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An Improved PSO-GWO Algorithm
With Chaos and Adaptive Inertial
Weight for Robot Path Planning
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1College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China, 2 State
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The traditional particle swarm optimization (PSO) path planning algorithm represents

each particle as a path and evolves the particles to find an optimal path. However, there

are problems in premature convergence, poor global search ability, and to the ease in

which particles fall into the local optimum, which could lead to the failure of fast optimal

path obtainment. In order to solve these problems, this paper proposes an improved PSO

combined gray wolf optimization (IPSO-GWO) algorithm with chaos and a new adaptive

inertial weight. The gray wolf optimizer can sort the particles during evolution to find the

particles with optimal fitness value, and lead other particles to search for the position of

the particle with the optimal fitness value, which gives the PSO algorithm higher global

search capability. The chaos can be used to initialize the speed and position of the

particles, which can reduce the prematurity and increase the diversity of the particles.

The new adaptive inertial weight is designed to improve the global search capability

and convergence speed. In addition, when the algorithm falls into a local optimum,

the position of the particle with the historical best fitness can be found through the

chaotic sequence, which can randomly replace a particle to make it jump out of the local

optimum. The proposed IPSO-GWO algorithm is first tested by function optimization

using ten benchmark functions and then applied for optimal robot path planning in a

simulated environment. Simulation results show that the proposed IPSO-GWO is able to

find an optimal path much faster than traditional PSO-GWO based methods.

Keywords: path planning, improved particle swarm optimization, robot, gray wolf algorithm, adaptive inertia

weight, chaos

INTRODUCTION

Along with the development of automation technology and robotics, path planning is important
in robot task execution when searching for an optimal path from the starting position to the target
position with obstacle avoidance based on certain criteria.

There have been many achievements in robot path planning. The current path planning
algorithms mainly include the colony algorithms (Liu et al., 2019; Ye et al., 2020; Zhang et al., 2020;
Zhu et al., 2020), PSO (Krell et al., 2019; Wang Y. B. et al., 2019; Liu X. H. et al., 2021; Song et al.,
2021), A∗ algorithms (Xiong et al., 2020; Liu Z. H. et al., 2021; Tang et al., 2021; Tullu et al., 2021),
artificial potential field methods (Wang P. W. et al., 2019; Azmi and Ito, 2020; Song et al., 2020; Yao
et al., 2020), genetic algorithms (Hao et al., 2020; Li K. R. et al., 2021;Wen et al., 2021), fuzzy control
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algorithms (Guo et al., 2020; Zhi and Jiang, 2020), fast marching
algorithms (Sun et al., 2021; Wang et al., 2021; Xu et al., 2021),
and deep reinforcement learning algorithms (Li L. Y. et al.,
2021; Lin et al., 2021; Xie et al., 2021). PSO is an evolutionary
computation algorithm that can be used to find the optimal
solution through collaboration and information sharing between
individuals in the group, as in path planning, the optimal solution
is to find the shortest path. The PSO algorithm is easy to
implement and has fewer adjustable parameters, however, it still
has problems such as being easy to fall into the local optimum
and slow convergence.

In response to these problems, researchers have extensively
studied PSO improvement in recent years. Das and Jena
(2020) used a genetic algorithm that inherits multiple crossover
operators and bee colony operators as two evolutionary operators
to improve the optimization ability of the PSO. Shao et al. (2020)
designed the constant acceleration coefficient and the maximum
speed as the adaptive linear variation to adapt to the optimization
process. Further, a particle mutation strategy has been proposed
to enhance the convergence speed of the algorithm. Li and Chou
(2018) applied different strategies to realize the adaptive learning
of the PSO; they turned the problem of path planning into a
minimizing multi-objective optimization problem and proposed
a new adaptive learning mechanism to improve the search ability
of the PSO algorithm.

Although the performance of the PSO algorithm has been
improved greatly, there are still some shortcomings when it
is applied for complex problems (Phung and Ha, 2021), i.e.,
premature convergence, poor global search capability, and slow
convergence speed. To this end, an improved particle swarm
optimization combined gray wolf optimization (IPSO-GWO)
is proposed in this paper. The GWO can sort the particles
during iteration to find the particles with the optimal fitness
value and lead other particles to search for the position of
the particles with the optimal fitness value, which can greatly
improve the search ability of the PSO algorithm in the global
searching space. The chaos is further adopted to initialize
the speed and position of the swarm particles and a new
adaptive inertia weight is designed to improve the global search
capability and convergence speed of the IPSO-GWO. When the
algorithm falls into the local optimum, chaos can make the
algorithm quickly jump out of the local optimum. Experiments
on benchmark functions optimization test and the robot path
planning simulation tests demonstrate that the IPSO-GWO
algorithm has faster convergence speed.

The remainder of the paper is organized as follows. The
Proposed Method section describes the proposed algorithm
including environment settings, IPSO-GWO, chaos based and
new inertial weight design. Experiments and result analysis
are explained in third section. The conclusion is given in
fourth section.

THE PROPOSED METHOD

Environment Modeling
The working environment of the robot is established through
a grid model, which can be divided into N × N squares, as

seen in Figure 1. The black grid represents obstacles which are
impassable, and the white grids represent feasible passing free
areas, denoted as 0 and 1, respectively. The five-pointed star
indicates the starting point and the green point is the target point.
Then the grid model is placed in the coordinate system so as to
establish the robot working environment.

It can be seen from Figure 1 that the model is easy to
construct, represent, and store data for processing and it is
convenient for computer processing.

PSO Algorithm
The PSO algorithm is an intelligent optimization algorithm
proposed by Kennedy and Eberhart (1995) based on the study
of the living habits of animal flocks (Tang et al., 2020). Suppose
the optimal solution of a certain problem exists inD dimensional
space for a swarm with size m, and the population can be
expressed as, Swarm = {x1, x2, . . . , xm} where xi (i = 1, · · · ,m)

is the particle without mass, k represents the total number of
the required iterations, and the position information of the ith
particle in the kth iteration can be represented by a d-dimensional

vector xki =
(

xki1, x
k
i2, . . . , x

k
id

)

, i = 1, 2, . . .m, the velocity of each

particle can be represented as vki =
(

vki1, v
k
i2, · · · , v

k
id

)

, i = 1, 2, · ·

·,m. In each iteration, the position and velocity of the particles are
dynamically adjusted according to the historical optimal fitness
values of each particle and the population. The calculation for the
(k+ 1)th iterations of the ith particle in d-dimensional space can
be written as,

vk+1
id

= vkid + c1 ∗ rand() ∗
(

pkid − xkid

)

+ c2 ∗ rand()

∗

(

pkgd − xkid

)

(1)

x
(k+1)
id

= x
(k)
id

+ v
(k+1)
id

(2)

where c1 and c2 represent the learning factors. c1 and c2 are the
control variables to control the step lengths of the individual
particle flying toward the local optimal value and the swarm
optimal value, respectively. pk

id
is the historical optimal fitness

value of each particle in the optimization process, pk
gd

is the

optimal fitness value reached by all particles, that is, the optimal
fitness value of the population; the rand() function is to generate
a random number between (0,1) to differentiate particles. The
subscript d(1 ≤ d ≤ D) represents the dimension of the
searching space. In the above Equation (1) and (2), the speed
of the PSO is composed of the local and global three parts:
vk
id

represents the speed of the particle at the kth iteration,
{

c1 ∗ rand() ∗
(

pk
id
− xk

id

) }

represents the information of the

particle itself, and
{

c2 ∗ rand() ∗
(

pk
gd
− xk

id

)}

represents the

part of the particle in the population for collaboration and
information sharing.

PSO-GWO Algorithm
The PSO-GWO algorithm is an improved PSO version incentive
inspired by gray wolf predation (Narinder and Singh, 2017; Teng
et al., 2019; Gul et al., 2021). Different from bird flocks, the gray
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FIGURE 1 | Environment modeling.

FIGURE 2 | Grey wolf social hierarchy.

wolf pack is quite a strict socially hierarchical organization; its
hierarchical arrangement is illustrated in Figure 2.

The first layer α in Figure 2 represents the leader in the
population, where the leader α is the core of the wolf pack, being
mainly responsible for leading and assigning tasks.

The second layer β in Figure 2 represents the think tank team,
which is used to assist the leader inmanagement, i.e., when leader
α is vacant, β will quickly take over the position of α. In the entire
wolf pack, the status of β is only lower than that of α. If α is
occupied, β is an advisor to α and discipliner for the group.

The third layer δ follows the command and management of
leader α and think tank, and are mainly responsible for care
and supervision.

The function of the fourth layer, ω, is to balance the
membership within the population.

The essence of the GWO is that the particle with the highest
fitness is taken as the leader α to manage other particles. The
specific steps of the GWO are summarized as follows:

Step 1: To initialize particles of one population in the
searching space;
Step 2: To rank the particles according to the historical best
fitness values;
Step 3: Taking three particles with the highest fitness values set
as α, β and δ, the other particles are arranged in sequence. If
an individual with a higher fitness value appears in the iterative
process, it is set as the new leader α and pgd is updated with its
individual fitness. xi = (xi1, xi2, ..., xiN) represents the position
of the ith particle, and vi = (vi1, vi2, ..., viN) is the speed of
the ith particle. In the k + 1 iteration, the positions of the
three particles with the best fitness values in the population are
updated via Equation (3), and the positions of the rest particles
are updated via Equations (4) and (5):

−→
d α =

∣

∣

−→c 1 ·
−→x α − w ∗

−→x
∣

∣

−→
d β =

∣

∣

−→c 2 ·
−→x β − w ∗

−→x
∣

∣

−→
d δ =

∣

∣

−→c 2 ·
−→x δ − w ∗

−→x
∣

∣ (3)

vk+1
i = w ∗ (vki + c1rand()

(

x1 − xki

)

+ c2rand()
(

x2 − xki

)

+ c3rand()
(

x3 − xki

))

(4)
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xk+1
i = xki + vk+1

i (5)

As seen in Equations (3)–(5), the dimension of the spatial
solution is d, and the current number of the iteration is k. c1,
c2, and c3 represent the learning factors, rand() is a random
number between (0, 1), and w represents the inertia weight
coefficient. The larger w makes the algorithm better in global
search, in contrast, the smaller w is more suitable for local
search. The core idea of the PSO-GWO is to arrange the particles
according to their fitness values during each iteration, and set the
three particles with the best fitness values to α, β , and δ, while
these three particles can predict the approximate range of the
location where the optimal solution may exist, and the remaining
particles can search the optimal solution within the predicted
range. In such a way, the particles can find the optimal solution
more quickly and effectively with the improved convergence
performance, so the path planning ability of the PSO algorithm
can be improved accordingly.

IPSO-GWO Algorithm
In the previous section, GWO was added to PSO to form
the PSO-GWO algorithm, and the search ability of the PSO
algorithm can be enhanced to improve its path planning ability,
but the PSO algorithm still has the problem of premature
convergence, and its convergence speed and global search ability
can be further strengthened. Hence chaos and a new adaptive
inertia weight are added to provide solutions for these problems.

PSO With Chaos
The PSO can randomly distribute particles while the optimal
solution is highly related to the particle initialization. The more
uniform the initial particle distribution, the richer the diversity of
the group, and the faster the optimal solution can be obtained.

Chaos (Demir et al., 2020; Lian et al., 2020; Lu et al.,
2020; Wu et al., 2020; Guo et al., 2021; Ouertani et al., 2021)
refers to a nonlinear motion that can traverse all situations
within a specified range. A chaotic sequence can represent all
states in a prescribed space, which is commonly generated by
mapping. Many researchers have found that chaotic mapping
has unpredictable characteristics when studying chaotic mapping
relations. Although it is somewhat unpredictable, certain laws
can still be used in the mapping process. The most commonly
used form of chaotic mapping is logistic mapping, as shown in
Equation (6):

Zi+1 = µZi (1− Zi) i = 0, 1, 2, ...; µ ∈ (0, 4] (6)

In Equation (6), 0 ≤ Z0 ≤ 1, Zi is the value obtained by i times
Logistic mapping of Z0, and µ represents the control variable.
When µ = 4, the system is within a completely chaotic state and
the range of the chaotic space is [ 0, 1].

The steps of using chaos to initialize the PSO are summarized
as follows. First, an n-dimensional vector Z1 = (z1, z2, . . . , zn)
is randomly generated, and Equation (6) is used to map the
other vectors so as to generate a chaotic sequence Z1,Z2, . . . ,ZN .
Then the chaotic sequence zi is inversely mapped from the
chaotic space[0, 1] to the space [a, b] where the optimal solution

is located, and the particle position is xij = a + (b − a)zij,
j = 1, 2, . . . , n, i = 1, 2, . . . ,N. Finally, the particles with
higher fitness values are determined as the initial particles of
the population.

When the PSO is trapped in the local optimum, the algorithm
will select the historical optimal value of the particles in the
iterative process and convert it into a chaotic sequence through
inverse mapping to obtain the optimal position of the particle,
then randomly replace a certain particle position in the current
search space so that the local optimum can be jumped out by the
algorithm. Whether particles fall into precocity is determined by
the variance of the population fitness, calculated as,

σ 2 =
1

n

n
∑

i=1

(

fi − favg

f

)2

f = max(1,max
∣

∣fi − favg
∣

∣) (7)

where n is the size of the population, fi represents the adaptability
of the first particle, and favg represents the average adaptability of
the current swarm particles. The population variance σ 2 reflects
the precocious state of the particles.When σ 2 is less than a certain
threshold, it is calculated that the particle algorithm will fall
into precocity. Then the chaos is applied to process the optimal
particles to increase the diversity of the population. The detailed
steps are described as follows.

Step 1: Select the optimal position in the iterative process and
use the function Logistic tomap it into the chaotic space [ 0, 1].
Step 2: Use logistics to generate a new sequence and inversely
map the sequence to the population.
Step 3: Calculate the optimal adaptability of the particles and
conclude whether the particle has jumped out of the local
optimum; then record the optimal fitness value and set the
corresponding particles to α, β , and δ.
Step 4:Use the current optimal chaotic particles to manage the
particles in the particle swarm to make the particles leave the
local optimum.

After the particle swarm performs the chaotic initialization
operation, the particles are more evenly distributed in the search
space, and the chaotic sequence can be used to reduce the
prematurity, improve the diversity of particles, and enhance the
convergence speed of the algorithm.

A New Adaptive Inertial Weight
It is known that the quality of PSO is closely related to inertia
weight where the local search ability of the algorithm is higher
with smaller inertial weight and global search capability is
stronger with larger inertial weight. To enable the algorithm
maintaining higher search ability during the entire operation
process, many methods have been proposed to adjust the inertia
weight (Li et al., 2019a,b; Gopal et al., 2020; Wang et al., 2020;
Wang, 2021; Zhang et al., 2021). However, the current inertia
weight improvement methods have a close relationship with the
iteration number and cannot adapt to the nonlinear variations
well. For this reason, this paper deals with the inertia weight
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via the particle adjacent fitness values. The inertia weight can be
updated and calculated as,

w = (wmax + wmin) ∗ a−
wmax ∗ k

MaxIter

a =
pk
gbest

pk−1
gbest

(8)

In Equation (8), the global optimal fitness of the kth iteration is
pk
gbest

, and the global optimal fitness of the (k− 1)th iteration

is pk−1
gbest

; the maximum ωmax and minimum ωmin of ω is set

as 0.9 and 0.4, respectively. k is the current iteration number;
MaxIter represents the maximum number of the iterations.
It can be seen from Equation (8) that a is larger at the
beginning of the iteration, so the algorithm has strong global
searching ability, and a becomes smaller gradually at the later

iteration stage, so the algorithm has strong local search ability.
In summary, the inertia weight combined with the fitness ratio of
the neighboring particles can adaptively adjust the size of w with
the number of iterations so that the algorithm has a higher global
search ability.

Path Planning
The steps of the IPSO-GWO algorithm for path planning are
summarized as follows:

Step 1: The velocities and positions of the swarm particles are
initialized by chaos using logistic function, while the position
of each particle represents a path and the fitness of the particle
represents the length of the path;
Step 2: Collision detection is performed on the path
represented by the particles. If the path collides with an
obstacle, the path is adjusted without obstacle collision;

FIGURE 3 | Iteration comparison curves with different functions. (A) Iteration curve comparison diagram with Rosenbrock function. (B) Iteration curve comparison

diagram with Drop Wave function. (C) Iteration curve comparison diagram with Peaks function. (D) Iteration curve comparison diagram with Bukin function. (E)

Iteration curve comparison diagram with Booth function. (F) Iteration curve comparison diagram with Rastrigin function. (G) Iteration curve comparison diagram with

Easom function. (H) Iteration curve comparison diagram with Levy function. (I) Iteration curve comparison diagram with Styblinski-Tang function. (J) Iteration curve

comparison diagram with Six-Hump Camel function.
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Step 3: The fitness values of the particles are evaluated to select
the three particles with the largest fitness values, set as α, β ,
and δ;
Step 4: To update the positions of particles α, β , and δ based
on Equation (3), update the velocities and the positions of the
rest particles via Equations (4) and (5);
Step 5: Determine whether the algorithm has fallen into
prematurity via Equation (7); if so, chaos is applied to process
the premature particles and jump to Step 2;
Step 6: Determine whether the algorithm meets the
termination condition. If it is satisfied, the iteration stops and
the optimal path is obtained; otherwise, continue to Step 2
for calculation.

EXPERIMENT AND RESULT ANALYSIS

Benchmark Experiments
To verify the superiority of the IPSO-GWO algorithm, this paper
uses MATLAB R2018b software to perform benchmark function
tests on PSO and IPSO-GWO. The variables of the simulation
experiments are set as follows: the population size is 50, the
dimension of the optimization variable is 4, the learning factor
c1 = c2 = 2.05, and the test functions of the simulation
experiments are ten benchmark functions such as Drop Wave,
Peaks, Rosenbrock, etc. For Rosenbrock function, the number
of the iterations is 200, and the number of iterations of others
is 100. Simulation experiments are performed on the above
functions. The algorithm iteration curve is shown in Figure 3.
The experimental results of the three test functions are analyzed
and compared, as listed in Tables 1–10.

It can be seen from Figure 3 that, compared with the PSO
and PSO-GWO algorithms, the IPSO-GWO algorithm converges
the fastest. From Tables 1–10, it is seen that the results obtained

TABLE 1 | Rosenbrock function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

Minimum

PSO 1.8143E−12 3.272E−16 1.70543E−13 4.4715E−13 0

IPSO-GWO 9.8215E−27 2.3419E−31 2.2383E−27 2.952E−27 0

TABLE 2 | Drop Wavefunction test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.93625 −0.99997 −0.99192 0.015633 −1

IPSO-GWO −0.93625 −1 −0.99636 0.009047 −1

TABLE 3 | Peaks function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −3.0395 −6.5511 −4.62282 1.741408 −6.5511

IPSO-GWO −3.0496 −6.5511 −5.50012 1.604133 −6.5511

from IPSO-GWO is closer to the global minimum, which verify
that the performance of the IPSO-GWO algorithm is higher than
those of the other algorithms.

Path Planning Experiments
To verify the superiority of the IPSO-GWO optimization in
robot global path planning, we have carried out two kinds of
path planning simulation tests: one is the test of IPSO with
PSO, and the other is the test of IPSO with Genetic algorithm
(GA) and Ant Colony Optimization (ACO). Both tests use
20 × 20 and 30 × 30 map environments. For IPSO-GWO
and PSO, the population size is set to 50 and c1 = c2= 1.6.
For GA, the crossover probability is set to 0.8, the mutation
probability is set to 0.2, and the population size is set to 50.
For ACO, the stimulating factor of the pheromone concentration
α is set to 1, the stimulating factor of visibility β is set to 7,
pheromone evaporation coefficient ρ is set to 0.3, pheromone
intensity is set to 1, and the number of iterations of the four

TABLE 4 | Bukin function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 27.5233 1.3670 2.1584 3.3801 0

IPSO-GWO 2.8783 0.1078 0.3540 0.7018 0

TABLE 5 | Booth function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 16.1673 0.0020 0.3429 2.1682 0

IPSO-GWO 0.0278 0.0001 0.0042 0.0076 0

TABLE 6 | Rastrigin function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 6.9599 0.0073 0.5837 1.2599 0

IPSO-GWO 1.1406 0 0.0835 0.2501 0

TABLE 7 | Easom function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.6713 −0.9999 −0.9934 0.0351 −1

IPSO-GWO −0.9727 −1 −0.9992 0.0033 −1

TABLE 8 | Levy function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 10.9906 0.0016 0.2517 1.3966 0

IPSO-GWO 0.5333 0.0001 0.0191 0.0890 0
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TABLE 9 | Styblinski-Tang function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −76.0206 −78.3296 −78.2937 0.2377 −78.3322

IPSO-GWO −77.9984 −78.3322 −78.3231 0.0468 −78.3322

TABLE 10 | Six-Hump Camel function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.3852 −1.0313 −1.0185 0.0726 −1.0316

IPSO-GWO −1.0141 −1.0316 −1.0307 0.0035 −1.0316

FIGURE 4 | Simulation results of IPSO-GWO and PSO in 20 × 20 map

environment. (A) Path comparison with PSO and IPSO-GWO algorithms. (B)

Iterative curves with PSO and IPSO-GWO algorithms.

algorithms is set to 200. The experimental results are illustrated in
Figures 4–7.

From Figure 4, IPSO-GWO and PSO simulate the path and
iterative convergence curve of the path planning in a 20 × 20
map environment; it can be concluded that the PSO can obtain
the optimal path at the 138th iteration with path length 30.36.
Whereas the proposed IPSO-GWO can acquire the optimization
at the 75th iteration with the obtained path length 28.63.

From Figure 5, IPSO and PSO simulate the path and iterative
convergence curve of the path planning in a 30 × 30 map

FIGURE 5 | Simulation results of IPSO-GWO and PSO in 30 × 30 map

environment. (A) Path comparison with PSO and IPSO-GWO algorithms. (B)

Iterative curves with PSO and IPSO-GWO algorithms.

environment. The PSO algorithm searches for the optimal path
at the 169th iteration, and the obtained path length is 45.36.
The proposed IPSO-GWO can find the optimal path in the 86th
iteration with acquired path length 42.77.

From Figure 6, IPSO, ACO, and GA are used to simulate the
path and iterative convergence curve of the path planning in a
20 × 20 map environment. It can be seen that IPSO-GWO can
acquire the optimal path length of 28.63 in the 11th iteration,
the optimal path length found by ACO in the 62th iteration is
29.21, and the optimal path length found by GA in the 22nd
iteration is 29.21. It can be concluded that the proposed IPSO-
GWO algorithm converges faster in a 20 × 20 map environment
with shortest path acquirement.

From Figure 7, IPSO, ACO, and GA are used to simulate the
path and iterative convergence curve of the path planning in
a 30 × 30 map environment. It can be seen that IPSO-GWO
can find the optimal path length of 42.77 in the 86th iteration,
the optimal path length found by ACO in the 166th iteration
is 42.77, and the optimal path length found by GA in the 33rd
iteration is 45.11. It can also be concluded that although GA finds
the optimal path faster, the path length is longer, whilst ACO
finds the same optimal path as IPSO-GWO, but it is slower than
IPSO-GWO. In summary, IPSO-GWO algorithm has the highest
performance efficiency.
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FIGURE 6 | Simulation results of IPSO-GWO, GA, ACO in 20 × 20 map

environment. (A) Path comparison with GA, ACO, and IPSO-GWO algorithms.

(B) Iterative curve with GA, ACO, and IPSO-GWO algorithms.

CONCLUSION

This paper makes a valuable contribution to the improvement of
PSO algorithm in robot path planning in terms of convergence
speed and shortest path acquirement. Combining the traditional
PSO with the GWO, chaos, and a new adaptive inertia weight,
it can address the problem of premature convergence and poor
global search ability, and improve the convergence speed for
faster path searching. The proposed IPSO-GWO algorithm has
been tested against the traditional PSO for ten benchmark
functions, and optimization results show that the IPSO-GWO
converges faster without premature convergence. Comparing
the IPSO-GWO with PSO and two other algorithms for path
planning, the IPSO-GWO can find an optimal path with faster
speed. In summary, the proposed IPSO-GWO algorithm exhibits
higher performance in path planning with the combination of
chaos for premature convergence avoidance. In the future, we will
continue to apply the proposed IPSO-GWO algorithms in more
practical applications.
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Images
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This paper is concerned with the problem of short circuit detection in infrared image

for metal electrorefining with an improved Faster Region-based Convolutional Neural

Network (Faster R-CNN). To address the problem of insufficient label data, a framework

for automatically generating labeled infrared images is proposed. After discussing factors

that affect sample diversity, background, object shape, and gray scale distribution are

established as three key variables for synthesis. Raw infrared images without fault are

used as backgrounds. By simulating the other two key variables on the background,

different classes of objects are synthesized. To improve the detection rate of small

scale targets, an attention module is introduced in the network to fuse the semantic

segment results of U-Net and the synthetic dataset. In this way, the Faster R-CNN

can obtain rich representation ability about small scale object on the infrared images.

Strategies of parameter tuning and transfer learning are also applied to improve the

detection precision. The detection system trains on only synthetic dataset and tests

on actual images. Extensive experiments on different infrared datasets demonstrate the

effectiveness of the synthetic methods. The synthetically trained network obtains a mAP

of 0.826, and the recall rate of small latent short circuit is superior to that of Faster R-CNN

and U-Net, effectively avoiding short-circuit missed detection.

Keywords: sample synthesis, short circuit detection, infrared image, metal electrorefining, attention-based Faster

R-CNN

1. INTRODUCTION

In the metal electrorefining process, short circuits between electrodes cause the temperature of
the electrodes to rise, the electrochemical reaction to stop, and the further reduction of the
electrolytic efficiency (Aqueveque et al., 2009). Infrared thermography technology has been become
a promising method to detect short-circuit electrodes due to its visualization of heat distribution,
non-invasive nature, and large-scale monitoring (Maekipaeae et al., 1997; Hong and Wang, 2017).
But recognizing short-circuit electrodes from infrared images is still a challenge because of the
occlusion above the electrolytic cell group and the complex heat conduction. Temperature of the
fault electrode increases, but the canvas on the cell surface may hide the abnormal heat, leading
to missed detection. The complex heat conduction between the canvas and the electrodes will
interrupt and spread the short-circuit temperature distribution, which will deform the shape of
the electrode in infrared image, resulting in inaccurate detection results. In addition, the inherent

14

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.751037
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.751037&domain=pdf&date_stamp=2021-11-26
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhoucan@csu.edu.cn
https://doi.org/10.3389/fnbot.2021.751037
https://www.frontiersin.org/articles/10.3389/fnbot.2021.751037/full


Li et al. Synthetic Images for Practical CNNs Task

low resolution of infrared image degrades the detailed features of
objects, making it difficult for the electrodes to distinguish and
recognize (Xiao et al., 2017; Xing et al., 2019).

With the rise of deep learning, the Convolutional Neural
Networks (CNN) have efficiently solved a number of object
detection problems by learning more discriminative features
(Peng and Chen, 2015; Hiary et al., 2018). CNN based object
detection methods are classified into two classes: one-stage
detectors like OverFeat (Sermanet et al., 2013), SSD (Liu
et al., 2016), and U-Net (Ronneberger, 2017), perform specific
classification immediately after feature extract. On the other
hand, two-stage detectors such as R-CNN (Girshick et al., 2014),
Faster R-CNN (Ren et al., 2017) generate region proposals
with low-level cues first and then use the proposals to target
existing judgments prior to the classification (Ce et al., 2018).
Among recent deep learning methods, Faster R-CNN shows
excellent detection performance as Faster R-CNN can capture
more pixel-wise annotation information about objects. Also,
infrared images usually present poor resolution, low contrast,
and fuzzy visual effect, objects in infrared images tend to appear
as a series of rough, indistinct areas which closely related to
the surrounding complex background. A specific feature and
the surrounding area in infrared image both affect the accuracy
of target detection. Therefore, in this paper, we use Faster R-
CNN model to perform infrared target recognition. However,
two challenges are proposed for the task. First, the training of
a detection network requires a large number of labeled images,
which are labeled with the category and location information of
objects in detail (Samadi et al., 2019). Usually such a dataset is
collected and annotated manually. It requires the annotator to
have expert knowledge of the task and capture the distribution
of variables contributing to the varied representation of real
world conditions. The laborious work is the first difficulty in
deploying CNNs on practical applications. Second, Scale variance
enforced by resampling operation in Faster R-CNN may result
in information loss, which is even worse for small-scale infrared
targets, leading to missed detection, such as the latent short
circuit in our problem. Compared to visible images, the features
of infrared images degrade, and the convolution layer needs
to learn more meaningful features. A complete dataset and a
well-designed network are a worthy pursuit.

In order to overcome the difficulty of manually annotating
a sufficient number of images and meeting the accuracy
requirements of short circuit recognition tasks, we first propose
a framework for automatically generating labeled images, and
then design an attention-based Faster R-CNN for short circuit
detection. In the image synthesis process, we classify short-
circuit objects into two categories: obvious short circuit and
latent short circuit. Background, target gray scale distribution,
and shape are proposed as three key variables after a series
of reasonable assumptions and analyses. We simulate the three
key variables with different methods to satisfy the diversity
of the intra-class of samples. Single cells infrared images that
without short circuits are collected as backgrounds; rectangles
of random sizes and aspect ratios are exploited to simulate
electrode targets; external illumination template and local signal-
to-clutter ration (SCR) constraint method are introduced to

simulate the multiple manifestations of objects; object locations
and class labels are automatically annotated. Then, to increase the
detection accurancy, our detection scheme improves the Faster
R-CNN by introducing an attention module. This module fuses
the semantic segment information of small-scale latent short
circuits and the synthetic dataset, making the network focus on
small objects during the extraction of features. Combined with
anchor parameters fine-tuning and transfer learning strategy
the attention-based Faster R-CNN can better avoid latent short
circuit missed detection. Summarizing the above discussion,
we aim at addressing the problem of automatic synthesis of
labeled infrared images and apply it to the training of the short
circuit recognition system. The contributions of the paper can be
summarized as the following two aspects:

1) Propose an automatic sample synthesis method that can
generate a sufficient number of labeled infrared images.

2) Improve the Faster R-CNN by introducing an attention
module and design the short circuit recognition system for
metal electrolysis, the system is trained only on synthetic
samples and generalizes well to real images especially for the
latent short circuit class.

The remainder of the paper is organized as follows. Section 2
provides related works about sample number increase method-
data augmentation and background knowledge about metal
electrorefining. Synthesis difficulties are also discussed in this
section. Section 3 presents the details of our synthesis method
and the short circuit recognition system based on attention-based
Faster R-CNN. Section 4 provides three experiments to evaluate
the synthesis method and demonstrate the effectiveness of the
system. Finally, the conclusion of our research is presented in
Section 5.

2. RELATED WORK

2.1. Methods About Data Augmentation
Various data augmentation methods have been studied to create
additional training data. Generative adversarial networks (GANs)
and its variations (Goodfellow et al., 2014; Odena et al., 2016;
Zhang et al., 2016) show promising results for highly realistic
image generation. The GANs-based method generates images
by simultaneously training two models: generative model and
discriminative model. But balancing the two models is a difficult
task (Ngxande et al., 2019). Another method achieves data
augmentation by combining multiple image transformation
operations on an existing data set while preserving class labels
(Ratner et al., 2017; Gao et al., 2020). For example, flipping,
cropping, and color casting are applied to increase the number
of marine organism images (Huang et al., 2019). The method
mainly imitates the variable elements of the scene that contribute
to the samples diversity, such as ambient illumination, target
perspective and scale, etc. However, the above augmentations rely
on a certain amount of images that have already been labeled.
For some specific application scenarios in which the images are
difficult to obtain, a third-part public dataset can be exploited,
because the content of the dataset has similar features with the
application scenario. The optical remote sensing images slices
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FIGURE 1 | Infrared camera above electrolytic cell groups and the structure of a cell.

of Google Earth are employed to train a deep model, and then
the model is applied for ship detection (Jiang et al., 2019). The
handwritten images of MNIST are used to simulate long-rang
infrared images, in which dim targets are against background
clutters (Fan et al., 2018). Nevertheless, a common dataset whose
content is similar to the problem scenario is infrequent.

Actually, realistic-looking is not strictly necessary to train a
discriminant algorithm. Key variables of the scene are drive,
the diversity of sample, and effectiveness in training a neural
network (Mayer et al., 2018). In an image, these key variables
are usually related to the visual complexity of the scene and
multiple manifestations of objects. Different geometric shapes are
adopted to generate targets for machine learning (Silva et al.,
2019). Irrelevant pictures are taken as complex backgrounds,
and on the backgrounds vehicle license plates are synthesized,
then the synthesis images are used for identification training
(Björklund et al., 2019). Traditional data augmentation methods
may be heavyweight and more expensive in metal electrolysis
due to the complexity and uniqueness of infrared scenario.
The above research provides valuable references and meaningful
inspirations for our problem. The complexity comes from the
heat conduction, and the uniqueness is because all cells have
a similar structure. Identifying variables about the background
and the targets of metal electrolysis infrared image makes sample
synthesis possible.

2.2. Background of Metal Electrorefining
In our problem, take copper electrotrfining as example, the
infrared imager is installed on the crane above the electrolytic
cell groups to monitor the temperature distribution of electrodes
in cells (Figure 1). In each cell, hundreds of electrode plates
are parallel immersed into high temperature electrolytes. To
prevent electrolyte evaporation, the cell surface is covered with
a canvas. In the electrolytic process, the anode is dissolved
into metal ions, and then the ions are crystallized out at the
cathode plate. Due to the impurities, additive dosing problems,
particulates in electrolyte, temperature control, etc. dendrites
or nodules growing out from cathode surfaces until they reach
anode plates, short circuits occur. The temperature of the short-
circuit electrode is obviously higher than that of other electrodes,
but the high-temperature electrodes manifest in various forms
due to the shielding of the cover. Figure 2 shows an actual
infrared image with different types of short circuit and other
components of a cell. Other metal electrolysis processes (lead,
nickel, etc.) have similar infrared images.

Complexity and randomness of gray scale distribution and
the diversity of short-circuit targets pose challenges for infrared
image synthesis. Different from realistic visible image synthesis
for which the threshold changes of visibility, color appearance,
etc. are themost important (Ferwerda et al., 1996), infrared image
is the visual result of the thermal distribution of a scene, and
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FIGURE 2 | Infrared image containing multiple copper electrolytic cells and

different classes of short circuit.

it lacks color information. So the gray scale used to reflect the
temperature is significant for synthesis.

With canvas, the heat environment in each electrolytic cell is
independent, and heat transfer among components of a cell is
complex. Thus, the gray distributions of every cell surface are
different, although the structure and size of these cells are the
same. Also the airflow above cell surfaces adds random attributes
to the already complicated background.

Different kinds of short-circuit targets have various
manifestations on images, like the short circuits marked in
Figure 2. Some short circuits present obvious high gray intensity
distribution on the canvas region, and the gray scale distributions
are usually not uniform, but they show some common features:
the silhouette of the electrode is hazy, the outline appears as
a rectangle, and the gray intensity of the positive terminal is
obviously higher than other parts. While for some other short
circuits, there is no obvious gray scale change on the canvas area,
only the end of the electrode which is located on the intercell
busbar exhibits high gray intensity. This type of short circuit
appears as a small area with uniform gray scale distribution
on busbar.

Based on the above analysis, the background, shape, and gray
scale distribution patterns are established as three key variables,
that are responsible for the large inter-class variability of infrared
images. Short-circuits targets are classified into two classes:
obvious short circuit and latent short circuit. To determine the
positive and negative terminals, we also take the electrolyte inlet
and the outlet as another two classes of detection targets that will
be annotated on the image (Table 1).

3. METHOD

The research route of this work is shown as the flow chart
in Figure 3. The collected infrared images are firstly corrected
for barrel distortion and segmented into individual cells. Then

TABLE 1 | Target class labeled in the synthesis images.

Class number Target class

1 obvious short circuit

2 latent short circuit

3 inlet

4 outlet

cell images without short circuit are used as background, and
we synthesize and label short-circuit targets on it. At last the
synthetic image dataset is used for training an improved faster
R-CNN detection network to recognize different classes of short
circuits, and the network is tested on real world infrared images.
Our work mainly focuses on modules of preprocessing, sample
images synthesis, and detection network improvement.

3.1. Preprocessing of the Infrared Images
Infrared electrolytic cells images suffer from barrel distortion due
to the use of the wide-angle lens. So barrel distortion correction
is first carried out to facilitate the acquisition of the image patch
of a single electrolytic cell.

Distortion occurs because of the inconsistent transmittance of
the lens. The refractive index at the edge of the lens is greater than
that at the center of the lens. Thus, the same object looks smaller
in the outer region of the image than in the central region because
the outer region is more compressed than the region near the
distorted center. Assume that the distortion rate is radial about
the distortion center (Asari et al., 1999), through mapping pixels
of the distorted image onto a corrected image, we can obtain the
corrected pixel coordinates.

(xc, yc) represents the center of the distorted image, and (x, y)
are coordinates of any pixel. Radius r and the angle θ of a vector
from the distortion center to (x, y) are given by:

r =

√

(x− xc)2 + (y− yc)2 (1a)

θ = arctan(
y− yc

x− xc
) (1b)

The pixel location (x, y) in the distorted image can be
transformed to a new location (xnew, ynew) in the corrected image.
The corresponding radius rnew and angle θnew of the vector from
the corrected center (xnc, ync) to (xnew, ynew) can be computed as:

rnew =

√

(xnew − xnc)2 + (ynew − ync)2 (2a)

θnew = θ (2b)

The mapping relation between radius rnew and r is defined with
a polynomial as:

rnew =

n
∑

i=0

kir
i (3)
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FIGURE 3 | Research route of the work.

TABLE 2 | Distortion coefficients estimated by fitting pixels on cells border.

Distortion coefficient k0 k1 k2

Value 1 2.355× 10−4 2.285× 10−6

Where n is the number of polynomial terms. ki denotes the
distortion coefficient. The effect of higher order terms can be
ignored, because the distortion rate is very small, so the quadratic
mapping relationship is adopted. The distortion coefficients can
be estimated by fitting the pixel coordinates of the cell boundary
in the distorted image In our work, the estimated distortion
coefficients are as shown in Table 2.

Then, coordinates of the new location (xnew, ynew) can be
obtained by:

xnew = xnc + rnewcosθ (4a)

ynew = ync + rnewsinθ (4b)

The method corrects the distortion by shifting the pixels. Moving
pixels causes vacancy in the original pixel position and thus
form a grid of blank pixels on the corrected image. For ease of
viewing, we use a black grid in Figure 4B. A bilinear interpolation
method is employed to fill these vacant pixels. The final result
of distortion correction is as shown in Figure 4C. With the
corrected image, we can easily obtain image patches of single cells
like in Figure 5.

3.2. Sample Images Synthesis
3.2.1. Simulate Background
The background is difficult to simulate because of its complex
and random gray scale distribution. That is due to the complex
electrochemical reactions in the cell and the heat conduction
between the canvas, electrode, and electrolyte. It is unique for
the metal electrorefining scene, the alternative of using other
backgrounds fails here (Björklund et al., 2019).

The diversity of the background has a serious influence on
target recognition. The complexity and randomness of the gray
scale distribution of cells without short circuits gives the image

diversity, and such cells can be used as backgrounds. After
barrel distortion correction, we can easily obtain any number
of single cell images with the same structure. Therefore, we
collect enough images of single cells without short circuits as
backgrounds (Figure 6) to satisfy the diversity of backgrounds.
On these backgrounds, we further synthesize targets.

3.2.2. Simulate Shape
We chose a rectangle to simulate the shape of the electrode. For
the obvious short circuit class, although the rod is invisible, the
corresponding area on canvas is a strip of high gray intensity.
The strip starts from the busbar area and has a larger aspect ratio.
For the latent short circuit class, the high intensity area is small
and with a small aspect ratio that is approximately 1:1. The latent
short circuit is contained within the intercell busbar area. Hence,
rectangles with different aspect ratios are used to simulate the
shape variable of short-circuit targets.

Electrodes width is calculated by geometric method, and the
width range on the image is [4, 13] pixels. Similarly, the length
range is [4, 65] pixels. The length and width of the rectangle are
randomly selected in the two intervals to construct a rectangle
to simulate a short circuit. We set that when the aspect ratio is
greater than 1.5, the rectangle is an image patch for obvious short
circuit; when the aspect ratio is less than 1.5, the rectangle is an
image patch for latent short circuit.

The location constraint for each target is that the coordinates
of the upper-left corner are located within the scope of busbar
region. So the intercell busbar needs to be located on the
background image first. This can be implemented with a gray
scale threshold. The busbar region of Figure 7B is as shown in
Figure 7A. In the busbar region, a pixel position is randomly
selected, and then the image patch of the target is determined by
using the randomly selected size values. It means that the label
information (class, location) of a synthetic target is deterministic.

The location information of a target label is expressed as
Patch = [xp, yp,w, l]. (xp, yp), that is the upper-left coordinate.
(w, l) are the width and length of the image patch. The pixel values
of the patches in the raw background image are temporarily
reserved for the next gray scale distribution simulation. Two
example patches are as shown in Figure 7B.
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FIGURE 4 | Process of barrel distortion correction: (A) A barrel distorted IR image. (B) Vacant pixel grid produced by pixel radius mapping. (C) The final corrected

image after bilinear interpolation.

FIGURE 5 | Four single electrolytic cells cropped form the barrel distortion corrected image.

FIGURE 6 | Single cell images without short circuit used as background.

FIGURE 7 | (A) Intercell busbar region identified by gray threshold on background image. (B) Two example patches for latent short circuit class and obvious short

circuit class, the upper-left coordinates of the patches are located in the intercell busbar region.

3.2.3. Simulate Gray Scale Distribution
After, the target patches are determined through assigning gray
scale intensity for these patches to simulate the gray scale
distribution. Short circuit gray scale intensity is usually higher
than the surrounding area, but its distribution is characterized
by complexity and diversity. Moreover, the two classes of targets
are against different backgrounds. The gray scale continuity of

the synthesized target and background should be considered.
Therefore, we adopt two different gray scale assignment methods
to simulate gray distribution for the two target classes.

For the latent short circuit class, the target should be located
in the busbar background with high gray scale intensity and small
scale area. The gray scale distribution is smooth. These features
make it difficult to distinguish between a latent short circuit and
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FIGURE 8 | Examples of synthetic latent short circuit instance.

a background. This difficulty can be quantitatively analyzed with
SCR (Wang et al., 2017). SCR is a measure of target detectability,
and the calculation formula is:

SCR =
|µT − µB|

σc
(5)

Where, µT and µB represent the average intensity of the target
and the background, respectively. σc is the standard deviation of
the background. |µT −µB| is used to evaluate the gray difference
between target and background.

The gray level of the target is affected by the surrounding area,
and the influence decreases with the increase of distance. So local
background (Chen et al., 2013) is more suitable for infrared target
simulation. We set the local background area to three times the
target area. With a definite SCR value, we can calculate the µT of
the target. Define a gray scale enhancement factor k as:

k = µT/Aveo (6)

Where, Aveo is the average intensity of the image patch for
latent short circuit that originated from the background image.
K is multiplied by the pixels in the image patch, the gray value
of the image patch increases, and a latent short circuit with a
certain SCR value can be obtained. To increase the diversity of
samples, the local SCR is randomly selected from an interval
[1.5, 8] according the research of Kim et al. (2012). This method
generates image patch from the infrared background image and
preserves the randomness of its gray distribution. Two generated
latent short circuit instances are shown in Figure 8.

For the obvious short circuit class, the gray scale distribution is
uneven. Affected by random factors, the gray scale distributions
are varied. But all the obvious short circuits have one thing in
common, that is, there is at least one high gray scale spot in the
gray scale distribution. An analogy between the spot and external
light source is introduced (Huang et al., 2019). Therefore, a high-
intensity spot in the obvious short-circuit area can be regarded as
an external light source, affecting adjacent areas. Through adding
an additional light source to the image patch for obvious short
circuit, we can simulate the diversity of gray scale distribution.

The templates of light source are collected from real infrared
images. Some of them are shown in Figure 9. A light source
template O is randomly selected, then smooth the template with
a mean filter as Eq. (7), a gray scale distribution template E can
be obtained.

FIGURE 9 | Templates of external light source for obvious short circuit class.

E = O ∗ X =
1

MN

∑

i

∑

j

O(x− i, y− j)X(i, j) (7)

Where, X is a mean filter, the heightM and the width N of X are
set 3, and ∗means the convolution operation.

The size of the synthetic patch for obvious short circuit P has
been known. Resizing the template E to the same size of P, we
obtained E1. We calculated the average gray value AveE1 of E1.
Then by Eq. (8), the gray difference template D was obtained.
Through adding pixels (Eq. (9)), the image patch P and gray
difference template D were fused to generate a unique gray
distribution for obvious short circuit.

D = E1 − AveE1 (8)

P1 = P + D (9)

The above operations strengthened the edge information of the
synthetic target. Continuity between the synthesized target and
its surrounding area should be maintained in image. Therefore,
before adding an external light source, we first reduced the pixel
value of P. In contrast to the simulation method of latent short
circuit gray scale distribution, a smaller SCR value was used to
reduce the gray scale. [0.1, 0.3] is an appropriate range obtained
by experience. Figure 10 shows the synthesis process of obvious
short circuit. The referenced light template is Figure 10A. The
synthetic obvious short circuit is generated on the background
in Figure 10D. Figure 10E shows some other synthetic images
that contain both obvious short circuit and latent short circuit in
pseudo color image.

The class of inlet and outlet can be annotated automatically
through threshold segmentation or edge detection of the
background image, that is not the focus of the work and we will
not describe it in this work.

3.3. Short Circuit Recognition for Mental
Electrorefining With Attention-Based
Faster R-CNN
In this section, we first explain the core components of the
Faster R-CNN in brief. Then the details of the proposed short
circuit detection system with attention-based Faster R-CNN is
described. Finally, the strategies of anchor parameters fine-tuning
and transfer learning in the system is explained.
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FIGURE 10 | Synthesis process of obvious short circuit class: (A) An external light source template. (B) Gray scale distribution template after average filtering. (C)

Difference in template after being resized. (D) Synthetic obvious short circuit instance based on the external light source template. (E) Examples of synthetic infrared

image with obvious short circuit instance and latent short circuit instance.

FIGURE 11 | The flowchart of our proposed short-circuit electrode recognition system with attention-based Faster R-CNN.

3.3.1. Architecture of Faster R-CNN
The Faster R-CNN firstly traverses the feature map of infrared
image to distinguish objects from the background irrespective
of class, accompanied by bounding box regression to generate
region proposals of variable sizes. Then, region proposals
are resampled to a fixed-sized box to ensure scale-invariance
for categorization. Faster R-CNN consists of three functional
components (Figure 11): feature map extraction, region proposal

network (RPN) and Fast R-CNN. Convolutional network VGG-
16 model (Simonyan and Zisserman, 2014) is used as a backbone
to extract feature maps. The extracted feature maps are shared
by the RPN and Fast R-CNN. RPN utilize multiscale anchors
boxes strategy to generate region proposals from the feature
maps. Firstly, the feature maps convolued with a 3 × 3 slide
window. Then, on the resulting feature map, nine anchors
boxes with 3 basic scale (1282, 2562, 5122) and 3 aspect rations
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(0.5, 1, 2) are simultaneously generated at each pixel. Feature
maps of these anchor boxes are mapped to feature vectors by two
1 ∗ 1 convolutional kernels, and these feature vectors are used
to perform preliminary regression and classification through a
fully connected layer. The full connection layers preliminary
judge whether there is a target in the anchor box and compute
the coordinates of these bounding box. Positive anchor boxes
are as recommended region proposals from the input feature
maps. Region proposals and the feature maps obtained from
convolution layers are fed into Fast R-CNN to perform object
classification and bounding box regression.

