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Editorial on the Research Topic
Mechanisms, thermodynamics and kinetics of ligand binding revealed from
molecular simulations and machine learning

Ligand binding plays an essential role in cellular signaling. Detailed understanding of the
mechanisms, structures, thermodynamics and kinetics of ligand binding is central to drug
discovery in the pharmaceutical industry and academia (Baron and McCammon, 2013; Peng
et al., 2019). Despite this critical importance, such tasks remain challenging in computational
chemistry and biophysics. Molecular docking has proven useful in rapid virtual screening of
small molecules for drug discovery, although it is often difficult to fully incorporate receptor
flexibility into the docking calculations. Recent developments in computing hardware and
simulation algorithms have enabled molecular dynamics (MD) simulations to capture dynamic
ligand binding and dissociation processes. These simulations can then be analyzed to compute
both thermodynamic free energies and kinetic rates of ligand binding (Pang and Zhou, 2017;
Tang et al., 2017; Nunes-Alves et al., 2020; Wang et al., 2022). In addition, Brownian dynamics
simulations have been very efficient in generating a large number of ligand binding trajectories
and estimating the binding kinetic rates (Huber andMcCammon, 2019; Muñiz-Chicharro et al.,
2022). Finally, emerging machine learning techniques have greatly enhanced molecular
simulations and facilitated analysis of the simulation trajectories (Glielmo et al., 2021).

This Research Topic is focused on studies of the pathways, mechanisms, free energies and
kinetics of ligand binding to target receptors. We encouraged both method development and
application papers. Potential techniques used to address these problems include molecular docking,
MD, Brownian dynamics, and machine learning approaches. Systems of interest broadly involve
ligand binding to any type of receptors, including proteins, nucleic acids, materials, and so on.

Carloni et al. have reviewed recent major advancements in molecular simulation
methodologies for predicting dissociation rate (koff), a parameter of fundamental
importance in drug design. They further discuss the impact of the potential energy
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function models on the accuracy of the prediction, and provide a
perspective from high-performance computing and machine learning for
highly efficient and accurate prediction of the constants. Roussey and
Dickson have uncovered important factors of host-guest unbinding
through detailed analysis of a large dataset of simulation trajectories.
They have found that differences in ion densities as well as guest-ion
interactions strongly correlate with differences in the probabilities of
reactive paths, and play a significant role in the guest unbinding.

Joshi et al. describe the extension of their clever method using
curvilinear coordinate-based sampling to study the thermodynamics
of rapamycin associating with the FKBP12 enzyme, the first step in the
action of this antiproliferative agent. The method uses a multiple-
walker umbrella sampling simulation approach to characterizing the
protein–protein interaction energetics along the curvilinear paths, and
yields binding free energies and mechanistic details of rapamycin
binding with wild-type FKBP12 and modifications of these molecules.

Shinobu et al. have optimized practical protocols for a 2D replica-
exchangeMD(REMD)method that combines generalized replica exchange
with solute tempering and replica-exchange umbrella sampling (gREST/
REUS). As demonstrated on ligand binding to three protein kinase systems,
the method ensures good randomwalks in the 2D replica spaces, which are
important for enhanced sampling of kinase-inhibitor binding.

Chai et al. have carried out multi-microsecond length MD
simulations of STK17B in three different states. They observed the
conformational dynamics of its P-loop that could flip into the ADP-
binding site upon the inhibitor binding to interact with inhibitors and
the protein C-lobe, leading to strengthened communications between
the C- and N-lobes. Their simulation results could be useful for
designing highly selective inhibitors.

Zhang et al. have carried out MD simulations and Molecular
Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) calculations
and revealed stronger binding of rivaroxaban in the Y99C mutant of
coagulation factor X than in the Y99A mutant. Their simulations have
also shown that ligand binding may not only be a dynamic process but
also a dynamic state involving multiple binding poses, which could be
important for drug design. Cai et al. have performedMD simulations and
absolute binding free energy calculations for exploring the drug resistance
mechanism of epidermal growth factor receptor (EGFR), a target protein
of many non-small cell lung cancer (NSCLC) drugs. They found the
binding affinity of ATP to L858R/T790Mmutant is higher than that to the
L858Rmutant, due to the significant changes of the protein conformation
and the van der Waals interactions. Their findings could be valuable for
designing new drugs for NSCLC.

Girame et al., Garcia-Borràs and Feixas have appliedMD simulations
to investigate changes in protonation states of in-pathway residues during
protein-ligand binding processes. The authors found that binding of
benzamidine to trypsin was infrequent when His57 was positively
charged, where His57 was part of the catalytic triad and located more
than 10 Å away from the gorge of the substrate binding pocket. Their
findings illustrate the importance in properly accounting for protonation
states of distal residues when using MD simulations to study ligand
binding pathways.

Xue et al. have performedMD simulations on glucocorticoid receptor
(GR) complexed with cofactor TIF2 and five different agonists. They have
uncovered a communicationmechanism between the ligand-binding and
cofactor-binding pockets, and identified a pair of important residues
(D590 and T739) in the allosteric communication pathway, which could
be useful for GR-targeted drug discovery. Shen et al. have examined 130+
RORγ complex structures with different agonists and inverse agonists,

identified specific changes in the contact interaction for distinguishing
active and inactive conformations, and observed essential modes for
separating allosteric binding vs canonical binding and active vs inactive
structures. Their simulations and analyses have also revealed some
essential contacts to the constitutive activity of RORγ.

Huang et al. have built the most likely 3D structures of alpha/beta
hydrolase domain-containing 5 (ABHD5) and the ABHD5-ligand
complexes by combining various computational and experimental
methods. Their simulations have also identified three residues and
some hydrophobic interactions important for protein structure,
function and the interactions with ligands and membrane.

Xiao et al. have introduced the Protein Allosteric Sites Server
(PASSer2.0), which uses a geometry-based algorithm and automated
machine learning to predict allosteric sites. The authors tested a total
of 204 proteins from the Allosteric Database (ASD) and ASBench
database. The server performed well under multiple indicators. It will
provide a valuable tool to facilitate allosteric drug discovery. McKay
et al. have developed an essential dynamics ensemble docking (EDED)
approach to identify the most relevant receptor conformations for
virtual screening. They have demonstrated the approach on docking of
small-molecule antagonists of the PAC1 class B GPCR. With four
representative receptor models selected from simulations and
screening of three million ZINC compounds and 23 experimentally
validated ligands of PAC1, they show that EDED can effectively
reduce the number of false positives and improve the accuracy of
docking.

The paper “Big Data Analytics for Improved Prediction of Ligand
Binding and Conformational Selection” by Gupta et al. continues the
work by these authors to enhance our understanding of the binding of
small molecules to proteins through the conformational selection
mechanism. The authors make use of modern machine learning
approaches and provide valuable tools for identifying proteins that
utilize these mechanisms.

In summary, remarkable advances have been made in both
method development and applications in computational predictions
of ligand binding free energies and kinetics (especially the dissociation
rate). Advanced MD simulations have revealed mechanisms of ligand
recognition and associated protein conformational changes, which
often involves allosteric modulation. Novel approaches have been
developed to select important receptor conformations for molecular
docking and improve the docking accuracy. A new server (PASSer2.0)
has been developed for predicting allosteric sites in proteins based on
machine learning. It will greatly facilitate allosteric drug discovery.
These advances are expected to expand our capabilities in simulations
of ligand binding and drug discovery.
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Local Ion Densities can Influence
Transition Paths of Molecular Binding
Nicole M. Roussey1 and Alex Dickson1,2*

1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States, 2Department of
Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, United States

Improper reaction coordinates can pose significant problems for path-based binding free
energy calculations. Particularly, omission of long timescale motions can lead to over-
estimation of the energetic barriers between the bound and unbound states. Many
methods exist to construct the optimal reaction coordinate using a pre-defined basis
set of features. Although simulations are typically conducted in explicit solvent, the solvent
atoms are often excluded by these feature sets—resulting in little being known about their
role in reaction coordinates, and ultimately, their role in determining (un)binding rates and
free energies. In this work, analysis is done on an extensive set of host-guest unbinding
trajectories, working to characterize differences between high and low probability
unbinding trajectories with a focus on solvent-based features, including host-ion
interactions, guest-ion interactions and location-dependent ion densities. We find that
differences in ion densities as well as guest-ion interactions strongly correlate with
differences in the probabilities of reactive paths that are used to determine free
energies of (un)binding and play a significant role in the unbinding process.

Keywords: free energy, binding affinity, molecular dynamics, weighted ensemble, ligand unbinding, mechanisms,
SAMPL system

1 INTRODUCTION

Atomistic simulations are a broadly used method to better understand the microscopic interactions
that govern ligand binding and unbinding and to calculate critical values such as transition rates and
free energies. Both rates and free energies can in principle be computed with straightforward
molecular simulations, starting in either the bound or unbound state. However, the cost required to
simulate binding transition paths is typically prohibitive due to high energetic barriers separating the
bound and unbound states. To overcome these barriers, a variety of enhanced sampling techniques
can be employed, which commonly require the use of a predefined reaction coordinate: a single
collective variable that describes the progress of the (un)binding reaction.

The use of proper reaction coordinates can lead to improvements in the convergence of free
energies for enhanced sampling methods Tiwary and Berne (2016) and is necessary for accurate
path-based free energy calculations in biological systems Zhang and Voth (2011). Many methods
have been developed to seek out optimal reaction coordinates including but not limited to
VAMPnets Mardt et al. (2018), DiffNets Ward et al. (2021), Deep-TICA Bonati et al. (2021),
SGOOP Tiwary and Berne (2016), and AMINO Ravindra et al. (2020). All of the above methods
construct a reaction coordinate from a set of candidate features that are either predefined or require
user intuition of the (un)binding process.

Significant effort has been dedicated to understanding the role of water in the ligand (un)binding
process, including binding pocket solvation effects and bulk and single molecule effects Chau (2004);
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Tiwary et al. (2015); Maurer and Oostenbrink (2019); Rizzi et al.
(2021). Water molecule density has been included in reaction
coordinates through the utilization of Deep-LDA Bonati et al.
(2020). This method successfully found a complex reorganization
of the water structure in unbinding for use as a reaction
coordinate and has been able to produce accurate binding free
energies Rizzi et al. (2021). The role of ions along molecular
binding pathways is much less understood. Ion distributions
surrounding molecules such as double stranded DNA
Kolesnikov et al. (2021) and RNA Auffinger et al. (2004) have
been studied and it has been found that ion affinity for molecules
such as cyclodextrins and DNA is dependent on the force field
used Erdos et al. (2021) as well as the water model employed
Kolesnikov et al. (2021). A difference in unbinding rates has been
found between implicit and explicit ions in simulation, with
implicit ion representations overestimating unbinding rates
across a broad range of ion concentrations Erbas et al. (2018).
However, it appears that little is known about the effects of
changes in ion densities along ligand (un)binding pathways.

Recent studies have demontrated that adaptations of the
weighted ensemble method Huber and Kim (1996); Dickson
and Brooks, (2014); Donyapour et al. (2019) can efficiently
generate ligand binding and unbinding pathways that can then
be used to determine rates and binding free energies Dixon
et al. (2018); Lotz and Dickson (2018b); Hall et al. (2020).
Specifically, an extensive analysis was conducted on a series of
host-guest systems containing small, organic guest molecules
(“G3” and “G6”) interacting with “octa-acid” hosts (“OA”)
(Figure 1), which were originally part of the SAMPL6
(Statistical Assessment of the Modeling of Proteins and
Ligands) SAMPLing challenge Rizzi et al. (2018, 2020). The
REVO variant of the weighted ensemble method allowed for
efficient generation of large numbers of binding and unbinding
events without employing biasing forces that could perturb the
(un)binding mechanism. This is notable as mean first passage
times of unbinding ranged up to hundreds of seconds for these
systems. It accomplishes this by running an ensemble of
trajectories and periodically “resampling” this ensemble to
shift computational emphasis toward unique trajectories
that are moving towards a target state, and adjusting the
probabilities of the trajectories accordingly. As a result,

each unbinding pathway has an associated statistical weight
(ranging from 10–12 to 10–6) that governs how strongly it
contributes to the calculation of observables, including the
unbinding rate constant, koff.

During these resampling steps, only the geometric relationship
between the host and guest molecules was used; the positions of
the water molecules and ions were neglected. Here, a time- and
probability-dependent analysis of solvent based features
including water and ions is presented for unbinding
trajectories from the OA-G3 and OA-G6 SAMPL systems. We
explore the significant differences in guest-ion interactions
between high- and low-probability unbinding events, also
referred to as “exit points”, as well as differences in spatial
arrangements of ions during unbinding. In these simulations,
we have found that the generation of the most probable reactive
paths requires fluctuations toward low ion densities within
certain regions of the simulation box, particularly in the space
immediately above the binding pocket. Differences in these ion
densities along transition paths are associated with up to 106-fold
differences in unbinding probabilities, which motivates the future
inclusion of ion densities in (un)binding progress variables.

FIGURE 1 | The OA-G3 and OA-G6 systems. The OA host molecule (left). The G3 (top right) and G6 (bottom right) guest molecules.

FIGURE 2 | General WE Framework. Every circle represents a trajectory
in the ensemble. Colors represent conformations and circle size represents
probability, with all trajectories beginning with the same conformation and
probability. Trajectories are run for a predetermined number of steps
(dynamics), followed by a resampling step containing merging and cloning
procedures. This cycle repeats until the end of the simulation.
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2 MATERIALS AND METHODS

2.1 Weighted Ensemble Sampling
The simulations analyzed here were previously generated
Dixon et al. (2018); Hall et al. (2020) with a variant of the
weighted ensemble (WE) Huber and Kim (1996) method
called “REVO” Donyapour et al. (2019) utilizing the Wepy
Lotz and Dickson (2020) software package. A generalized
framework for WE is as follows (Figure 2). WE uses an
ensemble of trajectories that are evolved forward in time in
a parallel fashion. Each trajectory carries with it a statistical
weight (w) that governs the extent to which it contributes to
ensemble averages. Generally, WE simulations include two
main steps: 1) An MD simulation step that moves trajectories
forward in time by a predetermined time interval, and 2) a
resampling step that include cloning and merging operations.
Resampling is designed to both use cloning to increase the
number of trajectories that have a desirable value for a feature
of interest, and to decrease redundancy by merging
trajectories that are similar based on the feature of interest.
Together, this process aims to diversify the trajectories within
the ensemble with the goal of increasing the probability of
sampling rare or long-timescale events of interest for a given
system. When cloning a trajectory, two new independent
trajectories with the same conformation are created with
half the probability, or weight (w) of the original. Merging
two trajectories A and B leads to the creation of trajectory C
with weight wc = wa + wb. Trajectory C inherits either
conformation A or B with a probability proportional to wa

or wb, respectively.
A central feature of a WE simulation is the resampling

function (also referred to as a “resampler”) that determines
which trajectories are selected for cloning and which are
selected for merging. The resampler takes in an initial set of
trajectories and returns a new set, which is the outcome of a series
of merging and cloning steps following the rules described above.
These new trajectories thus have conformations that are a subset
of the initial conformation set and the sum of trajectory weights is
unchanged (typically equal to 1).

In order to determine transition rates, these WE simulations
were run in a nonequilibrium ensemble, where trajectories are
created in the bound state and terminated in the unbound state.
The unbound state was defined using a boundary condition (BC)
that is satisfied when the minimum host-guest distance is greater
than 1.0 nm, following previous work Lotz and Dickson (2018a).
When the BC is reached, the trajectory contributes to the reactive
flux calculation according to its weight at the time of crossing,
which we refer to as its “exit point probability”. The exit point
probability can be anything between the minimum and
maximum values set when the simulation was run. An exit
point or unbinding event being considered “high-weight” or
“low-weight”is relative, with this being dependent on the
weights of all exit points within the dataset. The weights of
trajectories vary because they are changed during the
resampling steps that are done between rounds of dynamics in
the weighted ensemble algorithm.

2.2 Resampling of Ensembles by Variation
Optimization
Resampling of Ensembles by Variation Optimization (REVO)
Donyapour et al. (2019) is a resampling algorithm for use with
Wepy that works by maximizing a function called the trajectory
variation (V). V is a scaled sum of the all to all pairwise distances
between trajectories in the ensemble (Eq. (1)), where dij is the
distance between trajectory i and trajectory j and Vi is the
variation for trajectory i.

V � ∑
i

Vi � ∑
i

∑
j

dij

d+

( )
α

ϕiϕj (1)

The measurement of distance between two trajectoies can be
arbitrarily defined in the REVO method. In this case it was
defined as the root mean squared deviation of the ligand after
aligning the host molecules. As the host molecules have four-fold
symmetry, four separate distances were calculated after aligning
the hosts in the four symmetrically-equivalent postitions, upon
which the smallest such distance was used for dij. ϕi is a non-
negative function referred to as a “novelty” that signifies the
importance of individual trajectories. In this work is was solely a
function of walker weight. d+, the “characteristic distance” is the
average distance after one cycle of dynamics, and is only used to
make the varation function unitless. The α parameter balances the
value of the distance and novelty terms and was set equal to 4.
Other methodological details pertinent to data generation are
available in Ref. Dixon et al. (2018) and Ref. Hall et al. (2020). The
overall goal of REVO is to optimize the value of V by cloning
trajectories with a high value of Vi and merging trajectories with a
low value of Vi. See Ref. Donyapour et al. (2019) for more details
of the REVO method.

2.3 Dataset Information
The weighted ensemble data used for this analysis comes from
papers published in 2020 Hall et al. (2020) (the primary OA-G6
data set) and 2018 Dixon et al. (2018) (OA-G3 data set and a
secondary OA-G6 data set). Briefly, the primary OA-G6 data set
contains 10 simulations with 48 trajectories each and 1,500 cycles
per trajectory that begin in the initial OA-G6-0 pose provided in
the SAMPL6 SAMPLing challenge Rizzi et al. (2020). The 2018
data sets contain five simulations each with 48 trajectories and
2000 cycles per trajectory, each beginning at one of the five initial
poses for the corresponding system. Reactive paths begin in the
bound state and end in the unbound state when a BC is hit. The
BC is defined as a 1.0 nm minimum distance between the host
and guest molecules.

3 RESULTS

We find that each reactive path can be split into two phases: 1)
initial departure from the bound state, and 2) full separation of
the host and guest. There are often many cycles between the guest
physically leaving the binding pocket of the host and the BC being
hit. It was determined that in all of the reactive paths generated, a
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center-of-mass (COM) to COM distance of 0.7 nm indicated an
irreversible transition between these two parts (Supplementary
Figure S1). This can be seen as a physical “commitment to
unbinding” point after which rebinding does not occur, where the
guest has just been released from the partially solvated binding
pocket (Figure 3A). The cycle corresponding to this point is
found for all reactive paths and used for analysis; we refer to this
point as t0.

When the BC is hit for the reactive paths, the unbinding
probabilities varied between 10–12 and 10–6 for OA-G3 and
between 10–12 and 10–7 for OA-G6. The low probability exit
points are highly abundant for both OA-G6 and OA-G3, whereas
the high probability exit points occur with a very low frequency
for both systems. Overall, the number of exit points increases as
the probability of the exit points decreases (Table 1).

At and before the t0 point, the probabilities of the reactive
paths are roughly the same, with a value of 10–3 with only the
probabilities following t0 varying based on exit point probability
(Figure 3B). The number of cycles between t0 and the unbinding
event also correlates to the exit point probability, with high
probability exit points having ~5 cycles between the two
points, and ~20 cycles for low probability exit points
(Figure 3C). There is a steady increase in the average number
of cycles between t0 and the unbinding event as the probability of
the trajectories decreases.

These differences prompt the question: are there differences
in physical features associated with this large variation in exit
point probability? To answer this question, a set of physical
features was chosen and the values of those features were
calculated for every cycle of every reactive path generated.
The features in question include the number of waters in the

binding site of the host, the number of ions around the upper
negative charges of the host molecule, the number of ions
around the guest, and the number of waters around the guest
molecule (Figure 4A). To calculate these features, a continuous
logistic function was used: f(r) � 1 − 1

1+(e−S(r−r0 )), where r is the
minimum atomic distance between the two entities. We use two
different sets of values for the interaction radius (r0) and
steepness (S) parameters: r0 = 3 Å, S = 17 or r0 = 5 Å and
S = 12) (Figure 4A). The sum of f(r) across all ions (or waters) is
a continuous count of the number of molecules of that species
surrounding the host (or guest) for that cycle.

It was found that some features were consistent or had only a
slight variation across all exit point probabilities, such as the
number of binding site waters and the number of waters
surrounding the guest molecule (Supplementary Figure S2).
However, some features were found to show trends that
differentiated the high- and low-probability exit points. These
features included the total number of positive ions surrounding
the upper negative charges of the host (Figure 4B,C) and the
number of positive ions surrounding the guest molecule
(Figure 4D,E). In both OA-G6 and OA-G3 there is a general
trend of the number of ions surrounding the upper negative
charges of the host increasing as the exit point probability
increases, although this is not observed for 1e − 7 exit points in
the OA-G6 dataset. There is also a clear trend of increasing guest-
Na+ interaction as the exit point probability decreases including
before, at, and after the t0 point. Similar trends were observed for
features on the 3 Å scale (Supplementary Figure S3).

As we find that the interaction between the guest and Na+ ions
correlates with the probability of the unbinding trajectories, we
now examine Na+ ion densities in the region of space directly
above the host. Specifically, we examine a cylindrical region of
space beginning immediately above the host and ending at the top
of the box (Figure 5A). We find that this region is critical to
determine the outcome of dissociation trajectories that have
reached t0. The autocorrelation of ion density in this region
(C(τ)) is surprisingly long-lived; it follows a single exponential
decay with a timescale of 77 ns (Figure 5B).

Figure 5C shows the average number of ions in the cylinder
for cycles [t0 − 3, t0 + 3] for each reactive trajectory. An average of

FIGURE 3 |Analysis of t0 poses. (A) TheOA host molecule with the G6 ligand in the starting pose (multi-color) and example t0 poses (pastels). Some atoms from the
host have been removed in A for clarity. (B) Average probabilities from -30 cycles to the final unbinding event organized by unbinding probability for the 2020 OA-G6 data
set. (C) The average number of cycles between t0 and the unbinding event for OA-G3 (blue) and the 2020 OA-G6 data set (gray) organized by unbinding probability.

TABLE 1 | The number of observed unbinding events grouped by exit point
probability. The OA-G6 row corresponds to the OA-G6 2020 dataset.

10–6 10–7 10–8 10–9 10–10 10–11 10–12

OA-G6 0 7 17 112 359 652 2220
OA-G3 10 18 88 195 483 1,116 4103
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1.47 ions was found in upper cylinder space when averaged over
all available data (including reactive and non-reactive
trajectories). The cylinder ion densities of reactive trajectories
were found to be significantly lower than the bulk average
regardless of exit point probability. A striking relationship was
observed between this ion density and the exit point probability
that was consistent across all data sets with highly weighted exit
point probabilities (Figure 5C), where highly-weighted exit
points had a significantly lower average number of ions in the
cylinder. Overall, highly weighted exit points had less ions above
the host, and subsequently near the guest at t0, with this number

gradually increasing as the exit point probability decreased
(Supplementary Figure S4).

To explain these findings, we first analyzed the electrostatic
forces on the guest molecule for all OA-G6 reactive trajectories at
the t0 point for one ensemble of the OA-G6 2020 data set. This
was done by first removing all forces from the system other than
the nonbonded (electrostatic) forces. Then the force on the ligand
was determined at key points along the unbinding trajectories
and average forces were determined for each exit point
probability group. Results are shown for the initial bound
cycles (cycles 0–6) and for the t0-surrounding cycles used for

FIGURE 4 | Feature Analysis. (A) A visualization of the region of space considered for the guest-ion features using the G6 ligand. The maximum distance for the 5 Å
scale is in gray and the 3 Å scale is in blue (top). The two logistic functions used to determine the molecule counts (bottom). (B–E) Molecule counts for Na+ ions with
results organized by both time and exit point probability. The legend in C applies to all four plots. The average total ion count (5 Å scale) around the upper negative
charges of the host for (B) OA-G6 and (C) OA-G3. The average total ion count (5 Å scale) around the guest for (D) OA-G6 and (E) OA-G3. OA-G6 results
correspond to the 2020 data set.

FIGURE 5 | Ion Density Analysis. (A) A diagram showing the simulation box and the cylindrical space above the host where the number of ions (η(t)) is determined.
The equation for calculating the autocorrelation of this quantity (C(τ)) is shown. (B) An autocorrelation plot of the cylindrical ion density (η(t)) is calculated using all reactive
and non-reactive trajectory data. (C) The average number of ions in the cylinder space above the host for OA-G3 (dark blue), OA-G6 (2020, gray), and OA-G6 (2018,
cyan). The average from 4500 random simulation cycles is shown in red.
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the cylinder-ion analysis (Supplementary Figure S5). We find
that the net electrostatic force is pushing the guest outward from
the host, and that the magnitude of this force is about 20 kJ/mol/
Å higher in the initial pose (80 kJ/mol/Å) than it is at t0 (60 kJ/
mol/Å). No significant difference is found for exit points of
different weights for both the overall magnitude of the
electrostatic force or the z-axis contribution to the force
(Supplementary Figure S5A,B). We found no significant
difference at t0 across all exit point probabilities despite the
difference in cylinder ion-occupancy.

An alternative explanation is that differences in occupancy
change the likelihood of ion interaction after the t0 point. This is
consistent with our observations in Figure 4D,E and would
increase the number of cycles required to hit the BC
(Figure 3C) as well as the extent of their exploration of the
simulation box. Exit point locations were determined for both the
highest and lowest probability exit points for both OA-G6 (10–7

and 10–12) and OA-G3 (10–6 and 10–12). For both systems, it was
found that for high probability exit points, most guest molecules
reach the BC directly above the host, whereas the low probability
exit points hit the BC at a wide distribution of points surrounding
the host molecule (Figure 6).

4 DISCUSSION

In summary, we find that location-dependent ion densities play a
significant role in the unbinding process for the OA-G6 and OA-G3
systems. These systems are widely used for both the testing and
development of force fields and numerous computational methods
Rizzi et al. (2020, 2018); Dixon et al. (2018); Papadourakis et al.
(2018); Song et al. (2018); Yin et al. (2016) necessitating a thorough
understanding of the mechanics of their unbinding. It is likely that
ion densities play such a prominent role due to the charged nature of
these systems (−8 for the host and −1 for the guest). Similar effects
might also be observed in biological systems with even more
significant charge densities such as calsequestrin Yano et al.
(2009), a protein necessary for muscle relaxation/contraction,
with a net charge of -64, as well as systems with nucleic acids,
which have a charge of −1 per nucleotide.

Further exploration and utilization of the effects of ion densities
on ligand (un)binding could be done via various methods.
Constraints on spatial densities of ions could be included in
simulations to further examine the relationship between ion
densities and unbinding rates or free energies. One possible
strategy would be to conduct 2D Umbrella Sampling Park and
Im (2013); Dickson et al. (2015) simulations that include a direct
descriptor of (un)binding, such as the host-guest center-of-mass
distance, and the ion density added as a second collective variable.
Ion densities (and other features of interest) could also be utilized for
resampling purposes for weighted ensemble simulations for the
determination of distances between trajectories. This could
encourage cloning operations of trajectories with ions in desirable
locations, potentially allowing for more efficient generation of high
probability unbinding events.

In weighted ensemble sampling, the equilibrium probability of a
state is obtained by summing over the weights of all trajectories that
have visited that state. This is similarly true for reactive paths: the
overall probability of a path is determined by a weighted sum of
trajectories. The analysis above breaks down a reactive trajectory set
by weight, but it is important to note that relationship between the
weight of a trajectory and the probability of the corresponding
reaction path is not one-to-one. While high-weight trajectories in
general sample from high-probability regions of space, it is possible
that a low-weight trajectory could visit a high-probability reaction
path. For this reason, we should consider the low-probability
trajectories (e.g. p = 10–12) as a heterogeneous group that could
contain observations of high-probability reaction paths. However,
the high-weight trajectories (by definition) correspond only to high-
probability paths.

Overall, these results suggest that greater attention may be
required for ligand-ion interactions across various simulation
methods, including those that require a predefined reaction
coordinate. We find that there are many microscopic
trajectories that contribute to the unbinding path ensemble,
some of which are much more likely than others. Methods
that only sample unlikely reactive paths could have difficulty
computing accurate measurements of transition rates and free
energies. In addition, incorrect transition states (including
inaccuracies in solvent degrees of freedom) can lead to

FIGURE 6 | Exit Point Analysis. (A) Unbinding event locations for exit points with probabilities 10–7 (red) and 10–12 (gray VolMap) for OA-G6. (B) Unbinding event
locations for exit points with probabilities 10–6 (red) and 10–12 (gray VolMap) for OA-G3. The surfaces show a density contour (Isoval) of 0.0001 in both panels.
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incorrect hypotheses about the molecular interactions that
govern kinetics. This work underscores the importance of
proper consideration of ion densities along unbinding
pathways, especially for charged systems.
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Practical Protocols for Efficient
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Molecular dynamics (MD) simulations are increasingly used to study various biological
processes such as protein folding, conformational changes, and ligand binding. These
processes generally involve slow dynamics that occur on the millisecond or longer
timescale, which are difficult to simulate by conventional atomistic MD. Recently, we
applied a two-dimensional (2D) replica-exchange MD (REMD) method, which combines
the generalized replica exchange with solute tempering (gREST) with the replica-exchange
umbrella sampling (REUS) in kinase-inhibitor binding simulations, and successfully
observed multiple ligand binding/unbinding events. To efficiently apply the gREST/
REUS method to other kinase-inhibitor systems, we establish modified, practical
protocols with non-trivial simulation parameter tuning. The current gREST/REUS
simulation protocols are tested for three kinase-inhibitor systems: c-Src kinase with
PP1, c-Src kinase with Dasatinib, and c-Abl kinase with Imatinib. We optimized the
definition of kinase-ligand distance as a collective variable (CV), the solute temperatures in
gREST, and replica distributions and umbrella forces in the REUS simulations. Also, the
initial structures of each replica in the 2D replica space were prepared carefully by pulling
each ligand from and toward the protein binding sites for keeping stable kinase
conformations. These optimizations were carried out individually in multiple short MD
simulations. The current gREST/REUS simulation protocol ensures good random walks in
2D replica spaces, which are required for enhanced sampling of inhibitor dynamics around
a target kinase.

Keywords: molecular dynamics simulations, multi-dimensional replica-exchange simulations, generalized replica
exchange with solute tempering, replica-exchange umbrella sampling, kinase-inhibitor binding

1 INTRODUCTION

Ligand binding to a target protein or enzyme plays important roles in many biological processes
which regulate protein functional activity (Du et al., 2016). Understanding of the binding processes
directly contributes to the design of effective drugs which specifically bind to target proteins.
Recently, the drug residence time on a protein has been attracting attention in the development of
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effective drugs (Bernetti et al., 2017; Schuetz et al., 2017). For this
purpose, understanding the molecular mechanisms underlying
protein-ligand binding processes, namely, binding pathways,
transition states, encounter complexes, and binding kinetics,
are essential, as well as sampling stable ligand-bound
structures. Unlike most stable bound poses, transient and
dynamic information is hardly accessible by experiments.

Molecular dynamics (MD) simulations are widely used to
investigate conformational dynamics of biomolecules at the
atomic level and are applied to many biological processes
including protein-ligand binding/unbinding (De Vivo et al.,
2016; Dickson et al., 2017; Bruce et al., 2018; Zhang et al.,
2022). All-atom MD simulations can easily simulate protein
dynamics on the 1–10 ms timescales, while high-performance
MD-specialized computers are necessary to explore 1 ms or
slower dynamics (Dror et al., 2011; Shan et al., 2011). Thus,
conventional MD simulations of a protein-ligand complex are not
sufficient for observing multiple binding/unbinding events,
which are necessary for obtaining converged thermodynamics
or free-energy landscapes. To go beyond, parallel trajectory MD
methods (Silva et al., 2011; Plattner and Noé, 2015; Dickson,
2018; Tran et al., 2020) perform multiple short simulations and
provide us with large amount of structural data for predicting
long timescale dynamics. Another approach is the use of
enhanced sampling MD methods such as replica-exchange
MD (Sugita and Okamoto, 1999), metadynamics (Valsson
et al., 2016), and others (Meng et al., 2015; Miao and
McCammon, 2017; Spitaleri et al., 2018; Gobbo et al., 2019;
Hénin et al., 2022) to explore a wider conformational space of
systems with rugged energy landscapes by overcoming high
energy barriers between multiple minimum states. Replica-
exchange MD (REMD) (Sugita and Okamoto, 1999; Sugita
et al., 2000) effectively overcome energy barriers through the
exchange of system parameters between independently running
replicas. In temperature REMD, high temperature replicas
sample various conformations including unfolded, extended,
or other flexible ones, while low temperature replicas explore
stable structures existing at different energy minima through the
replica exchange. In replica exchange with solute tempering
(REST REST/REST2) (Liu et al., 2005; Terakawa et al., 2011;
Wang et al., 2011), a specific region of interest is selected as
“solute,” and “solute temperature” exchanges are attempted with
a reduced number of replicas. Hence, REST/REST2 is applicable
to larger biological systems than temperature-REMD owing to
the reduced computational cost. Recently, we generalized the
definition of “solute” in REST2 by selecting a part of the molecule
of interest and/or a part of the potential energy function terms as
“solute”. This method, which we refer to as the generalized REST
(gREST) (Kamiya and Sugita, 2018), can reduce the number of
replicas even further while observing efficient conformational
dynamics of proteins or protein-ligand complexes. For instance,
in gREST simulations of protein-ligand binding, the solute is
defined as a target ligand as well as amino-acid sidechains near
the target protein binding site, which accelerates ligand dynamics
more than in REST2 simulations, where only the ligand molecule
is selected as “solute”. The gREST method was applied for the
prediction of the correct binding pose (Niitsu et al., 2019) and

affinities, when combined with absolute binding free energy
calculations (Oshima et al., 2020). The replica-exchange
umbrella sampling (REUS) method (Sugita et al., 2000;
Fukunishi et al., 2002) exchanges geometrical parameters along
a predefined collective variable (CV). This method is also
applicable to large biological systems, if a good CV is used for
describing the target conformational motion.

It is noteworthy that different parameters can be exchanged in
a multidimensional fashion to further enhance conformational
sampling of various biological systems (Sugita et al., 2000).
Multidimensional REMD was first applied in protein-ligand
binding simulations by Kokubo et al.(2013) where they
combined REST2 with REUS (the REST2/REUS method). In
their study, a target ligand was selected as solute in REST2 and the
protein-ligand distance was used as a CV in REUS. After the
success of this approach, we replaced REST2 with gREST and
applied the gREST/REUSmethod to inhibitor binding/unbinding
in the c-Src kinase/PP1 complex (gREST/REUS) (Re et al., 2019).
We briefly describe the gREST/REUS method in the
Supplementary Text and Figure S1. The simulations could
enhance inhibitor dynamics around c-Src kinase and we
observed a total of about 100 binding/unbinding events for all
replicas. Using the well-converged free-energy landscapes of
protein-ligand binding processes, multiple binding pathways,
transition states, encounter complex structures, and other
atomistic insights were obtained for the c-Src kinase-PP1
complex in solution.

The gREST/REUS method is theoretically applicable to any
biological system for studying molecular mechanisms of protein-
ligand binding/unbinding processes. However, the size and
flexibilty of the ligand increase the computational difficulty.
Here, we re-examine the practical protocols of the two-
dimensional (2D) gREST/REUS protein-ligand binding
simulations and apply them for three kinase-inhibitor systems:
c-Src kinase with PP1 (Src-PP1), c-Src kinase with Dasatinib (Src-
Dasatinib), and c-Abl kinase with Imatinib (Abl-Imatinib)
(Figure 1). As the size and flexibility of the ligand increases in
the aforementioned order, binding simulations are expected to be
more challenging. Kinase-inhibitor binding processes have been
subjected to both long-time conventional MD (Shan et al., 2011;
Morando et al., 2016; Paul et al., 2020; Sohraby et al., 2020) and
enhanced sampling MD simulations (Yang et al., 2009; Lin et al.,
2013; Tiwary et al., 2017; Gobbo et al., 2019; Koneru et al., 2019;
Narayan et al., 2020; Spitaleri et al., 2020; Narayan et al., 2021;
Shekhar et al., 2021). However, to gain more atomistic insight on
protein-ligand binding processes, better computational
algorithms and practical protocols are necessary. In this paper,
we describe how to optimize parameters and procedures for the
setup of gREST/REUS simulations and target biomolecular
systems. The role of flexible inhibitor binding in c-Src/c-Abl
kinases will be discussed in a separate paper, thus here we focus
on the practical issues and the protocols, which are non-trivial
when performing gREST/REUS simulations with more than a
hundred replicas. The protocols presented here can be useful for
carrying out ligand binding/unbinding simulations of various
biomolecular systems with the gREST/REUS method on
massively parallel supercomputers or GPU clusters.
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2 METHODS

2.1 The gREST/REUS Simulation Protocols
The 2D-REMDmethods such as gREST/REUS typically require a
large number of replicas (i.e., more than 100 replicas), while they
can realize better random walks in replica space including the
bound, intermediate, and unbound states of the protein/ligand
complexes. The preparation of replicas and the choice of solute
temperatures in gREST and/or collective variables in REUS
directly affects the conformational sampling efficiency. For
instance, if there exist large distribution gaps between replicas,
we cannot observe good random walks in replica space. This
situation is equivalent to performing multiple independent
REMD simulations with smaller number of replicas, which
might lead to missing important intermediate structures and
slow convergences of thermodynamic data. Initial setups of
the gREST/REUS simulations are thus, essential for successful
gREST/REUS calculations and for obtaining reliable simulation
results.

In gREST/REUS, replica random walks are necessary in both
the gREST and REUS dimensions. The former is realized only

when the solute region and replica temperatures are defined
appropriately, and we can observe sufficient overlaps in
potential energies between replicas at neighboring solute
temperatures. In REUS simulations, the choice of CVs,
replica distributions along the CV, and proper force
constants in US potentials are all important. There are many
parameters and choices of procedures in gREST/REUS
simulations with more than 100 replicas. For simplifying the
parameter optimization, we tuned the parameters in each
dimension separately using multiple short MD or gREST/
REUS simulations, as described below.

2.1.1 Definition of the Protein-Ligand Distance as a CV
for REUS
The protein-ligand distance is commonly used in binding MD
simulation studies. The distance is usually measured as that
between the centers of mass (COMs) of the backbone atoms
of the selected binding site residues (protein anchor sites) and
ligand heavy atoms (ligand COM). For Src-PP1 and Src-
Dasatinib, the backbone atoms of Ala35 and Leu135 in c-Src
kinase are used as the protein anchor site. All the heavy atoms in

FIGURE 1 | Structures of the Src-PP1, Src-Dasatinib, and Abl-Imatinib complexes. (A) Src-PP1 model from X-ray structures (PDB ID: 1Y57/1QCF). (B) chemical
structures of PP1, Dasatinib, and Imatinib. (C)–(E) Binding site of Src-PP1 (C), Src-Dasatinib (D) and Abl-Imatinib (E) from X-ray structures (PDB ID: 1Y57/1QCF, 1Y57/
3G5D and 1IEP/2OIQ for protein/ligand, respectively). PP1, Dasatinib, and Imatinib are colored red, green, and purple, respectively. Protein residues used as gREST
solute regions are also shown. Residues used as protein COM for REUS CV are outlined.
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PP1 and Dasatinib were used for obtaining the ligand COM, since
they are small compounds with less conformational flexibilities
than Imatinib, which is composed of five rings. There are multiple
choices for Abl-Imatinib for the protein anchor sites and the
ligand COM. As the former, we tested four choices: “2 sites” (Ile90
and Arg139), “3 sites” (Ile90, Arg139, and Phe94), “4 sites” (Ile90,
Arg139, Phe94, and Met67), and “5 sites” (Ile90, Arg139, Phe94,
Met67, and Phe159), respectively. For the ligand COM, four
definitions including a single ring (“Ring3”), three rings
(“Ring135” and “Ring 234”), and all rings (“Ring all”) were
examined. We expect that Imatinib flexibility is important not
only near the binding site but also in the intermediate or unbound
structures. A good combination of the protein anchor sites and
the ligand COM may reduce the number of possible protein-
ligand complex structures near the binding sites. In our protocols,
the ligand COM definition was first examined for Imatinib and
then, multiple choices of the protein anchor sites were tested for
Abl-Imatinib simulations.

2.1.2 Preparation of Initial Structures in REUS
Thirty replicas were used for covering the protein-ligand distance
in the range of 3–18 Å for Src-PP1, and 3–23 Å for Src-Dasatinib
and Abl-Imatinib. We obtained the initial structure of each
replica using two US simulations: In the “forward pull”
simulation, the ligand was gradually pulled away from the
protein binding site, while it was subsequently pulled back to
the bound pose in the “reverse pull” simulation. Each replica was
simulated for 300 ps with a force constant of 4 kcal/mol/Å2.
Positional restraints on the protein Cα atoms with a force
constant of 1 kcal/mol/Å2 were necessary during the pulling
simulations to prevent artificial deformations of the protein. In
this stage, the 30 initial structures were set in equidistance in the
REUS dimension.

2.1.3 Tuning of Solute Temperatures in gREST
The solute region in gREST was defined as the dihedral angle and
the nonbonded energy terms of the ligands and binding-site
residues of the proteins (ca. 10 residues defined as SITE residues
in the X-ray structure as shown in Figures 1C–E, and listed in
Supplementary Table S1). We determined the solute
temperatures using the automatic parameter tuning tool in the
GENESIS MD program (Kobayashi et al., 2017). Given initial
temperatures and desired acceptance ratio as inputs, the tool finds
a set of solute temperatures which satisfies the desired acceptance
ratio. The initial temperatures and the target acceptance ratio
were set in the range of 310–663 K and 0.2, respectively. We
performed five rounds of the tuning simulations (1.1 ns for each
replica), by gradually increasing the frequency of exchange
attempts (from every 0.21 ps in the first round to every 2.1 ps
for final round), until temperature values were converged. The
tuning was performed in 1D-gREST simulations at the bound
(protein-ligand distance of 3.0 Å), intermediate (10.3 Å for Src-
PP1, and 15.0 Å for Src-Dasatinib and Abl-Imatinib), and the
unbound states (18.1 Å for Src-PP1, and 23 Å for Src-Dasatinib
and Abl-Imatinib). The final temperature values were taken as the
average of those obtained at the above three states.

2.1.4 Determination of REUS Parameters
To ensure sufficient potential energy overlaps between adjacent
replicas, which is a pre-requisite for good REUS performance, we
conducted several short trial simulations, while manually
tweaking the location and force constants. At each round, we
assessed the distribution overlaps between replicas and the
acceptance ratios, and accordingly modified the REUS
parameters, namely, the center position and the force constant
of each harmonic umbrella potential. The tuning procedures were
repeated in 1D-REUS simulations at three solute temperatures:
310 K (at lowest) for all three systems, 478 K, 471 K, and 440 K (at
middle), and 692 K, 663 K, 590 K (at highest) for Src-PP1, Src-
Dasatinib, and Abl-Imatinib, respectively.

2.2 System Preparation
The initial structure of Src-PP1 was taken from our previous
work (Re et al., 2019). In brief, we extracted the kinase domain
(residues 260–533, renumbered 2–275 in this work) from the
X-ray crystal structure of the active-like c-Src kinase (PDB ID:
1Y57) (Cowan-Jacob et al., 2005) and replaced the co-
crystallized ligand with PP1 bound to c-Src (PDB ID: 1QCF)
(Schindler et al., 1999). The initial structures of Src-Dasatinib
and Abl-Imatinib were constructed with the same modeling
protocol used for Src-PP1. For Src-Dasatinib, we used the kinase
domain of c-Src kinase (PDB ID: 1Y57) (Cowan-Jacob et al.,
2005) and replaced the co-crystallized ligand with Dasatinib
from an X-ray structure (PDB ID: 3G5D) (Getlik et al., 2009).
Similarly, for Abl-Imatinib, we used the kinase domain (residues
225–498, renumbered 2–275 in this work) of c-Abl kinase (PDB
ID: 1IEP) (Nagar et al., 2002) and the ligand structure from an
X-ray structure (PDB ID: 2OIQ) (Seeliger et al., 2007). Each
kinase-inhibitor complex was solvated with water molecules,
where the number of water molecules was 7,698, 13,992, and
17,485 for Src-PP1, Src-Dasatinib, and Abl-Imatinib,
respectively. The size of the simulation boxes for Src-
Dasatinib and Abl-Imatinib was larger than for Src-PP1
because the farthest REUS replica (created by the US pulling
simulations) was placed farther from the binding site (23 Å vs
18Å). The systems were neutralized by adding sodium counter
ions (six for Src-PP1 and Src-Dasatinib and eight for Abl-
Imatinib). Each system was minimized for 1,000 steps while
applying a positional restraint of 10.0 kcal/mol/Å2 on protein
backbone atoms. Then it was gradually heated to 310 K in the
NVT ensemble for 105 ps, followed by equilibration in the NPT
ensemble for 105 ps. Finally, the system was equilibrated for
1.05 ns in the NPT ensemble without restraining the protein
atoms. Modeling was performed using AmberTools16 (Case
et al., 2021).

2.3 MD Simulation
Simulations were performed using the GENESIS MD program
(Jung et al., 2015; Kobayashi et al., 2017) version 2.0 beta (Jung
et al., 2021). The AMBER ff99SB-ILDN (Hornak et al., 2006;
Lindorff-Larsen et al., 2010) force field was used for the proteins,
GAFF (Wang et al., 2004) (with AM1-BCC) for the ligands, and
the TIP3P (Jorgensen et al., 1983) was used for water molecules.
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Bonds involving hydrogen atoms were constrained using the
SHAKE algorithm (Ryckaert et al., 1977). Water molecules
were kept rigid using the SETTLE algorithm (Miyamoto and
Kollman, 1992). Long-range electrostatic interactions were
evaluated using the Particle-mesh Ewald summation (Darden
et al., 1993; Essmann et al., 1995). The cutoff distance for non-
bonded interaction was 8 Å. The NVT ensemble was used with
the Bussi thermostat (Bussi et al., 2007) for keeping the
temperature at 310 K, with a temperature coupling time of 5
ps. A timestep of 3.5 fs was used with the RESPA integrator
(Tuckerman et al., 1992) and hydrogen mass repartitioning
(HMR) (Feenstra et al., 1999) was applied on solute atoms
with an HMR ratio of 3.0 (Jung et al., 2021).

Eight gREST replicas and 30 REUS replicas were used in the
2D-gREST/REUS simulation. In total, the number of replicas in
each run was 240. All replicas were equilibrated for 1.05 ns
without exchange attempts, followed by production runs.

Exchanges were attempted every 2.1 ps alternatively in the
gREST and the REUS dimensions. The gREST/REUS
simulations were performed for 500 ns per replica for Src-PP1,
750 ns per replica for Src-Dasatinib, and 1,000 ns per replica for
Abl-imatinib. For Src-PP1, two simulations using initial replicas
from either the “forward pull” or “reverse pull” US simulations
were performed (referred to as Src-PP1 and Src-PP1-Rev,
respectively). All simulations steps (except the US pulling
simulations for creating the initial REUS replicas) were
performed without any restraints on protein atoms. The total
simulation time in the current work was 660 µs. Frames for
analysis were written every 10.5 ps. Simulations were
performed on the supercomputer Fugaku1 using 480 nodes.

TABLE 1 | System models and simulation details.

System Src-PP1 (Forward/Reversea) Src-dasatinib Abl-imatinib

Protein structure 1Y57 Cowan-Jacob et al. (2005) 1Y57 Cowan-Jacob et al. (2005) 1IEP Nagar et al. (2002)
Ligand structure 1QCF Schindler et al. (1999) 3G5D Getlik et al. (2009) 2OIQ Seeliger et al. (2007)
Number of atoms 27,549 (7,698 waters) 46,240 (13,992) 56,952 (17,485)
gREST solute temperature range, K 310–692 310–663 310–590
REUS distance range, Å 3.0–17.9/3.0–18.05b 3.0–23.1 2.7–23.0
Simulation time per replica, ns 500 750 1,000

aFor simulations that were initiated from REUS, replicas obtained from the forward and reverse simulations.
bRange of values for forward simulations/range of values for reverse simulations.

FIGURE 2 | Distribution of RMSDligand along the protein-ligand distance for trial simulations (10 ns) for all replicas (1–240) of Abl-Imatinib for different definition of
ligand COM atoms: (A) “Ring 3”, (B) “Ring all”, (C) “Ring 234”, and (D) “Ring 135”. Atoms used for ligand COM definitions are colored yellow. Ligand rings are numbered
from 1 to 5, starting from the left. Protein atoms used for COM are backbone atoms of I90 and R139. The percentage of replicas that reached the bound pose is written
on the bottom right of each panel.

1https://www.r-ccs.riken.jp/en/fugaku/.
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The GENESIS 2.0 beta version was optimized to run on Fugaku
and obtained a speed of >50 ns/day. The details of the systems
and the simulation conditions are summarized in Table 1.

3 RESULTS

3.1 Tuning the Definition of Protein-Ligand
Distance in the REUS Dimension
As for Src-PP1 and Src-Dasatinib, we defined the protein-ligand
distance using the “2 site” model (Ala 35 and Leu135) in c-Src
kinase for the protein anchor sites and all the heavy atoms for
calculating the ligand COM. Due to the inhibitor size and

flexibility, we tested multiple choices of the protein anchor
sites and the ligand COMs for Abl-Imatinib by short (10 ns)
gREST/REUS trial simulations. Figure 2 shows the distribution of
the ligand RMSD (RMSDligand) with respect to the bound pose of
the X-ray crystal structure (2OIQ) (Seeliger et al., 2007) along the
protein-ligand distance. As for the ligand COM, three rings
(“Ring 135” and “Ring 234”), a single ring (“Ring 3”) and all
rings (“Ring all”) were tested when we used “2 site” (Ile90 and
Arg139) as the protein anchor site in c-Abl kinase. The
probability of finding the bound pose, which we defined as the
percentage of replicas that reached RMSDligand < 1 Å at least once
during the simulation, is also shown. An efficient pose sampling
should give a linear correlation with narrow distribution. CVs

FIGURE 3 | (A–D)Distribution ofRMSDligand along the protein-ligand distance for trial simulations (10 ns) for all replicas (1–240) of Abl-Imatinib for different definition
of protein COM atoms. The percentage of replicas that reached the bound pose is written on the bottom right of each panel. (E)Definition of COMatoms. Cα atoms of the
residues used for COM definition of the protein are shown as colored balls. Atoms used for ligand COM definition (“Ring3”) are colored yellow. (F) Root-mean-square-
fluctuation (RMSF) of the COM of the protein anchor site atoms calculated for the 10 ns trial simulations. The reference structure used for calculating the RMSF was
the initial X-ray structure. For the purpose of RMSF calculations replicas were sorted according to their REUS and gREST parameters as follows. Each group of 30
replicas belong to a single solute temperature, where replicas 1–30 represent T1 (lowest temperature), and replicas 211–240 represent T8 (highest temperature). Within
each temperature, replicas are ordered according to increasing protein-ligand distances such that replicas 1 and 30 represent the smallest and largest distances,
respectively.
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with multiple rings in Imatinib (“Ring all”, “Ring 234”, and “Ring
135”, Figures 2B–D) display linear and narrow distributions
overall, compared to the single ring (“Ring 3”, Figure 2A). The
latter could possess various conformations at the same distance,
likely worsening the efficiency. “Ring 234” (Figure 2C) and “Ring
135” (Figure 2D) both have higher probabilities of finding the
bound pose, while the latter shows slightly narrower distribution
in the range of short protein-ligand distances. These results
suggest that three anchor sites (a molecular center and both
edges, “Ring 135”) is the practical choice for Abl-Imatinib.

At the same time, we tested four choices for the protein anchor
sites using “Ring 3” as the ligand COM in Abl-Imatinib
simulations (Figure 3). The overall distribution of RMSDligand

becomes narrow with increasing number of protein anchor sites.
The probability of finding the bound pose is higher for “4 sites”
and “5 sites” (14–15%, Figures 3C,D) than “2 sites” and “3 sites”
(12%, Figures 3A,B), suggesting that two or three anchor sites are
not sufficient to resolve the bound conformations of a ligand as
large as Imatinib. “5 sites” produces a relatively wide distribution
compared to “4 sites” at the bound region (~4 Å, Figure 3D).
Increasing the number of residues in the protein anchor sites
(Figure 3E) is effective for resolving the ligand position and

orientation but bears the risk of making protein anchor sites
unstable. The COMs with “5 sites” indeed fluctuated more than
the others through the replicas (Figure 3F). Consequently, the “4
sites–Ring135” pair was chosen as the best combination for Abl-
Imatinib.

3.2 Preparation of Initial Structures in REUS
From the Pulling Simulations
The initial structures along the protein-ligand distance CV were
prepared from the following pulling simulations. Both forward
(pulling away from the bound pose) and reverse directions
(pulling back to the bound pose) were examined in the case of
Src-PP1. The resulting initial pathways differed from each other
(Figure 4A), suggesting that “dual direction pulling” could reduce
the initial structure dependence and improve the convergence of
the simulation results. To prepare the initial coordinates at each
of the desired protein-ligand distances along the path in short
simulations (9 ns per each), a rather strong force constant (4 kcal/
mol/Å2) of the umbrella potential was required (Figure 4A). Note
that the pulling simulations can introduce an artificial structure
change in the protein. In the case of Src-PP1, the structures

FIGURE 4 | (A) The course of the ligand PP1 during the pulling simulations represented as the coordinates of the C9 atom of PP1 at the end of each pulling step.
The forward and reverse pulling directions are represented by green and orange dots, respectively. The locations of the ligand in the X-ray structure and in the last forward
pulling simulation are shown in licorice representation in black and green, respectively. Inline plot: Src-PP1 distance for pulling simulations using a force constant of
4 kcal/mol/Å2. Target distances are shown as black lines. (B) RMSD of protein backbone atoms during pulling simulations of PP1 from c-Src kinase with and
without 1 kcal/mol/Å2 positional restraints on the protein Cα atoms. The pulling was performed by applying the force of 4 kcal/mol/Å2 over the protein-ligand COM
distance. The X-axis represents the total time of concatenated consecutive pulling simulations. (C) Snapshots of the protein from the simulations described in (B) with
(pink) and without (cyan) positional restraint on protein atoms. The snapshots were taken at the time marked by the grey vertical line in (B).
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around the αC-helix, the G-loop, and the A-loop region
significantly deviated from the X-ray crystal structure (Figures
4B,C). Since these regions directly relate to the binding
mechanism, we also applied 1 kcal/mol/Å2 restraints on the
protein Cα atoms to avoid the artificial structure changes.

3.3 Tuning of Solute Temperatures in gREST
Solute temperatures in gREST could be determined rather
effortlessly using the automatic tuning tool in GENESIS
(Kobayashi et al., 2017). For Src-PP1, we set the initial
temperatures in the range of 310–663 K, which is much
narrower than our previous work (Re et al., 2019). This
change markedly improved the sampling along the solute

temperature space. In addition, there are two key points in
determining the temperatures. First, multiple rounds of tuning
are desired. Figure 5A shows the solute temperatures determined
at each of the five tuning rounds, where we set the final
temperature at each round as the initial temperature for the
subsequent round. The temperature values changed for the first
few rounds and converged. Second, tuning at different protein-
ligand distances are desired. For Src-PP1, we performed the
tunings at protein-ligand distances of 3.0 Å (“bound”), 10.3 Å
(“intermediate”), and 18.1 Å (“unbound”) distances. The
resulting temperatures slightly differ in the three states
(Figure 5A), and we therefore took their average at the final
round to obtain the final set of solute temperatures. The resulting

FIGURE 5 | (A) Final gREST temperatures after each automatic tuning round at three protein-ligand distances for the Src-PP1 system with a target acceptance
ratio of 0.20. Round “0” specifies the initially guessed temperatures. Round “final” is the final temperature obtained from averaging the final temperatures for the three
distances. (B) Acceptance ratios between adjacent replicas in simulations using the temperatures obtained in round “5” of the gREST tuning procedure described in (A),
at three protein-ligand distances. (C), (E) Distribution of replicas according to their REUS distance for short trial simulations of 5.3 ns at 310 K for Src-PP1 (using
initial replicas from the forward pulling simulations). Distributions of adjacent individual replicas (“individual”) are shown in alternating red/blue lines for better visibility.
Distributions of all replicas (“united”) are shown in black lines. Population values for “united” data were scaled to match the “individual” populations. Acceptance ratios
between adjacent REUS replicas are shown in green lines. (D), (F) Force constants used for the simulations (C) and (E), respectively. Vertical linesmark the protein-ligand
COM distance at each replica. Blue dots mark the value of the force constant used at each REUS distance.
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solute temperatures provided uniform acceptance ratios along the
gREST replicas (Figure 5B). Temperature tuning for Src-
Dasatinib and Abl-Imatinib was performed using the same
scheme. In practice, we manually changed the value of target
acceptance ratios at each round for obtaining the final acceptance
ratio of 0.2. The final sets of solute temperatures are listed in
Supplementary Table S1.

3.4 Tuning of the REUS Parameters
The tuning of distance replicas and force constants in REUS
simulations was more challenging, and several trial rounds were
required for obtaining proper values. For Src-PP1, we started with
even-spaced distance replicas and a uniform force constant of
2 kcal/mol/Å2 at 310 K (Figures 5C,D). The sampled distance
distribution was uneven. For example, the regions around 4 Å,
6 Å, and 9 Å are poorly covered, while there is an overlap in the
region under 4 Å giving a large population in that region. The
acceptance ratios around 6 Å drops to nearly zero, indicating
almost no exchanges between replicas in that region. Accordingly,
we put more replicas in poorly covered regions and set the force
constants in those replicas to larger values (3 and 4 kcal/mol/Å2)
(Figures 5E,F). This modification resulted in better coverage of
the REUS space and acceptance ratios of above 0.2 for most
replicas, ensuring the occurrence of replica exchanges throughout
the REUS dimension. Nevertheless, we still observed an overly
large population of replicas in the bound region of under 4 Å

alongside regions with poor coverage. The gap cannot be
eliminated altogether since poorly covered regions represent
high energy regions on the free energy landscape. This
demonstrates the necessity of performing replica exchanges in
two dimensions where increasing the temperature will facilitate
the crossing of high energy barriers. The final REUS replica
placements and force constant values are given in
Supplementary Table S1.

3.5 Sampling Efficiency of the gREST/REUS
Simulations After Parameters Tuning
As production runs, gREST/REUS simulations with 240 replicas
were executed on the three systems, Src-PP1 (500 ns), Src-
Dasatinib (750 ns), and Abl-Imatinib (1,000 ns), using the
optimal parameters determined as described in previous
sections. In the following sections, we quantify their sampling
efficiencies in replica space and in the conformational space of the
kinase-inhibitor complexes.

3.5.1 Random Walks in the gREST Dimension
Proper exchanges in the gREST dimension will allow replicas to go
back and forth between low and high solute temperatures to sample
high energy conformations. Figures 6A,B show acceptance ratios
between adjacent gREST replicas for Src-PP1 after 10 and 500 ns,
respectively. Acceptance ratios average around 0.2 as early as 10 ns.

FIGURE 6 | Sampling in gREST dimension after 10 ns (A,C) and after 500 ns (B,D) for gREST/REUS simulations of Src-PP1. (A), (B) Acceptance ratios between
each replica and the gREST replica adjacent and above it. (C), (D) Relative population for each replica, at each gREST replica. Sphere size is proportional to the
population. Replicas assigned different initial solute temperatures are separated by vertical lines, where replicas 1–30 were assigned the initial temperature of 310 K (T1),
replicas 31–60 were assigned the initial temperature of T2, etc.
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Figures 6C,D show the relative population at each solute
temperature visited by individual replicas. Ideally, a uniform
sampling is desired, in which each replica visits each temperature
evenly. In a short simulation time (10 ns), all solute temperatures
were already visited, although the replicas preferred the lowest and
highest temperatures. After 500 ns, the sampling becomes more
uniform, where the excessive population at the lowest and highest
temperatures for some of the replicas flattens out. We found similar
trends in the other two systems (Supplementary Figure S2), while
the convergence becomes slower with increasing ligand size from
PP1 to Dasatinib to Imatinib.

3.5.2 Random Walks in the REUS Dimension
The distribution of distance replicas along the REUS dimension at
310 K is shown in Figures 7A,C,E for Src-PP1, Src-Dasatinib, and
Abl-Imatinib, respectively (Supplementary Figure S3A for Src-
PP1-rev). All systems show a similar trend, where the population
is large at short distances, drops once as the distance increases,
and then converges to a constant value. Despite the drop in
population, owing to the intensive tuning of the replica

parameters, all regions were sampled to an acceptable extent,
maintaining a constant overlap and good acceptance ratios
between adjacent replicas. For example, in the case of Src-
Dasatinib, the initial lack of population in the region of
protein-ligand distances 4–8 Å was gradually filled with
increasing sampling time, and converged at 250 ns
(Supplementary Figures S4A,C,E,G). The lack of population
is much less significant at higher temperature replicas
(Supplementary Figure S5), indicating that two-dimensional
replica exchanges improve the sampling at 310 K.

Figures 7B,D,F (Supplementary Figure S3B) demonstrate
the random walks along the REUS dimension. Each of the 240
replicas visited all REUS distances almost perfectly for Src-PP1
and moderately for Src-Dasatinib. In contrast, for Abl-Imatinib,
random walks in the vicinity of each region are rather good but
the overall random walks are not as efficient, namely, replicas
which started at small distances could not reach far distances and
vice versa (Figure 7F). This suggests that a large and flexible
ligand can be trapped in the vicinity of its starting configuration
due to either specific or non-specific interactions with the protein.

FIGURE 7 | Efficiency of sampling in REUS space for gREST/REUS simulations at 310 K for 500-ns Src-PP1 (A,B) 750-ns Src-Dasatinib (C,D), and 1,000-ns Abl-
Imatinib (E, F). (A), (C), (E)Distribution of replicas according to their REUS distance. Distributions of adjacent individual replicas (“individual”) are shown in alternating red/
blue lines for better visibility. Distributions of all replicas (“united”) are shown in black lines. Population values for “united” data were scaled to match the “individual”
populations. Acceptance ratios between adjacent REUS replicas are shown in green lines. (B), (D), (F) REUS replicas visited at least once by individual replicas.
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3.5.3 Finding the X-Ray Bound Pose in gREST/REUS
Simulations
Finally, we compared the efficiencies of finding the X-ray bound
pose for Src-PP1, Src-Dasatinib, and Abl-Imatinib. Figure 8
shows the minimum RMSDligand for individual replicas as a
function of the initial RMSDligand for all simulated systems.
We define that a replica reached the bound pose if it had a
RMSDligand < 1 Å at least once during the simulation. The hit
ratios along the sampling time are also summarized in
Supplementary Table S2. For Src-PP1, 70% of the replicas,
including those starting from far distances (large initial
RMSDligand), found the X-ray bound pose (Figure 8A).
Notably, the hit ratio was slightly low (59%) in the reverse
pulling simulation (Src-PP1-Rev). We find that the initial
RMSDligand values are larger than 5 Å, indicating that the Src-
PP1-Rev simulation did not include the bound pose, which is
nearly identical to the X-ray crystal structure, in its initial
structures. Nevertheless, many replicas starting from large
RMSDligand values found the bound pose within 500 ns
simulations, demonstrating that the gREST/REUS method can
efficiently find an unknown bound pose.

The hit ratio drops to 35% for Src-Dasatinib (Figure 8C).
However, a fraction of replicas with an initial RMSDligand of ~6 Å
and above still finds the bound pose. For Abl-Imatinib
(Figure 8D), which is the most challenging case, the hit ratio
was only 23% even though its simulation time (1,000 ns) was the
longest among the three systems. There is a gap in RMSDligand

values between ~4 Å and ~9 Å. Unlike the case of Src-Dasatinib,
the replicas above ~9 Å cannot even reach the vicinity of the

binding site (Figure 8D). Therefore, the hit ratio stays around
20% after 250 ns and until 1,000 ns (Supplementary Table S2).
These results suggest that Imatinib binding is a considerably rare
event and that Imatinib can be trapped at various locations in the
vicinity of the binding region before fully entering deep inside the
binding pocket. Supplementary Movies S1–S3 show binding
events for a single replica for Src-PP1, Src-Dasatinib, and Abl-
Imatinib, respectively, and demonstrate the difference in the
efficiency of finding the bound pose. Whereas for Src-PP1 the
ligand binds and unbinds several times during 500 ns, for Src-
Dasatinib, a single binding event of a replica that started from a
far distance is observed after ~550 ns, and for Abl-Imatinib, a
replica that started from an intermediate distance binds after
~250 ns and does not leave the binding site during the rest of the
simulation time.

Here we followed the definition of Re et al. (2019) for hitting
the bound pose, who deliberately set a strict cutoff of RMSDligand

< 1Å.We could set the cutoff slightly larger (for example 1.5 Å) to
consider ligand fluctuations around the bound pose. In this case,
we obtain hit ratios of 75, 65, 38, and 27% for Src-PP1, Src-PP1-
rev, Src-Dasatinib, and Abl-Imatinib, respectively.

4 DISCUSSION AND CONCLUSION

In this work, we described a step-by-step procedure for obtaining
the optimal parameter settings for efficient gREST/REUS
simulations of protein-ligand binding. The protocol, which
was demonstrated here for three kinase-inhibitor systems, was

FIGURE 8 |Minimum RMSDligand for replicas during the simulation, plotted against their initial RMSDligand, in (A) Src-PP1, (B) Src-PP1-Rev, (C) Src-Dasatinib, and
(D) Abl-Imatinib. Grey horizontal lines mark RMSDligand = 1 Å. The percentage of replicas that reached the bound pose is written for each system.
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validated through an extensive analysis of sampling efficiency
based on a total of 660 μs of simulation time and can be applied to
protein-ligand systems in general. We demonstrated that while
the determination of gREST parameters is rather straightforward
and nearly automatic, a particular care is needed in the
determination of REUS parameters. First, a proper definition
of the protein-ligand distance as the REUS CV, and second,
careful tuning of replica space and force constants. Both of these
practices can enhance the sampling efficiency. Taking care of
these points, gREST/REUS simulations can sample binding
events with high statistical accuracy and the obtained
trajectories can be used to characterize binding poses and
pathways on the free-energy landscape.

The use of protein-ligand distance as CV is a common practice
for simulating binding events. Typically, the distance is determined
using the COMs of the binding site and the ligand. For flexible
ligands with molecular weight of few hundreds, as in the case of
Imatinib, the determination of the CV significantly affects replica
exchanges in REUS dimension. A lesson from this work is that each
COMof the binding site and the ligand should be determined using
multiple anchor sites for taking the flexibilities and orientation into
account. This is because the flexible ligand can interact with the
protein in different conformations and at different parts of the
molecule. Even with a proper definition of the protein-ligand
distance and well-tunned REUS parameters (replica spacing and
force constants), the realization of constant acceptance ratios
throughout the REUS dimension is quite dificult as shown for
Imatinib. Here, we must add that applying too stiff umbrella
potentials during the pulling simulations for obtaining the
initial REUS replicas or during the REUS simulation may affect
the obtained binding pathways. Thus, we must find the right
balance of parameters that will not excessively bias the
simulation but will still result in efficient sampling.

We showed that gREST/REUS can fill this gap with the aid of
solute temperature exchange. Our results justify performing
exchanges in two dimensions while using non-negligible
computational resources. Using this protocol, protein-ligand
binding simulations, in particular ligands or inhibitors of small
or medium sizes, would be successfully performed on massively
parallel supercomputers or GPU clusters.

