It indicates that the adaptation reduces the effect of the high
variability in intensity and lesion load/number that we observed
across the two sites. When considering the adaptation in the
other direction, i.e., the combination source site 07 and target
site 08, we observe that the variability across the two sites did
not affect that much the model performance, with a variation in
the Dice score and F1 score of about 10 and 51%, respectively.
In other words, the model learned on the site 07 appears to be
more robust and to generalize better to other sites. This might be
due to the fact that the samples within the site 07 are the most
challenging and representative among all the sites.

Adapting toward a target domain appears beneficial, or
otherwise not detrimental, for the overall generalization ability
of a model. For instance, for the combination source site
08 and target site 01 we note a significant improvement in
segmentation outcome also on the test site 07 (Figure 4C). For
the combination source site 01 and target site 08, the adaptation
does not yield a significant improvement in performance on the
target site (Figure 4A); yet, a minor improvement in the Dice
score is registered on the test site 07. This suggests that the
adaptation toward a target domain allows to learn a classifier
that is less specific to the source domain and thus capable to
generalize better.

The adaptation can be beneficial for the source site as well.
We observe an improvement in the F1 score on the source site
for the combination source site 07 and target site 01 (Figure 4E)
or target site 08 (Figure 4F), and for the combination source site
01 and target site 07 (Figure 4B). This might be explained by the

FIGURE 5 | Variation in performance on the target site between the model as learned on the source only and adapted on the target domain. Dice score on the left, F1

score on the right. On the x-axis is the source center, on the y-axis is the target center.

FIGURE 6 | A qualitative result for the combination source site 08 and target site 07. The results are shown in the coronal views of the FLAIR image. From the left: a

segmentation result on site 07 when training on the site 08, segmentation result after adaptation, ground truth.
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fact that the network is trained to minimize the Dice Score rather
than the F1 Score and, therefore, the adaptation may move the
network away from the optimal Dice Score solution and closer to
the optimal F1 Score solution.

A qualitative result on a patient from the site 07 for the
combination source site 08 and target site 07 is shown in Figure 6.
We observe that the adaptation toward the site 07 yields a better

segmentation output than training on the source site only. The
number of false positives appears greatly reduced.

3.3.2. Multi-Site Training
We evaluated the segmentation performance when training on
multiple clinical sites. Hence, the source domain comprised
multiple sites (two) and the target domain was the remaining one.

FIGURE 7 | (A–C) Performance of Seg-JDOT with multi-site source and single-site target domain adaptation. Each row corresponds to a combination of source and

target. Dice score (left column) and F1 score (right column) are computed with no adaptation (00) and with Seg-JDOT, where the direction of the domain adaptation is

indicated (07, 08, or 01). For each combination of source and target, performances are given for all the four testing sites. Each point is a patient of a given site;

performances of a patient with and without Seg-JDOT are tracked. For each site, the p-value of the paired Wilcoxon test is reported.
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FIGURE 8 | Variation in performance on the target site between the model as learned on the source only and adapted on the target domain. On the x-axis is the

source center, on the y-axis is the target center.

The site 03 was used for testing purpose only since it does not
include a train dataset.

As for single-site training, the classifier performance
was assessed in terms of Dice score and F1 score. For
each combination source/target, we tested the classifier as
adapted with Seg-JDOT on the target site as well as on the
other test sites, so to assess the impact of the adaptation
on the source performance and on the overall model
generalization ability.

Boxplots of the Dice and F1 scores illustrate the effect of the
domain adaptation on a clinical site (Figure 7). P-values were
computed using the paired Wilcoxon-test.

In Figure 8, we report the overall percentage of variation in
performance on a target site. A positive variation indicates an
improvement in the score. More detailed information can be
found in Supplementary Material.

Results indicate that Seg-JDOT generally improves the
performances on the target site. As for single-site training, the
most significant improvement is achieved on the target site 07
when the site 08 is a source domain (Figure 7A), with an overall
variation in the Dice score of about 429% and in the F1 score of
about 337% (Figure 8), while the least significant improvement
is achieved on the target sites 08 (Figure 7B) and 01 (Figure 7C).
This suggests that the less a model generalizes to a site, the more
likely the adaptation will improve its performance on the latter,
and vice-versa.

The adaptation can be beneficial for a source domain as
well. We observe an improvement in the scores on the source
site 01 for the combination source sites 01 and 08, and target
site 07 (Figure 7A). Similarly, the source site 07 benefits from
an adaptation toward the target site 01 (Figure 7C). For these
combinations, the adaptation has thus a regularizing effect that
yields an improvement in performance also on the source site.

In order to fully appreciate the effectiveness of the adaptation,
we compared Seg-JDOT with training on standardized images.
The intensities were standardized using the method of
Nyul et al. (2000). Detailed results can be found in the
Supplementary Material. A significant improvement was still
achieved on the target site 07, with an overall variation in the
Dice score of about 181% and in the F1 score of about 204%.

4. DISCUSSION AND CONCLUSION

In this paper, we presented the Seg-JDOT framework for
Unsupervised Domain Adaptation based on Optimal Transport.
The framework aims at adapting a model so that samples from
a source and a target domain sharing similar representations
will yield similar predictions. The framework was designed to
perform an MS lesion segmentation task while addressing the
recurrent situation of deploying a model on a clinical target site
that was not included in the training process. Importantly, the
adaptation does not require any manually annotated image in the
target domain.

We tested the framework on the MICCAI 2016 MS lesion
segmentation challenge dataset which includes four clinical
sites presenting variations in intensity profile and lesion load
or number. Our results with single-source and multi-source
training indicate that the adaptation toward a target site can
yield significant improvement in the model performance over
standard training. The improvement appears to be the most
significant for models having otherwise a low generalization
ability. Adaptation toward a target site can bring improvements
in the overall generalization ability of the model toward any
domains. Also, the source performance is either not affected by
the adaptation or an increase in the scores is observed.

A comparison of Seg-JDOT performances with training on

standardized images indicates that the domain shift problem

is still there after image standardization. This suggests that

Seg-JDOT implicitly performs a normalization by adapting
the weights to better interpret the features extracted by

the network.

Although the approach was shown to be effective to deal with

the domain adaptation problem, our dataset included clinical

sites comprising five training subjects only. Future work will

consider the evaluation of this approach with different data splits,

other MS dataset and more subjects. Also, other measures of

variability across sites and patients might be taken into account,
such MS lesion types or patient age.