Although the Faster R-CNN significantly improves detection
performance and reduces calculation time through region
proposals, it is difficult to detect the small scale targets, like latent
short circuits in the infrared images. Because the infrared images
lack detailed information, features of small scale latent short
circuit are often lost in the sampling process of convolutional
networks, which leads to missed detection of the latent short
circuit. Compared with false detection, missed detection of the
short circuit fault brings greater economic loss and security threat
to the electrolytic process.

3.3.2. Attention-Based Faster R-CNN for Small Latent

Short Circuit
We introduced attention mechanisms for small scale infrared
object detection by combining U-Net and Faster R-CNN.
Precisely, the attention module integrate the semantic
information of U-Net and the synthetic infrared images to
focus on small targets. The architecture is shown in Figure 11.
U-Net has a good performance on pixel-wise predictions of small
scale objects, so the net is adopted to handle the synthetic images
first. U-Net’s encoding features and decoding results are skip
connected at different scales, realizing pyramid feature fusion
and enriching the learned semantic features of small objects.
And up sampling restores the edge information of feature image.
Thus, the segmentation result of U-Net and the corresponding
synthetic images are used as the two inputs of the attention
mechanism. The attention module is also given in Figure 11,
result of U-Net and synthetic image perform pixel added after
1 × 1 convolution. The result is activated by ReLu and then
goes through sigmoid module, the attention coefficient α is
obtained. The range of α is [0, 1], if the coefficient is close to 1,
the pixel is related to the target characteristics. By concatenating
the attention coefficient and the synthetic images, we fuse the
semantic information of small objects to the infrared synthetic
images. These fused label infrared images then are fed into the
Faster R-CNN as the second step of our training procedure.

3.3.3. Anchor Parameters Fine-Tuning for Small

Latent Short Circuit
Note that the purpose of using a set of artificially anchored boxes
in RPN is to deal with different scales and aspect ratios of objects
(Ren et al., 2017). In the original Faster R-CNN, 9 anchor boxes
with 3 scales and 3 ratios were used by default. The default
basic scales are (1282, 2562, 5122) and the default aspect rations
are (0.5, 1, 2). A region proposal is identified by comparing the
intersection-over-Union (IoU) overlap of each anchor box with a

ground-truth target. The anchor boxes with a high IoU or which
satisfy a criterion are assigned as positive.

Such parameter settings may be more applicable to an image
datasets, in which targets come in relative large sizes and similar
aspect ratios. However, in our application, the sizes of the four
kinds of targets are relatively small and the aspect ratios vary
greatly. The aspect ratios of latent short circuits are approximate
to 1.5, while the aspect ratios of obvious short circuits are usually
larger than 2. If the size of the anchor boxes is far larger than
that of the ground-truth target, it may lead to any anchor box
which can not meet the IoU requirements. Thus, there will be
no regional proposal. Furthermore, it causes small-sized targets
to fail detection. If the aspect ratio parameter of the anchor
boxes are not set properly, the anchor boxes cannot reflect the
target shape better, which will also affect the detection accuracy
(Sun et al., 2018).

We tuned anchor parameters according to the actual target
size. We increase the number of anchors from 9 to 15 by
expanding the aspect ratio and reducing the basic size of
anchors. The anchors sizes are (82, 162, 322), and five aspect
ratios (0.5, 1, 2, 4, 5) are setted. In our problem, this improvement
is mainly used to avoid missed detection of the latent short
circuit class.

3.3.4. Transfer Learning for Infrared Dataset
Infrared images contain less information compared to visible
images, like information about color and texture. Convolutional
layers are the most important part to extract feature information
by multiple convolutional kernels. Concretely speaking, the
shallower convolutional layers can extract lower-level features
like edges and hot spots, but deeper layers can extract semantics
information that are more important for object recognition.
So a transfer learning strategy is adopted. The shallow layers
weights of the pre-training model VGG-16 were frozen, and
the deep layers weights were retrained. The number of frozen
layers was obtained by comparing the results of multiple
training. Architecture and the parameter settings of the shared
convolutional layers of the VGG-16 are illustrated in Table 3,
and the architecture of the RPN and Fast R-CNN are shown in
Tables 4, 5, respectively, the content in brackets is the input of
the network.

4. EXPERIMENT

In this section, evaluation metrics are introduced first. Then we
conduct three experiments. In the first experiment of section
4.2, with a variable-controlling approach we study how each
variable of synthesis affects the detection performance of the
neural network and verify the effectiveness of the proposed
sample synthesis method. In the second experiment of section
4.3, different synthesis methods are compared. Finally, the
comparison of original Faster R-CNN (Ori-Faster R-CNN) v.s.
Faster R-CNN with anchor parameter fine-tuning (Fin-Faster R-
CNN) v.s. Attention-based Faster R-CNN (Att-Faster R-CNN)
v.s. U-Net is in section 4.4, also, the short circuit detection
result are showed. All the experiments were trained on synthetic
samples and texted on actual images.
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TABLE 3 | Transfer learning settings in the feature extractor in Figure 11.

Layer type Filters Size of kernel Parameter setting

Input image

1-1st Conv 64 3× 3× 3 Frozen

1-2nd Conv 64 3× 3× 64 Frozen

Max pooling layer

2-1st Conv 128 3× 3× 64 Frozen

2-2nd Conv 128 3× 3× 128 Frozen

Max pooling layer

3-1st Conv 256 3× 3× 128 Frozen

3-2nd Conv 256 3× 3× 256 Trainable

3-3rd Conv 256 3× 3× 256 Trainable

Max pooling layer

4-1st Conv 512 3× 3× 256 Trainable

4-2nd Conv 512 3× 3× 512 Trainable

4-3rd Conv 512 3× 3× 512 Trainable

5-1st Conv 512 3× 3× 512 Trainable

5-2nd Conv 512 3× 3× 512 Trainable

5-3rd Conv 512 3× 3× 512 Trainable

TABLE 4 | Architecture of the RPN in Figure 11.

Layer type Filters Size of kernel

[5-3rd Conv]Input layer

RPN Conv 512 3× 3× 512

Classification convolutional layer(softmax) 30 1× 1× 512

[RPN Conv]Regression convolutional layer 60 1× 1× 512

TABLE 5 | Architecture of the classifier in Fast R-CNN in Figure 11.

Layer type Size of output

[5-3rd Conv] [RPN proposal region]Input layer

RoI Pooling 7× 7× 512× 32

1st fully connected layer 4, 096× 32

2nd fully connected layer 4, 096× 32

Classification fully connected layer(softmax) 32× 5

[2nd fully connected layer]Regression convolutional layer 32× 16

4.1. Quantitative Metrics
Precision-recall (PR) curves of four classes of objects are used for
result evaluation. The curve plots the precision against the recall
rate of a detector, and it is a visual representation of an algorithm’s
performance. A detector with a higher precision and a higher
recall rate indicates a better discrimination ability. Precision and
recall rate are defined as follows:

Precision = tp/(tp+ fp) (10a)

Recallrate = tp/(tp+ fn) (10b)

Where tp represents the number of true positives, and fp
represents the number of false positives. fn denotes the number

of false negatives. Positive data and negative data mean the four
types of detection objects and background region, respectively. A
false positive case refers to the case where background ismistaken
as a target or one kind of target is mistaken as another kind. A
false negative case refers to the case where true positive data is
error detected.

Mean Average Precision (mAP) of different classes of objects
is used for result comparison. A mAP score is the mean of the
average precision (Ap) for each class. The definition of AP is
defined as:

AP =

∫ 1

0
p(r)dr (11)

Where, p is the precision rate, and r is the recall rate. In our
work, mAP score is reported using an intersection-over-union
(IoU) threshold at 0.65. The bigger the mAP score, the better the
detection result.

4.2. Key Variables Assessment for
Synthesis
The significance of the background for target recognition has
been studied in visual images, while the other two key variables
(variable 1:shape and variable 2:gray scale distribution) effects
on synthetic data are less understood. We designed a similar
ablation experiment to study how each key variable influenced
the synthesis process. The activation ratio of key variables in
the dataset was controlled, and then the dataset was used to
train the Faster R-CNN. The concept of activation here means
that in a training set, the key variable of a specific proportion
of samples satisfy diversity, and the variable of the remaining
samples are kept constant. Through comparing the effects of
different datasets on detection and recognition performance of
Faster R-CNN, we analyze the robustness of the key variables.

We first generated an infrared cell image dataset (ICID) as a
reference dataset using the procedure we described in section 3.2.
ICID contains 1,4257 synthetic images (resolution≈ 70 × 280)
and 4 categories of targets: inlet, outlet, obvious short circuit,
latent short circuit. We also generated extra 8 annotated datasets
where each key variable was active for 30, 50, 70, and 90% of the
images, respectively, the numbers of samples are in parentheses
in Table 6. To prove the effectiveness of the synthetic sample,
we added 200 hand-annotated real images into the ICID to
form a new dataset. The 10 datasets were fed to Faster R-CNN,
respectively, and then the network tested on realistic electrolytic
cells images to recognize the targets.

Table 6 shows the mAP scores of the Faster R-CNN trained
on the 10 datasets. Reducing the activation ratio of the two
key variables in dataset yields dramatic performance drop, which
illustrates the significant impact of the two key variables toward
the networks feature learning ability. But when more than 50% of
the samples meet the diversity of each key variable, the growth
value of mAP increases slowly. When 50% of the images are
considered about the shape diversity (variable 1), the score is
reduced by 8% compared to the reference dataset ICID; while
for gray scale distribution (variable 2), the score is reduced only
by 2%. It suggests that the networks learning is obviously more
sensitive to target shape change, But the gray scale distributions
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TABLE 6 | mAP score of the Faster R-CNN trained on synthetic datasets with different key variable activation ratio.

Datasets with key variable activated Activation ratio

30% activated 50% activated 70% activated 90% activated

Variable 1 0.556 (15,649) 0.582 (15,640) 0.585 (14,578) 0.592(14,624)

Variable 2 0.578 (14,520) 0.617 (14,481) 0.619 (14,500) 0.621 (14,510)

ICID (14,257) 0.632

ICID+Real images (14,457) 0.878

FIGURE 12 | (A) Distribution of the two types short circuits with respect to aspect ratio. (B) Distribution of the two types short circuits with respect to SCR value.

have a greater effect on learning than target shape, as the absolute
value of the increase is larger. Especially whenmore samples meet
the diversity of gray scale distribution, the mAP is close to that
of ICID. It means that the key variables of the goal we defined
are accurate, After training on ICID, a mAP score of 0.632 is
obtained. The score increases to 0.878when real images are added
in. It suggests that the proposed synthetic method is effective and
available at the beginning for deploying CNNs on practice metal
scenario. The synthetic method helps avoid the laborious work of
manually annotating large numbers of images.

Figure 12 shows the distribution of the two types of short
circuits with respect to aspect ratio and SCR values in ICID.
As aspect ratio determines the diversity of key variable 1, and
similarly, SCR value determines the diversity of key variable 2
in our proposed synthetic method. Obvious short circuit class
accounts for 60% of synthetic target number; the range of
aspect ratio and SCR of obvious short circuit class are both
obvious wider than latent short circuit, and the distribution
is uniform.This indicates that the diversity of samples is
guaranteed by a wide range of key variable values and uniform
distribution of sample numbers. This is in accord with the actual
engineering case.

4.3. Comparison of Data Synthesis Method
In this section, in order to compare the performance of different
synthesis methods, Faster R-CNN trained on 8 training sets that
generated with different methods listed below and tested on real
cell images. We manually annotated 200 real images and used
the four commonly methods M1, M2, M3, and M4 to augment
the labeled images respectively. In M1, random visible light
images were used to replace the electrolytic cell background while
preserving targets. The set ICID was generated automatically
without the aid of any labeled images by using our proposed
method (OM).

• M1:Random background (Björklund et al., 2019)
• M2:Flipping
• M3:Color casting
• M4:Noise
• Fusion1: Fusing M2, M3 and M4.
• OM: ICID generated by the propsed synthetic method
• Fusion2: Fusing ICID and M2, M3 and M4.
• Baseline: 200 real image.

Table 7 shows the short circuit detection and recognition results
with different data augmentation methods. Compared with the
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TABLE 7 | Test results of different data sugmentation methods.

Methods mAP Obvious short circuit Latent short circuit Inlet Outlet

M1 0.295 0.313 0.002 0.428 0.437

M2 0.493 0.606 0.006 0.679 0.680

M3 0.423 0.427 0.005 0.623 0.635

M4 0.473 0.613 0.006 0.628 0.646

Fusion1 0.552 0.620 0.007 0.791 0.790

OM 0.669 0.871 0.007 0.891 0.905

Fusion2 0.672 0.883 0.007 0.890 0.907

Baseline 0.421 0.425 0.006 0.621 0.633

FIGURE 13 | The influence of transfer learning on the training of the Faster R-CNN: (A) Loss of the original Faster R-CNN with number of iterations. (B) Loss of the

transfer learned Faster R-CNN with number of iterations.

Baseline, all methods improve the performance of short circuit
detection except M1. That is because the backgrounds of short
circuits are cell surfaces with complex thermal distribution. There
is spatial continuity and gray correlation between targets and
backgrounds, which can not be learned from other backgrounds.
M2, M3, M4, and Fusion1 improve the mAP by 17.1%,4.75%
12.3%, and 31.1%, while the number improved by OM is 58.9%.
Fusing the method OM with M2, M3, and M4 does not make
a significant difference in detection performance, like the values
with the gray shade in Table 7. Compared with other methods,
our proposed synthesis method does not rely on any pre-
annotated images at all, which is our original intention, that is,
to solve the problem of lack of engineering samples effectively
and labor-saving. At the same time, we note that in the table,
the network’s detection performance for latent short circuit has
been kept at a low level. That is the subject to be discussed in our
next experiment.

4.4. Accuracy of the Short Circuit
Detection System
In this part, we verify our proposed short circuit detection
system with attention-based Faster R-CNN(Att-Faster R-CNN).

The method proposed in this paper can effectively improve
the recall rate of latent short circuit while still maintaining
a relative high detection accuracy about obvious short circuit
class. To prove the advantage of our algorithm, we compared
it with original Faster R-CNN (Ori-Faster R-CNN), Faster
R-CNN with anchor parameter fine-tuning (Fin-Faster R-
CNN), and U-Net. All experiments were performed under the
same environment.

We evaluated the performance by training all models on
ICID and tested on real cell infrared images. In the fine-tuning
strategy, instead of 9 anchors with a basic size of 128 × 128,
256 × 256 and 512 × 512 and 3 aspect rations (0.5, 1, 2) used
for the PRN (Ren et al., 2017), we increased the number of
anchors to 15 referring to the settings of Kim et al. (2018).
The anchors sizes are 8 × 8, 16 × 16 and 32 × 32 and
the five aspect ratios include 5 : 1, 4 : 1, 2 : 1, 1 : 1, and 1 : 1.5.
In the Fast R-CNN classification part, an RoI is treated as
foreground with the threshold of IoU = 0.65. This choice
respects the need for precise fault location in the engineering
field. Transfer learning strategy is illustrated in Table 3, the
weights of the first five layers from VGG-16 were frozen, and
the rest of the layers were retrained. PR curves and RoC curves
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FIGURE 14 | (A) PR curves of the Ori-Faster R-CNN. (B) PR curves of the Fin-Faster R-CNN. (C) PR curves of the Att-Faster R-CNN. (D) RoC curves of Att-Faster

R-CNN and U-Net for latent short circuit detection, on the x-coordinate, we replaced FPR with total false positive number.

TABLE 8 | The four class of targets average precision of Faster R-CNN with different anchor parameter setting.

Method Obvious short circuit Latent short circuit Inlet Outlet mAP

Ori-Faster R-CNN 0.872 0.006 0.898 0.907 0.671

Fin-Faster R-CNN 0.815 0.460 0.907 0.908 0.772

Att-Faster R-CNN 0.715 0.773 0.887 0.931 0.826

U-Net – 0.752 – – –

are adopted to illustrate the detection performance. Sum losses
of the four class objects are used to indicate the efficiency of
transfer learning.

Figure 13 shows the learning loss of the Faster R-CNN with
and without transfer learning. The loss curve of the original
Faster R-CNN converges around 1000 iterations, while the
loss curve of the transfer learned Faster R-CNN converges
at around 1500 iterations. At the beginning of the training,
the gradient descent of our network is slow but stable,
whereas the gradient of the original network soon drops to
a stable value. It reveals that the transfer learned network
can learn more general characteristic information from the
dataset.

Figures 14A–C presents the detailed comparisons of three
sets of PR curve for the four classes of objects, respectively

with Ori-Faster R-CNN, Fin-Faster R-CNN, and Att-Faster
R-CNN. Furthermore, comparision of small latent short circuit
detection results with Att-Faster R-CNN and U-Net is also
provided in Figure 14D. In conjunction with Figure 14 and
Table 8 it can be observed that all models show the best detection
performance on classes of inlet and outlet. Fin-Faster R-CNN
can alleviate the difficult detection problems of latent short
circuit, but keep a high recall rate need to sacrifice the precision.
It is a dilemma for engineering management. Att-Faster R-CNN
shows the best detection performance for latent short circuit.
Because the attention mechanism integrates more semantic
information about latent short circuits into the synthetic sample,
aided by the variable anchor scale, the Att-Faster R-CNN
can show a stable high precision at a high recall rate. Fin-
Faster R-CNN and Att-Faster R-CNN both exhibit precision
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FIGURE 15 | (A) Short circuit detection result with original Faster R-CNN. (B)

Short circuit detection result with Faster R-CNN with anchor parameter

fine-tuning. (C) Short circuit detection result with attention-based Faster

R-CNN.

decline for obvious short circuit class. It is an acceptable
decrease of accuracy under the premise that miss detection

of short circuits has a more serious impact on production.
In Figure 14D, reliability of Att-Faster R-CNN is superior
to U-Net, The promising results validate the effectiveness

of the proposed attention mechanism for latent short
circuit detection.

Figure 15 illustrates the detection results with the three Faster
R-CNN network in three same scene, respectively. Attention-
based Faster R-CNN able to accurately detect more latent short
circuit. Whereas, the result with Ori-Faster R-CNN and Fin-
Faster R-CNN lists more false negatives in the red box.

5. CONCLUSIONS

This work focused on short circuit detection in infrared image of
metal electrolysis scene with CNNs. An infrared image synthetic
method is proposed to automatically generate labeled infrared
dataset ICID by simulating key variables of the scenario that
affect the diversity of samples. Additionally, attention-based
Faster R-CNN is proposed and used to design the short circuit
detection system. In the system, an attention module integrates
the semantic segment results of U-Net with the synthetic ICID
to obtain rich representation ability on the infrared images.
Combined with strategies of anchor parameters fine-tuning and
transfer learning, the detection system can efficiently avoid the
missed detection of a latent short circuit, and the performance is
superior to the original Faster R-CNN and U-Net. The proposed
method is specifically dedicated to metal electrolysis scenes, but
the methodology of mining targets’ key variables to automatically
synthesize samples will be further extended to other application
areas and training algorithms.
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In order to deal with the multi-target search problems for swarm robots in unknown

complex environments, a multi-target coordinated search algorithm for swarm robots

considering practical constraints is proposed in this paper. Firstly, according to the target

detection situation of swarm robots, an ideal search algorithm framework combining

the strategy of roaming search and coordinated search is established. Secondly,

based on the framework of the multi-target search algorithm, a simplified virtual force

model is combined, which effectively overcomes the real-time obstacle avoidance

problem in the target search of swarm robots. Finally, in order to solve the distributed

communication problem in the multi-target search of swarm robots, a distributed

neighborhood communication mechanism based on a time-varying characteristic swarm

with a restricted random line of sight is proposed, and which is combined with the

multi-target search framework. For the swarm robot kinematics, obstacle avoidance, and

communication constraints of swarm robots, the proposed multi-target search strategy

is more stable, efficient, and practical than the previous methods. The effectiveness of

this proposed method is verified by numerical simulations.

Keywords: multi-target search, swarm robots, roaming search, coordinated search, simplified virtual force model,

distributed neighborhood communication

INTRODUCTION

Inspired by the group behavior of social insects such as ants and bees, the concept of swarm
intelligence is put forward by scholars (Bonabeau, 1999), which is defined as the collective
intelligence emerging from a group of simple agents. The swarm robot system (Doty and Van
Aken, 2002) is a typical artificial swarm intelligence system, which consists of a large number of
homogeneous autonomous robots with a simple structure. By the coordination and cooperation
of robots with limited individual capabilities under a specific mechanism, the system can present
intelligent behavior and complete relatively complex tasks.

The common research contents of swarm robot systems include target search (Alfeo
et al., 2019; Booth et al., 2020), task assignment (Liang et al., 2018), cluster avoidance
(Khan et al., 2019), path planning (Ryan, 2008; Luo et al., 2017), and cluster formation
(Anonymous, 1993; Alsamman, 2011). In this paper, the target search problem of swarm
robots in unknown complex environments is mainly studied, such as forest fire detection
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(Yao et al., 2018; Marzaeva, 2019), toxic gas leak detection (Zhang
et al., 2010; Moshayedi and Gharpure, 2013), search and rescue of
missing personnel (Goodrich et al., 2009; Kamegawa et al., 2020),
military target detection (Ha and Cho, 2018; Jiong et al., 2019)
and so on. In order to solve this type of search problem, there
are mainly composed of two main categories of design strategies,
namely, behavior-based search and learning-based search (Cizek
and Faigl, 2019; Berscheid et al., 2020; Suzuki et al., 2020), and
this article mainly discusses the former.

According to the number of search targets, searches can be
divided into single-target searches and multi-target searches.
When the swarm robot system is applied to single-target search,
it is necessary to pay attention to the cooperation mechanism
between individual robots. Gudise (2004) proposed an extended
particle swarm optimization (EPSO) algorithm, which was
successfully applied to single-target searches. Ducatelle et al.
(2011) used the local wireless network communication strategy
to strengthen the communication ability between robots and
enhance the robustness of the swarm robot system. Majid and
Arshad (2017) mainly focused on the performance indicators
in the EPSO coordinated search algorithm such as trajectory
smoothness, search success rate, and search time, and studied
the impact of the inertial weight on the search performance of
swarm robots. Tang et al. (2020) proposed an improved adaptive
bat algorithm (IABA) search algorithm by focussing on the
problem of obstacle avoidance and improving the performance
of the algorithm in the single-target search process of swarm
robots. Aiming at the distributed communication problem in the
single-target search process of swarm robots, Yang et al. (2019)
proposed a time-varying characteristics swarm of visual limited
(V-TVCS) model.

However, when the swarm robot system is applied to the actual
neighborhood search, the number of search targets is more than
one. Therefore, how to set up a multi-target search algorithm
considering the actual search environment is the focus of scholars
at home and abroad. Manic (2009) proposed a multi-target
task allocation model with response threshold (TRT) to realize
self-organizing task allocation, and then robots with the same
objective task used the EPSO algorithm for coordinated search.
Zhang and Xue (2014) proposed a dynamic task division strategy
with closed-loop adjustment for the problem of uneven subgroup
size of the TRT model. Xinjie (2020) established a simplified
virtual force model (SVFM) for the unknown and complex
environment, and successfully solved the obstacle avoidance
problem in the multi-target search process. Zhang and Xue
(2015) proposed the strategies of competition and cooperation
and cooperation for the problem of subgroup interaction in
parallel search. Jie (2019) proposed a probabilistic finite state
machine search framework for the multi-target search problem
of swarm robots. Xinjie (2020) extended the two-dimensional
SVFM (2D-SVFM) to 3D-space, and successfully implemented
this type of search method to achieve multi-target search in the
Unmanned Aerial Vehicle (UAV) cluster system.

Based on the above literature analysis, the above methods
can be applied to specific target search scenarios, but there are
the following problems. First of all, there is no standard multi-
target search algorithm framework in these methods. Most of

the algorithms’ settings are only suitable for searching for a
specific number of targets, not for searching for any number
of targets. Secondly, most of the algorithms only start to study
a specific performance index of swarm robots, and do not
consider the algorithm performance, obstacle avoidance, and
swarm communication problem of swarm robots in actual search
scenarios at the same time.

Aiming at the static multi-target search problem of swarm
robots in unknown complex environments, a multi-target
coordinated search algorithm for swarm robots considering
practical constraints (MSRCPC) is proposed in this paper. The
main work of this paper is as follows. First, based on the
mechanism of finite state machines, an ideal multi-target search
framework for swarm robots is proposed. Then, on the basis
of the entire framework, combined with the simplified virtual
force model, the obstacle avoidance problem of the swarm robot
in the multi-target search process is solved. Finally, considering
the communication interaction problem in the coordination
and cooperation of swarm robots and the random line-of-
sight problem of individual robots in the actual communication
process, the distributed neighborhood interaction model based
on a time-varying characteristic swarm with a restricted random
line of sight (RS-TVCS) is constructed. By embedding the sub-
algorithms in the whole algorithm framework, the MSRCPC
algorithm proposed in this paper can greatly improve the search
performance of the swarm robot system, making the entire
system more scalable and practical.

The remaining parts of this paper are summarized as follows.
In section 1, the research background of this algorithm and the
research progress at home and abroad was introduced. In section
2, the ideal multi-target search framework for swarm robots
is introduced. In section 3, the obstacle avoidance mechanism
and distributed communication mechanism of the swarm robot
system are described, and the multi-objective search framework
of swarm robots considering practical constraints is proposed.
The simulation test analysis on the proposed algorithm is
conducted in section 4. Finally, the main work is summarized.

THE FRAMEWORK OF IDEAL SEARCH
ALGORITHM

In a closed two-dimensional space R2, the task environment for
multi-target search of swarm robots can be described by the set
{R, T, S, D}.where, R = {R1,..., Ri,..., Rm, m > 1} is the search
subject (swarm robots); T = {T1,..., Tj,..., Tn, n > m} is the
searched target; S = {S1,..., So,..., Sp, p > 1} is the static obstacle
and D = {D1,..., Dl,..., Dq, q > l} is the dynamic obstacle. In
addition, we let w exist in the task set {R, T, S, D}.

The set targets can send out a continuous specific signal,
and are randomly distributed in the search map. The sensors
carried by swarm robots can detect the strength of the target
signal, which cannot determine the direction of the signal. The
initial positions of swarm robots are randomly in a certain corner
of the search map. In the case without considering obstacles
and ideal communication interaction, the multi-target search
algorithm framework of swarm robots can be described in the
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FIGURE 1 | Multi-target search algorithm framework diagram.

form of a finite state machine. The specific description is shown
in Figure 1.

As shown in Figure 1, the basic multi-target search algorithm
framework can be described as: when the robot detects the target
signal, it enters the coordinated search state, and uses the swarm
intelligence optimization algorithm to coordinate the search;
when the robot does not detect the target signal, it will follow a
certain roaming mechanism to detect the target signal.

The Multi-Assignment Model Based on
Response Threshold
Sensor Detection Model
Sensors with different detection distances have different response
strengths for target signal, and the function to describe the target
signal strength can be set as follows (Manic, 2009):

I(i, j) =

{

sQ
d2ij

+ rand(), dij ≤ d0

0, dij ≥ d0
(1)

where Q is the constant power signal sent from the center of the
target, dij denotes the distance between the robot and the target,
d0 is the maximum detection distance of the sensor, s is the signal
attenuation factor, rand is the random disturbance of the signal,
and I(i, j) is the signal strength between robot and target.

Multi-Target Allocation and Design
In the robot roaming search process, the robot may detect
multiple target signals. How to make self-organizing decisions
on the target signals and find subgroup alliances is the key to
the coordinated search of swarm robots. First, the target response
function is used to calculate the detection of each target signal for
each robot at time t. Then, the probability that the robot selects
the target is calculated via the target response signal strength,
Finally, the decision about the target based on the roulette
probability decision algorithm is made. As shown in Table 1, the
induction about the target signal strength of the robot at the
moment t is as follows:

The probability response process of the i-th robot to the j-th
target is:

p(i, j) =
I2j

m
∑

k=1

I2
k

(2)

where Ij is the signal strength of the target Tj detected by the
robot Ri. If the robot can detect the number of targets, i.e., m, the
probability that Ri responds to the excitation from target Tj is p
(i, j). TheRi decision-making process of the robot Ri is as follows:

k = min





m
∑

j=1

p(i, j) ≥ rand()



 (3)

where rand () is subject to a uniform score between 0 and 1, and
k is the smallest target sequence number satisfying its condition.
According to the processed decision-making method, it can be
determined from Table 1 that the subgroup alliances composed
of the task target set are T1 = {R1, R5}, T2 = {R2, R3}, and T3 =

{R4}, and the members of R6 are in the roaming search state and
do not participate in the coordinated search.

The Roaming Search Algorithm Based on
Nearest Neighbor Exclusion Diffusion
At the initial moment, the robot cannot detect the target
signal. Therefore, it is very important to design an effective
individual roaming search model to detect the target signal at the
fastest speed. Typical roaming search models include Levy Flight
(Viswanathan et al., 1999) and Intermittent Search (Bénichou
et al., 2006). However, the roaming search strategies of these
models suffer from the following disadvantages: (1) the search
efficiency is not high, and (2) the factor of obstacle avoidance is
not considered in the search process. Therefore, a new roaming
search algorithm, namely, the Nearest Neighbor Exclusion
Diffusion (NNED) Algorithm is introduced in this section.

Suppose the position information of the i-th robot in the
search space at time t is expressed as Xri(t) = [Xi(t), Yi(t)]

T ,
and the maximum speed of the roaming robot is Vm. The NNED
algorithm is described below.

Without considering obstacles, the distance matrix Dim

between the i-th robot and other robots at time t can be expressed
as follows:

Dim =
[

di1, di2, . . . , dik, . . . , dim
]

(4)

where dik is the Euclidean distance between the i-th robot and the
k-th robot. Sort equation (4) by row from small to large to obtain
the distance sorting matrix Dis.

Dis = sort(Dim) (5)

The position sequence information index of the neighboring
robot can be expressed as follows:

index = find(Dim(1, :) == Dis(1, 2)) (6)
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TABLE 1 | Detection of target signals by robots members at time t.

Robot Perceived target type Perceive target signal strength Personalized task set

T1 T2 T3 T4 T5 T6

R1 I-type Unknown I-type 0.9358 0 0.3346 {T1,T3}

R2 Unknown I-type Unknown 0 0.6632 0 {T2}

R3 Unknown I-type Unknown 0 0.6632 0 {T2}

R4 Unknown II-type I-type 0 0.9358 0.6632 {T2,T3}

R5 I-type II-type I-type 0.3346 0.6632 0.9358 {T1,T2,T3}

R6 Unknown Unknown Unknown 0 0 0 none

The repulsion angle θ between the i-th robot and the index-th
robot is expressed as follows:

θ(t) =

{

ac sin(
Xi(t)−Xindex(t)

diindex
),γindex(t)≥γi(t)

π−ac sin(
Xi(t)−Xindex(t)

diindex
),γindex(t)≤γi(t)

(7)

where diindex is the Euclidean distance between the i-th robot and
the index-th robot. Set the expected position of the robot at time
t + 1 as X′

ri(t + 1)= [x
′

i (t + 1), y
′

i (t + 1)]T , and the step size is
updated as follows:

[

xi
′(t + 1)

yi
′(t + 1)

]

=

[

xi(t)
yi(t)

]

+

[

Vm cos(θ(t))
Vm sin(θ(t))

]

(8)

Taking into account the boundary constraints, the actual position
of the roaming robot is updated as follows:







Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≤ 0 ∩ xi(t + 1) ≤ 0

Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≤ 0 ∩ xi(t + 1) ≥ L

Vx
′ = −Vm cos(θ(t)),Vm cos(θ(t)) ≥ 0 ∪ 0 ≤ xi(t + 1) ≤ L

(9)

where L is the search boundary. In the same way, the y-
axis velocity component considering the boundary limit can be
updated. Set the actual updated position of the robot at time t + 1
as Xri(t + 1)= [xi(t + 1), yi(t + 1)]T , and the position update of
the roaming robot considering boundary constraints is as follows:

[

xi(t + 1)
yi(t + 1)

]

=

[

xi(t)
yi(t)

]

+

[

Vx
′

Vy
′

]

(10)

where Vic(t + 1) = [V ′(x), V ′(y)]T is update step of the robot
roaming speed.

Coordinated Search Algorithm of Particle
Swarm Based on Kinematics Constraints
By analyzing and comparing several benchmark concepts in the
cooperative search state of the particle swarm algorithm and
swarm robots, it can be found that there is a certain mapping
relationship between them. Based on the inertial weight particle
swarm algorithm, kinematic constraints can be used to describe

this mapping relationship, and the specific expression is as
follows (Gudise, 2004):























Vie(t + 1) = ωVRi(t)+ c1r1(X
∗
Ri(t)− XRi(t))

+c2r2(g
∗
Ri(t)− XRi(t))

VRi(t + 1) = VRi(t)+ (Vie(t + 1)− VRi(t)) · α
XRi(t + 1) = XRi(t)+ VRi(t + 1) · δ

VRi(t + 1) ≤ Vm

(11)

where Vie(t + 1) is the expected speed of the robot at the next
moment, VRi(t + 1) is the speed of the robot at time t, X∗

Ri(t)
is the historical optimal position of the individual robots, g ∗

Ri (t) is the optimal position of the robot at time t, VRi(t + 1)
is the actual expected speed considering the kinematics of the
robot, XRi(t) is the position coordinate of the robot at time t,
XRi(t + 1) is the expected position of the robot at the next time,
w is the inertial weight, c1 and c2 are the individual and social
cognitive coefficients of the robot, r1 and r2 are random numbers
uniformly distributed between 0 and 1, α is the inertia coefficient,
δ is the step size control factor of the robot, and Vm is the limited
maximum speed.

Setting the target position as [Xot,Yot]
T, the fitness function of

the coordinated search of the robot is as follows:

f (t) =

√

(xi(t)− Xot)
2
+ (yi(t)− Yot)

2 (12)

Because the particle swarm optimization algorithm easily falls
into the local best optimum, its inertia weight is improved
by combining the actual search situation of the robot in this
paper. The basic idea is as follows: when the distance between
the particle and the target exceeds a certain threshold, w
remains large and the global search is performed; when the
distance between the particle and the target is less than a given
threshold, w uses its fitness value to performs adaptive non-linear
decrement value, fine-grained search and continuously approach
the target point. The sigmoid function in the neural network has
a strong non-linear approximation ability, whose extreme value
ranges between 0 and 1. Since the value of the inertia weight w in
the particle swarm is almost the same, the mapping relationship
is as follows:

g(x) =
2

1+ e−x
− 1, x ≻ 0 (13)
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FIGURE 2 | SVFM obstacle avoidance model.

Then, a function is introduced into a distance-dependent robots
system to adapt the value of inertia weight, and the specific
expression is as follows:

ω =

{

2

1+e−5d/dl
− 1, d = f (i) ≤ dl

0.8, d = f (i) ≻ dl
(14)

where dl is the set distance threshold and d = f (i) is the fitness
value of the robot.

THE FRAMEWORK OF SWARM ROBOT
SEARCH ALGORITHM CONSIDERING
PRACTICAL CONSTRAINTS

On the basis of the ideal multi-target search algorithm framework
in the previous section, in this section, the problems of real-
time obstacle avoidance and distributed communication in the
search process of swarm robots are considered, and a multi-
target search algorithm framework for swarm robots considering
practical constraints is designed.

Simplified Virtual Force Model
Aiming at the obstacle avoidance problem in the multi-target
search process of swarm robots, introducing a simplified virtual
force model can not only perfectly overcome the collision
avoidance problem between robots, but also can be well
integrated with the entire search algorithm framework, and the
performance of the algorithm is also guaranteed.

The Construction of Obstacle Avoidance Model
The idea of this model is described in Figure 2. Supposing that
the position of the i-th robot at time t is Xri(t), the position of the
robot at time t + 1 under the framework of the ideal multi-target
search algorithm is Xri(t+ 1). It is obvious from Figure 2 that the
local path planned by the robot from t to t + 1 will coincide with
the position of the obstacle.

First, find out the position information of two neighboring
obstacles or robots based on the information of obstacles or

neighboring robots detected by the sensor of i-th robot sensor,
which are Xo1 and Xo2 respectively.

Then it is assumed that the robot will be affected by the
virtual introduction fac at the next moment and two neighboring
obstacles or robot repulsion which are fio1 and fio2 respectively.

Now define the rotation matrix TR of the new coordinate
system XOY generated by rotating the xoy coordinate system
counterclockwise by angle a as follows:

TR =

[

cos(a) sin(a)
− sin(a) cos(a)

]

(15)

Set gravity fac as follows:

fac =

[

facx(t)
facy(t)

]

=

[

xi(t)
yi(t)

]

−

[

xi(t + 1)
yi(t + 1)

]

(16)

The rotation matrix parameter a can be expressed as follows:

a = arctan(
facy(t)

facx(t)
) (17)

The force function of a given neighbor obstacle or robot is
as follows:

frep = k1 · (
1

dik
−

1

da
)
2

(18)

where da is the obstacle avoidance distance of the object (static
obstacles, robots, and dynamic obstacles) in the search process,
and dik is the distance between the robot and the obstacle in
the search process, and k1 is the obstacle avoidance parameter
of the robot.

Therefore, the coordinate components of obstacles (robots)
Xo1 and Xo2 to robot i in the XOY coordinate system can be
respectively obtained by the simultaneous equations (15)-(18),
which are as follows:

[

fio1X(t)
fio1Y (t)

]

=

[

cos(a) sin(a)
− sin(a) cos(a)

]

·

[

fio1x(t)
fio1y(t)

]

(19)

or

[

fio2X(t)
fio2Y (t)

]

=

[

cos(a) sin(a)
− sin(a) cos(a)

]

·

[

fio2x(t)
fio2y(t)

]

(20)

where, fio1x and fio1y represent the components of the repulsive
force fio1 in the coordinate system xoy, and fio2x and fio2y
represent the components of the repulsive force fio2 in the
coordinate system xoy. These components can be all obtained by
equation (18).

Finally, only considering the deflection force in the X-axis
direction and ignoring the resistance in the Y-axis direction, the
final motion direction fri of the robot is expressed as follows:







fiXY = fio1X + fio2X
fri = fiXY + fac

vri(t + 1) = vif (t)+ vie(t + 1)
(21)
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where, vri(t + 1) is the actual speed required by the robot at
the next moment, which can be regarded as the vector sum of
the robot state update speed vie(t + 1) at time t + 1 under the
framework of the ideal search algorithm and the deflection speed
vif (t) of the neighboring obstacles in the X-axis direction.

The Strategy of Robot State Step Update

Considering Obstacle Avoidance Constraints
Based on the idea of the SVFM combined with the ideal search
algorithm framework with SVFM, the step size update strategy of
the robot in different search states is given in this section. When
the robot is in the roaming search state, rstate = 0; when the robot
is in the coordinated search state, rstate = 1. The speed step update
strategy of swarm robots in different states is as follows:















vri(t + 1) = Vic(t + 1), rstate = 0 ∩ dij ≻ da
vri(t + 1) = Vie(t + 1), rstate = 1 ∩ dij ≻ da

vri(t + 1) = Vic(t + 1)+ vif (t), rstate = 0 ∩ dij ≤ da
vri(t + 1) = Vie(t + 1)+ vif (t), rstate = 1 ∩ dij ≤ da

(22)

The position update strategy of swarm robots considering
obstacle avoidance constraints is as follows:

x∗ri(t + 1) = xri(t)+ vri(t + 1) (23)

The Distributed Neighborhood
Communication Mechanism Based on
Time-Varying Characteristic 179 Swarm
With Restricted Random Line of Sight
(RS-TVCS)
The Communication Model Based on RS-TVCS
In biological research, perception and communication between
animal groups are often limited by perception distance. For
example, when the Ouqiong bird population flies in formation,
its individuals can only exchange information with neighboring
individuals within its communication radius to form a local
communication network. There is a common neighboring
individual between two individuals, and they cannot directly
communicate and interact. Through sharing the information of
common neighboring individuals, it can spread to the individuals
outside their neighbors to form a global communication network.
Based on this idea, a representation based on distributed
neighborhood communication is defined. The communication-
based neighborhood of robot i is a set of teammates within a fixed
radius dc to the position of robot i, which can be written as (Xue
et al., 2009):

�(ri) =
{

rj∈m,j 6=i,
∥

∥xri − xrj
∥

∥ ≤ dc
}

(24)

where � is the communication-based neighborhood, m is the
number of members in the swarm, and ri denotes the robot
i. xri and xrj are the spatial positions of robots i and j, robots
respectively. dc is the maximum communication radius.

During swarm moving, the neighborhoods may change over
time, causing the whole swarm to be divided into several
dynamically changing sub-swarms. Xue et al. defined those sub-
swarms with the concept of Time-Varying Characteristic Swarm

FIGURE 3 | Schematic diagram of individual neighbor collection.

(TVCS). The TVCS of robot i at time t can be represented as
follows (Junior and Nedjah, 2016):

�(ri)(t) = ri ∪
{

rj∈m,j 6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc
}

(25)

where �(ri)(t) represents the TVCS of robot i. The number of
members in a TVCS is dynamically changing, i.e., ri can only
able to communicate with other agents in �(ri)(t) at the time t.
Taking into account the limited field of view in the robot signal
interaction process, Yang et al. (2019) defined a notation of visual
limited TVCS (V-TVCS), which can be written as:

�v(ri)(t) = ri ∪
{

rj∈m,j6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc ∧ ϕi,j ≤
ω

2

}

(26)

where �v(ri)(t) is the V-TVCS. ω is the single of view of i-th
robot, and its sight range is generally set to φi,j ǫ (0, 2π]. φi,j is
the sight judgment vector of robots i and j, which is expressed
as follows:

ϕi,j =
〈

rij(t), vri(t)
〉

(27)

where, rij(t) is the location vector of robots i and j, vri(t) is the
speed vector of the ith robot, and 〈 rij(t), vri(t)〉 is the angle
between vectors rij(t) and vri(t).

Since the line of sight of the robot is not always in the
direction of its speed in the process of motion, it is assumed
that the line of sight of individual robots changes randomly
along the direction of movement in this paper and that the
change law obeys the normal distribution, namely, η ∼ N(0,
σ
2), where σ is the standard deviation of the deflection angle of

the line of sight, and the mean value is 0, indicating that the
probability of the individual going straight ahead is greater than
that of information interaction to the diagonal side. Considering
the limitation of the random line of sight of the robot, the
relationship structure diagram of the neighborhood distributed
neighborhood communication based on RS-TVCS designed in
this paper is shown in Figure 3.

The distributed neighborhood communication mechanism
based on RS-TVCS is defined as followed:

�RS(ri)(t) = ri ∪
{

rj∈m,j6=i,
∥

∥xri(t)− xrj(t)
∥

∥ ≤ dc ∧ ϕi,j ≤
ω

2

}

(28)
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where, the expression of φi,j is as follows:

ϕi,j =
〈

rij(t), LOSri(t)
〉

(29)

where LOSri(t) is the vector of line of sight. When LOSri(t)
= vri(t), it indicates that the line of sight of the robot is
consistent with its moving direction. Therefore, the V-TVCS
distributed communicationmechanism based on V-TVCS is only
a special case of RS-TVCS. RS-TVCS has better scalability and
practicability than V-TVCS.

RS-TVCS Distributed Network Connected Subset

Judgment Based on BFS Algorithm
The global communication network based on the RS-TVCS
will change with the dynamic migration of swarms. Under the
ideal search algorithm framework, it will iteratively change with
the position of the robots, which will make it impossible for
some robots to interact with each other, thus forming connected
subgroups. Therefore, based on graph theory, assuming that the
position of each robot at a certain moment represents a dynamic
node, the connected subgroup of each robot is determined based
on the idea of the breadth first search (BFS) algorithm. Through
this algorithm, the interactive information of each robot under
the entire global communication network based on RS-TVCS
can be obtained, so as to realize the coordinated search of
swarm robots.

The specific ideas are as follows:

1) Taking the position of the robot at time t as the node, the
weight matrix dij is constructed by using the distance between
the two points as follows:

di,j =







0 d1,2 · · · d1,j · · · d1,m
... 0

...
...

...
...

dm,1 dm,2 · · · dm,j · · · 0






(30)

2) Through the neighborhood judgment conditions of equations
(28) and (29), the neighborhood weight matrix is constructed.
When the neighborhood judgment conditions are not satisfied
between the robots i and j, the weight between the two robots
(nodes) is 0; otherwise, the weight between the two robots
(nodes) is Euclidean distance value.

3) Based on the idea of the BFS (Awerbuch and Gallager, 1987;
Jia et al., 2008; Wang et al., 2020) algorithm, all the connected
nodes of the neighborhood weight matrix are found to obtain
the neighborhood communication information of each robot
in the global network.

The Flow of Multi-Target Search Algorithm Swarm

Robots Considering Practical Constraints
Under the ideal multi-target search algorithm framework, the
distributed communication problem in the search environment
is combined with the real-time obstacle avoidance problem. The
flow chart of the multi-target search algorithm for swarm robots
considering practical constraints (i.e., MSRCPC) is shown in
Figure 4.

FIGURE 4 | MSRCPC algorithm flow diagram.

TABLE 2 | The table of MSRCPC algorithm parameter.

Symbol Symbolic meaning Parameter value

m Swarm robotics 10–100

n Search target 1–10

s Signal attenuation factor 0.1

Q Constant power signal 10,000

d0 Sensor maximum detection distance 100

Vm Robot maximum speed 10

α Inertia coefficient 0.4

δ Step size control factor 0.6

dl Adapted distance threshold 100

k1 Obstacle avoidance parameter 0.8

da Obstacle avoidance distance 80

dc Neighborhood communication distance 100

w Robot sight range 150

The main sub-algorithms involved in the proposed algorithm
include NNED roaming search algorithm, IAEPSO coordinated
search algorithm, TRT multi-target task assignment, obstacle
avoidance algorithm based on SVFM, and distributed
communication algorithm based on RS-TVCS. The entire
algorithm framework basically considers all the problems in
the search process of swarm robots, which greatly enhances the
scalability and usability of the algorithm.

SIMULATION

In this section, the proposed MSRCPC algorithm has been
verified by several experiments in Matlab2019a. First, the
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FIGURE 5 | The figure of MSRCPC single-target search. (A) T = 0, (B) T = 40, (C) T = 80, (D) T = 124.

MSRCPC algorithm is described in detail by simulating the
search behavior of swarm robots in single-target environments
and multi-target environments. Then, four multi-target search
comparison modes are set up, and the simulation tests are
carried out 30 times by using different modes simulation tests
30 times under different group sizes. The effectiveness of the
MSRCPC algorithm is verified by comparing and analyzing the
simulation results.

The MSRCPC Algorithm Test
In this part, the basic parameter settings of the MSRCPC
algorithm are shown in Table 2.

With constant basic parameters, the algorithm is applied to
single-target and multi-target simulation environments. In view

of the randomness of the algorithm, an algorithm search process
is randomly recorded to describe the searchmechanism and show
the performance of the algorithm in detail.