Although good random walks in the replica space were
observed in all three cases, simulation results of Abl-Imatinib
suggest that efficient conformational sampling of Imatinib
around the binding site of c-Abl kinase is still challenging.
Unlike for Src-PP1 and Src-Dasatinib simulations, we could
not observe many binding/unbinding events for Imatinib,
especially of replicas initiated from far distances. Observing
efficient random walks along the whole REUS range is
important for visualizing the binding pathway. We learned
that the problem is harder as the ligand size increased from
PP1 (easy) to Dasatinib (moderate) to Imatinib (difficult),
especially for obtaining the whole binding pathway. To further
enhance the sampling for flexible ligands, consideration of a CV
other than protein-ligand distance or an extension of the current
scheme would be necessary. Considering the very slow unbinding
rate of Imatinib, more drastic acceleration, such as simulations at
higher solvent temperatures or enhancement of the c-Abl kinase

domain motions might be introduced in the gREST/REUS
simulations.

Another practical drawback of the gREST/REUS ligand-
binding simulations is that huge computational resources are
required for them. In this study, we used 240 replicas in the 2D-
REMD for each of the three cases. Without the use of Fugaku or
other massively parallel supercomputers, it is not easy to access
such huge resources. One way to overcome the problem is to
replace gREST or REUS with other enhanced sampling methods
with less computational costs. We previously developed GaREUS
(Gaussian accelerated replica-exchange umbrella sampling)
(Oshima et al., 2019) by replacing gREST in gREST/REUS into
GaMD (Miao and McCammon, 2017). We were able to
significantly reduce the number of replicas using GaREUS
while keeping the sampling strategy and efficiency, because
GaREUS requires the same number of replicas as 1D-REUS.
The use of such low-cost enhanced sampling methods is
necessary for investigating molecular mechanisms for many
other kinase-inhibitor binding processes.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization, YS; Methodology, AS, SR and YS;
Investigation, AS; Resources, YS; Writing–Original Draft, AS;
Writing–Review and Editing, AS, SR and YS; Funding
Acquisition, YS; Supervision, YS.

FUNDING

We used the computational resources provided by the HPCI
System Research Project (Project ID: hp200129, hp200135,
hp210172, and hp210177) and those in RIKEN Advanced
Center for Computing and Communication (HOKUSAI
BigWaterfall). This work was supported by MEXT/JSPS
KAKENHI Grant Number 19H05645 (to YS), 21H05249 (to
YS), 19K12229 (to SR), RIKEN pioneering projects in “Biology
of Intracellular Environment,” “Dynamic Structural Biology,”
and “Glycolipidlogue” (to YS), MEXT “Program for
Promoting Research on the Supercomputer Fugaku
(Biomolecular dynamics in a living cell (JPMXP1020200101)/
MD-driven Precision Medicine (JPMXP1020200201)).”

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.878830/
full#supplementary-material

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 87883012

Shinobu et al. Practical Protocols for Kinase-Inhibitor Simulations

27

https://www.frontiersin.org/articles/10.3389/fmolb.2022.878830/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.878830/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


REFERENCES

Bernetti, M., Cavalli, A., and Mollica, L. (2017). Protein-Ligand (Un)binding
Kinetics as a New Paradigm for Drug Discovery at the Crossroad between
Experiments and Modelling. Med. Chem. Commun. 8 (3), 534–550. doi:10.
1039/c6md00581k

Bruce, N. J., Ganotra, G. K., Kokh, D. B., Sadiq, S. K., and Wade, R. C. (2018). New
Approaches for Computing Ligand-Receptor Binding Kinetics. Curr. Opin.
Struct. Biol. 49, 1–10. doi:10.1016/j.sbi.2017.10.001

Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical Sampling through
Velocity Rescaling. J. Chem. Phys. 126 (1), 014101. doi:10.1063/1.2408420

Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D. S.,
et al. (2021). Amber 2021. San Francisco: University of California.

Cowan-Jacob, S. W., Fendrich, G., Manley, P. W., Jahnke, W., Fabbro, D.,
Liebetanz, J., et al. (2005). The crystal Structure of a C-Src Complex in an
Active Conformation Suggests Possible Steps in C-Src Activation. Structure. 13
(6), 861–871. doi:10.1016/j.str.2005.03.012

Darden, T., York, D., and Pedersen, L. (1993). Particle Mesh Ewald: AnN·Log(N)
Method for Ewald Sums in Large Systems. J. Chem. Phys. 98 (12), 10089–10092.
doi:10.1063/1.464397

De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A. (2016). Role of Molecular
Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 59 (9),
4035–4061. doi:10.1021/acs.jmedchem.5b01684

Dickson, A., Tiwary, P., and Vashisth, H. (2017). Kinetics of Ligand Binding
through Advanced Computational Approaches: a Review. Curr. Top. Med.
Chem. 17 (23), 2626–2641. doi:10.2174/1568026617666170414142908

Dickson, A. (2018). Mapping the Ligand Binding Landscape. Biophysical J. 115 (9),
1707–1719. doi:10.1016/j.bpj.2018.09.021

Dror, R. O., Pan, A. C., Arlow, D. H., Borhani, D. W., Maragakis, P., Shan, Y., et al.
(2011). Pathway and Mechanism of Drug Binding to G-Protein-Coupled
Receptors. Proc. Natl. Acad. Sci. U.S.A. 108 (32), 13118–13123. doi:10.1073/
pnas.1104614108

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., et al. (2016). Insights into
Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol.
Sci. 17 (2), 144. doi:10.3390/ijms17020144

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G.
(1995). A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 103 (19),
8577–8593. doi:10.1063/1.470117

Feenstra, K. A., Hess, B., and Berendsen, H. J. C. (1999). Improving Efficiency of
Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems.
J. Comput. Chem. 20 (8), 786–798. doi:10.1002/(sici)1096-987x(199906)20:
8<786::aid-jcc5>3.0.co;2-b

Fukunishi, H., Watanabe, O., and Takada, S. (2002). On the Hamiltonian Replica
Exchange Method for Efficient Sampling of Biomolecular Systems: Application
to Protein Structure Prediction. J. Chem. Phys. 116 (20), 9058–9067. doi:10.
1063/1.1472510

Getlik, M., Grütter, C., Simard, J. R., Klüter, S., Rabiller, M., Rode, H. B., et al.
(2009). Hybrid Compound Design to Overcome the Gatekeeper T338M
Mutation in cSrc. J. Med. Chem. 52 (13), 3915–3926. doi:10.1021/jm9002928

Gobbo, D., Piretti, V., Di Martino, R. M. C., Tripathi, S. K., Giabbai, B., Storici, P.,
et al. (2019). Investigating Drug-Target Residence Time in Kinases through
Enhanced Sampling Simulations. J. Chem. Theor. Comput. 15 (8), 4646–4659.
doi:10.1021/acs.jctc.9b00104

Hénin, J., Lelièvre, T, Shirts, M. R., Valsson, O., and Delemotte, L. (2022).
Enhanced Sampling Methods for Molecular Dynamics Simulations. arXiv
preprint arXiv:2202.04164v1. doi:10.48550/arXiv.2202.04164

Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C.
(2006). Comparison of Multiple Amber Force fields and Development of
Improved Protein Backbone Parameters. Proteins. 65 (3), 712–725. doi:10.
1002/prot.21123

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L.
(1983). Comparison of Simple Potential Functions for Simulating Liquid
Water. J. Chem. Phys. 79 (2), 926–935. doi:10.1063/1.445869

Jung, J., Kasahara, K., Kobayashi, C., Oshima, H., Mori, T., and Sugita, Y. (2021).
Optimized Hydrogen Mass Repartitioning Scheme Combined with Accurate
Temperature/Pressure Evaluations for Thermodynamic and Kinetic Properties

of Biological Systems. J. Chem. Theor. Comput. 17 (8), 5312–5321. doi:10.1021/
acs.jctc.1c00185

Jung, J., Mori, T., Kobayashi, C., Matsunaga, Y., Yoda, T., Feig, M., et al. (2015).
GENESIS: a Hybrid-Parallel and Multi-Scale Molecular Dynamics Simulator
with Enhanced Sampling Algorithms for Biomolecular and Cellular
Simulations. Wires Comput. Mol. Sci. 5 (4), 310–323. doi:10.1002/wcms.1220

Kamiya, M., and Sugita, Y. (2018). Flexible Selection of the Solute Region in Replica
Exchange with Solute Tempering: Application to Protein-Folding Simulations.
J. Chem. Phys. 149 (7), 072304. doi:10.1063/1.5016222

Kobayashi, C., Jung, J., Matsunaga, Y., Mori, T., Ando, T., Tamura, K., et al. (2017).
GENESIS 1.1: A Hybrid-parallel Molecular Dynamics Simulator with Enhanced
Sampling Algorithms on Multiple Computational Platforms. Wiley Online
Library.

Kokubo, H., Tanaka, T., and Okamoto, Y. (2013). Two-dimensional Replica-
Exchange Method for Predicting Protein-Ligand Binding Structures. J. Comput.
Chem. 34 (30), 2601–2614. doi:10.1002/jcc.23427

Koneru, J. K., Sinha, S., and Mondal, J. (2019). In Silico reoptimization of Binding
Affinity and Drug-Resistance Circumvention Ability in Kinase Inhibitors: a
Case Study with RL-45 and Src Kinase. J. Phys. Chem. B. 123 (31), 6664–6672.
doi:10.1021/acs.jpcb.9b02883

Lin, Y.-L., Meng, Y., Jiang, W., and Roux, B. (2013). Explaining Why Gleevec Is a
Specific and Potent Inhibitor of Abl Kinase. Proc. Natl. Acad. Sci. U.S.A. 110 (5),
1664–1669. doi:10.1073/pnas.1214330110

Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O.,
et al. (2010). Improved Side-Chain Torsion Potentials for the Amber ff99SB
Protein Force Field. Proteins. 78 (8), 1950–1958. doi:10.1002/prot.22711

Liu, P., Kim, B., Friesner, R. A., and Berne, B. J. (2005). Replica Exchange with
Solute Tempering: A Method for Sampling Biological Systems in Explicit
Water. Proc. Natl. Acad. Sci. U.S.A. 102 (39), 13749–13754. doi:10.1073/
pnas.0506346102

Meng, Y., Lin, Y.-l., and Roux, B. (2015). Computational Study of the "DFG-Flip"
Conformational Transition in C-Abl and C-Src Tyrosine Kinases. J. Phys.
Chem. B. 119 (4), 1443–1456. doi:10.1021/jp511792a

Miao, Y., andMcCammon, J. A. (2017). “Gaussian AcceleratedMolecular Dynamics:
Theory, Implementation, and Applications,” in Annual Reports in Computational
Chemistry (Elsevier), 231–278. doi:10.1016/bs.arcc.2017.06.005

Miyamoto, S., and Kollman, P. A. (1992). Settle: An Analytical Version of the
SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 13
(8), 952–962. doi:10.1002/jcc.540130805

Morando, M. A., Saladino, G., D’Amelio, N., Pucheta-Martinez, E., Lovera, S., Lelli,
M., et al. (2016). Conformational Selection and Induced Fit Mechanisms in the
Binding of an Anticancer Drug to the C-Src Kinase. Sci. Rep. 6 (1), 24439–9.
doi:10.1038/srep24439

Nagar, B., Bornmann,W. G., Pellicena, P., Schindler, T., Veach, D. R., Miller, W. T.,
et al. (2002). Crystal Structures of the Kinase Domain of C-Abl in Complex with
the Small Molecule Inhibitors PD173955 and Imatinib (STI-571). Cancer Res.
62 (15), 4236–4243.

Narayan, B., Buchete, N.-V., and Elber, R. (2021). Computer Simulations of the
Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning. J. Phys.
Chem. B. 125 (22), 5706–5715. doi:10.1021/acs.jpcb.1c00264

Narayan, B., Fathizadeh, A., Templeton, C., He, P., Arasteh, S., Elber, R., et al.
(2020). The Transition between Active and Inactive Conformations of Abl
Kinase Studied by Rock Climbing and Milestoning. Biochim. Biophys. Acta
(Bba) - Gen. Subjects. 1864 (4), 129508. doi:10.1016/j.bbagen.2019.129508

Niitsu, A., Re, S., Oshima, H., Kamiya, M., and Sugita, Y. (2019). De Novo
prediction of Binders and Nonbinders for T4 Lysozyme by gREST
Simulations. J. Chem. Inf. Model. 59 (9), 3879–3888. doi:10.1021/acs.jcim.
9b00416

Oshima, H., Re, S., and Sugita, Y. (2020). Prediction of Protein-Ligand Binding
Pose and Affinity Using the gREST+FEP Method. J. Chem. Inf. Model. 60 (11),
5382–5394. doi:10.1021/acs.jcim.0c00338

Oshima, H., Re, S., and Sugita, Y. (2019). Replica-exchange Umbrella Sampling
Combined with Gaussian Accelerated Molecular Dynamics for Free-Energy
Calculation of Biomolecules. J. Chem. Theor. Comput. 15 (10), 5199–5208.
doi:10.1021/acs.jctc.9b00761

Paul, F., Thomas, T., and Roux, B. (2020). Diversity of Long-Lived Intermediates
along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 87883013

Shinobu et al. Practical Protocols for Kinase-Inhibitor Simulations

28

https://doi.org/10.1039/c6md00581k
https://doi.org/10.1039/c6md00581k
https://doi.org/10.1016/j.sbi.2017.10.001
https://doi.org/10.1063/1.2408420
https://doi.org/10.1016/j.str.2005.03.012
https://doi.org/10.1063/1.464397
https://doi.org/10.1021/acs.jmedchem.5b01684
https://doi.org/10.2174/1568026617666170414142908
https://doi.org/10.1016/j.bpj.2018.09.021
https://doi.org/10.1073/pnas.1104614108
https://doi.org/10.1073/pnas.1104614108
https://doi.org/10.3390/ijms17020144
https://doi.org/10.1063/1.470117
https://doi.org/10.1002/(sici)1096-987x(199906)20:8<786::aid-jcc5>3.0.co;2-b
https://doi.org/10.1002/(sici)1096-987x(199906)20:8<786::aid-jcc5>3.0.co;2-b
https://doi.org/10.1063/1.1472510
https://doi.org/10.1063/1.1472510
https://doi.org/10.1021/jm9002928
https://doi.org/10.1021/acs.jctc.9b00104
https://doi.org/10.48550/arXiv.2202.04164
https://doi.org/10.1002/prot.21123
https://doi.org/10.1002/prot.21123
https://doi.org/10.1063/1.445869
https://doi.org/10.1021/acs.jctc.1c00185
https://doi.org/10.1021/acs.jctc.1c00185
https://doi.org/10.1002/wcms.1220
https://doi.org/10.1063/1.5016222
https://doi.org/10.1002/jcc.23427
https://doi.org/10.1021/acs.jpcb.9b02883
https://doi.org/10.1073/pnas.1214330110
https://doi.org/10.1002/prot.22711
https://doi.org/10.1073/pnas.0506346102
https://doi.org/10.1073/pnas.0506346102
https://doi.org/10.1021/jp511792a
https://doi.org/10.1016/bs.arcc.2017.06.005
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1038/srep24439
https://doi.org/10.1021/acs.jpcb.1c00264
https://doi.org/10.1016/j.bbagen.2019.129508
https://doi.org/10.1021/acs.jcim.9b00416
https://doi.org/10.1021/acs.jcim.9b00416
https://doi.org/10.1021/acs.jcim.0c00338
https://doi.org/10.1021/acs.jctc.9b00761
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Simulations. J. Chem. Theor. Comput. 16 (12), 7852–7865. doi:10.1021/acs.jctc.
0c00739

Plattner, N., and Noé, F. (2015). Protein Conformational Plasticity and Complex
Ligand-Binding Kinetics Explored by Atomistic Simulations and Markov
Models. Nat. Commun. 6 (1), 7653–7710. doi:10.1038/ncomms8653

Re, S., Oshima,H., Kasahara, K., Kamiya,M., and Sugita, Y. (2019). EncounterComplexes
and Hidden Poses of Kinase-Inhibitor Binding on the Free-Energy Landscape. Proc.
Natl. Acad. Sci. U.S.A. 116 (37), 18404–18409. doi:10.1073/pnas.1904707116

Ryckaert, J.-P., Ciccotti, G., and Berendsen, H. J. C. (1977). Numerical Integration
of the Cartesian Equations of Motion of a System with Constraints: Molecular
Dynamics of N-Alkanes. J. Comput. Phys. 23 (3), 327–341. doi:10.1016/0021-
9991(77)90098-5

Schindler, T., Sicheri, F., Pico, A., Gazit, A., Levitzki, A., and Kuriyan, J. (1999).
Crystal Structure of Hck in Complex with a Src Family-Selective Tyrosine
Kinase Inhibitor.Mol. Cell. 3 (5), 639–648. doi:10.1016/s1097-2765(00)80357-3

Schuetz, D. A., de Witte, W. E. A., Wong, Y. C., Knasmueller, B., Richter, L., Kokh, D. B.,
et al. (2017). Kinetics for Drug Discovery: an Industry-Driven Effort to Target Drug
ResidenceTime.DrugDiscov. Today.22 (6), 896–911. doi:10.1016/j.drudis.2017.02.002

Seeliger, M. A., Nagar, B., Frank, F., Cao, X., Henderson, M. N., and Kuriyan, J.
(2007). c-Src Binds to the Cancer Drug Imatinib with an Inactive Abl/c-Kit
Conformation and a Distributed Thermodynamic Penalty. Structure. 15 (3),
299–311. doi:10.1016/j.str.2007.01.015

Shan, Y., Kim, E. T., Eastwood, M. P., Dror, R. O., Seeliger, M. A., and Shaw, D. E.
(2011). How Does a Drug Molecule Find its Target Binding Site? J. Am. Chem.
Soc. 133 (24), 9181–9183. doi:10.1021/ja202726y

Shekhar, M., Smith, Z., Seeliger, M., and Tiwary, P. (2021). Protein Flexibility and
Dissociation Pathway Differentiation Can Explain Onset of Resistance
Mutations in Kinases. BioRxiv.. doi:10.1101/2021.07.02.450932

Silva, D.-A., Bowman, G. R., Sosa-Peinado, A., and Huang, X. (2011). A Role for
Both Conformational Selection and Induced Fit in Ligand Binding by the Lao
Protein. Plos Comput. Biol. 7 (5), e1002054. doi:10.1371/journal.pcbi.1002054

Sohraby, F., Javaheri Moghadam, M., Aliyar, M., and Aryapour, H. (2020). A
Boosted UnbiasedMolecular DynamicsMethod for Predicting Ligands Binding
Mechanisms: Probing the Binding Pathway of Dasatinib to Src-Kinase.
Bioinformatics. 36 (18), 4714–4720. doi:10.1093/bioinformatics/btaa565

Spitaleri, A., Decherchi, S., Cavalli, A., and Rocchia, W. (2018). Fast Dynamic
Docking Guided by Adaptive Electrostatic Bias: The MD-binding Approach.
J. Chem. Theor. Comput. 14 (3), 1727–1736. doi:10.1021/acs.jctc.7b01088

Spitaleri, A., Zia, S. R., Di Micco, P., Al-Lazikani, B., Soler, M. A., and Rocchia, W.
(2020). Tuning Local Hydration Enables a Deeper Understanding of Protein-
Ligand Binding: The PP1-Src Kinase Case. J. Phys. Chem. Lett. 12 (1), 49–58.
doi:10.1021/acs.jpclett.0c03075

Sugita, Y., Kitao, A., and Okamoto, Y. (2000). Multidimensional Replica-Exchange
Method for Free-Energy Calculations. J. Chem. Phys. 113 (15), 6042–6051.
doi:10.1063/1.1308516

Sugita, Y., and Okamoto, Y. (1999). Replica-exchange Molecular Dynamics
Method for Protein Folding. Chem. Phys. Lett. 314 (1-2), 141–151. doi:10.
1016/s0009-2614(99)01123-9

Terakawa, T., Kameda, T., and Takada, S. (2011). On Easy Implementation of a
Variant of the Replica Exchange with Solute Tempering in GROMACS.
J. Comput. Chem. 32 (7), 1228–1234. doi:10.1002/jcc.21703

Tiwary, P., Mondal, J., and Berne, B. J. (2017). How and when Does an Anticancer
Drug Leave its Binding Site? Sci. Adv. 3 (5), e1700014. doi:10.1126/sciadv.
1700014

Tran, D. P., Hata, H., Ogawa, T., Taira, Y., and Kitao, A. (2020). PaCS-MD/MSM:
Parallel Cascade SelectionMolecular Dynamic Simulation in Combination with
Markov State Model as an Efficient Non-bias Sampling Method. Ensemble. 22
(2), 151–156. doi:10.11436/mssj.22.151

Tuckerman, M., Berne, B. J., and Martyna, G. J. (1992). Reversible Multiple Time
Scale Molecular Dynamics. J. Chem. Phys. 97 (3), 1990–2001. doi:10.1063/1.
463137

Valsson, O., Tiwary, P., and Parrinello, M. (2016). Enhancing Important
Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint.
Annu. Rev. Phys. Chem. 67, 159–184. doi:10.1146/annurev-physchem-040215-
112229

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).
Development and Testing of a General Amber Force Field. J. Comput. Chem. 25
(9), 1157–1174. doi:10.1002/jcc.20035

Wang, L., Friesner, R. A., and Berne, B. J. (2011). Replica Exchange with Solute
Scaling: a More Efficient Version of Replica Exchange with Solute
Tempering (REST2). J. Phys. Chem. B. 115 (30), 9431–9438. doi:10.
1021/jp204407d

Yang, L.-J., Zou, J., Xie, H.-Z., Li, L.-L., Wei, Y.-Q., and Yang, S.-Y. (2009). Steered
Molecular Dynamics Simulations Reveal the Likelier Dissociation Pathway of
Imatinib from its Targeting Kinases C-Kit and Abl. PLoS One. 4 (12), e8470.
doi:10.1371/journal.pone.0008470

Zhang, Q., Zhao, N., Meng, X., Yu, F., Yao, X., and Liu, H. (2022). The Prediction of
Protein-Ligand Unbinding for Modern Drug Discovery. Expert Opin. Drug
Discov. 17 (2), 191–205. doi:10.1080/17460441.2022.2002298

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shinobu, Re and Sugita. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 87883014

Shinobu et al. Practical Protocols for Kinase-Inhibitor Simulations

29

https://doi.org/10.1021/acs.jctc.0c00739
https://doi.org/10.1021/acs.jctc.0c00739
https://doi.org/10.1038/ncomms8653
https://doi.org/10.1073/pnas.1904707116
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/s1097-2765(00)80357-3
https://doi.org/10.1016/j.drudis.2017.02.002
https://doi.org/10.1016/j.str.2007.01.015
https://doi.org/10.1021/ja202726y
https://doi.org/10.1101/2021.07.02.450932
https://doi.org/10.1371/journal.pcbi.1002054
https://doi.org/10.1093/bioinformatics/btaa565
https://doi.org/10.1021/acs.jctc.7b01088
https://doi.org/10.1021/acs.jpclett.0c03075
https://doi.org/10.1063/1.1308516
https://doi.org/10.1016/s0009-2614(99)01123-9
https://doi.org/10.1016/s0009-2614(99)01123-9
https://doi.org/10.1002/jcc.21703
https://doi.org/10.1126/sciadv.1700014
https://doi.org/10.1126/sciadv.1700014
https://doi.org/10.11436/mssj.22.151
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/jp204407d
https://doi.org/10.1021/jp204407d
https://doi.org/10.1371/journal.pone.0008470
https://doi.org/10.1080/17460441.2022.2002298
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Unexpected Dynamic Binding May
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A novel coagulation factor X (FX) Tyr319Cys mutation (Y99C as chymotrypsin numbering)
was identified in a patient with severe bleeding. Unlike the earlier reported Y99A mutant,
this mutant can bind and cleave its specific chromogenetic substrate at a normal level,
suggesting an intact binding pocket. Here, usingmolecular dynamics simulations andMM-
PBSA calculations on a FX-rivaroxaban (RIV) complex, we confirmed a much stronger
binding of RIV in Y99C than in Y99A on a molecular level, which is actually the average
result of multiple binding poses in dynamics. Detailed structural analyses also indicated the
moderate flexibility of the 99-loop and the importance of the flexible side chain of Trp215 in
the different binding poses. This case again emphasizes that binding of ligands may not
only be a dynamic process but also a dynamic state, which is often neglected in drug
design and screening based on static X-ray structures. In addition, the computational
results somewhat confirmed our hypothesis on the activated Tyr319Cys FX (Y99C FXa)
with an impaired procoagulant function to bind inhibitors of FXa and to be developed into a
potential reversal agent for novel oral anticoagulants (NOAC).

Keywords: coagulation factors, rivaroxaban, molecular dynamics simulations, molecular flexibility, structure-based
drug design

INTRODUCTION

In the coagulation cascade, the key position of coagulation factor X (FX) where the intrinsic and the
extrinsic pathwaymerge into the common pathwaymakes it an ideal target to develop anticoagulants
(Davie et al., 1991; Al-Obeidi and Ostrem, 1999; Lee and Player, 2011). Advances in crystallography
have boosted the screening and design of synthetic inhibitors targeting on activated FX (FXa), which
successfully resulted into novel oral anticoagulants (NOACs) approved by FDA, such as apixaban,
rivaroxaban, and edoxaban (Perzborn et al., 2011; Wong et al., 2011; Wang et al., 2016). The X-ray
structures of the FXa-inhibitor complexes showed that this type of anticoagulant can directly bind to
the S1 pocket and S4 pocket at the same time (Maignan et al., 2003; Nazare et al., 2005). The former is
a conserved pocket in the catalytic serine protease domains of coagulation factors, which
accommodates the P1 residue of the peptide bond to be cleaved. The conserved Asp189 deep in
the bottom of the pocket could provide strong electrostatic interaction with substrates and inhibitors
(Katz et al., 2000; Hedstrom, 2002). At the same time, different from other coagulation factors with a
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serine protease domain, its distinctive hydrophobic S4 pocket
provides an ideal target site for inhibitors to bind specifically
(Wang et al., 2012). For example, the widely used NOAC
rivaroxaban (RIV) has its chlorothiophene moiety (R1) and
the morpholinone moiety (R4) binding to the S1 and S4
pocket of FXa, respectively (Roehrig et al., 2005) (Figure 1).

As the first approved NOAC, rivaroxaban has been increasingly
used in clinical practice for treatment or prevention of
thromboembolism. However, patients taking NOACs may
present with major bleeding or need for management of an
urgent unplanned bleeding challenge, and the best method to
stop bleeding is the use of NOACs reversal agents to bind
excessive NOACs (Kaatz et al., 2012; Samama, 2013; Samama
et al., 2013). Until 2018, only one reversal agent for apixaban and
rivaroxaban was approved by the Food and Drug Administration
(FDA) (Escolar et al., 2017; Sartori and Cosmi, 2018; Carpenter
et al., 2019), which is a recombinant FXa named andexanet alfa.
However, in the ANNEXA-4 study, thrombotic events occurred in
18% of the patients in the safety population (Connolly et al., 2016),
which is likely related to the binding of andexanet alfa to tissue
factor pathway inhibitor (TFPI) (Ersayin et al., 2017). In the same
way, different mutants of FXa were in development for more
efficient reversal agents. For example, Verhoef et al. (2017)
designed recombinants of FXa with either point mutation in the
S4 pocket or fragment modifications on the 99-loop and compared
their potentialities as reverse agents for NOACs with combined
computational and biochemistry approach.

In addition to the fancy crystal structures of coagulation factors,
molecular dynamics (MD) simulation also provided important
understandings of the dynamics in FXa and its complex with
different binding substrate/ligands. Daura et al. (2000) simulated
the catalytic domain of FXa in aqueous solution and suggested
possible hydrogen bonding of the active site residues with a

substrate or inhibitor. Later, more simulations unveiled possible
conformational changes in zymogen activation (Camire, 2002;
Venkateswarlu et al., 2002) and in conformational transitions of
open/closed states of the binding pocket (Singh and Briggs, 2010;
Wang et al., 2012). MD simulations also suggested the importance
of flexibilities to the catalytic activity impacted by mutations in the
S4 pocket and S1 pocket (Abdel-Azeim et al., 2014) as well as the
N-terminus of the serine protease domain (Li et al., 2019). The
dynamics lying behind drugs targeting the S1 and S4 binding sites
of FX were also implemented, such as edoxaban, betrixaban (Du
et al., 2019), and rivaroxaban (Qu et al., 2019).

In this work, a novel FX Tyr319Cys mutation identified in a
patient with severe bleeding diathesis was reported, whose activity
for prothrombin activation is completely impaired but the cleavage
on specific chromogenetic substrate is normal. A molecular model
of the activated FX (FXa) with corresponding Y99C mutation in
complex with rivaroxaban was then analyzed by molecular
dynamics simulations. Unlike the Y99A mutant in which RIV is
quickly released, this Y99C mutant is more like F174A and can
have RIV dynamically bound with multiple patterns and
unexpected strong affinity (Qu et al., 2019; Qu and Xu, 2019).
Therefore, we presume that the activated Tyr319Cys FX (Y99C
FXa) mutant may not have a procoagulant function but may have
the ability to bind the NOAC rivaroxaban and the potential to be
developed into a novel reversal agent.

MATERIALS AND METHODS

Blood Sampling
The peripheral blood was collected via venipuncture into tubes
containing sodium citrate (final concentration 0.38%), followed
by double centrifugation at 3,000 g for 15 min to obtain platelet-

FIGURE 1 | Binding of rivaroxaban (RIV) in the active site of coagulation factor X. (A) Three-dimensional structure from the Protein Data Bank (2W26). The carbon
atoms of RIV are colored in brown, while those of the key residues in the S1 pocket and S1’ pocket are colored in magenta and those of the key residues in the S4 pocket
are colored in cyan. Other residues concerning RIV-FX binding are colored in orange, with the catalytic triad in green and D189 in pink. (B) Two-dimensional plot of the
binding of RIV with the interactions with the surrounding residues illustrated later. For convenience, the four rings of RIV are named as R1 to R4 from the
chlorothiophene moiety to the morpholinone moiety.
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poor plasma (PPP). Normal pooled plasma (NPP) was prepared
from 30 healthy donors. The study was approved by the
Institutional Review Board of Ruijin Hospital. All related
individuals gave their informed consent to participate.

Hemostatic Assays
The FX clotting activity (FX:C) was measured using the activated
partial thromboplastin time (aPTT) and pro-thrombin time (PT)
pathway-based coagulation function assays on the ACL-TOP
automatic coagulometer (Instrumentation Laboratory). The
plasma FX was activated to activate FX (FXa) by Russell’s viper
venom (RVV-X) (Haematologic Technologies Inc., Essex Junction,
VT, United States), and its enzymatic activity was determined
using specific chromogenic substrate S2765 (Hyphen-Biomed,
Neuville-Sur-Oise, France). The antigen level of FX (FX:Ag) was
measured using an enzyme-linked immunosorbent assay (ELISA)
kit (Enzyme Research Laboratories, South Bend, United States).

Genetic Analysis of F10
Genomic DNA was extracted from peripheral whole blood using
the QIAamp DNA blood purification kit (Qiagen, Hilden,
Germany). The coding sequences and flank regions of F10
gene were amplified by polymerase chain reaction and
sequenced. The primers used are listed in Table 1.

Modeling
The original molecular model of wild type FXa-RIV complex was
based on the structure with ID as 2W26 in the Protein Data Bank

(Roehrig et al., 2005), in which only the heavy chain of FXa, the
ions, and crystallographic waters close to it were kept so as to
reduce the size of the system (Abdel-Azeim et al., 2014). Tyr99
was selectively mutated into Cys and Ala by PyMOL as the initial
mutant models. PyMOL (Schrodinger, 2015) was also used for
visualization of the 3-D structures for both the initial models and
the representative conformations from the simulations given
later, while the 2-D plot of the RIV binding to critical residues
was obtained by ProteinPlus (Fricker et al., 2004).

Molecular Dynamics Simulations
The procedure of molecular dynamics simulations is fairly same
as that of our earlier studies (Li et al., 2019; Qu et al., 2019; Qu and
Xu, 2019). The package of GROMACS5.1.2 was used for the
molecular dynamics simulations (Abraham et al., 2015). The
force field for FXa was using CHARMM36 (Klauda et al., 2010),
that for water was TIP3P (Jorgensen et al., 1983), and the
parameters of RIV bound to the protein were generated by
CHARMM General Force Field (CGenFF) (Vanommeslaeghe
et al., 2010; Vanommeslaeghe et al., 2011; Vanommeslaeghe
et al., 2012). The two calcium ions in 2W26 were retained in
the topology and described by the default parameters of
CHARMM36. A total of four pairs of disulfide bridges (Cys22-
Cys27, Cys42-Cys58, Cys168-Cys182, and Cys191-Cys220) were
defined as linked in the topology. The protonated states of all the
residues were determined by H++ (Anandakrishnan et al., 2012)
at PH value = 7.0 with the water model of TIP3P followed by
manual checking (sequence of Y99C mutant is shown as an
example in Supplementary Figure S1), from which His83 was set
as the “HID” in the topology while other histidines (His57, His91,
His145, and His199) were set as the “HIE.” The models were
solvated in a cubic SPC216 water box (Berendsen et al., 1981)
with the dimensions as 6.90 nm × 6.96 nm × 5.91 nm. The
solvated systems were neutralized by adding five chloride ions,
with the total number of atoms about 28,200. These systems were
then energy-minimized by the steepest descent algorithm until
the maximum force was lower than 1,000.0 kJ/mol/nm and then
equilibrated with 100 ps NVT ensemble at 310 K and 100 ps NPT
ensemble at 310 K and 1 atm, where the Nosé–Hoover weak
coupling algorithm (Hoover, 1985) was used for temperature

TABLE 1 | Primers for F10 amplification.

Exon Forward 5’-3’ Backward 5’-3’

Exon 1 GTGGTCACTCCCCTGCCTCG TGCTGTGCCCCTCGTCCTG
Exon 2 TGAGGGTGACCAGAGCTTTT CTGTGGCCTGAGCTCCTTAC
Exon 3 TAAGATGACTGAAGCCACAT CTATTATGGAAACACCCTGA
Exon 4 GAAACAGCTTGCAGACTCCAG CTTCAGGGGCATCTGATCT
Exon 5 CCTTTGCTCAACCCAATGGC TGGTGTCACTGTTACCTGCC
Exon 6 TATGGGGAGCCTCTCTCTGT CAGGTGGTCTCTCCAGCAG
Exon 7 TGGCACAGGCAGAGAAAAGA CCTCTGTGAAATGCCCCTAA
Exon 8 GATGTGCGAGAGCATGTCC GGCAATCGAGAGACAAACCA

FIGURE 2 |Genetic analysis of proband and pedigree. The genetic analysis shows that the proband (II-1) carries a homozygous c.956a > g, p.Tyr319Cysmutation
in F10, which is inherited from his parents.
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maintenance and the Parrinello–Rahman barostat methodology
(Parrinello and Rahman, 1981) was used to keep the pressure. At
the same time, the particle mesh Ewald (PME) (Perera et al.,
1995) method was used for long-range electrostatic interactions
and the Linear Constraint Solver algorithm (LINCS) (Hess et al.,
1997) was used to allow the integration step as 2 fs. After the NVT
and NPT equilibrations, at least 200 ns further simulations were
performed and collected three times under the same NPT
condition.

Calculation of the Binding Free Energy
The g_mmpbsa (Kumari et al., 2014) package of GROMACS was
used to calculate the binding free energy between RIV and FXa
using the Molecular Mechanistic Poisson–Boltzmann Surface
Area (MM-PBSA) method. In this work, the molecular
mechanistic (MM) energies were only considered the
electrostatic interactions and the van der Waals interactions.
The solvation energies including the polar interactions were
calculated by the Poisson–Boltzmann method and the
nonpolar interactions were empirically estimated by the
exposed area (SASA) using the surface tension coefficient γ =
0.0072 kcal/(mol•Å2). The entropy contribution was not
included in this calculation for simplicity (Chen et al., 2013).
In this way, the total binding free energy is:

ΔGbind � ΔEvdw + ΔEcoulomb + ΔGpolar + ΔGnonpolar

Due to the highly dynamic behavior of RIV observed in the
mutants, we performed the calculation of the binding free energy
in different methods for different purposes. For the overall
comparison between the binding energies between the three
systems (WT, Y99C, and Y99A), we concatenated the three
trajectories of 200 ns MD simulations in each system to obtain
a sampling set of 600 ns in total and picked out frames by
intervals of 0.2 ns (3,000 frames in total for each system) for
further calculation on the binding affinity of RIV. For calculation
of the binding energies of themultiple bindingmodes in the Y99C
mutant, the 3,000 frames were clustered as described later, and
the frame sets of the top three clusters were collectively used for
calculation of the RIV binding energy. Similarly, the MM-PBSA
calculations were also applied to the frame sets of the top three
clusters obtained separately from each 1,000 frames of the 200 ns
trajectories of the Y99C mutant so as to explore the possible
influence from different samplings between the three repeats.

Analyses on Simulation Trajectories
The g_rms and g_rmsf package of GROMACS were used for
calculation of the root-mean-square deviations (RMSDs) of
selected atoms and the root-mean-square fluctuations (RMSFs)
of the backbone atoms of the selected residues from Asn92 to
Ile103 as the 99-loop, respectively. The RMSD of RIV or of the
99-loop backbone was also used for clustering the RIV binding
modes or the conformations of the 99-loop, respectively, by the
g_cluster package using the method illustrated by Daura et al.
(1999). The frames for clustering were obtained from the
trajectories with 0.2 ns interval. The cut-off for clustering was
empirically selected as 0.17 nm based on the results of all the three

systems. The package of “hydrogen bonds” in VMD (visual
molecular dynamics) (Humphrey et al., 1996) was used to
count possible hydrogen bonds between RIV and FXa, where
any time a donor atom and an acceptor atom is less than 3.5 Å in
distance and the angle of donor-H. . .acceptor is less than 30°, a
hydrogen bond is counted. For example, when a residue forms
two hydrogen bonds with RIV at the same time, no matter with
side chain or backbone, the frequency is counted twice, and its
overall occupancy is the sum of frequency involving this residue
divided by the sum of frames from all three repeats of simulations.
At last, the dynamic distribution of the R4 group of RIV was
visualized by the positions of the C3 atom on it for simplicity.

RESULTS

Clinical Results
The genetic analysis of a patient (II-1) with severe bleeding
diathesis identified a homozygous c.956a > g mutation in F10,
which was inherited from his heterozygous father (I-1) and
mother (I-2), who carries only one copy of this mutation on
this allele (Figure 2).

This mutation is leading to a p.Tyr319Cys mutation in FX or
the Y99C mutation in FXa by chymotrypsin numbering. The
plasma FX antigen levels (FX:Ag) of both the proband (II-1) and
his parents (I-1 and I-2) are almost normal as about 100% of
normal control. The clotting time was prolonged in both APTT
and PT tests. The FX clotting activity (FX:C) was determined by
activated partial thromboplastin time (APTT) and prothrombin
time (PT), which was completely impaired in the proband as
1.1%–1.4% of normal control, and more importantly, lowered to
around 50% in the heterozygotes. However, the proteolytic
activity to the chromogenic substrate S2765 was almost
unchanged, all around 100% of the normal control (Table 2).
It is reasonable to assume an intact active site in the Y99Cmutant,
at least for small substrates/inhibitors.

Comparison Between the Rivaroxaban
Bindings in Different FXa Systems
Combining the three repeats of 200 ns simulations into one
trajectory, the overall binding free energies of RIV to wild type
(WT), Y99C, and Y99A mutants were calculated by MM-PBSA,
with the contributions from van der Waals interactions,
electrostatic interactions, and polar and nonpolar interactions
with solutions compared in Table 3. From the total binding
energies, it was found that the overall binding of RIV–Y99C
(−83.018 ± 1.770 kJ/mol) is surprisingly even stronger than that
of wild type FXa (−59.450 ± 2.011 kJ/mol), while the binding in
Y99A mutant is much weaker. The unexpected stronger binding
in Y99C is mainly from van der Waal interactions, where the
binding is improved from −132.144 ± 2.761 to −162.162 ±
2.531 kJ/mol, although the polar interactions with solutions
offset this improvement by about 10 kJ/mol. On the other side,
the binding of RIV to Y99A is weakened in all the four terms of
interactions since RIV was released from the binding site to the
solution in a major part of the simulations.
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Residual contributions to the RIV binding were also
analyzed. As shown in Supplementary Table S1, in wild
type, only the three key residues of S4 pocket: Tyr99,
Phe174, and Trp215 contribute more than 2 kJ/mol to the
binding of RIV, and in all these three residues, Trp215 may
contribute the most, same as our earlier analyses (Qu and Xu,
2019). In the Y99C mutant, the side chain of residue 99 is
changed from aromatic tyrosine into a polar but much shorter
cysteine. It was expected that the aromatic cage of the S4 pocket
is damaged and its hydrophobic interactions with RIV would be
weakened, as observed in Y99A. However, although the
contribution from Cys99 (−2.916 ± 0.100 kJ/mol) is relatively
a little lower than Tyr99 in wild type (−3.205 ± 0.149 kJ/mol),
the stronger interaction from Trp215 (−8.497 ± 0.174 kJ/mol in
Y99C versus −6.453 ± 0.178 kJ/mol in wild type) resulted in
even stronger binding of RIV. In addition, another residue also
contributes more than 2 kJ/mol to RIV binding: Val213 turns to
contribute −2.204 ± 0.076 kJ/mol. This residue is close to
Trp215 but on the edge between the S4 and S1 pocket, which
may suggest more fluctuations in RIV binding pose in Y99C. On
the other hand, in the Y99A mutant, the contributions from all
the three key residues are much lowered, partly because RIV is
released from the binding site. However, even in our earlier
study where only frames before RIV were released and used
from binding free energy calculations, the contributions of
Ala99 and Trp215 are both about 5 kJ/mol lower than those
in wild type. The importance of residues in the three trajectories
are quite different, which is consistent with the observation that
RIV is released from the binding pocket and may transiently
bind to different positions on the surface of FXa.

According to the binding free energy analyses, the main
difference between the RIV binding in wild type and the
mutants comes from the hydrophobic interactions, where
deformation of the S4 pocket was expected to be caused by
the mutations (Qu and Xu, 2019). Comparisons of the global
RMSF clearly show that the difference in backbone flexibilities

mainly happens in the 99-loop, where the flexibility in Y99A
mutant is much higher than that in the other two systems
(Supplementary Figure S2). As compared in Figure 3B, the
average RMSF of all the residues on the 99-loop is a little
increased in the Y99C mutant from about 0.5�A to about
0.8�A, but greatly increased to about 1.5�A in the Y99A
mutant. More details of each trajectory are shown in
Supplementary Figure S3. The RMSD and RMSF of the 99-
loop in wild type are not only stable, but also similar in all three
trajectories. In Y99C, only those of trajectory III are as stable as
wild type. In trajectory II, RMSD of the 99-loop is increased to 3�A
after 100 ns of simulations, resulting in a little higher RMSF as
0.5–0.8�A. However, in trajectory I, the value of RMSD is quickly
increased to about 3�A after a short time, and part of the 99-loop
(Phe94) could have RMSF as high as 1.8�A. Consistently, the
cross-correlation analysis of Cα atoms of the Y99C mutant
indicates anti-correlated movements of the 99-loop with the
two segments surrounding the S4 pocket, while no notable
correlations are detected with other regions (Supplementary
Figure S4), suggesting that the S4 pocket is not totally
deformed. In all the three trajectories of Y99A, RMSD is
quickly increased and fluctuates acutely from 2.5 to 4.5�A, and
RMSF varies from 1.0 to 2.0�A, which is quite different both
between the residues and between the trajectories. The
representative structure of the top cluster of the trajectories is
shown in Figure 3A. In two trajectories of WT and Y99C, the
orientations of the side chains of Y99, Phe174, and Trp215 are
roughly similar around the S4 pocket, and the backbone of the 99-
loop is in comparable positions. However, in the trajectories II of
WT and I of Y99C, the side chain of Trp215 flips to the side of S1,
and the side chain of Phe174 in the former and the backbone of
the 99-loop in the latter deviates away, leaving the S4 pocket open.
At last, in Y99A, the side chains of Trp215 flip to the side of the S1
pocket in all three trajectories, while Phe174 and the 99-loop are
rather deviated from the S4 pocket, which is too loose to bind RIV
stably.

TABLE 2 | Clotting function and genetic profile of the pedigree.

FX:C (%)—Clotting activity FX:C (%)—Chromogenic activity FX:Ag (%) F10 mutation

APTT PT

Proband 1.1 1.4 98.0 97.8 Tyr99Cys
I-1 55.2 49.8 101.2 103.9 Tyr99Cys (Het)
I-2 52.7 51.6 99.5 97.3 Tyr99Cys (Het)
Reference 50–150 50–150 50–150 50–150

APTT, activated partial thromboplastin time; PT, pro-thrombin time.

TABLE 3 | Comparison between the binding free energies of RIV in the wild type (WT), Y99C, and Y99A mutants of coagulation factor X.

Energy (KJ/mol) WT Y99C Y99A

van der Waal energy −132.144 ± 2.761 −162.162 ± 2.531 −75.749 ± 2.435
Electrostatic energy −28.991 ± 1.134 −28.291 ± 0.924 −16.009 ± 0.778
Polar solvation energy 115.871 ± 2.565 124.552 ± 2.347 72.579 ± 2.596
Nonpolar solvation energy −14.250 ± 0.294 −17.069 ± 0.256 −8.598 ± 0.266
Total binding energy −59.450 ± 2.011 −83.018 ± 1.770 −27.605 ± 2.513
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FIGURE 3 |Comparison of the 99-loop fluctuation inWT, Y99C, and Y99Amutant of coagulation factor X. (A)Representative conformations of the top cluster from
the three trajectories in three systems, with RIV (brown), the backbone of 99-loop, and the residues 99, Phe174, and Trp215 shown and colored. (B) Time evolution of
average RMSF of 99-loop residues in WT (blue), Y99C (red), and Y99A (green) mutant of FX.

FIGURE 4 | Comparison of FX residue hydrogen-bonding with RIV in WT, Y99C, and Y99A mutant. (A) Illustration of the H-bonding (red dash) and H-π interaction
(green dash) of RIV with the key residues in the S4 pocket of the wild-type system, where RIV has the carbon atoms colored in brown while those of the residues were
colored in cyan. (B) Different H-bonding occupancies of the three key residues Y/C/A99 (in orange), F174 (in green), and W215 (in red) with RIV.
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The deformation in the S4 pocket may affect not only the
hydrophobic interactions but also the electrostatic interactions
between RIV and FXa, as illustrated in Figure 4A. The total
occupancies of H-bonds involving the key S4 pocket residues in
all simulations are summarized in Figure 4B. In the stable S4
pocket of wild type FXa, RIV may form H-bonds with Tyr99,
Phe174, and Trp215 as high as 2.8%, 8.6%, and 6.6% of the time,
respectively. It is surprising that rearrangement of the S4 pocket
induced by the Y99C mutation only reduces the possibility for
RIV to form H-bonds with the residue 99 and Trp215 by about
60%, although the most stable H-bonds with Phe174 in WT are
almost lost. At last, the occupancies of H-bonds with Trp215 is
greatly reduced and hardly found with Ala99 or Phe174. The
residues possibly H-bonding with RIV with more than 2% of the
simulation time are all listed in Supplementary Table S2. In all
three systems, the residues Gln192, Gly216, and Gly219 at the
entry of the S1 pocket are always of the top ones, and their
occupancies are the only ones more than 10% in both WT and
Y99C. In WT, the next important residues with the occupancies
higher than 5% are Phe174 and Trp215 in the S4 pocket.
However, their occupancies are much lowered in Y99C, with
only Trp215 as low as 2.5%. Instead, residues around the catalytic
pocket, such as Ser195, Lys96, and His57, have elevated
occupancies as 8.2%, 5.8%, and 5.3%, respectively. This
difference may suggest a shift of RIV binding poses. In
addition to increased frequency of H-bonding between RIV
and His57, the introduced Cys99 may also proximate to His57
and interfere with its H-bond with Asp102 considering the high
flexibility of the 99-loop or even act as a nucleophile as in a
cysteine protease. However, at least in this RIV-bound model, the
time evolution of the distance between H57 [ND1] and C99

[HG1] shows that the average distances (9.7, 8.4, and 6.4 Å) in the
three trajectories of Y99C are too far for the proton transfer
between these two residues accompanied with a possible
nucleophilic attack by Cys99 (Supplementary Figure S5). At
last, almost all residues in Y99A have relatively lower possibility
to form H-bonds with RIV, which is consistent with the fact that
RIV is rather released. However, Lys62 on the edge of the S1’
pocket is the only residue with occupancy increased to 8.1%,
which may suggest that the half-released RIV is easier to bind to
the half-exposed S1’ pocket, similar to what we discussed on the
F174A mutant earlier (Qu et al., 2019).

Analyses on the Dynamic Binding in the
Y99C Mutant
As compared previously, the binding of RIV in the Y99C mutant
is neither as stable as in wild type FXa nor as totally released as in
Y99A. The deformed S4 pocket, fluctuated 99-loop, and different
interactions may suggest a dynamic binding in Y99C. Therefore,
all the simulations of the Y99C mutant were combined together
for clustering on the RMSD of RIV so as to figure out its most
possible binding poses. MM-PBSA calculations were applied to
the frame sets of the top three clusters to estimate the affinities in
different binding modes.

As shown in Figure 5A and Table 4, the top three clusters
have already exhibited alternative binding patterns. The top
cluster (c1) occupies 83% of the population, where the R1 and
R4 group of RIV still stay around the S1 and S4 pocket,
respectively. However, this binding pattern is quite dynamic
and not as stable as that in the rigid S1S4 binding in the crystal
structure of wild type FXa. A major difference is the flip of the

FIGURE 5 |Detailed analysis on the binding of RIV in the Y99Cmutant. (A)Representative bindingmodes of the top three clusters. RIV carbon atoms are colored in
brown, the S4 pocket residues are shown in cyan, other residues important to RIV binding are shown in green, and the positions of the three pockets are labeled in
magenta. (B) Distributions of the R4 group are visualized by the positions of the C3 atom of RIV.
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side chain of Trp215 between the S4 and S1 pocket, which not
only reshapes the aromatic cage of the S4 pocket but also brings
a shift of RIV outward by the hydrophobic interactions between
the rings of Trp215 and the R2 & R3 rings of RIV. This shift
gives RIV more flexibility to interact with surrounding residues
with different binding poses, such as the hydrophobic
interactions with Val213 and hydrogen bonds with His57
and Ser195, which may compensate some of the loss of
binding energy in the S4 pocket. The second cluster (c2) is of
only 7% of all the simulation time, in which RIV is relatively
stable bound in a totally unexpected binding pattern, with R1 in
the S1 pocket and R4 in the S1’ pocket. In this pattern, RIV
totally loses its interaction with Phe174 and Cys99 but still
maintains hydrophobic interactions with Trp215 and Val213 in
the S1 pocket and gains additional interactions from the
residues in the S1’ pocket, such as Phe41, Cy58, and Gln61.
However, the S1’ pocket is relatively exposed to the solution,
making it easy for RIV to move away. At last, the third cluster
(c3) is of only 4% of the total sampling, whose representative
structure is somewhat like the stable S1S4 binding in wild type,
but Trp215 is flipped and R4 of RIV is more likely sandwiched
between the rings of Phe174 and Trp215. According to the MM-
PBSA calculations on the concatenated trajectory of Y99C
mutant, the c1 (−96.505 ± 0.454 kJ/mol) and c3 (−83.085 ±
1.847 kJ/mol) show relatively stronger binding affinity than c2
(−72.622 ± 1.554 kJ/mol) featured as the S1S1’ binding pose
(Supplementary Table S3).

It should be noted that a single representative structure of the
clusters may not fully describe the dynamics in different binding
poses of RIV. Therefore, the distribution of the R4 group
(Figure 5B) was compared by superposition of the coordinates
of RIV’s C3 atom. In the first cluster, although R4 stays in the S4
pocket for the most time, it may move a little toward the catalytic
pocket or even far away to the S1’ pocket. In the second cluster,
the distribution of R4 mainly assembles in the S1’ pocket, with
only minor frames diffused into the S4 pocket. At last, the

distribution of the R4 group is more concentrated in S4 of the
third cluster.

Possibly because of the variations between the trajectories of
Y99C simulations, the difference in binding pattern is more
obvious if we clustered the three repeats separately with a lower
cut-off (Supplementary Figure S6). In the first trajectory
Y99C_I, although there is some deformation of the S4
pocket, most of the time R4 stays around S4 to interact with
Phe174 or the residues His57, Cys58, or Tyr60 close to the
catalytic pocket. At the same time, the flip of Trp215 to the S1
pocket destabilizes the binding or R1 in the S1 pocket. In the
second trajectory, most of the time the side chain of Trp215 is
not flipped; thus, R1 can stay stably in the S1 pocket. However,
the ring of R4 loses its hydrophobic interaction with Phe174 and
has an astonishing shift toward the catalytic pocket or even to
the S1’ pocket, although most of the time, the electrostatic
interaction with the thiol of Cys99 is kept, and the
distribution of R4 is quietly diffused around S4 in cluster one
(c1) or around S1’ in c2 & c3. As a result, the binding pattern is
relatively shifted from the typical S1S4 to the atypical S1S1’. At
last, in the third trajectory, the S4 pocket is stronger and
relatively stable, and the binding of RIV is quite similar to
the typical S1S4 binding in wild type.

DISCUSSION

To explain the unexpected results of the Y99C mutant, the
molecular dynamics simulations in this work provide a great
help to explore the microscopic details of RIV-FXa binding in the
dynamic condition of dilute solution, although we are aware that
limited resources of computations and requirements of accuracy
may lead to some deviations from reality.

At first, the great flexibilities in both the protein and the drug
indicate that our analyses are not enough to sufficiently reflect the
whole landscape of the dynamic binding. On one side, the

TABLE 4 | Top three binding modes in the Y99C mutant.

R1 R4 Frequencies (%) Total binding energy Key residues Residue contributions

FX:RIV (Contribution ≤ −2 kJ/mol) (kJ/mol)

c1 S1 S4 82.77 −96.505 ± 0.454 CYS-99 −3.4787
PHE-174 −4.8023
VAL-213 −2.3387
TRP-215 −10.0666

c2 S1 S1′ 7.06 −72.622 ± 1.554 PHE-41 −2.2875
CYS-58 −2.0859
GLN-192 −2.0565
VAL-213 −2.7228
TRP-215 −6.3439

c3 S1 S4 4.33 −83.085 ± 1.847 CYS-99 −2.2025
PHE-174 −3.4795
TRP-215 −10.5807

Binding modes are based on the representative structures of the top three clusters of the Y99C trajectories, where R1 and R4 refer to the positions of the chlorothiophene and the
morpholinone rings of RIV, and S1, S1’, and S4 refer to the RIV groups that are roughly close to the positions of the corresponding FXa pockets. Sampled conformations belonging to c1,
c2, and c3were picked out forMM-PBSA, calculations of the RIV, and binding energy, respectively. The key contributed residues and their contributions of each cluster are also listed in the
last two columns of the table.
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flexibilities may be the reason for RIV in equilibration of multiple
binding poses, such as the fluctuation of the 99-loop and the
flipping of Trp215’s side chain. On the other side, they made it
quite complex to compare, analyze, summarize, and visualize the
binding in an easy and intuitive manner because the shape and
the positions of the drug and the binding pockets are always
changing. For example, RIV is an extended flexible compound
with four rings, where the chlorothiophene (R1) and the
morpholinone (R4) rings tend to bind with different pockets
somewhat independent to each other. In structural clustering, the
RMSD of all atoms of RIV may include all the structural
information, but the distribution of different binding patterns
with different pockets could not be clearly visualized by the
superposed mass center of whole RIV. Considering that the
R1 group should be more stably bound as discussed later, we
chose to focus on the more dynamic distribution of the R4 group
by superposition of the coordinates of the C3 atom on it.
Conversely, a similar NOAC apixaban is much more rigid and
compact, making it easier to be described, but at the same time, it
may lose some possibility to bind FXa in alternative patterns as
RIV, which may partially explain its lower binding affinity in
some mutants, as discussed earlier (Qu et al., 2019). From this
example, we would again emphasize the recognition of the
important influence of the flexibility of both the target protein
and the drug molecule, which was often neglected in structure-
based drug design and screening using static crystal structures but
more and more considered in recent studies, especially in protein
and antibody design (Corbeil et al., 2021).

Second, here, we used a popular method of clustering to find a
representative structure of different binding patterns for
illustration. However, the representative structures may not
always describe the difference between the bindings very well
since the results of clustering may be importantly affected by the
distribution of samples. Due to the limited resources, we chose to
repeat the simulations thrice for 200 ns each instead of an
extended simulation to obtain more diffused sampling.
However, the sampling in the three trajectories of the Y99C
mutant is quite distinctive with each other, as described
previously. For comparison with wild type and Y99A, we used
the clustering on all samples of the three trajectories combined
together, which not only enlarged the pool of samples but also the
variations within one cluster. Therefore, we supplemented the
clustering of separate trajectories so as to visualize the different
binding patterns more clearly. Adoption of alternative algorithms
or strategies of clustering may improve the recognition of
different binding patterns (Fraley and Raftery, 2002; Xu and
Wunsch, 2005) but may also introduce more artificial bias or
differences with earlier analyses.

At last, another source of error may come from the force
field that we used. The simulations on the three FXa systems
were performed as early as 2018, using the popular
CHARMM36 force field for FXa, TIP3P model for water,
and CGenFF to generate parameters for RIV as we did not
evaluate the effect of force field using alternative ones.
However, according to our discussions with experts in MD
simulations, we would expect some improvement in the
validity of our simulations if some conditions could be

applied further. First, the general CHARMM36 force fields
in GROMACS were fit for folded structures. However,
according to the results of our simulations and earlier
studies (Wang et al., 2012; Qu et al., 2019; Qu and Xu,
2019), the region of the 99-loop and the 174-loop may have
much higher flexibilities in dilute solution rather than those of
a compact aromatic cage as in the crystallization condition,
especially when the hydrophobic environment of the S4 pocket
is somewhat damaged by mutations. Therefore, if the loop
regions were described by force fields specifically adjusted for
an intrinsic disordered region, such as a folded-IDP balanced
force field ff03CMAP that we used recently (Zhang et al., 2019;
Mu et al., 2022), the dynamics of the critical loop regions might
be more realistic, especially when we did not have enough
resources for fully sufficient equilibrations. Second, the point
charge generated by CGenFF for the chloride of RIV is too
unsophisticated to describe the anisotropy of the electron
density around it, which may form a σ-hole leading to a
cation-π interaction with Tyr228 or a halogen bond with the
conserved Asp189 deep in the bottom of the S1 pocket. The
halogen bond might provide one of the reasons for the
chlorothiophene as a critical pharmacophore for the specific
binding of RIV in FXa. Although, in recent years, the
importance of halogen bond has been highly recognized in
biology and drug design, and great advances has been made to
apply it in simulations, the cases in classical MD simulations
are still too limited for us to find a way to integrate it into our
simulations successfully (Franchini et al., 2018; Zhu et al., 2019;
Dong et al., 2020; Zhang et al., 2020; Zhu et al., 2020). The
inaccurate description of the chloride interactions may
underestimate the binding of RIV in the S1 pocket, leading
to overestimation of clusters with R1 out of the S1 pocket.
However, this deviation happens in both wild type and the
mutants and may not directly affect the deformation of the S4
pocket and the shift of R4 to the S1’ pocket. Therefore, in our
opinion, the qualitative conclusion on the dynamic binding of
RIV in the Y99C mutant should be still valid.

CONCLUSION

In this work, we report a novel mutant of coagulation factor X,
Tyr319Cys (Y99C of FXa), identified in a patient with severe
bleeding, which can bind and cleave specific chromogenetic
substrates at a normal level. Consistently, molecular dynamics
simulations confirmed that its S4 pocket was much less deformed
than that of the Y99A mutant and may maintain the binding
affinity with rivaroxaban through dynamic binding between
multiple poses. Detailed structural analyses indicated that the
backbone of the 99-loop is only in minor fluctuation compared
with Y99A and kept part of the hydrophobic and H-bonds with
the S4 pocket. At the same time, the flexible flipping of Trp215’s
side chain may help stabilize alternative binding poses with the
R4 group in the catalytic pocket or even in the S1’ pocket. This
result again emphasizes the importance to consider the
flexibilities of both target protein and drug compound in
structure-based drug design and may support the hypothesis
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to develop similar recombinant FXa as a potential reversal agent
for novel oral anticoagulants.
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As amember of the death-associated protein kinase family of serine/threonine kinases, the
STK17B has been associated with diverse diseases such as hepatocellular carcinoma.
However, the conformational dynamics of the phosphate-binding loop (P-loop) in the
determination of inhibitor selectivity profile to the STK17B are less understood. Here, a
multi-microsecond length molecular dynamics (MD) simulation of STK17B in the three
different states (ligand-free, ADP-bound, and ligand-bound states) was carried out to
uncover the conformational plasticity of the P-loop. Together with the analyses of principal
component analysis, cross-correlation and generalized correlation motions, secondary
structural analysis, and community network analysis, the conformational dynamics of the
P-loop in the different states were revealed, in which the P-loop flipped into the ADP-
binding site upon the inhibitor binding and interacted with the inhibitor and the C-lobe,
strengthened the communication between the N- and C-lobes. These resulting
interactions contributed to inhibitor selectivity profile to the STK17B. Our results may
advance our understanding of kinase inhibitor selectivity and offer possible implications for
the design of highly selective inhibitors for other protein kinases.

Keywords: protein kinase, STK17B, p-loop, molecular dynamics simulation, conformational dynamics

INTRODUCTION

Protein kinases transfer the γ-phosphate group of ATP to serine, threonine, or tyrosine residues of
their substate proteins. This physiological process is also called as phosphorylation. Protein
phosphorylation provokes cellular signal transduction cascades associated with cell
differentiation, growth, homeostasis, and death (Pearce et al., 2010). Aberrant protein kinase
function by either activating mutations or translocations is related with numerous disease states,
including cancer, Alzheimer disease, Parkinson’s disease, inflammation, and metabolic disease
(Attwood et al., 2021; Cohen et al., 2021). Protein kinase are thus important therapeutic targets for
drug discovery. Until now, 71 small-molecule kinase inhibitors have been approved by the FDA in
the treatment of cancer and other diseases (Roskoski, 2021).
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Despite the inspiring clinical benefits, kinase inhibitors are still
encountered an unsurmountable challenge hallmarked by kinase
selectivity profile. This is because that the vast majority of protein
kinase inhibitors bind to the conserved ATP-binding site, leading
to the poor selectivity of kinase inhibitors towards a unique kinase
(Wu et al., 2015; Chen et al., 2020; Li C. et al., 2020). For example,
Davis et al. (2011) have previously explored the interaction of 72
kinase inhibitors with 442 kinases representing >80% of the
human catalytic protein kimome and found that the kinase
inhibitor selectivity profile is relatively narrow, with 10%–40%
of inhibitors interacting with >60% of kinases, and each inhibitor
interacting with more than one kinase. Therefore, developing a
promising strategy to discover highly selective inhibitors is an
area of intensive research in kinase kinome (Lu et al., 2018, Lu
et al., 2019a; Lu and Zhang, 2019).

To achieve inhibitor selectivity, several successful strategies
have been reported. Covalent kinase inhibitors are a class of
compounds that harbour a reactive, electrophilic warhead,
reacting with a nucleophilic cysteine residue at the target site
and then forming a stable covalent adduct (Nussinov and Tsai,
2015; Lu and Zhang, 2017; Ni et al., 2020). These covalent
inhibitors have pharmacological advantages of high potency
and selectivity. For instance, in the double mutant T790M/
L858R epidermal growth factor receptor (EGFR), the FDA-
approved Osimertinib engages with Cys797 at the ATP-
binding site through a covalent bond (Jia et al., 2016;
Nussinov et al., 2022). However, in the ATP-binding site, the
availability of cysteine residues at the proper position is scarce for
most of kinases, rendering the design of covalent inhibitors
remaining a challenging task.

Harnessing the sequence differences of ATP-binding site that
control inhibitor selectivity has emerged as an alternative. One
quintessential example is STK17B, a member of the death-
associated protein kinase family of serine/threonine kinases
(Pearce et al., 2010). Overexpression of STK17B plays a crucial

role in hepatocellular carcinoma and thus, inhibition of STK17B
catalytic activity in cells implies clinical utility in the treatment of
this malignancy (Lan et al., 2018). The crystal structure of ADP-
bound STK17B contains a small N-lobe and a large C-lobe
(Figure 1A). The N-lobe is mainly consisted of five β-strands
and one catalytic helix αC. The phosphate-binding loop (P-loop)
connecting the β1 to the β2 adopts a “U” shape. The C-lobe is
largely constituted by helices. The activation loop (A-loop) that
control catalytic activity runs along the substrate binding groove.
The flexible hinge domain connects the N-lobe to the C-lobe.
ADP binds to the cleft between the two lobes located under the
P-loop. There are several reported STK17B inhibitors, including
quercetin 1, dovitinib 2, and benzofuranone 3 (Supplementary
Figure S1). However, these are non-selective or modest selective
inhibitors toward STK17B. Recently, Picado et al. (2020) reported
a cell active STK17B inhibitor, thieno[3,2-d] pyrimidine PFE-
PKIS 43 (Figure 1B), which had remarkable potency and
selectivity toward STK17B against other homologous protein
kinases. A crystal structure of PFE-PKIS 43 complexed with
STK17B highlights a unique P-loop flip that interacts with the
inhibitor. In addition to the crystal structure of STK17B−PEF-
PRIS 43 complex, there are five co-crystal structures of STK17B in
complex with different inhibitors previously reported, including
EBD (PDB ID: 3LMO), quercetin (PDB ID: 3LM5), UNC-AP-194
probe (PDB ID: 6Y6H), AP-229 (PDB ID: 6ZJF), and dovitinib
(PDB ID: 7AKG). Structural superimposition of the five co-
crystal structures shows that the P-loop conformation in these
structures adopts the ordered β-strands (Supplementary Figure
S2), which is different from that in the crystal structure of
STK17B−PEF-PRIS 43 complex. However, the conformational
dynamics of the P-loop in the STK17B−PEF-PRIS 43 complex
remain unexplored.

Here, we performed a multi-microsecond length molecular
dynamics (MD) simulation of STK17B in the ligand-free, ADP-
bound, or ligand-bound states, to characterize the conformational

FIGURE 1 | Cartoon representation of STK17B in complex with ADP (PDB ID: 6QF4) (A) and the inhibitor PFE-PKIS 43 (PDB ID: 6Y6F) (B). The secondary
structural elements of α-helices and β-strands are colored by red and cyan, respectively. The loop including the phosphate-binding loop (P-loop) and the activation loop
(A-loop) is colored by gray. The hinge domain is colored by green. ADP and inhibitor are depicted by stick representation. Mg2+ ion is shown by a green sphere. (C)
Chemical structure of the inhibitor PFE-PKIS 43.
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plasticity of the P-loop and its interplay with the ligand over long
time-scales. We collected an overall simulated trajectories of
27 μs, which were conducted in multiple replicates in different
states. Coupled with the analyses of principal component analysis
(PCA), cross-correlation and generalized correlation motions,
secondary structural elements, and community networks, the
distinct conformational dynamics of the P-loop in the
different states were presented. Our results will advance our
understanding of kinase inhibitor selectivity and provide hits
for the design of selective inhibitors for other protein kinases.

RESULTS AND DISCUSSION

System Stability
Based on the available X-ray crystal structures of STK17B, we
collected conformational ensembles of μs-length MD
simulations. We simulated STK17B in various states
(i.e., ligand-free, ATP-bound, or ligand-bound) to explore
differences and similarities during MD simulations. For each
system, MD simulations were performed in explicit water
environment, collecting multiple μs-length trajectories (i.e., 3
replicates of 3 μs each) and yielding a total of sampling of
27 μs. Such a multiple and independent μs-length MD
trajectory has been proved efficient for investigating the
interdependent conformational plasticity of the kinase
domains (i.e., P-loop and A-loop) and their interactions with
the ADP or the ligand (Lu et al., 2019b; Zhang et al., 2019; Lu
et al., 2021a; Lu et al., 2021b; Maloney et al., 2021; Ni et al., 2021;
Hu et al., 2022).

