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General anesthesia is a standard medi-
cal procedure in todays’ hospital practice. 
Although in most cases the administration 
of anesthetics does not affect severely the 
patients health, side effects of anesthesia 
are well-known, such as nausea or cogni-
tive impairment. Moreover 1-2 out of 1000 
patients under surgery report a partial wake 
up from anesthesia during the operation. 
The reason for such a partial lack of con-
trol of depth of anesthesia is that medical 
procedures are highly optimized based 
on experience but the neural dynamics  
during general anesthesia is far from 
being understood. One reason for this 
lack of understanding is both the complex  
neural interactions of neurons on different 
spatial and temporal scales and the poorly 
understood action of anesthetics on neural 
populations. For instance, anesthetic agents 
act on synaptic receptors on a microscopic 
scale essentially evoking a macroscopic 
change of population activity, such as Local 
Field Potentials, EEG/MEG or resulting 

change of cerebral blood flow. This population effect then triggers the loss of consciousness 
in patients. 

This Research Topic aims to address recent theoretical and experimental advances in the field. 
The theoretical and experimental studies represent a good overview over the current state of 
research in the field and provides a deeper insight into the underlying neural mechanisms. Each 
article in the issue focusses on a specific current research topic in general anesthesia research 
and several articles introduce to the topic in a pedagogical way. The issue covers various types 
of anaesthesia and the most important topics in the field, such as (but not limited to) recent 
advances in theoretical models and states of consciousness reflected in experimental data, the 
connectivity changes observed during anesthesia or effects of specific drugs on brain activity. 
The introduction style of the papers facilitates the reader to understand the background of the 
research aspect and even allows readers not familiar with general anesthesia research to enter 
the research domain. Hence the Research Topic aims to provide on one hand an overview of the 
current state of the art and on the other hand a good starting point for new researchers in the field.

Citation: Hutt, A., Hudetz, A. G., eds. (2016). General Anesthesia: From Theory to Experiments. 
Lausanne: Frontiers  Media. doi: 10.3389/978-2-88919-749-1

GENERAL ANESTHESIA: FROM 
THEORY TO EXPERIMENTS

Projection of experimental EEG data onto model 
phase plane illustrating the emergence from 
unconsciousness to consciousness. Taken from 
Hight et al.,  Front. Syst. Neurosci. 8 : 148 (2015).

Topic Editors:  
Axel Hutt, Inria Nancy, France; CNRS, Loria, UMR no. 7503, France; Univeristy of Lorraine, 
UMR no. 7503, France
Anthony G. Hudetz, University of Michigan, USA

http://journal.frontiersin.org/journal/systems-neuroscience
http://journal.frontiersin.org/researchtopic/2345/general-anesthesia-from-theory-to-experiments


3 January 2016 | General Anesthesia: From Theory to ExperimentsFrontiers in Systems Neuroscience

Table of Contents

04 Editorial: General anesthesia: from theory to experiments
Axel Hutt and Anthony G. Hudetz 

07 Top-down mechanisms of anesthetic-induced unconsciousness
George A. Mashour 

17 Preferential effect of isoflurane on top-down vs. bottom-up pathways in 
sensory cortex
Aeyal Raz, Sean M. Grady, Bryan M. Krause, Daniel J. Uhlrich, Karen A. Manning and 
Matthew I. Banks 

39 Electroencephalographic effects of ketamine on power, cross-frequency 
coupling, and connectivity in the alpha bandwidth
Stefanie Blain-Moraes, UnCheol Lee, SeungWoo Ku, GyuJeong Noh and  
George A. Mashour 

48 Propofol and sevoflurane induce distinct burst suppression patterns in rats
Jonathan D. Kenny, M. Brandon Westover, ShiNung Ching, Emery N. Brown and 
Ken Solt 

61 Chaos analysis of EEG during isoflurane-induced loss of righting in rats
M. B. MacIver and Brian H. Bland 

69 Emergence from general anesthesia and the sleep-manifold
Darren F. Hight, Vera M. Dadok, Andrew J. Szeri, Paul S. García, Logan Voss and 
Jamie W. Sleigh 

83 Spin-glass model predicts metastable brain states that diminish in anesthesia
Anthony G. Hudetz, Colin J. Humphries and Jeffrey R. Binder 

92 EEG slow-wave coherence changes in propofol-induced general anesthesia: 
experiment and theory
Kaier Wang, Moira L. Steyn-Ross, D. A. Steyn-Ross, Marcus T. Wilson and  
Jamie W. Sleigh 

108 Anesthetic action on extra-synaptic receptors: effects in neural population 
models of EEG activity
Meysam Hashemi, Axel Hutt and Jamie Sleigh 

119 Emergence of spatially heterogeneous burst suppression in a neural field 
model of electrocortical activity
Ingo Bojak, Zhivko V. Stoyanov and David T. J. Liley

http://journal.frontiersin.org/journal/systems-neuroscience
http://journal.frontiersin.org/researchtopic/2345/general-anesthesia-from-theory-to-experiments


EDITORIAL

published: 22 July 2015
doi: 10.3389/fnsys.2015.00105

Frontiers in Systems Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 105

Edited and reviewed by:

Maria V. Sanchez-Vives,

ICREA-IDIBAPS, Spain

*Correspondence:

Axel Hutt,

axel.hutt@inria.fr

Received: 24 April 2015

Accepted: 10 July 2015

Published: 22 July 2015

Citation:

Hutt A and Hudetz AG (2015)

Editorial: General anesthesia: from

theory to experiments.

Front. Syst. Neurosci. 9:105.

doi: 10.3389/fnsys.2015.00105

Editorial: General anesthesia: from
theory to experiments

Axel Hutt 1, 2, 3* and Anthony G. Hudetz 4

1 Team Neurosys, INRIA, Villers-les-Nancy, France, 2 Team Neurosys, Centre National de la Recherche Scientifique, LORIA,

UMR No. 7503, Villers-les-Nancy, France, 3 Team Neurosys, University of Lorraine, LORIA, UMR No. 7503, Villers-les-Nancy,

France, 4Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA

Keywords: consciousness, functional connectivity, coherence, EEG, fMRI, burst-suppression

General anesthesia is a standard and safe medical procedure performed in thousands of patients
every day; therefore, it may come to many as a surprise that the ultimate neurobiological
mechanisms responsible of the anesthetics’ beneficial effect—that they suppress the patient’s
conscious awareness, is far from understood. One reason for this lack of understanding is that
complex interactions of neurons occur on different spatial and temporal scales and the action of
anesthetics on neural populations is poorly understood. Consequently, there is a need to bridge
the knowledge of how anesthetic agents act on synaptic receptors on a microscopic scale to
macroscopic changes in neuronal population activity as well as to higher order integrative processes
that are more directly linked to the state of consciousness. The 10 contributions compiled in this
research topic (ebook) intend to help solving this problem by exploring and adding to the current
state of knowledge at various levels of brain complexity.

The first chapter by Mashour (2014) presents an authoritative review of the currently most
influential theory of how chemically diverse general anesthetics on higher order processes
may disrupt consciousness. The formerly favored “bottom-up” mechanisms of anesthetic action
focusing on subcortical arousal centers and ascending thalamocortical information transfer
are contrasted with the more recent cortical “top-down” explanations that are inherent to
conscious perception and appear to be the preferential target of anesthetic modulation.
Substantial electrophysiological and neuroimaging evidence from animal and human investigations
supports the top-down mechanisms as a causally sufficient explanation for anesthetic-induced
unconsciousness.

Raz et al. (2014) provides new support to this idea from their study of the effect of isoflurane
on top-down vs. bottom-up neuronal pathways in rat auditory cortex during sensory and thalamic
stimulation. By laminar recordings of local field potentials in the auditory cortex in vivo, they show
that at hypnotic dose of isoflurane, bottom-up responses to auditory tone stimuli are enhanced,
whereas top-down responses to visual flash stimuli are reduced. Consistent results were obtained
in rodent brain slices, where cross-modal cortico-cortical descending pathways were suppressed far
greater than specific thalamo-cortical afferents, supporting the preferential disruption of top-down
connectivity at an anesthetic concentration associated with unconsciousness.

In the next chapter, Blain-Moraes et al. (2014) moves this idea to humans by demonstrating
in surgical patients that anesthetic-invariant electroencephalographic effects occur in cortical top-
down connectivity. Specifically, ketamine, a primarily non-GABAergic anesthetic drug, is found to
suppress fronto-parietal functional and directional connectivity (measured by coherence and phase
lag index), similar to that produced by propofol, a primarily GABAergic drug. Unlike propofol
however, ketamine fails to augment frontal alpha power and coherence. The measured connectivity
changes in the alpha band are therefore consistent markers of unconsciousness induced by both
GABAergic and non-GABAergic anesthetics.

Moving on to deeper anesthetic levels, Kenny et al. (2014) explore anesthetic agent-dependent
effects on burst-suppression patterns in rats. Burst suppression is a stereotypic pattern of
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alternating periods of electroencephalographic activity and
inactivity that occurs in pathological states and in deep
anesthesia, well beyond the threshold for loss of consciousness.
After reviewing the presumed mechanism of generation,
methods of quantification, and clinical application of burst-
suppression, the authors demonstrate significant differences in
the duration, amplitude, and power of burst-suppression patterns
induced by two common general anesthetics, sevoflurane, and
propofol suggesting that the neuronal circuits involved in burst-
suppression generation may differ among different anesthetics.

By virtue of the similarity of anesthetic-induced loss of
consciousness to the one experienced in sleep, anesthetic, and
sleep research typically borrow analysis methods and neural
processing concepts from each other. MacIver and Bland (2014)
have compared frontal cortical and hippocampal micro-EEG
signals under isoflurane anesthesia and during sleep by a chaos
analysis. The shape of chaotic attractors of cortical frontal micro-
EEG flattens in the anesthetic state compared to the awake state.
In addition, delta-activity under isoflurane anesthesia exhibits
a different chaotic attractor shape than NREM-sleep frontal
EEG. The chaotic analysis demonstrates the power of nonlinear
analysis methods revealing signal features beyond the frequency
content.

In addition to the analysis of experimental data, theoretical
models might provide deeper insight into the underlying neural
mechanisms during general anesthesia. Hight et al. (2014) have
modeled experimental EEG data obtained in individual human
subjects during emergence from anesthesia to wakefulness by
a neurophysiological model. This projection allows one to
visualize the signal evolution in time and indicates differences
between subjects. The study reveals an archetypical emergence
pattern and non-archetypical evolution patterns which are
all different from the archetypical emergence patterns. In
addition to this classification, for all patients, a general neuronal
hyperpolarization (increased resting membrane conductivity and
reduced excitatory connection strength) appears to precede the
return to consciousness.

The work by Hudetz et al. (2014) focuses on large-
scale mechanisms combining human fMRI data and computer
simulation to explore the diversity of brain connectivity patterns
as a determinant of the state of consciousness. Implementing a
spin-glass model with site interactions probabilistically defined

by long-range functional connectivity, they predict the formation
of metastable brain states whose repertoire is a function
of cortical activation. The state repertoire is maximal at
an optimal activation level corresponding to the conscious
state. It is diminished in anesthesia (low activation) and
seizure (high activation) suggesting a common mechanism
for unconsciousness through a reduction of the brain’s state
repertoire.

To understand brain network interactions before and after
loss of consciousness, the study of phase coherence provides
valuable insights. Wang et al. (2014) have combined a detailed
phase coherence study of experimental scalp EEG in the sub-
delta frequency range with a theoretical model study. They
have revealed a drop of phase coherence between electrode
pairs in frontal, occipital, and fronto-occipital pairs. Conversely,

the authors have revealed increased phase coherence between
temporal and frontal, temporal, and occipital regions and
temporal regions on left and right side. Theoretical model results
confirm these findings and indicate a compensatory mechanism
of sub-delta activity between a fronto-occipital and temporal
region subsystem.

Anesthetic agents are known to affect various neural
receptor types. They modify neural functions and inter-
neuron interactions on the microscopic scale, consequently
neural populations and eventually macroscopic electromagnetic
activity, such as EEG/MEG/fMRI, and the behavior of subjects.
To understand this bridge over multiple scales, Hashemi
et al. (2014) have worked out a theoretical thalamo-cortical
model demonstrating how GABAergic extra-synaptic receptors
on a microscopic scale affect EEG on the macroscopic
scale under propofol anesthesia. It turns out that cortical
and thalamic anesthetic action on GABAergic extra-synaptic
receptors contribute to the generation of delta-activity pointing
out their importance.

In addition to action on extra-synaptic receptors, some
anesthetics are known to desensitize synaptic receptors and
may deplete synaptic vesicles. Bojak et al. (2014) hypothesize
that these anesthetic actions contribute primarily to burst
suppression. In a theoretical spatially extended cortical model
assuming isoflurane action, they reveal spatially heterogeneous
burst suppression patterns propagating in the cortex. This work
provides an additional possible mechanism for burst suppression.
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The question of how structurally and pharmacologically diverse general anesthetics
disrupt consciousness has persisted since the nineteenth century. There has traditionally
been a significant focus on “bottom-up” mechanisms of anesthetic action, in terms of
sensory processing, arousal systems, and structural scales. However, recent evidence
suggests that the neural mechanisms of anesthetic-induced unconsciousness may
involve a “top-down” process, which parallels current perspectives on the neurobiology
of conscious experience itself. This article considers various arguments for top-down
mechanisms of anesthetic-induced unconsciousness, with a focus on sensory processing
and sleep-wake networks. Furthermore, recent theoretical work is discussed to highlight
the possibility that top-down explanations may be causally sufficient, even assuming
critical bottom-up events.

Keywords: consciousness, anesthesia, anesthetic mechanisms, ketamine, propofol, sleep

INTRODUCTION AND TERMINOLOGY
The mechanism by which structurally and pharmacologically
diverse general anesthetics can render an individual unconscious
has remained incompletely understood since 1846. One of the
current controversies in the systems neuroscience approach to
this question relates to the primacy of top-down vs. bottom-
up mechanisms of anesthetic-induced unconsciousness. In the
context of this article, the term “bottom-up” has three differ-
ent meanings, which will always be explicit. The first meaning
of “bottom-up” relates to a neurocognitive hierarchy of sen-
sory processing, which might be best illustrated by considering
the neural processing involved in visual consciousness. After
retinal stimulation, visual information is transmitted to the lat-
eral geniculate nucleus in the thalamus followed by transmis-
sion to the primary visual cortex (V1) in the occipital lobe.
Visual processing thereafter follows two “streams” that flow
dorsally to the prefrontal cortex and ventrally to the tempo-
ral lobe. Thus, visual information is received by peripheral
sensors and transmitted in a bottom-up way to the thala-
mus, primary sensory cortex, higher modal processing areas,
and multimodal association cortex. The second meaning of
“bottom-up” relates to arousal pathways. From the pons to
the midbrain to diencephalic structures such as the hypotha-
lamus, a variety of subcortical nuclei project to and arouse
the cortex through the actions of distinct neurotransmitters.
This represents a bottom-up pathway from subcortical wake-
promoting nuclei to the cortex, sometimes with a synaptic relay
in the thalamus. The third meaning of “bottom-up” relates to
processes that occur from smaller to larger structural scales,
e.g., from the molecular, to the cellular, to the neuroanatom-
ical, to the network level of the brain. These three meanings

of “bottom-up”—referring to sensory, arousal, and structural
hierarchies—all have relevance to understanding the mechanism
of anesthetic-induced unconsciousness.

In the context of this article, the term “anesthetic-induced
unconsciousness” refers to an unconscious cognitive state that
is just below the threshold of normal conscious perception of
the environment, with the further stipulation that the subject is
not being exposed to a noxious stimulus (e.g., surgery). As an
example, consider a human volunteer receiving an infusion of the
intravenous anesthetic propofol that is titrated to higher concen-
trations until she can no longer follow verbal commands—this
loss of responsiveness would be used as the (admittedly imper-
fect) surrogate of anesthetic-induced unconsciousness. It should
be noted clearly that anesthetic-induced unconsciousness is not
equivalent to surgical anesthesia, because a noxious stimulus such
as a scalpel cutting through skin could easily reverse the uncon-
scious state in our hypothetical volunteer. Anesthetic-induced
unconsciousness may not be sufficient for surgical interven-
tion and is therefore not necessarily equivalent to our clinical
conception of general anesthesia.

WHY BOTTOM-UP FRAMEWORKS OF
ANESTHETIC-INDUCED UNCONSCIOUSNESS HAVE BEEN
DOMINANT
There are several reasons why bottom-up approaches to
anesthetic-induced unconsciousness have dominated the field.
With respect to the sensory or arousal hierarchy, conscious-
ness has often been deconstructed into wakefulness (an active
cortex, open eyes) and awareness (subjective experience). Our
understanding of wakefulness and brain arousal as mediated
by subcortical structures like the ascending reticular activating
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system dates back some 65 years to the work of Moruzzi and
Magoun (1949). Similarly, the association of consciousness with
processing at the level of the primary sensory cortex remained
dominant until some 20 years ago when Crick and Koch for-
mally questioned whether visual consciousness was correlated
with activity in V1 (Crick and Koch, 1995). For more than a
decade, the “thalamic switch” hypothesis of anesthetic-induced
unconsciousness—which is characterized by the blockade of sen-
sory information from thalamus to primary sensory cortex—has
been highly influential (Alkire et al., 2000). Thus, the long-
standing viewpoint of consciousness and anesthesia as linked
to subcortical arousal and primary sensory processes is signif-
icantly more entrenched than the relatively recent perspective
of consciousness as a higher-order experiential process gener-
ated by network communication across association cortices. With
respect to structural scales, there is a general scientific tendency to
think of the term “mechanism” as a bottom-up process in which
actions at the molecular or “micro” level lead to causal events
that result in changes at the “macro” level. From this perspec-
tive, macro-level explanations merely supervene on micro-level
explanations (Hoel et al., 2013). This is also true in the his-
tory of research into anesthetic-induced unconsciousness. Since
1847, there have been a series of micro-level approaches to anes-
thetic mechanism, including effects on lipids (1847 through the
mid-1980s; for review of early theories see Perouansky, 2012)
and proteins (mid-1980s until the present; Franks and Lieb,
1984). Thus, the targets of general anesthetics have traditionally
been molecular, the foundational level of a bottom-up structural
hierarchy.

The 1990s was an important era in anesthetic mechanisms
research for four reasons. First, it became clear that there was
a neuroanatomical segregation of the major therapeutic end-
points of general anesthesia, with immobility mediated in the
spinal cord vs. unconsciousness and amnesia mediated in the
brain (Antognini and Schwartz, 1993; Rampil, 1994). Second,
the first neuroimaging studies of general anesthesia were con-
ducted, pointing to regional differences in anesthetic action rather
than global brain suppression (Alkire et al., 1995). Third, spe-
cific anesthetic binding sites on neurotransmitter receptors (most
notably, the gamma-aminobutyric acid [GABA] receptor) were
identified (Mihic et al., 1997). Fourth, it was first suggested that
general anesthetics might suppress consciousness through actions
on the subcortical nuclei that evolved to control sleep-wake states
(Lydic and Biebuyck, 1994), a decidedly systems neuroscience
approach. At least two of these developments—effects of anes-
thetics on neurotransmitter receptors and sleep-wake nuclei—are
explicitly bottom-up approaches to anesthetic mechanisms. The
focus on the molecular mediators of anesthetic action repre-
sents a bottom-up explanation from the perspective of structural
scales and the “shared circuits” hypothesis of sleep and anes-
thesia represents a bottom-up explanation in terms of arousal
systems. Both have received considerable attention and enjoy sig-
nificant empirical support. The goal of the present article is not
to argue that anesthetics have no effects on molecular targets or
subcortical structures such as sleep-wake nuclei, but rather to
counterbalance the tendency to think of anesthetic mechanisms
as a fundamentally or exclusively bottom-up process. There are

now several compelling lines of evidence to suggest that con-
sciousness and anesthetic-induced unconsciousness in humans
are higher-order processes and that, in principle, macro-level
mechanisms can be causally sufficient to explain such emergent
phenomena.

ARGUMENTS SUPPORTING TOP-DOWN MECHANISMS OF
ANESTHETIC-INDUCED UNCONSCIOUSNESS
CONSCIOUSNESS AND ANESTHETIC-INDUCED UNCONSCIOUSNESS
ARE ASSOCIATED WITH MULTIMODAL ASSOCIATION CORTEX RATHER
THAN PRIMARY SENSORY CORTEX
A reasonable approach to understanding the mechanism of
anesthetic-induced unconsciousness would be to consider the
neurobiological underpinnings of conscious experience itself. As
noted, consciousness is sometimes reduced to the dissociable pro-
cesses of wakefulness and awareness. Importantly, wakefulness is
neither sufficient nor even necessary for conscious experience.
Dreaming is an example of how consciousness can occur in the
absence of wakefulness (demonstrating a lack of necessity) and
the vegetative state is an example of a presumably unconscious
state despite evidence of wakefulness (demonstrating a lack of
sufficiency) (Laureys, 2005). In terms of awareness, evidence is
accumulating that conscious experience does not correlate with
processing at the level of the primary sensory cortex. Numerous
studies using contrastive analysis, in which a sensory stimulus is
delivered at threshold and then brain activation patterns are “con-
trasted,” suggest that primary sensory processing is not sufficient
for conscious perception of a stimulus (for review see Dehaene
and Changeux, 2011). Consciousness is, however, associated with
widespread activation of multimodal cortical networks, including
frontal, posterior parietal, and temporal areas (Figure 1). To sum-
marize, neither arousal from subcortical structures nor activity of
primary sensory cortex is sufficient for consciousness; processing
in more distributed networks of association cortex appears to cor-
relate best with conscious experience. It is also worth noting that
many current and major theories of consciousness—including
global neuronal workspace theory (Dehaene and Changeux,
2011), integrated information theory (Tononi, 2012), predictive
coding (Clark, 2013), representationalism (Lau and Rosenthal,
2011)—consider some form of top-down or network-level pro-
cess to be critical for consciousness.

Just because consciousness is associated with activation of
more extended cortical networks does not necessitate that
anesthetic-induced unconsciousness is as well. It is entirely pos-
sible that general anesthetics could block the transmission of
information from the periphery, inhibit arousal centers, block
thalamic relay of information to the primary sensory cortex,
or disrupt primary sensory processing. However, neuroimaging
data suggest that anesthetic-induced unconsciousness is associ-
ated with deactivation of more extended frontal-parietal net-
works, while primary sensory networks remain relatively intact
(Boveroux et al., 2010; Bonhomme et al., 2012) (Figure 2). This
is mirrored somewhat in the thalamus by preferential disruption
of “non-specific” thalamic nuclei, which are thought to play more
of an integrative role for cortical computation rather than a pro-
cessing station for sensory information (Liu et al., 2013). Again, it
is important to note that these findings may relate specifically to
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FIGURE 1 | Consciousness is not correlated with activation of primary

sensory cortex. This example of contrastive analysis demonstrates activation
of primary auditory cortex even in the absence of conscious perception. By

contrast, detection of the auditory stimulus is correlated with activation of a
widespread network prominently involving frontal-parietal networks.
Reproduced from Dehaene and Changeux (2011), Neuron, with permission.

FIGURE 2 | Anesthetic-induced unconsciousness is not correlated with

inactivation of primary sensory cortex. Transverse and sagittal sections of
primary visual (A,C) and auditory (B,D) cortices during wakefulness (A,B) and

propofol-induced unconsciousness (C,D); note the relative preservation
across states. Reproduced from Boveroux et al. (2010), Anesthesiology, with
permission.

anesthetic-induced unconsciousness, the topic of interest, rather
than surgical anesthesia. It is clear that higher concentrations of
general anesthetics beyond those required for loss of responsive-
ness in a resting state can suppress primary sensory cortex (Ni
Mhuircheartaigh et al., 2013) and at yet higher concentrations can
cause more global suppression.

CONSCIOUSNESS AND ANESTHETIC-INDUCED UNCONSCIOUSNESS
ARE ASSOCIATED WITH LATE EVOKED POTENTIALS RATHER THAN
EARLY ONES
The neuroanatomical substrates of consciousness and anesthetic-
induced unconsciousness give us a sense of the “where” of
consciousness or anesthesia but also have implications for the

“when” of consciousness or anesthesia. Studies using event-
related potentials suggest that conscious experience is correlated
with longer-latency potentials rather than early potentials (Del
Cul et al., 2007) (Figure 3). Not surprisingly, evoked-potential
data mirror the neuroanatomical structures of interest: early
potentials reflect more primary processing, while later poten-
tials reflect more integrative activity beyond the primary sensory
cortex (e.g., V1) or higher-order modality-specific processing
areas (e.g., V2 and beyond). Likewise, studies of anesthetic-
induced unconsciousness have revealed that longer-latency visual
evoked potentials are suppressed in a clear dose-dependent man-
ner, while early potentials remain unperturbed (Hudetz et al.,
2009) (Figure 4). These longer-latency potentials likely reflect, in
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FIGURE 3 | Consciousness is not correlated with early event-related

potentials. This electrophysiological study of visual processing concluded that
early event-related potentials (reflecting more primary sensory processing)

are not correlated with conscious perception. Top-down processing from
prefrontal cortex was more closely associated with consciousness.
Reproduced from Del Cul et al. (2007), PLoS Biology, with permission.

part, reentrant processing from anterior to posterior structures,
which appear to be preferentially suppressed in association with
anesthetic-induced unconsciousness in rats exposed to visual
flash stimuli (Imas et al., 2005). It is difficult to see how anes-
thetics can act in a bottom-up manner in terms of a sensory
hierarchy if visual information is still able to be transmitted
through the thalamus to the primary cortex and forward through
the dorsal stream, with only reentrant processing in the anterior-
to-posterior (i.e., top-down) direction affected.

The observation that late cortical potentials are preferen-
tially inhibited by general anesthetics is routine in the clinical
practice of neuroanesthesiology, the subspecialty of anesthesi-
ology that focuses on the perioperative care of neurosurgical
patients. During both intracranial and spinal procedures, the use
of sensory-evoked potentials to monitor neural function is com-
mon. In the case of somatosensory evoked potentials—reflecting
a pathway from the peripheral stimulation source, to synapses
in the medulla, thalamus, primary somatosensory cortex, and
multimodal cortex—there is a clear dose-dependent reduction
of amplitude and increase of latency. Importantly, late poten-
tials are the first to be suppressed, while subcortically-derived
and primary-sensory-related potentials are more robust (Banoub
et al., 2003). The preferential susceptibility of late potentials to
the effects of general anesthetics is especially evident when con-
sidering brainstem auditory evoked potentials. This complex,

polysynaptic pathway of early auditory processing is virtually
unperturbed by even supratherapeutic concentrations of anes-
thetics (Manninen et al., 1985). The sensitivity of late cortical
potentials—reflecting processing beyond the sensory cortex—
to the effects of anesthetics and the remarkable resilience of
brainstem potentials make it difficult to argue that bottom-up
sensory processes are being disabled, leading to dysfunction of
higher-order systems.

ANESTHETIC-INDUCED UNCONSCIOUSNESS IS NOT DEPENDENT ON
KEY SUBCORTICAL SLEEP-WAKE NUCLEI
A variety of anesthetics has been shown to metabolically acti-
vate sleep-promoting nuclei and metabolically inhibit wake-
promoting nuclei. More recently, the inhaled anesthetic isoflurane
has been shown to activate directly the sleep-promoting neu-
rons within ventrolateral preoptic nucleus (VLPO), a key sleep-
promoting region in the hypothalamus (Moore et al., 2012).
It is remarkable that this general anesthetic—which typically
depresses neuronal function—activates neurons that are specifi-
cally active during sleep. From the systems-neuroscience perspec-
tive, it is not difficult to conceive of how anesthetic-mediated
unconsciousness could be a primarily bottom-up process from
the perspective of arousal pathways. Sleep is well known to be
generated by subcortical structures in the brainstem and dien-
cephalon, with resultant changes in levels of cortical activity and
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FIGURE 4 | Anesthetic-induced unconsciousness is not correlated with

effects on early evoked potentials. This study of visual evoked potentials
in rats demonstrates a clear dose-dependent effect of the inhaled
anesthetic desflurane on long-latency potentials, with sparing of early
potentials reflecting processing in primary visual cortex. Reproduced from
Hudetz et al. (2009), Anesthesiology, with permission.

consciousness (Saper et al., 2005). If, indeed, there are shared
circuits for sleep and anesthesia—as a number of studies would
suggest—then it stands to reason that anesthetic-induced uncon-
sciousness must follow a similar bottom-up path.

Although the shared-circuits hypothesis has shown promise,
the evidence is far from conclusive. Both intravenous and inhaled
anesthetics have been shown to metabolically activate VLPO
(Nelson et al., 2002; Moore et al., 2012), which would suggest
that VLPO is a key mediator of anesthetic-induced unconscious-
ness and would lead to the prediction that lesions of the VLPO
would eliminate or attenuate the ability of an anesthetic to induce
unconsciousness. However, lesions of the VLPO have only an
acute effect in conferring partial resistance to inhaled anesthetics.
Two studies have demonstrated that, with prolonged insomnia in
the absence of a functioning VLPO, animals ultimately become
hypersensitive to the effects of anesthetics (Eikermann et al.,
2011; Moore et al., 2012) (Figure 5). VLPO is therefore nei-
ther sufficient nor necessary for anesthetic-induced unconscious-
ness. Furthermore, the anesthetic ketamine appears to suppress
VLPO activation despite its hypnotic effects (Lu et al., 2008).
Collectively, these data suggest that an activated VLPO does not
play a critical role in anesthetic-induced unconsciousness.

An alternative bottom-up mechanism of anesthetic-induced
unconsciousness that could be mediated through sleep-wake cir-
cuitry is the inhibition of subcortical arousal centers by general
anesthetics. However, key arousal nuclei have been shown to
have a limited role in anesthetic mechanisms. For example, orex-
inergic neurons in the hypothalamus do not appear to play a
role in anesthetic-induced unconsciousness; rather, they modu-
late the emergence from general anesthesia (Kelz et al., 2008).

FIGURE 5 | Ventrolateral preoptic nucleus is not necessary for

anesthetic-induced unconsciousness. Lesions of the ventrolateral
preoptic nucleus reveal an acute effect of resistance but a chronic effect of
hypersensitivity to the inhaled anesthetic isoflurane. Reproduced from
Moore et al. (2012), Current Biology, with permission. ∗p < 0.05;
∗∗∗p < 0.001.

Histaminergic neurons in the tuberomammillary nucleus (also in
the hypothalamus) have been thought to play a role in anesthetic-
induced unconsciousness (Luo and Leung, 2011), but recent
data bring the behavioral relevance of this nucleus into question
(Zecharia et al., 2012). Suppression of brainstem structures such
as the locus coeruleus may mediate anesthetic-induced uncon-
sciousness, since mutant mice lacking dopamine-B-hydroxylase
(which is required to synthesize norepinephrine in the locus
coeruleus) are more sensitive to anesthetics (Hu et al., 2012).
However, ketamine appears to activate the locus coeruleus in asso-
ciation with its hypnotic effects (Lu et al., 2008) and is dependent,
in part, on noradrenergic neurotransmission (Kushikata et al.,
2011). Although this list is certainly not exhaustive, it should be
clear that inhibition of a number of key arousal nuclei in the
brainstem and diencephalon does not appear to be necessary for
anesthetic-induced unconsciousness.

The asymmetric role of some arousal nuclei in the process
of induction and emergence suggests that the two processes are
not mirror images of one another. Recently, a series of ele-
gant studies has provided strong support for the hypothesis
that there is a distinct neurobiology of induction and emer-
gence that accounts for the observation of anesthetic hysteresis
(Friedman et al., 2010; Joiner et al., 2013). Hysteresis implies
that the process of “coming out” of a state is not simply the
reverse process of “going in.” In this context hysteresis is man-
ifested as different anesthetic concentrations for induction of
and emergence from general anesthesia: higher concentrations
are associated with loss of consciousness compared with recov-
ery of consciousness. Why should this be the case? Evidence
suggests that there is a barrier to state transitions, termed neu-
ral inertia, which may be mediated by sleep systems (Joiner
et al., 2013). Neural inertia could explain hysteresis, but it
also has implications for the mechanism of anesthetic-induced
unconsciousness. Consider: higher concentrations of anesthetic
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are associated with induction compared to emergence, with sleep
networks accounting for the fact that an organism needs less anes-
thetic to stay anesthetized than to become anesthetized (Friedman
et al., 2010). However, this implies that sleep networks only play a
functional role after anesthetic-induced unconsciousness has already
occurred. Therefore, one implication of neural inertia is that sleep-
related processes do not play a critical role in the induction
of unconsciousness but rather are active during maintenance of
unconsciousness.

SEDATIVE-HYPNOTIC EFFECTS OF MULTIPLE CLASSES OF
ANESTHETICS CAN BE EXPLAINED BY A TOP-DOWN BUT NOT
BOTTOM-UP PROCESS
In the nineteenth century, an anesthesiologist could walk into
an operating room and use (for example) ether, chloroform or
nitrous oxide to induce unconsciousness or, at the very least, a
state in which the patient had lost “connected consciousness”
of the environment (Sanders et al., 2012). We could argue over
whether the state induced by ether was precisely the same state
as that induced by chloroform, but we would likely agree that
the same functional outcome had been achieved. In the twenty-
first century, an anesthesiologist can walk into an operating room
and use (for example) propofol, ketamine, or sevoflurane to
induce unconsciousness. It is likely that the state induced by
ketamine is quite different than the state induced by propofol,
but again a similar functional outcome would be achieved: the
patient would not be responding to commands or other environ-
mental stimuli, the patient would be deemed unconscious based
on this loss of responsiveness (not universally true, but usually
so), and the clinician could therefore start with the business of
the day. Although I have framed this in rather practical terms,
it is this similar functional outcome that motivates the inclu-
sion of these structurally and pharmacologically diverse drugs in
the class of general anesthetics. The relatively fungible nature of
these drugs in inducing unconsciousness is also at the core of the
anesthetic mechanisms problem: what is the common property
that allows us to use these highly diverse anesthetics in a very
similar way?

It has not yet been possible to identify a single and com-
mon bottom-up process that parallels the common functional
outcome resulting from the use of propofol, ketamine, and
sevoflurane (representatives of the three major classes of gen-
eral anesthetics). It is ketamine, in particular, that is generally
problematic. Unlike propofol, sevoflurane and many other gen-
eral anesthetics in current use, ketamine fails to (1) act primarily
through GABA receptors (Antkowiak, 1999; Salmi et al., 2005;
Zhou et al., 2013), (2) activate sleep-promoting nuclei (as noted
above) (Lu et al., 2008), (3) metabolically depress the thalamus
(Langsjo et al., 2005), or (4) depress fast activity of the electroen-
cephalogram (Lee et al., 2013). In other words, ketamine [and, to
some extent, nitrous oxide (Jevtovic-Todorovic et al., 1998)] fails
to conform to virtually all bottom-up frameworks of anesthetic
mechanisms: molecular, neuroanatomical, systems neuroscience,
and even the relatively macroscopic neurophysiologic approach.
By contrast, the top-down approach to ketamine-induced uncon-
sciousness has successfully identified a common neural corre-
late of unconsciousness induced by propofol, ketamine, and

sevoflurane that could have been predicted based on the neu-
robiology of consciousness (Lee et al., 2013) (Figure 6). Loss of
effective connectivity from the frontal cortex to more posterior
cortices has been consistently observed with all three drugs, sug-
gesting inhibition of reentrant processing as a candidate for the
common mediator of anesthetic effects on consciousness (Ku
et al., 2011; Jordan et al., 2013). Furthermore, this loss of top-
down information processing was selective, because feedforward
processing (from posterior parietal to frontal area) appeared pre-
served. These data are supported by earlier animal studies, as
well as more recent studies in humans showing a disruption of
cortical communication by various anesthetic drugs (Ferrarelli
et al., 2010; Casali et al., 2013). Importantly, this approach reveals
parallels with pathological states of unconsciousness (Boly et al.,
2011). Although loss of reentrant processing (also referred to as
feedback, recurrent, reafferent, or reverberant processing) is cur-
rently only correlated with anesthetic-induced and pathological
unconsciousness, it is has strong mechanistic implications given
its proposed role in consciousness itself (Dehaene and Changeux,
2011). By contrast, no single bottom-up correlate or candi-
date mechanism of anesthetic-induced unconsciousness across
all major classes of anesthetics has been identified or empirically
supported.

The association of cortical network events with anesthetic-
induced unconsciousness may not be compelling because it is
possible that they are simply following the mechanistic parade
rather than leading it. We know that modulation of sleep-wake
neurons can result in dramatic changes of cortical networks, but
can modulation of cortical neurons have a widespread effect? The
answer appears to be yes. It has been demonstrated that activa-
tion of a single cortical neuron can lead to transitions in global
brain states and produce measurable changes in behavior (Brecht
et al., 2004; Houweling and Brecht, 2008; Li et al., 2009), sup-
porting the possibility that even small cortical areas affected by
general anesthetics can be instrumental in behavioral and brain
state transitions.

MACRO CAUSATION CAN SUPERSEDE MICRO CAUSATION
One straightforward and plausible way of explaining top-down
mechanisms of anesthetic-induced unconsciousness would be
that the activity or dynamics of the cortical networks medi-
ating awareness are more susceptible to the effects of gen-
eral anesthetics than subcortical nuclei mediating sleep-wake
states. Demonstrating a more significant contribution—or per-
haps an earlier contribution—to unconsciousness by disruption
of higher-order cortical processes vs. subcortical or lower-order
cortical processes would help resolve the question of top-down
vs. bottom-up mechanisms within a sensory or arousal hierar-
chy. A robust quantitative theory of cortical dynamics will be
critical for this line of investigation. However, one might still
make the reasonable claim that cortical disruption is not really the
true mechanism because it can still be reduced to the underlying
molecular mechanisms of anesthetic binding to neurotransmit-
ter receptors or ion channels (i.e., some bottom-up event on a
structural scale). It has previously been suggested that it might be
helpful to divide anesthetic mechanisms into root and proximate
causes, where diverse root causes at the molecular level might be
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FIGURE 6 | Inhibition of top-down connectivity is a common correlate of

anesthetic-induced unconsciousness across three distinct classes of

general anesthetics. This figure depicts frontal-to-parietal (feedback) and
parietal-to-frontal (feedforward) connectivity before, during and after
anesthetic-induced unconsciousness in surgical patients (A–C). Lower panels
(D–F) show asymmetry of directional connectivity, with positive values
representingfeedbackdominanceandnegativevaluesrepresentingfeedforward
dominance. Connectivity was measured using electroencephalography and

symbolic transfer entropy, which is rooted in information theory. Blue shaded
area represents induction of anesthesia; the period before induction is baseline
consciousness and the period after is anesthetic-induced unconsciousness.
Each state is separated into three substates of Baseline (B1–B3) and
Anesthetized (A1–A3) conditions; the timescale is different because patients
receiving ketamine were studied using a different protocol than patients
receiving propofol and sevoflurane. FB, Feedback; FF, Feedforward. Reproduced
from Lee et al. (2013), Anesthesiology, with permission.

translated across scales to a common proximate cause at the level
of cortical information processing (Mashour, 2013). This would
lead to a bottom-up framework with individual micro-causes
converging on a single macro-level causality. From this perspec-
tive, the macro cause would simply supervene on the micro cause.
In other words, once the micro level is fixed (e.g., binding of
propofol to the GABAA receptor), so too is the macro level—
and therefore the underlying micro event has done all of the real
causal work.

Recent theoretical efforts have shown that macro-level pro-
cesses might trump micro-level processes when it comes to true
causation. It has been demonstrated in a simulation that a true
emergent event can occur in which the macro-level causation
contains more effective information than the micro-level causa-
tion (Hoel et al., 2013). In other words, the macro level is actually
doing more of the causal work than the micro level. This sug-
gests the possibility of macro-level supersedence in addition to
the usual assumption of macro-level supervenience. Applying this
principle to anesthetic-induced unconsciousness, it is therefore
possible that observations at the top-down/macro-level may con-
tain more effective information than the micro-level and thus
causally supersede molecular events such as anesthetic bind-
ing. This would not imply that anesthetic binding is irrelevant
to anesthetic-induced unconsciousness, but rather that it might

not add further information to a macro-causal explanation. It is
important to note that there is currently no evidence that this
is the case. However, it is now at least conceivable that there
could be a single causal explanation of anesthetic-induced uncon-
sciousness at the macro level (e.g., cortical dynamics) that is
not enhanced by the addition of micro-level information (e.g.,
molecular binding).

DISCUSSION
Traditionally, various bottom-up molecular mechanisms have
been proposed to explain anesthetic-induced unconscious-
ness, including disruption of the lipid bilayer and modulation
of protein-based neurotransmitter receptors or ion channels.
From the neurocognitive perspective, bottom-up explanations
of anesthetic-induced unconsciousness have focused on subcor-
tical nuclei that mediate the sleep-wake cycle or early cortical
areas that mediate sensory processing. There is growing evidence,
however, that general anesthetics disrupt higher-order cognitive
processes and that networks of association cortex may be par-
ticularly susceptible to anesthetic effects; this evidence parallels
current thinking in the science of consciousness. Thus, top-down
mechanisms of anesthetic-induced unconsciousness warrant seri-
ous consideration. It is possible that the observed changes in the
cortex are not simply signatures of lower-order anesthetic actions,
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but rather that direct modulation of cortical dynamics may be the
mechanism of unconsciousness. Furthermore, it is now at least
conceivable that such an explanatory framework could represent
a sole macro-level causation that supersedes any bottom-up or
even molecular description.

Intellectual bias is difficult to escape and thus it is probably
better to disclose such bias rather than having it function as a
“hidden variable” that shapes the discourse in a covert way. As
an anesthesiologist and clinical researcher, my work has focused
on the problem of intraoperative awareness with explicit recall
and the possibility of brain monitoring techniques that are rooted
in the neuroscience of consciousness. As such, the cortex—which
is more accessible to study and monitoring in the operating room
setting—has been a focus. As a neuroscientist and conscious-
ness researcher, my focus is on the network-level interactions that
most current theories deem to be critical for experiential process-
ing. Such clinical and scientific predilections clearly influence my
perspective. As such, in this article I have focused on arguments
supporting the top-down approach—the reader is encouraged to
explore the considerable evidence for alternative perspectives and
to draw his or her own conclusions. It is also important to note
that bottom-up and top-down perspectives need not be mutually
exclusive. This is especially relevant for the higher-order thalamic
nuclei, which primarily receive cortical input and are intimately
involved in cortical function.

One point deserves emphasis before succumbing to the temp-
tation of disregarding top-down causation on the basis of its
inconsistency with the known effects of general anesthetics across
species (Crowder, 2008). General anesthetics can stop single-cell
organisms, fruit flies, and worms in their tracks. . . so who needs a
cortical network for a satisfactory explanation of anesthetic mech-
anism? First, it is important to note that the anesthetic endpoint
in these model systems is movement alone. Although one could
rightfully argue that all endpoints relate to some kind of motor
response, the endpoint of impaired movement in Drosophila or C.
elegans cannot necessarily be regarded as a surrogate for impaired
perception (van Swinderen, 2006; van Swinderen et al., 1999). It is
therefore not even clear that the term “anesthetic-induced uncon-
sciousness” applies here as it would for Homo sapiens. Second,
as species evolve, so too do the networks governing their behav-
ior and the mechanisms by which behavioral state transitions
occur. For example, if we were investigating the mechanism of
movement in humans, we might consider the motor cortex and
supplementary motor area as starting points. It would be absurd
to claim that the motor cortex could not be involved in the
primary mechanism of movement in humans based on the argu-
ments that worms move, but worms do not have a motor cortex.
Similarly, it would be absurd to claim that higher-order corti-
cal processes cannot be causally central to the mechanisms of
anesthetic-induced unconsciousness in humans simply because
worms or other species do not exhibit higher-order cortical
processes.

CONCLUSION
The mechanism of anesthetic-induced unconsciousness is a fun-
damental question in both anesthesiology and neuroscience, with
links to the neurobiology of consciousness itself. An emerging

body of evidence suggests that both consciousness (in the experi-
ential sense of the word) and anesthetic-induced unconsciousness
are mediated by higher-order processes in the brain. Top-down
approaches to anesthetic mechanisms may therefore provide crit-
ical insight to both the scientific understanding and clinical
practice of anesthesiology.
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The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because
consciousness depends on activity in the cortico-thalamic network, anesthetic actions
on this network are likely critical for LOC. Competing theories stress the importance of
anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical
(CC) and matrix TC connections. We tested these models using laminar recordings in
rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs.
top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain
slices, and compared effects of isoflurane on responses evoked via the two pathways.
Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency
current sinks in middle layers, consistent with activation of core TC afferents. By contrast,
visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked
responses mainly in superficial and deep layers, consistent with projection patterns of
top-down afferents that carry visual information to auditory cortex. Responses to auditory
stimuli in vivo and core TC afferents in brain slices were significantly less affected by
isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC
afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced
by isoflurane, whereas visual responses were dramatically reduced. At a comparable
concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses,
but the effect on the latter responses was far greater than on core TC responses,
indicating that at least part of the differential effects observed in vivo were due to local
actions of isoflurane in auditory cortex. These data support a model in which disruption of
top-down connectivity contributes to anesthesia-induced LOC, and have implications for
understanding the neural basis of consciousness.

Keywords: cortical column, anesthesia, auditory evoked response, neocortex, multimodal integration, current

source density

INTRODUCTION
Although in widespread use for >150 years, how anesthetics cause
loss of consciousness (LOC) remains one of the great unsolved
mysteries in biomedical science. Elucidating these mechanisms
would benefit patient care in terms of improved monitoring and
more selective anesthetic agents, and would provide insight into
neural mechanisms of consciousness. Indeed, in recent years,
research in the fields of anesthetic mechanisms and the neural
basis of consciousness have begun to converge (Mashour, 2006;
Alkire et al., 2008b; Shushruth, 2013).

We have extensive knowledge of the molecular targets and
behavioral effects of anesthetic agents (Antkowiak, 2001; Rudolph
and Antkowiak, 2004; Franks, 2008). Much less is known about
how anesthetics act at the level of cortical circuits. Previous stud-
ies focused on the dramatic reduction in cortical activity observed
at surgical anesthetic doses (Schwender et al., 1993a), and imaging

and electrophysiological studies in thalamus suggested that anes-
thetics suppress ascending information flow into cortex (Ries and
Puil, 1999; Alkire et al., 2000; Schroter et al., 2012). Because TC
information transfer has been hypothesized as the key mediator
for consciousness (Llinas et al., 1998), these observations formed
the basis of the thalamic switch hypothesis of anesthetic-induced
LOC (Alkire et al., 2000). However, studies have also shown that
suppression of cortical sensory responses by anesthetics can be
unrelated to awareness (Dueck et al., 2005; Kerssens et al., 2005;
Plourde et al., 2006), that sensory evoked responses can even
be enhanced dramatically under anesthesia compared to waking
conditions (Imas et al., 2005b), and that anesthetics selectively
suppress “matrix” thalamic nuclei, which provide largely modula-
tory TC input, compared to “core” thalamic nuclei, which provide
largely driving TC input (Jones, 1998; Liu et al., 2013; Saalmann,
2014). Thus, evidence suggests that during anesthesia-induced
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LOC, as during sleep, external sensory stimuli activate cortex
but fail to become incorporated into the hierarchical process-
ing stream (Liu et al., 2011; Hobson and Friston, 2012). These
data have motivated an alternative hypothesis, which we call here
the cortico-thalamic network disruption hypothesis that emphasizes
anesthetic effects on CC connectivity and information process-
ing. This hypothesis derives from two related theories. The first,
the information integration theory of consciousness, proposes that
consciousness relies on the dense interconnectivity within the TC
network and the vast number of possible network states (Tononi,
2004). According to this hypothesis, anesthetics act across wide
areas of cortex to reduce the repertoire of network states (i.e.,
information) and connectivity (i.e., integration) (Alkire et al.,
2008b). In the other, the cognitive unbinding hypothesis, anes-
thetics disrupt the cortical integration of sensory information
to prevent a unified percept of the external world (Mashour,
2013).

Specific ideas about which connections are targeted under
the cortico-thalamic network disruption hypothesis have emerged
recently, based on predictive coding models of neocortex. These
models posit comparisons of observed, bottom-up sensory infor-
mation with top-down predictions based on memory and con-
text, all simultaneously at multiple hierarchical processing stages
(Grossberg and Versace, 2008; Bar, 2009; George and Hawkins,
2009; Bastos et al., 2012). Processes such as priming, context,
expectation, and attention influence responses to sensory stimuli
(Warren, 1970; Haist et al., 2001; Alain and Izenberg, 2003; Alain,
2007; Davis and Johnsrude, 2007; Fritz et al., 2007; Todorovic
et al., 2011; Chennu et al., 2013; Kok et al., 2013), likely via mod-
ulation of infra- and supragranular pyramidal cells due to the
concentration of descending CC and “matrix” TC (see below)
inputs to these layers (Zeki and Shipp, 1988; Felleman and Van
Essen, 1991; Cauller, 1995). This comparison or integration of
bottom-up and top-down information streams is postulated to
be a critical component of sensory awareness, and its disruption
is thought to represent a common mechanism for LOC in natural
and clinically relevant conditions. Thus, several lines of evidence
suggest that LOC due to anesthesia and slow wave sleep and
in patients in vegetative states is caused by suppressed CC con-
nectivity and thus disruption of this integrative process. During
midazolam-induced LOC and during slow-wave sleep, local cor-
tical responses to transcranial magnetic stimulation are enhanced
locally but the spread of activity due to CC interactions is reduced
(Massimini et al., 2005; Ferrarelli et al., 2010). Furthermore,
under a variety of anesthetic regimes, long range descending
CC connectivity is preferentially suppressed (Imas et al., 2005a;
Peltier et al., 2005; Alkire, 2008; Lee et al., 2009, 2013a,b; Ku
et al., 2011; Liu et al., 2011; Schrouff et al., 2011; Boly et al.,
2012; Jordan et al., 2013; Blain-Moraes et al., 2014; Mashour,
2014). Similar results demonstrating selective loss of descending
CC connectivity were demonstrated in vegetative states as well
(Boly et al., 2011). Finally, general anesthetics eliminate contex-
tual modulation of responses in primary visual cortex that are
likely mediated by top-down connections, but leave bottom-up
responses intact (Lamme et al., 1998) and suppress integration
of local receptive field information (Pack et al., 2001). However,
in none of these studies were effects of anesthetics on bottom-up

vs. top-down projections tested directly. Many of these studies are
based on EEG methods, which are unable to measure thalamic
activity, leaving the thalamic involvement in this process as a theo-
retical consideration rather than actual measurement. Even fMRI
studies often lack the spatial resolution to differentiate between
anesthetic effects on core vs. matrix thalamic nuclei.

Sensory cortex in general, and auditory cortex specifically,
is a useful system to test these competing hypotheses about
anesthesia-induced LOC (Imas et al., 2004; Banks, 2010; Liu et al.,
2011). This area is relevant to clinical monitoring of anesthesia
depth (Drummond, 2000) and for evaluating modulation of sen-
sory information received by the brain. It is possible to activate
selectively different projection pathways. Ascending (bottom-up)
afferents from ventral medial geniculate (MGv; “core TC affer-
ents”) terminate with highest density in layers 3 and 4 of auditory
cortex (Scheel, 1988; Roger and Arnault, 1989; Romanski and
Ledoux, 1993; Winer et al., 1999; Polley et al., 2007; Storace et al.,
2010; Smith et al., 2012), and their activation via acoustic stimuli
in vivo leads to a stereotypical synaptic response in these layers
(Kaur et al., 2005; Szymanski et al., 2009). Other inputs arising
from descending CC afferents as well as other thalamic nuclei
(e.g., medial division of MG; “matrix TC afferents”) also pro-
vide large numbers of synaptic connections (Rockland and Virga,
1989; Salin et al., 1995; Budd, 1998) and are likely to modulate
responses to ascending input (Sandell and Schiller, 1982) and reg-
ulate information transmission (Saalmann, 2014), in some cases
driving columnar activity prior to or in the absence of ascend-
ing input (Cauller and Kulics, 1991; Mignard and Malpeli, 1991;
Krupa et al., 2004). Although these descending CC and matrix TC
afferents likely serve distinct functions, for simplicity and for the
purposes of this study we will refer to these afferents as top-down
due to their largely modulatory nature and the overlap in their
projection patterns. These projections target preferentially layers
1, 2, 5, and 6 (Shi and Cassell, 1997; Kimura et al., 2004; Smith
et al., 2012), and their activation will thus lead to a response pat-
tern distinct from core TC afferents. We, and others, have shown
that visual responses in auditory cortex are carried by descend-
ing cortical and matrix thalamic afferents (Budinger et al., 2006;
Bizley et al., 2007; Smith et al., 2010; Banks et al., 2011), and thus
visual stimuli will activate top-down pathways in auditory cor-
tex in vivo. In brain slices, CC and matrix TC pathways can be
activated directly by electrical stimulation.

In this paper, we used electrophysiological recordings from
whole columns in vivo and in vitro and activated ascending tha-
lamic and descending cortical pathways selectively to test the
hypothesis of a differential effect of anesthetics on ascending vs.
descending pathways.

MATERIALS AND METHODS
All procedures followed the NIH Guide for the Care and Use of
Laboratory Animals and were in accordance with institutional
guidelines.

IN VIVO EXPERIMENTS
Electrode implantation
Female Harlan Sprague Dawley (n = 2) or ACI (n = 8) rats
(170–250 gm) were housed individually in transparent Plexiglas
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cages in dedicated rooms (12:12 reversed light-dark cycle, on at
6 p.m., 23 ± 1◦C; food and water ad libitum). Animals were
chronically implanted under aseptic conditions with 1 × 16 sin-
gle shank silicon electrode arrays (15 μm thick, 150 μm wide)
with iridium recording sites (177 μm2; 1.5 M�; Neuronexus
Technologies, Ann Arbor, MI). Anesthesia was induced and
maintained with isoflurane (1.5–2% in 50% O2/50% room air).
Meloxicam (1 mg/kg SQ) was administered during surgery to
manage pain and swelling. Rats were kept on an infrared heat-
ing pad throughout surgery and recovery to maintain core
temperature at 37 ± 0.5◦C. Core auditory cortex was located
stereotaxically (Doron et al., 2002; Polley et al., 2007) and elec-
trode placement confirmed post-hoc histologically (see below).
A craniotomy ∼2.5 mm2 was made over left auditory cortex using
a surgical drill and an ultra-fine burr bit and the dura dissected.
The electrode was advanced at an angle normal to the surface
of the brain until the most superficial recording site was embed-
ded just below the pial surface. Ground and reference electrodes
were attached to skull screws placed over the contralateral pari-
etal cortex and over the cerebellum. The craniotomy was sealed
with silicone elastomer (Kwik Sil, World Precision Instruments,
Sarasota, FL) and the electrode array was fixed to the skull
screws and the skull with dental acrylic. Connectors that served
as mounting devices for head-mounted LEDs were fixed to the
skull using dental acrylic. Animals were medicated postopera-
tively for pain (buprenorphine 0.05 mg/kg SQ and meloxicam
1 mg/kg SQ) and monitored daily for signs of discomfort and
infection. The animals were allowed to recover for 1 week before
their first recording session.

Electrophysiological recordings
Recordings were performed in a sound-proof chamber (Industrial
Acoustics Company, Inc., Bronx, NY), inside which animals were
placed in a home-made gas-tight acrylic enclosure (20 × 19 ×
11 cm) that had gas inflow and outflow ports for administering
and scavenging isoflurane and a gas sampling port for moni-
toring the isoflurane concentration using a commercial moni-
tor (Multigas Monitor 602, Criticare Systems, Waukesha, WI).
A heating pad was placed in the bottom of the enclosure to
keep the animals warm during anesthesia application. A small
speaker (TDT-ES1, Tucker Davis Technologies, Alachua, FL) was
mounted inside the enclosure, oriented toward the animal. The
speaker was calibrated using a microphone (#4016, ACO Pacific,
Inc., Belmont, CA) placed approximately 4 cm from the speaker,
and stimuli presented at approximately 20–80 dB SPL assuming
the animal’s head was this distance from the speaker. Since the
animal was unrestrained, actual stimulus levels on each trial var-
ied slightly. Speaker output varies by < ±10 dB SPL over the
range 4–60 kHz. Free-field stimuli were applied using commer-
cial software (Brainware, RPVDX, Tucker-Davis Technologies,
Alachua, FL) and custom software written in Matlab. A 16 chan-
nel headstage (TDT RA16) on a flexible tether was plugged into an
Omnetics connector on the animal’s head. For all electrophysio-
logical recordings, responses were bandpass-filtered at 2–7500 Hz,
amplified 5000–10,000 ×, digitized at 24.414 kHz (TDT RZ5 or
RX5) and collected using Brainware. Local field potentials (LFPs)
were isolated offline by filtering at 1–300 Hz. Spiking activity was

measured by filtering the raw data at 500–3000 Hz, but because
the quality of these high frequency data was variable over time
and from animal to animal, likely because of changes in elec-
trode impedance (that fortunately did not affect recorded LFPs),
these data were not analyzed further. In the first recording ses-
sion, approximate best frequency (BF) of the recording site was
determined by presenting pure tone stimuli (50 ms duration, 5 ms
cosine windowed rise/fall times) at 11 frequencies logarithmically
spaced from 4.2 to 64 kHz, at 20–80 dB SPL in 20 dB steps. The
frequency at which the LFP was detectable at the lowest intensity
presented was taken as the BF. On occasion additional frequencies
and/or intensities were presented to resolve ambiguity.