Seg-JDOT can easily be adapted to other neural network
architectures or tasks. In this work, we have employed a variation
of a 3D-Unet architecture recently proposed for a brain lesion
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segmentation task. However, the use of image-wise segmentation
outputs, rather than voxel-wise, may limit the performance of
the framework because the output predictions in the target
domain can only approximately fit the target lesion. Future work
will consider the evaluation of the framework with other CNN
architectures, such as the voxel-wise CNN network proposed by
Valverde et al. (2017).
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Our aim is to propose an efficient algorithm for enhancing the contrast of dark images

based on the principle of stochastic resonance in a global feedback spiking network of

integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the

dependence of the peak signal-to-noise ratio on the spiking threshold and the feedback

coupling strength. Based on this theoretical analysis, we then develop a dynamical

system algorithm for enhancing dark images. In the new algorithm, an explicit formula

is given on how to choose a suitable spiking threshold for the images to be enhanced,

and a more effective quantifying index, the variance of image, is used to replace the

commonly used measure. Numerical tests verify the efficiency of the new algorithm. The

investigation provides a good example for the application of stochastic resonance, and

it might be useful for explaining the biophysical mechanism behind visual perception.

Keywords: stochastic resonance, spiking networks, visual perception, variance of image, contrast enhancement

INTRODUCTION

The phenomenon of stochastic resonance, discovered by Benzi et al. (1981), is a type of cooperative
effect of noise and weak signal under a certain non-linear circumstance, in which the weak signal
can be amplified and detected by a suitable amount of noise (Nakamura and Tateno, 2019). Distinct
biological and engineering experiments using crayfish (Douglass et al., 1993; Pei et al., 1996),
crickets (Levin and Miller, 1996), rats (Collins et al., 1996), humans (Cordo et al., 1996; Simonotto
et al., 1997; Borel and Ribot-Ciscar, 2016; Itzcovich et al., 2017; van der Groen et al., 2018), or optical
material (Dylov and Fleischer, 2010) suggested that noise might be helpful for stimuli detection and
visual perception.

As the visual perception of images of low contrast can find significance in many fields such
as medical diagnosis, flight security, and cosmic exploration, theoretical research on stochastic
resonance-based contrast enhancement has become an interesting but challenging topic (Yang,
1998; Ditzinger et al., 2000; Sasaki et al., 2008; Patel and Kosko, 2011; Chouhan et al., 2013; Liu
et al., 2019; Zhang et al., 2019). Simonotto et al. (1997) used the noisy static threshold model
to recover the picture of Big Ben, Patel et al. proposed a watermark decoding algorithm using
discrete cosine transform and maximum-likelihood detection (Patel and Kosko, 2011), Chouhan
et al. explored contrast enhancement based on dynamic stochastic resonance in the discrete wavelet
transform domain (Chouhan et al., 2013), and Liu et al. (2019) applied an optimal adaptive bistable
array to reduce noise from the contaminated images. It is more and more evident today that
stochastic resonance can be utilized as a visual processing mechanism in nervous systems and
neural engineering applications, although many theoretical and technical problems remain to
be solved.
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There exist at least three issues to be clarified. The first
issue is about model selection. In the existing literatures, the
neuron model commonly used for image enhancing is the static
thresholdmodel. Since the threshold neuron is too oversimplified
to contain the evolution of themembrane voltage, amore realistic
biological neuron model should be considered. The second
issue is that one cannot find enough details from the existing
algorithms. For example, in those algorithms, there is nearly no
explanation of the choice of the critical threshold, across which
the pixel value of a black–white image will switch. Note that a
suitable threshold is vital for image enhancement, so the second
question we have to face is what a critical threshold should be.
The last issue is about the adoption of the quantifying index,
which helps one to pick out an optimally detected image. A
typical assumption is that one knows a clear or clean reference
picture, but in most practical applications, how can one get such
reference pictures especially when taking photos in darkness?

To answer the above questions, we consider an integrate-
and-fire neuron network with global feedback in this paper.
Our work can be divided into two parts. The first part is
model preparation, where we theoretically observe stochastic
resonance based on linear approximation. In the second part, by
integrating all the physiological and biophysical aspects of visual
perception, we propose an algorithm for boosting the contrast
of an image photographed in darkness. We give a criterion
for determining the critical threshold and adopt the variance
of image to quantify the quality of the enhanced image. Our
numerical tests demonstrate that the new algorithm is effective
and robust.

STOCHASTIC RESONANCE IN AN
INTEGRATE-AND-FIRE NEURONAL
NETWORK

Consider a global feedback biological network of N integrate-
and-fire neurons (Lindner and Schimansky-Geier, 2001;
Sutherland et al., 2009). The subthreshold membrane potential
of each consisting neuron is governed by

C
dVi

dt
= −gL(Vi − VL)+ Ii(t)+ Cf (t)+ Cs( t), 1 ≤ i ≤ N (1)

where Vi is the membrane potential, C is the capacitance, gL is
the leaky conductance, VL is the leaky voltage, and the external
synaptic input is

dIi(t) = C
∑p

k=1
akdExcn,k(t)− C

∑q

l=1
bldInhn,l(t) (2)

with the excitatory synaptic current Excn,k(t) of rate λE,k and the
inhibitory synaptic current Inhn,l(t) of rate λI,l, both modeled
as i.i.d. homogenous Poisson processes, with ak(1 ≤ k ≤

p) and bl(1 ≤ l ≤ q) denoting the efficacies for excitatory
and inhibitory synapses, respectively. Assume that each neuron
receives a subthreshold cosine signal, s(t) = ε cos(�t), from the
external environment. By “subthreshold,” it means that, in the

absence of the synaptic current input (2), themembrane potential
cannot cross the given spiking threshold from below (Kang et al.,
2005). Here we use Vr to denote the resetting potential; that
is, whenever the ith membrane potential reaches the threshold
Vth from below, the ith neuron will emit a spike and then the
membrane potential will be reset to Vr immediately. Let ti,k be
the kth spiking instant recorded from the ith neuron; then, the
output spike train of the ith neuron can be described as yi(t) =
∑

k δ(t − ti,k). In this network, the output spike trains from every
consisting neuron are fed back to the ith neuron for 1 ≤ i ≤ N
through the synaptic interaction.

f (t) =
G

N

∫ ∞

τD

dτ
τ − τD

τ 2S
exp(−

τ − τD

τS
)
∑N

n=1
yn(t − τ ) (3)

Here the global feedback interaction is implemented by a
convolution of the sum of all the spike trains with a delayed
alpha function. We fix the transmission time delay τD = 1
and the synaptic time constant τS = 0.5. In Equation (3), the
feedback strength G < 0 indicates inhibitory feedback, G > 0
represents excitatory feedback, and Equation (1) turns into a
neuron array model for enhancing information transition (Yu
et al., 2012) when G = 0.