We first monitored the root mean square deviation (RMSD) of
the kinase Cα atoms averaged over three replicates for each
system. As shown in Supplementary Figure S3, the kinase
backbone reached a similar stability in the apo (ligand-free),
ADP-bound, and ligand-bound states (i.e., the RMSD reaches
1–1.5 Å). This suggested that upon ADP or ligand binding, the
overall stability of the kinase has no significant conformational
differences during the simulations.

Coupled Motions of Kinase Intradomains
The dynamic correlation analysis was carried out to probe the
interdependent dynamics among different kinase domains. Two
distinct methods, including the traditional Pearson cross-
correlation (CCij) and the generalized correlation (GCij), were
used to calculate the correlation analysis (Shibata et al., 2020;
Liang et al., 2021; Zhang et al., 2022a), which was conducted and
averaged over all MD trajectories. The CCij analysis describes the
collinear correlation between the two residue Cα atoms (i and j),
reflecting whether they move in the correlated motions (CCij > 0)
or in the anti-correlated (CCij < 0) motions. The GCij analysis
monitors the degree of correlation between the two residue Cα
atoms (i and j), reflecting how much information of one atom’s
positions is provided by that of another atom. The GCij analysis
cannot identify correlated or anticorrelated motions of the two
atoms, ignoring the elucidation of atom’s motions.

The CCij matrix of STK17B that is represented by a two-by-
two plot of the Cα CCij coefficients reveals a conserved pattern of

correlated/anticorrelated motions in all apo, ADP-bound and
ligand-bound states (Figure 2). The N-lobe containing the P-loop
(residues 40–47) and C-lobe shows anticorrelated motions, which
is also observed on other protein kinases such as anaplastic
lymphoma kinase (ALK) (Liang et al., 2021), BCR-ABL
(Zhang et al., 2022a) and epidermal growth factor receptor
(EGFR) (Qiu et al., 2021). This suggests that the opposite
movement of the N- and C-lobes favours the “open or closed”
conformational transition of the nucleotide binding site
underlying ADP/ATP and substrate binding. In addition, the
difference matrix of ADP- and ligand-bound states using the apo
state as the reference indicates that the opposite movement of the
N- and C-lobes was stronger in the ADP-bound state than that in
the ligand-bound state (Supplementary Figure S4). The GCij
analysis was further used to unravel the global dependencies of
the protein kinase domain motions (Figure 3). Like the CCij
matrix, the GCij matrix of the STK17B in the apo, ADP-bound
and ligand-bound states showed a high degree of correlations
between the N-lobe and the C-lobe. However, the protein in the
ligand-bound system had a slightly higher correlations than that
in the ADP-bound and apo systems, which was further supported
by the difference matrix of ADP- and ligand-bound states using
the apo state as the reference (Supplementary Figure S5). This
result indicated that ligand binding induced an enhancedmotions
of protein kinase domains.

Local Motions and Conformational
Dynamics
In order to unravel the predominant collective motions of
different STK17B states and capture their essential degrees of
freedom, we conducted principal component analysis (PCA) of
STK17B in the apo, ADP-bound, and ligand-bound states. Based
on the PCA, the first two principal modes of motion
(i.e., principal components 1 and 2, PC1 and PC2) provide
information regarding to the large-amplitude motions of
different STK17B states, which represent their functional
dynamics (Masterson et al., 2011; Chen et al., 2019; Chen
et al., 2021; He et al., 2021; Okeke et al., 2021; Rehman et al.,
2021). In PCA, we selected all simulated trajectories for each
system and subjected to RMS-fit to the same initial structure to
rule out the translational and rotational motions of the protein.

As shown in Figure 4A, the apo protein sampled a confined
distribution of conformations. Addition of ADP largely changed
PC1, but did not change PC2 (Figure 4B), indicating that the
protein kinase had increased dynamics in response to ADP
binding. More remarkably, in the ligand-bound system
(Figure 4C), both PC1 and PC2 were enlarged compared to
the apo and ADP-bound systems. This observation suggested that
the ligand binding induced more enhanced conformational
dynamics of STK17B, which was consistent with the GCij
analysis. We further extracted the most represented
conformation from each cluster in the ligand-bound state
(L1–L3). As shown in Supplementary Figure S6, structural
overlapping of the three most represented conformations
showed that the P-loop and A-loop in the ligand-bound
STK17B underwent obvious conformational changes. Indeed,
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FIGURE 2 | The cross-correlation (CCij) matrix of STK17B for the apo (A), ADP-bound (B), and ligand-bound (C) systems. The correlated motions are colored by
violent (CCij > 0), while the anti-correlated motions are colored by cyan (CCij < 0). Color scales are shown at the right. The CCij values with an absolute correlation
coefficient of <0.4 are colored by white for clarity.

FIGURE 3 | The generalized correlation (GCij) matrix of STK17B for the apo (A), ADP-bound (B), and ligand-bound (C) systems. Color scales are shown at the right.

FIGURE 4 | The free energy landscape of the first and second principal components (PC1 and PC2) for the apo (A), ADP-bound (B), and ligand-bound (C)
systems. The unit of free-energy values is kcal/mol.
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previous MD simulations of protein kinase A (PKA) also
indicated that ligand binding induced global transitions in the
catalytic domain of PKA (Hyeon et al., 2009), supporting our MD
simulation results of ligand-bound STK17B.

The conformational landscapes of different STK17B states
based on the PCA results implied that STK17B was more
dynamics in the presence of ligand. To further validate this
hypothesis, the PC1 of the STK17B in the three different states
was visualized on the 3D structure (Figure 5). The red arrows
show the direction of residue motions, with the length
proportional to the intensity of the motion. Remarkably, the
ligand binding (Figure 5C) triggered more dynamic movement of
P-loop and A-loop than the apo (Figure 5A) and the ADP-bound
(Figure 5B) systems. For instance, no motion of the P-loop, but a
weak motion of the A-loop was observed in both the apo and
ADP-bound systems. In agreement with the PCA results, both the
P-loop and the A-loop of STK17B in the presence of ligand were
highly flexible, which may determine the selectivity profile of
ligand to the STK17B.

Secondary Structural Analysis of the
Phosphate-Binding Loop
To further reveal the different secondary structures of the P-loop
in the three different STK17B states, the defined secondary
structure of proteins (DSSP) (Lei et al., 2019) method was
used to analyse the secondary structural elements of residues
Tyr32−Ser55. Figure 6 shows the secondary structural profile of
residues Tyr32−Ser55 for the three systems. In both the apo
(Figure 6A) and ADP-bound (Figure 6B) systems, the residues
Ile33−Arg41 and Val46−Ile51 formed two extended strands (β1
and β2) and residues Gly42−Ala45 at the P-loop adopted the
bend conformation. These secondary structural elements of the
β1, P-loop and β2 in the apo and ADP-bound states are consistent
with the typical protein kinases at the corresponding position. In
sharp contrast, in the ligand-bound state (Figure 6C), the
secondary structural conformation of the β-strand in the
residues Ile33−Arg41 and Val46−Ile51 was disturbed,

especially the residues Ile33−Arg41 in the disordered
conformation. Together, DSSP results indicated that the
conformational changes of residues Ile33−Arg41 induced by
the ligand binding may have an important role in the control
of inhibitor selectivity to the STK17B.

Community Network Analysis
We next performed community network analysis to reveal the
altered community networks of STK17B in the apo, ADP-
bound, and ligand-bound states. The whole simulated
trajectories were selected for community network analysis.
The two Cα atoms within a cut-off distance of 4.5 Å that has
an occupation time >75% of simulation time were classified into
the same community (Sethi et al., 2009; Liang et al., 2020; Li
et al., 2021a; Foutch et al., 2021; Tian et al., 2021). Each
community was represented by coloured circles whose size is
related to the number of residues it includes. The strength of the
two communities was represented by the width of sticks that
connect inter-communities.

Figure 7 shows the communities of different STK18B states. In
the apo system (Figure 7A), there has nine communities. The
community 1 contains the P-loop, the helix αC, and the β3-β5.
The community 2 consists of the helix αD and the β6-β7. The
community 9 largely includes the A-loop. There was the existence
of strong connection between the community 1 and community 2
and between the community 1 and community 9. In contrast, the
communication between the community 1 and community 9 was
weak. This observation indicated that there was no information
flow between the P-loop and the A-loop in the apo system. In the
ADP-bound system (Figure 7B), the community 1 diminished,
which only consists of the helix αC. The sizes of the community 2
and community 9 in the ADP-bound system were similar to those
in the apo system. However, the information flow that connects
between the community 1 and community 2 and between the
community 1 and community 9 was markedly weaker in the
ADP-bound system than in the apo system. This indicated that
upon ADP binding to the STK17B, the inter-domain interaction
between the P-loop in the N-lobe and the helix αD in the C-lobe

FIGURE 5 | The motion of the first principal component (PC1) for the apo (A), ADP-bound (B), and ligand-bound (C) systems. The red arrows represent the
direction, with length proportional to the intensity of the motion.
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became weaken compared to the apo system. In the ligand-bound
system (Figure 7C), the community 1 was enlarged compared to
the ADP-bound systems, which was the same with the apo
system. The community 1 in the ligand-bound systems
consists of the P-loop, the helix αC, and the β3-β5. More
significantly, the communication between the community 1
and community 2 in the ligand-bound system was enhanced

compared to the ADP-bound system, with the strength
resembling to the apo system. This observation suggested that
upon ligand binding to the ADP-bound site, the information flow
between the P-loop in the N-lobe and the helix αD in the C-lobe
became stronger compared to the ADP-bound system. This
enhanced interactions between the two lobes may promote
inhibitor binding and selectivity to the STK17B.

FIGURE 6 | Secondary structural element analysis as a function of simulation time for residues Tyr32 to Ser52 in the apo (A), ADP-bound (B), and ligand-bound (C)
systems as calculated using the defined secondary structure of proteins (DSSP) method.
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Comparative Binding Modes
Community network analysis implied the strong interactions
between the N- and C-lobes in response to the ligand binding.
To further elucidate the conformational arrangement of the two
lobes of the protein kinase and the detailed interactions of ADP
and the ligand with the STK17B, the most representative
conformation of the STK17B-ligand and STK17B-ADP
complexes was obtained using the cluster analysis of the three
simulated trajectories (Liu et al., 2018; Xie et al., 2019). As shown
in Figure 8A, in the ligand-bound state, there was a significantly
disordered conformation of the P-loop, especially the β1, which
was in good agreement with the DSSP results. Owing to the

disordered P-loop conformation, the Arg41 at the β1 was flipped
into the ADP-binding site and formed hydrogen bonding or salt
bridge interactions with the residues Glu117 and Asn163 at the
C-lobe and the carboxylic acid of the ligand. The hydrogen
bonding occupation percentage was summarized in the
Supplementary Table S1. These interactions promoted the
strong communication between the N- and C-lobes, which
contributed to increase the selectivity profile of the ligand to
the STK17B. Simultaneously, the carboxylic acid of the ligand also
interacted with the catalytic residue Lys62 through a salt bridge.
Lys62 in turn formed salt bridge interactions with the Glu80 at
the helix αC. In addition, the N1 of the thieno[3,2-d]pyrimidine
formed a hydrogen bond with the amide backbone of Ala113 at
the hinge domain. In contrast, in the ADP-bound state
(Figure 8B), the β1 and β2 formed two anti-paralleled strands,
which was consistent with the DSSP results. Owing to the ordered
P-loop conformation, the Arg41 at the β1 was protruded into the
solvent and had no interactions with the C-lobe, which was
markedly different from that in the ligand-bound state. In the
hinge domain, the backbone of residues Glu111 and Ala113
formed two hydrogen bonds with the adenine moiety of ADP.
The hydrogen bonding occupation percentage was summarized
in the Supplementary Table S2. The catalytic residue Lys62
formed salt bridges with the α- and β-phosphate moieties of ADP
and the Mg2+ ion was coordinated with the α- and β-phosphate
moieties, the carboxylic moiety of Asp179, and the carbonyl
moiety of Asn163. Collectively, the comparative binding
modes of ADP and the ligand with the STK17B highlighted
that the unique p conformation induced by the ligand binding
played a determined role in the increased selectivity of the ligand
to the protein kinase. Given that the important role of the salt
bridge interactions between the carboxylic acid moiety of the
ligand and Arg41, it is advisable to retain the carboxylic acid
moiety in the future drug design toward STK17B.

CONCLUSION

In the present study, the collective sampling of 27 μs MD
simulations, coupled with the PCA, correlated motion analysis,
DSSP, and community network analysis, revealed the effect of the
conformational dynamics of the P-loop on the inhibitor
selectivity profile to the STK17B. Ligand binding contributed
to the increase of the conformational plasticity of the STK17B.
Compared to the apo and ADP-bound STK17B, the P-loop,
especially the β1, adopted the disordered conformation in the
presence of the ligand. This unusual P-loop conformation
rendered the residue Arg41 at the β1 flipping into the ADP-
binding site and interacted with the carboxylic acid moiety of the
ligand and residues Glu117 and Asn163 the C-lobe. These
interactions in the ligand-bound state enhanced the
information flow between the N- and C-lobes as observed by
the community network analysis, which played an essential role
in the control of the inhibitor selectivity to the STK17B. Owing to
the importance of the salt bridge interactions between the
carboxylic acid moiety of the ligand and Arg41 in the
maintenance of the unique, disordered P-loop conformation,

FIGURE 7 | The community networks for the apo (A), ADP-bound (B),
and ligand-bound (C) systems. The communities are shown as circles with
different colors. The edges represent the connections among communities
and the width is related to the intensity of the connections among
communities.
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the carboxylic acid moiety is suggested to retain in the future drug
design toward STK17B. These results shed light on the structural
basis of the selectivity of the inhibitor to the STK17B, which may
be useful for the design of highly selective inhibitors to other
protein kinases.

MATERIALS AND METHODS

System Preparation
The co-crystal structures of STK17B in complex with ADP (PDB
ID: 6QF4) (Lieske et al., 2019) or PFE-PKIS 43 (PDB ID: 6Y6F)
(Picado et al., 2020) were respectively downloaded from the
Protein Data Bank (PDB). The missing residues E191−E194 in
the 6QF4 and C187−I195 in the 6Y6F at the A-loop were
modelled using the MODELLER program (Webb and Sali,
2014). The ADP molecule in the 6QF4 was removed to serve
as the ligand-free STK17B (apo STK17B).

The force field parameters for ADP and Mg2+ were obtained
from the AMBER parameter database (www.amber.manchester.
ac.uk) and the generalized AMBER force field (GAFF) (Wang
et al., 2004) was used for PFE-PKIS 43. Partial changes for PFE-
PKIS 43 were computed using the RESP HF/6-31G* method
(Bayly et al., 1993) through the antechamber module in AMBER
18 (Case et al., 2005) and Gaussian 09 program. The AMBER
ff14SB (Maier et al., 2015) force field was used for the protein and
the TIP3P model was used for water molecules (Jorgensen et al.,
1983). The three simulated systems were embedded in a truncated
octahedron TIP3P explicit water box with a boundary of 10 Å,
while counterions Na+ were added to neutralize the total charge.
Then, 0.15 mol/L NaCl were added to simulate the physiological
environment.

Molecular Dynamics Simulations
MD simulations were carried out using the AMBER 18 program
(Case et al., 2005). Two rounds of minimizations of the three
simulated systems were performed, including the steepest descent
and conjugate gradient algorithms. This simulation protocol has

also been employed in recent studies of protein conformational
dynamics (Lu et al., 2019c; An et al., 2021; Liu et al., 2021; Zhang
et al., 2022b). Then, each system was heated up from 0 to 300 K
within 1 ns of MD simulations in the canonical ensemble (NVT),
imposing position restraints of 100 kcal/mol·A2 on the solute
atoms. Finally, three replicas of independent 3 μs simulations
were performed with random velocities under isothermal isobaric
(NPT) conditions. An integration time step of 2 fs was used. The
SHAKE algorithm was used to constrain all bond lengths
involving hydrogen atoms (Ryckaert et al., 1977). The particle
mesh Ewald (PME) method was used to treat with the long-range
electrostatic interactions (Darden et al., 1993), while a 10 Å non-
bonded cut-off was used for the short-range electrostatics and van
der Waals interactions.

Principal Component Analysis
Principal component analysis (PCA) has been widely used to
elucidate large-scale collective motions of biological
macromolecules during MD simulations (Li et al., 2020b; Li
et al., 2021b; Feng et al., 2021), which can transform a series
of potentially coordinated observations into orthogonal vectors to
capture large-amplitude motions. Among these vectors, the first
two principal component (named PC1 and PC2) provide the
dominant motions during MD simulations. In PCA, PCs were
generated based on coordinate covariance matrix of Cα atoms in
the STK17B protein and these collected frames were all projected
on the PC1 and PC2.

Generalized Correlation Analysis
Generalized correlation (GCij) analysis was performed to monitor
the correlated motions of residues (He et al., 2022; Wang et al.,
2022; Zhuang et al., 2022). To describe that how much
information of one atom was provided by another atom,
Mutual Information (MI) was calculated using the Eq. 1:

MI[xi, xj] � ∫∫p(xi, xj) ln p(xi, xj)
p(xi)p(xj) dxidxj (1)

FIGURE 8 | The most representative structural complexes of ligand-bound (A) and ADP-bound (B) STK17B. The β1 and β2 and the P-loop are colored by pink.
Hydrogen bonds or salt bridges are shown by green dotted lines. Coordinated bonds are shown by blue dotted lines.
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The equation can be calculated using the known measure of
entropy as the Eq. 2:

H[x] � ∫p(x) ln p(x)dx (2)

The correlation between pairs of atoms xi and xj can be
calculated using the marginal Shannon entropy H[xi], H[xj],
and the joint entropy term H[xi, xj] as the Eq. 3:

MI[xi, xj] � H[xi] +H[xj] −H[xi, xj] (3)
TheMI[xi, xj] values can be further normalised to obtain the

normalised generalised correlation coefficients (GCij) as the
Eq. 4:

GCij �
⎧⎪⎪⎨⎪⎪⎩1 − e−

2MI[xi ,xj]
d

⎫⎪⎪⎬⎪⎪⎭
−1
2

(4)

where d represents the dimensionality of xi and xj.

Cross-Correlation Analysis
Based on Pearson coefficients between the fluctuations of the Cα
atoms, the cross-correlation matrix (CCij) was calculated to
describe the coupling of the motions between the protein
residues (Li et al., 2020b; Aledavood et al., 2021; Hernández-
Alvarez et al., 2021; Wang et al., 2021). CCij was computed using
the following Eq. 5,

C(i, j) � c(i, j)
c(i, i)1/2c(j, j)1/2 (5)

The positive CCij values indicate the two atoms i and jmoving
in the same direction, whereas the negative CCij values indicate
the anti-correlated motions between the two atoms i and j.

Community Network Analysis
Community network was analyzed to uncover the inter-
community interactions using the Network View plugin in
VMD (Sethi et al., 2009; Marasco et al., 2021). In this analysis,
the Cα atoms in the STK17B were selected as nodes to represent

their corresponding residues. Edges were described between
nodes whose distances are within a cut-off of 4.5 Å occupying
>75% of simulation time. The edge between nodes was calculated
using the Eq. 6:

di,j � −log(∣∣∣∣Ci,j

∣∣∣∣) (6)
where i and j represent the two nodes.
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Uncovering the Mechanism of Drug
Resistance Caused by the T790M
Mutation in EGFR Kinase From
Absolute Binding Free Energy
Calculations
Huaxin Zhou1,2, Haohao Fu1,2, Han Liu1,2, Xueguang Shao1,2* and Wensheng Cai1,2*

1Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key
Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University,
Tianjin, China, 2Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China

The emergence of drug resistancemay increase the death rates in advanced non-small cell
lung cancer (NSCLC) patients. The resistance of erlotinib, the effective first-line antitumor
drug for NSCLC with the L858R mutation of epidermal growth factor receptor (EGFR),
happens after the T790M mutation of EGFR, because this mutation causes the binding of
adenosine triphosphate (ATP) to EGFR more favorable than erlotinib. However, the
mechanism of the enhancement of the binding affinity of ATP to EGFR, which is of
paramount importance for the development of new inhibitors, is still unclear. In this work, to
explore the detailed mechanism of the drug resistance due to the T790M mutation,
molecular dynamics simulations and absolute binding free energy calculations have been
performed. The results show that the binding affinity of ATP with respect to the L858R/
T790M mutant is higher compared with the L858R mutant, in good agreement with
experiments. Further analysis demonstrates that the T790Mmutation significantly changes
the van der Waals interaction of ATP and the binding site. We also find that the favorable
binding of ATP to the L858R/T790Mmutant, compared with the L858Rmutant, is due to a
conformational change of the αC-helix, the A-loop and the P-loop of the latter induced by
the T790Mmutation. This change makes the interaction of ATP and P-loop, αC-helix in the
L858R/T790M mutant higher than that in the L858R mutant, therefore increasing the
binding affinity of ATP to EGFR. We believe the drug-resistance mechanism proposed in
this study will provide valuable guidance for the design of drugs for NSCLC.

Keywords: absolute binding free energy calculation, Epidermal Growth Factor Receptor (EGFR), T790M mutation,
drug resistance, molecular dynamics simulation, BFEE2

INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths worldwide (Jemal et al., 2011). The most
common form of lung cancer is non-small cell lung cancer (NSCLC), which accounts for about
80–85% of lung cancer (Sharma et al., 2007; Inamura, 2017). In NSCLC, overexpression of epidermal
growth factor receptor (EGFR) or hyper-activating mutations in its kinase domain have been
observed in at least 50% of cases (Normanno et al., 2006). EGFR is a transmembrane receptor protein

Edited by:
Weiliang Zhu,

Shanghai Institute of Materia Medica
(CAS), China

Reviewed by:
Shan Chang,

Jiangsu University of Technology,
China

Xuemei Pu,
Sichuan University, China

Xiao Jun Yao,
Macau University of Science and
Technology, Macao SAR, China

*Correspondence:
Xueguang Shao

xshao@nankai.edu.cn
Wensheng Cai

wscai@nankai.edu.cn

Specialty section:
This article was submitted to

Molecular Recognition,
a section of the journal

Frontiers in Molecular Biosciences

Received: 18 April 2022
Accepted: 16 May 2022
Published: 30 May 2022

Citation:
Zhou H, Fu H, Liu H, Shao X and Cai W
(2022) Uncovering the Mechanism of

Drug Resistance Caused by the
T790M Mutation in EGFR Kinase From

Absolute Binding Free
Energy Calculations.

Front. Mol. Biosci. 9:922839.
doi: 10.3389/fmolb.2022.922839

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 9228391

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fmolb.2022.922839

52

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.922839&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/articles/10.3389/fmolb.2022.922839/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.922839/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.922839/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.922839/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.922839/full
http://creativecommons.org/licenses/by/4.0/
mailto:xshao@nankai.edu.cn
mailto:wscai@nankai.edu.cn
https://doi.org/10.3389/fmolb.2022.922839
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.922839


that has an essential role in cancer cell proliferation, survival,
adhesion, migration, and differentiation by activating RAS/RAF/
MEK/ERK and PI3K/AKT key downstream signaling pathways
(Hirsch et al., 2003; Nagano et al., 2018; Zhou et al., 2022). In
addition, among the currently marketed drugs, about 50–60% of
drugs use membrane proteins to exert their effects (Santos et al.,
2017). Therefore, EGFR and its mutations are one of the most
valuable clinically validated drug targets for NSCLC treatment
(Liao et al., 2010;Wee andWang, 2017). A large number of small-
molecule inhibitors acting on EGFR were developed to inhibit the
kinase domain of EGFR and disrupt the oncogenic cell signaling
by competing with adenosine triphosphate (ATP) for the binding
site on the intracellular tyrosine kinase domain of EGFR. For
example, first-generation EGFR inhibitor gefitinib or erlotinib is
widely employed as first-line therapy for NSCLC with EGFR
L858R mutation or exon 19 deletions. However, the secondary
EGFR mutation T790M detected in NSCLC patients, can induce
clinical resistance to gefitinib or erlotinib, greatly limiting the
efficacy of these drugs in clinical use (Pao et al., 2005; Kosaka
et al., 2006).

Understanding the mechanism of the T790M-induced drug
resistance is important for further drug design. To this end,
Kobayashi et al. proposed that the source of the acquired drug
resistance was steric hindrance produced by the bulky
methionine replaced the residue of threonine at position 790
(Kobayashi et al., 2005; Kwak et al., 2005; Pao et al., 2005).
Interestingly, a later study demonstrated that the T790M
resistance mutation increased the affinity of the receptor for
ATP, which in turn diminished the potency of these ATP-
competitive inhibitors (Yun et al., 2008). Several theoretical

studies have been performed to explain the structural and
energetic analyses of drug resistance conferred by the T790M
mutation. Saldaña-Rivero and co-workers used the MM-GBSA
approach to explain how L858R, T790M and L858R/T790M
mutations impact the binding mechanism of ATP (Saldaña-
Rivera et al., 2019). The popular MM/GBSA approach has
been used to obtain a rough estimate of the binding free
energy for a variety of complexes to explicate drug resistance
(Zhang et al., 2019; Tan et al., 2022). A mechanistic explanation
linking the mutations of the protein induce changes in the
conformational free-energy landscape was also investigated by
using massive molecular dynamics (MD) simulations together
with parallel tempering, metadynamics, and one of the best force-
fields available, showing a clear shift toward the active
conformation for the T790M mutant and the L858R/T790M
mutant (Sutto and Gervasio, 2013). The reason for the
different binding affinities of ATP with respect to the L858R
mutant and the L858R/T790M mutant, however, is still unclear.
In addition, the relationship of the conformation changes of
A-loop, αC-helix and P-loop and the difference of binding affinity
remains to be further explored.

In this article, the standard binding free energies of ATP with
respect to two EGFR mutants (L858R, L858R/T790M) have been
calculated to investigate the mechanism of the drug resistance
induced by the T790M mutation. Pair interaction calculations
have been performed to reveal the driving force underlying the
change of binding affinity of ATP to EGFR due to the T790M
mutation and structural analysis has been carried out to capture
the conformational change of the complex. The present study
shows the essential reason for the drug resistance induced by the

FIGURE 1 | Interactions of AMP with its nearby residues in EGFR mutants, plotted by LIGPLOT. (A) Analysis of hydrogen bond and hydrophobic interaction of
binding interface in the L858R mutant. (B) The L858R/T790M mutant (Wallace et al., 1995; Laskowski and Swindells, 2011).
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T790M mutation, which can provide useful guidance for the
further drug design against drug resistance.

METHODS

Structural Modeling
As the cocrystallized structure of EGFR or its mutants in a
complex with ATP has not yet been solved, here, we adopted
nonhydrolyzable analog AMP of ATP to carry out this research.
The crystal structure of an EGFR L858R mutant kinase domain
bound with the AMP molecule (PDB: 2EB3) as the structure
template to model the EGFR L858R/T790M-AMP complex by

CHARMM-GUI (Jo et al., 2008). Neither the protein nor the
ligand was protonated. Missing residues in the retrieved
structures were also examined and reconstructed using
CHARMM-GUI. The atomic coordinates of the EGFR
conformations were obtained from the Protein Data Bank
(PDB) (http://www.pdb.org).

Molecular Dynamics Simulations
MD simulations for all EGFR models were performed using
explicit-solvent periodic boundary conditions using NAMD
(Phillips et al., 2020). Each model was solvated in a cubic box
of TIP3P water, keeping a distance of 15 Å between the protein
and the sides of the solvent box (Jorgensen et al., 1983). Each of

TABLE 1 | Absolute binding free energies (in kcal/mol) for the ligand to EGFR mutants.

Contribution L858R Simulation time (ns) L858R/T790M Simulation time (ns)

△Gsite
c −9.52 ± 0.66 20 −9.57 ± 0.28 30

△Gsite
Θ

−0.58 ± 0.07 10 −0.42 ± 0.04 30

△Gsite
Φ

−0.40 ± 0.04 20 −0.48 ± 0.08 30

△Gsite
Ψ

−0.35 ± 0.02 10 −0.45 ± 0.07 30

△Gsite
θ

−0.11 ± 0.02 30 −0.23 ± 0.04 30

△Gsite
φ

−0.13 ± 0.01 30 −0.17 ± 0.02 30

−1
β ln(SpIpC+) −11.01 ± 0.38 530 −10.43 ± 0.96 500

△Gbulk
c 9.77 ± 0.11 20 8.36 ± 0.32 30

△Gbulk
o 6.63 - 6.67 -

△Go
bind −5.69 ± 0.48 670 −6.72 ± 0.91 710

△Go
bind (exp)a −5.25 - −6.96 -

aExperimental binding free energies [△Go
bind(exp)

a] for L858R and L858R/T790M come from (Yun et al., 2008).

FIGURE 2 | Pair interaction energy for the separation of the L858Rmutant: AMP (A) and the L858R/T790Mmutant: AMP (B)were decoupled into electrostatic and
van der Waals contributions. The pair interaction energy for the separation of the Thr790 residue: AMP (C) and the Met790 residue: AMP (D) were decoupled into
electrostatic and van der Waals contributions.
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the solvated systems was neutralized by adding enough chloride
and sodium ions to give a concentration of 250 nM. The
CHARMM36m protein force field was used to simulate all
protein structures (Huang et al., 2017). The CHARMM
General Force Field (CGenFF) force field was used to model
the organic molecules (Vanommeslaeghe et al., 2010). All heavy
atoms were restrained at the first stage of minimization. After
that, the heavy atoms of ligand were fixed in the second step.
Finally, all atoms in the system were minimized without any
restraint. Production simulations were subsequently performed
under the NPT condition at 300 K and 1.013 bar of the system.
Temperature and pressure were held constant using Langevin
dynamics and the Langevin piston (Uhlenbeck and Ornstein,
1930; Feller et al., 1995). All the trajectories were visualized using
the VMD software (Humphrey et al., 1996).

Calculation of Standard Binding Free
Energy
The binding free energy acts as a useful index to evaluate the
binding affinity between mutants and drugs, and can be used as
an important indicator of drug resistance (Zhou et al., 2013; Ma
et al., 2015; Khan et al., 2020). In this article, the standard binding
free-energy calculations of all systems were performed employing
BFEE2 and following a geometrical route (Gumbart et al., 2013;
Fu et al., 2021; Fu et al., 2022). BFEE2, which is a graphical user
interface-based software, can automatically set up and analyze
absolute binding free-energy calculations carried out with the
popular MD engine NAMD (Fu et al., 2021; Fu et al., 2022). The

calculation process of each protein-ligand complex was divided
into eight independent subprocesses. Seven collective variables of
geometrical restraints, that is, the root-mean-square deviation
(RMSD) for describing the conformational change of the ligand
in its bound state with respect to its native conformation, three
Euler angles (Θ,Φ,Ψ) for describing the relative orientation of the
ligand, the polar and azimuthal angles (θ, φ), together with the
distance (r) between the center of mass of the ligand and that of
the protein for describing its relative position (Fu et al., 2017),
were introduced to accelerate the convergence of free-energy
calculations. The contributions of the geometric restraints were
evaluated by means of one-dimensional potential of mean force
calculations carried out using the well-tempered meta-eABF
(WTM-ABF) algorithm (Fu et al., 2016; Lesage et al., 2017; Fu
et al., 2018; Fu et al., 2019).

RESULTS AND DISCUSSION

Structural Analysis of Ligand-Protein
Complexes
Here, after the equilibrated simulations of all systems were
completed, the intermolecular interactions of AMP with EGFR
mutants were analyzed by the LIGPLOT program. As shown in
Figure 1, AMP forms four specific hydrogen bondswith kinase polar
residues Gln791, Met793, Arg841, and Asn842 of the L858Rmutant
and presents a wide hydrophobic contact interface with a number of
kinase nonpolar residues, Leu792, Gly796, Val726, Leu718, Ser720,
Ala722, Gly721, Ala743, Leu844, and Lys745. Interestingly, AMP
also forms four hydrogen bonds with the L858R/T790M mutant,
with an average distance shorter than those formed between AMP
and the L858R mutant. However, these structural results may not
completely explain the experimental observation from kinase assays
that AMP has a higher binding affinity with the L858R/T790M
mutant compared to the L858R one.

Absolute Binding Free Energy of AMP to
EGFR Mutants
To evaluate the binding affinity of AMP with EGFR mutants,
standard binding free-energy calculations were carried out on two
complexes, i.e., AMP-L858R and AMP-L858R/T790M using the
CHARMM36m force fields. The computed binding free-energy
between AMP and EGFR kinase domains, with the contributions
of geometric restraints acting on each degree of freedom, are
reported inTable 1. The calculated standard binding free energies
of AMP with respect to the L858R and the L858R/T790M double
mutant are −5.69 kcal/mol and −6.72 kcal/mol, respectively.
These estimates are in good agreement with the experimental
values, namely, −5.25 kcal/mol and −6.96 kcal/mol, respectively,
suggestive of a remarkable accuracy of BFEE2-based streamlined
free-energy calculations. As expected, the binding affinity of AMP
to EGFR increased by approximately 1.03 kcal/mol due to the
T790M mutation. This result explains that the T790M
substitution confers resistance by increasing the affinity for
ATP, which was also demonstrated by (Yun et al., 2008). The
one-dimensional free-energy profiles for the different

FIGURE 3 | Key structural elements structures of EGFR. The key
structural elements are highlighted in purple (αC helix), yellow (A-loop), blue
(the Asp-Phe-Gly motif) and green (P-loop).
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contributions are presented in Supplementary Figures S1, S2. As
described in Table 1, the major contribution of the absolute
binding free energies of AMP with the L858R mutant and L858R/
T790M mutant was the -1/β ln (S*I*C°) term in Table 1, which
characterizes the separation of the protein and the ligand. The
pair interaction energy for the separation was further decoupled
into the van der Waals and electrostatic terms, as depicted in
Figures 2A,B. It is apparent that electrostatic interactions
constitute the driving force for the binding of AMP to the
L858R mutant. Both van der Waals and electrostatic
interactions, however, are critical to the binding of AMP to
the L858R/T790M mutant. In addition, the energy profile
characterizing AMP and residue 790 was analyzed. As shown
in Figures 2C,D, the T790M mutation increases van der Waals
interactions of AMP to EGFR. Based on these results, we
conclude that the higher binding affinity of AMP to the
L858R/T790M mutant, compared to the L858R one, probably
because the T790M mutation increases the van der Waals
interaction between AMP and EGFR.

Analysis of the Structural Conformational
Changes Underlying the Increase of Binding
Free Energy
The ATP-binding pocket is composed of a hinge region, A-loop, αC-
helix, and P-loop (Figure 3), which are known to be crucial for their

conformational stabilities and functional interactions with ATP
(Johnson et al., 1996). The conformational changes of A-loop,
P-loop, and αC-helix are important events occurring during
kinase activation. In this section, we investigated the relationship
between the structural changes of these key elements and binding
affinity. We characterized the conformational changes of these key
elements of EGFR by measuring the distance between these critical
elements and ligand (Hu et al., 2022). As shown in Figure 4A, the
location of AMP relative to A-loop, αC-helix and P-loop have a
shorter distance in the L858R/T790M mutant, contributing to the
favorable interactions that existed in the complex. Moreover,
Figure 4B shows that the αC-helix is kept in place by a salt
bridge formed by E762 and K745 in the L858R/T790M mutant,
which is more stable than that observed in the L858R mutant (the
average distance between N2 (Lys745) and CD (Glu762) of 3.05 Å
vs. 7.86 Å, respectively). Additionally, the pair interaction energy for
the separation was further decoupled into the van der Waals and
electrostatic terms. As can be seen in Figure 4C, electrostatic
interactions constitute the driving force for the binding of αC-
helix to AMP in the L858R mutant. Although both electrostatic
interactions and van der Waals interactions contribute to the
binding of αC-helix to AMP in the L858R/T790M mutant, it is
apparent that the effects of electrostatic interactions in higher than
van der Waals interactions. The interactions of AMP and A-loop
and P-loop are provided in Supplementary Figure S3. Further
analysis revealed that the Met790 residue possesses a longer side

FIGURE 4 | Structural analysis of EGFRmutants and AMP. (A) Time-evolution of the average distance between A-loop, αC-helix and P-loop and AMP, respectively.
(B) The interaction of E762 and K745 in L858R/T790Mmutant. (C) The pair interaction energy for the separation between the ligand and αC-helix of the EGFR mutants.
(D) Superposition and comparison between the structures of Thr790-AMP pair and mutant Met790-AMP pair. Thr790 and Met790 are colored in green and purple,
respectively.
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chain that can has a favorable contact with AMP compared with the
Thr790 residue during the conformational change process
(Figure 4D). This phenomenon is in agreement with the results
of Figures 2C,D. Based on the discussion above, after the T790M
mutation, the structural changes of αC-helix and P-loop mainly
improve electrostatic interactions and van der Waals interactions,
respectively. These are profitable to the binding affinity of AMP
to EGFR.

CONCLUSION

Here, a powerful tool, BFEE2, was used to calculate the standard
binding free energies of AMP to EGFRmutants. The results are well-
consistent with the experiment. We found that the kinase affinity for
AMP increased after the T790M mutation. In addition, our results
indicate that electrostatic interaction plays a leading role in the
binding of AMP to the L858R mutant, while both electrostatic
interaction and van der Waals interaction are equally important for
the binding of AMP to the L858R/T790Mmutant. The present work
emphasizes that the increased affinity of AMP to the L858R/T790M
mutant compared with the L858R mutant is due to better
stabilization of the active state for the mutant. This change may
increase the interactions of AMP and P-loop, αC helix after the
T790M mutation, therefore enhancing the binding affinity of AMP
to EGFR. Although the calculated standard binding free energies are
in good agreement with experimental values, there are challenges in
the calculation of the standard binding free energies of EGFR
inhibitors, especially for some of the fourth generation EGFR
inhibitors without accurate binding sites. Still, the present work
offers a perspective of the binding affinity of AMP to EGFRmutants
and opens an avenue for further exploration of anticancer drugs
acting on the EGFR to overcome drug resistance caused by the
T790M mutation.
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1Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States, 2Department of
Pharmacology, University of California, San Diego, San Diego, CA, United States

Intrinsically disordered proteins (IDPs) have recently become systems of great interest due
to their involvement in modulating many biological processes and their aggregation being
implicated in many diseases. Since IDPs do not have a stable, folded structure, however,
they cannot be easily studied with experimental techniques. Hence, conducting a
computational study of these systems can be helpful and be complementary with
experimental work to elucidate their mechanisms. Thus, we have implemented the
coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs
using Brownian dynamics (BD) simulations, which are often used to study large-scale
motions with longer time scales and diffusion-limited molecular associations. Specifically,
we have checked our COFFDROP implementation with eight naturally occurring IDPs and
have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the
hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor
of 0.786 for non-bonded interactions. We have also measured the entanglement indices
(average Cα distances to the other chain) between two (Glu-Lys)25 IDP sequence variants,
a property related to molecular association. We found that entanglement indices decrease
for all possible pairs at excess salt concentration, which is consistent with long-range
interactions of these IDP sequence variants getting weaker at increasing salt
concentration.

Keywords: Brownian dynamics simulation, molecular associations, intrinsically disordered proteins, COFFDROP
force field, Browndye

1 INTRODUCTION

One of the main determinants of biological structure and function is the interaction of two or more
molecules, especially protein molecules. Understanding the dynamics of these bimolecular
interactions is important for the understanding of such cellular structures as the cytoskeleton
(actin and tubulin, for example), ribosomes, chromosomes, and polymerases, as well as processes
such as cell signaling and cell motility (Alberts et al., 2002; Pollard and Earnshaw, 2007).
Furthermore, the encounter stages of such reactions, which are often the rate-limiting steps, are
diffusion-limited (Elcock, 2004). Therefore, the use of Brownian dynamics (BD) is appropriate for
such systems [see Huber and McCammon (2019) for a review]. For several decades, BD has found
use in polymer and peptide simulations, simulations of enzyme-substrate reactions, and
protein–protein association reactions. More recently BD has found use in studies of large-scale
cytoplasm simulations, microtubule dynamics, assembly of protein complexes, retroviral infectivity,
molecular motors, chromosome organization, the nuclear pore complex, synapses, and endocytosis.
The previous version of the Browndye software package (Browndye 1.0), which was limited to two
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rigid bodies, has been used in enzyme kinetics and channeling
(Huang et al., 2018), as well as protein-protein interactions
(Grant et al., 2011).

The Browndye 2.0 software package, successor to the previous
simulation package, consists of two simulation programs and
about 38 auxiliary programs for processing data. Like the
previous version, Browndye 2.0 can compute the second-order
rate constants of the encounter of two bodies moving according
to BD, compute the probabilities of the two bodies moving from
one binding mode to another, and output the molecules’
trajectories. The main addition is the ability to model each
molecule as a collection of large rigid cores with flexible
connectors and loops. In its original two-rigid-body model,
Browndye has functionality very similar to the packages SDA
(Martinez et al., 2015), MacroDox (Northrup et al., 1993), and
GeomBD (Roberts and Chang, 2016), and is intended primarily
for simulations of large biological molecules like those three other
packages. Its current limitations arise mainly from the structural
rigidity approximations and the nature of the force computations
between the molecules.

Using Browndye 2.0, we have investigated intrinsically
disordered proteins (IDPs), which are proteins that do not
have a stable, folded structure and instead take on various
structures depending on their current tasks in modulating
biological processes. Conducting a computational study of
these systems will be critical to elucidate their mechanisms.
Specifically, we have implemented the coarse-grained force
field for proteins (COFFDROP) (Andrews and Elcock, 2014;
Frembgen-Kesner et al., 2015) in Browndye 2.0 to study eight
naturally occurring IDPs and five (Glu-Lys)25 IDP sequence
variants. We have measured their structural properties,
including radius of gyration (Rg), interresidue distances (Rij),
and hydrodynamic radius (Rh), and a property related to
molecular association, namely the entanglement index (average
Cα distance to the other chain).

2 MATERIALS AND METHODS

2.1 Structure Preparation
The Alphafold Colab (Jumper et al., 2021) was used to prepare the
starting structures for the five (Glu-Lys)25 IDP sequence variants
and eight naturally occurring IDPs that were used in Frembgen-
Kesner et al. (2015), which are Alzheimer amyloid β(1–40)
(Aβ(1–40)) (Danielsson et al., 2002), suppressor of Mec1
lethality (Sml1) (Danielsson et al., 2008), Lotus japonicas
intrinsically disordered protein 1 (LjIDP1) (Haaning et al.,
2008), prothymosin α (ProTα) (Yi et al., 2007), abscisic acid
stress ripening 1 (ASR1) (Goldgur et al., 2007), yeast nucleoporin
116 (Nup116) (Krishnan et al., 2008), α-synuclein (Uversky et al.,
2001), and cystic fibrosis transmembrane conductance regulator
regulatory region (CFTR R) (Baker, 2009). We have used
Alphafold to prepare the starting structures for the naturally
occurring IDPs since they have conditionally folded regions that
have confident per-residue confidence scores (pLDDT) (above 70
in a range from 0 to 100), which are expected to be accurately
predicted by Alphafold (Alderson et al., 2022). We have also used

Alphafold for the five (Glu-Lys)25 IDP sequence variants since
peptides composed of many Glu and Lys residues favor forming
α-helical structures (Marqusee and Baldwin, 1987; Iqbalsyah and
Doig, 2005; Meuzelaar et al., 2016; Wolny et al., 2017), and
Alphafold had yielded α-helical structures for all five IDP
sequence variants.

Figures 1, 2 show the amino acid sequences of these systems,
respectively, and Table 1 summarizes the various characteristics
of the systems obtained from the classification of intrinsically
disordered ensemble regions (CIDER) program (Holehouse et al.,
2015).

The protonation states were assigned using PROPKA 3
(Olsson et al., 2011; Søndergaard et al., 2011) at pH 7.0 for
the five (Glu-Lys)25 IDP sequence variants and at appropriate
pH’s for the eight IDPs as done in Frembgen-Kesner et al. (2015),
which are listed in the Supplementary Material. PDB2PQR 3.4
(Jurrus et al., 2018; Unni et al., 2011; Dolinsky et al., 2007, 2004)
was used to convert the PDB files to PQR format for the BD
simulations. The temperature T was set to 298 K, and the
dielectric constant was set to 78.4 for all systems. For the five
(Glu-Lys)25 IDP sequence variants, the ionic concentration was
set to NaCl 15 mM (reference concentration) or NaCl 125 mM
(excess salt concentration) as done in Das and Pappu (2013) by
setting the appropriate Debye length λD using Equation 1

λD � ϵ0ϵτkBT
2e2NAC

( )
1/2

, (1)

where ϵ0 is the permittivity of the free space, ϵτ is the dielectric
constant (of water in this case), kB is the Boltzmann constant, T is
the temperature (298 K in this case), e is the elementary charge,
NA is Avogadro’s constant, and C is the ionic strength in mol/m3

units. The Debye length λD was set to be 7.85 �A for NaCl 15 mM
(reference concentration) and 2.72 �A for NaCl 125 mM (excess
salt concentration).

2.2 Brownian Dynamics Simulations
The BD simulations were run using Browndye 2.0 (Huber and
McCammon, 2010) with the spline-based potential coarse-
grained force field for proteins (COFFDROP) (Andrews and

FIGURE 1 | The five (Glu-Lys)25 IDP sequence variants used in the study.
Glutamic acid (E) is colored in red for negative charge, and lysine (K) is colored
in blue for positive charge. The labels for the sequence variants (sv) are from
Das and Pappu (2013). The five sequence variants are the same ones
tested in McCarty et al. (2019).
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Elcock, 2014; Frembgen-Kesner et al., 2015), which was newly
implemented for Browndye 2.0. In COFFDROP, each amino
acid is represented as a “bead” so that a protein sequence can
be represented as a flexible “chain” composed of beads. In
addition, since the scaling of non-bonded interactions
improved COFFDROP’s ability to reproduce experimental
results (Frembgen-Kesner et al., 2015), this feature was also
implemented for Browndye 2.0. Moreover in Browndye 2.0,
interactions can be computed less frequently, which is useful
since computing these interactions take up most of the
simulation time for longer chains. Finally in Browndye 2.0,
a constant time step size can be set, and the recommended
value is 0.05 ps for COFFDROP chains, unless bond
constraints are used in which case a larger constant time

step size is allowed, which can make the simulations run
faster.

For the eight naturally occurring IDPs, the maximum
number of BD simulation steps was set to 80,000,000, and a
constant time step size of 0.05 ps was used (no bond constraints
used). To calculate the hydrodynamic radius (Rh) for each
COFFDROP potential with a scaling factor (0.5–1.0 in
intervals of 0.1) for non-bonded interactions, ten trajectories
were run for each system and potential, and simulation
snapshots were recorded every 200,000 steps. Hydrodynamic
interactions were updated every 400 steps. The specific
parameter values follow the parameter values from
Frembgen-Kesner et al. (2015) since these IDPs were used to
check the COFFDROP implementation for Browndye 2.0.

FIGURE 2 | The eight naturally occurring IDPs used in the study. Glutamic acid (E) and aspartic acid (D) are colored in red for negative charge, and lysine (K) and
arginine (R) are colored in blue for positive charge. The eight IDPs are from Frembgen-Kesner et al. (2015).

TABLE 1 | Summary of classification of intrinsically disordered ensemble regions (CIDER) (Holehouse et al., 2015) results for the IDPs used in the study. NCPR denotes the
net charge per residue, FCR denotes the fraction of charged residues, and κ denotes the measure of charge segregation from Das and Pappu (2013). Hydrophathy
measures how hydrophobic the sequence is (0–9 with 0 being least hydrophobic and nine being most hydrophobic) (Kyte and Doolittle, 1982) and disorder measures the
fraction of disorder promoting residues (Uversky, 2002). The categorization of each IDP is determined from the Das-Pappu phase diagram (Das and Pappu, 2013;
Holehouse et al., 2015).

IDP Length NCPR FCR κ Hydropathy Disorder Category

sv10 50 0.000 1.000 0.083 0.800 1.000 Strong polyampholytes
sv15 50 0.000 1.000 0.135 0.800 1.000 Strong polyampholytes
sv20 50 0.000 1.000 0.272 0.800 1.000 Strong polyampholytes
sv25 50 0.000 1.000 0.528 0.800 1.000 Strong polyampholytes
sv30 50 0.000 1.000 1.000 0.800 1.000 Strong polyampholytes
Aβ(1−40) 40 -0.075 0.225 0.211 4.558 0.600 Weak polyampholytes
Sml1 104 -0.048 0.221 0.143 3.712 0.635 Weak polyampholytes
LjIDP1 107 0.009 0.271 0.174 3.890 0.729 Janus sequences
ProTα 109 -0.394 0.578 0.424 2.507 0.881 Strong polyelectrolytes
ASR1 115 -0.017 0.383 0.100 3.326 0.809 Strong polyampholytes
Nup116 126 0.040 0.040 0.278 3.709 0.762 Weak polyampholytes
α-Synuclein 140 -0.064 0.279 0.172 4.097 0.729 Janus sequences
CFTR R 190 -0.026 0.289 0.285 3.743 0.679 Janus sequences
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For the five (Glu-Lys)25 IDP sequence variants, the maximum
number of BD simulation steps was set to 125,000,000, and by
using bond constraints, a constant time step size of 0.2 ps was
used (25 μs total). The autocorrelation functions of N-terminus
Cα to C-terminus Cα distance, N-terminus Cα to middle Cα

distance, and middle Cα to C-terminus Cα distance were
measured and plotted with new Browndye 2.0 functions
chain_atom_distances and autocor to check whether the
simulation time was sufficiently long enough to obtain
converged properties. As seen in Figure 3, the three
autocorrelation functions converge, and the simulation time
was regarded to be sufficiently long enough. The rest of the
autocorrelation functions are included in the Supplementary
Material. As seen from the Supplementary Material, the shortest
simulation was 12 ns, whereas the longest simulation was 25 µs.
To calculate structural properties such as radius of gyration (Rg),
ten trajectories were run for each system, and simulation
snapshots were recorded every 100,000 steps. Hydrodynamic
interactions were updated every 400 steps.

3 RESULTS

3.1 Eight Naturally Occurring IDPs
We first investigated the eight naturally occurring IDPs to see if
Browndye 2.0 can reproduce the COFFDROP results in
Frembgen-Kesner et al. (2015). In particular, we measured the
hydrodynamic radius (Rh) for each system and COFFDROP
potential with a scaling factor (0.5–1.0 in intervals of 0.1) for
non-bonded interactions. Rh is the radius of a hard-sphere that

diffuses at the same rate as solute and is dependent on the size and
hydration of protein. The Kirkwood definition (Kirkwood, 1996)
was used to calculate Rh as stated in Equation 2

1
Rh

� 〈 1
rij
〉i≠j, (2)

where rij denotes pairwise distances between Cα of amino acids i
and j, as done in Nygaard et al. (2017). Rh was calculated for each
simulation snapshot (every 200,000 steps), and the final Rh value
for each simulation was obtained by averaging the Rh values from
the simulation. The average Rh values, along with standard error
bars (95% confidence interval), from ten independent
simulations, are plotted in Figure 4. To match up with the
COFFDROP results that used the HYDROPRO program
(Ortega et al., 2011), the average Rh values and standard error
bars were multiplied by 1.186 and added by 1.03 as done in
Nygaard et al. (2017). The Rh values are in good agreement with
those in Frembgen-Kesner et al. (2015), which are marked as
dashed lines with square markers in Figure 4, indicating that the
COFFDROP implementation in Browndye 2.0 is reliable. The
small discrepancies between the two results could be from the
long-range electrostatic interactions being computed differently,
i.e., Frembgen-Kesner et al. (2015) used a treecode algorithm (Li
et al., 2009) that involves Taylor expansion to compute particle-
cluster interactions, whereas this study used pairwise summations
of potentials evaluated by a cubic spline using tabulated
COFFDROP potential data. Except for ProTα, the ideal scaling
factor for the naturally occurring IDPs is between 0.7 and 0.8,
which allows the BD simulation results to match up with

FIGURE 3 | Autocorrelation functions of N-terminus Cα to C-terminus Cα distance, N-terminus Cα to middle Cα distance, and middle Cα to C-terminus Cα distance
for (Glu-Lys)25 sv = 10 at NaCl 15 mM (reference concentration) with scaling factor 0.786. The autocorrelation functions from one of the ten trajectories are shown for
clarity and the rest are included in the Supplementary Material.
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experimental values. We can consider ProTα to be an outlier
among the eight naturally occurring IDPs since it substantially
has more like-charged residues (i.e., positively charged residues
aspartic acid (D) and glutamic acid (E)) as seen in Figure 2 and as
noted in Frembgen-Kesner et al. (2015). The averaged ideal
scaling factor, after leaving ProTα out as an outlier, is 0.786,
which is slightly different from the scaling factor in Frembgen-
Kesner et al. (2015) (0.825). This scaling factor was used for
subsequent COFFDROP BD simulations of the five (Glu-Lys)25
IDP sequence variants. Finally, Figure 4 shows that Rh generally
increases with sequence length, except for ProTα that is shorter
than ASR1, Nup116, α-synuclein, and CFTR R.

3.2 Five (Glu-Lys)25 IDP Sequence Variants
We then investigated five (Glu-Lys)25 IDP sequence variants for
rates of association, which were model IDP systems in Das and
Pappu (2013), Sawle and Ghosh (2015), and McCarty et al.
(2019). These block polymers of glutamate and lysine residues
with different patterns serve as model IDPs since IDPs mostly
consist of oppositely charged residues (i.e., they are
polyampholytes) and do not have significant secondary
structures.

We first measured the radius of gyration (Rg), which serves as
an indicator of protein structure compactness, i.e., the smaller the
Rg, the tighter the packing of the protein is. Rg was calculated for
each simulation snapshot (every 100,000 steps), and the final Rg
value for each simulation was obtained by averaging the Rg values
from the simulation. The average Rg values, along with standard
error bars (95% confidence interval), from ten independent
simulations, are plotted in Figure 5. As observed in Das and
Pappu (2013), Rg generally decreases as κ, which represents the
measure of charge segregation (Das and Pappu, 2013), increases.
The Rg values are smaller than those from Das and Pappu (2013),
all within the value for classical Flory random coils (~18 �A) and
compact globules (~11 �A). The Rg values never reach near the
value for self-avoiding random walks (~28 �A), which is expected
for well-mixed sequence variants or those with low κ values. This
is most likely attributed from using different force fields and
potentially shows the limitation for the COFFDROP potential in
modeling highly charged systems. However, when using the
averaged ideal scaling factor for IDPs (0.786), the Rg values
increase, show closer to expected Rg values, and its minimum
Rg range match with that in Das and Pappu (2013). As κ→ 1, the
Rg values get closer to the value for compact globules (~11 �A)
(Dima and Thirumalai, 2004). Finally, the Rg values increase as
the salt concentration increases due to long-range interactions
getting weaker, which is consistent with the results from Das and
Pappu (2013). Overall, we were able to observe correct trends for

FIGURE 4 | Hydrodynamic radius (Rh) values for each of the eight naturally occurring IDPs with different scaling factors for non-bonded interactions. The
experimental Rh values are marked as dashed straight lines and correspond to the IDP with the same color in each graph. The approximate Rh values from Frembgen-
Kesner et al. (2015) aremarked as dashed lines with squaremarkers and correspond to the IDPwith the same color in each graph. The ideal scaling factor value would be
where Rh matches with the experimental value.

FIGURE 5 | Radius of gyration (Rg) values for each of the five (Glu-Lys)25
IDP sequence variants. Since each (Glu-Lys)25 IDP sequence variant has a
different κ value, which represents the measure of charge segregation (Das
and Pappu, 2013), κ was used as one of the axes of the graph.
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Rg for the five (Glu-Lys)25 IDP sequence variants using the
COFFDROP potential.

We thenmeasured the interresidue distances between residue i
and residue j (Rij) against residue separations |j − i|, which can
characterize local concentrations of chain segments within the
IDP (Das and Pappu, 2013). Specifically, the distance between
residue i’s Cα and residue j’s Cα was measured. The scaling factor
was set to the averaged ideal scaling factor of 0.786. Rij was
calculated for each simulation snapshot (every 100,000 steps),
and the final Rij value for each simulation was obtained by
averaging the Rij values from the simulation. The average Rij

values from ten independent simulations are plotted in Figure 6.
The Rij values follow similar trends as observed in Das and Pappu
(2013), and the concave upward parts show indications of long-
range interactions between oppositely charged blocks. As
observed for the Rg values, the Rij values were also smaller
than those from Das and Pappu (2013), which could be
attributed from using different force fields. Finally, the Rij

values also increase as the salt concentration increases due to
long-range interactions getting weaker, which is consistent with
the results from Das and Pappu (2013). The effects of the salt
concentration are the smallest for sv10, which has the most well-
mixed sequence in comparison with the rest and can
counterbalance electrostatic repulsions and attractions (Das
and Pappu, 2013). Overall, we were also able to observe
correct trends with Rij for the five (Glu-Lys)25 IDP sequence
variants using the COFFDROP potential.

Finally, we measured a property related to molecular
association, namely the entanglement indices, or the average
Cα distances to the other chain, between the five (Glu-Lys)25
IDP sequence variants. Since all possible pair combinations were
tested, 15 simulations were run for each salt concentration (15
and 125 mM, respectively). The scaling factor was set to the
averaged ideal scaling factor of 0.786. The pairwise simulations
start with two IDP sequence variants oriented crosswise and
translated 15 �A apart. All five IDP sequence variants have their

FIGURE 6 | Interresidue distances between residue i and residue j (Rij) against residue separations |j − i| for each of the five (Glu-Lys)25 IDP sequence variants.

TABLE 2 | Summary of entanglement index values of all possible pair combinations between the five (Glu-Lys)25 IDP sequence variants.

IDP #1 IDP #2 Entanglement index (�A) at 15 mM Entanglement index (�A) at 125 mM

sv10 sv10 26.72 ± 0.98 26.38 ± 0.58
sv10 sv15 25.93 ± 0.63 27.12 ± 0.39
sv10 sv20 26.54 ± 0.98 26.70 ± 0.49
sv10 sv25 26.72 ± 0.71 26.92 ± 0.50
sv10 sv30 25.43 ± 1.61 26.70 ± 1.21
sv15 sv15 26.72 ± 0.53 27.68 ± 0.44
sv15 sv20 25.72 ± 0.69 27.29 ± 0.18
sv15 sv25 26.58 ± 0.75 26.87 ± 1.10
sv15 sv30 26.17 ± 0.28 27.98 ± 0.81
sv20 sv20 25.48 ± 0.31 25.78 ± 0.56
sv20 sv25 26.89 ± 0.83 25.85 ± 0.57
sv20 sv30 26.07 ± 0.31 26.38 ± 0.70
sv25 sv25 27.00 ± 0.25 27.44 ± 0.58
sv25 sv30 25.07 ± 3.05 27.15 ± 0.40
sv30 sv30 24.17 ± 2.38 26.59 ± 0.81
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middle Cα centered at (0.0, 0.0, 0.0). The middle Cα’s of the two
IDP sequence variants in the pairwise simulation were restrained
to be less than 20 �A apart. The entanglement indices were
measured using the entanglement_index, which is a new
implementation in Browndye 2.0. The entanglement index was
calculated for each simulation snapshot (every 100,000 steps),
and the final entanglement index for each simulation was
obtained by averaging the entanglement indices from the
simulation. The average entanglement indices, along with
standard error bars (95% confidence interval), from ten
independent simulations are listed in Table 2. The
entanglement indices were similar across all possible IDP
sequence variant pairs, indicating that there is no direct
relation between entanglement indices and charge segregation
κ. This may be from all sequence variants having relatively similar
Rg values or degrees of compactness, however, which could be
from using the COFFDROP potential. All entanglement indices,
with the exception for two pairs, increased, however, at excess salt
concentration. This is consistent with long-range interactions
getting weaker at increasing salt concentration, and published
work demonstrating that long-range interactions accelerate
protein-protein encounter for IDPs (Chu et al., 2012; Ganguly
et al., 2013; Pang and Zhou, 2016; Tsai et al., 2016; Chu et al.,
2017; Yang et al., 2019).

4 DISCUSSION AND CONCLUSION

We have presented our new COFFDROP force field
implementation on Browndye 2.0 that enabled us to study IDPs
computationally. BD simulations are ideal to study large-scale
motions with longer time scales and diffusion-limited molecular
associations, including the aggregation of IDPs.We have presented
results that show that our COFFDROP implementation is reliable
to study naturally occurring IDPs. We have also studied model
(Glu-Lys)25 IDPs using our COFFDROP implementation and
found that there is no relation between entanglement indices
and how well the charges are mixed and segregated within the
IDPs. However, thismay be from the limitation of the COFFDROP
potential in studying highly charged systems, which was also noted
in Frembgen-Kesner et al. (2015). The COFFDROP potential was
derived from MD simulations of all possible amino acid pairs
(Andrews and Elcock, 2014; Frembgen-Kesner et al., 2015), but the
simulations did not include salt so the COFFDROP potential may
be limiting in modeling systems with strong charge-charge
interactions.

For future work, we plan to implement a program to measure
the rates of association with an appropriate reaction criterion as
done in Ganguly et al. (2013), Liu et al. (2019). Then we plan to
measure the rates of association of a highly positive IDP binding

to a highly negative IDP (i.e., oppositely charged IDPs), an
interaction that may be abundant in eukaryotes for regulation
(e.g., cellular localization) (Borgia et al., 2018). We also plan to
look at the rates of association between IDPs and folded proteins
with secondary structures (Ruff et al., 2019). However, since
COFFDROP is meant to model IDPs or systems without
significant secondary or tertiary structures, the secondary
structural elements would need to have constraints to have
them fixed throughout the simulation, and the folded protein
would be treated as a rigid body. The IDP would still be modeled
as a flexible chain, and the scaling factor of 0.786 would be used
for the simulation.
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The dissociation rate (koff) associated with ligand unbinding events from proteins is a
parameter of fundamental importance in drug design. Here we review recent major
advancements in molecular simulation methodologies for the prediction of koff. Next,
we discuss the impact of the potential energy function models on the accuracy of
calculated koff values. Finally, we provide a perspective from high-performance
computing and machine learning which might help improve such predictions.

Keywords: kinetics, drug discovery, QM/MM, parallel computing, machine learning, enhanced sampling, molecular
dynamics

1 INTRODUCTION

The kinetics of drugs unbinding from proteins is an important parameter for the drugs’ efficacy. (Pan
et al., 2013; Copeland, 2021). Indeed, the drug-target residence time (Copeland, Pompliano and
Meek, 2006) defined as the inverse of the dissociation rate koff, has emerged as an effective surrogate
measure of in vivo target occupancy, and it has been shown to correlate with clinical efficacy (Guo
et al., 2012; Lee et al., 2019; Van Der Velden et al., 2020) along with other factors (e.g., association
rates (Folmer, 2018; Lee et al., 2019) and target saturation (deWitte et al., 2018)). Residence time has
been related not only to long-lasting pharmacodynamics but also to the reduced toxicity of specific
inhibitors (Vauquelin et al., 2012).

Experimental approaches (most often combined with computations) measure ligand affinities and
provide ligand binding poses for structure-based drug design campaigns (Durrant and McCammon,
2011; De Vivo et al., 2016; Proudfoot et al., 2017; Emwas et al., 2020; Mazzorana et al., 2020). They
routinely also measure koff values (Pollard, 2010). However, they cannot usually access the structural
determinants of the transition states associated with ligand unbinding. This information would be
crucial to eventually design ligands with longer residence times. In contrast, all-atom molecular
simulations (in particular molecular dynamics (MD)) can provide a detailed map of protein-ligand
interactions and the atomic rearrangements that drive ligand unbinding. However, the residence time
of tight binders can be as long as several hours (Li et al., 2014), much longer than the timescales reached
by plain MD (milliseconds on dedicated, specialized machines) (Pan et al., 2019; Shaw et al., 2021).
Thus, koff predictions based on such a straightforward approach so far have been few in number (Pan
et al., 2017) or limited to model systems (Tang and Chang, 2018).
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Enhanced sampling is a more general approach to the
estimation of koff, regardless of the timescale of the unbinding
event. One group of methods (including metadynamics, Gaussian
Accelerated MD, scaled MD, and dissipation-corrected targeted
MD) employs biasing potentials designed to reduce the free
energy barrier determining the frequency of dissociations.
Because the bias affects the dynamics, correction terms are
required to recover the unbiased koff from the biased rates. A
second group is represented by path sampling approaches such as
weighted ensemble andmilestoning. These rigorously generate an
ensemble of trajectories by iteratively restarting the (unbiased)
simulations from selected configurations (typically closer to the
transition state than expected from the equilibrium distribution)
with the aim of increasing the likelihood of observing
dissociations. Finally, Markov state models (MSMs) can
provide a complete picture of the metastable states of the
system and transition rates between them by analyzing
molecular simulation data.

In this review, we summarize principles and applications of
the three approaches outlined above (Sections 2–4). Next, we
discuss the impact of force fields on the accuracy of the
calculations (Section 5). Finally, we provide a perspective on
how machine learning, along with exascale computing, could
constitute one way to address these challenges (Section 6).

1.1 Scope
Many methods have been developed for the calculation of rate
constants in biomolecular simulations. Here, we review
methodologies that have been applied to the calculation of
binding dissociation rates (koff) of protein-ligand complexes
with a focus on the effect of the potential energy function. In
particular, for the sake of conciseness, we do not cover methods
that have been applied only to other types of systems/problems
(e.g., supramolecular host-guest dissociations, peptide folding
rates) and methods that enable relative comparisons of koff
between different ligands.1 For these methods, we refer the
reader to the other excellent resources on the topic (Chong
et al., 2017; Bruce et al., 2018; Nunes-Alves et al., 2020).

2 BIASED MD METHODS

In this class of methods, the system is biased (by adding a
potential term to the Hamiltonian, or adding external forces)
to favor the observation of unbinding events. The bias is designed
to enhance the exploration along low-dimensional collective
variables (CV), which are represented as differentiable

functions s(x) of the atomic coordinates x. These describe the
slow degrees of freedom governing the unbinding process. The
CV must be able to distinguish the metastable states involved in
the process i.e., configurations in different states should
correspond to different values of the CV. The identification of
optimal CVs (whenever they are not intrinsic in the technique) is
a complicated task, and their identification is at the center of a
heated debate that is still open (Sittel and Stock, 2018). Because
biasing terms alter the dynamics, methods which recover the
kinetic parameters of the unbiased system from its free energy
surface have been devised. The majority of biased methods adopt
specific corrections based on Kramers’ rate theory

kAB � ωAκA
Zp

ZA
(1)

where kAB is the rate of transition from state A to B (in this case
the bound and unbound states),ωA is typically associated with the
curvature of the free energy surface, κA is the transmission
coefficient, and Zp and ZA are the configurational partition
functions of the transition state and state A, respectively.
These methods require the identification of the transition state
ensemble, defined as the set of conformations of highest free
energy along the (un)binding pathway. This is in general a
challenging task for drug binding processes, which can involve
multiple dissociation pathways due to the conformational
flexibility of the protein (Plattner and Noé, 2015). Approaches
of this kind have been developed for Gaussian accelerated
molecular dynamics (Miao et al., 2020) (see Section 2.1),
dissipation-corrected Targeted Molecular Dynamics (Wolf and
Stock, 2018) (see Section 2.2), and τ-random acceleration
molecular dynamics (Kokh et al., 2018) (see Section 2.3)2. If
no bias is deposited on the region of the transition state(s), the
kinetic correction can be assumed not to depend on κA and Zp

(Voter and Doll, 1985; Hänggi et al., 1990; Truhlar et al., 1996).
This simplifies dramatically the rate estimation, and it is used for
ligand unbinding in the kinetics-oriented flavors of
metadynamics (Tiwary and Parrinello, 2013; Wang et al.,
2018) (see Section 2.4).