Multiple recording sessions were obtained in each animal
(range 1–6 sessions, median = 3). In most animals (9/10)
a single isoflurane concentration (subhypnotic = 0.4%, just-
hypnotic = 0.8–0.9%, or reliably hypnotic = 1.6%) was selected
for every experimental day, and data was obtained at baseline,
drug and recovery conditions. The just-hypnotic concentration
was selected as that causing loss of righting reflex (LORR) in that
animal on that particular day. Baseline recordings were obtained
for approximately 60 min, after which isoflurane was applied in
room air. After reaching the desired concentration, 15 min were
allowed for the animal to equilibrate and the drug applied for
an additional 15 min to obtain the responses in the drug condi-
tion. Finally, the isoflurane was turned off and responses recorded
continuously for 60 min at 0% isoflurane. In one animal, we
recorded only at the just-hypnotic dose, in another only at the
just- and reliably hypnotic doses, and in one animal, the isoflu-
rane concentration was increased in a step wise manner, allow-
ing recording with multiple isoflurane doses in one recording
session.

In these recording sessions, stimuli consisted of pure tones,
LED flashes, and paired LED-tone stimuli (11 stimuli in all
for each recording session, randomly interleaved). Five different
tones (50 ms duration) were chosen for each session: three at
40 dB SPL at BF, 1/2BF, and 2xBF, and an additional two at 20
and 60 dB SPL at BF. The five tones were presented alone and
in combination with 1 ms, 0.37 cd-s/m2 LED flashes, with LED
flashes preceding the tones at a stimulus onset asynchrony cho-
sen to maximally align the visual and auditory responses, typically
65 ms. The eleventh stimulus in the set was the LED flash alone.
LEDs were mounted on the head and positioned to be a con-
stant 1 cm from the animal’s eyes during the recording sessions.
We note that the LED flash did not elicit any observable star-
tle reflex in the animals. Animals were monitored via infrared
video camera to ensure that their eyes remained open throughout
the experiment, including when unconscious due to isoflurane.
Responses to unilateral visual stimuli presented to the ipsilateral
and contralateral eye were recorded, but as expected based on the
known anatomy of the visual system in rats, ipsilateral stimuli
were ineffective and not analyzed further.

Histological processing
Brain tissue was preserved histologically by means of previ-
ously described methods (Smith et al., 2010, 2012; Banks et al.,
2011) to determine electrode track locations upon completion
of in vivo recording experiments. In brief, rats were deeply

Frontiers in Systems Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 191 | 19

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Raz et al. Pathway-specific effects of isoflurane

anesthetized with sodium pentobarbital (90 mg/kg i.p.) and
perfused intracardially with phosphate-buffered saline followed
by 300–500 ml of an aldehyde fixative solution in sodium phos-
phate buffer. Coronal tissue sections 60 μm thick were cut from
the fixed brain, mounted serially on slides, stained with Cresyl
Violet, and coverslipped. Electrode entry, tracks, and tip position
in the brain were determined by examination of serial sections
using light microscopy camera lucida techniques. Locations in the
brain were identified initially using the terminology and atlas of
Paxinos and Watson (2007). Refer to Smith et al. (2012) for a
full description of cytological features used to aid in identifica-
tion of auditory cortical areas. Electrode sites were then mapped
to corresponding functionally-defined auditory areas (Figure 1B)
described in Polley et al. (2007) based on the dorsal-ventral and
rostral-caudal position of the site of electrode entry. Digitized
light level photomicrographs were acquired with a Spot cam-
era (Diagnostic Instruments, Sterling Heights, MI) mounted on
a Nikon Eclipse E600 microscope and prepared using Adobe
Photoshop (San Jose, CA).

BRAIN SLICE EXPERIMENTS
All reagents not specified below were obtained from
Sigma-Aldrich (St. Louis, MO).

Brain slice preparation
Male B6CBAF1/J mice (n = 17 animals; median age = p38,
range = p28–p98) were decapitated under isoflurane anesthesia,
and the brains were extracted and immersed in modified artificial
CSF [mACSF; composed of (in mM) 111 NaCl, 35 NaHCO3, 20
HEPES, 1.8 KCl, 1.05 CaCl2, 2.8 MgSO4, 1.2 KH2PO4, and 10 glu-
cose] at 0–4◦C. HEPES was included to improve slice health and
prevent edema (Macgregor et al., 2001). Two types of slices were
used. Auditory TC brain slices (450 μm; n = 10) were prepared
from the right hemisphere as previously described (Cruikshank
et al., 2002; Verbny et al., 2006). To record responses in audi-
tory cortex to stimulation in extrastriate visual cortex, we also
prepared coronal slices (450 μm; n = 7) from both hemispheres
using standard techniques, as described (Banks et al., 2011). In
these latter slices, we observed that the most consistent responses
to V2 stimulation were observed in slices cut ∼15◦ off the coronal
plane, with the dorsal edge of the slice caudal to the ventral edge.
Slices were maintained in mACSF saturated with 95% O2/5%
CO2 at 24◦C for >1 h before transfer to the recording chamber,
which was perfused at 4–6 ml/min with ACSF [composed of (in
mM) 111 NaCl, 35 NaHCO3, 20 HEPES, 1.8 KCl, 2.1 CaCl2, 1.4
MgSO4, 1.2 KH2PO4, and 10 glucose] at 30–34◦C. In TC slices,
primary auditory cortex was identified based on its position rela-
tive to the hippocampus and strong responses to stimulation of
thalamic afferents, as in previous studies (Verbny et al., 2006).
In coronal slices, primary auditory and extrastriate visual cortex
were identified based on their position relative to the rhinal sul-
cus, midline and hippocampus, as described (Banks et al., 2011).
Cortical layers were identified by differences in cell density and
based on distance from the pia, as in previous studies (Verbny
et al., 2006; Banks et al., 2011). We further used the tissue appear-
ance under bright field illumination to identify the approximate
borders between cortical layers. Layers 4 had a relatively dark

appearance compared to the light colored bands of layers 3, 5,
and 6.

Electrophysiological recordings
LFPs were recorded using silicon multi-electrode arrays consisting
of 16 shanks (15 μm thick, 100 μm spacing) each with one irid-
ium recording site (A16; Neuronexus Technologies). Data were
amplified (HS-16, Lynx8; Neuralynx, Bozeman, MT), low-pass
filtered (10 kHz), digitized (20 kHz; DigiData 1322A; Molecular
Devices, City, State), and recorded using pClamp version 9.2
(Molecular Devices). Afferents were activated using pairs of tung-
sten electrodes (0.1 M�, 75 μm diameter; FHC Inc., Bowdoin,
ME) cemented together at tip separations of ∼50–200 μm.
In coronal slices, stimuli were applied to layer 5 in V2 (see
Figure 6B), as described (Banks et al., 2011). In TC slices, stim-
uli were applied to the superior thalamic radiation, just rostral
to the hippocampus (Verbny et al., 2006), and to layer 1, ∼1 mm
rostral to the recording site (see Figure 6A). Stimuli (100 μs, 50–
200 μA) were applied using constant current stimulus isolation
units (A365, World Precision Instruments, Sarasota, FL) and con-
sisted of either single pulses or brief trains (4 pulses, 40 Hz).
Throughout, we refer to the L1 and V2/L5 stimuli as cortico-
cortical (CC) stimuli, but we note that the L1 stimulus could also
activate matrix TC afferents.

Anesthetic application
Isoflurane (0.5%, 1%, and 2%; Novaplus; Abbott Labs, N.
Chicago, IL) was bath applied to slices from a 500 ml Teflon
gas sampling bags (Fisher Scientific International Inc., Hampton,
NH; cat. No. 10-923-5). Isoflurane was prepared as an aqueous
solution either from a saturated 95% O2–5% CO2 gas diluted
to final concentration in 50% gas (95% O2–5% CO2) and 50%
ACSF in the sampling bags on the day of the experiment, or by
bubbling 95% O2–5% CO2 into ACSF via Isoflurane vaporizer
and measuring the gas concentration at the fluid surface with
an anesthetic gas monitor (Poet II Anesthesia Monitor, Criticare
Systems Inc., Waukesha, WI). Final Isoflurane concentrations in
the bags were verified by either gas chromatography measure-
ments (Gow-Mac Series 580 FID Isothermal Gas Chromatograph,
Gow-Mac Instrument Co., Lehigh Valley, PA) of samples from
each bag, or by sampling the gas concentration in the gas phase
of the bag with an anesthetic gas monitor (Poet II Anesthesia
Monitor, Criticare Systems Inc., Waukesha, WI) after 15 min of
equilibration during shaking of the solution (“The belly dancer,”
Stovall Life Sciences, Stovall, NC). Final anesthetic concentra-
tions and electrophysiological results using the two methods were
indistinguishable and were pooled in all analyses. Concentration
measurements were used as covariates in statistical analysis of the
data in Figures 8C,D.

DATA ANALYSIS
Neuronal data analysis
LFP responses to the different stimuli presented (both in vivo and
in slices) were averaged for each channel triggered on the stimuli.
Separate averaging was performed for each recording condition
(control, isoflurane and recovery) in each recording session. To
obtain steady state effects of isoflurane, LFPs were averaged only

Frontiers in Systems Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 191 | 20

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Raz et al. Pathway-specific effects of isoflurane

FIGURE 1 | Multichannel recordings of sensory responses from

auditory cortex in vivo. (A) Photomicrograph of a section through
auditory cortex of a chronically implanted rat. The electrode trace can be
clearly seen in auditory cortex (arrow ). Scale bar in lower right is 1 mm.
(B) Location of implanted probes: a map with coordinates of the auditory
areas on the rat’s brain (top) and the location of the implanted electrodes
used in the manuscript on the map (black symbol: probe in A). (C–F) LFPs
and derived CSD traces (top row ) and CSD contour plots (bottom row ) in
response to a 50 ms tone burst at best frequency (13.4 kHz, 40 dB SPL;
C; tone onset at time zero), a 1 ms LED flash (D; flash onset at time 0),
combined stimulation (E) of the LED flash (at time 0) and best-frequency
tone (at 96 ms), and the calculated visual modulation of the auditory
response (F; difference between the combined and auditory responses). In

CSD contour plots, sinks are indicated by blue and cool colors. Units for
color bars are μA/mm3 throughout the manuscript. Scale bars (vertical blue
bars) in top row of (C–F): 0.1 mV and 1 μA/mm3. Vertical lines in bottom
row of (C) mark stimulus onsets: black, auditory; magenta, visual. Most
anatomical terminology adopted from Polley et al. (2007), except “Au1,”
“AuD,” and “AuV,” from Paxinos and Watson (2007). Cortical parcellation
scheme in (B) adapted from Polley et al. (2007). Abbreviations: Au1,
primary auditory cortex; AuV, secondary (ventral) auditory cortex; AuD,
secondary (dorsal) auditory cortex; CPu, caudate putamen; LV, lateral
ventricle; st, stria terminalis; fi, fimbria (hippocampus); Rt, reticular thalamic
nucleus; ic, internal capsule; DLG, dorsal lateral geniculate nucleus; AAF,
anterior auditory field; PAF, posterior auditory field; VAF, ventral auditory
field; SRAF, suprarhinal auditory field.
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following 15 min or more of the drug application in vivo. For ani-
mals in which we performed more than one recording session in
a certain isoflurane concentration we averaged the LFP responses
over the corresponding sessions.

Current source density (CSD) (Mitzdorf, 1985) of the aver-
aged LFP responses were estimated using either the spline or
delta inverse CSD method (Pettersen et al., 2006). Briefly, trans-
membrane currents flowing in neurons establish a time varying
distribution of net current sources and sinks that constitutes a
CSD distribution. These sources and sinks give rise to currents
flowing in the extracellular space that are recorded as LFPs. Thus,
the underlying CSD distribution can be calculated from LFP mea-
surements, specifically by taking the second spatial derivative of
the LFP measurements. Due to the relatively homogeneous geom-
etry of neocortical tissue, when a linear electrode array is oriented
perpendicularly to the cortical surface and LFPs are sampled at a
fine enough spatial scale (inter-electrode spacing = 100 μm), the
CSD distribution can be estimated using the standard solution
technique as:

Im = k ∗ [ϕ(z + �z) − 2ϕ(z) + ϕ(z − �z)]
�z2

Where ϕ(z) is the LFP measurement at depth z, �z is the inter-
electrode spacing, and k is a conductivity constant. Positive values
of Im correspond to net current sources, i.e., outward flowing cur-
rent, and negative values correspond to net current sinks, i.e.,
inward flowing currents.

In order to determine the effect of anesthesia on the descend-
ing pathways, we calculated the difference between the response
to a combined auditory + visual stimuli and the response to pure
auditory stimuli for all five auditory stimuli presented in each
experiment, then averaged the resulting five visual modulation
responses (Figure 1F) and refer to it as the visual modulation
response. This modulation response was nearly identical to the
visual response alone, but because it could be derived from all
five auditory stimuli presented, we recorded many more trials
from which to calculate this response and it was often less noisy.
Therefore, we used this visual modulation response for most
analyses.

LFP responses in vivo were evaluated using the channel with
the maximal peak response absolute value during the control
period, and calculating the area under the peak response and
above the significance line (average plus two standard deviation of
the channel potential at rest). Response latency was calculated as
the time from stimulus onset to 10% of the peak of the response.

Two types of measurements were derived from the CSD pro-
file, one to measure the effect of isoflurane on the magnitude of
the sink integral and one to measure the effect of isoflurane on
the spatio-temporal response pattern. Response magnitude was
calculated by first identifying the channel that displayed the max-
imal current sink within a pre-defined response window (in vivo
auditory response: 10–100 ms post stimulus, search for maximum
across all channels; in vivo visual modulation response: 20–300 ms
after the visual stimulus, search for maximum across four deep-
est channels; slice TC and CC responses: 2–22 ms after the first
stimulus in the 4 × 40 Hz train, search for maximum across all

FIGURE 2 | Magnitude of auditory vs. visual modulation response.

Shown is the magnitude (area under the significant peak, i.e., >mean + 2
SD of baseline) of the visual modulation response as a function of the
auditory response in the same animal, recorded under control conditions.
The diagonal is the identity line.

channels). Once the channel containing the peak CSD sink was
identified, the CSD signal on this channel and the two channels
immediately adjacent were thresholded (mean − 2 SD, computed
over the pre-stimulus period) and integrated. To evaluate the
effect of isoflurane on the spatio-temporal response pattern, the
two-dimensional correlation coefficient of the CSD profile within
the response window as defined above was calculated between the
control (pre-drug) and drug and recovery conditions.

Statistical analysis
Statistical analyses were performed in SPSS (v22, IBM). To focus
on the effects of isoflurane per se and not differences in response
magnitude for different stimuli, the data were first normalized
by dividing all the data across all conditions for each stimu-
lus to the mean of the control data (across experiments) for
that stimulus. For the in vivo LFP data of Figure 4B and the
in vivo CSD sink data of Figure 5C, repeated measures analy-
sis of variance (“GLM > Repeated Measures” in SPSS) was used
to determine whether isoflurane had a differential effect on the
auditory vs. visual modulation responses, with condition (con-
trol, drug, recovery) as the within-subjects factor and stimulus
(auditory, visual) as the between-subjects factor. The reported
ANOVA parameters (F statistic, p-value, and effect size) are on
the condition ∗ stimulus interaction term. The effect size pre-
sented is partial η2, which ranges from 0 (i.e., no effect) to 1
and corresponds to the fraction of variance accounted for by
this interaction after controlling for other sources of variabil-
ity. Because for most animals the data were collected separately
for each concentration of isoflurane, the analysis was run inde-
pendently for each drug concentration and the significance level
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was corrected for multiple comparisons to 0.017 (=0.05/3). For
the cross correlation analysis of in vivo responses (Figure 5D),
the control condition always has a value of 1, and thus we used
paired Student’s t-tests at each concentration, with the signifi-
cance level corrected as above. For the brain slice data of Figure 8,
experiments were typically conducted with five conditions (con-
trol, 0.5%, 1%, and 2% isoflurane, and recovery), but in 6 of
25 slices there were missing data points, either experiments in
which only 1 or 2 of the isoflurane concentrations were tested
(n = 4 slices) or experiments that terminated before recovery
data could be obtained (n = 2 slices). These missing data points
required a slightly different approach in SPSS, a linear mixed
model analysis, to investigate the differential effect of isoflurane
on TC vs. L1 and V2/L5 responses. Two approaches were used.
For both approaches, because the results for the two CC stim-
uli were indistinguishable, these data were pooled and compared
to TC responses. In the first, we analyzed the data using drug
condition as a five level factor (Figures 8A,B), which allowed
explicit comparisons at each isoflurane concentration by com-
paring the interaction term parameter estimates, i.e., the slopes
on the fitted regression lines. As for the in vivo data, stimu-
lus (TC, CC) was the between-subjects factor and the reported
F statistic is on the condition ∗ stimulus interaction term. In the
second approach, we treated measured isoflurane concentration
as a covariate (Figures 8C,D). Measured concentrations at nomi-
nal 0.5%, 1%, and 2% isoflurane for TC response data were 0.48 ±
0.035%, 1.0 ± 0.064%, and 2.0 ± 0.14% and for CC response data
were 0.48 ± 0.068%, 0.99 ± 0.14%, and 2.0 ± 0.31%.

The LFP data of Figure 4B, and the sink integral data
of Figures 5C, 8A deviated significantly from normality
(Kolmogorov–Smirnoff test, p < 0.05); log-transformation
alleviated this problem, and the analysis was run on these
log-transformed data. Zeros in the in vivo data (corresponding
to cases where no significant sink was detected) were replaced
by 10−3 for the statistical analysis only. The specific choice of
this replacement value had no qualitative effect on the results
of the analysis. No log transformation was necessary for the
cross correlation data of Figures 5D, 8B. Results are presented
as mean ± SD for data that could be described by a normal
distribution, and as median [1st quartile, 3rd quartile] for data
that deviated significantly from normality.

RESULTS
IN VIVO ELECTROPHYSIOLOGY
The data presented here were obtained from 10 animals in which
probes were localized to a primary auditory field (Figures 1A,B),
probes penetrated at least to layer 5 (Figure 1A) and responses to
both auditory and visual stimuli could be identified in the LFP
(Figure 1C). Angles of entry were close to 0 degrees (i.e., normal
to the surface) in both the dorsal-ventral and anterior-posterior
dimension (mean ± SD: 3.5 ± 6.9◦ D-V, 2.5 ± 2.6◦ A-P).

Responses to auditory, visual, and bimodal stimuli
Pure tones at BF elicited large and well-timed LFP responses,
which corresponded to a stereotypical CSD response profile
(Figure 1C). Shortest latency of significant LFP responses (12.3 ±
2.2 ms) were observed in the middle layers (0.9 ± 0.3 mm), as

expected for responses mediated by core TC afferents (Scheel,
1988; Roger and Arnault, 1989; Romanski and Ledoux, 1993;
Winer et al., 1999; Polley et al., 2007; Storace et al., 2010; Smith
et al., 2012). Brief, early sinks were also observed in the deep-
est layers, consistent with direct projections to layer 6 from
the auditory thalamus (Huang and Winer, 2000; Smith et al.,
2012), and consistent with previous reports (Szymanski et al.,
2009; Constantinople and Bruno, 2013). Subsequent to these pre-
sumably monosynaptic TC sinks, activity spread to supra- and
infragranular layers (Figure 1C).

Visual stimuli elicited long latency (∼50 ms), long lasting
(∼250 ms) responses in primary auditory cortex, consistent with
previous reports of multimodal responses in primary sensory
cortex (Besle et al., 2009; Bizley and King, 2009; Doehrmann
et al., 2010) (Figure 1D). Voltage amplitudes of visual responses
were typically smaller than those of BF tones, but in some ani-
mals were comparable in size (Figure 2). CSD profiles typically
had an alternating sink-source-sink pattern that was maximal
in infragranular layers (Figure 1D). Visual stimuli presented
before or simultaneous with auditory stimuli modulated audi-
tory responses (Figure 1E). This modulation was mostly linear,
and the visual modulation response, i.e., the difference between
the paired and auditory alone responses (Figure 1F), was used for
most subsequent analyses.

Effects of isoflurane on sensory responses in vivo
In order to determine isoflurane dose, we measured the mini-
mal concentration required to achieve reliable LORR in 27 rats
(including all the animals participating in this study). The LORR
isoflurane dose was 0.86 ± 0.06%. We therefore used three isoflu-
rane concentrations: sub-hypnotic (0.4%) in which the rats were
active and responsive, just-hypnotic (0.8–0.9%) the dose in which
LORR was obtained, and deep (surgical) anesthesia (1.6%).

Isoflurane had dose-dependent effects on ongoing activity
in auditory cortex, but only modest effects on average evoked
responses (Figure 3A). The most dramatic effect was burst-
suppression (Hartikainen et al., 1995; Detsch et al., 2002), i.e.,
quiescence punctuated by spontaneous bursts, especially at 1.6%
isoflurane (Figure 3Aiv). Spectral analysis of spontaneous activity
showed enhancement of low frequency LFP components at lower
doses of isoflurane and suppression of higher frequency com-
ponents at 1.6% isoflurane (Figure 3B), as reported previously
(Lukatch et al., 2005; Hudetz et al., 2011). Sensory stimuli also
triggered burst responses that were indistinguishable from spon-
taneous bursts, as reported in visual cortex previously (Hudetz
and Imas, 2007).

In Figure 4A, we show an example of the LFP responses to
the auditory stimulus (left), combined stimulus (middle) and
calculated visual modulation (right) under the different drug con-
ditions recorded on one channel (1.4 mm depth). It can be seen
that auditory LFP response are minimally affected by isoflurane
whereas the visual modulation response is decreased. In order
to quantify this effect we computed the response magnitude,
defined as the area under the maximal peak of the LFP response
for each animal (see Methods). As can be seen in the figure,
the auditory response was mostly unchanged by sub-hypnotic
dose, and increased by larger doses. The visual modulation
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FIGURE 3 | Effect of isoflurane on spontaneous and sensory evoked

responses in auditory cortex. (A) LFPs recorded from one electrode
(depth = 1 mm) during control conditions (i), under increasing doses of
isoflurane (ii–iv) and during recovery (v). In each set, the top five traces are
consecutive single trial LFPs and the bottom trace is the average of 20
responses. Stimulus onset is at t = 0 and was a BF tone at 60 dB SPL.
Note the appearance of burst-suppression at 1.6% isoflurane and the
occurrence of both spontaneous and stimulus-evoked bursts. Scale bar:
1 mV. (B) Mean power spectra of pre-stimulus activity derived from the
animal in (A). Spectra are the average single trial spectra of 220 trials under
each drug condition, and control and recovery traces are averaged across
three experiments.

magnitude, on the other hand, decreased under sub-hypnotic and
just-hypnotic doses. The effect on the magnitude of the audi-
tory and the visual modulation responses (calculated separately
at each concentration; Figure 4B) was significantly different at

the sub-hypnotic and just-hypnotic isoflurane concentrations
[0.4% iso: F(2, 28) = 7.32, p = 0.0105, partial η2 = 0.343; 0.8%
iso: F(2, 36) = 8.71, p = 0.0114, partial η2 = 0.326; 1.6% iso:
F(2, 32) = 1.63, p = 0.214, partial η2 = 0.0926; repeated mea-
sures ANOVA; see Methods]. Post-hoc tests for the sub-hypnotic
and just-hypnotic cases showed significant differences between
auditory and visual modulation responses for the drug condi-
tion but not the control or recovery conditions (p = 0.0185 and
p = 0.00278 for 0.4% and 0.8–0.9%, respectively). The paradox-
ical increase at the highest concentration of isoflurane was due
to late bursting activity elicited by the visual stimulus, as pre-
viously reported in visual cortex (Imas et al., 2004, 2005b). At
this concentration, burst suppression was observed in the ongoing
cortical activity, and sensory stimuli of both modalities often trig-
gered burst responses. However, as visual stimuli triggered bursts
more frequently than auditory stimuli, the response magnitude of
the visual response increased to a greater extent in this condition.

The effects of isoflurane on CSD responses in auditory cortex
were modality specific, with greater suppression of visual mod-
ulation responses at sub-hypnotic and just-hypnotic isoflurane
concentrations (Figure 5). We used two measures to quantify the
effect of isoflurane on CSD responses. First, to measure the effect
of isoflurane on the magnitude of the response, we calculated the
integral of the major current sink for each stimulus under con-
trol conditions (see Methods), and compared this measurement
to the integral of the current sink at the same spatial location
and time window under isoflurane and upon recovery. Second,
to measure the effect of isoflurane on the spatio-temporal pattern
of the response, we computed the averaged CSD responses under
control conditions, and calculated the 2-dimensional correlation
coefficient between this control response and the drug response
(C(ctrl,drug)), within standardized response windows.

Using both measures, isoflurane had a greater effect on visual
modulation compared to auditory responses (Figures 5C,D).
Auditory responses were largely unaffected at 0.4% isoflurane
(median ratio of drug to control [1st quartile, 3rd quartile]: 1.13
[0.317, 1.54]), and enhanced at 0.8% and 1.6% (1.84 [0.759, 3.53]
and 1.91 [0.965, 8.66], respectively), whereas visual modulation
responses were suppressed at 0.4% and 0.8% and enhanced at
1.6% (0.0245 [0.00, 0.622], 0.010 [0.00, 0.459] and 6.09 [3.41,
12.2], respectively). There was a significant difference in the effect
of isoflurane on the sink area of visual modulation vs. auditory
responses at 0.4% and 0.8 – 0.9%, but not at 1.6% isoflurane
[Figure 5C; 0.4% iso: F(2, 28) = 6.22, p = 0.00583, partial η2 =
0.308; 0.8–0.9% iso: F(2, 36) = 7.96, p = 0.00553, partial η2 =
0.307; 1.6% iso: F(2, 32) = 1.04, p = 0.355, partial η2 = 0.0610;
repeated measures ANOVA]. Post-hoc tests for the sub-hypnotic
and just-hypnotic cases showed significant differences between
the auditory and visual modulation responses for the drug condi-
tion but not the control or recovery conditions (p = 0.00318 and
p = 0.00912 for 0.4% and 0.8–0.9%, respectively). Differential
effects of isoflurane on auditory vs. visual modulation responses
were also observed for the correlation coefficient, though the
effect reached statistical significance only at the just-hypnotic
concentration [Figure 5D; mean ± SD C(ctrl,drug) for 0.4% iso:
aud, 0.64 ± 0.22; vis mod, 0.20 ± 0.29, p = 0.0500; for 0.8–0.9%
iso: aud, 0.65 ± 0.11; vis, 0.054 ± 0.32, p = 0.00122; for 1.6%
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FIGURE 4 | Effects of isoflurane on auditory and visual responses.

(A) Single channel LFP responses to a 50 ms best-frequency tone burst
(17.4 kHz, 60 dB SPL) at t = 0 (left), combined stimulation, i.e., 1 ms LED
flash preceding the same tone burst by 65 ms (middle) and the calculated
visual modulation response (difference between the combined response
and the auditory; right). Blue: control; red : 0.8% isoflurane; green:
recovery. Insets show early response components on expanded time

scale. Note visual modulation response component between t = 100 and
200 ms (arrow ) that is suppressed by isoflurane. (B) Summary of drug
effects across animals. Plotted are LFP magnitude (area under the peak
LFP response) of auditory (blue) and modulation (red) responses under
0.4% (left), 0.8–0.9% (middle) and 1.6% isoflurane (right). Open symbols:
individual animals; closed symbols: mean across animals. ∗p < 0.05,
repeated measures ANOVA.

iso: aud, 0.38 ± 0.31; vis mod, −0.26 ± 0.29, p = 0.0192; paired
Student’s t-tests]. As for the LFP data of Figure 4B, the para-
doxical increase in sink magnitude at 1.6% isoflurane was due
to long-latency bursting elicited by visual and auditory stimuli
during burst suppression.

BRAIN SLICE ELECTROPHYSIOLOGY
We have shown that isoflurane suppresses visual modulation of
auditory responses recorded in primary auditory cortex in vivo to
a greater extent than auditory responses. This modality-specific
effect could be due to selective and local effects on synapses in
auditory cortex carrying visual (from higher-order cortical areas
and non-specific thalamus) vs. auditory (specific thalamic) infor-
mation. Alternatively, isoflurane could have a greater effect on
the sources of visual vs. auditory input to auditory cortex, with
these effects reflected indirectly in our recordings. To examine
whether isoflurane can produce this effect at the level of the audi-
tory cortex independently of the effects on upstream areas, we
investigated the effects of isoflurane on TC and CC responses in
auditory cortical brain slices (Figure 6).

CSD responses to TC, L1, and V2/L5 stimulation
We measured extracellular LFP responses in brain slices of audi-
tory cortex to afferent stimulation using multi-channel electrode
arrays in two different brain slice preparations. In TC slices

(n = 10 slices) (Cruikshank et al., 2002; Verbny et al., 2006),
we stimulated TC afferents and compared these responses to
stimulation of CC afferents in L1 (Figures 6A,C, 7A,B). As we and
others have shown previously (Cruikshank et al., 2002; Verbny
et al., 2006), stimulation of the fiber pathway just rostral to the
medial geniculate in auditory TC brain slices triggered short
latency (2.3 ± 0.7 ms), presumably monosynaptic LFP responses
that corresponded to current sinks in granular layers (Figure 6C).
The spatial location of this short latency sink was similar to the
initial current sink observed in middle layers in vivo in response
to auditory stimuli.

To activate CC fibers, in 8 of these 10 TC slices we stimulated
in layer 1 approximately 0.5–1 mm rostral to the recording site
(Figure 6A). The spatial CSD profile of the responses to stim-
ulation in layer 1 consisted of a short latency (5.9 ± 1.9 ms),
presumably monosynaptic current sink. In most slices (7/8) this
early sink was maximal in the supra-granular layers (4/8 in layer
1–2, 3/8 in layer 2–3; Figure 7A), consistent with the known
anatomy of these fibers and with previous reports (Cauller and
Connors, 1994). In one slice L1 stimulation elicited an early
current sink in layer 5 (not shown). We note that the spatial
profiles of these responses are distinct from the response to TC
stimulation.

Responses were examined in coronal slices as well (n = 7 slices;
Figure 6B), in which we were able to better isolate CC from the
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FIGURE 5 | Effect of isoflurane on spatiotemporal activity patterns in

auditory cortex. (A) CSD profiles of responses recorded in one animal to an
auditory stimulus (50 ms tone, 17.4 kHz, 40 dB SPL) alone (top) and visual
modulation of the auditory response (bottom) recorded in room air (left),
0.4% isoflurane (center ) and recovery (right). Note early auditory response
component (asterisk) that is relatively unaffected by isoflurane, and
alternating supra- and infragranular sinks during visual modulation response

(asterisks) that are suppressed by isoflurane. In center and right panels,
asterisks are plotted at the same relative positions as in left panel.
(B) Normalized response magnitude (left; normalized to the average of the
control values) and correlation coefficient between control and drug and
recovery responses (C(ctrl,cond )) for the data in (A) (red : auditory; blue:
visual modulation). (C–D) Summary across animals. Magnitude

(Continued)
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FIGURE 5 | Continued

(C) and correlation coefficient (D) of the auditory (red ) and visual
modulation (blue) responses under different isoflurane concentrations.

Open symbols: single animals; filled symbols: average across animals.
∗p < 0.05, repeated measures ANOVA, in (C) and p < 0.017, paired
Student’s t-test, in (D).

FIGURE 6 | Thalamo-cortical and cortico-cortical responses in brain

slices. (A) Photomicrograph of a TC slice. Recording array is in auditory
cortex, and stimulating electrodes are in the TC afferent bundle and in layer 1
of a proximal cortical region. For scale reference, inter-electrode spacing in
the recording array is 100 μm. (B) Photomicrograph of a coronal slice.
Recording array is in auditory cortex, and stimulating electrodes in upper layer

5 of area V2. (C) LFP responses at different depths (top left) and derived CSD
(top right; bottom) in response to a train of 4 × 40 Hz stimuli of the TC fibers.
Same slice as in (A). Only electrodes that were in the cortex are shown and
were used for further calculations. Scale bars 0.1 mV and 1 μA/mm3. (D)

Similar to (C), but for stimulation of V2 in layer 5. Same slice as in (B) Scale
bars 0.1 mV and 1 μA/mm3.

non-specific TC fibers that also travel in L1. In this preparation,
slices were prepared that preserved the descending CC projec-
tion from extrastriate visual cortex (V2) to primary auditory
cortex, as previously described (Banks et al., 2011). To activate
V2, we stimulated in L5, where descending projection cells are
concentrated (Felleman and Van Essen, 1991). The CSD response
profile to V2 stimulation was again distinct from the TC response

profile, with prominent short-latency (5.2 ± 2.0 ms), presumably
monosynaptic current sinks observed either in infragranular lay-
ers (4/7 slices) or in the superficial layers (3/7 slices) (Figure 6D),
as for L1 stimulation in TC slices. The latencies of the early TC
evoked sinks were shorter than those of the different CC responses
(p < 0.001, unpaired Student’s t-test for both TC to L1 and TC
to V2 comparisons), whereas there was no significant difference
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FIGURE 7 | Effects of isoflurane on synaptic responses in brain slices.

(A,B) CSD response to a L1 stimulus (A) and TC stimulus (B) in the same TC
slice under increasing isoflurane doses (left to right: control, 0.5%, 1%, 2%
and recovery). (C) Magnitude of the response (area under the maximal sink in

response to the first stimulus in the train, normalized to the average of the
control and recovery responses) for the data in (A) (blue) and (B) (red ).
(D) Correlation coefficient between the control response and each drug
condition for the data in (A,B); color code as in (C).

between the latencies of the two CC responses (p = 0.497,
unpaired Student’s t-test).

TC and CC afferent stimuli could also trigger longer latency
polysynaptic activation of supra- and infragranular layers. This
activity originated in layer 5 and often spread to more super-
ficial layers (e.g., the late current sink in layer 5 at ∼0.055 s in
Figure 6C, bottom), and appeared as all-or-none network bursts;
shorter latencies to polysynaptic activity were observed with
higher stimulation strength or the presence of multiple stimuli
in a train. This polysynaptic activity has been observed previ-
ously in auditory, visual, and somatosensory brain slice prepa-
rations (Metherate and Cruikshank, 1999; Sanchez-Vives and
McCormick, 2000; Cruikshank et al., 2002; Maclean et al., 2005;
Watson et al., 2008; Rigas and Castro-Alamancos, 2009), where it
has been shown to be non-epileptiform in nature and represent
an in vitro correlate of UP states that occur in vivo (Sanchez-Vives
and McCormick, 2000; Shu et al., 2003; Cunningham et al., 2006;
Rigas and Castro-Alamancos, 2007).

Effects of isoflurane on electrophysiological responses in brain
slices
To determine whether the effects of isoflurane observed in vivo
could be accounted for by local effects of the drug in audi-
tory cortex, we applied isoflurane dissolved in ACSF to brain
slices and measured the effects on CSD responses to stimulation
of TC and CC (L1 and V2/L5) pathways. Three concentrations
of isoflurane were applied (0.5%, 1%, and 2%), corresponding

approximately to the three concentrations employed in vivo after
taking into account loss of isoflurane gas in the recording cham-
ber (see Methods). Examples of the effect of isoflurane on short
latency synaptic responses can be seen in Figure 7, which we focus
on for all further analysis. Polysynaptic activity driven by both
TC and CC stimuli were suppressed by isoflurane (not shown).
Consistent with our observations in vivo, bath application of
isoflurane suppressed short latency L1 and V2/L5 responses in
brain slices to a greater extent than TC responses. As for the
in vivo data, we measured the change in the response strength
using the sink integral and the response pattern using the 2-D cor-
relation coefficient. Although isoflurane reduced the magnitude
of both TC and CC sink integrals, it had a significantly greater
effect on CC responses compared to TC responses at 1% and
2% isoflurane (Figures 8A,C). Because the effects of isoflurane on
L1 and V2/L5 responses were indistinguishable, we pooled these
data and compared to the effects on TC responses. We found
that the sink integral was suppressed by isoflurane to a greater
extent at each concentration tested (TC vs. CC median ratio of
drug to control [1st quartile, 3rd quartile] at 0.5% iso: 0.836
[0.656, 1.06] vs. 0.616 [0.379, 0.784]; 1% iso: 0.737 [0.521, 0.856]
vs. 0.379 [0.248, 0.506]; 2% iso: 0.356 [0.312, 0.649] vs. 0.088
[0.0400, 0.281]). Statistical analysis using a linear mixed model
(see Methods) to compare the effects of isoflurane on TC vs. CC
responses found a significant effect overall using drug condition
as a categorical factor [F(4, 82.4) = 9.07, p = 4.00e-6], with signif-
icant differences in the interaction terms at 1% and 2% isoflurane
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FIGURE 8 | Differential sensitivity of CC vs. TC pathways to isoflurane.

(A,B) Effect of isoflurane on sink integral (A) and 2D-cross correlation (B) of
responses to TC (red ), V2\L5 (blue), and layer 1 (green) stimuli under
increasing isoflurane concentrations (left to right: control, 0.5%, 1%, 2% and
recovery). Open marks represent single slices and filled marks represent the
average. (C,D). Linear mixed model fits to sink integral (C) and 2D-cross

correlation (D) of responses to TC and CC stimuli plotted as function of actual
measured isoflurane concentration. Shaded areas (red : TC; gray : CC)
represent 95% confidence bounds for the model fits. Note the similarity in
the effects of isoflurane on responses to the two types of CC stimuli
(obtained in two different slice preparations), whereas the TC response is
much less affected. ∗p < 0.05, repeated measures ANOVA.

[t(−2.88), p = 5.023e-3 and t(−5.34), p = 8.17e-7, respectively].
Similar results were obtained when measured isoflurane concen-
tration was included as a covariate [instead of drug condition
as a factor; F(1, 88.7) = 26.2, p = 2.00e-6; slopes and 95% con-
fidence intervals for the stimulus ∗ [iso] terms were −0.155
[−0.248, −0.062] for TC and −0.465 [−0.580, −0.345] for CC].
Converting back from logarithmic units, this tells us that the slope
of the iso effect on the TC response was about −30% change/unit
% isoflurane, compared to a slope of >−65% change/unit %
isoflurane for the CC response, i.e., a suppressive effect that is
more than twice as strong for CC vs. TC responses.

Similar effects on the response pattern were observed by
measuring the response window correlation coefficient, but in
this case significant differences between effects on TC and CC
responses were observed at all three concentrations of isoflurane
(Figures 8B,D; mean ± SD C(ctrl,drug) for TC vs. CC at 0.5%
iso: 0.97 ± 0.020 vs. 0.87 ± 0.069; 1% iso: 0.93 ± 0.050 vs.
0.77 ± 0.13; 2% iso: 0.91 ± 0.061 vs. 0.60 ± 0.15). Statistical
analysis showed a significant effect overall using drug condition
as a categorical factor [F(4, 83.2) = 19.2, p = 3.30e-11], and sig-
nificant effects at all three concentrations of isoflurane [effects
on interaction term for 0.5% iso: t(−2.97), p = 3.94e-3; 1%
iso: t(−4.58), p = 1.6e-5; 2% iso: t(−8.30), p = 1.56e-12]. Similar
results were obtained when measured isoflurane concentration

was included as a covariate [instead of drug condition as a
factor; F(1, 90.5) = 36.5, p = 3.38e-8; slopes and confidence inter-
vals for the stimulus ∗ [iso] terms were −0.0316 [−0.0637,
0.000545] for TC and −0.156 [−0.199, −0.115] for CC].
Thus, the slope of the iso effect on the TC response was
about −7% change/unit % isoflurane, compared to a slope
of >−30% change/unit % isoflurane for the CC response, i.e.,
an effect that is more than four times as strong for CC vs. TC
responses.

Although the magnitude of CC responses was on average
smaller than TC responses under control conditions, the larger
magnitude of the TC response did not play a role in the dif-
ferential effect of isoflurane. This can be seen in plots of the
ratio of the response under each drug condition to the con-
trol response as a function of the control response magnitude
(Figure 9). Larger effects of isoflurane would manifest as scat-
ter plots with positive slopes; by contrast, in all cases the data
exhibited significant negative slopes (not shown), indicating that
stronger responses had a slight tendency to be more suppressed by
isoflurane.

The observation that isoflurane decreases the magnitude of
synaptic current sinks in brain slices suggests a local action of
isoflurane on the TC network. Previous studies have demon-
strated that volatile anesthetics can suppress synaptic responses
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FIGURE 9 | Modulation of synaptic responses in slices by isoflurane

is independent of control response magnitude. Ratio of the
response in drug to the response in control, plotted as a function of
the control response magnitude, at different isoflurane concentrations

(left to right: 0.5%, 1%, 2%). Note the dose-dependency of the
isoflurane effect (i.e., compare across panels), but that small
responses within any given panel are not more affected by isoflurane
than large responses.

by acting presynaptically to reduce neurotransmitter release
(Perouansky et al., 1995; Maciver et al., 1996; Kirson et al., 1998).
One possible mechanism for the differential effects of isoflurane
observed here is greater sensitivity of CC synaptic terminals in
supra- and infragranular layers to such suppressive effects com-
pared to TC synaptic terminals in granular layers. We investigated
this issue by evaluating effects of isoflurane on short-term plastic-
ity of responses to TC, L1, and V2/L5 stimulation by presenting
trains of stimuli at 40 Hz. Under control conditions, TC pathways
exhibited short-term depression, whereas L1 and V2/L5 exhib-
ited a wide range of plasticity including both facilitation and
depression (Figures 10A,B—left column). The short-term plas-
ticity in the L1 and V2/L5 responses was indistinguishable, and to
examine the effect of isoflurane these data were pooled together.
Interestingly, we observed that the isoflurane effect on short-term
plasticity was minimal in both TC and CC pathways. Statistical
analysis of the ratio of the fourth to first response in the 4 × 40 Hz
train indicated no effect of drug condition [TC: F(4, 28) = 0.716,
p = 0.428, partial η2 = 0.093; CC: F(4, 36) = 1.368, p = 0.280,
partial η2 = 0.132; repeated measures ANOVA run separately for
TC and CC stimuli, within-subjects factor = condition (control,
0.5%, 1%, 2%, recovery)]. These data suggest that changes in
release probabilities as manifested in short-term plasticity (Del
Castillo and Katz, 1954; Zucker, 1989) do not play a major role in
the effects of isoflurane.

DISCUSSION
PATHWAY-SPECIFIC ACTIONS OF ISOFLURANE
We have shown that LFP responses in auditory cortex to visual
vs. auditory and CC vs. TC inputs are differentially modulated
by the general anesthetic isoflurane. We distinguished bottom-up
responses to acoustic stimuli in vivo, driven largely by ascending
thalamic input from MGv (based on the laminar profile of current
sinks), as well as responses in vitro to direct stimulation of the TC
fiber pathway, and compared these to “top-down” responses, such

as responses to visual stimuli in vivo, driven largely by descending
CC and matrix thalamic input, as well as CC responses in vitro
to stimulation in V2/L5 and L1. Isoflurane suppressed visual and
CC responses to a greater extent than auditory and TC responses
in auditory cortex, consistent with reports of differential effects
on bottom-up vs. top-down connectivity derived from EEG and
imaging data in humans (Imas et al., 2005a; Peltier et al., 2005;
Alkire, 2008; Lee et al., 2009, 2013b; Ku et al., 2011; Liu et al.,
2011; Schrouff et al., 2011; Boly et al., 2012). Our observations
in vitro indicate that the effects of isoflurane observed in vivo
can be accounted for largely by local, pathway-specific actions
of isoflurane in auditory cortex. Results were remarkably consis-
tent between V2/L5 and L1 stimulation in the two different slice
preparations investigated (Figure 8), suggesting that the observed
suppression of synaptic responses generalizes across multiple CC
pathways. One difference between the results in vivo and in vitro
that merits further investigation was that we observed a greater
suppressive effect of isoflurane on TC responses in brain slices
compared to auditory responses in vivo (see below). Although
responses to CC stimuli were in general smaller than those to TC
stimuli at comparable stimulation intensity, the differential effect
of isoflurane cannot be explained simply by the magnitude of the
synaptic response, i.e., greater suppression of smaller responses,
as we observed no relationship between the effect of isoflurane
and the magnitude of the response under control conditions
(Figure 9).

CSD RESPONSES UNDER CONTROL CONDITIONS
Within a cortical column, the laminar segregation of synaptic
terminals arising from afferent fibers as well as intra-columnar
connections results in specific spatio-temporal patterns of activ-
ity that vary with the input fiber pathway engaged (Felleman and
Van Essen, 1991). Responses to acoustic stimuli and to stimula-
tion of core TC fibers elicited current sinks with largest amplitude
and shortest latency in middle layers (Figure 1C), consistent with
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FIGURE 10 | Short-term plasticity was not changed by isoflurane.

Synaptic current sink magnitude during a 4 × 40 Hz train normalized to the
response to the first stimulus in the train under different isoflurane
concentrations (left to right: control, 0.5%, 1%, 2%, and recovery) for TC (A)

and CC (B) stimuli. Horizontal axis is the stimulus number within the train.

Note that although trains of 4 stimuli were presented in all experiments, only
sinks that differed significantly from baseline (i.e., >mean + 2 SD) are plotted
in the figure. It can be seen that TC stimulation always displayed short-term
depression whereas CC stimulation could display either depression or
facilitation. However, isoflurane did not affect this short-term plasticity.

highest thalamic synaptic terminal density in granular layers 3
and 4 (Shi and Cassell, 1997; Huang and Winer, 2000; Smith et al.,
2012). A secondary current sink of similar latency was sometimes
observed in the deepest layers, consistent with the observed sec-
ondary projection of MGv to layer 6 (Smith et al., 2012). Similar
CSD patterns have been observed previously in auditory cortex
in vivo and in vitro (Cruikshank et al., 2002; Kaur et al., 2005;
Lakatos et al., 2005; Szymanski et al., 2009).

In contrast to the CSD pattern elicited by TC stimulation,
responses to CC stimuli were dominated by current sinks in either
supra- (Figures 6B, 7A) or infragranular (not shown) layers. This
sink/source pattern was complementary to that elicited by TC
stimulation, analogous to the complementary nature of TC vs.
CC afferent terminal density patterns (Smith et al., 2010, 2012;
Banks et al., 2011), and is consistent with these stimuli engag-
ing different afferent fiber pathways. Complimentary activation
patterns have been observed in auditory cortex for acoustic and

non-acoustic sensory stimulation previously (Lakatos et al., 2007,
2009).

Several papers have indicated that visual stimuli and eye move-
ments can elicit responses on their own or alter responses to
auditory stimuli in auditory cortical areas including primary
auditory cortex (Fu et al., 2004; Besle et al., 2009; Bizley and
King, 2009). The anatomical projections carrying visual informa-
tion to auditory cortex terminate with highest density in supra-
and infragranular layers (Miller and Vogt, 1984; Budinger et al.,
2006; Bizley et al., 2007; Smith et al., 2010) in a classically top-
down/modulatory pattern (Felleman and Van Essen, 1991; Shi
and Cassell, 1997; Kimura et al., 2004). Cortical descending pro-
jections are postulated to carry expectation- and memory-based
predictive information to be integrated with ascending sensory
information (Bar, 2009; Bastos et al., 2012). Recent experimen-
tal observations (Covic and Sherman, 2011; De Pasquale and
Sherman, 2011) and theoretical considerations (Bastos et al.,
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2012) suggest that these inputs may be both modulatory and driv-
ing. We found that the response to a combined auditory-visual
stimuli was well-described by the linear sum of the two sep-
arate responses. Although some previous studies have shown
super-additive effects of somatosensory and auditory inputs to
auditory cortex (Ghazanfar et al., 2005; Lakatos et al., 2007), these
effects were observed for near-threshold stimuli, whereas higher
intensity stimuli, similar to what we employed in this study,
were simply additive, as seen in our data (inverse effectiveness
phenomenon).

Responses in slices were dominated by early, putatively
monosynaptic current sinks that were of limited extent spatially
and temporally, followed by late, burst responses reminiscent of
UP state activity reported previously in cortical slices (Metherate
and Cruikshank, 1999; Sanchez-Vives and McCormick, 2000;
Cruikshank et al., 2002; Maclean et al., 2005; Watson et al.,
2008; Rigas and Castro-Alamancos, 2009; Wester and Contreras,
2012). By contrast, CSD responses in vivo exhibited intermedi-
ate latency current sinks in supra- and infragranular layers and
likely reflected polysynaptic sensory responses within the cortical
column. Responses to visual sensory stimuli in auditory cortex
in vivo and CC (V2/L5 and L1) stimulation in brain slices were
less similar (compare Figures 1D and 6D), in that the latency
and duration of visual responses were much longer than V2/L1
responses in slices, and sinks in vitro were confined to either the
supra- or infragranular layer (usually the former), whereas in vivo
we observed an alternating sink/source pattern that was most pro-
nounced in the infragranular layers, and often alternated between
infra- and supragranular layers (Figures 1D,F). These differences
are not unexpected given the different stimulation paradigms
utilized. Visual stimuli in vivo evoke long-latency responses in
auditory cortex (Bizley et al., 2007; Kayser et al., 2008; Schroeder
et al., 2008) due to slow transduction in the retina as well as
the circuitous synaptic pathway carrying visual information to
auditory cortex. The accumulated jitter in the latencies of visual
thalamic and cortical cells will distribute temporally responses
in vivo. By contrast, in our slice experiments, electrical stim-
ulation of L1 or V2/L5 fiber pathways synchronously activated
cells and fibers with monosynaptic, short distance projections
to auditory cortex, resulting in shorter latency, less dispersed
responses.

We used two different species for our recordings in vivo and
brain slices. The reason for this was a practical one. The TC slice
preparation has only been described for mice, and thus rats are
unsuitable for the brain slice experiments. However, for in vivo
recordings we wished to have both the LED mount and the 16-
channel connector cemented into the animal’s headcap, and the
skulls of mice did not provide sufficient surface area to achieve
this easily whereas rats’ skulls did. Besides for the broad similar-
ities apparent in cortical anatomy and physiology (Ehret, 1997;
Stiebler et al., 1997; Kaur et al., 2005), we have shown that one of
the afferent pathways central to the current study, the projection
from V2 to A1, exhibits remarkable similarity between the two
species (Smith et al., 2010; Banks et al., 2011). However, it is possi-
ble that subtle differences in connectivity and response properties
in the two species contributed to some of the differences between
our results in vivo and in brain slices.

MODULATION OF RESPONSES BY ISOFLURANE
Several recent studies have emphasized the roles of brainstem and
midbrain nuclei in acting as switches that control the arousal level
and hypnotic effects of anesthetic agents (Devor and Zalkind,
2001; Nelson et al., 2002; Alkire et al., 2007; Langsjo et al.,
2012; Solt et al., 2014), but there is overwhelming evidence that
consciousness itself is a phenomenon of the cortico-thalamic net-
work (Llinas et al., 1998; Crick and Koch, 2003; Tononi, 2004;
Alkire et al., 2008b; Mashour, 2013). Anesthetic actions on nuclei
involved in arousal and the sleep/wake cycle are likely to consti-
tute on/off switches whose effects are mediated through actions in
the cortico-thalamic network. The results presented here, as well
as recent study demonstrating layer- and area-specific effects of
anesthesia in cortex (Sellers et al., 2013), will aid in understand-
ing mechanistically how actions in the cortico-thalamic network
can mediate changes in consciousness.

Early studies on anesthetic modulation of cortical responses to
auditory stimuli reported a reduction and slowing of field poten-
tials recorded at the surface by several classes of anesthetic agents
at surgical (i.e., higher than just-hypnotic) doses (Schwender
et al., 1993b,c, 1994). These results indicated that the magnitude
of mid-latency auditory evoked responses, which derive at least in
part from activation of auditory cortex (Milner et al., 2014), could
be used to predict the extent of verbal memory retention under
anesthesia. Similar results have been obtained more recently in
imaging studies in humans, which have shown general anesthet-
ics suppress auditory cortical fMRI BOLD signals in response to
musical or speech stimuli (Dueck et al., 2005; Kerssens et al., 2005;
Plourde et al., 2006). Interestingly, decreased BOLD responses,
and impaired memory, are observed even at sub-hypnotic doses,
and thus may reflect effects on higher order cortical processing
related to memory formation rather than stimulus identifica-
tion per se. Consistent with this hypothesis, a more recent study
reported that cortical responses to verbal stimuli are maintained
in primary auditory cortex, but disrupted in higher order cortex,
under deep propofol sedation (Liu et al., 2011).

In animal studies, in which primary sensory cortex can be tar-
geted specifically and neuronal responses measured directly, it
has long been known that sensory-evoked responses are main-
tained under anesthesia (Mountcastle et al., 1957; Hubel and
Wiesel, 1959; Merzenich et al., 1975). For example, the tonotopic
organization in auditory cortex appears to be preserved under a
variety of anesthetic agents (Merzenich et al., 1975; Guo et al.,
2012). Dose-dependent suppression by isoflurane of some, but
not all, epidurally-recorded evoked responses has been observed
(Santarelli et al., 2003), though in visual cortex high anesthetic
doses have been reported to enhance LFP responses to sen-
sory stimuli (Imas et al., 2005b). We observed similar enhanced
response amplitude at the highest dose (1.6%) tested, which was
sufficient to cause a burst-suppression spontaneous activity pat-
tern (not shown) (Hartikainen et al., 1995). At this concentration,
both auditory and visual stimuli could elicit burst responses that
were stereotypical and likely reflected engagement of the same
cortical circuitry underlying spontaneous bursts. At all concen-
trations tested, however, the magnitude and overall pattern of the
response to auditory stimulation was relatively resistant to isoflu-
rane (Figures 4, 5). In brain slices, isoflurane suppressed early
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current sinks in response to TC stimulation, though the effect
was much more modest than for CC responses (Figures 7, 8). It is
possible that enhanced acoustic responses in the auditory periph-
ery compensate in vivo for suppression of TC synaptic responses
in cortex; alternatively, species differences may account for some
of the differences between our results in vivo and in slices (see
above).

Our results in vivo stand in contrast to the thalamic switch
hypothesis (Alkire et al., 2000), in which anesthetics cause LOC by
impairing information flow along the TC pathway. Several studies
have reported suppressed activity in thalamus at clinically rele-
vant doses, both in vitro and in vivo (Ries and Puil, 1999; Alkire
et al., 2000; Alkire, 2008; Langsjo et al., 2012; Schroter et al.,
2012), and thalamic micro-injections of GABAergic and cholin-
ergic agonists can trigger loss and recovery of consciousness,
respectively, in rats (Miller, 1992; Alkire et al., 2007). However,
evidence suggests that anesthetics selectively target non-specific
thalamic nuclei, leaving ascending sensory pathways intact (Liu
et al., 2013), and, as for anesthetic effects on cortical activity,
reductions in thalamic activity can occur even when LOC does
not (Alkire et al., 2008a).

In contrast to relatively preserved signals in sensory cortex
for stimuli of the primary modality and for core TC responses,
we have shown that responses to stimuli of a secondary modal-
ity and CC responses are preferentially suppressed by isoflurane.
These results are broadly supportive of a mechanism based on
cortico-thalamic network disruption, derived from the infor-
mation integration theory of consciousness and the cognitive
unbinding hypothesis (Tononi, 2004; Mashour, 2013). We note
that disruption of multimodal integration while leaving primary
sensory pathways intact is a specific prediction of the latter model.
Consistent with these results, multimodal interactions between
auditory and visual cortex in humans under resting state condi-
tions, presumably reflecting suppression of concurrent activity in
the two regions that arises due to direct or indirect synaptic con-
nections, are suppressed at hypnotic doses of propofol (Boveroux
et al., 2010). Although this is the first direct observation of differ-
ential effects of anesthetics on sensory afferent pathways, these
results are consistent with previous studies showing that anes-
thetics at hypnotic doses reduce effective connectivity between
cortical areas, and especially descending connections (Ku et al.,
2011; Schrouff et al., 2011; Lee et al., 2013b).

Interestingly, we observed that suppression of the visual
response in auditory cortex in vivo reached a significant level even
at sub-hypnotic doses of isoflurane. At these doses, the animal
had intact righting reflex, but their overall behavior and behav-
ioral responses to external stimuli were not assayed explicitly.
The decreased response may be related to a gradual decrease in
the consciousness level of the animal, or to a decreased level of
sensory integration and awareness. Previous studies have shown
that sub-hypnotic doses of volatile anesthetics can modulate neu-
ronal activity (Antkowiak and Helfrichforster, 1998; Hentschke
et al., 2005; Becker et al., 2012) as well as learning and a vari-
ety of behaviors (Cook et al., 1978; Dwyer et al., 1992; Alkire
and Gorski, 2004; Burlingame et al., 2007). In predictive coding
models, descending signals reflect memory traces engaged to pre-
dict observed responses throughout the cortical hierarchy (Rao

and Ballard, 1999; Bar, 2009; Bastos et al., 2012; Wacongne et al.,
2012). Evidence indicates that memory formation is extremely
sensitive to anesthesia, with concentrations suppressing recall
approximately one half those causing LOC (Alkire and Gorski,
2004; Perouansky et al., 2010). In humans, the incidence of recall
under anesthesia is exceedingly low, estimated to occur in at most
0.1–0.2% of patients (Myles et al., 2004; Avidan et al., 2011). It
is possible that this high sensitivity of memory to anesthesia is
related to suppression of multimodal and CC responses (Newton
et al., 1990; Alkire and Gorski, 2004).