For simplicity, let us drop the subscripts k and l in the
rates and the synaptic efficacies, so λE = λI = λ, p = q
and b = ra, with r being the ratio between inhibitory and
excitatory inputs. Invoking diffusion approximation transforms
the synaptic current to

dIi(t) = C(ap(1− r)λdt + a

√

pλ(1+ r2)dBi(t))

where (B1(t),B2(t), . . . ,BN(t)) is n dimensional standard
Brownian motions. With Equation (3) available, Equation (1)
can be rewritten as

d

dt
Vi = −

1

τ
(Vi − VL)+ ap(1− r)λ

+ a

√

pλ(1+ r2)ξi(t)+ f (t)+ s(t) (4)

where τ−1 = gL/C and ξi(t) is Gaussian white noise satisfying
〈

ξi(t)
〉

= 0 and
〈

ξi(t + s)ξj(t)
〉

= δ(s) for 1 ≤ i, j ≤ N.
It has been shown that the firing rate is approximately a

linear function of the external input near the equilibrium point
(Gu et al., 2019), so we apply the linear approximation theory
(Lindner and Schimansky-Geier, 2001; Pernice et al., 2011;
Trousdale et al., 2012) to calculate the response of each neuron.
Let µ = ap(1− r)λ+VL/τ and D = 1

2a
2p2λ(1+ r2). Regarding

each neuron as linear filter of an external perturbation, we rewrite
Equation (4) into Equation (5)

dVi(t)

dt
= −

1

τ
Vi(t)+ (µ +

〈

f (t)
〉

0
)+

√
2Dξi(t)

+ (f (t)−
〈

f (t)
〉

0
)+ s(t)

︸ ︷︷ ︸

external perturbation

, 1 ≤ i ≤ N. (5)
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FIGURE 1 | The evolution diagram of the integrate-and-fire neuron network:

(A) diffusion approximation transforming the synaptic current with r = 1, (B)

membrane potential of neuron where the red arrow denotes the discharge

time, (C) raster plot of the network where every node denotes a spike at a

corresponding time and neuron, and (D) feedback of the network. The

parameters are set as µ = 0.8, VT = 1, VR = 0, G = 0.5, ε = 0.1, � = 1,

τS = 0.5, τD = 1, τref = 0, and N = 50.

For simplicity, all of the variables are dimensionless and most of
parameters are taken from Lindner et al. (2005), and particularly,
time is measured in unit of membrane time constant τ . The
dynamical evolution of the network is illustrated in Figure 1.

The phenomenon of stochastic resonance is frequently
measured by the spectral amplification factor (Liu and Kang,
2018) and the output signal-to-noise ratio (Kang et al., 2005).
With the help of the linear approximation theory, both the
spectral amplification factor and the output signal-to-noise ratio
for the homogeneous network can be explicitly attained. The
spectral amplification factor is defined as the ratio of the power
denoted by the delta-like spike in the output spectrum at±� over
the power of the input signal, namely,

SAF =
πε2

∣

∣A(�, µ̄,D)
∣

∣

2

∣

∣1− GA(�, µ̄,D)F(�)
∣

∣

/πε2 =

∣

∣A(�, µ̄,D)
∣

∣

2

∣

∣1− GA(�, µ̄,D)F(�)
∣

∣

(6)

while the signal-to-noise ratio, defined as the ratio of the power
of the signal component over the background noise, is given by

SNR = lim
1ω→0

∫ �+1ω

�-1ω
Gyy(ω)dω

S2(�)
=

Nπε2|A(�, µ̄,D)|2

S0(�, µ̄,D)
(7)

where A is the linear susceptibility, µ̄ is the base current,
F(ω) = eiωτD/(1− iωτS)

2 is the Fourier transform of the
kernel in Equation (2) and S0(ω,µ,D,VT) is the fluctuating

spectral density of the unperturbed system. Gyy(ω) is power
spectral density of output spike train, which consists of the
signal component S1(ω) and the fluctuation component S2(ω).
Actually, within the range of linear response, the power spectrum
Gyy(ω) is a sharp power peak at the signal frequency riding over
the spectral density of fluctuations, as shown in Figure 2. The
detailed derivations of power spectral density Gyy(ω), spectral
amplification factor SAF and output signal-to-noise ratio SNR are
further described in Appendix.

Equation (6) demonstrates that the spectral amplification
factor is independent of the network size, whereas Equation
(7) shows that the signal-to-noise ratio is proportional to the
size. When comparing with the simulation results, Figure 3

shows that the theoretical results tend to be an overestimated
approximation, but the overestimation is reduced as the network
size increases. For this reason, the network size is fixed to be
large enough in Figures 4, 5 so that the theoretical and simulation
results are accurately matched.

Since the dependence of the spectral amplification factor or
the signal-to-noise ratio on noise intensity is non-monotonic,
one can conclude that stochastic resonance occurs for the given
parameters in Figure 3. Figure 4 further shows the image of
the signal-to-noise ratio on the two-parameter plane of noise
intensity and global feedback strength. From this figure, it can
be seen that, for fixed feedback strength, the existence of a
sharp peak indicates stochastic resonance in the global feedback
network, while for fixed noise intensity, the signal-to-noise ratio
is a growing function of the feedback strength, which suggests
the larger feedback strength is beneficial for resonant effect.
Here we emphasize that the effect of the inhibitory feedback on
the weak signal amplification is different from its effect on the
intrinsic oscillation measure in Lindner et al. (2005) since these
are two kinds of different synchronization. Phenomenologically,
the former is the synchronization behavior of the external weak
signal and the firing activity caused by noise, while the latter is
the synchrony among the population neurons, and the difference
in quantifying indexes directly leads to distinct observation.
Thus, from the viewpoint of weak signal detection, one can say
that the excitatory neural feedback is better than the inhibitory
neural feedback.

Note that, in real neural activities, the spiking threshold
may vary following the changing circumstance (Destexhe, 1998;
Taillefumier and Magnasco, 2013), so it makes sense to consider
the effect of the threshold on the population activity. By Equation
(7), one has

∂SNR

∂VT
= S−2

0 Nπε2
(

2Re

(

A∗ ∂A

∂VT

)

S0 − |A|2
∂S0

∂VT

)

, (8)

where

∂A
∂VT

= iω√
D(iω−1)









∂r
∂VT

D̃iω−1

(

µ−VT√
D

)

−eγ D̃iω−1

(

µ−VR√
D

)

D̃iω

(

µ−VT√
D

)

−eγ eiωτR D̃iω

(

µ−VR√
D

) + r

− 1√
D

∂D̃iω−1
∂VT

∣

∣

∣

∣

∣

µ−vT√
D

−eγ
(µ−VT )

2D D̃iω−1

(

µ−VR√
D

)

D̃iω

(

µ−VT√
D

)

−eγ eiωτR D̃iω

(

µ−VR√
D

)









+ iω√
D(iω−1)









r

(

− 1√
D

∂D̃iω
∂VT

∣

∣

∣

∣

∣

µ−vT√
D

−eγ eiωτR
(µ−VT )

2D D̃iω-1

(

µ−VR√
D

)

)

(

D̃iω−1

(

µ−VT√
D

)

−eγ D̃iω−1

(

µ−VR√
D

))

(

D̃iω

(

µ−VT√
D

)