2.1 Ligand Gaussian Accelerated MD
2.1.1 Basic principles
In this approach (Miao, 2018), two harmonic potentials are added
to the non-bonded component of the potential energy so as to
lower the binding/unbinding free energy barrier (Figure 1).
These potentials act on the following CVs: 1) the ligand-
environment potential energy and (optionally) 2) the rest of
the system potential energy. Both biasing potentials are capped
at user-defined thresholds. Computing the correction to recover
the unbiased transition rate requires the estimation of the
potential of mean force (PMF) profile and free energy barrier
as a function of a separate CV describing the binding process e.g.,
a distance between ligand and protein atoms (Miao, 2018). In the

1These techniques include, among others, scaled MD (Sinko et al., 2013; Bernetti
et al., 2018), steered MD (Paci and Karplus, 2000; Potterton et al., 2019; Spiriti and
Wong, 2021), targeted MD (Schlitter et al., 1994; Wolf et al., 2019), GAMBES
(Debnath and Parrinello, 2020) path-reweighting methods (Chodera et al., 2011;
Donati et al., 2017; Kieninger and Keller, 2021) metadynamics of paths (Mandelli
et al., 2020) and many transition path sampling-derived methods (Pratt, 1986;
Dellago et al., 1998; Van Erp et al., 2003). A brief review of some of these methods
(namely scaled MD, targeted MD and GAMBES) is given in the supplementary
material.

2A Kramers’ rate theory correction has been developed for scaled MD as well but it
has not been applied to the calculation of full dissociation rates (see
Supplementary Material S3.3).
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closely related Pep-GaMD method, developed specifically for
simulating peptides unbinding from their target protein, the
harmonic “boost” potentials are applied to the total potential
(both non-bonded and bonded components) along the CVs
(Wang and Miao, 2020). The application of the additional
boost potential to the bonded component of the peptide
potential energy accelerates the sampling of its conformational
flexibility.

2.1.2 Applications
So far, the approach has been successfully applied to the ligand
benzamidine targeting the trypsin enzyme (Miao, Bhattarai and
Wang, 2020), using the AMBER14SB (Maier et al., 2015) and
GAFF (Wang et al., 2004) force-fields. The calculated koff = 3.53 ±
1.41 s−1 was two orders of magnitude smaller than the
experimental value of 600 ± 300 s−1 (Guillian and Thusias,
1970). The simulations required a cumulative 5 μs of MD for
the estimation of koff. Pep-GaMD has been used to investigate the
un/binding of three model peptides that target the SH3
domain—one of which (PDB:1CKB) has an experimentally
determined koff available for comparison to the computed
value. Employing the AMBER14SB (Maier et al., 2015) force
field and an aggregate simulation time of 3 μs, a koff of 1.45 ± 1.17 ·
103 s−1 was computed for 1CKB; a result that is in close agreement
with the experimental value of 8.9 · 103 s−1 (Xue et al., 2014).

2.2 Dissipation-Corrected Targeted
Molecular Dynamics (dcTMD)
2.2.1 Basic principles
This method (Wolf and Stock, 2018) assumes that unbinding
processes (along with binding processes) can be described by the
1-dimensional Langevin dynamics of a suitable CV. The
approach requires the determination of the free energy profile
and the Langevin friction coefficient as a function of such a CV.

These can be calculated from a nonequilibrium targeted
molecular dynamics simulation (Schlitter et al., 1994) (see
Supplementary Material S4), where a pulling force drives the
system at a constant speed along the CV. Dissociation rates could
then be obtained by performing the unbiased 1-dimensional
Langevin dynamics simulations (Wolf and Stock, 2018).
Despite the simplification, the timescales of ligand unbinding
processes at room temperature still lead to prohibitively
expensive simulations. To tackle this problem, the authors
later introduced an approach that uses Kramers’ theory to
correct the rates obtained from Langevin simulations
performed at higher temperatures. (Wolf et al., 2020).

2.2.2 Applications
Themethod has been successfully applied to the calculation of koff
of the trypsin-benzamidine complex, and the complex between a
resorcinol scaffold-based inhibitor and the HSP90 protein. The
calculated values 270 ± 40 s−1 and 1.6 ± 0.2 · 10–3 s−1 respectively,
agree well with the experimental values of 600 ± 300 s−1 (Guillian
and Thusias, 1970) and 3.4 ± 0.2 · 10–2 s−1 (Amaral et al., 2017)
These predictions required an aggregate of ~ 1.5 × 104 ms of
Langevin simulations and used the AMBER99SB* force-field
(Best and Hummer, 2009).

2.3 τRAMD
2.3.1 Basic principles
The τ-random acceleration molecular dynamics (τRAMD) (Kokh
et al., 2018) protocol is a quasi-biased method that evolved from
random acceleration molecular dynamics (RAMD) (Lüdemann
et al., 2000). τRAMD simulations of ligand-protein systems
proceed similarly to standard MD simulations, without the
need for any prior parameter fitting, characterization of CVs
or binding pathways. The user specifies the magnitude of a
randomly oriented force that is applied to the ligand to
accelerate its dissociation from the binding pocket at each

FIGURE 1 | Schematic of a LiGaMD Simulation. The LiGaMD potential (ΔUboost) acts when the potential energy of a protein-ligand complex (black line) is below a
predefined threshold (dashed line), adding a harmonic potential to raise the energy of the system (cyan line) and favor the exploration of the conformational space of the
ligand-protein complex.
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checkpoint, allowing for the observation of dissociation pathways
within several nanoseconds of simulation time. The magnitude of
the force dictates the duration of simulation time that is required
and is reported to have a minimal effect on the accuracy of
computed residence times. The direction of the force is reassigned
after each checkpoint until the ligand COM moves past a certain
distance threshold from its previous position. If the deviation of
the ligand COM meets or exceeds this threshold after the force is
applied, the direction of the force is retained until the following
checkpoint. An ensemble of unbinding simulations is spawned
from different starting configurations and velocities, and the
ensemble-averaged residence time is calculated from the
bootstrapped distribution of the time taken for dissociation
to occur.

2.3.2 Applications
The earliest applications of τRAMD for unbinding kinetics
focused on qualitatively ranking ligands according to their
computed koff values (see Supplementary Material S5) (Kokh
et al., 2018, 2019, 2020). Recently, the first quantitative τRAMD
application was demonstrated by Maximova and co-workers
(Maximova et al., 2021), who formulated a Kramers’ rate
theory-based rescaling factor to correct for the influence of the
applied force on the receptor-ligand coupling (which previously
limited the method to qualitative ranking) to obtain a quantitative
koff estimate for the drug Isoniazid unbinding from the catalase
enzyme. Using seven trajectories (with applied forces of different

magnitudes), and the CHARMM36 forcefield (Best et al., 2012), a
koff of 2.8 ± 3.7 · 10–2 s−1 was computed—a result which agreed
very well with the experimental equivalent of 2.0 ± 0.3 · 10–2
(Singh et al., 2008).

2.4 Metadynamics-Derived Methods
2.4.1 Basic principles
Well-tempered Metadynamics (MetaD) (Laio and Parrinello,
2002) is an exact free-energy method (Barducci et al., 2008;
Dama et al., 2014). It draws inspiration from earlier CV-based
enhanced sampling techniques such as local elevation (Huber
et al., 1994), Wang-Landau (Wang and Landau, 2001),
conformational flooding (Grubmüller, 1995), and adaptive
umbrella sampling techniques (Hooft et al., 1992; Bartels and
Karplus, 1997). In MetaD, a history-dependent bias potential
Bt(s) is built iteratively by adding Gaussian functions (as
approximations of CV histograms) to the potential at regular
intervals throughout the simulations. Several different bias-
deposition schemes have been devised (Bussi and Laio, 2020).
Ultimately, convergence is achieved when the sum of the free
energy surface and the bias potential produces a flat landscape
that results in diffusive dynamics in CV space (see Figure 2). It is
then possible to compute the free energy surface along the CV via
reweighting methods, such as Weighted Histogram Analysis
Method (WHAM) (Kumar et al., 1992), Multistate Bennet
Acceptance Ratio (MBAR) (Shirts and Chodera, 2008), or
other estimators (Tiwary and Parrinello, 2015; Schäfer and
Settanni, 2020).

MetaD has been extended to allow recovery of the kinetics of
the unbiased ensemble. The method speeds up the calculation of
kinetic rates by filling up the starting free energy basin so as to
reduce the activation free energy barrier to ~ kBT. This way, the
biased residence time of the system in the initial state is small
enough to allow multiple observations of the transition.
Transition times obtained in the biased ensemble are then
scaled to recover the unbiased kinetics. Following the
approaches of Grubmüller (Conformational flooding
(Grubmüller, 1995)) and Voter (Hyperdynamics (Voter,
1997)) the unbiased transition time is connected to the biased
time by:

tunbiased � α tbiased

� ∑tbiased
t�0

exp(βBt(s(t)))Δt (2)

where β =(kBT)
−1, Bt(s) is the history-dependent bias potential,

and Δt is the time step. For this last equation to be valid, no bias
should be present on the transition state. In the so-called
infrequent MetaD variant (Tiwary and Parrinello, 2013), the
Gaussians are deposited less frequently in barrier regions than
they are in standard MetaD, thus lowering the probability of
adding bias to the transition state. In frequency-adaptive (FA)
MetaD (Wang et al., 2018), the time interval between bias
depositions is gradually increased as the system approaches
the transition state. After an initial fast filling of the free
energy minimum, the same deposition rate as infrequent
MetaD is achieved. This way, results are obtained at a lower

FIGURE 2 | Schematic of a Metadynamics Simulation. On the CV-
projected FES (red line), MetaD deposits a series of gaussians that sum up
(from dark blue to white) until the system becomes diffusive in the CV space.
This approach can be exploited to reduce the barrier height to have a
reasonable transition time and reweight it a posteriori for an estimation of the
kinetic constants (see Text).
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computational cost compared to standard infrequent MetaD.
Recently, an alternative method to infrequent and frequency-
adapted MetaD has been presented. (Ansari et al., 2022) This
method builds on a variant of MetaD called on-the-fly probability
enhanced sampling (OPES). (Invernizzi and Parrinello, 2020) In
the new approach, called OPES-flooding, the bias is constructed
in a fast but controlled manner to fill the starting metastable basin
up to a user-defined threshold value to automatically avoid
depositing bias on the transition state. Usually, the standard
protocol adopted in infrequent, FA-MetaD and OPES-flooding
consists of running multiple independent simulations that yield
an empirical distribution of residence times. A statistical analysis
based on the Kolmogorov-Smirnov (KS) test (Salvalaglio et al.,
2014), details in Supplementary Material S1) is then used to
verify a posteriori that the transition state was indeed untainted.

2.4.2 Applications
Infrequent MetaD simulations based on the OPLS force-field
(Kaminski et al., 2001) were used to study the unbinding of the
ligand dasatinib from its target c-Src kinase (Tiwary et al., 2017).
The CVs were the distance between the ligand and the binding
pocket and the solvation state of the binding pocket. The
calculated koff of 4.8 ± 2.4 ·10–2 s−1 of dasatinib to c-Src
obtained from 12 unbinding trajectories agreed well with an
experimental value (5.6 · 10–2 s−1, measured indirectly from kon)
published by (Shan et al., 2009), but differed from a second value
obtained for a fluorophore-tagged analogue (1.8 · 10–4 to 7.9 ·
10–4 s−1) (Kwarcinski et al., 2016). A similar protocol was used to
calculate koff for 1-(3-(tert-butyl)-1-(p-tolyl)-1H-pyrazol-5-yl)
urea), an inhibitor of p38 MAP II kinase belonging to the
BIRB-796 family, this time using AMBER99SB-ILDN (Hornak
et al., 2006; Lindorff-Larsen et al., 2010) and GAFF force-fields
(Wang et al., 2004; Wang J. et al., 2006). After 17 independent
unbinding events, the calculated koff (0.020 ± 0.011 s−1

(Casasnovas et al., 2017)) was almost one order of magnitude

lower than the experimental value of 0.14 s−1 (Regan et al., 2003).
Two other CVs yielded very similar results simulating 10
unbinding events each, suggesting that the discrepancy
between the calculated and experimental values most likely
arises from uncertainty in the force field rather than the
choice of CVs.

FA-MetaD and Infrequent MetaD were used by Wang and
co-authors (Wang et al., 2018) to obtain koff values for benzene
and indole ligands from the binding pocket of the L99A
mutant of T4 lysozyme using CHARMM22 (MacKerell
et al., 1998; MacKerell et al., 2004) and CGenFF
(Vanommeslaeghe et al., 2011). The calculated koff for
benzene lay within the range of 4–10 s−1, around 100-fold
lower than the experimental value of 950 ± 20 s−1 (Feher et al.,
1996). Both MetaD protocols used the same force-field, sample
size (20 replicas), and path-CVs (Branduardi et al., 2007; Wang
et al., 2017). CHARMM36-based (Best et al., 2012) infrequent
MetaD simulations (Mondal et al., 2018) yielded a koff for
benzene (270 ± 100 s−1) that was considerably closer to the
experimental value. Although only the displacement between
binding pocket and ligand centers-of-mass was used as the CV,
and the sample size was smaller than that of the previous study
by Wang et al, it is tempting to conclude that even a different
version of the same force-field (CHARMM in this case) may
significantly impact the result.

More recently, AMBER14SB-based (Maier et al., 2015) FA-
MetaD simulations were applied to study the unbinding kinetics
of a radioligand, iperoxo, from the M2 human muscarinic
acetylcholine receptor (Capelli et al., 2020). The calculated koff
(3.7 ± 0.7 · 10−4 s−1) was two orders of magnitude smaller than the
experimental value (1.0 ± 0.2 · 10−2 s−1). Density Functional
Theory (DFT)-based QM/MM calculations suggested that this
estimation discrepancy may be ascribed, at least in part, to the
lack of polarization and charge transfer effects lacking in standard
biomolecular force fields (Capelli et al., 2020).

FIGURE 3 | Simplified schematic depiction of the MSM construction pipeline. (A) Several continuous MD trajectories are simulated in parallel. (B) The trajectories
are discretized. (C) A reversible transition probability matrix is calculated from a matrix of state-to-state transition counts (D) Probability fluxes between states (gray
arrows, with line thickness representing the magnitude of the flux) indicate the highest likelihood transition paths and can be used to calculate the mean first passage time
(MFPT) between states.
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OPES-flooding simulations based on AMBER14SB (Maier
et al., 2015) and GAFF (Wang et al., 2004) were recently applied
to study the unbinding kinetics of the trypsin-benzamidine
complex, unveiling the role of water in regulating the
residence time. Notably, the authors identified two different
unbinding pathways and were able to calculate the
corresponding rates separately. The slowest rate of 687 s−1

that is supposed to dominate the residence time is in good
agreement with the experimental value of 600 ± 300 s−1

(Guillian and Thusias, 1970).

3 MARKOV STATE MODELS

3.1 Basic Principles
Markov state models (MSMs) (Singhal et al., 2004) are discrete
models describing the dynamics of a system in terms of
transition probabilities between a finite set of metastable
states. The fundamental ingredients of the method are 1) a
discretization of the conformational space into (kinetically
fast) microstates and 2) a transition matrix that describes
the probability of observing the system in another
microstate after a fixed lag time t. An interpretable, coarse-
grained model is then built by defining kinetically metastable
macrostates as collections of microstates, and this model can
provide koff values. Figure 3 shows a simplified schematic
depiction of the MSM construction pipeline. The lag time t
must be long enough to ensure that transitions between states
are approximately Markovian4 and short enough for the model
to represent all relevant fast processes. It should be chosen to
be faster than association events to avoid systematic
overestimation of the residence time (Paul et al., 2017).
When this is not possible, koff can still be estimated from
rate matrices rather than transition matrices (Kalbfleisch and
Lawless, 1985; Crommelin and Vanden-Eijnden, 2009).
However, rate matrix estimation is not unique and different
approaches can result in residence times that differ even by an
order of magnitude (Paul et al., 2017).

The input data to build MSMs can come from an ensemble
of unbiased MD trajectories that sample dissociation events.
However, generating this data is usually prohibitively
expensive. Hence, several powerful schemes have been
designed to enable the estimation of second-long residence
times from relatively short MD simulations. These include
adaptive restarting strategies (Bowman et al., 2010; Wan and
Voelz, 2020) and/or biased simulations (Wu et al., 2016; Paul
et al., 2017; Stelzl et al., 2017). In particular, recently developed
estimators such as transition-based reweighting analysis
TRAM (Wu et al., 2016) and its MBAR variant
TRAMMBAR (Paul et al., 2017) require only irreversible
visits to metastable states in the unbiased MD (as long as
these states are sampled reversibly in the biased ones) and can
greatly alleviate the sampling problem.

3.2 Applications
MSM calculations on the trypsin-benzamidine complex (Plattner
and Noé, 2015) (methodological details in Supplementary
Material S6) yielded a koff of 131 ± 109 × 102 s−1, which
compares fairly well with experiments (koff = 600 ± 300 s−1)
(Guillian and Thusias, 1970). However, the high level of
uncertainty suggests that sampling of unbinding events might
be insufficient despite the large amount of aggregate simulation
time (149.1 μs in this case). The dissociation of benzene from the
L99A mutant T4 Lysozyme was investigated in a hybrid MSM/
infrequent MetaD study (Mondal et al., 2018) using the
CHARMM36 force-field (Best et al., 2012). The MSM was
constructed from unbiased MD trajectories, and gave a koff of
310 ± 130 s−1, which was marginally closer to the experimental
koff (950 ± 20 s−1) (Feher et al., 1996) than the value reported by
the accompanying infrequent MetaD simulations (koff = 270 ±
100 s−1) (Mondal et al., 2018) and considerably closer than the
previous FA-MetaD-based predictions (see Table 1) (Wang et al.,
2018) However, the statistical uncertainty in the MSM-derived
koff was quite large, and the calculation required more simulation
time (60 μs) compared biased MD approaches to obtain similar
uncertainties: FA-MetaD/Infrequent MetaD studies typically
require 6–12 μs (Casasnovas et al., 2017; Wang et al., 2018;
Capelli et al., 2020) and LiGaMD (Miao et al., 2020) required
~ 5 μs.

The use of biased simulations can greatly reduce the sampling
requirements. Wu et al., (2016) showed that by integrating
unbiased MD with umbrella sampling simulation data, only
5%–10% of the unbiased data was necessary to estimate the
dissociation rate of the trypsin-benzamidine complex up to
statistical significance (koff = 1170s−1 [617s−1, 2120s−1]). A
combination of 500 μs of unbiased MD and 1 μs of
Hamiltonian replica exchange simulation was used to create
an MSM model describing the binding of the oncoprotein
fragment Mdm2 and a peptide inhibitor PMI. Estimates based
on two different post-processing schemes yielded values of koff =
0.125 s−1 [0.025 s−1, 0.66 s−1] and koff = 1.13 s−1 [0.48 s−1,
1.33 s−1], corresponding to a 10–30-fold overestimation
relative to experiments (koff = 0.037 s−1 [0.029 s−1, 0.04 s−1])
(Paul et al., 2017).

4 PATH SAMPLING METHODS

Path sampling methods focus on generating an ensemble of
transition pathways between bound and unbound states.
Typically, this class of methods accelerates the unbinding
event by exploiting restarting strategies to favor the sampling
of short trajectories in the vicinity of the transition state, which
are then used to reconstruct the full unbinding process. Weighted
Ensemble (WE) (Huber and Kim, 1996), milestoning (Cho et al.,
2006; Elber, 2007), transition state-partial path interface sampling
(TS-PPTIS) (Juraszek et al., 2013), and adaptive multilevel
splitting (AMS) (Cérou and Guyader, 2007; Cérou et al., 2011)
are path sampling methods that were employed in calculations of
koff for ligand/protein complexes.

4i.e., the probability of observing the system in a state y after the lag time given that
it was in state x does not depend on the states of the system before x.
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TABLE 1 | Quantitative in silico calculations (we highlighted in boldface the simulations that are below one order of magnitude for the predicted results with respect to the
experimental ones)

Target Technique T
[K]

Force field koff (sim) [s−1] koff
(Exp)
[s−1]

Simulation
time [µs]

Ref Year

Trypsin/Benzamidine SEEKR 298 Amber14SB +
GAFF

83 ± 14 600 ± 300 19 10.1021/
acs.jpcb.6b09388

2017

Trypsin/Benzamidine SEEKR 298 Amber14SB +
GAFF

174 ± 9 600 ± 300 4.4 10.1021/
acs.jctc.0c00495

2020

Trypsin/Benzamidine SEEKR2 298 Amber14SB +
GAFF

990 ± 70 600 ± 300 5 10.26434/chemrxiv-
2021-pplfs

2021

Trypsin/Benzamidine M-WEM 298 Amber14SB +
GAFF

791 ± 197 600 ± 300 0.48 10.1021/
acs.jctc.1c00803

2022

Trypsin/Benzamidine Inf-MetaD 300 Amber99SB-
ILDN

9.1 ± 2.5 600 ± 300 5 10.1073/
pnas.1424461112

2015

Trypsin/Benzamidine Inf-MetaD 300 Amber14SB +
GAFF

4176 ± 324 600 ± 300 — 10.1021/
acs.jctc.8b00934

2019

Trypsin/Benzamidine MSM 298 Amber99SB +
GAFF

(9.5 ± 3.3)·104 600 ± 300 50 10.1073/
pnas.1103547108

2011

Trypsin/Benzamidine MSM — — 2.8 ·104 600 ± 300 7.7 10.1021/ct400919u 2014
Trypsin/Benzamidine MSM — Amber99SB +

GAFF
131 ± 109 600 ± 300 149.1 10.1038/ncomms8653 2015

Trypsin/Benzamidine MSM 298 Amber99SB +
GAFF

1170 [617, 2120] 600 ± 300 58.28 10.1073/
pnas.1525092113

2016

Trypsin/Benzamidine WExplore 300 Charmm36 +
CGenFF

5.56 ·104 600 ± 300 4.1 10.1016/
j.bpj.2017.01.006

2017

Trypsin/Benzamidine REVO 300 Charmm36 +
CGenFF

2660 600 ± 300 8.75 10.1063/1.5100521 2019

Trypsin/Benzamidine LiGaMD 300 Amber14SB +
GAFF

3.53 ± 1.41 600 ± 300 5 10.1021/
acs.jctc.0c00395

2020

Trypsin/Benzamidine dcTMD 290 Amber99SB* 270 ± 40 600 ± 300 10000c 10.1038/s41467-020-
16655-1

2020

Trypsin/Benzamidine AMS 298 Charmm36 +
CGenFF

260 ± 240 600 ± 300 2.3 10.1021/
acs.jctc.6b00277

2016

Trypsin/Benzamidine OPES 300 Amber14SB +
GAFF

687 600 ± 300 3.2 arXiv:2204.05572 2022

T4L L99A-Benzene In-MetaD 300 Charmm22* 6.0 ± 2.2 950 ±
200a

6.7 10.1039/c7sc01627a 2017

T4L L99A-Benzene FA-MetaD 300 Charmm22* 5.7 ± 2.3 950 ±
200a

5.5 10.1063/1.5024679 2018

T4L L99A-Benzene In-MetaD 303 Charmm36 270 ± 100 950 ± 200 — 10.1371/
journal.pcbi.1006180

2018

T4L L99A-Benzene MSM 303 Charmm36 310 ± 130 950 ± 200 60 10.1371/
journal.pcbi.1006180

2018

T4L L99A-Indole In-MetaD 300 Charmm22* +
CGenFF

9.8 ± 10.2 325 ± 75b 4.5 10.1063/1.5024679 2018

T4L L99A-Indole FA-MetaD 300 Charmm22* +
CGenFF

6.0 ± 3.7 325 ± 75b 2.0 10.1063/1.5024679 2018

µOpioid receptor-
morphine

In-MetaD 300 Charmm36 +
CGenFF

(5.7 ± 0.5)·10–2 (2.3 ±
0.2)·10–2

6 10.1063/5.0019100 2020

µOpioid receptor-
bruprenorphine

In-MetaD 300 Charmm36 +
CGenFF

(2.1 ± 0.3)·10–2 (1.8 ±
0.3)·10–3

19 10.1063/5.0019100 2020

µOpioid receptor-Fentanyl In-MetaD 310 Charmm36m +
CGenFF

(2.6 ± 0.8)·10–2 (HID) (3.8 ±
1.4)·10–1 (HIE) 1.1 ± 0.3 (HIP)

4.2 · 10–3 6 10.1021/
jacsau.1c00341

2021

TSPO-PK11195 REVO 300 Charmm36 +
CGenFF

(D1)6.4 · 10–5 (D2)6.67·101
(D3)6.4 · 10–3 (D4)4.1 · 10–3
(4RYI)6.0 · 10–4 (D1-D4
different docked poses)

4.9 · 10–4 40 10.1016/
j.bpj.2020.11.015

2021

c-Src kinase-dasatinib In-MetaD 300 OPLS (4.8 ± 2.4)·10–2 5.6 · 10–2
1.1 · 10–3

~7–8 10.1126/
sciadv.1700014

2017

Src kinase - imatinib TS-PPTIS 305 Amber99SB*-
ILDN + GAFF
(QM/MM)

0.026 0.11 ±
0.08

— 10.1021/
acs.jctc.8b00687

2018

(Continued on following page)
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4.1 Weighted Ensemble Methods
4.1.1 Basic principles
A set of unbiased molecular dynamics trajectories with equivalent
statistical weights are spawned in parallel from a ligand/protein
complex in the ground-state configuration (Huber and Kim, 1996).
The configuration space is then subdivided into bins, which the
trajectories/walkers navigate through. The weighted ensemble
(WE) method aims to maintain a fixed number (N) of walkers
per bin. Thus, the occupancy of the bins is calculated at specific
resampling intervals τint. If the number of walkers in a given bin is
lower than N, one or more of the walkers are cloned, with each
daughter trajectory receiving a fraction of the weight of the original.
Conversely, in regions populated by a number of walkers exceeding
N, two ormore trajectories aremerged, with the resulting trajectory
inheriting the weights of its constituents (Zuckerman and Chong,
2017). This process results in a resampled trajectory space
spanning the bound, intermediate and unbound states from
which koff values can be obtained (Zhang et al., 2010).

Notably, the method does not require a detailed a prori
definition of differentiable collective variables, and it is
embarrassingly parallel. Given that the availability of Tier-0 and
Tier-1 machines has grown significantly since the method was first
formulated, several scalable open-source implementations have
emerged. These include WExplore (Dickson and Brooks, 2014),
Wepy (Lotz and Dickson, 2020), and REVO (Resampling of
Ensembles by Variation Optimization) (Donyapour et al., 2019).
The latter is a method featuring a novel resampling algorithm
replacing bins in configurational space with a system-specific all-
to-all pairwise distance matrix between walkers, thereby decreasing
the correlation between trajectories. The novel concurrent adaptive
sampling (CAS) algorithm (Ahn et al., 2017) builds on the
traditional WE method by adaptively constructing macrostates

(represented by n-dimensional Voronoi cells) while approximating
the committor function of each macrostate, and clustering the
macrostates according to their committor functions as the
simulation progresses. This improves the efficiency of WE
simulations in high-dimensional systems, by directing
computational power to sampling portions of configuration
space that are closer to the “product” configuration.

4.1.2 Applications
The koff of the trypsin-benzamidine complex as calculated by
WExplore (5560 s−1) (Dickson and Lotz, 2017) overestimated by
one order of magnitude the experimental value (600 s−1) (Guillian
and Thusias, 1970). This value was calculated from five
independent WExplore runs, corresponding to an aggregate
simulation time of 4.1 μs. Using clustering-based confirmation
space network analysis techniques (Dickson and Brooks, 2013),
three distinct ligand exit pathways were unearthed from the
trajectories. The trypsin-benzamidine system was later
investigated again with REVO (Donyapour et al., 2019). Based
on five independent REVO runs, giving a total of 8.75 μs, a koff of
2660 s−1 was predicted—a minor improvement onWExplore, but
an overestimation nonetheless. WExplore was also employed to
estimate the dissociation rate of the TPPU inhibitor from soluble
epoxide hydrolase. The calculated koff (2.4 · 10–2 s−1 [3.6 · 10–3 s−1,
4.4 · 10–2 s−1]) was one order of magnitude greater than the
experimental value of 3.6 · 10–3 s−1. (Lotz and Dickson, 2018), and
required 6 μs of simulation time to compute. However, the reason
for the systematic overestimations of koff is not explicitly
addressed. REVO was recently employed (Dixon et al., 2021)
to quantify koff values for five distinct bound poses of the PK-
11195 radioligand in complex with TSPO (see Table 1), using a
cumulative 5.18 μs of simulation time per pose. The calculated

TABLE 1 | (Continued) Quantitative in silico calculations (we highlighted in boldface the simulations that are below one order of magnitude for the predicted results with
respect to the experimental ones)

Target Technique T
[K]

Force field koff (sim) [s−1] koff
(Exp)
[s−1]

Simulation
time [µs]

Ref Year

Epoxide Hydrolase-TPPU WExplore 300 Charmm36 +
CGenFF

2.4 · 10–2 [3.6 · 10–3 s−1, 4.4 ·
10–2 s−1]

1.5 · 10–3 6 10.1021/jacs.7b08572 2018

p38 kinase/1-(3-(tert-
butyl)-1- (p-tolyl)-1H-
pyrazol-5-yl)urea

In-MetaD 300 Amber99SB-ILDN
+ GAFF

0.020 ± 0.011 0.14 6.8 10.1021/jacs.6b12950 2017

M2 muscarinic receptor/
iperoxo

FA-MetaD 310 Amber14SB +
GAFF

(3.7 ± 0.7)·10–4 (1.0 ±
0.2)·10–2

8 10.1021/
acs.jpclett.0c00999

2020

HSP90-inhibitor dcTMD 300 Amber99SB +
GAFF

(1.6 ± 0.2)·10–3 (3.4 ±
0.2)·10–2

5000c 10.1038/s41467-020-
16655-1

2020

Mdm2/PMI MSM 300 Amber99SB-ILDN 0.125 [0.025, 0.66] 1.13
[0.48, 1.33] (Different rate

matrix estimators)

0.037
[0.029,
0.04]

500 10.1038/s41467-017-
01163-6

2017

Mdm2/p53 MSM 300 Amber99SB-
ILDN-NMR

1.9·105 2.1 831 10.1016/
j.bpj.2017.07.009

2017

SH3 Domain—1CKB Pep-GaMD 300 Amber14SB (1.45 ± 1.17)·10–3 8.9 · 10–3 3 10.1063/5.0021399 2020

MtKatG—Isonazid τRAMD +
extrapolation

300 CHARMM36 +
SwissParam

(2.8 ± 3.7)·10–2 (2.0 ±
0.3)·10–2

— 10.1021/
acs.jpclett.1c02952

2021

aThe Authors in the original work considered the experimental koff at 293 K (800 ± 200 s−1), while they simulated the system at 300 K. Here we choose to put the value at the closest
temperature available in experiments (303K—950 ± 200 s−1). Both the experimental values come from (Feher et al., 1996).
bThe experimental value has been measured at 293 K.
cFor dcTMD, computational time is referred to 1D Langevin simulator, and the authors says that “1 ms of simulation time at a 5 fs time step take ~6 h of wall-clock time on a single CPU”.
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values for the poses spanned five orders of magnitude, and the
pose with the most favorable docking score (pose D1, koff = 6.4 ×
10–5 s−1) exhibited the closest agreement with the experimental
value (4.9 × 10–4 s−1) out of all the docked poses. All the of the
studies described here made use of the CHARMM36 (Best et al.,
2012) and CGenFF (Vanommeslaeghe et al., 2011) force fields. At
present, the CAS method described in Section 4.1.1 has been
successfully applied to host-guest systems only (Ahn et al., 2020).

4.2 Milestoning
4.2.1 Basic principles
Here, the configuration space is treated as a coarse mesh
characterized by slowly relaxing variables, such as native
contacts and/or distances between chemical groups that
describe the ligand unbinding process (Cho et al., 2006; Elber,
2007). The mesh must be coarse enough for distinct long-lived
metastable states to emerge, but fine enough to ensure that
transitions between the interfaces between the mesh’s cells or
“milestones” are accessible in MD simulations. Equilibrium
configurations for each milestone are usually generated with
“pulling” SMD simulations, or with a series of MD
simulations in which the diffusing group is harmonically
restrained to the milestone surface. Afterward, a set of
trajectories is spawned from each milestone, and whenever a
trajectory reaches a new neighboring milestone, it is terminated.
In practice, the criteria for termination of trajectories vary
depending on the implementation. The lifetime and flux
(i.e., number of trajectories passing through the milestone per
unit time) associated with each milestone may be used to
compute the ligand residence time (Elber, 2020).

Practical implementations of milestoning in ligand unbinding
studies fall into two categories: 1) The Simulation Enabled
Estimation of Kinetic Rates (SEEKR) (Votapka et al., 2017)
approach, which exploits milestoning theory in a multiscale
framework based on MD and Brownian Dynamics (BD)
simulations (Luty et al., 1993). The milestones are nested
spherical shells surrounding the binding pocket. Transitions
between milestones close to the binding pocket are simulated
using all-atom MD. Meanwhile, transitions between the more
diffuse milestones further away are described by cheaper BD
simulations—where fast sampling of rigid body interactions is
more important than detailed sampling of ligand conformations.
An updated implementation of SEEKR, named MMVT SEEKR,
has been subsequently proposed (Jagger et al., 2020): it
circumvents the need to compute the equilibrium distribution
for all the milestones, reducing the computational time needed to
compute kinetics constants. 2) The recently formulated weighted
ensemble milestoning (WEM) methods combine milestoning
theory with WE methods. Here, the configurational space
between the milestones is split into bins, and WE simulations
are run in between milestones to achieve faster convergence (Ray
and Andricioaei, 2020).

4.2.2 Applications
All applications to kinetics of biological systems so far are based
on AMBER14SB (Maier et al., 2015) and GAFF (Wang et al.,
2004) force fields and applied to the trypsin-benzamidine

complex. SEEKR yielded a koff of 83 ± 14 s−1 for the trypsin-
benzamidine system using 19 μs of aggregate MD and ten
spherical milestones. These results underestimate the
experimental value (600 ± 300 s−1) (Guillian and Thusias,
1970). MMVT SEEKR improved the koff estimate (174 ±
9 s−1), with only a quarter of the aggregate simulation time
(4.4 μs) used in the prior SEEKR study. WEM (Ray and
Andricioaei, 2020) gave a further improvement koff = 791 ±
197 s−1, using a mere 0.5 μs of simulation time (Ray et al., 2022).

4.3 Transition State-Partial Path Transition
Interface Sampling
4.3.1 Basic principles
In transition state-partial path transition interface sampling (TS-
PPTIS) (Juraszek et al., 2013) an initial metadynamics calculation
is performed to determine the transition state and the free energy
barrier along a given CV. Then, the transmission coefficient is
estimated, similarly to the PPTIS method (Van Erp et al., 2003;
Moroni et al., 2004) by foliating the barrier region along the CV
with interfaces and sampling short trajectories spanning three
consecutive interfaces. These trajectories are sampled using
transition path sampling (Pratt, 1986; Dellago et al., 1998).
Under the assumptions that the dynamics in the barrier region
is diffusive and there are nomemory effects for travelled distances
beyond two interfaces, the kinetic rates are independent of
the CV.

4.3.2 Applications
TS-PPTIS was used to compute the koff of the imatinib-Src kinase
complex (Morando et al., 2016). The calculation used 5 CVs: 2
path collective variables (Branduardi et al., 2007), a CV counting
the number of water molecules interacting with the ligand and the
binding cavity, and two distances between key residues of Src
characterizing the motion of the kinase A-loop. Using
AMBER99SB*-ILDN and GAFF, the authors computed a value
of koff = 0.0114 s−1 [0.001 s−1, 0.139 s−1], which is slow (but within
statistical significance) compared to experiments (koff = 0.11 ±
0.08 s−1). In a separate work (Haldar et al., 2018), the authors
refined the prediction by computing a free energy correction from
the MM to a hybrid quantum mechanics/molecular mechanics
Hamiltonian using a replica exchange thermodynamic
integration scheme (Woods et al., 2003) and Metropolis-
Hastings Monte Carlo sampling (Woods et al., 2008). This
correction does not account for dynamical effects but only for
changes in the free energy. The computed correction to koff was
small but consistent with faster dissociation dynamics obtaining a
corrected value of koff = 0.026 s−1.

4.4 Adaptive Multilevel Splitting
4.4.1 Basic principles
Similarly to WE, adaptive multilevel splitting (AMS) (Cérou and
Guyader, 2007; Cérou et al., 2011) relies on a set of trajectories
that are systematically cloned or killed. However, AMS does not
require bins. Instead, the algorithm is initialized by generating a
set of “loop” trajectories starting and ending in the bound state.
At each iteration, the replica that travelled the least distance d
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from the bound state (measured through a CV) is killed, and a
new loop is created by restarting a simulation from a point at the
same distance d previously visited by one of the remaining
replicas. This is repeated until all loops travelled a distance
above a threshold value (defining the unbound state) before
returning to the bound state. The dissociation rate is then
estimated from this collection of trajectories.

4.4.2 Applications
AMS was used to calculate the dissociation rate of trypsin-
benzamidine using the CHARMM36 force field (Best et al.,
2012) for trypsin and CGenFF (Vanommeslaeghe et al., 2011)
for the ligand (Teo et al., 2016). As the CV, the authors used the
distance between the center of mass of benzamidine and the alpha
carbons of the amino acids close to the binding site. A suitable
value for the threshold value of the CV was obtained through a
steered MD simulation. Furthermore, 130 ns unbiased MD
simulation was run to estimate the average time of a looping
trajectory under the assumption that the short loops thus sampled
represented the large majority of loops and thus dominated the
average loop duration. In total, 2.3 μs of simulations were used to
obtain a koff = 260 s−1 ± 240 s−1, in good agreement with
experimental measurements.

5 LIMITATIONS ASSOCIATED WITH FORCE
FIELDS

Table 1 summarizes the koff predictions of various ligand/protein
systems obtained using the methods discussed in previous
sections. For completeness, we also report the temperature,
total simulation time, and force field used. In about one-third
of the cases, spanning all different classes of methodologies and
force fields, the theoretical predictions are in the same order of
magnitude as the experimental values, and in a few cases (shown
in boldface in Table 1) reproduce them within statistical error. In
most cases, however, calculated values show discrepancies from 1
to 2 orders of magnitude, regardless of the method and force field.
Similarly, the only predictive study reported so far (Paul et al.,
2017) reports values with an error of 1–2 orders of magnitude
(albeit with large statistical errors) relative to experimental data
performed afterwards.5 All these results, taken together, lead us to
suggest that regular force fields may be, at times, not accurate
enough to predict koff values.

Determining the source of the observed errors is a difficult task
without dedicated studies as the accuracy of the predictions
depends on methodological aspects, sampling accuracy, and
the potential energy function, which are subject to mutual
cancellation (or amplification) of error. In this and the next
section, we discuss the literature focusing on the effect of the
potential.

5.1 Force Field Dependence of the Results
The published data indicate that careful parametrization of the
force fields is essential to obtain koff predictions. Comparison
between the results obtained from brute force MD calculations
on a set of ligands binding to a β-cyclodextrin (βCD) host
showed that koff predictions parametrizing βCD with the
Q4MD force field (Cézard et al., 2011) were consistently
more accurate (within one order of magnitude of
experimental values) than the GAFF-based (Wang et al.,
2004) estimates (Tang and Chang, 2018). On the other
hand, the kon estimates were consistently better for the
GAFF model, which points to the difficulty of obtaining
transferable potentials. In the case of benzene unbinding
from L99A T4 lysozyme, infrequent MetaD simulations
using CHARMM22 (MacKerell et al., 1998; MacKerell Jr.
et al., 2004) yielded a significantly underestimated koff in
the range of 4–10 s−1 (Wang et al., 2018), while the same
method combined with CHARMM36 (Best et al., 2012)
produced a koff (270 ± 100 s−1) (Mondal et al., 2018)
considerably closer to the experimental value of 950 ±
20 s−1 (Feher et al., 1996). Although different CVs were
used in these two works (see Section 2.4.2), the effect of
the force field cannot be ruled out. Indeed, the two force
fields differ only in a few dihedral potential terms (Best
et al., 2012) that control the rigidity of secondary
structures, and in particular two helices of T4 which control
benzene’s access to the binding pocket. Finally, we mention
here the work of (Vitalini et al., 2015), where it was shown that
slow relaxation timescales of two small peptides using five
protein force fields (AMBER99SB-ILDN (Lindorff-Larsen
et al., 2010), AMBERff03 (Duan et al., 2003), OPLS-AA/L
(Kaminski et al., 2001), CHARMM27 (MacKerell et al., 2000),
and GROMOS43a1 (Daura et al., 1998)) differ up to two orders
of magnitude. Given the importance of slow protein
conformational changes in unbinding kinetics (Plattner and
Noé, 2015), this result further highlights the role of force fields
for accurate rate calculations.

5.2 Polarization andCharge Transfer Effects
Traditional force fields describe electrostatics using fixed point
charges. This representation is extremely efficient and works
remarkably well, even in the case of systems with high electric
fields (Mironenko et al., 2021). However, such a scheme cannot
adapt to changes in the electrostatic environment observed
during ligand unbinding. Recently, some of us (Capelli et al.,
2020) found that electrostatic effects contribute significantly to
the force field misrepresentation of protein-ligand interactions
at the transition state of the M2-iperoxo complex.
Furthermore, the work of Haldar and coworkers (Haldar
et al., 2018) showed that accounting for changes in charge
distribution resulted in free energy corrections ranging from
1.9 to 4.7 kcal/mol as the ligand progressed from the
hydrophobic binding pocket to the solvated state.
Metalloenzymes (representing 40%–50% of all proteins in
the PDB database (Chen et al., 2019)) and highly charged
protein-ligand systems are also quite challenging to describe
with traditional force fields (Li and Merz, 2017). Indeed, for the

5All the other studies in Table 1 are instead retrospective, and large-scale
benchmarks in prospective settings (which are now common for binding
affinity calculations) (Parks et al., 2020; Schindler et al., 2020) are missing.
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latter systems, FF-based binding free energy calculations resulted in
significant systematic errors (Rocklin et al., 2013). Overall, these
results show that going beyond standard fixed-chargedmodels is in
many cases desirable to improve accuracy.

6 PERSPECTIVES: FROM POLARIZABLE
FORCE FIELDS TO QM/MM
CALCULATIONS TOWARDS THE
EXASCALE

Force fields have been overwhelmingly successful in predicting
equilibrium properties such as free energies of binding (Karplus
and McCammon, 2002; Wang et al., 2015; Robustelli et al., 2022).
Indeed, force fields are traditionally fitted to reproduce
equilibrium experimental measurements (ensemble averages)
and geometries obtained with quantum mechanical methods.
As a result, their performance is expected to peak in the regions
near the free energy minima (e.g., the bound state) rather than
near the kinetically relevant transition states, where small errors
are exponentially amplified in koff predictions.

6 After observing
discrepancies of two orders of magnitude in the kinetic
predictions of several force fields, Vitalini and coworkers
(Vitalini et al., 2015) suggested that kinetic information should
be included in the fitting process. In general, designing new
parametrization strategies for force fields is still a very active
area of research (He et al., 2020; Giannos et al., 2021; Qiu et al.,
2021). This is not surprising, given the issues discussed in Section
5. For example, methods to include polarization effects within a
fixed-charge scheme (Kelly and Smith, 2020) and multisite
models for transition metal ions have been developed (Li and
Merz, 2017).

A different direction pursued by the modeling community is
instead to use potential energy functions that go beyond the
biomolecular force fields’ simple representation of electrostatics
(e.g., polarizable force fields, hybrid quantum mechanics/
molecular mechanics (QM/MM) calculations, machine
learning potentials). Without any claim of being
comprehensive, here we provide a brief perspective on the role
of these methods in the upcoming era of exascale computing.

6.1 Polarizable Force Fields
Polarizable force fields for biomolecules (Jing et al., 2019)
including AMBER ff02pol (Wang Z. X. et al., 2006),
AMOEBA (Ponder et al., 2010) CHARMM Drude (Baker
et al., 2010), CHARMM-FQ (Patel and Brooks, 2003; Patel
and Brooks, 2004), SIBFA (Piquemal et al., 2007), and
ABEEMσπ (Liu et al., 2017) aim at providing an empirical
description electronic polarizability. Simulations based on
these potentials could dramatically improve the modeling of
transition states in cases where electronic polarization and

charge transfer may be linked to non-trivial rearrangements of
hydrogen bonds and hydrophobic interactions (Schmidtke et al.,
2011; Schiebel et al., 2018). Although polarizable force fields have
recently shown excellent accuracy in prospective predictions of
binding affinities in model systems (Amezcua et al., 2022), to the
best of our knowledge, they have not been used for protein-ligand
koff predictions yet. Notably, in a very recent paper (Yue et al.,
2022), it was shown how using a polarizable force field improved
the accuracy of the predictions of anion permeation rates in
fluoride channels compared to predictions based on standard
fixed charge schemes, highlighting the necessity of using
polarizable models for treating such processes. Although this
is not a ligand/protein system, this work further showcases the
limitations of conventional force fields in treating electrostatic
interactions as well as the potential of polarizable models.

6.2 QM/MM Simulations
DFT-based QM/MM simulations treat a small region of interest
(in our case this could be a ligand and the protein residues
interacting with it) at the DFT level, while the overall
computational cost is balanced by MM treatment of other
regions (Kulik, 2018). The form of the potential energy is a
hybrid model between classical mechanics and quantum
chemistry:

U � UQM + UMM + UQM/MM (3)
where UQM/MM denotes the interaction between atom groups
assigned to the QM region and MM region. DFT-based QM/
MM simulations include both electronic polarizability and charge
transfer effects (Blumberger, 2008; Capelli et al., 2020), and they
address the problem of transferability, as they do not rely on
optimizations against predefined training data sets. These
approaches can tackle important biomedicine problems such as
the study of transition-metal-based drugs binding to proteins
(Calandrini et al., 2015) or the description of enzymatic reactions.
(Carloni et al., 2002; Liao and Thiel, 2013; Roston et al., 2016;
Caldararu et al., 2018; Kulik, 2018; Piniello et al., 2021) However,
these simulations are orders of magnitude more expensive than any
of the potentials described so far, and hence achieving high statistical
accuracy with such an approach is obviously extremely challenging.

6.2.1 Parallel Computing in DFT-Based QM/MM
Modern supercomputers are currently breaching the exascale
limit in the United States (Schneider, 2022), Japan, and China.7

Exascale calculations however remain one of the major challenges
in molecular simulations (Hospital et al., 2015; Páll et al., 2015).
Recent advances in massively scalable QM/MM codes, such as
that developed in Juelich in collaboration with European
universities (Olsen et al., 2019; Bolnykh et al., 2020a) (see

6The koff values depend exponentially on the height of the dissociation free energy
barrier, so even small inaccuracies in the potential energy may impact dramatically
kinetics calculations.

7According to the Top500 list (https://www.top500.org/), which ranks computers
based on their performance on the HPLinpack benchmark (Dongarra et al., 2003),
currently there are no machines that have exceeded the exascale limit. The Fugaku
supercomputer in Japan showed performances above one EFlop/s, but on a
different benchmark (Kudo et al., 2020). In China, one or two exascale
supercomputers might be already operating(Ma et al., 2022; Schneider, 2022).
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Supplementary Material S7) and their successful applications to
predict free energy landscapes associated with biological
processes (Bolnykh et al., 2020a; Chiariello et al., 2020) brings
us to suggest that in a not-too-far future QM/MM calculations
may exploit the unprecedented power of exascale computing for
direct MD simulations of ligand (un)binding (Bolnykh et al.,
2020b, Bolnykh et al., 2021).

6.2.2 Machine Learning in QM/MM
Neural network models of the potential energy function have
emerged as a promising route to obtaining near-DFT accuracies
(Unke et al., 2021; Kocer et al., 2022) at a computational cost only
1–2 orders of magnitude slower than force fields. Applications to
the kinetics of chemical reactions have been published (Stocker
et al., 2020; Yang et al., 2022) and in principle, they could be used
to model DFT-based QM/MM predictions of ligand poses during
the unbinding process. However, ML potentials are currently still
limited to small molecule applications and robust solutions to
model long-range interactions have yet to emerge (Yue et al.,
2021). The advent of exascale computing could dramatically
expand the domain of applicability of such approaches (Lu
et al., 2021). Moreover, several approaches to solve these
issues have been proposed based on hybrid machine learning/
molecular mechanics models (Shen and Yang, 2018; Rufa et al.,
2020; Böselt et al., 2021; Gastegger et al., 2021) (see
Supplementary Material S8 for details).

7 CONCLUSION

We have reviewed an array of rather diverse methods able to
predict unbinding kinetics constants using atomistic
representations of the biomolecules involved. These techniques
have shown tremendous progress in the last years: considering
trypsin-benzamidine as a benchmark system (as seen in Table 1),
we start from 2–3 orders of magnitude in koff error in the
pioneering MSMs of De Fabritiis and co-workers (Buch et al.,
2011) to an error of less than 1 order of magnitude in some of the
most recent calculations (Plattner and Noé, 2015; Votapka et al.,
2017; Brotzakis et al., 2019; Wolf et al., 2020). Despite these
impressive methodological advances, the domain of applicability
and accuracy appears to be still limited by current force fields.
Better parametrization and polarizable force fields (Lin and
MacKerell, 2019) promise to improve the quality of the
potential energy model at a reasonable cost at a reasonable
computational cost (Lemkul et al., 2016). Another possibility is
the use of massively parallel DFT-QM/MM complemented by
ML techniques, which include electronic polarizability as well as
charge transfer. This approach could address the issue of

transferability of current biomolecular force fields. However,
the accuracy of these approaches is yet to be established.

Traditionally, computational drug discovery has used a
combination of methods such as docking (Ferreira et al.,
2015), quantitative structure-activity relationship (QSAR)
modeling (Dossetter et al., 2013), free-energy methods
(Cournia et al., 2017), and (recently) ML-based approaches
(Zhao et al., 2020) to improve the binding affinity of a
compound during lead optimization. Computer-aided ligand
design campaigns could enormously profit from the design of
so-called transition state analogues which, in the case of enzyme
inhibitors, have been correlated with release rates that are orders
of magnitude slower than product release (Schramm, 2013;
Schramm 2015; Svensson et al., 2015). We hope that
approaches beyond the use of standard force fields, such as
those discussed here, will lead in a not-too-distant future to
the accurate description of the energetics and structural
determinants of the unbinding transition states, giving an
unprecedented boost to the discovery of promising new small
molecules and the optimization of known drugs.
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The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling
molecules and regulates at the gene transcription level. Since RORγ has a high basal
activity and plays an important role in immune responses, inhibitors targeting this receptor
have been a focus for many studies. The receptor-ligand interaction is complex, and often
subtle differences in ligand structure can determine its role as an inverse agonist or an
agonist. We examined more than 130 existing RORγ crystal structures that have the same
receptor complexed with different ligands. We reported the features of receptor-ligand
interaction patterns and the differences between agonist and inverse agonist binding.
Specific changes in the contact interaction map are identified to distinguish active and
inactive conformations. Further statistical analysis of the contact interaction patterns using
principal component analysis reveals a dominant mode which separates allosteric binding
vs. canonical binding and a secondmode which may indicate active vs. inactive structures.
We also studied the nature of constitutive activity by performing a 100-ns computer
simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison,
we identified a group of conserved contacts that have similar contact strength between the
two receptors. These conserved contact interactions, especially a couple key contacts in
H11–H12 interaction, can be considered essential to the constitutive activity of RORγ.
These protein-ligand and internal protein contact interactions can be useful in the
development of new drugs that direct receptor activity.

Keywords: protein-ligand interaction, statistical analysis, nuclear receptor, constitutive activity, inverse agonist

INTRODUCTION

The nuclear receptor (NR) superfamily is a group of important transcription factors that detect the
presence of specific compounds using their ligand-binding domain (LBD) and respond by
modulating gene transcription, which is directed through interaction between specific DNA
response elements and the DNA-binding domain (DBD) and interaction between co-activators
and the LBD (Helsen et al., 2012; Weikum et al., 2018). Well-known examples of the NR superfamily
include estrogen receptor, androgen receptor, glucocorticoid receptor, vitamin D receptor,
peroxisome proliferator-activated receptor, retinoid receptor, thyroid hormone receptors, and
many others. While the structures of the DBD and the LBD are highly conserved, there is a
highly varied and largely unstructured N-terminal domain (NTD) that also plays an important role
in the function of these transcription factors (Kumar and Thompson, 2003; Simons et al., 2014).
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One of the important NRs is called RAR-related orphan
receptor (ROR), since initially ROR was discovered as an
orphan receptor that is related to retinoid acid receptor (RAR)
(Solt and Burris, 2012; Zhang et al., 2015). ROR was found to play
important roles in regulating immune responses and circadian
rhythm (Takeda et al., 2012; Cook et al., 2015). Furthermore,
ROR was also found to be one of the few NRs that are
constitutively active, meaning the receptor exhibits high basal
activity (active without ligand). Since a hyperactive ROR can be
tied to autoimmune diseases such as multiple sclerosis and
rheumatoid arthritis, identifying potent inverse agonists to
regulate ROR is of interest (Zhang et al., 2015). One essential

question arises as to how one can efficiently obtain details of the
protein-ligand interaction and predict how ligands affect the
protein conformation, i.e., turn on or off ROR activity. As
detailed below, this remains a puzzle as the ligand-protein
pairing for NRs is highly sensitive.

Various structural biology and chemical biology studies
have focused on ROR-ligand interactions. Among the three
subtypes of ROR (RORα, RORβ, and RORγ), RORγ appears to
be very important with the most structural data available, and
thus we focus on examining the LBD of the γ-subtype in this
study. Indeed, there have been more than 100 X-ray
crystallography structures reported in the Protein Data Bank

FIGURE1 | (A) The ligand-binding domain of RORγ is displayed in active (PDB: 3L0L) and inactive (PDB: 4QM0) conformations. The important secondary structural
elements that undergo conformational change are located at the C-terminal region and are explicitly labeled. (B) The residues that potentially form direct contact with
ligands are shown in a canonical front view and a side view.
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(PDB), all of which are in the monomer form having the
identical protein sequence while the only differences are the
unique identity of ligand(s) that forms a complex with RORγ.
In many previous reports, a set of similar ligands was used to
probe the cellular activity and/or biophysical properties of ROR
induced by ligand binding. Similar to other NRs, binding of an
agonist to the LBD leads to a conformational change that
facilitates a more favorable interaction with the co-activators
at the activation function 2 (AF2) region of the LBD (Weikum
et al., 2018). Alternatively, when an inverse agonist binds to the
LBD, co-activator binding becomes inhibited due to (at least in
part) the structural changes in helices H10, H11, and/or H12
(Li et al., 2017; Noguchi et al., 2017; Gong et al., 2018). Two
mechanisms of inverse agonism that have been observed
include: 1) a disorder of helix H12, which would otherwise
form part of the binding pocket, reduces available agonist
interaction sites and 2) the formation of a “kink” between
helices H10 and H11 consequently obstructs the co-activator
binding site formed by helix H12, as shown in Figure 1.

Often, researchers found that whether specific ligands can
turn ROR on or off is quite sensitive. For example, several
studies showed that a slight modification of a known agonist or
inverse agonist can switch its properties. Specifically, there were
reported pairs of ligands (obtained from tertiary sulfonamides,
biaryl amides, tertiary amines, benzoxazinones, and other
families) that bind at the same binding site; however, the
shorter of the two is an agonist while the longer ligand is an
inverse agonist or vice versa, exemplified by PDB pairs: 4WPF/
4WQP, 5IZ0/5IXK, 6NWU/6NWS, and 6R7K/6R7J (agonist/
inverse agonist-bound structures) (Yang et al., 2014; René et al.,
2015; Wang et al., 2015a; Marcotte et al., 2016; Gong et al., 2018;
Wang et al., 2018; Strutzenberg et al., 2019; von Berg et al.,
2019). Using 5IZ0/5IXK as an example, M358 was reported to
interact with an inverse agonist ligand Bio399 (synthetic
benzoxazinone) and consequently, it affects residue F506 and
changes the protein conformation into an inactive form (PDB:
5IXK). In contrast, a similar ligand Bio592 has nearly identical
contact interactions with the rest of the binding pocket while
lacking the contact with M358, which in turn keeps RORγ in an
active conformation (PDB: 5IZ0) (Marcotte et al., 2016).
Meanwhile, another intriguing study found that lengthening
or shortening modifications of a specific agonist (biphenyl-
ethylsulfonyl-phenyl-acetamide) leads to inverse agonism
(Wang et al., 2018). As different studies reported different
local trigger spots for inverse agonists, one may want to
consolidate ROR-ligand interactions and rethink the
canonical view that the ligand-directed action comes from a
fixed chemical group of the compound with a specific residue of
the binding pocket. Instead, the ligands examined in these
studies are diverse and distinct from one study to another. It
appears that a specific chemical group is not enough to
determine the effect of a molecule, and yet the ligand
identity clearly affects the interactions with the binding
pocket and subsequently the protein activities. For nuclear
receptors, there is a challenge on how to connect the ligand
identity with directed structural changes and subsequent
activities.

We think that a statistical analysis of extensive structural
information where one collectively examines protein-ligand
contact interaction patterns may provide insight into this
challenge. For this work, we studied 136 RORγ structures: 132
with one ligand (or ligand fragments) bound (100+ distinct
ligands) from X-ray crystallography experiments (Jin et al.,
2010; Fujita-Sato et al., 2011; Fauber et al., 2013; Fauber et al.,
2014; van Niel et al., 2014; Yang et al., 2014; Chao et al., 2015;
Muegge et al., 2015; René et al., 2015; Santori et al., 2015;
Scheepstra et al., 2015; Wang et al., 2015b; Wang et al., 2015c;
Enyedy et al., 2016; Hirata et al., 2016; Hintermann et al., 2016;
Marcotte et al., 2016; Olsson et al., 2016; Ouvry et al., 2016; Xue
et al., 2016; Kallen et al., 2017; Kummer et al., 2017; Li et al., 2017;
Noguchi et al., 2017; Carcache et al., 2018; Fukase et al., 2018;
Gege et al., 2018; Gong et al., 2018; Kono et al., 2018; Narjes et al.,
2018; Noguchi et al., 2018; Sasaki et al., 2018; Schnute et al., 2018;
Shirai et al., 2018; Wang et al., 2018; Amaudrut et al., 2019; Duan
et al., 2019; Hoegenauer et al., 2019; Kotoku et al., 2019; Lu et al.,
2019; Marcoux et al., 2019; Sato et al., 2019; Strutzenberg et al.,
2019; Tanis et al., 2019; von Berg et al., 2019; Yukawa et al., 2019;
Zhang et al., 2019; Cherney et al., 2020; Duan et al., 2020; Gege
et al., 2020; Harikrishnan et al., 2020; Jiang et al., 2020; Liu et al.,
2020; Meijer et al., 2020; Nakajima et al., 2020; Shi et al., 2020;
Vries et al., 2020; Zhang et al., 2020; Lugar et al., 2021; Meijer
et al., 2021; Nakajima et al., 2021; Ruan et al., 2021; Yang et al.,
2021). Additionally, there was also a report of 12 structures (with
two ligands bound) (de Vries et al., 2021). The full list of PDBs
and their associated properties can be found in the
Supplementary Data File S1. We did not include the double-
liganded structures in the analysis since almost all the ligands in
those structures have been crystalized with RORγ previously, and
thus these ligand-protein contacts have already been included in
our analysis. There might be new RORγ structures deposited in
the PDB since the time of our structural bioinformatics research,
and any newly reported RORγ structures after that time would
not be included in the current analysis. However, we expect that
the results of our statistical analyses and the conclusions drawn
should still hold.

The current work has two main focuses. The first one is the
statistical analyses of the protein-ligand interactions, obtained
from previous experimental studies in which each examined
ligand or multiple ligands interact with the binding pocket.
The comparison across all ligands will provide a more
comprehensive picture of the molecular interactions that
differentiate between agonists and inverse agonists, and
potentially illustrate the mechanism (structural change) by
which each ligand imposes its effect. The second focus is the
nature of NR constitutive activity. The RORs have a high basal
activity and thus they are considered to be active without any
ligands. Such constitutive activity of receptors, including many
prominent examples from the NR and GPCR families, are
difficult to study experimentally at times. Often, receptors,
including RORγ, do not have structures resolved
experimentally in the absence of ligand. Computational study
of an apo conformation may provide clues on how they function
(Pham et al., 2019a; Rosenberg et al., 2019). Within the nuclear
receptor superfamily, only a few wild-type receptors display
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constitutive activity. Constitutive androstane receptor (CAR) is
also deemed to be constitutively active as suggested by its name
(Dussault et al., 2002; Xu et al., 2004). The CAR protein functions
as a xenobiotic sensor, which detects foreign substances such as
drug molecules and metabolizes them primarily in the liver (Xie
et al., 2003; Wang et al., 2012). Additionally, a couple other NRs
were also suggested to have a high basal activity, such as ERR and
SF-1/LRH-1 (Schimmer and White, 2010; Huss et al., 2015).
Often, they have a relatively small binding pocket. A previous
computational study performed on CAR has shown some
essential protein contacts contributing to the constitutive
stability of the unliganded CAR (Pham et al., 2019a). By
comparing CAR with RORγ, we may gain insights into the
important protein interactions that help facilitate the
constitutive activity of nuclear receptors in general.

METHODS AND SYSTEMS

Crystal Structure Ensemble of RORs With
Various Ligands Bound
The statistical analysis includes a total of 136 X-ray crystal
structures. Only four of the structures (PDB: 5K38, 5VB3,
5X8U, and 5X8W) are absent of a ligand and the other 132
structures contain a single ligand at the ligand-binding pocket.
The binding pocket mentioned refers to either a canonical, largely
enclosed ligand-binding pocket or an adjacent, more exposed
allosteric binding site. We did not include the 12 structures with
double ligands (one each at canonical and allosteric binding sites).

For the protein component of the complex, all 136 structures
contain a single chain of LBD of RORγ. Note that we also include
RORγt, an isoform of RORγ that is selectively expressed in the
thymus. Although the sequence of RORγt is 21-residues shorter
than RORγ at the N-terminal domain (NTD) due to alternative
splicing, both RORγt and RORγ have an identical LBD. Among
136 structures, only a few of them (PDBs: 4NB6, 6O98, 6XFV,
and 7JH2) were reported using RORγt indices for their residues
while the rest used RORγ. Six of them are from gibbon ROR,
which only contains a double substitution (K469A/R473A) from
human UNP P51449. Another 34 PDBs are single point mutants
at C455 (mostly C455S, occasionally C–H or C–Emutations were
reported). By visual inspection, these mutations or substitutions
are far from the ligand binding pocket, e.g., C455 is at helix H9,
thus none of them are directly involved with the protein-ligand
contact interaction. Therefore, we do not treat them separately
from the wild-type RORγt.

For the 132 structures containing only one ligand, there are a
total of 125 distinct ligands. Notably, four PDB pairs (4YPQ and
5C4O, 5K3M and 5X8S, 5NI5 and 5NU1, 5APJ and 5APK) share
the same ligands and four additional PDBs (4NB6, 5EJV, 5K3L,
and 5NTQ) all share the same synthetic ligand T0901317 (also an
agonist for LXR). Even though these pairs and groups may share
the same ligand, the protein conformations are not necessarily the
same. For example, despite sharing the same inverse agonist,
5APJ is active (due to a fused coactivator) while 5APK is in an
inactive conformation (Olsson et al., 2016). The structures of
4YPQ and 5C4O are in different space groups (Scheepstra et al.,

2015), whereas 5NI5 and 5NU1 are bound to different
coactivators. A unique case, 5G44, contains three ligand
fragments in the binding pocket as it was obtained from a
cosolvent engineering study (Xue et al., 2016). We treated this
three-ligand “cocktail” as a single ligand. One of the 116 PDBs,
6W9J, was removed from the structure database and replaced by
6XAE after we started our study. Since 6W9J has an identical
ligand as the one from another structure already in this database,
6W9H, we have included 6XAE in the below analysis and
excluded 6W9J. As mentioned in the Introduction section, a
few additional structures of ROR-ligand complexes were reported
after our search but we did not include them in the study.

Structural Ensemble of Apo ROR From MD
Simulation
To construct the initial conformation of the unliganded ROR
system, we used a crystal structure of a coactivator-fused ROR
(PDB: 5VB3) that is absent of any ligands (Li et al., 2017). The
structure is deemed to be in an active conformation, and it was
selected from a set of four apo crystal structures (PDB: 5K38,
5VB3, 5X8U, and 5X8W) which are void of agonist ligand
binding (Li et al., 2017; Noguchi et al., 2017). It is worth
noting that three structures (PDB: 5VB3, 5X8U, and 5X8W)
within that set are not fully unliganded since they are either
bound to or fused with the coactivator peptide (CoA), while the
other structure (PDB: 5K38) without CoA binding has an
incomplete C-terminus. As a fused protein complex of the
ligand-binding domain of ROR and CoA, the CoA component
is believed to assist ROR in remaining in the active conformation.
Interestingly, the CoA effect is so strong that the inverse agonist-
bound form of this fused protein is still in the active conformation
as the PDB 4YMQ shows (Muegge et al., 2015). To simulate our
fully apo system, we removed the fused CoA segment from the
ROR protein of the crystal structure. The protein contains 243
residues with internal indices (1–243) corresponding to the
standard RORγ (UniProt: P51449) A265–S507.

The AMBER14SB forcefield was used for the protein
molecules of the simulation, whereas the TIP3P model was
used to solvate the system with 11,622 water molecules in a
rectangular box. The protonation status of the residues was
determined by H++ (Anandakrishnan et al., 2012) at pH of
7.0 and assigned accordingly: Asp and Glu are deprotonated,
Arg and Lys are protonated, and all His are singly protonated at
the ε position, except His452 and His479 which are protonated at
the δ position. Two Cl− counterions were added to neutralize the
system.

After the initial setup of the system, we conducted
minimization, heating, and production runs using NAMD.
NPT simulations were used for the system with T = 300 K
and p = 1 atm. The production run time was 100 ns after an
initial 5 ns equilibration. The time step was 2 fs, and snapshots
were collected every 1 ps.

Statistical Analysis
Contact matrices are calculated to render the structure
information at residue-residue contact resolution (Johnson
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et al., 2015; Clark et al., 2016; Johnson et al., 2018). For the
calculation of residue-residue and residue-ligand contacts of
these 136 PDBs, hydrogen atoms are excluded from all but the
10 ligands for which they were explicitly reported. Since the
hydrogen atoms of proteins were not explicitly reported either, we
remove hydrogens from all of the PDBs to obtain a uniform
resolution (heavy atom only) of the protein complex systems. A
contact aij between two components, i and j (a pair of amino
acid residues or a residue and a ligand), is considered formed
aij � 1 if the minimum distance between heavy atoms from the
two components is within 4.5 Å, otherwise aij � 0. For the
corresponding processing of simulation results, the distance
cutoff is 4.2 Å using an all-atom resolution (hydrogen included).

Several analysis methods are used to further render the
information contained in the contact matrix ensemble. Besides
the principal component analysis (PCA) (Jolliffe, 2002; Brunton
and Kutz, 2019) of contacts, statistical analyses such as
hierarchical clustering and construction of a dendrogram can
be used to classify the protein structures (contact maps), the
residues of binding pocket, and the ligands. The distance score
between two protein contact matrices aij and bij is defined as
N10 � ∑

ij
(aij–bij)2. An alternative definition based on 1/∑

ij
(aij ·

bij) � 1/N11 provides similar clustering results. Here, N10 is the
number of the elements that are different (i.e., logic gate XOR
performed) andN11 is the number of elements that are 1 (contact
formed) in both cases. Note that sequentially neighboring
contacts (those between residue i and i+1, i+2) are not
counted. Since different proteins have different starting and
ending positions for their contact maps, we use a common
region (between 276 and 475) and thus a contact matrix size
of 200 × 200 for this distance calculation.