There are a number of possible mechanisms for the differen-
tial effects of isoflurane on V2/L5 and L1 vs. core TC synaptic
responses. First, isoflurane may act presynaptically, reducing neu-
rotransmitter release in a synapse-specific way. There is prece-
dence for this type of specificity, in that volatile agents have been
shown to preferentially reduce synaptic release of glutamate com-
pared to GABA (Perouansky et al., 1995; Maciver et al., 1996;
Maciver, 1997; Kirson et al., 1998; Westphalen and Hemmings,
2006a,b; Peters et al., 2008). We note, however, that we were
unable to detect evidence for a presynaptic mechanism based
on paired pulse facilitation of TC, V2/L5, and L1 responses
(Figure 10). Isoflurane could also affect axonal excitability, and
thus sensitivity to electrical stimulation, which would not be
manifest in changes in short-term plasticity. We did not observe
fiber volley components in our recordings except at higher stim-
ulus intensities than those employed here and thus we cannot
exclude this possibility. However, fiber volleys in hippocam-
pus have been shown to be insensitive to isoflurane except at
extremely high concentrations (Winegar and Maciver, 2006).
These observations suggest that the differential effect of isoflu-
rane may rely on postsynaptic differences in synapse location, in
which more distal synapses (V2/L5 and L1) will be more affected
compared to more proximal synapses (core TC) due to anesthetic
effects on postsynaptic membrane properties [e.g., potassium leak
currents (Franks and Lieb, 1999; Patel et al., 1999; Putzke et al.,
2007)].

FUNCTIONAL IMPLICATIONS
In predictive coding models of sensory processing, the nervous
system compares at each moment in time the expectations about
impending sensory input with what is actually observed (Hawkins
and Blakeslee, 2005; Bar, 2009; Bastos et al., 2012). These expec-
tations are based on memory and the statistical regularity of the
physical world, and this integration of top-down and bottom-
up information streams is postulated to be the critical step in
sensory awareness. We have used sensory stimuli and electrical
stimulation to activate selectively ascending and descending path-
ways to auditory cortex, and have demonstrated that descending
pathways are preferentially suppressed by clinically relevant doses
of the volatile anesthetic isoflurane. These data are thus con-
sistent with the emerging model of how loss and recovery of
consciousness occur under anesthesia, in which anesthetic agents
preferentially suppressing top-down connections and thus inter-
fering with predictive coding, and provide evidence that the
integration of top-down and bottom-up signals is indeed a neces-
sary component of consciousness. We note that the data presented
here, although representing a direct test of the predictions of the
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cognitive unbinding and information integration theories, are
by themselves correlative in nature. In particular, although we
used doses of isoflurane calibrated to be just-hypnotic, we did
not assay the specific involvement of top-down projections in
consciousness, test the role of their disruption in LOC, or assay
sensory awareness or recall directly. Such direct tests await future
studies in which level of consciousness can be measured simulta-
neously with measurements of top-down connectivity, and more
importantly these top-down connections can be manipulated
independently to investigate their causal role in loss and recov-
ery of consciousness. For example, experiments in which opto- or
pharmacogenetic methods are used to selectively inhibit, under
awake conditions, or activate, under LOC, descending and matrix
thalamic projections will allow us to more firmly establish a causal
role for top-down connectivity in sensory awareness.
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Recent studies of propofol-induced unconsciousness have identified characteristic
properties of electroencephalographic alpha rhythms that may be mediated by drug
activity at γ-aminobutyric acid (GABA) receptors in the thalamus. However, the effect of
ketamine (a primarily non-GABAergic anesthetic drug) on alpha oscillations has not been
systematically evaluated. We analyzed the electroencephalogram of 28 surgical patients
during consciousness and ketamine-induced unconsciousness with a focus on frontal
power, frontal cross-frequency coupling, frontal-parietal functional connectivity (measured
by coherence and phase lag index), and frontal-to-parietal directional connectivity
(measured by directed phase lag index) in the alpha bandwidth. Unlike past studies of
propofol, ketamine-induced unconsciousness was not associated with increases in the
power of frontal alpha rhythms, characteristic cross-frequency coupling patterns of frontal
alpha power and slow-oscillation phase, or decreases in coherence in the alpha bandwidth.
Like past studies of propofol using undirected and directed phase lag index, ketamine
reduced frontal-parietal (functional) and frontal-to-parietal (directional) connectivity in the
alpha bandwidth. These results suggest that directional connectivity changes in the alpha
bandwidth may be state-related markers of unconsciousness induced by both GABAergic
and non-GABAergic anesthetics.

Keywords: ketamine, consciousness, general anesthesia, anesthetic-induced unconsciousness, anesthetic

mechanisms

INTRODUCTION
Ketamine is an anesthetic drug that was introduced into clin-
ical practice in the 1960s (Corssen and Domino, 1966) and
is currently used for the induction of unconsciousness and,
at subanesthetic doses, the prevention of acute pain or the
treatment of depression. Ketamine is unique in the class of
general anesthetics for a number of reasons. At the molec-
ular level, the γ-aminobutyric acid (GABA)A receptor is not
the primary target for ketamine, unlike many drugs used for
the induction and maintenance of general anesthesia. Rather,
ketamine is thought to act by antagonizing glutamatergic N-
methyl-D-aspartate (NMDA) receptors (like the related anesthet-
ics nitrous oxide and xenon) and/or hyperpolarization-activated
cyclic-nucleotide gated (HCN)1 channels (Yamamura et al., 1990;
Chen et al., 2009; Zhou et al., 2013). At the neurochemical
level, ketamine is unique because it increases cortical acetyl-
choline levels and appears to depend on noradrenergic signaling
for its effects, in contrast to a number of GABAergic anesthet-
ics (Kikuchi et al., 1997; Kushikata et al., 2011). At the sys-
tems neuroscience level, ketamine is also distinct because it does
not metabolically activate the ventrolateral preoptic nucleus, a
sleep-promoting nucleus in the hypothalamus that is activated
by commonly-used anesthetics such as propofol and isoflurane;

instead, it activates the wake-promoting locus coeruleus (Lu et al.,
2008). Furthermore, in contrast to virtually all other anesthetic
and sedative drugs, ketamine does not appear to metabolically
depress the thalamus (Långsjö et al., 2005). Finally, at the neu-
rophysiologic level, ketamine tends to increase the power of
high-frequency electroencephalographic activity, whereas most
anesthetics depress this bandwidth (Maksimow et al., 2006).
Ketamine therefore fails to conform to virtually all mechanistic
frameworks of anesthetic-induced unconsciousness.

Despite the many unique characteristics of ketamine, we
recently demonstrated that anesthetic doses of ketamine selec-
tively inhibit frontal-to-parietal directed connectivity, as mea-
sured by symbolic transfer entropy in electroencephalographic
signals (Lee et al., 2013b). This finding was notable because
selective inhibition of effective and directional connectivity from
frontal to parietal regions has been demonstrated for two
commonly-used anesthetics that act (at least in part) through
GABA receptors: propofol [demonstrated with symbolic trans-
fer entropy, evolution map approach, dynamic causal modeling,
directed phase lag index (dPLI)] and sevoflurane (demonstrated
with symbolic transfer entropy, evolution map approach) (Lee
et al., 2009, 2013a; Ku et al., 2011; Boly et al., 2012). Given the pro-
posed role of top-down reentrant processing and frontal-parietal
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networks in the conscious perception of environmental stimuli
(Dehaene and Changeux, 2011; Demertzi et al., 2013), this find-
ing suggests the exciting possibility of a common neurobiology
underlying anesthetic-induced unconsciousness.

In the current study, we further characterized the effects of
ketamine on the electroencephalogram, with a focus on alpha
rhythms (8–14 Hz). Alpha oscillations have been an active area
of research into anesthetic-induced unconsciousness because of
a characteristic process referred to as anteriorization. In the
resting/eyes-closed state in humans, the electroencephalographic
power of alpha is dominant over the occipital cortex. However,
at the point of propofol-induced unconsciousness, the power of
alpha is dominant over the frontal cortex (Feshchenko et al.,
2004; Purdon et al., 2013). Computational models that account
for the observed posterior-to-anterior shift of alpha rhythms are
based on propofol’s agonism of GABAA receptors in the thala-
mus (Ching et al., 2010; Vijayan et al., 2013; Ching and Brown,
2014). The anteriorization of alpha at the point of propofol-
induced unconsciousness also appears to relate to a characteristic
cross-frequency coupling pattern between the amplitude of alpha
and the phase of slow oscillations. During transitions into and
out of propofol-induced unconsciousness, there is a trough-
max relationship, i.e., the maximal alpha amplitude is coupled
to the trough of the slow oscillation. During deeper levels of
propofol-induced unconsciousness, however, this coupling shifts
to a peak-max relationship (Purdon et al., 2013; Mukamel et al.,
2014). These coupling patterns have not been investigated during
unconsciousness induced by ketamine or other non-GABAergic
anesthetics.

The propofol-induced shift to hypersynchronous alpha in the
frontal cortex has been posited to impair flexible corticocortical
communication (Supp et al., 2011), a process thought to be criti-
cal for consciousness. This hypothesis is supported by our recent
work demonstrating that propofol-induced unconsciousness is
characterized by a depression of anterior-to-posterior cortico-
cortical connectivity (as measured by dPLI) that is found only
in the alpha bandwidth (Lee et al., 2013a). dPLI is a measure
of directional connectivity that appears to be closely related to
alpha, since neural mass models of the human brain demonstrate
an anterior-to-posterior flow of dPLI in the alpha bandwidth
(Stam and van Straaten, 2012). This finding has been confirmed
empirically by our previous study of dPLI in the resting state of
conscious human volunteers (Lee et al., 2013a).

The potential dependence of anteriorized alpha rhythms on
GABAA effects in the thalamus leads to the prediction that a
non-GABAergic drug like ketamine would differ significantly
from propofol and not increase the power of frontal alpha
rhythms in association with the induction of unconsciousness.
Similarly, we would not predict any characteristic cross-frequency
coupling patterns around the time of unconsciousness, since
these relationships appear to depend on increases in the frontal
power of alpha. However, if the unconscious states induced by
ketamine and propofol nonetheless share an underlying neurobi-
ology, we would predict that the directional connectivity measure
of dPLI would be inhibited by ketamine (as is observed with
propofol), both in terms of the specificity of the alpha band-
width and the anterior-to-posterior directionality. We tested these

predictions regarding the effects of ketamine on alpha oscillations
by re-analyzing electroencephalographic data acquired during
consciousness and ketamine-induced unconsciousness in human
surgical patients.

METHODS
PARTICIPANTS
We collected electroencephalographic data from 30 patients
undergoing elective stomach, colorectal, thyroid or breast surgery
(15 males; American Society Anesthesiologists Physical Status 1
or 2; 22–64 years old) at the Asan Medical Center (Seoul, South
Korea). This study was approved by the Institutional Review
Board of Asan Medical Center; written consent was provided by
all participants after a careful discussion of risks and benefits.
Patients were excluded from the study if they had a history of
cardiovascular disease (including hypertension), brain surgery,
drug/alcohol dependence, neurological or psychiatric disorder,
or if they were currently using psychotropic medication. The
data collected were previously analyzed and published (Lee et al.,
2013b); the current study uses distinct analytic methods to test
distinct hypotheses. For this secondary analysis, two participants
were excluded due to insufficient artifact-free data in the base-
line recording period; accordingly, data from 28 participants were
analyzed at the University of Michigan Medical School (Ann
Arbor, MI) for the current study.

ANESTHETIC PROTOCOL
Unconsciousness was induced using an infusion of ketamine
(2 mg/kg diluted in 10 mL of 0.9% normal saline) over a
2 min period (Baxter infusion pumpAS40A, Baxter Healthcare
Corporation, Deerfield, IL). Consciousness was monitored by
assessing the participant’s response to an auditory command
(“squeeze your right hand twice”), which was repeated every 10 s.
Prior to loss of consciousness, no sedatives or other medications
were administered to the participant. Standard intraoperative
monitors (non-invasive blood pressure measurement, electrocar-
diography, pulse oximetry and end-tidal carbon dioxide concen-
tration and non-invasive) were used throughout the experiment;
if systolic blood pressure increased to over 30% of baseline values,
5–10 mg of labetalol were administered.

ELECTROENCEPHALOGRAM DATA ACQUISITION
The electroencephalogram was acquired at 8 electrodes located at
Fp1, Fp2, F3, F4, T3, T4, P3, and P4 (International 10–20 system);
all channels were referenced to A2. Electrode impedances were
reduced to below 5 K� prior to data collection and electroen-
cephalographic signals were collected used a Laxtha WEEG-32
amplifier (LXE3232-RF, Laxtha Inc., Daejeon, Korea) with a sam-
pling frequency of 256 Hz. Data recording began 5 min prior to
induction; during this period, participants were instructed to rest
with their eyes closed. Data collection continued through anes-
thetic induction and was terminated five minutes following loss
of consciousness.

ELECTROENCEPHALOGRAM ANALYSIS
Preprocessing: Electroencephalogram data were bandpass fil-
tered between 0.1 and 50 Hz. The filtered data were visually
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inspected and non-physiological artifacts were removed. For the
spectral and cross-frequency coupling analysis, two 5-min epochs
of data were extracted from every participant: (1) Baseline rest,
prior to ketamine induction, and (2) Induction and uncon-
sciousness, beginning at the start of ketamine infusion. This
second epoch was chosen specifically so that the transition from
consciousness to unconsciousness could be studied, as some
spectrographic and phase-amplitude coupling patterns appear
during this period (Purdon et al., 2013). On average, partici-
pants lost consciousness 89 ± 14 s after the start of ketamine
infusion; thus, this epoch contains electroencephalographic data
from both conscious and unconscious states. However, coherence,
phase lag index (PLI) and dPLI measures were calculated only
with the data after ketamine-induced consciousness. Spectral
Analysis: Spectrograms were computed in Chronux (www.

chronux.org), using the multitaper method, with window lengths
of T = 2 s, step size of 0.1 s, time-bandwidth product NW =
2, number of tapers K = 3. Group spectrograms were calcu-
lated by aggregating data from frontal channels F3 and F4 across
all participants. Phase-Amplitude Coupling Analysis: Phase-
amplitude coupling was conducted using the Phase-Amplitude
Coupling Toolbox (PACT) in EEGlab (Delorme and Makeig,
2004; Miyakoshi et al., 2013). Finite impulse response filters
were used to extract low-frequency (0.1–1 Hz) and alpha (8–
14 Hz) oscillations from channels F3 and F4 for each partici-
pant. Instantaneous phase and amplitude were extracted using
a Hilbert transform. Phase-amplitude modulograms were calcu-
lated by assigning each temporal sample to one of N = 18 equally
spaced phase bins based on the instantaneous value of the low-
frequency phase and then averaging the corresponding instan-
taneous amplitude of alpha within a 1 min epoch. Additionally,
Canolty’s phase-amplitude coupling modulation index was cal-
culated for each minute of data and averaged across all partic-
ipants (Canolty et al., 2006). Functional Connectivity Analysis
with Coherence: The magnitude squared coherence estimate
was calculated between each set of channel combinations using
Welch’s averaged modified periodogram method (Welch, 1967).
Functional Connectivity Analysis with Phase Lag Index (PLI):
To mitigate the effects of choice of reference and volume con-
duction, we calculated functional connectivity using the metric
PLI (Stam et al., 2007). We used a Hilbert transform to extract
the instantaneous phase of the electroencephalogram from each
channel and calculated the phase difference �φt between chan-
nels, where �φt = φi,t − φj,t, t = 1, 2, . . . , n n is the number
of samples within one epoch, and i and j were set to include
all possible channel combinations. PLI was then calculated using
Equation (1):

PLIij = ∣
∣〈sign (�φt)〉

∣
∣ , 0 ≤ PLIij ≤ 1. (1)

Here, the sign() function yields: 1 if �φt > 0; 0 if �φt = 0;
and −1 if �φt < 0. If the instantaneous phase of one signal is
consistently ahead of the other signal, the phases are considered
locked, and PLI≈ 1. However, if the signals randomly alternate
between a phase lead and a phase lag relationship, there is no
phase locking and PLI ≈ 0. Directed Connectivity Analysis with
Directed Phase Lag Index (dPLI): To determine the direction of

the phase-lead/phase-lag relationship between channels, we cal-
culated dPLI between signals i and j using Equation (2) (Stam
and van Straaten, 2012):

dPLIij = 〈H(�πt)〉 (2)

Here, H (x) represents the Heaviside step function, where H (x) =
1if x > 0, H (x) = 0.5 if x = 0, and H (x) = 0 otherwise. If, on
average, signal i leads signal j, 0.5 < dPLIij = 1; if signal j leads
signal i, 0 = dPLIij < 0.5; and if there is no phase-lead/phase-
lag relationship between signals, dPLI = 0.5. Surrogate Data
Analysis: To quantify the effects of spurious phase relationships
and power spectrum changes on functional and directed con-
nectivity metrics, we generated surrogate data sets as follows.
We calculated the instantaneous phase of each combination of
channel pairs i and j for each epoch (baseline; ketamine-induced
unconsciousness) using a Hilbert transform. The phase time
series of channel i was maintained, whereas in channel j, the
phase time series from 0 to n/2 was interchanged with the phase
time series from n/2 to n, where n is the number of samples
within one epoch. In this manner, existing phase relationships
were eliminated while maintaining the spectral properties of each
condition. PLI and dPLI were calculated for all channel combi-
nations in the surrogate dataset. Brain Network Visualization:
The brain networks were visualized with the BrainNet Viewer
(Xia et al., 2013) (http://www.nitrc.org/projects/bnv/). Montreal
Neurological Institute (MNI) coordinates of each scalp electrode
were used to generate nodes that were projected onto an axial view
of the brain. Coherence, PLI, and dPLI measures were indicated
by varying the color and size of edges between these nodes.

STATISTICAL ANALYSIS
Phase Amplitude Coupling: To test the null hypothesis that the
phase and amplitude of the frontal electroencephalogram are
decoupled, we employed the surrogate data method proposed
in Canolty et al. (2006). Data were divided into 1-min epochs;
within each epoch, a surrogate time series was generated by shift-
ing the amplitude by a random time �t (0 ≤ �t ≤ 60 s) while
keeping the phase series fixed. The modulation index was calcu-
lated for the surrogate series. This procedure was repeated 2000
times to produce distributions of modulation index values in
which the null hypothesis was true. The modulation index for
the experimental data was considered significant if it exceeded
95% of the surrogate values (p < 0.05). Coherence, PLI, and
dPLI: Coherence, PLI, and dPLI values were compared between
(1) baseline and unconscious epochs, (2) baseline and surrogate
baseline epochs, and (3) unconscious and surrogate unconscious
epochs using a student’s t-test. Differences were considered sig-
nificant at α < 0.05.

RESULTS
KETAMINE-INDUCED UNCONSCIOUSNESS IS NOT CHARACTERIZED
BY INCREASES IN FRONTAL ALPHA POWER OR BY PHASE-AMPLITUDE
COUPLING PATTERNS
The group-level spectrogram of the electroencephalogram
recorded from frontal channels demonstrates a decrease in alpha
power upon ketamine-induced unconsciousness (Figure 1). This
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FIGURE 1 | Group spectral analysis. (A) Spectrogram and (B)

baseline-normalized spectrogram of frontal channels (F3 and F4)
demonstrate a decrease in alpha power during and after ketamine-induced
unconsciousness. LOC, loss of consciousness.

is the opposite pattern to that observed in propofol-induced
unconsciousness, which is associated with an increase in alpha
power (Purdon et al., 2013).

Cross-frequency coupling patterns were calculated between
slow oscillation phase and alpha amplitude in the frontal chan-
nels. Group modulograms and the group-averaged modulation
index demonstrate that a significant trough-max coupling pat-
tern existed for 40% of the baseline resting state, but no significant
coupling was observed upon induction or after loss of conscious-
ness (Figure 2). These patterns are in contrast to those observed
with propofol, where loss of consciousness is associated with a
trough-max coupling pattern (Mukamel et al., 2014). It is worth-
while noting that when the test for phase-amplitude coupling
significance (Canolty et al., 2006) is applied to datasets with min-
imal to no cross-frequency coupling patterns, epochs with even
moderate coupling patterns will exceed the modulation index
associated with significance. This may explain the significant
phase-amplitude coupling observed during the resting state of
our study, which has not been observed in previous studies.

KETAMINE-INDUCED UNCONSCIOUSNESS IS ASSOCIATED WITH
DECREASES IN PLI, BUT NOT IN COHERENCE
We examined two measures of functional connectivity in
the alpha bandwidth between frontal and parietal channels:

FIGURE 2 | Phase-amplitude coupling analysis. Top panel: Frontal
phase-amplitude coupling across baseline and induction/unconscious
epochs. Bottom panel: Modulation indices (blue line) of each minute of
data in baseline and induction/unconscious epochs; values are significant at
p = 0.05 above the red line. LOC, loss of consciousness.

coherence and PLI. We observed no significant change in fron-
toparietal coherence (p = 0.29) between baseline resting and
ketamine-induced unconsciousness (Figure 3).

In contrast, PLI decreased upon ketamine-induced uncon-
sciousness. The largest decrease in PLI was observed in the
alpha bandwidth, where PLI values during unconsciousness were
significantly lower than PLI values calculated during baseline con-
sciousness (p < 0.001) (Figures 4A,B). PLI values measured from
surrogate data in both epochs were ∼0, indicating that the values
calculated from experimental data are not the result of spuri-
ous phase relationships. While there was an overall decrease in
PLI across all channel combinations, the largest decrease occurred
across frontoparietal channel pairs (Figure 4C).

KETAMINE-INDUCED UNCONSCIOUSNESS IS ASSOCIATED WITH
DECREASED FRONTOPARIETAL dPLI
We examined differences in dPLI between baseline resting and
unconscious states. The greatest differences in dPLI occurred
in the alpha bandwidth (Figure 5A) and a significant decrease
in dPLI from frontal to parietal brain regions (p < 0.001) was
observed between states (Figure 5B). There was no significant
difference between dPLI values of the surrogate data gener-
ated from either state, indicating that the observed changes in
dPLI for the experimental data cannot be attributed to changes
in spectral power between conditions. Baseline dPLI indicated
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FIGURE 3 | Coherence analysis. (A) Average frontoparietal coherence
across 28 participants in baseline resting and ketamine-induced unconscious
states (error bars indicate standard deviation). No significant differences are
observed in coherence between conditions. (B) Average coherence across all

channel combinations in baseline rest and ketamine-induced unconscious
states, represented on a channel grid (left) and on an axial view of the brain
(right). On the brain network, both color and size of the edges represent
strength of coherence.

that the dominant direction of connectivity is from frontal to
parietal regions when participants are conscious; upon ketamine-
induced unconsciousness there is a balance of frontoparietal and
parietofrontal directional connectivity (Figure 5C).

DISCUSSION
This study of ketamine and alpha oscillations revealed both drug-
related and state-related effects in association with the induction
of unconsciousness. Unlike propofol, ketamine does not increase
frontal alpha power or induce characteristic cross-frequency cou-
pling patterns between the power of alpha and the phase of slow-
wave oscillations. Functional connectivity in the alpha bandwidth
was preserved between states when measured by coherence, but
decreased upon unconsciousness when measured by PLI. The
discrepancy between these two functional connectivity metrics
indicates that while the correlation between electroencephalo-
gram signals in frontal and parietal regions remains unchanged in
aggregate, their specific phase-relationship is disrupted upon loss
of consciousness. Directional connectivity in the alpha bandwidth
(as measured by dPLI) was inhibited across the frontoparietal net-
work by ketamine, a finding consistent with our past study of
propofol-induced unconsciousness (Lee et al., 2013a). The identi-
fication of shared neural features between the unconscious states
induced by GABAergic and non-GABAergic anesthetics has been
a longstanding problem in the study of both anesthetic mecha-
nisms and anesthetic monitoring. The current findings support
the hypothesis that anesthetic-induced unconsciousness has a
common neurobiology related to disrupted functional relation-
ships across cortical or thalamocortical networks.

Activity and connectivity of lateral frontal and posterior
parietal cortices have been hypothesized to be critical for

consciousness of environmental stimuli (Boly et al., 2007;
Demertzi et al., 2013). As such, the finding that a variety of
general anesthetic drugs suppresses both activity and connec-
tivity in these regions appears relevant to the proximate cause
of anesthetic-induced unconsciousness. Prior preclinical stud-
ies of anterior-posterior connectivity in rat brain identified a
selective inhibition of frontal-to-posterior transfer entropy in
the gamma bandwidth in association with isoflurane-induced
unconsciousness (Imas et al., 2005). Our laboratory first demon-
strated anesthetic inhibition of frontal-to-parietal connectivity
in human volunteers (Lee et al., 2009) and surgical patients
(Ku et al., 2011); inhibition of functional, directional, and
effective connectivity in frontal-parietal networks in associa-
tion with propofol-induced unconsciousness has been identified
by studies from multiple research groups using multiple ana-
lytic methods (Boveroux et al., 2010; Schrouff et al., 2011; Boly
et al., 2012; Jordan et al., 2013). Of note, the recent study of
Jordan et al used combined electroencephalography and func-
tional magnetic resonance imaging with no a priori assump-
tions regarding connectivity and found that the selective loss of
frontal-to-parietal connectivity (as measured by symbolic trans-
fer entropy) was the best discriminator between consciousness
and propofol-induced unconsciousness (Jordan et al., 2013).
However, most studies of directional/effective connectivity in
frontal-parietal networks have focused on propofol, a prototyp-
ical GABAA agonist. Recently, our laboratory demonstrated a
similar and selective inhibition of frontal-to-parietal connectiv-
ity during unconsciousness induced by the diverse anesthetics
ketamine, propofol, and sevoflurane (Lee et al., 2013b). This
study was the first to identify a common network-level disruption
induced by both GABAergic and non-GABAergic anesthetics. The
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FIGURE 4 | Phase lag index analysis. (A) Difference in PLI between
baseline and ketamine-induced unconscious states represented for all
bandwidths, across all participants. The largest decreases in PLI are
observed in the alpha bandwidth. (B) Average frontoparietal PLI
values for experimental data and surrogate data (error bars indicate
standard deviation). Frontoparietal PLI significantly decreases (as
indicated by ∗) between states in the experimental data; no

phase-locking is observed in the surrogate dataset. (C) Average
difference in PLI between baseline and unconscious states across all
channel combinations, represented on a channel grid (left), and on
the axial view of the brain (right). Color and size of edges in the
brain network represent the difference in PLI between baseline and
unconscious states. Large decreases in PLI are observed between
frontoparietal channel combinations.

current study builds on this work by using alternative connectiv-
ity measures to support the hypothesis that anesthetic-induced
unconsciousness is characterized by interrupted directed connec-
tivity from frontal to parietal regions. Impaired connectivity is of
relevance to the mechanism of anesthetic-induced unconscious-
ness because it reduces the likelihood of achieving the neural
information synthesis thought to be necessary for conscious per-
ception (Tononi, 2011). Furthermore, by comparing ketamine’s
effects on the alpha bandwidth to past studies of propofol, we
are now able to distinguish between drug-related and state-related
effects on the electroencephalogram. Despite the divergent spec-
tral effects on alpha oscillations induced by ketamine in this
study and those reported in past studies of propofol, disruption
of functional (PLI) and directional (dPLI) connectivity in the
alpha bandwidth appears common to the state of unconscious-
ness induced by both drugs. It should be noted that changes in
dPLI were reversed upon recovery from propofol; given the cur-
rent study design we were not able to assess recovery of directional
connectivity for ketamine.

This study has numerous limitations. First, we reanalyzed elec-
troencephalographic data from a prior study of ketamine-induced
unconsciousness (Lee et al., 2013b). It might be argued that
the current findings could have been predicted from our past
methodology using symbolic transfer entropy. However, this is
not necessarily the case, since analysis of the same electroen-
cephalographic dataset (Murphy et al., 2011) with dynamic causal
modeling (Boly et al., 2012) and Granger causality (Barrett et al.,
2012) yielded discrepant results regarding directionality across
frontal and parietal cortices. Second, we used low-resolution
electroencephalography given the clinical nature of the origi-
nal study; thus, source-localized signals could not be analyzed.
Third, there was no recording from occipital electrodes, which
precluded topographic analysis that would allow comparison
of alpha power in posterior and anterior structures. Fourth,
it could be argued that the state of ketamine-induced uncon-
sciousness is substantially distinct from the state of propofol-
induced unconsciousness, which renders any comparisons ques-
tionable. Although it is true that ketamine-based anesthetics can

Frontiers in Systems Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 114 | 44

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Blain-Moraes et al. Ketamine and EEG

FIGURE 5 | Directed phase lag index analysis. (A) Difference in
frontoparietal dPLI between baseline rest and ketamine-induced unconscious
states, represented across six frequency bandwidths and all participants. The
largest decreases in dPLI occur in the alpha bandwidth. Note that a dPLI
value of 0.5 indicates neither phase lag nor phase lead relationship. (B)

Average frontoparietal dPLI values for each state in experimental and
surrogate data (error bars indicate standard deviation). Frontoparietal dPLI

significantly decreases during ketamine-induced unconsciousness (as
indicated by ∗). Surrogate data demonstrate no phase-lead/phase-lag
relationship in either state. (C) Average dPLI values across all channel
combinations in baseline and unconscious states. Only dPLI values greater
than 0.55 are represented on the axial brain network. In this network, color,
and size of the edges indicate the dPLI value between two nodes; arrows
indicate the direction of phase lead and lag.

be associated with conscious states such as dreaming or hallucina-
tions (Grace, 2003), the same could be argued—albeit to a lesser
degree—for propofol (Leslie et al., 2007). Furthermore, from the
functional perspective, both ketamine and propofol can be used
to induce unconsciousness in clinical settings; this functional sim-
ilarity motivates the search for common mechanisms. Fifth, it one
could argue that the reduction in PLI and dPLI we observed in
the alpha bandwidth during induction/unconsciousness can be
attributed to the dramatic decrease in power upon loss of con-
sciousness. However, we have demonstrated that PLI and dPLI
values calculated for surrogate datasets that have the same spectral
characteristics are not significantly different. Furthermore, the
fact that coherence values are not significantly different between
states demonstrates that the change in PLI and dPLI values cannot
be attributed to reduced power in the alpha bandwidth. Finally,

we used loss of responsiveness as a surrogate for loss of conscious-
ness; it is well known that consciousness and responsiveness are
dissociable. However, this is a limitation common to all studies of
anesthetic-induced unconsciousness. Although, as noted, loss of
responsiveness induced by ketamine may still be associated with
conscious states such as dreams, it is the connection to the envi-
ronment that is likely of primary clinical relevance (Sanders et al.,
2012).

Despite these limitations, this analysis of ketamine’s effects
on spectral changes, cross-frequency coupling, and connectivity
in the alpha bandwidth provides insight into the neurobiol-
ogy of ketamine-induced unconsciousness. In comparison with
past studies of propofol, the distinct effects of ketamine suggest
that the ability to induce anteriorized alpha and cross-frequency
coupling varies across anesthetic drugs. By contrast, disrupted
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directional connectivity in the frontal-parietal network may be
a common state-related feature—and, potentially, a common
mechanism—of anesthetic-induced unconsciousness.
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Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude
activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can
arise from several different pathological conditions, as well as from general anesthesia.
Here we review current algorithms that are used to quantify burst suppression, its various
etiologies, and possible underlying mechanisms. We then review clinical applications of
anesthetic-induced burst suppression. Finally, we report the results of our new study
showing clear electrophysiological differences in burst suppression patterns induced by
two common general anesthetics, sevoflurane and propofol. Our data suggest that the
circuit mechanisms that generate burst suppression activity may differ among general
anesthetics.

Keywords: burst suppression, propofol, sevoflurane, anesthesia, rodent

INTRODUCTION
Burst suppression is an EEG pattern characterized by quasiperi-
odic high amplitude activity (bursts) and relativity low amplitude
activity (suppressions; Amzica, 2009; Brown et al., 2010). The
phenomenon was first observed while recording EEG from the
motor cortex of cats under tribromoethanol and pentobarbital-
induced general anesthesia (Derbyshire et al., 1936). Investiga-
tions into the effects of ether and pentobarbital anesthesia on
the EEG of canines led to the creation of the term “burst sup-
pression” (Swank and Watson, 1949). Although early work on
burst suppression focused on general anesthesia, burst suppres-
sion can be induced by several different etiologies (Martin et al.,
1959).

In the first part of this article, algorithms employed to
quantify burst suppression, different causes of burst suppres-
sion, and theories about the mechanisms underlying burst sup-
pression are reviewed. We also describe clinical applications of
burst suppression induced by general anesthetics. In the sec-
ond part of this article, we present original research findings
from our laboratory that demonstrate the distinct electrophys-
iological characteristics of burst suppression induced by the
inhaled anesthetic sevoflurane and the intravenous anesthetic
propofol.

QUANTIFICATION OF BURST SUPPRESSION
A widely used method for quantifying burst suppression is the
burst suppression ratio (BSR; Rampil et al., 1988). Figure 1

shows several seconds of EEG burst suppression from a rodent
anesthetized with isoflurane. The BSR is calculated by segment-
ing the EEG into bursts and suppressions using a voltage-based
threshold. Suppression is commonly defined as a voltage less
than 5 µV for greater than 0.5 s. This threshold is commonly
set manually (Chemali et al., 2011) though automated meth-
ods such as a time-domain based voltage envelope threshold
or frequency-domain based logistic regression of the EEG spec-
trogram have also been reported. (Prerau and Purdon, 2013;
Westover et al., 2013). For the BSR algorithm, suppressions are
given a value of 1 and bursts are given a value of 0 to create
a binary time-series. This binary time-series is then smoothed
with a windowing function to calculate the BSR over time.
The value of the BSR ranges from 0 and 1, with 0 indicating
no suppression and 1 indicating a suppressed EEG. Although
the BSR can be derived with relative ease, the temporal res-
olution/smoothness of the result depends on the size of the
time windows, which must be chosen manually, and the inabil-
ity to obtain a measure of confidence around BSR estimates
makes it difficult to perform statistical comparisons between
BSR values at different points in time. Currently available EEG-
based anesthetic depth monitors usually detect and quantify the
BSR.

The burst suppression probability (BSP) is an alternate
approach to model the level of burst suppression (Chemali et al.,
2013). The BSP is based on a state-space model of the brain state
of burst suppression, and represents the instantaneous probability
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FIGURE 1 | A typical EEG recording showing a burst suppression pattern from a rodent undergoing general anesthesia from isoflurane. The sampling
rate of the signal was 512 Hz and a line filter was used to eliminate 60 Hz noise.

of the brain being in a suppressed state. In contrast to the BSR,
principled automated methods have been developed for setting
the BSP algorithm parameters and the resulting temporal reso-
lution/smoothness of the estimated BSP, and they also allow for
statistical comparisons of the level of suppression across different
points in time. Entropy measures such as approximate entropy
(Bruhn et al., 2000, 2001) and machine learning methods such
as artificial neural networks or support vector machines (Löfhede
et al., 2007) have also been used to quantify burst suppression.

PATHOLOGICAL CAUSES OF BURST SUPPRESSION
There are several known pathological conditions that cause
EEG burst suppression. Early work with animals demonstrated
that local freezing of cortical sections from cats with carbon
dioxide led to profoundly decreased electrical activity, both in
frozen and unfrozen areas of the brain, and that rewarming
led to partial recovery of electrical activity (Nims et al., 1941).
In humans, lowering of the core body temperature has been
shown to linearly decrease the overall spectral power of the
EEG (Levy, 1984), and burst suppression is often observed in
humans with temperatures below 24.4◦C (Stecker et al., 2001).
Hypothermia reduces the cerebral metabolic rate, and is often
used to provide neuroprotection in patients with circulatory
arrest (Michenfelder and Milde, 1991; Arrica and Bissonnette,
2007).

Hypoxia is a common pathological cause of burst suppression.
In animal experiments, hypoxia has been shown to induce burst
suppression as well as a suppressed EEG at extremely low arterial
oxygen concentrations in dogs (Spoerel, 1961). G-force induced
hypoxia in rodents has also induced burst suppression (Lukatch
et al., 1997). In humans, fetal hypoxia during labor and delivery
can lead to hypoxic-ischemic encephalopathy in the neonate and
induce burst suppression patterns in the EEG (Toet et al., 1999;
van Rooij et al., 2005). While recovery from burst suppression
can occur within the first 48 h after birth, the appearance of
burst suppression usually portends a poor prognosis for the
neonate (Grigg-Damberger et al., 1989; Hellström-Westas et al.,
1995).

Patients suffering from coma may exhibit EEG burst suppres-
sion due to several different underlying etiologies (Young, 2000).
Post-anoxic coma (Zaret, 1985) can induce a rare burst suppres-
sion pattern where the burst patterns are identical (Hofmeijer

et al., 2014). In addition, burst suppression has been described
in a survivor of post-anoxic coma during behaviorally defined
sleep (i.e., eyes closed with no movement) (Kheder et al., 2014).
Burst suppression may also be observed when patients are in coma
due to hepatic failure (Bickford and Butt, 1955), sepsis (Young
et al., 1992) and hypoglycemia (Auer et al., 1984). Coma due to
porphyria, a disorder of heme synthesis (Thadani et al., 2000),
can also elicit a burst suppression pattern (Dow, 1961).

Ohtahara syndrome, an early infantile epilepsy syndrome,
is characterized by a burst suppression pattern that persists
through behaviorally defined wake and sleep states (Ohtahara
and Yamatogi, 2006). Typically Ohtahara syndrome manifests
itself within 3 months of birth, and is thought to be caused
by structural brain lesions. Patients with Ohtahara syndrome
have been reported to have lesions of the thalamus, hippocam-
pus, and brainstem tegmentum (Itoh et al., 2001; Ohtahara
and Yamatogi, 2003). Early myoclonic encephalopathy is another
infantile epilepsy syndrome that results in a persistent burst
suppression pattern, usually manifesting itself during the neonatal
period (Aicardi and Ohtahara, 2005). Unlike Ohtahara syndrome,
early myoclonic encephalopathy is hypothesized to be due to an
underlying metabolic disorder (Panayiotopoulos, 2010).

Another disorder that causes burst suppression is Aicardi
syndrome, a congenital disorder in which the corpus callosum
fails to develop in female infants (Fariello et al., 1977; Aicardi,
2005).In patients with a damaged corpus callosum that undergo
general anesthesia, burst suppression patterns have been reported
to be asymmetric and asynchronous across cerebral hemispheres
(Lambrakis et al., 1999; Lazar et al., 1999).

Finally, various medications and intoxicants that are not used
for general anesthesia may induce burst suppression at high
doses, including ethanol (Whishaw, 1976), the muscle relaxant
baclofen (Weissenborn et al., 1991; Ostermann et al., 2000), and
the anticonvulsant carbamazepine (De Rubeis and Young, 2001).
A recent report described burst suppression in a patient suffering
from an overdose of bupropion (Mundi et al., 2012), which is used
to treat depression and nicotine addiction.

BURST SUPPRESSION INDUCED BY GENERAL ANESTHETICS
General anesthetics are administered by inhalation or intravenous
injection. The main molecular targets for general anesthetics
are thought to be gamma-aminobutyric acid type A (GABAA)
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receptors and N-methyl D-aspartate (NMDA) receptors (Solt
et al., 2006; Brown et al., 2011), although many other targets have
been identified that likely play a role in general anesthesia as well.
The halogenated ethers enflurane (Lebowitz et al., 1972), isoflu-
rane (Hartikainen et al., 1995b), sevoflurane (Scheller et al., 1990)
and desflurane (Rampil et al., 1991) all induce burst suppression
at sufficiently high doses. However, the haloalkane general anes-
thetics chloroform (Pearcy et al., 1957) and halothane (Murrell
et al., 2008) have not been reported to induce burst suppression,
even at high concentrations that produced suppression.

Barbiturates are intravenous anesthetics that primarily act
by potentiating the function of GABAA receptors. Pentobar-
bital (Van Ness, 1990), methohexital (Wennberg et al., 1997),
and sodium thiopental (Kassell et al., 1980) are all barbi-
turates that have been shown to induce burst suppression.
Propofol (Huotari et al., 2004) and etomidate (Modica and
Tempelhoff, 1992) are not barbiturates, but they also act pri-
marily by enhancing GABAA receptor function, and also induce
burst suppression. 13–15 Hz spindle activity, similar to that
seen during NREM sleep, has been seen during both the
burst and suppression phase of propofol-induced burst sup-
pression (Särkelä et al., 2002; Huotari et al., 2004; Ferenets
et al., 2006). Sharp waves resembling the vertex waves seen
during NREM sleep have also been observed during the bursts
and suppressions phases from propofol-induced burst suppres-
sion. These spindles and sharp waves are theorized to have
been produced by the sensorimotor cortex (Sonkajärvi et al.,
2008).

Gaseous anesthetics such as xenon or nitrous oxide that are
NMDA receptor antagonists have not been shown to induce burst
suppression, even at high doses in a hyperbaric chamber (Morris
et al., 1955; Pittinger et al., 1955). Similarly, the intravenously
administered NMDA receptor antagonist ketamine has not been
shown to elicit burst suppression (Barash et al., 2012). However,
the gaseous anesthetic cyclopropane, which is also an NMDA
receptor antagonist (Solt et al., 2006), has been shown to induce
burst suppression (Possati et al., 1953).

In summary, most general anesthetics that act primarily by
enhancing GABAA receptors induce burst suppression, whereas
NMDA antagonists typically do not. However, there are excep-
tions to both rules, suggesting that molecular mechanisms alone
cannot account for general anesthetic-induced burst suppression.

MECHANISMS OF BURST SUPPRESSION INDUCED BY GENERAL
ANESTHESIA
Intracellular recordings of cortical and subcortical neurons laid
the early groundwork for investigations into the mechanisms of
burst suppression. While the majority of cortical cells exhibit
a pattern of alternating depolarized and hyperpolarized states
that account for the burst suppression pattern observed in the
electrocorticogram, thalamic cells are either silent or fire at 1–4 Hz
under general anesthesia (Steriade et al., 1994).

During moderate to deep levels of isoflurane anesthesia that
induce burst suppression, external mechanical, visual, and audi-
tory stimuli have been shown to trigger bursts (Yli-Hankala
et al., 1993a; Hartikainen et al., 1995b; Hudetz and Imas, 2007;
Amzica, 2009). Therefore, burst suppression has been considered

a state of cortical hypersensitivity (Kroeger and Amzica, 2007),
although external stimuli fail to induce bursting at isoflurane
levels less than 2%, or greater than 3.5% (when the EEG is com-
pletely suppressed; Kroeger and Amzica, 2007). These findings
suggest that the brain is still receptive to external stimuli during
anesthetic-induced burst suppression. The recording of heart rate
during externally triggered bursts did not show any overt changes,
suggesting the effect is not derived from the autonomic nervous
system (Kroeger and Amzica, 2007).

The state of cortical hypersensitivity during burst suppres-
sion is thought to be due to changing calcium levels and
the lowering of cortical inhibition by isoflurane (Kroeger and
Amzica, 2007; Ferron et al., 2009). Increasing the dose of isoflu-
rane steadily lowered the amount of extracellular calcium until
a state of burst suppression was reached. During burst sup-
pression the levels of extracellular calcium decreased during
bursts, and began to increase throughout the suppression period.
Triggered bursts were more easily induced by external stim-
uli when sufficient time had elapsed after the previous stim-
ulus, suggesting that a refractory period exists during which
the extracellular calcium must reach a threshold level before a
subsequent burst can be induced (Kroeger and Amzica, 2007).
Administration of the NMDA antagonist MK801 significantly
diminished both the amplitude and duration of bursts, but
did not alter the probability of inducing a triggered burst by
an external stimulus. The gap junction blocker carbenoxolone
completely eliminated any triggered response, suggesting that
in addition to extracellular calcium, NMDA receptors and gap
junctions may also regulate the response (Kroeger and Amzica,
2007).

Phenomenological modeling of burst suppression has been
performed using non-linear dynamic systems and dynamic mean
field models. Modeling using chaos theory and non-linear systems
for human coma patients showed that burst frequency decreased
logarithmically as burst durations increased (Rae-Grant and Kim,
1994). Mesoscopic modeling using a dynamic mean field model
suggested that multiple origins of burst suppression exist through
several different slow modulating circuits (Liley and Walsh,
2013).

An alternative to the phenomenological models is a neuro-
metabolic model, which accounts for the different etiologies that
lead to burst suppression activity (Ching et al., 2012). The under-
lying process of burst suppression is viewed as a reduction in brain
metabolism, as it is known that hypothermia, hypoxia, Ohtahara
syndrome, and general anesthetics that act as GABAA agonists
all decrease the cerebral metabolic rate of oxygen (CMRO). The
reduction of the CMRO further lowers the production rate of
adenosine triphosphate, and increases cell membrane conduc-
tance. In response to lowered ATP production and increased
conductance, an ATP-gated potassium channel expressed in cor-
tical and subcortical neurons hyperpolarizes to prevent cell firing
and preserve a lower energy state. This inhibition of bursting
activity directly leads to the suppression period observed dur-
ing burst suppression. As the suppression persists, ATP levels
begin to recover and membrane conductance is lowered until
another burst can occur. If the cerebral metabolic rate continues
to decrease, the suppression periods will be prolonged until all
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FIGURE 2 | An intracranial recording from the cortex of an epileptic patient under propofol general anesthesia. The burst in channel 32 starts hundreds
of milliseconds before the bursts in channels 36 and 34, demonstrating that burst onset is heterogeneous across the cortex. The signal was low-passed filtered
at 100 Hz and resampled to 250 Hz. From (Lewis et al., 2013).

bursting has ceased. This can be seen with increasing doses
of general anesthetics—as the anesthetic continues to depress
the cerebral metabolic rate, the EEG eventually becomes sup-
pressed. Lowered ATP production could also lead to an impair-
ment of calcium pumps and lead to a decrease in extracellular
calcium.

This neuro-metabolic model predicts that the spectral content
within bursts for a human patient undergoing propofol anesthesia
will be limited to a frequency of around 10 Hz (alpha rhythm),
and that this alpha rhythm can drift from having a peak power at
10 Hz at the beginning of a burst to having a peak power at 8 Hz
at the end of a burst. In addition, it is thought that the spectral
content of bursts reflects the neurophysiological state that was
present immediately preceding burst suppression (Ching et al.,
2012).

Data from human patients undergoing propofol anesthesia
support this neuro-metabolic model (Lewis et al., 2013). High-
density cortical recordings also revealed that burst suppression
activity is not a cortex-wide phenomenon as once thought. While
some regions of the cortex may be in burst suppression, other
regions may not be. The occurrence of bursts can also be limited
locally to discrete cortical regions. Figure 2 shows how bursts can
also be spatially asynchronous across the cortex, with adjacent
cortical areas having similar burst timings compared to anatomi-
cally distant areas (Lewis et al., 2013). This phenomenon was also
noted in earlier human experiments (Henry and Scoville, 1952).

CLINICAL APPLICATIONS OF ANESTHETIC-INDUCED BURST
SUPPRESSION
Status epilepticus is a state of persistent seizure activity that
can last for several hours or even days (Lowenstein et al.,
1999), with a mortality rate of up to 35% (Prasad et al., 2001).
When status epilepticus is refractory to other therapies, seizure
activity is often terminated by inducing burst suppression with
intravenous general anesthetics such as propofol (Stecker et al.,

1998; Prasad et al., 2001) or pentobarbital (Van Ness, 1990;
Claassen et al., 2002). When treating status epilepticus, burst
suppression is typically maintained by manually titrating an
intravenous infusion of general anesthetic to a target BSR value.
Automated closed-loop anesthesia delivery (CLAD) systems have
been proposed to deliver propofol (Vijn and Sneyd, 1998) and
etomidate (Cotten et al., 2011) using the BSR as the control
signal. Recently, CLAD systems using the BSP as the control
signal have been developed to deliver intravenous propofol in
rats (Ching et al., 2013; Shanechi et al., 2013a,b), and these
have been shown to achieve precise control of the level of burst
suppression, obviating the need for manual titration of drug
delivery. Figure 3A shows the closed-loop design of one of
these CLAD systems. Figure 3B shows the process for online
segmentation of the EEG for calculating the BSP, and Figure 3C
shows the compartment model used to control the propofol
infusion rate. Anesthetic-induced burst suppression is also used
to treat patients suffering from traumatic brain injury with ele-
vated intracranial pressures (Doyle and Matta, 1999), as well
as patients suffering from severe depression (Engelhardt et al.,
1993).

A STUDY TO COMPARE THE BURST SUPPRESSION CHARACTERISTICS
OF TWO GENERAL ANESTHETICS
Burst suppression is typically regarded as a neurophysiologi-
cal phenomenon that may be caused by a range of etiolo-
gies. However, earlier experiments showed that volatile and
intravenous anesthetics may have distinct electrophysiological
characteristics during burst suppression. A study in rats com-
paring the EEG characteristics of isoflurane and propofol found
significant differences between burst duration and peak-to-peak
voltage at an equivalent BSR of 0.8 (Akrawi et al., 1996). How-
ever, the duration of the suppression and burst epochs that
were compared were only 2–6 s. A study in rabbits compar-
ing 1 min each of EEG burst suppression during propofol
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and isoflurane anesthesia reported higher amplitude bursts dur-
ing isoflurane anesthesia (Hartikainen et al., 1995a). Another
comparison between the burst suppression patterns of isoflurane
and enflurane found that suppressions were shorter in duration
for enflurane (Lipping et al., 1995). Burst suppression caused
by hypoxic-ischemic encephalopathy has also been reported to
have a higher variability in individual suppression durations
compared to pentobarbital-induced burst suppression (Beydoun
et al., 1991).

Although these reports suggest that different general anesthet-
ics and pathological states may induce distinct burst suppression
patterns, a systematic study comparing a large number of bursts
and suppressions induced by two different anesthetics across all
levels of burst suppression has not been performed previously.
In this study, we induced different levels of burst suppression in
rats with the inhaled anesthetic sevoflurane and the intravenous
anesthetic propofol, and quantified the level of burst suppression
using BSP. A large number of bursts and suppressions (n > 2000)
were compared to analyze the electrophysiological characteristics
of burst suppression induced by sevoflurane and propofol. We
found that the durations, peak-to-peak amplitudes, and spec-
tral power of the bursts and suppressions differed substantially
between the two anesthetics at equivalent BSP levels, suggest-
ing that at least some aspects of the mechanisms underlying
burst suppression induced by sevoflurane and propofol may be
distinct.

METHODS
ANIMAL CARE AND USE
All animal studies were approved by the Institutional Animal
Care and Use Committee (IACUC) at Massachusetts General
Hospital, Boston, Massachusetts. Four male Sprague-Dawley rats
(Charles River Laboratories, Wilmington, MA) weighing between
550–670 g were used for these studies. Animals were provided
at least 3 days of rest between experiments. Animals were kept
on a standard day-night cycle (lights on at 7:00 AM, and off at
7:00 PM), and all experiments were performed during the day.

SURGICAL PLACEMENT OF ELECTROENCEPHALOGRAPHY (EEG)
EXTRADURAL ELECTRODES AND RECORDING
Rats were surgically implanted with extradural electrodes at least
7 days before experiments using previously described methods
(Solt et al., 2011; Chemali et al., 2012; Ching et al., 2013). Elec-
troencephalography was performed with a sampling frequency of
500 Hz using a QP511 Quad AC Amplifier System (Grass Instru-
ments, West Warwick, RI), and a USB-6009 14-bit data acqui-
sition board (National Instruments, Austin, TX). The electrical
potential between stereotactic coordinates (relative to lambda)
A0L0 and A6L-3 (left somatosensory cortex) was recorded. A line
filter with cutoff frequencies of 0.3–50 Hz was used, and the signal
was downsampled to 50 Hz.

PREPARATION AND DELIVERY OF DRUGS
Sevoflurane was obtained from Sigma-Aldrich (St. Louis, MO),
and propofol (containing intralipid) was obtained from APP
Pharmaceuticals (Schaumburg, IL). For the delivery of the intra-
venous anesthetic propofol, rats (n = 4) were anesthetized

FIGURE 3 | A brain machine interface (BMI) system to control
propofol-induced burst suppression. (A) The BMI records the EEG,
segments the signal into a binary time-series by filtering and thresholding,
estimates the BSP or equivalently the effect-site concentration level based
on the binary-time series, and then uses this estimate as feedback to
control the propofol infusion rate. (B) A sample EEG trace showing burst
suppression. The top panel shows the EEG signal, the middle panel shows
the corresponding filtered EEG magnitude signal (orange) and threshold
(blue) used to detect the burst suppression events, and the bottom panel
shows the corresponding binary time-series with black indicating
suppression events and white indicating burst events. (C) The
two-compartmental model used by the BMI to characterize the effect of
propofol on the EEG. The EEG was sampled at 500 Hz and the binary
sequence was created by low-pass filtering the EEG at 5 Hz and
thresholding. From (Shanechi et al., 2013b).

in an induction chamber with 2.0–3.0% isoflurane in oxy-
gen. A 24-gauge intravenous catheter was placed in the lateral
tail vein. Isoflurane was then discontinued, and the rat was
removed from the chamber. After the rat fully recovered
from isoflurane anesthesia, propofol was delivered using a
Physio 22 syringe pump (Harvard Apparatus, Holliston, MA)
until loss of righting occurred, at which time the EEG leads
were attached and a rectal temperature probe was inserted.
A heating pad was placed underneath the animal and used
to maintain the core body temperature between 36.5◦ and
37.5◦C.

For delivery of the volatile anesthetic sevoflurane, rats were
initially anesthetized in an induction chamber with 5.0–6.0%
sevoflurane in oxygen. After loss of righting occurred, EEG leads
were attached and a rectal temperature probe was inserted. The rat
was then placed inside a custom built anesthetizing chamber with
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ports for anesthetic gas delivery, scavenging, and gas sampling.
A heating pad was placed underneath the chamber and used to
maintain a core body temperature between 36.5◦ and 37.5◦C.
Sevoflurane concentrations were sampled and monitored from
the distal end of the chamber using an Ohmeda 5250 anesthetic
agent analyzer (GE Healthcare, Waukesha, WI).

EEG RECORDING OF PROPOFOL-INDUCED BURST SUPPRESSION
EEG data for propofol-induced burst suppression was taken from
a previous study by our group that used a CLAD system to
establish and maintain targeted BSP values using propofol (Ching
et al., 2013). For this experiment, the BSP levels of 0.4, 0.65,
and 0.9 were targeted in each rat (n = 4). Each BSP level was
maintained with propofol for at least 15 min, with 10-minute
ramps to transition to new BSP levels. The system used custom
software initialized with MATLAB (Mathworks, Natick, MA)
and issued commands to a Physio 22 syringe pump (Harvard
Apparatus, Holliston, MA) using an RS-232 serial connector.
The typical duration of each experiment was between 80 and
90 min. For this study, we selected 1000 s of artifact-free EEG data
from each rat to provide direct comparisons with sevoflurane-
induced burst suppression at equivalent BSP values in the same
animals.

EEG RECORDING OF SEVOFLURANE-INDUCED BURST SUPPRESSION
For sevoflurane-induced burst suppression recordings, the same
rats (n = 4) from the propofol CLAD study were used. Once the
animal was in the anesthetizing chamber, the dose of sevoflurane
was initially set at 3.6% in oxygen with a fresh gas flow rate of two
liters per minute. The sevoflurane concentration was increased
by 0.2% every 30 min until a final concentration of 4.2% was
reached. This maximal dose was maintained for an additional
30 min. The typical experiment duration was 120 min, and 1000 s
of artifact-free EEG data was selected from each rat for analysis.

IDENTIFICATION OF EEG BURSTS AND SUPPRESSIONS
Bursts and suppressions from the recorded EEG were seg-
mented using a threshold based on visual inspection. Each EEG
recording (n = 8, 1000 s each) was detrended and smoothed
by convolution with a Gaussian function, and the energy was
calculated using the nonlinear energy operator (Kaiser, 1990).
The nonlinear energy operator provides a method for clearly
separating the larger energy bursts from the lower energy
suppressions, and a visually-based threshold was set in the
energy domain to segment the data. The EEG values that
were above the threshold were classified as bursts, whereas
the values that fell below the threshold were classified as sup-
pressions. All segmentations were confirmed by one of the
authors who is an experienced clinical electroencephalographer
(MBW).

CALCULATION OF BSP
EEG segments were converted to a binary time series. Segments
that were classified as bursts were given a value of one, and
those that were classified as suppressions were given a value of
zero. The BSP algorithm used this binary time-vector to find
the instantaneous probability of burst suppression, and corre-
sponding confidence intervals (Chemali et al., 2011; Ching et al.,

Table 1 | The number of sorted individual bursts or suppressions in
each BSP bin per general anesthetic.

Propofol Sevoflurane

BSP Bursts Suppressions Bursts Suppressions

0.3–0.4 124 106 109 105
0.4–0.5 225 199 107 99
0.5–0.6 671 583 77 76
0.6–0.7 646 595 129 126
0.7–0.8 192 171 178 171
Total 1858 1654 600 577

The total number of bursts was 2,458 and the total number of suppressions was

2,231.