−eγ eiωτR D̃iω

(

µ−VR√
D

))2
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FIGURE 2 | Power spectrum density obtained from linear approximation (blue solid curve), compared to simulation (red dash curve) for D = 0.01 (A) and D = 0.1 (B),

respectively. The parameters are set as µ = 0.8, VT = 1, VR = 0, G = 0.5, N = 3, ε = 0.1, � = 1, τS = 0.5, τD = 1, τref = 0, and τ = 1. The black arrow indicates the

spike spectral line at the driving frequency, and the remaining part characterizes the spectral density of environmental fluctuations. Clearly, the spectral line of the

driving signal is riding over the fluctuation spectral density. The explanation of figure and derivation of power spectrum density are displayed in Appendix.

and

∂S0

∂VT
=

∂r

∂VT

|D̃iω(
µ−vT√

D
)|2 − e2γ |D̃iω(

µ−vR√
D

)|2

|D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)|2

+ r

2 Re

(

− 1√
D

(

D̃iω(
µ−vT√

D
)
)∗

∂D̃iω
∂VT

∣

∣

∣

∣

µ−vT√
D

)

− e2γ µ−VT
D |D̃iω(

µ−vR√
D

)|2

|D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)|2

+ r

2 Re

(

(

D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)
)∗
(

D̃iω(
µ−vT√

D
) · ∂D̃iω

∂VT

∣

∣

∣

∣

µ−vT√
D

· (− 1√
D
)− eγ eiωτRD̃iω(

µ−vR√
D

)µ−VT
2D

))

∣

∣

∣
D̃iω(

µ−vT√
D

)− eγ eiωτRD̃iω(
µ−vR√

D
)
∣

∣

∣

4

with Re( · ) being the real part of a complex value. Here,
the Whittaker notation D̃a(Abramovitz and Stegun, 1964)
is used for the parabolic cylinder function, with the

recursion property D̃′
a(x) + 1

2xD̃a(x) − aD̃a−1(x) = 0 and

∂r

∂VT
=

−
r2
√

π
√
2D

· exp

(

(

µ+Gr−VT√
2D

)2
)

erfc
(

µ+Gr−VT√
2D

)

1+
Gr2

√
π

√
2D

(

exp

(

(

µ+Gr−VR√
2D

)2
)

erfc
(

µ+Gr−VR√
2D

)

− exp

(

(

µ+Gr−VT√
2D

)2
)

erfc
(

µ+Gr−VT√
2D

)

)

The evolution of the signal-to-noise ratio [Equation (7)] and its
partial derivative [Equation (8)] obtained via the threshold is
shown in Figures 5A,B, respectively. The monotonical decrease
in the signal-to-noise ratio suggests that a smaller threshold is
better for weak signal detection. Moreover, from these figures,
one can also see that an increasing distance between the
base current and the firing threshold will lead to a reduced
signal-to-noise ratio, as disclosed by Kang et al. (2005). As
a result, the minimum distance between the base current
and the firing threshold should be an important reference
in designing visual perception applications of the global
feedback network.

STOCHASTIC RESONANCE BASED IMAGE
PERCEPTION

We have systematically disclosed the phenomenon of stochastic
resonance from the viewpoint of model investigation, and in this

section, we wish to propose an algorithm for visual perception
under the guidance of the above theoretical results. In fact, it is
the theoretical evidence of SR in the integrate-and-fire neuron
network in section stochastic resonance in an integrate-and-
fire neuronal network that motivates us to do the application

exploration. If noise at a certain level can amplify a weak
harmonic signal via stochastic resonance, then noise of suitable
amount can very likely enhance a more realistic weak signal such
as the image of low contrast via aperiodic stochastic resonance.

In stochastic resonance, since the external weak signal is
harmonic, one can use the spectral amplification factor or
the output signal-to-noise ratio as quantifying index through
frequency matching, while in aperiodic stochastic resonance, the
external weak signal is aperiodic, so one has to resort to some
coherence measure to describe the involved shape matching,
as confirmed in neural information coding (Parmananda et al.,
2005), hearing enhancement (Zeng et al., 2000). For the picture
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FIGURE 3 | The theoretical (solid) and simulation (dash) results of spectral amplification factor (A) and signal-to-noise ratio (B) vs. noise intensity, with

µ = 0.8,VT = 1,VR = 0, ε = 0.1,� = 1,τS = 0.5,τD = 1,τref = 0, and τ = 1, under different sizes of the network N and different feedback strengths G, respectively.

FIGURE 4 | Signal-to-noise ratio for different noise intensities D and feedback

strengths G. Data were obtained by the numerical simulation of a network,

with µ = 0.8, VT = 1, VR = 0, N = 50, ε = 0.1, � = 1, τS = 0.5, τD = 1,

τref = 0, and τ = 1. It is clear that for fixed G, the signal-to-noise ratio shows a

rise before fall as a function of noise intensity D; for fixed D, the signal-to-noise

ratio is an increasing function of the feedback strength G.

of low contrast, its contrast can be changed by noise and
will attain to a maximum when the phenomenon of aperiodic
stochastic resonance occurs; thus, we use the variance of
image as a quantifying index as explained below. Even though
a difference exists in quantifying index between stochastic
resonance and aperiodic stochastic resonance, we can still use the
results obtained from the model investigation as guidance. The
numerical results in section stochastic resonance in an integrate-
and-fire neuronal network show that positive feedback strength
and low threshold are beneficial factors for observing the effect of
stochastic resonance, and therefore we will take the two factors
into account in the following algorithm design.

With the theoretical guidance inmind, we now start to present
the algorithm for enhancing the image of low contrast. By the

term dark image or image of low contrast, we mean that the
picture is taken in a dark surrounding and cannot be detected
at first sight. We put the new algorithm under the frame of
the fundamental process for visual formation (Purves, 2011; Li,
2019): the photoreceptors in the retina receive the light and
convert it into electrical signals, which is called encoding process,
and then the signals are processed ultimately in the visual cortex,
which is called decoding and integration process. Our algorithm
is expounded into three steps, as shown in the flow chart in
Figure 6.