For protein-ligand interactions, we used an I-PCA style of
contact statistical analysis (Lindsay et al., 2018). The I-PCA
method was initially developed to reveal internal domain
structures of semi-structured biopolymers, from large-scale
chromosome structures to intrinsically disordered proteins
(Das et al., 2020; Lindsay et al., 2021). In those cases, each
row (or column) of the mean contact map of the structure
ensemble is treated as a linear set of contact variables (the
number of rows is the number of monomer units of the
system) that symbolize the contact interaction with other
unlabeled monomers. Here, we generalize this idea to protein-
ligand contacts, i.e., protein residues have a contact variable L that
forms unspecified contact with ligands, i.e., Li � 1 if residue i is in
contact with the ligand or 0 otherwise. Thus, we emphasize the
correlation of contact formation between residue i with the ligand
while residue j simultaneously forms contact with the ligand. The

covariance matrix is Cij � < δLi · δLj > � ∑K
α�1

δLαi · δLαj /K. Here,

δLαi � Lαi − < Li > is the protein-ligand contact fluctuation of
residue i and symbol the < > indicates an average performed
over K � 132 different protein-ligand contact patterns. The
emphasis is on which residue makes contact, while the details
of ligand structure are not emphasized here. One can expect that
applying I-PCA may sort out the dominant contact interaction
patterns between residues and ligands.

RESULTS AND DISCUSSION

Conformations With Various Ligand Binding
Status Expressed by Contact Matrices
We first use contact interaction matrices to compare the
conformations of RORγ structures reported in the PDB
database. As mentioned in the previous section, a distance
(dissimilarity score N10) between two conformations measured
by the similarity between the corresponding contact matrices is
calculated. This contact-based similarity measurement provides a
simple way of grouping similar conformations. Practically, the
value of N10 ranges from 0 to 142. The hierarchical clustering of
structures characterized by these contact maps (based on the
pairwise dissimilarity scores) is represented as a dendrogram in
Figure 2.

With the exception of some isolated structures that branch off
earlier, the bulk of the structures form two main branches in the
dendrogram. As seen in Figure 2, the active structures form the
majority of one branch, the active branch, whereas the inactive
ones concentrate in the other branch. Note that none of the nine
structures complexed with allosteric inhibitors (PDBs: 4YPQ,
5C4O, 5C4S, 5C4T, 5C4U, 5LWP, 6SAL, 6TLM, and 6UCG) is in
the active branch and most of them are in the inactive branch.
Two structure outliers (5K3M and 5K3N) branch off the earliest,
since they have distinct conformations compared to the rest of the
structures with less contacts being formed. In addition, three of
the four apo structures can be found within the “active branch” of
the cluster tree and the fourth is found within the “inactive
branch.”

We use color labeling to demonstrate the conformation being
active (blue) or inactive (red) in Figure 2. Active structures are
largely located in one branch of the cluster tree. Note that our
definition of active conformation is based on the features of
contact matrices as stated below. We could not solely rely on the
self-reported status from literature associated with the PDBs,
because not all ligands were self-reported as an agonist or an
inverse agonist. Additionally, the active or inactive conformation
is not always linked to the ligand being reported as an agonist or
an inverse agonist. In certain cases, such as a coactivator-fused
ROR or due to ROR-coactivator interaction, a known inverse
agonist can be “trapped” within the active conformation of the
protein (e.g., PDB: 5APJ). However, by visual inspection of the
contact interactions, one can clearly observe two distinct patterns
of contact maps being formed. The first group of contact maps is
predominantly associated with self-identified active
conformations and features two regions of contacts that are
absent from the second (inactive) group. One of the two
regions represents contacts between H3-H4 and HX-H12,
whereas the other region contains contacts between HX and
H12. Examples of the active and inactive contact maps are
displayed in Figure 2.

In practice, we summed the total number of contacts from two
regions on the contact maps where Region one is defined as any
contacts between residues i and j, i.e., (i, j) satisfy 300< i< 340
and j> 475, and Region two by any contacts satisfying
470< i< 495, i< j, and j> 490. We further applied a cutoff
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value of 60 contacts in these two regions combined to
determine whether a specific structure is active or inactive,
with 60 and above considered as active. Based on this ad hoc
cutoff criterion, we can separate all the structures into two
camps of roughly equal size: 67 of 136 structures are
considered active and the remaining 69 are considered
inactive. This cutoff selection and the ensuing definition of
structure (active vs. inactive) are also proven to be largely
consistent with most self-reported or presumed classification
of ligand status (agonist vs. inverse agonist). Out of these
132 ligand-bound structures, 113 have a consistent ligand
identity and structure identity. There are 19 structures with
a presumed or self-reported inverse agonist that yield a value
slightly greater than our cutoff of 60 (mostly around 65–70),
which makes them active structures by our definition. Several
factors can contribute to this result. Besides the factor that a
structure can be influenced by elements other than the ligand’s
nature (e.g., 5APJ vs. 5APK), different experimental tests to
determine the nature of the ligand being an inverse agonist or
not are inconsistent. Besides, the action of the ligand binding is
not a discrete value, but rather the level of effect is on a
continuous spectrum.

Ligand Binding Patterns Revealed by
Statistical Analysis of Protein-Ligand
Contacts
In general, the ligand binding pockets of NR can be quite large
and complex. For most cases, ligands are considered to be
completely enclosed inside the LBD of the receptor. A unique
aspect of ROR is that it contains an allosteric binding site besides
the canonical (orthosteric) binding site (Scheepstra et al., 2015). It
was reported further that both sites can be occupied by ligands

and exhibit a degree of communication between them (de
Vries et al., 2021). Specifically, even when an agonist ligand
binds to the canonical site and stabilizes the binding pocket
structure, the presence of an allosteric inverse agonist can
negate the agonistic effect and turn off the receptor activity (de
Vries et al., 2021). Although such complex multivalent
interaction is interesting to study and can have deep
implications on controlling how the protein functions via
allostery (Pham et al., 2019b), our study is limited to only
single ligand-protein interaction.

A basic property of ligands which we can investigate is their
size and its relationship with the ligand identity as an agonist
or an inverse agonist. Here, we chose to characterize each
ligand by its total number of atoms. The mean ligand size is
n � 58.4 with a standard deviation of 17.5, whereas the active
structures have a mean ligand size of na � 55.5 and the inactive
structures have ni � 61.9. Although ligands in the inactive
structures are slightly heavier, the difference is much smaller
compared to the standard deviation of size distribution. Thus,
we conclude that ligand size is not a determining factor as to
whether the ligand is an agonist or not. The conclusions drawn
here are insensitive to alternative definitions using molecular
weight or number of heavy atoms, as these three definitions are
highly correlated.

With the same noise filtering cutoff, we define the binding-
pocket residues as those forming contacts with ligands in at
least 10 out of 132 ligand-bound structures. As a result, we
found a total of 55 residues forming the binding pocket. For
comparison, a slightly more relaxed, alternative cutoff of 8
hits yields a total of 56 residues.

As shown in Figure 3A, the total number of ligands NT
i , is

shown as a function of protein residue index i. Particularly,
residues at the binding pocket form constant contacts with

FIGURE 2 | Active and inactive structures of RORγ are rendered as contact maps in (A,B), respectively. Based on the similarity matrix, a dendrogram of the
structures (active labeled in blue, inactive in red) at the contact level is displayed in (C).
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ligands are 320, 323–324, 365, 376–378, 388, 397, and 400 as they
form contacts with a ligand in more than 80% of the structure
ensemble. One can separately list the number of residue-ligand

contacts NT
i formed in active (NA

i � ∑′ALi) vs. inactive
(NI

i � ∑′ILi) conformations based on the (in)active definitions
defined in the previous subsection. Here Σ’A,I is a restricted sum
for active and inactive conformations respectively and
NT

i � NA
i + NI

i . Furthermore, we have defined the preference
of each residue as the agonist contact score,
x � (NA −NI)/(NA +NI), as seen in Figure 3B. The value of
x is in the range of [−1, 1], where −1 indicates residue-ligand
contacts only formed in the inactive case and +1 are those only
formed in the active case. Note that we filtered out residues that
have minimal contacts with the ligand (NT

i ≤ 9 ) to avoid poor
statistics.

It might be useful to point out that the residues with
strongest negative agonist contact scores (highlighted in red
in Figure 3C) are located at five specific spots (near residues
325, 328–329, 353–354, 357, and 379–380) and the
C-terminus (476–506). Note that three of those spots
belong to the allosteric binding pocket and the other two

spots (residues 357 and 379–380) reside in the boundary
between the allosteric and canonical binding pockets. These
inverse agonist “hot spots” can be important for ligand
design and some of them have been reported as the
“trigger” for inducing inactive conformations of RORγ.
For example, one of the most potent inverse agonists
from isoxazole family was reported to have contact
interaction with Q329, L353, and K354 (Meijer et al.,
2020). Another example on the boundary is the M358
trigger (Marcotte et al., 2016) mentioned in the
Introduction. Combined with molecular docking (Trott
and Olson, 2010), this contact score (Figure 3B) can be
further developed and applied to high throughput screening
for selecting new inverse agonist ligands for RORγ. This
statistical approach may also be generalized to study ligand
recognition by other receptors.

Besides obtaining independent statistics on the ligand
contact tendency of each residue, we further investigated
the concerted pattern of the residue-ligand contacts,
i.e., whether residues i and j form protein-ligand contacts
in sync. Various statistical analyses can be used to achieve
this correlation analysis, and we use contact PCA as
described in the Method section. The contact PCA on the
covariance matrix of residue-ligand contacts provides the
dominant patterns of residue-ligand interaction. The top
eigenvectors PC1 and PC2 were presented in Figures
4A,B. We also analyzed the PC projection for PC1 and
PC2, which is shown in Figure 4C. Each PC mode
indicates a specific binding pattern: all residues with
positive values form contacts with the ligand (i.e., not
necessarily the same ligand) in sync and the same goes for
residues with all negative values. Additionally, there is an
anti-correlation between positive residues and negative
residues. One can see that the dominant mode, PC1,
largely divides residues into two groups. As ligand
contacts from conformations of PDB structures (4YPQ,
5C4O, 5C4S, 5C4T, 5C4U, 5LWP, 6SAL, 6TLM, and
6UCG) mostly come from the positive group, they show
up as positive PC projections, whereas the remaining
conformations comprise the negative group. Overall, we
found that PC1 distinguishes two binding modes:
allosteric binding for the positive group and canonical
binding for the negative one. The position of the allosteric
binding pocket is distal to the traditional canonical binding
pocket, and the ligands that interact with the allosteric
binding pocket have been found to be a class of inverse
agonists (Meijer et al., 2020; Vries et al., 2020; Zhang
et al., 2020; de Vries et al., 2021; Meijer et al., 2021).
Function-wise, these allosteric inverse agonists induce
another orientation of helix H12 such that it prevents the
binding of a coactivator. The second dominant interaction
pattern, PC2, shows another prominent binding feature,
which seems to weakly separate agonist vs. inverse agonist
binding. It is interesting to point out that most
conformations with an extreme positive PC2 projection
are inactive conformations (red) and vice versa, an
extreme negative PC2 for active conformations (black).

FIGURE 3 | (A) The total number of ligand-protein contacts made by a
specific residue (black), the number of ligand-protein contacts in active and
inactive structures (blue and red). (B) The agonist contact score is displayed
as a function of residue. (C) The corresponding values from (B) are color-
labeled onto the 3D structure of RORγ (front and side views).
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Essential Contacts for Constitutive Activity
Revealed by Molecular Dynamics
Simulation
As mentioned in the Introduction, the high basal activity of
certain NRs makes finding the mechanism of constitutive activity
and inhibitors to these NRs important. Since the apo structure of
NRs in general is difficult to obtain and most existing NR
structures are complexed with ligand(s), we use computer
simulation to sample the apo structural ensemble.
Furthermore, we use statistics of residue-residue contacts to
characterize the mechanism of high basal activity at the
residue-residue interaction resolution.

We performed a 100-ns simulation on the unliganded RORγ
and analyzed the snapshots using contact analysis, which focuses
on residue-residue contact interaction during the simulation. We
then examined the contact interactions within the RORγ receptor
and focused on identifying contacts with high interaction
strength in the apo ensemble. The mean contact matrix of apo
RORγ is shown in Figure 5A (upper triangle). Each element of
the mean contact matrix (also termed contact frequency) is

displayed on a contact map using spectrum color-labeling,
ranging from rarely formed with contact ratio at 0.1–0.2 (red)
to nearly always formed at 0.9–1.0 (dark gray), which largely
reflects the contact interaction strength during the simulation.

There are many ways of selecting essential contact interactions
that are responsible for high basal activity. Here, we focus on two
aspects of conserved highly-formed contact interactions. One
aspect is the conservation across different nuclear receptors and
the other is the conservation between ligand-bound and apo forms.
Thus, we emphasize that the essential contacts are the contacts that
not only consistently show up regardless of the ligand binding
status but also persist across different NRs. To address how
constitutive activity can be conserved across nuclear receptors,
we compare the essential contact interactions of RORγ with those
of a prominent constitutively active receptor, CAR. The LBDs of
both receptors are similar in size and structure. The LBD of RORγ
contains 243 residues compared to 242 for CAR. Structure-wise,
these two LBDs share a similar fold and both display a short helix,
HX, which is unique among the LBDs of nuclear receptors. The
presence of helix HX in CAR has been suggested to stabilize the
active conformation of the apo form leading to the constitutive

FIGURE 4 | The top two eigenvectors PC1 and PC2 are shown in (A,B), respectively. The 3D representations are colored by the elements of the corresponding
eigenvectors (blue+ and red−). The projection of protein-ligand interaction from the top two PCs of the 132 structures (active labeled in black and inactive in red) is shown in (C).
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activity of CAR (Pham et al., 2019a). The sequence alignment on
RORγ and CAR shows a good alignment and conserved residues in
Figure 5B, especially after the first 50 residues. The sequences of
the two receptors share 59 identical residues (~20%). This
alignment facilitates our comparison of residues between RORγ
and CAR and the comparison of residue-residue contact
interactions between the two receptors.

Before we locate the conserved contacts between NRs, we
first identify the contacts that are conserved between apo and
agonist ligand-bound forms. Since we only performed the apo
RORγ simulation and we have previously obtained both
ligand-bound and apo simulations for CAR, we use the
CAR system to select the contacts between apo and agonist
ligand-bound forms. Specifically, we use an ad hoc selection
criterion of contact formation that is larger than 50% for both
forms to identify the conserved contacts between apo and
ligand-bound forms, and these conserved contacts are
annotated with red circles as seen in Figure 5C.
Furthermore, to locate the essential contacts that are
conserved between different receptors, we directly compared
the contact interactions of RORγ with the CAR receptor, as
shown in Figure 5D. Again, the red circles are annotated for
the conserved contacts selected (based on the high contact

conservation between apo and ligand-bound) from Figure 5C.
Finally, a subset of annotated contacts, which are the
conserved contacts across NRs (defined as larger than 50%
for both apo forms), is highlighted in magenta in Figure 5A
(lower triangle). The conservation between CAR and RORγ
contacts is quite extensive especially at the C-terminal half of
the LBD, which leads to the conclusion that the mechanism of
constitutive activity is similar between them. It may be of
interest to investigate whether we can apply the inverse agonist
ligand design of ROR to another system, e.g., to explore a
potential allosteric binding site of CAR.

Based on the mean contact strength (Figure 5A) and the
sequence alignment (Figure 5B), we found that the contacts
between helices H11 and H12 are preserved for the two apo
receptors. Specifically, the contact pairs H479-Y502 (H11–H12)
and Y502-F506 (H12) of RORγ have a high contact strength and
they are similar to Y326-L343 and L343-C347 in CAR. These
three residues H479-Y502-F506 are collectively known as the
HYF triplet, which forms a contact interaction network that is
important for RORγ activity (Li et al., 2017; Ma et al., 2021). For
example, inverse agonist may function by interacting with residue
M358 and further disrupting contact interaction involving F506
(Marcotte et al., 2016). Previously, Y326-L343 in CAR was found

FIGURE 5 | (A) Mean contact interaction of unliganded RORγ during simulation (upper-left triangle). The contact strength values are color-coded, and the
conserved contacts are highlighted in magenta. (B) Sequence alignment between RORγ (UniProt: P51449) and hCAR (UniProt: Q14994) for a direct comparison
between contacts. The listed index can be converted to the standard index by +264 and +106 for RORγ and hCAR, respectively, i.e., the first Ala is A265 for RORγ and
the first Ser is S107 for hCAR. (C) The scatter plot of contact interaction between unliganded hCAR and hCARwith the agonist CITCO. The conserved contacts are
labeled using red circles. (D) The scatter plot of contact interaction between unliganded hCAR and unliganded RORγ.
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to be critical to the agonist activity in the active conformation for
CAR. In both CAR and RORγ, the His-Tyr lock stabilizes the
position of helix H12 and contributes to the formation of the AF2
region. The disruption of H479-Y502 (H11–H12) through
mutagenesis can prevent the coactivator from binding, thus
reducing RORγ transcriptional activity (Kurebayashi et al.,
2004). This is also supported by a high number of ligands
forming contacts with both residues His479 and Tyr502 in the
active conformation of RORγ in Figure 3A. In a previous study,
the equivalent contact to His479-Tyr502 in CAR (Tyr326-
Leu343) has been shown to be present in the apo
conformation and strengthened by the binding of an agonist
ligand (Pham et al., 2019a). Analogous to CAR, the His-Tyr lock
is also present in our apo RORγ simulation with the average
contact strength of 96.2%.

CONCLUDING REMARKS

We studied the existing crystal structures of nuclear receptor
RORγ, where various ligands (100+) interact with the binding
pocket differently and result in an active or inactive
conformation. By characterizing the protein conformation and
protein-ligand interaction using residue contact interactions, we
further performed a statistical analysis on these contact patterns.
We identified the important residues at the binding pocket(s) that
may be essential for interacting with potential inverse agonists.
Besides studying the experimental data on a protein-ligand
complex, we also used simulation to examine the apo structure
ensemble and compared the high basal activity between RORγ
and CAR.We found that the mechanism of constitutive activity is
highly similar between them. These efforts lead to the
understanding of the structure ensemble and protein-ligand
interaction from a contact viewpoint, and they may facilitate
future designs of inverse agonists for nuclear receptors.
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Alpha/beta hydrolase domain-containing 5 (ABHD5), also termed CGI-58, is the key
upstream activator of adipose triglyceride lipase (ATGL), which plays an essential role in
lipid metabolism and energy storage. Mutations in ABHD5 disrupt lipolysis and are known
to cause the Chanarin-Dorfman syndrome. Despite its importance, the structure of ABHD5
remains unknown. In this work, we combine computational and experimental methods to
build a 3D structure of ABHD5. Multiple comparative and machine learning-based
homology modeling methods are used to obtain possible models of ABHD5. The
results from Gaussian accelerated molecular dynamics and experimental data of the
apo models and their mutants are used to select the most likely model. Moreover,
ensemble docking is performed on representative conformations of ABHD5 to reveal
the binding mechanism of ABHD5 and a series of synthetic ligands. Our study suggests
that the ABHD5 models created by deep learning-based methods are the best candidate
structures for the ABHD5 protein. The mutations of E41, R116, and G328 disturb the
hydrogen bonding network with nearby residues and suppress membrane targeting or
ATGL activation. The simulations also reveal that the hydrophobic interactions are
responsible for binding sulfonyl piperazine ligands to ABHD5. Our work provides
fundamental insight into the structure of ABHD5 and its ligand-binding mode, which
can be further applied to develop ABHD5 as a therapeutic target for metabolic disease and
cancer.

Keywords: molecular dynamics, docking, structural modeling, ABHD5, lipid droplet, AlphaFold, ligand binding,
protein mutation

INTRODUCTION

Lipolysis requires the trafficking and activation of intracellular lipases, such as adipose triglyceride
lipase (ATGL, officially known as patatin-like phospholipase domain-containing 2, PNPLA2), to the
lipid droplet (LD) surface (Lass et al., 2011; Kintscher et al., 2020). Alpha/beta hydrolase domain-
containing protein 5 (ABHD5), also known as comparative gene identification 58 (CGI-58), is a key
regulator of the trafficking and activation of ATGL and related members of the patatin-like
phospholipase (PNPLA) domain-containing family (Lass et al., 2006; Granneman et al., 2009;
Vieyres et al., 2020). Despite its classification as an alpha/beta hydrolase, ABHD5 lacks hydrolase
activity owing to the S155N substitution that occurred early in vertebrate evolution (Lass et al., 2006).
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Instead, ABHD5 evolved structural elements that allow activation
of ATGL, as well as a binding site for endogenous and synthetic
ligands that regulate interactions with repressor and effector
proteins (Sanders et al., 2015). Thus, ABHD5 is a complex
protein that contains presently unknown structural elements
mediating important functions, including targeting to
intracellular LDs, ligand binding, and ATGL activation.

Mutations in the ABHD5 gene cause Chanarin-Dorfman
syndrome (Lefevre et al., 2001) wherein the ability of ABHD5 to
activate members of the PNPLA family is disrupted and results in
disrupted lipid metabolism in numerous organs throughout the
body (Hirabayashi et al., 2017; Yang et al., 2019). Previous work has
shown the importance of G328 in loss and gain of function assays
(Sanders et al., 2017). Recently, a novel mutation of this amino acid
in humans (G328E) was reported to produce fatty liver disease
(Youssefian et al., 2019).We, therefore, investigated the impact of the
G328E mutation in our study. Moreover, endogenous and synthetic
ligands bind to ABHD5 protein, which regulates its interactions with
protein activators and repressors of lipolysis (Sanders et al., 2015;
Rondini et al., 2017).

Because of the importance of lipolysis, efforts have been made to
determine ABHD5 structure. NMR experiments revealed the
structure and flexibility of the tryptophan-rich N-terminal

peptide (residues 10–43) of ABHD5 (Boeszoermenyi et al., 2015).
Even though the experimental structure of the entire protein is still
unknown, ABHD5 is considered to share the 3D features of the
alpha/beta hydrolase fold superfamily. The “canonical” alpha/beta
hydrolase fold (Ollis et al., 1992) and the variations inserted among
these folds (Nardini and Dijkstra, 1999) have been suggested for the
members of the ABHD family (Figure 1A). To enhance the
structural understanding of ABHD5 activation of ATGL, a
homology model of ABHD5 was built by Modeller (Sanders
et al., 2017). The model identified R299, G328, and D334 as
critical for ATGL activation, which was validated experimentally
in both gain- and loss-of-function assays. In this model, G328 was
suggested to interact with phospholipids to provide favorable
interactions of R299 and D334 (Sanders et al., 2017).

Homology or comparative modeling is the most efficient
computational method to predict 3D protein structures using
1D protein sequence data (Hameduh et al., 2020). This modeling
approach is based on two assumptions: 1) the 3D structure of a
protein is uniquely determined by its amino acid sequence, and 2)
during evolution, the changes in the structure are much slower
than the changes in the sequence; hence similar sequences adopt
similar physical structures. Traditionally, in homology modeling,
the structure of the target protein is determined based on another

FIGURE 1 | The secondary structure of alpha/beta hydrolase domain-containing 5 (ABHD5). (A) The secondary structure diagram of the “canonical” α/β hydrolase
fold characterized by six α helices (red) and eight β strands (blue). The catalytic triad in the α/β hydrolase fold family is made up of 1) a nucleophilic residue (Ser, Cys, or
Asp) after β5, 2) an acidic residue after β7, and 3) a conserved His after β8. (B) The secondary structure diagram of ABHD5 with two insertion regions (cyan). The first
insertion region is an α helix (α1), located before β1, and the second insertion region is composed of five α helices (α2–α6) between β6 and αD. (C–H) The six models
of ABHD5 built from different homology modeling tools. Models 1, 2, and 3 are from I-TASSER; Models 4 and 5 are from TrRosetta; andModel 6 is from AlphaFold2. The
“canonical” six α helices and eight β strands for all models are shown in red and blue cartoon representations, respectively. The six insertion α helices are shown in cyan.
The secondary structures are defined as: insertion α1 (residues 33–46), β1 (residues 53–59), β2 (residues 64–71), β3 (residues 80–84), αA (residues 89–103), β4
(residues 106–111), αB (residues 126–143), β5 (residues 149–154), αC (residues 157–171), β6 (residues 172–181), insertion α2 (residues 198–207), insertion α3
(residues 221–229), insertion α4 (residues 232–240), insertion α5 (residues 245–257), insertion α6 (residues 259–270), αD (residues 278–288), β7 (residues 292–298),
αE (residues 305–314), β8 (residues 319–325), and αF (residues 331–351). Asn155, Asp303, and H329 are drawn in sticks with the carbon atoms in white, nitrogen
atoms in blue, and oxygen atoms in red. The hydrogen atoms are not shown.
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experimentally derived structure, termed template. The 3D
structure of the target protein is then built based on the
alignment with the chosen template. For example, I-TASSER is
one of the broadly used servers (Roy et al., 2010; Yang et al., 2015).
With years of effort, homology modeling has become a major
approach in structural prediction, benefiting from the ever-
growing number of high-resolution experimental structures
deposited in the protein data bank (PDB) and a multitude of
new algorithms that improve target-template alignment. In recent
years, deep learning-based methods have provided an innovative
approach to structural modeling, even when no similar structures
are available. The AlphaFold1 algorithm, developed by Alphabet/
Google DeepMind, was first introduced in 2018 (Wei, 2019). The
method applies convolutional neural networks to predict inter-
residue distances, which inspired other deep learning-based
methods such as trRosetta in protein structural prediction (Du
et al., 2021). The new version, AlphaFold2, released in 2021
(Jumper et al., 2021; Jumper and Hassabis, 2022), uses an
innovative network architecture to model atomistic positions
with an average success rate greater than 90% (Marx., 2022).

Molecular dynamics (MD) simulations have been successful in
numerous biomolecular simulations at the atomic level since theywere
introduced in 1977 (McCammon et al., 1977).However, despite recent
advances, conventional MD (cMD) simulations of biomolecules
remain limited to timescales of hundreds of nanoseconds to tens
of microseconds, whereas most biological processes take place over
milliseconds and longer timescales. To overcome this limitation, two
types of enhanced sampling methods were developed. The methods,
such as umbrella sampling (Torrie and Valleau, 1977) and
metadynamics (Laio and Parrinello, 2002), require the definition of
a set of collective variables. However, the algorithms, such as replica-
exchange dynamics (Sugita and Okamoto, 1999), accelerated MD
(Hamelberg et al., 2004), and Gaussian accelerated MD (GaMD)
(Miao et al., 2015), obviate this requirement. GaMD is an enhanced
sampling approach in which users may access large biomolecule
conformational changes within hundreds of nanoseconds (Miao
et al., 2015; Wang et al., 2021). By adding a harmonic boost
potential to the original energy surface of the system, users do not
need to provide any information about the boost reaction coordinates
before executing the simulation, which avoids the simulation bias from
pre-defined variables. GaMD has been successfully used in protein-
ligand binding, protein folding, and ion channel dynamics studies
(Wang et al., 2021). It has been applied in various types of biosystems,
such as G-protein-coupled receptor (Miao and McCammon, 2018),
HIV protease (Miao et al., 2018), CRISPR-Cas9 (Nierzwicki et al.,
2021), ACE2 receptor (Bhattarai et al., 2021), androgen receptor
(Zhan et al., 2021), and p38 kinase (Huang, 2021).

In this work, we aimed to construct the atomistic structure of
ABHD5 to uncover its dynamics and ligand recognition using newly
available computational tools together with experimental validation.
First, traditional and deep learning-based homology modeling
methods were used to build multiple 3D models for ABHD5.
Then, the functional activation was used to select potential
ABHD5 structures. The dynamics of ABHD5 under physiological
conditions were studied using microsecond-long GaMD simulations.
The ABHD5 systems with point mutations were also built and
modeled. Finally, we reveal the binding mechanism of synthetic

ligands to ABHD5, focusing on one of the independent chemical
scaffolds, sulfonyl piperazines (SPZs) (Figure 2) that was shown to
promote the lipase-activating state of ABHD5 by disrupting its
interaction with perilipin 1 (PLIN1) and perilipin 5 (PLIN5)
repressors (Sanders et al., 2015). Our work provides a framework
for ABHD5 structural modeling and insights into its interaction
surface with ligands and related partners, which helps the
understanding of ABHD5 functional evolution and lipase regulation.

MATERIALS AND METHODS

Modeling Systems
This work focuses on the ABHD5 protein from Mus musculus.
The protein sequence was obtained from UniProt with the entry
ID: Q9DBL9. Three SPZ ligands, SR-01000604559 (CID:
2674365), SR-03000003133 (CID: 4827533), and SR-
03000003134 (CID: 25701322), were investigated in this study.
The abbreviations SR4559, SR3133, and SR3134 are applied to the
ligands in this paper (Figure 2). The Maestro software was used
to build the ligand structures for later docking and MD
simulations.

Structural Modeling
I-TASSER (Yang et al., 2015), TrRosetta (Du et al., 2021), and
AlphaFold2 (Jumper and Hassabis, 2022) were the three
programs used to predict ABHD5 structures. I-TASSER
requires a structural template, which can be chosen by the
software (default mode) or provided by the user. Both
TrRosetta and AlphaFold2 employ a deep learning algorithm
for protein structure prediction and do not need a user input
template. TrRosetta requires only the protein sequence, and the
predicted structures by AlphaFold2 are available on AlphaFold
Protein Structure Database. To obtain the structural templates for
I-TASSER, the blastp-suite of Protein BLAST (Zhang and
Madden, 1997; Altschul et al., 1998; Madden et al., 2019) and
LALIGN (Madeira et al., 2019) programs were applied to search
for potential templates according to the structural data presented
in PDB. A total of five templates were selected, PDB code: 6I8W,
3NWO, 3SK0, 1S8O, and 6NY9. The first four templates have the
highest overall alignment scores to ABHD5 (Supplementary
Table S1). The last template, 6NY9, was selected as it is a
high resolution (1.66 Å) X-ray crystallography structure of
ABHD10, a protein in the same family and from the same
organism (Cao et al., 2019). Using I-TASSER, we performed
six calculations, including the default mode and five calculations
for each template we selected above, which reports 30 models in
total. TrRosetta offered five models, and AlphaFold2 provided
only one model. To select models for later studies, we used the
g_cluster program, an RMSD-based clustering method, in
GROMACS 2021.2 (Pronk et al., 2013) to cluster the resulted
models. The program reported the six most representative
ABHD5 structures, shown in Figures 1C–H.

Simulation System Setup
To build hydrogen atoms on ABHD5, the protonation states of
ABHD5 were assigned by the Adaptive Poisson Boltzmann Solver
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(APBS) webserver (Jurrus et al., 2018). We applied the Amber18
package (Case et al., 2015) for the GaMD simulation setup and
production simulations with an efficient GPU implementation.
The Amber ff14SB (Maier et al., 2015) and General Amber Force
Field (GAFF) were applied to the protein and ligand, respectively
(Ozpinar et al., 2010). Before solvation, energy minimization was
performed on the hydrogen atoms, protein side chains, and the
entire system for 500, 5,000, and 5,000 steps, respectively. The
systems were then solvated in TIP3P water molecules (Jorgensen
et al., 1983; Izadi and Onufriev, 2016) with ~12 Å between the box
edge and the solutes to create a rectangular box. A salt
concentration of 150 mM NaCl was added to the system
(Machado and Pantano, 2020) using the ion parameters
developed by Joung and Cheatham (2008). Additional
minimizations of the water and ion molecules and the entire
system (including water, ions, and protein) were performed for 2
and 10 ps, respectively. The equilibration of the system started
from the solvent equilibration for 100 ps, then the complex
system was gradually heated to 50, 100, 150, 200, 250, and
300 K for 10 ps at each temperature using the isochoric-
isothermal (NVT) ensemble. To ensure the system reached
equilibrium, a 5.0 ns cMD simulation was further performed
at 300 K using the isobaric-isothermal (NPT) ensemble. The time
step of the MD simulations was 2 fs. Periodic boundary
conditions were applied for the simulation systems, and long-
range electrostatics were accounted for using the particle mesh
Ewald summation method (Essmann et al., 1995) with a cutoff of
12 Å. Bonds containing hydrogen atoms were restrained using
the SHAKE algorithm (Krautler et al., 2001). The Langevin
thermostat with a damping constant of 2 ps−1 was turned on
to maintain a temperature of 300 K (Loncharich et al., 1992).

GaMD Simulations
GaMD (Miao et al., 2015) is an enhanced sampling method that
can perform aggressive sampling of a biomolecule. By adding a
harmonic boost potential (ΔV) on the original potential energy
surface (V), the modified potential (V*) can be written
as V*( r.) � V( r.) + ΔV( r.)

ΔV( r.) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
k(E − V( r.))2

, if V( r.)<E
0, if V( r.)≥E

(1)

where k is the harmonic force constant and E is the threshold
energy that should be lower than the system potential (V). To

ensure that the boost potential does not alter the shape of the
original potential surface, the threshold energy needs to satisfy the
following relation:

Vmax ≤E≤Vmin + 1
k

(2)

where Vmax and Vmin are the system maximum and minimum
potential energies, respectively.

To start, a 2-ns cMD simulation was executed to collect the
potential statistics, such as Vmax and Vmin, for calculating GaMD
acceleration parameters. Then, we performed a 1-ns GaMD
simulation with applied boost potential but no updating on
Vmax and Vmin values. The second GaMD simulation was
carried out with the updated boost potential for 50 ns. Finally,
we performed 1,000 ns production GaMD simulations with a
fixed boost potential for all systems. The upper bound for the
boost acceleration was selected for all simulations (iE = 2). The
average and standard deviation of the system potential energies
were calculated every 500 ps. The boost potential was added to
both the dihedral energy and the total potential energy. The upper
limit of the standard deviation of the potential energy was set to
6.0 kcal/mol for both the dihedral and total potential energy
terms. We saved the resulting trajectories every 10 ps for
analysis. Note that, GaMD modifies the potential energy
surface without considering the entropic contribution.
However, the entropic effect would not affect the overall
calculation in this study.

We performed 1-µs GaMD simulations for six wild-type
ABHD5 models. Because Model 6 was selected as the most
representative ABHD5 model, additional four 1-µs GaMD
simulations were executed. We also performed 1-µs GaMD
simulations for the three ABHD5 mutants (E41A, R116N, and
G328E) and three ABHD5-ligand complexes.

Post-GaMD Analysis
All simulation trajectories were visualized by the VMD program
(Humphrey et al., 1996). The CPPTRAJ program (Roe and
Cheatham, 2013) from the Amber18 package (Case et al.,
2015) was used to analyze the root mean square fluctuation
(RMSF), residue-residue correlation, and hydrogen bonds. The
RMSF was used to measure the average fluctuation of the Cα
atom of a specific protein residue over time. The hydrogen bonds
were considered when the donor-acceptor distance was less than
3.5 Å, and the donor-hydrogen-acceptor angle was less than 30°.
The amino acids in the ligand binding pocket were defined as the
residues that are within 3.5 Å of the ligands, and the occupancy is

FIGURE 2 | The 2D sketches of the three sulfonyl piperazine (SPZ) ligands.
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over 75% of 1-µs GaMD trajectories. To obtain the representative
conformation from the GaMD trajectories of the six models, the
g_cluster program from GROMACS 2021.2 (Pronk et al., 2013)
was used to cluster the 1-µs trajectory for each model into 10
conformations. The most representative conformation of each
model was reported. The VMD (Humphrey et al., 1996) and
PyMOL, programs were used to create images for the publication.

Ligand Docking
We applied the g_cluster program from GROMACS 2021.2
(Pronk et al., 2013) to cluster the structural ensemble from the
1-μs GaMD trajectories of the ABHD5 protein built by
AlphaFold2 into 10 representative conformations. Because the
protein is restrained during docking simulations, to avoid the
structural bias, these 10 conformations were used for ligand
docking. AutoDock Vina (Trott and Olson, 2010; Eberhardt
et al., 2021) was applied to dock three Scripps Research (SR)
ligands shown in Figure 2. The 3D structures of all ligands were
prepared using Schrödinger Maestro software. The AutoDock
Tools (ADT) (Morris et al., 2009) of the MGLTools (Forli
et al., 2016) was used to prepare the proper file formats
(pdbqt) for the ligands and the protein conformations and
to determine the docking box sizes, which were set to 26, 28,
and 30 Å. The docking box center was selected near the center
of the protein and the exhaustiveness value was set to 64. For
each ligand system, we performed a 1-µs GaMD simulation on
the reported ABHD5-ligand complex structure with the best
docking score.

Cell Culture, Imaging, Scoring, and
Luciferase Complementation
ABHD5-dependent activation of ATGL was performed as
described previously (Sanders et al., 2017). Briefly, Cos7 cells
plated on coverslips in 12-well dishes were transfected with 0.5 μg
each/well of mCherry-tagged ABHD protein, PLIN5, or ATGL
using Lipofectamine and Plus reagent (Invitrogen) as described
by the manufacturer. Cells were then lipid-loaded for 16–20 h
with 200 μM oleic acid, then fixed with 4% paraformaldehyde.
Images were acquired with an Olympus IX-81 microscope
equipped with a spinning disc confocal unit. Images were
captured using a 60x, 1.4 NA objective and a Hamamatsu
ORCA Flash cooled CMOS camera. The following Chroma
filter sets were used for the indicated fluorophores: mCherry,
41043; EYFP, 31044; ECFP, 41028. LD scoring was performed by
an investigator blinded to transfection conditions. For each
transfection condition in each experiment, 25 or more cells
visibly expressing all three proteins were scored. Mutant
ABHD5 proteins were made using standard molecular
biological methods, and all PCR-derived proteins were
confirmed by sequencing. ABHD5 proteins are from mice, and
the numbering of amino acids refers to the mouse protein unless
indicated otherwise. PLIN5 and ATGL were also from the mouse.

ABHD5 ligand binding was assessed by ligand-induced
inhibition of luciferase complementation between ABHD5 and
PLIN5, as previously described (Granneman et al., 2007). Briefly,
cell lysates were prepared from 293T cells that were transiently

transfection with ABHD5 or PLIN5 fused to the C- or N-terminal
fragments of G. princeps luciferase, respectively. Lysates were
mixed together in the presence of indicated concentration of
ABHD5 ligands or DMSO (control) for 4 h at room temperature,
after which coelenterazine substrate was added and the resulting
luminescence was read in a Clariostar multiplate reader. Ligand
affinity (IC50 values) was determined by nonlinear regression
using GraphPad software.

RESULTS AND DISCUSSION

ABHD5 Structures
We report six potential ABHD5 structures (Figures 1C–H;
Supplementary Text S1). Models 1, 2, and 3 were selected
from the resulting structures created by I-TASSER, a template-
based homology modeling method. Models 4 and 5 were built
using TrRosetta, and the structure obtained from AlphaFold2 is
shown as Model 6. Both TrRosetta and AlphaFold2 are deep
learning-based methods for protein structure prediction.
Despite using different computational methods in
constructing these six ABHD5 models, all structures follow
the “canonical” alpha/beta hydrolase fold (Ollis et al., 1992;
Mindrebo et al., 2016), where the protein is composed of six α
helices, eight β sheets, and two insertion regions—an α helix
(α1) near the N-terminal before β1 and the helical insertions
(α2–α6) between β6 and αD (Figure 1B). In the six models, the
three catalytic triad residues, N155, H329, and D303, are all in
proximity to each other. Although the lipase substrate/ligand
site is preserved, it is not an active site as ABHD5 lacks
hydrolase activity (Lass et al., 2006).

The largest variations among the six models come from the
N-terminal (residues 1–52) and the insertion region between β6
and αD (residues 198–270). Our 1-µs GaMD simulations reveal
that both the N-terminal and the insertion regions display high
RMSD and RMSF values (Supplementary Figures S1B,C, S2),
indicating these areas are flexible in the ABHD5 protein.
Although the alpha helices predicted by the homology
modeling in these regions maintain along the GaMD
simulations, the loops connecting the helices fluctuate. This
is consistent with the report from AlphaFold2 that the structural
modeling on these areas has the lowest confidence. In Models 1,
4, 5, and 6, the N-terminal residues form α helices. Models 1, 4,
and 6 show a helix from residues 33–46, while Model 5 contains
three helices, residues 1–19, 21–25, and 33–46. These α helices
are all close to the bulk of the protein in Model 5. In Model 2,
although the N-terminal does not form a secondary structure, it
still stays close to the rest of the protein. However, the
N-terminal in Model 3 is different from other models, in
which only a short helix (residues 16–26) is present, and the
N-terminus does not form interactions with other parts of the
protein (Figure 1E). The results from both GaMD and
homology modeling agree well with the early NMR finding
(Boeszoermenyi et al., 2015) that the N-terminal peptide is very
flexible and may not form a stable secondary structure. The
most representative conformation of each model from the
GaMD simulations is shown in Supplementary Figure S3.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9353755

Shahoei et al. ABHD5 Structure and Ligand Recognition

102

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Validation and Differentiation of ABHD5
Models
To validate the ABHD5 models created from homology
modeling, we first executed point mutation experiments and
GaMD simulations. A critical step in the activation of lipolysis
is the association of ABHD5 to lipid membranes, and we found
that a point mutation, R116N, is specifically defective in basal
membrane binding (Figure 3). We hypothesized that R116
stabilizes an amphipathic helix that facilitates the membrane
binding of ABHD5. To gain deeper insights into the structural
basis, we examined the residue-residue interactions near R116 in
the six models. Except in Models 2 and 3, R116 forms interactions
with E41. The distance between the sidechain oxygen of E41
(OE1/2) and the sidechain nitrogen of R116 (NH1/2) is 2.77,
10.92, 34.21, 4.70, 4.96, and 2.72 Å for Models 1–6, respectively.
We next examined the dynamics of all models in solution by
GaMD simulations. In Models 1, 4, 5, and 6, our 1-µs simulations
reveal that R116 forms stable electrostatic interactions with E41,
within an α-helix encompassing residues 33–46, and R116N
mutation disrupts the interaction between R116 and E41 and
its associated helix. However, no R116-E41 interactions are found
in Models 2 or 3. To evaluate if the R116-E41 interactions affect
ABHD5 membrane binding, we performed a point mutation
experiment on E41. We found that the E41A mutation of
ABHD5 phenocopies the R116N mutant—both mutants were
defective in basal membrane binding (Figure 3). The
experimental results support the hypothesis from Models 1, 4,
5, and 6 that the interactions between R116 and E41 play a key
role in stabilizing the ABHD5 structure and promoting an
extended amphipathic helix to penetrate the phospholipid tails
and bring about membrane binding. Taken together, Models 2
and 3 present unlikely structures of ABHD5 as the interactions
between E41 and R116 are missing.

To further differentiate Models 1, 4, 5, and 6, we examined the
interactions of R299, G328, and D334, which are conserved
residues necessary for mediating PNPLA2 activation (Sanders
et al., 2017). We hypothesized that a stable interaction of R299,
G328, and D334 would occur in more probable models of
ABHD5. In Models 4, 5, and 6, the interactions of R299,
D328, and D334 are stable during 1-µs GaMD simulations.

However, in Model 1, R299 moves away from G328 and
D334, destabilizing their interactions during the GaMD
simulation (Supplementary Figure S4A).

In Models 4 and 5, the N-terminal peptide (residues 1–32)
either interacts with the insertion helices, α2, α3, and α6, or makes
direct contact with D334 (Supplementary Figures S4F,G), both
of which are not a preferred structure for an LD-bound
conformation of ABHD5. It has been hypothesized that the
N-terminal peptide forms interactions with the phospholipids
on the LD surface (Boeszoermenyi et al., 2015), so the N-terminal
peptide should be near E41 and R116. Although the goal of this
work is not to obtain a membrane-bound structure of ABHD5,
identifying a protein structure consistent with the membrane-
bound conformation will assist in further experimental and
computational studies (Sanders et al., 2015; Rondini et al.,

FIGURE 3 | Fluorescence imaging reveals the importance of R116 and E41 in the basal localization of ABHD5. (A)Wild-type (WT) ABHD5-mCherry localizes to the
LDs within COS7 cells. Either the (B) R116N or (C) E41A mutations demonstrate a cytosolic distribution of ABHD5-mCherry and inhibited basal LD targeting in the
absence of ATGL and PLIN5 expression. (A–C) The scale bars represent 20 µm.

FIGURE 4 | Correlation map for 1-µs GaMD trajectory of Model 6. The
correlation between β1 and β2–β5 as well as the correlation between α5 and
β6–β8 are highlighted using purple boxes. The correlation between insertion
helix α5 and insertion helices α1 and α4 are highlighted with black boxes.
The correlation formed by R299, G328, and D334 is highlighted by a
white box.
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2017). Because the N-terminal peptide in ABHD5 is highly
flexible, further simulations of Models 4 and 5 may reveal
changes to the peptide position that are consistent with the
membrane-binding conformation. However, to save
computational efforts, we chose Model 6 for the following
mutation and ligand binding studies because, in Model 6, we
found that 1) E41 forms interactions with R116 that stabilize the
N-terminal amphipathic helix, 2) the interactions of R299, G328,
and D334 are stable, and 3) the N-terminal peptide is closer to the
protein-membrane binding surface.

ABHD5 Protein Dynamics
To reveal ABHD5 protein dynamics and equilibrate the structure
created from homology modeling, we performed five replicas of
1-µs GaMD simulations on Model 6 created by AlphaFold2. Our
simulations show that the β strands (β1–β8) form strong
interactions and correlations with each other (Figure 4 purple
labels), stabilizing the overall protein folding. The GaMD
simulations also refine some helical structures, such as αD,
which was reported with low confidence by the AlphaFold2
algorithm (Jumper and Hassabis, 2022). In this canonical
alpha/beta hydrolase fold, the eight β strands and the six α
helices demonstrate less fluctuations as indicated by the RMSF
calculations (Supplementary Figure S2). However, the
N-terminal (residues 1-52 including α1) and the region
composed of insertion helices (residues 198–270 including α2-
α6) are highly flexible, which is also the main variance within
other alpha/beta-hydrolase proteins. The α5 insertion helix shows
correlations with the α1 and α4 insertion helices (Figure 4 black
labels). No correlations were found between other insertion
helices, suggesting that the motions of the secondary
structures in the insertion area are mostly independent.

Since the mutation of R299 and G328 disrupt the ATGL
activation by ABHD5 (Sanders et al., 2017), we closely
examined the interactions near these two residues. Our model
shows that R299 and G328 are in the vicinity of D334. The three
residues, R299, G328, and D334, are located on the protein
surface exposed to the solvent molecules. The residues form a
stable hydrogen bond network and move together during the
simulation (Figure 4 white label; Supplementary Figure S4).
These results are consistent with the previously reported
homology model created by Modeller (Sanders et al., 2017;
Tseng et al., 2022).

ABHD5 Mutations
Mutations of the ABHD5 protein can alter its membrane binding,
protein binding, ligand binding, lipolysis activation, and
consequently its function. In this study, three new ABHD5
mutations were identified—E41A and R116N affect the
ABHD5 membrane binding (Figure 3), and G328E suppresses
the ability of ABHD5 to activate ATGL (Supplementary Figure
S5). These mutations alter the local interactions with nearby
residues and further restrain the protein function.

In wild-type ABHD5, E41 forms hydrogen bonds with R116,
K38, and K54 (Supplementary Figure S6A). The hydrogen-
bonding network between these four residues stabilizes the
secondary structure of α1, β1, the loop between β4 and αB,

and a cavity that could facilitate the binding of negatively
charged phospholipid heads as the binding site is composed of
the positively charged K38, K54, and R116. The E41A mutation
disrupts the hydrogen bonding network (Figure 5;
Supplementary Figure S6B). Without this hydrogen bonding,
the sidechains of K54 and R116 rotate away from the cavity and
no longer move in concert (Supplementary Figure S7), which
may contribute to the reduced membrane binding of E41A. With
the E41A mutation, the smaller alanine sidechain contributes to
the increased distance between E41A and R116, which results in
structural changes of nearby insertion helices. For example, the
α5 insertion moves closer to insertion α1. This motion of the
insertion α5 alters the mobility of the neighboring insertion
helices, α3, α4, and α6 (Supplementary Figure S8). Although
the E41A mutation does not alter the overall folding of the eight
canonical β strands, the correlation within the β strands reduces
significantly (Supplementary Figure S7).

The R116N ABHD5 reveals very similar experimental
phenotype and molecular dynamics results to the E41A
mutant. Although E41 can still form hydrogen bonds with
R116N, the occupancy of hydrogen bonding in the 1-µs
GaMD simulation reduces from 71.7% to 56.3%, leading to
deformation of the cavity formed by K38, E41, K54, and
R116N. We hypothesized that the misorientation of the K38,
E41, K54, and R116 sidechains disturbs phospholipid binding
and membrane targeting (Supplementary Figure S6C). The
R116N mutation alters the motions of neighboring insertion
helices, similar to the E41A mutation.

In wide-type ABDH5, G328 is spatially close to R299 and
D334 while both the R299 sidechain and the G328 mainchain
form stable hydrogen bonds with the D334 sidechain
(Supplementary Figure S9A). Both R299 and G328 are
situated at loops—R299 is at the loop between β7 and αE, and
G328 is at the loop between β8 and αF, whereas D334 is in the αF
helix. The electrostatic interactions among the three residues
connect the two loops and the αF helix, stabilizing the loop
conformation. Five independent GaMD simulations of the wild-
type ABHD5 show a pocket formed by the insertion helices, α2
and α4, and the two loops containing R299, G328, and D334
(Supplementary Figure S9C). The pocket could accommodate
the binding of ABHD5 protein partners. In humans, G328E
mutation results in neutral lipid storage disease (Youssefian
et al., 2019), so it is of interest to determine how this mutation
alters the shape of this critical pocket. We found that the positively
charged sidechain of G328E forms strong electrostatic interactions
with R299, eliminating the interactions between R299 and D334
and altering the conformation of the loop between β7 and αE
(Supplementary Figure S9B). In addition, the charged sidechain
of G328E also forms hydrogen bonds with V198 near the insertion
helix α2, which further alters the structure of insertion α2 and
results in closing of the pocket (Supplementary Figure S9D). For
example, the distance between G328Cα and V198Cα reduces after
the mutation (Supplementary Figure S10). In the G328E GaMD
simulation, the RMSF measurement reduces in the region between
amino acids 300 and 340 (Supplementary Figure S2), indicating
that the reduced flexibility of the protein may affect the ATGL
activation.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9353757

Shahoei et al. ABHD5 Structure and Ligand Recognition

104

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ABHD5 Ligand Complexes
To reveal the dynamics of ABHD5-ligand complexes, we
explored the binding mode of three synthetic SPZ ligands,
namely SR4559, SR3133, and SR3134. The three ligands are
structurally analog with a similar 2D sketch (Figure 2). Both
SR4559 and SR3133 have a benzodioxan and sulphate
functional group. SR4559 includes a methyl benzofuran
group, while SR3133 has a fluorobenzyl group. SR3134
includes a benzodioxepine group instead of a benzodioxan
group of SR4559 and SR3133. SR3134 also has a sulphate
group and displays a similar sketch to SR3133. Although some
computational techniques, such as attach-pull-release (Velez-
Vega and Gilson, 2013), confine-and-release (Cacelli and
Prampolini, 2007), and BFEE2 (Fu et al., 2022) may
estimate ligand binding affinities in silico, we measured the
ABHD5-SPZ ligand binding by experiments. The results show
that SR4559, SR3133, and SR3134 dissociate the ABHD5-
PLIN5 complexes in Cos7 cell lysates with IC50 values of
3.44 ± 0.50 × 10−6 M, 1.59 ± 0.66 × 10−5, and 8.90 ± 1.84 ×
10−6 M, respectively (Figure 6), indicating that all three
ligands bind ABHD5.

Our docking and GaMD simulations show that the three ligands
are located at the pocket formed by the insertion helices, α2-α6
(Figure 7A; Supplementary Text S1). The region of the insertion
helices is typically flexible and challenging in protein structural
prediction, thus the accuracy of the predicted ABHD5 structure

directly corresponds to the docking results. The RMSF values for the
residues 220–250 significantly reduce in the three ligand-bound
models compared to the apo model (Supplementary Figure S11),

FIGURE 5 | The changes of hydrogen bonds between residues 41 and 116 in the wild-type (WT) ABHD5 and its mutants. (A) The number of hydrogen bonds
between residues 41 and 116 over the course of 1-µs GaMD trajectories. The changes in hydrogen bonds of the WT, E41A, and R116N systems are indicated by
orange, green, and purple, respectively. (B–D) The GaMD snapshots of the WT, E41A, and R116N system.

FIGURE 6 | The binding of SPZ ligands to ABHD5 was assessed by
dose-response curves of ABHD5-PLIN5 binding. ABHD5-PLIN5 binding was
assessed by luciferase complementation assays of Cos7 lysates. Each ligand
has micromolar IC50 values with specific binding to ABHD5 (Sanders
et al., 2015).
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suggesting that the ligand binding restrains the protein motion.
Besides, each SPZ analog interacts with similar residues (F86, G87,
F114, L203, A206, N211, Y238, S240, I251, N255, and E262) in the
binding pocket (Supplementary Table S2).

Although the residues contributing to ligand binding are
similar, the detailed interactions are different for each ligand.
In the SR4559 binding, the methyl benzofuran group forms
nonpolar interactions with F86, F114, and L251, and the
benzofuran functional group interacts with W199, S240,
and Y330 (Figure 7B). Although SR3133 displays a similar
binding mode to SR4559, fewer contacts with protein residues
were found. For example, the fluorophenyl group interacts
with F86 and F114, and the benzofuran functional group
interacts with W199 and Y330 (Figure 7C). SR3134
presents a different binding mode. The benzodioxepine
group interacts with F86 and F114, while the
methoxyphenyl functional group binds deeply into the
pocket formed by W181 and W274 (Figure 7D).

CONCLUSION

In this work, we employed traditional and deep learning-based
homology modeling tools to model the structure of the ABHD5
protein. The ABHD5 structures reported from the deep learning-
based modeling, including TrRosetta and AlphaFold2, are most
consistent with experimental analysis of E41, R116, R299, G328,
D334, and the N-terminal mutants. We therefore selected the
AlphaFold2 model for mutation and ligand docking studies, as

the orientation of the N-terminal peptide is close to the residues
required for the ABHD5 membrane binding. Our structural
modeling and dynamics simulations show that the canonical α
helices and β strands of the ABHD5 protein are highly stable.
The main variance in the structure originates from the
insertion of helical regions, which are correlated to essential
ABHD5 functions, such as membrane and ligand binding. The
E41A and R116N mutations disturb the ABHD5 membrane
binding by disrupting the hydrogen bonding network of
several nearby lysine residues (K38 and K54). The mutation
of G328E changes the electrostatic interactions of the
surrounding residues, thereby affecting the activation of
ATGL. Our study also reveals the ligand binding modes of
three SPZ ligands to ABHD5. The results show that the SPZ
ligands bind stably in the hydrophobic pocket formed by the
insertion helices, α2-α6.
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Essential Dynamics Ensemble
Docking for Structure-Based GPCR
Drug Discovery
Kyle McKay†, Nicholas B. Hamilton†, Jacob M. Remington, Severin T. Schneebeli and
Jianing Li*

Department of Chemistry, University of Vermont, Burlington, VT, United States

The lack of biologically relevant protein structures can hinder rational design of small
molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using
multiple models of the protein target is a promising technique for structure-based drug
discovery, model clustering and selection still need further investigations to achieve both
high accuracy and efficiency. In this work, we have developed an original ensemble
docking approach, which identifies the most relevant conformations based on the
essential dynamics of the protein pocket. This approach is applied to the study of
small-molecule antagonists for the PAC1 receptor, a class B GPCR and a regulator of
stress. As few as four representative PAC1 models are selected from simulations of a
homology model and then used to screen three million compounds from the ZINC
database and 23 experimentally validated compounds for PAC1 targeting. Our
essential dynamics ensemble docking (EDED) approach can effectively reduce the
number of false negatives in virtual screening and improve the accuracy to seek potent
compounds. Given the cost and difficulties to determine membrane protein structures for
all the relevant states, our methodology can be useful for future discovery of small
molecules to target more other GPCRs, either with or without experimental structures.

Keywords: computer aided drug design, PAC1 receptor, antagonist, virtual screening,molecular dynamics, principal
component analysis

INTRODUCTION

Many G protein-coupled receptors (GPCRs) are being investigated as important therapeutic targets,
but the success rate of structure-based drug design (SBDD) for GPCRs remains to be further
improved (Hauser et al., 2017; Wootten et al., 2018; Odoemelam et al., 2020). One of the primary
challenges is that the three-dimensional (3D) structures of most GPCRs have not been fully
determined. Even with latest breakthroughs in protein structure prediction like AlphaFold
(Jumper et al., 2021), the available structures may not represent the conformational states
needed for accurate SBDD. The receptor (ADCYAP1R1, hereafter referred to as PAC1R) of the
pituitary adenylate cyclase-activating peptide (PACAP), an emerging therapeutic target for stress-
related disorders (Hammack et al., 2009; Ressler et al., 2011; Roman et al., 2014; Missig et al., 2017;
Liao et al., 2019a), is a good example. Currently, the full-length PAC1R structures in the Protein Data
Bank (PDB) are short isoforms (Uniprot ID: P41586-3) (Kobayashi et al., 2020; Liang et al., 2020),
but the structures of the most prevalent long isoforms—PAC1null (Uniprot ID: P41586) or
PAC1hop (Uniprot ID: P41586-2) — are still unavailable (Liao et al., 2019b). All the published
structures of PAC1R are complexed with peptide agonists and a heterotrimeric G protein complex
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(Figure 1), and thus do not represent the inactive conformations
required for antagonist development. So far, it is thought that
over 40% of GPCRs have more than one isoform (Marti-Solano
et al., 2020), and each GPCR can adopt multiple conformational
states which can be stabilized upon interactions with binding
partners (Li et al., 2013; Vardy and Roth, 2013). For accurate
SBDD, it is important to employ conformations of the most
medically relevant isoform, as it is to this ensemble of 3D pocket
structures that the drug must show affinity. Here, we used PAC1R
as a model system and investigated how to improve modeling
accuracy and to gain predictive power for SBDD with limited 3D
structural information, using the method of Essential Dynamics
Ensemble Docking (EDED). With the proof of principle, this
method can be readily generalized to develop new therapeutic
targets to target a wider range of GPCRs.

PAC1R and its endogenous peptide hormone PACAP play an
important role in neural development, calcium homeostasis,
glucose metabolism, circadian rhythm, thermoregulation,
inflammation, feeding behavior, pain modulation, as well as
stress, and related endocrine responses (Harmar et al., 2012;
Bortolato et al., 2014; Culhane et al., 2015). For example,
increased levels of PACAP in the blood have been reported in
women diagnosed with post-traumatic stress disorder (Ressler
et al., 2011), implicating chronic activation of the PAC1R in the
disorder. Other studies (Boehr et al., 2009; Missig et al., 2017)
have suggested that PAC1R activation mediates the adverse
emotional consequences of chronic pain via downstream
MAPK/ERK activation. Thus, these prior studies indicate that
PAC1R antagonism, especially with small-molecule antagonists,
represents a new strategy to treat stress, chronic pain, and related
disorders (Ressler et al., 2011). Similar to other class B GPCRs,

PAC1R possesses a heptahelical transmembrane domain (7TM)
and an extracellular domain (ECD) (Odoemelam et al., 2020).
Most of the neural and peripheral tissues known to date contain
the PAC1null or PAC1hop isoforms that includes a 21-amino
acid insert in the ECD (Figure 1), which is missing in available
PAC1R structures in the PDB (May and Parsons, 2017). This
ECD insert was found highly dynamic in our previous modeling
studies (Liao et al., 2017; Liao et al., 2021), but its role in
regulating PAC1R remains unknown. While PAC1R
antagonists are being developed as potential treatments for
stress-related disorders, the agonist-bound cryo-EM structures
are not directly applicable to computational design or screening
of PAC1R antagonists. GPCRs spontaneously adapt active and
inactive signaling states, each of which are characterized by broad
conformational ensembles. In the confirmational selection view,
agonists and antagonists stabilize GPCR conformations of the
active and inactive ensembles, respectively (Boehr et al., 2009;
Abrol et al., 2013). It is now well accepted that to accurately
design GPCR ligands as drug candidates, one should use active
conformations for agonist design and inactive conformations for
antagonist design.With the transition between active and inactive
GPCR conformations occurring on the millisecond timescale
(Vilardaga, 2010; Heyden et al., 2013; Weis and Kobilka, 2014;
Scherer et al., 2015), it is computationally demanding to obtain
the inactive PAC1R conformations from the agonist-bound cryo-
EM structures via molecular dynamics (MD) simulations.
Instead, we seek to use a homology model in this work and
test with the EDED method.

Ensemble docking utilizes multiple receptor models for pocket
sampling, obtained from clustering the conformations sampled
by MD simulations for molecular docking, and displays noted

FIGURE 1 | Cartoon illustrations of the PACAP-bound PAC1Rmodel (PDBID: 6M1I, PAC1very short) and our homology model (template PDBID: 4L6R, PAC1null,
simulation snapshot at 500 ns). The PAC1null isoform is more biomedically relevant than the very short isoform. The PACAP peptide is shown as a helix cartoon (pale
green); the 21-amino acid ECD insert (see the sequence in Supplementary Figure S1) is shown as a flexible coil (purple). This study focused on docking to the peptide-
binding pocket.
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improvement at identifying GPCR ligands when compared to
docking against a single experimental structure (Lin et al., 2002;
Huang and Zou, 2007; Amaro et al., 2018; Velazquez et al., 2018;
Li et al., 2019; Acharya et al., 2020; Bhattarai et al., 2020; Chandak
et al., 2020; Jukič et al., 2020; Patel et al., 2021; Li et al., 2022).
EDED is distinct from prior ensemble docking approaches,
mainly in clustering and selection of receptor models. Global
root mean square deviation (RMSD) is convenient to cluster
similar structures, but the highly dynamic extracellular and
intracellular loops (ECLs and ICLs) of GPCRs can significantly
compromise the otherwise good similarity between the 7TM
structures. Thus, clustering based on global RMSD can
generate many models that, while representative of global
changes, are irrelevant to the intricate differences within the
local binding pocket of the GPCR. This additional overhead
ultimately lowers both the efficiency and accuracy of ensemble
docking when using the global RMSD approach for clustering.
EDED avoids this issue by focusing on both local similarity and
essential dynamics of the binding pocket. Although
computational power is more accessible than ever, streamlined
workflows which expend computational resources only on
worthwhile calculations are always desirable. Herein, we
applied EDED to PAC1R with as few as four receptor models,
whose results show a reduced false negative rate and a good
correlation between the small molecule efficacy and the predicted
score. Our results provide the evidence for initial success to
develop small-molecule antagonists for PAC1R and pave the
way for future structure-based GPCR drug discovery.

RESULTS AND DISCUSSION

Inactive Conformations of PAC1null and
Key Interactions With Small Molecules
Towards discovery of novel PAC1R antagonists, the inactive state
conformational ensemble of PAC1R was estimated using an all-
atom MD simulation of a ligand-bound PAC1R model from

homology modeling (Figure 1). Our reference ligand is an analog
of known PAC1 antagonists (Beebe et al., 2008) that were
discovered previously using structure activity relationships. We
created the antagonist-bound model by docking the reference
compound into the PAC1R homology model. This complex
model was simulated in the POPC membrane for 500 ns, and
for the entire length of the simulation the ligand remained bound
in roughly the starting conformation (Supplementary Figure
S2). Other features like the closed ECD and straight
transmembrane helix six (TM6), as well as short separation
between TM3, TM5 and TM6, are consistent with a
deactivated structure of a class B GPCR (Wu et al., 2020).

Despite the overall appearance of an inactivated receptor, there
were critical changes within the orthosteric pocket during the MD
simulations. Using EDED, four members of the inactive
conformational ensemble (states S0, S1, S2, and S3 ordered by
observed population) were extracted and reveal distinct
conformations of the 7TM helices and different side chain
orientations within the binding pocket (Figure 2). For one,
bending of TM1 was observed to follow S0 < S2 < S3 < S1,
where the most populated state (S0) was the most straightened
helix. This correlated with local changes to residues Y161, L165,
and S164 on TM1, andmost significantly the stiffened TM1 in the S0
state enabled both π-stacking (with Y161) and hydrogen bonding
(with S164) interactions. On the other hand, displacement of TM7 in
the S1 state relative to S0 caused replacement of the hydrogen bond
with S164 in the S0 state with a new hydrogen bond with S390. The
interactions between the indole on the ligand and V368, L388, and
E392 were modulated between the different receptor states with
generally tighter interactions in the S1 and S3 states, in comparison
with the S0 and S2 states. In addition, changes in TM5 affected the
ability of K310 to form the stable interactions with the electron rich
substituents on the ligand in states S0 and S3 which were diminished
in the S1 and S2 states. Ultimately, this analysis reveals how EDED is
able capture the subtle changes in pocket structure that are highly
relevant for accurate modeling of ligand-receptor interactions when
performing SBDD.

FIGURE 2 | Four representative PAC1R conformations using in EDED reveal important changes in the binding pocket. The protein is shown in cartoon and the
reference ligand is shown as sticks. The histogram of all trajectory frames projected onto the first two principal components of residues within the ligand-binding pocket
of PAC1R. Black dots labelled with numbers from 0 to 3 are the representative structures (S0, S1, S2, and S3) determined by the K-means clustering algorithm.
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Comparison of Docking to a Single
Receptor Model and to the Conformational
Representatives
Compared with docking to the ligand-free homology model and
ligand-free cryo-EM structure, EDED significantly improved the
identification of candidate compounds (Figure 3). The average
binding score of the top 350 (approximately 2.5%) of
compounds docked to the ligand-free homology model improved
from −5.9 to −9.4 kcal/mol when docked against the ensemble.
Likewise, it improved from an average of −5.8 to −9.4 kcal/mol
when compared to the PACAP-bound model (PDBID: 6M1I).
This gives an average 3.6 kcal/mol improvement in average
docking score of the top selected compounds. Additionally,
EDED identified six compounds predicted to bind to PAC1R
with comparable binding score (−11.2 kcal/mol) as our reference
ligand.

To gain physical insight into the improvement of the
docking scores, the binding pose(s) of the top compounds
from both methodologies were examined. We have previously
reported the key role of R199 in PACAP-induced activation of
PAC1R (Liang et al., 2020). This is further corroborated by
strong cation-pi interactions with the residue in our models.
Interaction with R199 across all the ensemble conformations
became a critical determining factor for which top ensemble
docking compounds should be prioritized for synthesis and/
or computational optimization. Examining the compounds
which have ensemble docking scores close to or better than
our reference ligand, this interaction is present for all six top
scoring ligands in at least one of the docking poses. This is in
contrast with the homology model and the PACAP-bound
model where only relatively few of the top compounds from
this methodology were able to engage in this key interaction.
Also, of note are induced fit effects where the MD simulation

of our reference ligand in the pocket may affect the binding
pocket through subtle shifts in the backbone and the rotation
of side chains. In the rigid receptor docking to the homology
model, the 7TM helical bundle is closer together, defining a
more compact orthosteric pocket. Thus, it is only accessible
for small ligands to bind deep into the pocket below R199. In
contrast, the conformations in the ensemble docking are more
open, better allowing ligands to access the pocket. This can be
seen by where most ligands found their best pose. Although
both datasets were docked against a grid centered on R199, the
ensemble docking results have the majority of top ligands
below the residue, low in the pocket. When docked against the
homology model, the top ligands are higher in the pocket at
lowest in line with R199.

The new ligands examined within the orthosteric pocket
showcased the ability of ensemble docking to provide integral
confirmations omitted by static modelling, with the ensemble
approach providing key ligand poses corresponding to
interactions with new side chains revealed in the ensemble.
Aside from R199, several key contacts were discovered from
study of the top ligands bound to each receptor in the ensemble
(Supplementary Figure S3). These contacts expand the
understanding of the orthosteric pocket dynamics and can be
exploited in small molecule rational design. In comparison with
consistent interactions to the ligand-binding pocket of the
homology model, these results suggests that EDED may reveal
new crucial ligand-receptor interactions even from a rigid
template.