The Single-Target Search Test in Unknown Complex

Environments
The initial environment settings of the swarm robotics single-
target search simulation for swarm robots are shown in
Figure 5A. As shown in Figure 5A, at T = 0, swarm robots are
distributed in the corners of the search space, represented by red
dots. The position of the target to be searched is set in the middle
of the search space, represented by a black regular hexagon.
The various black shapes in the figure represent obstacles in
the search space. For the robot, the maximum speed is 10, the
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FIGURE 6 | MSRCPC single-target search path simulation diagram.

direction of its initial speed is random, the communication range
is limited to 150 degrees, and the direction of moving speed is
inconsistent with the direction of the line of sight, and meets
the communication conditions of robot in RS-TVCS. Since the
robot does not detect the target signal at the initial moment,
the NNED algorithm is used to perform random search and
diffusion. When T = 40, the robot still does not detect the target
signal point, and the NNED algorithm continues to be used
to randomize, as shown in Figure 5B. As shown in Figure 5C,
at T = 80, the No. 1 robot detects the target signal, and then
based on the RS-TVCS algorithm proposed in this paper, the
number of the robots is learned that can communicate, and the
group communication is conducted to form sub swarms. The
robot that can detect the target signal through group information
sharing switches from the roaming search state to the coordinated
search state, and uses the IAEPSO algorithm to coordinate the
search for the target point. Finally, as shown in Figure 5D, at
T = 128, the robots numbered 5, 6, 7, 8, 9, 11, and 12 basically
converge to the target point, and the target search is successful.
The simulation search process with the MSRCPC algorithm
can basically be divided into two stages: roaming search and
coordinated search.

The search path of the robot recorded in this single-target
simulation is shown in Figure 6, and it can be seen that the
MSRCPC algorithm can not only search for targets quickly and
accurately, but also can intelligently avoid obstacles, and has good
cluster avoidance performance.

The Multi-Target Search Test in Unknown Complex

Environments
Given that the initial number of robots is 30 and the number of
targets is 5, other algorithm parameters are consistent with those

of the single-target search algorithm in the previous section. The
specific simulation search process is shown in Figures 7A–D.

In Figure 7A, at T = 0, the drone swarm is randomly
distributed at 200 × 200 unit positions in the search space,
and the target points are randomly distributed in the 1,000 ×

1,000 search space. The black irregular shape represents the
obstacles in the search environment, and the proposed RS-TVCS
method is adopted by the robot group to communicate. Based
on the RS-TVCS communication rules, using the BFS algorithm,
it can be known that at T = 0, the 30 robots are neighbors
and can maintain information sharing. As shown in Figure 1,
the 30 fan-shaped shared areas of the robots are group global
communication area of the robot group. The robot does not
detect the target signal in the global communication area, and
the robot is in a roaming search state, that is, it uses the NNED
algorithm to perform a roaming search at its maximum speed.

In Figure 7B, when T = 87, some robots detect the No. 2
target signal and the No. 3 target signal. At this time, the robots
in the RS-TVCS global communication neighborhood share local
information, and then perform target assignment based on the
TRTmodel to form a subgroup alliance and enter the coordinated
search state. However, the robots that fail to communicate with
their subgroups continue to maintain the roaming search state
and perform roaming searches. In addition, the No. 4 robot
detects the No. 2 target signal and the No. 13 robot detects
the No. 3 target signal. Based on the RS-TVCS neighborhood
communication algorithm, it can be seen that the robots 6, 8,
9, 11, 17, 21, 24, and 29 that share information with the No.
4 robot form a subgroup alliance. Their state changes to the
coordinated search state, and then a collaborative search will be
conducted on the No. 3 target. In the same way, the No. 29
robot that shares information with the No. 13 robot forms a
subgroup alliance, and then performs an accurate collaborative
search on the No. 3 target. Since the remaining robots cannot
communicate with the two subgroup alliances, or detect the
target signal, they continue to maintain the roaming search state
for random diffusion.

As shown in Figure 7C, when the MSRCPC algorithm iterate
to T = 123, the subgroup alliances that perform a coordinated
search on the targets No. 2 and No. 3 converge to the vicinity of
targets No. 2 and No. 3, respectively, and the search for targets
No. 2 and No. 3 succeeds. At the same time, the search target
information disappears, and the subgroup alliance is disbanded.
The formation of robot is the No. 9 robot and the No. 26
robot detect the signal of the No. 1 target and the No. 5 target,
respectively. Similarly, according to the solution of the RS-TVCS
distributed communication model, it can be seen that 8 robots
(2, 18, etc.), which can share information with the No. 9 robot
form a subgroup alliance to conduct a collaborative search for
the No. 1 target, while the No. 26 robot that fails to interact
with other robots cannot obtain communication and maintains
a coordinated search alone. In addition, the remaining individual
robots that fail to communicate with the target groups No. 1 and
No. 5 continue to roam and search using the NNED algorithm.

Finally, as shown in Figure 7D, at T = 186, the robots
successfully detect the No. 4 target, and the search of swarm
robots ends.
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FIGURE 7 | The figure of MSRCPC multi-target search. (A) T = 0, (B) T = 87, (C) T = 123, (D) T = 186.

TABLE 3 | The four search algorithm mode table.

Mode Task allocation Roaming search Coordinated search Obstacle avoidance Distributed communication

Mode1 ITRT NNED EPSO SVFM v–TVCS

Mode2 ITRT NNED IABA SVFM v-TVCS

Mode3 ITRT NNED IAEPSO SVFM v-TVCS

Mode4 ITRT NNED IAEPSO SVFM RS-TVCS

The Simulation Analysis of the MSRCPC Algorithm
In the test of the single-target and multi-target search process,
the MSRCPC algorithm proposed in this paper has the following
advantages. (1) The search process of the algorithm mainly

includes roaming search processes and coordinated search
processes. In the roaming search process, the robot cannot
obtain the prior information of the target, and spreads the
search space at the fastest speed; in the coordinated search
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FIGURE 8 | (A) Searching time T and (B) total energy consumption S of the swarm robotics system.

TABLE 4 | System performance comparison statistics table of four search modes.

Swarm size Search T S

model Max Mean Min Max Mean Min

20 Mode1 845 771.234 765 6.091E + 04 5.876E + 04 5.491E + 04

Mode2 786 763.541 698 4.871E + 04 4.791E + 04 4.469E + 04

Mode3 754 737.421 712 4.452E + 04 4.912E + 04 5.367E + 04

Mode4 707 675.741 674 4.087E + 04 4.178E + 04 4.619E + 04

40 Mode1 746 698.39 678 7.189E + 04 6.654E + 04 6.291E + 04

Mode2 645 645.48 610 5.908E + 04 5.769E + 04 5.491E + 04

Mode3 631 654.31 631 6.598E + 04 6.235E + 04 5.561E + 04

Mode4 607 587.431 571 5.798E + 04 5.668E + 04 5.247E + 04

60 Mode1 639 619.361 591 8.271E + 04 8.018E + 04 7.789E + 04

Mode2 579 550.189 547 6.154E + 04 5.789E + 04 5.554E + 04

Mode3 619 576.981 539 7.981E + 04 7.467E + 04 7.086E + 04

Mode4 520 504.861 476 7.234E + 04 6.967E + 04 6.431E + 04

80 Mode1 581 543.187 538 8.913E + 04 8.761E + 04 8.531E + 04

Mode2 489 471.67 468 8.318E + 04 7.971E + 04 7.689E + 04

Mode3 549 518.60 471 8.241E + 04 7.987E + 04 7.618E + 04

Mode4 459 449.356 423 8.089E + 04 7.709E + 04 7.136E + 04

100 Mode1 471 451.61 406 1.109E + 05 9.971E + 04 9.012E + 04

Mode2 389 368.071 319 1.012E + 04 9.456E + 04 8.956E + 04

Mode3 397 369.178 365 9.780E + 04 9.438E + 04 9.129E + 04

Mode4 368 326.678 306 9.109E + 04 8.754E + 04 8.497E + 04

process, by obtaining the target information, the robots are
determined by the RS-TVCS communication interaction model
in the global communication range, and then the sub-group
alliances approach the optimal position of the target point
based on the group optimal information and individual optimal
information in the IAEPSO algorithm. (2) Self-organization and

adaptability are embodied in the process of the target search of
swarm robots. In the process of target searching, swarm robots
adaptively transform their own state by acquiring information
of the external environment or sharing local information and
participating in task collaboration. (3) The intelligence of swarm
robots in the target search process is also reflected. In the process
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of roaming search and coordinated search, individual robots can
realize intelligent obstacle avoidance by sensing the information
of the external environment and successfully avoiding obstacles.
In order to verify the performance of the MSRCPC algorithm, a
series of comparative experiments are carried out in the next part.

Comparison and Discussion of MSRCPC
Algorithm Simulation
In this part, the four sets of comparison modes are set up to
further verify the superiority of the MSRCPC algorithm based
on the multi-target search framework of the finite state machine.
The settings of the four comparative search models are shown in
Table 3.

Based on its framework, the search algorithm is divided
into the following five parts, namely, multi-target task
allocation model, roaming search algorithm, coordinated
search algorithm, cluster obstacle avoidance, and distributed
communication model.

For Mode 1, the NNED algorithm is adopted for roaming
search, the traditional TRT model is used to assign tasks to the
target, the EPSO algorithm proposed in Gudise (2004) is applied
to coordinated search, the 2D-SVFM model (Xinjie, 2020) is
applied to group obstacle avoidance, and the V-TVCS model
proposed in Yang et al. (2019) is used for robot communication.
For Mode 2, the IABA algorithm proposed in Tang et al.
(2020) is applied to the robot coordinated search, and the other
sub-algorithms remain constant. For Mode 3, the proposed
IAEPSO algorithm is applied to the robot coordinated search,
and the remaining sub-algorithms remain unchanged. For Mode
4, the proposed MSRCPC algorithm is used to set up the
search experiment.

When the number of targets in the search environment of
swarm robots is 10, by changing the number of swarm robots,
these four modes were used to conduct 30 simulation search
experiments. The change of the search path S and the mean value
of the search time T of the swarm robots with the population
number is shown in Figure 8; Table 4.

It can be seen from Figure 8; Table 4 that when the number
of constant search targets is 10, as the scale of the swarm
robots increases, the search time of the swarm robot system will
decrease, but the system energy consumption of the swarm robots
will increase. Therefore, we are surprised to find that how to
balance the search time and energy consumption of the entire
system by balancing the scale of swarm robots is a basic problem
in the practical application of swarm robot systems.

By comparingMode 3 withMode 1 andMode 2, it can be seen
that in the entire multi-target search framework, the proposed
IAEPSO coordinated search algorithm has better performance
than EPSO and IABA algorithms in different population sizes.
The main reason is that the adaptive inertia weight set by the
IAEPSO algorithm can satisfy the coordinated search behavior
of the robot. However, when the target signal exceeds a certain
threshold, the robot has a larger inertia weight and can conduct
a large-scale coordinated search. When the target signal is less
than a certain threshold, in order to avoid the robot oscillating
around the target, the algorithm can adaptively adjust the motion
behavior of the robot to avoid the oscillation of the path, thereby
reducing system energy consumption.

From the performance comparison curves of Mode 4 and
Mode 3, it can be seen that in the case of the other sub-algorithms
being the same, the search performance of swarm robots using
the RS-TVCS distributed communication algorithm is better
than that of Mode 3. The main reason is that the RS-TVCS
distributed neighborhood communication model can meet the
communication interaction performance of actual swarm robots.
Using the RS-TVCS model in the process of forming subgroup
alliances will make the configuration of the robot members
within eachmember more reasonable, which can greatly improve
the utilization of robot members and provide a more efficient
search for the entire algorithm framework.

All in all, compared with the first three modes, the search
performance of the swarm robotics can be improved by at least
25 by using the proposed MSRCPC algorithm (Mode 4).

CONCLUSION

The multi-target search problem of swarm robots in unknown
complex environments is studied in this paper. The main
innovations are as follows. (1) Aiming at the target search
problem of swarm robots in actual environments, a target
search framework based on a finite state machine is proposed.
The proposed framework can not only solve the single-
target search problem, but also solve the multi-target search
problem, which improves the applicability of this algorithm
in actual search scenarios. (2) In this algorithm, the problem
of cluster obstacle avoidance is considered as a problem in
the actual search environment, and the intelligence of cluster
search for the robot is reflected. (3) In order to solve the
distributed communication interaction problem in the unknown
environments, by considering the random communication
between individual robots and the limited visual area, a RS-TVCS
model is proposed, which overcomes the shortcomings of the
V-TVCS communication model.

Simulation analysis and comparison experiments show that
this proposed algorithm has good search performance and strong
scalability and stability, and can adapt to any search environment.
In addition, we find, surprisingly, that the balance of search
performance of the swarm robot system is related to the number
of swarm robots. Therefore, how to balance the search path and
search time of swarm robot systems by setting a certain number
of swarm robots is the focus of further research.
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School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

SLAM (Simultaneous Localization And Mapping) plays a vital role in navigation tasks

of AUV (Autonomous Underwater Vehicle). However, due to a vast amount of image

sonar data and some acoustic equipment’s inherent high latency, it is a considerable

challenge to implement real-time underwater SLAM on a small AUV. This paper presents

a filter based methodology for SLAM algorithms in underwater environments. First, a

multi-beam forward looking sonar (MFLS) is utilized to extract environmental features. The

acquired sonar image is then converted to sparse point cloud format through threshold

segmentation and distance-constrained filtering to solve the calculation explosion issue

caused by a large amount of original data. Second, based on the proposed method, the

DVL, IMU, and sonar data are fused, the Rao-Blackwellized particle filter (RBPF)-based

SLAM method is used to estimate AUV pose and generate an occupancy grid map. To

verify the proposed algorithm, the underwater vehicle is equipped as an experimental

platform to conduct field tasks in both the experimental pool and wild lake, respectively.

Experiments illustrate that the proposed approach achieves better performance in both

state estimation and suppressing divergence.

Keywords: SLAM, multi-beam forward looking sonar, point cloud, grid map, underwater vehicle

1. INTRODUCTION

AUVs (Autonomous Underwater Vehicles) have been widely applied to perform various complex
underwater tasks such as resource exploration (Ohta et al., 2016), environmental monitoring
(Williams et al., 2012; Barrera et al., 2018), underwater rescue (Venkatesan, 2016), and military
operations (Hagen et al., 2005), etc. To satisfies the safety and reliability, AUVs should acquire
accurate localization in underwater unknown environments.

To achieve this goal, Doppler Velocity Logging (DVL) and Inertial Measurement Unit (IMU)
are fused with acoustic long baseline (Matos et al., 1999), short baseline (Vickery, 1998), and ultra-
short baseline (Hao et al., 2020) to calculate the position of AUVs. However, these traditional
methods have shortcomings regarding to error divergence. DVL measures the speed by integrating
the acceleration andmeanwhile further calculates localization from dead-reckoning, the final result
may, therefore, contain cumulative errors; The method based on the acoustic baseline needs to
arrange the equipment in the environment in advance; Therefore, it is essential to use a more
robust and reliable method to solve above problems. On the other hand, SLAM enables AUVs
to fuse sensor data and build a map of an unknown environment, while localizing simultaneously.
So far, sensors applied in underwater slam include cameras, side-scan sonar (SSS), single-beam
mechanical scanning sonar (SMSS), and multi-beam forward-looking sonar (MFLS).
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Camera-based underwater SLAM estimates the ego-motion
by extracting and matching features from adjacent images and
optimizing the pose at the back-end (Kim and Eustice, 2015;
Hong et al., 2016). Jongdae Jung et al. proposed a vision-based
SLAM, where artificial underwater landmarks help visualize
camera poses (Jung et al., 2017). Suresh et al. proposed a novel
method for underwater localization using natural landmarks
(Suresh et al., 2019). Sparse features were obtained via an onboard
upward-facing stereo camera through water for underwater
localization. Although the cost of the camera is low, vision-
based underwater SLAM has significant limitations. The camera’s
detection range is close and can only work in a clean environment
with good light.

Compare to cameras, sonar emits sound waves in single
or multiple directions and obtains information about the
surrounding environment by analyzing each echo’s strength and
return time. Sonar-based method is, therefore, the development
trend of underwater SLAM (Wang et al., 2017; Wang and
Cheng, 2020). Chen et al. proposed an RBPF SLAM algorithm
to tackle the issues of scan distortion and data sparseness caused
by the slow-sampling mechanical scanning sonar, by carefully
designed a sliding window-based scan module (Chen et al.,
2020). The formed scans are then fed into the modified RBPF
to build a consistent grid-based map. Siantidis et al. described
a SLAM system with a dead reckoning system and a side-
scan sonar (Siantidis, 2016), which can compensate for the
position drifts. Aulinas et al. proposed a feature-based sub-
mapping SLAM approach, which considered side-scan salient
objects as landmarks (Aulinas et al., 2010). However, the long
scanning period is quite challenging to meet underwater real-
time performance, as the return of the side-scan sonar and
mechanical scanning sonar image is delayed.

Meanwhile, MFLS is becoming more and more popular
in underwater perception because of its solid real-time
performance, small size, and easy installation (Hurtós et al.,
2014; Wright and Baldauf, 2016). Wang et al. proposed a
novel approach for underwater SLAM using an MFLS for 3D
terrain mapping tasks (Wang et al., 2019). Instead of repeatedly
projecting extracted features into Euclidean space, they applied
optical flow within bearing-range images for tracking extracted
features and assumed these features are sampled from a
Gaussian Process terrain map. Neves et al. introduced a novel
multi-object detection system, which outputs object position
and rotation from MFLS images (Neves et al., 2020). Pyo
et al. proposed a novel localization method in shallow water,
where localization is based on passive-type acoustic landmarks.
Through modeling, the distance from landmark to MFLS
could be calculated (Pyo et al., 2017). However, a complete
occupancy grid map using underwater vehicles with MFLS is
still missing.

This paper presents a methodology for the SLAM algorithm
based onMFLS, by building an accurate occupancy grid map and
providing an accurate estimation of AUV poses. The occupancy
grid graph can be used for subsequent global positioning
and path planning. The main contributions of the proposed
algorithm are in two aspects. (1) Aiming at the slow processing
speed caused by a large amount of MFLS image data, a method is

proposed to convert the collected sonar image into sparse point
cloud format data through threshold segmentation and distance-
constrained filtering. (2) Based on the proposed method, the
DVL, IMU, and MFLS data are fused, and then the RBPF-based
SLAM method is used to generate an accurate occupancy grid
map, and at the same time, the drift of the inertial navigation can
be suppressed.

The structure of the proposed approach is as follows. Section
2 introduces the characteristics of the MFLS used in this article.
The proposed SLAM method for underwater vehicles is detailed
in section 3. The experimental results are shown in section
4. Section 5 presents a brief conclusion and section 6 is our
future work.

2. PROBLEM DESCRIPTION OF MFLS
SLAM

MFLS is an image sonar. It can emit multiple sound waves
with a vertical width in the horizontal direction and detect the
environment based on the echoes. The working principle is
shown in Figure 1. However, it has no resolution in the vertical
direction, so the result is a two-dimensional image. By measuring
the flight time and intensity of the echo, images with different
degrees of brightness will be obtained, as shown in Figure 2. The
bright part indicates an obstacle with high echo intensity, and the
dark part indicates that the echo intensity at that location is weak.

Generally, there are two MFLS data processing methods:
image-level processing and echo intensity processing. However,
due to the dense beams, high resolution, and the relatively
large amount of image sonar data, processing directly from
the image level will cause a large amount of calculation in the
SLAM process, and it is difficult for the processor installed on
the small AUV to process the data in real-time. In order to
solve this problem, this paper converts the sonar image data
into corresponding point cloud data and then uses distance-
constrained filtering to extract the necessary information and
reduce the amount of calculation. In the case of limited
processor performance, the goal of real-time SLAM is achieved
on a small AUV.

3. PROPOSED SLAM METHOD

Figure 3 is the overall framework of the SLAM algorithm
proposed in this article. We first fuse DVL data and IMU
data to obtain odometer data in the algorithm and use it
for dead reckoning. At the same time, the MFLS sonar data
is preprocessed. First, the sonar data is converted into point
cloud data through threshold segmentation and data conversion.
The obtained point cloud data is then subjected to sparse
processing using distance constraints filtering. Finally, send the
processed data into the RBPF-SLAM algorithm for positioning
and composition.

3.1. Dead Reckoning
The function of the dead reckoning module is to apply the IMU
and DVL to provide a rough estimate of the AUV pose. When the
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FIGURE 1 | Schematic diagram of MFLS working mode.

FIGURE 2 | Example of scanning effect of 3 targets. The bright part indicates

an obstacle with high echo intensity, and the dark part indicates that the echo

intensity at that location is weak.

sonar samples the data, the dead reckoning module applies the
extended Kalman filter (EKF) to estimate the attitude by fusing
the data from these sensors.

Suppose the AUV estimated state is Xk = [pT
k
,ϕT

k
]T in the

global coordinate system at time k, where pk represents the
position of the AUV, and ϕk represents the attitude of the AUV.

pk and ϕk are, respectively, defined as

pk = [xk yk zk]
T , ϕk = [φk θk ψk]

T

where xk, yk, zk are the position coordinates in each axis in the
global coordinate frame, and φk, θk,ψk are the Euler angles roll,
pitch, and yaw in each corresponding axis.

Assuming that the linear velocity and angular velocity of the
AUV are υk and ωk, they are jointly used as the control input
uk = [υT

k
,ωT

k
]T . Specifically, υk and ωk are expressed as

υk = [lk mk nk]
T , ωk = [ok qk rk]

T

where each element in the two vectors is the linear velocity and
angular velocity on each axis in the AUV coordinate system. Then
the kinematics model of AUV can be expressed as

Xk+1 = f (Xk, uk) = Xk +1T ∗ J(Xk) ∗ uk (1)

where J(Xk) is the transformation matrix, and1T is the sampling
time interval. uk can be represented by DVL measurement value
and IMU measurement value with Gaussian noise ωk N(0,Qu).
Due to this kind of noise, there will be error accumulation in
dead reckoning. Therefore, other sensor information is called
to correct the error during the update phase of EKF. Through
formula (1), the AUV state can be estimated as

X̂k+1|k = f (X̂k|k, ûk) (2)
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FIGURE 3 | Architecture of the proposed SLAM algorithm.

The covariance matrix used for the prediction error can be
expressed as

Pk+1|k = Fk+1 ∗ Pk|k ∗ F
T
k+1 + Gk+1 ∗ Qu ∗ G

T
k+1 (3)

where Fk+1 and Gk+1 are the Jacobian matrices obtained by
solving the partial derivative of the nonlinear model function f
about the state Xk and the noise ωk.

Finally, the model prediction is updated by applying the
standard EKF update equation to generate the estimated pose of
the AUV.

3.2. Threshold Segmentation and Data
Conversion
The working principle of sonar is to generate an echo according
to the sound wave encountering an object and then generate an
image according to the time and intensity of the return of the
echo. Due to water quality and acoustic interference, multi-beam
sonar data will carry a lot of clutter and outliers in a natural

environment. Direct conversion into lidar data for mapping will
distort the resulting map. Therefore, it is necessary to filter
according to the environment so that the data can better reflect
the characteristics of the environment.

In this experiment, the raw sonar data were processed in three
steps: threshold segmentation, data conversion, and distance-
constrained filtering. The flow chart of the proposed algorithm
is presented in Algorithm 1.

SI is sonar’s original data, an image generated with parameters
with a scanning angle of 130◦ and a scanning distance of 40m.
Figure 4 is an image generated by aiming at the corner of the pool
with sonar, which contains a lot of clutter. T1 is the threshold for
filtering selection. In general, we use the average pixel value as
the threshold for filtering. At the same time, the threshold can
also be manually set according to the water quality environment.
Under normal circumstances, we put several targets in the water
or look for an environment with apparent characteristics in
the background. Then, we use sonar to scan in real-time and
continuously adjust the threshold manually until the generated
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Algorithm 1: Sonar data process.

Data: [SI] Sonar’s raw image data and the average value of
pixels.

Result: [SP] Processed sonar data.
1 begin

2 SI = ReadSonarData();
3 //Threshold segmentation and data conversion
4 for Pixel(i∗j) ∈ SI do

5 if Pixel(i∗j) < T1 then

6 Pixel(i∗j) = 0;

7 else

8 Pixel(i∗j) = Pixel(i∗j);

9 end

10 end

11 for k = 0; k < i; k++ do

12 for Pixel(k∗jth) ∈ Pixel(k∗j) do

13 Pixel(k∗jth) = FindMaxValue(Pixel(k∗j));

14 end

15 rangei = jth ∗ range_step;
16 anglei = i ∗ angle_step;
17 PointC.PushBack(rangei, anglei);

18 end

19 //Distance-constrained filtering
20 num = 0, sum = 0;
21 for p = 0; p < i; p++ do

22 num = num+ 1;
23 sum = sum+ rangep;
24 if p%T2 == 0 && p! = 0 then
25 average_value = sum/num;

26 for n = p− num; n < num; n++ do

27 dif = rangep − average_value
28 if dif > T3 then

29 rangep = 0
30 else

31 rangep = rangep
32 end

33 end

34 num = 0, sum = 0;

35 else

36 end

37 end

38 SP.PushBack(rangep)

39 end

point cloud data can better reflect the target profile. At the same
time, when watching open waters, less noise is generated, and
the current threshold is selected as the optimal threshold in the
current environment.

The pixel value below T1 is assigned a value of 0, and the
pixel value above T1 remains unchanged. Since only the features
of the surface of the object are considered when constructing
the map, we believe that the brightest point on the beam is
formed by the sound wave hitting the surface of the object and

FIGURE 4 | Sonar raw data. This is the raw data picture of the sonar facing

the corner of the experimental pool.

returning. Therefore, we only select a point with the highest
intensity on each beam as the target of interest. After preliminary
filtering, we calculate the position of the target pixel in the sonar
coordinate system according to the angular resolution angle_step
and distance resolution range_step of the sonar. The resolution
value can be changed by setting the sonar parameters. Calculating
all the pixels of the sonar image, we can get the point cloud data,
as shown in Figure 5A.

3.3. Distance-Constrained Filtering
From Figure 5A, we can find that many bright spots are
generated behind the wall of the pool. This is not the data we
want, and it will affect the positioning accuracy and mapping
effect of the AUV. Aiming at these clutter interference, this paper
uses a distance constraint-based method to filter out clutter while
reducing the amount of data. Doing so can improve the real-
time performance of the algorithm while ensuring positioning
accuracy and mapping quality. The flow chart of this algorithm
is shown in the lower part of Algorithm 1.

Process the obtained point cloud data PointC:

• Set a beam threshold T2, and divide all range data
rangei into A = {[range(0) − range(T2−1)], [range(T2) −

range(2∗T2−1)].....[range(i−T2−1) − range(i)]} according to the
angle order(−65◦ − 65◦).

• Set the distance threshold T3, calculate the average of all rangei
inAk, and then calculate the difference dif between each rangei
and the average. If dif is greater than T3, the data is judged to
be noise deleted, if it is less thanT3, it is judged to be valid data.

• Save the valid data into the SP, and the sonar data
processing ends.

Figure 5B is the point cloud image obtained after distance
constraint filtering. It can be found that the clutter behind the
wall of the pool is successfully filtered, and data that can truly
reflect the environmental characteristics are obtained.

3.4. RBPF SLAM With MFLS
The flow chart of the proposed algorithm is presented in
Algorithm 2. PS is the particle set generated according to the
initial state of the AUV. According to the theory that the joint
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FIGURE 5 | Panel (A) shows the point cloud data of the sonar raw data after threshold segmentation and data conversion. Panel (B) is the result of filtering based on

distance-constrained.

Algorithm 2: RBPF with multi-beam forward looking sonar.

Data: [Xt−1, SP] The AUV’s initial pose and processed sonar
data.

Result: [Xt] The pose of the most weighted particles.
1 begin

2 PSt−1 = Init();
3 for SP = ProcessSonarData() do
4 Xk = DeadReckoning();
5 zt = SP;
6 ut−1 = Xk − Xk−1;

7 for PS
(i)
t−1 ∈ PSt−1 do

8 < x
(i)
t−1,ω

(i)
t−1,m

(i)
t−1 >= PS

(i)
t−1;

9 x̃
(i)
t = Sample(x

(i)
t−1, ut−1); //sampling

10 x̂
(i)
t = IW(m

(i)
t−1, zt , x̃

(i)
t−1); //scan matching and

importance weighting

11 if x̂
(i)
t = φ then

12 x
(i)
t = x̃

(i)
t ;

13 ω
(i)
t = ω

(i)
t−1p(zt|m

(i)
t−1, x

i
t);

14 else

15 [x
(i)
t ,ω

(i)
t ] = Resample(x̂

(i)
t ,ϒ , ut−1,m

(i)
t−1);

//resampling
16 end

17 m
(i)
t = MapUpdate(m

(i)
t−1, zt , x

(i)
t ); //map

updating

18 PSt = PSt ∪ (x
(i)
t ,ω

(i)
t ,m

(i)
t );

19 end

20 Neff = 1
6N
i=1(ω̃

(i))2
;

21 if Neff < T then

22 PSt = resample(PSt);
23 else

24 PSt−1 = PSt;
25 end

26 end

27 end

probability can be converted into the product of conditional
probabilities, the solution of RBPF SLAM is to decompose the
original SLAM problem into separate positioning and mapping
parts (Grisetti et al., 2007).

p(x1 : t ,m|z1 : t , u1 : t−1) = p(m|x1 : t , z1 : t) · p(x1 : t|z1 : t , u1 : t−1)
(4)

where p(x1 : t|z1 : t , u1 : t−1) is the posterior of potential trajectories
x1 : t given observations z1 : t and odometry measurements u1 : t
of the AUV, p(m|x1 : t , z1 : t) is the posterior of maps, and
p(x1 : t ,m|z1 : t , u1 : t−1) is the posterior of maps and trajectories.
Given the values of x1 : t and z1 : t , p(m|x1 : t , z1 : t) can be
calculated analytically, so the key to the problem is to calculate
p(x1 : t|z1 : t , u1 : t−1).

To estimate the posterior p(x1 : t ,m|z1 : t , u1 : t−1), a group of
particles is first introduced. Each particle is composed of the pose
x of the AUV, the grid mapm, and the weightω. The particle filter
algorithm incrementally uses dead reckoning values and sonar
scan data to update the particle set. This process can be divided
into four steps, sampling, scanmatchingandimportanceweighting,

resampling, and mapupdate. Function x̂
(i)
t = IW(m

(i)
t−1, zt , x̃

(i)
t−1)

is a scan matching and importance weighting module, and its
function is to calculate the pose that best matches the currentmap

m
(i)
t−1 based on the current observation zt and all samples x̃

(i)
t−1.

Then each particle is assigned a separate importance

weighting based on the importance sampling principle w
(i)
t .

w
(i)
t = w

(i)
t−1 ·

ηp(zt|m
(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, ut−1)

p(xt|m
(i)
t−1, x

(i)
t−1, zt , ut−1)

(5)

∝ w
(i)
t−1

p(zt|m
(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, ut−1)

p(zt |m
(i)
t−1 ,xt)p(xt |x

(i)
t−1,ut−1)

p(zt |m
(i)
t−1,x

(i)
t−1 ,ut−1)

(6)

= w
(i)
t−1 · p(zt|m

(i)
t−1, x

(i)
t−1, ut−1) (7)

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 80195648

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cheng et al. Underwater SLAM Based on MFLS

TABLE 1 | The algorithm parameters.

Parameter Value

Map-update-intervel 0.3

maxRange 25

maxUrange 24

Number of particles 150

Resample threshold 0.5

Number of iterations 7

= w
(i)
t−1 ·

∫

p(zt|x
′)p(x′|x

(i)
t−1, ut−1)dx

′ (8)

Here, η = 1/p(zt|z1 : t−1, u1 : t−1) is the normalization factor
produced by Bayes’ rule where all particles are equal.

In function Resample(x̂
(i)
t ,ϒ , ut−1,m

(i)
t−1), the Gaussian

approximation of the proposed distribution is calculated, and
new particles are sampled for the next iteration based on the
calculated result. ϒ is the interval threshold for resampling in

the vicinity area of x̂
(i)
t .

Finally, the map m
(i)
t is updated based on the estimated pose

x
(i)
t and the observed value zt . Then, select the map and pose of
the particle with the largest weight among all the particles as the
final constructed map and estimated AUV pose.

4. EXPERIMENTAL RESULT

Both simulation and practical experiments are conducted to
verify the effectiveness of the proposed SLAM algorithm. Table 1
shows the main parameters of our algorithm for experiments.

4.1. Simulation Experiments
In the simulation experiment, we used UUV-Simulator to create
a Rexrov2 model, which is a full-propeller-driven ROV, and it
is equipped with four cameras, four lights, and a wide range of
sensors, including sonar, DVL, IMU, etc.

Figure 6 shows the Rexrov2 model and simulation
environment, an underwater maze. First, build a 3-D model of
the environment and load it into the 3-D simulator Gazebo.
To facilitate interaction with Gazebo, we used Robot Operating
System (ROS) in our simulation. The drivers of IMU, DVL,
and MFLS are loaded as Gazebo plug-ins and used to publish
ROS-compatible data, which are subscribed by the proposed
SLAM algorithm. Our ROV is controlled to navigate the maze
for one round during the simulation. The algorithm’s outputs
include an occupancy grid map and an estimated ROV trajectory.

Figure 7 shows the occupancy grid map generated by
the proposed SLAM algorithm. Based on this map, AUV
can make path planning to avoid obstacles and reach the
designated position.

The comparison between the ROV position calculated by
the proposed algorithm and the ground truth is shown in
Figure 8. Their trajectory error is very small, and the simulation
experiment proves the effectiveness of our proposed method.

FIGURE 6 | Experimental environment and Rexrov2 model.

FIGURE 7 | Two-dimensional grid map.

4.2. Experimental Pool Experiment
In the practical experimental, the open-source underwater robot
platform BlueROV2 was used to complete the SLAM experiment
of the underwater vehicle. In this paper, we only focus on the
positioning and surveying indicators of the underwater vehicle,
without considering the control. Therefore, the effect is the
same regardless of whether the AUV or ROV is used as the
experimental carrier to carry out the verification experiment.
To make BlueROV2 meet our experimental requirements, we
installed a multi-beam forward looking sonar and a DVL
based on the original BlueROV2. Also, we installed a pair
of power cat modules to achieve underwater BlueROV2 and
the shore PC Long-distance data transmission. The modified
BlueROV2 (as shown in Figure 9) can well meet the SLAM
experimental requirements.

We first tested in the multi-purpose pool indoor. The size
of the pool is 70 x 44 m. In the experiment, we controlled the
BlueROV2 to face the wall for scanning and mapping.

The experimental pool environment is shown in Figure 10A,
and the positioning and mapping effect of the proposed
algorithm is shown in Figure 10B.

In Figure 10B, the red part represents the trajectory of the
odometer, the white part represents the detectable travelable area,
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FIGURE 8 | Panel (A) is the x-axis error between the calculated value of slam and the true value. Panel (B) is the y-axis error.

FIGURE 9 | Panel (A) is modified BlueROV2, and Panel (B) is the sensor layout.

FIGURE 10 | Panel (A) is the experimental pool environment. Panel (B) is the positioning and mapping effect of SLAM.

the black part represents the obstacle, and the gray part represents
the undetected area.

In this experiment, we used threshold segmentation and
distance-constrained filtering to process the multi-beam sonar

data and then used it to build the map. It can be seen from the
mapping results that good results have been achieved. At the
same time, it can be seen that the odometer error is continuously
accumulating. When the scan is completed, the odometer has
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not completed closing, but the map established by the SLAM
algorithm based on the multi-beam sonar has been closed, the
odometer’s position deviation is amended. Furthermore, the
superiority of the SLAM algorithm based on multi-beam sonar
used in this paper is proved.

4.3. Wild Lake Experiment
The field lake experiment was carried out in Liquan Lake,
Xi’an, Shaanxi. During the experiment, we take a dinghy to
approach the target environment, launch BlueROV2, and control
it to scan the target environment for positioning and mapping

experiments. Also, there is a GPS positioning antenna on the
dinghy. When the BlueROV2 scanning environment, the boat
closely followed BlueROV2 to obtain GPS coordinates near
it, providing actual data for the quantitative analysis of the
positioning surveying experiment.

Figure 11 is a satellite image of the two experimental locations
we choose.

Figures 12, 13 are the positioning and mapping results of the
two experimental scenes with our proposed algorithm.

It can be seen from the experimental results (Figures 12A,
13A) that the mapping effect is mostly consistent with satellite

FIGURE 11 | Satellite picture of the place where the experiment was conducted.

FIGURE 12 | Panel (A) is the result of the two-dimensional grid map created in scene 1. Panel (B) is the trajectory calculated by the proposed algorithm and

dead-reckoning, respectively.
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FIGURE 13 | Panel (A) is the result of the two-dimensional grid map created in scene 2. Panel (B) is the trajectory calculated by the proposed algorithm and

dead-reckoning, respectively.

FIGURE 14 | Panel (A) is the relative localization errors among the dead-reckoning trajectories, the proposed SLAM algorithm and the ground truth using data from

scene1. Panel (B) is the scene2.

images. There are several reasons for the deviation between the
satellite image and the map created by SLAM:

• Due to changes in water level, satellite maps may deviate from
actual maps.

• When BlueRov2 dives into the water, it scans the underwater
extension of the lake bank, including objects such as branches
and rocks. Unfortunately, the satellite image of this part of the
underwater terrain is invisible, so the constructed map will be
different from the satellite image.

• BlueRov2 cannot reach some waters, so the factual
environmental information has not been thoroughly scanned,
which will cause differences between the constructed map and
the actual environment.

To quantitatively analyze the map’s location accuracy, we
compare and analyze the ground truth (GPS measurement
values), the estimated value of the proposed algorithm, and the
dead reckoning value.

Since the GPS measured value is the latitude and longitude
information, we used the geodesy package provided by ROS
in the experiment and completed the conversion of latitude
and longitude coordinates to two-dimensional coordinates. In
this way, we unified the above three coordinate values under
the same reference system to evaluate the SLAM algorithm’s
positioning accuracy.

The trajectory result graph is shown in Figures 12B, 13B, 14
shows the relative localization errors. From Figure 14 we can
find that with the accumulation of time, the deviation of the
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odometer will gradually increase. Using SLAM for simultaneous
positioning and mapping will correct the odometer’s deviation,
correct the pose, and build a better map.

The maps based on the multi-beam sonar SLAM algorithm
proposed in this paper can better represent the environment’s
characteristics. And positioning accuracy is also better than pure
dead reckoning.

5. CONCLUSIONS

This paper proposed a SLAM algorithm using MFLS. Two
problems are solved: Aiming at the slow processing speed
caused by a large amount of MFLS image data, and a method
is proposed to convert the collected sonar image into sparse
point cloud format data through threshold segmentation and
distance-constrained filtering; Based on the proposed method,
the DVL, IMU, and MFLS data are fused, and then the RBPF-
based SLAM method is used to suppress the accumulation of
errors of the inertial unit and generate an accurate occupancy
grid map. Finally, we used BlueROV2 as the experimental
carrier, conducted field tests in the experimental pool and
Liquan Lake, Xi’an, Shaanxi, and achieved good positioning and
mapping results.

6. FUTURE WORK

This article mainly uses MFLS image data to be converted into
sparse point cloud data format for SLAM experiments, which
involves the problem of sonar filtering and data matching after
filtering. There are still some problems currently, such as the
inability to fully extract environmental features due to clutter

interference and the map drifting due to data matching failure.

For these problems, future work will continue to study better
filtering methods and data matching methods to improve the
accuracy of positioning and mapping.
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The path planning and tracking problem of the multi-robot system (MRS) has always

been a research hotspot and applied in various fields. In this article, a novel multi-robot

path planning and tracking model (MPPTM) is proposed, which can carry out online

path planning and tracking problem for multiple mobile robots. It considers many

issues during this process, such as collision avoidance, and robot failure. The proposed

approach consists of three parts: a neural dynamic path planner, a hyperbolic tangent

path optimizer, and an error-driven path tracker. Assisted by Ultra-wideband positioning

system, the proposed MPPTM is a low-cost solution for online path planning and

high-accurate tracking of MRS in practical environments. In the proposed MPPTM, the

proposed path planner has good time performance, and the proposed path optimizer

improves tracking accuracy. The effectiveness, feasibility, and better performance of the

proposed model are demonstrated by real experiments and comparative simulations.

Keywords: multi-robot system, path planning, neural dynamics, path tracking, neural network

1. INTRODUCTION

As the development of disciplines and technologies, robotics always involves numerous disciplines.
It covers many aspects from control, mechanics, electronics to communication, computer science,
materials, and so forth. Robotics has also developed from a simple single robot system (SRS) to a
complexmulti-robot system (MRS). For dealing with complex problems,MRS hasmore advantages
than SRS. Large numbers of researches state that the cooperation of MRS has been applied to more
practical fields, such as services (Morita et al., 2018; Krizmancic et al., 2020), therapy (Ali et al., 2019;
Mehmood et al., 2019), rescue (Queralta et al., 2020), training (Xu and Tang, 2021), and so on.

Path planning and tracking problem of MRS has always been a research hotspot and applied in
various fields, including delivery (Chen et al., 2021), monitoring (Silic and Mohseni, 2019; Koutras
et al., 2020), task assignment (Chen and Zhu, 2019; Wang et al., 2020b), target tracking (Zhou et al.,
2018), and so on. In order to solve this problem, many kinds of research can be divided into three
aspects: task-level, control-level, and task-control-level (Zeng et al., 2015; Rubí et al., 2019). The
task-level research focuses on finding the optimal solution to the problem without considering the
hardware conditions, which is top-down. It includes path planning of MRS and task assignment
of MRS. The control-level research needs to consider the hardware of MRS and the realization of
the solution, which is down-top. Tracking the target or path with high accuracy is one of these
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kinds of research. The task-control-level research combines task-
level and control-level, and the path planning and tracking
problem is one of this kind of research.

In the task-level research of MRS, path planning and task
assignment are the two mainstreams. Compared with task
assignments, path planning is more focused on the time-space
continuity and process. For example, these studies (Yi et al., 2017;
Dai et al., 2019; Ali et al., 2020; Dong et al., 2020; Han and
Yu, 2020; Wang et al., 2020a) only consider task-level without
considering control-level details. Combining with deep learning,
(Wang et al., 2020a) proposed a neural RRT* for path planning
of MRS, but it needs a lot of processed data for training before
path planning (Wang et al., 2020a). Han et al. used database
heuristics for fast near-optimal path planning of MRS, it can
carry out efficient path planning, but its applicable scene is
only based on grid environment (Han and Yu, 2020). Yi et al.
proposed a bio-inspired approach to plan the path of robots in
3-D environments. Also, it can make real-time path planning but
can not avoid obstacles (Yi et al., 2017). Dong et al. proposed a
path planning method of UAVs in the 3-D environment for the
inspection of transmission lines. But it is only made available for
a single target, not for multiple targets (Dong et al., 2020).

Path tracking for MRS is solved by control-level algorithms.
These algorithms tend to reduce error during the tracking process
while considering the difference of robot hardware in MRS. Ma
proposed cooperative tracking of MRS with circular formation,
but it can not track multi-target (Ma, 2020). Yu et al. proposed a
formation tracking method based on an adaptive neural network,
but it just makes MRS formate to track a single target (Yu et al.,
2018). Zhou et al. presented a resilient tracking method for MRS.
It is suitable for patrol and monitoring in the area but can not
track the immovable target (Zhou et al., 2018).

Both task-level and control-level studies are very limited in
practical application. Therefore, some studies focusing on both
task-level and control-level have occurred.

Park et al. proposed a distributed approach combing
alternating direction method of multipliers (ADMM) to non-
myopic path planning for multi-target tracking, but it can not
avoid obstacles in the environment (Park et al., 2019). Yordanova
et al. proposed a path planning and tracking method for the area
coverage of autonomous underwater vehicles, but in essence, the
method is still only for the 2-D environment without obstacles
(Yordanova and Gips, 2020). Penin et al. proposed a vision-
based path planning and target tracking method for UAVs (Penin
et al., 2018). It can deal with collision avoidance and obstacle
avoidance, but its accuracy of vision-based positioning is still
questionable for indoor environments.

Compared with these studies (Penin et al., 2018; Park et al.,
2019; Yordanova and Gips, 2020; Yu et al., 2020), there are
few studies for online path planning and tracking of MRS.
During online path planning and tracking of MRS, the proposed
model needs to plan the trajectories easy to track in real-time,
which deals with dynamic environments and accidents, such as
robot fault, moving obstacles, and so on. Online path planning
and tracking need to solve the following three problems. (1)
How can path planning meet the requirements of real-time;
(2) How can the planned paths be transformed into trajectories

easy to track; and (3) How to efficiently organize related
processes?

In this study, a novel model named MPPTM (multi-
robot path planning and tracking model) is proposed for
online path planning and high-accuracy tracking of MRS. It
does not depend on the sensors of the individual robot in
MRS by using an Ultra-wideband (UWB) positioning system.
Therefore, the proposed approach is a low-cost solution for
warehouse or factory environments. The proposed model has the
following innovations.

1. The proposed model uses superscalar pipelining mode to
organize these processes more efficiently. Therefore, the
process of path tracking does not need to wait until the end
of path planning.

2. Compared with traditional path planners, the proposed neural
dynamic path planner has better time performance.

3. In our proposed model, the hyperbolic tangent path optimizer
bridges the planned paths and the trajectories easy to track,
and it reduces the tracking error of MRS.

The remainder of the article is organized as follows. In section
2, the components and framework of the proposed model
are introduced in detail. The experiments for MRS in a 3-D
environment are present in section 3. Some further discussions
about the comparative studies are given in section 4. Finally, the
conclusion and future study are presented in section 5.

2. PROPOSED APPROACH

The proposed MPPTM is described in detail in this section. It
is applicable for not only 2-D but also 3-D environments. It
combines the task-level and control-level, which can deal with the
path planning of MRS, and cope with the path tracking of MRS.

The proposed MPPTM mainly integrates three parts,
including the path planner, the path tracker, and the path
optimizer. The path planner is responsible for dealing with
the online path planning of MRS at the task-level. During the
path planning of MRS, obstacles avoidance, collision avoidance,
and other robot accidents are considered. The path tracker is
used to cope with the path tracking of MRS. During the path
tracking of MRS, reducing tracking error and compatibility with
different hardware are considered. The path optimizer is used to
bridge the gap between the path planner and the path tracker,
which makes the planned path to be easier tracked. It can
process the online path planning and path tracking for MRS in
complex environments.

The framework of MPPTM with environments is shown
in Figure 1. The process of path planning and tracking, the
cooperation mechanism between the path planner and the path
tracker are given in the framework of MPPTM. In Figure 1,
k and t are the iterations of the planner and the iteration of
the tracker, respectively. For the path planner, I(k) represents
the environmental information, and Pc(k) represents the current
posture of theMRS. Both are used to generate the desired posture
Pd(k) through Q(k). Through the path optimizer, the desired
posture Pd(k) is transferred into the desired trajectory Td(t) for
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FIGURE 1 | Overall schematic diagram of multi-robot path planning and tracking model (MPPTM) with environments.

the path tracker to track. In the path tracker, the desired posture
Td(k) and current posture Pc(t) of MRS are used to generate
the desired velocity V(t) by path tracker for MRS. Additionally,
then it is converted into the desired motor speed U(t) by robot
dynamics. In the MRS, each robot tries to achieve the desired
motor speed U(t) to move.