2013). Like the BSR, a burst suppression probability value of 1
indicates a state of complete EEG suppression, while a value of
0 indicates no suppression. Individual bursts and suppressions
from the propofol and sevoflurane EEG datasets were sorted
by their BSP into bins of 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7,
and 0.7–0.8 BSP. Bursts or suppressions that were shorter than
0.15 s were discarded, as they are too short to constitute a clear
burst or suppression. Table 1 gives the number of individual
propofol or sevoflurane-induced bursts and suppressions within
each bin.

CALCULATION OF BURST AND SUPPRESSION DURATION,
PEAK-TO-PEAK AMPLITUDE, AND POWER
Several features of each sorted individual burst (n = 2,458) and
suppression (n = 2,231) were calculated to characterize them.
Using custom scripts written in MATLAB R2013b, the duration,
peak-to-peak amplitude, and power of each individual burst
or suppression was calculated. Duration (sec) was the absolute
length of the individual burst or suppression. Peak-to-peak volt-
age (µV) was the absolute difference between the maximum
and minimum amplitude value within each individual burst or
suppression. Power (dB µV2/s) was the squared amplitude of the
individual burst or suppression divided by its own duration.

STATISTICAL ANALYSIS OF BURST AND SUPPRESSION DURATIONS,
PEAK-TO-PEAK AMPLITUDE, AND POWER
The median and accompanying 95% upper and lower confidence
intervals for the distribution of burst and suppression durations,
peak-to-peak amplitudes, and power for propofol and sevoflurane
were constructed using the percentile bootstrap procedure (Efron
and Tibshirani, 1993). Unlike hypothesis testing using p-values
alone, the usage of confidence intervals gives a measure of uncer-
tainty around the median of each feature, and testing at a 95%
level is equivalent to hypothesis testing with a significance alpha
of 0.05.

To make significance comparisons between the sevoflurane
and propofol burst suppression features, the 95% confidence
interval around the difference between sevoflurane and propofol
median values was used. If the 95% confidence intervals around
the differences are both positive then sevoflurane is considered to
be significantly higher than propofol. If both confidence intervals
are negative then propofol is considered to be significantly higher
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than sevoflurane. If one confidence interval is negative, and the
other is positive then no statistical significance can be determined.

Spectral analysis of burst suppression
Spectrograms of propofol and sevoflurane-induced burst sup-
pression were computed from EEG data using multitaper
methods from the Chronux toolbox in MATLAB R2013b
(Thomson, 1982; Mitra and Bokil, 2008; Babadi and Brown,
2014). Spectrograms were constructed using three tapers and a
two-second window stepped through 50 ms. The half-bandwidth
of the spectrogram was 1 Hz.

RESULTS
SEVOFLURANE AND PROPOFOL INDUCE DISTINCT BURST
SUPPRESSION PATTERNS
Figure 4A shows 1 min of EEG data from a rat during sevoflurane-
induced burst suppression at a BSP of approximately 0.7, and
Figure 4B shows the non-linear energy calculated from the EEG
trace in Figure 4A. Figure 4C shows 1 min of EEG data from
the same rodent during propofol-induced burst suppression at a
BSP of approximately 0.7, and Figure 4D shows the non-linear
energy calculated from the EEG trace in Figure 4C. The visually-
based threshold that was set in the energy domain to segment
data into bursts and suppressions is shown as a dotted line in
Figures 4B,D.

Figures 5A (sevoflurane) and 5B (propofol) show the time-
frequency spectrograms for five continuous minutes of burst
suppression at a BSP of 0.7 in the same rat. Warm colors
(e.g., red) show areas of high power, and cool colors (e.g.,
blue) show areas of low power. In comparison to the burst
suppression pattern induced by sevoflurane, the pattern induced
by propofol was characterized by lower power across all fre-
quency bands during both bursts and suppressions, despite
equivalent BSP.

DURATION IS SIGNIFICANTLY LONGER FOR SEVOFLURANE-INDUCED
BURSTS AND SUPPRESSIONS THAN FOR PROPOFOL-INDUCED BURSTS
AND SUPPRESSIONS ACROSS ALL BSP LEVELS
Figure 6A shows the median durations for propofol and
sevoflurane-induced bursts and suppressions separated by BSP.
For all BSP values (0.3–0.8) the median duration of sevoflurane-
induced bursts and suppressions was greater than the median
duration of propofol-induced bursts and suppressions. Table 2
shows the median burst and suppression durations at all BSP
levels (0.3–0.8) with corresponding 95% confidence intervals.
The maximum median difference between propofol and sevoflu-
rane bursts was 1.79 s at a BSP of 0.3–0.4, and the max-
imum median difference between propofol and sevoflurane
suppressions was 3.46 s at a BSP of 0.7–0.8. The minimum
median difference between propofol and sevoflurane bursts was
1.26 s at a BSP of 0.7–0.8, and the minimum median differ-
ence between propofol and sevoflurane suppressions was 0.76 s
at a BSP of 0.3–0.4. All of the confidence intervals around
the difference of medians were greater than 0, indicating that
sevoflurane bursts and suppressions were significantly longer
in duration across different BSP levels when compared to
propofol.

PEAK-TO-PEAK AMPLITUDE IS SIGNIFICANTLY HIGHER FOR
SEVOFLURANE-INDUCED BURSTS AND SUPPRESSIONS THAN
PROPOFOL-INDUCED BURSTS AND SUPPRESSIONS ACROSS ALL BSP
LEVELS
Figure 6B shows the median peak-to-peak amplitudes for
propofol and sevoflurane-induced bursts and suppressions
separated by BSP. For all BSP values (0.3–0.8) the median peak-to-
peak amplitudes of sevoflurane-induced bursts and suppressions
was greater than the median peak-to-peak amplitudes of
propofol-induced bursts and suppressions. The median burst
and suppression peak-to-peak amplitudes at all BSP values
(0.3–0.8) with corresponding 95% confidence intervals are given
in Table 2. The maximum median difference between propofol
and sevoflurane burst peak-to-peak amplitudes was 587.73 µV
at a BSP of 0.6–0.7, and the maximum median difference
between propofol and sevoflurane suppression peak-to-peak
amplitudes was 97.86 µV at a BSP of 0.6–0.7. The minimum
median difference between propofol and sevoflurane burst peak-
to-peak amplitudes was 305.02 µV at a BSP of 0.7–0.8, and the
minimum median difference between propofol and sevoflurane
suppression peak-to-peak amplitudes was 84.20 µV at a BSP of

FIGURE 4 | Representative EEG traces and energy values from the
same rat at a BSP of 0.7. (A) A 60-second EEG recording taken during
sevoflurane-induced burst suppression. Black indicates an area threshold as
suppression, and red indicates an area threshold as a burst. (B) Energy of
the EEG trace from (A) that was used to segment bursts and suppressions.
(C) 60-second EEG recording taken from the same animal during
propofol-induced burst suppression. (D) Energy of the EEG trace from (C)
shows that propofol-induced bursts and suppressions are shorter and lower
in power then sevoflurane-induced bursts and suppressions, despite an
equivalent BSP.
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FIGURE 5 | Spectrograms computed from the same rat during
5 min of burst suppression at a BSP of 0.7. Warm colors indicate
frequency components with high power, while cool colors indicate
frequency components with low power. (A) Sevoflurane-induced

burst suppression has high power between 1–10 Hz during bursts.
(B) Propofol-induced burst suppression has lower power during
bursts and suppressions across all frequencies when compared to
sevoflurane.

0.5–0.6. All of the confidence intervals around the difference of
medians were greater than 0, indicating that sevoflurane bursts
and suppressions were significantly greater in amplitude across
different BSP levels when compared with propofol.

POWER IS SIGNIFICANTLY HIGHER FOR SEVOFLURANE-INDUCED
BURSTS AND SUPPRESSIONS THAN PROPOFOL-INDUCED BURSTS
AND SUPPRESSIONS ACROSS ALL BSP LEVELS
Figure 6C shows the median power for propofol and sevoflurane-
induced bursts and suppressions separated by BSP. For all BSP
values (0.3–0.8) the median power of sevoflurane-induced bursts
and suppressions was greater than the median power of propofol-
induced bursts and suppressions. Table 2 shows the median
burst and suppression powers at all BSP values (0.3–0.8) with
corresponding 95% confidence intervals. The maximum median
difference between propofol and sevoflurane burst powers was
68.46 dB µV2/s at a BSP of 0.6–0.7, and the maximum median
difference between propofol and sevoflurane suppression powers
was 56.14 dB µV2/s at a BSP of 0.3–0.4. The minimum median
difference between propofol and sevoflurane burst powers was
64.07 dB µV2/s at a BSP of 0.7–0.8, and the minimum median
difference between propofol and sevoflurane suppression powers
was 53.65 dB µV2/s at a BSP of 0.7–0.8. All of the confidence
intervals around the difference of medians were greater than 0,
indicating that sevoflurane bursts and suppressions were signifi-
cantly larger in power across different BSP levels, when compared
with propofol.

DISCUSSION
Previous studies on burst suppression induced by general anes-
thetics have found differences between burst and suppres-
sion durations and peak-to-peak amplitudes between propofol,
etomidate, thiopental, and isoflurane in rodents, and between
propofol and isoflurane in rabbits. The inhaled anesthetic isoflu-
rane was found to produce greater amplitudes and durations
than the other intravenous agents. However, these studies only
compared a small number of individual bursts and suppressions,
and did not systematically examine them at different depths of
general anesthesia.

In this study, we gathered large amounts of EEG data during
sevoflurane and propofol anesthesia from the same animals,
and used the BSP to quantify anesthetic depth. We found that
the durations of suppressions and bursts induced by propofol
were significantly shorter than those induced by sevoflurane at all
measured levels of BSP. Additionally, the peak-to-peak amplitudes
of propofol-induced suppressions and bursts were significantly
lower than those induced by sevoflurane at all measured levels of
BSP. Sevoflurane suppressions were not completely suppressed,
as the peak-to-peak amplitudes of sevoflurane suppressions were
similar in size to the peak-to-peak amplitudes of propofol bursts.
However, it should be noted that for these experiments, we
analyzed EEG data at BSP levels ranging from 0.3–0.8. We did not
compare burst suppression patterns at BSP levels below 0.3, due
to the difficulty of visually segmenting propofol-induced bursts
and suppressions at low BSP levels.
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FIGURE 6 | Bar graphs with 95% confidence intervals for the
median duration, peak-to-peak amplitude, and power for individual
bursts and suppressions induced by propofol (blue) or sevoflurane
(red) in all animals. In order to perform direct comparisons between
the two drugs at similar depths of general anesthesia, the data was
grouped by BSP level. (A) The median durations of bursts and

suppressions were significantly longer during sevoflurane anesthesia
than during propofol anesthesia. (B) Median peak-to-peak amplitudes
(µV) were significantly greater during sevoflurane general anesthesia for
both bursts and suppressions. (C) Median power (dB µV2/s) for
individual bursts and suppressions was significantly higher during
sevoflurane general anesthesia.

Table 2 | The median differences between propofol and sevoflurane-induced bursts and suppressions for duration, peak-to-peak amplitude and
power across BSP values of 0.3–0.8.

BSP Duration Peak-to-peak Amplitude Power

Burst Suppressions Burst Suppressions Burst Suppressions

0.3–0.4 1.79 s (95% CI:
1.33–2.27 s)

0.76 s (95% CI:
0.41–1.29 s)

349.77 µV (95% CI:
322.16–386.61 µV)

90.09 µV (95% CI:
74.04–107.76 µV)

65.82 dB µV2/s (95% CI:
65.37–66.30 dB µV2/s)

56.14 dB µV2/s (95%
CI: 55.00–57.24 dB µV2/s)

0.4–0.5 1.76 s (95% CI:
1.27–2.11 s)

1.14 s (95% CI:
0.41–1.46 ss)

378.46 µV (95% CI:
347.70–407.31 µV)

94.20 µV (95% CI:
80.06–109.29 µV)

66.09 dB µV2/s (95% CI:
65.59–66.57 dB µV2/s)

55.24 dB µV2/s (95% CI:
54.63–56.33 dB µV2/s)

0.5–0.6 1.68 s (95% CI:
1.29–2.8 s)

1.79 s (95% CI:
1.06–2.66 s)

571.07 µV (95% CI:
506.36–601.20 µV)

84.20 µV (95% CI:
72.80–102.86 µV)

67.88 dB µV2/s (95% CI:
67.34–68.23 dB µV2/s)

53.89 dB µV2/s (95% CI:
52.97–54.89 dB µV2/s)

0.6–0.7 1.55 s (95% CI:
1.28–1.76 s)

2.73 s (95% CI:
2.16–3.53 s)

587.73 µV (95% CI:
553.49–646.48 µV)

97.86 µV (95% CI:
89.80–105.98 µV)

68.46 dB µV2/s (95% CI:
68.07–68.65 dB µV2/s)

53.99 dB µV2/s (95% CI:
53.50–54.45 dB µV2/s)

0.7–0.8 1.26 s (95% CI:
1.02–1.47 s)

3.46 s (95% CI:
2.69–4.36 s)

305.02 µV (95% CI:
274.58–334.39 µV)

93.75 µV (95% CI:
85.85–102.54 µV)

64.07 dB µV2/s (95% CI:
63.63–64.72 dB µV2/s)

53.65 dB µV2/s (95% CI:
52.71–54.02 dB µV2/s)

95% confidence intervals around the differences indicate if there is a significant increase, decrease, or no change between the two anesthetics. Sevoflurane-induced

bursts and suppressions are significantly greater in magnitude than propofol-induced bursts and suppressions across all BSP values for duration, peak-to-peak

amplitude, and power.

Experiments using the NMDA receptor antagonist MK801
during isoflurane-induced burst suppression showed that peak-
to-peak amplitudes and durations of bursts were diminished
compared to bursts induced by isoflurane alone, although the
rate of bursting remained the same (Kroeger and Amzica,
2007). Nitrous oxide is an NMDA antagonist (Jevtović-Todorović

et al., 1998) that decreases both suppression durations and
burst amplitudes when used as an adjunct to isoflurane gen-
eral anesthesia (Yli-Hankala et al., 1993b; Porkkala et al.,
1997). These studies suggest that NMDA receptors play an
important role in limiting the maximum amplitude of bursts
and suppressions. However, in the present study we found
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that sevoflurane induced greater durations and amplitudes
for both bursts and suppressions when compared to propo-
fol, even though sevoflurane inhibits NMDA receptors, and
propofol is thought to act primarily via GABAA receptors
(Solt and Forman, 2007). Our results demonstrate that NMDA
receptor pharmacology alone does not account for the differ-
ent burst suppression patterns observed with sevoflurane and
propofol.

Extracellular calcium or ATP reuptake may also modulate the
durations of bursts and suppressions. An increase in the rate
of ATP reuptake under propofol (when compared to sevoflu-
rane) could increase the rate of switching between bursts and
suppressions. Cerebral blood flow could also be an important
factor that determines the duration of bursts and suppressions
(Kroeger and Amzica, 2007; Ching et al., 2012). It has also been
suggested that during the state of burst suppression the cortex
is more sensitive to external stimuli, since such stimuli have
been shown to trigger bursts under isoflurane anesthesia (Hudetz
and Imas, 2007). The cortex may be more sensitive to external
stimuli during propofol-induced burst suppression compared to
sevoflurane-induced burst suppression, allowing bursts to occur
with greater frequency (Ferron et al., 2009). Despite equivalent
global reduction in the CMRO, regional variations in CMRO
reduction could account for the differences in burst suppres-
sion patterns observed between two different general anesthetics
(Akrawi et al., 1996; Ching et al., 2012). In vitro studies of
thiopental, propofol, and isoflurane show that these anesthetics
potentiate GABAA receptors. The activation of these receptors
leads to a burst suppression pattern, and further increasing the
anesthetic concentration depresses glutamatergic transmission.
This decrease in glutamatergic transmission will eventually lead
to complete suppression of the EEG. (Lukatch and Maciver, 1996;
Lukatch et al., 2005).

Traditionally, the period of suppression is thought to be one of
electrical silence. In the present study at 0.5 BSP, the median peak-
to-peak amplitude of sevoflurane suppressions was 136 µV (95%
CI: 125–155 µV), whereas the median peak-to-peak amplitude
of propofol suppressions was only 52 µV (95% CI: 51–53 µV).
In fact, the median peak-to-peak amplitude of propofol bursts
(196 µV, 95% CI: 187–213 µV) was similar in magnitude to
the median peak-to-peak amplitude of sevoflurane suppressions.
This illustrates why visual thresholding was necessary for this
study.

The high suppression amplitudes that we observed for sevoflu-
rane have also been described for another halogenated ether anes-
thetic, isoflurane (Akrawi et al., 1996). This suggests that a greater
level of neuronal activity occurs during suppressions induced
by sevoflurane and isoflurane when compared to intravenous
anesthetics such as propofol and barbiturates. It is known that
during urethane and xylazine anesthesia, thalamic neurons fire
at a steady delta rhythm (1–4 Hz) during suppression (Steriade
et al., 1994). Future studies are needed to test whether thalamic
firing activity is greater during EEG suppression periods induced
by inhaled ether anesthetics.

Burst suppression is generally viewed as a single phenomenon
that can be induced by various pathological processes as well
as general anesthetics. However, the present results demonstrate

that even after controlling for the depth of general anesthesia,
different general anesthetics induce very different patterns of
burst suppression. Automated algorithms used to segment burst
suppression need to be tuned to match specific general anesthetics
by taking into account the large differences in amplitudes and
durations. More studies are needed to elucidate the underlying
physiology that governs the burst suppression features induced by
different general anesthetics.

DISCLOSURE OF FUNDING
This research was supported by grants TR01-GM104948 and
K08-GM094394 from the National Institutes of Health, Bethesda,
Maryland.

REFERENCES
Aicardi, J. (2005). Aicardi syndrome. Brain Dev. 27, 164–171. doi: 10.1016/j.

braindev.2003.11.011
Aicardi, J., and Ohtahara, S. (2005). “Severe neonatal epilepsies with suppression-

burst pattern,” in Epileptic Syndromes in Infancy, Childhood and Adolescence 4th
Edn., eds J. Roger, M. Bureau, C. Dravet and P. Genton (London: John Libbey),
39–52.

Akrawi, W. P., Drummond, J. C., Kalkman, C. J., and Patel, P. M. (1996). A
comparison of the electrophysiologic characteristics of EEG burst-suppression
as produced by isoflurane, thiopental, etomidate and propofol. J. Neurosurg.
Anesthesiol. 8, 40–46. doi: 10.1097/00008506-199601000-00010

Amzica, F. (2009). Basic physiology of burst-suppression. Epilepsia 50(Suppl. 12),
38–39. doi: 10.1111/j.1528-1167.2009.02345.x

Arrica, M., and Bissonnette, B. (2007). Therapeutic hypothermia. Semin. Cardio-
thorac. Vasc. Anesth. 11, 6–15. doi: 10.1177/1089253206297409

Auer, R. N., Olsson, Y., and Siesjö, B. K. (1984). Hypoglycemic brain injury
in the rat. Correlation of density of brain damage with the EEG isoelec-
tric time: a quantitative study. Diabetes 33, 1090–1098. doi: 10.2337/diab.33.
11.1090

Babadi, B., and Brown, E. N. (2014). A review of multi-taper analysis. IEEE Trans.
Biomed. Eng. 61, 1555–1564. doi: 10.1109/TBME.2014.2311996

Barash, P. G., Cullen, B. F., Stoelting, R. K., Cahalan, M., and Stock, M. C. (2012).
Clinical Anesthesia. Philadelphia, PA: Lippincott Williams and Wilkins.

Beydoun, A., Yen, C. E., and Drury, I. (1991). Variance of interburst intervals in
burst suppression. Electroencephalogr. Clin. Neurophysiol. 79, 435–439. doi: 10.
1016/0013-4694(91)90162-w

Bickford, R. G., and Butt, H. R. (1955). Hepatic coma: the electroencephalographic
pattern. J. Clin. Invest. 34, 790–799. doi: 10.1172/jci103134

Brown, E. N., Lydic, R., and Schiff, N. D. (2010). General anesthesia, sleep and
coma. N. Engl. J. Med. 363, 2638–2650. doi: 10.1056/NEJMra0808281

Brown, E. N., Purdon, P. L., and Van Dort, C. J. (2011). General anesthesia and
altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci.
34, 601–628. doi: 10.1146/annurev-neuro-060909-153200

Bruhn, J., Bouillon, T. W., and Shafer, S. L. (2001). Onset of propofol-induced
burst suppression may be correctly detected as deepening of anaesthesia by
approximate entropy but not by bispectral index. Br. J. Anaesth. 87, 505–507.
doi: 10.1093/bja/87.3.505

Bruhn, J., Ropcke, H., Rehberg, B., Bouillon, T., and Hoeft, A. (2000). Electroen-
cephalogram approximate entropy correctly classifies the occurrence of burst
suppression pattern as increasing anesthetic drug effect. Anesthesiology 93, 981–
985. doi: 10.1097/00000542-200010000-00018

Chemali, J., Ching, S., Purdon, P. L., Solt, K., and Brown, E. N. (2013). Burst
suppression probability algorithms: state-space methods for tracking EEG
burst suppression. J. Neural Eng. 10:056017. doi: 10.1088/1741-2560/10/5/05
6017

Chemali, J. J., Van Dort, C. J., Brown, E. N., and Solt, K. (2012). Active emergence
from propofol general anesthesia is induced by methylphenidate. Anesthesiology
116, 998–1005. doi: 10.1097/ALN.0b013e3182518bfc

Chemali, J. J., Wong, K. F., Solt, K., and Brown, E. N. (2011). A state-space model
of the burst suppression ratio. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1431–
1434. doi: 10.1109/IEMBS.2011.6090354

Frontiers in Systems Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 237 | 57

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Kenny et al. Burst suppression: a review and new insights

Ching, S., Liberman, M. Y., Chemali, J. J., Westover, M. B., Kenny, J. D., Solt, K., et al.
(2013). Real-time closed-loop control in a rodent model of medically induced
coma using burst suppression. Anesthesiology 119, 848–860. doi: 10.1097/ALN.
0b013e31829d4ab4

Ching, S., Purdon, P. L., Vijayan, S., Kopell, N. J., and Brown, E. N. (2012). A
neurophysiological-metabolic model for burst suppression. Proc. Natl. Acad. Sci.
U S A 109, 3095–3100. doi: 10.1073/pnas.1121461109

Claassen, J., Hirsch, L. J., Emerson, R. G., and Mayer, S. A. (2002). Treatment
of refractory status epilepticus with pentobarbital, propofol, or midazolam:
a systematic review. Epilepsia 43, 146–153. doi: 10.1046/j.1528-1157.2002.
28501.x

Cotten, J. F., Le Ge, R., Banacos, N., Pejo, E., Husain, S. S., Williams, J. H.,
et al. (2011). Closed-loop continuous infusions of etomidate and etomidate
analogs in rats: a comparative study of dosing and the impact on adreno-
cortical function. Anesthesiology 115, 764–773. doi: 10.1097/ALN.0b013e3182
1950de

Derbyshire, A. J., Rempel, B., Forbes, A., and Lambert, E. (1936). The effects of
anesthetics on action potentials in the cerebral cortex of the cat. Am. J. Physiol.
Leg. Content 116, 577–596.

De Rubeis, D. A., and Young, G. B. (2001). Continuous EEG monitoring in a
patient with massive carbamazepine overdose. J. Clin. Neurophysiol. 18, 166–
168. doi: 10.1097/00004691-200103000-00008

Dow, R. S. (1961). The electroencephalographic findings in acute intermittent por-
phyria. Electroencephalogr. Clin. Neurophysiol. 13, 425–437. doi: 10.1016/0013-
4694(61)90011-6

Doyle, P. W., and Matta, B. F. (1999). Burst suppression or isoelectric encephalo-
gram for cerebral protection: evidence from metabolic suppression studies. Br.
J. Anaesth. 83, 580–584. doi: 10.1093/bja/83.4.580

Efron, B., and Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton,
FL: CRC press.

Engelhardt, W., Carl, G., and Hartung, E. (1993). Intra-individual open com-
parison of burst-suppression-isoflurane-anaesthesia versus electroconvulsive
therapy in the treatment of severe depression. Eur. J. Anaesthesiol. 10,
113–118.

Fariello, R. G., Chun, R. W., Doro, J. M., Buncic, J. R., and Prichard, J. S. (1977).
EEG recognition of Aicardi’s syndrome. Arch. Neurol. 34, 563–566. doi: 10.
1001/archneur.1977.00500210065012

Ferenets, R., Lipping, T., Suominen, P., Turunen, J., Puumala, P., Jantti, V., et al.
(2006). “Comparison of the properties of EEG spindles in sleep and propofol
anesthesia,” in Engineering in Medicine and Biology Society, 2006. EMBS′06.
28th Annual International Conference of the IEEE. (New York, NY: IEEE),
6356–6359.

Ferron, J. F., Kroeger, D., Chever, O., and Amzica, F. (2009). Cortical inhibition
during burst suppression induced with isoflurane anesthesia. J. Neurosci. 29,
9850–9860. doi: 10.1523/JNEUROSCI.5176-08.2009

Grigg-Damberger, M. M., Coker, S. B., Halsey, C. L., and Anderson, C. L. (1989).
Neonatal burst suppression: its developmental significance. Pediatr. Neurol. 5,
84–92. doi: 10.1016/0887-8994(89)90032-5

Hartikainen, K., Rorarius, M., Mäkelä, K., Yli-Hankala, A., and Jäntti, V. (1995a).
Propofol and isoflurane induced EEG burst suppression patterns in rab-
bits. Acta Anaesthesiol. Scand. 39, 814–818. doi: 10.1111/j.1399-6576.1995.tb
s04176.x

Hartikainen, K. M., Rorarius, M., Peräkylä, J. J., Laippala, P. J., and Jäntti, V.
(1995b). Cortical reactivity during isoflurane burst-suppression anesthesia.
Anesth. Analg. 81, 1223–1228. doi: 10.1097/00000539-199512000-00018

Hellström-Westas, L., Rosén, I., and Svenningsen, N. W. (1995). Predictive value of
early continuous amplitude integrated EEG recordings on outcome after severe
birth asphyxia in full term infants. Arch. Dis. Child. Fetal Neonatal. Ed. 72, F34–
F38. doi: 10.1136/fn.72.1.f34

Henry, C. E., and Scoville, W. B. (1952). Suppression-burst activity from isolated
cerebral cortex in man. Electroencephalogr. Clin. Neurophysiol. 4, 1–22. doi: 10.
1016/0013-4694(52)90027-8

Hofmeijer, J., Tjepkema-Cloostermans, M. C., and van Putten, M. J. (2014). Burst-
suppression with identical bursts: a distinct EEG pattern with poor outcome in
postanoxic coma. Clin. Neurophysiol. 125, 947–954. doi: 10.1016/j.clinph.2013.
10.017

Hudetz, A. G., and Imas, O. A. (2007). Burst activation of the cerebral cortex by
flash stimuli during isoflurane anesthesia in rats. Anesthesiology 107, 983–991.
doi: 10.1097/01.anes.0000291471.80659.55

Huotari, A. M., Koskinen, M., Suominen, K., Alahuhta, S., Remes, R., Hartikainen,
K. M., et al. (2004). Evoked EEG patterns during burst suppression with
propofol. Br. J. Anaesth. 92, 18–24. doi: 10.1093/bja/aeh022

Itoh, M., Hanaoka, S., Sasaki, M., Ohama, E., and Takashima, S. (2001). Neu-
ropathology of early-infantile epileptic encephalopathy with suppression-bursts;
comparison with those of early myoclonic encephalopathy and west syndrome.
Brain Dev. 23, 721–726. doi: 10.1016/s0387-7604(01)00270-4
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INTRODUCTION
Analysis of electroencephalogram (EEG) recordings have been
used to characterize anesthetic effects at various concentration-
related depths, from sedation through loss of recall, loss of
consciousness, and full surgical immobility. Volatile anesthetics,
barbiturates, and propofol produce a stereotypic pattern of EEG
changes, with high amplitude slow wave (delta; 1–3 Hz) activity
seen during sedation and loss of consciousness, and transition-
ing to burst suppression patterns at surgical levels of anesthesia
(Clark et al., 1973; MacIver et al., 1996; Pilge et al., 2014). Previous
studies have used various quantitative measures based on time-
series analysis to characterize these EEG signals (Rampil, 2001).
Measures based on Fourier, entropy, coherence, and/or bispec-
tral transforms have proven useful in the design of commercially
available anesthetic depth monitors. Unfortunately, these mon-
itors have been shown to achieve accuracies/congruencies of
only ∼ 85–95%, far below a level that is needed to prevent
intraoperative awareness (Niedhart et al., 2006; Hrelec et al.,
2010).

It has long been known that EEG signals can generate
chaotic strange attractors and that the shape of these attrac-
tors correlate with depth of anesthesia (Watt and Hameroff,
1988; Walling and Hicks, 2006). One of these studies com-
pared frequency domain measures [FFT: (Walling and Hicks,
2006)], with chaos analysis of anesthetic-induced changes in
EEG signals, but the attractor density was too sparse for
detailed analysis. The present study used high quality frontal
and hippocampal micro-EEG recordings and high density 3D
attractor plots to compare signals associated with isoflurane-
induced loss of righting reflex in rats. Loss of righting reflex
is a commonly used surrogate endpoint measure in rodents
for loss of consciousness in humans (Frank and Jhamandas,
1970).

It is possible that anesthetic-induced changes in EEG signals
represent altered states of brain processing produced by an anes-
thetic. In the present study we have tested the hypothesis that
chaos analysis can provide a sensitive measure for isoflurane-
induced changes in brain state, especially at the point of loss

It has long been known that electroencephalogram (EEG) signals generate chaotic strange
attractors and the shape of these attractors correlate with depth of anesthesia. We applied
chaos analysis to frontal cortical and hippocampal micro-EEG signals from implanted
microelectrodes (layer 4 and CA1, respectively). Rats were taken to and from loss of
righting reflex (LORR) with isoflurane and behavioral measures were compared to attractor
shape. Resting EEG signals at LORR differed markedly from awake signals, more similar
to slow wave sleep signals, and easily discerned in raw recordings (high amplitude slow
waves), and in fast Fourier transform analysis (FFT; increased delta power), in good
agreement with previous studies. EEG activation stimulated by turning rats on their side,
to test righting, produced signals quite similar to awake resting state EEG signals. That
is, the high amplitude slow wave activity changed to low amplitude fast activity that
lasted for several seconds, before returning to slow wave activity. This occurred regardless
of whether the rat was able to right itself, or not. Testing paw pinch and tail clamp
responses produced similar EEG activations, even from deep anesthesia when burst
suppression dominated the spontaneous EEG. Chaotic attractor shape was far better
at discerning between these awake-like signals, at loss of responses, than was FFT
analysis. Comparisons are provided between FFT and chaos analysis of EEG during awake
walking, slow wave sleep, and isoflurane-induced effects at several depths of anesthesia.
Attractors readily discriminated between natural sleep and isoflurane-induced “delta”
activity. Chaotic attractor shapes changed gradually through the transition from awake
to LORR, indicating that this was not an on/off like transition, but rather a point along a
continuum of brain states.
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of consciousness. We hope this can contribute to a better
understanding anesthesia and theories of consciousness.

MATERIALS AND METHODS
ANIMALS
Animal protocols were approved by the University of Calgary Life
Sciences Environmental Animal Care Committee in accordance
with guidelines from the Canadian Council on Animal Care. All
procedures complied with the National Institute of Health (US)
and Society for Neuroscience guidelines for the care and use
of research animals, and efforts were made to minimize stress,
and discomfort at all stages of handling. Thirteen male Sprague-
Dawley rats weighing between 300 and 450 gm were used. Rats
were obtained from the Animal Care Facility at the University of
Calgary.

SURGERY
Rats were deeply anesthetized with ketamine-xylazine 4:1
1.0 ml/kg and placed in a stereotaxic apparatus and prepared
for electrode implantation by leveling to horizontal the plane
between bregma and lambda as previously described (Bland et al.,
2007). Rats spontaneously breathed and body temperature was

maintained using a heating pad. An indifferent electrode con-
sisting of small screw was placed in the skull over the cerebellar
cortex to act as a ground. Bipolar twisted pair tungsten microelec-
trodes (Plastics One, Roanoke VA) with vertical tip separations
of ∼ 1.0 mm were stereotaxically placed in layer 4 of frontal cor-
tex (3.0 mm AB, 3.0 mm L, and 1.5 mm V) and in the CA1 region
of dorsal hippocampus (4.0 mm PB, 2.0 mm L, and 2.4 mm V) to
record micro-EEG signals. Animals were allowed to recover for at
least a week before being placed in a small recording/anesthesia
chamber (24 × 10 × 10 inches) that was continuously flushed
with room air in control conditions or oxygen that was used as
a carrier gas for the isoflurane vaporizer.

RECORDING
For experiments, animals were placed in the recording cham-
ber and attached via Plastic One screw type connectors to fine
shielded leads and through a commutator to allow free move-
ment. EEG signals were recorded wideband (0.1 Hz–20 kHz)
using Grass Instrument Co. P 511 EEG preamplifiers, and were
conditioned (x10 gain and zero DC offset) using a BrownLee
model 410 instrumentation amplifier, before being digitized at
20 kHz using a National Instruments USB 6009 A/D connected

FIGURE 1 | Representative EEG recordings of frontal cortex (CORTEX)

and hippocampal CA1 (HIPPOCAMPUS) signals for simultaneously

recorded activity. During walking/exploring behavior, low amplitude fast
activity is seen in cortex and a theta rhythm is generated in hippocampus.

Chaotic attractor plots and FFT magnitude graphs, for these two records are
shown below the recordings. Calibration bars = 200 µV and 500 ms. Note
that the gain of the hippocampal signal was reduced by 1/3 for the analyses,
to maintain scaling with respect to cortex.
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to a MacBook computer running OS10.7/UNIX and Wavemetrics
IgorPro acquisition software. Signals were continuously analyzed
by FFT and displayed online, and were stored to disk using
IgorPro. At least 20 min of control EEG signals were acquired
from each rat, consisting of periods of awake immobility, explor-
ing/walking, and sleep immobility, assessed from behavioral, and
FFT observation by one of the authors. Once stable baseline
recordings were complete, rats were exposed to various con-
centrations of isoflurane via an Isotec 3 commercial vaporizer.
Isoflurane concentrations in the recording chamber were contin-
uously measured and displayed using a Riken FI-21 agent moni-
tor. For loss of righting experiments, isoflurane was applied for at
least 20 min to achieve steady-state at each tested concentration
and the righting reflex was assessed every 5 min by gently tilt-
ing the recording chamber to roll a rat on it’s side. At deeper
levels of isoflurane anesthesia, rats were placed on a heating pad
to maintain body temperature.

DATA ANALYSIS
Behavioral observations were time-stamped to recorded EEG sig-
nals for off-line analysis/correlation. EEG signals were further
processed and displayed as real component magnitude graphs
using IgorPro. For chaos analysis, algorithms provided by Walling
and Hicks (2006) were utilized and the results were visualized as
point plots using 3D graphics in IgorPro. We used an embed-
ding delay of 0.01 s, as this was found to be the minimal delay
needed to produce a spherical attractor for the awake frontal EEG
signal, sampled at 20 kHz. We found this delay worked well for
EEG samples as short as 2 s, but in the examples shown we used
the entire EEG trace shown with each attractor (i.e., 6.0–8.0 s).

FIGURE 2 | Frontal cortex EEG recordings showing changes seen at the

three anesthetic endpoints (depths) tested: LORR–loss of righting

reflex, LOPP—loss of paw pinch, and LOTC—loss of tail clamp. The
dominant effect at loss of consciousness (LORR) was a slowing of the EEG
resulting in a high power delta signal that resembled slow wave sleep
patterns. At surgical levels of anesthesia (LOTC) burst suppression activity
was seen. Note a reverse pattern of changes was seen on recovery as
isoflurane concentrations decreased and responses returned (ROTC, ROPP,
and RORR). Calibration = 500 µV and 1.0 s.

Chaotic attractors were “flattened” by isoflurane in 2 dimensions
and this was best seen in 3D rotations. For this reason, we used
3D plots to show the attractors. Quicktime movies of these 3D
rotations are provided as supplemental materials. For the graphs
shown in this paper, we used a projection that best showed the
maximal flattening for each attractor.

RESULTS
EEG SIGNALS CORRELATED WITH BEHAVIOR
For both the frontal cortex and hippocampal EEG signals there
was a good correlation between ongoing behavior and signal
appearance, in agreement with previous studies (Bland and
Oddie, 2001). For example, during awake exploring, the frontal
cortex generated low amplitude fast activity while the hippocam-
pus produced a theta rhythm (Figure 1). Interestingly, in all
thirteen rats, the chaotic attractor associated with this frontal fast
activity was spherical, in good agreement with attractors seen
in frontal cortical signals recorded from alert humans (Walling
and Hicks, 2006). The hippocampal EEG attractor during both
theta activity (Figure 1) and large amplitude irregular activity
(LIA, not shown) was somewhat flattened compared to cortex.

FIGURE 3 | Chaotic attractors for frontal cortex (CORTEX) flatten in the

presence of increasing concentrations of isoflurane (0.5 and 0.72

vol %), however hippocampal attractors remain largely unchanged.

This was evident in recordings too, LIA was the dominant pattern seen in
hippocampus, until high concentrations that produced synchronized burst
suppression occurred in both brain regions.
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The FFT magnitude graphs associated with these signals showed
the typical wideband activity in frontal cortex and a promi-
nent theta peak (4–8 Hz) in the hippocampus (bottom graphs in
Figure 1).

ISOFLURANE PRODUCED A STEREOTYPIC CHANGE IN EEG SIGNALS
In agreement with earlier studies in both humans (Buhrer et al.,
1992) and rats (MacIver et al., 1996), undergoing thiopental
anesthesia, a characteristic pattern of concentration-dependent
EEG changes was produced by isoflurane (Figure 2). A very sim-
ilar pattern was seen in all rats. Low amplitude fast activity
seen in awake frontal cortex was replaced by higher amplitude
slow wave activity at low concentrations of isoflurane that pro-
duced mild sedation. At concentrations of isoflurane that pro-
duced loss of righting reflex (LORR; 0.7–0.8 vol %) a further
increase in amplitude and slowing of the frontal EEG signal
was seen. Loss of tail clamp (LOTC; 1.3–1.5 vol %) response
was used as a surrogate endpoint for a surgical plane of anes-
thesia (White et al., 1974). A characteristic burst suppression
EEG pattern was evident in the frontal cortex at LOTC in all
rats (Figure 2), although this pattern could change to large
amplitude slow wave activity during the course of tail clamp
stimulation, and even to an awake-like pattern of low ampli-
tude fast activity in some rats, even though no behavioral
response was evident. This type of cortical activation was also
seen at lower concentrations of isoflurane during LORR stim-
ulation (see below). Frontal EEG signals rapidly returned to
burst suppression patterns within 20 s of removing tail clamp
stimulation.

A mirror image of these EEG patterns was seen upon
removal of isoflurane from the recording chamber (Figure 2).
At return of the tail clamp response (ROTC), high ampli-
tude slow wave activity was evident in cortex. A pattern of
activity similar to that seen during mild sedation was evident
when rats were able to withdraw their hind leg in response
to mild paw pressure (ROPP) and, paradoxically, an awake
pattern of low amplitude fast activity was seen for several
seconds before rats recovered their righting reflex (RORR in
Figure 2).

While the frontal cortex EEG signals were clearly altered by
isoflurane, the hippocampal signals remained largely unchanged,
and this was also true for the chaotic attractors (Figure 3),
cortical attractors were markedly flattened by isoflurane, but
hippocampal attractors remained unchanged.

ISOFLURANE-INDUCED SLOW WAVE ACTIVITY WAS DIFFERENT FROM
SLOW WAVE SLEEP PATTERNS
The isoflurane-induced slow wave “delta” activity was quite dif-
ferent from delta activity seen during slow wave sleep in the
same rats (Figure 4). Although both EEG signals exhibited sim-
ilar high amplitudes and a 1–3 Hz dominant frequency, the
isoflurane-induced delta activity was notably devoid of higher
frequencies seen during sleep. This was clearly evident in the
chaotic attractors associated with these two forms of delta activity.
Both attractors were flattened compared to the awake condition
(Figure 1), but the isoflurane-induced attractor was considerably
more flattened and disorganized compared to the sleep attractor
(Figure 4).

FIGURE 4 | Slow wave sleep delta EEG activity seen in frontal cortex

was associated with a classic sleep posture and with isoflurane-induced

loss of righting in rats. The isoflurane-induced recordings were clearly
lacking some high frequency components, but overall amplitude increases

and background frequencies were similar. Chaotic attractors were markedly
different for these two signals, however, indicating that circuit level
differences were associated with these two brain states. Each attractor plots
the data for the accompanying EEG recording. Calibration = 300 µV and 1.0 s.
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ISOFLURANE-INDUCED LORR
As mentioned above, testing the righting reflex in rats produced
frontal cortical activation, both before and after the reflex was
lost. Figure 5 demonstrates this effect. Before testing the reflex
the frontal cortex was clearly producing high amplitude slow wave
delta activity with sleep spindles seen riding on 2 Hz slow waves,
characteristic of isoflurane effects at a concentration of ∼ 0.7

vol %. LIA was seen in the hippocampus. When the recording
chamber was tilted to test for righting, the frontal signal imme-
diately activated into an awake-like pattern of low amplitude fast
activity, and theta appeared in the hippocampus, as the rat righted
itself. Five minutes later, at this same concentration of isoflurane,
the rat was no longer able to right itself, yet tilting the cham-
ber still resulted in cortical activation, but theta was no longer

FIGURE 5 | Stimulating anesthetized rats results in cortical and

hippocampal activation. For example, testing the rats righting reflex

(arrow in top record) stimulates vestibular, proprioceptive, and other

sensory inputs—resulting in an awake-like “activated” EEG signal.

Activation occurred regardless of whether righting was lost or not, and rapidly
retuned to a slow wave “delta” pattern seconds after the stimulus onset,

regardless of whether the rat righted itself or not. In the middle recordings, the
righting reflex was tested 1 s before the start of the recording, and an activated
EEG pattern was seen for the entire recording shown (7.0 s), even though the rat
failed to right itself. In the lower recording, the EEG is seen to return to slow
wave activity within 10 s, and the slow wave activity in cortex appeared to be
synchronized with LIA hippocampus. Calibration = 300 µV and 1.0 s.
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seen in the hippocampus. Within 10 s the cortical signal returned
to high amplitude delta activity and the hippocampus contin-
ued to generate LIA (bottom of Figure 5). Over the course of the
next 30 min, maintaining this concentration of isoflurane, the rat
failed to right on most trials, but was able to right on 2 trials, each
separated by failed trails.

When stimulus-induced cortical signals were compared for
trials before and after the loss of righting had occurred it was dif-
ficult to see any difference in the raw recordings (Figure 6), but
there were clear differences seen in the associated attractors. The
four recordings shown were for cortical activations before and
after LORR, all at the same isoflurane concentration (0.72 vol %)
and each separated by 5 min, in a rat that was right on the cusp of
loss of righting. In comparison, only small differences were seen
in Fourier analysis of these signals. Figure 7 shows FFT magni-
tude graphs for the two middle traces of Figure 6, just before and
just after LORR. As previously reported, there was an increase in
delta, little change in gamma (40 Hz), and a slight decrease in high
gamma power in the frontal EEG of unconscious rats (Hudetz
et al., 2011), but these changes were small compared to changes
in attractor shapes (Figure 6).

DISCUSSION
Isoflurane produced concentration dependent changes in the
frontal cortical EEG signal that were similar to patterns seen in
other animals, including humans (Li et al., 2013); most notably,
a slowing of frequency with an increase in delta power was seen
at loss of consciousness. This is similar to patterns produced by
other anesthetics in humans and rats (MacIver et al., 1996; Leung
et al., 2014; Pilge et al., 2014). Hippocampal EEG signals were
largely unaffected by this anesthetic (Figure 3). This contrasts
with effects produced by halothane, another volatile anesthetic,

that produced a marked hippocampal theta rhythm that persisted
even after rats had lost their righting reflex (Bland et al., 2003).
The halothane-induced theta rhythm was slower than seen dur-
ing movement (Perouansky et al., 2010) and likely consists mainly
of type 2 (sensory) as opposed to type 1 (movement related)
theta(Bland and Oddie, 2001) Halothane also differs from isoflu-
rane in it’s lack of burst suppression activity produced in frontal
cortex, even at deep surgical levels (Orth et al., 2006; Murrell et al.,
2008). Thus, different anesthetics clearly alter higher brain func-
tion in an agent, and brain region, specific manner in neocortex
and hippocampus, lending support to a multisite agent specific
mechanism of anesthetic action (Clark et al., 1973; MacIver and
Roth, 1987; Bieda et al., 2009; MacIver, 2014).

This study compared traditional FFT vs. chaos analysis of
isoflurane-induced changes in EEG signals, and our results sug-
gest that chaos analysis may provide a more sensitive approach.
Differences between stimulus-activated signals are considerably
easier to discern (Figures 6, 7). Chaos analysis may provide
a better approach for the development of monitors for anes-
thetic depth, as previously suggested (Watt and Hameroff, 1988;
Walling and Hicks, 2006). The shape of an EEG driven attrac-
tor showed continual flattening in the presence of isoflurane,
especially for small changes at the point of loss of conscious
behavior. Perhaps a statistical measure of the attractor, like the
D2 correlation dimension provided by Walling and Hicks (2006),
or a simple percent of minimal width measure could provide a
wide dynamic range for different levels of consciousness. A wide
range is needed to discern stimulus dependent cortical activa-
tions produced by testing LORR, LOPP, and LOTC responses,
as EEG “awakening” responses are so similar to awake signals
(Figure 6). These awakening responses are also seen in patients
at surgical planes of anesthesia, in response to particularly painful

FIGURE 6 | Activated EEG records from the same rat just before and after isoflurane-induced LORR, together with each records attractor. Attractor
flattening is a sensitive measure of these nearly identical frontal cortical signals. Calibration = 50 µV and 1.0 s.
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FIGURE 7 | FFT analysis of activated frontal cortical signals showed

relatively little difference in the spectral content of the frontal EEG

before (red) and after (blue) LORR.

stimulation, and likely contribute to “awareness” during anesthe-
sia (Hight et al., 2014). A simple display of the frontal attractor in
patients could be provided in near real-time on tablet computers
and would, at least, provide a sensitive and entertaining view of
anesthetic-induced changes in brain state.

Recent studies addressing the similarities between natural
sleep and anesthetic-induced slow wave activity have disagreed
over shared circuit-level mechanisms (Nelson et al., 2003; Murphy
et al., 2011; Zecharia et al., 2012). In some cases a good deal of
overlap between anesthesia and sleep was apparent, but in other
cases marked differences are seen. Our results with isoflurane
indicate that this anesthetic utilizes different mechanisms, or at
least additional brain circuit level effects were produced, since the
attractor shapes are markedly different between natural sleep and
isoflurane-induced slow wave activity. It is likely that any over-
lap between anesthesia and sleep mechanisms is highly agent and
brain region specific.

It remains unclear whether loss of consciousness occurs with
an abrupt (on/off) or gradual change in brain state. Our results
indicate a gradual effect on attractor shape accompanies the tran-
sition through LORR when comparing stimulated “activated”
EEG signals, consistent with a gradual return of cortical discharge
activities seen on RORR (Vizuete et al., 2014). Of course, spon-
taneous un-stimulated EEG signals were clearly different at each
of the endpoint measures we used (Figure 2), but even the transi-
tions from slow wave sedation through surgical burst suppression
occur gradually in the un-stimulated rat as slow wave activity

gradually increases in amplitude and gradually breaks up into
burst patterns. In humans it appears that unique brain states can
exist for different patients on emergence from anesthesia, perhaps
related to the degree of painful stimulation on recovery (Hight
et al., 2014). This also likely underlies the hysteresis or “neural
inertia” evident for anesthetic-induced loss and regaining con-
sciousness, seen in Figure 2 – slow wave activity is seen when rats
are not stimulated at LORR, but rats are continuously stimulated
by being placed on their sides before RORR, hence the “activated”
spontaneous EEG before RORR (Buhrer et al., 1992; Friedman
et al., 2010). Perhaps the chaotic attractor measure will provide a
wide enough dynamic range to show whether gradual, as opposed
to small discrete state changes contribute to loss and regaining of
consciousness in humans.
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The electroencephalogram (EEG) during the re-establishment of consciousness after
general anesthesia and surgery varies starkly between patients. Can the EEG during
this emergence period provide a means of estimating the underlying biological processes
underpinning the return of consciousness? Can we use a model to infer these biological
processes from the EEG patterns? A frontal EEG was recorded from 84 patients. Ten
patients were chosen for state-space analysis. Five showed archetypal emergences;
which consisted of a progressive decrease in alpha power and increase peak alpha
frequency before return of responsiveness. The five non-archetypal emergences showed
almost no spectral EEG changes (even as the volatile general anesthetic decreased)
and then an abrupt return of responsiveness. We used Bayesian methods to estimate
the likelihood of an EEG pattern corresponding to the position of the patient on a
2-dimensional manifold in a state space of excitatory connection strength vs. change in
intrinsic resting neuronal membrane conductivity. We could thus visualize the trajectory of
each patient in the state-space during their emergence period. The patients who followed
an archetypal emergence displayed a very consistent pattern; consisting of progressive
increase in conductivity, and a temporary period of increased connection strength before
return of responsiveness. The non-archetypal emergence trajectories remained fixed in a
region of phase space characterized by a relatively high conductivity and low connection
strength throughout emergence. This unexpected progressive increase in conductivity
during archetypal emergence may be due to an abating of the surgical stimulus during
this period. Periods of high connection strength could represent forays into dissociated
consciousness, but the model suggests all patients reposition near the fold in the
state space to take advantage of bi-stable cortical dynamics before transitioning to
consciousness.

Keywords: general anesthesia, emergence, sleep-manifold, connection strength, resting membrane conductivity

INTRODUCTION
Over the last decade there has seen an increasing interest in the
wake-up period following withdrawal of a general anesthetic, and
in the neurobiological processes leading to the return of con-
sciousness. We term this the emergence period; and it is defined
as the time from the cessation of anesthetic delivery until the
patient can make a non-reflex response to verbal command.
Characterization of the changes that occur during emergence has
attracted attention both from researchers searching for the neu-
ral correlates of consciousness (Mashour and Alkire, 2013) and
from more clinically oriented studies, whose focus is on the qual-
ity of recovery of patients following surgery (e.g., Law et al.,
2011). Much of this interest has come from the realization that
the induction process (the entrance to the anesthetized state) and
emergence process (the exit from the anesthetized state) are not
simply the mirror image of each other, but rather that emer-
gence is an active process characterized by a distinct neurobiology

(Kelz et al., 2008; Lee et al., 2011; Kushikata and Hirota, 2014).
For example, the time required for the return to consciousness
shows a much greater variability than the time required for the
loss of consciousness. These distinct processes occur at differ-
ent drug concentrations—a classic hysteresis effect (Friedman
et al., 2010). This effect, traditionally considered a pharmacoki-
netic “artifact” arising from a delayed and variable rate of removal
of the an anesthetic agent from brain sites, may in fact be due to a
biological tendency of the central nervous system to resist transi-
tions between conscious and unconscious states. The emergence
period is also of critical importance from a clinical perspective.
For example, during emergence patients may infrequently face
life-threatening complications (Kushikata and Hirota, 2014), but
more often can wake up experiencing high levels of pain and
nausea (Law et al., 2011), despite pre-emptive analgesia. Patients
can also experience periods of confusion and disorientation, or
even delirium following wakeup, indicating a possible incomplete
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return of full consciousness. The incidence of emergence delir-
ium in children has been reported as high as 50% in preschool
children (Banchs and Lerman, 2014), but the mechanisms of this
phenomenon are not well understood. Clinicians often note the
huge variability in wakeup length and quality, but find the predic-
tion of quality of recovery from the intraoperative period a major
challenge.

EEG AND BEHAVIORAL CHANGES DURING EMERGENCE
The most practical non-invasive method for observing state
changes in brain function during anesthesia is the electroen-
cephalogram (EEG). Changes in the EEG have been observed in
anesthetized patients since 1937 (Gibbs et al., 1937). At the deep-
est levels of anesthesia EEG activity is suppressed (isoelectric) for
short periods before returning to bursts of activity. This pattern,
labeled burst suppression, is not seen in natural sleep. At lev-
els of anesthesia required for surgery the amplitude of the EEG
is often large in the delta (1–4 Hz) and alpha (8–14 Hz) ranges,
showing a similar but distinct waveform to that of slow-wave
natural sleep (see Brown et al., 2010 for a review). For a more
detailed treatment of the EEG during anesthesia see (Bennett
et al., 2009). Following the end of surgery, when the anesthetic
is turned off, it is commonly believed that the delta and/or
alpha dominated waveform disappears, being replaced with a beta
(15–30 Hz) waveform just prior to waking. For some patients
showing alpha dominated waveforms, the alpha activity increases
in frequency by about 2–3 Hz during emergence, as observed by
Purdon et al. (2013). The topography of the EEG also changes
during emergence, with the frontally dominant (coherent) alpha
activity during anesthesia shifting to occipital areas before the
patient awakes (Gugino et al., 2001). Clinically, a progression can
often be seen in the patient’s responses that loosely correlate with
these changes in EEG pattern. These observations include a return
in spontaneous respiration, followed by brainstem responses such
as salivation and tearing and gagging on the endotracheal tube, if
still in place. This is then followed by non-purposive or defensive
movements (with eyes remaining closed), before the patient can
finally respond to a command (Brown et al., 2010; Langsjo et al.,
2012).

Despite a burgeoning number of anesthesia-related EEG stud-
ies in recent years, we know of only two recent research groups
who have looked at the EEG in detail during the emergence
period, as shown in the articles from Purdon et al. (2013) and
Lee et al. (2011). Research from the group based in Massachusetts
General Hospital (Purdon et al., 2013) has focused on the charac-
teristics of the EEG during propofol anesthesia while measuring
responsiveness with an auditory stimulus consisting of a tone
or the patient’s name being delivered to the subject every 4 s.
These researchers used a 64 electrode multichannel EEG system
during a slow propofol induction and subsequent emergence.
When they analyzed the EEG from a temporal-spectral perspec-
tive, one of the key characteristics they noted was an increase
in median frequency of the alpha band of the EEG during the
return to consciousness. The authors named this increase in fre-
quency the “traveling peak” to emphasize the continuous nature
of the change in the frequency domain, an observation which is
obscured if analyzing the power of the EEG in traditional separate

frequency bands. From a phase-amplitude perspective, they also
observed coupling between the phase of slow-wave oscillations
(0.1–1 Hz) and the amplitude of the alpha (8–14 Hz) band; noting
that in deep anesthesia the alpha amplitudes were highest when
the slow oscillation was also highest, calling this “peak-max.”
During the transition to consciousness this phase relationship
reversed so that the largest amplitude alpha activity occurred at
the lower values of the slow oscillation, or “trough-max.” Purdon
and colleagues (Purdon et al., 2013) also looked at spatial coher-
ence and reported that, at the return to consciousness, coherent
spatial activity shifts from frontal to occipital regions. These
researchers have been looking for a few spectral features that can
reliably track anesthetic depth and the return of consciousness,
and they concluded that the emergence from a propofol anes-
thetic was marked by a gradual transition to consciousness, the
level of which is dependent on stimulus saliency—emotional or
neutral auditory input.

In contrast, Lee et al. (2011) examined the network properties
of the anesthetic state during emergence, using cross-correlations
of the EEG in multiple channels to estimate cortical connectivity,
and a novel method to account for genuine versus spurious levels
of connectivity. Two different patterns of changes in connectivity
strength and topography on awakening were noted, the first where
the increase in connection strength was abrupt on wakeup, and
the second where connection strength showed a gradual change
on awakening. Subjects were then categorized into these cate-
gories for further analysis. They concluded that there were likely
multiple pathways of return to consciousness, which one single
theory of anesthesia would not be able to explain.

In both of the aforementioned studies, none of the sub-
jects were undergoing surgery and all were healthy volunteers.
However general anesthesia is administered in order to allow
surgery to take place. Do EEG’s recorded in the clinical context
show the same patterns during emergence as those recorded from
healthy volunteers, without any surgical noxious stimuli? Is there
one common pathway to responsiveness or are there multiple
pathways?

LINKING MOLECULAR LEVEL ACTIONS TO EEG AND BEHAVIOR IN
ANESTHESIA
One of the drawbacks of the EEG is that, at best, it provides
a somewhat opaque window into the underlying mechanisms
governing anesthesia state changes in the brain. Thus, despite a
well-advanced understanding of the molecular level mechanisms
of most anesthetics (see Brown et al., 2011 or Alkire et al., 2008
for reviews), there is a gap in understanding as to how these
molecular mechanisms link with the EEG patterns and associated
changes in consciousness. One accepted method for attempting to
bridge this gap is the use of EEG modeling of anesthesia. Here the
goal is to replicate features of the clinically observed EEG with the
output signal from a model which has a biologically realistic set
of parameter constraints. What follows is a very short overview
of types of anesthesia modeling, linking proposed molecular and
neural mechanisms of anesthetic action to the structure of the
EEG in anesthesia.