A thermodynamically driven approach to scoring the binding
poses of a given compound to multiple receptor structures was
used to assess the binding affinity of the docked ligands. This
approach quantitatively captures various physical phenomena
that are often considered when computing overall docking scores:
1) the relative likelihood of the receptor obtaining the different
conformations are explicitly included, and 2) the binding of the
ligand to the receptor changes the energies of the complex
differentially in the distinct conformations. Importantly, this
model properly handles confounding cases that other
approaches, such as a simple direct averaging of different
docking scores, would not describe well. For instance, for any
given ligand, a protein is hypothetically able to adopt an unlikely
conformation ( ΔG conf1,i ≫ 0, i.e., much higher relative free
energy than the structure with lowest relative free energy)
where the binding of the ligand to the protein could be quite
favorable (−ΔGbindi approximately equal to 10 kT). Simply
including this state in an average of docking scores would
treat it as equivalently important as conformations that are far
more relevant to the signaling states of the protein. Our
approach avoids such errors, by including the energetics of
the receptor confirmations, assuring that the overall energy of
these rare states is indeed still relatively high and do not
contribute significantly to the final score in Eq. 1. In sum,
our docking score considers the difference in overall energies
of the bound receptor conformations and is appropriate for
comparison with a physical experiment that is unlikely to be
able to distinguish between different bound conformations
(Eq. 1).

FIGURE 3 | Violin plots of the docking score distribution of the top 350
compounds to different receptor models. The dash line shows the –9.0 kcal/
mol cutoff used to prioritize compounds for synthesis.
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eΔG/kT � e(Gbound−Gunbound)/kT � Punbound

Pbound
� ∑n

i�1Pcluster i∑n
i�1Pcomplex i

(1)

Where Gbound and Gunbound are the energies associated with the
ligand being bound or unbound to any receptor conformation,
respectively, Pbound and Punbound are the total probabilities of the
ligand being bound or unbound to any receptor conformation in
the ensemble, respectively, Pcluster i is the probability of a specific
receptor conformation (calculated from the MD, see SI for more
information), and Pcomplex i is the probability of the ligand being
bound to that specific ensemble conformation. We note that our
model is still more appropriate than equal weighting for cases
where one does not trust the relative energies of the different
conformations obtained directly from the MD simulations. In
such cases setting the ΔG conf1,i to 0 for each conformation
(i.e., each conformation is equally likely) reduces Eqs 1–2.

ΔGbind,equal weighting � ln⎛⎝ n

∑n
i�1e

−ΔGbindi/kT
⎞⎠kT (2)

Clearly, Eq. 2 is not a simple weighted average of the different
binding scores, however to our knowledge this analysis is lacking
in the literature.

Evaluation of EDED Predictions
Additional to testing EDED with compounds from ZINC, we also
tested 23 small-molecule compounds which were classified as strong,
moderate, and weak antagonists in PAC1R activity assays
(unpublished data from Prof. Victor May). The design of these
small molecules was based on previously published work outlining
the structure-activity relationship between small molecules and the
PAC1 receptor (Beebe et al., 2008). Ligand-based virtual screening
was then performed and yielded the 23 compounds which were

experimentally tested. Docking each analog against all four
conformations in the ensemble and scoring them as previous
described (Eq. 1) shows modest correlation to experimental
results (Figure 4). The strong experimental antagonist had the
highest predicted binding affinities with an average −10.4 kcal/
mol, while the moderate and weak antagonists both had worse
predicted binding affinities −9.8 kcal/mol and −8.5 kcal/mol,
respectively.

It is worth noting that our EDED method is best used to
identify potential antagonists from a collection of compounds,
but the dockings scores (like Glide SP, XP, and our EDED
score) to estimate binding energies should be interpreted with
caution (Elokely and Doerksen, 2013; Pantsar and Poso, 2018;
Pinzi and Rastelli, 2019). While we successfully reduced the
false negative rate (FNR) with EDED, there is still a high false
positive rate (FPR). A delicate balance between ensemble size
and the FPR has previously been reported, inspiring us to
select a relatively small ensemble for analysis (Mohammadi
et al., 2022). Our FPR is comparable to prior studies
employing both ensemble and static methods for virtual
screening (Ferreira et al., 2010; Deng et al., 2015; Hou
et al., 2018). Additionally, the experimental assays provided
here are a measure of antagonistic ability, and not binding
affinity. As quantitative binding assays remain to be
performed, it is possible some of the false positives
(compounds with poor experimental results but high
ensemble docking scores) bind tightly but are not effective
antagonists, i.e., they do not stabilize the inactive
conformations or prevent cognate ligand binding in other
ways. With the extended view provided by EDED, we envision
that the chance of obtaining a false negative prediction is
likely reduced in our model when compared with static Glide
docking. This added width within the sampled energy

FIGURE 4 | Ensemble weighted glide scores (Δ Gbind) of 23 experimentally tested compounds. Compounds with strong, modest, and poor ERK inhibitive activity
are depicted in green, blue, and red, respectively. Corresponding colored lines represent the average ensemble weighted glide score for that category. A cutoff
of –9 kcal/mol was applied for predicted antagonists to be compared to their experimental results showing either strong or medium inhibition (active) or weak inhibition
(inactive).
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landscape (from the new side chain confirmations) allows our
EDED method to achieve more accurate sampling of potential
ligand-receptor interactions, thus increasing the chances of
finding a hit compound otherwise overlooked in the static
model. Overall, EDED displayed an accuracy of 57% in
predicted binding affinity when compared to our
experimental results, an increase when compared with
Glide’s empirical scoring function (Adeshina et al., 2020).
Combined with the overall low variance in EDED docking
scores for the top 350 compounds analyzed (Figure 3), we
believe our methodology represents a robust route for the
recognition of small molecules with high receptor affinity.

CONCLUSION

In conclusion, we have developed and implemented EDED, an
ensemble docking inspired methodology for SBDD. By
focusing on the essential dynamics of the ligand binding
pocket, our method is distinct from many prior studies

that built receptor clusters solely based on the root mean
square deviation (RMSD) of the entire protein backbone
(Kufareva and Abagyan, 2012). Further, the use of
clustering within this reduced dimensionality
conformational space directly considers the local structural
similarity of the ligand-binding pocket. We demonstrate that
EDED captures the critical changes in the 3D structure of the
binding pocket that are known to correlate strongly with
binding affinity of ligands. Our approach is partially based
on the assumption that differences in the binding pocket itself
(as opposed to the protein as a whole) predominately give rise
to the different binding poses and energies that are the goal of
any ensemble docking workflow. Using the EDED derived
representative structures, we screened a large dataset of
compounds and successfully identified novel small
molecule antagonists of the PAC1 receptor. However,
EDED is not specific to a single GPCR and will likely
accelerate the design of small molecule drugs that
target other GPCRs with currently unknown
conformational states.

FIGURE 5 |Overview of computational workflow for development of PAC1R antagonists. Right Column: selection of input ligands from a structure database (in this
example the ZINC15 (Sterling and Irwin, 2015) database). Custom filters were used to select raw structureswith desirable properties (molecular weight, logP, etc.). These
structures are then prepared using Schrödinger’s ligprep software program. Left column): the PAC1null homology model is constructed from the protein’s sequence,
simulated for 500 ns, and the raw coordinates are analyzed. The representative structures are used in ensemble docking. Hit compounds are selected based on
visual inspection of the results.
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METHODS AND MODELS

Receptor Model Preparation in EDED
One key idea of EDED is to obtain chemically relevant
receptor models for docking. Instead of using the agonist-
bound PAC1R structure, we generated a homology model of
inactive PAC1R (with the canonical variant sequence, Uniprot
ID: P41586) with a template of the glucagon receptor (PDBID:
4L6R, ~40% similarity) (Boehr et al., 2009). This PAC1R
model incorporated the inactive features of class B GPCRs
such as a continuous helix along TM6 and a closed ECD. A
small-molecule PAC1R antagonist, our reference ligand, was
placed in the orthosteric pocket via molecular docking (Glide,
Schrödinger Inc.). The complex model was later simulated to
sample the inactive conformational ensemble.

Receptor Model Sampling in EDED
To sample inactive conformations for docking, the ligand-bound
PAC1R model was simulated with the OPLS3 (Harder et al.,
2016) force field in explicit SPC solvent in the NPT ensemble
(300K, 1 atm, Martyna-Tuckerman Klein coupling scheme)
using classical MD simulations. A POPCmembrane was place
around the 7TM using the Orientations of Proteins in
Membrane (OPM) database (Lomize et al., 2012). The
simulation was performed in the Maestro-Desmond
program (Bowers et al., 2006) (GPU version 5.4) with a
timestep of 2 fs, recording interval of 4.8 ps, and a total
simulation time of 500 ns The Ewald technique was used
for the electrostatic calculations. The van der Waals and
short-range electrostatic interactions were cut off at 9 Å.
Hydrogen atoms were constrained using the SHAKE
algorithm. Two extended simulations were also examined
to confirm the ligand poses and receptor confirmations. Once
again, a POPC membrane was placed around the 7TM bundle
using OPM. NAMD 2.11 was used as the simulation package
for these replicates (Phillips et al., 2020). The CHARMM36
forcefield (Lee et al., 2016) was used with a TIP3 solvent
model in a NPT ensemble (310 K, 1 atm) Force switching was
utilized at the range of 10–12 Å to approximate the LJ
interactions. Langevin piston/Nose-Hoover (Martyna et al.,
1994; Feller et al., 1995) methods were utilized for the
pressure control with a piston period of 50 fs and a decay
time of 25 fs Langevin coupling of these simulations with a
dampening coefficient of 1 ps−1 was also utilized. Long range
electrostatic interactions were modeled with the particle
mesh Ewald method (Essmann et al., 1995). These
simulations were run with a 2 fs timestep and combined
for 350 ns of data. MD trajectories were analyzed using in-
house Python and TCL scripts as well as Visual Molecular
Dynamics (VMD). (Humphrey et al., 1996).

Receptor Ensemble Selection in EDED
We first aligned the 7TM of PAC1R (residues 156–405) to the
homology model to reduce noise due to translational
movement. Next, the coordinates of the centers of mass for
any residue whose side chain was within 3 Å of any ligand

atom in the static model were collected and parsed using in-
house designed TCL and python scripts. A dimension
reduction based on principal component analysis (PCA)
was used to determine which collective motions (termed
principal components, PCs) contributed most to variations
in the overall conformations of the binding pocket. The first
fifteen PCs (accounting for 90% of the cumulative variance)
were clustered using a K-means clustering algorithm
implemented by PyEmma (Liao et al., 2021). Based on
inspection of the first two PCs (Figure 5), four cluster
centers were identified. As these cluster centers are not
precise frames within the trajectory but are instead points
in the PC space, the cluster centers’ PC coordinates were
approximately projected back to the original Cartesian
coordinates. Frames from the trajectory which had PC
values closest to the centers based on a RMSD
measurement, were then selected as the ensemble docking
receptor structures. This approach allowed a minimum of
representative frames to capture the most variance of the
binding pocket as opposed to other methodologies which
often have many structures. Also, our physics-based
approach is transferrable to other GPCRs and expanded
clustering. In fact, our focus on the relevant receptor
models likely requires less sampling in MD simulations and
fewer clusters for subsequent docking, a practical advantage
for large-scale screening.

Docking and Scoring of Potential PAC1R
Antagonists
Receptor grid models were generated using the three-dimensional
structures selected as detailed above with R199 selected as the
center of the docking box with an 18-Å cutoff. Docking was
carried out using Schrödinger Virtual Screening Workflow
(Friesner et al., 2006) (VSW) at three consecutive levels of
precision, both for small molecules docked to the static
homology model and to the conformation ensemble. Small
molecules docked to our PAC1null ensembled were given an
overall score, Ensemble Δ Gbind, based on Eq. 3.

Ensemble ΔGbind � ln⎛⎝ 1 +∑n
i�2e

−ΔGconf1,i

∑n
i�1e

−ΔGconf(1,i)−ΔGbind(1,i)/kT
⎞⎠kT (3)

In Eq. 3, ΔGconf1,i is the difference in energy (in units of kT)
between the lowest energy receptor conformation and each
subsequent conformation calculated using the clustered
trajectory, and −ΔGbindi is the corresponding Glide XP docking
score to that same conformation. While ΔGconf1,i is representative
of the apo receptor free energy, it is worth noting that simulation
data used to generate these confirmations included the ligand
bound within the pocket.

Docking was carried out against compounds 1) pseudo-
randomly selected from the ZINC15 (Sterling and Irwin, 2015)
database, 2) as analogs of known antagonists to the static ligand-
free homology model, the cryo-EM structure, and the
conformational ensemble. In total, a small test set of
10,000 drug-like compounds were selected and download from
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the ZINC database and docked using Schrödinger’s VSW as
described previously.
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Changes in Protonation States of
In-Pathway Residues can Alter Ligand
Binding Pathways Obtained From
Spontaneous Binding Molecular
Dynamics Simulations
Helena Girame, Marc Garcia-Borràs and Ferran Feixas*

Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona, Spain

Protein-ligand binding processes often involve changes in protonation states that can be
key to recognize and orient the ligand in the binding site. The pathways through which (bio)
molecules interplay to attain productively bound complexes are intricate and involve a
series of interconnected intermediate and transition states. Molecular dynamics (MD)
simulations and enhanced sampling techniques are commonly used to characterize the
spontaneous binding of a ligand to its receptor. However, the effect of protonation state
changes of in-pathway residues in spontaneous binding MD simulations remained mostly
unexplored. Here, we used molecular dynamics simulations to reconstruct the trypsin-
benzamidine binding pathway considering different protonation states of His57. This
residue is part of the trypsin catalytic triad and is located more than 10 Å away from
Asp189, which is responsible for benzamidine binding in the trypsin S1 pocket. Our MD
simulations showed that the binding pathways that benzamidine follow to target the S1
binding site are critically dependent on the His57 protonation state. Binding of
benzamidine frequently occurs when His57 is protonated in the delta nitrogen while
the binding process is significantly less frequent when His57 is positively charged.
Constant-pH MD simulations retrieved the equilibrium populations of His57 protonation
states at trypsin active pH offering a clearer picture of benzamidine recognition and
binding. These results indicate that properly accounting for protonation states of distal
residues can be important in spontaneous binding MD simulations.

Keywords: ligand binding pathways, protonation states, spontaneous binding simulations, constant-pH molecular
dynamics, trypsin-benzamidine complex

INTRODUCTION

Characterizing the mechanisms of ligand binding and unbinding to a biomolecule is crucial to
elucidate the molecular basis of biological processes and improve the potency of drugs (Bernetti et al.,
2019). The pathways through which (bio)molecules interplay to attain stable (and often transient)
bound complexes are intricate and involve a series of interconnected intermediate, misbound, and
transition states. Molecular dynamics (MD) simulations and enhanced sampling techniques are
frequently used to characterize the spontaneous binding pathways of drugs, substrates, or peptides to
its biological receptors (Dror et al., 2011; Shan et al., 2011; Decherchi and Cavalli, 2020). In these
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simulations, one or more ligands are commonly placed in the
solvent and are allowed to freely diffuse without biasing the MD
simulation toward a particular protein region. Providing
sufficient simulation time and an accurate description of the
system, the ligand freely explores the dynamic protein surface
until it spontaneously finds its presumed binding site (Betz and
Dror, 2019). Markov-State Models were used to completely
reconstruct ligand binding and unbinding pathways and the
associated kinetics of enzyme-inhibitor complexes (Buch et al.,
2011; Plattner and Noé, 2015). Unconstrained enhanced
sampling methods were used to simulate binding of allosteric
modulators into G-protein coupled receptors (Miao and
McCammon, 2016) or substrate binding in allosterically
regulated enzymes (Calvó-Tusell et al., 2022). The predictive
power of spontaneous binding simulations relies on being able
to access the timescale required to sample the binding event and
critically depends on the accurate description of the simulated
system.

Around 60% of protein-ligand binding events involve changes
in protonation states (Aguilar et al., 2010; Onufriev and Alexov,
2013). Properly accounting for protonation states of protein
residues is crucial to characterize ligand binding with MD
simulations. The prediction of protonation states from rigid
X-ray structures can lead to their incorrect assignment as even
subtle structural fluctuations can affect each residue
environment. With constant-pH molecular dynamics (CpH-
MD) it is possible to model pH effects retrieving the
protonation equilibriums of titratable residues coupled to
protein conformational dynamics (Mongan et al., 2004;
Khandogin and Brooks, 2005; Chen et al., 2014; Huang et al.,
2016). Recently, Vo and co-workers reconstructed how fentanyl
binds μ-opiod receptor with CpH-MD showing that the
protonation of His257 at the binding pocket plays a crucial
role to properly orient fentanyl (Vo et al., 2021). These results
point out the importance of correctly accounting for protonation
states of residues in the binding pocket to characterize the
thermodynamics and kinetics of ligand-binding. However, as

captured by spontaneous binding MD simulations, the ligand
can establish contact with different protein residues in its
pathway toward the binding site. The nature of these
interactions will also be determinant for the kinetics of the
ligand binding process. Despite the number of studies of
protein-ligand pathways, the effect of protonation state
changes of in-pathway residues in spontaneous binding
simulations remains mostly unexplored.

The binding of benzamidine to trypsin has been commonly
used as an enzyme-inhibitor model system for studying
spontaneous binding and benchmarking enhanced sampling
techniques due to the rapid formation of the trypsin-
benzamidine complex (Betz and Dror, 2019). Trypsin is a
serine protease responsible of hydrolyzing proteins through a
catalytic triad formed by Ser195, His57, and Asp102 (see
Figure 1). The positively charged inhibitor benzamidine is
recognized in the specific S1 pocket which contains a
negatively charged Asp189 located more than 10 Å away from
the catalytic triad. In a landmark publication, Buch et al.
reconstructed the free-energy landscape of benzamidine
binding from a total of 495 MD simulations of 100 ns,
observing productive binding in 38% of the simulations (Buch
et al., 2011). By analyzing the independent trajectories, they
observed that catalytic His57 and Ser195 residues were
commonly found in the binding pathway of benzamidine in
its way toward the S1 pocket. The binding of benzamidine
have also been studied using unconstrained enhanced
sampling methods by Miao and co-workers who reconstructed
binding and unbinding pathways using Gaussian accelerated
molecular dynamics (GaMD) (Miao et al., 2020). Interestingly,
GaMD unbinding pathways showed that benzamidine passes
next to His57 in its dissociation from the S1 pocket to the
solvent. Therefore, His57 play a prominent role in both
catalysis and binding.

Enzymes are sensitive to pH changes and catalytic residues
commonly change their protonation states at different stages of
the catalytic cycle. Trypsin is active in a pH range between 7.0 and

FIGURE 1 |Overview of trypsin structure and S1 pocket. (A) Trypsin (in purple) structure corresponding to PDB ID 3PTB with benzamidine inhibitor (in grey) bound
to the S1 pocket (orange surface). His57 and Asp189 residues are highlighted in yellow and in orange sticks, respectively. Calcium ion is depicted as a green sphere.
Overview of the S1 pocket with catalytic residues (Asp102, His57, and Ser195) shown in yellow sticks. The distance between the carbon of the side-chain of Asp189 and
the side-chain of His57 is 13 Å.
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9.0 as His57 is required to alter between two protonation states
along binding, acylation and deacylation steps of the hydrolysis
reaction (Sipos and Merkel, 1970; Malthouse, 2020). Czodrowski
and co-workers studied the protonation changes in ligand
binding in trypsin concluding that His57 is responsible for the
most relevant pKa shifts during binding and catalysis
(Czodrowski et al., 2007). Most common software to assign
protonation states from X-ray structures predict a positively
charged His57 (both delta and epsilon nitrogens protonated,
HIP) at pH = 7.0 while a less clear picture arises at pH = 8.0,
where both HIP and neutral His57 with the delta nitrogen
protonated (HID) are possible protonation states. Short-time
scale MD simulations revealed that both HIP and HID were
possible protonation states of His57 (Uranga et al., 2012).
Spontaneous binding simulations of the benzamidine-trypsin
system have been commonly performed with His57 in the
HID state, which is the assumed protonation state when the
Michaelis complex is formed (Wahlgren et al., 2011). The
question is whether the protonation state of His57 can
influence benzamidine binding.

Here, we use spontaneous binding MD simulations to
reconstruct the trypsin-benzamidine binding pathway
considering different protonation states of His57. This
histidine is part of the trypsin catalytic triad and is located
more than 10 Å away from Asp189 responsible for
benzamidine binding in the S1 pocket (Figure 1). Our MD
simulations show that the spontaneous binding pathways are
critically dependent on the His57 protonation state. Binding of
benzamidine frequently occurs in a few hundreds of nanoseconds
when histidine is protonated in delta (HID) while productive
binding is scarcely observed when His57 it is positively charged
(HIP). CpH-MD simulations reflect that both HID and HIP
forms are significantly populated at the pH range between 7.0 and
8.0 showing the displacement of the equilibrium toward the HID
protonation state upon pH increase. These results indicate that
properly accounting for protonation states of distal residues can
be key to obtain reliable pathways in spontaneous binding
simulations.

METHODS

System Preparation
We used the crystal structure of benzamidine-bound Bos taurus
trypsin (PDB ID 3PTB) as starting point for our molecular
dynamics (MD) simulations. First, benzamidine was removed
from the S1 pocket to protonate the system. Second, protonation
states of all protein residues were assigned based on 3.0 H++
webserver (http://biophysics.cs.vt.edu/H++) at pH 7.0
(Anandakrishnan et al., 2012). To explore the role of His57
protonation in benzamidine spontaneous binding, we
manually assigned the protonation of His57 residue to either
HID, HIE, or HIP. Once protonated, four benzamidine molecules
were arbitrarily placed in the solvent, 30 Å away from Asp189
binding pocket, as described by Miao (Miao et al., 2020).
Benzamidine parameters for MD simulations were obtained
from the generalized AMBER force field (GAFF) (Wang et al.,

2004), with partial charges set to fit the electrostatic potential
generated at HF/6-31G* level of theory by restrained electrostatic
potential model (Bayly et al., 1993). The atomic charges were
calculated according to the Merz−Singh−Kollman (Singh and
Kollman, 1984; Besler et al., 1990) scheme using Gaussian 09
(Frisch et al., 2016).

Conventional Molecular Dynamics
Simulations
Spontaneous MD simulations starting from three different
protonation states of His57 were performed in explicit water
using AMBER18 package (Case et al., 2018). AMBER-ff14SB
force field (Maier et al., 2015) was used to describe the protein,
GAFF for benzamidine, and TIP3P for water molecules
(Jorgensen et al., 1983). Each system was solvated in a cubic
box with a 12 Å buffer of TIP3P water molecules and was
neutralized by adding chloride counterions (Cl−).
Subsequently, a two-stage geometry optimization approach
was performed: 1) a short minimization of water molecules,
with positional restraints on solute molecules; 2) an
unrestrained minimization of all the atoms in the simulation
cell. Then, the systems were heated using six steps of 50 ps,
incrementing the temperature 50 K each step (0–300 K) under
constant-volume, periodic-boundary conditions, and the
particle-mesh Ewald approach to introduce long-range
electrostatic effects (Darden et al., 1993). A 10 Å cut-off was
applied to Lennard-Jones and electrostatic interactions. Bonds
involving hydrogen were constrained with the SHAKE algorithm
(Ryckaert et al., 1977). The Langevin equilibration scheme is used
to control and equalize the temperature (Wu and Brooks, 2003).
The time step was kept at 2 fs during the heating stages. Each
system was then equilibrated for 2 ns with a 2 fs timestep at a
constant pressure of 1 atm to relax the density of the system. After
the systems were equilibrated in the NPT ensemble, 50 replicas of
200 ns MD simulations for each protonation state of His57 (HID,
HIE, HIP) were performed under the NVT ensemble and
periodic-boundary conditions.

Constant-pH Molecular Dynamics
Simulations
A total of 30 replicas of 200 ns of spontaneous binding constant-
pH MD simulations (CpH-MD) were run at pH 7.0 and 8.0
considering all His residues as titratable (His40, His57, and
His91). Here, discrete CpH-MD simulations have been carried
out following the protocol described by Swails and co-workers as
implemented in Amber (Swails et al., 2014): the MD is
propagated in explicit solvent following the previously
described protocol while the protonation state changes are
carried out using a Generalized-Born (GB) implicit solvent
model. A salt concentration of 0.1 M was also introduced to
reproduce the same GB conditions the original algorithm was
parametrized for (Mongan et al., 2004). Every 50 MD steps
(100 fs) in explicit solvent, the protonation state of selected
titratable residues in random order could change via
Metropolis Monte Carlo attempts in an implicit solvent
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framework. When the protonation state changes, a total of 100
relaxation steps (200 fs) were performed to relax the explicit
solvent dynamics.

RESULTS

To evaluate the impact of His57 protonation state in the binding
of benzamidine, we performed spontaneous binding molecular

dynamics (MD) simulations placing four benzamidine molecules
at least 30 Å away from the trypsin S1 pocket. From this starting
point, benzamidine molecules are allowed to freely diffuse from
the solvent and explore the trypsin surface in the predefined
simulation time. As shown by Buch et al., spontaneous binding
can readily occur in the nanosecond time scale (Buch et al., 2011).
Spontaneous binding MD simulations were performed using two
different strategies. First, a total of 50 replicas of 200 ns MD
simulations were run for the three possible protonation states of

FIGURE 2 | The effect of His57 protonation in benzamidine binding. (A) Representation of the trypsin catalytic triad formed by Asp102, His57, and Ser195. The
distance between Asp102 and His57 residues is calculated between the carbon of the carboxylate group of Asp102 and the delta nitrogen of His57. The distance
between His57 and Ser195 is calculated between the epsilon nitrogen of His57 and the oxygen of the hydroxyl group of Ser195. (B) Representative conformation of the
trypsin-benzamidine bound complex predicted from spontaneous binding HID57 MD simulations. The binding pose of benzamidine obtained from molecular
dynamics (MD) simulations is shown in grey while the X-ray orientation (PDB 3PTB) is depicted in red. Catalytic residues and Asp189 are coloured in yellow and in orange,
respectively. (C) Analysis of 50 replicas of 200 ns of HID57 MD simulations with the delta nitrogen of His57 protonated. (D) Analysis of 50 replicas of 200 ns of HIP57 MD
simulations with His57 positively charged. (E) Analysis of 200 ns of HIE57 MD simulations with the epsilon nitrogen of His57 protonated. The percentage of binding
events and the average distances (in Å) between catalytic residues is provided for each protonation state. Plot of the distance between the carbon atom of the amidine
group of benzamidine and the carbon of the carboxylate group of Asp189 side chain along the 50 replicas of 200 ns MD simulations for each protonation state. The grey
horizontal dashed line indicates when productive benzamidine binding takes place (distance below 5.4 Å).
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His57: 1) delta nitrogen protonated (HID57); 2) epsilon nitrogen
protonated (HIE57); and 3) positively charged histidine (HIP57).
Second, we carried out a total of 30 replicas of 200 ns of constant-
pH MD simulations at pH 7.0 and 8.0. From these simulations,
the percentage of binding events and ligand pathways of
benzamidine into trypsin were extracted. To evaluate the
binding of benzamidine along the MD simulations, we
monitored the distance between the amidine carbon of
benzamidine and the carboxylate carbon of Asp189 side chain.
We considered that productive binding is attained when this
distance is below 5.4 Å, which is the minimum distance to retain
the salt bridge interaction between the inhibitor and Asp189 in
the S1 pocket.

The Effect of His57 Protonation States in
Benzamidine Binding
Our MD simulations showed that spontaneous binding of
benzamidine to the S1 pocket can occur in all protonation
states of His57 (see Figure 2). The preferred binding mode
obtained from MD simulations in the three protonation states
is equivalent to the one observed in the PDB 3PTB (trypsin-
benzamidine complex), which is also the principal binding pose
predicted in previous computational studies (Buch et al., 2011;
Plattner and Noé, 2015; Miao et al., 2020). However, a different
number of binding events was observed for the three protonation
states of His57. In particular, benzamidine binds the S1 pocket in
48% of HID57 simulations (24 out of 50 replicas of 200 ns), 44%
of HIE57 (22 out of 50 replicas), and 10% of HIP57 (5 out of 50
replicas), as shown in Figure 2. Therefore, binding frequently
occurs when His57 is found in its neutral form (either delta or
epsilon nitrogen protonated) and becomes a less frequent event in
its positively charged state (HIP57). Buch et al. described a total of
38% of productive binding events protonating His57 as HID but
using shorter simulation time and only one molecule of
benzamidine (Buch et al., 2011). Considering only the replicas
that captured productive binding events, the average binding
times are: 88, 80, and 55 ns for HID57, HIE57, and HIP57
respectively. These results point out that binding can readily
occur in all cases irrespective of the lower probability of binding
events observed for HIP57. Therefore, the open question is how
the different protonation states of His57 alter the probability of
binding of benzamidine.

In terms of global conformational dynamics, trypsin showed
similar flexibility in the three protonation states of His57. Root-
mean square fluctuations (RMSF) indicated that the flexibility of
the S1 pocket is not significantly altered (see Supplementary
Figure S1). The main differences were observed when analysing
the stability of the catalytic triad formed by Asp102, His57, and
Ser195 (see Figure 2). When His57 is positively charged (HIP57),
the catalytic triad remains significantly stable, being 3.2 ± 0.5 Å
and 3.3 ± 0.1 Å the Ser195-His57 and Asp102-His57 distances
respectively. Additional flexibility is gained in the HID57 state
with distances of 3.9 ± 0.4 Å (Ser195-His57) and 3.4 ± 0.1 Å
(Asp102-His57). The intrinsic dynamism of the Ser195-His57
interaction in HID57 can be key to accommodate trypsin
substrates triggering the formation of the Michaelis complex.

Finally, the HIE57 protonation state is the least probable in
trypsin because as shown in the MD simulations, when
protonated in epsilon, His57 destabilizes the catalytic triad (see
Figure 2). For this reason, all subsequent analyses will be focused
on HID57 and HIP57 states.

Characterization of Benzamidine Binding
Pathways
To gain insight into the molecular basis of the effect of His57
protonation changes in the binding process, we explored the
binding pathways that benzamidine followed to get into trypsin
S1 pocket. First, we collectively represented all spontaneous
binding MD simulations corresponding to each protonation
state using two coordinates (see Figure 3 and Supplementary
Methods): 1) the binding distance (dBen-Asp189, x axis) between the
amidine carbon of benzamidine and the carboxylate carbon of
Asp189; and 2) the distance between the amidine carbon of
benzamidine and the epsilon nitrogen of His57, for either
HID57 or HIP57 (dBen-His57, y axis). We selected the epsilon
nitrogen because it is directly interacting with the hydroxyl group
of catalytic Ser195. In both HID57 and HIP57, the most
populated state of this 3D free-energy landscape (FEL) is the
benzamidine-bound state (i.e. dBen-Asp189 below 5 Å and dBen-His57
around 10 Å, see B in Figure 3). Benzamidine also accumulates in
both cases in a region of the FEL defined by a range of dBen-Asp189
[15,20] Å and dBen-His57 [10,15] Å, which corresponds to trypsin
hydrophobic S3 pocket composed by Trp210 and surrounding
residues. Interestingly, the FEL displays significant differences in
the binding patterns of HID57 and HIP57 when benzamidine
approaches the S1 pocket (dBen-Asp189 within [5,15] Å). For
HID57, the FEL shows a metastable state where benzamidine
directly interacts with His57 (dBen-His57 below 5 Å while dBen-
Asp189 is still found between 10 and 15 Å, see I1 and I2 states in
Figure 3A). This state is not visited in the FEL of HIP57
indicating that the interaction between His57 and benzamidine
is not established in these MD simulations (see Figure 3B). These
results are not surprising considering that both benzamidine and
His57 are positively charged in HIP57 simulations resulting in
repulsive interactions that prevent the interaction. From these
simulations, we estimated the free-energy difference between the
unbound conformation and the transition state that leads to
productive binding (see Supplementary Figure S2). The free-
energy difference is lower for HID57 (around 2.5 kcal/mol) than
for HIP57 (around 4 kcal/mol), pointing out that the binding of
benzamidine is globally slowed down when His57 is positively
charged. Despite the free energy differences are not significant,
the different distribution of binding events and the reshape of the
FEL indicates that benzamidine binding is modulated by the
protonation state of His57 which is located more than 10 Å away
from Asp189.

To characterize the molecular basis of the ligand binding
processes, we independently analyzed the MD trajectories
projecting them into the corresponding FEL (see Figure 3 and
Supplementary Figure S3). The analysis of independent HID57
MD trajectories showed that benzamidine binding occurred
mainly through two different pathways. In the major binding
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FIGURE 3 |Characterization of benzamidine binding pathways. Free energy landscape (FEL) reconstructed from 50 replicas of 200 ns of spontaneous binding MD
simulations of HID57 (A) and HIP57 (B) using the binding distance (dBen-Asp189, x axis) between the carbon atom of the amidine group of benzamidine and the carbon of
the carboxylate group of Asp189 and the distance between the carbon atom of the amidine group of benzamidine and the epsilon nitrogen of His57 (dBen-His57, y axis).
The most relevant states of the FEL are highlighted in black boxes: U (unbound), R (recognition), B (bound) and I (intermediate) states. The free-energy difference
between the unbound conformation and the transition state that leads to productive binding is given in kcal/mol. The purple dashed line indicates the trajectory of the
His57 pathway while the blue dashed line indicates the trajectory of the direct pathway. The percentage of binding events (considering only productive binding
simulations) that follow each pathway is provided. Projection of a representative spontaneous binding 200 ns MD trajectory on the FEL of each HID57 and HIP57. The
time evolution of the ligand binding pathway is represented in a colour scale ranging from purple for the first frames to yellow for the last frames of the MD trajectory.
Molecular representation of the most relevant states of the FEL corresponding to the His57 and direct pathways. Catalytic residues are shown in yellow, benzamidine in
grey, and Asp189 in orange.
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pathway (observed in 79% of productive binding simulations),
benzamidine first enters the S3 pocket being recognized by
Trp210. Catalytic Asp102 may be involved in the attraction of
positively charged benzamidine into the S3 pocket (see
Supplementary Figure S4). Second, the inhibitor rolls along
this pocket to establish a hydrogen bond interaction with
His57 while keeping the phenyl moiety in the S3 pocket.
Then, the aromatic ring of benzamidine repositions from the
S3 to the S1 pocket maintaining the hydrogen bonding with
catalytic His57 and Ser195. Finally, through a series of successive
steps, benzamidine turns around to establish a salt bridge
interaction with the carboxylate group of Asp189, attaining the
benzamidine-bound pose. We term this predominant pathway as
“His57 pathway” since establishing a hydrogen bond interaction
with His57 is a requisite to access the S1 pocket. A similar binding
pathway was described by Buch and co-workers using 495 100 ns
MD simulations (Buch et al., 2011). A second, less frequent,
pathway was observed in 21% of productive binding simulations.
In this case, benzamidine directly evolves from the solvent to the
S1 pocket without establishing a hydrogen bond interaction with
HID57 (see Figure 3). The direct access to the S1 pocket from the

solvent can take place from different sites but the common feature
is that benzamidine directly enters the pocket establishing a
hydrogen bond with Ser190 and then repositions to interact
with Asp189 through a salt-bridge interaction. In this
particular pathway, the binding of benzamidine is practically a
pure diffusion from the solvent to the S1 pocket, for this reason
we term it as the “direct pathway.”

In HIP57 MD simulations, benzamidine binding only occurred
through the direct pathway (5 out of 50 replicas), as shown in
Figure 3B. The repulsion between the positive charges of both
protonated His57 (HIP) and benzamidine prevents their
approximation and interaction. Thus, the His57 pathway is not
observed in HIP57 simulations, making the number of binding
events significantly less frequent than in HID57. Despite
benzamidine can be recognized also in the S3 pocket by Trp210,
when it approaches the positively charged HIP57 a hydrogen bond
with this catalytic residue cannot be established and benzamidine
returns back to the solvent (see Supplementary Figure S5).
Therefore, when His57 is positively charged, binding will
preferentially occur through direct diffusion from the solvent.
These results demonstrate that the protonation state of His57

FIGURE 4 | Spontaneous Benzamidine Binding with Constant-pHMolecular Dynamics Simulations. Free energy landscape (FEL) reconstructed from 30 replicas of
200 ns of spontaneous binding constant-pHMD simulations at pH = 7.0 (A) and pH = 8.0 (B) using the binding distance (dBen-Asp189, x axis) between the carbon atom of
the amidine group of benzamidine and the carbon of the carboxylate group of Asp189 and the distance between the carbon atom of the amidine group of benzamidine
and the epsilon nitrogen of His57 (dBen-His57, y axis). Themost relevant states of the FEL are highlighted in black boxes:U (unbound),R (recognition),B (bound) and I
(intermediate) states. Projection of a representative 200 ns trajectory of the His57 pathway showing the protonation state of each frame in different colour: HID in green,
HIP in purple, and HIE in blue. The equilibrium populations of each protonation state retrieved from the 30 replicas of 200 ns is provided for pH = 7.0 and 8.0.
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determines which ligand binding pathways can be populated and,
thus, the path that benzamidine preferentially takes to access the S1
pocket of trypsin.

Spontaneous Benzamidine Binding with
Constant-pH Molecular Dynamics
Simulations
Using fixed protonation states for His57 can offer a limited picture of
benzamidine binding, considering that this residue is responsible for
the most relevant pKa shifts during binding and catalysis in trypsin
(Czodrowski et al., 2007). To account for the pH effects in the
benzamidine binding process, we performed 30 replicas of 200 ns of
spontaneous binding constant-pHMDsimulations at pH 7.0 and 8.0
(see Figure 4 and Supplementary Figure S6 for a complete analysis
and S7 for convergence of equilibrium populations). In these
simulations, we allowed the three histidines of trypsin to change
their protonation state. Only His57 is found along the binding
pathway and can play a key role in the benzamidine recognition
process. At pH 7.0, the populations of the different protonation
states obtained from CpH-MD simulations were 74, 26, and 0% for
HIP, HID, and HIE, respectively. From these CpH-MD simulations
at pH 7.0, we obtained a FEL of the binding process that resembles
the one captured for HIP57 protonation state (see Figures 3B, 4A).
However, the intermediate states corresponding to the interaction
between benzamidine and His57 became moderately populated.
This increases the number of binding events compared to HIP57
simulations up to 23% (7 out of 30 replicas). In this case,
benzamidine accessed the S1 pocket through both direct and
His57 pathways. Interestingly, CpH-MD simulations showed that
the His57 pathway is activated only when His57 attains the HID
protonation state (see Figure 4A). At pH 8.0, we observed
equilibrium populations of protonation states for His57 of 57%
for HID, 42% for HIP, while HIE is scarcely populated. The FEL
obtained from CpH-MD simulations at pH 8.0 clearly highlights the
stabilization of the interaction between His57 and benzamidine (see
I1 and I2 states in Figure 4B). Again, binding of benzamidine
proceeded through both the direct andHis57 pathways. The number
of binding events retrieved from CpH-MD simulations at both pH
7.0 and 8.0 is found between the values observed in HIP57 and
HID57 MD simulations offering a clearer picture of the His57
protonation state ensemble. Therefore, properly accounting for
the equilibrium of protonation states of His57 may be key to
retrieve accurate kinetics for the binding of benzamidine to trypsin.

DISCUSSION

Spontaneous binding MD simulations showed that the protonation
state of His57, which is located more than 10 Å away from the gorge
of the S1 pocket, plays a key role in determining the binding pathway
of benzamidine to trypsin. Binding is more favorable when His57
attains a neutral HID protonation state while is less probable in the
positively charged HIP protonation. These results are in line with
kinetic experiments that indicate that Ks of substrate N-α-
benzyloxycarbonyl-l-lysine-p-nitroanilide increases more than 80
fold when His57 is protonated (Malthouse, 2020). Benzamidine

can access the S1 pocket through two main pathways: the His57
pathway and the direct pathway from the solvent. We observed that
His57 is found in the way of benzamidine to the S1 pocket through
the most probable binding pathway in the HID protonation state,
establishing a hydrogen bond that is key to drive benzamidine
toward the binding site. Therefore, subsequent kinetic analysis of
the binding process will provide different outcomes depending on
how the protonation states are defined at the beginning of the
simulation. Constant-pH MD simulations naturally account for the
protonation state ensemble of His57 offering a more accurate
description of the spontaneous binding of benzamidine at a
fixed pH.

Based on these results, we suggest to always consider the
impact of protonation changes of residues that are found along
the ligand binding pathway (even distal residues) when
performing spontaneous binding MD simulations. In
particular, in systems with slow binding processes that follow
complex pathways through different metastable intermediate and
transition states. It is important to remark that in our study we
have excluded protonation changes of other residues (e.g. Asp,
Glu, . . .) which may further alter the binding pathways obtained.
These observations are not limited to the study of drug-binding
into their biological receptors. In protein folding studies, it was
reported that changes protonation states of certain residues were
important to describe the intrinsic dynamics of amyloid-β
peptides (Li et al., 2017). In enzyme engineering, substrate
access tunnels are commonly engineered through point
mutations to evolve the enzyme toward a new function or
broad its substrate scope. Thus, properly accounting for
coupled protonation state changes between the residues
conforming the access tunnel and the substrate will be
important to evaluate the substrate binding pathways in
enzymes. By unravelling the details of ligand binding and
unbinding it is possible to gain insight into the detailed
molecular mechanisms of relevant biochemical processes and
then, harness this information to rationally improve the potency
of drugs and/or evolve an enzyme toward novel functions.
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The Role of Conformational Dynamics
and Allostery in the Control of Distinct
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Glucocorticoid receptor (GR) regulates various cellular functions. Given its broad influence
onmetabolic activities, it has been the target of drug discovery for decades. However, how
drugs induce conformational changes in GR has remained elusive. Herein, we used five GR
agonists (dex, AZ938, pred, cor, and dibC) with different efficacies to investigate which
aspect of the ligand induced the differences in efficacy. We performedmolecular dynamics
simulations on the five systems (dex-, AZ938-, pred-, cor-, and dibC-bound systems) and
observed a distinct discrepancy in the conformation of the cofactor TIF2. Moreover, we
discovered ligand-induced differences regarding the level of conformational changes
posed by the binding of cofactor TIF2 and identified a pair of essential residues D590
and T39. We further found a positive correlation between the efficacies of ligands and the
interaction of the two binding pockets’ domains, where D590 and T739 were involved,
implying their significance in the participation of allosteric communication. Using
community network analysis, two essential communities containing D590 and T739
were identified with their connectivity correlating to the efficacy of ligands. The
potential communication pathways between these two residues were revealed. These
results revealed the underlying mechanism of allosteric communication between the
ligand-binding and cofactor-binding pockets and identified a pair of important residues
in the allosteric communication pathway, which can serve as a guide for future drug
discovery.

Keywords: glucocorticoid receptor, allosteric communication, allosteric site, molecular dynamics simulation, drug
discovery

INTRODUCTION

Glucocorticoid receptor belongs to the nuclear receptor (NR) superfamily to transduce the signals
triggered upon its ligand glucocorticoid (GC) binding (Veleiro et al., 2010; Kadmiel and Cidlowski,
2013; Cain and Cidlowski, 2015). It is broadly implicated in a variety of biological events such as
metabolism, proliferation, and apoptosis. Given the critical significance of GR, its structures and
related signaling pathways have been intensively investigated in detail. GR comprised three domains,
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including one N-terminal transactivation domain (NTD), one
DNA-binding domain (DBD), and one ligand-binding domain
(LBD) (Figure 1A) (Álvarez et al., 2008a). The NTD is

intrinsically disordered and contains an activation function 1
(AF-1) transactivation domain, which is responsible for
interacting with the coactivator and is responsible for GR’s

FIGURE 1 | Overall structure of glucocorticoid receptor with agonists and a cofactor. (A) domain organization of GR. (B) cartoon representation of GR ligand-
binding domain with helices colored according to the three-layered sandwich structure. (C) chemical structures of five agonists.
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transcriptional activities. Despite lacking a stable tertiary
structure in its intrinsically disordered region (IDR), NTD is
essential in the allosteric control of GR’s activity (Li et al., 2017).
Li et al. (2017) demonstrated that hGR tunes signaling fromNTD
by producing isoforms differing uniquely in the length of the
disordered region. This IDR with a discrepancy in length was
believed to propagate structural changes and influence the
function of the receptor. On the other hand, the DBD
possesses two distinguishable zinc finger regions where DNA
anchors. The C-terminal region is where ligands bind, which is
also involved in dimerization and interaction with the cofactor
through the activation function-2 (AF2) domain (Carson-Jurica
et al., 1990; Gronemeyer and Moras, 1995; Kumar and
Thompson, 1999; Nagy and Schwabe, 2004). Upon agonists
binding, the ligand-dependent AF2 induced conformational
changes in GR and accomplished full transactivation function
together with AF1 (Goto et al., 2003). The peculiarity of the LBD
makes it the most relevant region for the potential interaction of
ligand and receptor (Álvarez et al., 2008b).

Due to its critical implication in GR’s functions, LBD
structural biology receives considerable research interest.
Although intense time has been invested toward this aspect,
relatively limited success has been achieved. The first crystal
structure of LBD was not successfully obtained until 2002, which
formed a complex with its coactivator nuclear receptor
coactivator 2 (TIF2) and ligand dexamethasone (Bledsoe et al.,
2002). Since then, experimental studies and computational
analyses have rapidly accumulated to focus on structural
changes of LBD. It is now widely acknowledged that the LBD
domain consists of 11 α-helices (H1, H3-H12) and four small β
strands (Figure 1A). The protein folds into a canonical three-
layer sandwich with a hydrophobic pocket in the shape of a one-
side-opened box to accommodate the ligand (Figure 1B). The
side of the box consists of three helices (H3, H7, and H11), and
H4–H5 forms the top of the box (Edman et al., 2015). The
C-terminal AF2 of the receptor has been found to be an important
indicator of the ligand’s efficacy. Since it adopts different
conformations in distinct agonist-bound GR systems, AF2’s
plasticity suggested its contribution to the discrepancy of
different agonists’ efficacy (Buttgereit et al., 2018; Köhler et al.,
2020; Hu et al., 2022).

GR executed an essential role in cells, bearing the
responsibility of both transcriptional activation and non-
genomic actions (Jiang et al., 2014; Meijer et al., 2018). In the
absence of ligand, GR is predominantly localized in the cytoplasm
and bound to either HSP70 or HSP90 and a tyrosine kinase-like
c-Src to form a quaternary complex (Weikum et al., 2017; Lee
et al., 2021; Karra et al., 2022). When an agonist binds to the GR
and alters its structure, it stimulates downstream signaling
pathways. The activated GR disassociates from the quaternary
complex and moves into the nucleus in the form of homodimers,
where it assembles and integrates with glucocorticoid-responsive
elements (GREs) (O’Malley and Tsai, 1992; Pratt and Toft, 1997).
GREs often sit at the promoters or exons of the target genes, and
GR’s binding leads to the recruitment of other factors required for
transcription (Jenkins et al., 2001). By regulating different gene
expressions, GR manipulates a wide range of cellular activities

and thus possesses enormous potential for clinical applications
(Darimont et al., 1998; Hu and Lazar, 1999).

GR is emerging as a critical factor for drug discovery especially
in carbohydrate, protein, and fat metabolism (Buttgereit, 2020)
and immunological disorder-related disease, such as asthma and
dermatitis (Cato and Wade, 1996; Köhler et al., 2020). In 1995,
there were ~6.6 million prescriptions relative to GR written in
Germany. Until now, ~10 million drugs are prescribed just for
oral corticosteroids each year merely in the United States (Van
Staa et al., 2000; Schäcke et al., 2002). Large amounts of efforts
have been dedicated over the last several decades by scientists and
pharmaceutical companies to enhance the potency of drugs while
minimizing side effects by modifying the chemical groups of
natural glucocorticoid cortisol (Cain and Cidlowski, 2015).
According to a long-standing hypothesis, the adverse effects
were induced by dimer-mediated transcriptional activation
since the involved genes participate in glucose synthesis and
fat metabolism (Meijer et al., 2018). Based on this hypothesis, the
goal of drug design is relatively unambiguous, which is to enhance
the non-genomic effect and induce GR-protein interaction while
impairing the genomic effect of GR-DNA binding (Heck et al.,
1994; Reichardt et al., 2001; Meijer et al., 2018). Thitherto, the
most common systemic glucocorticoids in clinical treatments are
glucocorticoids with good oral bioavailability, which are
eliminated mainly by hepatic metabolism and renal excretion
of the metabolites. For instance, hydrocortisone (cortisone; cor),
prednisolone (pred), methylprednisolone, and dexamethasone
(dex) are all commonly used medicines (Thiessen, 1976;
Musson et al., 1991). In addition to the traditional drugs on
the market, scientists are inventing drugs with more innovative
carbon backbones. One of the new compounds is AZ938, a
cortivazol analog, which is currently under clinical trial
(Styczynski et al., 2005). The chemical structure of AZ938
contains a bulky phenylpyrazole group replacing the C3
ketone of the steroid A ring. Previously, the 3-ketone was
thought to be essential as it is conserved among
steroid–receptor structures. However, the equivalent activity of
cortivazol turned out to be 165-fold higher than prednisolone.
Another notable compound is desisobutyryl-ciclesonide (dibC),
which is the active metabolite of ciclesonide. It was proved to
modulate in vitro allergen-driven activation of blood
mononuclear cells and allergen-specific T-cell blasts (Czock
et al., 2005). Unfortunately, despite the prosperity of drug
design, a troublesome setback for drug design is that it is hard
to separate the anti-inflammatory efficacy from side effects such
as diabetes, muscle wasting, and osteoporosis (Schäcke et al.,
2002; Gebhardt et al., 2013), which has become a huge
disturbance to many people worldwide. Thus, it is becoming
urgent to understand the structural mechanisms of GR–agonist
interaction to better optimize drug design (Nussinov and Tsai,
2013). Even so, the underlying mechanism regarding interactions
of GR and agonists is still unclear. In addition, the challenge of
drug resistance requires an urgent design of new drugs (Fan et al.,
2021; Liang et al., 2021). Without accurate comprehension of the
relationship between ligands and GR as guidance, it will be
difficult to optimize the current drugs and invent new ones
with high efficacy and few side effects (Lu et al., 2016; Feng
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et al., 2021; Lu et al., 2021a). Despite this, most of the studies
currently are focusing on the allosteric discrepancy between
agonist-bound and antagonist-bound GR systems, while few
are focusing on the subtle changes that occurred in different
agonist-bound GR systems. To tackle the long-standing setbacks
of drug design, a study on the regulation of agonists on the GR is
imminently needed (Liu and Nussinov, 2016; Lu et al., 2019c).

Here, we chose five typical GR agonists (dex, AZ938, pred, cor,
and dibC) (Figure 1C) with different efficacies to investigate the
mechanism underlying ligand−LBD interactions, accounting for
different levels of GR function. The efficacies of the five ligands
were previously measured using a transactivation reporter gene
assay (Köhler et al., 2020). Compared with the highest effect of
dex (100%), AZ938 ranked second with 90% of efficacy, which
was followed by pred (86%). DibC and cor turned out to be the
least effective (77%). Based on these results, we raised the
question that what aspect of ligands induced the difference in
efficacies. We carried out molecular dynamics (MD) simulations
through a multiple microsecond timescale to explore the
underlying allosteric effects and conformational dynamics of
the LBD. We focused on the two pockets: the ligand-binding
pocket and the cofactor-binding pocket, and their allosteric
communication induced by different ligand binding to GR (Lu
et al., 2019b). By aligning the representative structure of each
system, we found different structural ensembles in the cofactor-
binding pocket. Further dissection of conformational landscapes
showed that induced by different ligands, dynamics in allosteric
regulation was found in the response to cofactor TIF2. Moreover,
using molecular mechanics Poisson–Boltzmann surface area
(MM/PBSA) calculation and distance analysis, we identified
crucial residues that displayed preference for a more stable
conformation in dex-bound and AZ938-bound systems (Zhang
et al., 2019). On the other hand, dynamic cross-correlation
matrices (DCCM) calculations also suggested that regions
containing crucial residues exhibited significantly increased
correlated motions in dex-bound systems compared to other
systems. Finally, community network analysis and allosteric
pathway analysis were carried out to reveal the potential
communication pathways in each system (Ni et al., 2020).
Together, this study investigated the allosteric dynamics
between the five systems in detail, expounding the mechanism
of interactions between agonists and GR. We expect this dynamic
model of allostery will prove to be generally adopted in explaining
signaling in all the other GR−agonist systems. Ultimately, we
hope that this model can be a guide for chemical modification and
optimization of drugs and give insights into novel treatments of
concomitant drugs (Shen et al., 2016; Lu et al., 2019a; Lu and
Zhang, 2019d; Zhang et al., 2022).

MATERIALS AND METHODS

System Preparation
Three co-crystal structures of GR complexed with agonists
(dex−GR, PDB ID: 4UDC; cor−GR, PBD ID: 4P6X; and
dibC−GR, PBD ID: 4UDD) were selected from the Protein
Data Bank (PDB) as initial structures for MD simulations. The

mutated residues were mutated back, and the missing residues
were added using the Discovery Studio.

Molecular Docking
Due to the unavailability of co-crystal structures of GR−AZ938
and GR−pred complexes, molecular docking was performed to
generate the 3D structure of these two complexes. The chemical
structures of AZ938 and pred were built and pre-optimized using
the ChemDraw software. The GR−NN7 complex (PBD ID: 4CSJ)
and GR−dex complex (PBD ID: 4UDC) were used as templates
for AZ938 and pred, respectively. The following docking
procedures were accomplished using the Schrödinger program.
The unnecessary water molecules beyond 5 Å and other cofactors
were deleted from the template structure using the protein
preparation module of Schrödinger. The H-bonds were
optimized, and the system energy was minimized. The glide
module was then used to generate boxes for docking. The
target agonists were loaded into the software and processed by
the ligPrep module. Finally, molecular docking was conducted
using the Ligand Docking module in SP mode. All the above
operations were carried out using default settings and parameters.
The resulting docking poses were then analyzed with Pymol and
Discovery Studio. Additional minimization of 10,000 steps using
the steepest descent algorithm was performed by Discovery
Studio to optimize the docking interface.

MD Simulations
MD simulations were performed on five systems (GR−dex,
GR−AZ938, GR−pred, GR−cor, and GR−dibC) using the
AMBER18 software (Jang et al., 2020; Li et al., 2020). First, we
used Antechamber to create inpcrd and prmtop files for each
agonist. Antechamber is a forcefield specifically designed to cover
most pharmaceutical molecules and has excellent compatibility
with the traditional AMBER forcefield. We loaded the ligand
input PDB files and ran the reduce to add all the hydrogen to the
systems. Then, we transformed the PDB files into Tripos Mol2
format. The AM1-BCC charge model was used to calculate the
atomic charges. Utility parmchk was applied to create parameter
files that can be loaded into LEaP. After loading the parameter
files, we ran the LEaP and finally obtained the inpcrd and prmtop
files (Bayly et al., 1993; Jakalian et al., 2000; Wang et al., 2004).
Second, we obtained all the parameter files of the protein using
ff14SB forcefield (Maier et al., 2015) and general Amber forcefield
(GAFF). We added hydrogen to all the systems and created a
truncated octahedron transferable intermolecular potential three-
point (TIP3P) water box (Jorgensen et al., 1983) to approach the
environment in physical conditions. We also added Na+ and Cl−

atoms to neutralize the charge. After the preparation, we operated
a protocol using four steps. We operated the minimization step
two times. All the atoms in the complex were restrained at
500 kcal mol−1Å−2 using the steepest descent algorithms at the
first time. Other ions and water molecules were minimized within
50,000 cycles (25,000 each for steepest descent and conjugate
gradient cycles). At the second time, the systems underwent
50,000 cycles of steepest descent and conjugate gradient
minimization each free of restrictions. Then, we heated up the
system from 300 ps to 300 K in a canonical ensemble (NVT) with
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a 700 ps equilibration step. Finally, a 1000 ns MD simulation was
carried out in each system with random velocities in isothermal
isobaric conditions (NPT) with periodic boundaries. The system
was regulated by Langevin dynamics (Uberuaga et al., 2004;
Sindhikara et al., 2009) with the collision frequency γ = 1.0.
The random seeds were defined by the current time and date. The
particle-mesh Ewald (PME) procedure was applied to the long-
range electrostatic interaction. A cutoff of 10 Å was set for van der
Waals interactions and short-range electrostatics. The SHAKE
algorithm was used for the bond’s interaction omitting the
H-bonds. Every 5,000 steps, the coordinates would be written
into the mdcrd file. The simulation was repeated three times for
each complex.

Cluster Analysis
Cluster analysis was applied to MD trajectories to classify and
make sense of information in trajectories. We used the k-means
algorithm (Shao et al., 2007), which generated seed points at the
start. Then, we iterated all the data points and assigned each of
them to the closest seed point. Then, the most representative
structures were generated in each cluster for further analysis.

Molecular Mechanics Poisson–Boltzmann
Surface Area (MM/PBSA) Calculations
MM/PBSA was performed using the MMPBSA.py to evaluate the
most essential residues in the complex between ligands and the
receptor or the cofactors and the receptor with a large
contribution to the free binding energy (Chong et al., 2009).
The binding free energy was calculated as the total Gibbs free
energy changes before and after the binding of ligands or
cofactors.

ΔGbinding � ΔGcomplex − ΔGreceptor − ΔGligand .

Gibbs free energy mainly consists of three parts: solvation
energy (Gsolv), molecular mechanical energy (EMM), and the
entropic compartments (−TS).

ΔGbinding � (EMM, complex – EMM, ligand − Emm, receptor)
+ (Gsolv, complex –Gsolv, receptor –Gsolv, ligand )
− ( TScomplex – TSligand − TSreceptor).

Thus, the equation can turn into this formation:

ΔGbinding � ΔEMM + ΔGsolv – TS.

Furthermore, ΔEMM can be divided as follows:

ΔEMM � ΔEvdw + ΔEele + ΔEint,

where ΔEvdw is the van der Waals component, ΔEele is the
electrostatic component, and ΔEint is the internal component
with angles, bonds, and torsional energies.

According to Poisson–Boltzmann continuum solvent model,
ΔGsolv can be divided as:

ΔGsolv � ΔEPB + ΔEnonpolar,

where ΔEPB stands for the polar part and ΔEnonpolar stands for the
nonpolar part using solvent-accessible surface area (SASA) for
calculation.

ΔEnonpolar � γSASA + b.

The surface tension parameter was set to
0.00542 kcal ·mol−1 · Å−2

and the solvent parameter was
0.92 kcal/mol. Given that the five systems were similar with
low RMSDs, the −TS could be ignored in our calculations.

Dynamic Cross-Correlation Matrix (DCCM)
Analysis
All trajectories were simplified using only the Cα atoms that were
rotated and translated using a least-square fitting procedure
(Hünenberger et al., 1995; Li et al., 2021). For the two Cα
atoms i and j at time t, the position vectors are ri(t) and
rj(t), respectively. Correspondingly, the covariance matrix
element cij had the following equation:

Cij � < (ri − < ri > ) (rj − < rj > )> � < ri rj > − < ri > < rj >

� Δt

taver
⎡⎢⎢⎣∑taver−Δt

t�0 ri(t)rj(t) − Δt

taver
⎛⎝∑taver−Δt

t�0 ri(t)) × ⎛⎝∑taver−Δt
t�0 rj(t)⎞⎠⎤⎥⎥⎦ ,

where Δt stands for the time interval between two frames and taver
stands for average time. Covariance can be used in estimating
systems’ entropy (Karplus and Kushick, 1981; Swegat et al., 2003).
The cross-correlation matrix element, cij, was defined as:

Cij � cij

c
1
2
iic

1
2
jj

� < rirj > − < ri > < rj >
[(< r2i > − < ri > 2)(< r2j > − < rj > 2)]12.

Dynamic Network Analysis
In order to reveal the underlying mechanisms of residue–residue
interactions, we performed dynamic network analysis to calculate
group constitution within the GR. According to this algorithm,
the whole GR could be seen as a bunch of nodes. Nodes sitting
within a threshold of 4.5Å for at least 75% throughout the
trajectories could be seen as a group. We used dij �
−log(|ci,j|) to calculate the edges between each group. The i
and j represented two nodes andCij could be calculated using the
equation mentioned earlier. We also investigated the optimal and
suboptimal pathways between two certain nodes using the
Floyd–Warshall algorithm. All the procedures could be done
using the NetworkView plugin in VMD (Hünenberger et al.,
1995; Sethi et al., 2009).

RESULTS

Different Agonists’ Binding Induces Distinct
TIF2 Conformations
Three independent rounds of 1 μs MD simulations for five
systems were conducted to probe into the dynamic
conformational changes induced by different agonists. The
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FIGURE 2 | Representative structures of five systems. (A) cartoon representations of H7 and ligands. (B) cartoon representations of H10 and ligands. (C) cartoon
representations of H3 and ligands. (D) cartoon representations of TIF2 in the cofactor pocket.
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root-mean-square deviation (RMSD) of the Cα atoms was
calculated relative to the initial structure to compare the
overall conformational dynamics of the five systems. As shown
in Figure 1A, all systems reached equilibrium after simulations.
The RMSD fell into the range of 2.5–3 Å. Systems possessing
ligands with higher efficacy had a slightly lower RMSD,
suggesting that different ligands had induced subtle differences
in the response of GR. This may indicate that the allosteric effects
of ligands might differentially influence the overall energy
landscape of GR. To uncover the domain-specific dynamics of
GR, we calculated per-residue root mean square fluctuation
(RMSF) of each system (Figure 1B). No significant domain-
specific conformational differences between the five systems were
observed during the simulations.

To identify the potential region that could contribute to
conformational dynamics, we extracted representative
structures for each system using cluster analysis. As shown in
Figure 2, the representative structure of each system was
superimposed on the dex-bound GR with no large structural
deviation observed. However, in the systems with less bulky
ligands (Figure 1C), the H7 regions formed a slightly “closed”
conformation on the ligand-binding site (Figure 2A). In contrast,
in the systems with bulky agonists such as dibC and dex, this
region formed a more “open” conformation due to the steric
hindrance of the bulky chemical groups at the tail of the D-ring.
However, the conformation of the H10 appeared to be the
opposite. The systems with a more “open” conformation at
the H7 tended to be more “closed” at the H10, indicating that
the distance between the C terminus of H10 and agonists
exhibited a negative correlation with the distance between H7
and agonists (Figure 2B). Exceptionally, AZ938 lacks a conserved

3-ketone head but has a much bigger and electronegative fluoro-
phenylpyrazole (Figure 1C). This unique structure of AZ938
resulted in the expansion of the top half of the ligand-binding
pocket (Figure 2C). This expansion led to the outwardmovement
of the H3 in the AZ938-bound GR (Figure 2C). More
intriguingly, a much stronger correlation was found in the
cofactor-binding pocket. By aligning all the representative
structures, the combination direction of the cofactor TIF2 was
found to be correlated with the efficacies of agonists. As shown in
Figure 2D, the TIF2 in the dex-bound GR adopted a
conformation closest to the H4. The TIF2 moved in an
anticlockwise direction slowly in the sequence of the
descending order of efficacy, which pulled the cofactor further
away from the H4.

To verify whether this discrepancy in the direction of TIF2 was
observed in all three independent replicas of simulations, we
measured two pair-wise distances throughout the trajectories
(Figure 3A). The distributions of distances between D590 and
L+5 indicated that the structure of the C-terminal TIF2 was
conserved among the five systems (Figure 3B). However, a
distinct discrepancy could be found in the distance between
D590 and L+1 (Figure 3C), indicating that within TIF2, the N
terminus was dynamic while the C terminus was relatively stable.
The distances between D590 and L+1 were roughly consistent
with the order of efficacy, implying a significant role of D590 in
the communication with the cofactor TIF2. In addition, no
significance was found for distances between dex- and AZ938-
bound systems, elucidating that the adopted conformation of
these two was preferential for higher efficacy (Figure 3B).
Interestingly, the fluctuation of distances in the dibC- and cor-
bound systems was much larger than that in the rest of the

FIGURE 3 | Measurement of the direction of TIF2. (A) cartoon structure of the distance measured. Pivotal inter-residue distance reflecting the direction of TIF2
between (B) D590 and L+5 and (C) D590 and L+1. (D) model of TIF2-binding dynamics.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9336767

Shi et al. Allosteric Regulation of Glucocorticoid Receptor

135

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 4 | (A) cartoon representation of two pockets. (B)MM/PBSA of three helices with crucial residues. (C) cartoon representation of parameter representing
ligand pocket. (D) cartoon representation of parameter representing cofactor pocket. Conformation FEL of dex, AZ938, pred, cor, and dibC with or without TIF2 binding
(E–N). The landscape was generated with ΔD638-D742-W557 and ΔD590-K579-E755.
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systems, suggesting that they went through severe vibration
during the simulation, which illustrated that interaction with
D590 could also be important in the stability of TIF2. Previous
studies had already investigated the important residues in the
cofactor-binding pocket, which interacted with the conserved
sequence (LXXLL) on the TIF2 (Necela and Cidlowski, 2003; Liu
X. et al., 2019). The D590 on the H4 was proved to be one of the
essential residues. This gave us insights into the importance of
D590. Thus, we hypothesized that D590 could be an essential
residue in the change of the TIF2 conformation.

Communication Between Ligand- and
Cofactor-Binding Pockets Indicates
Connection of the Regulation Between Two
Pockets to Efficacy Discrepancy
The superposition of representative structures had important
implications for allosteric communication in the GR.
Consequently, the free energy landscape was projected onto
the 2D space using parameters reflecting the situations of
pockets (Figure 4) (Lu et al., 2021b). To quantify the
influence of residues in the binding pockets on the energetics
of TIF2 binding, molecular mechanics Poisson–Boltzmann
surface area (MM/PBSA) was employed to compute the
binding free energy (ΔGbinding) of TIF2 to GR, which was
divided among each residue (Table 1). The lower binding free
energy indicated a stronger interaction between TIF2 and the
residue. In each of the three helices that surrounded the cofactor-
binding pocket, we selected three residues with a large
contribution to MM/PBSA. D590, K579, and E755 were
selected, respectively, which was consistent with the results in
previous studies (Suino-Powell et al., 2008; Veleiro et al., 2010;
Alves et al., 2020) to mimic the area of the cofactor-binding
pocket (Figure 4A).

Consequently, D590, K579, and E755 were chosen to be the
three residues defining the parameter of the triangle that
reflected the relative degree of openness of cofactor-binding
pockets (Figure 4B). The other parameter reflecting the
openness of the ligand-binding pocket was defined by the
triangle representing the ligand-binding pocket, which was
formed by three residues (W557, D638, and D742) shown in
Figure 4C. They were all located at the terminus of the helices
constituting the ligand-binding pocket, which reflected the
fluctuation of the pocket sensitively. The two areas of triangles
were used as the parameters to generate the two-dimensional
landscape for each system, which reflected the correlation of
the openness of the two pockets. Additional five systems
without the cofactor TIF2 have also conducted simulations
for the purpose of comparing the landscape before and after
the binding of the cofactor. The same parameters were used
for the two-dimensional landscape for the five systems
without TIF2. By comparing the distribution of the area of
the two pockets, we could profile the difference of each system
in the response to TIF2’s binding.

As shown in Figure 4, two distinct states were observed
before and after the binding of TIF2. Before the binding of the
cofactor, the five systems mutually exhibited a conformational
state with the ligand-binding pocket area of approximately
65 Å2. The area of the cofactor-binding pocket was around
80 Å2 in the mutual state with AZ938 to be an exception. A
trend for a second preferential conformation at the left of the
original one was also discovered in the pred-, cor-, and dibC-
bound systems. After cofactor binding, the parameters
condensed into a state at the up-right of the plot, with both
parameters enlarged. The binding of TIF2 not only influenced
the area of the cofactor-binding pocket but also affected the
ligand-binding pocket, which implied the allosteric
communication between the ligand-binding pocket and

TABLE 1 | Free energy analysis (kcal/mol) for K579, D590, and E755.