Step 1. Encoding
When light enters the eye, the retina will convert the optical signal
into electrical signal first. There are two kinds of photoreceptors
in the retina, which are called rods and cones, respectively.
The cones are active at bright light conditions and capable of
color vision, while the rods are responsible for scotopic vision
but cannot perceive color. As a result, human can capture the
shape of the object in dim surroundings. We use the global
feedback network [Equation (5)] of K integrate-and-fire neurons
to simulate the perceptive process for rod cells. The membrane
potential Vm,n

i for each neuron is governed by

dVm,n
i (t)

dt
= −

1

τ
Vm,n
i (t)+ U(m, n)+

√
2Dη

m,n
i (t)

+ fm,n(t), 1 ≤ i ≤ K (9)

where the superscript corresponds to the pixels of the image
and the subscript corresponds to the neurons, U(m, n) ∈ [0, 1]
denotes the brightness of the input image, the Gaussian white

noise η
m,n
i (t) satisfying

〈

η
m,n
i (t + s)ηm,n

j (t)
〉

= δ(s)δ(i − j) is

assumed to describe the fluctuation arising from the rhythms and
the distribution of the rod cells along the retina, and fm,n(t) is
the same global feedback function as in Equation (3). Upon Vm,n

i
reaching the threshold Vth from below, the ith neuron will emit
an action potential at once and then the membrane potential is
immediately reset toVr .
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FIGURE 5 | Signal-to-noise ratio (A) and its partial derivative with respect to threshold VT (B) under different reference currents µ = 0.2 (blue), 0.5 (orange), and 0.8

(black). The network size is N = 50.

FIGURE 6 | Schematic diagram of the dark image enhancement algorithm based on the global feedback integrate-and-fire network.
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Step 2. Decoding and Integration
The coming information from the rod cells is decoded into a
binary image within the visual cortex. We explain it from two
aspects. Firstly, the carrier of neural information transmission is
spike impulse, so the encoded information should be in the form
of a spike train instead of the continuous membrane potential.
Secondly, note that rod cells play a minor role in color vision,
which actually leads to loss of color in dim light (Purves, 2011;
Owsley et al., 2016), so it is reasonable to assume that all the
receiving spike trains can be transformed into a binary image.
Let matrix (Index i)M×N store the spiking information of the ith
neuron at the encoding stage. Then, the corresponding binary
image matrix (Pic i)M×N decoded by the ith neuron can be
written as

Pici(m, n) =

{

0, Indexi(m, n) = 0;
255, Indexi(m, n) = 1.

(10)

With the decoded information from each neuron available,
the visual cortex, as command center, will integrate all the
information to form an overall gray image, which should be
the picture we finally see in the dark surrounding. The idea of
integration is inspired by boosting (Friedman, 2002). If each
binary image is regarded as the output of the weak learner, the
combination of the weak learners will be a strong learner and
produce the gray image. We assume that the integration is in the
way of linear superposition, namely,

Pic(m, n) =
1

N

k
∑

i=1

Pici(m, n) (11)

where (Pic)M×N represents the integrated image.
We wish to put more emphasis on the validity of using the

principle of stochastic resonance in our perception algorithm. It
is well-known that noise is prevalent at the cellular level, and the
level of the fluctuation in a neural system can be self-adjusted
(Faisal and Selen, 2008; Durrant et al., 2011). What is more,
distinct biophysical experiments (Douglass et al., 1993; Collins
et al., 1996; Cordo et al., 1996; Levin and Miller, 1996; Pei et al.,
1996; Borel and Ribot-Ciscar, 2016; Itzcovich et al., 2017; van
der Groen et al., 2018) have shown that the benefit of noise can
be utilized by biology. Thus, we assume that the human brain
can select the perceived image of maximal contrast by means
of the principle of stochastic resonance. The perceptive function
of the brain is realized by neuron population, while the effect
of stochastic resonance can be enhanced by uncoupled array or
coupled ensemble; thus, our visual perception algorithm should
be of some biological rationality.

The procedure of the new algorithm is carried out in one unit
of time by Euler integration with a step length of 0.01 time unit
for all the detection experiments. The dark-input images were
photos directly taken in a dark environment, such as that in
Figure 7A, or artificially designed by compressing the original
bright images into dark inputs, as shown in Figures 7D, G, J.
The recognized images of the best quality, namely, the best
enhanced images, are shown in the second column. During the
experiments, it was found that some subtle key details, such as the

quantifying index, the firing threshold, and the global feedback
strength, need to be further explained.

Quantifying Index
To evaluate the quality of an image, in the image processing
literature, the most frequently used indexes are the peak signal-
to-noise ratio and the mean-square error, where some known
reference images are required. The perceptual quality metric
(PQM) (Wang et al., 2002), another quantifying index used in
visual perception, can skillfully evade the reference images. The
more that PQM is close to 10, the better the quality of the image
is (Susstrunk and Winkler, 2003), but it tends to become flat
near the optimal value, as shown in Figure 7. Since the flatness
is not favorable for picking out the optimal noise intensity to get
the best enhanced image, the objective here is to find a better
quantifying index to assess the perceptual quality. The new index
is found to be the variance of image. For a given image UM×N ,
the variance is defined by

Var (U) =
1

(M × N)2

M
∑

i=1

N
∑

j=1

(

U (m, n) − Ū
)2
,

where Ū is the mean of the pixel matrix UM×N . The reason
lies in the fact that this variance can reflect the heterogeneity
among all the pixels. Intuitively, for a low-contrast image, the
value of the variance will be quite low, but for a high-contrast
image, the variance should take a much higher value. Figure 7
indeed verifies this reasoning. First of all, when the PQM is closer
to 10, the variance curve will be nearer its peak. That is, the
variance has the same capacity to identify which picture is the
best in this task. Secondly, there is a sharp peak in the variance
vs. the noise intensity curve so that one can easily detect an
image with the best quality, namely, the best enhanced image.
This is an advantage of the variance measure for the perceptual
quality over the PQM measure, as shown in the third column of
Figure 7. In addition, we note that the mean of the image is not
suitable to be used as quantifying index. In fact, the mean of the
image measures the luminance of an image, and it takes different
values from the dark input and the best enhanced image to the
blurred image due to excessive noise, but its value monotonically
grows as noise intensity increases, as shown in Figure 8; thus, the
mean is incapable of identifying the image with the best contrast
as well. Undoubtedly, the comparison further emphasizes the
applicability of the variance in visual perception.

Firing Threshold
In real cortical activities, neurons can adopt a self-adaptive
threshold strategy dependent on varying environments
(Destexhe, 1998; Taillefumier and Magnasco, 2013) since
the threshold has a direct impact on the neural electronic
activity. We find that the threshold also has a large impact on the
performance of the visual perception algorithm in Figure 9. The
picture clearly shows that the choice of a suitable firing threshold
is vital for the quality of the perceived image. Here the threshold
is chosen according to the following rule. Firstly, find the
frequency histogram of the dark image and denote the maximum
pixel of the normalized histogram as max ( U). Then, define the
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FIGURE 7 | First column (A, D, G and J): original dark-input images; second column (B, E, H and K): enhanced images with best quality; and third column (C, F, I

and L): dependence of variance (blue, square) and PQM (red, dot) on noise intensity, for each experiment. The parameters are set as k = 1,000, VT = 0.1, VR = 0,

G = 0.12, τs = 0.05, τD = 0.01, and τ = 1. For each experiment, the location of the peak of variance is always near the location of the bottom of the PQM, indicating

that variance helps in recognizing the best-quality image.

threshold byVth = 10−1ceil
(

10max( U)
)

, where ceil (·) is the
rounding function toward positive infinity. For example, the
maximum pixel of the image in Figure 7D is max ( U) = 0.05, as
seen from Figure 8A1; accordingly, the threshold is taken as 0.1.
It is worthy to remark that this kind of choice can guarantee that
the distance between the base current and the firing threshold
is minimized as far as possible, as suggested by the discussion
following Figure 5.