Usually, there are two different modes to deal with the path
planning and tracking of MRS, which are superscalar pipelining
mode and traditional mode.

In traditional mode, path tracking must wait until all path
planning and optimization are completed. This mechanism
handles these processes serially, which can save computing
resources. However, it is only suitable for path planning and
tracking of MRS in static environments.

Due to the time performance of the proposed path planner, the
proposed MPPTM applies superscalar pipelining mode to deal
with these processes, such as path planning, path optimizing, and
path tracking, as shown in Figure 2.

In superscalar pipelining mode, part of the planned path
is used to be optimized by the path optimizer, and tracked
by the path tracker. Path tracking does not have to wait
for all path planning and optimization to be completed. This
mechanism parallels these processes to some extent, which can
be suitable for online path planning and tracking of MRS in
dynamic environments.

The proposed MPPTM is introduced in detail by three
following parts: (A) The neural dynamic path planner; (B)
The error-driven path tracker; and (C) The hyperbolic tangent
path optimizer.

2.1. The Improved Neural Dynamic Path
Planner
As an important part of MPPTM, the neural dynamic path
planner is used to plan paths for MRS. It is based on neural
dynamics and has the advantages and characteristics of the
biological neural system. The neural dynamic path planner for
3-D environments is introduced in the section, and the proposed
path planner for 2-D environments is similar to this. The neural
dynamic path planner includes three following parts.

2.1.1. The Neural Dynamic Network (NDN)
In the neural dynamic path planner, the NDN is used to real-time
describe the environment where MRS is located. In NDN, the
distance between any two adjacent neurons is equal, its distance
is 1, and any two adjacent neurons are also connected to each
other. The structure of NDN describing the 3-D environment is
as shown in Figure 3.

The activity of neuron qijk is in the ith row, the jth
column, and the kth page of the NDN, which describes
the environment that it maps. The activities of NDN Q
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FIGURE 2 | Two different operation modes in MPPTM. (A) The superscalar pipelining mode. (B) The traditional mode.

describing 3-D environments is a 3-D matrix defined by
Equation (1).

Q =
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(1)

In Figure 3, r is the radius of the range that neurons can
affect, x is horizontal offset, y is vertical offset, z is longitudinal
offset, and x, y, z are integers. The radius of the search sphere r
directly affects the computation performance and the accuracy
of path planning. If radius r is set too large, the planned
path will pass through the obstacles in the environment. In
NDN, the activity of each neuron q represents the environment
where it maps. Therefore, the activities of NDN Q describe the
whole environment.

2.1.2. The Improved Neural Activity Algorithm
This algorithm states the activity of neural signals in NDN.
Through multiple iterations of neural activity, the activities of
NDN Q tend to be stable, and all kinds of signals have been
fully spread in NDN. The neural activity of NDN is the core
part of the proposed path planner, and it is also the most time-
consuming process. Therefore, we proposed an improved neural
activity algorithm of NDN, and it is defined by Equation (2).

dQ
dt

= −KQ+ (D− Q)
(

[I]+ + [F(x, y, z)]+
)

−(J + Q)
(

[I]− + [F(x, y, z)]−
) (2)

Three parameters, K,D, J, are decay rate, upper bound, and lower
bound, respectively, in the dynamic equation of neural activity.
Meanwhile, two operators, [a]+ and [b]−, obtain, respectively,
max{a, 0} andmax{−a, 0}. The function F(x, y, z) is the weighted
sum of the shifting matrix Q with these offsets x, y, z, and it is
defined by Equation (3).

F(x, y, z) =
∑

xyz
wxyzshift(Q, x, y, z)

√

x2 + y2 + z2 ≤ r (3)

where shift(Q, x, y, z) shifts the elements of matrix Q with the x
rows, the y columns, and the z pages, but it satisfies the condition
√

x2 + y2 + z2 ≤ r. This weight wxyx is defined by Equation (4).

wxyz =
u

√

x2 + y2 + z2

√

x2 + y2 + z2 ≤ r (4)

where wxyz is the connection weight when the horizontal offset
is x, the vertical offset is y, and longitudinal offset is z in
NDN, u is the positive parameter and represents the intensity of
the connection.

In Equation (2), environmental information I is a 3-D matrix
with the same size as Q, its element is defined as Equation (5). Ex
and In are positive parameters, which represent the intensity of
excitatory nerve signal and inhibitory nerve signal, respectively,
in NDN.

iijk =







Ex The neuron maps target
−In The neuron maps robot
0 Others

(5)

2.1.3. The Path Generation for 3-D Environments
After the multiple iterations of neural activity, the activities of
NDN Q are used to generate the next position during the path
planning of MRS. The next position of the ith robot Pi(k+ 1) is
defined as Equation (6).

Pi(k+ 1) ⇐ qabc = max
{

qefg
∣

∣ 0 <
∥

∥qefg − qijk
∥

∥ < r
}

(6)

Assume that the current position of the ith robot is mapped by
the neuron qijk, qefg is the set of neurons in the affected range
of the neuron qijk. In the set qefg , the maximum activity of the

neuron qabc is selected as the next position Pi(k+ 1) of the ith
robot during path planning.

2.2. The Error-Driven Path Tracker
The proposed path tracker uses error driven method to track the
path planned by the proposed path planner. The error-driven
path tracker is capable of being compatible with a variety of
controllers and the hardware of MRS. In order to better test the
performance of the proposed MPPTM in 3-D environments, a
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FIGURE 3 | The neural dynamic network (NDN) describing 3-D environments.

path tracker with PID controller for quadrotor is given briefly in
the article, which is used in the following experiments.

Quadrotor, a helicopter with four rotors, is a small unmanned
aerial vehicle (UAV). Additionally, it is used as an individual
MRS in 3-D environments. Two control loops with PID control
are used in the path tracker of MRS for path tracking in 3-
D environments. The system architecture of the proposed path
tracker for 3-D tracking with PID control is shown in Figure 4.

2.3. The Hyperbolic Tangent Path Optimizer
The path optimizer bridges the gap between the path planner
with the path tracker, it translates the task-level paths planned

by the path planner into the control-level paths for the path
tracker. During this process, the task-level paths Pi(k) with low
frequency should be transformed into the control-level trajectory
Ti(t) with high frequency, which canmake the planned paths easy
to track forMRS. The planned paths are given by the path planner
are defined as Equation (7), where Pathsi(γ ) is the continuous
planned path of the ith robot in MRS, k is the iteration of the path
planner, and R is the number of robots in MRS.

Pi(k) ∈
{

Pathsi(γ )| i = 1, 2 . . . ,R γ ≥ 0
}

k = 1, 2 . . . , n i = 1, 2 . . . ,R
(7)
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FIGURE 4 | The proposed path tracker for quadrotors in 3-D environments.

The control-level trajectory Ti
os(t) given by the path optimizer

with original sampling from Pi(k) can be obtain by Equation (8),
where the operator ⌊a⌋b obtains the largest element in set b and
less than or equal to a, and w is the sampling frequency.

{

a =
⌊

t/w
⌋k

Ti
os(t) = [Pi(a+ 1)− Pi(a)]× t%w

w i = 1, 2 . . .R
(8)

In order to improve the tracking performance of MRS, an
improved sampling method is proposed in the article. Pi(τ ) is the
set of elements in set Pi(k) whose elements are not differentiable
on the paths of MRS, which can describe as Equation (9).

Pi(τ ) ∈

{

Pi(k)|
lim

1δ→0+
Ṗi(k+ 1δ) 6= lim

1δ→0−
Ṗi(k+ 1δ)

k ∈ 1, 2 . . . , n

}

i ∈ 1, 2 . . . ,R (9)

The trajectory Ti
hts
(t) given by the path optimizer with hyperbolic

tangent sampling from Pi(τ ) can be obtain by Equation (10),
where the operator ⌈a⌉b obtains the smallest element in set b and
more than or equal to a, w is the sampling frequency.











a =
⌈

t/w
⌉τ

b =
⌊

t/w
⌋τ

Ti
hts
(t) = [Pi(a)− Pi(b)]× f ( t−w×b

w×(a−b)
) i = 1, 2 . . .R

(10)

where f (x) is the hyperbolic tangent function defined as Equation
(11). Optimal trajectory with hyperbolic tangent sampling Ti

hts

is generated by optimizing the path Pathsi(γ ) according to the
referenced velocity.

f (x) = 0.5× (
e2x+1 − 1

e2x+1 + 1
+ 1) (11)

Compared with the path planner with original sampling, the
one with hyperbolic tangent sampling can give the trajectory
which is easier to track for MRS, which is demonstrated in the
following experiment.

3. EXPERIMENTS

For demonstrating the feasibility of the proposed MPPTM,
online path planning and tracking experiments for multi-UAV
are designed in this section. However, it should be noted that
the proposed MPPTM is suitable for online path planning and
tracking of MRS not only in 2-D environments but also in
3-D environments.

3.1. Experimental Preparations
In order to accurately locate UAV groups in 3-D environments,
the UWB positioning system is used, as shown in Figure 5. At
least four UWB locator nodes are used to locate UAV groups in
3-D environments, and the distance between two adjacent nodes
is 15m. A micro quadrotor produced by Zeronetech is used as
an individual of the UAV group in this experiment, and it has a
built-in UWB tag and wireless communication module.

The laptop with R5800u CPU and 32GB ROM is responsible
for collecting the location data of UAVs via the UWB positioning
system, recoding the flight data of UAVs, and controlling the fight
of UAVs viaWiFi communication. The system is implemented by
Matlab and C++, the proposed path planner is coded by Matlab,
the proposed path optimizer and the proposed path tracker are
coded by C++. The obstacles in 3-D environments are realized
by marking the environmental information I(k) in the proposed
path planner.

3.2. Online Path Planning and Tracking for
3-D Environments
The size of the outdoor environment used for testing is
10 m×10 m× 10 m, which is mapped by the NDN with size
50×50×50 in the neural dynamic path planner. In the proposed
path planner, we setK to 50,D to 5, J to 3, u to 0.3, r to 2, Ex to 50,
and In to 5. In the proposed path optimizer, hyperbolic tangent
sampling is used at the condition w = 100. The initial positions
of targets and quadrotors are randomly located. The initial sizes
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FIGURE 5 | The experimental preparations for online path planning and tracking. (A) The experimental site for online path planning and tracking of multi-UAVs.

(B) The UWB locator node. (C) A micro quadrotor with UWB tag.

and initial positions of obstacles are randomly generated to mark
the environmental information I(k).

The snapshot of path planning and tracking at 30 s
is shown in Figure 6, and the 1th quadrotor has finished
capturing the target. Figure 7 shows the snapshot of path
planning and tracking at 65 s, where all quadrotors have
captured targets.

The velocities of quadrotors in X,Y ,Z directions are recoded
and shown in Figure 8. The experimental result shows that
all quadrotors can avoid collision and obstacles, and capture
targets. The experimental result demonstrates that MPPTM is

capable of online path planning and tracking of MRS in 3-D
complex environments.

3.3. Online Path Planning and Tracking
With Robot Fault
This experiment uses the same parameters and the same
environment from the experiment in section 3.2. But
in the online path planning and tracking, there are two
quadrotors that have a certain probability 0.05 of failure
during the process. Additionally, MPPTM needs to allocate
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FIGURE 6 | The snapshot of path planning and tracking for UAVs in 3-D environments at 30 s. (Red circles and black squares present the initial positions of robots

and targets respectively on the main diagram. Four sub diagrams zoom in the main diagram and show the current flight states of quadrotors. The red dot line presents

the real path and the blue dot line presents the referenced path).

FIGURE 7 | The snapshot of path planning and tracking for UAVs in 3-D environments at 65 s. (The meaning of markers is the same as that in Figure 6).

these two targets to the other two quadrotors during
the process.

As shown in Figure 9, after two quadrotors break down, the

other quadrotors have also successfully completed four targets

capturing. Therefore, the Experimental result indicates that

MPPTM can deal with robot fault during online path planning

and tracking, and it can reassign targets timely after robot fault.

3.4. Online Path Planning and Tracking
With Dynamic Obstacles
This experiment is conducted in the 3-Dworkspace 8m× 2.5m×

2.5 m, and the experimental environment is mapped by the NDN
with size 40 × 10 × 10. The experimental parameters are the
same as those of the experiment in section 3.2. Obstacles in this
experiment move at different times (8 s, 14 s, 28s) in the order
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FIGURE 8 | The snapshot of path planning and tracking for UAVs in 3-D environments at 65 s.

shown in Figure 10. In order to better observe the experimental
results, only two UAVs are used for the experiment. However,
the proposed MPPTM can carry out online path planning and
tracking for more robot individuals in an environment with
dynamic obstacles.

Figure 10 shows that two quadrotors can avoid dynamic
obstacles to capture targets during the path planning and
tracking. The experimental result indicates that MPPTM carries
out online path planning and tracking of MRS in an environment
with dynamic obstacles.

4. DISCUSSION

Several comparative experiments on the proposed path optimizer
and the proposed path planner are given in this section.

4.1. The Performance of the Proposed Path
Optimizer
By using two different path optimizers, the actual paths and the
desired paths are recoded in the experiment in section 3.2. The
tracking error is the sum of the errors between the actual path
and the desired path on the X, Y , and Z axes. The errors of the
quadrotors are shown in Figure 11.

An indicator, defined as Equation (12), is given to measure the
tracking error of UAVs during online path planning and tracking,
where R is the number of quadrotors in UAVs, errori(t) is the
error the ith quadrotor, and t is the time.

E =
1

R

R
∑

i=1

+∞
∫

0

errori(t)dt (12)

In order to eliminate the influence of a series of factors as far as
possible, such as wind speed, battery status, and measurement
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FIGURE 9 | The snapshot of path planning and tracking with quadrotor fault in 3-D environments. (A) Observation from view (-38, 30). (B) Observation from view (60,

30). (Green triangle represents the position of quadrotor fault. The meaning of other markers are the same as that in Figure 6).

FIGURE 10 | The path planning and tracking with dynamic obstacles in 3-D environments. (A) The snapshot at 8 s. (B) The snapshot at 14 s. (C) The snapshot at

28 s. (D) The snapshot at 40 s. (Red arrow represents the direction of obstacles movement. The meaning of other markers are the same as that in Figure 6).

error, we test 20 experiments and collect the data of tracking
error. These data are shown in Table 1.

Table 1 shows that, compared with the original path
optimizer, the proposed path optimizer can reduce the tracking
error of UAVs during online path planning and tracking.

4.2. The Time Performance of the
Proposed Path Planner
By using the proposed neural activity algorithm, the
proposed path planner has better time performance than other
approaches (Li et al., 2009; Yi and Zhu, 2013; Sun et al., 2019;
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FIGURE 11 | The tracking errors of quadrotors by using two different path optimizers. (The solid line represents the tracking error by using the hyperbolic tangent path

optimizer, and the dashed line represents the tracking error by using the original path optimizer).

TABLE 1 | The comparison of tracking error of unmanned aerial vehicle (UAVs).

Case Max(E) Min(E) Avg(E)

The original path optimizer 1.5669 1.3768 1.4797

The proposed path optimizer 1.0453 0.9765 1.0278

Bold indicates that this indicator is the most superior to other cases.

Ni et al., 2020; Zhu et al., 2021). The comparative simulations
are coded by Matlab, which is run on the PC with Intel i7-7700,
28GB ROM, and Win10 OS. The average time consumptions of
single path planning by using different approaches and different
sizes are shown in Table 2.

Table 2 indicates that the time performance of the proposed
path planner is better than other approaches, and it is insensitive
to the number of robots in MRS. The proposed path planner
has excellent time performance, which makes it very suitable
for superscalar pipelining mode in the proposed path planner
of MPPTM for online path planning and tracking in 3-
D environments.

5. CONCLUSION

The proposed model, MPPTM, can deal with task-level and
control-level problems for path planning and tracking of MRS
in 3-D environments. During the online path planning and
tracking, our proposed model only needs to obtain the position
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TABLE 2 | The average time consumptions of different approaches (s).

Case Size R=4 R=8 R=12 R=16

Our approach
30X30 0.1738 0.1831 0.1686 0.1826

50X50 0.8563 0.8322 0.8647 0.8534

Li et al. (2009)
30X30 3.5184 7.4610 9.8962 15.7595

50X50 18.3248 37.6820 46.9013 74.6896

Yi and Zhu (2013)
30X30 0.9502 0.8306 0.9999 0.9882

50X50 5.0008 3.9363 5.0498 4.9412

Sun et al. (2019)
30X30 2.8010 5.6704 6.8507 10.5158

50X50 13.2122 25.7745 34.4256 52.0586

Ni et al. (2020)
30X30 2.563 2.7275 2.9789 3.4007

50X50 12.0897 13.8657 15.0516 18.0413

Zhu et al. (2021)
30X30 2.2681 4.5916 5.5473 8.5152

50X50 10.6986 20.871 27.8763 42.1546

Bold indicates that this indicator is the most superior to other cases.

of MRS instead of relying on the complex sensor data of
individual robots to plan paths. The cost of MRS equipped with
such complex sensors is huge. Therefore, our proposed model,
MPPTM, is a low-cost solution for the online path planning
of MRS. Based on the UWB positioning system, MPPTM can
carry out online path planning and high-accuracy path tracking
for MRS in indoor or outdoor environments. It is suitable
for application in manufacturing plants and industrial parks.

Real experiments in this article demonstrate the applicability
and effectiveness of the proposed model. In this model, the
proposed path planner has excellent time performance to meet
the requirement of superscalar pipelining mode. Meanwhile,
the proposed path optimizer can guarantee the high-accuracy
tracking of UAVs.
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Path planning obtains the trajectory from one point to another with the robot’s kinematics

model and environment understanding. However, as the localization uncertainty through

the odometry sensors is inevitably affected, the position of the moving path will deviate

further and further compared to the original path, which leads to path drift in GPS denied

environments. This article proposes a novel path planning algorithm based on Dijkstra to

address such issues. By combining statistical characteristics of localization error caused

by dead-reckoning, the replanned path with minimum cumulative error is generated with

uniforming distribution in the searching space. The simulation verifies the effectiveness

of the proposed algorithm. In a real scenario with measurement noise, the results of the

proposed algorithm effectively reduce cumulative error compared to the results of the

conventional planning algorithm.

Keywords: path planning, greedy search, cumulative error estimation, global planning, Dijkstra

1. INTRODUCTION

To obtain the optimal trajectory from one point to another, path planning needs to combine the
robot’s geometric and dynamic information (Bidot et al., 2013), environmentmap (Peng andGreen,
2019), the initial state and target state (Choset et al., 2005), etc. According to task requirements, the
optimal path seeks the shortest length and the best energy (Ibraheem and Hassan Ajeil, 2018). In
specific tasks, path planning is commonly performed by combining sensor type and performance,
carrier kinematics and dynamics characteristics, and task requirements.

Classical path planning methods consists of heuristic searching, sampling planning, and
model-dependent methods (Yilmaz et al., 2008). In particular, when localizing through IMU (Tick
et al., 2013), visual odometry (He et al., 2020), or other sensors (Paull et al., 2014), none of the
mentioned methods considers the localization uncertainty issue. However, the GPS may be subject
to some limitations in practical applications, especially in underwater scenarios (Li et al., 2019).
In applications with GPS-denied, it is not feasible to combine the robot’s motion attributes with
inaccurate odometry sensors, which will cause localization errors in long-term missions. It is
generally accepted that positioning errors do not affect the planning task since planning is first
performed and then control decisions are made. In robot tasks where errors exist, however, it is
also possible to impact localization errors by changing the path planning strategy.

To address the cumulative error of navigation, many studies first perform accurate statistical
analysis on it. Miller et al. (2010) proposed an error state formula for the navigation algorithm
of an underwater vehicle. The kinematics model of the system is augmented with unknown
parameters from the sensor model, and the difference between the estimation of the real
augmented system equation is expressed as the error state system. And a Kalman filter is
designed to estimate this error state by the measurement residuals of the auxiliary sensor.
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Yin et al. (2013) established a strap-down inertial navigation
system error model based on various error sources of inertial
components. By using Particle Swarm Optimization (PSO) to
optimize the parameters of SVM, the positioning error prediction
method of a navigation system is realized. By redesigning the
system parameters and using data recalculation algorithms, Xu
et al. (2014) proposed an improved alignment method for
Strapdown Inertial Navigation System (SINS) based on Doppler
Velocity Log (DVL). Dai et al. (2016) proposes a particle swarm
algorithm to identify the error parameters of the Delta parallel
robot, and the geometric parameter errors can be identified
by a simple iterative process. Mansouri et al. (2020) settles
positioning uncertainty by defining adaptive weights for tracking
position and speed reference points, and calculating based on
the uncertainty associated with measurement. Accurate error
estimationmethods facilitate the correction and compensation of
navigation positioning. Nevertheless, few studies have effectively
integrated error estimation with the navigation planning process,
which is uncharted territory.

To effectively reduce the navigation error, generally
intermittent global position correction methods based on
GPS, SLAM, acoustic positioning, (Thomson et al., 2017; Chew
and Zakaria, 2019; Marchel et al., 2020), etc. There are also
studies on error compensation based on artificial intelligence
methods (Brossard et al., 2020) or combined with the kinematics
of the robot (Batista et al., 2013). However, in the planning
stage, the navigation error cannot be effectively reduced without
a determined path. Therefore, the existing research generally
solves such problems through fault-tolerant planning. Carlson
et al. (2013) proposed and compared three different strategies
for estimating the change of the robot’s motion, which effectively
reduced the probability of collisions and avoided sources of
error in industrial scenarios. Eaton et al. (2017) proposed a
robust Partially Observable Markov Decision Process (POMDP)
formula, which provides the capability of planning and tracking
with limited observations. Lv et al. (2019) cited the dense
connection method to improve the Q-networks structure to
solve the issue of robot drift by adopting the framework of a
dense network. Sainte Catherine and Lucet (2020) combined
with the improved Hybrid Reciprocating Speed Obstacle (HRVO)
method of tracking error estimation, and adapting the speed
obstacle paradigm to agents with dynamic constraints and
unreliable velocity estimation. Yilmaz et al. (2021) uses the
fuzzy logic network to model dynamic uncertainty, and
proposes a new definition of the error-like vector containing
the pseudo-inverse of the Jacobian matrix. The current method
only considers the fault-tolerance of path planning and does
not apply the mechanism of the cumulative error to avoid
tracking drift, i.e., does not consider the impact of the motion
after planning.

By considering the perceptual uncertainty, some planning
methods consider the generation and elimination strategies
of planned path errors, and thus, new planning methods are
designed. Pilania and Gupta (2017) designs sensor measurements
that depend only on the samples, achieving higher uncertainty
reduction by placing more samples in regions with higher
uncertainty reduction while maintaining enough samples in

regions with poor uncertainty reduction. It also uses uncertainty
measures (instead of distance) to connect new samples to
neighboring nodes, achieving an efficient and high-quality
planning capability. Park et al. (2018) achieved collision
avoidance path planning by considering the uncertainty of
the time-varying trajectories of linearly increasing Autonomous
Ground Vehicles (AGVs) and obstacles, modeling the error
covariance using a tracking filter designed to estimate motion
information, and employing a probabilistic approach to calculate
the collision risk combined with the dynamic characteristics
of AGVs. Papachristos et al. (2019) designed a paradigm that
follows a hierarchical optimization objective and executes it in
a backward horizon manner to implement an uncertainty-aware
path planning strategy. Combining adaptive error sampling
for generating possible path candidates with a utility-based
approach, Lee et al. (2020) implements a path planning task
for safe parking under perceptible uncertainty, which takes into
account detection errors and makes optimal decisions under
uncertainty. Uncertainty generation is mainly obtained through
passive sensors, and unfortunately, the current capability to rely
on inertial navigation alone for path planning under uncertainty
needs to be further explored.

However, in practical applications, system errors and

deviations are inevitable with sensor registration problems.
Failure to use the control strategy to optimize the planning

and motion process, a disastrous deviation will occur in
the tracking process. Our previous study (Wang et al.,

2021) applies reinforcement learning to address this issue

and obtains a path with a relatively smaller cumulative
error by generating a probability sampling. As the

limitation of sampling, the global optimal solution cannot

be obtained.
This article combines a qualitative and quantitative analysis

of the ranging error and traversal advantage of the greedy

search algorithm in the path planning process. To minimize

the accumulated errors in navigation, we obtain an ideal path

that can achieve high accuracy tracking. The key innovation
is the theoretical modeling from the systematic perspective of
error estimation and planning based on greedy search in a
practical scene. In scenarios where measurement errors exist,
the proposed algorithm is effective in reducing the path error
concerning the underlying Dijkstra method. To the best of
the author’s knowledge, this is the first study that considers
the cumulative error of tracking in the pre-planning process
and performs global corrections to form paths with minimal
cumulative error.

The main contributions of this article are as follows:

• Through the statistical qualitative and quantitative analysis
of the cumulative error by odometry positioning, the
qualitative and quantitative expressions for path planning are
summarized.

• Improve the map exploration method of Dijkstra to adapt to
the qualitative expression of reducting cumulative error.

• By iterating and optimizing the cumulative errors of the paths,
the results of their statistics and the global optimal path
are obtained.
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This article is organized as follows: The second part analyzes
the mathematical representation and statistical characteristics
of the cumulation error. The third part proposes a path
planning framework based on the improved Dijkstra method and
optimized cumulative error. In the fourth part, the simulation
planning results are compared and analyzed, and the results are
discussed. Finally, the fifth part concludes the full article and
discusses possible directions for future study.

2. METHODOLOGICAL BACKGROUND

When the global positioning system is unavailable, the robot
has to utilize the attitude sensor and inertial sensor (gyro and
accelerometer) to perform dead-reckoning. Assuming odometry
sensor measurement is only presented in polar coordinates,
and the corresponding noises are distributed with Independent
Identically Distribution (IID), which is determined based on the
comparative statistics of the measured value and the true value
in Fallon et al. (2010). As the presence of noise, robot positioning
by heading projection will produce a continuous accumulation of
errors. Hence, the robot has to calibrate its positions regularly.

The main challenge of numerical analysis of errors is the drift
caused by relative noise measurements, i.e., the cumulative error
increases nonlinearly with distance or time. This article uses
statistical properties to study the growth rate of cumulative error
in our previous article (Zhang et al., 2013). In this article, the
robot is viewed as a mass, i.e., there are no kinematic constraints.
This means that localization information can only be derived
from inertial navigation measurements and cannot be corrected
for localization based on kinematic models. Still, the proposed
method applies to all types of robots, since it only considers
planning paths and does not involve path tracking strategies.

The robot position is estimated based on angle and
distance in polar coordinates, as shown in Figure 1. Define the
corresponding metric:

θmn = θn +˜θn; d
m
n = dn +˜dn (1)

where n is the time index, d and θ represents relative distance and
direction between consecutive frames. The pose measurement
(θmn , dmn ) is then consisted of ground truth (θ̄n, d̄n) and error
(˜θn, ˜dn) with SD δθ and δd.

The principle of dead-reckoning in the Cartesian coordinate
system is as follows:

xmn =
∑n

i=1

(

dmi sin
∑i

j=1
θmj

)

(2)

ymn =
∑n

i=1

(

dmi cos
∑i

j=1
θmj

)

(3)

The accumulation of drift by noise measurement is unbounded.
The lower bound can be estimated by Cramer2Rao bound
(Arrichiello et al., 2012), but the upper bound cannot be
estimated by traditional methods, especially when there are no
basic facts. However, the error distribution properties of multiple
statistics can be used for the statistical estimation of errors.

FIGURE 1 | Relationship between robot relative measurement and position.

When the true value is known, the trajectory can also be
expressed as:

xmn = xn + x̃n

=
∑n

i=1

(

dmi sin
∑i

j=1
θmj

)

=
∑n

i=1

(

(

di + ˜di

)

sin
∑i

j=1

(

θj +˜θj
)

)

=

(

∑n

i=1
di +

∑n

i=1
˜di

)

·

[

sin
∑i

j=1
θj cos

∑i

j=1
˜θj

+ cos
∑i

j=1
θj sin

∑i

j=1
˜θj

]

(4)

Then the mathematical expression of the cumulative error in the
x-direction can be obtained:

x̃n =
∑n

i=1 di

[ sin
∑i

j=1 θj

(

cos
∑i

j=1
˜θj − 1

)

+ cos
∑i

j=1 θj sin
∑i

j=1
˜θj

]

+
∑n

i=1
˜di

[ sin
∑i

j=1 θj cos
∑i

j=1
˜θj

+ cos
∑i

j=1 θj sin
∑i

j=1
˜θj

]

(5)

In fact, the cumulative error depends to a large extent on basic
facts. In addition, the expected and variance of the cumulative
error are estimated based on statistical properties:

E
[

x̃|θ , d
]

=
∑n

i=1
di

[

sin
∑i

j=1
θj

(

e−
iδ2

θ
2 −1

)]

(6)

var
(

x̃|θ , d
)

= E
[

x̃|θ , d
]

− E2
[

x̃|θ , d
]

= A+ B+ C − E2
[

x̃|θ , d
] (7)
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FIGURE 2 | Initial global map.

where:

A =
∑n

i=1
d2i

[

sin2
∑i

j=1
θj

(

0.5e−2iδ2θ + 1.5− 2e−
iδ2

θ
2

)

+0.5cos2
∑i

j=1
θj

(

e−2iδ2θ + 1
)

]

(8)

B = 2
∑n−1

i=1

∑n
p=1+i didp



























































sin2
∑i

j=1 θj cos1θ

[

1+ 0.5
(

1+ e−2iδ2θ

)

e−0.5(p−i)δ2θ

e−0.5iδ2θ − e−0.5iδ2θ e−0.5(p−i)δ2θ

]

+ sin
∑i

j=1 θj sin1θ cos
∑i

j=1 θj








1+ 0.5
(

1+ e−2iδ2θ

)

e−0.5(p−i)δ2θ + 1

−e−0.5iδ2θ − e−0.5iδ2θ e−0.5(p−i)δ2θ

−0.5
(

1− e−2iδ2θ

)

e−0.5(p−i)δ2θ









+cos2
∑i

j=1 θj cos1θ · 0.5
(

1− e−2iδ2θ

)

e−0.5(p−i)δ2θ



























































(9)

C =
∑n

i=1

[

0.5sin2
∑i

j=1
θj

(

e−2iδ2θ + 1
)

+0.5cos2
∑i

j=1
θj

(

1− e−2iδ2θ

)

]

(10)

The above formula is an explicit expression of expectation and
variance of cumulative error. Since the global planning map is
a priori, this article uses the true value to calculate expectation
and variance. However, the ground truth is quite challenging to
acquire in real scenarios. To effectively evaluate the error in a
real scene, the expected values of the true moment are evaluated
conditional on the noisy relative measurements:

E
[

˜xmn
]

=
∑n

i=1
dmi

(

e−iδ2θ − e−0.5iδ2θ

)

sin
∑i

j=1
θmj (11)

var
(

˜xmn
)

= A1 + B1 + C1 − E2
[

˜xmn
]

(12)
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FIGURE 3 | The error map generated by the original Dijkstra and improved Dijkstra. (A) The error map of original Dijkstra. (B) The error map of original Dijkstra.

where:
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C1 =
∑n
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(15)

More details could be found in Zhang and Knoll (2016) in the
same manner, the complete cumulative errors are, therefore,
calculated. In the next section, the Dijkstra-based global
exploration method will first be used to traverse the map
and determine the error-minimizing path for each location by
evaluating the error of each path, thus achieving the task of
reducing path drift.

3. PATH PLANNING METHOD BASED ON
DIJKSTRA

To obtain a globally optimal path with the smallest error in the
prior map, it is necessary to traverse the entire map and generate
an error map. That is, similar to the “breadcrumbs map,” the
error map has nothing to do with the endpoint but only with the
starting point. Meanwhile, a greedy algorithm means that only
the locally optimal solution is selected, but the part relative to the
starting point is known, which is conducive to the optimization
of the algorithm. Therefore, this algorithm can only choose the
global traversal method, not the heuristic method. This article
improved the Dijkstra algorithm based on its principle and the
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FIGURE 4 | Global error map after iteration.

qualitative results of error statistical calculations. At the same
time, the quantitative calculation of path error is applied to iterate
and update the error map, and finally, obtain the global error
map. In the case of a given endpoint, the minimum error path
can be quickly obtained through the global error map.

3.1. Improved Dijkstra
Breadth-First Search (BFS) (Broder et al., 2000) or Dijkstra (Kang
et al., 2008) can be used to traverse the map, which is suitable
for obtaining a global error map. However, the calculation of the
cumulative error needs to be based on the entire path rather than
part of the path segment, which does not apply to algorithms
based on father-node exploration. Therefore, based on the results
of Section II and previous study, the cumulative error has a great
relationship with angle change of path measurement. That is,
relative to starting point, the later the robot changes its angle,
the smaller the cumulative error of path. The improved Dijkstra
method will make the path generation of each point based on the
latest turn path of starting point in the process of traversing the
global map.

Since the Dijkstra algorithm is graph-based, we first initialize
graph G and give a starting point. This algorithm is not to obtain
the shortest path but to obtain a path that turns farther from
starting point based on the nature of the cumulative error. The
algorithm needs to initialize an empty set S to store those vertices
that have been traversed and initialize a set Q which includes all
vertices G.V . Q uses the data structure of the smallest priority
queue, in which the key is the number of angle changes from
starting point to vertex, expressed as trun_num. Additionally,
the vertex with the least number of angle changes is popped up
each time.

In the rasterized map, the change of the robot’s
movement angle is discrete. This article chose
{(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1)}
as optional movement directions G.Adj[u]. To reduce the
cumulative error of each path, we limit the angle change of each
vertex adjacent point, i.e., the angle of each movement |θ | ≤ π

4 .
In other words, G.Adj_limited[u] has only 3 adjacent vertices.

For the weight of the edge, we first make the path go
straight, and have to make a turn before turning. In the
algorithm, ω_d(u, v) is the distance from u → v, and
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FIGURE 5 | The number of calculations per iteration under different parameters.

ω(u, v, u.π) is the number of turns of the edge u →

v. Since the traversal only considers the current node and
adjacent nodes, the father node of the current node u.π
is also required. The final algorithm will first traverse the
nodes that have not turned, and then traverse the paths with
fewer turns until the initial global error graph is generated.
The complete pseudo-code of the improved Dijkstra algorithm
is shown in Algorithm 1. The algorithm aims to facilitate
subsequent point set updates and calculations by generating large
error variances.

In the scenario where the sensor exists errors, the statistics of
the cumulative error of the entire path are simple, but the error in
the planning stage cannot be measured. Similar to the inability
to obtain the best-first search strategy for the shortest path in
concave obstacle environments, in addition, common planning
methods are unable to move toward minimum error from the
beginning. This is since larger errors may occur in the following
trips, leading to larger overall deviations. This article evaluates
the cumulative error based on the entire path from starting point
to each point. Since the global map is a priori, the cumulative
error of each path could be calculated through the true value of
each measurement (θ̄ , d̄) based on Equation (6).

3.2. Global Iteration Strategy
In the initial global error map, the path from starting point will
pass through obstacles and intersect. That is, some points will be
reached by the paths on both sides of the obstacle together, which
results in different cumulative error values for this point. For the
points where there are differences in cumulative error caused by
different paths, this article initializes and updates the minimum
priority queue Q_dif to determine the point set that needs to
be iteratively calculated. In the iterative process, the error of the
point set is recalculated and the path is updated to obtain a path
with a smaller cumulative error for each point. The pseudo-code
of strategy for updating queue is shown in Algorithm 2.

To accurately get each point that needs to be iterated, we
need to update the key-value value of each point in the traversal
map in advance. In this article, it is defined as: v.value =

max(G.Adj[u].error − v.error)/v.d, which is due to the smaller
scale of the map and the absolute difference in cumulative error
is not obvious. For maps with obvious error differences, we can
judge whether the point needs iteration according to absolute
error difference v.value_absolute = max(G.Adj[u].error −

v.error). To adapt to different scale maps, we simultaneously
apply two benchmarks to update the queue Q_dif .
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FIGURE 6 | Comparison of two typical paths.

FIGURE 7 | Error estimation in path planning domain. (A) Average error in X-axis, (B) average error in Y-axis, and (C) average distance error.

TABLE 1 | Comparison of cumulative error of different methods for typical endpoints.

Endpoint
Dijkstra method Proposed method

Error reduction ratio (%)

x y Error x y Error

(170, 90) −0.07575 −0.41536 2.324235 −0.46782 −0.33134 2.171227 7.0471

(90, 60) −0.22252 −0.28665 0.621104 −0.17048 −0.28777 0.541869 14.62261

(130, 105) −0.30649 −0.44412 1.634435 −0.29347 −0.36458 1.485441 10.03032

(175, 140) −0.28543 −0.38564 2.698455 −0.43593 −0.45941 2.675029 0.875752

(240, 135) −0.02745 −0.39179 4.497923 −0.37665 −0.36357 3.914085 14.91635

(200, 110) −0.07465 −0.32521 3.181955 −0.32244 −0.37822 2.857053 11.37192

(125, 100) −0.28511 −0.4254 1.49236 −0.2927 −0.4051 1.369209 8.994302

(87, 145) −0.45045 −0.28108 1.596313 −0.49804 −0.25758 1.564632 2.024825
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FIGURE 8 | Results of the proposed method compared with artificial potential field (APF), RRT*, A*, and probabilistic roadmap (PRM) methods.

For point set Q_dif , the algorithm traverses its adjacent
nodes each time to calculate the minimum error. The algorithm
requires that error difference is caused by the path passing
through two sides of an obstacle, so the correlation between the
current node path and adjacent node path needs to be calculated.
To be logical, we define CORRELATION(path1, path2) =
∑

(dis(path1, path2) < D)/LEN(path). It should be noted that,
as the short distance between adjacent nodes, if their paths pass
on the same side of an obstacle, the path correlation will be close
to 1. The complete pseudo-code of the iteration strategy is shown
in Algorithm 3.

In the algorithm, A,B,C, and D each represent a threshold
constant, which is only for adjusting the algorithm effect and
has no other representative meaning. Better convergence can be
achieved by dynamically setting the threshold size according to
the map size and task requirements.

4. SIMULATION

4.1. Implementation Details
A 2D grid map is used as a graphical basis for algorithmic
simulations. In this article, a map with a scale of 250/150 was
chosen and the starting point was randomly set to (22, 22).
The priority map consists of obstacles, driveable areas, and
boundaries as shown in Figure 2. In general, the robot can
accurately reach the end-point through the tracking process,
with the help of high-precision GPS. Considering cumulative

error generated by the noise-ranging sensor when GPS-denied,
this article assumed that sensor error satisfies the Gaussian
distribution, i.e., the error distributions in distance and angle are
N(0, 0.01) and N(0, 0.02).

The original Dijkstra method can only find the shortest
path, which is not the path with the smallest cumulative error
in individual scenarios. Especially every time robots pass an
obstacle, it will cause a fault in the error map. The improved
Dijkstra can delay turns from the starting point to each point,
which is achieved by turning restrictions. The initial path graph
generated by improved Dijkstra is conducive to the realization of
later iterative convergence. The improved error graph is shown
in Figure 3.

It is necessary to set a reasonable threshold in the update
point set and algorithm iteration. According to the map scale
in this article, we set the minimum allowable value that is A =

0.001, the path absolute error difference B = 0.1, the minimum
allowable correlation between two paths C = 0.8, and the path
correlation judgment distance is based onD = 5.0. Aftermultiple
iterations of the algorithm, the smallest error global map is finally
generated, as shown in Figure 4. Additionally, the path of each
point in the error map can be obtained by the way of parent node
search, namely PATH(s, u).

For different thresholds, there are some differences in the
convergence ability of the algorithm, although convergence
results can be obtained for all. Additionally, this algorithm is also
suitable for sensor calculation with different error distributions.
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Algorithm 1: Improved Dijkstra.

Require: Dijkstra(G, s)
Ensure: Original global error map G_error

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for each node n ∈ G.V do

3 n.turn_num = 0
4 n.d = ∞

5 n.π = NIL
6 end for

7 s.turn_num = 0
8 S = ∅

9 Q = G.V
10 while Q 6= ∅ do

11 u = heappop (Q)
12 S = S ∪ {u}
13 for each node v ∈ G.Adj_limited[u] do
14 if v.turn_num > u.turn_num+ ω(u, v, u.π) then
15 v.turn_num = u.turn_num+ ω(u, v, u.π)
16 v.π = u
17 v.d = u.d + ω_d(u, v)
18 v.error = Equation (6)
19 v.path = PATH(s, v)
20 end if

21 end for

22 end while

Algorithm 2: Update Iteration Point Set.

Require: Original global error map G_error
Ensure: Point set to be iterated Q_dif

1 Q_dif = ∅

2 Q_temp = G.V
3 while Q_temp 6= ∅ do

4 u = heappop (Q_temp)
5 for each node v ∈ G.Adj[u] do
6 if v.value > A or v.value_absolute > B then

7 Q_dif = Q_dif ∪ {v}
8 end if

9 end for

10 end while

We changed the settings of the relevant values, and the number
of points processed in each iteration eventually tended to 0, as
shown in Figure 5.

4.2. Analysis
Using the classic path planning algorithm, all points in drivable
areas can be reached from starting point through at least one
path. However, considering the influence of cumulative error
caused by the above-mentioned sensor noise, the actual path will
deviate from the original path and endpoint to a large extent.
By adding measurement noise, we select a few representative
path results and apply Equation (11) calculation to compare
the effect of the planning algorithm in this article to reduce
cumulative error.

Algorithm 3: Error Map Iteration Strategy.

Require: Point set to be iterated Q_dif
Ensure: Final error map G_error

1 while Q_dif 6= ∅ do

2 u = heappop (Q_dif )
3 for each node v ∈ G.Adj[u] do
4 if ERROR(v.path + u) < u.error and

CORRELATION(v.path+ u, u.path) < C then

5 u.π = v
6 u.path = v.path+ u
7 u.error = ERROR(v.path+ u)
8 end if

9 end for

10 end while

Set the starting point as (170, 90), (240, 135), two different
paths are obtained through the classic Dijkstra method and the
method in this article (the path can also be the same in some
scenarios, especially the scene where the path does not pass
through obstacles). In Figure 6, the results of different algorithms
are represented by dashed and solid lines, respectively. In the case
that the noise of the measuring sensor conforms to the Gaussian
distribution, the path error calculated by 1,000 Monte Carlo runs
is shown in Figure 7. The cumulative error only considers the
starting point and the endpoint, and the problem of large error
boundaries caused by the path process will not be within the
scope of this article.

To reflect the effectiveness of the algorithm, this article
selects 8 typical points, and compares the cumulative error
statistics of algorithm results and the classical Dijkstra
planning results, as shown in Table 1. The proposed
algorithm can effectively reduce cumulative error when
the sensor is biased. When a robot relies on its inertial
navigation, it is easy to deviate from the default path. During
the tracking process based on the proposed algorithm
path, the endpoint is closer to the target point. The
reduction of cumulative error verifies the effectiveness of
the proposed algorithm.

The proposed method is an iterative extension of Dijkstra,
and the level of cumulative error in its planning results is
significantly improved compared with the original method.
To evaluate the effectiveness of the proposed method, the
planning results of the proposed algorithm were evaluated
in comparison with typical path planning methods, such
as the artificial potential field method (APF) (Wang et al.,
2020), Grid-based RRT* (RRT*) (Chao et al., 2018), A*
(Zafar et al., 2021), and probabilistic roadmap method (PRM)
(Agha-mohammadi et al., 2014) methods. The error levels
of the different methods were analyzed by bypassing 1,000
Monte Carlo tests under measurement white noise, as shown
in Figure 8.

The proposed method has an advantage over the existing
probability-based, graph search-based planning methods at the
path error level. Note that the APF method falls into local
optimum several times in the test, especially in maps containing
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recessed obstacles, while the method in this article does not have
this problem. Among the compared methods, the PRM-based
planning method has the largest path accumulation error on
account of the probabilistic uncertainty.

5. DISCUSSION

The results of the proposed method are the same as those of
the Dijkstra method when the path from the starting point does
not pass through obstacles, i.e., the shortest path is also the
path with the smallest error. The advantage of the proposed
planning method is demonstrated after the path encounters
and bypasses the obstacles. Unfortunately, the computational
effort of the proposed algorithm increases exponentially as the
number of obstacles increases. The algorithm in this article is
suitable for applications in scenarios with sparse obstacles (e.g.,
underwater obstacle avoidance for AUVs). The discretization of
the map contributes to the lack of smoothness of the planned
paths, which can be optimized at a later stage by smoothing
algorithms. This will also be a problem that we need to solve
in the future. Theoretically, the proposed algorithm achieves
pathfinding with minimum estimation error by traversing the
global map.

6. CONCLUSION

To address the problem of path planning in the absence of
missing global positioning, a path planning algorithm with
minimum cumulative error considering sensor drift is proposed.
First, the statistical characteristics of sensor noise relative to
the cumulative error of the measurement are analyzed. Second,
considering the cumulative error in the positioning process, the
greedy search algorithm is used to traverse the global map and
generate an initial error map. Finally, the proposed algorithm
is iterated to generate a smooth global error map, and the path
planning task is carried out accordingly. Through simulation

analysis and comparison of results, the algorithm significantly
improves the safety of collision avoidance during tracking and
effectively reduces the cumulative error in complex conditions.

The motion of robots is continuous and regular. Future study
will need to accommodate continuous motion strategies and
complex path planning tasks in multidimensional spaces and
incorporate robot kinematic models to accommodate more types
of robots.
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This article aims to address problems in the current clustering process of low-energy

adaptive clustering hierarchy (LEACH) in the wireless sensor networks, such as strong

randomness and local optimum in the path optimization. This article proposes an optimal

combined weighting (OCW) and improved ant colony optimization (IACO) algorithm for

the LEACH protocol optimization. First, cluster head nodes are updated via a dynamic

replacement mechanism of the whole network cluster head nodes to reduce the network

energy consumption. In order to improve the quality of the selected cluster head nodes,

this article proposes the OCW method to dynamically change the weight according to

the importance of the cluster head node in different regions, in accordance with the

three impact factors of the node residual energy, density, and distance between the

node and the sink node in different regions. Second, the network is partitioned and

the transmission path among the clusters can be optimized by the transfer probability

in IACO with combined local and global pheromone update mechanism. The efficacy

of the proposed LEACH protocol optimization method has been verified with MATLAB

simulation experiments.

Keywords: optimal combination weighting, improved ant colony optimization, path superiority, LEACH

optimization, routing protocol

INTRODUCTION

It is known that wireless sensor networks (WSNs) are composed of many spatially distributed
sensor nodes with limited energy (Efe et al., 2013), whereas the sensor nodes are usually powered
by light batteries. Frequent charging or battery replacement of the sensor nodes would cause
inconvenience to maintenance; hence, balancing the energy consumption of sensor nodes and
prolonging the network lifetime are the twomost important indicators to evaluate the performance
of the WSNs (Tripathi et al., 2013; Mukherjee et al., 2018). The energy loss of the network can
directly affect the performance and life of the network, which should be delicately dealt with to keep
the low energy loss of the network in the communication process (Yan et al., 2018; Mohar et al.,
2020; Lv et al., 2021). Many routing protocols can be used in WSNs, where hierarchical routing
protocols are the most widely adopted. The typical hierarchical routing protocols include low-
energy adaptive clustering hierarchy (LEACH), power-efficient gathering in sensor information
systems (PEGASIS), threshold-sensitive energy-efficient sensor network (TEEN) protocol, and
hybrid energy-efficient distributed (HEED) clustering approach, which can gather the nodes into
clusters to form a specific hierarchy (Galkin, 2018). Particularly, the typical LEACH protocol was
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proposed by Heinzelman (2000) and adopted the “wheel” cycle
mode for the first time, which is widely applied due to its
low power consumption, node equality, and self-clustering
adaptation. In such a protocol, each sensor node contains a
clustering algorithm and a data transmission algorithm among
nodes (Chen et al., 2015), where the clustering algorithm can
randomly change the cluster head nodes by comparing the size of
the random number and threshold. After deployment, all sensor
nodes self-organize to form different clusters. Generally, each
cluster contains a cluster head node and multiple sensor member
nodes. The nodes of the specific cluster can only hop one step
inside the cluster to the cluster head. The cluster head node
of each cluster will also hop one step to transmit the received
information to the sink node to complete an iteration circle. The
structure of the LEACH protocol is illustrated in Figure 1.