K579a Dex-bound system AZ938-bound system Pred-bound system Cor-bound system DibC-bound system

ΔEvdw −2.21 (0.93) −2.26 (1.13) −2.06 (0.97) −1.53 (1.02) −1.56 (1.17)
ΔEele −88.93 (7.53) −101.14 (9.71) −85.06 (9.44) −93.99 (5.62) −101.54 (7.41)
ΔEnonpolar −0.62 (0.08) −0.66 (0.06) −0.63 (0.08) −0.71 (0.07) −0.65 (0.06)
ΔEsolv 88.90 (6.76) 98.77 (7.66) 83.55 (7.97) 90.40 (4.49) 98.76 (6.20)
ΔEbinding −2.86 (1.31) −5.29 (2.06) −4.20 (1.75) −5.83 (1.41) −4.98 (1.56)

D590 Dex-bound system AZ938-bound system Pred-bound system Cor-bound system DibC-bound system

ΔEvdw −0.09 (0.52) 0.17 (0.87) 0.13 (0.89) −0.36 (0.61) −0.43 (0.20)
ΔEele −3.50 (10.86) −8.11 (3.49) −23.41 (10.31) −27.30 (8.66) 10.41 (4.57)
ΔEnonpolar −0.08 (0.06) −0.16 (0.02) −0.09 (0.06) −0.15 (0.06) −0.05 (0.05)
ΔEsolv 2.79 (9.43) 6.16 (3.18) 21.92 (8.57) 27.14 (8.35) −9.54 (4.56)
ΔEbinding −0.89 (1.37) −1.95 (0.76) −1.46 (1.75) −0.68 (0.71) 0.39 (0.32)

E755 Dex-bound system AZ938-bound system Pred-bound system Cor-bound system DibC-bound system

ΔEvdw −2.33 (0.73) −2.54 (0.97) −1.12 (0.68) −2.40 (0.78) −1.46 (0.88)
ΔEele −20.95 (5.65) −32.31 (3.29) −44.89 (11.18) −62.71 (5.55) −24.10 (3.85)
ΔEnonpolar −0.51 (0.07) −0.57 (0.03) −0.40 (0.06) −0.54 (0.06) −0.41 (0.08)
ΔEsolv 22.40 (5.33) 33.38 (3.07) 45.97 (10.61) 63.05 (5.44) 25.82 (3.94)
ΔEbinding −1.37 (1.35) −2.03 (1.22) −0.44 (1.37) −2.60 (1.02) −0.14 (0.82)

aNumbers in the parentheses are the standard deviations.
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cofactor-binding pocket. Despite having inconsistent
landscapes before the binding of TIF2, all systems converged
their conformational landscape after TIF2’s combination.
Intriguingly, parameter ΔD590-K579-E755 in the dex- and
AZ938-bound systems increased significantly to around
100–110 Å (Cup), which was 10 Å more than the increase in
the cor-bound and dibC-bound systems (Cdown). This
illustrated that the level of conformational changes induced
by the binding of TIF2 was different in each system, probably
by influencing the interaction between the two pockets, which
might result in the different efficacies of agonists. Interestingly,
the coexistence of Cup and Cdown was observed in the pred-
bound system, which exhibited features of both agonists with
high efficacy (dex-bound and AZ938-bound systems) and low
efficacy (cor-bound and dibC-bound systems). These results
further verified that these two features regarding the area of two
pockets may sensitively reflect the efficacy of the agonists. After
the binding of TIF2, the constriction of the ligand-binding
pocket conformation was much stronger in the pred-bound
system than that in the dibC- and cor-bound systems, implying
a stronger response toward the binding of the cofactor in the
pred-bound system. Altogether, the results indicated the pocket
conformational changes induced by the TIF2 could reflect the
efficacies of ligands.

Representative Structures Indicate That
D590 May Be an Important Residue
To further investigate the conformation of the chosen residues in
the cofactor pocket, the representative structures were extracted
from each two-dimensional landscape (Figure 5). Obvious
expansion of the three helices forming the cofactor-binding
pocket (H3, H4, and H12) occurred in the dex- and AZ938-
bound systems (Figures 5A, B). In the cor- and dibC-bound
systems, no significant expansion was observed (Figures 5D, E).
The outward movement of the H3 that contains K579 was the
most distinct one among the three helices. After the binding of
TIF2, K579 all rotated outward, except the one in the dibC-bound
system, which flipped away and formed a weak interaction with
TIF2. The expansion of H4 only occurred in dex-bound and
AZ938-bound systems. In the systems of TIF2-bound and TIF2-
unbound, no significant changes occurred in the representative
structures of H4 in pred-bound, cor-bound, and dibC-bound
systems, which only underwent slight rotation in D590. However,
obvious outward movements of D590 and H4 were observed in
dex and AZ938. The dynamic conformation of D590 induced a
strong interaction between the O atoms in D590 and H atoms in
the conserved sequence of LXXLL (Figure 5F), which
participated in the stabilization of TIF2. The LXXLL was
important in the binding of the AF2 and activation of

FIGURE 5 | Representative structures of the dex-bound system (A), AZ938-bound system (B), pred-bound system (C), cor-bound system (D), and dibC-bound
system (E). In each system, TIF2-bound and TIF2-unbound systems were aligned. Hydrogen bonds between D590 and R+2 are shown in (F). The distance of CB atom
before and after the binding of TIF2 was determined.
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transcription, thereby having direct relationships with agonists’
efficacy (Heery et al., 1997; Torchia et al., 1997; Plevin et al.,
2005). The unique conformational dynamics in dex-bound and
AZ938-bound systems implied an important conformation
contributing to the higher efficacy of dex and AZ938 (Heery
et al., 1997).

Given the unique expansion of D590 in dex-bound and
AZ938-bound systems, the D590 was further investigated
given that it might be a crucial residue in the allosteric
communication between the ligand-binding pocket and
cofactor-binding pocket. K579 and E755 were observed to

have various conformations before and after the binding of
TIF2 (Figure 6). No evidence showed that the pattern of K579
and E755 conformation had a relation with the order of efficacy
between different systems (Figures 6A, B). However, the
conformation of D590 was consistent among the five systems
both before and after the binding of TIF2, respectively (Figures
6C–F). The conformation of D590 almost overlapped in the five
systems of TIF-unbonded GR. However, a discrepancy was
shown in Figure 6F after the binding of TIF2, with the D590
in dex and AZ938moved slightly outward and separated from the
rest of D590 in other systems, despite the overall conformation

FIGURE 6 | (A) representative structures of K579 in the TIF2-unbound systems. (B) representative structures of E755 in the TIF2-unbound systems. (C)
representative structures of D590 in the TIF2-unbound systems. (D) representative structures of K579 in TIF2-bound systems. (E) representative structure of E755 in
TIF2-bound systems. (F) representative structure of D590 in TIF2-bound systems. (G) representative structure of TIF2 and D590 in TIF2-bound systems.
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being consistent between the five systems. This was accompanied
by the tight loading of TIF2, which pushed the D590 away from
the original conformation (Figure 6G), suggesting an underlying
mechanism that TIF2’s binding may be related to the
conformational dynamics of D590. Altogether, the
representative structures between the 10 systems revealed a
potential important residue for communications between the
ligand-binding pocket and cofactor-binding pocket.

Identification of Two Important Residues in
the Ligand-Binding Pocket and
Cofactor-Binding Pocket
Comparative analyses of the representative structure of the
cofactor-binding pocket emphasized the importance of the
special relationship between D590 and TIF2. Previous crystal
structure analysis also revealed that D590 formed vital hydrogen
bonds with the conserved residue R+2 on TIF2 (Suino-Powell
et al., 2008). Thus, we calculated the distance distribution of D590
and R+2. Since the oxygen atoms in D590 could form various
hydrogen bonds with different N atoms in R+2, we analyzed one
pair that could best represent the relationship between these two
residues. As shown in Figure 7A, the atom OD1 and atom NE
were selected from D590 and R+2, respectively, for distance
measurement since these two atoms formed a stable hydrogen

bond throughout the three replicas of simulations. The density
distribution of distances was shown in Figure 7B. Dex-bound
system, the system with the most obvious expansion of D590, had
the highest peak of density distribution within 5 Å, while the
dibC-bound system had the lowest distribution of distances in
this region. The distribution of the dex-bound system rapidly fell
to zero beyond 3.5 Å of the distance. The distribution peak of
other systems was also significantly lower than that of the dex-
bound system. This indicated that the dex-bound system was the
most likely system to form the hydrogen bonds between OD1 in
D590 and NE in R+2 since hydrogen bonds were considered
unable to form in two atoms with a distance larger than 3.5 Å. The
highest peaks of the dex-bound system might correspond to the
preferential structures of hydrogen bonds, which persistently
existed during simulations. Intriguingly, another small peak at
a distance of around 7 Å was also observed in dibC-bound and
cor-bound systems, where the hydrogen bonds were almost
unlikely to form. This implied that dibC-bound and cor-
bound systems had an additional sub-preferential
conformation in a state that D590 would not form hydrogen
bonds with R+2. All these properties of the density distribution
illustrated that the dex-bound system might be the most suitable
for the formation of hydrogen bonds between OD1 in D590 and
NE in R+2, while cor- and dibC-bound systems were less
favorable for the formation of hydrogen bonds. The conserved

FIGURE 7 | Distance measurement of two pairwise atoms. (A) cartoon representation of the distance between OD1 in D590 and R+2 in NE. (B) distance
distribution density of D1 in D590 and NE in R+2 in five systems. (C) cartoon representation of the distance between OG1 in T739 and the C atom in agonists. (D)
distance distribution density of OG1 in T739 and corresponding C atoms in each agonist (C25 in the AZ938-bound system, C15 in the dibC-bound system, C18 in the
pred-bound system, and C17 in dex- and cor-bound systems).
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hydrogen bond served as a connection between the GR and TIF2
and was thought to have contributed to the efficacy of ligands.
Therefore, this finding agreed to the efficacy order of the five
systems.

We next attempt to investigate other residues within the
ligand-binding pocket which might also be important for
allosteric communication between two pockets. MM/PBSA
analysis for the binding of ligand to the GR was carried out,
and the result was further decomposed into every residue forming
the ligand-binding pocket. Consistent with previous studies, T739
was identified as one of the most important residues for the

binding of ligands (Table 2). Among the five systems, the T739
had a consistently large contribution to the binding free energy of
ligand to the GR. Thus, we measured the distance between the
T739 and the ligands in our five simulation systems, respectively,
which was considered an important interaction between the
ligand and its pocket. Given that different ligands had distinct
structures and tended to have distinct preferences for oxygen
atom to form the hydrogen bond with the T739, we selected a
conserved atom that was related to all the oxygen possible in
forming the hydrogen bond with the T739 (C25 in the AZ938-
bound system shown in Figure 7C, C15 in the dibC-bound

TABLE 2 | Free energy contribution (kcal/mol) by residue and the corresponding free energy difference of H10.

Residuea Dex-bound system AZ938-bound system Pred-bound system Cor-bound system DibC-bound system

L732 −1.54 (0.29) −1.32 (0.20) −1.11 (0.36) −1.26 (0.25) −1.30 (0.27)
L733 −0.18 (0.04) −0.13 (0.04) −0.12 (0.05) −0.13 (0.04) −0.12 (0.04)
N734 −0.06 (0.03) −0.02 (0.02) −0.05 (0.04) −0.03 (0.03) −0.03 (0.03)
Y735 −1.97 (0.37) −0.98 (0.23) −1.40 (0.61) −1.41 (0.33) −1.99 (0.52)
C736 −1.07 (0.32) −1.06 (0.24) −1.76 (0.63) −1.06 (0.33) −1.06 (0.23)
F737 −0.00 (0.03) 0.02 (0.02) 0.00 (0.04) 0.02 (0.02) 0.01 (0.02)
Q738 −0.00 (0.03) 0.01 (0.02) 0.03 (0.03) −0.02 (0.03) −0.02 (0.03)
T739 −2.35 (0.64) −0.23 (0.13) −0.93 (0.56) −2.52 (0.52) −2.65 (0.45)

aNumbers in the parentheses are the standard deviations.

FIGURE 8 | Dynamic cross-correlation matrix (DCCM) calculations with obvious differences in the region shown in (A). DCCMs of (B) dex-bound system, (C)
AZ938-bound system, (D) pred-bound system, (E) cor-bound system, and (F) dibC-bound system. Positive regions (yellow) stand for correlated motions, whereas
negative regions (blue) represent anti-correlated motions.
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system, and C17 in dex-, pred-, and cor-bound systems). As
shown in Figure 7D, the dex-bound system had the highest
density distribution of the distance at around 5 Å. The crest of
the pred-bound system was slightly farther than the dex-
bound system located at around 4.5 Å. The cor-bound
system presented two crests, both of which were farther
than 5 Å, indicating a less favorable condition to form
hydrogen bonds between the ligand and T739. AZ938 was
an exception with an obvious smaller distance between the
ligand and T739. This was due to the six rings of AZ938 which

contributed to the elongated chemical structure. In order to fit
into the ligand-binding pocket with this unusual structure,
AZ938 folded its tail at the D ring toward the direction of H7,
while the C25 in AZ938 was exposed to the T739. As a result,
the distance distribution of the AZ938-bound system
contributed to the decrease in the peak distance. However,
from the position of the peaks in the five systems, we
concluded that the distance between the T739 and the
selected atom in the ligand was able to show the different
characteristics of ligands.

FIGURE 9 | Community networks and the allosteric signaling pathways in each simulation system. Community network representation of (A) dex-bound system,
(B) AZ938-bound system, (C) pred-bound system, (D) cor-bound system, and (E) dibC-bound system. (F) cartoon representation of cluster distribution in GR. Each
sphere represents an individual community, and the thickness of sticks connecting communities is proportional to the corresponding edge connectivity. Schematic
representation (G) of the domain-level allosteric signaling pathway and cartoon representation of signal propagations (H) connecting D590 and T739 in five
systems.
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Elucidation of Allosteric Communication
Pathway in Two Chosen Residues
After identifying the critical T739 and D590 in the ligand-binding
pocket and cofactor-binding pocket, we next tried to explore the
potential allosteric pathways connecting them. Using dynamic
cross-correlation matrix (DCCM) calculations, we provided an
overview of the inter-residue correlations within the simulation
systems (Wang et al., 2022). Residues distributed in regions
representing two sets of residues located near the ligand-
binding pocket and cofactor-binding pocket demonstrated the
biggest changes in the whole system. As shown in Figure 8,
compared to the cor-bound system and dibC-bound system, the
dex-bound system exhibited significantly increase correlated
motions among distant residues. In the dex-bound system,
obvious correlations between around G568 and around D590
suggested communication between H3 and H4–H5 (Figure 8B),
indicating a certain correlation within the cofactor-binding
pocket. Particularly, in the dex-bound system, the correlation
of inter-molecular motions among the region near the ligand-
binding pocket and cofactor-binding pocket colored by yellow
and blue bars (framed using black dash lines) was compellingly
strengthened than the other four systems. Pred-bond and AZ938-
bound systems possessed weaker correlated motions in this
region than dex-bound systems (Figures 8C, D) but were
relatively stronger than the dibC-bound and cor-bound
systems (Figures 8E, F). Weakened correlative movements
between the ligand-binding pocket and the cofactor-binding
pocket in dibC-bound and cor-bound systems suggested
impaired signal propagation pathways between the ligand-
binding pocket and cofactor-binding pocket. The degree of
correlated motion levels in five systems could also partly
reflect the different allosteric regulations among the five
systems. Notably, the two residues discussed before were also
in this region, which served as another evidence for their role in
allosteric communication between the two pockets.

Next, community network analysis and allosteric pathway
analysis were carried out for the five systems to systematically
investigate the allosteric networks (Wang et al., 2021). During the
three replicas of simulations, residues that distanced within a
4.5 Å cut-off for at least 75% of the time were categorized into the
same community, which could be seen as a congenerous unit
within the systems (Qiu et al., 2021; Zhuang et al., 2022). As
shown in Figures 9A–E, different systems were divided into
different quantities of communities. Each community was
represented by a colored circle and was superimposed on the
2D structure of the corresponding protein complex to reflect the
relative positions with adjacent communities. Based on graph
theory and topology, each community’s structural information
flow was calculated (Sethi et al., 2009). The width of lines
connecting two communities was proportional to the
corresponding edge connectivity which was defined by the
number of shortest paths passing through the edging nodes. In
general, the residual components of each community were similar
in the five systems. However, discrepancies between different
systems still occurred. In the AZ938-bound system (Figure 9B)
and dibC-bound system (Figure 9E), the complex was divided

into 10 groups and eight groups, respectively, while in the other
four systems, the complexes were divided into nine communities.
Some communities were not consistently existed in all the five
systems. For instance, community 9 was absent in the dex-bound
system and community 6 was absent in the dibC-bound system.
However, community 4 and community 10 consistently existed in
five systems. They contained domains regarding the ligand-
binding pocket and cofactor-binding pocket and the
constituent residues within were similar among the five
systems, indicating a critical role of these domains in allosteric
communication. In the dex-bound system (Figure 9A), the
connection between communities 4 and 10 was direct and
strong. In contrast, the connection of communities 4 and 10
was much weaker in dibC- and cor-bound systems (Figures 9D,
E), suggesting less informational communication through these
two communities in these two systems. The thickness of the lines
in communities 4 and 10 was in positive correlation with the
order of efficacies of five systems, indicating that the
communication between these two parts of the ligand-binding
pocket and cofactor-binding pocket might dominate the
differences in the ligand’s efficacy. However, the connection of
communities 4 and 10 in dibC- and cor-bound systems were
relatively weak, suggesting some structural impairment in these
two systems. Such loosen connection in dibC-bound and cor-
bound systems may due to the lack of community 5. In the dex-
bound system, community 5 served as a major hub for
information transduction. It connected communities 2 and 10,
which indirectly strengthened the connection between
communities 4 and 10. A similar impact was also observed in
community 9 in AZ938-bound and pred-bound systems (Figures
9B, C). Notably, D590 and T739 were located at community 10
and community 4, respectively, suggesting that these two residues
also participated in domains that drive the communication
pathways in these two communities.

Additionally, by calculating the optimal and suboptimal pathways
that link D590 in community 10 and T739 in community 4, we
revealed the potential allosteric pathways between the chosen residues
in the five systems. As shown in Table 3, the number of residues
involved in the optimal pathways from T739 to D590 was similar in
the five systems. However, the AZ938-bound system, pred-bound
system, and dex-bound system displayed shorter optimal pathways,
with a length of around 300, which indicated a stronger relationship
between two chosen residues than in cor- and dibC-bound systems.
(Figures 9G, H). Therefore, it could be concluded that the allosteric
pathway between D590 and T739 was stronger in dex- and AZ938-
bound systems than that in dibC- and cor-bound systems, which
might also influence the efficacy of ligands. These results, together
with DCCM analyses, collectively demonstrated that ligand-induced
allosteric communications between the ligand-binding pocket and
cofactor-binding pocket were one of the driving forces for the
discrepancy of ligand’s efficacy.

DISCUSSION

GR, as an essential nucleus receptor, controls a myriad of cellular
functions and signal transduction (Fowden et al., 1998; Kumar

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 93367615

Shi et al. Allosteric Regulation of Glucocorticoid Receptor

143

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and Thompson, 1999; Meijer et al., 2018; Liu B. et al., 2019). Upon
the binding of ligands, GR is activated and induces
conformational changes, involving post-translation
modifications such as acetylation and phosphorylation. GR
then translocates into the nucleus, where GR exerts its actions
through transactivation and transrepression mechanisms
(Vandevyver et al., 2014), regulating various metabolic
functions. Thus, GR has been used to treat various metabolism
and immunological disorder-related disease. Despite its broad
clinical application, the serious side effects have always bothered
patients and doctors. The underlying mechanisms of allosteric
communications in GR may be an instructor in GR drug designs.
Allosteric communication in the N-terminal domain and DNA-
binding domain of GR has been detailly elaborated by Hilser and
coworkers (Li et al., 2017). However, how ligands drive the
allosteric effects and influence signal transductions remain
unknown. Herein, by using MD simulations, we provided
structural insights into the different allosteric effects induced
by different ligands, thereby motivating progress in targeting
GR’s ligand-binding domain for drug discovery.

By comparing the representative structures extracted from the
three replicas of simulations, we revealed conformational
dynamics in five systems bound to five different ligands
(Figure 2). Conformational discrepancies in the ligand-
binding pocket were largely due to the different chemical
structures that ligands possessed, resulting in different degrees
of openness in the ligand-binding region of H7 and H10.
Conformational differences at the cofactor-binding pocket
appeared much more magnificent. The directions of the TIF2’s
conserved LXXLL helix in different systems strictly follow the
order of ligand’s efficacy, with the dex-bound system having the
closest distance between H4 and TIF2 and the dibC-bound
system having the farthest one. This result was further testified
by two pairwise distance measurements between D590 and the
two ends of TIF2 (Figure 3). MM/PBSA analysis of residues near
the cofactor-binding pocket and hydrogen bond analysis revealed
that D590 on H4 was likely to be a potentially vital residue to have
an impact on the conformation of TIF2.

Two-dimensional landscapes of two parameters relative to the
ligand-binding pocket and cofactor-binding pocket separately
were projected in five GR-ligand-TIF2 and five GR-ligand
systems (Figure 4). The parameter representing the cofactor-
binding pocket used the area of the triangle formed by three high
MM/PBSA contribution residues. The parameter representing
the cofactor-binding pocket used another three residues in the
cofactor-biding pocket. By comparing landscapes from before
and after the TIF2’s binding, changes occurred both in the ligand-

binding pockets and cofactor-binding pockets in the five pairs of
systems, suggesting the influences of allosteric communication
between two pockets in all the systems. Representative structures
in the five pairs of two-dimensional landscapes were aligned and
compared. Various degrees of expansion occurred in H3, while
evident expansion of H4 only occurred in the dex-bound system
and AZ938-bound system, which might be related to the
exceeding efficacy of these two systems (Figure 5). Distance
between two atoms in D590 and R+2, respectively, that
formed a hydrogen interaction was also analyzed (Figure 7).
Dex-bound system appeared to be the most preferential one for
the formation of the hydrogen interaction, while dibC-bound and
cor-bound systems had an extra peak at distance beyond 3.5 Å,
suggesting less preferential conformations for hydrogen
interaction. This hydrogen bond was believed to be a crucial
interaction between the TIF2 and GR. Thus, the different abilities
of forming the hydrogen bond in these systems might influence
the efficacy of ligands. MM/PBSA analysis and distance
measurements were conducted on residues around the ligand-
binding pocket, and T739 was identified as an important residue
with large MM/PBSA contribution and hydrogen interaction
with the ligand. Distance analysis of T739 and the ligand was
able to show the different qualities of ligands’ binding in different
systems. By applying DCCM, inter-residue correlations were
investigated among the five ligands (Figure 8). A
distinguishable discrepancy was found in correlations of the
region relative to the ligand-binding pocket and cofactor-
binding pocket. In the dex-bound system, the correlation was
the strongest, while in dibC-bound and cor-bound systems, the
correlation was much weaker, suggesting impaired allosteric
communication in the two complexes. Notably, D590 and
T739 were also in this region, implying their participation in
the allosteric communication. To systematically investigate the
allosteric networks, community network analysis and allosteric
pathway analysis were carried out (Figure 9). We observed
different levels of communication between group 4 and group
10, which was consistent with the ligands’ efficacy (Figure 9). In
addition, from community analyses and suboptimal pathway
analysis, we found that the allosteric propagation pathway
between two representative residues in the ligand-binding
pocket and cofactor-binding pocket in five systems.

In view of the crucial role played by GR in clinical treatments
(Van Staa et al., 2000), the development of new drug targeting GR
has been the major focus over the past few decades. Thitherto, few
accomplished design drugs with high efficacy and low side effects.
This is largely due to the obstacles in the lack of knowledge of
GR’s allosteric effects (Ni et al., 2021). The underlying

TABLE 3 | Allosteric pathway analysis between D590 and T739.

Length Residue Pathway

Dex-bound system 309 7 590, 593, 597, 756, 757, 740, and 739
AZ938-bound system 272 7 590, 594, 597, 600, 733, 735, and 739
Pred-bound system 303 7 590, 593, 597, 756, 757, 740, and 739
Cor-bound system 362 6 590, 593, 596, 600, 736, and 739
DibC-bound system 451 7 590, 594, 597, 756, 757, 740, and 739
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mechanisms of what induces the discrepancy in agonists’ efficacy
remain elusive. Thus, our study focusing on the allosteric
communications of GR’s conformational dynamics is useful.
Moreover, members of the NR family possess mutual
structures with similar sequences. The TIF2 is the common
cofactor that interacts with the AF2 interface of NRs. Thereby,
it is presumable that the mechanism we unveiled in the GR also
applies to others in the NR family and therefore has a more
generalized value. Taken together, our study elucidated the
driving force behind the ligands’ efficacy induced by different
agonists’ binding as well as the detailed mechanism of allosteric
communication between the ligand-binding pocket and cofactor-
binding pocket. Our explorations of the conformational
outcomes induced by the binding of different ligands have
provided insights for new drug design by conditional genome
manipulation or modifying ligand’s interactions with its pocket.
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Rapamycin is an immunosuppressant macrolide that exhibits anti-proliferative properties
through inhibiting the mTOR kinase. In fact, the drug first associates with the FKBP12
enzyme before interacting with the FRB domain of its target. Despite the availability of
structural and thermodynamic information on the interaction of FKBP12 with rapamycin,
the energetic and mechanistic understanding of this process is still incomplete. We
recently reported a multiple-walker umbrella sampling simulation approach to
characterizing the protein–protein interaction energetics along curvilinear paths. In the
present paper, we extend our investigations to a protein-small molecule duo, the
FKBP12•rapamycin complex. We estimate the binding free energies of rapamycin with
wild-type FKBP12 and two mutants in which a hydrogen bond has been removed, D37V
and Y82F. Furthermore, the underlying mechanistic details are analyzed. The calculated
standard free energies of binding agree well with the experimental data, and the roles of the
hydrogen bonds are shown to be quite different for each of these two mutated residues.
On one hand, removing the carboxylate group of D37 strongly destabilizes the association;
on the other hand, the hydroxyl group of Y82 is nearly unnecessary for the stability of the
complex because some nonconventional, cryptic, indirect interaction mechanisms seem
to be at work.

Keywords: rapamycin, FKBP12, umbrella sampling simulations, molecular dynamics, free energy calculation,
hydrogen bond

INTRODUCTION

Protein–ligand interactions are central in modern drug-discovery, and their characterization by
various approaches is crucial for better drug development. In this regard, computational
investigation is one of the ways to acquire a deeper understanding of the interactions of interest.
In particular, molecular dynamics (MD) simulations provide the physical connection between the
structure and the function of biomolecules (Karplus andMcCammon, 2002), especially at the atomic
level; therefore, MD simulation-based techniques can often cast insights into such interactions,
especially in the early stage drug-discovery (Mobley and Gilson, 2017). In addition to conformational
dynamics of the interacting molecules, MD simulations are also employed to estimate
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thermodynamic properties such as the relative binding free
energy and the binding affinity. Major ongoing challenges in
this field are related to the reliability, the accuracy, and the
rapidity of the estimation method/approach.

A reliable estimation of the free energy difference between
thermodynamically well-defined end states of interacting
molecules is one of the major goals of computational
biophysics. Umbrella sampling along a chosen reaction
coordinate, followed by potential of mean force calculations,
is one of the ways widely used to estimate binding affinities
(Torrie and Valleau, 1977; Kästner, 2011). However, umbrella
sampling along predefined vectorial reaction coordinates
followed by potential of mean force (PMF) profile
constructions has some serious concerns in performing
reliable energetic calculations (Doudou et al., 2009).
Recently, we discussed them for the protein–protein systems
and proposed a naïve multiple-walker approach, in which
independent umbrella sampling simulations were conducted
without predefined vectorial reaction coordinates. We
observed similar large variations in the values of converged
PMF profiles, resulting from different curvilinear paths. The
variations were attributed as due to the different excessive
dissipations in different paths taken, and therefore the lower-
bound PMF was chosen, and by introducing a correction term
derived from statistical mechanics, the standard free energy of
binding was estimated for the protein–protein complex system
(Joshi and Lin, 2019). The estimations were in good agreement
with the experimental values for the barnase–barstar complex.
Furthermore, the revealed mechanistic details from our
simulations, e.g., the physical pathways/trajectories of
dissociation/association, were quite consistent with two
major physical pathways that were determined from several
milliseconds-long adaptive molecular dynamics simulations
reported by Plattner et al. (2017). Thus, the proposed approach
is quite useful in maintaining a suitable balance between
estimation of binding energetics and revealing underlying
mechanistic details of the dissociation reaction within much
less computational cost than the brute force approaches. Since
the sampling is enhanced along a spontaneously evolved
(i.e., non-predefined) curvilinear physical trajectories, the
overall approach is referred to as curvilinear-path umbrella
sampling (CPUS) approach. In the present paper, we extend
our previous work to the interactions of a drug with its protein
partner.

This implementation of CPUS will be validated on FKBP12, a
model used in computational ligand binding studies for more
than 20 years (Pearlman and Connelly, 1995; Lin et al., 2002; Lin
et al., 2003; Sun et al., 2003; Swanson et al., 2004; Fujitani et al.,
2005; Lee andOlson, 2006; Olivieri and Gardebien, 2011; Dickson
and Lotz, 2016; Nerattini et al., 2016). This enzyme participates in
protein folding by catalyzing the isomerization of amide bonds
adjacent to proline residues (Hamilton and Steiner, 1998; Galat,
2013). Discovered because it could bind the immunosuppressant
macrolide FK506, it was further shown that it could also complex
with Rapamycin, a parent drug sharing the same pharmacophore
and similar therapeutic indications (Van Duyne et al., 1993;
Hamilton and Steiner, 1998; Galat, 2013). It later turned out

that the inhibition of the FKBP12 enzymatic activity was
irrelevant to account for the pharmaceutical properties of the
twomacrolides: In fact, this protein only potentializes the binding
of each drug to its effective cellular target through the formation
of a specific ternary complex, with calcineurin for FK506 and with
mTOR for rapamycin (Choi et al., 1996; Banaszynski et al., 2005;
Galat, 2013). Apart from its biological significance, the choice of
FKBP12 as a model in the 1990s can be explained by its small size
(107 residues) and its compact structure, both key factors at a
time where computational power was limited. Moreover, several
X-ray crystal structures were quickly released, in free form as well
as in complex with FK506 and rapamycin (Van Duyne et al.,
1991; Van Duyne et al., 1993; Wilson et al., 1995). Additionally,
with time, a huge amount of biophysical data have been
accumulated from thermodynamic and kinetic measurements
on the complexation reaction (Bierer et al., 1990; Holt et al., 1993;
Bossard et al., 1994; Connelly et al., 1994; Luengo et al., 1995;
DeCenzo et al., 1996a; Schuler et al., 1997; Wagner et al., 1998;
Graziani et al., 1999; Dickman et al., 2000; Banaszynski et al.,
2005; Wear et al., 2007; Wear and Walkinshaw, 2007; Shor et al.,
2008; Kozany et al., 2009; Wu et al., 2011; Tamura et al., 2013;
Singh et al., 2015; Lu and Wang, 2017; Kostrz et al., 2019; Wang
et al., 2019) to NMR investigations on the protein dynamics
(Sapienza et al., 2011; Yang et al., 2015; Solomentsev et al., 2018).

As far as in silico studies are concerned, FKBP12 is extensively
used as a model system to study protein–ligand interaction
energetics. For instance, the relaxed complex scheme (Lin
et al., 2002) was employed to estimate interaction energetics of
FKBP12 with several different ligands (Lin et al., 2003). Another
study using FKBP12 was performed to establish the groundwork
for the end-point free energy methods, in which the theoretical
framework was proposed to calculate the association free energy
(Swanson et al., 2004). A study on estimation of absolute binding
free energy calculations of FKBP12 and eight ligands was carried
out, where the Bennett acceptance ration (BAR) method was
employed in the direct calculations (Fujitani et al., 2005). The
FKBP12•ligand system was used to estimate the binding free
energies with two ligands, 4-hydroxy-2-butanone and FK506,
respectively. Although the necessity of sampling along curvilinear
paths was mentioned, the theoretical framework for the free
energy estimation was developed only for linear/vectorial
paths, and with some quadratic approximations for the
variance along the principal axis (Swanson et al., 2004; Lee
and Olson, 2006). The CPUS approach can be considered as
an alternative approach without such approximations.

From a structural point of view, the macrolide binding site
(Van Duyne et al., 1991; Van Duyne et al., 1993) significantly
overlaps with the FKBP12 catalytic cleft, in agreement with the
observed catalytic inhibition (DeCenzo et al., 1996a; Ikura and
Ito, 2007). Rapamycin, the only ligand we will study here,
binds in the cavity located between the short α-helix and the
five-stranded β-sheet that is wrapped around it. More
specifically, the drug pipecolinyl ring is deeply buried inside
the protein (Figure 1A) and is involved in hydrophobic
interactions with the aromatic side-chains of residues Y26,
F46, W59, and F99 (Figure 1B; Supplementary Figure S1)—
see (Van Duyne et al., 1993; Sun et al., 2003) for lists of the
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atom-pair contacts. In addition to auxiliary hydrophobic
interactions with some of the amino acids surrounding the
cavity (i.e., F36, V55, I56, H87, Y82—Figure 1B), rapamycin is
retained at the FKBP12 surface through five hydrogen bonds.
Of the hydrogen bond-implied residues (Figures 1B,C), D37,
I56, and Y82 are also positioned on the rim, whereas Q53 and
E54 are more distant. Since the first three amino acids are the
most conserved (Van Duyne et al., 1993; Hamilton and Steiner,
1998; Galat, 2013), they seemed the most attractive for
performing an in silico mutagenesis program aiming at
demonstrating the strengths of the CPUS approach. More
precisely, our goal was to test if we could predict the
influence of H-bond removal on the stability of the
FKBP12•rapamycin complex. We finally selected to target
D37 and Y82 because they represent significantly
contrasting examples of the contribution of hydrogen
bonding to ligand binding. Indeed, experimental
measurements have demonstrated that the D37V
substitution strongly affects the protein–drug interaction
(DeCenzo et al., 1996a; Singh et al., 2015; Kostrz et al.,
2019), whereas the Y82F substitution does not (Connelly
et al., 1994; Pearlman and Connelly, 1995; Kostrz et al.,

2019) (Figure 1D). Incidentally, beyond the determination
of the binding free energies for the wild-type protein and the
two mutants, we expect that the MD trajectories produced by
CPUS will enable us to understand the intriguing role of the
H-bond formed between Y82 and rapamycin, a bond that has
an atypical geometry (Van Duyne et al., 1993), which displays a
clear signature in NMR spectroscopy (Yang et al., 2015), but
whose elimination has nearly no impact on the affinity
(Bossard et al., 1994; DeCenzo et al., 1996b).

MATERIALS AND METHODS

System Modeling
The FKBP12WT•rapamycin binary complex was simulated
using the PDB 1FKB crystal structure as a starting
conformation (Van Duyne et al., 1991). For the complexes
involving the Y82F and D37V mutants, we simply carried out
in silico mutagenesis using the swapaa module of the Chimera
molecular viewing platform (Pettersen et al., 2004)
(Figure 1D). Thus, we here clearly assume that none of the
two amino acid substitutions results in any significant

FIGURE 1 | Structure of the FKBP12•rapamycin complex as determined in PDB 1FKB. (A) Coulombic surface representation of the protein with the ligand as
sticks. (B) Surface representation of the protein alone with the hydrogen-bond forming residues in orange and the hydrophobic residues in gray—coloring according to
the LIGPLOT diagram provided asSupplementary Figure S1 (Wallace et al., 1995). (C)Ribbon representation of the protein with the ligand as sticks. The five hydrogen
bonds formed between FKBP12 and rapamycin are shown as dashed lines. (D) Close-up view on the Y82 and D37 residues and resulting starting conformation
obtained after either the Y82F or the D37V substitution.
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structural change with respect to the wild-type reference. Such
an assertion has already been harnessed in the FKBP12Y82F
case, crystallographic evidences being provided to support it
(Pearlman and Connelly, 1995)—despite our efforts, we could
not retrieve the original data from any of the usual repositories.
As far as FKBP12D37V is concerned, we performed 1H-15N
hetero-nuclear single quantum coherence NMR
measurements and chemical shift perturbation analysis to
back up our starting hypothesis (Supplementary Figure S2)
(Williamson, 2018). Omitting the substituted amino acid, only
three residues display changes larger than the mean values of
the all changes plus two standard deviations: one is facing D37
in the adjacent β-strand and two are in the loop just
downstream of the mutation site. As a consequence, we
ruled out the possibility of any large-scale rearrangement.

The partial charges on the atoms of rapamycin were derived
with the RESP scheme, calculated with Gaussian03 at the level of
HF/6-31G basis set. The coordinates from the wild-type crystal
structure and from the two mutant models were then processed
using the antechamber and LEaP programs of the AMBER
software suite (Case et al., 2005; Salomon-Ferrer et al., 2013).
The well solvated system was built with 22926 TIP3P waters; 42
K+ and 43 Cl− ions were added to neutralize the system and to
mimic a 100 mM salt concentration. The box dimensions were
112.4 Å × 81.6 Å × 90.7 Å. The improved ff14SB force field along
with the general amber force field (GAFF) (Wang et al., 2004) was
used for all bonded and non-bonded parameters (Maier et al.,
2015).

Molecular Dynamics Simulations
Production runs were conducted using the Graphical Processing
Unit (GPU RTX 2080Ti) implementation of the AMBER pmemd
program. All MD simulations were conducted under NPT
conditions with SHAKE-enabled 2-fs time steps. The particle
mesh Ewald (PME) algorithm of electrostatics was employed, and
the non-bonded interaction cutoff was set to 10.0 Å. Prior to
production run, all three systems were subjected to energy
minimization, heated to 295 K, and then equilibrated for 100
ps. MD trajectories were analyzed using the cpptraj program of
AmberTools-20 (Case et al., 2020) and several in-house shell and
python scripts.

FIGURE 2 | In silico determination of the binding free energies for the
three variants of FKBP12 + rapamycin % FKBP12•rapamycin reaction and
comparison with experimental data. (A) PMF profiles issued from the 15 runs
of CPUS MD simulations performed on the FKBP12WT•rapamycin
complex at Tsim = 21.85°C. The lower-bound PMF profile is highlighted in
bold, and snapshots taken during this particular dissociation process are
displayed inSupplementary Figure S3. Furthermore, we have indicated with
double-headed arrows the associated cutoff separation distance, rp,cut, and
binding free energy, ΔGPMF (see Supplementary Table S1 for all 15

(Continued )

FIGURE 2 | numerical values). (B) Same plots and views for
FKBP12Y82F•rapamycin (see Supplementary Figure S4 for the snapshots
associated with the lower-bound PMF). (C) Same plots and views for
FKBP12D37V•rapamycin (see Supplementary Figure S5 for the snapshots
associated with the lower-bound PMF). (D) Collation of the corrected binding
free energies obtained with the MD CPUS approach, ΔG0

bind as horizontal
lines, and of measurements retrieved from the literature and extrapolated at
Tsim, ΔGcorr

exp as open circles (see Table 1 and Supplementary Table S2 for
the corresponding numerical values). Red markers refer to the wild-type
FKBP12, blue ones refer to the Y82F mutant, and green ones refer to the
D37V mutant. Data have been sorted along the x-axis according to their
publication year; moreover, to emphasize on possible biases due to individual
practices, we have clustered together all measurements coming from a same
laboratory. The four horizontal, black, and dashed lines indicate the ΔG values
associated with the 0.1, 1, 10, and 100 nM dissociation equilibrium constants.
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Multiple Walker Curvilinear-Path Umbrella
Sampling Simulations
The successive steps necessary to implement multiple-walker
umbrella sampling simulations along non-predefined
curvilinear paths, as well as the corresponding theoretical
framework and data treatment procedures, have been
described in a previous article (Joshi and Lin, 2019). In brief,
before each CPUS run, a short 10 ns-long unbiased MD
simulation was conducted and the mean distance between the
centers of geometry (CoG) of both FKBP12 and rapamycin was
computed so as to provide a reference bound distance, Dref.
These CoG are defined by all Cα atoms for FKBP12 and all heavy
atoms for rapamycin in the DISANG file, an input to the pmemd.
The last frame of this unbiased MD simulation is used as the
starting conformations for the CPUS simulation. In the umbrella
sampling simulation, the reaction coordinate was chosen as the
distanceD between the CoGs. The reaction path was divided into
N windows (i.e., the umbrella windows), and D was restrained
using a biasing potential with a spring constant of k = 10.0 kcal/
mol/Å2 so as to keep the interacting molecules in the ξ th distance
window at distance Dξ. The sampling in each umbrella window
was enhanced sequentially so that the physical trajectory of
dissociation could evolve spontaneously. To do so, the last
conformation from each sampled window was chosen as the
starting conformation for the next window for sampling
enhancement. The distance sequence took the form
{Dξ}ξ�Nξ�1 withDξ � Dref + δ(ξ − 1) and δ the distance per step,
set to 0.1 Å. The PMF profile was constructed using well-
established weighted histogram analysis methods (WHAMs)
(Kumar et al., 1992; Grossfield, 2013), which removed the
contribution of biased potential (Figures 2A–C). Finally,
ΔGPMF was chosen as the PMF value corresponding to the
final distance of the constructed profile, Dfinal. Incidentally,
the PMF profile was completed for distances smaller than
Dref by conducting the umbrella sampling in the backward
direction for 10 or 20 windows (depending on the cases).

For each of the FKBP12 variants, 15 umbrella sampling
simulations were carried out independently by assigning
different starting velocities, i.e., setting ig = −1 in the pmemd
input file. Sampling in each distance window was enhanced for
1.0 ns, and CPUS MD simulations were 3.15 µs-long in total.

PMF Correction to Standard Binding Free
Energy
To determine the standard free energy of binding, ΔG0

bind, each
pair composed of a CPUS MD trajectory and of the associated
PMF profile was further processed according to Eq. 1 (Joshi and
Lin, 2019),

ΔG0
bind � ΔGPMF − kBT ln⎡⎢⎢⎢⎢⎢⎢⎣(4πr2p, cut

V0
) ∫

bound

dr e−βAr⎤⎥⎥⎥⎥⎥⎥⎦ (1)

with r � D −Dref being the separation distance, V0 being the
standard state volume (1 663 Å3), Ar being the PMF value at the
separation distance r, and β � 1/kBT. The evaluation of the

second term on the right-hand side requires to know rp,cut,
i.e., the separation distance at which the interaction between
the protein and its ligand vanished. To determine this cutoff, an
interface interaction analysis was conducted using the linear
interaction energy (LIE) module of the AMBER cpptraj
program (Roe and Cheatham, 2013). The first cancellation of
the van der Waals component provided rp,cut. Then, using home-
grown python and UNIX shell scripts, the bound integral
included in the second term of Eq. 1 was computed and
ΔG0

bind was finally determined (Table 1; Supplementary
Table S1).

Curvilinear Path Tracing
The physical paths of dissociation were traced from the
trajectories issued from the umbrella sampling simulations.
First, for each run, the conformations were extracted at the
10-ps interval using the cpptraj module of AmberTools-20 and
aligned with respect to FKBP12 only, the reference conformation
being the one obtained after equilibration of the system. Doing so,
the traversing of rapamycin from a bound to an unbound state
could be plotted in the reference frame of the protein. Next, the
aligned conformations were sorted with respect to the umbrella
windows, which were sampled for 1 ns and thus contained a total
of 100 conformations. For each window, the CoG of all 100
rapamycin molecules were computed and the geometric center of
this ensemble (i.e., the window-center) was computed. The
aligned conformation for which rapamycin was the nearest to
this geometric center was chosen as the representative
conformation for that umbrella window. All such umbrella
window representative conformations were determined and
their CoG, represented by colored spheres, used for tracing the
physical path of dissociation. Finally, for each run, a black curve
was drawn manually as a guide for the eye evidencing the
separation process. Paths were only traced up to r = 10 Å,
i.e., for the first 100 umbrella windows, so as to provide a
clear vision of the initial steps of the dissociation reaction.

RESULTS

Binding Free Energy Computations
All 10 ns-long unbiased MD simulations prior to CPUS showed
root-mean-square deviations (RMSDs) within 1.0 Å and root-
mean-square fluctuations (RMSFs) in the 0.4–3.6 Å range, which
indicates the absence of any large conformational transition
(Supplementary Figure S6). Thus, the FKBP12 variants in
complexes with rapamycin are stable while well equilibrated. If
this result is not surprising for the FKBP12WT•rapamycin
complex, it also validates our simple modeling of
FKBP12Y82F•rapamycin and FKBP12D37V•rapamycin.

Next, for each variant, 15 independent CPUS MD simulations
were conducted and the corresponding PMF profiles were
constructed. All curves flatten before reaching a CoG
separation distance of 30.0 Å, which is a clear signature of
complete dissociations (Figures 2A–C). The ΔGPMF binding
free energies could thus be identified as the last obtained PMF
values. Additionally, in all cases, we could determine a cutoff
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separation distance at which the van der Waals interactions had
decreased to zero (Supplementary Figure S7): rp,cut roughly
ranges between 13 and 19 Å (Supplementary Table S1). With
these cutoffs in hand we could further correct the ΔGPMF

according to Eq. 1, which yielded the ΔG0
bind standard free

energies (Supplementary Table S1). In application of the
variational principle for each of the three complexes, we
retained the lower-bound PMF profile for comparison with
experimental data (Table 1, Figure 2D, Supplementary
Figure S8, and Supplementary Table S2).

We first compared our simulations results with the data
contained in the sole article we found that experimentally
evaluated, with the same technique, the binding of rapamycin
to all of the three FKBP12 variants hereby considered (Table 1)
(DeCenzo et al., 1996b). With our CPUS approach, the
differences of binding free energies between the mutant
proteins and the wild-type one are ΔΔG0

bind = 0.76 and
3.20 kcal/mol for Y82F and D37V, respectively. With the
enzymatic inhibition assay reported in the literature, we have
ΔΔGcorr

exp = 0.55 ± 0.33 and 2.92 ± 0.25 kcal/mol. Thus, both
datasets are consistent if we consider uncertainties: We could
predict in silico that Y82F is a nearly neutral mutation whereas
D37V significantly weakens the interaction with rapamycin.
Interestingly, the thermodynamic integration technique applied
to the FKBP12•FK506 complex could also account for the very
small destabilizing effect of Y82F, in similar agreement with
experimental measurements (Pearlman and Connelly, 1995).

In a second step, we aimed at testing if our CPUS strategy can
also provide reliable estimates of binding free energies (and not
only of their differences). Therefore, we collected dissociation
equilibrium constants for the FKBP12•rapamycin complex from
a little less than 20 original research articles, spanning more than
a 30 years-long period and describing measurements ranging
from enzymatic inhibition assays to single-molecule ones,
from isothermal calorimetry to surface plasmon resonance
(Supplementary Table S2). The experimental data were first
temperature corrected using published binding enthalpies
(Supplementary Figure S8) (Connelly et al., 1993; Connelly
et al., 1994) and then gathered in Figure 2D. The results that
could be anticipated from Table 1 were confirmed: The in silico
stability seems to be ≈1 kcal/mol higher than the one observed at
the bench–although the reported values for FKBP12WT are spread
over more than 3 kcal/mol, the less negative binding free energies
are possibly artifactual. Since the same discrepancy between

simulations and measurements is observed for all three
variants, the chances are high that it is a systematic effect. It
could be due to the force-field inaccuracy and/or to the inability
to fully account for the experimental system.

Atom-Pair Distance Analysis
Even though both Y82 and D37 residues form a hydrogen bond
with rapamycin, their role in ligand binding seems to differ:
Removing the hydroxyl from the tyrosine has nearly no impact on
the affinity (Connelly et al., 1994; Pearlman and Connelly, 1995;
Kostrz et al., 2019) whereas exchanging the ethanoate side chain
of the aspartate for an isopropyl one is significantly destabilizing
(DeCenzo et al., 1996a; Singh et al., 2015; Kostrz et al., 2019).
Since CPUS simulations could reproduce these energetic
measurements, we next tried to see if the obtained trajectories
could shed some light on the molecular mechanisms at work.
More precisely, we performed a detailed analysis of both
hydrogen bonded atom-pairs in the FKBP12WT•rapamycin
complex, during the starting 10 ns-long unbiased simulations
and during the following 190 ns-long CPUS ones (Figures 3, 4;
Supplementary Figures S9, S10). Furthermore, the resulting
patterns were compared with the ones obtained on the two
mutant complexes, for atoms located at equivalent positions
on the side chains.

During the first 50 ns simulating the wild-type complex (10 ns
unbiased and 40 ns of CPUS), the length of the H-bond between
Y82 and rapamycin remains unchanged, with ground level values
around 3 Å for all 15 simulations. This fact is illustrated by the
single position of the main peaks in the atom-pair distance
histograms of Figure 3A and Supplementary Figure S9A (to
illustrate our description different markers have been posted on
the time-trace and on the histogram associated with the lower-
bound PMF profile). Then, step-increases are observed and the
atom-pair distances stabilize on plateaus located between 5 and
10 Å, depending on the simulation run. It thus yields secondary
peaks with narrowly dispersed positions. As pulling progresses,
these rapid transitions are sometimes followed by others,
reflecting temporary interactions that last from ten to tens of
ns and atom-pair distances that correspond to plateaus with
higher average values. Such an evolution is evidenced by
additional peaks in the histograms, peaks that are broader and
that now lie in the 10 to 25 Å range. Incidentally, temporary back
motions to a previous position are also possible, as exemplified by
the R01 time-trace in Figure 3A. As one can see in Figure 3B and

TABLE 1 |Comparison between the numerically and the experimentally determined binding free energies for the FKBP12 + rapamycin% FKBP12•rapamycin reaction. MD
results, i.e., the PMF and the corrected standard free energies, ΔGPMF and ΔG0

bind respectively, were obtained thanks to the CPUS approach. For each of the three
variants, only the values corresponding to the lower-bound PMF profiles were selected (Joshi and Lin, 2019). Measurements are issued from a publication reporting on an
inhibition assay in which the rotamase activity of FKBP12 was spectroscopically monitored using succinyl-AlaLeuProPhe-para-nitroalinide as a substrate and α-chimotrypsin
digestion as a development reaction (DeCenzo et al., 1996b). These original data were acquired at 15°C, and we extrapolated them at 21.85°C, the temperature at which
simulations were performed, so as to obtain the corrected binding free energies and equilibrium constants, ΔGcorr

exp andKcorr
exp respectively (see Supplementary Table S2

and Supplementary Figure S8 for details).

FKBP12 variant ΔGPMF (kcal/mol) ΔG0
bind (kcal/mol) ΔGcorr

exp (kcal/mol) Kcorr
exp (nM)

WT −11.09 −13.98 −12.53 ± 0.23 0.54 ± 0.21
Y82F −10.21 −13.22 −11.98 ± 0.23 1.37 ± 0.50
D37 −8.08 −10.78 −9.61 ± 0.09 77.70 ± 11.97
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Supplementary Figure S9B, a similar behavior is observed for the
carbon atom at the tip of the F82 phenyl ring in the
FKBP12Y82F•rapamycin complex; the only differences are that
the first step-increases occur roughly 5–10 ns earlier and that the
starting atom-pair distance is 1–2 Å shifted (because we are one
more covalent bond apart from the oxygen of the ligand). Such
resembling stepwise dissociations for both the wild-type and the
mutant proteins indicate that the aromaticity of the side-chain
may play a role here. To probe this assumption, we plotted the
atom-pair distance for all six carbons of the ring (Figures 3C,D
and Supplementary Figure S9) and indeed evidenced a
concerted motion making us think that a persistent, long-
range pseudo-bond could be relevant to anion-π interactions
between the side-chain benzyl ring and the oxygen atoms of the
rapamycin (Schottel et al., 2008; Chifotides and Dunbar, 2013;
Giese et al., 2016; Lucas et al., 2016).

The same detailed approach was subsequently applied to study
the role of D37 in rapamycin binding. In the wild-type complex,
the length of the H-bond between this residue and the ligand
remains nearly unchanged during the first 50–70 ns of
simulation: It just fluctuates between 2.7 and 4.0 Å (Figure 4A
and Supplementary Figures S10A). The origin of this fluctuation

is clearly revealed when considering the other oxygen of the
aspartate side-chain (Figure 4B and Supplementary Figures
S10A): The two heteroatoms alternatively interact with
rapamycin upon rotation of the carboxylate group, which
results in two sharp peaks in the atom-pair distance
histograms. Once the H-bond is broken, the oxygens of D37
and the one of the macrolide are torn in a continuous manner,
showing very little step-like distance increments. Moreover, if a
plateau is observed, it manifests itself in the histogram through a
low and shallow peak, i.e., a somehow short and weak interaction.
Comparatively, in the FKBP12D37V•rapamycin complex the
methyl groups of valine do not display any switching
(Figure 4C and Supplementary Figures S10B). Furthermore,
all peaks in the histograms are broader than in the wild-type case,
the one corresponding to the complex at equilibrium as well as
the ones corresponding to transient interactions occurring upon
dissociation. These two observations are in line with the inability
of the alkyl moieties to form strong, directional intermolecular
bonds. Finally, the most obvious signature of the weakening of the
association between rapamycin and FKBP12 after the D37V
substitution is that the atom-pair distances start to increase
earlier, nearly as soon as the bias is applied.

FIGURE 3 | Comparison of the separation distance patterns obtained during the dissociation of rapamycin from the wild-type FKBP12 and from the Y82F mutant.
Pulling on themolecular partners CoG starts at 10 ns. (A) Evolution of the distance between the O3 carbonyl oxygen of rapamycin and the OH hydroxyl oxygen of residue
Y82 in the FKBP12WT•rapamycin complex. For the sake of clarity, data are only provided for the R01 lower-bound PMF profile and for four other ones. The G and Pi
markers indicate, for the time-trace and the histogram associated with the lower-bound profile, the ground level and the different plateaus, respectively. The results
for all 15 CPUS simulations are displayed in Supplementary Figures S9A. (B) Same plot for the distance between the O3 carbonyl oxygen of rapamycin and the CZ
most distal carbon of residue F82 in the FKBP12Y82F•rapamycin complex. The lower-bound PMF profile is now R08, and the data for all 15 CPUS simulations are
available in Supplementary Figures S9B. (C) Evolution of the distance between the O3 carbonyl oxygen of rapamycin and the seven heavy atoms of residue Y82
phenol group in the FKBP12WT•rapamycin complex. The data are only provided for the lower-bound PMF profile (see Supplementary Figures S9A for the whole set of
curves). (D) Same plot for the distance between the O3 carbonyl oxygen of rapamycin and the six carbons of the residue F82 phenyl group in the
FKBP12Y82F•rapamycin complex. Oncemore data are only provided for the lower-bound PMF profile, seeSupplementary Figures S9B for an exhaustive presentation
of the results.
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FIGURE 4 | Comparison of the separation distance patterns obtained during the dissociation of rapamycin from the wild-type FKBP12 and from the D37V mutant.
Pulling on the molecular partners CoG starts at 10 ns. (A) Evolution of the distance between the O6 hydroxyl oxygen of rapamycin and the OD2 carboxylate oxygen of
residue D37 in the FKBP12WT•rapamycin complex. For the sake of clarity, the data are only provided for the R01 lower-bound PMF profile and for four other ones. The Gi
and Pi markers indicate, for the time-trace and the histogram associated with the lower-bound profile, the ground levels and the different plateaus, respectively. The
data for all 15 CPUS simulations are displayed in Supplementary Figures S10A. (B) Enlargement on the first tens of ns of the time-trace associated with the lower-
bound PMF profile. The distance to the second carboxylate oxygen of residue D37 (OD1) has been added to evidence the H-bond switching between the two acceptor
atoms.Supplementary Figures S10A provides similar data for the whole set of simulations. (C) Evolution of the distance between the O6 hydroxyl oxygen of rapamycin
and one of the CG1 methyl carbon of residue V37 in the FKBP12D37V•rapamycin complex. Once more data are only provided for the R01 lower-bound PMF profile and
for four other ones, see Supplementary Figures S10B for an exhaustive presentation of the results.
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Dissociation Path Tracing
The umbrella sampling simulation trajectories were processed to
trace the physical paths of dissociation for the
FKBP12WT•rapamycin, FKBP12Y82F•rapamycin, and
FKBP12D37V•rapamycin complexes (Supplementary Figures
S11–S13, respectively). Rapamycin is always seen to traverse
to the solvent in a curvilinear way, exiting through either the
top left or the top right of the binding cavity. For the paths
corresponding to the lower-bound PMF profiles, the macrolide
initially slides on the surface of the protein smoothly and then
wind a lot. In contrast, the paths associated with the highest PMF
profiles are relatively less curvy (Supplementary Figure S14).
The highly curved nature of lower-bound paths suggests that
rapamycin does not get stuck on FKBP12 and tends to free from
its surface towards the solvent quite early, or at least it does not
get trapped into local energy minima. On the other hand, the
highest PMF paths for FKBP12WT and FKBP12Y82F display
accumulations of spheres that could be the signature of some
interactions outside of the binding site.

DISCUSSION AND CONCLUSIONS

In this work, we present a curvilinear-path umbrella sampling
simulation approach to estimating the free energy of binding for
the FKBP12•rapamycin complex. The strategy consists of several
crucial steps that includes sampling enhancement along multiple
independent curvilinear paths, construction of PMFs,
determination of the lower-bound profile and of the
corresponding ΔGPMF term, and then correction of this term
to obtain the standard free energy of binding. The corresponding
theoretical framework was recently developed and successfully
implemented to estimate protein–protein interaction energetics
(Joshi and Lin, 2019). Here, we extended the approach to a
protein–ligand system, and our results are in good agreement
with reported experimental data. Although overall the CPUS
approach is quite effective to estimate reliably interaction
energetics, there are a few things one needs to keep in mind
before computing the correction term. The umbrella
implementation needs to decide the distance range,
i.e., starting reference bound distance and the end separation
distance. Upon constructing PMF, the profile may depict a
signature of complete dissociation in terms of converging of
the curve to some value. However, in the computation of the
correction term, we suggested interaction energetics (VDW
component) criterion to judge the complete dissociation (see
the Methods and Materials section). The simulations should be
run to that separation distance where the VDW component
converges to zero. In the case of protein–small ligand
dissociation reaction, this distance may vary a bit depending
upon the path that the ligand could take. Therefore, while setting
the end separation distance, it is advised to set it to sufficiently
large values, considering that the dissociating compound may
slide/rebind on the protein surface after an initial dissociation.

Although Lee and Olson mentioned the necessity of sampling
along a curvilinear physical trajectory, they estimated the absolute
binding affinities using a vectorial path (Lee and Olson, 2006).

Furthermore, their energetic results were in good agreement with
the experiments but quadratic approximations were required.
Doudou et al. (2009) discussed rigorously the problem associated
with energetics obtained by sampling along a predefined vectorial
reaction coordinate and pointed out related inconsistencies in the
free energy estimation along different linear paths/directions. The
CPUS approach is a naïve approach that tries to address these
issues by conducting successive umbrella sampling simulations.
The approach is applicable especially when a precise input, such
as the detailed shape of the binding pocket or a predefined vector
of confinement, is unavailable. It relies on the minimal use of
restraint potentials (namely, only one biasing potential in the
umbrella sampling simulation); hence, it fairly bypasses some
major challenges one can face for appropriate de-biasing.
However, the cost has to be paid in terms of conducting a
sufficiently large number of umbrella sampling simulations to
find the lower-bound of the PMF profiles. In addition, due to the
complex nature of biomolecular systems it is rather difficult, if not
impossible, to decide a priori the number of multiple-walker
umbrella sampling simulations to be conducted. This difficulty is
actually also shared by any variational-based approaches, e.g.,
quantum Monte Carlo (Ceperley, 1978; Ceperley and Alder,
1980). It would be always a good sign to find some robust
lower-bound from the multiple PMF profiles. Thus, the
current work delivers an important message that the PMF
profile from any single umbrella sampling simulation
(irrespective of whether predefined vector-based or non-
predefined curved-path-based sampling enhancement) may
likely be misleading. With ongoing advances in GPU
architecture, the simulation time is expected to keep
decreasing, enabling more simulations to be performed in
parallel. Indeed, the implicit/continuum solvent model would
rather be a more natural choice for rapid estimation and reducing
the computation cost. However, some serious concerns are yet to
be suitably resolved, such as too large numerical ranges of
estimated energies and strong dependence of the energetics on
the employed continuum solvation (such as the choice of protein
dielectric constant, the definition of protein boundary, etc.)
(Genheden and Ryde, 2015). Therefore, explicit solvent modes
are highly preferred.

A related issue in the CPUS approach is to evaluate if the
molecular behaviors associated with the lower-bound PMF
profile significantly differ from the ones associated with the
higher profiles. In our previous work, we traced the
protein–protein dissociation paths and observed that there was
a clear difference in the direction of traverse between the lower-
bound case and the rest (Joshi and Lin, 2019). This distinction
between the paths was made possible because the two prominent
paths had been previously evidenced using an extensive brute
force adaptive MD simulation approach (Plattner et al., 2017). In
the case of the FKBP12•rapamycin system, we observed that the
rapamycin initially moves up and is then released in the solvent
by taking either a left or a right path (Supplementary Figures
S11–S14). However, we could not find any supportive correlation
between the plateau value of the PMF profile and the path taken.
Similarly, we looked for correlations between the PMF final value
and the presence of sphere clusters along the way to dissociation,
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the latter signature being interpreted as the temporary
immobilization of rapamycin in a local energy minimum
present at the surface of FKBP12. Although few of such
potential wells could be identified (see, for instance, the red
circles in Supplementary Figure S14), these finding are at the
moment only qualitative. As a consequence, the physical paths of
dissociation do not enable us to differentiate one or a subset of
simulations from the other ones. In fact, it would be interesting to
see whether the paths traced from the CPUS approach are
consistent with the ones revealed by other pathway sampling
methods, such as the string method (Weinan et al., 2002), the
minimum free energy path (Maragliano et al., 2006), the adaptive
and unconstrained enhanced sampling (Miao and McCammon,
2016), the nudged elastic band (NEB) method (Jónsson et al.,
1998), or stochastic difference equation (in length version) SDEL
(Arora and Schlick, 2005).

In this work, we also performed a detailed analysis on the atom-
pair distance distribution patterns (Figures 3, 4 and
Supplementary Figures S9, S10). For all three variants the data
that yielded the lower-bound PMF profile and the ones issued from
the 14 other runs were rather similar in terms of global behavior,
i.e., notwithstanding the variability one can expect when looking at
single molecules. Since the ligand conformation may also play a
crucial role in the dissociationmechanism, we plotted the temporal
evolution of the RMSD for the heavy atoms (C, N, O) of rapamycin
(Supplementary Figures S15–S17). Although some peaks or steps
are present, the overall RMSD profiles are quite stable for all CPUS
simulations and the dissociation process does not seem to be
coupled with important conformational transitions in the
macrolide. The two hydrogen-bonded atom-pairs investigated
here, i.e., Y(F)82-O3 and residue D(V)37-O6, have significantly
different patterns. Moreover, the comparison of distance
distribution patters between atom-pairs of the side-chain benzyl
ring of FKBP12 variants (Y82 and F82) and the O6 of rapamycin
pointed out that they might be involved in the anion-π type of
interactions. These atomistic-level factors could contribute to the
excess dissipation along the curvilinear trajectory of dissociation,
and further detailed investigations are needed to have a
comprehensive understanding of the relationship between
estimated energetics and atom-pair interactions.

Thus, the CPUS approach paves the way to reveal binding
energetics along with mechanistic details. The approach is highly
generalized and can be implemented to almost any
protein–ligand systems, along with protein–protein systems, as
well. The approach offers a strong platform to perform several
types of in-depth analysis towards revealing the underlying
mechanistic details. The drug discovery process often deals
with known drug targets and with new or modified drug
molecules. In the case of rapamycin-FRB interactions, one

such study recently identified DL001 compound that reduces
the side effects in vivo (Schreiber et al., 2019). The CPUS
approach-based characterization could be helpful for further
investigation and for the design of such effective drugs.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

Design of the study: J-HL and CG; NMR experiments: S-YH; MD
simulations: DJ; data analysis: DJ, S-YH, CG, and J-HL; and
manuscript writing: DJ, S-YH, CG, and J-HL.

FUNDING

J-HL and CG benefited from grant “DynaTOR” from French
MAE/MESR and Taiwan MoST (Orchid PHC program). DJ and
S-YH were supported by the grants of MoST [108-2112-M-001-
037-MY3, 110-2811-M-001-580, and 110-2927-I-001-512–] and
RCAS, Academia Sinica. The research of JHL was supported by
the Investigator Award [AS-IA-108-M05] of Academia Sinica.
The HSQC and CSP experiments were conducted at the NMR
core facility of Academia Sinica. The Molecular Motors and
Machines team at the Institut de Biologie de l’Ecole Normale
Supérieure is an “Equipe Labellisée” by the Ligue Nationale
Contre la Cancer.

ACKNOWLEDGMENTS

We would like to thank L. Catoire (Institut de Biologie
Physico-Chimique, Paris) and E. Lescop (Institut de Chimie
des Substances Naturelles, Gif-sur-Yvette) for helpful
discussions and D. Kostrz and T. Strick (Institut de Biologie
de l’Ecole Normale Supérieure, Paris) for the gift of the
FKBP12 plasmid.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.879000/
full#supplementary-material

REFERENCES

Arora, K., and Schlick, T. (2005). Conformational Transition Pathway of
Polymerase β/DNA upon Binding Correct Incoming Substrate. J. Phys.
Chem. B 109, 5358–5367. doi:10.1021/jp0446377

Banaszynski, L. A., Liu, C. W., and Wandless, T. J. (2005). Characterization of the
FKBP·Rapamycin·FRB Ternary Complex. J. Am. Chem. Soc. 127, 4715–4721.
doi:10.1021/ja043277y

Bierer, B. E., Mattila, P. S., Standaert, R. F., Herzenberg, L. A., Burakoff, S. J.,
Crabtree, G., et al. (1990). Two Distinct Signal Transmission Pathways in T
Lymphocytes Are Inhibited by Complexes Formed between an Immunophilin

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 87900010

Joshi et al. Interactions Between Rapamycin and Three FKBP12 Variants

157

https://www.frontiersin.org/articles/10.3389/fmolb.2022.879000/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.879000/full#supplementary-material
https://doi.org/10.1021/jp0446377
https://doi.org/10.1021/ja043277y
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and Either FK506 or Rapamycin. Proc. Natl. Acad. Sci. U.S.A. 87, 9231–9235.
doi:10.1073/pnas.87.23.9231

Bossard, M. J., Bergsma, D. J., Brandt, M., Livi, G. P., Eng, W. K., Johnson, R. K.,
et al. (1994). Catalytic and Ligand Binding Properties of the FK506 Binding
Protein FKBP12: Effects of the Single Amino Acid Substitution of Tyr82 to Leu.
Biochem. J. 297, 365–372. doi:10.1042/bj2970365

Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T.
E., Iii, et al. (2020). AMBER 2020. San Francisco: University of California.