The previously mentioned research group (Purdon et al.,
2013) have recently published a thalamocortical model as an
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explanation for the EEG alpha rhythm that is seen in propofol
anesthesia (Ching et al., 2010). This model exemplifies the neural-
biophysical approach (Ching and Brown, 2014), and builds on
an earlier cortical networks model developed by McCarthy et al.
(2008). In this model a network of cortical pyramidal neurons
with associated interneurons are coupled to the thalamus. The
action of propofol is modeled as an increase in the conduc-
tance and decay time of the GABAA inhibitory current, which,
based on earlier work proposing mechanisms for thalamic alpha
activity (Contreras et al., 1997), leads to an entrainment of
oscillations between the thalamus and cortex. These alpha oscil-
lations then become visible in the frontal cortex, and in the
model as the summed activity of the pyramidal neurons—a sur-
rogate for the EEG. A spectrogram is then used to compare
features of the model output to the known effect of propofol on
the EEG.

Another form of modeling, the mean-field method, describes
the mesoscale population activity resulting from short and long
range interactions between sets of inhibitory and excitatory neu-
rons. The advantages of this approach are that it is possible to
use physiologically plausible parameter values, and that the out-
put of the model can be related to the local field potentials
and hence can be directly compared with the experimentally-
obtained EEG or ECoG electrode output. Because of the averaging
involved in the mean-field models, they are much less computer
resource intensive than neuron-by-neuron simulations, and thus
are more tractable for phenomena that involve cortical activ-
ity at larger length scales. They also have the advantage that
they are often simple enough to allow the application of clas-
sical mathematical analytic methods, rather than being mere
simulations. However such models do not include much specific
neuroanatomy, and hence are mainly used to model widespread
global central nervous system disturbances such as sleep, and
seizures. The application of these methods to anesthesia mod-
eling was first described by Steyn-Ross and Liley (Steyn-Ross
et al., 1999). At its heart, this model describes the time evolu-
tion of the mean soma potential in populations of interacting
inhibitory and excitatory cortical neurons. The authors mod-
eled the propofol effect as an increase in the area under the
curve of the inhibitory post synaptic potential; and found that
increasing anesthetic concentration could lead to multiple stable
dynamical states, and that the sudden phase transition between
these states mimicked that observed in the EEG and level of con-
sciousness during induction of anesthesia. Subsequently there
has been a steady stream of papers that have looked at a variety
of questions relating to various mechanisms of sleep, anesthe-
sia, and seizures (e.g., Bojak and Liley, 2005; Sleigh et al., 2009;
Hutt and Longtin, 2010; Ching et al., 2012; Liley and Walsh,
2013).We refer the reader to an excellent recent review of general
anesthesia models by Foster et al. (2008). However the compar-
ison between the “pseudo-EEG” output from the model, and
the real EEG obtained from experiments, has always been semi-
quantitative at best. Therefore, using the Steyn-Ross model as
a basis, following Lopour et al. (2011), Dadok et al. (2014)
developed Bayesian methods to solve the inverse problem of
mapping experimentally derived EEG features data back onto
the state-space of the model. In this way the association of

specific values of model parameters corresponding to each epoch
of real EEG might give insight into the underlying neurobiol-
ogy. It is in some ways similar to the dynamic causal modeling
approach (Marreiros et al., 2010), but is subject to more real-
istic neurobiological constraints. Working from sleep EEG data,
they explored the statistical usefulness of combinations of vari-
ous EEG “features” through which an association could be made
to a specific set of parameter values in the model, and hence
probabilistically estimate how the neurobiological parameters
might change with time, mimicking what is happening within a
patient’s brain. Typically this is displayed as a progression, track-
ing a path on a 2-dimensional parameter manifold. In this way
they successfully showed that progressive cycles of natural sleep
could be displayed as a continuous trajectory on a sleep man-
ifold (Dadok et al., 2014). This probabilistic method has never
been applied to anesthesia or to the emergence period. In this
study we aim to apply the method of Dadok et al. (2014) to
EEG recorded during anesthesia, and over the emergence period.
Specifically we wanted to answer the questions: do patients show
homogenous emergence EEG patterns? Do these EEG patterns
suggest different underlying biological processes? Can we use
the model to infer these biological processes from the EEG
patterns?

METHODS
EMERGENCE PERIOD RECORDINGS
Eight-four patients (40 females) aged between 21 and 88 (aver-
age age, 61 years) with an American Society of Anesthesiologists
(ASA) physical status between I and IV having surgery at the
Waikato District Health Board Hospital, Hamilton, New Zealand,
were recruited for this study. Two cases were rejected due to faulty
or absent EEG recordings. All participants gave informed con-
sent and the study was approved by the New Zealand Health and
Disability Ethics Committee (Ref. 12/CEN/56). EEG waveforms
were recorded from the forehead (location Fpz on the 10/20 mon-
tage) via single-use electrode strips using either the Bispectral
Index® (BIS®; Aspect Medical Systems, Newton, MA, USA) or
Entropy (GE Healthcare, Helsinki, Finland) depth of anesthe-
sia monitoring systems. Other routine monitoring data [such as
heart rate, blood pressure, and end-tidal volatile gas anesthetic
(VGA) concentrations] were recorded from the S/5 Anesthesia
Monitor (GE Healthcare, Helsinki, Finland) using the S/5 Collect
program provided by the same company. Delivery and dose of
opioid analgesics were also recorded during and following the
operation. No restrictions were placed on anesthetic conduct dur-
ing the surgery. Following the operation, the time of cessation of
anesthetic delivery was noted, this time point being the start of
the emergence period. A standard low-stimulus emergence proto-
col was followed. After oropharyngeal suction the patient was not
stimulated until MAC <0.1, then they were given a series of verbal
commands at 30 s intervals. The end of the emergence period was
counted as the moment the patient spontaneously opened their
eyes for more than 5 s, clearly engaging with the environment,
or could respond to the command “Open your eyes!” (ROR). In
the Post-Anesthetic Care Unit (PACU) patients were asked to give
a verbal pain-score ranging from 0 (no pain) to 10 (worst pain
imaginable) on awakening, and at 15 and 30 min after awakening.
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Ramsay Sedation scores, observed distress and instances of nausea
and vomiting were also recorded.

EEG DATA COLLECTION AND PROCESSING
The raw EEG signal and monitoring data were analyzed with cus-
tom Matlab software (The MathWorks, Inc., Natick, MA, USA).
EEG waveforms were down-sampled to 100 Hz and were low-
pass filtered using a Butterworth, non-aliasing low-pass (48.5 Hz,
3rd order) filter, to remove the 50 Hz artifact. Monitoring data
were interpolated from every 5 or 10 s to one sample per second.
From end-tidal VGA concentrations, brain effect-site concen-
trations (CeMAC) were derived from age-adjusted MAC values
(Nickalls and Mapelson, 2003) assuming a T1/2Keo of 150 s. After
the patient was moved to PACU, the CeMAC were extrapolated
out until end of emergence using a decaying exponential. Opioid
effect-site concentrations were converted to Fentanyl-equivalent
estimates (CeFentanyl) using a Fentanyl to Morphine efficacy
ratio of 20:1. Opioid effect site concentrations were estimated
using pharmacokinetic modeling based on population derived
parameters. Thus the actual drug concentrations for each indi-
vidual patient might be expected to lie within approximately a
two-fold range.

The power spectrum (in dB) of the EEG was calculated using
the multi-taper Chronux method (www.chronux.org, Mitra and
Bokil, 2008) with a time-bandwidth product TW = 4, and K =
7 tapers. We used a moving window of 4 s with an overlap
of 3 s in the creation of the spectrograms. Spectrograms were
taken of the observation period, which included a 15 min win-
dow prior to the emergence period; the emergence period itself
began at the time of shutting off the VGA and increasing the
fresh gas flows in order to flush out anesthetic agent (plotted as
a vertical green line) and ended with ROR (plotted as a verti-
cal red line). For each window the local regression fitting and
likelihood method of smoothing from Loader (1997), (Locfit,
included in the Chronux package for Matlab) was fitted to the
power spectrum (bandwidth parameter, h = 1.5 Hz). We partic-
ularly noted the alpha (8–16 Hz) power and frequency, the delta
power (1–4 Hz), and the presence of obvious oscillation in other
frequencies [beta (16–32 Hz) and theta (4–7 Hz)]. We quantita-
tively obtained the maximum alpha frequency (allowable range
for alpha peak was between 7 and 17 Hz), and the magnitude
of both the oscillatory alpha-power above the underlying broad-
band noise (Leslie et al., 2009, see our Figure 1) and the delta
power. It must be noted that patients who wake after surgery often
are somewhat disoriented, and thus the large amounts of elec-
tromyographic (EMG) activity make it difficult to quantitatively
interpret the EEG signal after return of responsiveness to verbal
command (ROR).

SLEEP-MANIFOLD MODELLING
The primary aim of this study was to examine the different
biological mechanisms underlying the observed EEG changes.
Because the wide variability observed between different patients
during emergence will obscure the EEG changes that may be
seen within each patient, we explicitly chose not to average all
the results, but instead to investigate the emergence trajectories
of 10 representative patients in detail. From our data-set, we

FIGURE 1 | Example power spectral density estimate showing

absolute delta (∗) and alpha (◦) power. Oscillatory alpha power is the
difference between maximal alpha power (◦) and the alpha power at the
linear regression estimate (�).

chose five EEG recordings that were typical examples of gradual
transitions in waveform spectral power over emergence, similar
to those seen in Purdon et al. (2013). Based on previous litera-
ture, we have termed this the “archetypal” emergence trajectory.
As counter-examples, we also chose another five recordings which
showed no notable transition in EEG spectral power prior to
abruptly awakening (i.e., our non-archetypal wakeups). We antic-
ipate that the methodology developed in this paper might be used
in subsequently studies with large enough numbers of patients
to enable accurate statistical estimation methods. Thus 10 EEG
recordings for the observation period were used as input into
the sleep manifold model of Dadok et al. (2014). More detailed
method descriptions are available in that paper, but in short,
the model consists of a set of partial differential equations that
describe the time evolution of the mean soma potentials of a
two-dimensional homogeneous system of coupled inhibitory and
excitatory neurons, representing a macrocolumn (about 100,000
neurons) of undifferentiated association cortex. This corresponds
to the size of typical excitatory neuronal dendritic arborization.
Each macrocolumn also receives excitatory input from surround-
ing cortex and nonspecific white noise input from subcortical
structures. We only consider fast chemical synaptic inputs [medi-
ated via gamma-amino-butyric acid (GABA) and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels].
The model parameters are chosen based on experimentally mea-
sured biological values; and include the magnitude and duration
of excitatory and inhibitory synaptic potentials, the effects of
reversal potentials, the form of the sigmoid relationship between
probability of firing and soma potential, and the effect of leak
currents on the resting membrane potential. We have chosen to
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describe the model output and the experimental results based on
a 2-dimensional state space using the change in resting membrane
impedance (�hrest

e ) and the cortical excitatory synaptic strength
(L) as the axes. These were chosen because:

(i) The �hrest
e is a measure of the neuronal membrane

impedance. This is the inverse of conductivity, and is largely
controlled by the intrinsic neuronal currents (particularly the
potassium currents). These currents, in turn, are inhibited
by subcortically driven aminergic and cholinergic arousal
neuromodulators. Thus the conductivity may be seen as an
indication of the balance between suppression and arousal—
as mediated by brain stem modulation of the cortex, similar
to that found in natural sleep-wake states.

(ii) The excitatory strength is an indicator of synaptic
connectivity between cortical pyramidal neurons. This
might be seen as a direct index of how the anesthesia directly
disrupts a cortical functionality that can be directly linked to
known EEG indices of regional connectivity.

Thus we attempted to somewhat separate these two known com-
ponents of VGA action. As described in Dadok et al. (2014) we
then solve the equations to produce a sheet manifold of steady
states. The manifold is shown in Figure 2. It can be seen that,
at low values of L and �hrest

e the resting steady state is relatively
hyperpolarized (the blue area in the left lower region); as L and
�hrest

e increases the steady states become more depolarized (red).
However there is a region in which there are three steady states
(two stable and one unstable)—the fold in the manifold. This
area is within the bold black inverted “Y” region in subsequent
figures. Around this area there is the possibility for the model
brain to jump discontinuously between low firing and high fir-
ing modes. At each point on the manifold there are fluctuations
in soma potential that produces a “pseudoEEG” for that point in
state space.

FIGURE 2 | Sleep-manifold showing the folding state-space surface

(folded area is bi-stable) over a two dimensional parameter space

(adapted from Dadok et al., 2014).

In brief the method of probabilistically mapping experimental
data to the model manifold is as follows:

(i) “Features” are extracted from sequential 30 s segments of the
raw EEG.

These features are derived indices that are felt to contain the
important dynamic information contained in the raw EEG. The
process of choosing features is complex and inherently heuris-
tic. We used the same features as had been found most useful
for natural sleep; namely the slope of the power spectral den-
sity, the spindle index, combination delta wave steepness (the
mean delta gradient), and the equiprobable mutual information
(Dadok et al., 2014).

(ii) The magnitude of each feature is mapped onto the
state-space manifold of the model.

We used the same state-space manifold as used to describe nat-
ural sleep. The choice of these parameters is arbitrary to some
degree, but they were chosen to reflect information about two
relevant facets of neuronal function—namely synaptic efficiency
and intrinsic neuronal currents.

(iii) For each real EEG segment, the probability (log-likelihood)
of its associated 4-dimensional feature vector is mapped
onto the state-space manifold, using a naïve Bayesian
algorithm.

This procedure allows the unbiased determination of what
regions of state-space are likely to be associated with any particu-
lar EEG pattern. Again this has been optimized for natural sleep,
as we are able to compare the model results with established sleep
scoring methods.

(iv) The temporal evolution on the state-space manifold through
the course of emergence is shown by the trajectory of the
probability centroid for each segment.

The trajectory thus acts as a link to indicate how changes in
the scalp EEG might reflect the cortical neuronal function as the
patient emerges from anesthesia. At present it is not known if this
methodology is robust to EEG noise and to the choice of different
model parameters.

RESULTS
VARIANCE IN ALPHA ACTIVITY PRIOR TO EMERGENCE
Patients emerge from general anesthesia differently. As an exam-
ple we show the alpha frequency and power for all 82 patients
for the 15 min prior to the start of emergence in Figure 3. The
green diamonds are the centroid and the red ellipsoids the area
of 80 percent of the closest points from the centroid. This fig-
ure demonstrates that there is a wide variation in alpha-power
and frequency both between and within patients. Four of the ten
patients of interest are displayed in blue (WH19 and WH42, grad-
ual “archetypal” transitions in EEG waveform over the emergence

Frontiers in Systems Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 146 | 73

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hight et al. Emergence from general anesthesia and the sleep-manifold

period) and black (WH9 and WH57, “non-archetypal” transi-
tions in EEG during emergence period). All of these four patients
emerged from a sevoflurane anesthesia, except for patient WH9
who had a desflurane anesthesia. We now describe, in more detail,
the changes in EEG, drug concentrations, and putative modeled

FIGURE 3 | Oscillatory alpha power against alpha frequency for each of

82 patients for the 15 min prior to the start of emergence. Green
diamonds are the centroid and red ellipsoids the area of 80% of the closest
points from the centroid. Four patients are displayed in either blue (WH19
and WH42, “archetypal” transitions) or black (WH9 and WH57,
“non-archetypal” transition).

changes in biological parameters during emergence period for
these four examples—two archetypal and two non-archetypal.

PATIENT WH19: ARCHETYPAL EMERGENCE (ALPHA FREQUENCY
INCREASE, ALPHA LOSS, DELTA LOSS)
In Figure 4 the spectrogram of the observation period
(Figure 4A) for patient WH19 is shown from 15 min prior
to start of emergence (vertical green line at 900 s) until after
patient response (ROR, vertical red line). Prior to start of
emergence it shows clear bands of alpha (centered at 10 Hz as
seen in Figure 4B) and delta activity. Over this period (until 900
seconds) anesthetic concentration had decreased slightly from
1.2 to 0.8 CeMAC, while opioid levels remained low (CeFentanyl
0.2 ng/ml) over the whole observation period (Figure 4C).
Following start of emergence the frequency of maximal alpha
power is seen to increase by 2–3 Hz (Figure 4B) and then
disappearing several min before ROR. A band of beta activity
centered at 30 Hz can also be seen beginning at around 1100 s
and continuing until ROR. From 1000 s onwards the alpha band
in the spectrogram (Figure 4A) became smaller and there was
an increase in spread of frequencies in Figure 4B, so that there
was more variation in the detection of the alpha oscillatory peak.
In Figure 4D it can be seen that the pre-emergence waveform
(black circles) is tightly constrained, maintaining uniform levels
of alpha and delta power. During emergence (blue circles) a
clear progressive decrease in both alpha and delta power is seen,
decreasing to a level of 0 dB for both bands. This absence of both
alpha and delta power can also be seen clearly in the spectrogram
(Figure 4A). After emergence, delta power increases (red circles
in Figure 4D), as does power in all frequency bands (seen in the

FIGURE 4 | Patient WH19: Archetypal emergence (alpha frequency

increase, alpha loss, delta loss). (A) Spectrogram of the observation
period. Start of emergence shown as a vertical green line at 900 s, time
of patient response as a vertical red line. (B) Frequency of maximal
oscillatory alpha power. (C) Concentration of anesthetic gas (CeMAC),

blue line, left vertical axis, and opioid levels as equivalent Fentanyl
(CeFentanyl, ng/ml), green line, right vertical axis. (D) Absolute alpha
power (dB) against absolute delta power (dB) for prior to start of
emergence (black circles), during emergence period (blue circles), and
following recovery of response (ROR).
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FIGURE 5 | Patient WH19, Sleep Manifold. (A) Spectrogram as in
Figure 4. (B) Excitatory connection strength (L-parameter) over period
of observation. (C) Change in resting membrane impedance (�hrest

e )
over period of observation. (D) Resultant positioning on the

sleep-manifold, with a black cross being the start of, and a white
cross being the end of the observation period, with intermediate
shades on the gray-scale representing the time progression between
these time-points.

orange vertical band following the vertical red-line at around
1700 seconds in Figure 4A).

How do these EEG alterations translate into changes in the
underlying model (and perhaps brain) parameters? Figure 5D
depicts the progression in L and �hrest

e parameters on the 2D
sleep-manifold over the same time-period—with a black cross
being the start and a white cross being the end, and inter-
mediate shades on the gray-scale representing the progression
between these time-points. In Figure 5 excitatory connection
strength (parameter L, shown in Figure 5B) remained at low lev-
els prior to emergence, and doubled after the start of emergence.
The neuronal membrane impedance (�hrest

e in Figure 5C) pro-
gressively decreased in the period before emergence had even
started. The resultant trajectory occupies two regions on the
sleep-manifold. In the first phase, which corresponds to the time
before the start of emergence, there was a large decrease in resting
membrane impedance with little change in connection strength,
resulting in a migration down the sleep-manifold. The reasons
for this are not clear, but may be related to the small changes in
CeMAC or decreasing surgical stimulus. The second phase, cor-
responding to the emergence period, showed a sharp increase in
connection strength with minimal change in resting impedance,
resulting in a jump to a new parameter state-space position on
the higher branch of the sleep-manifold before jumping back to
the lower branch before ROR (Figure 5D)—apparently entering
a preliminary period of high firing without successfully achieving
responsiveness.

PATIENT WH42: ARCHETYPAL EMERGENCE. (ALPHA FREQUENCY
INCREASE, ALPHA LOSS, PERSISTENT DELTA)
The spectrogram of Patient 42 (Figure 6A) is similar to that of
patient WH19 above in that a clear alpha and delta band is seen

prior to start of emergence, with the alpha activity increasing,
before disappearing following the start of emergence (Figure 6B).
However, patient WH42 starts with stronger alpha and delta
power and does not lose the delta power at all prior to ROR.
CeFentanyl levels were also quite low [0.7–0.5 ng/ml over the
observation period (Figure 6C)]. Figure 6D is also similar to
that of patient WH19 in Figure 4D in that the absolute alpha
and delta power are uniform prior to emergence (black circles),
and show a decreasing alpha power over emergence (blue cir-
cles). In contrast to WH19 delta power remains high at around
15 dB even during the later phases of emergence. After emergence
the broad band high power is caused by EMG activation and
movement.

Similar to WH19, patient WH42 has a low connection strength
value (L parameter) prior to start of emergence. As the alpha
power decreases in the emergence period (Figure 7A), the con-
nection strength rapidly increases to a value of nearly 2.0 from
1100 to 1300 s (Figure 7B). For the remaining part of the emer-
gence period connection strength falls again to values between
0.7 and 1.1. Presumably the algorithm is being controlled by the
persistent strong delta power in this phase. The change in rest-
ing impedance �hrest

e parameter in Figure 7C is high for most
of the period prior to start of emergence, but quickly drops to
−5 mV just prior to start of emergence and remains low for the
emergence period. When seen on the sleep-manifold (Figure 7D),
the patient appears to move between three distinct parame-
ter attractors, corresponding to: (i) prior to start of emergence
(ii) early and late sections of the emergence period, and (iii) a
short period of high connection strength in the middle of the
emergence period, similar to the previous patient. This patient
mentioned they had been having very realistic dreams before
awakening.
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FIGURE 6 | Patient WH42. Archetypal emergence. (alpha frequency
increase, alpha loss, persistent delta). (A) Spectrogram of the observation
period. Start of emergence shown as a vertical green line at 900 s, time
of patient response as a vertical red line. (B) Frequency of maximal
oscillatory alpha power. (C) Concentration of anesthetic gas (CeMAC),

blue line, left vertical axis, and opioid levels as equivalent Fentanyl
(CeFentanyl, ng/ml), green line, right vertical axis. (D) Absolute alpha
power (dB) against absolute delta power (dB) for prior to start of
emergence (black circles), during emergence period (blue circles), and
following recovery of response (ROR).

FIGURE 7 | Patient WH42, Sleep-Manifold. (A) Spectrogram as in
Figure 6. (B) Excitatory connection strength (L-parameter) over period
of observation. (C) Change in resting membrane impedance (�hrest

e )
over period of observation. (D) Resultant positioning on the

sleep-manifold, with a black cross being the start of, and a white
cross being the end of the observation period, with intermediate
shades on the gray-scale representing the time progression between
these time-points.

PATIENT WH9: NON-ARCHETYPAL EMERGENCE: MINIMAL ALPHA
LOSS, PERSISTENT THETA AND DELTA
This patient showed no warning of imminent ROR. Figure 8A
displays the spectrogram for patient WH9. Power was con-
centrated in bands of waveform activity corresponding to the

alpha, theta and delta bands. In contrast to the previously
described archetypal patterns, there was absolutely no change
in power in any of these bands until ROR—with the excep-
tion of a decrease in 10 Hz alpha from about 950 s, as seen
in Figure 8D, and also shown in Figure 8B as artefactual
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FIGURE 8 | Patient WH9: Non-archetypal emergence: minimal alpha

loss, persistent theta and delta. (A) Spectrogram of the observation
period. Start of emergence shown as a vertical green line at 900 s, time
of patient response as a vertical red line. (B) Frequency of maximal
oscillatory alpha power. (C) Concentration of anesthetic gas (CeMAC),

blue line, left vertical axis, and opioid levels as equivalent Fentanyl
(CeFentanyl, ng/ml), green line, right vertical axis. (D) Absolute alpha
power (dB) against absolute delta power (dB) for prior to start of
emergence (black circles), during emergence period (blue circles), and
following recovery of response (ROR).

FIGURE 9 | Patient WH9, Sleep manifold. (A) Spectrogram as in
Figure 8. (B) Excitatory connection strength (L-parameter) over period
of observation. (C) Change in resting membrane impedance (�hrest

e )
over period of observation. (D) Resultant positioning on the

sleep-manifold, with a black cross being the start of, and a white
cross being the end of the observation period, with intermediate
shades on the gray-scale representing the time progression between
these time-points.

detection of the theta band at the lower limit of 7 Hz.
After emergence, high levels of power were distributed evenly
over the frequency spectrum, indicating the return of muscle
activity artifact. CeFentanyl was relatively high (1.5–2 ng/ml)
(Figure 8C).

The trajectory in the state space reflected the lack of changes
seen in the spectrogram. For the whole observation period,
including the emergence period itself, the level of connection
strength (L-parameter in Figure 9B) was generally low, while
the resting impedance (�hrest

e parameter in Figure 9C) showed
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a gradual decrease. We would conclude that there were no clear
shifts in the emergence trajectory of the EEG in parameter space
(Figure 9D), but rather this patient remained situated on the
lower branch of the sleep-manifold for the entire emergence
period. After ROR the apparent lack of increase in the excitatory
connection strength is possibly caused by the ongoing strong
delta and theta power that is dominating the spectrogram (see
Figure 9A). It is likely to be due to muscle artifact, as evidenced
by the sudden increase in broad-band high frequency power seen
in the spectrogram.

PATIENT WH57: NON-ARCHETYPAL EMERGENCE (NO ALPHA,
PERSISTENT DELTA, PERIODS OF HIGH FREQUENCY ACTIVITY)
In Figure 10 the EEG from an elderly patient shows a com-
plete absence of alpha activity even during the maintenance
phase of anesthesia. The frequency at maximal alpha peak in
Figure 10B is purely artefactual, and jumping randomly between
the 7 and 17Hz peak search limitation values. In the spectrogram
(Figure 10A) episodes of high-frequency (20 to >50 Hz) activity
are seen during emergence, indicated by the paler section between
1500 and 2000 s, the two dark-blue lines being recording arti-
fact. Anesthetic concentrations were high for age adjusted MAC.
CeFentanyl levels ranged between 0.2 and 0.8 ng/ml (Figure 10C).
The alpha and delta power levels remained at the same levels over
the whole emergence process, the pre-emergence points (black
circles) being obscured by the during- and post-emergence points
at the same position (blue and red, Figure 10D).

Before the start of emergence there was a stable connec-
tion strength value of around 1.2 (Figure 11B). As the CeMAC
decreased during the emergence period the connection strength

initially decreased, but then increased (between 1600 and 2000 s),
which corresponded to the period of high-frequency activity seen
in Figure 11A. During this period the patient was flexing their
arms to their head, but was not localizing and was not respon-
sive to auditory commands in any way. The change in resting
impedance (�hrest

e ) climbs from −4 to 0 mV at 300 s prior to
start of emergence, followed by a progressive decrease back to low
levels over the emergence period.

On the sleep-manifold (Figure 11D) the most distinct find-
ing was the excursion to, and return from, the top mani-
fold of the state-space during the short period of increased
connection strength. We infer, from the increase in L parameter
and clinical state, that this patient had entered some pathologi-
cal state of consciousness for about 10 min before falling back to
unconsciousness and then becoming responsive.

DOSE RESPONSE CURVES
The somewhat perplexing differences in spectrogram and
state-space trajectory, for the different patients, require some
explanation. To examine the relationship between the anesthetic
drugs and the EEG and state space parameters we plotted the
dose response curves for CeMAC verses L and �hrest

e . We see that
the five archetypal emergence patients (upper half of Figure 12)
had very consistent patterns, consisting of an initial decrease
in �hrest

e occurring at around 0.8 MAC (blue line, left axis).
(i.e., as surgery finishes, and often even before the anesthetic
decreases much, they become hyperpolarized and move to the
lower left region of the manifold). This seems to be a preliminary
stage before a stereotypical pattern in late emergence when, at
about 0.4 MAC, the L parameter (green line, right axis) suddenly

FIGURE 10 | Patient WH57: Non-archetypal emergence (no alpha,

persistent delta, periods of high frequency activity). (A) Spectrogram of
the observation period. Start of emergence shown as a vertical green line at
900 s, time of patient response as a vertical red line. (B) Frequency of
maximal oscillatory alpha power. (C) Concentration of anesthetic gas

(CeMAC), blue line, left vertical axis, and opioid levels as equivalent Fentanyl
(CeFentanyl, ng/ml), green line, right vertical axis. (D) Absolute alpha power
(dB) against absolute delta power (dB) for prior to start of emergence (black
circles), during emergence period (blue circles), and following recovery of
response (ROR).
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FIGURE 11 | Patient WH57, Sleep Manifold. (A) Spectrogram as in
Figure 10. (B) Excitatory connection strength (L-parameter) over period
of observation. (C) Change in resting membrane impedance (�hrest

e )
over period of observation. (D) Resultant positioning on the

sleep-manifold, with a black cross being the start of, and a white
cross being the end of the observation period, with intermediate
shades on the gray-scale representing the time progression between
these time-points.

increased for some time until abruptly decreasing again around
0.1 MAC; followed by the patient waking up a short time later.
The non-archetypal patients (see lower half of Figure 12) showed
much smaller changes in parameters—with a modest decrease in
�hrest

e , and no change in L being the most consistent features.

DISCUSSION
At this early stage in developing the methodology, we are cau-
tious in interpreting these results—and full quantitative analysis
will require statistical evaluation of hundreds of case records.
However we can conclude from our preliminary data that it is
feasible to map features from the frontal EEG onto a state space of
underlying biological parameters during emergence from general
anesthesia. We also note that the changes observed in parame-
ter values do not have an obvious direct correlation to simple
observable features in the spectrogram. For example periods of
high frequency activity do not consistently result in an increase
in neuronal connection strength (L), and hence it would seem
that the probabilistic mapping of multiple EEG features to the
model appears to be a way of using the EEG to estimate changes
of factors at a more abstract level than simply the obvious changes
in frequency content of the EEG waveform itself. Model param-
eter and EEG feature choice will probably have to be further
optimized for anesthesia, but we have at shown that intra- and
inter-neuronal factors can behave independently. We view these
results as part of an exploratory analysis, helping to determine
which factors are relevant for further analysis with larger patient
groups.

Patients who follow an archetypal emergence pattern seem to
start with their cortex in a relatively low conductance state, and
with poor cortical connection strength. They then follow quite a
long trajectory in the state space before achieving the externally

directed consciousness (the so-called “connected” consciousness)
as described by Sanders et al. (2012). In contrast, patients who
do not follow this archetypal emergence pattern typically have
a hyperpolarized cortex for the whole observation period, irre-
spective of the level of anesthetic, and do not exhibit periods of
high connection strength before the sudden engagement with the
external environment. The fact that we have found many coun-
terexamples to the archetypal pattern suggests that this pattern
will not be completely reliable as an indicator of the causal bio-
logical processes that are necessary for the return of consciousness
following general anesthesia and surgery.

It could be argued that—according to this model—a state of
hyperpolarization (i.e., high neuronal conductance and low con-
nectivity) is a prerequisite for the return of engaged consciousness
as, for both groups, the transition to ROR took place from a
hyperpolarized state—and that no patients transitioned to ROR
from a depolarized state. The apparent hyperpolarization drift
(occurring as the CeMAC decreases in emergence) seems to be
opposite to the results of various animal studies using intra-
neuronal recordings, which suggest that increased anesthesia is
associated with some degree of neuronal hyperpolarization. The
whole methodology relies on the model having a reasonable
fidelity to real physiology. There are two possibilities. Firstly,
the model may be correct, and the animal experiments may be
wrong, because they were conducted in the absence of surgical
stimulation—which has a potent cortical depolarizing effect via
aminergic activation. Or the model may be incorrect, and the
observed hyperpolarization may be an artifact of the model sta-
bility. In essence, around the cusp of the fold on the manifold,
the real parts of the eigenvalues for the system of equations are
close to zero (or even positive depending on the parameter set-
tings); and hence the steady-states of the model show marginal
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FIGURE 12 | Change in resting membrane impedance (�hrest
e , blue line,

left axis), and excitatory connection strength (L-parameter, green line,

right axis) plotted against decreasing anesthetic concentrations

(CeMAC) for the entire observation period for 10 patients. The five
patients in the upper-half of the figure show “archetypal” emergences, those
in the lower-half display “non-archetypal” emergences.

stability. This is manifest in the EEG as maximal delta and alpha
oscillations in this region (see Figure 11 in Dadok et al., 2014).
As the surgical stimulation subsides toward the end of the opera-
tion, and the CeMAC starts to decrease, the mean delta gradient
decreases and the state of the cortex as represented on the man-
ifold moves downwards away from the cusp to a more stable
state. In fact the idea of delta waves as a sign of a very hyper-
polarized thalamo-cortical system is over-simplistic. For example
in the well-described phenomenon of “delta-arousal,” there is an
increase in delta power associated with increased surgical nox-
ious stimulation (Morimoto et al., 2005). It is possible that we
are seeing the opposite phenomenon—a decrease in painful stim-
ulation resulting in a decrease in delta power. There also are other
data that suggest that large amplitude EEG is a sign of excessive
noxious stimulation or inadequate analgesic medication (Liley
et al., 2010) or even nitrous oxide withdrawal (Foster and Liley,
2011).

A characteristic feature of the archetypal patients is the con-
sistent increase in the L-parameter for a period prior to ROR.
It is tempting to associate these episodes with the first forays
into consciousness, although this would have to be described as
a dissociated consciousness, i.e., not engaged with the outside
world, indicative of something like dreaming, as these patients
were still unresponsive at that time. Yet given that only one
group displayed these episodes of increased connection strength
we would have to conclude that, assuming a well-functioning
model, either connection strength is irrelevant to engaged (exter-
nally directed) consciousness, or that the mechanisms required

for engaged consciousness are hidden from the model. For both
groups discontinuous, abrupt changes were seen in brain dynam-
ics. For the archetypal patients the changes in L were abrupt, not
gradual progressive changes; and for the non-archetypal patients
the ROR was not preceded by any indicators in the spectrogram.
The model has all patients positioned in the left lower corner
of manifold prior to ROR. The important feature of this region
is that it is near to the 3-root area of the manifold; an area of
instability where a small change in parameter value results in dis-
continuous transitions in state. We speculate that the reason all
patients either migrated to, or were already present in this area
prior to ROR is that this would make it much easier for the brain
to transition to another state. In contrast, if patients showing the
archetypal pattern of emergence remained at a depolarized state,
a small change in parameter would not lead to a large change in
state given the gradient. It is much harder for the cortex to climb
than to jump. This may help to explain the “flip-flop” phenom-
ena that have been described in the natural sleep literature (Saper
et al., 2001).

The above argument only holds if one assumes the true
position for the wakeful cortex is on the higher branch of the
manifold; in our data this has been obscured by the presence of
broadband EMG, or it may have been overlooked due to a very
short lasting ROR, e.g., 5 s, prior to a return to some sedation;
this would not show on the model which requires 30 s sections
of EEG. These results are provisional, and there are some sig-
nificant issues still to be resolved. Our EEG data were collected
from a single pre-frontal channel, and hence completely lacking
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in spatial information. We also note that the “sleep” model is
in some respects incomplete when applied to general anesthesia,
because it does not produce burst suppression patterns, various
high frequency oscillations, and does not distinguish between
the dissociated consciousness of REM sleep and true wakeful
consciousness.

CONCLUSIONS
The archetypal EEG pattern of emergence is not the only pat-
tern of emergence seen in surgical patients, with many patients
showing no obvious progressive changes in their EEG until
sudden recovery of responsiveness. When the EEG features
are mapped onto a model state space of cortical connection
strength and intrinsic resting neuronal conductivity, patients
consistently show a low level of excitatory connectedness dur-
ing anesthesia. During emergence the archetypal patients show
a very consistent trajectory of progressive decrease in neu-
ronal impedance and sudden increase in connection strength
before waking. In contrast, the non-archetypal patients showed
minimal changes in either parameter before waking. We there-
fore conclude that the archetypal EEG emergence pattern is
not a necessary prelude to recovery of responsiveness; and
hence is probably an epiphenomenon as regards our under-
standing of the mechanisms and signs of anesthetic-induced
unconsciousness.
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Patterns of resting state connectivity change dynamically and may represent modes
of cognitive information processing. The diversity of connectivity patterns (global brain
states) reflects the information capacity of the brain and determines the state of
consciousness. In this work, computer simulation was used to explore the repertoire of
global brain states as a function of cortical activation level. We implemented a modified
spin glass model to describe UP/DOWN state transitions of neuronal populations at a
mesoscopic scale based on resting state BOLD fMRI data. Resting state fMRI was
recorded in 20 participants and mapped to 10,000 cortical regions (sites) defined on
a group-aligned cortical surface map. Each site represented the population activity of
a ∼20 mm2 area of the cortex. Cross-correlation matrices of the mapped BOLD time
courses of the set of sites were calculated and averaged across subjects. In the model,
each cortical site was allowed to interact with the 16 other sites that had the highest
pair-wise correlation values. All sites stochastically transitioned between UP and DOWN
states under the net influence of their 16 pairs. The probability of local state transitions was
controlled by a single parameter T corresponding to the level of global cortical activation.
To estimate the number of distinct global states, first we ran 10,000 simulations at T
= 0. Simulations were started from random configurations that converged to one of
several distinct patterns. Using hierarchical clustering, at 99% similarity, close to 300
distinct states were found. At intermediate T, metastable state configurations were
formed suggesting critical behavior with a sharp increase in the number of metastable
states at an optimal T. Both reduced activation (anesthesia, sleep) and increased activation
(hyper-activation) moved the system away from equilibrium, presumably incompatible
with conscious mentation. During equilibrium, the diversity of large-scale brain states
was maximum, compatible with maximum information capacity—a presumed condition
of consciousness.

Keywords: anesthesia, consciousness, information, criticality, metastability, fMRI, resting state, functional

connectivity

INTRODUCTION
Cognitive functioning of the conscious human brain is thought
to depend on the formation of dynamic patterns of neuronal
coalitions and large-scale connectivity (Werner, 2009; Bressler
and Menon, 2010). Moreover, the diversity or repertoire of dis-
tinct functional patterns reflects the information capacity of the
brain that is thought to be central to consciousness (Tononi, 2008;
Deco et al., 2014). The repertoire of brain states over time can
be large if there is sufficient flexibility in the system to rapidly
switch to new configurations and maintain these configurations
for a finite amount of time. The time necessary for maintaining a
configuration should roughly coincide with the duration of a con-
scious perceptual frame (Bachmann, 2013). The dynamic nature
of the ongoing stream of consciousness may reflect this rapid
sequence of state configurations (Werner, 2007). Moreover, the
disruption of the sequence of states may account for the anesthetic
suppression of consciousness (Hudetz et al., 2014).

Various physical, chemical, and biological systems are able to
produce metastable states that satisfy the requirement for a large
repertoire. Metastable states typically arise in critical systems that
operate at the border of order and disorder and are characterized
by complex patterns of fluctuations (Werner, 2007; Beggs, 2008;
Kitzbichler et al., 2009; Deco and Jirsa, 2012; Tagliazucchi et al.,
2012). Self-organization is often the underlying mechanism of
criticality. Recent computational and empirical studies based on
electrophysiology, fMRI, and EEG lend support to the existence
of this behavior in the brain (Friston, 1997; Freeman and Holmes,
2005; Werner, 2007; Kitzbichler et al., 2009; Kelso, 2012; Bhowmik
and Shanahan, 2013; Tognoli and Kelso, 2014). This metastability
is considered essential to the subjective mental state and con-
sciousness (Kitzbichler et al., 2009). Its restoration may be the
hallmark of recovery from unconsciousness (Hudson et al., 2014).

Self-organization can also lead to scale-free behavior, in which
similar interactions are present at different temporal or spatial
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scales (Tognoli and Kelso, 2014). The scaling of the magnitude
of interactions is typically 1/f, where f is the frequency (Kello
et al., 2008). Interestingly, the scale-free property of EEG or fMRI
BOLD signals is preserved under anesthesia (Lee et al., 2010; Liu
et al., 2014) but not in disorders of consciousness associated with
diffuse brain damage (Liu et al., 2014). In light of this dissocia-
tion, conscious information processing may depend more closely
on the dynamic repertoire and metastability of brain states than
their spatio-temporal scaling laws.

Recent fMRI investigations have convincingly demonstrated
that brain networks undergo dynamic reconfigurations even in
the absence of novel stimuli or cognitive tasks (Britz et al., 2010;
Chang and Glover, 2010; Sakoglu et al., 2010; Kang et al., 2011;
Allen et al., 2012; Glerean et al., 2012; Handwerker et al., 2012;
Jones et al., 2012; Cribben et al., 2013; Di and Biswal, 2013;
Hutchison et al., 2013b; Keilholz et al., 2013; Liu and Duyn,
2013). Such resting state network dynamics have been ascribed
to the general phenomena of spontaneous mentation, imagery,
task-independent thoughts or daydreaming (Mckiernan et al.,
2006).

The standard method for characterizing dynamic networks of
the brain has been the sliding window analysis of functional con-
nectivity (Hutchison et al., 2013a), sometimes combined with
independent component analysis (ICA) (Kiviniemi et al., 2011),
temporal ICA (Smith et al., 2012), and other source separation
methods (Cribben et al., 2013). Connectivity analysis at higher
temporal resolution has also been attempted with various point-
process methods (Tagliazucchi et al., 2011), revealing so-called
spontaneous co-activation patterns (Liu and Duyn, 2013; Liu
et al., 2013). In all cases, a main limiting factor is the duration
of the fMRI scan, which limits the number of connectivity pat-
terns that can be extracted from a finite sample. On the other
hand, the limited spatial resolution of EEG does not allow the
imaging of spatially complex patterns. Moreover, collecting a suf-
ficient amount of experimental data across the full range of brain
states in the same subject, including multiple states of sleep,
wakefulness, anesthesia, etc., is difficult.

As an alternative approach to explore the probability space
of correlated brain states, we used a combination of empirical
connectivity data and computer simulation. In the simulation,
functional connectivity patterns were evolved by simulating the
dynamic interaction of mesoscopic brain regions using a modi-
fied spin-glass model. This model is well-suited to describe the
large-scale, globally distributed effect of the dynamic interaction
of functionally connected brain regions. The model is relatively
simple, as it does not include cell-specific or synaptic connections
but it is minimally sufficient to account for an arbitrary pat-
tern of neuronal interactions of distant, mesoscopic brain regions.
Moreover, the model includes a single parameter to control the
general cortical arousal level analogous in physical systems to the
absolute temperature that determines the probability of spin fluc-
tuations. The biological equivalent of spins in our model is the
UP and DOWN states of neuronal activity.

As a novel feature, our model was constrained by using empir-
ically derived resting state connectivity to set the spatial pattern
of long-range interactions. The present approach is similar to
the previously described Ising model (Fraiman et al., 2009; Das

et al., 2014; Marinazzo et al., 2014), with the exception that our
model is based on empirically derived long-range interactions.
We show that with the chosen constraints set by the connectivity
matrix, the model predicts critical behavior at the optimal activa-
tion level at which metastable states occur. Both reduced activa-
tion (anesthesia, sleep) and increased activation (epilepsy) moves
the system away from equilibrium, presumably incompatible
with conscious mentation. In equilibrium, the diversity of large-
scale brain states is maximum, implying maximum information
capacity—a previously postulated prerequisite of consciousness
according to the Information Integration Theory (Tononi, 2008).

MATERIALS AND METHODS
fMRI EXPERIMENTS AND DATA ANALYSIS
Resting-state BOLD fMRI data were collected from 20 subjects.
Subjects were instructed to lie still with eyes open and avoid
falling asleep. After each run, they were requested to rate their
alertness level during the previous run. All imaging procedures
were conducted on a 3.0 Tesla GE Excite scanner. For each subject,
an anatomical scan was acquired using an SPGR pulse sequence
(130 axial slices, slice thickness = 1.0 mm, TE = 3.2 ms, TR =
8.2 s, flip angle = 12 degrees, FOV = 240 × 180 mm, matrix
size = 256 × 224). Resting state functional images were obtained
using gradient-EPI (41 axial slices, slice thickness = 2.5 mm, TE =
25 ms, TR = 3 s, flip angle = 84◦, FOV = 240 mm, matrix size =
96 × 96). In each subject, we obtained 6 runs of 7 min each (140
time points per run) for a total of 42 min of resting data.

Preprocessing of functional images included slice-timing cor-
rection, motion correction, and co-registration with the anatomi-
cal scan. To remove the effects of signal drift and possible artifacts
due to motion, a regression analysis was conducted with third-
order polynomial, the parameters from the motion correction
algorithm, and a global signal regressor. These steps were per-
formed using the software Analysis of Functional Neuroimages
(AFNI, NIH). Cortical surface models were created from the
anatomical scan of each subject using Freesurfer software. The
subjects’ surface model was aligned to an average surface atlas (FS
Average brain in Freesurfer) using spherical surface-based align-
ment (Fischl et al., 1999). The triangular mesh of the FS Average
brain was subsampled to 10,000 vertices across both hemispheres
(Matlab reducepatch). The BOLD time courses were mapped to
the 10,000 points by averaging all voxels overlapping with the
cortical surface nearest to each of the 10,000 points. Each of the
10,000 points represents the average activity within a ∼20 mm2

diameter patch of cortex. For spatial smoothing, an estimate
of the distance between each of the points along the cortical
surface was calculated by the fast marching algorithm (Sethian,
1996). Finally, correlation values were calculated between all pair-
wise combinations of the 10,000 points. The resulting correlation
matrices were averaged across subjects to create a single group
connectivity matrix used for the simulation.

SPIN-GLASS MODEL
The model was based on the standard assumption that global
brain states evolve due to the ongoing interaction of mesoscopic
brain regions, from here on called sites. The size of these sites
was taken as that of the cortical surface patches of 20 mm2 from

Frontiers in Systems Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 234 | 84

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hudetz et al. Anesthesia diminishes metastable brain states

the fMRI data, each representing a vertical slab or macro-column
of cortex. According to the standard Ising or spin-glass models,
at any given time, each of the sites was assumed to be in one
of two local states: UP (active) or DOWN (inactive). Further
detailed description of the Ising model is available in previous
publications (Fraiman et al., 2009; Kitzbichler et al., 2009; Das
et al., 2014; Marinazzo et al., 2014). The essential difference
between the Ising and spin-glass models is that the latter includes
long-range interactions and variable interaction probabilities.
Following the Monte-Carlo implementation of the Metropolis
algorithm (Metropolis et al., 1953; Fricke, 2006), local states were
allowed to flip with probability pi as

pi ∼ exp (−�Ei/T)

�Ei = 1

2
Si

n
∑

k = 1

AikSk

Si = [+1, −1] , i = 1, .., n, k �= i

In these equations, i and k index the cortical sites such that k
is the index of sites interacting with site i, n is the total num-
ber of sites in the model, and Aik is the connection matrix that
defines the interacting sites. For each site i, Si is the state vari-
able (UP or DOWN), �Ei is the activation energy, and T is the
global activation level—analogous to temperature in the physical
literature.

To define the interacting sites, we used the fMRI functional
connectivity data. For each site as a reference, the 16 other sites
with the strongest correlation with the reference site were identi-
fied from the all pair-wise BOLD signal correlation matrix. Each
site was then allowed to interact with their 16 pairs at a proba-
bility determined by the site’s activation energy and the overall
activation level.

In various runs, the activation level T was varied from zero
to 4.0. Low values of T were taken as corresponding to reduced

activation, such as in sleep, anesthesia or coma, and high val-
ues of T were taken as corresponding to hyper-activation, as in
seizure. Each simulation started with a random distribution of
UP/DOWN states as an initial condition. The system was then
allowed to evolve for 10,000 time steps. Depending on the chosen
value of T, the states converged or continued to change until the
simulation was terminated.

RESULTS
BOLD FUNCTIONAL CONNECTIVITY
For a compact illustration of BOLD functional connectivity, the
pair-wise correlation values between each site and the rest of the
brain were averaged yielding a spatial map of global correlation
strength. Figure 1 shows the results for 20 subjects. There is a
noticeable variation of connectivity patterns however, the con-
nectivity of a few structures appears to be conserved in most
subjects. The global connectivity pattern averaged across all sub-
jects is illustrated in Figure 2. This map emphasizes regions that
were most strongly connected with the rest of the brain in all
subjects. The average connectivity matrix that gave rise to this fig-
ure was used as input data for the simulation. Figure 3 shows an
example of the spatial distribution of several sets of 16 interacting
sites, i.e., those with the highest correlation with each refer-
ence site. Clearly, these interactions reach over large regions of
the brain.

SPIN-GLASS SIMULATION
First we examined the types of global state patterns that emerged
at low activation level T. As anticipated, various metastable state
configurations were formed at intermediate T, and they were
frozen at low T (Supplementary electronic material). Specifically,
at T ≤ 2, the patterns converged, although this sometimes took
a long time. To reduce the simulation time to convergence, we
performed 10,000 runs at T = 0. This rapidly drove the system
to one of many final configurations. We then sought to estimate
the diversity of distinct global states. To suppress the effect of

FIGURE 1 | Global resting-state cortical correlation maps in 20 subjects. Pseudo-color indicates the average cross-correlation of each voxel with the rest of
the brain.
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FIGURE 2 | Average global resting-state cortical correlation map from

20 subjects. Pseudo-color indicates the average cross-correlation of each
voxel with the rest of the brain.

FIGURE 3 | An example of interacting cortical sites for 10 randomly

selected seeds in the model. Each color indicates a set of 16 sites that
interact with the same seed. Interacting sites are chosen based on the 16
highest correlation coefficients of each seed in the all pair-wise correlation
matrix.

local variations, we first performed spatial averaging of each pat-
tern within 5 or 15 mm. The averaging facilitated the comparison
of global similarity without local noise. We then used hierarchi-
cal clustering of the 10,000 patterns and estimated the relative
frequency of patterns. Figure 4 shows the 40 most frequent pat-
terns. All patterns are distinct and they generally reflect known
functional regions of the brain (prefrontal, temporal, parietal,
occipital, pre- and post-central, etc.).

Next, we compared the dynamics of global state patterns
at intermediate activation levels. A convenient measure of the
dynamics is the temporal correlation of patterns at successive time
points (Figure 5). The correlation matrix at activation level T =
2.7 suggests patterns that are typical of systems with metastable
states. At high T, the patterns become random; whereas at low
T, the patterns become stereotypic, showing temporal hypersyn-
chrony. Increasing the time lag (embedding delay) from one time
step to 2, 4, 8, 16, and 32, reduced the mean and augmented the
fluctuation in the correlation of states (Figure 6). This effect was
further quantified by the homogeneity index H, defined as the
reciprocal of the coefficient of variation:

H =< cc > /SD(cc),

where SD is the standard deviation and brackets <..> indicate
averaging. Figure 7A illustrates the results for three levels of acti-
vation, T. The H-T relationship followed power law up to a lag
of approximately 20 time steps. The power law was preserved at

reduced T, although its exponent (the slope of linear regression
slope in a log-log plot) was reduced.

To measure the temporal diversity of metastable states, we
introduced the dispersion index D defined as:

D = K < (1 − cc) > /var (cc)

where cc stands for the elements of the all pair-wise correlation
matrix of the simulated states, var stands for variance, and K is a
normalization constant equal to the variance of the uniform ran-
dom distribution of the same size as the cc matrix. As defined, D
measures the temporal diversity or repertoire of global states over
time at all time lags. It can be easily seen that the value of D is low
for both random and regular systems. Figure 7B shows calculated
values of D as a function of activation level T. The plot suggests
the presence of typical second-order phase transition. D reaches
maximum at T = 2.7; its value drops sharply at both smaller and
larger T. Low values of T are thought to characterize suppressed
states such as anesthesia or deep sleep, and high values of T are
thought to correspond to hyper-activated states, e.g., seizure. At
the critical T, metastable states dominate and the diversity of brain
states as measured by D is maximum. The high repertoire of states
at critical T is consistent with the formerly postulated condition
to support conscious cognition.

DISCUSSION
The goal of this investigation was to demonstrate that long-range
neuronal interactions based on empirical measurements in the
human brain produce large-scale dynamic patterns of activity.
To this end, we applied computer simulation with a modified
spin-glass model of site interactions that were constrained by
BOLD fMRI functional connectivity. As anticipated, our results
predicted large-scale metastable brain states that occurred at an
optimal activation level. Simultaneously, at the optimal level of
activation, the diversity of state configurations was maximized—
consistent with its postulated role in brain functioning in the
conscious state. Moreover, the diversity of states was reduced
when moving away from criticality—presumably corresponding
to states of diminished consciousness.

While a few similar computational studies have been con-
ducted in the past, the present work is novel in several ways.
First, the simulation was based specifically on long-range inter-
actions that spanned distances among remote cortical regions.
This is the defining difference between the spin-glass model and
the Ising model, which considers only nearest neighbor interac-
tions. Second, we used BOLD functional connectivity to select
the interacting sites. These empirically-determined connectivity
constraints ensure that the model contains connectivity struc-
ture similar to that of the actual human brain. Third, we used
a novel measure of dispersion to estimate the diversity of global
brain states and their dependence on activation level. Therefore,
it is of substantial interest that the long-range interacting system,
as constrained by real probabilistic data from the brain, readily
produced metastable states.

Kitzbichler et al. (2009) demonstrated power law scaling of the
synchrony in resting-state fMRI and MEG data, suggesting that
the presence of self-organized criticality in the brain is analogous
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FIGURE 4 | The 40 most frequent equilibrium patterns at T = 0 activation level from the spin-glass model. Pseudo-color indicates the probability of UP (red)
and DOWN (blue) states of each site (scale is arbitrary). Patterns were classified using hierarchical clustering at 99% similarity after 15 mm spatial smoothing.

FIGURE 5 | Temporal correlation of global state patterns at successive

time points and different activation levels, T. Simulation consisted of
10,000 time steps. Pseudo-color indicates the correlation coefficient, cc, of

consecutive patterns. Metastable states are formed at T = 2.7 suggesting
critical, “edge-of-chaos” behavior. Higher T leads to more random patterns,
whereas lower T yields hyper-synchronous, stereotypic patterns.

to that obtained from computer simulations on an Ising system.
Their simulation was not constrained by actual empirical data.
Das et al. (2014) also used the two-dimensional Ising model to
illustrate the similarity of measured and simulated fMRI BOLD
signals in human subjects. Different from our study, they ana-
lyzed BOLD signal distributions above and below threshold to
show that the Ising model can predict activity patterns similar to
that of BOLD.

Our simulation was different from both of these studies in
that ours was based on long-range interactions derived from
empirical BOLD functional connectivity. The spatial distribu-
tion of interacting sites was determined by the strength of

long-range correlations. As a result, the predicted global states
resembled large-scale functional patterns of the human brain.
Finally, we simulated global brain states at different activation
levels.

Another recent simulation study applied the Ising model
to fiber-tract data obtained with diffusion tensor imaging
(Marinazzo et al., 2014). The outgoing and the incoming infor-
mation at each network node was quantified as related to the
summated input weights and to the time elapsed between con-
secutive flips of Ising spins. The simulation predicted critical
behavior although the profile of state transition was not as rapid
as in our simulation.
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FIGURE 6 | Global state correlation as a function of time at various time lags (shown on top of each panel). Global state patterns become decorrelated
at increasing time delays.

FIGURE 7 | Dependence of the state repertoire on cortical activation

level and embedding time lag. (A) Homogeneity index, H decreases
as a function of the time lag of according to power law up to a lag of
20. Decreasing the activation level T (anesthesia) decreases the

regression slope. (B) Dispersion index, D shows critical behavior as a
function of activation level, T. Maximum of D is thought to correspond
to the conscious state. D drops at low T (anesthesia) and at high T
(seizure).

It could be argued that fiber tract distribution is a more
appropriate constraint for the model than functional connectiv-
ity. Functional connectivity may not always correspond to direct
anatomical connection due to common input or third party inter-
actions. However, a counter argument is that only a fraction of
fiber tracts may be used for neuronal communication at any
one time, and, therefore, functional connectivity provides a bet-
ter approximation of the probability of functional interactions
regardless of the exact underlying mechanism. Conceivably, real-
time measurement of neuronal communication across the whole
brain will be the ideal data used as an input to the model when
such technology becomes available in the future.

The neurophysiological relevance of the spin-glass model
depends on the temporal and spatial scales that it represents.
Although the temporal scale of the simulation is arbitrary, it can
be grounded in real neuronal events based on empirical data.

Spontaneous activity of neuronal populations forms transient
spatiotemporal clusters often described as neuronal avalanches
(Beggs and Plenz, 2003). The time scale of these events is on
the order of 10 ms. Such an alternation between activity and
silence of neuronal populations is consistent with the representa-
tion of UP and DOWN states of mesoscopic sites in the spin-glass
model. On a global spatial scale, EEG topographic maps alter-
nate among microstates at a time scale of approximately 100 ms
(Koenig et al., 2002). These states have been linked to fMRI signals
(Lehmann, 2010; Musso et al., 2010). The temporal resolution of
elementary conscious sensory perception also falls in this order
(Bachmann, 2013). The lifetime of the simulated metastable states
depends on the chosen level of similarity of the states, i.e., the
minimum cross-correlation coefficient at which they are consid-
ered equivalent. Accepting a cross-correlation threshold of 0.95,
the median lifetime of metastable states at the critical activation
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level is around 440 ms that is in the timeframe of cognitive
phenomena.

We found that the homogeneity index H depended on the
embedding time lag according to power law, suggesting scale-free
behavior up to a lag of approximately 20 time steps. Based on
the preceding considerations, 20 time steps would correspond to
approximately 200 ms duration, which agrees with the presumed
unit of processing time for conscious computations. Nevertheless,
the power law of H does not imply criticality because the power
law exponent was close to −1.0 (at T = 3) or less, not −1.5 as pre-
viously proposed for critical processes (Beggs and Plenz, 2003).
On the other hand, the dispersion index D suggests critical behav-
ior at the phase transition at T = 2.7. D measures the overall
diversity of global state configurations across all time points, not
only the states’ consecutive (or delayed) similarity as H does. At
low T, D is small because global brain states are highly correlated
and thus (1−cc) is low. Because the sites stochastically fluctuate
between UP and DOWN states, the variance of cc does not go to
zero and D does not diverge. At high T, D is small again because
the variance is large due to the intense random fluctuations. Thus
D is high only at intermediate T. The repertoire of global states
accessed by the brain over time reaches maximum at a critical
point.