In the LEACH protocol, the energy of the sensor nodes is
evenly distributed, and the network duration can be prolonged
by balancing the energy consumption of the sensor nodes (Wang
et al., 2018). However, the random selection of the cluster head
nodes in the protocol could lead to uneven distribution of the
cluster head nodes, which is prone to a large or small number of
member nodes in the cluster (Marappan and Rodrigues, 2016).
Each cluster head node and the base station adopt a single-
hop transmission mode, which could easily cause premature
death of the remote cluster head, poor expansibility, and
uneven energy consumption phenomena in the network. The
replacement mechanism of clusters using wheels will speed up
the replacement frequency of the cluster head, which could
result in more times of the information transmission in the
network and shortened network life (Rahman et al., 2013; Jameii
and Maadani, 2016). Then, the LEACH protocol has been
improved with the fractional lion (FLION) algorithm to generate

FIGURE 1 | Network structure diagram of LEACH protocol.

the optimal route (Sirdeshpande and Udupi, 2017), whereas
the fractional derivative is introduced to detect the neighbor
solution, and the forward link algorithm is also used to select
channels to improve the network survival duration. However,
the distribution density of the nodes is not considered in the
fitness function. Lalwani et al. (2018) used the harmony search
algorithm (HSA) to determine the optimal routing, where the
fitness function is designed considering the node density, energy,
and distance factor, by choosing the smallest distance nodes
for data transmission so as to achieve the energy consumption
reduction of the nodes. However, when the cluster contains non-
local nodes, the network performance will be affected. Ning
et al. (2017), Ezhilarasi (2019) adopted an improved particle
swarm optimization (PSO) to optimize the clusters of the WSN
process. However, the selection rules of the cluster head node are
relatively complex, and the cluster scale rapid update frequency
consumes high energy due to fast convergence. At the same time,
local optimum would easily occur. Hence, certain algorithms
are proposed to tackle such problems, where the cuckoo search
algorithm (CSA) (Huang and Hua, 2020) and the fruit fly
algorithm (FFA) (Dai et al., 2020) are developed to optimize the
cluster and routing protocol and to determine the transmission
path according to the distance, energy, and trust value from the
node to the base station such factors. However, the generalization
capability of the surviving nodes during communication has not
been considered (Maheshwari et al., 2021).

In recent years, some improved heuristic intelligent
algorithms have become research hotspots. For instance, the
ant colony optimization (ACO) algorithm has been extensively
studied and applied since it can assist to select the optimal
path for the fused data transmission and the network life cycle
extension (Ding, 2020). Experts and scholars have explored the
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TABLE 1 | WSNs cluster routing protocol performance comparison.

Protocol Energy

saving

performance

Cluster

creation

time

Uniform

distribution

of cluster

head nodes

Path

selection

LEACH Poor Quick Difference Single jump

TEEN Good Faster Difference Single jump

PEGASIS Better Slow – More jumps

HEED Better Slower Good More jumps

EEUC Good Medium Medium More jumps

ACO algorithms to reduce the energy consumption of the nodes.
An ACOmultipath routing protocol has been proposed based on
the angle factor and entropy to optimize the cluster head nodes
with high reliability in the process of data transmission (Hou
et al., 2017; Liu and Li, 2018). To tackle the energy consumption
balance problem, Zou and Qian (2019) proposed improved ACO
(IACO) with a sensor node transfer function and pheromone
updating routing rules for optimal WSN routing but with little
consideration of the impact factors. Nayyar and Singh (2020)
proposed an energy-saving multipath routing protocol based on
the ACO algorithm for dynamic WSNs, in which the optimal
path for the adjacent nodes is designed, but the scalability is poor.
Therefore, it is of great significance to investigate the method to
improve the transmission performance of the WSNs and select
the optimal data transmission path quickly and effectively.

This article aims to propose an IACO algorithm for
the LEACH protocol optimization. The specific sections are
as follows: the first section is the improvement of the
clustering algorithm based on optimal combination weighting.
Furthermore, the designed transmission path between clusters
based on the IACO algorithm is proposed in section Improved
Clustering Algorithm Based on OCW. Simulation experiments
for the proposed LEACH protocol optimization verification are
described in section Energy Consumption Analysis of the Sensor
Node. The Conclusion is given in section Optimization of the
Transmission Path Between Clusters Based on IACO. Table 1
compares the energy-saving, cluster establishment time, uniform
distribution of cluster head nodes, and path selection of the
representative typical routing protocols.

IMPROVED CLUSTERING ALGORITHM
BASED ON OCW

The Update Mechanism of the Cluster
Head Node
In the LEACH, cluster head nodes are replaced at each
round, which would increase the network power consumption.
Therefore, the cluster head nodes are updated within the existed
clusters for the whole network clusters. The node whose energy
is lower than the average energy Ea in the cluster loses the
qualification to be the cluster head node, whereas the node with
the highest remaining energy in the cluster is defined as the
cluster head node of the next round, and the average energy Ea

in the cluster is defined as,

Ea=
∑ Ei

Nalive
(1)

where Ei is the remaining energy of the surviving node i in the
cluster and Nalive is the total number of the surviving nodes. If
the energy of the current cluster head nodes is lower than this
value, WSNs update the cluster size.

The average energy Eall of all the cluster head nodes in the
whole network is calculated as,

Eall=
∑ Er

B
(2)

where Er and B are the residual energy and the total number of
the cluster head nodes.

The Threshold of the Cluster Head Node
Selection
Improved Threshold for Cluster Head Node Selection
The improved LEACH protocol has the same rules as cluster
head selection in LEACH protocol, while the selection threshold
is defined as Timp (n), written as,

Timp (n)=

{

ω1
Ei
E0
+ω2

Ealive
Nalive

+ω3
dmax−dis
dmax−dmin

, n ∈ G

0 , n /∈ G
(3)

R=

√

S

πNp

lalive=
{

Sj
∣

∣dij≤ R,Sj∈ S
}

where E0 is the initial energy of the survived node, lalive is the
number of the existing neighboring nodes, dmax is the distance
from node i to the sink node, dmax and dmin are the farthest
and closest distance from the surviving node to the sink node,
respectively, and {ω1, ω2, ω3} are the weights of the node energy
consumption, density, and distance, respectively.

In the improved threshold, the probability of being selected
as the cluster head node is related to the energy, density, and
distance from the sink node. As the remaining energy of the
node decreases and the smaller the energy ratio is, the lower the
probability of the node being selected as the cluster head node.
If node i is the closest to the sink node, the distance factor is 1,
otherwise, the distance factor is 0. Therefore, the range of the
distance factor is between 0 and 1, and the closer the distance
to the sink node, the closer the value to be 1.

Threshold Weight Selection
To ensure the rationality for the cluster head nodes selection, the
optimal combined weighting (OCW) is used to adjust the three
weights of the improved threshold, which combines the analytic
hierarchy process (AHP) and the entropy method to ensure the
objectivity of the threshold weight.
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FIGURE 2 | Hierarchical model of threshold weight.

Weight of AHP
The AHP method can decompose the problems into different
levels with an evaluation index matrix to solve the maximum
eigenvalues of the matrix and the corresponding eigenvector, so
as to conduct a consistency test to obtain the weight of different
evaluation indices (Yang et al., 2017). However, if the AHP
method is used alone, the weight cannot be reasonable due to the
large subjective component and certain persuasiveness. Still, the
AHP method can be applied to determine the threshold weight
in WSNs, and the steps are described as follows:

(1) Construction of the structural model of the cluster head node
selection. The hierarchical model of the threshold weight in
Region 1 (di ≤ d0) and Region 2 (di > d0) are depicted in
Figures 2A,B.

(2) Determination of the evaluation index matrix. The residual
energy, distribution density, and distance of the nodes are
taken as evaluation indices, which are composed of the
evaluation index matrix C, written as,

C=





1 c12 c13
c21 1 c23
c31 c32 1



 (4)

where cij is the measurement value of the evaluation index,

and cji =
1
cij
. The value of the cij usually adopts Santy’s 1–9

scale method as listed in Table 2.
According to the importance of the impact factors in

different regions, evaluation index matrices corresponding
to influencing factors can be obtained from different
hierarchical models, as shown in Eq. (5).

C=





1 2 5
1
2 1 3
1
5

1
3 1



 (5)

(3) The calculation of the AHP weight. According to Eq. (6),
the maximum eigenvalue and eigenvector of the evaluation
index matrix can be obtained, λmax and W, respectively,
where the corresponding eigenvector isW = [W1 W2 W3]

T ,
and the obtained normalized weight is written in Eq. (7). The
eigenvalue of Eq. (5) is 3.0037, and the weight of the energy,
density, and distance are 0.581, 0.309, and 0.109 respectively.

CW=λmax (6)

ωAi=
Wi

∑3
j Wj

(i = 1, 2, 3) (7)
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TABLE 2 | Evaluation index matrix value measurement table.

Scale values Meaning

1 The two evaluation indicators are of the same

importance

3 The previous evaluation index is more important

5 The previous evaluation index is important

7 The previous evaluation index is very important

9 The previous evaluation index is extremely important

2,4,6,8 The importance is the median value of the above

adjacent indicators

Reciprocal If the evaluation index i and j are measured as

cij ,butcji =
1
cij

(4) Consistency test. When the weights of the different impact
factors are obtained, the final consistency test can be carried
out to ensure the effectiveness of the obtained weights. The
test expressions are expressed in Eqs. (8), (9), and (10). The
consistency index of the weight values of the tested regions 1
and 2 is 0.0018, and the consistency ratio is 0.0032.

CR=
CI

RI
(8)

CI=
λmax

n−1
(9)

RI=
λ
′

max

n−1
(10)

where, RI is the average consistency indicator, and CR is the
consistency ratio. If C meets the consistency test, CR < 0.1.
CI is a consistency indicator and CI = 0 with a high degree
of consistency C.

Weight of Entropy Method
The entropy method is an objective weighting method without
considering the correlation among factors. Here, the entropy
method is applied to determine the threshold weight in WSNs.

Assuming WSNs containing n (n = 1,2,. . . , N) sensor nodes,
the impact factor of the nth node is fnt t (t = 1,2,. . . , T), to affect
the threshold of the cluster head node selection.

(1) Analysis of the impact factors. According to Eq. (11), the
impact factors are determined as the energy fn1, distance fn2, and
relative density fn3 of the nth nodes,

fn1=
Ei

E0
(11)

fn2=
dismax

dminmax
(12)

fn3=
lalive

Nalive
(13)

(2) The entropy method for the weight of impact
factors determination.

(a) The above three impact indicators are normalized as,

F
′

nt=
fnt−min (fnt)

max (fnt)−min (fnt)
(14)

where max(fnt) and min(fnt) are the maximum and minimum of
the impact factors, respectively. The evaluation matrix R of the
normalized impact factor is obtained as,

R=









F
′

11 F
′

12 F
′

13

F
′

21 F
′

22 F
′

23

· · · · · · · · ·

F
′

N1 F
′

N2 F
′

N3









(15)

(b) The weight of the tth impact factor, Et is expressed as,

Et=
1

lnN

N
∑

n=1

Pnt lnPnt (16)

Pnt=
F
′

nt
∑N

n=1 F
′

nt

(17)

where Pnt is the proportion of the t impact factor of the nth node
under all indicators of the node.

(c) The entropy value (weight) of each impact factor is
written as,

ωSt=
1−En

T−
∑T

t=l En
0<ωS<1 (18)

Optimal Combined Weighting
The OCW is a method where both the quantitative and
qualitative analyses are used to reasonably allocate the weight,
and how to allocate the weight of the AHP and entropy is the
key of this method (Yang et al., 2017). The weight calculation of
the OCWmethod can be expressed as,

ωt=λ1ωAi+λ2ωSt (19)

where ωt , ωAi, and ωSt are the weights of the optimal
combination, AHP, and entropy method, respectively. λ1 and
λ2 are the importance degrees of the AHP and entropy
methods, respectively.

A Bunch of Rules
Once the cluster head nodes are determined, they are broadcast
inside the WSNs so that the rest sensor nodes are invited to
join specific clusters. If a sensor node receives multiple invitation
messages within a period of time, it will determine the distance
between the cluster head nodes and itself according to the
strength of the received information, then make the decision to
join the closer cluster and transmit the requested information
to the specific cluster head node. The cluster head node receives
the distributed information from each member node and decides
which nodes can be joined. Then, the clusters can be established,
and it enters the data transmission stage.
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FIGURE 3 | Wireless communication model of sensor nodes.

ENERGY CONSUMPTION ANALYSIS OF
THE SENSOR NODE

The differences in energy consumption with different routing
protocols can be used to evaluate the transceiver characteristics
of the sensor nodes. Hence, a typical radio energy consumption
model is usually adopted, including the energy consumption
of the data transmitting circuit and the power amplifier circuit
(Yang et al., 2017), as demonstrated in Figure 3.

There are mainly two energy consumption models for the
WSNs, i.e., free-space models and multipath fading models, the
adoption of which depends on the distance between the sender
and the receiver (Li et al., 2020) and written as,

ETX (l,d)=ETX−elec (l)+ETX−amp (l,d)

=

{

−l∗Eelec +l∗εfs
∗d2, if d ≤ d0

−l∗Eelec+l∗εmp
∗d4, if d > d0

(20)

where ETX−elec(l) is the loss of the transmitting circuit energy,
ETX−amp(l, d) is the loss of the amplification circuit energy, and
Eelec is the energy loss of the sender/receiver when performing
data transmission. The calculation of the threshold of the data
transmission distance is written as,

d0=

√

εfs

εmp
(21)

where εfs and εmp represent the amplification energy
consumption parameters of the free-space model and the
multipath fading model, respectively. The type of the transmitter
amplifier determines the values of the two parameters.

OPTIMIZATION OF THE TRANSMISSION
PATH BETWEEN CLUSTERS BASED ON
IACO

Flow Pattern Division
According to the energy consumption model, the energy
consumption of the nodes takes the distance threshold d0 as
the intermediate value, so the regions can be divided by the
data transmission distance threshold d0 in the LEACH protocol
optimization. The range (dmin ≤ di ≤ d0) within the distance
from the sink node d0 is area 1, and the range within the range of
WSN nodes (d0 ≤ di ≤ dmax) is area 2. The partitioning diagram
is illustrated in Figure 4.

In WSNs, the node positions are usually fixed after
deployment. When di ≤ d0, the distance between nodes will
not be regarded as the main impact factor, so the weight in the
threshold will change. In contrast, when d0 ≤ di, the energy
consumption of the node transmission and the distance between
nodes increase to the fourth power. Hence, distance is the main
impact factor. The weight in Eq. (19) will change with the
importance of the impact factor.

Transmission Path Optimization Among
Clusters Based on the IACO Algorithm
The ACO algorithm is a heuristic optimization method, which
can be used to search the optimal path through individual
efforts and group cooperation via accumulated pheromones on
the path with positive feedback (Song and Yao, 2017; Li et al.,
2020). In WSNs, the optimization of the transmission data
path of the routing protocol has the same characteristics as
the ACO algorithm to obtain the best foraging route for ants.
The application of the ACO algorithm in WSNs still has some
limitations, including low path efficiency and the appearance
of local optimal solution. Here, the developed IACO algorithm
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FIGURE 4 | Schematic diagram of the zoning of wireless sensor network deployment node range.

is applied to WSNs to conduct path optimization from three
aspects, improved transition probability, path superiority, and
pheromone updating mechanism.

Transfer Probability Improvement
The transition probability of the ACO algorithm considers only
the path pheromone concentration and the distance between two
nodes. The ant in the process of the optimal path search can
also increase the probability of invalid path search and reduce
the efficiency of path construction. Because the impact factors
are not comprehensive, the flow of the data transmission of the
nodes is larger, which could result in premature death affecting
the network operation.

By using the ACO algorithm in WSN, the distance between
two nodes is only considered in the next hop of the cluster
node selection, which could cause more candidate nodes and a
large amount of data transmission accompanied by more energy
consumption. In this article, the transition probability is fully
considered with the node energy for the ants’ node search ability
enhancement, so as to speed up the convergence speed, and the
developed transition probability function is formatted as,

Pk
ij(t) =







(τij)
α
(ηij)

β
(Eja)

γ

∑

s∈allowedk
(τis)

α(ηjs)
β
(Eja)

γ , s ∈ allowedk

0 , s/∈allowedk

(22)

Eja=
Ej

Eiave
(23)

where allowedk is the cluster head node set where k nodes have
not been reached, Ej is the remaining energy of the next hop node,
and Eiave is the average energy of the adjacent nodes of node i. τij
is the pheromone concentration of the path from node i to node
j, and ηij is the heuristic function to be defined for the cluster
head node

Based on the forwarding distance j node and the distance of
the aggregation node, written as,

ηij=
1

dij+djs
(24)

where dij is the Euclidean distance between node i and the next
hop node j, and djs is the Euclidean distance between the next hop
node j and the sink node.

Path Superiority Determination
When all ants are transferred to the sink node, each ant
corresponds to a transmission path, so the path superiority
degree can be used as the standard to measure the optimal
path. The ant with a higher superiority degree is the optimal
transmission path. In the previous path optimization process, the
path with higher average energy is highly likely to be the best
transmission path; however, the mean energy cannot represent
the current node energy level. For instance, if certain nodes have
high energy mean, but the energy difference between the actual
nodes is substantially large, it will cause premature death of the
nodes and failure of the transmission path. The path superiority
is thus reflected from the lower hop count, higher mean energy,
and uniform energy distribution. The higher the path superiority,
the higher quality of the selected transmission path.

The variation coefficient is defined by the ratio between the
SD and mean of the data, which is used to evaluate the difference
degree of the data distribution. The smaller the coefficient of
the variation, the more uniform the data distribution, and the
smaller difference between the data (Zhu, 2017). Therefore, the
path variation coefficient Pcv is used to analyze the energy balance
of the nodes.

Pcv =
Psd

Pm
=

√

1
δ

∑δ
i=1 (E(i)− Eave)2

Eave
(25)
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FIGURE 5 | Improved LEACH protocol flowchart.

where Psd is the SD of the energy of all nodes in the path Pm, Eave
is the mean energy of all nodes in the path, and δ is the number
of nodes contained in the path.

Hence, the path superiority Ps can be written as,

Ps=
Emin

Econ
1
Pcv

+ 1
J

(26)

where Emin is the minimum of the node energy, Econ is the sum
of the node energy consumption, and J is the total hop number
in the path.

Pheromone Updating
In the ACO algorithm, the pheromone concentration varies
according to the length of the path, and ants plan the next
route according to the pheromone concentration of different
paths. Ants tend to choose paths with higher pheromone
concentrations, and other paths are ignored. As a result, the path
searching will fall into the local optimization, the ant will no
longer search for new paths and the path searching process stops.
Therefore, the IACO algorithm adds local and global pheromone
updates to inter-cluster transmission path planning to avoid such

local optimum problems. The developed pheromone updating
mechanism is written as,

τij(t + 1) = (1− ρ)τij(t)+ ρ1τij (t) (27)

1τij (t) =

N
∑

k=1

1τ kij (t) (28)

where ρ is the parameter regulating the pheromone volatilization
speed, 1τij(t) is the pheromone increment in the path, 1τij(0) =

0 at the initial time, and 1τ kij (t) is the pheromone concentration

left by the kth ant in the path (i, j).

• Local pheromone update: If the ant node carries out data
forwarding from the cluster head node i → j, the
pheromone concentrations of the corresponding paths should
be locally updated,

1τ kij (t) =
Er(j)

d(i,j)
(29)

where Er(j) is the number of the member nodes in the next
hop node.
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FIGURE 6 | Sensor node deployment diagram.

• Global pheromone update: When all ants move to the sink
node, each ant corresponds to a transmission path, and the
pheromone concentration of the path is updated globally.
Based on the path superiority, the global update rules is
written as,

1τ kij (t) =
1

Ps
(30)

The LEACH protocol is optimized with the improved clustering
algorithm to cluster sensor nodes, and the influence factors
of nodes in different network regions are different so as
to replace the cluster head nodes dynamically. When the
energy of the cluster head node reaches the limit value,
the cluster is updated and the data are fused in the
cluster head node. Although the IACO algorithm is used
to find the optimal transmission path between clusters, it
can effectively avoid the stagnation of the IACO algorithm
in the local optimum. The specific process is depicted in
Figure 5.

EXPERIMENTAL VERIFICATION AND
ANALYSIS

Experimental Environment Setting
The experiment verification is carried out in a MATLAB
simulation environment, and 200 sensor nodes are deployed in
a 200 × 200m network area. The node deployment within the
network is shown in Figure 6, where the circle with sink node is
the center, the area with the threshold distance R as the radius of
the circle is area 1, and the rest is area 2. The parameters of the
basic network and IACO algorithm in the experiments are listed
in Tables 3, 4.

Performance Indicators
The life cycle of the network, the total energy consumption of
the network, and the data received by the sink node are taken
as indicators to evaluate the quality of the routing protocol. The
specific analysis is as follows:

1. Network life cycle: the duration from the normal operation of
the WSN after the successful layout to the death of the last
node. Three indicators were selected for evaluation, namely,
the number of rounds in which the first node died (indicator
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TABLE 3 | Basic parameter settings of the network.

Parameter Parameter value

Network area 200 × 200 m

Number of nodes 200 individuals

The location of the sink node (100, 100)

Node’s initial energy E0 0.2J

Energy consumption at the receiving end

ERX

50 nJ/bit*m2

Energy consumption of the sender ETX 50 nJ/bit

Energy consumption of data fusion EDA 5 nJ/bit

Free space model energy consumption

parameters εfs

10 pJ/bit*m2

Amplified energy consumption parameters

of the multipath model εmp

0.0013 pJ/bit*m2

Control packet size 100 bits

Packet size 3,000 bits

TABLE 4 | Basic parameter setting of IACO algorithm.

Parameter Parameter value

Pheromone concentration weight factor α 1

Heuristic function weight factor β 5

Node energy consumption weight factor λ 4

Pheromone Volatilization Coefficient ρ 0.1

1), the number of rounds in which 10% of nodes died
(indicator 2), and the number of rounds in which all nodes
died (indicator 3). In most cases, the appearance of the dead
nodes leads to the deterioration of the network detection
quality, so the number of rounds where the first node dies is of
particular importance.

2. Total network energy consumption: the total energy
consumption of all nodes in the network during
implementation. This index can reflect the balance degree
of energy consumption. In the simulation, the size of
the packet and control packet is set, and the energy
consumptions of different nodes are calculated through the
network operation.

3. Data received by the sink node: data received by the sink node
after each round of the network operation.

Experimental Results and Analysis
The simulation results of different routing protocols are analyzed
based on the above performance indicators to verify the
effectiveness of the ILEACH protocol.

Figures 7, 8 compare the number of surviving nodes
and total network energy consumption of the LEACH
protocol and the ILEACH protocol, respectively. To be
specific, the impact of the ILEACH protocol on the network
life cycle is analyzed via indicators 1 and 2, as shown
in Figure 8.

Figure 9 indicates that indicator 1 of the LEACH protocol
and the ILEACH protocol appears in rounds 141 and 199,

FIGURE 7 | Comparison curve of the number of surviving nodes in the

network.

FIGURE 8 | Comparison curve of total network energy consumption.

respectively, and indicator 2 appears when the network operates
to rounds 596 and 986. When the LEACH protocol reaches∼600
rounds, most nodes have no power, but the ILEACH protocol
can be extended to ∼1,200 rounds. The network needs to be
initialized in the early stage, which consumes energy quickly,
and there are fewer surviving nodes in the later stage. However,
ILEACH can effectively balance the energy consumption of nodes
by considering the energy consumption of nodes in the process
of clustering and data transmission, and the network energy
consumption varies slowly in the later period. It is proven that
the improved threshold and the replacement mechanism of the
cluster head nodes can reduce the energy consumption of the
nodes, and the ILEACH protocol can prolong the network life
cycle much longer compared with the LEACH protocol.

Figures 10, 11 compare the number of the surviving nodes
and total network energy consumption between the LEACH
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FIGURE 9 | Indicator analysis histogram.

FIGURE 10 | Comparison curve of the number of surviving nodes in the

network.

of ACO (ACO-LEACH) protocol and the LEACH of IACO
(IACO-LEACH) protocol, where Figure 11 is the histogram of
the index. Figure 12 illustrates that indicator 1 of the ACO-
LEACH protocol and IACO-LEACH protocol occurs in rounds
199 and 329, respectively, and indicator 2 occurs in rounds 986
and 2,338. Table 5 displays the number of the first node deaths,
10% node deaths, and all node deaths under different protocols.
In conclusion, the developed IACO algorithm can gradually find
the optimal transmission path for the WSN operation and save
energy in the data transmission stage effectively.

FIGURE 11 | Comparison curve of totalnetwork energy consumption.

CONCLUSION

An algorithm based on OCW and IACO is proposed in the
article to solve the problem of high energy consumption of the
traditional LEACH protocol in WSNs. The ILEACH protocol
adopts the cluster head node replacement mechanism to reduce
the energy consumption considering the energy, density, and
nodes distance for the threshold selection, which can effectively
avoid the randomness of the clustering. Furthermore, the OCW
is used to dynamically change the weight of the nodes according
to the different impact factors of nodes in different regions. The
developed IACO algorithm can optimize the transfer probability
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FIGURE 12 | Indicator analysis histogram.

TABLE 5 | Comparison table of the network life cycle of different protocols.

Protocol Number of

rounds in

which the first

node died

Number of

rounds in

which 10% of

the nodes

died

Number of

rounds in

which all

nodes died

LEACH 141 596 659

ILEACH 199 986 1,296

ACO-ILEACH 329 2,338 3,487

of the sensor nodes with the local update and global update
strategies, which can prolong the life cycle of the network to a
certain extent. The network environment is deployed through
MATLAB simulation software to verify the feasibility of the
ILEACH protocol.
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Deep learning has been widely used for inferring robust grasps. Although human-labeled

RGB-D datasets were initially used to learn grasp configurations, preparation of this

kind of large dataset is expensive. To address this problem, images were generated

by a physical simulator, and a physically inspired model (e.g., a contact model between

a suction vacuum cup and object) was used as a grasp quality evaluation metric to

annotate the synthesized images. However, this kind of contact model is complicated

and requires parameter identification by experiments to ensure real world performance.

In addition, previous studies have not considered manipulator reachability such as when

a grasp configuration with high grasp quality is unable to reach the target due to

collisions or the physical limitations of the robot. In this study, we propose an intuitive

geometric analytic-based grasp quality evaluation metric. We further incorporate a

reachability evaluation metric. We annotate the pixel-wise grasp quality and reachability

by the proposed evaluation metric on synthesized images in a simulator to train an

auto-encoder–decoder called suction graspability U-Net++ (SG-U-Net++). Experiment

results show that our intuitive grasp quality evaluation metric is competitive with a

physically-inspired metric. Learning the reachability helps to reduce motion planning

computation time by removing obviously unreachable candidates. The system achieves

an overall picking speed of 560 PPH (pieces per hour).

Keywords: bin picking, grasp planning, suction grasp, graspability, deep learning

1. INTRODUCTION

In recent years, growth in retail e-commerce (electronic-commerce) business has led to high
demand for warehouse automation by robots (Bogue, 2016). Although the Amazon picking
challenge (Fujita et al., 2020) has advanced the automation of the pick-and-place task, which is
a common task in warehouses, picking objects from a cluttered scene remains a challenge.

The key to the automation of pick-and-place is to find the grasp point where the robot can
approach via a collision free path and then stably grasp the target object. Grasp point detection
methods can be broadly divided into analytical and data-driven methods. Analytical methods
(Miller and Allen, 2004; Pharswan et al., 2019) require modeling the interaction between the
object and the hand and have a high computation cost (Roa and Suárez, 2015). For those reasons,
data-driven methods are preferred for bin picking.
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Many previous studies have used supervised deep learning,
which is one of the most widely used data-driven methods, to
predict only grasp point configuration (e.g., location, orientation,
and open width) without considering the grasp quality. Given an
RGB-D image, the grasp configuration for a jaw gripper (Kumra
and Kanan, 2017; Chu et al., 2018; Zhang et al., 2019) or a vacuum
gripper (Araki et al., 2020; Jiang et al., 2020) can be directly
predicted using a deep convolutional neural network (DCNN).
Learning was extended from points to regions by Domae et al.
(2014) and Mano et al. (2019), who proposed a convolution-
based method in which the hand shape mask is convolved
with the depth mask to obtain the region of the grasp points.
Matsumura et al. (2019) later learned the peak among all regions
for different hand orientations to detect a grasp point capable of
avoiding multiple objects.

However, in addition to the grasp configuration, the grasp
quality is also important for a robot to select the optimal grasp
point for bin picking. The grasp quality indicates the graspable
probability by considering factors such as surface properties.
For example, for suction grasping, although an object with a
complicated shape may have multiple grasp points, the grasp
points located on flat surfaces need to be given a higher selection
priority because they have higher grasp quality (easier for suction
by vacuum cup) than do curved surfaces. Zeng et al. (2018b)
empirically labeled the grasp quality in the RGB-D images of
the Amazon picking challenge object set. They proposed a multi-
modal DCNN for learning grasp quality maps (pixel-wise grasp
quality corresponding to an RGB-D image) for jaw and vacuum
grippers. However, preparing a dataset by manual labeling is time
consuming and so the dataset was synthesized in a simulator
to reduce the time cost. Dex-Net (Mahler et al., 2018, 2019)
evaluated the grasp quality by a physical model and generated
a large dataset by simulation. They used the synthesized dataset
to train a grasp quality conventional neural network (GQ-CNN)
to estimate the success probability of the grasp point. However,
defining a precise physical model for the contact between gripper
and object is difficult. Furthermore, the parameters of the model
needed to be identified experimentally to reproduce the salient
kinematics and dynamics features of a real robot hand (e.g., the
deformation and suction force of a vacuum cup).

Unlike Dex-Net, this study proposes an intuitive suction grasp
quality analytic metric based on point clouds without the need
for modeling complicated contact dynamics. Furthermore, we
incorporate a robot reachability metric to evaluate the suction
graspability from the viewpoint of the manipulator. Previous
studies have evaluated grasp quality only in terms of grasp quality
for the hand. However, it is possible that although a grasp point
has high grasp quality, the manipulator is not able to move
to that point. It is also possible for an object to have multiple
grasp points with same the level of graspability but varying
amounts of time needed for the manipulator to approach due to
differences in the goal pose and surrounding collision objects. Bin
picking efficiency can therefore be improved by incorporating a
reachability evaluation metric. We label suction graspability by
the proposed grasp quality and reachability metric and generate
a dataset by the physical simulator. An auto-encoder is trained to
predict the suction graspability given the depth image input and

a graspability clustering and the ranking algorithm is designed to
propose the optimal grasp point.

Our primary contributions include (1) Proposal of an intuitive
grasp quality evaluation metric without complicated physical
modeling. (2) Proposal of a reachability evaluation metric for
labeling suction grapability in addition to grasp quality. (3)
Performance of a comparison experiment between the proposed
intuitive grasp quality evaluationmetric and a physically-inspired
one (Dex-Net). (4) Performance of an experiment to investigate
the effect of learning reachability.

2. RELATED WORKS

2.1. Pixel-Wise Graspability Learning
In early studies, deep neural networks were used to directly
predict the candidate grasp configurations without considering
the grasp quality (Asif et al., 2018; Zhou X. et al., 2018; Xu et al.,
2021). However, since there can be multiple grasp candidates for
an object that has a complicated shape or multiple objects in a
cluttered scene, learning graspablity is required for the planner
to find the optimal grasp among the candidates.

Pixel-wise graspablity learning uses RGB-D or depth-only
images to infer the grasp success probability at each pixel.
Zeng et al. (2018b) used a manually labeled dataset to train
fully convolutional networks (FCNs) for predicting pixel-wise
grasp quality (affordance) maps of four pre-defined grasping
primitives. Liu et al. (2020) performed active exploration by
pushing objects to find good grasp affordable maps predicted
by Zeng’s FCNs. Recently, Utomo et al. (2021) modified the
architecture of Zeng’s FCNs to improve the inference precision
and speed. Based on Zeng’s concept, Hasegawa et al. (2019)
incorporated a primitive template matching module, making the
system adaptive to changes in grasping primitives. Zeng et al. also
applied the concept of pixel-wise affordance learning to other
manipulation tasks such as picking by synergistic coordination
of push and grasp motions (Zeng et al., 2018a), and picking
and throwing (Zeng et al., 2020). However, preparing huge
amounts of RGB-D images and manually labeling the grasp
quality requires a large amount of effort.

Faced with the dataset generation cost of RGB-D based
graspability learning, researchers started to use depth-image-
only based learning. The merits of using depth images are
that they are easier to synthesize and annotate in a physical
simulator compared with RGB images. Morrison et al. (2020)
proposed a generative grasping convolutional neural network
(GG-CNN) to rapidly predict pixel-wise grasp quality. Based
on a similar concept of grasp quality learning, the U-Grasping
fully convolutional neural network (UGNet) (Song et al.,
2019), Generative Residual Convolutional Neural Network
(GRConvNet) (Kumra et al., 2020), and Generative Inception
Neural Network (GI-NNet) (Shukla et al., 2021) were later
proposed and were reported to achieve higher accuracy than
GG-CNN. Le et al. (2021) extended GG-CNN to be capable
of predicting the grasp quality of deformable objects by
incorporating stiffness information. Morrison et al. (2019) also
applied GG-CNN to a multi-view picking controller to avoid
bad grasp poses caused by occlusion and collision. However,
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the grasp quality dataset of GG-CNN was generated by creating
masks of the center third of each grasping rectangle of the
Cornell Grasping dataset (Lenz et al., 2015) and Jacquard
dataset (Depierre et al., 2018). This annotation method did
not deeply analyze the interaction between hand and object,
which is expected to lead to insufficient representation of
grasp robustness.

To improve the robustness of grasp quality annotation, a
physically-inspired contact force model was designed to label
pixel-wise grasp quality. Mahler et al. (2018, 2019) designed
a quasi-static spring model for the contact force between the
vacuum cup and the object. Based on the designed compliant
contact model, they assessed the grasp quality in terms of grasp
robustness in a physical simulator. They further proposed GQ-
CNN to learn the grasp quality and used a sampling-based
method to propose an optimal grasp in the inference phase, and
also extended their study by proposing a fully convolutional GQ-
CNN (Satish et al., 2019) to infer pixel-wise grasp quality, which
achieved faster grasping. Recently, (Cao et al., 2021) used an auto-
encoder–decoder to infer the grasp quality, which was labeled by
a similar contact model to that used in GQ-CNN, to generate
the suction pose. However, the accuracy of the contact model
depends on the model complexity and parameter tuning. High
complexity may lead to a long computation cost of annotation.
Parameter identification by real world experiment (Bernardin
et al., 2019) might also be necessary to ensure the validity of the
contact model.

Our approach also labeled the grasp quality in synthesized
depth images. Unlike GQ-CNN, we proposed a more intuitive
evaluation metric based on a geometrical analytic method
rather than a complicated contact analytic model. Our results
showed that the intuitive evaluation metric was competitive
with GQ-CNN. A reachability heatmap was further incorporated
to help filter pixels that had high grasp quality value but
were unreachable.

2.2. Reachability Assessment
Reachability was previously assessed by sampling a large
number of grasp poses and then using forward kinematics
calculation, inverse kinematics calculation, or manipulability
ellipsoid evaluation to investigate whether the sampled poses
were reachable (Zacharias et al., 2007; Porges et al., 2014, 2015;
Vahrenkamp and Asfour, 2015; Makhal and Goins, 2018). The
reachability map was generated off-line, and the feasibility of
candidate grasp poses was queried during grasp planning for
picking static (Akinola et al., 2018; Sundaram et al., 2020) or
moving (Akinola et al., 2021) objects. However, creating an off-
line map with high accuracy for a large space is computationally
expensive. In addition, although the off-line map considered
only collisions between the manipulator and a constrained
environment (e.g., fixed bin or wall) since the environment
for picking in a cluttered scene is dynamic, collision checking
between the manipulator and surrounding objects is still needed
and this can be time consuming. Hence, recent studies have
started to learn reachability with collision awareness of grasp
poses. Kim and Perez (2021) designed a density net to learn the

reachability density of a given pose but considered only self-
collision. Murali et al. (2020) used a learned grasp sampler to
sample 6D grasp poses and proposed a CollisionNet to assess the
collision score of sampled poses. Lou et al. (2020) proposed a 3D
CNN and reachability predictor to predict the pose stability and
reachability of sampled grasp poses. They later extended the work
by incorporating collision awareness for learning approachable
grasp poses (Lou et al., 2021). These sampling-based methods
have required designing or training a good grasp sampler for
inferring the reachability. Our approach is one-shot, which
directly infers the pixel-wise reachability from the depth image
without sampling.

3. PROBLEM STATEMENT

3.1. Objective
Based on depth image and point cloud input, the goal is to find
a grasp pose with high graspability for a suction robotic hand to
pick items in a cluttered scene and then place them on a conveyor.
The depth image and point cloud point are directly obtained from
an Intel RealSense SR300 camera.

3.2. Picking Robot
As shown in Figure 1A, the picking robot is composed of
a 6 degree-of-freedom (DoF) manipulator (TVL500, Shibaura
Machine Co., Ltd.) and a 1 DoF robotic hand with two vacuum
suction cups (Figure 1B). The camera is mounted in the center
of the hand and is activated only when the robot is at its home
position (initial pose) and, hence, can be regarded as a fixed
camera installed above the bin. This setup has the merit that the
camera can capture the scene of the entire bin from the view
above the bin center without occlusion by the manipulator.

3.3. Grasp Pose
As shown in Figure 1C, the 6D grasp poseG is defined as (p, n, θ),
where p is the target point position of the vacuum suction cup
center, n is the suction direction, and θ is the rotation angle
around n. Given the point cloud of the target item and p position,
the normal of p can be calculated simply by principal component
analysis of a covariance matrix generated from neighbors of p
using a point cloud library. n is the direction of the calculated
normal of p. As n determines only the direction of the center axis
of the vacuum suction cup, a further rotation degree of freedom
(θ) is required to determine the 6D pose of the hand. Note that
the two vacuum suction cups are symmetric with respect to the
hand center.

4. METHODS

The overall picking system diagram is shown in Figure 2.
Given a depth image captured at the robot home position,
the auto-encoder SG-U-Net++ predicts the suction graspability
maps, including a pixel-wise grasp quality map and a robot
reachability map. The auto-encoder SG-U-Net++ is trained
using a synthesized dataset generated by a physical simulator
without any human-labeled data. Cluster analysis is performed
on two maps to find areas with graspbility higher than the
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FIGURE 1 | Problem statement: (A) Picking robot; (B) Suction hand; (C) Grasp pose.

FIGURE 2 | System diagram.

thresholds. Local sorting is performed to extract the points with
the highest graspbility values in each cluster as grasp candidates.
Global sorting is further performed to sort the candidates of all
clusters in descending order of graspbility value, and this is sent
to the motion planner. The motion planner plans the trajectory
for reaching the sorted grasp candidates in descending order
of graspability value. The path search continues until the first
successful solution of the candidate is found.

4.1. Learning the Suction Graspability
SG-U-Net++ was trained on a synthesized dataset to learn
suction graspability by supervised deep learning. Figure 3A

shows the overall dataset generation flow. A synthesized cluttered
scene is first generated using pybullet to obtain a systematized
depth image and object segmentation mask. Region growing
is then performed on the point cloud to detect the graspable
surfaces. A convolution-based method is further used to find the
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FIGURE 3 | Data generation pipeline: (A) Dataset generation flow; (B) Cluttered scene generation; (C) Graspable surface detection; (D) Grasp quality evaluation; (E)

Robot reachability evaluation.

graspable areas of vacuum cup centers where the vacuum cup
can make full contact with the surfaces. The grasp quality and
robot reachability are then pixel-wise evaluated by the proposed
metrics in the graspable area.

4.1.1. Cluttered Scene Generation
The object set used to synthesize the scene contains 3D CAD
models from the 3DNet (Wohlkinger et al., 2012) and KITObject
database (Kasper et al., 2012). These models were used because
they had previously been used to generate a dataset for which
a trained CNN successfully predicted the grasp quality (Mahler
et al., 2017). We empirically removed objects that are obviously
difficult for suction to finally obtain 708 models. To generate
cluttered scenes, a random number of objects were selected from
the object set randomly and were dropped from above the bin in
random poses. Once the state of all dropped objects was stable, a
depth image and segmentation mask for the cluttered scene was
generated, as in Figure 3B.

4.1.2. Graspable Surface Detection
As shown in Figure 3C, in order to find the graspable area of
each object, graspable surface detection was performed. Given
the camera intrinsic matrix, the point cloud of each object can
be easily created from the depth image and segmentation mask.
To detect surfaces that are roughly flat and large enough for
suction by the vacuum cup, a region growing algorithm (Rusu
and Cousins, 2011) was used to segment the point cloud. To
stably suck an object, the vacuum cup needs to be in full contact
with the surface. Hence, inspired by Domae et al. (2014), a

convolution based method was used to calculate the graspable
area (set of vacuum cup center positions where the cup could
make full contact with the surface). Specifically, as shown in the
middle of Figure 3C, each segmented point cloud was projected
onto its local coordinates to create a binary surface mask. Each
pixel of the mask represents 1 mm. The surface mask was then
convolved with a vacuum cup mask (of size 18× 18, where 18 is
the cup diameter) to obtain the graspable area. At a given pixel,
the convolution result is the area of the cup (π ∗ 0.0092 for our
hand configuration) if the vacuum cup can make full contact
with the surface. Refer to Domae et al. (2014) for more details.
The calculated areas were finally remapped to a depth image to
generate a graspable area map (right side of Figure 3C).

4.1.3. Grasp Quality Evaluation
Although the grasp areas of the surfaces were obtained, each
pixel in the area may have a different grasp probability, i.e., grasp
quality, owing to surface features. Therefore, an intuitive metric
Jq (Equation 1) was proposed to assess the grasp quality for each
pixel in the graspable area. The metric Jq is made up of Jc which
evaluates the normalized distance to the center of the graspable
area and Js which evaluates the flatness and smoothness of the
contact area between the vacuum cup and surface.

Jq = 0.5Jc + 0.5Js (1)

Jc (Equations 2, 3) was derived based on the assumption that the
closer the grasp points are to the center of the graspable area, the
closer they are to the center of mass of the object. Hence, grasp
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points close to the area center (higher Jc values) are considered to
be more stable for the robot to suck and hold the object.

Jc = 1−maxmin(‖p− pc‖2) (2)

maxmin(x) =
x−min(x)

max(x)−min(x)
(3)

where p is a point in a graspable area of a surface, pc is the
center of the graspable area, and maxmin(x) is a max-min
normalization function.

Js (Equations 4–6) was derived based on the assumption that
a vacuum cup generates a higher suction force when in contact
with a flat and smooth surface than a curved one. We defined
ps as the point set of the contact area between the vacuum cup
and the surface when the vacuum cup is sucked at a certain
point in the graspable area. As reported in Nishina and Hasegawa
(2020), the surface flatness can be evaluated by the variance of
the normals, the first term of Js assesses the surface flatness by
evaluating the variance of the normals of ps as in Equation (5).
However, it is not sufficient to consider only the flatness. For
example, although a vicinal surface has a small normal variance,
the vacuum cup cannot achieve suction to this kind of step-like
surface. Hence, the second term (Equation 6) was incorporated
to assess the surface smoothness by evaluating the residual error
to fit ps to a plane Plane(ps) where the sum of the distance
of each point in ps to the fitted plane is calculated. Note that
the weights in the equations were tuned manually by human
observations. We adjusted the weights and parameters until we
observed that the Jq map was physically plausible for grasping.
We finally empirically set weights of Jc and Js to 0.5, scaled res(ps)
by 5.0, and added weights 0.9 and 0.1 to two terms in Equation 4
to obtain plausible grasp quality values.

Js = 0.9var(ns)+ 0.1e−5res(ps) (4)

var(ns) =

N
∑

i=1

ns,i − n̄s

N − 1
(5)

res(ps) =

N
∑

i=1

‖ps,i − Plane(ps)‖2 (6)

where ps are the points in the contact surface when the vacuum
cup sucks at a point in the graspable area, N is the number of
points in ps, ns are the point normals of ps, var(ns) is the function
to calculate the variance of ns, Plane(ps) is a plane equation fitted
by ps using the least squares method, and res(ps) is the function
to calculate the residual error of the plane fitting by calculating
the sum of the distance from each point in ps to the fitted plane.

Figure 3D shows an example of the annotated grasp quality.
Points closer to the surface center had higher grasp quality values,
and points located on flat surfaces had higher grasp quality (e.g.,
surfaces of boxes had higher grasp quality values than cylinder
lateral surfaces).

4.1.4. Robot Reachability Evaluation
The grasp quality considers only the interaction between the
object and the vacuum cup without considering the manipulator.
As a collision check and inverse kinematics (IK) solution search
for the manipulator are needed, online checking and searching
for all grasp candidates is costly. Learning robot reachability
helped to rapidly avoid the grasp points where the hand and
manipulator may collide with the surroundings. It also assessed
the ease of finding IK solutions for the manipulator.

As described in Section 3.3, p and n of a grasp pose G can
be calculated from the point cloud. θ is the only undetermined
variable for defining a G. We sampled the θ from 0◦ to 355◦ in
step intervals of 5◦. IKfast (Diankov, 2010) and Flexible Collision
Library (FCL) (Pan et al., 2012) were used to calculate the
inverse kinematics solution and detect the collision check for
each sampled θ . The reachability evaluation metric (Equations
7–8) assessed the ratio of the number of IK valid θ (had collision
free IK solution) to the sampled size Nθ .

Ja =

Nθ
∑

i=1

Solver(p, n, θi)

Nθ

(7)

Solver(p, n, θi) =

{

1 if collision free and IK solution exists

0 else

(8)
where Nθ is the size of sampled θ and Solver is the IK solver and
collision checker for the robot.

Note that because the two vacuum cups are symmetric with
respect to the hand center, we evaluated the reachability score
of only one cup. Figure 3E shows an example of the robot
reachability evaluation.