Feedback Strength
In section stochastic resonance based image perception, it was
demonstrated that, when the global feedback changes from the
inhibitory type into the excitatory type, the peak of the signal-
to-noise ratio can be improved as shown in Figure 4. This
theoretical observation encourages us to check the influence of
the feedback strength of the encoding stage on the enhanced
images as illustrated in Figure 10. Evidently, the excitatory
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FIGURE 8 | Demonstration of the advantage of variance over mean: (A) 1: normalized histogram of the dark input image in Figure 7D, (A) 2: normalized histogram of

the best enhanced image in Figure 7E, (B) Dependence of the variance (blue square) and the mean (red dot) on noise intensity. As seen from (A) 1 and 2, the

dark-input image and the best enhanced image differ in the histogram. Nevertheless, it is not applicable for picking up the image of the best contrast since the mean

grows monotonically (B) as noise intensity increases, even l when the contrast of the detected image deteriorates again. By contrast, the bell-shaped change of

variance is suitable.

FIGURE 9 | The best enhanced image under VT = 0.1 (A), VT = 0.2 (B), and VT = 0.3 (C), respectively. (D) Dependence of variance on the noise intensity under

VT = 0.1 (red, circle), VT = 0.2 (black, dash), and VT = 0.3 (green, solid). Other parameters are the same with Figure 7. This figure demonstrates that the best

enhanced image is dependent on the spiking threshold, and thus choosing a suitable threshold is vital for image detection.

FIGURE 10 | The best enhanced image under G = 0.12 (A), G = 0 (B), and G = −0.12 (C), respectively. (D) Dependence of variance on the noise intensity under

G = 0.12 (red, circle), G = 0 (black, dash), and G = −0.12 (green, solid). Other parameters are the same with Figure 7. Clearly, an excitatory feedback is the best

among all the types of global feedback, and this implies that different rods should cooperate with each other when facing the same task.
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feedback leads to the best enhancement among all the cases,
and thus one can fix the feedback strength to be positive as
shown in Figure 7. We emphasize that this finding does not
deny that inhibition plays an important role in visual perception
(Roska et al., 2006). As we know, both excitation and inhibition
exist in the retina (Rizzolatti et al., 1974). We assume that
excitation is reflected by step 1 of our algorithm. That is, different
neurons in the retina help each other in detecting the same
target and exhibit the cooperative effect in a general homogenous
network at the encoding stage. This cooperative effect helps the
individuals of the network spike regularly, and certainly this
effect is consistent with the description in Brunel (2000) which
states that the neurons exhibit a regular state when excitation
dominates inhibition.

CONCLUSION

We have proposed a visual perception algorithm by combining
the stochastic resonance principle of a global feedback network
of integrate-and-fire neurons with the biophysical process for
visual formation. The results can be summarized from the two
closely related aspects. From the aspect of model investigation,
we applied the technique of linear approximation and direct
simulation to disclose the phenomenon of stochastic resonance
in a global feedback network of integrate-and-fire neurons. It is
demonstrated that both the spectral amplification factor and the
output signal-to-noise ratio obtained from linear approximation
are accurate when the size of the network is sufficiently large.
Then, using the results derived from linear approximation, we
found that positive feedback strength is beneficial for boosting
the output signal-to-noise ratio, while a decreasing distance
between the base current and the firing threshold can enhance the
resonance effect. The theoretical observations are new, and they
are also helpful for us to understand the working mechanism in
rod neurons.

From the aspect of algorithm design, by applying the global
feedback network (5) of integrate-and-fire neurons to simulate
the perceptive process for rod cells, we have developed a
novel visual perception algorithm. In the algorithm, the firing
threshold is so critical that an inappropriate choice will lead
to inefficiency in image enhancement. Under the inspiration
of the theoretical finding that a decreasing distance between

the base current and the firing threshold is favorable for
stochastic resonance, we have proposed an explicit expression of
a suitable firing threshold by referring to the histogram of the
dark images. Moreover, we creatively introduced the variance
of image rather than the perceptual quality metric as a more
effective measure to examine the quality of the enhanced images.
Massively numerical tests have shown that the biologically
inspired algorithm is effective and powerful. We emphasize that
the visual perception algorithm is a dynamical system based
algorithm. We hope that it can be applied to relevant fields such
as medical diagnosis, flight security, and cosmic exploration,
where dark images are common. The algorithm also offers a
good example of how the dynamical system research guides the
neural engineering application. Following the success of this

research, we will start to explore more interesting and important
problems, such as the recovery of incomplete images, in the
near future.
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structure and cellular response on spike time correlations. PLoS Comput. Biol.

8:e1002408. doi: 10.1371/journal.pcbi.1002408

van der Groen, O., Tang, M. F., Wenderoth, N., and Mattingley,

J. B. (2018). Stochastic resonance enhances the rate of evidence

accumulation during combined brain stimulation and perceptual decision-

making. PLoS Comput. Biol. 14:e1006301. doi: 10.1371/journal.pcbi.10

06301

Wang, Z., Sheikh, H. R., and Bovik, A. C. (2002). No reference perceptual quality

assessment of JPEG compressed images. IEEE Int. Conf. Image Process 1,

477–480. doi: 10.1109/ICIP.2002.1038064

Yang, T. (1998). Adaptively optimizing stochastic resonance in visual system. Phys.

Lett. 245, 79–86. doi: 10.1016/S0375-9601(98)00351-X

Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012).

“65K-neuron integrate-and-fire array transceiver with address-event

reconfigurable synaptic routing,” in 2012 IEEE Biomed. Circuits

Syst. Conf. Intell. Biomed. Electron. Syst. Better Life Better Environ.