During the course of clustering global brain states, a challenge
was to define their similarity at a mesoscopic scale with 5000
sites per hemisphere. On one hand, cluster membership had to
be defined at a chosen degree of similarity; the number of distinct
brain states depended on this choice. We carried out clustering
at 99.0 and 99.9% similarity; yielding a higher number of distinct
states when the similarity requirement was stricter. Another factor
that influenced the clustering was the degree of spatial averaging,
for which we used either a 5 or 15 mm radius. This choice made
a significant difference at 99.9% similarity but it made very little
difference at 99.0% similarity. Guided by these preliminary assess-
ments, we chose 15 mm spatial averaging and 99.0% similarity
level for the final simulations.

In this work we sought to gain insight into the possible diver-
sity and dynamics of UP/DOWN state patterns as a measure of
complex brain states. It has been hypothesized that dynamic states
of connectivity represent modes of cognitive information pro-
cessing in the brain (Bressler and Menon, 2010). Moreover, the
diversity or repertoire of brain sates has been postulated as one
of the fundamental conditions for information integration in the
conscious state or more specifically consciousness itself (Tononi,
2008).

In the spin-glass model, the overall probability of UP/DOWN
transitions of mesoscopic sites was controlled by the global acti-
vation level T. We saw that at a critical activation level, large-scale
metastable states were frequent, and the diversity of global brain
states was enhanced. Although this may not be a stable state
in vivo, approaching criticality may be facilitated by the phasic
increases in ascending arousal (Buzsaki et al., 1988), which would
repeatedly randomize the system (at high T), and then allow it to
sink into new configurations. The latter may have an additional
effect on augmenting the repertoire of brain states over time.

If information processing indeed depends on the repertoire of
brain states, the question one may ask is how many distinct brain

states exist. The answer to this question obviously depends on
what we consider the smallest units of the system. The organi-
zational complexity and the number of distinct functional states
of the brain would plausibly increase at finer spatial and tem-
poral scales, spanning several hierarchical levels from synapses,
neurons, local circuits, to regions and networks. Although the
spatiotemporal resolution of fMRI is relatively coarse, the num-
ber of combinatorially possible network patterns defined at near
voxel level is enormous, and properly sampling these patterns
using fMRI is limited. Computer simulation helps extend our
ability to estimate the brains state repertoire within empirically
set constraints.

An application of interest of the model is examining the effects
of general anesthesia, which is characterized by reduced global
activation due to a suppression of the ascending arousal system
(Nelson et al., 2002; Alkire et al., 2007). As we saw, decreasing
the activation level T retards the dynamic transition of global
metastable states by reducing the probability of UP/DOWN tran-
sitions. As a result, fewer distinct brain states occur over time,
which predicts reduced information capacity. As we formerly
argued, a reduction in the repertoire of global brain states may
underlie anesthetic loss of consciousness (Alkire et al., 2008). An
alternative mechanism that may diminish information integra-
tion during anesthesia is the weakening of site interactions. This
may lead to breakdown of meaningful communication within the
brain’s critically important functional networks. Although this
has not been tested here, the overall effect of reduced connec-
tivity on the global dynamics is expected to be similar to that of
reduced cortical arousal. Both mechanisms are likely at work in
the mediation of the anesthetic effect.

Although we have emphasized the application to anesthesia,
the simulation results equally apply to altered states of conscious-
ness such as deep sleep, vegetative state, coma, or, at the other end
of the spectrum, seizure. We saw that both low and high activa-
tion levels reduced the diversity of global brain states, presumably
pushing the brain away from optimal information processing and
integration.

Current views differ on whether critical behavior in the cor-
tex is associated with normal conscious behavior or a transition
to altered states of consciousness. Previously, Steyn-Ross et al.
(1999) examined first-order phase transitions using a mean-field
model of excitatory and inhibitory neuronal groups with rele-
vance to the anesthetic modulation of the state of consciousness.
They hypothesized that the anesthetic acted as a randomiz-
ing agent to break down the connections between interacting
neuronal populations and that this loss of neuronal coopera-
tivity accounted for the loss of consciousness under anesthesia.
Alternatively, spontaneous ongoing activity may play a role in
inducing state transitions that may be important for maintain-
ing conscious awareness. Recently, Steyn-Ross et al. (2009) sug-
gested that patterns of cortical activation arise from spontaneous
self-organization of interacting neuronal populations at a meso-
scopic scale. They simulated metastable activation patterns that
were altered when the somato-dendritic feedback of neurons was
reduced; reflecting a decrease in excitatory neuro-modulation as
seen during sleep or anesthesia. We interpret our simulations to
be consistent with the ongoing formation of a large diversity of
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metastable states that are essential for the stream of conscious
thought (Werner, 2009). Although the patterns also change spon-
taneously, fluctuations in the level of cortical activation (cortical
arousal) via its randomizing effect may facilitate the rapid for-
mation and transition of consecutive activity patterns, thereby
further augmenting the repertoire states accessed by the brain
over time.
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The electroencephalogram (EEG) patterns recorded during general anesthetic-induced
coma are closely similar to those seen during slow-wave sleep, the deepest stage of
natural sleep; both states show patterns dominated by large amplitude slow waves. Slow
oscillations are believed to be important for memory consolidation during natural sleep.
Tracking the emergence of slow-wave oscillations during transition to unconsciousness
may help us to identify drug-induced alterations of the underlying brain state, and provide
insight into the mechanisms of general anesthesia. Although cellular-based mechanisms
have been proposed, the origin of the slow oscillation has not yet been unambiguously
established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the
slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as
a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious
state signposted by emergent low-frequency oscillations with chaotic dynamics in
space and time. They suggest that anesthetic slow-waves arise from a competitive
interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf),
modulated by gap-junction coupling strength. A significant prediction of their model is
that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance
(wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate
changes in phase coherence during induction of general anesthesia. After examining
128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia,
we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence
between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced
wake-vs.-unconscious coherence changes occurring at the frontal cortex.

Keywords: slow-wave sleep, phase-coherence measure, mean-field cortical model, gap-junction, Turing–Hopf

instabilities

1. INTRODUCTION
General anesthetic drugs act to suppress the conscious state
of the cortex, leading it to a natural sleep-like mode (Lancel,
1999; Franks, 2008). There is clinical evidence showing that such
sedated unconsciousness can be induced by the injection of anes-
thetic substances into some discrete brain areas which are critical
in the coordination of sleep-wake transitions (Sukhotinsky et al.,
2007). Further evidence to support the notion of strong simi-
larity between natural deep sleep and anesthesia can be seen in
the electrical activity of the cortex: both states are signposted by
the abrupt onset of large, slow oscillations (0.1–1.5 Hz) in the
electroencephalogram (EEG) and local field potential (Steriade
et al., 1993). These rhythmic signals, which sweep through the
brain during deep sleep at the rate of about 1 cycle per second
(Massimini et al., 2004), have been shown to play a role in mem-
ory encoding and consolidation (Steriade and Timofeev, 2002;
Walker, 2009).

Although EEG slow waves are manifest in an unconscious
state, they are also superimposed on the alpha and theta waves
when our brain is in a low conscious level, the so-called “idling”

state where the brain is not engaged in the active processing of
information (Uusberg et al., 2013). Clinical studies show a sta-
ble increase in power of the lowest frequency components of the
EEG signal as anesthesia deepens, while higher frequency compo-
nents (theta, alpha, gamma) are highly variable during and after
loss of consciousness (Sleigh et al., 2000; Lewis et al., 2012). Thus,
tracking the emergence of slow-wave oscillations during transi-
tion to unconsciousness may help us to identify drug-induced
alterations of the underlying brain state, and provide insight into
the mechanisms of general anesthesia.

In the last decades, there has been a growing understanding
of how slow waves are generated during sleep. Steriade et al.
(1989) reported slow-wave activity (SWA) from in vitro thalamic
slices. In thalamocortical (TC) neurons, SWA depends on voltage-
sensitive properties of low-threshold calcium channels [known as
“T” type (David et al., 2013)] that may provide a pacemaking role,
mediating the transition between tonic firing and low-threshold
spiking (Suzuki and Rogawski, 1989; Astori et al., 2011). However,
the “clock-like” SWA generated by TC neurons is more regular
than that of slow-wave sleep (Nir et al., 2010). Further, it is known

Frontiers in Systems Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 215 |

SYSTEMS NEUROSCIENCE

92

http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/about
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnsys.2014.00215/abstract
http://community.frontiersin.org/people/u/177771
http://community.frontiersin.org/people/u/75345
http://community.frontiersin.org/people/u/75344
http://community.frontiersin.org/people/u/75456
mailto:asr@waikato.ac.nz
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wang et al. EEG slow-wave coherence measurement and modeling

that in vitro cortical slices can produce slow oscillations of local
field potential in the absence of thalamic inputs (McCormick and
Sanchez-Vives, 2000). So slow rhythmic thalamic activity may not
be relevant to the onset of slow cortical waves.

Human EEG recordings show that the slow oscillations seem
to originate from nearly any region of the scalp and behave as
a traveling wave propagating in any direction (Massimini et al.,
2004). Yet, recent clinical studies demonstrate that the slow waves
can be locally regulated (Huber et al., 2004, 2006; Murphy et al.,
2009). Therefore, questions remain about where slow waves orig-
inate and whether all cortical areas engage equally in slow-wave
activity.

To help address this deficit, Steyn-Ross et al. (2013) pre-
sented a physiologically-motivated mathematical model of the
cortex that demonstrates how coupling via inhibitory electri-
cal synapses (gap-junctions) mediates the generation of propofol
anesthetic slow waves. The model envisions the cortex as a mean-
field continuum in which pools of neurons are linked via chemical
and electrical synapses. GABAergic anesthetic agents, such as
propofol, act at chemical synapses to hyperpolarize postsynaptic
neurons by prolonging the duration of the inhibitory postsynap-
tic potential (IPSP) via increased influx of chloride ions (Franks
and Lieb, 1994; Kitamura et al., 2003). In addition to chem-
ical neuromodulation, there is evidence that propofol reduces
the resistive gap-junction coupling between adjoining inhibitory
neurons (Wentlandt et al., 2006; Huang et al., 2014) that is pro-
posed to form a broad diffusive syncytium linking inhibitory
neural populations (Fukuda et al., 2006). Accordingly, we model
anesthetic effect as a moderate reduction in inhibitory diffu-
sion, paired with an increase in inhibitory postsynaptic poten-
tial. In the vicinity of a general-anesthetic induced transition
from wake to coma, the Steyn-Ross model describes a subtle
rebalancing of cortical Turing (spatial) and Hopf (temporal)
instabilities to an unconscious state that is characterized by Hopf-
dominated slow waves whose dynamics is chaotic in time and
space.

Identifying the specific dynamics of slow waves associated
with loss of consciousness requires an examination of the tran-
sition into unconsciousness. In this paper, we examine the
clinical EEG recordings in terms of slow-wave phase-coherence
between different electrode-pairs, comparing coherence val-
ues before and after the induction of propofol anesthetic.
Propofol, a widely used anesthetic drug, enhances GABAergic
inhibitory input to neurons (Bai et al., 1999; Rudolph and
Antkowiak, 2004), with effects in cortex, brainstem, thala-
mus and spinal cord (Fiset et al., 1999; Kungys et al., 2009).
EEG coherence is considered to be a qualitative measure of
the degree of association or coupling between two EEG chan-
nels. Coherence estimation for high-density EEG recording is
able to demonstrate functional cooperation between two brain
regions (Nunez and Srinivasan, 2006), revealing subtle changes
in brain dynamics. We compare our findings with a testable
prediction by Steyn-Ross et al. (2013) and illustrated here in
Figures 9E, 10E, 11 (compare “non-cognitive wake” with “anes-
thetic slow-wave”): namely, introduction of anesthetic to the
awake brain should lead to a significant decline in low-frequency
EEG phase-synchrony.

2. MATERIALS
The EEG dataset used in this study are archived files from Waikato
Clinical School, Hamilton, New Zealand, previously used to
investigate anesthetic response of EEG across different frequency
bands (Johnson et al., 2003). The dataset contains pairs of 60-
s EEG (sampling frequency 250 Hz) recordings for two distinct
well-developed brain states: wake and propofol anesthetic coma,
recorded from 5 healthy adult subjects via 129 electrodes1 using
an EGI™ dense array with Cz (vertex) being the reference elec-
trode. The archival EEG dataset are manually selected epochs that
are relatively artifact-free.

An example of EEG recorded from electrode Fp1 is represented
in Figure 1. This demonstrates the clear contrast between wakeful-
ness (upper EEG trace) and sedated unconsciousness (lower trace)
with the appearance of spindles (12–15 Hz) and slow rhythms
including delta activity (1–4 Hz) and slow oscillations (0.2–1 Hz).
By focusing on the EEG in sub-delta band (≤1.5 Hz), Figure 2
shows that the power of the slow-waves in sedated unconscious-
ness is nearly twice as large as that in the wake state.

3. METHODS
3.1. MEASURING EEG COHERENCE
EEG coherence between two electrode sites is usually computed
by one of two methods: the Fourier transform (FT) cross spec-
trum (Achermann and Borbely, 1998), or the Hilbert transform
(HT) instantaneous phase difference (Mormann et al., 2000)
between two EEG time-series.

Since EEG represents the activities of the non-linearly interact-
ing neuronal populations, it is neither truly linear nor stationary.
Thus, it may be unreliable to use FT-based methods for EEG anal-
ysis since these assume that the time-series is stationary (Lo et al.,
2009; Zhang et al., 2010).

The Hilbert transform (Huang et al., 1998; Sweeney-Reed
and Nasuto, 2007) circumvents the requirement for stationar-
ity by generating an analytic signal to extract the instantaneous
frequency and phase angle from the original non-stationary sig-
nal. The mean of the phase divergence between two time-series
yields an index characterizing the phase synchronization between
them. The advantages of the HT over the traditional FT-based
approaches have been appreciated in many studies of cortical
neuronal synchronization under different circumstances such as
Parkinson’s disease (Tass et al., 1998), abrupt seizure (Oweis and
Abdulhay, 2011), sleep (Yi et al., 2009), and anesthetic coma
(Koskinen et al., 2001).

3.2. HILBERT TRANSFORM
A real time-series X(t) can be transformed to a complex function
known as the analytic signal:

X̂(t) = Xr(t) + iXi(t) (1)

where Xr(t) is the original series X(t) and Xi(t) is the Hilbert
transform of X(t) (Mormann et al., 2000; Koskinen et al., 2001).
The instantaneous phase of X(t) is computed by:

1The electrodes map is available at http://psychophysiology.cpmc.columbia.
edu/software/CSDtoolbox/tutorial.html
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FIGURE 1 | Sample (A) wake (blue) and (B) sedated unconsciousness (red) EEG from archival Fp1 recording. Raw EEG data are filtered via AAR2 to remove
eye-blink artifacts.AAR-corrected EEG are marked in black. The power spectra show that slow-wave oscillations are dominant in the sedated unconsciousness state.

φ(t) = tan−1
(

Xi(t)

Xr(t)

)

(2)

To quantify the phase synchronization between two time-series
Xm(t) and Xn(t), a coherence index based on work by Kuramoto
(Kuramoto, 1984; Kuramoto and Nishikawa, 1987) is used:

R(m,n) = |〈ei[φm(t)−φn(t)]〉| (3)

The mean phase coherence R measures the time-averaged phasor
for the angular distribution of the phase difference between the
two time-series; R lies between 0 and 1, with 1 representing per-
fect phase coupling. This style of Kuramoto order-parameter has
been widely used in the study of synchronization dynamics (e.g.,
Acebrón et al., 2005; Steyn-Ross et al., 2013).

A MATLAB implementation for computing the mean phase
coherence between two signals reads as follows Steyn-Ross et al.
(2012):

% Compute analytic (complex) signals for Xm and Xn
Xmc = hilbert(Xm); Xnc = hilbert(Xn);

% Extract instantaneous phase angles
phi_Xm = angle(Xmc); phi_Xn = angle(Xnc);

% Measure the average phase-coherence
R = abs(mean(exp( 1i*(phi_Xm - phi_Xn))));

2Automatic Artifact Removal toolbox, an EEGLAB plug-in available at
http://www.germangh.com/eeglab_plugin_aar/index.html
AAR is based on blind source separation (BSS), and, in contrast to methods
already available in the literatures (Jung et al., 2000; Faul et al., 2005), is com-
pletely automatic since the user is not required to select any critical analysis
parameter. AAR uses a second-order-blind-identification (SOBI) algorithm
(Belouchrani et al., 1997) to estimate the mixing matrix that separates the
EEG sources and artifacts. The advantages of SOBI over other BSS algorithms
are detailed in Gomez-Herrero et al. (2006).

FIGURE 2 | Filtered Figure 1 EEG in sub-delta band (≤1.5 Hz) and

corresponding power spectra (computed by MATLAB fft) revealing a

strong slow-wave (∼0.3 Hz) in the sedated unconsciousness state.

Let Xm(t) and Xn(t) be a pair of EEG recordings, respec-
tively, from the electrodes m and n. A 129-channel EEG recording
has, in principle, a total of 128 × 128 pairs of R-values (exclud-
ing the reference channel), but half of these are redundant since
R(m,n) = R(n,m). The coherence matrix is represented as an m ×
n = 128 × 128 square grid with the unit diagonal [R(m,n) = 1
when m = n], which separates the matrix into two symmetrical
triangles [R(m,n) = R(n,m)]. Practically, we need only examine the
upper triangle [i.e., R(m,n)] of the R matrix. See Figures 3, 9E for
an illustration of the structure of the coherence matrix.

For coherence calculations, we use a 5-s moving window with
1-s overlap, and follow Mormann et al. (2000) and Steyn-Ross
et al. (2012, 2013) in applying a Hann window, retaining only
the middle 80% of each segment to minimize edge distortions
from the Hilbert transform. The final determined coherence is
the average of those obtained from the windowed signal seg-
ments. We repeated the coherence calculations using longer win-
dows, including the full 60-s extent, and found no significant
changes, so we concluded that, provided the brain dynamical
state does not vary dramatically during the windowed interval,
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FIGURE 3 | Flowchart for processing EEG of two brain states to determine

electrode-pairs with significantly altered phase-coherence. EEG data
undergo preprocessing in EEGLAB before passing to EEG_coherence, a

customized MATLAB algorithm that automatically identifies electrode-pairs
with significantly altered phase-coherence between two brain states across
multiple subjects, then stores these electrode-pair results in a summary table.
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the sub-delta coherence measure is not particularly sensitive to
window size.

3.3. EEG_COHERENCE: AN AUTOMATIC EEG PROCESSING
ALGORITHM FOR EEG COHERENCE ANALYSIS

The raw EEG data were visually inspected and the artifacts were
manually marked using EEGLAB3 (Delorme and Makeig, 2004).
The one or two bad channels were replaced by substituting with
the average of the four neighboring channels. Eye-blink artifacts
were removed using AAR (see Figure 1 for definition and details),
then the repaired traces were inspected for smoothness and conti-
nuity. Since the archival EEG data are relatively artifact-free, only
minor corrections were needed. We filtered EEG to the sub-delta
band (≤1.5 Hz) using EEGLAB built-in basic FIR (linear finite
impulse response) order-2 filter with the pass-band between 0.05
and 1.5 Hz. During filtering, EEGLAB uses the MATLAB routine
filtfilt() to apply the filter forward and then backward,
ensuring that phase delays introduced by the filter are nullified.
The resulting sub-delta band EEG traces show characteristic slow
oscillations; this is the prominent feature of EEG activity dur-
ing non-rapid eye movement (non-REM) sleep in humans (see
Figure 2 for an example) (Marshall et al., 2003).

The EEGLAB pre-processed EEG data were then passed to
EEG_coherence, a custom MATLAB algorithm that identi-
fies electrode-pairs with significantly altered phase-coherence
between the two brain states. The user specifies the folder
location where the EEG data are stored and configures some
basic parameters (e.g., window and overlap length for the
coherence measure). EEG_coherence automatically gener-
ates a summary table including identified electrode-pairs and
their corresponding phase-coherence indices at two distinct
brain states for all subjects. p-values that are used to identify
those electrode-pairs whose phase-coherence has significantly
altered are included in the table to permit further statistical
analysis.

As shown in Figure 3, EEG_coherence processes EEG data
in three steps:

1. Construction of coherence matrices: The phase-coherence
measure is based on the Hilbert transform, as described in
Section 3.2. Each subject will have two coherence matrices,
awake and sleep, for the wake and unconscious states,
respectively.

2. Extraction of coherence summaries: For each brain state (wake
or unconsciousness), EEG_coherence will construct a con-
solidated tableau of matrices by concatenating the coherence
matrices for all five subjects. This consolidated table has
three dimensions: the first dimension (row-index k = 1 . . . 5)
points to the subject, while the second (channel-index m =
1 . . . 128), and third dimensions (base-channel index n =
1 . . . 127) identify the specific pair of electrodes whose phase
similarity is being assessed. Thus, coordinate (k, m, n) cap-
tures the coherence R(k,m,n) between EEG channels m and n
for subject k. Since we only consider the upper triangle of

3An open source EEG processing MATLAB toolbox available at http://sccn.

ucsd.edu/eeglab/

the coherence matrix, the redundant coherence entries4 in the
summary matrix will be filled with NaN (not a number). The
output from this step is a pair of coherence summary matrices
for wake and unconscious states.

3. Statistical comparison: A one-tail Mann-Whitney U-test is
performed to test the null hypothesis H0 that the five pairs
of wake/sleep coherence values—at a given (m, n) matrix
coordinate—are drawn from populations with equal medi-
ans against the alternative that they are not. With reference
to Figure 3, this means that we are comparing the median
of the 5×1 column-vector for wake [RW

(1,m,n), RW
(2,m,n), · · · ,

RW
(5,m,n)]T against the median for the corresponding vector

for sleep [RS
(1,m,n), RS

(2,m,n), · · · , RS
(5,m,n)]T. This comparison

is repeated across all non-redundant channel pairs.
In fact, the Mann-Whitney calculation is run twice to allow for
testing against two distinct alternative hypotheses; namely, H1:
that the median coherence is higher in wake than in sleep (i.e.,
right-tailed test), and, H2: that the median coherence is lower
in wake than in sleep (left-tailed).
The statistical comparison for a base-channel n returns a
three-dimensional matrix named p-strip; this matrix con-
tains p-values for channel-pairs 1-n, 2-n,. . .,128-n. The p-
strip matrices are generated via the following MATLAB

implementation:

awake_size = size(awake);
prop_size = size(sleep);

% Check if two coherence matrices have the same
size

if ~isempty(find((awake == sleep)==0))
error('unequal size');

end

% Create p-strip matrix
for base_ch = 1: size(awake, 3)

for ch_ind = 1: size(awake, 2)
if isnan(awake(:,ch_ind, base_ch))

p(:,ch_ind, base_ch) = NaN;
else

[p(:,ch_ind, base_ch), h(:,ch_ind,
base_ch)]...

= ranksum(awake(:,ch_ind,
base_ch),

sleep(:,ch_ind, base_ch),...
'alpha', p_limit, 'tail',
direction);

% direction: left: wake < sleep;
right: wake > sleep

end
end

end

p-matrix
p_matrix = squeeze(p);

% e.g. E1-E2 is at row 2 (channel), col 1
(base-channel)

If, across all subjects, a given electrode-pair shows a statis-
tically significant difference in coherence between wake and
unconscious state (i.e., p < p_limit), EEG_coherence
will store this electrode-pair in the summary table.

4The lower triangle of the coherence matrix R(k,n,m) and the diagonal unit
coherence.
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4. RESULTS
4.1. SUB-DELTA EEG COHERENCE CHANGES ACROSS FIVE SUBJECTS
We first examine the across-subject wake-vs.-sleep changes in
sub-delta phase coherence using the methodology described in
the previous section; then in Section 4.2 we analyze the coherence
matrices for each individual subject.

Figure 4 visualizes those electrode-pairs identified by
EEG_coherence as having significantly altered (i.e., decreased
or increased) coherence between wake and unconscious states.
The comparison between the upper and lower panels of Figure 4
reveals two major features of the coherence changes with respect
to propofol anesthesia:

• Decreased coherence for frontal, occipital, and frontal–
occipital electrode-pairs: The electrode-pairs showing signifi-
cantly reduced coherence form dense clusters for pairs lying
within the frontal area of the cortex, within the occipi-
tal area, and also for pairs spanning the frontal–occipital
scalp sites. These observations suggest that neuronal activ-
ities within frontal cortex and within occipital cortex, and
cooperative behavior between them, are less strongly cou-
pled when the brain is switched to the unconscious state.
Scanning the top panels of Figure 4 from left to right, we see
that the front electrodes manifest the most robust decreases

in phase coherence, indicating that propofol anesthesia leads
to increased disorder in neuronal activity in the frontal
cortex.

• Increased coherence for left- and right-temporal electrode-
pairs: Electrodes at the left- and right-temporal areas detect
enhanced coherence. These maps of enhanced connectivities
seem to be complementary to the preceding maps show-
ing decreased frontal–occipital connectivity: coherence trends
have been reversed with the significant front–back uncou-
pling (top panel) occurring simultaneously with a left–right
coupling. Examining the lower panels of Figure 4, we see evi-
dence of strengthened left–right electrode connectivity, show-
ing increased EEG coherence with the induction of propofol
anesthesia.

If we overlap the upper and lower panels of Figure 4, we find
some frontal electrodes have decreased coherence with the occipi-
tal electrodes, while having increased coherence with the left- and
right-temporal electrodes. Similarly, some occipital electrodes
have decreased coherence with the electrodes in the frontal
area, while having increased coherence with those in the tem-
poral areas. These observations suggest an underlying com-
pensatory mechanism between a subsystem of fronto–occipital
and other cortical regions at sub-delta frequencies. Cantero

FIGURE 4 | Graphical representations of the electrode pairs with

significantly reduced (upper panel) or increased (lower panel)

phase-coherence of the sub-delta band (0.05–1.5 Hz) EEG induced by

propofol anesthesia. EEG data (128-channel recording) were recorded from
5 subjects and processed by the EEG_coherence algorithm diagrammed in
Figure 3. The electrode pairs with significant (p < 0.05) changes in phase
coherence are connected with lines. The electrode-pair map is represented in

a bird’s-eye view of the 3D head model (created via the modified EEGLAB

function plotchans3d). The black dots are EEG_coherence selected
electrodes. Electrode pairs for altered phase coherence are determined with
different levels of significance (significance-level p was set at 0.05, 0.025, and
0.01 in the Mann-Whitney U-test). Smaller p thresholds result in a lower
density of electrode-pair cluster due to the stricter selection criterion,
however, the electrode-pair distributions are generally preserved in trend.
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et al. (2002) reported a similar compensatory phenomenon in
coherence between the temporal and other cortical regions for
the alpha (8–12 Hz) and sleep spindle (12–15 Hz) frequency
ranges.

Furthermore, we examined the decreased EEG coherence pat-
terns across nine electrodes (see the description of Figure 5) that
Koskinen et al. utilized in their work (Koskinen et al., 2001), in
which systematic phase synchronization changes were evaluated
between EEG channel-pairs in various frequency bands dur-
ing induction and recovery from propofol anesthesia. Koskinen
et al. detected passband-specific behaviors in these changes,
and identified a sub-delta EEG coherence decrease due to
propofol-induced anesthesia. We set the significance level (p <

0.05) in EEG_coherence to be the same as that used by
Koskinen et al. The comparison shown in Figure 5 illustrates that
EEG_coherence produced a similar electrode-pair distribu-
tion pattern to the Koskinen findings, reinforcing our observation
of sub-delta EEG coherence reduction in the frontal cortex.
However, we need to add the caveat that the choice of reference
electrode (Cz for the Koskinen recordings; FCz for the Waikato
data) is reversed between the two experiments; fortunately these
sites are adjacent on the scalp centerline, so can be expected to
result in closely similar EEG traces.

We must acknowledge the possibility that the coherence
changes we have detected may simply be the result of random-
ness: of the ∼8000 network connections, by chance we can expect
about 400 to show significant change at the uncorrected p = 0.05
level (1 in 20). To reduce the possibility of spurious significance
(false positives), one could apply some form of p-value correction
(such as Bonferroni) to compensate for multiple testing, but it is
not clear how to do this straightforwardly with only five subjects.
This motivates us to apply a clustering analysis to the individual
coherence-change patterns as an alternative way of demonstrating
robustness of our results.

FIGURE 5 | A subset of electrode-pairs (left) showing significant

(p < 0.05) reduction in phase coherence extracted from the upper left

corner plot of Figure 4 (referenced to Cz, in dark blue lines) and

Koskinen et al. reported pattern (Koskinen et al., 2001) (right,

referenced to FCz, in light blue lines) for the coherence measured from

9 electrodes: Nz (nasion), Fp1′(about 1 cm down from Fp1, just above

the eyebrow), Fp2′, Fz, F7, F8, Cz, Pz, and Oz.

4.2. EEG COHERENCE CHANGES FOR INDIVIDUAL SUBJECTS
The coherence changes described in the previous section rep-
resent a population response across multiple subjects. Here, we
present a much simpler analysis of the coherence changes for
each of the five individuals, and show that the resulting clustering
patterns are highly unlikely to have arisen by chance.

The top two rows of Figure 6 are generated by a simple ranking
of the (wake minus sleep) coherence differences for each individ-
ual. The first row shows the 5% of electrode-pairs exhibiting the
largest positive difference (i.e., coherence decreased in sleep); the
second row shows the 5% of electrode-pairs with the largest neg-
ative difference (i.e., coherence increased in sleep). We see that the
spatial distribution of electrode-pairs with significantly altered
coherence is generally preserved across the five subjects. The first
row reveals clusters of electrode-pairs in the frontal and occipi-
tal areas with significantly decreased coherence; the second row
shows the dense pairing of left–right electrodes with increased
coherence along the temporal axis.

To quantify the coherence changes in specific areas of the
cortex, we counted the number of electrode-pairs in the frontal
region showing significantly decreased coherence (N−) and sub-
tracted this from the number of frontal pairs with significantly
increased coherence (N+). The difference (N− − N+) is strongly
positive (third row of figure), confirming that N− (coherence
decrease) is dominant in the frontal area. An opposite conclu-
sion is reached for the left–right temporal electrode-pairs: (N− −
N+) is strongly negative with N+ being dominant (coherence
increase), implying strengthened regional connections between
hemispheres under anesthesia. We repeated these number differ-
ence calculation for ten cortical regions (see row 3). Blue (pink)
shading indicates N− (N+) dominance in a given cortical region.

To demonstrate that the clustering patterns shown in
Figure 6 represent meaningful and consistent changes in net-
work connectivity—and are not simply the outcome of random
happenstance—we apply a permutation test to each coherence-
change matrix. In this test, we shuffled the elements of the
coherence matrix. The null hypothesis is that the permuted coher-
ence matrix could result in an electrode-pair distribution similar
to that seen in Figure 6; the alternative hypothesis is that the
electrode-pair distribution generated from the permuted coher-
ence matrix is significantly different with the originally observed
pattern. A chi-squared statistic is applied in estimating the p-
value. We first divided the brain into five areas: frontal, occipi-
tal, left-temporal, right-temporal, and parietal. The chi-squared
distribution index is given by

χ2 =
5
∑

i = 1

(

Ei
original − Ei

perm

)2

Ei
original

(4)

where Ei
original is the original number of electrodes (i.e., the dot

coordinates in the first row of Figure 7) in section i; Ei
perm is the

number of permuted electrodes (e.g., the dot coordinates in the
second row of Figure 7) in the same section. The p-value is cal-
culated by the MATLAB command p = 1 - chi2cdf(χ2,
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FIGURE 6 | Graphical representations of the electrode-pairs with

significantly altered coherence from wake to coma for five subjects. The
first and second rows represent electrode-pairs with significantly reduced
(blue lines) or increased (pink lines) coherence, respectively: selected
electrode-pairs correspond to the top 5% most changed (i.e., most increased
or most decreased) coherence during the wake to coma transition. The third
row describes the number difference of electrode-pairs between the first and
second rows for four regions: frontal, occipital, left- and right-temporal; and
for six pair-wise connections between regions: frontal–left temporal,

frontal–right temporal, frontal–occipital, left temporal–occipital, right
temporal–occipital, left–right temporal. The number of electrode-pairs with
significantly reduced (or increased) coherence in a region is counted as N−
(N+). The sign of (N− − N+) determines the dominance of a coherence
trend: if (N− − N+) > 0, the region will be colored blue (decreased
coherence); otherwise if (N− − N+) < 0, the region will be colored red
(increased coherence). The (N− − N+) difference is calibrated by the
color-gradient bar. (Note that the color-bar for the third row is not related to
the first and second rows.)
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FIGURE 7 | Coherence matrices showing spatial distribution of

electrode-pairs with significant wake vs. coma coherence difference.

The coherence matrix is diagonally symmetric, we need only display its
upper half. The first row of the left panel corresponds to the first row of
Figure 6; the first row of the right panel corresponds to the second row
of Figure 6. The marked (either in blue or pink) dots in the matrix are the
top 5% most changed (decreased: blue; increased: pink) phase-coherence
during transit from wake to coma. The row and column indices of a
marked dot identify a pair of electrodes shown in Figure 6. To test the

significance of the dot distribution in the first row, a permutation
resampling is applied to each original matrix, and repeated 10,000 times.
In each shuffling, the upper-triangle elements are randomly allocated, and a
significance test is applied to achieve a p-value quantifying the structural
difference between the permuted and original matrices. The first three
permuted coherence matrices are shown. The averaged p-value over the
10,000 permutation tests for the original observations (first row) are all
smaller than 10−5, revealing a significant difference between the original
distribution and its permutations.

dof), in which dof (degree of freedom) is set to 4 (dof= num-
ber of data category −1).

After 10,000 permutation tests, all permuted electrode-pair
distributions are found to be significantly (p < 10−5) differ-
ent from the original one. This statistical result supports our
alternative hypothesis that the derived electrode-pair distribu-
tion pattern is meaningful and cannot be randomly generated.
Actually, visual examination of the first row in Figure 7 clearly
reveals genuine dot clusters, the structure of which disappears in
the permuted matrices, so it is not surprising that the original
data complexity cannot be reproduced from the randomized data
distribution. We applied the same statistical test to the coherence
matrices corresponding to the patterns shown in Figure 4 and
obtained the same result, namely, that the original distribution
is significantly different from its permutation resampling.

4.3. COMPARISON WITH THEORY: INTERACTING TURING–HOPF
INDUCED CHAOTIC SLOW-WAVES

A recent theoretical prediction by Steyn-Ross et al. (2013) intro-
duces an interacting Turing–Hopf mechanism as a source for
sub-delta slow-waves that emerge during propofol anesthesia.
We now give a brief overview of the cortical model; for full
mathematical details refer to Steyn-Ross et al. (2013).

The cortex is represented as a set of eight coupled
partial-differential equations that describe the mean-field
(spatially-averaged) firing activity of populations of excitatory

and inhibitory neurons that are uniformly distributed across
a two-dimensional sheet of gray-matter cortical tissue. The
neural populations communicate locally and at longer ranges
via chemical synapses, and also through electrical synapses (gap
junctions) that allow direct diffusive currents to flow between
adjoining neurons. Inhibitory-to-inhibitory (i-i) gap-junction
connections are abundant and ubiquitous throughout the central
nervous system (Bennett and Zukin, 2004). Fukuda et al. (2006)
characterized the dendritic gap-junction connections in cat visual
cortex as forming “dense and far-ranging networks.” Using the
Fukuda measurements, we estimated an upper bound for the per-
neuron region of gap-junction influence as an area D2 � 0.6 cm2

(Steyn-Ross et al., 2007), with symbol D chosen to indicate a
diffusive coupling strength. Using a dendritic relaxation time of
τ ≈ 40 ms as our time-scale, the ratio D2/τ defines a diffusion
coefficient (with dimensions area/time) for voltage change in
the inhibitory population. In contrast to the relative abundance
of i-i gap junctions, evidence for excitatory-to-excitatory (e-e)
diffusive coupling is very sparse (Bennett and Zukin, 2004), so
we have set the excitatory coupling strength at an arbitrarily
small fraction of the inhibitory value: D1 = D2/100. We note
that inhibitory diffusive dominance is a prerequisite for the
spontaneous formation of Turing structures (Turing, 1952) of
spatially-patterned cortical activity.

For the model results reported here, we used the same param-
eter settings as listed in Table I of Steyn-Ross et al. (2013), apart
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from the white-matter long-range connections which have been
ignored for simplicity.

Figure 8 shows that the steady-state excitatory neuronal fir-
ing rates Qo

e of the model forms a reversed S-shape distribution
with the upper branch corresponding to an activated cortical
state identified as awake (or REM sleep), and the lower branch
corresponding to a suppressed cortical state identified as propo-
fol anesthetic induced coma (or SWS) (Steyn-Ross et al., 2005,
2012). By increasing the concentration of propofol anesthesia
λi, the model describes the anesthesia-induced transition from
consciousness to unconsciousness.

Inhibitory gap-junction strength D2 is treated as a bifurcation
parameter controlling the stability and the emergent behavior of
the cortical model. The effect of interneuronal gap junctions is
to produce diffusion terms similar in form to those found in
standard reaction-diffusion models that support Turing struc-
tures (Turing, 1952). The cortical dynamics at selected “awake”
and “coma” coordinates in Figure 8 with respect to the varia-
tion of D2 were examined by the stability analysis, and numerical
simulations are shown in Figures 9, 10.

In the awake cortical simulations of Figure 9, when the gap-
junction strength is sufficiently large (D2 = 0.7 cm2), linear sta-
bility analysis of the up-branch steady-state at λi = 1 in Figure 8
predicts whole-of-cortex Hopf oscillations; while the down-
branch steady-state shows a damped-Hopf at wavenumber q = 0
plus a damped-Turing at q �= 0. The time-series and strip-chart
depict a stable Turing–Hopf mode evolution where the cortical
Turing patterns oscillate in small amplitudes. Such Turing-
interacted Hopf slow-oscillation have been interpreted as repre-
senting the resting state of the cortex (Steyn-Ross et al., 2012)
or non-cognitive idling state (Steyn-Ross et al., 2011). These
slow patterned oscillations may relate to very slow (≤0.1 Hz)
fluctuations in BOLD (blood-oxygen-level dependent) signals
detected using fMRI (functional magnetic resonance imaging)
of relaxed, non-tasked human brains (Fox et al., 2005; Fransson,
2005).

On the other hand, for the anesthetized cortex, anesthetic
effect λi = 1.018 is just beyond the multiple steady-states region
where the awake cortex stays at the up-branch of λi = 1.0.
This subtle change in coordinates means that the cortical stabil-
ity is guided only by the steady-state at the low-firing bottom
branch. In Figure 10, at the closure of the gap-junction D2 =
0.1 cm2, linear stability analysis [column (a)] predicts a heavily
damped Hopf, which is consistent with computer simulations of
the cortical equations. Most general anesthetics will enhance the
strength of the inhibitory postsynaptic potential (IPSP) (Franks
and Lieb, 1994; Kitamura et al., 2002), as well inhibit gap-
junction communication (Wentlandt et al., 2006). Consequently
further increases in D2 (for D2 < 0.7 cm2 of Figure 10) lead
the cortex into a chaotic phase, arising from the competitive
interference between Hopf and Turing instabilities. Such mixed
instabilities may provide a mechanism for the emergence of
turbulent slow-waves of inductive anesthesia, characterized by
low phase-coherence. D2 = 0.7 cm2 is the border of the anes-
thetic slow oscillations; larger values of D2 (e.g., D2 = 0.8 cm2)
rebalances the Turing and Hopf instabilities in favor of spatially
structured Turing pattern oscillating at a low Hopf frequency
(∼3 Hz). Such mixed-mode interference is very similar to the non
cognitive-wake cortex at D2 = 0.7 cm2 in Figure 9. Nevertheless,
because the cortex is still under anesthetic coma, Steyn-Ross
et al. label this coherent oscillation as “anesthetic delirium,” a
clinical state common during emergence from general anesthe-
sia and associated with excitability and confusion (Olympio,
1991).

Figures 9, 10 indicate that Turing–Hopf interaction dynamics
arise from variations in D2 inhibitory strength. To further track
these Turing–Hopf dynamics, Steyn-Ross et al. computed the
global coherence of a given D2 by taking the mean of the upper-
triangle of the coherence matrix R(x′, x) defined in Figures 9E,
10E. A comprehensive inspection of the global coherence relating
to the inhibitory strength is presented in Figure 11. We see a high
global coherence in the non-cognitive state, where the inhibitory

FIGURE 8 | The steady-state firing rates Qo
e as a function of varying

anesthetic inhibition λi at a particular cortical excitation. The upper,
high-firing and lower, low-firing branches (solid curve) are considered to
be “awake” and “coma” states, respectively, with the “coma” state
being associated with anesthetic-induced unconsciousness. Dashed

curve indicates an unstable branch from which the cortex has the
potential to jump to either the upper or lower stable branches. Upper
and lower marked circles indicate references at λi = 1.0 and 1.018 on
awake and coma branches, respectively. (Figure reproduced from
Steyn-Ross et al., 2013).
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FIGURE 9 | At the λi = 1.0 wake state, cortical stability analysis and

spatiotemporal dynamics for varying gap-junction strength D2 from

0.1 (top row) to 0.8 cm2 (bottom). Model cortex is initialized from the
top high-firing branch of steady-state manifold marked as “Awake” in
Figure 8. (A) Cortical stability analysis showing dominant eigenvalue
dispersion curve of the real (black) and imaginary (red) parts as a function
of scaled wavenumber for top- and bottom-branch equilibria at fixed
anesthetic effect λi = 1.0 in Figure 8. Thus, each panel has two parts in
it—the upper part corresponds to the top-branch, the lower part to the
bottom-branch. The dotted line marks zero. (B) Last 4-s time-series of

excitatory firing-rate Qe(t) extracted from 5 equally-spaced grid-points in
(C) Qe(t, x) space-time chart representing the full 20-s time-evolution of
cortical activity along the y = 60 midline strip; y -axis ranges from 0 to
30 s−1. (D) Bird’s-eye snapshot Qe(y, x) of the cortex when t = 20 s. (E)

Phase coherence map R(x ′, x) showing synchronization level of firing-rate
between Qe(t, x) and Qe(t, x ′) for the final 5-s time evolution. The
coherence level is computed via Hilbert transform Equation (3) with a
transition from red to blue meaning high to low coherence. In (C–E), color
scale from blue to red indicates the numerical range from low to high.
(Figure modified from Steyn-Ross et al., 2013).

diffusion is moderately strong D2 	 0.7 cm2. For the anesthetized
cortex, the anesthetic drug shifts the activated “Noncognitive-
wake” coherence peak to the right, implying a possible hysteresis
effect such that an anesthetized cortex requires a stronger Turing

instability to reinforce an activated state. To the left of the peak
for the delirium state, there is a broad intermediate zone of D2

experiencing reduced coherence, which results from large, low
frequency chaotic oscillations.
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FIGURE 10 | At the λi = 1.018 coma state, cortical stability analysis

and spatiotemporal dynamics of varying gap-junction strength D2

from 0.1 (top row) to 0.9 cm2 (bottom). Model cortex is initialized
from the bottom low-firing branch of steady-state manifold marked as
“Coma” in Figure 8. (A) Cortical stability analysis showing dominant
eigenvalue dispersion curve of the real (black) and imaginary (red )
parts as a function of scaled wavenumber at anesthetic effect
λi = 1.018 in Figure 8. (B) Last 4-s time-series of excitatory firing-rate

Qe(t) extracted from 5 equal-spaced grid-points in (C) Qe(t, x)
space-time chart representing the full 20-s time-evolution of cortical
activity along the y = 60 midline strip. (D) Bird’s-eye snapshot Qe(y, x)
of the cortex when t = 20 s. (E) Phase coherence map R(x′, x)
showing synchronization level of firing-rate between Qe(t, x) and
Qe(t, x ′) for the final 5-s time evolution. In (C–E), color scale from
blue to red indicates the numerical range from low to high. (Figure
modified from Steyn-Ross et al., 2013).

These model results drawn from Steyn-Ross et al. (2013)
allow a prediction that the passage from wake to anesthetic
unconsciousness should manifest as a decrease in phase coherence
between separated cortical electrodes.

5. DISCUSSION
Phase-coherence is a measure that quantifies the degree to which
the same frequency components of two EEG channels preserve
their relative phase over a certain time period. The phase stability
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FIGURE 11 | Global phase-coherence trends with respect to inhibitory

strength for the cortex at (A) awake (λi = 1) and (B) comatose

(λi = 1.018) states. Inhibitory strength D2 is evenly spaced (0.01 cm2

interval) in the range 0.0–1.0 cm2. At a given D2, simulations were repeated
10 times. For each simulation, we first computed the phase-coherence matrix

R(x ′, x) for the final 5-s time evolution (see Figures 9E, 10E), then extracted
its upper-triangular matrix mean as an estimate of global phase-coherence,
which is represented as a gray cycle in the figure. The trend curves were
produced by spline function in MATLAB curve-fitting toolbox. (Figure modified
from Steyn-Ross et al., 2013).

between two EEG channels indicates their phase synchronization,
reflecting the functional correlations of spatially divergent cortical
regions.

In this study, we investigated systematic phase-
synchronization changes between pairs of EEG channels in
the sub-delta band, during propofol anesthetic induction. An
EEG phase-coherence processing algorithm, EEG_coherence,
was developed in MATLAB and applied to archival EEG data from
a group of subjects. EEG_coherence uses the Hilbert trans-
form to extract instantaneous phase-angles from non-stationary
EEG signals, and yields a phase-coupling index appraising the
phase-shift consistency between pairs of EEG channels. The
trends of such EEG coherence change between two brain states
are statistically tested via a Mann-Whitney U-test, which is a
simple non-parametric test without the requirement of a specific
data distribution.

Our sub-delta band (�1.5 Hz) EEG study discloses a regional
decrease in phase coherence under propofol anesthesia in both
the frontal and the occipital cortical areas, and also for electrode
pairs that link these two areas. Simultaneously, more strongly
phase-coupled neuronal activity is found in the temporal–frontal,
temporal–occipital and left–right temporal regions. Such con-
trasts in coherence change suggest an underlying compensatory
mechanism of sub-delta band activity between a subsystem of
fronto–occipital and temporal cortical regions. Our findings of

reduced-coherence between particular electrode-pairs is simi-
lar to clinical reports (Morikawa et al., 1997; Koskinen et al.,
2001) where the frontal cortical region exhibits a negative inter-
correlation during anesthetic coma.

Such changes in large-scale neuronal coupling may be an
anesthetic indicator of unconsciousness when the subject is dis-
connected from the environment with reduced cognition level. A
leading hypothesis suggests that anesthetics cause unconscious-
ness by disrupting functional connectivity between cortical areas
(Mashour, 2004; Alkire et al., 2008). A recent work by Lewis et al.
(2012) found that the slow oscillation is a fundamental compo-
nent of propofol-induced unconsciousness and it occurs asyn-
chronously across cortex, interrupting the cortical integration
of information processing. Thus, spatiotemporal slow oscillation
dynamics may mediate the fragmentation of cortical networks
at both the local and global scale, leading to reduced coherence
in neuronal communications. Meanwhile, the presented reduced
phase-coherence along the fronto-occipital axis is consistent with
an animal study by Imas et al. (2006) that the anterio–posterior
coherence in both 5–25 and 26–50 Hz bands was significantly
reduced by isoflurane in the rat.

In contrast, Dumermuth and Lehmann (1981) reported a
high interhemispheric coherence between the left and right pari-
etal areas with deepening slow wave sleep. They postulated that
the high coherence may reflect the interhemispheric transfer of
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information. Later, research by Mölle et al. (2004) reinforced
Dumermuth and Lehmann’s findings and verified their hypoth-
esis by comparing coherence changes for subjects during the
slow-wave sleep with or without pre-learning tasks. Mölle et al.
observed significantly increased coherence during the occurrence
of slow oscillations (<1 Hz) for subjects after learning tasks;
Figures 1, 2 in Mölle et al. (2004) show increased sub-delta band
EEG coherence between the left- and right-temporal regions. This
left–right strengthening is concordant with our propofol results
shown in Figure 4 (lower panel).

The apparently compensatory weakening of frontal and occip-
ital coherence (upper panel of Figure 4) supports the hypothesis
of Steyn-Ross et al. (2013) that propofol anesthesia should induce
a decrease in EEG coherence. When there is little or no anesthetic
effect, a sufficiently strong inhibitory diffusion (i.e., gap-junction
strength) allows a rough balance between Turing pattern and
Hopf oscillation instabilities, leading to a slow Hopf oscilla-
tions of high global coherence with sustained spatial structure
(see D2 = 0.7 cm2 simulation in Figure 9). Such interacting low-
frequency Hopf and Turing instabilities may form the substrate
for the cognitive state, namely, the “default” background state for
the non-cognitive brain during wake. Its slow beating dynamics
(≤0.1 Hz) is similar to what is observed in BOLD functional MRI
recording of relaxed, non-tasked human brains (Fox et al., 2005;
Fransson, 2005).

An increase in anesthetic effect λi suppresses cortical activity,
leading to an anesthetized coma state. Here, intermediate values
of D2 are expected since propofol anesthetic will tend to block
gap-junctions (Wentlandt et al., 2006) and thus weaken inhibitory
diffusion. This will damp the Turing instability, allowing the
Hopf instability to become dominant, leading to spontaneous
emergence of large-amplitude slow chaotic oscillations (see the
highlighted simulations in Figure 10). We note that this dynam-
ical mechanism for the slow oscillation is quite distinct from
the conventional view of cyclic alternations in extracellular ionic
(Ca2+) concentration (Massimini and Amzica, 2001) that may
be initiated by tiny clusters of pacemaker neurons in layer-5 of
cerebral cortex (Stroh et al., 2013).

The emergent slow oscillation is predicted to be chaotic in
space and time, and this is the reason for the expected decrease in
phase coherence with descent into anesthetic hypnosis. Therefore,
the increase in coherence seen in the left–right electrode pairs
cannot be explained by the model. A possible resolution for this
discrepancy may lie in the model’s neglect of a major component
of cortical white-matter architecture, namely the corpus callo-
sum that connects left and right hemispheres of the cortex. It is
possible that as local independent activity is suppressed during
deep anesthesia, the anatomical left–right connectivity becomes
functionally stronger, thus invalidating the model assumption of a
homogeneous cortex. In future modeling work it would be useful
to investigate if an imposed left–right cortical connection sym-
metry might tend to enhance inter-hemispheric coherence while
leaving frontal–occipital dynamics unchanged.
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The role of extra-synaptic receptors in the regulation of excitation and inhibition in the
brain has attracted increasing attention. Because activity in the extra-synaptic receptors
plays a role in regulating the level of excitation and inhibition in the brain, they may
be important in determining the level of consciousness. This paper reviews briefly the
literature on extra-synaptic GABA and NMDA receptors and their affinity to anesthetic
drugs. We propose a neural population model that illustrates how the effect of the
anesthetic drug propofol on GABAergic extra-synaptic receptors results in changes in
neural population activity and the electroencephalogram (EEG). Our results show that
increased tonic inhibition in inhibitory cortical neurons cause a dramatic increase in the
power of both δ− and α− bands. Conversely, the effects of increased tonic inhibition
in cortical excitatory neurons and thalamic relay neurons have the opposite effect and
decrease the power in these bands. The increased δ−activity is in accord with observed
data for deepening propofol anesthesia; but is absolutely dependent on the inclusion of
extrasynaptic (tonic) GABA action in the model.

Keywords: GABA receptor, neural mass, propofol, power spectrum, general anesthesia

1. INTRODUCTION
General anesthesia is used daily to enable surgery, but its under-
lying mechanisms of action are still largely a mystery. In recent
decades there have been successful efforts to reveal the drug action
on single receptors (Franks and Lieb, 1994; Alkire et al., 2008;
Brickley and Mody, 2012), however their effect on neural pop-
ulations, networks of neural populations, and brain areas, still
remains unsolved. To explain the underlying neural mechanism
during the loss of consciousness, two prominent hypotheses are
the loss of integration information, developed by Tononi (Tononi,
2004; Murphy et al., 2011; Boly et al., 2012), and a sharp
phase transition of the brain activity involving a drop of neu-
ral activity, put forward by Steyn-Ross et al. (Steyn-Ross et al.,
2004; Friedman et al., 2010). These hypotheses are not mutu-
ally exclusive. For instance, a recent experimental study on the
effects of propofol on neural activity measured at various spatial
scales (Lewis et al., 2012) has revealed both decreased functional
connectivity between brain areas and a dramatic drop of neu-
ron firing rates after loss of consciousness. A large amount of
experimental literature has revealed characteristic spectral signal
changes in electroencephalographic data (EEG) and Local Field
Potentials (LFPs) during general anesthesia (Cimenser et al., 2011;
Lewis et al., 2012; Purdon et al., 2012; Sellers et al., 2013; Vizuete
et al., 2014). Moreover, several previous theoretical studies have
proposed neural models to explain certain EEG signal features
observed during anesthesia (Steyn-Ross et al., 1999, 2013; Bojak
and Liley, 2005; Wilson et al., 2006; Foster et al., 2008; McCarthy
et al., 2008; Ching et al., 2010, 2012; Hutt, 2013; Liley and Walsh,
2013; Hutt et al., 2013; Hutt and Buhry, 2014). Although these

studies may incorporate realistic neurobiological details of the
brains’ network topology and neuronal function, they have sim-
plified dramatically the anesthetic action by considering only
synaptic excitatory and inhibitory receptors. There is a growing
amount of experimental research that has revealed the impor-
tance of extra-synaptic receptors (ESR) for neural interactions
in general (Brickley and Mody, 2012; Hardingham and Bading,
2012), and for anesthesia especially, see Alkire et al. (2008); Hutt
(2012) and references therein.

To elucidate the role of ESR in the context of anesthesia, one
approach might be to do a theoretical study of a realistic neural
population model which reproduces the characteristic signal fea-
tures observed in EEG. To perform such a theoretical study, it is
necessary to incorporate physiological properties of extrasynaptic
receptors into neural population models.

Gamma-aminobutyric acid (GABA) receptors are a large and
important class of inotropic receptors. These receptors are located
in the neuron’s membrane and respond to the neurotransmit-
ter GABA by opening Cl− channels and inducing an inward
hyperpolarizing membrane current. This response may either be:
phasic at synaptic receptors or, tonic at ESR which lie distant
from synaptic terminals (Kaneda et al., 1995; Brickley et al., 1996;
Semyanov et al., 2003, 2004; Yeung et al., 2003; Belelli et al., 2009).
The phasic response evolves on a time scale of 10–200 ms whereas
tonic response evolves on a much longer time scale (Hamann
et al., 2002; Cavalier et al., 2005).

The precise biochemical origin of tonic inhibition is still heav-
ily debated (Farrant and Nusser, 2005; Bright et al., 2011). A
rather simple and intuitive model explains the tonic current
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as a spillover of excess neurotransmitter from synapses. This is
due to incomplete GABA uptake by nearby synaptic GABAA-
receptors. The remaining neurotransmitter is thus able to diffuse
to more distant GABAA-receptors via extracellular space (Nusser
et al., 1997; Semyanov et al., 2004; Farrant and Nusser, 2005;
Bright et al., 2007). This spillover may explain the longer time
scale of tonic responses found experimentally. In addition, this
explanation implies that even small concentrations of neurotrans-
mitters are sufficient to generate tonic activity because of the high
sensitivity of ESRs.

The effect of ESRs on the dendritic activity has not attracted
much attention. This may because there are only a relatively
small number of such receptors as compared to synaptic recep-
tors (Kopanitsa, 1997; Farrant and Nusser, 2005). Moreover,
only recently have experimental studies been able to classify
and localize different sub-types of GABAA receptors (Semyanov
et al., 2004; Farrant and Nusser, 2005). GABAA receptors are
pentameric ligand-gated ion channels and it has been found
that δ−sub units of GABAA receptors occur exclusively at
ESRs (Nusser et al., 1998; Wei et al., 2003; Farrant and Nusser,
2005; Belelli et al., 2009; Ye et al., 2013). This indicates a specific
role of these receptors for the neural information processing in
general with specific implications in diseases (Brickley and Mody,
2012) and consciousness (Kopanitsa, 1997).

Tonic inhibition induced by extra-synaptic GABAA-receptors
represents a persistent increase in the cell membrane’s conduc-
tance. On the single neuron level, this diminishes the membrane
time constant and, consequently, reduces the size and duration of
excitatory post-synaptic potentials propagating on the dendrite.
Hence tonic inhibition reduces the excitability of the membrane
and increases the effective firing threshold (Farrant and Nusser,
2005). At the neural population level, ESRs affect the excitability
of interneuron-pyramidal cell networks and thus modify network
oscillations (Semyanov et al., 2003). Kopanitsa (1997) argues that
the sustained spatially widespread tonic inhibition is energeti-
cally more effective for the system to diminish neural population
activity than short-lasting local phasic inhibition, since lower
neurotransmitter concentrations are sufficient. The critical fac-
tor in this mechanism is the the relatively high sensitivity of ESRs
to modulations by anesthetic agents (Yeung et al., 2003; Farrant
and Nusser, 2005; Orser, 2006; Houston et al., 2012). The brain
areas that have been shown to be affected by anesthetic-induced
tonic inhibition are the hippocampus (Bai et al., 2001), brain
stem (McDougall et al., 2008), cerebellum (Houston et al., 2012),
and the thalamus (Belelli et al., 2009). Since these areas are sup-
posed to play a role in general anesthesia (Alkire et al., 2008),
ESRs may mediate clinical anesthetic effects, such as hypnosis
and amnesia (Kretschmannova et al., 2013). Thus, it is reason-
able to argue that GABAA ESRs set the background inhibition
of neural populations and the brain network and mediate slow
consciousness phenomena, such as loss of consciousness, sleep or
arousal (Kopanitsa, 1997).