4.1.5. SG-U-Net++

As shown in Figure 4, a nest structured auto-encoder–decoder
called suction graspability U-Net++ (SG-U-Net++) was used
to learn the suction graspability. We used the nested architecture
because it was previously reported to have high performances
for semantic segmentation. Given a 256 × 256 depth image,
SG-U-Net++ outputs 256 × 256 shape grasp quality and robot
reachability maps. SG-U-Net++ resembles the structure of U-
Net++ proposed by Zhou Z. et al. (2018). SG-U-Net++ consists
of several sub encoder–decoders connected by skip connections.
For example, X0,0 → X1,0 → X0,1 is one of the smallest sub
encoder–decoders, and X0,0 → X1,0 → X2,3 → X3,0 → X4,0 →

X3,1 → X2,2 → X1,3 → X0,4 is the largest encoder–decoder. The
dense block for Xi,j consists of two 3 × 3 × 32 ∗ 2i convolution
(conv) layers, each of which is followed by batch normalization
and rectified linear unit (ReLU) activation. The output layer
connected to X0,4 is a 1 × 1 × 2 conv layer. MSELoss (Equation
9) was used for supervised pixel-wise heatmap learning.

Loss =
1

H

1

W

H
∑

i=0

W
∑

j=0

0.5∗(Jq(i, j)−̂Jq(i, j))
2+0.5∗(Ja(i, j)−̂Ja(i, j))

2

(9)
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FIGURE 4 | The architecture of SG-U-Net++.

whereH andW are the image height and width.̂Jq and̂Ja indicate
the ground truth.

4.2. Clustering and Ranking
The clustering and ranking block in Figure 2 outputs the ranked
grasp proposals. To validate the role of learning reachability,
we proposed two policies (Policy 1: use only grasp quality;
Policy 2: use both grasp quality and reachability) to propose the
grasp candidates. Policy 1 extracted the area of grasp quality
values larger than threshold thg . Policy 2 extracted the area of
grasp quality score values larger than threshold thg and the
corresponding reachability score values larger than thr . Filtering
by reachability score value was assumed to help to remove pixels
with high grasp quality values that are not reachable by the
robot due to collision or IK error. The values of thg and thr
were empirically set to 0.5 and 0.3, respectively. The extracted
areas were clustered by scipy.ndimage.label (Virtanen et al.,
2020). Points in each cluster were ranked (local cluster level) by
the grasp quality values, and the point with the highest grasp
quality was used as the grasp candidate for its owner clusters
(refer to Ranked grasp candidates in Figure 2). Finally, the grasp
candidates were further ranked (global level) and sent to the
motion planner.

4.3. Motion Planning
Given the grasp candidates, goal poses were created for move.
It (Chitta et al., 2012) to plan a trajectory. As described in 3.3,
the values of p and n of a goal pose could be obtained from the
corresponding point cloud information of the grasp candidates

so that only θ was undetermined. As a cartesian movement path
is required for the hand to suck the object, p was set to a 1 cm
offset away from the object along the n direction. θ was sampled
from 0◦ to 180◦ at step intervals of 5◦. For each sampled goal
pose, the trajectory was planned for left and right vacuum cups,
respectively, and the shorter trajectory was selected as the final
solution. The planned trajectory was further time parametrized
by Time-Optimal Path Parameterization (toppra) (Pham and
Pham, 2018) to realize position control for the robot to approach
the goal pose. After reaching the goal pose, the robot handmoved
down along n to suck the object. Once the contact force between
the vacuum cup and object, which was measured by a force
sensor, exceeded the threshold, the object was assumed to be
sucked by the vacuum cup and was then lifted and placed on
the conveyor.

5. EXPERIMENTS

5.1. Data Collection, Training, and
Precision Evaluation
We used the proposed suction graspability annotation method
in pyBullet to generate 15,000 data items, which were split into
10,000 for training and 5,000 for testing. The synthesized data
was then used to train SG-U-Net++, which was implemented
by pyTorch. The adam optimizer (learning rate = 1.0e−4) was
used to update the parameters of the neural network during the
training. The batch size was set to 16. Both data collection and
training were conducted on an Intel Core i7-8700K 3.70 GHz PC
with 64G RAM and 4 Nvidia Geforce GTX 1080 GPUs.
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To evaluate the learning results, we used a similar evaluation
method to that reported in Zeng et al. (2018b) on the testing
set. For practical utilization, it is important for SG-U-Net++ to
find at least one point in ground truth suction graspable area
or manipulator reachable area. We defined suction graspable
area as the pixels whose ground truth grasp quality scores are
larger than 0.5 and approachable area as the pixels whose ground
truth reachability scores are larger than 0.5. The inferred grasp
quality and reachability scores were divided by thresholds into
Top 1%, Top 10%, Top 25%, and Top 50%. If pixels larger
than the threshold were located in the ground truth area, the
pixels were considered true positive, otherwise, the pixels were
considered false positive. We report the inference precision for
the four thresholds above for SG-U-Net++ and compare them
with Dex-Net.

5.2. Real World Picking Experiments
To evaluate and compare the performance of different policies
for the picking system, a pick-and-placement task experiment
was conducted. In order to investigate whether SG-U-Net++

could predict the graspability of objects with different shape
complexities, we used primitive solids (a simple shape with large
surfaces), commodities (general shape), and 3D-printed objects
(a complex shape with small surfaces) as experimental object
set (refer to Figure 5). All of the objects are novel objects that
were not used during training. During each trial, the robot was
required to pick 13 randomly posed objects (except for the cup)
from a bin and then place them on the conveyor. Note that the
cup was placed in the lying pose because it could not be grasped if
it was in a standing pose. A grasp attempt was treated as a failure
if the robot could not grasp the object in three attempts.

We conducted 10 trials for Policy 1, Policy 2, and Dex-Net 4.0
(suction grasp proposal by fully convolutional grasping policy),
respectively. Note that because Dex-Net had its own grasp
planning method, we directly sorted the inferred grasp quality
values without clustering. To compare our proposed intuitive

FIGURE 5 | Experiment object set.

grasp quality evaluation metric (Equation 1) with the one used
in Dex-Net, we evaluated and compared the grasp planning
computation time cost and success rate of Policy 1 and Dex-Net.
To evaluate the effect of incorporating the reachability score, we
evaluated and compared the grasp planning computation time
cost, motion planning computation time cost, and success rate of
Policy 1 and Policy 2.

6. RESULTS AND DISCUSSION

6.1. Inference Precision Evaluation
Table 1 shows the inference precision of grasp quality and
reachability. Both SQ-U-Net++ and Dex-Net achieved high
precisions for Top 1% and Top 10% but the precision of Dex-
Net decreased to lower than 0.9 for Top 25% and Top 50%. This
result indicates that the performance of our proposed intuitive
grasp quality evaluation metric (Equation 1) was as good as
a physically inspired evaluation metric. Learning the suction
graspability annotation by point cloud analytic methods might
not be so bad compared to dynamics analytic methods for
the suction grasp task. However, the inference precision of the
reachability for SQ-U-Net++ also achieved larger than 0.9 for
Top 1% and Top 10%, but decreased sharply for Top 25% and
Top 50%. The overall performance of reachability inference was
poorer than grasp quality, indicating that reachability is more
difficult to learn than grasp quality. This is probably because
grasp quality can be learned from the surface features, but
reachability learning requires more features such as the features
of surrounding objects in addition to the surface features, leading
to more difficult learning.

6.2. Picking Experiments
6.2.1. Overall Performance
Table 2 shows the experimental results of Dex-Net and our
proposed method. Although all three methods achieved a
high grasp success rate (>90%), our method took a shorter
time for grasp planning. Moreover, the motion planning
computation time was reduced by incorporating the learning of
reachability. The SQ-U-Net++ Policy 2 achieved a high speed
picking of approximately 560 PPH (piece per hour) (refer to
Supplementary Video).

6.2.2. Comparison With Physically-Inspired Grasp

Quality Evaluation Metric
As shown in Table 2, although our method was competitive with
Dex-Net, it was faster for grasp planning. This result indicates
that our geometric analytic based grasp quality evaluation is good
enough for the picking task compared with a physically-inspired
one. The evaluation of contact dynamics between a vacuum cup

TABLE 1 | Inference precision.

Score Method Top 1% Top 10% Top 25% Top 50%

Grasp quality Dex-Net 91.9 91.0 88.7 84.2

SQ-U-Net++ 99.8 99.6 99.2 97.5

Reachability SQ-U-Net++ 95.8 91.1 80.7 61.2
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and the object surface might be simplified to just analyze the
geometric features of the vacuum cup (e.g., the shape of the cup)
and surfaces (e.g., surface curvature, surface smoothness, and
distance from the cup center to the surface center). In addition,
similar to the report in Zeng et al. (2018b), the grasp proposal of
Dex-Net was farther from the center of mass. Figure 6 shows an
example of our method and Dex-Net. Our predicted grasps were
closer to the center of mass of the object than the ones inferred

TABLE 2 | Experiment results.

Method Success Grasp planning Motion planning

rate (%) cost (s) cost (s)

Dex-Net 4.0 Suction 91.5 0.60 2.91

(FC-GQCNN-4.0-SUCTION)

SQ-U-Net++ Policy1 94.6 0.15 1.71

(grasp quality only)

SQ-U-Net++ Policy2 95.4 0.17 0.90

(grasp quality+ reachability)

Bold values indicates the best performance among three methods in the Table. For the

success rate, the higher the better. For the cost (computation time) of grasp planning and

motion planning, the shorter the better.

by Dex-Net. This is because we incorporated Jc (Equation 2) to
evaluate the distance from the vacuum cup center to the surface
center, helping the SQ-U-Net++ to predict grasp positionsmuch
closer to the center of mass.

6.2.3. Role of Learning Reachability
Despite that the grasp success rate might be dominant by the
grasp quality score, it is possible that although a grasp point
has high grasp quality, the manipulator is not able to move to
that point, leading to a longer time for motion planning. The
success rate and overall system efficiency are both important
for the task of bin picking. Hence, reachability learning was
incorporated to assess the grasp success probability from the view
point of the manipulator. The reachability heatmap helped to
filter out the candidates which were with high grasp quality but
the manipulator could not reach to improve the efficiency. As
shown in Table 2, although learning reachability increased the
grasp planning cost a little bit by 0.02 s due to the processes such
as clustering and ranking of the reachability heatmap, it helped
to reduce the motion planning cost (Policy 2: 0.90 s vs. Policy
1: 1.71s) to improve the overall system efficiency, indicating that
learning reachability is worthy.

Figure 7 shows an example of the role of learning reachability.
Policy 2 predicted grasps with lower collision risks with

FIGURE 6 | Example of Dex-Net grasp prediction that is farther from the center of mass of the object.

FIGURE 7 | Example of grasps predicted by Dex-Net and Policy 1 that are unreachable or difficult to reach.
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neighboring objects than did Policy 1 and Dex-Net (e.g., Figure 7
Left: Policy 1 and Dex-Net predicted grasps on a wooden cylinder
that had high collision risks between the hand and 3D printed
objects). Furthermore, an object might have surfaces with the
same grasp quality (e.g., Figure 7 Right: box with two flat
surfaces). Whereas, Policy 2 selected the surface that was easier
to reach, Policy 1 might select the one that is difficult to reach
(Figure 7 Right), since it does not consider the reachability.
Therefore, Policy 2 was superior to Policy 1 and Dex-Net because
it removed the grasp candidates that were obviously unable or
difficult to approach. However, for Policy 1 and Dex-Net, as they
considered only the grasp quality, the motion planner might first
search the solutions for the candidates with high grasp quality,
but those candidates might be unreachable for the manipulator
and, thus, increase the motion planning effort.

6.2.4. Limitations and Future Work
Our study was not devoid of limitations. Several grasp failures
occurred when picking 3D printed objects. Since the synthesized
depth images differ from real ones because real images are
noisy and incomplete, the neural network prediction error
increased for real input depth images. This error was tolerable
for objects with larger surfaces like cylinders and boxes but
intolerable for 3D printed objects that have complicated shapes
where the graspable areas are quite small. In the future, we
intend to conduct sim-to-real (Peng et al., 2018) or depth
missing value prediction (Sajjan et al., 2020) to improve the
performance of our neural network. Another failure was that
although not very often, the objects fell down during holding
and placement because the speed of the manipulator was too
high to hold the object stably. We addressed this problem by
slowing down the manipulator movement during the placement
action but this sacrificed the overall system picking efficiency.
In the future, we want to consider a more suitable method
for object holding and placement trajectory such as model
based control.

Our study determined the grasping sequence by finding
the grasp pose with the highest predicted grasp quality score
among the filtered grasp pose candidates. The effect of other
strategies such as the one that selects the target object which
will not contact with the adjacent objects during the whole
pick-and-place actions, or the reinforcement learning based
policy (Mahler and Goldberg, 2017) will be investigated in
the future.

Experiment results showed that our intuitive grasp quality
evaluation metric was competitive with a physically-inspired
metric, indicating that our method was plausible for bin picking
of common rigid objects (e.g., primitive solids and commodities)
in an electronic commerce warehouse. However, to apply our
method to general industrial bin picking, object dynamics might
need to be considered because the mass and materials of objects
may vary in an industrial warehouse.Wewill investigate the effect
of grasp quality metric incorporating object deformability (Xu
et al., 2020; Huang et al., 2021), friction and mass distribution
(Price et al., 2018; Zhao et al., 2018; Veres et al., 2020), and
instability caused by robot acceleration (Khin et al., 2021) in
the future.

Moreover, there is a trade-off between learning grasp quality
and reachability. Increasing the weight of grasp quality loss
in Equation (9) might improve the accuracy of grasp quality
prediction and, thus, improve the success rate. However, it
might also lead to an increased error of reachability, resulting
in a long time for the motion planner to find the trajectory.
Currently, we empirically set both weights to 0.5 in Equation
9, and the experimental result indicated that such a setup of
weights was fine. In the future, we will investigate the influence of
different weight values on the experimental result so as to find the
optimal setup of weights to ensure both success rate and overall
system efficiency.

Furthermore, the reachability heatmap considered the
collision status of the hand goal pose for sucking the target
object. The motion planner further checked whether the
trajectory from the initial pose to the goal pose was collision
free. This ensured that the robot could avoid colliding with other
objects when grasping the target object. However, the grasped
object might contact its neighboring objects when the robot
lifted it after grasping. One way to avoid that is to learn the
occlusion of the target object (Yu et al., 2020). If the target object
was not occluded by any other objects, there would be a lower
risk to make the movement of its neighboring objects when it
was lifted. Another way is to predict the locations of objects by
object segmentation (Araki et al., 2020; Hopfgarten et al., 2020)
or object pose estimation (Tremblay et al., 2018) to make sure
that there is a safe distance between the target object and its
neighboring objects.

We will also extend the proposed framework for grasping by
a gripper in the future. Previous studies reported that the grasp
quality evaluation metric for a gripper could be designed based
on geometric features (Domae et al., 2014), force closure (Miller
and Allen, 2004; Roa and Suárez, 2015), or simulated gripper-
object interaction (Eppner et al., 2019). For the reachability
evaluation metric, the open width of a gripper should also be
considered in addition to the grasp poses during evaluation.

7. CONCLUSION

We proposed an auto-encoder–decoder to infer the pixel-
wise grasp quality and reachability. Our method is intuitive
but competitive with CNN trained by data annotated
using physically-inspired models. The reachability learning
improved the efficiency of the picking system by reducing
the motion planning effort. However, the performance of
the auto-encoder–decoder deteriorated because of differences
between synthesized and real data. In the future, sim-to-real
technology will be adopted to improve performance under
various environments.
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Distributed control method plays an important role in the formation of a multi-agent

system (MAS), which is the prerequisite for an MAS to complete its missions. However,

the lack of considering the collision risk between agents makes many distributed

formation control methods lose practicability. In this article, a distributed formation control

method that takes collision avoidance into account is proposed. At first, the MAS

formation control problem can be divided into pair-wise unit formation problems where

each agentmoves to the expected position and only needs to avoid one obstacle. Then, a

deep Q network (DQN) is applied to model the agent’s unit controller for this pair-wise unit

formation. The DQN controller is trained by using reshaped reward function and prioritized

experience replay. The agents in MAS formation share the same unit DQN controller

but get different commands due to various observations. Finally, through the min-max

fusion of value functions of the DQN controller, the agent can always respond to the most

dangerous avoidance. In this way, we get an easy-to-train multi-agent collision avoidance

formation control method. In the end, unit formation simulation and multi-agent formation

simulation results are presented to verify our method.

Keywords: multi-agent system, distributed control, formation control, deep Q learning, collision avoidance

1. INTRODUCTION

In recent years, with the development of manufacturing, microelectronics, and communication
technology, unmanned multi-agent systems (MASs), such as unmanned land vehicles, unmanned
underwater vehicles, and unmanned aerial vehicles have emerged. Taking the advantage of tireless,
fearless, and infallible characters over a human being, MASs begin to be applied in many
areas, e.g., express distribution, disaster search and rescue, ecological monitoring, entertainment
performances, and military confrontation. As a primary guarantee for MAS coordination and
cooperation during task execution, formation control has received more and more extensive
attention. Although there are many theoretical achievements, lots of formation control methods
for MAS still lack autonomy in practical applications, where manual remote control or trajectory
planning is needed to coordinate the agents. This is the main reason that MAS cannot cope with
many tasks that require high timelines.

Researchers usually turn the formation control problem into a consistency problem and model
the topology among agents using the undirect (Eren et al., 2003) or direct (Falconi et al., 2011)
graph. Based on the communication or observation topology, the stability and convergence of
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the designed formation control protocol can be proved.
Nevertheless, this kind of method (Li et al., 2019a; Guo et al.,
2020) takes the agents as a mass point and neglects their
volume, causing these methods insecure for possible collision
between agents. In addition, the obstacles in the environment
are usually indescribable, which also raises challenges for these
methods. The potential function is widely used to describe
obstacles. Using leader-follower topology, Liang et al. (2020)
came up with an adaptive leader-follower formation control
method for unmanned aerial vehicle (UAV) swarms with motion
constraints and unknown disturbances, where the collision
avoidance between UAVs is achieved with the artificial potential
method. Merheb et al. (2016) modeled the environment as an
incompressible flow field and designed a potential function for
obstacles. Then panel method was applied to generate formation
trajectory, i.e., streamlines of flow. Wu et al. (2016) proposed
an obstacle envelope modeling method to model the obstacles.
Each obstacle can be regarded as a dipole where the positive pole
attracts agents and the negative pole distracts agents. However,
trajectory planning methods require complex pre-design and
calculation, making them only applicable in the mission planning
stage and becoming invalid in on-board formation control.
Behavior-based methods can also work to deal with obstacles. Xu
et al. (2014) made behavior rules for agents to bypass obstacles
and move along the walls. Lee and Chwa (2018) defined the
inner, middle, and outer boundaries to wrap the obstacles so that
agents can take effective collision avoidance behaviors in different
boundaries. Although many details need to be considered, the
behavior-based method cannot ensure stability and optimal
during formation (Kamel et al., 2020).

To reduce reliance on the experience of engineers to make
behavior rules, behavior learning methods begin to be applied
in the formation control. Jin (2019) achieved stable tracking of
followers to the leader with iteration learning method, where
the only angle of sight observation is needed. Zhao et al. (2020)
considered the relative distance constraints between agents and
planned collision avoidance trajectory by iteration learning. Sanz
et al. (2008) took the first step to apply the reinforcement
learning method in the formation control. The agent with a
Q learning controller can learn when to move forward and
backward to keep aligned with the other two agents. However,
when the state or/and action space become continuous, the
corresponding Q table will be too large to describe or to train.
The appearance of deep Q network (DQN) (Mnih et al., 2013)
and deep deterministic policy gradient (DDPG) (Lillicrap et al.,
2016) have solved this problem because continuous state and/or
action space can be modeled by a neural network with limited
weights. Sui et al. (2019) built long short-term memory (LSTM)
networks to learn the formation controller of a follower to track
the leader. The training is divided into two-stage. First, the
network is supervised to learn the trajectory from the optimal
reciprocal collision avoidance (ORCA) method (Van Den Berg
et al., 2011), which is a well-known formation control method
to deal with collision avoidance. Then, the agent explores better
control protocol using reinforcement learning. Wang (2019)
equipped the DDPG with double prioritized experience replay.
Without considering collision avoidance, the command of roll

angle for a UAV is generated by the DDPG controller and
executed by a traditional PID controller. Although trained in the
simulation environment, the learned roll angle command also
works on hardware-in-the-loop simulation. However, Sui et al.
(2019) andWang (2019) only focus on the situation of one leader
with one follower. Li et al. (2019b) trained multi-agent collision
avoidance controller under decomposition methodology. At first,
they predicted the value function from one-to-one collision
avoidance rules using the iterative policy evaluation method.
Then, the one-to-one value functions of multi-agent are fused
and corrected to a multi-agent collision avoidance policy.

In this article, based on the decomposition methodology,
we train a DQN for formation with leader-follower topology.
First, we extract the simplest environment from the multi-
agent formation control environment, i.e., one agent tracks its
follower and needs only to avoid one obstacle. Then, in this
simplest environment, the agent with DQN controller is trained
with reshaped reward function and prioritized experience replay.
Finally, through the min-max fusion of the DQN value functions,
the agent can avoid more than one obstacle during formation
control. The main contributions of this article are as follows:

• The multi-agent formation problem is decomposed to the
pair-wise control problem, called the unit formation problem,
which reduces the state dimension of DQN and thus, simplifies
the learning of control policy.
• The reward function of the DQN controller is reshaped, which

improves the training performance of DQN.
• By min-max fusion of DQN value function, the pair-wise

controller is upgraded to a multi-agent formation controller.
• The action field is proposed to visually compare the DQN

formation controller before and after reinforcement learning.

This article is organized as follows. In section 2, the multi-
agent formation control problem is modeled. In section 3,
after the proposed decomposition-fusion learning framework is
sketched out, we explained the details of the unit formation
controller, and a min-max fusion method to deal with multiple
obstacles in multi-agent formation. In section 4, simulations are
presented to validate ourmethod. Finally, we conclude this article
in section 5.

2. PROBLEM DESCRIPTION

Oh et al. (2015) gave the general description of the formation
control problem without considering collision avoidance, while,
when considering the collision avoidance, the formation control
problem can be modeled as follows. Supposed there are N
agents in the formation, and let the state of agent i be xi and
the kinematics model and observation model are fi and gi,
respectively. The multi-agent state set is X = [x1, x2, · · · , xN],
and the observation set is Y =

[

y1, y2, · · · , yN
]

, and the control
output set is U = [u1, u2, · · · , uN]. The target of multi-agent
formation controller at time t is calculating control output set
Ut according to states sequence Xt0 : t and observations Yt0 : t

from starting time t0 to current time t so that the agents can
avoid collision with each other and form the expected geometric
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FIGURE 1 | (A) The leader-follower topology in the formation control. (B) The unit problem of formation control. (C) The relative kinematics model.

configuration. This problem can be described by optimization
equations as follows.

{

min
Ut0 : t

‖F (Xt)− F (X∗)‖

s.t. C(X) < 0
(1)

where the function F(·) maps the states of agents to geometric
constraints and the function C(·) is collision function. When a
collision happens, C(X) > 0. The optimization objective is to
make the geometric configuration F (X) converge to the expected
F (X∗). The states transformation and observation of agent i obey
the following equation.

{

ẋi = fi (xi, ui)
yi = gi (X)

(2)

3. FORMATION CONTROL METHOD

In this section, the decomposition-fusion framework to train the
formation controller is proposed. Then, the unit controller is
designed and learned by the improved deep Q learning method
to get a pair-wise policy. Finally, the min-max fusionmethod that
makes the pair-wise policy applicable for multi-agent formation
is elaborated.

3.1. The Decomposition-Fusion Framework
In a multi-agent formation, as the number of agents increases,
each agent needs to communicate and cooperate with more
agents, which require higher computation capacity. By designing
a suitable formation topology, the relationship among agents can
be simplified so that the communication and calculation burden
is relieved.

With leader-follower topology, the formation can be
automatically kept and globally controlled by the leader. In the
clustered MAS, considering that the follower in one cluster can
become the leader in other clusters, this kind of hierarchical
topology makes the control of a large-scale system possible. As
shown in Figure 1A, the follower calculates its expected relative
position by observing its leader and then moves toward the
destination. At the same time, the follower is not allowed to
collide with the other agents in the formation. From the agents’

point of view, an agent takes other agents in the formation
as moving or static obstacles. The agent aims to observe the
leader, move toward the relative destination, and meanwhile,
avoid collision with those obstacles. Thus, the formation control
problem can be treated as an obstacle avoidance problem from
this insight. A formation controller is expected to avoid multiple
obstacles. Instead of using a one-step learning framework that
directly takes multiple obstacles into account, we proposed the
two-step decomposition-fusion learning framework which can
give the agent the ability to deal with multiple obstacles.

As shown in Figure 2A, assuming that there are three
obstacles, a direct way is to learn a controller that takes the
observations of all obstacles as input. But this leads to two
troubles. One is that, as the number of obstacles increase the
input dimension, learning samples, and the parameters increase,
which increases the learning difficulty. The other one is that, if
the number of obstacles is not three, e.g., two or four, the learned
controller will be inapplicable.

In this article, a decomposition-fusion framework is proposed
to solve the above problems. Inspired by the pair-wise policy
(Kuchar and Yang, 2000) and attention mechanism (Mnih et al.,
2014), in the decomposition stage, we assume that the agent
only focuses on a certain obstacle, and was “blind” to the rest
obstacles. Such a “uint controller” has a fixed input dimension
and is relatively simple to learn. However, it is clear that the unit
controller cannot ensure collision avoidance to all obstacles at
once. As shown in Figure 2B1, when the agent pays attention
to obstacle 1, the agent may not be able to avoid obstacle 2.
Figures 2B2,B3 show similar things. Thus, a “fusion controller”
will be designed to make the agent learn how to allocate attention
and balance its pair-wise policy for different obstacles. In this
way, an approximately global optimal solution can be gained.

3.2. Decomposition Stage: Reword
Reshaped DQN for Unit Control
3.2.1. Modeling of Unit Control Problem
In the uint problem, with the assumption that agents in d-
dimension space have a second-order linear kinematics model,
only the relative movement of agent A, agent’s target position T,
and obstacle O need to be considered. As shown in Figure 1C,
A,T,O is the agent’s current position, expected relative position,
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FIGURE 2 | Diagram of the proposed decomposition-fusion formation control framework. (A) A formation situation that the agent A is supposed to destinate target T

but may be blocked by multiple obstacles O1,O2, and O3. The circle of the obstacle represents its collision zone. If the trajectory of the agent does not intersect with

the collision zone, it means that the agent has no collision with the obstacle. (B) The decomposition of original formation by focusing obstacles one by one. The

“focused” obstacle is colored by red while the “ignored” obstacles are colored white. (C) The trajectory from the fused controller.

and obstacle center, respectively. The red circle is the threat
zone and the gray zone is the motion permitted zone. dm is
the predicted minimum distance from the agent to the obstacle
center if the agent keeps the current moving direction. We define
a relative coordinate system inwhich the origin of the coordinates
is fixed on the target position T and its axis is parallel to one
inertial coordinate. Denote the relative position from the agent to
the target as ρ and the relative position to the obstacle as ρO. The
agent’s velocity in the relative coordinates is ρ̇. Then, the state

of the agent i is xi =
[

ρ
⊤
i ρ̇

⊤
i

]⊤
. The kinematics model of the

agent is

{

ẋi = Axi + Bui
yi = Cxi

where A=

[

0 1
0 0

]

⊗ Id,B=

[

0
1

]

⊗ Id, C = I2n

(3)
where ⊗ is Kronecker product and ui ∈ R

d is control output
which has constraint ui ∈ U . The agent has velocity constraints
vi ∈ V . The safe distance between agents is dsafe which means the
formation would fail if any distance between two agents was less
than dsafe.We also limit the agent tomove inside a circle area with
radius D. If the agent moves close enough to the target position,
i.e., |ρ| 6 de, the unit problem is solved and de is called formation
error.

3.2.2. Buiding Markov Decision Process (MDP) for

Unit Problem
The MDP is commonly used to describe continuous decision
problems. An MDP can be defined by the tuple M =

〈S ,A,Tr ,R, γ 〉, where S is state space, A is action space, Tr is
state transition function, R is reward function, and γ is decay

coefficient. A time t, the agent chooses action at ∈ A using
policy π based on state observation st ∈ S . Then, the state
transits to st+1 at time t + 1, where the transition probability
is Pr (st+1|st , at) = Tr (st , at , st+1). Meanwhile, the agent gets
reward rt+1 = R (st , at , st+1). The goal of the continuous decision
is finding the best policy π∗ which maximizes the cumulative
expected reward

∑∞
t=0 γ trt .

The state value function and state-action value function of
MDP are briefly introduced for the convenience of explaining
reward shaping and DQN training. Before training the policy
of the unit formation MDP, the way of interaction between
the agent and the designed environment needs to be decided.
Then, the details of other elements of the unit formation MDP,
including state, action, transition function, and reward function,
are discussed.

State value function. The policy π :S × A → [0, 1] gives
the probability of choosing one action at the current state, and
obviously,

∑

a∈A π (s, a) = 1. The state value function of policy
π at state s can be denoted asVπ (s), which means nomatter what
policy the agent uses before the state s, if the agent always uses
policy π from the state s to the end of the decision process, then
the cumulative expected reward from state st to s∞ is Vπ (s).

Vπ (s) = Eπ

[

∞
∑

k=0

γ krt+k+1 | st = s

]

(4)

State-action value function. The state value after action a is
state-action value Qπ (s, a), which is the cumulative expected
reward from state st to s∞ is Vπ (s) when the agent transits to
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FIGURE 3 | (A) The episode mechanism of unit formation problem when the obstacle O is out of the threat zone. (B) The episode mechanism of unit formation

problem when the obstacle O is in the threat zone.

new state s′ after acting action a and keeps using policy π from
the state s′ to the end of the decision process.

Qπ (s, a) = Eπ

[

∞
∑

k=0

γ krt+k+1 | st = s, at = a

]

(5)

Episode mechanism. The samples of reinforcement learning
are generated during the agent’s exploration in the environment.
Therefore, how the agent interacts with the environment needs
to be decided, which is called episode mechanism in this article.
Consider the environment in two-dimension space, in order to
simulate the collision avoidance during formation control, we
design the episode mechanism as illustrated in Figure 3. Let the
target position be the center of the initial zone and limited zone,
where the initial zone and limited zone are circular area with
radius d3 and D, respectively. At the beginning of every episode,
the agent is randomly initialized in the initial zone. A direct idea
is to place the obstacle randomly on the limited zone. However,
in most instances, the agent can simply move to the target along
a straight line, which makes the agent lack of experience to learn
how to avoid obstacle. Considering that an obstacle in the route
of the agent to its target will threaten the agent, the threat zone is
defined as an double-ended-wrench like area, where the width of
the double-ended wrench is d1. The initialization strategy of the
obstacle is as follows. In 50% of cases (as shown in Figure 3A), the
obstacle is initialized randomly in the limited zone except threat
zone, in the other 50% cases (as shown in Figure 3B), the obstacle
is initialize randomly in the threat zone. The initial velocity of
the agent is also random but the obstacle is assumed to be static
for simplification. At each control time step, the agent receives
command from the DQN controller and executes this action.
This process keeps going until the following events occur:

• the agent reaches its target position (finish)
• the agent collides with the obstacle (collision)
• the agent moves outside the limited zone (out of range)
• the agent moves more than nmax step (out of step)

Therefore, the four kinds of state, i.e., finish, collision, out of
range, and out of step are the terminal states of one episode.

MDP State. The unit formation control involves the agent,
the obstacle, and the target. Therefore, the MDP State st =
[ρ⊤(t), ρ̇⊤(t), ρ⊤O (t)]

⊤ = [xt , yt , vx,t , vy,t , xO,t , yO,t]
⊤, i.e., the

agent’s relative position to target x, y, relative velocity vx, vy, and
agent’s relative position to the obstacle xO, yO at step t, which
contains enough information to calculate control output. In
addition, the velocity constraint is vx, vy ∈ [−1, 1].

Transition function. The transition function of the MDP state
is based on the agent’s discrete kinematic Equation (3) but added
the obstacle observation.
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[

ux
uy

]

(6)

where ux, uy is the formation control command and dt is the time
interval.

Action. TheMDP action is directly defined to be the formation
control command of the agent. Considering discrete action space,
the action space is

a = [ux, uy] ∈ {[0, 0], [−2, 0], [−1, 0], [1, 0], [2, 0], [0,−2],

[0,−1], [0, 1], [0, 2]}

Reward function. As mentioned in the episode mechanism, one
episode will be terminated under four situations, i.e. finish,
collision, out of the range, and out of the step. Correspondingly,
there are four kinds of terminal rewards for the unit formation
MDP. Let the original reward function be:

R(s) =



















2, if finish

−2, if collision

−2, if out of range

0, otherwise

(7)
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3.2.3. Reward Shaping
Although theDQN can be trained by the original reward function
Equation (7), the agent cannot get meaningful rewardmost of the
time because the original reward is very sparse. Especially at the
beginning of the training, it is hard for the agent to gain a way to
the target. Therefore, the original reward function Equation (7) is
not conducive to the convergence of training. In this article, we
reshape the original reward to make the DQN get the reward at
every step, which will improve the learning process.

For brevity, st , at , and st+1 are abbreviated as s, a, and
s′. Having original MDP M = 〈S ,A,T, γ ,R〉, the reward-
reshaped MDP can be denoted as M′ =

〈

S ,A,T, γ ,R′
〉

, where
R′(s, a, s′) :S ×A× S → R is reshaped reward

R′(s, a, s′) = R(s, a, s′)+ F(s, a, s′), (8)

and F(s, a, s′) :S ×A× S → R is an additional reward that need
to be designed to ensure that the optimal solution of the original
MDP is the same as the reward-shaped MDP. According to the
reward reshaping principle (Ng et al., 1999), if exits8(s) :S → R

which makes F(s, a, s′) = γ8(s′) − 8(s), then the additional
reward F(s, a, s′) is potential, which can ensure the invariance
of optimal solution. Denote the state value function of the two
equivalent MDP as Vπ

M ,Vπ
M′ respectively, then

Vπ
M′ = Vπ

M −8(s) (9)

If 8(s) = V∗M(s), then V∗M′ (s) ≡ 0. Equation (9) theoretically
indicates that the learning of V∗M′ (s) will be easier if we reshape
the reward function by 8(s) that predicts V∗M(s) (Ng et al., 1999).
The agent has a higher state value when it approaches the target
position, and the agent has a lower state value when the collision
threats exist and the agent approaches the obstacle. Let

8(s) =

{

−ρ if ρO > 2dsafe
−ρ + (ρO − 2dsafe) if ρO 6 2dsafe

(10)

Finally, the additional reward function is defined as

F(s, a, s′) =







−γρ(s′)+ ρ(s) if ρO > 2dsafe
−γρ(s′)+ ρ(s)+ γρO(s

′)
−ρO(s)+ 2(1− γ )dsafe if ρO 6 2dsafe

(11)

3.2.4. Q Learning for Optimal Policy
If the optimal state-action value functionQ is known, the optimal
policy is

π∗(s) = argmax
a

Q∗(s, a) (12)

The Q learning (Sutton and Barto, 1998) can iteratively make
the Q function approaches the optimal because the current state-
action value function can be presented using the next state-action
value function according to the Bellman equation, i.e.,

Qπ (s, a) =
∑

s′

Pass′

[

Rass′ + γEπ

[

∞
∑

k=0

γ krt+k+2|st+1 = s′
]

]

(13)

where Pass′ = Pr
(

st+1 = s′|st = s, at = a
)

Rass′ =

R
(

st = s, at = a, st+1 = s′
)

. Therefore, the optimal state-action
value function satisfies the equation

Q∗(s, a) = Es′

[

R(s, a, s′)+ γ max
a′

Q∗(s′, a′)

]

(14)

According to Equation (14), the Q function can be solved by
temporal difference and eventually converge to Q∗. In traditional
Q learning method, the Q function is defined by numerical table,
which is unsuitable when the state space becomes larger or even
infinite. Mnih et al. (2013) used a deep network to model the
Q table so that it is possible to define infinite states and actions
with finite weights of the network. They built two networks called
evaluation network Q and target network Q−, respectively. The
structure of the two networks is the same, but they have different
parameters. Denoting the parameter of evaluation network and
target network as w and w− respectively, the error of evaluation
network to target network is

J(w) = Es′

[

(

Rass′ + γ max
a′

Q−(s′, a′)− Q(s, a)

)2
]

(15)

the parameters of evaluation network can be updated by

w← w+ α∇J = w+ α

(

Rass′ + γ max
a′

Q(s′, a′)− − Q(s, a)

)

∇Q(s, a) (16)

where α is the learning rate. The parameters of target network
w− are updated to parameters of the evaluation network w
every Nreplace training step, making the parameters of evaluation
networks approach the optimal parameters w∗. In this way, the
iterative temporal difference method is accomplished in DQN
training.

The training processes of unit formation problems with and
without reward shaping are shown in Figures 4A,B, respectively.
The training samples come from the experience (s, a, r, s′) of
the agent, obtained by interacting with the environment. These
samples are temporarily stored in the experience pool with size
Npool. However, at every training step, onlyNbatch samples will be
trained during overpopulation of the output error between the
evaluation network and target network. Therefore, the priority
experience replay method (Schaul et al., 2016) is employed in this
article to increase the probability of samples with large errors.
The samples with a high error are more likely to be selected to
train the networks, which can speed up the learning process.

3.3. Fusion Stage: Multi-Agent Formation
Control by Min-Max Fusion of Unit
Formation Control Policy
The unit formation DQN controller only equips the agent
with the ability to avoid one certain obstacle during formation.
However, there will be more than one potential threat in
the multi-agent formation control. To make the agent knows
which obstacle needs to be preferentially treated with, the
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FIGURE 4 | The unit formation deep Q network (DQN) controller learning process (A) without and (B) with reward shaping.

FIGURE 5 | Policy fusion for multi-agent formation control.

min-max fusion method proposed by Chryssanthacopoulos
and Kochenderfer (2011) is employed to fuse pair-wise unit
formation control policy.

To simplified the denotation, we omit the subscript i. The
min-max fusion process is shown in Figure 5. The agent views
other agent j in the formation as an obstacle. If the distance
between agent i and j is beyond the threshold which makes the
observation or communication impossible or the agent j is too far
to threaten agent i, there is no need for agent i to respond to agent
j. If not, having the state of agent i and j as input, the pair-wise
policy can output the optimal action aj and responding state-
action function Qj. From the definition of the state-action value
function in section 3.2.2, Qj predicts the cumulative expected
reward after executing action aj. A higher state-action value
means lower collision threats. Thus, the lowest state-action value
of all the optimal pair-wise policies most likely comes from the
biggest threat. The min-max fusion method makes the agent
respond first to the biggest threat. Therefore, the balanced global
policy from the pair-wise policy is

a = arg min
aj∈Aj

Q(sj, aj) (17)

and

aj = argmax
a′∈A

Q(sj, a
′) (18)

where Aj = {aj} is all the pair-wise policy of the agent i to the
other agents j, j = 1, 2, · · · ,N, j 6= i.

For every agent in the formation, it can get a global formation
control policy without extra training by using Equations (17) and
(18).

4. SIMULATIONS AND RESULTS

To verify our multi-agent formation algorithm step by step, we
first present two demos of unit formation control in section 4.1.
Then, in section 4.2, two more demos of multi-agent control
are given to validate our method of multi-agent formation with
collision avoidance.

4.1. Unit Formation Control Policy
4.1.1. Training
As shown in Figure 6, the evaluation network and target network
are both composed of three fully connected layers. There are
256, 256, and 128 neurons in the first, second, and third layers,
respectively. The weights are initialized using Gaussian random
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FIGURE 6 | Structure of DQN.

N(0, 0.32) and the biases are initialized using uniform random
U(0, 0.1). Except for the last layer, the other layers’ output is
activated by tanh function.

The reward decay coefficient is set as 0.95 and the size of
the experience pool to store samples is set as 50,000. For every
Nreplace = 2, 000 training step, the parameters of the target
network will be replaced by those of the evaluation network.
At the beginning of training, the ǫ-greedy probability is 0.95
which allows the agent to explore the environment as far as
possible. As the training goes on, the ǫ linearly decreases by
0.01 every 100 episodes to limit the exploration range of the
agent until reaches the minimum value ǫmin = 0. The weights
are updated by Adam Optimizer with an initial learning rate
α = 10−3. Like the probability of ǫ-greedy exploration, the
learning rate also decreases every 100 episodes, not linearly
but exponentially, i.e., the learning rate becomes 0.99 times
the old learning rate (α ← 0.99α). At every training step,
Nbatch = 32 samples are selected by the priority experience replay
method. The training stops when the number of trained episodes
reaches 20,000.

We assume that the episode is finished if the distance between
the agent and its target position is less than de = 3, and
the agent is safe if the distance between the agent and the
obstacle is more than dsafe = 5. To generate samples, the
inner and outer radius of the obstacle zone are d1 = 10
and d2 = 25, respectively. The agent is limited to moving
within the circular zone (radius D = 100) around the target
position. If the episode goes more than nmax = 100 control
steps, or collision or crossing happens, the episode is forced
to stop.

All the parameters related to the training of DQN is listed in
Table 1.

To test the reward shaping in this article, we trained the
original DQN and reward shapingDQNfive times using the same
episode mechanism, parameters, and network structure, but
different network initial parameters, and different random seeds
to initialize the agent’s position, agent’s velocity, and obstacle’s
position. During the training process, the DQNwith and without
reward shaping is tested. Let R̄test(m) be the average reward of
Ntest = 300 test episodes after training DQN by m training
episodes. Denote the DQN trained by m training episodes as
mth DQN, the average reward of the mth DQN in one training

TABLE 1 | Parameter of deep Q network (DQN) and training.

Parameters Value Parameters Value

Reward decay

coefficient γ

0.95 update target

network every

Nreplacestep

2× 103

Initial ǫ-greedy

probability ǫ

0.95 Minimum ǫ-greedy

probability ǫmin

0

Initial learning rate α 103 Size of experience

poolNpool

5× 104

Total episode Ne 2× 104 Batch size Nbatch 32

Maximum step in

each episode nmax

100 Formation error de 3

Safe distance dsafe 5 Width of threat

zone d1

10

Radius of limited

zone D

100 Radius of initial

zone d3

50

Simulation interval

dT

0.1 Control interval dTc 1

process is

R̄test(m) =

Ntest
∑

k=1

nk
∑

j=j0,k

rk,j(m) (19)

where rk,j(m) is the reward of the jth step in the kth test episode
obtained by mth DQN. In addition, j0,k = max{1, nk − 10},
meaning that the average reward is the average of the last 10 steps
when the total steps of kth episode are more than 10. To make
the reward of DQN with and without reshaping comparable, the
average reward is normalized by the maximum average reward
during the whole training process.

R̄′test(m) =
R̄test(m)−minn{R̄test(n)}

maxn{R̄test(n)} −minn{R̄test(n)}
, n = 1, · · · ,Ne

(20)
Themean curve and SE of the normalized average reward with

and without reshaping are recorded in Figures 7A,B. As shown
in Figure 7A, the normalized average reward without reshaping
reaches the maximum at about 5,000 training episodes by 0.8 ±
0.2. In Figure 7B, the normalized average reward with reshaping
grows to the maximum value at about 5,000 training episodes
by about 0.95 and the SE is small. Therefore, the convergence
process with reward shaping is more stable.

Figures 7C,D present the terminal states of test episodes.
We call the episodes out of step, out of range, and collision as
unfinished episodes. Both terminal state curves show a rising
trend of the finished episodes. As shown in Figure 7C, without
reward shaping, most episodes terminate due to the state of out
of step, and collision before 5,000 episodes because the sparse
reward makes it hard for the agent to get a positive experience.
The finish rate end by about 75% and there still is a 10% collision
probability. In Figure 7D, benefiting from the reward shaping,
the failure episodes of the reward shaping controller are mainly
out of range, and the collision episodes only occur before 5,000
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FIGURE 7 | The normalized average reward of DQN (A) without and (B) with reward shaping. The terminal state during train process (C) without and (D) with reward

reshaping. The translucent shadow their SE.

steps which indicate that the agent effectively learns an obstacle
avoidance strategy. The finish rate reaches about 90% with nearly
zero collision probability. The reward shaping improves the
convergence of terminal state curves. Therefore, we can conclude
that the reward shaping method in this article improves the
convergence of DQN.

4.1.2. Demo: Visualized Action Field
Sui et al. (2019) colored the action space according to the
probability that action is optimal to analyze the learned policy.
However, the action space only shows the policy in some
keyframes. To globally visualize the learned policy by DQN,
the action field is defined as follows. Supposed that the current
position and velocity of the agent is ρ and ρ̇, the optimal action
can be calculated by the DQN policy π . By fixing the velocity ρ̇

but traversing the position ρ of the agent, the function mapping
FA(ρ|π , ρ̇) represents the action field. In other words, the point
in the action field is the optimal action when the agent of velocity

ρ̇ locates in the same position. Figure 8 shows the action field of
ρ̇ = 0 with the target position at point [0, 0] and limited zone in
the square of [−40, 40]−−[−40, 40].

As noted, the green, red, purple, and blue colors represent
up, right, down, and left action, respectively, in which deeper
color indicates bigger acceleration. Since the parameters of DQN
are randomly initialized before training, the zero-velocity action
field at this time is chaotic, as shown in Figure 8A. After 20,000
episodes of training, as illustrated in Figure 8B, the action field
becomes regular. More precisely, the action field is composed of
four triangle zones, which make the agent always move toward
the expected position.

4.1.3. Demo: Unit Formation Control
In this subsection, two scenarios are presented to show the
performance of the unit formation control. They represent two
typical situations, i.e., the obstacle is or is not on the line between
the initial position of the agent and the target position. When
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FIGURE 8 | Action field (A) before and (B) after training.

there is no obstacle in the direction to the target position, as
shown in Figures 9A,B, the agent adjusts its direction at about
the 15th and the 30th control step to aim at the target. If the
obstacle blocks the way, the agent moves toward the target until
the distance to the obstacle is close enough to alarm the agent. As
shown in Figures 10A,B, the agent turns left at about the 22nd
control step and turns right at about the 37th control step to avoid
the obstacle.

Due to discrete acceleration and fixed time step, the zero-
velocity constraint is not satisfied, when the agent arrives at the
target position. This makes the trajectory of the agent fluctuate
near the target position. It is noted that the agent does not need to
avoid other agents when it is close enough to the target position.
Therefore, to eliminate the continuously small fluctuation, in the
following demos, the simple proportional derivative (PD) control
method is employed when the agent is close enough to the target
(assuming that the distance to the target is less than 10 in this
article).

4.2. Multi-Agent Formation Control Policy
4.2.1. Demo: Avoid Multiple Obstacles
To show how the proposed multi-agent formation control
method avoids multiple obstacles, the scenario as shown in
Figure 11A is presented, where six static obstacles locate in point
[−20, 40], [0, 40], [20, 40], [−20, 20], [0, 20], and [20, 20] and the
agent is initialized in [0, 60] with velocity [0, 0]. The target is
[0, 0]. The blue dots represent the trajectory of the agent which
is remarked by blue circles every 10 control steps. The collision
zone of obstacles are represented by six colored circles.

In the beginning, the agent moves downward but turns right
at the 10th control step to avoid Obstacle 2. At control step
20, the agent corrects its direction to approach target position.
However, it must change direction at the 30th control step to
avoid Obstacle 5. Finally, the agent faces the target again at the
40th control step and becomes stable at the target position after
60 steps. Figure 11B records the deviation of the agent from the
target position. It is observed that the agent always approaches

the target in y-direction but adjusts its velocity in x-direction to
avoid the obstacles which are faster than any policy that changes
the vertical velocity.