BioCAS 2012 - Conf. Publ., 21–24. doi: 10.1109/BioCAS.2012.64

18479

Zeng, F. G., Fu, Q. J., and Morse, R. (2000). Human hearing enhanced

by noise. Brain Res. 869, 251–255. doi: 10.1016/S0006-8993(00)

02475-6

Zhang, Y., Liu, H., Huang, N., and Wang, Z. (2019). Discrete image recovery via

stochastic resonance in optically induced photonic lattices. Sci. Rep. 9:11815.

doi: 10.1038/s41598-019-48313-y

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Fu, Kang and Chen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 24266

https://doi.org/10.1038/365337a0
https://doi.org/10.1103/PhysRevE.84.011923
https://doi.org/10.1038/nphoton.2010.31
https://doi.org/10.1038/nrn2258
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.3389/fncom.2018.00109
https://doi.org/10.1038/s41598-017-12906-2
https://doi.org/10.1103/PhysRevE.72.021902
https://doi.org/10.1038/380165a0
https://doi.org/10.1016/j.conb.2019.06.001
https://doi.org/10.1103/PhysRevE.72.061919
https://doi.org/10.1103/PhysRevLett.86.2934
https://doi.org/10.1016/j.physleta.2019.02.006
https://doi.org/10.1016/j.physleta.2018.03.054
https://doi.org/10.1007/s11571-018-09518-5
https://doi.org/10.1016/j.ophtha.2015.09.041
https://doi.org/10.1103/PhysRevE.71.031110
https://doi.org/10.1109/TSP.2010.2091409
https://doi.org/10.1152/jn.1996.76.5.3002
https://doi.org/10.1371/journal.pcbi.1002059
https://doi.org/10.1152/jn.1974.37.6.1262
https://doi.org/10.1152/jn.00113.2006
https://doi.org/10.1016/j.bbr.2008.05.003
https://doi.org/10.1103/PhysRevLett.78.1186
https://doi.org/10.1117/12.537804
https://doi.org/10.1007/s00422-009-0298-5
https://doi.org/10.1073/pnas.1212479110
https://doi.org/10.1371/journal.pcbi.1002408
https://doi.org/10.1371/journal.pcbi.1006301
https://doi.org/10.1109/ICIP.2002.1038064
https://doi.org/10.1016/S0375-9601(98)00351-X
https://doi.org/10.1109/BioCAS.2012.6418479
https://doi.org/10.1016/S0006-8993(00)02475-6
https://doi.org/10.1038/s41598-019-48313-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Frontiers in ComputationalNeuroscience – Editors’ Pick 2021
	Table of Contents
	Unsupervised Feature Learning With Winner-Takes-All Based STDP
	1. Introduction
	2. Related Work
	2.1. Spiking Neural Networks
	2.1.1. Leaky-Integrate-and-Fire Model
	2.1.2. Rank Order Coding Network

	2.2. Learning With Spiking Neural Networks
	2.2.1. Deep Neural Networks Conversion
	2.2.2. Spike Timing Dependent Plasticity

	2.3. Regulation Mechanisms in Neural Networks
	2.3.1. WTA as Sparsity Constrain in Deep Neural Networks
	2.3.2. Homosynaptic and Heterosynaptic Homeostasis

	2.4. Neural Networks and Image Processing

	3. Contribution
	3.1. Feedforward Network Architecture
	3.1.1. Neural Dynamics
	3.1.2. Equivalence With Artificial Neuron With ReLU Activation
	3.1.3. Winner-Takes-All Mechanisms

	3.2. Binary Hebbian Learning
	3.2.1. Simplifying the STDP Rule
	3.2.2. Equivalence to Hebbian Learning in Spiking Networks
	3.2.3. Extension to Symmetric Neurons
	3.2.4. Hard Percentile Threshold
	3.2.5. Average Correlation Threshold
	3.2.6. Computing Updates From a Batch of Images
	3.2.7. Weight Normalization Through Simple Statistics

	3.3. Multi-layer Architectures With Binary STDP

	4. Experiments and Results
	4.1. Method
	4.2. MNIST
	4.3. ETH80
	4.4. CIFAR-10
	4.5. STL-10

	5. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Modern Machine Learning as a Benchmark for Fitting Neural Responses
	Introduction
	Materials and Methods
	Data
	Treatment of Spike and Covariate History 
	Generalized Linear Model
	Neural Network
	Gradient Boosted Trees
	Random Forests
	Ensemble Method
	Scoring and Cross-Validation

	Results
	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References

	Modeling Emotions Associated With Novelty at Variable Uncertainty Levels: A Bayesian Approach
	Introduction
	Model of Emotional Dimensions Elicited by A Novel Event
	Overview
	Bayesian Model
	A Functional Model of Emotional Arousal
	Interaction Effect of Uncertainty and Prediction Errors on Information Gain
	A Functional Model of Emotional Valence
	Model Summary

	Effects of Uncertainty and Prediction Errors on Emotional Arousal Related to Percussion Instruments
	Methods
	Participants
	Stimuli
	Procedure
	EEG Recordings
	EEG Data Analysis
	Statistical Analysis

	Experimental Results

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Enhancing Diagnosis of Autism With Optimized Machine Learning Models and Personal Characteristic Data
	INTRODUCTION
	MATERIALS AND METHODS
	Data
	Classification Models
	Model Evaluation

	RESULTS
	DISCUSSION
	DATA AVAILABILITY
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES

	Electroencephalogram-Based Single-Trial Detection of Language Expectation Violations in Listening to Speech
	Introduction
	Methods
	Participants
	Materials
	Synchronization
	Design
	Electroencephalogram Recording and Preprocessing
	Event-Related Potential Analysis
	Feature and Classifiers

	Results
	Event-Related Potential Effects
	Single-Trial Detection

	Discussion
	Event-Related Potential Analysis
	Single-Trial Detection

	Conclusions
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Deep Learning With Asymmetric Connections and Hebbian Updates
	1. Introduction
	2. Related work
	3. The Updated Random Feedback Algorithm
	3.1. Updated Asymmetric Feedback Connections
	3.2. Loss Function

	4. Experiments
	4.1. Untying the Convolutional Layers - Locally Connected Layers
	4.2. Weight Alignment

	5. Mathematical Analysis of Updated Random Feedback
	5.1. Simulation

	6. Discussion
	Data Availability
	Code
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	End-to-End Deep Image Reconstruction From Human Brain Activity
	Introduction
	Materials and Methods
	Problem Statement
	Image Reconstruction Model
	Dataset From  bib25
	Evaluation

	Results
	Image Reconstruction
	Effect of Dataset Size
	Effect of Loss Functions: Ablation Study

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Depth and the Uncertainty of Statistical Knowledge on Musical Creativity Fluctuate Over a Composer's Lifetime
	Introduction
	Statistical Learning and Uncertainty in the Brain
	Computational Model
	Mathematical Interpretation of Brain's Statistical Learning Based on Information Theory
	Nth-Order Transitional Probability
	Entropy and Uncertainty
	Mutual Information of nth-order SL Model

	Ludwig Van Beethoven's Piano Sonata

	Methods
	Results
	TPs of Familiar Phrases
	Entropy and Uncertainty
	Hierarchy of Statistics: Mutual Information

	Discussion
	Conclusion
	Author Contributions
	Funding
	References

	The Application of Unsupervised Clustering Methods to Alzheimer's Disease
	Introduction
	Method
	Clustering Algorithms
	k-Means
	k-Means-Mode
	Multi-Layer Clustering

	Hierarchal Agglomerative Clustering
	Discussion
	Future Research
	Author Contributions
	Acknowledgments
	References

	Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
	1. Introduction
	2. Materials and Methods
	2.1. DEAP Dataset and SEED Dataset
	2.2. Data Processing
	2.2.1. Data Preprocessing
	2.2.2. Label Processing

	2.3. Feature Extraction
	2.3.1. The Linear Feature
	2.3.2. The Non-linear Feature

	2.4. ST-SBSSVM

	3. Results
	4. Discussions
	5. Conclusions
	Data Availability
	Author Contributions
	Funding
	References

	Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network
	Introduction
	Methods
	Model Architecture
	Conductance-Based Models
	STN Cell Model
	GPe Cell Model
	Modeling the Parkinsonian State
	Simulation Details
	Signal Analysis

	Results
	The Balance of Excitation and Inhibition Balance in the STN Affects the Oscillation Frequency of the STN-GPe Network and Firing Mode of STN Neurons
	Strength and Time-Course of GPe-STN Inhibition Controls Bursting and Phase-Locking in STN Neurons
	STN-GPe Network Shows Resonant Properties and Phase Locks to Cortical Beta Inputs
	Influence of Phase Relationship Between Cortical and Striatal Beta Inputs
	Mechanism of Phase Locking

	Discussion
	Oscillatory Properties of the Multi-compartmental STN-GPe Network
	Relation of Mechanism of Oscillations to Other Models of Oscillatory Activity in the STN-GPe Network
	Model Complexity and Limitations
	Conclusion

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Principles of Mutual Information Maximization and Energy Minimization Affect the Activation Patterns of Large Scale Networks in the Brain
	1. Introduction
	2. Materials and Methods
	2.1. Connectome Datasets and Information Transfer Model
	2.1.1. Functional Connectome Datasets
	2.1.2. Structural Connectome Dataset
	2.1.3. Information Transfer

	2.2. Statistical Quantities of Information Transfer Model
	2.2.1. Mutual Information
	2.2.2. Network Energy
	2.2.3. Overlapping Number in the Activation Patterns

	2.3. Network Structure and Statistical Evaluation

	3. Results
	3.1. Information Transfer Model
	3.2. Network Energy and Efficiency of the Information Transfer
	3.3. Normalized Energy and the Mutual Information Entropy
	3.4. Network Structure and the Optimal State
	3.5. Activation Patterns and Overlapping
	3.6. Comparison to the Different Datasets

	4. Discussion
	4.1. Information Transfer Model and Basic Statistical Quantities
	4.2. Network Structure and Information Transfer
	4.3. Activation Patterns and Principles of Energy and Efficiency

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Measuring the Non-linear Directed Information Flow in Schizophrenia by Multivariate Transfer Entropy
	Introduction
	Transfer Entropy
	Validation Analysis
	Simulation Study
	Simulated Network
	Simulation Performance

	Real P300 EEG
	Participants
	Experimental Protocol
	EEG Recording
	Effective Network
	Topological Differences in HC and SCZ
	Statistical Comparison for the Topographical Difference Between HCs and SCZ Patients


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	The Self-Face Paradigm Improves the Performance of the P300-Speller System
	Introduction
	Materials and Methods
	Subjects
	Spelling Paradigms
	Procedure
	Data Acquisition
	Feature Extraction Procedure
	Classification Scheme
	Information Transfer Rate
	Data Analysis

	Results
	ERP Results
	Classification Results

	Discussion
	ERPs
	Classification Accuracies and ITR
	Future Work

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Spectro-Temporal Processing in a Two-Stream Computational Model of Auditory Cortex
	Introduction
	Materials and Methods
	Model Design and Architecture
	The WCCM
	Parameter Selection and Optimization
	Spatial Resolution of the Model
	Temporal Resolution of the Model
	Temporal latencies
	Temporal synchrony


	Model Evaluation
	Coding of AM Stimuli: Evidence From Electrophysiology
	Simulating Psychoacoustical Observations
	Model Responses to Speech


	Results
	Coding of AM Stimuli
	Sinusoidal AM Noise
	Sinusoidal AM Tones

	Simulating Psychoacoustic Observations
	Temporal Modulation Transfer Functions for Broadband White Noise
	Temporal Modulation Transfer Functions of Sinusoidal Carriers
	Pitch of Missing Fundamental Sounds

	Model Responses to Speech

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate
	Introduction
	Methods
	INEXA: A Computational Framework to Model Neuron-Astrocyte Networks
	Neuronal Components
	Neuronal activity
	Presynaptic dynamics

	Glial Components
	Regulation of synaptic dynamics by gliotransmission
	Astrocyte response to presynaptic stimulations
	Astrocytic network dynamics

	Neuron and Astrocyte Network Spatial Topologies

	Numerical and Analysis Methods
	Spike and Burst Detection
	Frequency and Activity Analysis
	Simulations
	Topology


	Results
	Single Synapse-Astrocyte Interaction
	Spike and Burst Detection
	Activity and Frequency Analysis
	Effect of Presynapse-Astrocyte Processes
	Effect of Astrocytic Networks


	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control
	Introduction
	Methods
	Ethics
	Subjects
	N-Back Task
	Functional Magnetic Resonance Imaging (fMRI) Data Acquisition
	Data Pre-processing
	Feature Extraction
	Predictive Model Build
	Validation and Evaluation of Performance
	Visualization

	Results
	Demographics
	Selection of Threshold
	Feature Selection
	Model Results
	Significantly Activated Regions
	Differentially Activated Regions Found by Predictive Model Build


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons
	Introduction
	Methods
	Absorption
	Refraction
	Photon Flux
	Gaussian Laser Beam
	Light Propagation in Brain Tissue
	Heat Transfer in Mice Brain Tissue
	Channelrhodopsin-2 and Neuron Models

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data
	1. Introduction
	2. Methods
	2.1. Problem Statement
	2.1.1. Optimal Transport for Unsupervised Domain Adaptation

	2.2. The Seg-JDOT Framework
	2.2.1. Defining the Probability Distributions and the Representation Space
	2.2.2. Defining the Global Loss Function
	2.2.3. Learning With Seg-JDOT


	3. Experiments and Results
	3.1. Dataset
	3.2. Implementation Details
	3.2.1. Image Pre-processing
	3.2.2. CNN Training
	3.2.3. Technical Details

	3.3. Results on the MICCAI 2016 Dataset
	3.3.1. Single-Site Training
	3.3.2. Multi-Site Training


	4. Discussion and Conclusion
	Data Availability Statement
	Author's Note
	Author Contributions
	Supplementary Material
	References

	Stochastic Resonance Based Visual Perception Using Spiking Neural Networks
	Introduction
	Stochastic Resonance in an Integrate-and-Fire Neuronal Network
	Stochastic Resonance Based Image Perception
	Step 1. Encoding
	Step 2. Decoding and Integration
	Quantifying Index
	Firing Threshold
	Feedback Strength


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back Cover