Converse to GABAergic receptors, N-methyl-D-aspartate
(NMDA) receptors respond to the neurotransmitter glutamate by
excitatory inward Na+ and Ca2+ currents and K+ outward cur-
rents. The response of NMDA receptors to glutamate depends
on their spatial location with respect to synaptic terminals and

the presence of co-agonists. A recent experimental study has
revealed that the population of NMDA receptors, which are close
to synaptic terminals, are primarily activated by the co-agonist d-
serine in the presence of glutamate; while extra-synaptic NMDA
receptors (more distant from the synaptic terminals) respond pri-
marily to glutamate and the co-agonist glycine (Mothet et al.,
2000; Papouin et al., 2012). D-serine and glycine are endogenous
amino acids found naturally in the brain (d-serine is a deriva-
tive of glycine). Similar to GABAergic ESRs, it has been shown
that there exists a significant ambient glutamate concentration
which induces a tonic excitatory current (Sah et al., 1989; Fleming
et al., 2011). This current is evoked primarily at extra-synaptic
NMDA receptors (Le Meur et al., 2007) and may be regulated by
other cells, such as neighboring astrocytes (Panatier et al., 2006;
Fleming et al., 2011) which control glutamate uptake and also
synthesize d-serine (Wolosker et al., 1999).

Commonly-used GABAergic anesthetic drugs directly mod-
ify the corresponding receptors. However, various anesthetics are
also known to affect the endogenous co-agonists of NMDA recep-
tors (Martin et al., 1995; Daniels and Roberts, 1998; Papouin
et al., 2012). Hence, the possible anesthetic effect on NMDA
receptors is more complex and indirect than for GABAergic
ESRs. There is a large class of NMDA receptor antagonists, that
inhibit the excitatory action of NMDA receptors. These anesthet-
ics induce so-called dissociative anesthesia (Pender, 1970) leading
to amnesia and analgesia without depressing respiration, but also
characterized by distorted perceptions of sight and sound and
feelings of dissociation from the environment. An example of a
dissociative anesthetic drug is the inhalational anesthetic xenon
which—amongst other actions—binds primarily to the extra-
synaptic glycine site of NMDA receptors (Dickinson et al., 2007)
and attenuates long-term potentiation present in the hippocam-
pus by reducing extrasynaptic receptor currents (Kratzer et al.,
2012).

To understand how the anesthetic effect of ESR activity on the
microscopic single neuron scale could lead to changes in EEG and
behavior that can be observed at macroscopic scales, it is neces-
sary to establish a bridge between the two scales. This bridge may
be formulated as a dynamical theoretical model. Neural popula-
tion models represent a good candidate for a dynamic description
of neural activity at an intermediate mesoscopic scale (Coombes,
2006; Nunez and Srinivasan, 2006; Bressloff, 2012). These mod-
els describe properties of ensembles of neurons, such as the mean
firing rate and the mean dendritic current (Hutt, 2009), whilst
their output variables can be strongly linked to macroscopic
experimental quantities such as Local Field Potentials (LFPs) and
EEG (Wright and Kydd, 1992; Nunez and Srinivasan, 2006). An
increasing number of theoretical studies have used neural popula-
tion models to describe signal features in LFPs and EEG observed
during anesthesia (Foster et al., 2008; Hutt et al., 2013). Most
of these studies take into account anesthetic action on excita-
tory and/or inhibitory synapses (Steyn-Ross et al., 2004; Liley and
Bojak, 2005; Hutt and Longtin, 2009; Ching et al., 2010; Hindriks
and van Putten, 2012) while few consider ESRs (Talavera et al.,
2009). This link between the synaptic receptor properties in an
ensemble of neurons and the average population dynamics is
straight-forward, since classical neural population models already
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involve the average synaptic response function. The situation is
different for ESRs, since their action is not incorporated into
the classical models. A very recent work has filled this gap (Hutt
and Buhry, 2014). This theoretical work demonstrated a method
to include mathematically extra-synaptic GABAA receptor action
in neural population models; which enables researchers to study
how changing anesthetic ESR action modifies spectral features in
the EEG, which might then be observed experimentally.

The current work uses a thalamo-cortical neural popula-
tion model involving anesthetic synaptic inhibition with a well-
established connection topology; and then extends this model by
including the effects of extra-synaptic GABAergic receptor action
in the presence of the anesthetic drug propofol. With the help of
this model, we demonstrate the role of extra-synaptic GABAergic
inhibition, and the importance of tonic inhibition in the cortical
inhibitory neuronal population, in explaining experimental EEG
power spectra.

2. MATERIALS AND METHODS
2.1. EEG DATA
We re-analyzed previously-obtained experimental data from sub-
jects that had been given a short propofol anesthetic. The details
of the methods can be found in Johnson et al. (2003). In brief,
after obtaining regional ethical committee approval and writ-
ten informed consent, five healthy subjects (mean age 27.7 yrs,
four males) were studied. They were on no psychoactive drugs
and had been starved for at least 6 h prior to the study. They
were monitored and managed as per clinical anesthesia, accord-
ing to the Australia and New Zealand College of Anesthetists best
practice guidelines. The induction consisted of an intravenous
infusion of propofol at 1500 mg/hr until the subject no longer
responded to verbal command. Typically this occurred about 5
min into the infusion. The estimated effect-site concentrations
of propofol were calculated using standard population-based
pharmacokinetics models.

The EEG was acquired using the Electrical Geodesics 128 chan-
nel Ag/AgCl electrode system (Eugene, CO, USA) referenced to
Cz. Electrode impedances were below 30 KOhm (100 MOhm
input impedance amplifier). The sampling frequency was 250 Hz,
with a 0.1–100 Hz analog band pass filter, and A–D conversion
was at 12 bits precision. The EEG data were re-referenced to a
grand mean, and band-pass filtered using 3-rd order Butterworth
filters 0.2–45 Hz to eliminate line-noise. An additional Whittaker
filter was applied to reduce movement and blink artifacts. The
power in each frequency was obtained applying a short-time
Fourier transform with a moving window of 60 s and 54 s over-
lap. The power spectra have been computed 1 min before infusion
start (t = 1 min) and 4 min after infusion (t = 5 min). For visu-
alization reasons, these power spectra at different time instances
have been smoothed by a running average over frequencies with a
1 Hz window and a 0.017 Hz frequency step.

2.2. THALAMO-CORTICAL MODEL
The body of the model (Robinson et al., 2001; Rennie et al.,
2002) is based on a population-level description of a single
thalamo-cortical module comprising four populations of neu-
rons, namely excitatory (E) and inhibitory (I) cortical population,

a population built of thalamo-cortical relay neurons (S) and of
thalamic reticular neurons (R), as shown in Figure 1. The details
of the model and the nominal parameter values are taken from
a previous work (Robinson et al., 2001, 2002). This model is
based on the original idea of Lopes da Silva et al., stating that the
α-rhythm represents the noisy thalamic input signal band-pass
filtered by feedback-connected cortical and thalamic neural pop-
ulations (Lopes da Silva et al., 1974). Here we just briefly describe
the key concepts of the model. The average soma membrane
potential denoted by Va, for a = E, I, S, R is modeled by

Va(t) =
∑

b = E,I,R,S

hb(t) ⊗ νabφb(t − τab), (1)

where ⊗ represents the temporal convolution, hb(t) = Hbh̄b(t)
where h̄b(t) denotes the mean synaptic response function
defined by

h̄b(t) = αβb

α − βb

(

e−βbt − e−αt) , (2)

FIGURE 1 | The schematic of a thalamo-cortical module. The blue
arrows indicate excitatory connections while the red connections with filled
circle ends denote inhibitory connections. The symbols E, I, S, and R
denote the excitatory and inhibitory cortical neurons, thalamo-cortical relay,
and thalamic reticular neurons, respectively. In addition thalamocortical and
corticothalamic connections exhibit the same nonzero time delay τ .
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and α and βb (with units Hz) are the synaptic rise and decay rates
of the synaptic response, respectively. The synaptic decay rates
and synaptic response functions depend on the source neurons
of type b only and are independent of the target neurons. The
constant pre-factor Hb defines the response function amplitude
subject to the anesthetic concentration. Here, we assume identi-
cal excitatory synaptic receptors with constant rise and decay rate.
Inhibitory synaptic receptors are also assumed to exhibit identical
constant rise and decay rates while their decay rates depend on
the anesthetic concentration. This strong approximation is taken
from a previous study (Hindriks and van Putten, 2012) to be
able to compare our results, while preliminary studies with more
realistic parameters show similar results (not shown).

The constants νab are the strengths of the connections from
population of type b to population of type a (in mVs), and φb

is the average firing rate of the population b (in Hz). The con-
nections between cortex and thalamus are associated with a same
nonzero time delay, τab = τ , while the delay term is assumed to
be zero within the cortex and within the thalamus (Victor et al.,
2011).

By virtue of long-range axonal projections of excitatory corti-
cal neurons and by assuming the spatially-homogeneous dynam-
ics on the cortex, the average firing rate φE obeys the damped
oscillator equation

DφE = S(VE), (3)

where the operator D is defined as

D =
(

1

γ

∂

∂t
+ 1

)2

, (4)

and γ is the cortical damping rate. It is assumed that the spa-
tial spread of activity is very fast in other populations and
the activity variable can be approximated by a sigmoidal func-
tion as φb = S(Vb), for b = I, S, R. Conversely to the original
model (Robinson et al., 2001, 2002; Victor et al., 2011) we use
a more realistic transfer function derived from properties of type
I-neurons given by Hutt and Buhry (2014)

S(Va) = Sig(Va, 0) − Sig(Va, ρ), (5)

with

Sig(Va, ρ) = Smax
a

2

(

1 + erf

(
Va − θa − ρσ 2

√
2σ

))

e−ρ(Va−θa)+ρ2σ 2/2, (6)

with σ = 10 mV and ρ = 0.08 mV−1, where σ is related to the
standard deviation of firing thresholds, the parameter ρ < ∞
reflects the properties of type I-neurons, Smax is the maximum
population firing rate, and θa is the mean firing threshold of
neurons in population a. In contrast to the standard transfer
function given in Robinson et al. (2001), the transfer function
in Equation (6) is not anti-symmetric to its inflection point any-
more (Hutt, 2012) and exhibits a larger non-linear gain (slope)

for large potentials Va > θa compared to small potentials Va <

θa. This asymmetry results from the firing properties of type-I
neurons, see Hutt (2012); Hutt and Buhry (2014) for more details.
For ρ → ∞, the sigmoid function becomes the conventional
antisymmetric transfer function.

The external input to the system is considered as a non-specific
input to thalamo-cortical relay neurons as

φN = 〈φN〉 + √
2κξ(t), (7)

where 〈φN〉 indicates its mean value and ξ(t) is a zero average
Gaussian white noise and κ is the noise intensity.

The power spectrum characterizes small fluctuations about
the resting state of the system defined by dVa(t)/dt = 0.
Following Robinson et al. (2001); Nunez and Srinivasan (2006),
it is assumed that the activity of excitatory cortical neurons gen-
erates the EEG, and due to the specific choice of external input to
thalamo-cortical relay neurons, the power spectrum of the EEG
is related to the Greens function of linear deviations about the
resting state by Hutt (2013)

PE(ω) = 2κ
√

2π
∣
∣G̃1,3(ω)

∣
∣
2
, (8)

in which PE(ω) depends just on one matrix component of the
matrix Greens function G̃(ω), see the Supplementary Material for
its definition. We point out that the subsequent power spectrum
analysis is based on Equation (8) and changing a system parame-
ter, such as the factor p, changes the resting state, the correspond-
ing non-linear gains and consequently the power spectrum. In
addition, the power spectrum analysis is valid only if the resting
state is stable and hence the fluctuations do not diverge. We have
taken care of this additional condition and all given parameters
guarantee the existence and stability of the resting state.

2.3. EFFECT OF PROPOFOL ON NEURAL POPULATIONS
In order to mimic anesthetic action, we consider the general
anesthetic propofol which affects synaptic and extra-synaptic
GABAergic receptors. We assume that the decay rate of inhibitory
synapses is identical in all neural populations under study, and
decreases with increasing propofol concentration in accordance
with experimental findings (Kitamura et al., 2002; Hutt and
Longtin, 2009). Mathematically, such a dependence on the anes-
thetic concentration can be taken into account by a concentration
factor p ≥ 1 and βb = β0/p while increasing p reflects an increase
of the on-site concentration of propofol (Foster et al., 2008;
Hindriks and van Putten, 2012; Hutt et al., 2013). Since propo-
fol has been shown to retain the amplitude of inhibitory synaptic
response functions (Kitamura et al., 2002), one can define Hb =
�(α, β0)/�(α, βb) for b = I, R, where

�(α, β) = αβ

α − β

[

(α/β)
−β
α−β − (α/β)

−α
α−β

]

,

i.e., �(α, βb) = h̄b(t0) is the peak amplitude of h̄b(t) at time
t0 = ln (α/βb)/(α − βb). Thereby the maximum height of hb(t)
is hmax = �(α, β0) which is independent of the action of propo-
fol (Hindriks and van Putten, 2012). Moreover, since it is assumed
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that propofol does not act on excitatory synaptic transmission,
Hb = 1 and hb(t) = h̄b(t) for b = E, S. The GABAergic ESR
tonic inhibition can be represented in the model as a constant
shift of the firing threshold in neural population models (Hutt
and Buhry, 2014). For simplicity, we assume a linear relation-
ship between the anesthetic concentration parameter p and the
extra-synaptic threshold shift

θa = θ0 + (p − 1)ka (9)

with the unique firing threshold θ0 = 15 mV identical for all
populations in the absence of propofol and the extra-synaptic
anesthetic sensitivity ka > 0. Here, (p − 1)ka is the tonic inhi-
bition induced by extra-synaptic action which depends linearly
on the propofol concentration. Future experimental studies may
motivate a more realistic relationship of threshold shift and the
anesthetic concentration parameter. Summarizing, synaptic and
extra-synaptic inhibition, and hence anesthetic action, is present
in the cortical populations E and I and in the thalamic population
of relay neurons S.

2.4. POWER SPECTRUM
The present study examines the effect of tonic inhibition in vari-
ous populations E, I, S on the power spectrum of neural activity
in cortical excitatory neurons, i.e., population E. We will focus
on the power in the δ− and α− frequency ranges in the interval
[0.5 Hz−4Hz] and [8 Hz−12 Hz], respectively.

The subsequent analysis reveals power peaks in these fre-
quency ranges, whose magnitude changes with the level of tonic
inhibition. These power peaks exhibit a maximum of power,
expressed mathematically as a local maximum of the function
PE(f ) where PE is taken from Equation (8). The local maximum at
frequency f0 is defined as dPE/df = 0, d2PE/df 2 < 0 computed
at f0. If there is a local maximum of power in the δ− frequency

range, then δ−activity is present, whereas a missing local max-
imum in the δ−frequency range indicates missing δ−activity.
Since the magnitude and frequency of power peaks change with
the propofol concentration and extra-synaptic threshold, the con-
centration factor p and the extra-synaptic anesthetic sensitivity ka

are the parameters of the power spectrum, i.e., PE = PE(p, ka, f ) .
To illustrate the usefulness of this parametrization, let us

assume a factor ka0 for which no δ−power peak exists in the
power spectrum PE(p, ka0, f ), and ka1, ka1 > ka0 is the extra-
synaptic anesthetic sensitivity leading to a spectral δ−power peak
in PE(p, ka1, f ) with dPE(p, ka1, fmax)/dfmax = 0 where fmax is a
frequency in the δ−frequency range. Mathematically, then the
continuity of all model functions and variables guarantee that
there is a threshold for the emergence of δ−activity at a certain
extra-synaptic anesthetic sensitivity ka,thr with ka0 ≤ ka,thr ≤ ka1.
Consequently, if a threshold extra-synaptic anesthetic sensitivity
for δ−activity exists, then the variation of model variables about
this critical point guarantees the emergence of δ−activity. This
mathematical reasoning allows us to investigate conditions under
which δ−activity may emerge.

3. RESULTS
Figure 2 illustrates how the EEG power spectrum depends on
the concentration of propofol for a single subject. After start-
ing the infusion at t = 0 min, the estimated propofol effect-site
concentration increases gradually with time (Figure 2A); result-
ing in increased power in the δ− and α−frequency ranges
(Figure 2B). Over the period of the spectrogram the subject has
become progressively more sedated; until a t = 5 min the sub-
ject no longer responds to verbal command but would still be
responsive to nociceptive stimuli. Figure 2C shows the power
spectra in the awake and sedation conditions. We observe a
power enhancement primarily in the δ− and α−frequency
ranges.

FIGURE 2 | Electroencephalographic data observed under anesthesia

sedation in a single subject while increasing the propofol

concentration. (A) Blood plasma concentration of propofol with respect
to administration time. (B) Spectrogram of frontal EEG power. The

vertical lines denote time windows well before the administration (left
line) and at about 5 min after the start of propofol infusion (right side);
(C) Power spectra computed before the infusion of propofol (black) and 5
min after the start of infusion (red).
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To understand how propofol might enhance δ− and α−power,
we study the power spectrum of our theoretical model for dif-
ferent anesthetic concentration levels and examine the impact
of adding tonic inhibition via extra-synaptic GABAA receptors.
Figure 3A shows the interaction between propofol and tonic inhi-
bition in the cortical inhibitory neuronal population. If we set
the tonic inhibition to zero (kI = 0 mV), we observe a decrease
in spectral power as propofol concentrations increase (i.e., the
power moves from the black line to the blue line in the figure).
If we set the tonic inhibition to (p − 1) · 15 mV we see the oppo-
site effect—there is an increase of δ− and α−power (black line to
red line), with increasing propofol concentration.

Previous studies have indicated that extra-synaptic inhibition
in thalamic relay neurons may control the level of inhibition in the
brain (Brickley and Mody, 2012). However, Figure 3B reveals that
adding a nonzero tonic inhibition in the thalamic relay neurons
causes a decrease in the spectral power, similar to the previous
case of absent tonic inhibition in the inhibitory cortical neurons.

It is well-known that GABAergic anesthetics change the EEG
from high frequency-low amplitude signals to low frequency-high
amplitude signals (Gugino et al., 2001; Feshchenko et al., 2004).
Figures 3C,D show simulated time series in the absence and pres-
ence of tonic inhibition in cortical inhibitory cells reproducing
this experimental finding.

Our results elucidates that tonic inhibition in cortical
interneurons and thalamic relay neurons affect the cortical power
spectrum differently. This finding is similar to results of a previ-
ous computational neural population study of a cortico-thalamic
feedback single-neuron model (Talavera et al., 2009). Figure 4
shows how the resting membrane potential (Figure 4A) and the
non-linear gain (Figure 4B) in the cortical excitatory population
change with differing extra-synaptic anesthetic sensitivity in cor-
tical inhibitory neurons (kI) and in the thalamic relay neurons
(kS). We observe that both the resting potential and the non-
linear gain of cortical excitatory neurons increase when the cor-
tical inhibitory extra-synaptic anesthetic sensitivity kI increases,

FIGURE 3 | The theoretical EEG power spectrum in the baseline and in

the sedation condition with and without tonic inhibition in the cortical

inhibitory neurons I in (A) and the thalamic relay neurons S in (B) and

corresponding simulated EEG time-seris. In (A) the administration of
propofol without tonic inhibition (blue line) attenuates the power spectrum
compared to the baseline condition (black line) while the tonic inhibition (red
line) increases the global power and generates oscillatory activity in the
δ−frequency range. In (B) increasing the anesthetic concentration yields a
global power decrease in the sedation condition without tonic inhibition (blue
line) and a further power decrease in the presence of tonic inhibition (red

line). In (A) and (B), the black lines indicate the EEG-spectral power in the
baseline condition (p = 1), and the blue and red lines show the power
spectrum in anesthesia condition (p = 1.125) in the absence (ka = 0) and in
the presence (ka = 15 mV) of tonic inhibition, respectively. (C) The simulated
EEG time-series (φE (t) defined in Equation (3)) in the absence of
extra-synaptic effects, i.e., kE = kI = kS = 0 mV. (D) The EEG time-series in
the presence of extra-synaptic action in cortical inhibitory neurons with
kI = 15 mV, kE = kS = 0 mV. The tonic inhibition changes the EEGs from
low-amplitude, high-frequency pattern to high-amplitude, low-frequency
pattern. In addition, the strength of cortical self-inhibition is νii = −1.8 mVs.
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FIGURE 4 | Increasing the tonic inhibition (factor ka for a = I and S)

affects the resting state of excitatory cortical neurons V ∗
E

(A) and the

corresponding non-linear cortical gain function (B). Here the anesthetic

concentration factor is identical in the populations a = E, I and S to
p = 1.125. In addition, the strength of cortical self-inhibition is
νii = −1.8 mVs.

whereas resting potential and non-linear gain of cortical excita-
tory neurons decrease when the extra-synaptic anesthetic sensi-
tivity in thalamic relay neuron kS increases. Since the non-linear
gain is proportional to the systems responsiveness to external
stimuli, the power enhancement in population I may be explained
by the augmented responsiveness of the cortical excitatory neu-
rons. This responsiveness depends on the sub-circuit in which
the neurons are involved. Since relay neurons are part of the
thalamo-cortical feedback loop, while cortical inhibitory neurons
contribute to the cortical loop, the cell types respond differently
to the thalamic input. Essentially assuming tonic inhibition in the
population of cortical excitatory neurons E, the study reveals a
similar propofol concentration dependence of the power spec-
trum, the resting state potential and the non-linear gain as for
the thalamic tonic inhibition S. This shows the unique tonic
inhibition effect in the cortical inhibitory neurons.

Figure 3A shows the power spectrum for single values of the
extra-synaptic sensitivity kI , for single values of the concentra-
tion factor p and fixed strength of cortical self-inhibition νii,
while Figure 4 gives more details on the role of extra-synaptic
sensitivity for fixed values of the concentration factor p and
fixed cortical self-inhibition. To understand better the interplay
between tonic inhibition, synaptic inhibition and the strength
of cortical self-inhibition, Figure 5 shows the parameter pairs of
synaptic inhibition p and the threshold of extra-synaptic sensi-
tivity kI,thr at different self-inhibition levels, for which a peak
in the δ−frequency range emerges. Recall that the kI, thr is the
critical (smallest) value of extra-synaptic sensitivity in cortical
inhibitory neurons kI , that lead to dPE/df = 0, d2PE/df 2 < 0
computed at fmax ∈ δ−range, cf. the subsection on the power
spectrum in Section 2. Parameter values beyond the respec-
tive curves lead to δ−activity power peaks. We observe that
δ−activity always emerges for sufficiently strong tonic inhibition
(large extra-synaptic sensitivity kI) and sufficiently strong self-
inhibition νii, while the weaker the self-inhibition is the larger is

FIGURE 5 | Parameter space for δ−power peak. The lines give the
smallest (threshold) value of the extra-synaptic sensitivity kI, thr that
induces δ− oscillations in the sedation condition with respect to the
concentration factor p for different values of self-inhibitory connections νii .
The weaker the cortical self-inhibition (the smaller |νii |), the higher the
necessary level of propofol concentration (larger p) and the tonic inhibition
[larger (p − 1) · kI ] to induce δ−activity.

the necessary extra-synaptic sensitivity or the synaptic inhibition
to generate δ−activity. Even for vanishing cortical self-inhibition
(νii = 0), mathematical analysis (not shown) reveals that there is
still a δ−peak in the power spectrum for large enough synaptic or
tonic inhibition (for p or kI large enough).

Moreover, Figure 5 reveals a minimum tonic inhibition level
(minimum value of kI) beneath which no δ−power peak emerges,
irrespective of the level of synaptic inhibition (p). This result
indicates a major role of tonic inhibition in the generation of
δ−activity, since it may support δ−activity even if the synaptic
inhibition level is not sufficient to support it.
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4. DISCUSSION
In the sedation phase, for modest concentrations of propofol,
the EEG power spectrum exhibits an increase in the δ− and
α−frequency ranges (Figure 2) as found experimentally in the
induction phase of propofol anesthesia (San-Juan et al., 2010).
One possible explanation for these phenomena is by postulat-
ing stronger GABAergic potentiation within cortical inhibitory
neurons than within cortical pyramidal neurons (Hindriks and
van Putten, 2012). We hypothesize, that cortical GABAergic self-
inhibition plays a decisive role. Figure 3 reveals that the power
surge in these frequency ranges might also result from extra-
synaptic tonic inhibition active in cortical inhibitory neurons.
Tonic inhibition increases the firing threshold and hence dimin-
ishes the output of inhibitory neurons to excitatory cortical
neurons, which then allows increased excitation in the excitatory
population and a power surge in the EEG. Conversely tonic inhi-
bition in the thalamic relay cells does not induce power surge in
EEG since augmented inhibition in the thalamic relay cells yields
diminished excitation in cortical excitatory neurons, leading to
a decrease in EEG power. This interpretation is corroborated by
Figure 4 which demonstrates augmented and diminished non-
linear gain in cortical excitatory neurons assuming tonic inhi-
bition in inhibitory and thalamic relay population, respectively.
This reflects enhanced and weakened response to the noisy thala-
mic external input, see previous theoretical studies (Hindriks and
van Putten, 2012; Hutt, 2013) for a similar line of argument.

Figure 3 clearly reveals the emergence of δ−activity caused
by extra-synaptic tonic inhibition which is affirmed by the exis-
tence of a minimum level of extra-synaptic inhibition shown
in Figure 5. Conversely, α−activity appears to be much less
sensitive to tonic inhibition since it is present for all tonic
inhibition levels. One interpretation may be the generation of
α−activity by the cortico-thalamic feedback as hypothesized the-
oretically (Robinson et al., 2004) while δ−activity results from
the cortical interaction of excitatory and inhibitory neurons.
The exact origins of propofol-induced α− and δ−activity are
not known for certain. We find that the α−oscillations arise
from thalamocortical resonances. These oscillations are com-
monly synchronous across widespread cortical regions and are
not easily generated in isolated cortical tissue (Contreras et al.,
1996; Destexhe et al., 1999). This affirms the original model
of Lopes da Silva et al. (1974). However, our model results are
equivalent to results of other models describing α−activity by
purely cortical interactions. We are not aware of a methodol-
ogy ruling out one or the other model and this is not the aim
of the present work. Our work just reveals the additional possi-
bility that the thalamus serves as a possible (indirect) source of
α−activity. Similarly, the origin of δ−activity is not clear, but
slow activity does increase at higher concentrations of propofol—
which may be associated with decreasing α−waves as observed
during desflurane general anesthesia (Mulholland et al., 2014).
This is in keeping with δ−waves becoming more pronounced
as the cortico-thalamic systems becomes increasingly hyperpo-
larized. However, there is a lot of variability between patients as
regards the relative power of α− and δ−activity during general
anesthesia; which would suggest that the true explanation is more
complex, and requires recognition of other factors such as the

one presented in this paper—the influence of the propofol on
extra-synaptic inhibition.

Although anesthetic action on synaptic and extra-synaptic
GABAergic receptors is different, both actions diminish neu-
ral activity and hence increase inhibition. Figure 5 elucidates
that strong enough extra-synaptic or synaptic inhibition induce
δ−activity. Hence, one may argue that the level of inhibition
plays an important role while its origin, i.e., synaptic or extra-
synaptic, plays a secondary role. This interpretation corroborates
the idea of the balance of excitation and inhibition as the major
mechanism in general anesthesia. This interpretation is in good
accordance to previous experimental findings on the important
role of the balance of excitation and inhibition in brain net-
work under anesthesia (Okun and Lampl, 2008; Taub et al.,
2013). Such global concepts as excitation-inhibition balance are
attractive to describe complex processes in general anesthesia.
For instance, anesthetics alter arousal in several pathways, such
as the cholinergic pathway (Brown et al., 2010) and the orexin-
ergic pathway which has been identified to activate a complex
functional network controlling, inter alia, the emergence from
unconsciousness (Kelz et al., 2008).

Our theoretical study considers the anesthetic propofol and its
corresponding action at synaptic and extra-synaptic GABAergic
receptors only, whereas it is known that propofol induces inhibi-
tion at various other receptors as well (Alkire et al., 2008; Nguyen
et al., 2009) including minor effects on NMDA-receptors and
voltage-gated potassium channels (Alkire et al., 2008). Propofol
also potentiates glycine receptors which are are found all over
the central nervous system and have a major role in regulating
inhibition, e.g., in the brain stem (Lynch, 2004).

Similar to extra-synaptic inhibition resulting from ambient
GABA concentrations, the presence of ambient concentrations
of glycine close to NMDA-receptors entails tonic depolarization.
This tonic excitation diminishes the firing threshold of neu-
rons and hence may counteract inhibition. The present work
considers tonic inhibition only and neglects tonic excitation
effect. Although it would be important to study tonic excita-
tion effects, this additional study would exceed the major aim of
the manuscript, namely demonstrating the fundamental effect of
tonic anesthetic action.

In addition, by virtue of the focus on extra-synaptic action,
the model proposed neglects known anesthetic effects on dif-
ferent receptors and ion channels, although they have been
shown experimentally, e.g., Grasshoff et al. (2006); Alkire et al.
(2008) and references therein, and theoretically (Bojak et al.,
2013) to affect EEG activity. Specifically, the latter work of Bojak
et al. (2013) considers anesthetic effects on hyperpolarization-
activated cyclic nucleotide-gated potassium channel 1 (HCN1)
subunits which, effectively, increase the mean firing threshold in
neural populations and strongly resembles the tonic inhibition
induced by extra-synaptic GABA-receptors.

The model network topology includes a single module of
a closed thalamo-cortical feedback loop (Granger and Hearn,
2007) comprising two thalamic nuclei and cortical excitatory and
inhibitory neurons. This model represents a first approximation
of brain networks since it neglects brain stem activity includ-
ing the reticular activating system (RAS) (Magoun, 1952) which
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has significant modulating effects on attention, arousal and con-
sciousness. Future work will include structures of the brain stem,
propofol action on glycine receptors, and will take into account
the RAS—since its neural structures involved exhibit strong extra-
synaptic inhibition (Fiset et al., 1999; Franks, 2008; Vanini and
Baghdoyan, 2013). The model also neglects the cholinergic path-
way originating from the basal forebrain (Laalou et al., 2008)
which is known to co-regulate the level of consciousness (Brown
et al., 2010).

Essentially, our theoretical model assumes population cod-
ing implying rate-coding response activity of neuron populations
subjected to external thalamic noise. The model does not con-
sider specific single neuron dynamics found experimentally under
anesthetic conditions. For instance, it has been hypothesized that,
at certain levels of anesthetic concentration, thalamic neurons
switch their activity from tonic firing to bursting and induce loss
of consciousness (Alkire et al., 2000).

In spite of these limitations, our model reproduces qualita-
tively the action of propofol on EEG and reveals the possible
impact of extra-synaptic GABAergic receptors on the EEG power.
To our knowledge, the present work is the first to link extra-
synaptic GABAergic action and experimental EEG. Future work
will refine the model involving additional receptor action, e.g.,
tonic excitation caused by ambient glycine concentrations, and
sub-cortical brain structures.
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Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon
that occurs during deep anesthesia, as well as in a variety of congenital and acquired
brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of
high amplitude EEG separated by low amplitude activity. However, its characterization as
a “global brain state” has been challenged by recent results obtained with intracranial
electrocortigraphy. Not only does it appear that burst suppression activity is highly
asynchronous across cortex, but also that it may occur in isolated regions of circumscribed
spatial extent. Here we outline a realistic neural field model for burst suppression by
adding a slow process of synaptic resource depletion and recovery, which is able to
reproduce qualitatively the empirically observed features during general anesthesia at
the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex
and complex spatiotemporal dynamics during simulated anesthetic action, and provide
forward predictions of neuroimaging signals for subsequent empirical comparisons and
more detailed characterization. Because burst suppression corresponds to a dynamical
end-point of brain activity, theoretically accounting for its spatiotemporal emergence will
vitally contribute to efforts aimed at clarifying whether a common physiological trajectory
is induced by the actions of general anesthetic agents. We have taken a first step in this
direction by showing that a neural field model can qualitatively match recent experimental
data that indicate spatial differentiation of burst suppression activity across cortex.

Keywords: burst suppression, anesthesia, EEG, neural field model, neuronal hyperexcitability

1. INTRODUCTION
Over the many years since its discovery in humans (Berger,
1929, 1930; Adrian and Matthews, 1934), the electroencephalo-
gram (EEG) has been shown to be a sensitive, and often specific,
indicator of brain state and function (Schomer and Lopes da
Silva, 2010). In the case of the deeply inactivated brain, whether
through trauma or medical intervention, a burst suppression
pattern is typically observed (Niedermeyer, 2009; Ching et al.,
2012). Consisting of quasi-periodic alternations of high ampli-
tude periods of spiking activity with low amplitude periods that
are near isoelectric, the burst suppression pattern is associated
with a range of central insults or interventions that include
cortical deafferentation (Henry and Scoville, 1952; Kellaway
et al., 1966; Lukatch and MacIver, 1996), cerebral ischaemia
(Bauer et al., 2013), deep coma (Young, 2000), various infantile
encephalopathies (Grigg-Damberger et al., 1989), the final stages
of deteriorated status epilepticus (Treiman et al., 1990), hypother-
mia (Stecker et al., 2001), and high levels of many anesthetic and
sedative drugs (Schwartz et al., 1989; Akrawi et al., 1996).

The burst suppression pattern can show a significant degree of
variation depending on its aetiology. For example, in the case of
infantile hypoxic-ischemic encephalopathy the burst suppression
pattern can be quite complex; and due to significant variability

in the amplitude of individual bursts a clear transition to sup-
pression may not readily be apparent (Lamblin et al., 2013). In
contrast, in deep anesthesia bursts are typically separated by clear
isoelectric periods, the duration (relative and absolute) of which
increases systematically with increasing anesthetic level. This sys-
tematic dependence on anesthetic level can be utilized in the
treatment of status epilepticus (Kalviainen et al., 2005) and the
management of brain trauma in the intensive care setting (Doyle
and Matta, 1999) by defining an endpoint in which more than
50% of an EEG recording consists of suppressions.

In what follows we will provide an overview of the phe-
nomenon of burst suppression and summarize the current under-
standing regarding its physiological genesis. This will then be
followed by a detailed outline of a neural field model developed
to describe the emergence of burst suppression during anesthesia,
which notably, and for the first time, incorporates the empirically
realistic modeling of a general anesthetic agent (isoflurane) and
the spatio-temporal propagation of cortical activity.

1.1. PHYSIOLOGICAL BASIS OF BURST SUPPRESSION
Despite its clear aetiological associations and clinical utility, lit-
tle is known about the physiological mechanisms responsible for
the genesis of burst suppression (Liley and Walsh, 2013). On
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the basis of brain slice and in vivo animal studies, a number of
hypotheses have been advanced with sometimes contradictory
conclusions. For example both increases (Steriade et al., 1994)
and decreases (Ferron et al., 2009) in GABAergic inhibitory activ-
ity have been speculated to have causal roles in the onset of
burst suppression. Supporting reductions in inhibition are in vivo
whole-brain animal studies suggesting that enhanced network
excitability (Detsch et al., 2002; Hudetz and Imas, 2007; Kroeger
and Amzica, 2007; Land et al., 2012), possibly mediated through
alterations in extracellular calcium (Kroeger and Amzica, 2007),
is responsible for driving transitions between low amplitude qui-
escence and high amplitude bursting. The study of Land et al.
(2012) is particularly relevant in this regard. Not only do they
report that auditory and visual stimuli readily evoke burst activ-
ity in visual cortex (V1) and subiculum during deep anesthesia
in rats, but (i) such excitability does not occur in the absence of
burst suppression, (ii) V1 and subiculum bursting, in response
to the cortically remote auditory stimulus, emerges abruptly with
increasing anesthetic (isoflurane) concentration, and (iii) hystere-
sis occurs in both stimulus-induced and spontaneous bursting
during isoflurane wash-in and wash-out. Thus, the phenomenon
of burst suppression might be explicable in terms of the emer-
gence of propagating excitability through a dynamical bifurcation
parametrically regulated by isoflurane concentration.

Clinically it is well-established that bursting responses dur-
ing burst suppression in deep anesthesia can be readily evoked
by noxious and sensory stimulation, thus further implicating a
role for alterations in cortical excitability in the genesis of burst
suppression. For example, in probably the first systematic study
on evoked bursts, Yli-Hankala et al. (1993) observed that a vibra-
tory stimulus applied to the palm of the hand was readily able to
evoke electroencephalographic bursts in patients during moder-
ately deep isoflurane anesthesia. Subsequently it has been found
that a range of visual, auditory, tactile and noxious stimuli are
able to evoke electroencephalographic bursts during deep anes-
thesia in which burst suppression has been variously induced with
isoflurane (Hartikainen et al., 1995), sevoflurane (Jantti et al.,
1998) or propofol (Huotari et al., 2004).

Complementing this empirical and clinical research are recent
modeling studies (Ching et al., 2012; Liley and Walsh, 2013),
which suggest that the onset or unmasking of slow and activity-
dependent modulations of network excitability might account
for burst suppression patterns. Because it is observed that the
spectral characteristics of the EEG just prior to the onset of
the anesthesia-induced burst suppression are conserved in the
bursts1, such theoretical approaches typically modulate the oscil-
latory system that accounts for the dynamical emergence of the
resting and anesthetic EEG. In order to simulate burst suppres-
sion during deep propofol anesthesia, Ching et al. (2012) utilize
a thalamo-cortical model based on individual neurons previ-
ously developed to account for the propofol-induced emergence
of frontal alpha-spindle activity (Ching et al., 2010). This model

1For propofol anesthesia this means that alpha activity present prior to the
onset of burst suppression is retained within the bursts (Ching et al., 2012).
In contrast, during isoflurane anesthesia slow-wave and delta activity persists
during bursts (Kroeger and Amzica, 2007).

is then augmented with a slow adenosine triphosphate (ATP)
gated potassium membrane current, which is hence regulated
by the activity-dependent metabolic production rate of ATP. By
assuming that propofol down-regulates neuronal firing through
enhanced synaptic inhibition, thus leading to an autoregulatory
decrease in cerebral metabolism and hence ATP production, the
modulatory effect of this potassium current is magnified such that
bursting emerges. In contradistinction to this model, in which
bursting arises due to essentially intrinsic changes of neuronal
excitability, Liley and Walsh (2013) developed a model in which
bursting arises as a consequence of the slow activity-dependent
modulation of synaptic efficacy. In this model the effects of
synaptic resource depletion (receptor desensitization and synap-
tic vesicle depletion) and recovery during periods of sustained
neuronal population activity act to slowly modulate neuronal
population excitability. This mechanism comes to the fore in
anesthesia because the general reduction of cortical activity allows
the synaptic neurotransmitter reservoirs to fill up, potentiating
excitation until it is sufficiently strong to induce feedback bursts
of excitation, followed by suppression as the thereby depleted
reservoirs refill. In support of this mechanism are the activity-
dependent alterations in synaptic efficacy that have been been
observed in vivo in recordings in cats during burst suppression
induced with isoflurane (Kroeger and Amzica, 2007).

1.2. SPATIO-TEMPORAL FEATURES OF BURST SUPPRESSION
Because burst suppression is classically characterized as being a
spatially homogeneous phenomenon (Brenner, 1985; An et al.,
1996; Lewis et al., 2013), on the basis of near simultaneous burst
onset and offset across scalp electrode derivations, little atten-
tion has been paid to its spatio-temporal features until recently.
Motivated by the inability of scalp electroencephalography to
reveal the fine structure of cortical dynamics, due to the spa-
tial blurring induced by volume conduction, Lewis et al. (2013)
chose to investigate the spatiotemporal features of burst suppres-
sion using intracranial electrocortigraphy (ECoG) in medically
intractable epilepsy patients. Five patients, implanted with a range
of subdural strip, grid and depth electrodes as part of a standard
clinical monitoring procedure, had recordings collected through-
out the induction of anesthesia with propofol, during explanta-
tion surgery. Burst onset and offset was observed to be visibly
asynchronous across recording electrodes, with the absolute dif-
ference in burst onset time in general an increasing function of
inter-electrode distance. Interestingly, not all recording electrodes
would participate in such asynchronous bursting. It was found
that burst onsets were visibly clustered across channels such that
bursting could either be confined to a small subset of nearby elec-
trodes (“local” bursting) or spread to involve the whole electrode
grid (“global” bursting), with more distantly separated electrode
pairs less likely to share a burst (based on burst onset within some
time window).

It has been speculated that the appearance of spatially inho-
mogeneous bursting might be a reflection of the differential sen-
sitivity of specific thalamo-cortical networks to anesthetic action.
However, another possibility is that the spatially heterogeneous
nature of this bursting arises as a feature of the axonal propaga-
tion of activity through cortex. In support of such a speculation
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is the developmental emergence of isoflurane-induced burst sup-
pression in rats. It is conjectured that it is the development of
short- and long-range horizontal connections between pyrami-
dal neurons in infra-granular cortical layers, which is the critical
factor in determining the appearance of isoflurane-induced burst
suppression in the second postnatal week (Sitdikova et al., 2014).
Further implicating the role that altered propagation may have
in determining the physiological features of anesthetic action
are reports that document the effects anesthetics have on nerve
conduction—both centrally and peripherally. While peripher-
ally it is generally assumed that anesthetics principally depress
spinal motoneuron excitability, as assessed by reductions in F-
wave amplitudes (Friedman et al., 1996; Rampil and King, 1996),
there are a number of reports documenting the significant effects
of anesthetic agents in either increasing (cyclopropane, nitrous
oxide, diethyl ether) (Rosner et al., 1971) or reducing (pentobar-
bital, desflurane, enflurane, halothane) (Rampil and King, 1996;
Oh et al., 2010; Nowicki et al., 2013) nerve conduction velocity at
clinical levels, as assessed by increases in F-wave latency. Centrally,
there is some evidence that volatile anesthetics may preferentially
depress nerve conduction in unmyelinated axons (Berg-Johnsen
and Langmoen, 1986; Mikulec et al., 1998). For instance, isoflu-
rane was found to induce a conduction block in 20–30% of the
unmyelinated fibers in the CA1 region of the rat hippocampus
at clinical concentrations, as well as having a 1% effect on the
actual conduction velocity (Berg-Johnsen and Langmoen, 1986).
On the basis of empirical evidence indicating that the cortico-
cortical fiber system is comprised of a mixture of myelinated and
unmyelinated fibers, cf. Bojak and Liley (2010) and references
therein, we hence expect mean cortical axonal conduction veloc-
ity to increase slightly, due to the reduction in the proportion
of low conduction velocity unmyelinated fibers, but nevertheless
anticipate cortico-cortical synaptic connectivity to be attenuated.

1.3. NECESSITY OF LARGE-SCALE CORTICAL MODELS
Regardless of the specific changes in cortical axonal conduction
induced by anesthetics, it is clear that any theoretical attempt to
account for burst suppression and its spatial inhomogeneity must
explicitly incorporate the spatial extent of cortex. While the con-
struction of a biophysically-based neuronal network model might
seem an obvious starting point, numerical tractability and para-
metric uncertainties militates against the utility of this approach
both from a descriptive and an explanatory perspective. For
example, to meaningfully accommodate the extent of the spatially
heterogeneous burst suppression seen in Lewis et al. (2013), we
would need to model ∼ 109 neurons and ∼ 1012 synapses. While
computations at this scale may be at the edge of feasibility for the
largest supercomputers, we cannot reasonably expect such mas-
sive computations to be used for all the myriad specific research
agendas in computational neuroscience any time soon. Even if
such resources were readily available we would still be unable to
specify the microcircuitry realistically at this level of detail for
such a sizeable part of cortex. Such a problem will persist even
if our computational capabilities continue to grow exponentially.

Fortunately, by considering the behavior of populations of
neurons at mesoscopic scales, a variety of numerically tractable
modeling approaches can be motivated physiologically and

anatomically, cf. the reviews of Deco et al. (2008), Coombes
(2010), Liley et al. (2012), and Liley (2013). These neural pop-
ulation models, referred to as neural mass models if localized
and neural field or mean field models if spatially continuous
and extensive, usually aim to describe the dynamical evolution of
mean quantities (such as soma membrane potential or firing rate)
defined over some suitable spatial domain or scale. Because these
models average the activity of many thousands of neurons, they
are well-suited as frameworks for understanding the meso- and
macroscopic neural activity recorded, or inferred by, ECoG, EEG,
magnetoencephalography (MEG) and the blood-oxygen level
dependent (BOLD) contrast of functional magnetic resonance
imaging (fMRI) (Bojak and Breakspear, 2013). Since the pio-
neering work of Walter Freeman (Freeman, 1975), this approach
has flourished and has resulted in a number of important neu-
ral field models aimed at explaining the dynamical genesis of
the mammalian EEG (Wilson and Cowan, 1973; Lopes da Silva
et al., 1974; Nunez, 1974; Liley et al., 2002; Robinson et al., 2004).
Broadly speaking, all these models are able to generate oscillatory
activity through reverberant feedforward and feedback synaptic
activity between excitatory and inhibitory neuronal populations.
We choose to utilize the neural field model of Liley et al. (2002)
as a framework for better understanding the spatial heterogeneity
of bursting during anesthesia because (i) it has been previously
employed to account for a number of anesthetic induced EEG
changes (Steyn-Ross et al., 1999; Bojak and Liley, 2005), and (ii)
a spatially homogeneous version of the theory has been shown to
burst when modified to include a slow modulatory system (Liley
and Walsh, 2013).

2. NEURAL FIELD MODEL FOR SPATIOTEMPORAL BURST
SUPPRESSION

Here we detail how a neural field model (Liley et al., 2002), sub-
sequently extended to account for the dynamical genesis of the
resting EEG and its modulation by anesthesia (Bojak et al., 2004;
Bojak and Liley, 2005; Liley and Bojak, 2005; Frascoli et al., 2011;
Liley et al., 2011; Bojak et al., 2013), can be plausibly modified to
produce bursting-like behavior (Liley and Walsh, 2013), and thus
serve as a basis for understanding the emergence of spatially het-
erogeneous burst suppression seen in cortex. The main advance
in this work is that we combine the realistic modeling of isoflu-
rane effects and the extension to a two-dimensional spatial sheet
of Bojak and Liley (2005) with an updated version of the slow
modulatory system proposed in Liley and Walsh (2013) in order
to obtain spatiotemporal activity predictions.

It is perhaps useful to discuss two fundamental limitations
of our current approach in advance. First, we are limiting our-
selves here to a two-dimensional (toroidal) cortical sheet and
use “background” (isotropic and homogeneous) connectivity in
order to use computationally efficient activity propagation with
partial differential equations (PDEs). Currently there exist a
range of mesoscopic approaches available that can incorporate
more realistic cortical geometry as well as including “specific”
(anisotropic and sparse) connectivity, see for example (Bojak
et al., 2010, 2011; Deco et al., 2011; Bojak and Breakspear, 2013;
Sanz Leon et al., 2013) and references therein. These typically
involve constructing meshes of neural masses and tracking their
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information exchanges individually. However, such approaches
are computationally about an order of magnitude more expen-
sive. Furthermore, to effectively display spatiotemporal pattern
formation on a realistically folded cortex is a graphical chal-
lenge. We will show here that spatial differentiation of activity
emerges even if one uses a simple toroidal cortical geometry with
isotropic and homogeneous connectivity. The additional com-
plexity introduced by anatomical folding structures and patchy
connectivity are expected to break up long-range coherence fur-
ther, but should not qualitatively change our results more locally
(where the “background” connectivity is a good approximation)
and between well-connected but separated regions (where we
would expect emergent differentiation). In addition, we use here
the well-known “damped wave” propagation PDEs that have been
the mainstay of the field since their initial introduction by Jirsa
and Haken (1996). It is by now known that one can use “dis-
persive” propagation PDEs that are more faithful to the actual
distribution of axonal fiber velocities (Bojak and Liley, 2010).
However, we are using here a parameter set of Bojak and Liley
(2005) that delivers realistic EEG activity under the assumption
of “damped wave” propagation. Furthermore, the better “dis-
persive” propagation is also computationally considerably more
expensive and technically difficult to implement. Finally, one of
the key results of Bojak and Liley (2010) was that more realis-
tic “dispersive” propagation lead to easier spatiotemporal pattern
formation. Thus, we expect that the results here would carry over
qualitatively to more realistic propagation models, likely showing
spatial differentiation earlier on in the burst phase. In summary,
we will show here with the computationally simplest model that
spatial differentiation in the burst phase can emerge in qualitative
agreement with the experimental observation, and we expect that
even more realistic modeling will only enhance these emergent
effects.

2.1. THE (EXTENDED) LILEY MODEL
The electrocortical model of Liley et al. (2002) is constructed at
the scale of the cortical macrocolumn. Within each macrocol-
umn, and extending across all cortical layers, distributed popula-
tions of excitatory and inhibitory neurons interact with each other
by all possible feedforward and feedback intracortical (local) axo-
dendritic connections. Macrocolumns then interact with each
other by the exclusively excitatory cortico-cortical (long-range)
axonal fibers. The topological organization of this model is well-
known, and depicted in Figure 1. In this model cortical activity
is described by the spatiotemporal evolution of the mean exci-
tatory he(�x, t) and inhibitory hi(�x, t) soma membrane poten-
tials. The connection with electrophysiological measurement is
through he, which is assumed to be linearly related to the EEG, cf.
Bojak and Breakspear (2013). Excitatory and inhibitory neuronal
populations are modeled as spatially averaged conductance-based
neurons:

τk
∂hk (�x, t)

∂t
= hr

k − hk (�x, t) +
∑

l = e,i

h
eq
lk − hk (�x, t)

|heq
lk − hr

k|
Ilk (�x, t) , (1)

FIGURE 1 | Topology of the Liley model (Liley et al., 2002; Bojak and

Liley, 2005). Its two distinct neural populations (E = excitatory, I =
inhibitory) are shown for two separate positions on the cortical sheet. Each
one can be considered as representing a single macrocolumn. All synaptic
connections that occur in the model are shown by red (excitatory) and blue
(inhibitory) disks, respectively. Extracortical inputs to the cortical
populations are shown by green fibers. Symbols illustrate the various inputs
to the excitatory population in the left macrocolumn and to the inhibitory
population in the right macrocolumn, respectively, according to
Equations (3, 4).

where �x ∈ R
2 is position on the cortical sheet, subscripts l, k ∈

{e, i} indicate excitatory and inhibitory subpopulations, respec-
tively, and double subscripts represent first the pre-synaptic
source and then the post-synaptic target. The parameters hr

k are
the mean resting membrane potentials to which the hk decay
exponentially with characteristic time scales τk in the absence of
inputs Ilk. The fraction in front of the Ilk weighs these inputs,
so that the depolarizing effect of additional excitation diminishes
linearly and then even becomes hyperpolarizing past the rever-
sal potentials h

eq
ek , and similarly for the hyperpolarization due to

inhibition depending on h
eq
ik . The weight at the resting potentials

is +1 for excitatory and −1 for inhibitory inputs, respectively.
The dynamics of the post-synaptic potentials (PSPs) Ilk are

described by critically damped oscillators driven by the mean rate
of incoming excitatory or inhibitory axonal pulses Alk, originally
defined as follows (Liley et al., 2002):

(
1

γlk

∂

∂t
+ 1

)2

Ilk (�x, t) = e�lk

γlk
Alk (�x, t) , (2)

Aek (�x, t) = Nβ

ekSe [he (�x, t)]

+Nα
ek�ek (�x, t) + pek (�x, t) , (3)

Aik (�x, t) = Nβ

ikSi [hi (�x, t)] . (4)
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For excitatory post-synaptic conductances there are three sources
of axonal pulses—local (Se), cortico-cortical (�ek), and subcorti-
cal (pek)—whereas for inhibitory post-synaptic conductances the
only source of axonal pulses is local (Si), because thalamic and
cortical inhibitory axons are essentially short-range on the basis of
existing neuroanatomical evidence. For these equations, at a given
location a single pre-synaptic (Dirac delta) spike Alk(t) = δ(t)
would produce a so-called “alpha function” response

Ilk(t) = e�lk

γlk
αlk(t) , (5)

αlk(t) = γ 2
lkte−γlkt
(t) , (6)

with the Heaviside step function 
(t). The alpha function αlk is
normed to one for integration over time, hence the pre-factor in
Equation (5) is proportional to the charge transfer of the induced
PSP. Furthermore, δlk = 1/γlk is the characteristic time scale of
the PSP’s exponential decay. Since Ilk (t = δlk) = �lk is the max-
imum amplitude of the PSP, δlk is also the rise time to peak
amplitude. Note that since we have collapsed all cortical layers
into one sheet without radial extension, this rise time is that
of the PSP conducted to the soma rather than at the synapse
in the dendritic tree. Conduction through a passive dendritic
cable effectively leads to a “flattened” PSP at the soma with lower
maximum amplitude and prolonged rise and decay times.

The Se and Si are respectively the local mean excitatory and
inhibitory firing rates, and are assumed to be instantaneous
sigmoidal functions of the hk of the form

Sk [hk (�x, t)] = Smax
k /

{

1 + exp

[

−√
2

hk (�x, t) − μk

σk

]}

, (7)

and the Nα
ek and Nβ

lk factors in the Alk above multiply these local
firing rates by the number of synaptic connections formed with
the target populations. The Smax

k are the maximum mean fir-
ing rates, and the μk and σk can be understood as the mean
and standard deviation, respectively, of the firing thresholds of
the populations, which are taken to be roughly normally dis-
tributed. The propagation of axonal pulses by the excitatory
cortico-cortical fiber system �ek is described here by the follow-
ing well-known “damped wave” equation2(Jirsa and Haken, 1996;
Robinson et al., 1997; Liley et al., 2002; Bojak and Liley, 2010):

[(
1

vek

∂

∂t
+ 1

λek

)2

− ∇2

]

�ek (�x, t) = 1

λ2
ek

Se [he (�x, t)] . (8)

But for the λek terms, this would be an inhomogeneous wave
equation with conduction velocity vek, propagating the local exci-
tatory firing rate Se. However, due to these terms the wave gets
suppressed roughly exponentially with distance with a character-
istic spatial scale λek.

2We note that as compared to Bojak and Liley (2005), we have here rescaled vek

and λek as in Bojak and Liley (2010), so as to remove a factor 3/2, which tech-
nically arises from an expansion of an ansatz for the corresponding Green’s
function.

Finally, there is also extracortical synaptic input in the form
of the pek. These inputs can be considered to be mainly due to
thalamic afferents. If the pek were constant, then for the model
parameters chosen here the system would quickly converge to a
static equilibrium point. It is hence the imposition of noise on
these inputs which effectively drives the neural activity. This noise
is taken to represent the average over the varied extracortical
synaptic input to the many thousands of neurons in a neural
population, for the case in which there is no strong external (sen-
sory) drive that would lead to clear correlations of the synaptic
inputs to the individual neurons. We follow here essentially the
approach of Bojak and Liley (2005) for noise generation. Thus,
for the sake of computational simplicity noise is imposed only
on pee, whereas pei is taken to be constant. At every grid point of
the two-dimensional cortical sheet normally distributed noise is
generated independently, but with the same mean pee, and a stan-
dard deviation that is 10% of this mean. However, we filter this
noise spatiotemporally, both to achieve more biological realism
and to make it easier to achieve numerical stability. We follow the
Fourier space procedure of Bojak and Liley (2005) for the spatial
filtering, but use the Catmull-Rom spline procedure detailed in
Bojak et al. (2011) for the temporal filtering, with lowpass −3 dB
points at 75 Hz and 2/cm, respectively (Bojak and Liley, 2005).
Thus, the noisy input oscillates equally at all frequencies, but
only up to about 75 Hz, and is identical for neighboring grid
points, but becomes uncorrelated at cortical distances greater
than about 0.5 cm. The spatiotemporal pee noise breaks the
otherwise perfect homogeneity and isotropy of the system, and
consequently acts as seed for the heterogeneities observed in
the burst suppression phase. However, the characteristics of the
spatiotemporal structures that emerge in the burst suppression
phase do not otherwise depend on the noise; hence in particular
they do not depend on the details of the noise filtering, and can
be elicited with white noise driving.