Next, we illustrate how the agent uses the unit controller to
avoid multiple obstacles by fusion. By fusing the pair-wise state-
action value of the six obstacles using equation (17), the agent
can respond to the obstacle, that has a bigger threat, with a
higher priority and thus, avoids more than one obstacle in the
environment. To testify that the min-max fusion method indeed
guides the agent responding to themost likely threat, we compare
the min-max state-action value with two other kinds of most
likely threat, i.e., minimum distance threat and minimum left
time threat.

The minimum distance threat comes from the nearest
obstacle, as shown in Figure 12A. However, the nearest obstacle
may not have the biggest threat because the agent may move far
away from this obstacle. Thus, the direction of the motion needs
to be considered.

Supposed that the agent keeps moving at current speed in a
straight line, it will reach the position which is the nearest point
M (as shown in Figure 1C) to the obstacles in the straight line. Let
dm be the minimum distance to the obstacle in the straight line
and 1t be the left time for the agent moving from the current
position to pointM, we have

dm = ρO −
ρ̇O

(

ρO · ρ̇O

)

∣

∣ρ̇O

∣

∣

2
(21)

1t =
ρO · ρ̇O
∣

∣ρ̇O

∣

∣

2
(22)

For all the obstacles, whose minimum distances dm are less
than the safe distance (|dm| < dsafe), the biggest threat to the
agent comes from the obstacle, for which it has the minimum
left time 1t to the point M. This is the second most likely threat
criterion called minimum left time threat. According to equation
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FIGURE 9 | The agent’s (A) trajectory, and (B) distance to obstacle and destination when the obstacle is not on the line between the agent’s initial and target position.

The red circle is the obstacle with the radius of dsafe and the blue dots are the trace of the agent.

FIGURE 10 | The agent’s (A) trajectory and (B) distance to obstacle and destination when the obstacle is on the line between the agent’s initial and target position.

The red circle is the obstacle with the radius of dsafe and the blue dots are the trace of the agent.

(22), the left time (equivalent to left steps) for all the obstacles
is shown in Figure 12B. In a similar way, according to equation
(18), the maximum state-action value Q for the obstacle is shown
in Figure 12C.

The aforementioned three kinds of threats are predicted and
compared in Figure 12D. It is observed that themost likely threat
indicated by minimum-maximum Q value is consistent with that
of minimum left time threat in most of the steps, which validates
our multi-agent formation control method.

4.2.2. Demo: Multi-Agent Line Formation
Line formation is one of the most common formations in MAS.
However, many formation control methodsmay be unreliable the

line formation because they do not consider collision avoidance
(Li et al., 2019a; Guo et al., 2020). The controller trained by
static obstacles cannot ensure that the agent successfully avoids
the moving obstacles. However, in some engineering scenarios,
taking the other agents in the formation as static is reasonable.
On the one hand, without filtering technique, the estimation of
other agents’ velocity may be unusable due to the observation
noise. On the other hand, in most cases, like ground robots and
quadrotors, the safe distance dsafe between agents is much larger
than the agent’s moving distance 1d within decision interval 1t.
When dsafe ≫ 1d, the dynamic obstacle can be approximated
as static because the internal logic of the controller is that if
command makes the agent go away from the obstacle, then it
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FIGURE 11 | The agent’s (A) trajectory and (B) the distance to the destination during avoiding obstacles. The six colored circles are the collision zone of obstacles

and the blue dots are the trace of the agent.

FIGURE 12 | The (A) distance, (B) prediction of left steps, (C) Q value of the fused policy for obstacles. (D) Comparison of three kinds of threat prediction.
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FIGURE 13 | (A) The agent’s trajectory. (B–D) The agent’s distance to destination and (E) the distance between agents.

is good; otherwise, it needs to be adjusted. In other words, the
agent has enough time to find what works by trial and error,
which is the advantage of the controller by learning. In the last
demo, we present a line formation control scenario for four
agents. Each agent is equipped with the DQN controller trained
in section 4.1.1. We designate agent 1 as the leader and agent
2, 3, and 4 as followers. The expected target of the four agents
are set as [0, 0], [0, 20], [0,−20], and [0,−40], respectively. In
addition, their initial positions are set as [0, 0], [0, 20], [0,−20],
and [0,−40] respectively, and their initial velocities are all zeros.

The trajectory of the agents is shown in Figure 13A. Agent 3
moves toward to its target position because there is no obstacle
in its way. To avoid agent 2, agent 4 turns right and then turns
back. Accordingly, agent 2 does not aim at its target position at
the beginning to avoid collision with agent 4. Finally, the four
agents form a linear formation. Figures 13B–D indicate that the
distance between any two agents is more than the safe distance
dsafe = 5, which validates the safety of our control method. As
shown in Figure 13E, agent 2 changes its vertical speed instead
of horizontal speed to avoid a collision. In the contrast, agent 4
adjusts its horizontal but not vertical speed.

5. CONCLUSION

Aiming at the problem of potential collision among agents in
multi-agent formation control, an intelligent decomposition and
fusion formation control method is proposed in this article. The
multi-agent formation control is decomposed to the pair-wise

unit formation control method where only one obstacle is
considered. Then, the DQN controller for unit formation is
trained following our episode mechanism design and reward
shaping. Finally, by min-max fusion of all the pair-wise state-
action values, the agent can first respond to the most likely
threat among multiple obstacles without extra training. The
demo of action field and unit formation control validates our unit
formation DQN controller. The simulation results of avoiding
obstacles and line formation show that our control method
based on deep reinforcement learning can realize multi-agent
formation with collision avoidance. In the future, obstacles with
high dynamics can be taken into account, and the reward
function can include optimal conditions like minimizing energy,
and the fusion method also can be trained by the reinforcement
learning method.
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The color image of the fire hole is key for the working condition identification of the

aluminum electrolysis cell (AEC). However, the image of the fire hole is difficult for image

segmentation due to the nonuniform distributed illuminated background and oblique

beam radiation. Thus, a joint dual channel convolution kernel (DCCK) and multi-frame

feature fusion (MFF) method is developed to achieve dynamic fire hole video image

segmentation. Considering the invalid or extra texture disturbances in the edge feature

images, the DCCK is used to select the effective edge features. Since the obtained

edge features of the fire hole are not completely closed, the MFF algorithm is further

applied to complement the missing portion of the edge. This method can assist to obtain

the complete fire hole image of the AEC. The experiment results demonstrate that the

proposed method has higher precision, recall rate, and lower boundary redundancy rate

with well segmented image edge for the aid of working condition identification of the AEC.

Keywords: dynamic video image segmentation, dual channel convolution kernel, multi-frame feature fusion, fire

hole, aluminum electrolysis cell

1. INTRODUCTION

The aluminum electrolysis (AE) production process is a complex and continuous process, where
any trivial failure in each step may affect the quality of the whole production process, resulting in
poor uniformity of the products, low production efficiency, or extra energy resources consumption
(Chen et al., 2021). It is known that the aluminum electrolysis cell (AEC) is the main production
equipment in the AE production, which should be closely monitored online via the video as the
currently adopted mainmeasure. Then, image segmentation is the first essential dealt step to obtain
visual features (Yue et al., 2020). The video image segmentation methods can be divided into the
static feature and dynamic feature two categories (Bragantini et al., 2020).

The static features mainly include color, shape, contour, and texture. Wang proposes
an Otsu image threshold segmentation method based on an improved particle swarm
optimization (PSO) (Wang et al., 2019), where the inter-class variance of the Otsu is
selected as the fitness function so as to increase the diversity of the particles with
new particles supplement. Furthermore, a fast threshold image segmentation based on 2D
fuzzy fisher and random local optimized quantum particle swarm optimization is proposed
to reduce the redundant computation and improve the processing speed of the image
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segmentation (Zhang et al., 2016). Seyedhosseini and Tasdizen
(2015) propose a semantic image segmentation based on the
upper and lower hierarchical model to optimize the joint
posterior probability. Dhanachandra and Chanu (2020) propose
an image segmentation algorithm based on fuzzy c-means
clustering algorithm (FCM) for noise image segmentation.
However, it is rather difficult for static features to adapt to image
segmentation with interference in complex scenes.

The dynamic features of the video images cannot be extracted
with a single image but require to process continuous image
frames consecutively in real-time. Karunanayake et al. (2020)
has proposed a segmentation method based on multiple walking
particles bouncing from the image edge to handling single
or multiple objects characterized by a noisy background and
broken boundaries. To balance the spatiotemporal coherence
in scenes with deformation or large motion, a segmentation
method is proposed based on the Markov chain model
(Xixi and Chengmao, 2016). In terms of consecutive multi-
frame images, an adaptive-domain network based on CycleGAN
is proposed to improve the quality of the generated images
in the feature space, making the translated images more
informative for semantic segmentation (Cao et al., 2019).
For moving object detection and segmentation, a feature
extraction based adaptive neuro-fuzzy inference system (ANFIS)
classifier is proposed (Guo et al., 2020), where the extracted
features are trained and classified using the ANFIS classification
module to improve the accuracy and recall rate of the image
segmentation.

It is known that the fire hole images of the AEC are quite
different under various working conditions, with high degree
coupling between the target area and the background due to the
background reflection, aerial fog, dust, and other interferences.
Here, a dynamic video image segmentation method is proposed
based on dual channel convolutional kernel (DCCK) and multi-
frame feature fusion (MFF) to tackle these problems. The DCCK
is proposed to select the effective edge features from the edge
feature image. The core of the DCCK is a 4×4 convolution kernel
which is used to obtain the edge image with smaller edges and
interference texture. The other 6×6 convolutional kernel is used
to obtain the salient edge with rough edges and interference
texture. The multiplication of the two dealt results is applied to

FIGURE 1 | The obtained edge feature images (Prewitt operator). (A) The original image of the fire hole. (B) The gray image of the fire hole. (C) The obtained edge

feature image.

acquire the neat and smooth edge image. Since the edge features
of the fire hole are not completely closed, an MFF algorithm is
further developed to complement the missing portion by fusing
two or more different frame images together.

The main contributions of the article are summarized as:

• A DCCK is proposed to select the effective edge features from
the edge image via two different sized convolution kernels.

• A MFF method is developed to enhance the edge features and
complement the missing edge portion by fusing more different
frame images.

• Comparison experiments have been performed to
demonstrate that the proposed method has higher mean
pixel accuracy and lower boundary redundancy rate with
satisfied image segmentation performance.

The remainder of the article is organized as follows. Section
2 presents the edge features obtainment based on the Prewitt
operator and effective edge feature information selection based
on DCCK. Section 3 develops a novel edge feature continuity
processing algorithm based on MFF. Experiments are provided
to verify the efficacy of the proposed method in Section 4. The
conclusion is given in Section 5.

2. VIDEO IMAGE SEGMENTATION OF THE
FIRE HOLE

When the working condition of the AEC changes, the fire hole
features of the AEC will change. Accordingly, the fire hole
features are the key criteria to identify the work conditions, while
image segmentation is the first essential dealt step to obtain visual
features of the fire hole.

2.1. Edge Feature Obtainment
The dealt image data are obtained from a 400KA aluminum
electrolytic plant in Dengfeng City, Henan Province. The
industrial cameras are installed to obtain the video data stream
of the fire hole of the AEC. In order to obtain the object region
in the fire hole image, edge features of the fire hole image should
be extracted by the Prewitt operator before image segmentation.
The RGB image, gray image, and the obtained edge feature image
with the Prewitt operator of the fire hole are shown in Figure 1.
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2.2. Effective Edge Features Selection
Based on DCCK
The obtained edge feature image would contain a large number of
invalid edge features of the fire hole. In order to acquire effective
edge features of the fire hole, the convolutional neural network
(CNN) is applied to deal with the edge features of the fire hole
(Bui et al., 2019). With the different sizes of the convolutional
kernels, the edge image can be dealt to connect the closer pixels
and add the cover area of the edge. The sizes of the convolutional
kernels are selected based on human experience with the trial
and error method. In this article, a 4×4 convolutional kernel
and another 6× 6 convolutional kernel are selected to deal
with the edge feature image, where the pixel values (x, y) at the
convolutional kernels are set as f1(x, y) and f2(x, y). As seen on the
left side of Equation (1), the selected 4×4 convolutional kernel
sk1 is used to filter out the detailed images so as to connect
scattered points of the image as much as possible. Moreover,
the 6×6 convolution kernel sk2 is written on the right side of
Equation (1),

sk1 =









0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









; sk2 =

















0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

















(1)

FIGURE 2 | The image processed with different convolutional kernels.

For the purpose of expending edge width to enlarge the range of
the boundary connection, such dual kernel operation can obtain
more edge breakpoints to be closed or connected. After being
processed with the 4×4 convolutional kernel of the edge image,
the number of all continuous image blocks can be calculated, and
each pixel in the block is labeled, as shown in the left graph of
Figure 2.

Next, the number of each non-zero digital tag is calculated
in the continuous pixel labeling. In Figure 2, num_of _i, (i =

1, 2, · · · , 5) is the number of different digital tags in the box,
which can easily obtain the number of pixels in each block, and
removes pixel blocks with fewer pixels less than the threshold1
(set as nl) and turn their label as 0. After filtering, the unfiltered
label is turned to 1 again (set as Ng), written as,

[1]num_of _nl ≤ threshold1 → f (xj, yj) = 0

elsef (xk, yk) = 1
(2)

where f (xj, yj) = num_of _nl is the pixel number in the pixel
block nl. l is the serial number of the pixel block; j is the serial
number of the pixel point less than the threshold1. Ng is the
label of the pixel block; g is the serial number of the pixel
point greater than the threshold1. After processing by the 4×4
convolutional kernel, the obtained image is shown in Figure 3A.
The image processing procedure via the 6×6 convolutional
kernel is similar to that of the 4×4 convolutional kernel, and the
processed image with the 6×6 convolutional kernel is shown in
Figure 3B.

Afterward, the corresponding positions of the processed
images with the 4×4 convolutional kernel f1(x, y) and the
6×6 convolutional kernel f2(x, y) are multiplied, where the
multiplication process of the pixel values is shown in Table 1

and the resulted image is depicted in Figure 3C. It can
be seen from Figure 3C that there is a relatively complete

TABLE 1 | The multiplication process of the pixel values.

f1(x, y) f2(x, y) f1(x, y) × f2(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

FIGURE 3 | The illustration of the continuous pixel labeling. (A) The image processed with a 4 × 4 convolutional kernal. (B) The image processed with a 6 × 6

convolutional kernal. (C) The processed image with double channel convolutional kernal.
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edge image containing little texture features. However, the
edge is not completely enclosed for each frame image,
which is unsuitable for the image obtainment of the fire
hole. Hence, the edge feature continuity has to be further
processed.

3. EDGE FEATURE CONTINUITY
PROCESSING BASED ON MFF

Since it is difficult to acquire a closed edge image for each
frame image with large impurities to be filtered from only edge

FIGURE 4 | The flow chart of the edge feature continuity processing.

FIGURE 5 | Final separated result of the fire hole. (A) The processed previous frame edge image. (B) Matching diagram of the edge image. (C) The overlapped part of

the two images. (D) The missing part of the next frame image. (E) The continuous edge feature image. (F) Final separated result of the fire hole.
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feature selection, anMFFmethod is proposed to complement the
missing portion of the edge. The flow chart of the MFF method is
illustrated in Figure 4.

In order to determine whether the previous frame edge image
has formed a complete edge pattern, a scanning algorithm (from
four directions: up, down, left, and right) is adopted (refer to the
left graph in Figure 4). If the edge feature image is closed, its
label is marked as 1, and the frame is used as the reference edge
feature image to mend the next frame of the edge feature image.
Otherwise, the fused edge image of the previous frame with a
complete edge pattern is used as the reference to complement the
next frame edge image. When two frame edge images are fused,
the previous frame of the edge image has first to be expanded by
the convolutional operation to retain as many edge features as
possible from the previous edge image (refer to Figure 5A).

The processed previous frame edge images by the
convolutional operation are marked as image(k−1)_handled.
To find the optimal matching position, the image(k−1)_handled
edge image moves to the next frame edge image to find the
optimal matching position of the next frame edge feature, the
matching diagram is shown in Figure 5B. The object function is
designed to determine the optimal matching position, written as,

max(

im(k−1)_r
∑

i=1

im(k−1)_c
∑

j=1

part(ik−1, jk−1)× part(ik, jk)

i = 1, 2, · · · , im(k−1)_r − im(k)_r

j = 1, 2, · · · , im(k−1)_c− im(k)_c

(3)

where the im(k−1)_r and im(k−1)_c are the pixel row and column
number of the image(k−1). The im(k)_r and im(k)_c are the pixels
row and column number of the next frame edge image. The
part(ik−1, jk−1), part(ik, jk) are the pixel value of the image(k−1)

and the next frame edge image image(k).
After obtaining the optimal matching position, the overlapped

region of the two images is obtained by multiplying each pixel of
the image(k−1) and image(k), while other positions are filled with
0. The image is marked as Im_d(k), as shown in Figure 5C.

The Im_d(k) is dealt with by the convolutional operator to
extract the effective part for optimal matching by subtracting
the pixels of the Im_d(k) from the effective edge pixels at the
corresponding position of Im_d(k−1), and the corresponding
subtraction relationship is shown in Table 2. Thus, the missing
part of the Im_d(k) is obtained andmarked as Im_sup(k), as shown
in Figure 5D.

Finally, the edge feature image of the Im(k+1) is superimposed
by adding the pixel values in the same position of the Im_d(k)
and the Im_sup(k). The corresponding relationship of the
superimpose processing is shown in Table 3, and the continuous
edge feature image is shown in Figure 5E.

In order to fill the image, the interior of the edge feature
should be completely filled using the white color, and the
two-dimensional binary image can be converted into a three-
dimensional RGB image (Guan et al., 2019). To remain the color
feature of the separated fire image as the same as the original
image, the three-dimensional RGB image is merged with the
original image, as shown in Figure 5F. It can be seen from the

TABLE 2 | The corresponding relationship of the substract processing.

Im(k−1)(x, y) Im(k)(x, y) Substract Standardization

0 0 0 0

0 1 -1 0

1 0 1 1

1 1 0 0

TABLE 3 | The corresponding relationship of the superimpose processing.

Im_d(k)(x, y) Im_sup(k)(x, y) Superimpose result Standardization

0 0 0 0

0 1 1 1

1 0 1 1

1 1 2 1

final dealt result that the dynamic video image segmentation
method based on DCCK and MFF can effectively segment the
image and obtain a completely smooth edge image without much
impurity interference.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

Three indicators(precision, recall rate, and F1-Measure) are used
to evaluate the segmentation effect, and precision represents the
proportion of samples identified as positive categories that are
indeed positive categories. Recall rate represents the proportion
of all positive class samples that are correctly identified. F1-
Measure represents the harmonic average evaluation index of
precision and recall rate.

The Roberts operator (Albdour and Zanoon, 2020) detects
edge lines by local difference calculation and is often used to
process low-noise images with steepness. The edge localization
effect of the Sobel operator (Zhou and Liu, 2019) is good,
and it is better for image processing with more noise, but the
detected edge is prone to multi-pixel width. The Prewitt operator
(Song et al., 2019) has a better effect on the image edge extraction
of grayscale gradient and does not consider the influence of the
distance of adjacent points on the current pixel point. Compared
with other classical edge detection operators, the Canny operator
(Bu et al., 2019) has higher accuracy, detects finer edges and
requires more computation, and is the most representative edge
detection operator.

In order to verify the effectiveness of the proposed method,
the Roberts operator, Prewitt operator, Sobel operator, Canny
operator, fuzzy-Sobel operator (Sivaranjani and Kalaiselvi, 2021),
and bilateral filter based Canny operator (Zhang et al., 2019)
are used for comparison. The experimental results are shown in
Figure 6, and it can be seen that most methods are unable to
segment the closed image edge completely.

When the Canny operator is used to obtain the edge images
of the fire hole, most of the noise can be removed, but the
obtained edge images are discontinuous with less remarkable
edge lines. The fuzzy Sobel operator can filter out most of
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FIGURE 6 | The segmentation results with different algorithms for comparison. (A) Original image. (B) Gray-scale map image. (C) Prewitt operator. (D) Roberts

operator. (E) Canny operator. (F) Funny-sobel operator. (G) Sobel operator. (H) Bilateral filter based Canny operator. (I) The proposed algorithm.

TABLE 4 | The evaluation indexes of the image segmentation with different algorithms comparison.

Algorithms

Evaluation index
Precision Recall rate F1-Measure

Canny operator 0.0429 0.0598 0.0179

Bilateral filter based Canny operator 0.1676 0.2851 0.8554

Fuzzy sobel operator 0.4151 0.6530 1.9591

Roberts operator 0.4430 0.5464 1.6391

Prewitt operator 0.5363 0.5962 1.7886

Sobel operator 0.6102 0.5613 1.6839

The proposed algorithm 0.5132 0.8554 2.5663

Bold value means that these values are the best.

the noise of the edge images and the dust textures, however,
the edge images of the fire hole still have a lot of missing
parts. While the bilateral filtering based Canny operator can
obtain the complete edge images, many invalid textures still
remain. As the proposed DCCK joint MFF method can not
only remove most of the noise of the edge images of the
fire hole but also can obtain continuous and complete edge
images of the fire hole. Therefore, the performance of the
proposed method is significantly higher than those of traditional
algorithms in the processing of the segmentation of the fire-
hole of the AEC. The evaluation indexes (precision, recall
rate, F1-Measure) of the image segmentation are calculated
as well, listed in Table 4. The recall rate and F1-Measure of
the obtained edge image using the proposed algorithm are the
best among these algorithms. Although the precision of the
obtained edge image with the proposed algorithm is slightly

lower than that of the Prewitt and Sobel operator, it can be
ignored without causing performance degradation in practice.
In all, the proposed algorithm ranks highest comprehensively
compared with other image segmentation algorithms. Compared
with other methods of image segmentation, the algorithm of this
article has a remarkable improvement in applicability and general
utilization.

5. CONCLUSION

This article proposes a dynamic video image segmentation
method based on the DCCK joint MFF algorithms to segment
the images of the fire hole of the AEC. The Prewitt operator
is first used to extract the edge features of the fire image.
Due to the extra texture in the edge feature image, the
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DCCK is proposed to select the effective edge features. Then
the MFF algorithm is further proposed to complement the
missing portion of the edge image. Finally, the performance
of the proposed method is verified with a comparison of
other segmentation methods in dealing with images of the
fire hole AEC under heavy dust and complex background
interference. Compared with the conventional method of image
segmentation, the proposed method has high precision with
wide applicability.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ZC determined the research program and writed the
article. The experimental data were analyzed by CC. The
theory of the model was given and analyzed by ML.
All authors contributed to the article and approved the
submitted version.

FUNDING

The research has been supported by grants from the China
Postdoctoral Science Foundation (Ref. 2020M672890), the
National Natural Science Foundation of China (Ref. 61903137),
the Natural Science Foundation Of Hunan Province (Ref.
2020JJ5201), and the Shenzhen Basic Research Program (Ref.
Jcyj20170818153635759).

REFERENCES

Albdour, N., and Zanoon, N. (2020). A steganographic method based on roberts

operator. Jordan J. Elect. Eng. 6, 266. doi: 10.5455/jjee.204-1583873433

Bragantini, J., Moura, B., Falcao, A. X., and Cappabianco, F. A. (2020). Grabber:

a tool to improve convergence in interactive image segmentation. Pattern

Recognit. Lett. 140, 267–273. doi: 10.1016/j.patrec.2020.10.012

Bu, C., Sun, Z., Tang, Q., Liu, Y., and Mei, C. (2019). Thermography sequence

processing and defect edge identification of tbc structure debonding defects

detection using long-pulsed infrared wave non-destructive testing technology.

Russian J. Nondestruct. Test. 55, 80–87. doi: 10.1134/S1061830919010030

Bui, Q.-T., Pham, M. V., Nguyen, Q.-H., Nguyen, L. X., and Pham, H. M. (2019).

Whale optimization algorithm and adaptive neuro-fuzzy inference system: a

hybrid method for feature selection and land pattern classification. Int. J. Rem.

Sens. 40, 5078–5093. doi: 10.1080/01431161.2019.1578000

Cao, Y., Sun, L., Han, C., and Guo, J. (2019). Video segmentation scheme based on

amc. IET Image Process. 14, 407–416. doi: 10.1049/iet-ipr.2018.6659

Chen, Z., Lu, M., Zhou, Y., and Chen, C. (2021). Information synergy

entropy based multi-feature information fusion for the operating

condition identification in aluminium electrolysis. Inf. Sci. 548, 275–294.

doi: 10.1016/j.ins.2020.07.031

Dhanachandra, N., and Chanu, Y. J. (2020). An image segmentation approach

based on fuzzy c-means and dynamic particle swarm optimization algorithm.

Multimedia Tools Appl. 79, 18839–18858. doi: 10.1007/s11042-020-08

699-8

Guan, C., Wang, S., and Liew, A. W.-C. (2019). Lip image segmentation based on

a fuzzy convolutional neural network. IEEE Trans. Fuzzy Syst. 28, 1242–1251.

doi: 10.1109/TFUZZ.2019.2957708

Guo, X., Wang, Z., Yang, Q., Lv, W., Liu, X., Wu, Q., et al. (2020).

Gan-based virtual-to-real image translation for urban scene semantic

segmentation. Neurocomputing 394, 127–135. doi: 10.1016/J.NEUCOM.2019.

01.115

Karunanayake, N., Aimmanee, P., Lohitvisate, W., and Makhanov, S. S. (2020).

Particle method for segmentation of breast tumors in ultrasound images.Math.

Comput. Simulat. 170, 257–284. doi: 10.1016/j.matcom.2019.10.009

Seyedhosseini, M., and Tasdizen, T. (2015). Semantic image segmentation with

contextual hierarchical models. IEEE Trans. Pattern Anal. Mach. Intell. 38,

951–964. doi: 10.1109/TPAMI.2015.2473846

Sivaranjani, B., and Kalaiselvi, C. (2021). Sobel operator and pca for

nearest target of retina images. ICTACT J. Image Video Process. 11, 248

3–2491. doi: 10.21917/ijivp.2021.0353

Song, Y., Ma, B., Gao, W., and Fan, S. (2019). Medical image edge

detection based on improved differential evolution algorithm and

prewitt operator. Acta Microscopica 28, 30–39. Available online at:

https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&

AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLks

LFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl

=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3f

direct%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%

26jrnl%3d07984545%26AN%3d137805076

Wang, C., Yang, J., and Lv, H. (2019). “Otsu multi-threshold image segmentation

algorithm based on improved particle swarm optimization,” in 2019 IEEE 2nd

International Conference on Information Communication and Signal Processing

(ICICSP) (Weihai: IEEE), 440–443.

Xixi, C., and Chengmao, W. (2016). Neutrosophic c-means clustering in kernel

space and its application in image segmentation. J. Image Graph. 21, 1316–1327.

doi: 10.11834/jig.20161006

Yue, W., Gui, W., and Xie, Y. (2020). Experiential knowledge representation

and reasoning based on linguistic petri nets with application to

aluminum electrolysis cell condition identification. Inf. Sci. 529, 141–165.

doi: 10.1016/j.ins.2020.03.079

Zhang, B., Shi, Y., and Gu, S. (2019). Narrow-seam identification and deviation

detection in keyhole deep-penetration tig welding. Int. J. Adv. Manuf. Technol.

101, 2051–2064. doi: 10.1007/s00170-018-3089-0

Zhang, C., Xie, Y., Liu, D., andWang, L. (2016). Fast threshold image segmentation

based on 2d fuzzy fisher and random local optimized qpso. IEEE Trans. Image

Process. 26, 1355–1362. doi: 10.1109/TIP.2016.2621670

Zhou, R.-G., and Liu, D.-Q. (2019). Quantum image edge extraction

based on improved sobel operator. Int. J. Theor. Phys. 58, 2969–2985.

doi: 10.1007/s10773-019-04177-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Chen, Chen and Lu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2022 | Volume 16 | Article 845858126

https://doi.org/10.5455/jjee.204-1583873433
https://doi.org/10.1016/j.patrec.2020.10.012
https://doi.org/10.1134/S1061830919010030
https://doi.org/10.1080/01431161.2019.1578000
https://doi.org/10.1049/iet-ipr.2018.6659
https://doi.org/10.1016/j.ins.2020.07.031
https://doi.org/10.1007/s11042-020-08699-8
https://doi.org/10.1109/TFUZZ.2019.2957708
https://doi.org/10.1016/J.NEUCOM.2019.01.115
https://doi.org/10.1016/j.matcom.2019.10.009
https://doi.org/10.1109/TPAMI.2015.2473846
https://doi.org/10.21917/ijivp.2021.0353
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://web.s.ebscohost.com/abstract?site=ehost&scope=site&jrnl=07984545&AN=137805076&h=fcVP4QGR%2b8HqjEIz55NLYTkMFShGfHSBaysqvKLksLFrf4Rg826RoH%2b6GHgiF2evcEMDAnTp7oL9EZ3lw%2fv2UA%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d07984545%26AN%3d137805076
https://doi.org/10.11834/jig.20161006
https://doi.org/10.1016/j.ins.2020.03.079
https://doi.org/10.1007/s00170-018-3089-0
https://doi.org/10.1109/TIP.2016.2621670
https://doi.org/10.1007/s10773-019-04177-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 22 July 2022

doi: 10.3389/fnbot.2022.820389

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2022 | Volume 16 | Article 820389

Edited by:

Yimin Zhou,

Shenzhen Institutes of Advanced

Technology (CAS), China

Reviewed by:

Hoda Moodi,

Quchan University of Advanced

Technology, Iran

Yong Xu,

Guangdong University of

Technology, China

*Correspondence:

Shulei Sun

shuleisun@foxmail.com

Received: 23 November 2021

Accepted: 20 June 2022

Published: 22 July 2022

Citation:

Huang X, Ralescu AL, Peng Y, Gao H

and Sun S (2022) Non-Fragile

Observer-Based Adaptive Integral

Sliding Mode Control for a Class of

T-S Fuzzy Descriptor Systems With

Unmeasurable Premise Variables.

Front. Neurorobot. 16:820389.

doi: 10.3389/fnbot.2022.820389

Non-Fragile Observer-Based
Adaptive Integral Sliding Mode
Control for a Class of T-S Fuzzy
Descriptor Systems With
Unmeasurable Premise Variables
Xiaorong Huang 1, Anca L. Ralescu 2, Yiqiang Peng 1, Hongli Gao 3 and Shulei Sun 1*

1 Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, School of Automobile and Transportation,

Xihua University, Chengdu, China, 2Department of Electrical Engineering and Computer Science, University of Cincinnati,

Cincinnati, OH, United States, 3 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

The issue of non-fragile observer-based adaptive integral sliding mode control for a class

of Takagi–Sugeno (T-S) fuzzy descriptor systems with uncertainties and unmeasurable

premise variables is investigated. General nonlinear systems are represented by nonlinear

T-S fuzzy descriptor models, because premise variables depend on unmeasurable

system states and fuzzy models have different derivative matrices. By introducing the

system state derivative as an auxiliary state vector, original fuzzy descriptor systems are

transformed into augmented systems for which system properties remain the same.

First, a novel integral sliding surface, which includes estimated states of the sliding

mode observer and controller gain matrices, is designed to obtain estimation error

dynamics and sliding mode dynamics. Then, some sufficient linear matrix inequality

(LMI) conditions for designing the observer and the controller gains are derived using

the appropriate fuzzy Lyapunov functions and Lyapunov theory. This approach yields

asymptotically stable sliding mode dynamics. Corresponding auxiliary variables are

introduced, and the Finsler’s lemma is employed to eliminate coupling of controller gain

matrices, observer gain matrices, Lyapunov function matrices, and/or observer gain

perturbations. An observer-based integral sliding mode control strategy is obtained to

assure that reachability conditions are satisfied. Moreover, a non-fragile observer and

a non-fragile adaptive controller are developed to compensate for system uncertainties

and perturbations in both the observer and the controller. Finally, example results are

presented to illustrate the effectiveness and merits of the proposed method.

Keywords: T-S fuzzy descriptor systems, non-fragile control, observer design, integral sliding mode control,

nonparallel distributed compensation control, unmeasurable premise variables

INTRODUCTION

In recent decades, control synthesis, stability analysis, and observer design for nonlinear systems
have received important consideration because of their wide application in practice, and demands
for reliability and performance have been increasingly enhanced. Nevertheless, it has become
challenging to systematically design and analyze such systems. The Takagi–Sugeno (T-S) fuzzy
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system, also known as the type III fuzzy model, proposed by
Japanese scholars in 1985 (Takagi and Sugeno, 1985) provides a
general approach to approximate any smooth nonlinear system
with an arbitrary degree of accuracy but without complex
mathematical equations. Through the use of the T-S fuzzy
model approach, systematic analysis and synthesis of nonlinear
systems can be performed based on classical control theory (Lv
et al., 2019), modern control theory (Zhang Z. et al., 2019),
and intelligent control theory (Sun et al., 2007; Cervantes et al.,
2016). Due to their strong approximation capabilities and good
tolerance to uncertainty and imprecision, T-S fuzzy control
techniques have been widely used in the area of intelligent
control of robotics, i.e., for robot manipulators (Fan et al., 2020),
nonlinear flexible link robots (Shams and Seyedtabaii, 2020), and
planar parallel robots (Vermeiren et al., 2012) among others.
Therefore, the T-S fuzzy model is an effective intelligent method
for modeling and analyzing robotic systems.

In practical systems, all state variables cannot always be
measured by sensors, and in other cases, the sensors used to
measure system states are expensive; however, the state variables
are indispensable to the design of system controllers and analyses
of system stability. Thus, observer design plays an important role
in stability analysis and control synthesis for nonlinear systems.
A fuzzy observer was first proposed by Tanaka and Sano in
1994 (Tanaka and Sano, 1994), and observers have since received
extensive research attention. Various problems involving fuzzy
observers have been studied in the literature. The researchers
in (Tong and Li, 2002; Asemani and Majd, 2013) studied an
observer-based controller design, and the observer and controller
were built simultaneously. The sliding mode fuzzy observers in
(Shen et al., 2011) were designed to address the problem of fault-
tolerant control for T-S fuzzy systems with actuator faults. Based
on the Lyapunov method, sufficient conditions for an unknown
input T-S observer (Chadli and Karimi, 2012) were given in
a linear matrix inequality (LMI) formulation. The novel fuzzy
learning observer in (You et al., 2019) was constructed to achieve
simultaneous reconstruction of system states and actuator faults
for T-S fuzzy systems with time-varying delays. However, the
above methods for T-S fuzzy systems are difficult to implement
in practice because of their high complexity. Compared with T-S
fuzzy systems, T-S fuzzy descriptor systems have the following
advantages: they effectively reduce the number of fuzzy rules
in a nonlinear system, and they can describe a wider variety
of nonlinear systems. Hence, the observer design problem for
the traditional nonlinear T-S descriptor system is considered in
this study.

In Li and Zhang (2018), Zhang et al. (2018), Zhang J. et al.
(2019), the authors designed a reduced-order robust observer,
a robust adaptive sliding mode observer, and a robust H∞

sliding mode observer; additionally, an observer-based sliding
mode controller was proposed for T-S fuzzy descriptor systems
with time-varying delay. Observer-based integral sliding mode
control strategies were developed in (Li et al., 2018). An adaptive
fuzzy observer in (Kharrat et al., 2018), a novel fuzzy descriptor
learning observer in (Jia et al., 2015), a robust fuzzy descriptor
observer in (Brahim et al., 2017), and some T-S descriptor
observers in (López-Estrada et al., 2017; Haj Brahim et al.,

2019) were constructed to achieve simultaneous reconstruction
of system states and actuator/sensor faults. A fault-tolerant
control scheme was derived based on Lyapunov asymptotic
stability. Robust observer-based output feedback control and
the robustness issue were addressed in (Liu et al., 2013) to
avoid control performance deterioration or instability due to
disturbances or approximation errors in the system. The design
process of a T-S fuzzy observer was extended to a class of T-
S descriptor systems with unmeasurable premise variables in
(Soulami et al., 2015). When designing a fuzzy observer, it is
important to have a clear understanding of the relationship
between premise variables and estimated system states. From the
literature (Liu et al., 2013; Jia et al., 2015; Soulami et al., 2015;
Brahim et al., 2017; López-Estrada et al., 2017; Kharrat et al.,
2018; Li and Zhang, 2018; Li et al., 2018; Zhang et al., 2018;
Haj Brahim et al., 2019; Zhang J. et al., 2019), we can conclude
that two cases exist to describe this relationship. Case A: premise
variables are not dependent on system states estimated by the
fuzzy observer, and case B: premise variables depend on system
states estimated by the fuzzy observer. The design process of
the controller and the observer is relatively simple in case A
compared to the approach in case B; therefore, more studies
have focused on case A such as (Liu et al., 2013; Jia et al., 2015;
Kharrat et al., 2018; Li and Zhang, 2018; Li et al., 2018; Zhang
et al., 2018; Zhang J. et al., 2019). However, it should be noted
that premise variables usually depend on unmeasurable system
states in practical systems. Therefore, case A has more restrictive
conditions that limit its application to various systems. Some
researchers in (Soulami et al., 2015; Brahim et al., 2017; López-
Estrada et al., 2017; Haj Brahim et al., 2019) studied the observer
design for T-S fuzzy descriptor systems with unmeasurable
premise variables.

Sliding mode control (SMC), as a type of variable
structure control method, can effectively control systems
with nonlinearities and uncertainties because of its beneficial
characteristics such as fast response, good transience, and strong
robustness. In recent decades, many significant results (Vu et al.,
2012; Van et al., 2013; Li and Zhang, 2018; Zhang et al., 2018; Wu
et al., 2019; Zhang J. et al., 2019) based on fuzzy systems have
been reported in studies on sliding mode observer design and
observer-based SMC. A novel fuzzy second-order sliding mode
observer was designed to estimate robot velocity, and a new
fuzzy second-order sliding mode strategy based on T-S fuzzy
models was proposed to track the expected motion in (Van et al.,
2013). A T-S fuzzy-model-based sliding mode controller was
developed for surface-mounted permanent-magnet synchronous
motors in Vu et al. (2012) considering motor parameter
uncertainties and unknown external noise. In (Wu et al., 2019),
the disturbance in T-S fuzzy discrete time systems was monitored
by a disturbance observer. The core objective of a sliding mode
observer is to design an SMC strategy for an observer system
or a dynamic estimation error system. Hence, a sliding mode
observer designed with the SMC method has high robustness
to nonlinearities and uncertainties. From the above literature,
it is clear that the traditional SMC theory requires a reaching
phase to drive state trajectories to the desired sliding surface. The
integral sliding mode technique can eliminate this process by
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implementing sliding mode motion from the initial time of the
control action. Consequently, the matched uncertainties can be
compensated for throughout the integral sliding mode control
(ISMC) process. Therefore, the issue of applying an integral
sliding mode technique to design observers and controllers
for fuzzy systems has received significant attention, such as in
(Jiang et al., 2018; Li et al., 2018; Kuppusamy and Joo, 2019).
In (Jiang et al., 2018), a novel integral sliding surface function
was proposed for the observer space of T-S fuzzy systems with
semi-Markov switching and immeasurable premise variables. An
integral-type fuzzy switching surface function was defined that
simultaneously involved a state-dependent input matrix and a
memory parameter in Kuppusamy and Joo (2019).

The above methods of controller and/or observer design for
T-S descriptor systems are based on an implicit assumption that
a desired controller and/or observer can be realized exactly.
However, in practical applications, it is impossible to implement
an ideal designed controller or observer because of round-off
errors in numerical computations, digital-to-analog conversion
errors, the finite word length used in digital computer systems,
and other factors. Therefore, a significant issue is determining
how to design a controller and an observer that are able to
tolerate some uncertainties in various processes, and is called
non-fragile control. The problem of non-fragile controller design
has been addressed, and a non-fragile guaranteed cost controller
(Chen and Li, 2013), a non-fragile fuzzy dissipative static output
feedback control (Guan and Liu, 2016), and a non-fragile robust
H∞ control (Zhang et al., 2007) have been investigated. The
researchers in (Li X. et al., 2017; Duan et al., 2019) focused on
the issue of non-fragile observer design.

Although a considerable effort has been devoted to fuzzy
observer analysis, ISMC design, and non-fragile control for fuzzy
systems and some effective solutions have been developed, there
are still some limitations in the existing research. First, the above
studies (Jia et al., 2015; Soulami et al., 2015; Brahim et al., 2017;
López-Estrada et al., 2017; Kharrat et al., 2018; Li and Zhang,
2018; Zhang et al., 2018; Haj Brahim et al., 2019; Zhang J. et al.,
2019) mainly discussed T-S fuzzy descriptor systems with the
same derivative matrix E. Other studies (Taniguchi et al., 2000;
Chen et al., 2009) showed that T-S fuzzy descriptor systems with
different derivative matrices are more useful for modeling and
analyzing the complexity of nonlinear systems than T-S fuzzy
descriptor systems with the same derivative matrices. To the
best of the authors’ knowledge, to date, the problem of observer
design for T-S fuzzy descriptor systems with unmeasurable
premise variables and a different derivative matrix E has not
been previously studied. Second, from what we can ascertain, the
existing integral sliding mode observer and controller in (Jiang
et al., 2018; Li et al., 2018; Kuppusamy and Joo, 2019) were
designed only for T-S fuzzy systems or T-S descriptor systems
with measurable premise variables. The problem of observer-
based adaptive ISMC for T-S fuzzy descriptor systems with
unmeasurable premise variables and uncertainties has not been
previously studied. Finally, fruitful results have been obtained for
non-fragile controllers and/or observers for T-S fuzzy systems
such as those in (Zhang et al., 2007; Chen and Li, 2013; Guan
and Liu, 2016; Li X. et al., 2017; Duan et al., 2019), but these

results generally lack corresponding techniques for T-S fuzzy
descriptor systems.

Motivated by the abovementioned discussion, in this article,
we study non-fragile observer-based ISMC problems for T-S
fuzzy descriptor systems with unmeasurable premise variables
and uncertainties. The main contributions of the proposed
control method are as follows.

1) In accordance with the nonparallel distributed compensation
control (non-PDC)method and the ISMC theory, an observer-
based integral sliding mode controller is developed for T-S
fuzzy descriptor systems with unmeasurable premise variables.

2) A non-fragile integral sliding mode observer and a non-
fragile observer-based slidingmode controller are constructed.
In addition, system uncertainties and perturbations in both
the observer structure and the controller structure are
compensated for by an adaptive controller.

3) Auxiliary variables are introduced into the system with an
augmented method to eliminate the coupling of Lyapunov
function matrices, observer gain matrices, and/or observer
gain perturbations. Moreover, a fuzzy Lyapunov function
containing information for system state estimation and
system state estimation error is designed to guarantee
the asymptotic stability of the closed-loop system. The
auxiliary variables and the fuzzy Lyapunov function produce
unconservative results.

This article is organized as follows. Section Problem
Formulation and Preliminary Analysis describes the system,
clarifies the problem formulation, and gives relevant
preliminary information. Then, in Section Non-Fragile
Observer-Based ISMC for T-S Fuzzy Descriptor Systems,
a non-fragile observer and a non-fragile controller are
constructed. A simulation example is presented to validate
the accuracy and effectiveness of the proposed method
in Section Examples. Finally, conclusions are drawn in
Section Conclusions.

Notation: in this study, Rm and Rn×m denote the n-
dimensional real Euclidean space and the set of n × m matrices
with real elements, respectively. I is the identity matrix with
appropriate dimensions. For clarity, the following definitions are

given: γh =
∑r

i=1 hi(�)γi, γ−1
h

= (
∑r

i=1 hi(�)γi)
−1

, γh,h =

∑r
i=1

∑r
j=1 hi(�)hj(�)γi,j, γ⌢

h
=

∑r
i=1 hi(

⌢

ξ (t))γi, A+∗ = A+AT ,

He(A) =A+ AT , and

[

A ∗

B C

]

=

[

A BT

B C

]

.

PROBLEM FORMULATION AND
PRELIMINARY ANALYSIS

In this study, T-S fuzzy descriptor systems are used to
approximate various complex nonlinear robotics, i.e., robot
manipulators (Fan et al., 2020), planar parallel robots (Vermeiren
et al., 2012), an overhead crane system (Chen et al., 2009), a
ball and beam system (Li H. et al., 2017), and a nonlinear active
vehicle suspension system (Li et al., 2012). Therefore, consider a
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class of uncertain robotic systems that can be represented by the
following T-S fuzzy descriptor systems with uncertainties:

∑re

k=1
vk(ξ (t))(Ek + 1E)ẋ(t)

=
∑r

i=1
hi(z(t))

{

(Ai + 1A)x(t)+ Bu(t)
}

, (1)

y(t) =
∑r

i=1
hi(z(t))(Cix(t)),

where x(t) =
[

x1(t) · · · xn(t)
]

∈ Rnis the system state vector,
u(t) ∈ Rm is the control input, y(t) ∈ Rpis the system
output vector, and ξ (t) =

[

ξ1(t) · · · ξl(t)
]

∈ Rl andz(t) =
[

z1(t) · · · zq(t)
]

∈ Rqare the unmeasurable premise vectors.
vk(ξ (t)), k = 1, 2, · · · , re and hi(z(t)), i = 1, 2, · · · , r are
fuzzy membership functions on the left and right-hand sides,
respectively.Ai ∈ Rn×n, Ek ∈ Rn×n, B ∈ Rn×m, andCi ∈ Rp×n are
the system matrices. 1E ∈ Rn×n and 1A ∈ Rn×n are the system
uncertainties. In many practical cases, there are twomain sources
of system uncertainties. On the one hand, mechanical devices
may carry various tools or goods for various operations; thus,
the system’s mass, center of mass, and other coefficients tend to
change with load. On the other hand, dynamic model and system
parameters are challenging to accurately obtain either through
theoretical methods or by experimental measurements. In many
practical cases, hi(z(t)) and vk(ξ (t)) are different, i.e., an inverted
pendulum on a cart (Li et al., 2018), an overhead crane system (Li
H. et al., 2017), a ball and beam system (Li X. et al., 2017), or a
nonlinear active vehicle suspension system (Li et al., 2012).

Without loss of generality, some assumptions are introduced
as follows:

Assumption 1.
∑re

k=1
vk(ξ (t))(Ek + 1E)is nonsingular.

Assumption 2. 1Eand1Aare uncertainties satisfying 1E =

MEFE(t)NE and1A = MAFA(t)NA, where ME, NE, MA, and
NAare known real constant matrices and FE(t)andFA(t) are
unknown time-varying matrices that satisfy FTE (t)FE(t) ≤ I and
FTA(t)FA(t) ≤ I, respectively.

By defining X∗(t) =
[

xT(t) ẋT(t)
]T
, the T-S fuzzy descriptor

system (1) can be transformed into an augmented form
as follows:

E∗Ẋ∗(t) =
∑re

k=1

∑r

i=1
vk(ξ (t))hi(z(t))

{

(A∗
ki + 1A∗)X∗(t)+ B∗u(t)

}

, (2)

y(t) =
∑r

i=1
hi(z(t))C

∗
i X

∗(t),

where E∗ =

[

I 0
0 0

]

,A∗
ki
=

[

0 I
Ai −Ek

]

,M =

[

0 0
MA −ME

]

,1A∗ =

[

0 I
1A −1E

]

= MF(t)N, F(t) =

[

FA(t) 0
0 FE(t)

]

, N =

[

NA 0
0 NE

]

,

B* =

[

0
B

]

, and C∗
i =

[

Ci 0
]

.