Case, D. A., Cheatham, T. E., Iii, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr,
et al. (2005). The Amber Biomolecular Simulation Programs. J. Comput. Chem.
26, 1668–1688. doi:10.1002/jcc.20290

Ceperley, D. (1978). Ground State of the Fermion One-Component Plasma: A
Monte Carlo Study in Two and Three Dimensions. Phys. Rev. B 18, 3126–3138.
doi:10.1103/physrevb.18.3126

Ceperley, D. M., and Alder, B. J. (1980). Ground State of the Electron Gas by a
Stochastic Method. Phys. Rev. Lett. 45, 566–569. doi:10.1103/physrevlett.45.566

Chifotides, H. T., and Dunbar, K. R. (2013). Anion−π Interactions in Supramolecular
Architectures. Acc. Chem. Res. 46, 894–906. doi:10.1021/ar300251k

Choi, J., Chen, J., Schreiber, S. L., and Clardy, J. (1996). Structure of the FKBP12-
Rapamycin Complex Interacting with Binding Domain of Human FRAP.
Science 273, 239–242. doi:10.1126/science.273.5272.239

Connelly, P. R., Aldape, R. A., Bruzzese, F. J., Chambers, S. P., Fitzgibbon, M. J.,
Fleming, M. A., et al. (1994). Enthalpy of Hydrogen Bond Formation in
Aprotein-Ligand Binding Reaction. Proc. Natl. Acad. Sci. U.S.A. 91,
1964–1968. doi:10.1073/pnas.91.5.1964

Connelly, P. R., Thomson, J. A., Fitzgibbon, M. J., and Bruzzese, F. J. (1993).
Probing Hydration Contributions to the Thermodynamics of Ligand Binding
by Proteins. Enthalpy and Heat Capacity Changes of Tacrolimus and
Rapamycin Binding to FK506 Binding Protein in Deuterium Oxide and
Water. Biochemistry 32, 5583–5590. doi:10.1021/bi00072a013

Decenzo, M. T., Park, S. T., Jarrett, B. P., Aldape, R. A., Futer, O., Murcko, M. A.,
et al. (1996a). FK506-binding ProteinMutational Analysis: Defining the Active-
Site Residue Contributions to Catalysis and the Stability of Ligand Complexes.
Protein Eng. Des. Sel. 9, 173–180. doi:10.1093/protein/9.2.173

Decenzo, M. T., Park, S. T., Jarrett, B. P., Aldape, R. A., Futer, O., Murcko, M. A.,
et al. (1996b). FK506-binding ProteinMutational Analysis: Defining the Active-
Site Residue Contributions to Catalysis and the Stability of Ligand Complexes.
Protein Eng. Des. Sel. 9, 173–180. doi:10.1093/protein/9.2.173

Dickman, D. A., Ding, H., Li, Q., Nilius, A. M., Balli, D. J., Ballaron, S. J., et al. (2000).
Antifungal Rapamycin Analogues with Reduced Immunosuppressive Activity.
Bioorg. Med. Chem. Lett. 10, 1405–1408. doi:10.1016/s0960-894x(00)00184-0

Dickson, A., and Lotz, S. D. (2016). Ligand Release Pathways Obtained with
WExplore: Residence Times andMechanisms. J. Phys. Chem. B 120, 5377–5385.
doi:10.1021/acs.jpcb.6b04012

Doudou, S., Burton, N. A., and Henchman, R. H. (2009). Standard Free Energy of
Binding from a One-Dimensional Potential of Mean Force. J. Chem. Theory
Comput. 5, 909–918. doi:10.1021/ct8002354

Fujitani, H., Tanida, Y., Ito, M., Jayachandran, G., Snow, C. D., Shirts, M. R., et al.
(2005). Direct Calculation of the Binding Free Energies of FKBP Ligands.
J. Chem. Phys. 123, 084108. doi:10.1063/1.1999637

Galat, A. (2013). Functional Diversity and Pharmacological Profiles of the FKBPs
and Their Complexes with Small Natural Ligands. Cell. Mol. Life Sci. 70,
3243–3275. doi:10.1007/s00018-012-1206-z

Genheden, S., and Ryde, U. (2015). The MM/PBSA and MM/GBSA Methods to
Estimate Ligand-Binding Affinities. Expert Opin. drug Discov. 10, 449–461.
doi:10.1517/17460441.2015.1032936

Giese, M., Albrecht, M., and Rissanen, K. (2016). Experimental Investigation of
Anion-π Interactions - Applications and Biochemical Relevance. Chem.
Commun. 52, 1778–1795. doi:10.1039/c5cc09072e

Graziani, F., Aldegheri, L., and Terstappen, G. C. (1999). High Throughput
Scintillation Proximity Assay for the Identification of FKBP-12 Ligands.
SLAS Discov. 4, 3–7. doi:10.1177/108705719900400102

Grossfield, A. (2013). WHAM: theWeighted Histogram Analysis Method, Version
2.0. 9. Available at membrane. urmc. rochester. edu/content/wham. Accessed
November 15, 2013.

Hamilton, G. S., and Steiner, J. P. (1998). Immunophilins: Beyond
Immunosuppression. J. Med. Chem. 41, 5119–5143. doi:10.1021/jm980307x

Holt, D. A., Luengo, J. I., Yamashita, D. S., Oh, H. J., Konialian, A. L., Yen, H. K.,
et al. (1993). Design, Synthesis, and Kinetic Evaluation of High-Affinity FKBP
Ligands and the X-Ray Crystal Structures of Their Complexes with FKBP12.
J. Am. Chem. Soc. 115, 9925–9938. doi:10.1021/ja00075a008

Ikura, T., and Ito, N. (2007). Requirements for Peptidyl-Prolyl Isomerization
Activity: A Comprehensive Mutational Analysis of the Substrate-Binding
Cavity of FK506-Binding Protein 12. Protein Sci. 16, 2618–2625. doi:10.
1110/ps.073203707

Jónsson, H., Mills, G., and Jacobsen, K.W. (1998). Nudged Elastic BandMethod for
Finding Minimum Energy Paths of Transitions.

Joshi, D. C., and Lin, J. H. (2019). Delineating Protein-Protein Curvilinear
Dissociation Pathways and Energetics with Naïve Multiple-Walker Umbrella
Sampling Simulations. J. Comput. Chem. 40, 1652–1663. doi:10.1002/jcc.25821

Karplus, M., and Mccammon, J. A. (2002). Molecular Dynamics Simulations of
Biomolecules. Nat. Struct. Biol. 9, 646–652. doi:10.1038/nsb0902-646

Kästner, J. (2011). Umbrella Sampling.Wiley Interdiscip. Rev. Comput. Mol. Sci. 1,
932–942. doi:10.1002/wcms.66

Kostrz, D., Wayment-Steele, H. K., Wang, J. L., Follenfant, M., Pande, V. S., Strick,
T. R., et al. (2019). A Modular DNA Scaffold to Study Protein-Protein
Interactions at Single-Molecule Resolution. Nat. Nanotechnol. 14, 988–993.
doi:10.1038/s41565-019-0542-7

Kozany, C., März, A., Kress, C., and Hausch, F. (2009). Fluorescent Probes to
Characterise FK506-Binding Proteins. Chembiochem 10, 1402–1410. doi:10.
1002/cbic.200800806

Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., and Kollman, P. A.
(1992). THE Weighted Histogram Analysis Method for Free-Energy
Calculations on Biomolecules. I. The Method. J. Comput. Chem. 13,
1011–1021. doi:10.1002/jcc.540130812

Lee, M. S., and Olson, M. A. (2006). Calculation of Absolute Protein-Ligand
Binding Affinity Using Path and Endpoint Approaches. Biophysical J. 90,
864–877. doi:10.1529/biophysj.105.071589

Lin, J.-H., Perryman, A. L., Schames, J. R., and Mccammon, J. A. (2002).
Computational Drug Design Accommodating Receptor Flexibility: the
Relaxed Complex Scheme. J. Am. Chem. Soc. 124, 5632–5633. doi:10.1021/
ja0260162

Lin, J.-H., Perryman, A. L., Schames, J. R., and Mccammon, J. A. (2003). The
Relaxed Complex Method: Accommodating Receptor Flexibility for Drug
Design with an Improved Scoring Scheme. Biopolymers 68, 47–62. doi:10.
1002/bip.10218

Lu, C., and Wang, Z.-X. (2017). Quantitative Analysis of Ligand Induced
Heterodimerization of Two Distinct Receptors. Anal. Chem. 89, 6926–6930.
doi:10.1021/acs.analchem.7b01274

Lucas, X., Bauzá, A., Frontera, A., and Quiñonero, D. (2016). A Thorough Anion-π
Interaction Study in Biomolecules: on the Importance of Cooperativity Effects.
Chem. Sci. 7, 1038–1050. doi:10.1039/c5sc01386k

Luengo, J. I., Yamashita, D. S., Dunnington, D., Beck, A. K., Rozamus, L. W., Yen,
H.-K., et al. (1995). Structure-activity Studies of Rapamycin Analogs: Evidence
that the C-7 Methoxy Group Is Part of the Effector Domain and Positioned at
the FKBP12-FRAP Interface. Chem. Biol. 2, 471–481. doi:10.1016/1074-
5521(95)90264-3

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and
Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain
and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11,
3696–3713. doi:10.1021/acs.jctc.5b00255

Maragliano, L., Fischer, A., Vanden-Eijnden, E., and Ciccotti, G. (2006). String
Method in Collective Variables: Minimum Free Energy Paths and
Isocommittor Surfaces. J. Chem. Phys. 125, 024106. doi:10.1063/1.2212942

Miao, Y., and Mccammon, J. A. (2016). Unconstrained Enhanced Sampling for
Free Energy Calculations of Biomolecules: a Review.Mol. Simul. 42, 1046–1055.
doi:10.1080/08927022.2015.1121541

Mobley, D. L., and Gilson, M. K. (2017). Predicting Binding Free Energies:
Frontiers and Benchmarks. Annu. Rev. Biophys. 46, 531–558. doi:10.1146/
annurev-biophys-070816-033654

Nerattini, F., Chelli, R., and Procacci, P. (2016). II. Dissociation Free Energies in
Drug-Receptor Systems via Nonequilibrium Alchemical Simulations:
Application to the FK506-Related Immunophilin Ligands. Phys. Chem.
Chem. Phys. 18, 15005–15018. doi:10.1039/c5cp05521k

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 87900011

Joshi et al. Interactions Between Rapamycin and Three FKBP12 Variants

158

https://doi.org/10.1073/pnas.87.23.9231
https://doi.org/10.1042/bj2970365
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1103/physrevb.18.3126
https://doi.org/10.1103/physrevlett.45.566
https://doi.org/10.1021/ar300251k
https://doi.org/10.1126/science.273.5272.239
https://doi.org/10.1073/pnas.91.5.1964
https://doi.org/10.1021/bi00072a013
https://doi.org/10.1093/protein/9.2.173
https://doi.org/10.1093/protein/9.2.173
https://doi.org/10.1016/s0960-894x(00)00184-0
https://doi.org/10.1021/acs.jpcb.6b04012
https://doi.org/10.1021/ct8002354
https://doi.org/10.1063/1.1999637
https://doi.org/10.1007/s00018-012-1206-z
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1039/c5cc09072e
https://doi.org/10.1177/108705719900400102
mailto:edu/content/wham
https://doi.org/10.1021/jm980307x
https://doi.org/10.1021/ja00075a008
https://doi.org/10.1110/ps.073203707
https://doi.org/10.1110/ps.073203707
https://doi.org/10.1002/jcc.25821
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1002/wcms.66
https://doi.org/10.1038/s41565-019-0542-7
https://doi.org/10.1002/cbic.200800806
https://doi.org/10.1002/cbic.200800806
https://doi.org/10.1002/jcc.540130812
https://doi.org/10.1529/biophysj.105.071589
https://doi.org/10.1021/ja0260162
https://doi.org/10.1021/ja0260162
https://doi.org/10.1002/bip.10218
https://doi.org/10.1002/bip.10218
https://doi.org/10.1021/acs.analchem.7b01274
https://doi.org/10.1039/c5sc01386k
https://doi.org/10.1016/1074-5521(95)90264-3
https://doi.org/10.1016/1074-5521(95)90264-3
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1063/1.2212942
https://doi.org/10.1080/08927022.2015.1121541
https://doi.org/10.1146/annurev-biophys-070816-033654
https://doi.org/10.1146/annurev-biophys-070816-033654
https://doi.org/10.1039/c5cp05521k
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Olivieri, L., and Gardebien, F. (2011). Molecular Dynamics Simulations of a
Binding Intermediate between FKBP12 and a High-Affinity Ligand.
J. Chem. Theory Comput. 7, 725–741. doi:10.1021/ct100394d

Pearlman, D. A., and Connelly, P. R. (1995). Determination of the Differential
Effects of Hydrogen Bonding and Water Release on the Binding of FK506 to
Native and Tyr82→Phe82 FKBP-12 Proteins Using Free Energy Simulations.
J. Mol. Biol. 248, 696–717. doi:10.1006/jmbi.1995.0252

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M.,
Meng, E. C., et al. (2004). UCSF Chimera?A Visualization System for
Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612.
doi:10.1002/jcc.20084

Plattner, N., Doerr, S., De Fabritiis, G., and Noé, F. (2017). Complete Protein-
Protein Association Kinetics in Atomic Detail Revealed byMolecular Dynamics
Simulations and Markov Modelling. Nat. Chem. 9, 1005–1011. doi:10.1038/
nchem.2785

Roe, D. R., and Cheatham, T. E., Iii (2013). PTRAJ and CPPTRAJ: Software for
Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem.
Theory Comput. 9, 3084–3095. doi:10.1021/ct400341p

Salomon-Ferrer, R., Case, D. A., and Walker, R. C. (2013). An Overview of the
Amber Biomolecular Simulation Package.Wiley Interdiscip. Rev. Comput. Mol.
Sci. 3, 198–210. doi:10.1002/wcms.1121

Sapienza, P. J., Mauldin, R. V., and Lee, A. L. (2011). Multi-Timescale Dynamics
Study of FKBP12 along the Rapamycin-mTOR Binding Coordinate. J. Mol.
Biol. 405, 378–394. doi:10.1016/j.jmb.2010.10.037

Schottel, B. L., Chifotides, H. T., and Dunbar, K. R. (2008). Anion-π Interactions.
Chem. Soc. Rev. 37, 68–83. doi:10.1039/b614208g

Schreiber, K. H., Arriola Apelo, S. I., Yu, D., Brinkman, J. A., Velarde, M. C., Syed, F. A.,
et al. (2019). A Novel Rapamycin Analog Is Highly Selective for mTORC1 In Vivo.
Nat. Commun. 10, 3194. doi:10.1038/s41467-019-11174-0

Schuler, W., Sedrani, R., Cottens, S., H?berlin, B., Schulz, M., Schuurman, H.-J.,
et al. (1997). Sdz Rad, a New Rapamycin Derivative. Transplantation 64, 36–42.
doi:10.1097/00007890-199707150-00008

Shor, B., Zhang, W.-G., Toral-Barza, L., Lucas, J., Abraham, R. T., Gibbons, J. J., et al.
(2008). A New Pharmacologic Action of CCI-779 Involves FKBP12-independent
Inhibition of mTOR Kinase Activity and Profound Repression of Global Protein
Synthesis. Cancer Res. 68, 2934–2943. doi:10.1158/0008-5472.can-07-6487

Singh, V., Nand, A., and Sarita, S. (2015). Universal Screening Platform
Using Three-Dimensional Small Molecule Microarray Based on Surface
Plasmon Resonance Imaging. RSC Adv. 5, 87259–87265. doi:10.1039/
c5ra15637h

Solomentsev, G., Diehl, C., and Akke, M. (2018). Conformational Entropy of Fk506
Binding to Fkbp12 Determined by Nuclear Magnetic Resonance Relaxation and
Molecular Dynamics Simulations. Biochemistry 57, 1451–1461. doi:10.1021/
acs.biochem.7b01256

Sun, F., Li, P., Ding, Y., Wang, L., Bartlam, M., Shu, C., et al. (2003). Design and
Structure-Based Study of New Potential FKBP12 Inhibitors. Biophysical J. 85,
3194–3201. doi:10.1016/s0006-3495(03)74737-7

Swanson, J. M. J., Henchman, R. H., and Mccammon, J. A. (2004). Revisiting Free
Energy Calculations: a Theoretical Connection to MM/PBSA and Direct
Calculation of the Association Free Energy. Biophysical J. 86, 67–74. doi:10.
1016/s0006-3495(04)74084-9

Tamura, T., Kioi, Y., Miki, T., Tsukiji, S., and Hamachi, I. (2013). Fluorophore
Labeling of Native FKBP12 by Ligand-Directed Tosyl Chemistry Allows
Detection of its Molecular Interactions In Vitro and in Living Cells. J. Am.
Chem. Soc. 135, 6782–6785. doi:10.1021/ja401956b

Torrie, G. M., and Valleau, J. P. (1977). Nonphysical Sampling Distributions in
Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 23,
187–199. doi:10.1016/0021-9991(77)90121-8

Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L., and Clardy, J.
(1993). Atomic Structures of the Human Immunophilin FKBP-12 Complexes
with FK506 and Rapamycin. J. Mol. Biol. 229, 105–124. doi:10.1006/jmbi.1993.
1012

Van Duyne, G. D., Standaert, R. F., Schreiber, S. L., and Clardy, J. (1991). Atomic
Structure of the Rapamycin Human Immunophilin FKBP-12 Complex. J. Am.
Chem. Soc. 113, 7433–7434. doi:10.1021/ja00019a057

Wagner, R., Rhoades, T. A., Or, Y. S., Lane, B. C., Hsieh, G., Mollison, K. W., et al.
(1998). 32-Ascomycinyloxyacetic Acid Derived Immunosuppressants.
Independence of Immunophilin Binding and Immunosuppressive Potency.
J. Med. Chem. 41, 1764–1776. doi:10.1021/jm960066y

Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a Program
to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng.
Des. Sel. 8, 127–134. doi:10.1093/protein/8.2.127

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).
Development and Testing of a General Amber Force Field. J. Comput. Chem. 25,
1157–1174. doi:10.1002/jcc.20035

Wang, Y., Barnett, S. F. H., Le, S., Guo, Z., Zhong, X., Kanchanawong, P., et al. (2019).
Label-free Single-Molecule Quantification of Rapamycin-Induced FKBP-FRB
Dimerization for Direct Control of Cellular Mechanotransduction. Nano Lett.
19, 7514–7525. doi:10.1021/acs.nanolett.9b03364

Wear, M. A., Patterson, A., and Walkinshaw, M. D. (2007). A Kinetically Trapped
Intermediate of FK506 Binding Protein Forms In Vitro: Chaperone Machinery
Dominates Protein Folding In Vivo. Protein Expr. Purif. 51, 80–95. doi:10.1016/
j.pep.2006.06.019

Wear, M. A., and Walkinshaw, M. D. (2007). Determination of the Rate Constants
for the FK506 Binding Protein/rapamycin Interaction Using Surface Plasmon
Resonance: an Alternative Sensor Surface for Ni2+-Nitrilotriacetic Acid
Immobilization of His-Tagged Proteins. Anal. Biochem. 371, 250–252.
doi:10.1016/j.ab.2007.06.034

Weinan, E., Ren, W., and Vanden-Eijnden, E. (2002). String Method for the Study
of Rare Events. Phys. Rev. B 66, 052301. doi:10.1103/physrevb.66.052301

Williamson, M. P. (2018). “Chemical Shift Perturbation,” in Chemical Shift
perturbationModern Magnetic Resonance. Editor G.A. Webb (Cham:
Springer International Publishing), 995–1012. doi:10.1007/978-3-319-
28388-3_76

Wilson, K. P., Yamashita, M. M., Sintchak, M. D., Rotstein, S. H., Murcko, M. A.,
Boger, J., et al. (1995). Comparative X-Ray Structures of the Major Binding
Protein for the Immunosuppressant FK506 (Tacrolimus) in Unliganded Form
and in Complex with FK506 and Rapamycin. Acta Cryst. D. 51, 511–521. doi:10.
1107/s0907444994014514

Wu, X., Wang, L., Han, Y., Regan, N., Li, P.-K., Villalona, M. A., et al. (2011).
Creating Diverse Target-Binding Surfaces on FKBP12: Synthesis and
Evaluation of a Rapamycin Analogue Library. ACS Comb. Sci. 13, 486–495.
doi:10.1021/co200057n

Yang, C.-J., Takeda, M., Terauchi, T., Jee, J., and Kainosho, M. (2015). Differential
Large-Amplitude Breathing Motions in the Interface of FKBP12-Drug
Complexes. Biochemistry 54, 6983–6995. doi:10.1021/acs.biochem.5b00820

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Joshi, Gosse, Huang and Lin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 87900012

Joshi et al. Interactions Between Rapamycin and Three FKBP12 Variants

159

https://doi.org/10.1021/ct100394d
https://doi.org/10.1006/jmbi.1995.0252
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1038/nchem.2785
https://doi.org/10.1038/nchem.2785
https://doi.org/10.1021/ct400341p
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1016/j.jmb.2010.10.037
https://doi.org/10.1039/b614208g
https://doi.org/10.1038/s41467-019-11174-0
https://doi.org/10.1097/00007890-199707150-00008
https://doi.org/10.1158/0008-5472.can-07-6487
https://doi.org/10.1039/c5ra15637h
https://doi.org/10.1039/c5ra15637h
https://doi.org/10.1021/acs.biochem.7b01256
https://doi.org/10.1021/acs.biochem.7b01256
https://doi.org/10.1016/s0006-3495(03)74737-7
https://doi.org/10.1016/s0006-3495(04)74084-9
https://doi.org/10.1016/s0006-3495(04)74084-9
https://doi.org/10.1021/ja401956b
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1006/jmbi.1993.1012
https://doi.org/10.1006/jmbi.1993.1012
https://doi.org/10.1021/ja00019a057
https://doi.org/10.1021/jm960066y
https://doi.org/10.1093/protein/8.2.127
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/acs.nanolett.9b03364
https://doi.org/10.1016/j.pep.2006.06.019
https://doi.org/10.1016/j.pep.2006.06.019
https://doi.org/10.1016/j.ab.2007.06.034
https://doi.org/10.1103/physrevb.66.052301
https://doi.org/10.1007/978-3-319-28388-3_76
https://doi.org/10.1007/978-3-319-28388-3_76
https://doi.org/10.1107/s0907444994014514
https://doi.org/10.1107/s0907444994014514
https://doi.org/10.1021/co200057n
https://doi.org/10.1021/acs.biochem.5b00820
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


PASSer2.0: Accurate Prediction of
Protein Allosteric Sites Through
Automated Machine Learning
Sian Xiao, Hao Tian* and Peng Tao*

Center for Research Computing, Center for Drug Discovery, Design and Delivery (CD4), Department of Chemistry, Southern
Methodist University, Dallas, TX, United States

Allostery is a fundamental process in regulating protein activities. The discovery, design,
and development of allosteric drugs demand better identification of allosteric sites. Several
computational methods have been developed previously to predict allosteric sites using
static pocket features and protein dynamics. Here, we define a baselinemodel for allosteric
site prediction and present a computational model using automated machine learning. Our
model, PASSer2.0, advanced the previous results and performed well across multiple
indicators with 82.7% of allosteric pockets appearing among the top three positions. The
trained machine learning model has been integrated with the Protein Allosteric Sites Server
(PASSer) to facilitate allosteric drug discovery.

Keywords: allostery, machine learning, allosteric site prediction, automated machine learning (AutoML), deep
learning

1 INTRODUCTION

Allostery is a fundamental process that regulates protein functional activities and is known to play a
key role in biology (Gunasekaran et al. 2004). In an allosteric process, an effector molecule binds to a
protein at its allosteric site, often resulting in conformational and dynamical changes (Srinivasan
et al. 2014; Huang et al. 2013). Allosteric drug development is promising for many reasons: the
allosteric drugs could be more selective and less toxic with fewer side effects; they can either activate
or inhibit proteins; they can be used in conjunction with orthosteric drugs. Due to these advantages,
the development of allosteric drugs has gradually increased in recent years (Wagner et al. 2016;
Nussinov et al. 2011; Nussinov and Tsai 2013).

Several methods have been developed to detect and predict allosteric sites in proteins, such as
normal mode analysis (NMA) (Panjkovich and Daura 2012), molecular dynamics (MD) simulations
(Laine et al. 2010), and machine learning (ML) models (Amor et al. 2016; Bian et al. 2019; Huang
et al. 2013). Several current methods are available as web servers or open-source packages, such as
Allosite (Huang et al. 2013), SPACER (Goncearenco et al. 2013), PARS (Panjkovich and Daura
2014), AlloPred (Greener and Sternberg 2015), AllositePro (Song et al. 2017), and PASSer (Tian et al.
2021a). These studies have demonstrated the feasibility of allosteric site prediction models which
combine pocket features and protein dynamics. As summarized by Lu et al. (2014), these studies can
be classified as structure-based, dynamics-based, NMA-based, or combined prediction approaches.
In structure-based approaches, such as Allosite, site descriptors describing chemical and physical
properties of protein pockets are calculated as features for prediction. NMA-based approaches, such
as PARS, take the ability of NMA, which can provide global modes that bear functional significance,
for discovering protein sites that can mediate or propagate allosteric signals. In dynamics-based
approaches, MD simulations and a two-state Ga model are used to construct a conformational or
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energy landscape, in which the latter can be used to calculate
population distribution upon perturbation. SPACER combines
dynamics-based and NMA-based approaches, which apply
Monte Carlo simulations and normal mode evaluation to
unravel latent allosteric sites.

The past decade has witnessed the rapid development of
machine learning in chemistry and biology (Zhang et al. 2020;
Chen L. et al. 2021; Tian et al. 2020; Tian et al. 2021b; Tian et al.
2022). ML methods have been shown to be superior in the
classification of protein allosteric pockets. Allosite and
AlloPred used support vector machine (SVM) (Suykens and
Vandewalle 1999) with curated features. Chen et al. (2016)
used random forest (RF) (Liaw and Wiener 2002) to construct
a three-way predictive model. Our previous study (Tian et al.
2021a) used an ensemble learning method combining the results
of eXtreme gradient boosting (XGBoost) (Chen and Guestrin
2016) and graph convolutional neural networks (GCNNs) (Kipf
and Welling 2016).

Recently, automatedmachine learning (AutoML) has emerged
as a novel strategy to implement machine learning methods to
solve real-world problems Hutter et al. (2019). It has been widely
applied in biomedical or chemistry fields like nucleic acid (Chen
Z. et al. 2021), healthcare (Waring et al. 2020), and disease studies
(Karaglani et al. 2020; Panagopoulou et al. 2021). As the name
suggests, AutoML helps to automate the machine learning
pipeline, from data processing, model selection, and ensemble
to hyperparameter tuning. This saves human power from the
time-consuming and iterative tasks of machine learning model
development Yao et al. (2018). Also, AutoML offers the
opportunities to produce simpler solutions with superior
model performance (Elshawi et al. 2019).

In this study, we first defined the baseline for protein allosteric
site prediction, an algorithm that identifies the pocket with the
highest pocket score among all pockets detected by FPocket (Le
Guilloux et al. 2009) as allosteric. This primitive baseline
predictor has accuracy, precision, recall, and F1 score values of
0.968, 0.689, 0.571, and 0.624, respectively. Then, we applied two
AutoML frameworks, AutoKeras (Jin et al. 2019) and AutoGluon
(Erickson et al. 2020), for the prediction of protein allosteric sites.
Our model is shown to be robust and powerful under various
indicators with precision, recall, and F1 score values of 0.850,
0.616, and 0.701, respectively, on the test set, and 82.7% of
allosteric sites in the test set are ranked among the top three
positions. We also applied the well-trained model to predict
allosteric sites from novel proteins that are not included in the
training set and demonstrated their binding structures.

2 MATERIALS AND METHODS

2.1 Protein Database
The protein data used in this work were collected from the
Allosteric Database (ASD) (Huang et al. 2011). Its newest
version contains a total of 1,949 entries of allosteric sites, each
with different proteins andmodulators Liu et al. (2020). However,
data need to be filtered from ASD under certain criteria to ensure
the data quality Zha et al. (2022). To ensure protein quality and

diversity, Huang et al. (2013) selected 90 proteins using the
previous rules: protein structures with either resolution below
3 Å or missing residues in the allosteric sites were removed, and
redundant proteins that have more than 30% sequence identity
were filtered out. ASBench (Huang et al. 2015), an optimized
selection of ASD data, includes a core set with 235 unique
allosteric sites and a core-diversity set with 147 structurally
diverse allosteric sites. Here, we use 90 proteins from ASD
and 138 proteins in the core-diversity set from ASBench. A
total of 204 proteins were used in this study, after removing
the duplicate records. The selected proteins were stored in the
GitHub repository for this study.

2.2 Site Descriptors
FPocket, a geometry-based algorithm to identify pockets, is used
to detect pockets on the surface of the selected proteins. For each
of the detected pockets, 19 numerical features are calculated from
FPocket (Supplementary Table S1). Compared with other web
servers and open-source pocket detection packages, FPocket is
superior in execution time and the ease to be integrated with
other models.

For the 90 proteins from ASD, a pocket is labeled as either 1
(positive) if it contains at least one residue identified as binding to
allosteric modulators or 0 (negative) if it does not contain such
residues. Therefore, a protein structure may have more than one
positive label. A total of 2,123 pockets were detected with 133
pockets being labeled as allosteric sites. For the 138 proteins from
ASBench, a total of 3,708 pockets were detected. A pocket is
labeled as 1 (positive) only if its centroid is the closest to that of
the allosteric modulator, otherwise 0 (negative).

2.3 Automated Machine Learning
The implementation of the state-of-the-art ML methods
normally requires extensive domain knowledge and
experience. This process includes data preparation and
preprocessing, feature engineering, model selection, and
hyperparameter tuning, which are time-consuming and
challenging. Automated machine learning aims to free human
effort from this process.

Keras is an open-source software library that provides a
Python interface for artificial neural networks. Keras offers
consistent and simple APIs and provides clear and actionable
error messages. It also has extensive documentation and
developer guides. AutoKeras (Jin et al. 2019) is an AutoML
system based on Keras, enabling Bayesian optimization to
guide the network morphism for efficient neural architecture
parameter search. In the current study, AutoKeras v1.0.16 is
applied.

Developed by Amazon Web Services, AutoGluon (Erickson
et al. 2020) automates these ML tasks and achieves the best
performance. Moreover, AutoGluon includes techniques for
multi-layer stacking that can further boost ML performance.
AutoGluon is advantageous in: (1) simplicity: straightforward
and user-friendly APIs; (2) robustness: no data manipulation or
feature engineering required; (3) predictable-timing: ML models
are trained within the allocated time; (4) fault-tolerance: the
training process can be resumed after interruption. Also,
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AutoGluon is an open-source library with transparency and
extensibility. Another advantage is that the AutoGluon
framework uses a multi-layer stacking with k-fold bagging to
reduce the model’s variance. The number of layers and the value
of k are heuristically determined within the framework.
AutoGluon v0.2.0 is applied in this study with 14 base models,
including random forest, XGBoost, and neural network. The
models are listed in Supplementary Table S2.

2.4 Performance Indicators
For binary classification, the results can be evaluated using a
confusion matrix (Table 1).

Various indicators could be constructed based on the
confusion matrix to quantify the model performance: (1)
precision measures how well the model can predict real
positive labels; (2) recall measures the ability to classify true-
positive and true-negative; (3) F1 score is the weighted average of
precision and recall. These indicators are calculated through Eqs
1–3. The higher the values of these indicators, the better the
model’s performance.

Precision � TP
TP + FP

, (1)

Recall � TP
TP + FN

, (2)

F1 score � 2 × Precision × Recall
Precision + Recall

. (3)

3 RESULTS AND DISCUSSION

3.1 Baseline With FPocket
FPocket detects pockets on the surface of the selected proteins
and sorts them in the descending order of pocket scores, which
reflect the putative capacity of the pocket to bind a small
molecule. The scoring function formula in FPocket is shown
in the supporting information. As described in FPocket, a training
dataset containing 307 proteins was first generated to determine
the weights of the five features in calculating the pocket score.
These proteins are filtered based on a previous study for the
evaluation of PocketFinder (An et al. 2005), which is trained on
5,616 protein–ligand complexes, including 4,711 unique proteins
and 2,175 unique ligands. As proposed, PocketFinder can be used
to predict ligand-binding pockets and suggest new allosteric
pockets, leveraging the allosteric site prediction power to FPocket.

We notice that many positive pockets have relatively high
pocket scores. For 70.6% of the total 204 proteins used in our
study, the top-ranked pocket among the pockets detected is
positive in our labeling method. For 84.3% of proteins in the

test set, the positive pockets are among the top three ranked
positions. Among all the positive pockets, nearly 90% of them
appear in the first eight positions (Figure 1).

Here, we designed a baseline for allosteric site prediction: a
predictor that predicts the pocket with the highest pocket score as
positive, and others as negative.We applied this baseline model to
the data and evaluated the performance. The confusion matrix is
shown in Table 2. The accuracy, precision, recall, and F1 score
values are 0.968, 0.706, 0.574, and 0.633, respectively.

A model could be evaluated as useful if it either has higher
performance indicator values (classifying power) or higher top

TABLE 1 | Binary classification results in a confusion matrix.

Real positive Real negative

Predicted positive True-positive (TP) False-positive (FP)
Predicted negative False-negative (FN) True-negative (TN)

FIGURE 1 | Rank of positive pockets among all pockets. Nearly 90
percent of positive pockets appear among the first eight pockets sorted by the
pocket score.

TABLE 2 | Confusion matrix of the baseline predictor.

Real positive Real negative

Predicted positive 144 60
Predicted negative 107 4844

FIGURE 2 | Amounts of pockets for proteins. The amount varies from 4
to 91.
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three probabilities (ranking power) than this baseline
predictor model.

3.2 Model Selection and Fine-Tuning on the
Validation Set
The number of pockets that FPocket detects for each individual
protein ranges between 4 and 91 for 204 proteins used in this study
and has an average value of 25 (Figure 2). The pockets with positive
labels only account for 4.87% (251 out of 5,155) in all pockets,
making this dataset highly imbalanced. Data imbalance happens in a
classification problem where the samples are not equally distributed
among classes. This could lead to unsatisfactory model performance
because the trained machine learning model might not learn
sufficiently from the limited minority examples.

There are mainly two effective ways, over-sampling and
under-sampling, to handle an imbalanced dataset (Lemaître
et al. 2017). Over-sampling expands the size of the minority
class by randomly duplicating existing examples or generating
new but similar examples. However, this could result in
overfitting for some machine learning models. Also, in the
context of protein allosteric sites, the generated allosteric sites
may not be biologically reasonable. Due to these reasons, under-
sampling was applied to adjust the composition of the training
data in the following procedure.

We first randomly split the selected 204 proteins into a training
set with 122 proteins, a validation set with 41 proteins, and a test set
with 41 proteins. To balance the training process, we only kept a
certain number, referred to as the cutoff position, of top pockets
based on their pocket scores generated by FPocket for each protein in
the training set. For example, if the cutoff position is set to 5, only the
first five pockets sorted by FPocket for proteins in the training set
were used for the model training purpose. For cutoff positions from
4 to 8, both AutoKeras and AutoGluon models are trained and
validated (Figure 3). The pocket descriptors generated by FPocket
were used as features.Whether a pocket is allosteric or not according
to ASD is represented as 1 for allosteric or 0 for nonallosteric. In the

validation and test sets, a predicted value above 0.5 indicates an
allosteric site, and a predicted value below 0.5 indicates a
nonallosteric site.

Based on AutoKeras and AutoGluon model performance
using cutoff values ranging 4–8, the value of 6 leads to the
balance between the precision and recall with the highest F1
score. When the cutoff is smaller than 6, the unsatisfactory
performance might result from insufficient data for models to
learn. When the cutoff is larger than 8, the performance starts to
drop because of the unbalanced and low-quality data. Therefore,
the cutoff value of 6 was selected to produce the final model.

In the final model, the mean values of accuracy, precision,
recall, and F1 score for the AutoKeras model were calculated as
0.955, 0.853, 0.595, and 0.675, respectively. These values for the
AutoGluon model are 0.976, 0.919, 0.656, and 0.754, respectively.
The results show that the AutoGluon model has a better
performance than the AutoKeras model and thus was selected
for further test and final deployment.

3.3 Test Set Performance
The final AutoGluon model using the cutoff position as 6 was
tested on the test set, where the model was used to evaluate all the
detected pockets. The metric values shown are comparable to its
performance using the validation set (Table 3), indicating the
good prediction power of this model.

It is also expected that a powerful machine learning model is
capable of ranking allosteric sites in the top positions. In the

FIGURE 3 | (A) AutoKeras and (B) AutoGluon models performance for all pockets of the proteins in the validation set based on different cutoff positions. The cutoff
value for the training set ranges from 4 to 8. Each model was trained in 10 independent runs for each value. The mean and standard deviation of each metric were
calculated. A cutoff of 6 was considered reaching a balance between recall and precision with the highest F1 score.

TABLE 3 | Classifying power and ranking power of AutoGluon models on the
test sets.

Indicator Mean value Top position Mean value

Precision 0.850 Top 1 65.1%
Recall 0.616 Top 2 77.8%
F1 score 0.701 Top 3 82.7%
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current study, we evaluated the ranking power of our models by
calculating the ranking probabilities of the allosteric sites at the
top 1, 2, and 3 positions. The probabilities of allosteric sites,
shown in Table 3, indicate that the final prediction model could
rank the known allosteric sites among the top three positions for
the majority of the test set. Taking the classifying power and
ranking power together, our method has a great performance on
allosteric site predictions.

3.4 Novel Protein Prediction
To further evaluate the performance of our model, we tested our
model using 50 randomly picked proteins that are in the core set
but not included in the core-diversity set in ASBench. Among
these proteins, 22, 11, and 3 of their allosteric sites are ranked as
first, second, and third, respectively. This leads to 72% of the
additional test set with their true allosteric sites being ranked
among the top three by our model. We also plot nine structures
highlighting predicted allosteric sites and modulators (Figure 4).
Our model successfully predicted allosteric sites as the top site for
seven out of these proteins (Figures 4A–G), with the probabilities
of 58.94%, 79.40%, 78.30%, 82.16%, 95.78%, 96.12%, and 85.11%,
respectively. For protein in Figure 4H, the top pocket has a
probability of 80.37%, and the real allosteric site is predicted at the
second place with a probability of 77.20%. For protein in
Figure 4I, the top pocket has a probability of 77.24%, and the

real allosteric site is predicted at the second place with a
probability of 51.09%.

In some cases, the fallaciously predicted top one pockets are close
to and even merge into the pocket labeled as allosteric (Figures 4H,

FIGURE 4 | Structures of nine proteins with modulators and predicted pockets. PDB IDs of these proteins are: (A) 2FPL, (B) 2R1R, (C) 3BCR, (D) 4PFK, (E) 1Q5O,
(F) 3PEE, (G) 4HO6, (H) 1XMV, and (I) 2OZ6. The yellow pockets are labeled as allosteric, and the lime molecules are modulators. For (A–G), the allosteric pockets are
successfully predicted as top one by our model. For (H,I), the red pockets are predicted as the first place, and the allosteric pockets are predicted as the second place.

FIGURE 5 | Allosteric probability results of chain A of protein 5DKK
returned by command line API of PASSer.
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I). Consequently, it is not straightforward to determine whether the
predicted top one pockets are false-positive. This complication of
model interpretation could result from the data preprocessing (pocket
detection and pocket labeling). In reality, two pockets might
collectively act as one allosteric site in a biological process but
being identified as two individual pockets in our model.

3.5 Web Server
The model has been integrated into the Protein Allosteric Site
Server. The server can be either accessed at https://passer.smu.edu
or through the command line. Here is an example using the
command line to test the chain A of protein 5DKK using the
AutoML model.

# !/bin/bash
curl −X POST \
−d pdb=5dkk −d chain=A −d model=autoML \
https://passer.smu.edu/api

This returns the top 3 pocket probabilities with residues in the
json format, as shown in Figure 5, which can be easily parsed for
further usage. Therefore, this provides a chance for large-scale
searching applications for allosteric drug discovery.

4 CONCLUSION

Several machine learning-based methods have been developed for
allosteric site prediction over the past few years. In this study, we
applied an emerging ML technique, automated machine learning, to
further improve the performance of protein allosteric site prediction
models. The AutoML framework is capable of automating the
machine learning model pipeline. The developed allosteric site
prediction model, PASSer2.0, performs well under multiple
indicators and is shown to have a good ranking power with a
high percentage of ranking allosteric sites at top positions.
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prediction of ligand binding and
conformational selection
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This research introduces new machine learning and deep learning approaches,

collectively referred to as Big Data analytics techniques that are unique to

address the protein conformational selection mechanism for protein:ligands

complexes. The novel Big Data analytics techniques presented in this work

enables efficient data processing of a large number of protein:ligand

complexes, and provides better identification of specific protein properties

that are responsible for a high probability of correct prediction of protein:ligand

binding. The GPCR proteins ADORA2A (Adenosine A2a Receptor), ADRB2

(Adrenoceptor Beta 2), OPRD1 (Opioid receptor Delta 1) and OPRK1 (Opioid

Receptor Kappa 1) are examined in this study using Big Data analytics

techniques, which can efficiently process a huge ensemble of protein

conformations, and significantly enhance the prediction of binding protein

conformation (i.e., the protein conformations that will be selected by the

ligands for binding) about 10–38 times better than its random selection

counterpart for protein conformation selection. In addition to providing a

Big Data approach to the conformational selection mechanism, this also

opens the door to the systematic identification of such “binding

conformations” for proteins. The physico-chemical features that are useful

in predicting the “binding conformations” are largely, but not entirely, shared

among the test proteins, indicating that the biophysical properties that drive the

conformation selection mechanism may, to an extent, be protein-specific for

the protein properties used in this work.

KEYWORDS

protein conformation selection, Big Data, deep learning, machine learning, feature
selection, drug discovery

1 Introduction

The prediction of which small molecules, e.g., substrates or modulators, are more

likely than other small molecules to bind to a specific protein, is one the most formidable

challenges of contemporary biology, chemical biology and pharmacology. Only a small

fraction of the large number of small organic molecules present in living organisms will, in

most cases, bind to a specific protein. There is a considerable amount of work that aims at

improving the biophysical approaches to predicting such protein:ligand interactions.
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As exemplified in the current special issue of Frontiers, the

dynamics of the protein target is increasingly taken into account

in such predictive approaches. Indeed, a protein cycles through

multiple conformations, a few of which will be bound by its

ligands, as conceptualized in the “conformational selection”

mechanism of ligand binding. Virtual docking (Amaro et al.,

2018) that aims at predicting if a given small chemical binds to a

given protein, usually considers only one protein conformation

in an “induced fit” mechanism. Advances beyond a simple

induced fit mechanisms have been proposed, such as

submitting the protein:ligands complexes to molecular

dynamics simulations after docking (Seelinger and de Groot,

2010), which identifies binding modes of known ligands close to

that of their experimental co-crystallized structures, or

generating an ensemble of holo structures from experimental

structures deposited in the PDB for a given protein target

(Aggarwal et al., 2021). This present work, continuing in that

direction, aims at using the information contained in molecular

dynamics simulations of a single protein target structure prior to

any docking.

In principle the “binding” protein conformations will

correspond to the free energy minima of the (protein +

ligand) complex free energy hypersurface. In our research, we

are looking into whether we can identify these rare apo-

conformations that possess this capacity to bind their ligands,

while the vast majority of the other apo-protein conformations

do not. This paper describes our Big Data analytics work toward

such characterization of what properties of an apo-protein

conformation more likely lead to conformational selection.

The data we used here has been obtained using supermassive

“ensemble docking” from proteins’ molecular dynamics

simulations, and is described in (Evangelista et al., 2016). The

data corresponds to about 1.5 millions of protein conformation

and protein:ligand complex structures and their associated

docking scores.

Big Data analytics provides an efficient approach to analyzing

such a large amount of data, and also addresses the class

imbalance problem (Abd Elrahman and Abraham, 2013),

which is a result of imbalanced groups or sub-categories

present in the data, where the majority class or larger group

of data consists of non-binding protein conformations and it

overshadows the minority class or smaller data group, which

comprises the data-of-interest i.e., the binding protein

conformations. In our prior work (Akondi et al., 2019; Gupta

et al., 2022; Sripriya Akondi et al., 2022), a novel two-stage

sampling-based classifier framework was proposed with the

primary goal of addressing the class imbalance problem and

maximizing the detection of potential binding protein

conformations as conventional machine learning (ML)

algorithms are ill-equipped to deal with the issue of class

imbalance during the data-learning phase. This paper extends

on our previous work by presenting additional improvements to

our two-stage sampling-based classification approach (Gupta

et al., 2022) using deep learning techniques and four different

feature selection methods in conjunction with an Enrichment

ratio framework.

2 Materials and methods

2.1 Dataset description

As described in our previous work (Gupta et al., 2022),

Molecular Dynamics (MD) simulations of four proteins,

namely, ADORA2A (Adenosine A2a Receptor), ADRB2

(Adrenoceptor Beta 2), OPRD1 (Delta Opioid Receptor) and

OPRK1 (Opioid Receptor Kappa 1) were used to study the

efficacy of our proposed method. The conformations of these

four proteins have been well-studied, and the protein

conformations that: a) will bind to ligands (binding

conformations) and b) will not bind to ligands (non-binding

conformations), are known and have been previously

documented and published (Evangelista et al., 2016).

ADORA2A: This dataset has 50 attributes and consists of

2,998 protein conformations among which 851 protein

conformations are “binding” and 2,147 protein conformations

that are “non-binding”. Here the imbalance ratio is 3:1 i.e., for

every datasample belonging to minority class (binding

conformations) there are three data samples belonging to the

majority class (non-binding conformations).

ADRB2: This dataset has 51 attributes and consists of

2,565 protein conformations among which 156 are binding

and 2,411 protein conformations are non-binding. Here the

imbalance ratio is 16:1 i.e., for every datasample belonging to

minority class (binding conformations) there are 16 data samples

belonging to the majority class (non-binding conformations).

OPRD1: This dataset has 51 attributes and consists of

3,004 protein conformations among which 72 protein

conformations are binding and 2,932 protein conformations

are non-binding. Here the imbalance ratio is 41:1 i.e., for

every datasample belonging to minority class (binding

conformations) there are 41 data samples belonging to the

majority class (non-binding conformations).

OPRK1: This dataset has 50 attributes and consists of

2,998 protein conformations among which 138 protein

conformations are binding and 2,862 protein conformations

are non-binding. Here the imbalance ratio is 20:1 i.e., for

every data sample belonging to minority class (binding

conformations) there are 20 data samples belonging to the

majority class (non-binding conformations).

Tables describing the protein attributes/features/descriptors

for ADORA2A, ADRB2, OPRD1, and OPRK1 datasets can be

found in our previous work (Gupta et al., 2022). ADRB2 and

OPRD1 have one additional feature - pro_pl_seq (Sequence

based pI) in comparison to ADORA2A and OPRK1. The

molecular descriptors were calculated using the protein
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descriptors from the program MOE (Akondi et al., 2019;

Chemical Computing Group, 2019; Gupta et al., 2022; Sripriya

Akondi et al., 2022).

2.1.1 Analysis of variance
Analysis of variance (ANOVA) is a statistical analysis

method used here to calculate the linear relationship between

the various protein features and to select the important protein

features that correspond to the highest F-values (Johnson and

Synovec, 2002). The top “x” features with the greatest F-values

were selected in this case, where the x features to be retained is

determined experimentally by the user. Thus, ANOVA technique

allows for selection of the primary physio-chemical protein

properties that essay a critical role in protein:ligand

interaction and conformation selection.

2.1.2 Mutual information
Mutual Information (MI) (Macedo et al., 2019) is a measure

of the amount of information that can be inferred about a

variable U through the use of the other given random variable

V. The mutual information I (U; V) for random variables U and

V can be defined as follows (Guyon and Elisseeff, 2003; Gupta

et al., 2022):

I U;V( ) � −∑
v∈V

∑
u∈U

p u, v( )log p u, v( )
p u( )p v( ) (1)

where

• p(u,v) is the joint probability density function.

• p(u) is the probability density function

In Eq. 1, if the MI value I is 1, thenU andV are dependent on

each other, i.e., protein features share similar information. If the

MI value I is 0, then U and V are independent of each other

i.e., no common (in other words unique) information between

the features. The MI in physio-chemical properties are calculated

as follows:

• First, calculate the MI value for all properties to determine

how dependent the physio-chemical features vectors are

and understand the common information contained in all

the protein features.

• Then, sort the protein features according to their highest

MI values. The top “x” protein features with the greatest MI

values are retained, where x is user defined.

2.1.3 Recurrence quantification analysis
Recurrence Quantification Analysis (RQA) is a non-

linear data-analysis method that is used to study the

dynamical systems (Eckmann et al., 1987). The first step in

the recurrence analysis is to quantify the repeating patterns of

a dynamic system. One of the variables generated by the

quantification of the recurrences is Entropy (ENT), which is

the probability distribution p(j) of the diagonal line on the

RQA plot and is defined as:

ENTR � −∑M

j�j min
p j( ) ln p j( )( ) (2)

where M is the number of points on the state space trajectory and

j is the length of the diagonal line in the RQA plot. We investigate

the RQA-based entropy measure’s link to the probability of

detecting potential binding conformations in terms of time-

space evolution of protein conformations.

2.1.4 Spearman correlation coefficient
Spearman correlation coefficient is a statistical measure

(Hauke and Kossowski, 2011) of the strength and direction of

the monotonic relationship between each protein feature and

target variable. The correlation coefficient for each feature is

obtained by applying the formula as defined below:

ρ � Σi(ui − u−)(vi − v−)����������������
Σi(ui − u−)2(vi − v−)2

√ (3)

where u is the feature vector and u− is its corresponding mean.

Similarly, v is the target vector and v− is the mean of the target

vector. The Spearman correlation coefficients for protein features

are computed, sorted and ranked based on the absolute value of the

correlation coefficient. A subset of the protein features were then

selected based on the “x” highest rankings, where x is user-defined.

Therefore, the Spearman correlation coefficient allows us to select

protein features that are strongly correlated with each other.

2.1.5 Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) is a tree ensemble

boosting approach that merges a number of weak classifiers into a

single strong classifier (Chen and Guestrin, 2016). Starting with a

base learner, the strong learner is trained iteratively for best

classification or prediction performance. Given a dataset X with

m samples and n protein descriptors, let (x1 , y1), ..., (xk , yk) be a
set of inputs xi and corresponding outputs yi (Babajide Mustapha

and Saeed, 2016). The XGBoost algorithm uses “K” additive

functions, each representing a classification and regression tree

(CART) to predict the output label ŷi as defined by:

ŷi � ∑K

k�1tk xi( ), tk ∈ T (4)

where tk corresponds to a distinct tree structure with leaf score

“w” and T is the space of all classification and regression trees.

The goal is to minimize the following regularized objective

function (Babajide Mustapha and Saeed, 2016):

Obj Θ( ) � ∑m

i
l yi , ŷi( ) +∑K

k
Ψ tk( ) (5)

where l is the loss function that is used to measure the difference

between the predicted value ŷi and the actual value yi and Ψ is

the regularization term that is used to avoid overfitting and is

defined as:
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Ψ tk( ) � γD + 1
2
λ w‖ ‖2 (6)

where D is the number of leaves, w is the weight of each leaf, γ

and λ are constants to control the degree of regularization.

2.1.6 K-Means clustering
K-Means clustering is an unsupervised machine learning

algorithm (Oyelade et al., 2010) that is used to understand the

data patterns in the input data by grouping the instances in the

dataset that are similar into different clusters. K-Means clustering

is often used to produce compact clusters with minimum intra-

cluster distances and maximum inter-cluster distances (Oyelade

et al., 2010). This goal is achieved by splitting the data into a

number of clusters “k” that the user specifies (Wilkin and Huang,

2007). Here we employ the K-Means clustering algorithm to

under sample the data points from the majority class samples

i.e., non-binding protein conformations as demonstrated in our

prior work (Akondi et al., 2019).

2.1.7 Generative adversarial networks
Generative adversarial networks (GAN) is an unsupervised

learning method that involves learning regularities or patterns in

the input data to produce new examples that mimic the original

dataset. The GAN technique uses two artificial models, the

discriminator and generator, which compete for data learning (Jo

and Kim, 2022). The discriminator focuses on discriminating or

distinguishing between the original and synthetic data, whereas the

generator tries to create synthetic data that is comparable to the real

data. The loss function of GAN (Jo and Kim, 2022) is defined as:

min
D

max
F

V F,D( ) � Qu~pu log F u( )([ ]
−Qv~pv log 1 − F D v( )( )( )([ ] (7)

where.

• pu is the data-generating distribution

• pv is the noise distribution

• u is the real input data

• v is the noise input to the generator neural network

• F(u) is the output probability of the generator

• D(v) is the sample generated by the generator neural

network

Here the GAN is used to oversample or replicate the minority

class in the dataset to alleviate the class imbalance problem and in

turn maximize the prediction of the potential binding protein

conformations.

2.1.8 Convolutional neural networks
Convolutional neural network (CNN) is a supervised deep

learning technique (Hossain and Sajib, 2019) that has emerged as

the most widely used artificial neural network in many computer

vision applications, including texture recognition (Cimpoi et al.,

2016), remote sensing scene classification (Hu et al., 2015; Penatti

et al., 2015) and structure-based protein analysis (Torng and

Altman, 2017). Architectural design of a CNN consists of several

convolutional, pooling and dropout layers followed by one or

more fully-connected layers (FC) (Sultana et al., 2018). Figure 1

describes the architecture of the CNN used in our work.

The architectural design of the CNN in our work consists of a

convolutional layer followed by dropout to reduce overfitting, a

max pooling layer, a fully connected layer and an output layer.

Rectified linear unit (ReLU) is used as the activation function for

the convolution layer and fully connected layer. Binary cross-

entropy L is used as the loss function for the CNN.

2.1.9 Recurrent neural networks
Recurrent neural network (RNN) is a class of neural networks

which is used to detect patterns in a sequence of data (Ho and

Wookey, 2020). In our work, the RNN architecture consists of two

long-short term memory (LSTM) (Schmidt, 2019) layers with

dropout followed by a dense layer with dropout and an output

layer. The LSTM unit introduces a gate mechanism to select

whether to retain or discard specific information in the existing

memory. If the LSTM unit recognizes a pivotal protein descriptor

from an input sequence early on, then it captures any potential

long-distance dependencies between the protein descriptor and

target value. Figure 2 describes the architecture of the RNN used in

our work. Rectified linear unit (ReLU) is used as the activation

function for the LSTM unit and dense layer, sigmoid function is

used as the activation function in the output layer and binary

cross-entropy as the loss function.

2.1.10 Evaluation metrics
The confusion matrix and its derived evaluation parameters

such as classification accuracy, sensitivity, specificity, etc., are some

of the most commonly used ML evaluation metrics to validate a

classification or prediction performance of ML algorithms. In this

case of binary classification between binding and non-binding

protein conformations, the confusionmatrix has four categories of

classification results as follows:

• True Positive (TP): When the classifier accurately predicts

“binding,” indicating that the ligand and target protein did

bind (Right predictions of class 1)

• True Negative (TN): When the classifier accurately

predicts “non-binding,” indicating that the ligand and

target protein did not bind (Right predictions of class 0)

• False Negative (FN): When the classifier inaccurately

predicted “non-binding,” but the ligand and target

protein did bind (Wrong predictions of class 0)

• False Positive (FP): When the classifier inaccurately

predicted “binding,” but the ligand and target protein

did not bind (Wrong predictions of class 1)
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Here class 0 refers to the non-binding protein conformations

(majority class) and class 1 denotes the binding protein

conformations (minority class).

Accuracy of an AI/ML framework is calculated as the sum of

correctly predicted binding and non-binding protein

conformations divided by the total number of conformations

in the data set. It is defined as:

Accuracy � TP + FN

TP + FP + FN + TN
(8)

Sensitivity is the ability of the AI/ML framework to correctly

predict binding protein conformations. It is calculated as the

number of correctly predicted binding protein conformations

divided by the total number of binding protein conformations in

the data set as defined below:

Sensitivity � TP

TP + FN
(9)

Eqs 8, 9 are used for performance evaluation of the

proposed AI/ML protein conformation selection/prediction

framework.

2.1.11 Enrichment ratio framework
The enrichment was calculated using the TP and FN

predictions from the Big Data analytics based AI/ML protein

conformation selection/prediction framework, described in

Section 2.2. The base enrichment ratio is calculated to

measure the effectiveness of general predictive performance

in the absence of the ML protein conformation selection

framework as in our prior work (Gupta et al., 2022). For

accurate base enrichment ratio we performed subset data

selection on previously calculated and published anticipated

protein:ligand interactions energies in (Evangelista et al., 2016).

The assumption is that the computed protein:ligand interaction

energies are quantitatively valid, i.e., a “preferred” binding

conformation would be the one in which the protein binds

the ligand stronger (i.e., with lower interaction energies) than

other alternative conformations. Thus, the base enrichment was

calculated from (Evangelista et al., 2016) by dividing the

number of binding conformations by the total number of

conformations. Eq. 10 calculates the base enrichment

detected during the test phase if the ML algorithm is not

implemented. We select different subsets of the TP and FN

FIGURE 1
Architecture of the CNN used in our proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.

FIGURE 2
Architecture of the RNN used in our proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.
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values in order to calculate the ML prediction framework

enrichment ratios in Eq. 10. The values returned by both

Eqs 10, 11 were then used to calculate the final enrichment

ratio returned by each of the four filters (A,B,C,D) defined in

Eq. 12.

Base enrichment ratio � number of binding conformations

total number of conformations binding and non − binding( )
(10)

ML enrichment ratio � number of binding conformations TP( ) identified
number of total conformations TP andFN( ) identified

(11)

FIGURE 3
The proposed Big Data analytics based AI/ML protein conformation selection/prediction framework.
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Final enrichment ratio � MLenrichment ratio

Base enrichment ratio
(12)

The final enrichment ratios for proteins ADORA2A, ADRB2,

OPRD1, and OPRK1 were calculated using four different filters

(A,B,C,D) and have been described and published in our

previous work (Gupta et al., 2022). The proposed enrichment

ratio framework used is depicted in Supplementary Figure SI-1

(Gupta et al., 2022).

2.2 The proposed Big Data analytics based
AI/ML protein conformation selection/
prediction framework

In this work, we combine the feature selection techniques

discussed in Section 2.1 with the improved two-stage

sampling based classification approach (Gupta et al.,

2022) using deep learning techniques. The steps given

below describe the new improved methodology and is

illustrated in Figure 3:

• The first step in themethodology is to input the dataset and

then apply the ML feature selection methods: i) Analysis of

variance (ANOVA), ii) Mutual Information (MI), iii)

Recurrence Quantification Analysis (RQA), and iv)

Spearman correlation to select the important protein

features from each of the methods respectively.

• We then obtain a feature ranking score for all features

based on the common consensus of all the feature selection

methods. Only the subset of protein features that are

selected by all four feature selection methods are chosen

to create a new dataset.

• Both the original dataset and a new dataset that is more

biased towards samples in class 0 are sent as inputs to the

XGBoost classifier. Samples of class 0 (TN) and class 1 (TP)

are recorded as classification results 1.

• In order to create a new training dataset, the GAN

algorithm was applied to both the original dataset and

the new modified dataset.

• K-Means clustering (Akondi et al., 2019) is used on the

XGBoost classifier’s classification results, class 0 samples

are undersampled, and the intended class 1 samples are

oversampled. This step increases the detection rate of class

1 samples or binding protein conformations to address the

class imbalance issue. The new training dataset has the

same size as the initial training dataset in order to maintain

consistency.

• Supervised classification using deep learning

methodologies: CNN and RNN are applied to the newly

created training dataset. Both classifiers are used to identify

the binding and non-binding conformations in the new

training dataset. The results of both classifiers are recorded.

• As a final step, the TP (binding conformations), and FN

(binding conformations but are incorrectly predicted as

non-binding conformations) by the AI/ML protein

conformation prediction framework (CNN and RNN)

are employed in the Enrichment ratio framework to

calculate the Enrichment ratios. The outcomes of the

framework for enrichment ratios are recorded.

3 Results

The overview of enrichment ratios for ADORA2A that were

determined using the predicted binding conformations from the

AI/ML framework is shown in Table 1. As indicated in

Supplementary Table SI-1 through Supplementary Table SI-5,

the AI/ML framework was evaluated on the remaining 70% of the

dataset after being trained on 30% of it. It can be observed that

the data selection filter A of the Enrichment ratio framework gave

the maximum enrichment ratio of 7.1 using XGBoost +

GANs–RNN framework predictions.

The list of protein descriptors that the four ML feature

selection techniques determined to be significant is shown in

Table 2 and it can be observed that 11 of the 50 features were

chosen. Table 3 gives the overview of the enrichment ratios that

were calculated using the features listed in Table 2. It can be

observed that data selection filter A of Enrichment ratio

framework gave the maximum enrichment ratio of 10.2 using

XGBoost + GANs–CNN framework predictions.

The three common protein descriptors for the proteins

ADORA2A, OPRK1, and OPRD1 that were determined to be

significant by the four ML feature selection methods are listed in

Supplementary Table SI-6. A summary of the enrichment ratios

that were estimated using the characteristics indicated in

Supplementary Table SI-6 is provided in Supplementary Table

SI-7. It can be observed that employing data selection filter A, the

XGBoost + GANs–CNN framework predictions provided the

maximum enrichment ratio of 8.2.

The overview of enrichment ratios for the ADRB2 binding

conformations predicted by the AI/ML framework is shown in

Table 4. On 30% of the dataset, the AI/ML framework was

trained, and on the remaining 70%, it was tested. It can be

observed that employing data selection filter C, the XGBoost +

GANs–RNN framework predictions provided the maximum

enrichment ratio of 13.8.

The list of protein descriptors that the three out of

four ML feature selection techniques determined to be

significant is shown in Table 5. It can be seen from the

table that 8 of the 51 features were chosen. Table 6

provides an overview of the enrichment ratios that were

computed using the features listed in Table 5. It can be

observed that employing data selection filter D, the

XGBoost + GANs–RNN framework predictions provided

the maximum enrichment ratio of 24.2.
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The summary of enrichment ratios for OPRD1 that were

determined using the predicted binding conformations from

the AI/ML framework is shown in Table 7. On 30% of the

dataset, the AI/ML framework was trained, and on the

remaining 70%, it was tested. It can be observed that

utilizing data selection filter B, the XGBoost + GANs–RNN

TABLE 1 Enrichment Ratios of ADORA2A on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 5.6 Filter A 0.5 4.1 Filter C 1.0

XGboost + GANs–RNN 7.1 Filter A 1.0 5.9 Filter C 0.5

TABLE 2 11 features out of 50 were selected having a feature score of four using the feature scoring table for ADORA2A.

pro_asa_vdw pro_dipole_moment pro_patch_ion_n pro_patch_neg_n

pro_asa_hyd pro_hyd_moment pro_app_charge pro_zquadrupole

pro_volume pro_patch_ion pro_helicity

TABLE 3 Enrichment Ratios of ADORA2A on the dataset consisting of features as shown in Table 2 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 10.2 Filter A 0.5 8.1 Filter C 10.0

XGboost + GANs–RNN 9.0 Filter B 0.5 6.5 Filter D 1.0

TABLE 4 Enrichment Ratios of ADRB2 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 9.4 Filter C 10.0 6.7 Filter B 0.5

XGboost + GANs–RNN 13.8 Filter C 1.0 7.6 Filter A 1.0

TABLE 5 8 features out of 51 were selected having a feature score of three using the feature scoring table for ADRB2.

pro_dipole_moment pro_patch_hyd_5 pro_patch_pos_2

pro_patch_hyd pro_patch_neg pro_patch_hyd_1

pro_patch_hyd_4 pro_patch_neg_1

TABLE 6 Enrichment Ratios of ADRB2 on the dataset consisting of features as shown in Table 5 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 18.1 Filter D 10.0 8.4 Filter A 0.5

XGboost + GANs–RNN 24.2 Filter D 10.0 13.5 Filter B 1.0
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framework predictions produced an enrichment ratio of up

to 37.

The list of protein descriptors that the four ML feature

selection techniques determined to be significant is shown in

Table 8. It can be seen that 12 of the 51 features were chosen, and

Table 9 provides an overview of the enrichment ratios that were

computed using the features listed in Table 8. It can be observed

that employing data selection filter B, the XGBoost +

GANs–RNN framework predictions provided the maximum

enrichment ratio of 37.5.

Supplementary Table SI-8 gives the overview of enrichment

ratios that were calculated using the features that were listed in

Supplementary Table SI-6. It can be seen that both XGBoost +

GANs–CNN and XGBoost + GANs–RNN framework

predictions gave the same enrichment ratio of 37.5, using

data selection filter B.

A summary of the enrichment ratios for OPRK1 that were

determined using the predicted binding conformations from the

AI/ML framework is shown in Table 10. On 30% of the dataset,

the AI/ML framework was trained, and on the remaining 70%, it

was tested. It can be seen that employing data selection filter A,

the XGBoost + GANs–RNN framework predictions provided the

maximum enrichment ratio of 27.6.

The list of protein descriptors that the four ML feature selection

techniques determined to be significant is shown in Table 11. It can

be seen that 5 of the 50 features were chosen, and Table 12 provides

an overview of the enrichment ratios that were computed using the

features listed in Table 11. It can be seen that both XGBoost +

GANs–CNN and XGBoost + GANs–RNN frameworks gave the

same enrichment ratio of 27.6, using data selection filter A.

An overview of the enrichment ratios that were calculated using

the descriptors listed in Supplementary Table SI-6 is provided in

Supplementary Table SI-9. It can be seen that employing data

TABLE 7 Enrichment Ratios of OPRD1 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 12.5 Filter B 0.5 4.9 Filter C 10.0

XGboost + GANs–RNN 37.5 Filter B 0.5 27.6 Filter D 5.0

TABLE 8 12 features out of 51 were selected having a feature score of four using the feature scoring table for OPRD1.

pro_asa_vdw pro_hyd_moment pro_patch_hyd_5 pro_patch_pos

pro_asa_hyd pro_patch_hyd pro_patch_neg pro_net_charge

pro_asa_hph pro_patch_hyd_4 pro_patch_neg_5 pro_app_charge

TABLE 9 Enrichment Ratios of OPRD1 on the dataset consisting of features as shown in Table 8 with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 16.5 Filter B 1.0 11.2 Filter A 0.5

XGboost + GANs–RNN 37.5 Filter B 0.5 25.7 Filter D 0.5

TABLE 10 Enrichment Ratios of OPRK1 on the original dataset with no feature selection with training size of 30%.

Classifier Maxima Filter % of data Minima Filter % of data

XGboost + GANs–CNN 11.0 Filter A 10.0 6.9 Filter B 0.5

XGboost + GANs–RNN 27.6 Filter A 1.0 21.0 Filter D 0.5

TABLE 11 5 features out of 50 were selected having a feature score of four
using the feature scoring table for OPRK1.

pro_asa_vdw pro_hyd_moment pro_patch_neg_1

pro_asa_hyd pro_patch_hyd_5
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selection filter A, the XGBoost + GANs–RNN framework

predictions provided the maximum enrichment ratio of 30.1.

4 Discussion

The Big Data analytics research outcomes in this study suggest

that four proteins ADORA2A, ADRB2, OPRK1, and OPRD1, and

their binding conformations considered in this work do possess

similar global properties that can be leveraged to predict whether

they will be more likely to bind their ligands than other

conformations. The enrichment factors obtained with the best

approaches are about 10 to about 40 times better than what would

be available with a random selection of protein conformations for

docking. For three out of the four targets of interest here

(i.e., ADORA2A, OPRK1, and OPRD1), the physico-chemical

features that are most associated with a high propensity to be

selected for binding by the ligands are the water accessible surface

area (MOE descriptor pro_asa_vdw), the hydrophobic surface area

(MOE descriptor pro_asa_hyd) and the hydrophobicity moment

(MOE descriptor pro_hyd_moment). That these properties, which

are global and not limited to the binding sites, are common to the

important descriptor of all proteins point to a dual role of exposure

to solvent and hydrophobicity as globally driving the capacity of

proteins to bind, or not, their ligands. Note that this work is not a

structure-activity relationship studies, i.e., we do not at this point

give a range of values for these proteins that would be associated

with ligand binding and a range of values that would be associated

with non-ligand binding.

The fourth protein target that was used here, ADRB2, can

also be analyzed by deep learning approaches to identify the

ligand binding conformations about 24 times better than a

random selection of conformations. Yet, that one protein

target yields different physico-chemical features than the

other three proteins used here, although the general role of

surface hydrophobicity and electrostatics (negatively-

charged regions, precisely) is conserved. We do not yet

know if this difference observed between ADRB2 and the

other proteins is a result of different actual physicochemical

mechanisms involved in ligand binding, or if this is an

artifact of the data and of specific issues with class

imbalance from the MD trajectories of this target.

Nonetheless, the fact that the apo-proteins’ global physico

chemicals properties may—to an extent—predict the ligand-

binding character of conformations is remarkable. Naturally,

this does not mean that only global protein properties are

“holding” the keys to the conformational selection

mechanisms. This work will have to be continued and

repeated with features that are specific to the binding sites’

conformations rather than describing the global protein

structure.
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