The model we have described so far has to be extended for a
realistic description of the effect of general anesthetic action. In
particular, the effect of isoflurane on the rise time δlk of the PSPs
from zero to maximum amplitude �lk, and on the subsequent
decay time ζlk back to �lk/e (measured here from the start of the
PSP, not from the peak) can be parameterized as follows in the
form of a Hill equation (Bojak and Liley, 2005):

δlk(c) � δlk (constant) , (9)

ζek(c) ≡ ζ 0
ekκek(c) � ζ 0

ek (constant) , (10)

ζik(c) ≡ ζ 0
ikκik(c) � ζ 0

ik

0.322.7 + 4.7c2.7

0.322.7 + c2.7
, (11)

where c is the aqueous concentration in mM. Thus, the main
effect is a prolongation of the decay of the inhibitory PSPs. In
addition, the maximum amplitudes of the PSPs also diminish
with increased isoflurane concentration, which is also the case for
excitatory PSPs:

�ek(c) ≡ �0
ekHe(c) � �0

ek

0.7072.22

0.7072.22 + c2.22
, (12)

�ik(c) ≡ �0
ikHi(c) � �0

ik

0.792.6 + 0.56c2.6

0.792.6 + c2.6
. (13)
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While for consistency with laboratory based estimates we choose
to parameterize isoflurane level in terms of its aqueous concen-
tration, it is important to appreciate that because isoflurane is a
volatile gas, clinically its level is typically reported in terms of its
concentration in the expired air (which is assumed to be in equi-
librium with the blood and hence the extracellular fluid of cortical
neurons). At normal body temperature 1.3% isoflurane are equiv-
alent to an aqueous concentration of about c � 0.27 mM (Franks
and Lieb, 1996). Typical isoflurane concentrations encountered in
clinical anesthetic practice range from 0 to 2% of the expired air,
equivalent to aqueous concentrations 0 − 0.42 mM (Mapleson,
1996). A measure commonly employed in anesthetic practice is
the minimum alveolar concentration or MAC of an anesthetic
agent. It is essentially defined as the concentration of gas in
the lungs required to prevent movement in 50% of subjects in
response to a painful surgical stimulus. In the case of isoflu-
rane 1 MAC � 1.17% � 0.243 mM for an adult at normal body
temperature (Mapleson, 1996). It should be noted that in com-
bination with other anesthetic agents like nitrous oxide, less than
1 MAC of isoflurane will be required to reach the 50% end-point.

It is straightforward to introduce Equations (12, 13) to the
Liley model by changing the �lk according to isoflurane concen-
tration, i.e., �lk → �lk(c) = �0

lkHl(c) with the �0
lk now having the

same values as the �lk had in the standard Liley model. However,
Equations (9–11) are more problematic. The decay time of the
alpha function in Equation (5) changes linearly with its rise time,
thus one cannot match the experimental result that only the decay
time is prolonged under anesthesia. Consequently, the following
modification of Equation (2) was introduced (Bojak and Liley,
2005)

[
1

γlk(c)

∂

∂t
+ 1

] [
1

γ̃lk(c)

∂

∂t
+ 1

]

Ilk (�x, t)

= eγlk(c)δlk�lk(c)

γlk(c)
Alk (�x, t) , (14)

γlk(c) = εlk(c)

eεlk(c) − 1

1

δlk
, γ̃lk(c) = eεlk(c)γlk(c) . (15)

Notably, for εlk → 0 one finds that γ̃lk → γlk, and γlk → 1/δlk

with a removable discontinuity. Defining these variables as con-
tinuous with the limit, the new Equation (14) then becomes
identical with the old Equation (2) in this limit. The correspond-
ing response to a single pre-synaptic spike Alk(t) = δ(t) now
becomes a bi-exponential function

Ilk(t) = eγlkδlk�lk

γlk
βlk(t) , (16)

βlk(t) = γlkγ̃lk
e−γlkt − e−γ̃lkt

γ̃lk − γlk

(t) , (17)

where we have suppressed the concentration dependence. Again
the pre-factor in Equation (16) is proportional to the charge
transferred, since βlk(t) is normed to one for integration
over time. Note that now Ilk (t = δlk) = �lk, which for εlk = 0
becomes the previous result since in this limit again δlk = 1/γlk.

More generally, for εlk → 0 we have βlk(t) → αlk(t) at all times
and the alpha function is the “sharpest” response βlk(t) ≥ αlk(t).
Clearly with this new form we can keep the rise time parame-
ter δlk constant, while changing the εlk so as to achieve a desired
decay time ζlk. Given the changes imposed by isoflurane in
Equations (9–11), one can solve for the appropriate εlk numeri-
cally in dependence on the concentration c. However, here we will
use the excellent approximation formula presented in Liley et al.
(2011), which can be written as3

εlk(c) � e2.5466−1.3394κlk(c)
√

κlk(c) − 1 +
(

e−1.2699[κlk(c)−1] − 1
)

·
[

1

κ2
lk(c)

+ W−1

(

e−0.23630/κ2
lk(c)

1 − 3.1462κlk(c)

)]

,

(18)
where W−1 is the −1 branch of the Lambert-W function. Here we
assume that κek = 1, thus εek = 0, and only the inhibitory decay
time is affected.

Equations (1–4, 7–8) represent a system of eight coupled non-
linear PDEs that define the standard Liley model. Changing the
PSPs of Equation (2) to those of Equations (14, 15) defines the
extended Liley model. It is therein understood that 1/δlk of the
extended Liley model equals γlk of the standard one, so that
for εlk → 0 both become identical. Finally, Equations (9–13)
parameterize the effect of isoflurane on the extended Liley sys-
tem. Here Equations (12, 13) can be used straightforwardly as
determining �lk(c), but in order to use Equations (10–11) one
additionally needs Equation (18) to translate them into changes
of the γlk(c) and γ̃lk(c) parameters. In Bojak and Liley (2005)
extensive parameter searches were performed. All selected param-
eter sets gave rise to a plausible resting EEG power spectrum
(‘1/f ’ low frequency activity with an alpha peak in the 8–13 Hz
range) under noise driving, retained a stable equilibrium point
for increasing isoflurane concentration and hence remained in
a quasi-linear dynamical regime, and showed the experimentally
observed drop of the alpha peak to low frequencies for increas-
ing isoflurane concentration. Some parameter sets furthermore
exhibited a so-called “bi-phasic” transient surge in total power
during simulated anesthesia induction, as observed in several
experiments (Kuizenga et al., 1998, 2001). The parameter val-
ues used in this paper correspond to one of these “bi-phasic”
parameter sets, and are listed in Table 1.

2.2. SLOW AND ACTIVITY-DEPENDENT SYNAPTIC BURSTING
MECHANISM

In this work we consider receptor desensitization and synap-
tic vesicle depletion during periods of high neuronal population
activity, and the homeostatic recovery of synaptic readiness dur-
ing periods of low neuronal activity, as the slow mechanism that
can modulate the excitability of cortical tissue. Such activity-
dependence of synaptic efficacy has been observed during burst
suppression induced with isoflurane (Kroeger and Amzica, 2007).

3The last term W−1[exp (a/κ2)/(1 − bκ)] actually has b = −W−1( − 1/e2)
and a = −1 + ln ( − 1 + b). It is real for κ ≥ 1 and for κ = 1 becomes −1.
To avoid spurious imaginary terms one can set a = −0.23630117 for a b =
3.1462 of limited accuracy.
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Table 1 | Mean population parameter values used to obtain bursting in the Liley model.

Definition Excitatory (target) Inhibitory (target)

Passive membrane decay times τe 65.815 ms τi 130.13 ms

Resting membrane potentials hr
e −78.422 mV hr

i −72.959 mV

Maximum firing rates Smax
e 0.39535/ms Smax

i 0.15439/ms

Firing thresholds (FTs) μe −51.656 mV μi −47.267 mV

Standard deviations of FTs σe 2.8669 mV σi 4.3250 mV

Synaptic recovery times τ rec
e 800.00 ms τ rec

i 600.00 ms

Synaptic depletion factor fe 1.2500 fi 0.17500

EXCITATORY SOURCE

Reversal potentials heq
ee −5.7891 mV heq

ei −1.6566 mV

PSP peak amplitudes �ee 0.18424 mV �ei 1.8771 mV

PSP rise times to peak δee 9.1059 ms δei 1.2103 ms

Number of intracortical synapses Nβ
ee 3410.8 Nβ

ei 2738.9

Number of cortico-cortical synapses Nα
ee 3616.3 Nα

ei 2905.1

Cortico-cortical decay scale λee 24.000 mm λei 24.000 mm

Cortico-cortical conduction velocity vee 2.1042 mm/ms vei 2.1042 mm/ms

Rate of extracortical input pee 9.3193/ms pei 3.1563/ms

INHIBITORY SOURCE

Reversal potentials heq
ie −86.675 mV heq

ii −84.596 mV

PSP peak amplitudes �ie 1.5969 mV �ii 1.0838 mV

PSP rise times to peak δie 2.5985 ms δii 9.6946 ms

Number of intracortical synapses Nβ

ie 863.89 Nβ

ii 267.92

In practice, we will modify the maximum PSP amplitudes �lk

that can be obtained, which directly depend on the available pre-
synaptic amount and post-synaptic impact of neurotransmitter.
Instead of considering these quantities as parameters as in the
extended Liley model (where they act as control parameters that
can be changed according to the concentration of an anesthetic
agent), we now consider them as variables with their own slow
dynamics coupled to the neural activity. Our ansatz is a com-
mon phenomenological model for activity-dependent synaptic
depression (Bressloff, 2012). It represents a rate-based version
of the model proposed by Tsodyks and Markram (1997), under
the assumption that the processes responsible for the recovery
of synaptic efficacy evolve on a time scale much slower than
those associated with that of synaptic depletion (e.g., receptor
desensitization and synaptic vesicle depletion):

∂�lk (�x, t)

∂t
= �r

lk − �lk (�x, t)

τ rec
l

− ρ
dep
l Sl [hl (�x, t)] �lk (�x, t) ,

(19)
with l, k ∈ {e, i} indicating the excitatory and inhibitory sub-
populations and Sl(hl) is the local population firing rate of
Equation (7), as before. Local neurotransmitter depletion is here
considered to be directly proportional both to the strength of the
PSPs, represented by �lk itself, and to their frequency, represented
by Sl. In the absence of neural activity Sl = 0/s, there will be an
exponential return of �lk to the resting value �r

lk with a character-
istic recovery time τ rec

l . However, if there is no recovery τ rec
l →

∞ and we have constant neural activity Sl > 0/s, then �lk will
exponentially decay to zero with a characteristic depletion time

1/(ρ
dep
l Sl). Note that we have assumed that in the pre-synaptic

recovery and decay there is no dependence on the target (on the

index k), since these processes will be determined by the activity
of the source. However, in the post-synaptic impact on the maxi-
mum amplitude of the PSP, we allow a dependence on the target,
since the response will depend on the morphology and physiology
of the receiving neurons.

Now consider the case where we have both depletion and
recovery. We will choose some homogeneous hl (�x, t) ≡ h0

l so that

Sl(h0
l ) > 0/s. The synaptic system will then converge everywhere

to an equilibrium value easily calculated by setting the left hand
side of Equation (19) to zero:

�lk (�x, t) → �0
lk = �r

lk

1 + τ rec
l ρ

dep
l Sl

(

h0
l

) ≡ �r
lk

1 + fl
, (20)

fl ≡ τ rec
l ρ

dep
l Sl(h0

l ) = �r
lk

�0
lk

− 1 . (21)

This equilibrium value is always smaller than the resting one, i.e.,
fl > 0. We can scale our ansatz in terms of this equilibrium value
and then obtain

�lk (�x, t) ≡ �0
lkCl (�x, t) , (22)

τ rec
l

∂Cl (�x, t)

∂t
= 1 + fl −

(

1 + Sl [hl (�x, t)]

Sl
(

h0
l

) fl

)

Cl (�x, t). (23)

This scaling conveniently removes the post-synaptic depen-
dence from the dynamical equations. Hence if we assume that
the scaled initial conditions are identical �le (�x, t = 0) /�0

le =
�li (�x, t = 0) /�0

li, then in practice we only have to solve the two
equations of Equation (23) instead of the four of Equation (19),
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obtaining the four potentially different peak amplitudes via
the scaling in Equation (22). Our choice for the initial con-
ditions is to start them all at equilibrium �lk (�x, t = 0) = �0

lk,
thus Ce (�x, t = 0) = Ci (�x, t = 0) = 1, and then we can use these
reduced computations with subsequent scaling. The only con-
straint we have imposed on the mean membrane potentials h0

l
here is that they should lead to non-zero population firing rates,
which however is always the case unless one assumes unphysi-
ological infinite polarization. The depletion coupling constants

between the neural activity and the peak amplitude ρ
dep
l are

empirically unknown, and would have to be determined labori-
ously from observations of dynamical changes of synaptic efficacy.
However, in terms of the model proposed here, if one specifies
the equilibrium values of the soma membrane potentials h0

l and
how much the neurotransmitter reservoir is depleted at the corre-
sponding activity levels (�0

lk vs. �r
lk), then this in turn determines

the depletion coupling constants

ρ
dep
l = fl

τ rec
l Sl

(

h0
l

) = �r
lk/�0

lk − 1

τ rec
l Sl

(

h0
l

) . (24)

In practice we make an implicit choice of the coupling constants
by choosing the fl for the system.

Now we wish to combine this synaptic system with the
extended Liley model for anesthesia. For the parameter sets
provided by Bojak and Liley (2005), that model has stable equilib-
rium points. That is to say, if we re-write the extended Liley model
in the abstract form

�s (�x, t) ≡ (he, hi, Iee, Iei, Ii.e., Iii, �ee, �ei)
T (�x, t) ,(25)

D�s (�x, t) = F [�s (�x, t)] + P (�x, t) , (26)

with a suitable differential operator D, a function F and a noise
drive P, then there exists a solution

F[�s ∗] = 0 , (27)

so that for P (�x, t) = 0 the system is static. Furthermore, since this
equilibrium is stable, after small and transient disturbances the
system will return dynamically to �s ∗. We now make the following
replacements in the extended Liley system

�lk → �lk (�x, t) , (28)

i.e., we replace the parameter values �lk of the extended Liley
model with the variables �lk (�x, t) of the synaptic system that
we have just described. Together with the coupling to the neural
activity explicit in Equation (23) this closes the combined system,
which we will call the bursting Liley model henceforth. We now
make the following convenient choices

�s (�x, t = 0) = �s ∗, Cl (�x, t = 0) = 1, h0
l = h∗

l , �0
lk = �lk,

(29)
This homogeneous initial state of the bursting Liley model
must now be an equilibrium point by construction: while
Equation (27) is calculated with the parameters �lk, we have

arranged it so that the equilibrium value �0
lk of the synaptic

system at the resulting mean soma membrane potentials has the
same value as that parameter. This is simply achieved by fix-
ing the �r

lk for a given fl according to Equation (20), i.e., �r
lk =

�0
lk(1 + fl). Hence the equilibrium of one system is compatible

with that of the other, and if we start them off in their respective
equilibrium states nothing will change. However, there is no guar-
antee that this constructed equilibrium point of the bursting Liley
model will be stable.

Previously, we had incorporated the effects of isoflurane into
the extended Liley model in part by replacing the standard param-
eter �0

lk according to Equations (12, 13) with the anesthesia-

dependent �lk(c) = �0
lkHl(c). In the bursting Liley model these

parameters have become state variables with their own dynam-
ics due to synaptic depletion and recovery. Hence the synaptic
dynamics pertaining to the (pre-synaptic) source likewise must
be multiplied by the anesthesia-dependent Hl(c) to compute the
(post-synaptic) amplitude induced at the target:

�lk (�x, t, c) ≡ �lk (�x, t) Hl(c) = �0
lkCl (�x, t) Hl(c)

= �lk(c)Cl (�x, t) . (30)

However, since the synaptic dynamics are now coupled to the
spatially variable cortical activity, we need to adjust our synaptic
inputs to Equation (14):

Aek (�x, t) = Nβ

ekCe (�x, t) Se [he (�x, t)] + Nα
ek�ek (�x, t)

+ pek (�x, t), (31)

Aik (�x, t) = Nβ

ikCi (�x, t) Si [hi (�x, t)] , (32)
[(

1

vek

∂

∂t
+ 1

λek

)2

− ∇2

]

�ek (�x, t) = 1

λ2
ek

Ce (�x, t) Se [he (�x, t)].

(33)

Here the first term in Alk is multiplied with Cl (�x, t) at the
same time and position, since it represents local and quasi-
instantaneous synaptic input. For the second term of Aek, the
Ce (�x, t) term is instead included through Equation (33). The
right hand side of this propagation equation, while written in
terms of the (�x, t), effectively encodes the signal at a distance
location �x ′, sampled there at time t′, and then transported with
velocity vek to the local position �x with a conduction delay t − t′;
see for example (Bojak and Liley, 2010) for an explanation in
terms of Green’s functions. Thus, we now propagate the firing
rate as scaled by the pre-synaptic efficacy of the neural popula-
tions at a distant position �x ′ at the time t′. We note that this is not
quite physiologically accurate either, since the synaptic dynamics
should be evaluated at (�x, t), not (�x ′, t′), albeit driven with the fir-
ing rates from �x ′ delayed by t − t′. This could be achieved by set-

ting Nβ

ekCe → Nβ

ekCS
e and Nα

ek�ek → Nα
ekC�

ek�ek in Equation (31),
removing Ce in Equation (33), and then tracking separately the
spatiotemporal dynamics of CS

e and C�
ek, respectively, where the

latter would have �ek instead of Se in Equation (23). However,
this would double the effort for computing the synaptic dynam-
ics and could have potentially undesirable consequences for the
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separation of distant sources, see the Discussion for further detail.
Finally, for simplicity we have assumed here that the extracortical
input pek remains unchanged. This assumption will likely need
to be improved upon for greater physiological realism, i.e., we do
expect that in particular thalamic activity will also be modified by
anesthesia. However, our current focus on only the cortical side
allows us to highlight the proposed bursting mechanism without
potential interference from complex interactions between extra-
cortical and cortical structures. Given the assumption that pek

is constant (or in the case of pee, that its mean is constant), we
would not expect the pre-synaptic efficacy to change. Overall, if
we switch off the synaptic dynamics Cl ≡ 1, we recover exactly
the extended Liley model of Bojak and Liley (2005).

The bursting Liley model hence consists of Equations (1, 7,
14, 15, 21–23, 30–33), with the influence of isoflurane anesthe-
sia being parameterized by Equations (9–13, 18). In practice we
choose the fl > 0, and as before use the “combined fixed point”
initial state of Equation (29). The parameter values we have cho-
sen are listed in Table 1. For the synaptic system, we have followed
qualitatively the work of Tsodyks and Markram (1997) in assum-
ing a possible range of about 250 ms to 1000 ms for τ rec

l , and
values between 0.1 and 2.0 for fl. The values used in this paper
were chosen after computational experimentation with various
settings, and were selected because they lead to bursting only for
relatively large concentrations of isoflurane. Clearly, more system-
atic and comprehensive scans of the available parameter space and
better understanding of the dependence of the observed dynam-
ics on these parameter values are needed in order to elucidate the
mechanisms proposed here. However, it takes considerable com-
puting time to simulate such large spatial systems. In order to
accomplish a proper analysis of the parametric dependencies, one
will likely need to find approximate but rapid evaluation meth-
ods, similar to replacing the full simulation with an eigenvalue
calculation as in Bojak and Liley (2005). The development of
such methods is beyond the scope of this article, here we want
to demonstrate in a pilot study that we can qualitatively repro-
duce the spatial differentiation in burst suppression that has been
observed experimentally.

2.3. NUMERICAL SIMULATIONS
All our simulations are performed on a two-dimensional corti-
cal sheet discretized by a 512 × 512 numerical grid, where we
assume a grid spacing of �x = �y = 1 mm. The effective sim-
ulation area of 2, 621.44 cm2 corresponds roughly to the size
of an entire human cortex (Im et al., 2008). Smaller grids, with
or without larger grid spacing, have been used to investigate
parameter dependencies more rapidly, but the results presented
in this paper were all obtained on this standard grid. In order to
avoid boundary effects we have made the numerical grid toroidal,
i.e., if we number the grid points 0–511 along one dimension
from left to right, then the grid point to the left of 0 is 511,
and the grid point to the right of 511 is 0, and this is true for
both dimensions. Obviously such a geometry is artificial as com-
pared to the real brain. However, since it leaves all numerical
grid points entirely equivalent, this together with the isotropic
and homogeneous “background” connectivity implicit in the
PDE propagation makes minimal assumptions about the actual

geometry and specific connectivity of the brain. Basically, it rep-
resents a kind of anatomical “null hypothesis” from which any
anatomical detail will deviate; and the more homogeneous the
brain turns out to be in an effective sense, the better this approxi-
mation will represent its activity. As argued above, at significantly
increased computational costs one can improve this description
with neural mass meshes, but this is not expected to change the
results obtained here at least qualitatively.

The only dependence on space is found in the propagation
PDE of Equation (33). Hence the other dynamics are effectively
described by a set of independent ordinary differential equations
(ODEs) in time at every grid point. We solve all these ODEs with
the following simple method: First, any higher time derivatives
are turned into first derivatives by defining auxiliary variables,
e.g., d2g/dt2 = f (g) becomes dg/dt = g̃ and dg̃/dt = f (g). Next,
we solve these first order ODE systems with the forward Euler
method. Obviously many more efficient numerical schemes exist.
But in our experience they occasionally fail for specific parameter
settings with the Liley model, whereas the forward Euler method
always remains stable. Thus, we trade speed for guaranteed stabil-
ity here. In the propagation PDE, the Laplacian is approximated
by a five point stencil, i.e., to estimate the Laplacian at a grid point,
we use the value at that point and those of its four horizontal
and vertical nearest grid neighbors. We find that numerical sta-
bility is increased, if in this PDE we likewise estimate the second
derivative in time directly by considering the current, previous
and future values (and solving for the future one), rather than
first rewriting them into first order derivatives as for the other
dynamics. We use MPI-C to parallelize the computation across
multiple nodes (threads and/or cores). This involves splitting up
the grid into patches assigned to the individual nodes. We note
that since the only spatial dependence in the dynamics arises from
the Laplacian, and since we approximate it with a five point sten-
cil, the only required communication between these nodes is that
of the proximate part of the one grid point deep boundary of the
local patch to the nodes working on the adjacent patches. This
limited need for communication between nodes allows for very
efficient parallel computation.

How the noise driving the system is generated and filtered in
a mathematical sense has been described above, here we will add
the following technical comments: The temporal Catmull-Rom
spline filter is obviously local in space, and hence in a paral-
lel setting can be performed by every individual compute node
on the grid points assigned to it. However, the initial noise gen-
eration is done in Fourier space, to allow spatial filtering by a
simple multiplication at every (Fourier space) grid point, fol-
lowed by an inverse Fourier transformation. We use FFTW (Frigo
and Johnson, 2005) to perform the inverse Fourier transform in
parallel across the available compute nodes. This means that the
random number generation and the Fourier space filtering can
be done local in each node on its part of the Fourier grid, while
FFTW organizes the communications between the nodes involved
in the inverse Fourier transform.

The time step used in our simulations is �t = 5 · 10−5 s,
which for our chosen grid spacing is sufficient to achieve stable
and convergent results. However, we save the simulation results
neither at every time step, nor the entire system state, nor at the
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internal double floating point precision (8 Bytes). The reason is
that the 10 state variables of the bursting Liley model saved for
512 × 512 grid points at 8 bytes per point already would require
20 MB of hard disk space per time step, and thus at full time res-
olution a mere 3 s of run time would generate more than 1 TB of
data. In practice, we typically save between one and four selected
state variables with 250 Hz, converting to single floating point
precision (4 Bytes) in the output. This still generates data files of
many GB for our longest runs. Finally, even this data reduction is
not sufficient to generate suitably sized animations of our results.
Basically, the fine detail of a 512 × 512 grid leads to low com-
pression efficiency of the employed (H. 264) movie codec. For
producing animations we hence tile the output grid into squares
of 4 × 4 grid points and average over these to obtain an effec-
tive 128 × 128 grid with smoother values that compress better.
This explains the mild visual disparity between our figures (at
full 512 × 512 resolution) and the animations, even though they
are produced from the same underlying data set. We also produce
video frames at an even lower sampling rate in time, and we use
variable sampling rates to selectively speed up uneventful parts of
the video. A time counter in the videos keeps track of the sampling
rate, and occasional choppiness and blurriness in the videos does
not reflect actual discontinuities in the simulations but merely low
sampling rates and aggressive video compression.

3. RESULTS
We explore the influence of isoflurane on the model in a long
simulation run presented in Figure 2. The entire simulation also
has been animated as Movie 1, included in the Supplementary
Material. In Figure 2A we show the time course of the isoflurane
concentration that we have imposed. First the system is run free
of anesthesia (0 MAC) for 10 s. We call this the first plateau in the
following. The equilibrium values of the system are used as initial
conditions. Hence there are no transient dynamics, which allows
us to estimate a power spectral density (PSD) from the he time
series. Then we increase the concentration linearly to 0.5 MAC
(equivalent to 0.1215 mM or 0.585% inspired at normal body
temperature) over 10 s, and keep the system at this concentra-
tion for another 10 s. This second plateau corresponds to a light
anesthesia state, without burst suppression, and again we can esti-
mate a PSD here. Next we increase the concentration linearly to
1.0 MAC (equivalent to 0.243 mM or 1.17% inspired), and keep
the system there for 40 s. This third plateau corresponds to a state
of deep anesthesia, with burst suppression, and we can estimate
a PSD here as well. After that, we increase the isoflurane concen-
tration again for 10 s to 1.5 MAC (equivalent to 0.3645 mM or
1.755% inspired), and maintain it at this value for 10 s. Bursting
is abolished at this fourth plateau, and we compute another PSD
here. Finally, we raise the concentration for another 20 s up to
2.5 MAC (equivalent to 0.6075 mM or 2.925% inspired). This
demonstrates that the system has finally returned to a regime
without bursting.

In Figure 2B, we see PSDs estimated over these plateaus. At
each concentration, we have calculated PSDs for every individ-
ual grid point from the he time series for the entire duration of
the plateau, using a Welch estimate with a 2.5 s window and 50%
overlap, and then have averaged the resulting 262,144 PSDs. We

have normed these average PSDs to have unit area, i.e., their total
power over all frequencies is one. This makes it easier to com-
pare them visually. Please note that the parameter set used here
is a “bi-phasic” one, see the discussion in Bojak and Liley (2005).
Consequently, the total power at the second plateau is actually
increased over that at the first plateau by a factor of 1.26. We
see the characteristic shift of the alpha resonance to lower fre-
quencies, in this case initially accompanied by a sharpening of
the peak. Without the slow synaptic system as in Bojak and Liley
(2005), a further increase of the isoflurane concentration would
move the former alpha peak to ever lower frequencies, accompa-
nied eventually by strong damping of the peak and a reduction of
the total power, completing the bi-phasic power change. However,
with the introduction of the slow synaptic system we see a burst
suppression pattern emerge, and the large amplitude oscillations
imply a drastic increase in total power by a factor 131 over the
resting values. Yet we see that the PSD obtained from the third
plateau—as far as frequency content is concerned—roughly fol-
lows what is expected without the synaptic system: The majority
of the power, which is generated by the large bursts, is located
where one would expect to see the former alpha resonance in the
previous model of Bojak and Liley (2005). In other words, the
bursts roughly conserve the regular dynamics of the system, in
particular of the former alpha resonance. At the fourth plateau
the system has ceased to burst but still shows elevated total power
1.44 times larger than at rest.

In Figure 2C1 we see the system at rest under noise drive. The
visible structure is hence basically that of the spatial correlations
we have included in the noise. The corresponding time series
in Figure 2C2 shows the typical waxing and waning of a resting
alpha rhythm in he. Unsurprisingly, �ee oscillates slowly at values
about the equilibrium value of the slow synaptic system �0

ee, cf.
Table 1. In Figures 2D1,D2 we see the corresponding state at light
anesthesia. The overall he is now lower across the grid, indicating
smaller firing rates on average. However, as we can see in the time
series the amplitude of the oscillations has increased, correspond-
ing to the power increase expected for this “bi-phasic” parameter
set. The oscillation frequency also has become lower, though this
is easier to see in the PSDs of Figure 2B. We see that �ee is still
oscillating slowly, but around values somewhat higher than �0

ee,
because the synaptic resources are not as rapidly depleted by the
reduced excitatory firing rate of the depressed he.

In Figure 2E1 burst suppression patterns have emerged. These
patterns are clearly independent of the noise drive. In the Movie 1,
included in the Supplementary Material, one can see how this is
a snapshot of “burst waves” moving across cortex, with centers
of burst activity spontaneously forming and disappearing. The
geometry of these excitations is complex and constantly chang-
ing. We see in Figure 2E2 that the strongest oscillations in he are
associated with a rapid drop in �ee due to the synaptic depletion
during these periods of high firing. This lowering of �ee quickly
suppresses the burst by reducing the self-excitation of cortex. This
is then followed by a recovery to values of �ee that are large com-
pared to those at rest or light anesthesia. This recovery to high
values of �ee is driven by the isoflurane-induced reduction in
the mean excitatory firing rate during the suppressed periods. In
turn, these strong PSPs eventually destabilize the neural system,
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FIGURE 2 | (A) Imposed concentration of isoflurane (red curve), and the he

response (blue curve) at the cortical location indicated by black arrows in the
snapshot panels below. Different plateaus of concentration are labeled “C,”
“D,” “E,” and “F.” Arrows point to the central times of the corresponding time
series shown below. (B) PSDs of he averaged over the entire grid and normed
to unit area for plateaus “C” (blue), “D” (green), “E” (red), and “F” (cyan). The
motion of the alpha peak to lower frequencies persists qualitatively into the
burst suppression phase “E” at much increased power. (C1) Snapshot of the
he activity of the cortical surface at 0 MAC isoflurane. The size of he is indicated
by both height and color, cf. the color bar. A black arrow shows the position from

which the corresponding time series were recorded. (C2) Time series of he

(blue) and �ee (green) over the 10 s of the “C” plateau. Regular alpha rhythms
in he and slow �ee oscillations around the standard value �0

ee can be seen. (D1)

Snapshot at 0.5 MAC. (D2) Time series of the “D” plateau. The oscillations of
he have larger amplitude at a lower average. The slow �ee oscillations now
occur at an elevated level. (E1) Snapshot at 1 MAC. Burst suppression patterns
have emerged and move across the cortical surface. (E2) Time series of the
“E” plateau. Burst suppression is apparent both in he and �ee, with a rapid
drop in �ee caused by the strongest he oscillations. An animation of this
simulation is provided as Movie 1 in the Supplementary Material.
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leading to another burst. The burst suppression pattern persists
as the anesthesia concentration is being increased again, up to
quite high concentrations. In Movie 1, one can see that the ampli-
tudes of the “burst waves” eventually become smaller and smaller
until the burst activity fades away into regular noise driven activ-
ity. We do not show here corresponding plots for the fourth
plateau with abolished bursting, but they would look similar to
Figures 2D1,D2 with a further reduced mean value he, even lower
oscillation frequency, and a �ee that is on average even higher.

The burst suppression phase shown in Movie 1 of the
Supplementary Material makes obvious that one cannot expect
global synchrony of the burst suppression across cortex. A mul-
titude of transient spatiotemporal patterns emerge, travel across
cortex, and dissolve. This is also shown in Figure 3, which shows
time series from three well-separated locations on the simulated
cortex at a specific point in time. There is little evidence of
strong systematic correlations. While one might expect that the
propagation of “burst waves” should lead to correlations with
temporal delay at these distances, other burst features emerge
across these spatial scales and interfere with the burst timing.
Without observing spatiotemporal pattern globally, it hence will
be difficult to find systematic correlations of the bursts at large
distances. However, locally it may be possible to track the regular
motion of burst patterns, e.g., at a point close to the one labeled
“a” one might see bursting appear with a delay, characteristic
for the “burst wave” passing through these two points sequen-
tially. Overall, we expect stronger synchronization—or at least
consistent phase differences from traveling patterns—at shorter
distances, whereas at longer distances such correlations will be
basically accidental. Thus, one would expect to see considerable
spatial differentiation if one records from several spatial locations,
as in Lewis et al. (2013). How many electrodes would be seen to
burst at the same time would depend on the size and motion of
the emerging spatiotemporal burst patterns.

Local variation of cortical tissue properties, reflected in the
model evaluation by a change in the parameters, may also affect
the ability of some part of cortex to participate (fully) in the
spatiotemporal burst suppression dynamics. Such variation of tis-
sue properties can be natural and develop intrinsically, or could
be induced extrinsically by physical insult or the application of
drugs. We have seen that bursts are associated with slow but
large oscillations in the excitatory peak amplitudes of the PSPs.
It is important to note that there are two different effects deter-
mining the general size of the �ek. On one hand, anesthesia is
reducing �ek directly as parameterized by the Hill factor He(c),
cf. Equation (30). On the other hand, the reduction in the aver-
age he, mostly due to the strong prolongation of the inhibitory
PSPs with anesthesia, means that the average excitatory firing
rate Se decreases. This in turn leads to less synaptic depletion
and hence actually a rise in �ek, cf. Equation (19). The net effect
with increasing concentration is actually an increase of �ek, and
this is crucial for the onset of bursting. If one increases anesthe-
sia further, eventually the Hill factor begins to dominate and �ek

decreases again.
The same can be said for the �ik, and the corresponding

balance between the Hill factor Hi(c) and the reduction in Si

for increasing anesthesia. However, we see that in the standard
parameters the excitatory synaptic depletion factor fe = 1.25 is
much larger than the inhibitory one fi = 0.175. This means that
there is much less room for �ik to grow, since the steady maxi-
mum is �r

lk(c) = �0
lk(1 + fl)Hl(c). One simple idea for reducing

the ability of cortical tissue to participate in burst suppression
is hence to increase the growth of inhibition with anesthesia by
raising fi. What do we expect to be the effect of this increased
inhibition, in particular concerning the excitatory �ek? In gen-
eral we expect he and hi to decrease even more rapidly with
increasing concentration of anesthesia, due to the boosted inhi-
bition. But silencing the cortex also decreases synaptic depletion,

FIGURE 3 | (A) Snapshot of the he activity of the cortical surface at
simulation time 54.94 s under the influence of 1 MAC isoflurane. Black
arrows with labels “a,” “b,” and “c” point to the cortical locations of the time
series shown in the other panel. Note the toroidal boundaries, e.g., the
circular burst front that appears cut off around (x, y ) = (44.8, 0) cm continues
at x = (44.8, 51.2) cm. (B) Time series of he (blue) and �ee (green) taken

from the three different positions marked as “a,” “b,” and “c” in the other
panel. It is obvious that bursts are not generally synchronized in time at the
different positions. Spatiotemporal correlations from propagating “burst
waves” can occur, but are removed at larger distances by the interference
from other emergent patterns. An animation of this simulation is provided as
Movie 1 in the Supplementary Material.
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so we actually expect a stronger initial �ek growth for increas-
ing anesthesia. It is hence not a priori clear whether the more
rapid decrease in he or the more rapid increase in �ek dominates,
and in consequence whether bursting is abolished or maintained,
respectively. We note that for our regular parameter set burst-
ing is abolished at higher concentrations even though �ek is still
increasing, because he has then decreased too much. We may
hence expect that an increase of fi alone can stop the bursting.

To test this, we use a typical simulation at 0.25 mM
isoflurane. However, in a circular patch of tissue we set
fi = 1.25 instead of the standard fi = 0.175, while leaving
this parameter at fi = 0.175 across the rest of the cor-
tical sheet. Using �r

lk(c) = �0
lk(1 + fl)Hl(c), we have inside

this patch �r
ie,ii(0.25) = (3.5174, 2.3872) mV and outside

�r
ie,ii(0.25) = (1.8369, 1.2467) mV, respectively, while every-

where �r
ee,ei(0.25) = (0.37703, 3.8414) mV. As shown in

Figure 4, outside of the circular patch burst suppression patterns
emerge as usual, see Figures 4A,B, while in the dead center of the
circular patch there is no sign of such activity, see Figures 4A,D.
Hence inside the patch the greater decrease in he was more
effective than the greater increase in �ek, compare Figures 4B,D.
Interestingly, at the border of the circular patch, see Figures 4A,C,

we see largely the same state as for the center, but there appear
to be some “quasi-bursts”. Actually, this is activity spilling into
the circular patch from the outside through the propagation with
Equation (33). The characteristic spatial decay scale of this prop-
agation is λek = 2.4 cm. Given a radius of 9.6 cm of the circular
patch, we expect a signal from the outside to have fallen to less
than 2% of its original value at the center. So it is unsurprising
that any outside influence on the center is not obvious to the eye,
but that close to the rim we see stronger echoes of the surround-
ing burst activity. In Movie 2 in the Supplementary Material he

(top panel) and �ee (bottom panel) animations are shown. Here
one can observe the bursting waves collide with the circular patch,
and then fade as they penetrate deeper. We note that an increase to
for example fi = 0.5 in the patch is not sufficient to abolish burst-
ing in this manner, illustrating that it is the balance between the
decrease in he and the increase in �ee which determines whether
self-excitation is possible.

The dynamics of �ee are of course much slower than those
of he, and we can track the he burst fronts by the progression
of the lowest dips and valleys in �ee. This corresponds to rapid
synaptic depletion in high firing regions. The extent of “spill-in”
from the outside into the circular patch is also easier to discern

FIGURE 4 | (A) Snapshot of the he activity of the cortical surface at
simulation time 16.78 s under the influence of 0.25 mM isoflurane, where in
a circular patch (center (x, y ) = (20.0, 20.0) cm, radius 9.6 cm) the inhibitory
synaptic depletion factor fi has been increased from 0.175 to 1.25, leading to
an increase of �r

ie,ii there by a factor 1.91. The size of he is indicated by both
height and color, cf. the color bar. One can see that the circular patch does
not participate in the burst suppression pattern. Black arrows with labels “B,”
“C,” and “D” point to the cortical locations used in the other panels. (B) Six

seconds long time series of he (blue), hi (green), �ee/�0
ee (red), and �ie/�0

ie
(cyan) around the time of the snapshot from a point outside of the circular
patch. Burst suppression is clearly visible in all variables. (C) Time series from
just inside the circular patch. There is no local burst suppression, but some of
the outside burst activity spills in. (D) Time series taken from the center of
the circular patch. There is neither local burst suppression nor spill-in.
Animations of this simulation are provided as Movie 2 in the Supplementary
Material.
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FIGURE 5 | Time series of the mean excitatory soma membrane

potential he (blue), the excitatory post-synaptic peak amplitude �ee

(green) and the average excitatory firing rate normed to the maximum

attainable rate Se(he)/Smax
e (red). Note that both �ee and Se(he)/Smax

e
map by value to the black ordinate on the right, though with different units.
The time series shown here is part of the times series labeled “a” in
Figure 3B. One sees that the strongly non-linear relationship between he

and Se in the anesthetic regime transforms the “symmetric” he oscillation
that would be visible in local field potentials and the EEG during the burst
phase into strong “spikes” in the firing rate Se, and consequently to a
“jagged” appearance of the synaptic depletion of �ee.

in �ee: the center of the patch remains at roughly constant val-
ues, while at the rim �ee drops when high firing propagates into
the patch. We note that the strong oscillations that one can see
as �ee drops rapidly in Figure 4C show up in the movie as a
kind of “bouncing” rather than a smooth advance of the burst
fronts. To understand this better, we provide Figure 5. It shows
part of the time series labeled “a” in Figure 2B. However, in addi-
tion to he (blue curve) and �ee (green curve), it also shows the
mean excitatory firing rate Se(he) as red curve. So that one ordi-
nate can be used for both �ee and Se(he), we have normalized
the latter by the maximum excitatory firing rate Se(he)/Smax

e . The
basically symmetric oscillations of the mean membrane poten-
tial he around an average value translate into strong “spikes” in
the mean firing rate Se(he). This is due to the sigmoidal nature
of Equation (7), combined with the fact that the average he is
about 5.5 standard deviations σe = 2.8669 mV below the average
firing threshold μe = −51.656 mV, leading to low firing rates.
Only the strongest depolarizations in the burst come close to this
threshold—though even they do not quite reach it here, as we
can see, since Se(μe)/Smax

e = 0.5 by definition. Thus, the relation-
ship between he (local field potentials and EEG) with firing rates
is highly non-linear in the anesthetic regime. It is obvious from
Figure 5 that the jagged drop of �ee is simply caused by strong
synaptic depletion induced by “spikes” in the mean excitatory
firing rate.

Finally, we also considered the influence of the spatial scale
of brain connectivity on the spatiotemporal expression of burst
suppression. As mentioned above, in this simplified model it is
represented by the parameter λek, the characteristic length scale of
the exponential decay of activity propagated with Equation (33).

Its regular value according to Table 1 is λek = λ2 = 2.4 cm. This
is a length scale one might associate with a brain region and
cortico-cortical connections, in particular since the influence of
activity at a point would be felt across a distance of several
λek. We vary this length scale up λek = λ1 = 2.7 cm and down
λek = λ3 = 2.1 cm to investigate the impact of brain connectiv-
ity on the dynamics. In Figure 6 we see the dependence of the
spatiotemporal activity on adjusting this parameter. The spatial
extent of the emerging burst patterns clearly becomes smaller as
λek is being decreased, cf. Figures 6A–C. This is particularly obvi-
ous in the corresponding animations for the different λek values,
Movies 3–5 of the Supplementary Material, where we can see that
at λ1 large parts of cortex are recruited in the bursts, whereas
for λ3 bursting is much more localized. Our standard λ2 repre-
sents an intermediate case. However, the time interval between
bursts for these different λek appears at first sight comparable,
see Figure 6D. To be more quantitative, one can use the point
where �ee drops lowest as a convenient marker for the time of
a burst peak. To carry out automatic computations for 50 s time
series for every grid point, we select the deepest minimum within
a specific continuous “burst peak region” defined by �ee ≤ 0.05
as burst peak time, and we remove inter-burst intervals with
�tIBI < 1.0 s as not representative for single burst behavior. This
cut removes “double-dipping” below our �ee threshold, caused
for example by two subsequent activity “spikes” in the same burst
with just enough recovery in between to get above threshold (very
small �tIBI) or the interference of two burst waves (small �tIBI).
We find the following grid averages: 〈�tIBI〉λ1 = (4.44 ± 0.26) s,
〈�tIBI〉λ2 = (4.0 ± 1.1) s, and 〈�tIBI〉λ3 = (3.5 ± 1.5) s. We see
that the mean of �tIBI is decreasing roughly by 0.5 s per 3 mm
reduction of λek; whereas the standard deviation increases con-
siderably with decreasing λek, reflecting the more diverse spatial
distribution of the burst patterns. According to these simulations,
we can expect that spatial differentiation—the size of the burst
suppression patterns and their timing—is intimately linked to the
effective extent of the brain connectivity propagating the burst
activity.

4. DISCUSSION
We find that the simulation of isoflurane induction with the
model proposed here reproduces at least qualitatively the electro-
physiological response that one can measure in the EEG (Foster
et al., 2008). At light anesthesia there is an oscillatory shift to
lower frequencies with higher amplitudes, then in deep anesthe-
sia we find burst suppression patterns, and finally for even higher
concentrations these bursts are abolished as cortex slowly heads
toward electrotonic death. Significantly, in the burst suppression
phase the prior regular activity of cortex is roughly “echoed” in
the frequency content of the burst (Kroeger and Amzica, 2007;
Ching et al., 2012), though of course the amplitude of the oscilla-
tions is much increased. We find that burst suppression results
in dynamic and complex burst patterns that travel across cor-
tex in waves, rather than remaining statically in place. The burst
suppression phase is foreshadowed by the continuous elevation
of peak PSP amplitudes, until finally these strong inputs desta-
bilize the neural system into bursting. At maximum oscillation
of the mean soma membrane of the neural population, strong
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FIGURE 6 | (A) Snapshot of the he activity of cortex at simulation time 9.54 s
at 0.25 mM isoflurane with λek = λ1 = 2.7 cm. A black arrow shows the
cortical location at which the corresponding time was recorded. An animation
is provided as Movie 3 in the Supplementary Material (B) Snapshot at
simulation time 5.79 s with λek = λ2 = 2.4 cm, the standard value. An
animation is provided as Movie 4 in the Supplementary Material. The

characteristic size of the burst patterns is reduced. (C) Snapshot at simulation
time 11.70 s with λek = λ3 = 2.1 cm. An animation is provided as Movie 5 in
the Supplementary Material. The characteristic size of the burst patterns is
reduced even further. (D) Time series of he (blue) and �ee (green) taken from
these three simulations, marked as “λ1,” “λ2,” and “λ3.” We see that
inter-burst interval remains roughly the same.

depletion of the synaptic system leads to a sudden drop of the
PSP peak amplitude, which suppresses the burst until the synap-
tic system is able to recover again. The relatively slow time scale of
this recovery is what governs the periodicity of the bursts in the
burst suppression regime in this model.

While we are mostly interested here in investigating the spatial
differentiation of burst suppression qualitatively, the emergence
of burst suppression in our simulations is also in rough quantita-
tive agreement with what has been observed clinically. Because the
emergence of burst suppression in the EEG represents a distinct
endpoint, it has been proposed that it may be a suitable measure
by which to titrate the administration of anesthesia to ensure opti-
mal hypnosis. On this basis a variety of efforts have been made
to estimate the concentration dependent emergence of burst sup-
pression during anesthesia. It has been found that during sole
agent isoflurane anesthesia, the burst suppression pattern can
emerge at end-tidal concentrations as low as 1.2% (Hoffman and
Edelman, 1995; Pilge et al., 2014), i.e., aqueous concentrations of
� 0.25 mM at 37◦C. However when arterial blood concentrations
of isoflurane have been measured the onset of burst suppression
has been reported for levels as low as 34.9 μg/ml or � 0.19 mM
(Loomis et al., 1986) – close to the value at which we observed the
onset of burst suppression in our model.

However, more importantly our model predicts the appear-
ance of large-scale spatial burst patterns across cortex, which
emerge, travel and disappear over time. In consequence, coher-
ence of burst timing is mostly local, though one can expect to
see characteristic burst onset time shifts in the case of burst pat-
terns traveling across neighboring recording sites. Some of the
simulated patterns become large in size intermittently, recruiting
large parts of cortex and thus leading to more “global” correla-
tions of burst timing. However, for the most part the complex
spatiotemporal dynamics will lead to “local” correlations, with
synchronization over large distances being mostly accidental.
These predictions are at least qualitatively in line with the experi-
mental observations of Lewis et al. (2013), see in particular their
Figures 3, 4. We suggest that spatially dense experimental record-
ings may allow one to track such spatiotemporal burst patterns in
detail. At least in principle it should be possible to reconstruct the
underlying cortical state in terms of our model from such record-
ings, in particular if one tracks the activity over some length of
time. The relatively slow spatiotemporal dynamics of the bursts
may help in this regard.

We have shown here as well that increasing the inhibitory
depletion factor fi, or equivalently the resting values �r

ie and �r
ii of

the inhibitory peak amplitudes, can abolish bursting in the model
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in a localized manner (in a patch of simulated cortical tissue).
This is due to affecting the balance of two competing effects: the
decrease of he reduces, whereas the increase of �ee increases, the
capacity of cortex for self-excitation. For large enough increases of
inhibition the former dominates the latter. This provides further
possibilities for spatial differentiation in cortex as some tissue may
have naturally higher inhibitory peak amplitude resting values,
and hence be less capable of participating in burst suppression.
In addition, it is expected that spatial heterogeneity in the cortical
actions of anesthetics will contribute to the spatial differentiation
of burst suppression. Most anesthetics that induce burst sup-
pression are GABAergic agents, which in addition to enhancing
inhibitory PSP action also produce increases in tonic inhibition,
as well as reductions in tonic excitation by altering the activity
of a variety of membrane bound channels that include two pore
potassium channels, extrasynaptic GABAA and nicotinic acetyl-
cholinergic ionotropic receptors. However, these synaptic and
extra-synaptic channels, which exist in multiple isoforms that
are variably affected by the same anesthetic agent, are not dis-
tributed uniformly throughout cortex. Thus, we would expect no
two regions of cortex to share exactly the same propensity to burst
for a given anesthetic level. This is not reflected in the current
work, but left for future studies.

The hypothesized synaptic basis for spatially heterogeneous
burst suppression suggests that if one can accordingly manipulate
the cortical tissue, then one can artificially suppress, abolish or
even enhance its participation in bursts. Importantly, our model
predicts that drugs increasing inhibition could have the paradox-
ical effect of increasing burst activity, depending on the precise
balance of the he decrease and �ee increase that they induce. In
particular, one would typically expect that any paradoxical effects
would occur at lower doses, since strongly increasing inhibition
should eventually see the he decrease win over the �ee increase. It
is interesting to note that a wide variety of GABAA modulators
appear to have paradoxical effects at low doses, see for exam-
ple (Bäckström et al., 2011) and references therein. Furthermore,
our spatial model predicts that bursting activity of surround-
ing tissue can propagate into tissue that is incapable of bursting
itself, to a depth depending on the density of synaptic connec-
tivity, and lead there to “quasi-bursts” which simply reflect the
dramatic variation of the synaptic input. However, if bursts are
abolished by the mechanism suggested here, namely an increase in
the inhibitory synaptic depletion factor fi, then this tissue would
show particularly large inhibitory PSP amplitudes and largely
constant (rather than strongly varying) excitatory ones . This sug-
gests that one could experimentally distinguish between bursting
and “quasi-bursting” tissue by monitoring the size of the PSPs.

Furthermore, we have shown that both the spatial extent of
the burst patterns, and the timing of the bursts (in particular the
interval between bursts) depend on the characteristic scale of the
brain connectivity effectively involved in propagating this activ-
ity: the shorter range these connections, the smaller the regions
of coherent burst activity, and the more rapidly one burst follows
on after the other. While at present this constitutes a qualitative
finding, and while the implementation of brain connectivity in
our model (homogeneous, isotropic and exponentially reducing
with distance) is too simplistic to speak directly to the complexity

of actual cortico-cortical connectivity, this nevertheless suggests
that there is an intimate link between the spatiotemporal profile
of burst suppression and the underlying brain connectivity. This
will have to be taken into account when trying to improve
the realism of such simulations. Thus, by being more specific
about the anatomical structure of our mesoscopic model it may
become possible that observations of burst suppression patterns
will enable estimation of the effective connectivity of the bursting
tissue. This would provide a new window on a difficult to access
but key property of the brain.

Our present simulation has been restricted to studying the
role that one slow modulatory system might have in the gene-
sis of the burst suppression pattern. However, given the feedback
inherent in the physiological and anatomical organization of cor-
tex it is certainly only one of many systems that are capable of
modulating cortical excitability, and hence the emergence of fast-
slow bursting activity. Indeed we might hypothesize that such
slow modulatory systems will span a number of functional scales
in the brain—from perturbations in the autoregulatory coupling
of neuronal and metabolic activity to alterations in the dynam-
ics of cortico-thalamic and cortico-cortical feedback, to mention
only the most obvious. However, regardless of the specifics of the
slow system it is clear that any theory purporting to account for
the genesis and features of cortical electrodynamics must be able
to account for the reversible emergence of burst suppression in
response to the action of anesthetic agents. In this respect both
our model and the model of Ching et al. (2012) may be seen as
meeting this requirement, even though they take as their start-
ing points neuronal activity modeled at different spatial scales. A
possible advantage of our approach, besides being able to deal eas-
ily with a spatially extended cortex, is that the modeled action of
anesthesia is directly coupled to the emergence, and subsequent
disappearance, of bursting. In contrast, in Ching et al. (2012) the
parameters defining anesthetic action (τGABA and gGABA) are not
directly related to the parameter JATP (the metabolic production
rate of ATP) that defines the emergence of bursting.

Our model of synaptic depression is driven by pre-synaptic
firing rates. This is unproblematic for the quasi-instantaneous
local activity. However, an issue arises due to the propagation of
action potentials from distant sources with finite velocities along
cortico-cortical fibers. The current formulation of Equations (31,
33) as to how such distant inputs drive local PSPs is not entirely
faithful to the actual physiology: the pre-synaptic firing rate is
now modulated with the concurrent synaptic dynamics at the
distant pre-synaptic site, which is then propagated with conduc-
tion delay; whereas it would be more physiologically accurate
to propagate the pre-synaptic firing rates, and then modulate
these conduction-delayed inputs with local synaptic dynamics.
However, this would mean tracking separately local synaptic
dynamics driven by quasi-instantaneous local (CS

l ) and delayed

distant (C�
ek) pre-synaptic firing rates, respectively. Our current

model requires only one local synaptic dynamics (Cl), making
it computationally simpler. Furthermore, one can argue that the
current formulation better separates distant sources: If there are
two distant sources, but only one of them begins to fire at higher
rates, then only its signal would become depressed by the resulting
synaptic dynamics, but not that of the other. Whereas if we were to
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drive a local C�
ek directly with the sum of the delayed signals, then

the higher firing of one would lead to synaptic depression also of
the other. Yet one can argue to the contrary that such a conflation
of distant inputs is simply part of the averaging approximation
involved in considering neural populations rather than individual
cells. We have made here a choice of convenience, but this may not
always be possible. The parameters characterizing the (excitatory)
synaptic dynamics are in this work taken to be spatially homoge-
neous. We are not aware of any extant empirical evidence that
would require a significant deviation from homogeneity, but the
alternative method mentioned above would be more suited for
this case. For as currently formulated, the synaptic dynamics will
be determined by parameters located at the origin of such activity
and not, as must be physiologically the case, its pre-synaptic ter-
mination. A further possibility that we have not considered, due
to the lack of any clear empirical data, is that these parameters
themselves depend systematically on anesthetic concentration. If
such a relationship is demonstrated, then this could act as a pos-
sible source of spatial inhomogeneity in the parameters of the
synaptic dynamics, under the assumption that anaesthetic action
shows spatial variability.

Finally, there are obvious extensions to this work that should
be considered, but were beyond the scope of this initial inves-
tigation. The most obvious extension is to more systematically
consider the effects of variations in the neural field model param-
eters defining the resting (unperturbed) EEG, and to study the
resulting dynamics for spatially homogeneous models of synap-
tic resource depletion and anesthetic action. Furthermore, the
neural field model used here can be extended to an equivalent
neural mass mesh constrained by a real cortical head model based
on MRI data (Bojak et al., 2010, 2011). Then one could inves-
tigate regional variations of the neural mass parameters with
areal boundaries defined according to any of the available cortical
structural/anatomical atlases [e.g., the Harvard-Oxford cortical
and subcortical structural atlas (Desikan et al., 2006), or the Jülich
histological atlas (Eickhoff et al., 2005)]. For example, each region
could be assigned a distinct parameter set identified as producing
physiologically plausible EEG within the physiologically admis-
sible/plausible parameter space (Bojak and Liley, 2005). One
could then additionally study regional variations in the synaptic
resource depletion and/or anesthetic action parts of the model,
as well as the interactions of heterogeneities in the component
systems.

A perhaps less immediately obvious development, which how-
ever will be necessary to obtain a deeper understanding of the
dynamical mechanisms responsible for the emergence of burst-
suppression, would be some form of systematic bifurcation anal-
ysis. In such an analysis, the slow system would be “frozen”, i.e.,
one would set the synaptic ∂Cl/∂t ≡ 0, and a bifurcation analysis
of the remaining “fast” subsystem would be performed by treat-
ing the Cl as bifurcation parameters. Such a bifurcation analysis,
known as a fast-slow analysis, was pioneered by Rinzel (1985)
in his formal analysis of bursting in biophysical models of the
neuronal action potential. While such a bifurcation analysis is rel-
atively straightforward for the temporal dynamics of non-linear
ODE systems, using a variety of available bifurcation software
tools like AUTO, Content, and MatCont (Meijer et al., 2013), it

is considerably more challenging in systems of non-linear PDEs
of the type we have studied here. A fast-slow bifurcation analysis
of the spatiotemporal dynamics of burst suppression will require
the development of new numerical methods and tools, which are
only just beginning to emerge (Green and van Veen, 2014).

Our work then represents only a first step toward a deeper
understanding of the spatiotemporal dynamics of burst suppres-
sion, in particular as induced by anesthesia. Yet it is already clear
from the theoretical results obtained here, which were motivated
by the recent experimental results of Lewis et al. (2013), that the
classical understanding of burst suppression as spatially homo-
geneous phenomenon has become outdated. This can only add
to the importance of burst suppression as a dynamical probe to
investigate the properties and function of cortical tissue, whether
in a theoretical modeling or an applied clinical setting. We expect
that in the near future theory will be further challenged by
the rapid technological advances in electrophysiology and neu-
roimaging, which are producing increasingly accurate and dense
measurements of neuronal activity and cortical dynamics. This
hopefully will allow us to test to what extent the synaptic resource
depletion mechanism proposed here is indeed the driver of the
observed burst suppression dynamics.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnsys.2015.

00018/abstract
We include the animations below to illustrate the results

described in this work. In all cases the 512 × 512 grid for numer-
ical evaluation has been averaged over 4 × 4 patches, and strong
compression and low time sampling may limit the movie quality,
see the discussion in Section 2.3.

Movie 1 | Animation showing the he dynamics for variations in the

isoflurane concentration, for details see Figures 2, 3. Note that the parts

prior and after the emergent burst suppression have been sped up by

increasing the time step between the movie frames.

Movie 2 | Animation showing he (top panel) and �ee (bottom panel),

respectively, at 0.25 mM isoflurane with an increased fi = 1.25 inside a

circular patch—preventing burst suppression there—while the regular

fi =0.175 is kept elsewhere. For further detail see Figure 4 and the text.

Note that the induction phase is not shown.
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Movie 3 | Animation showing the he dynamics at 0.25 mM isoflurane with

regular λek = λ1= 2.7 cm, for detail see Figure 6. Note that the induction

phase is not shown.

Movie 4 | Like Movie 3 but with λek = λ2 = 2.4 cm.

Movie 5 | Like Movie 3 but with λek = λ3 = 2.1 cm.
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