Assumption 3. The output matrices Ci of the ith rule of the T-S
fuzzy descriptor system are full row rank for all i = 1, · · · , r, and

therefore nonsingular matrices Ti exist such that

CiTi =
[

I 0
]

.

Remark 1. For any given Ci, the corresponding Ti is not unique
in general. One solution for Ti, as discussed in Du and Yang
(2009), is:

Ti =

[

CT
i (CiC

T
i )

−1
C⊥
i

]

,

where C⊥
i is called an orthogonal basis for the null space of

Ci andCiC
⊥
i = 0.

Some essential lemmas are introduced to facilitate
stability analysis.

Lemma 1 (Boyd et al., 1994). (Schur Complement) The
appropriate dimensional matrices S1,1, S1,2, S2,1, andS2,2 satisfy
S1,1 = ST1,1, S1,2 = ST2,1, and S2,2 = ST2,2such that the following
conditions are equivalent:

S =

[

S1,1 S1,2
S2,1 S2,2

]

1) S < 0,
2) S1,1 < 0 andS2,2 − ST1,2S

−1
1,1S1,2 < 0, and

3)S2,2 < 0 and S1,1 − S1,2S
−1
2,2S

T
1,2 < 0.

Lemma 2 (Petersen, 1987). Let P = PT ,M, andN be real matrices
of appropriate dimensions. Then, P+MF(t)N+NTFT(t)MT < 0
for all variable matrix functions F(t) satisfying FT(t)F(t) ≤ I
if and only if there is a scalar ε > 0such that the following
inequality holds:

P + εMMT + ε−1NTN < 0.

Lemma 3 (Gahinet and Apkarian, 1994). (Finsler’s lemma) The
following conditions are equivalent:

1) xT�x < 0, ∀Wx = 0, and x 6= 0, where x is an augmented
state vector;

2) W⊥T
�W⊥ < 0, where W⊥is any null space basis matrix

forW;
3) there is a scalar µ that satisfies � − µWTW < 0; and
4) there is a matrix X that satisfies � + XW +WTXT < 0.

Remark 2.
∑re

k=1
vk(ξ (t))Ekis required to be nonsingular to

ensure that the augmented systems (2) maintain the impulse-free
and regularization properties of the original system.

Remark 3. In this study, a nonlinear mechanical system is
represented as a T-S fuzzy descriptor system instead of a T-S fuzzy
system to effectively avoid the artificial introduction of different
input matrices. By setting the system matrix Ek = I, a T-S fuzzy
descriptor system can be transformed into a normal T-S fuzzy
system. Therefore, the proposed controller is also feasible for a
normal T-S fuzzy system.
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NON-FRAGILE OBSERVER-BASED ISMC
FOR T-S FUZZY DESCRIPTOR SYSTEMS

When uncertainties of robotic system are considered such
that 1A∗ 6= 0, a robust observer is constructed to
estimate the system states. In contrast, a non-fragile observer-
based adaptive integral sliding mode controller for T-S fuzzy
descriptor systems, as shown in Figure 1, is designed to
address robotic system uncertainties and perturbations for
both observer and controller structures. The control system
includes two parts: a non-fragile observer and a non-fragile
adaptive integral sliding mode controller. Moreover, the non-
fragile adaptive integral sliding mode controller has three parts,
namely, the equivalent control strategy, the switching control
strategy, and the adaptive control strategy. The equivalent
control strategy guarantees system convergence to the designed
sliding surface, and the switching control strategy makes
the closed-loop control system asymptotically stable. System
uncertainties and perturbations associated with controller
and observer gains are compensated for by the adaptive
control strategy.

Structure of the Non-Fragile Sliding Mode
Observer
To estimate the states of system (2), the following non-fragile
observer for estimating system states is considered:

E∗ ˙̂X
∗

(t) =
∑re

k=1

∑r

i
vk(ξ̂ (t))hi(ẑ(t))

{

A∗
k,iX̂

∗(t)+ B∗u(t)+ (L∗k,i + 1L∗k,i)(y(t)− ŷ(t))
}

, (3)

ŷ(t) =
∑r

i=1
hi(ẑ(t))C

∗
i X̂

∗(t),

where X̂∗(t) is the state estimate of X∗(t), ŷ(t) is
the estimated value of the system output vector y(t),
and ξ̂ (t)andẑ(t)denote the estimated values of the
premise variablesξ (t) and z(t), respectively. Using the
notation presented in Introduction, Equation (3) can be
represented as:

E∗ ˙̂X
∗

(t) = A∗

ĥ,v̂
X̂∗(t)+ B∗u(t)+ (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(y(t)− ŷ(t)), (4)

ŷ(t) = C∗

ĥ
X̂∗(t),

where L∗
ĥ,v̂

=

[

0 LT
ĥ,v̂

]T
and 1L∗

ĥ,v̂
=

[

0 1LT
ĥ,v̂

]T
. L

ĥ,v̂
denotes

the observer gain, which will be determined later. 1L
ĥ,v̂

=

MLSLNLLĥ,v̂ is the observer gain perturbation, whereML and NL

are known real constant matrices.SL is an unknown time-varying

matrix that satisfies STL SL ≤ I.1L∗
ĥ,v̂

satisfies the following

norm-bounded multiplicative relation:

1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, (5)

whereM∗
L =

[

0 MT
L

]T
and N∗

L =
[

0 NL

]

.
The system state estimation error is defined as e(t) = X∗(t)−

X̂∗(t); by considering the T-S fuzzy descriptor system (2) and the
non-fragile observer system (4), the estimation error dynamic is
obtained as:

E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)e(t)

+(A∗
h,v − A∗

ĥ,v̂
)X̂∗(t)

−(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h − C∗

ĥ
)X̂∗(t)

+1A∗X∗(t). (6)

Remark 4. Since we consider unmeasurable premise variables
for T-S fuzzy descriptor systems, the membership functions of
the T-S fuzzy descriptor system (vk(ξ (t)) and hi(z(t))) should be
allowed to depend on the estimated system state x̂i(t) rather than
the original system state xi(t). Furthermore, the system output
matrix Ci(t) is allowed to be a function of the system state xi(t)
instead of a constant matrix.

Construction of the Integral Sliding Surface
Based on the non-fragile observer (4) and ISMC theory, the
integral sliding surface function is designed as

sX̂∗ (t) = S∗E∗X̂∗(t)− S∗E∗X̂∗(0) (7)

− S∗
t

∫

0

(A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(τ )dτ ,

where F∗
ĥ,v̂

=

[

F
ĥ,v̂

0
]

,K
ĥ,v̂

=

[

K1,v̂ K2,v̂

K
3,ĥ

K
4,ĥ

]

,F
ĥ,v̂

∈ Rm×n, K1,v̂ ∈

Rn×n, K2,v̂ ∈ Rn×n, K
3,ĥ

∈ Rn×n, and K
4,ĥ

∈ Rn×n are the

system controller gains, which will be determined later. S∗ is a

constant matrix that satisfies det(S∗B∗) 6= 0. 1F∗
ĥ,v̂

=

[

1F
ĥ,v̂

0
]

is the controller gain perturbation and satisfies the following
norm-bounded multiplicative relation:

1F∗
ĥ,v̂

= MFSFNFF
∗

ĥ,v̂
, (8)

where MF and NF are known matrices with appropriate
dimensions, and SF is an unknown time-varying matrix that
satisfies STF SF ≤ I.
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FIGURE 1 | Non-fragile observer-based ISMC for T-S fuzzy descriptor systems.

Combining (4) with (7), the derivative of the integral sliding
mode surface (7) can be obtained as:

ṡX̂∗ (t) =

S∗(A∗

ĥ,v̂
X̂∗(t)+ B∗u(t)+ (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(y(t)− C∗

ĥ
X̂∗(t)))

−S∗(A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(t). (9)

When system trajectories reach the ideal sliding surface, the
following conditions must be satisfied: sX̂∗ (t) = 0 and ṡX̂∗ (t) = 0.
Therefore, the equivalent control can be designed as follows:

Case 1:Ch = C
ĥ
= C∗

ueq(t) = (F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗e(t). (10)

Case 2:Ch 6= C
ĥ

ueq(t) = (F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

he(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h − C∗

ĥ
)X̂∗(t). (11)

By substituting the equivalent controller (10-11) into
the sliding mode observer system (4), the sliding mode
dynamics are established as (12) and (14). Meanwhile, the
dynamic estimation error Equation (6) is redescribed as (13)
and (15).

Case 1:Ch = C
ĥ
= C∗

E∗ ˙̂X
∗

(t) = (A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(t)

+BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗e(t), (12)
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FIGURE 2 | Feasible area for theorem 3 (*) compared with the other methods. (A) Feasible area for Theorem 3 (*) and Theorem 2(+) [Ichalal et al., 2011]. (B) Feasible

area for Theorem 3 (*) and Theorem 1(o) [Asemani and Majd, 2013].

FIGURE 3 | Time responses of the system. (A) State x1(t) and the estimated x̂1(t). (B) State x2(t) and the estimated x̂2(t). (C) Control input. (D) Sliding surface.
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FIGURE 4 | Time responses of the control input and the sliding surface. (A) Control input. (B) Sliding surface.

FIGURE 5 | Nonlinear state x1(t) and the estimatedx̂1 (t). (A) Initial simulation case 1. (B) Initial simulation case 2. (C) Initial simulation case 3. (D) Initial simulation case

4.
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E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)e(t)+ (A∗

h,v − A∗

ĥ,v̂
+ 1A∗)X̂∗(t). (13)

Case 2:Ch 6= C
ĥ

E∗ ˙̂X
∗

(t) = (A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h − C∗

ĥ
))X̂∗(t)+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

he(t), (14)

E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h + 1A∗)e(t)+ (A∗
h,v − A∗

ĥ,v̂
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h − C∗

ĥ
)+ 1A∗)X̂∗(t), (15)

where BB = I − B∗(S∗B∗)−1S∗. In this study, the control goal is to obtain the observer gains and controller gains such that X̂∗(t) → 0
and e(t) → 0 for t → ∞.

Equations (12) and (14) can be rearranged as follows:
Case 1:Ch = C

ĥ
= C∗

[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
−I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

]







X̂∗(t)

E∗ ˙̂X
∗

V(t)
e(t)






= 0. (16)

Case 2:Ch 6= C
ĥ

[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
) −I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h

]







X̂∗(t)

E∗ ˙̂X
∗

(t)
e(t)






= 0. (17)

Admissibility Analysis of the Dynamic Sliding Mode System
Based on the LMI theory and the Lyapunov stability theory, the controller gains and observer gains are determined in this section such
that sliding mode dynamics are asymptotically stable.

Theorem 1: Suppose that the T-S fuzzy descriptor systemmatrices in (2) satisfy1A* 6= 0 and Ch = C
ĥ
= C∗. Given constants ε > 0

and ε1 > 0, the closed-loop systems (12,13) are asymptotically stable if positive definite matrices P1 and Q1, scalars ε2,i,k, ε
E
3,i,k

, εA
3,i,k

,

and ε4,i,k, and a set of matrices P3,i,k, P4,i,k, Fi,k,K1,k,K2,k,K3,i,K4,i, Li,k, R1, R
11
1,i,k

, R12
1,i,k

, R2
1,i,k

, R3
1,i,k

, and R4
1,i,k

exist, where k ∈ {1, · · · , re}

and i ∈ {1, · · · , r}, such that the following LMIs hold:

[

�1 ∗

�2 �3

]

< 0, (18)

�1 =































11,1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

12,1 12,2 ∗ ∗ ∗ ∗ ∗ ∗

13,1 13,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗

14,1 14,2 −εP
3,ĥ,v̂

14,4 ∗ ∗ ∗ ∗

0 (BY
ĥ,v̂
)
T

0 ε(BY
ĥ,v̂
)
T

He(Q
3,ĥ
) ∗ ∗ ∗

16,1 16,2 0 −εMLε4,ĥ,v̂M
T
L B

T
16,5 16,6 ∗ ∗

0 ε1(BYĥ,v̂
)
T

0 ε1ε(BYĥ,v̂
)
T

Q1 − TR1
1,ĥ,v̂

17,6 17,7 ∗

0 0 0 0 Q
3,ĥ

− R3
1,ĥ,v̂

18,6 18,7 −ε1He(R4
1,ĥ,v̂

)































,

�2 =









NFFĥ,v̂ 0 0 0 0 0 0 0

NAK1,v̂ NAK2,v̂ 0 0 NAQ1 0 0 0
NEK3,ĥ

NEK4,ĥ
0 0 NEQ3,ĥ

NEQ4,ĥ
0 0

0 0 0 0 NLYĥ,v̂
0 ε1NLYĥ,v̂

0









,
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�3 =











−ε
2,ĥ,v̂

I ∗ ∗ ∗

0 −εA
3,ĥ,v̂

I ∗ ∗

0 0 −εE
3,ĥ,v̂

I ∗

0 0 0 −ε
4,ĥ,v̂

I











,

where 11,1 = He(K
3,ĥ
), 12,1 = A

ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂

+KT

4,ĥ
, 12,2 = He(A

ĥ
K2,v̂)+BMFε2,ĥ,v̂M

T
F B

T−He(Ev̂K4,ĥ
)+BMLε4,ĥ,v̂M

T
L B

T
,

13,1 = K1,v̂ + εK
3,ĥ

− P1, 13,2 = K2,v̂ + εK
4,ĥ
, 14,1 = K

3,ĥ
− P

3,ĥ,v̂
+ε(A

ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂
), 14,2 = εBMFε2,ĥ,v̂M

T
F B

T +

εBMLε4,ĥ,v̂M
T
L B

T
+ K

4,ĥ
+ εA

ĥ
K2,v̂ − P

4,ĥ,v̂
−εEv̂K4,ĥ

, 14,4 = ε2BMFε2,ĥ,v̂M
T
F B

T + ε2BMLε4,ĥ,v̂M
T
L B

T
− εHe(P

4,ĥ,v̂
), 16,1 = (Ah −

A
ĥ
)K1,v̂−EvK3,ĥ

+ Ev̂K3,ĥ
, 16,2 = (Ah − A

ĥ
)K2,v̂ − (Ev − Ev̂)K4,ĥ

− MLε4,ĥ,v̂M
T
L B

T
, 16,5 = QT

4,ĥ
− Y

ĥ,v̂
+ AhQ1−EvQ3,ĥ

, 16,6 =

−He(EvQ4,ĥ
)+MLε4,ĥ,v̂M

T
L +MAε

A

3,ĥ,v̂
MT

A +MEε
E

3,ĥ,v̂
MT

E , 17,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
, 17,7 = −ε1He(TR1

1,ĥ,v̂
), 18,6 = Q

4,ĥ
− R4

1,ĥ,v̂
,

18,7 = −ε1R
3

1,ĥ,v̂
− ε1(TR

2

1,ĥ,v̂
)
T
, B = B(S∗2B)

−1S∗2 , Yĥ,v̂
=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, and R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

.

Proof: The Lyapunov function candidate is constructed as:

V(x̂(t),e1(t)) = x̂T(t)P−1
1 x̂(t)+ eT1 (t)Q

−1
1 e1(t) = X̂∗T(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ eT(t)E∗TQ−1

ĥ,v̂
e(t), (19)

where P
ĥ,v̂

=

[

P1 0
P
3,ĥ,v̂

P
4,ĥ,v̂

]

, P−1

ĥ,v̂
=

[

P−1
1 0

−P−1

4,ĥ,v̂
P
3,ĥ,v̂

P−1
1 P−1

4,ĥ,v̂

]

, P1 = PT1 , Qĥ,v̂
=

[

Q1 0
Q
3,ĥ,v̂

Q
4,ĥ,v̂

]

, Q1 = QT
1 , P1 ∈ Rn×n,

P
3,ĥ,v̂

∈ Rn×n, P
4,ĥ,v̂

∈ Rn×n, Q1 ∈ Rn×n, Q
3,ĥ,v̂

∈ Rn×n, Q
4,ĥ,v̂

∈ Rn×n, and e1(t) = x(t) − x̂(t).The matrix and its derivative

satisfy E∗TP−1

ĥ,v̂
= P−T

ĥ,v̂
E∗ =

[

P1 0
0 0

]

, E∗TQ−1

ĥ,v̂
= Q−T

ĥ,v̂
E∗ =

[

Q1 0
0 0

]

, d
dt
(E∗TP−1

ĥ,v̂
) = 0, and d

dt
(E∗TQ−1

ĥ,v̂
) = 0. Therefore, the derivative

of the Lyapunov function (19) is calculated as:

V̇(x̂(t), e1(t)) =
˙̂X
∗T
(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ X̂∗T(t)P−T

ĥ,v̂
E∗ ˙̂X

∗

(t)+ ėT(t)E∗TQ−1

ĥ,v̂
e(t)+ eT(t)Q−T

ĥ,v̂
E∗ė(t) (20)

=







X̂∗(t)

E∗ ˙̂X
∗

(t)
e(t)







T 





0 ∗ ∗

P−1

ĥ,v̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗) 0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)TQ−1

ĥ,v̂
)













X̂∗(t)

E∗ ˙̂X
∗

(t)
e(t)






< 0,

If (20) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in the sliding mode
dynamics Equation (16):







0 ∗ ∗

P−1

ĥ,v̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗) 0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)TQ−1

ĥ,v̂
)






+ 41 < 0,

(21)

41= He(







U
ĥ,v̂

V
ĥ,v̂

W
ĥ,v̂







[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
−I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

]

),

where U
ĥ,v̂
, V

ĥ,v̂
, and W

ĥ,v̂
are matrix variables with appropriate dimensions. By pre- and post-multiplying (21) by







KT

ĥ,v̂
0 0

0 P
ĥ,v̂

0

0 0 QT

ĥ,v̂






and







K
ĥ,v̂

0 0

0 PT
ĥ,v̂

0

0 0 Q
ĥ,v̂






, respectively, the following inequality is obtained:







0 ∗ ∗

K
ĥ,v̂

0 ∗

(A∗
h,v

− A∗

ĥ,v̂
+ 1A∗)K

ĥ,v̂
0 He(QT

ĥ,v̂
(A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)T)






+ 42 < 0, (22)
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42=He(







KT

ĥ,v̂
U
ĥ,v̂

P
ĥ,v̂
V
ĥ,v̂

QT

ĥ,v̂
W

ĥ,v̂







[

A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
) −PT

ĥ,v̂
BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗Q

ĥ,v̂

]

)

where U
ĥ,v̂

= K−T

ĥ,v̂
, V

ĥ,v̂
= εP−1

ĥ,v̂
, andW

ĥ,v̂
= 0 are defined for ε > 0. Then, inequality (22) can be represented as:

43 +He(







0 0 0
0 0 0

(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗Q

ĥ,v̂
)
T

ε(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗Q

ĥ,v̂
)
T
−((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗Q

ĥ,v̂
)T






) < 0, (23)

43 =







He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗

K
ĥ,v̂

− P
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) −εHe(PT

ĥ,v̂
) ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
)






,

The corresponding auxiliary variables are introduced into the system, and the dimension of the system is increased with the augmented
method to eliminate the coupling of the Lyapunov function matrix Q

ĥ,v̂
, the observer gain matrix L∗

ĥ,v̂
, and the observer gain

perturbation 1L∗
ĥ,v̂

in inequality (23). The following equations are defined:

x4(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗)

T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)

T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)Tx3(t). (24)

Thus, inequality (23) can be expressed as:









x1(t)
x2(t)
x3(t)
x4(t)









T

44









x1(t)
x2(t)
x3(t)
x4(t)









< 0, (25)

44 =













He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗

41
4 −εHe(PT

ĥ,v̂
) ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
) ∗

0 0 Q
ĥ,v̂

0













where41
4 = K

ĥ,v̂
+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
.

If (25) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in Equation (24).

44 +45 < 0, (26)

45 = He(











0
0

(T∗R
1,ĥ,v̂

)T

ε1(T
∗R

1,ĥ,v̂
)T











[

(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗)

T
ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)

T
−((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)T −I

]

)

whereR
1,ĥ,v̂

=

[

R1
1,ĥ,v̂

R2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, T∗ =

[

T 0
0 I

]

,R1 ∈ Rp×p, R11
1,ĥ,v̂

∈ R(n−p)×p,

R12
1,ĥ,v̂

∈ R(n−p)×(n−p), R21
1,ĥ,v̂

∈ R(n−p)×n, R3
1,ĥ,v̂

∈ Rn×n, R4
1,ĥ,v̂

∈ Rn×n, and T satisfies assumption 3.
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Inequality (26) can be rewritten as follows:

47 +48 < 0, (27)

47 =













He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) ∗ ∗ ∗

41
7 −εHe(PT

ĥ,v̂
) ∗ ∗

42
7 ε(BB̟1)

T
He(A∗

h,v
Q
ĥ,v̂

− ̟1) ∗

ε1(BB̟1)
T

ε1ε(BB̟1)
T
Q
ĥ,v̂

− ε1̟
T
1 − T∗R

1,ĥ,v̂
−ε1He(T∗R

1,ĥ,v̂
)T













,

48 = He(













B∗1F∗
ĥ,v̂

0 0 0

εB∗1F∗
ĥ,v̂

0 0 0

1A∗K
ĥ,v̂

+ (BB̟2)
T

ε(BB̟2)
T

1A∗Q
ĥ,v̂

− ̟T
2 0

ε1
(

BB̟2

)T
ε1ε

(

BB̟2

)T
−ε1̟

T
2 0













),

where41
7 = K

ĥ,v̂
+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
)− P

ĥ,v̂
, 42

7 = (A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ (BB̟1)

T , ̟1 = L∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
, and̟2 = 1L∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
.

Because 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, 1F∗

ĥ,v̂
= MFSFNFF

∗

ĥ,v̂
, and 1A∗ = MF(t)N, inequality (27) can be rewritten as:

47 +He(M1SFN1+M2F(t)N2+M3SLN3) < 0, (28)

where M1 =
[

B∗MF εB∗MF 0 0
]T
, N1 =

[

NFF
∗

ĥ,v̂
0 0 0

]

, M2 =
[

0 0 M 0
]T
, N2 =

[

NK
ĥ,v̂

0 NQ
ĥ,v̂

0
]

, N3 =
[

0 0 N∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
ε1N∗

LL
∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂

]

, andM3 =
[

BBM∗
L εBBM∗

L −M∗
L 0

]T
.

Based on lemma 2, (28) holds if there are positive real scalars ε
2,ĥ,v̂

, εA
3,ĥ,v̂

, εE
3,ĥ,v̂

, and ε
4,ĥ,v̂

that satisfy the following relation:

47 +M1ε2,ĥ,v̂M
T
1 + NT

1 ε−1

2,ĥ,v̂
N1 +M2ε3,ĥ,v̂M

T
2 + NT

2 ε−1

3,ĥ,v̂
N2 +M3ε4,ĥ,v̂M

T
3 + NT

3 ε−1

4,ĥ,v̂
N3 < 0, (29)

where ε
3,ĥ,v̂

=

[

εA
3,ĥ,v̂

I 0

0 εE
3,ĥ,v̂

I

]

. Using the Schur complement in lemma 1, (29) holds if and only if the following relation set is satisfied:

























41
9 ∗ ∗ ∗ ∗ ∗ ∗

42
9 43

9 ∗ ∗ ∗ ∗ ∗

44
9 45

9 46
9 ∗ ∗ ∗ ∗

ε1
(

BB̟1

)T
ε1ε

(

BB̟1

)T
47

9 −ε1He(T∗R
1,ĥ,v̂

) ∗ ∗ ∗

NFF
∗

ĥ,v̂
0 0 0 −ε

2,ĥ,v̂
I ∗ ∗

NK∗

ĥ,v̂
0 NQ

ĥ,v̂
0 0 −ε

3,ĥ,v̂
I ∗

0 0 N∗
L̟1 ε̟1 0 0 −ε

4,ĥ,v̂
I

























< 0, (30)

where 41
9 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) + B∗MFε2,ĥ,v̂M

T
F B

∗T + BBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 42

9 = εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂
+K

ĥ,v̂
+ εB∗F∗

ĥ,v̂
+

εB∗MFε2,ĥ,v̂M
T
F B

∗T + εBBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 43

9 = ε2B∗MFε2,ĥ,v̂M
T
F B

∗T − εHe
(

PT
ĥ,v̂

)

+ε2BBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 44

9 =
(

BB̟1

)T
−

M∗
Lε4,ĥ,v̂M

∗T
L BB

T
+ A∗

h,v
K
ĥ,v̂

− A∗

ĥ,v̂
K
ĥ,v̂
,45

9 = ε
(

BB̟1

)T
−εM∗

Lε4,ĥ,v̂M
∗T
L BB

T
,46

9 = He
(

A∗
h,v
Q
ĥ,v̂

− ̟1

)

+Mε
3,ĥ,v̂

MT +M∗
Lε4,ĥ,v̂M

∗T
L ,

47
9 = Q

ĥ,v̂
− ε1̟

T
1 −T∗R

1,ĥ,v̂
, and ̟1 = L∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
.

It is assumed that S∗ =
[

S∗1 S∗2
]

; thus, the matrix BBcan be obtained as:

BB =

[

I 0

−B(S∗2B)
−1S∗1 I − B(S∗2B)

−1S∗2

]

.
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Then, the matrices in inequality (31) can be formulated as follows:

L∗
ĥ,v̂

=

[

0 LT
ĥ,v̂

]T
,T∗ =

[

T 0
0 I

]

, T∗R
1,ĥ,v̂

=

[

TR1
1,ĥ,v̂

TR2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

,

L∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
=

[

0 0

L
ĥ,v̂
CTR1

1,ĥ,v̂
0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,

BBL∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
=

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n

]

.

Therefore, inequality (18) is easily obtained from the above
equalities and inequality (30).

Remark 5. To avoid introducing the derivative of the
membership function in the derivative of the Lyapunov function,
P1 is chosen as a constant matrix. The P

3,ĥ,v̂
and P

4,ĥ,v̂
in

P
ĥ,v̂

are related to the membership functions vk(ξ̂ (t)) and

hi(ẑ(t)). Consequently, the conservativeness of this approach is
significantly reduced. Moreover, the Lyapunov matrices and the
observer gain matrices are decoupled by Finsler’s lemma.

T-S fuzzy descriptor systems may occasionally have different
output matrices, so the following theorem gives the relaxed

sufficient LMI conditions for T-S fuzzy descriptor systems with
different output matrices to expand the application scope of the
design theory given in this study.

Theorem 2: Suppose that the T-S fuzzy descriptor system
matrices in (2) satisfy 1A* 6= 0 and Ch 6= C

ĥ
. Given constants

ε > 0, ε1 > 0and ε2 > 0, the closed-loop systems (14, 15)
are asymptotically stable if positive definite matrices P1 and Q1,
scalars ε3,i,k, ε

E
4,i,k

, εA
4,i,k

, and ε5,i,k, and a set of matrices P3,i,k, P4,i,k,

Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R
11
1,i,k

, R12
1,i,k

, R11
2,i,k

, R12
2,i,k

,R2
1,i,k

,

R3
1,i,k

, R4
1,i,k

, R2
2,i,k

, R3
2,i,k

, and R4
2,i,k

exist, where k ∈ {1, · · · , re} and
i ∈ {1, · · · , r}, such that the following LMIs hold:

[

�1 ∗

�2 �3

]

< 0, (31)

�1 =



































11,1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

12,1 12,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13,1 13,2 13,3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

14,1 14,2 14,3 14,4 ∗ ∗ ∗ ∗ ∗ ∗

0 15,2 0 15,4 15,5 ∗ ∗ ∗ ∗ ∗

16,1 16,2 −Y
ĥ,v̂

16,4 16,5 16,6 ∗ ∗ ∗ ∗

K1,v̂ 17,2 0 17,4 17,5 17,6 17,7 ∗ ∗ ∗

K
3,ĥ

K
4,ĥ

0 0 18,5 18,6 18,7 18,8 ∗ ∗

−K1,v̂ 192 −T
ĥ
R1
2,ĥ,v̂

19,4 0 19,6 0 0 19,9 ∗

−K
3,ĥ

K
4,ĥ

−R3
2,ĥ,v̂

−R4
2,ĥ,v̂

0 0 0 0 110,9 −ε2He(T
ĥ
R4
2,ĥ,v̂

)



































,

�2 =









NFFĥ,v̂ 0 0 0 0 0 0 0 0 0

NAK1,v̂ NAK2,v̂ 0 0 NA 0 0 0 0 0
NEK3,ĥ

NEK4,ĥ
0 0 NEQ3,ĥ

NEQ4,ĥ
0 0 0 0

0 0 NLYĥ,v̂
0 NLYĥ,v̂

0 ε1NLYĥ,v̂
0 ε2NLYĥ,v̂

0









,

�3 =











−ε
3,ĥ,v̂

I ∗ ∗ ∗

0 −εA
4,ĥ,v̂

I ∗ ∗

0 0 −εE
4,ĥ,v̂

I ∗

0 0 0 −ε
5,ĥ,v̂

I











,
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where 11,1 = He(K
3,ĥ
), 12,1 = A

ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂

+KT

4,ĥ
, 12,2 = BMFε3,ĥ,v̂M

T
F B

T +He(A
ĥ
K2,v̂)−He(Ev̂K4,ĥ

)+BMLε5,ĥ,v̂M
T
L B

T
,

13,1 = K1,v̂ + εK
3,ĥ

− P1, 13,2 = K2,v̂ + εK
4,ĥ
, 13,3 = −εHe(P1), 14,1 = K

3,ĥ
+ ε(A

ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂
) − P

3,ĥ,v̂
,14,2 =

K
4,ĥ

+ ε(A
ĥ
K2,v̂ − Ev̂K4,ĥ

) + εBMFε3,ĥ,v̂M
T
F B

T−P
4,ĥ,v̂

+ εBMLε5,ĥ,v̂M
T
L B

T
, 14,3 = −εP

3,ĥ,v̂
+ εBY

ĥ,v̂
, 14,4 = ε2BMFε3,ĥ,v̂M

T
F B

T +

ε2BMLε5,ĥ,v̂M
T
L B

T
− εHe(P

4,ĥ,v̂
), 15,2 = (BY

ĥ,v̂
)
T
, 15,4 = ε(BY

ĥ,v̂
)
T
, 15,5 = He(Q

3,ĥ
), 16,1 = AhK1,v̂ − A

ĥ
K1,v̂−(Ev − Ev̂)K3,ĥ

,

16,2 = −(Ev − Ev̂)K4,ĥ
− MLε5,ĥ,v̂M

T
L B

T
+ (Ah − A

ĥ
)K2,v̂, 16,4 = −εMLε5,ĥ,v̂M

T
L B

T
, 16,5 = AhQ1 − EvQ3,ĥ

+ QT

4,ĥ
− Y

ĥ,v̂
,

16,6 = −He(EvQ4,ĥ
)+MLε5,ĥ,v̂M

T
L +MAε

A

4,ĥ,v̂
MT

A +MEε
E

4,ĥ,v̂
MT

E ,17,2 = K2,v̂ + ε1(BYĥ,v̂
)
T
, 17,4 = ε1ε(BYĥ,v̂

)
T
, 17,5 = Q1 − TR1

1,ĥ,v̂
,

17,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
, 17,7 =−ε1He(TR1

1,ĥ,v̂
), 18,5 = Q

3,ĥ
− R3

1,ĥ,v̂
, 18,6 = Q

4,ĥ
− R4

1,ĥ,v̂
, 18,7 = −ε1R

3

1,ĥ,v̂
− ε1(TR

2

1,ĥ,v̂
)
T
,

18,8 =−ε1He(R4
1,ĥ,v̂

), 19,2 = −K2,v̂ + ε2(BYĥ,v̂
)
T
, 19,4 = −T

ĥ
R2
2,ĥ,v̂

+ ε2ε(BYĥ,v̂
)
T
, 19,6 = −ε2(Yĥ,v̂

)T , 19,9 =−ε2He(T
ĥ
R1
2,ĥ,v̂

),

110,9 = −ε2R
3

2,ĥ,v̂
− ε2(Tĥ

R2
2,ĥ,v̂

)
T
, Y

ĥ,v̂
=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

,B = −B(S∗2B)
−1S∗2+I, R1

1,ĥ,v̂
=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, and R2
2,ĥ,v̂

=

[

0p×n

R21
2,ĥ,v̂

]

.

Proof: Under the conditions of Ch 6= C
ĥ
, the constructed Lyapunov function candidate is the same as in Equation (19). However,

the sliding mode dynamics (Equations 14 and 15) under the condition of Ch 6= C
ĥ
are different from the sliding mode dynamics

(Equations 12 and 13) under the conditions of Ch = C
ĥ
= C∗. The derivative of the Lyapunov function is calculated based on the

sliding mode dynamics. Therefore, the derivative of the Lyapunov function candidate (19) under the condition of Ch 6= C
ĥ
can be

obtained as follows:

V̇(x̂(t), e1(t)) =
˙̂X
∗T
(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ X̂∗T(t)P−T

ĥ,v̂
E∗ ˙̂X

∗

(t)+ ėT(t)E∗TQ−1

ĥ,v̂
e(t)+ eT(t)Q−T

ĥ,v̂
E∗ė(t) (32)

=







X̂∗(t)

E∗ ˙̂X
∗

(t)
e(t)







T

91







X̂∗(t)

E∗ ˙̂X
∗

(t)
e(t)






< 0.

91 =







0 ∗ ∗

P−1

ĥv̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗ − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)) 0 He(Q−T

ĥ,v̂
(A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
))







If (32) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in Equation (17).

91 +He(







U
ĥ,v̂

V
ĥ,v̂

W
ĥ,v̂







[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
) −I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h

]

) < 0, (33)

where U
ĥ,v̂
, V

ĥ,v̂
, and W

ĥ,v̂
are matrix variables with appropriate dimensions. By pre- and post-multiplying (33) by







KT

ĥ,v̂
0 0

0 P
ĥ,v̂

0

0 0 QT

ĥ,v̂






and







K
ĥ,v̂

0 0

0 PT
ĥ,v̂

0

0 0 Q
ĥ,v̂






, respectively, the following inequality is obtained:

92 + 93 < 0, (34)

92 =







0 ∗ ∗

K
ĥ,v̂

0 ∗

(A∗
h,v

− A∗

ĥ,v̂
+ 1A∗ − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
))K

ĥ,v̂
0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
)Q

ĥ,v̂
+ 1A∗)






,
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93=He(







KT

ĥ,v̂
U
ĥ,v̂

P
ĥ,v̂
V
ĥ,v̂

QT

ĥ,v̂
W

ĥ,v̂







[

91
3 −PT

ĥ,v̂
BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂

]

),

where 91
3=A

∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
.

Define U
ĥ,v̂

= K−T

ĥ,v̂
, V

ĥ,v̂
= εP−1

ĥ,v̂
,W

ĥ,v̂
= 0, and ε > 0. Then, inequality (34) can be represented as:

94 + 95 < 0, (35)

94 =







He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗

K
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
−εHe(P

ĥ,v̂
) ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
)






,

95 =









He(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
) ∗ ∗

εBB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
0 ∗

91
5 ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)
T
−He((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)T









,

where91
5 = (BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)
T
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
.

The corresponding auxiliary variables are introduced into the system, and the dimension of the system is increased with the
augmented method to eliminate the coupling between the Lyapunov function matrix Q

ĥ,v̂
and the observer gain matrix L∗

ĥ,v̂
in

inequality (35). The following equations are defined:

x4(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

h)
T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)
T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)
Tx3(t), (36)

x5(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)
T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

ĥ
)
T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

ĥ
)Tx3(t). (37)

Thus, inequality (35) can be expressed as:













x1(t)
x2(t)
x3(t)
x4(t)
x5(t)













T

96













x1(t)
x2(t)
x3(t)
x4(t)
x5(t)













< 0, (38)

96 =

















He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗ ∗

K
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
−εHe(P

ĥ,v̂
) ∗ ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
) ∗ ∗

K
ĥ,v̂

0 Q
ĥ,v̂

0 ∗

−K
ĥ,v̂

0 0 0 0

















If (38) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraints in Equations (36, 37).
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97 +He(98) < 0, (39)

97 =

















He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗ ∗

K
ĥ,v̂

− P
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) −εHe(P

ĥ,v̂
) ∗ ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(A∗

h,v
Q
ĥ,v̂

+ 1A∗Q
ĥ,v̂
) ∗ ∗

K
ĥ,v̂

0 Q
ĥ,v̂

0 ∗

−K
ĥ,v̂

0 0 0 0

















,

98 =



















0 0

0 (T∗

ĥ
R∗
2,ĥ,v̂

)T

(T∗
h
R∗
1,ĥ,v̂

)T 0

ε1(T
∗
h
R∗
1,ĥ,v̂

)T 0

0 ε2(T
∗

ĥ
R∗
2,ĥ,v̂

)T



















[

91
8 ε91

8 −((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

h
)T −I 0

92
8 ε92

8 −((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)T 0 −I

]

,

where 91
8 = (BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
)
T
,92

8 = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)
T
, R

1,ĥ,v̂
=

[

R1
1,ĥ,v̂

R2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, R
2,ĥ,v̂

=

[

R1
2,ĥ,v̂

R2
2,ĥ,v̂

R3
2,ĥ,v̂

R4
2,ĥ,v̂

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, T∗
h
=

[

Th 0
0 I

]

, T∗
⌢
h
=

[

T⌢
h
0

0 I

]

, R1 ∈ Rp×p, R11
1,ĥ,v̂

∈ R(n−p)×p, R12
1,ĥ,v̂

∈ R(n−p)×(n−p),

R11
2,ĥ,v̂

∈ R(n−p)×p, R12
2,ĥ,v̂

∈ R(n−p)×(n−p), R2
1,ĥ,v̂

∈ Rn×n, R3
1,ĥ,v̂

∈ Rn×n, R4
1,ĥ,v̂

∈ Rn×n, R2
2,ĥ,v̂

∈ Rn×n, R3
2,ĥ,v̂

∈ Rn×n, R4
2,ĥ,v̂

∈ Rn×n, and Th

and T
ĥ
satisfy assumption 3.

Inequality (39) can be rewritten as follows:

99 +He(



















B∗1F∗
ĥ,v̂

0 0 0 0

εB∗1F∗
ĥ,v̂

+ (BB̟4)
T

ε(BB̟4)
T

−̟4
T 0 0

1A∗K
ĥ,v̂

+ (BB̟3)
T

ε(BB̟3)
T

1A∗Q
ĥ,v̂

− ̟3
T 0 0

ε1(BB̟3)
T

ε1ε(BB̟3)
T

−ε1̟3
T 0 0

ε2(BB̟4)
T

ε2ε(BB̟4)
T

−ε2̟4
T 0 0



















) < 0, (40)

99 =















91
9 ∗ ∗ ∗ ∗

92
9 93

9 ∗ ∗ ∗

94
9 95

9 He(A∗
h,v
Q
ĥ,v̂

− ̟1) ∗ ∗

96
9 97

9 −T∗
h
R
1,ĥ,v̂

+ Q
ĥ,v̂

− ε1̟
T
1 −ε1He(T∗

h
R
1,ĥ,v̂

)T ∗

98
9 99

9 −ε2̟
T
2 0 −ε2He(T∗

ĥ
R
2,ĥ,v̂

)T















,

where 91
9 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
), 92

9 = (BB̟2)
T
+ εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂

+ K
ĥ,v̂

+ εB∗F∗
ĥ,v̂
, 93

9 = −εHe(P
ĥ,v̂

− BB̟2),

94
9 = (BB̟1)

T
+ A∗

h,v
K
ĥ,v̂

− A∗

ĥ,v̂
K
ĥ,v̂
, 95

9 = ε(BB̟1)
T
− L∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2ĥ,v̂

, 96
9 = K

ĥ,v̂
+ ε1(BB̟1)

T
, 97

9 = ε1ε(BB̟1)
T
,

98
9 = −K

ĥ,v̂
+ ε2(BB̟2)

T , 99
9 = ε2ε(BB̟2)

T
− T∗

ĥ
R
2,ĥ,v̂

, ̟1 = L∗
ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

, ̟2 = L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

, ̟3 = 1L∗
ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

,

and ̟4 = 1L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

.

Because 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, 1F∗

ĥ,v̂
= MFSFNFF

∗

ĥ,v̂
, and 1A∗ = MF(t)N, inequality (40) can be rewritten as:

99 +He(M1SFN1+M2F(t)N2+M3SLN3) < 0, (41)
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M1 =
[

B∗MF εB∗MF 0 0 0
]T
,N1 =

[

NFF
∗

ĥ,v̂
0 0 0 0

]

, M2 =
[

0 0 M 0 0
]T
,

N2 =

[

NK
ĥ,v̂

0 NQ
ĥ,v̂

0 0
]

,M3 =
[

BBM∗
L εBBM∗

L −M∗
L 0 0

]T
,

N3 =

[

0 N∗
LL

∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

N∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

ε1N
∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

ε2N
∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂

]

.

Based on lemma 2, (41) holds if there are positive real scalars ε
3,ĥ,v̂

, εA
4,ĥ,v̂

, εE
4,ĥ,v̂

, and ε
5,ĥ,v̂

that satisfy the following relation:

99 +M1ε3,ĥ,v̂M
T
1 + NT

1 ε−1

3,ĥ,v̂
N1 +M2ε4,ĥ,v̂M

T
2 + NT

2 ε−1

4,ĥ,v̂
N2 +M3ε5,ĥ,v̂M

T
3 + NT

3 ε−1

5,ĥ,v̂
N3 < 0, (42)

where ε
4,ĥ,v̂

=

[

εA
4,ĥ,v̂

I 0

0 εE
4,ĥ,v̂

I

]

. Using the Schur complement in lemma 1, (42) holds if and only if the following relation set is satisfied:





























91
10 ∗ ∗ ∗ ∗ ∗ ∗ ∗

92
10 93

10 ∗ ∗ ∗ ∗ ∗ ∗

94
10 95

10 96
10 ∗ ∗ ∗ ∗ ∗

97
10 ε1ε

(

BB̟1

)T
98

10 99
10 ∗ ∗ ∗ ∗

910
10 911

10 −ε2̟
T
2 0 −ε2He(T∗

ĥ
R
2,ĥ,v̂

)T ∗ ∗ ∗

NFF
∗

ĥ,v̂
0 0 0 0 −ε

3,ĥ,v̂
I ∗ ∗

NK∗

ĥ,v̂
0 NQ

ĥ,v̂
0 0 0 −ε

4,ĥ,v̂
I ∗

0 912
10 913

10 914
10 ε2N

∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
0 0 −ε

5,ĥ,v̂
I





























< 0 (43)

where 91
10 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) + B∗MFε3,ĥ,v̂M

T
F B

∗T + BBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
, 92

10 =
(

BB̟2

)T
+ K

ĥ,v̂
+εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂

+

εB∗F∗
ĥ,v̂

+ εB∗MFε3,ĥ,v̂M
T
F B

∗T + εBBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
, 93

10 = ε2B∗MFε3,ĥ,v̂M
T
F B

∗T+ε2BBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
− εHe

(

PT
ĥ,v̂

−
(

BB̟2

)T
)

,

94
10 =

(

BB̟1

)T
− M∗

Lε5,ĥ,v̂M
∗T
L BB

T
+ A∗

h,v
K
ĥ,v̂
−A∗

ĥ,v̂
K
ĥ,v̂
, 95

10 = ε
(

BB̟1

)T
− εM∗

Lε5,ĥ,v̂M
∗T
L BB

T
− L∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2ĥ,v̂

,

96
10 = He

(

A∗
h,v
Q
ĥ,v̂

− ̟1

)

+Mε
4,ĥ,v̂

MT + M∗
Lε5,ĥ,v̂M

∗T
L , 97

10 = K
ĥ,v̂

+ ε1
(

BB̟1

)T
, 98

10 = Q
ĥ,v̂

− ε1̟
T
1 −

T∗
h
R
1,ĥ,v̂

,99
10 =−ε1He(T∗

h
R
1,ĥ,v̂

)T ,910
10 = −K

ĥ,v̂
+ ε2(BB̟2)

T
, 911

10 = ε2ε(BB̟2)
T
− T∗

ĥ
R
2,ĥ,v̂

, 912
10 = N∗

LL
∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

,913
10 =

N∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

,914
10 = ε1N

∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

.

It is assumed that S∗ =
[

S∗1 S∗2
]

; thus, the matrix BB can be formulated as:

BB =

[

I 0

−B(S∗2B)
−1S∗1 I − B(S∗2B)

−1S∗2

]

. (44)

Then, the matrices in inequality (43) can be obtained as follows:

L∗
ĥ,v̂

=

[

0 LT
ĥ,v̂

]T
,T∗

h =

[

Th 0
0 I

]

,T∗

ĥ
=

[

T
ĥ
0

0 I

]

, T∗
hR1,ĥ,v̂ =

[

ThR
1

1,ĥ,v̂
ThR

2

1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, ∗

L∗
ĥ,v̂
C∗
hT

∗
hR1,ĥ,v̂ =

[

0 0

L
ĥ,v̂
ChThR

1

1,ĥ,v̂
0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,
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BBL∗
ĥ,v̂
C∗
hT

∗
hR1,ĥ,v̂ =

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n
,

]

T∗

ĥ
R
2,ĥ,v̂

=

[

T
ĥ
R1
2,ĥ,v̂

T
ĥ
R2
2,ĥ,v̂

R3
2,ĥ,v̂

R4
2,ĥ,v̂

]

,

L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

=

[

0 0

L
ĥ,v̂
C
ĥ
T
ĥ
R1
2,ĥ,v̂

0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,

BBL∗
ĥ,v̂
C∗
hT

∗
hR2,ĥ,v̂ =

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n

]

.

Therefore, inequality (27) is easily obtained from the above equalities and inequality (43), which completes the proof.
In some special cases, T-S fuzzy descriptor systems may not contain uncertainties, so the following theorem gives sufficient LMI

conditions for the stability of the closed-loop system in this case.
Theorem 3: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A*=0 andCh = C

ĥ
= C∗. Given the constants

ε > 0 and ε1 > 0, the closed-loop systems are asymptotically stable if positive definite matrices P1 andQ1, scalars ε and ε1, and a set of
matrices P3,i,k, P4,i,k, Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R

11
1,i,k

, R12
1,i,k

, R2
1,i,k

, R3
1,i,k

, and R4
1,i,k

exist, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r},
such that the following LMIs hold:





























He(K
3,ĥ
) ∗ ∗ ∗ ∗ ∗ ∗ ∗

32,1 32,2 ∗ ∗ ∗ ∗ ∗ ∗

33,1 33,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗

34,1 34,2 −εP
3,ĥ,v̂

−εHe(P
4,ĥ,v̂

) ∗ ∗ ∗ ∗

0 35,2 0 ε(BY
ĥ,v̂
)
T

He(Q
3,ĥ
) ∗ ∗ ∗

36,1 36,2 0 0 36,5 36,6 ∗ ∗

0 37,2 0 ε1ε(BYĥ,v̂
)
T

37,5 37,6 37,7 ∗

0 0 0 0 38,5 38,6 38,7 38,8





























< 0, (45)

where32,1 = A
ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂

+ KT

4,ĥ
,32,2 = He(A

ĥ
K2,v̂ − Ev̂K4,ĥ

),33,1 = K1,v̂ − P1 + εK
3,ĥ
,33,2 = K2,v̂ + εK

4,ĥ
,34,1 =

K
3,ĥ

+ε(A
ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂
)−P

3,ĥ,v̂
,34,2 = ε(A

ĥ
K2,v̂−Ev̂K4,ĥ

)+K
4ĥ
−P

4,ĥ,v̂
,35,2 = (BY

ĥ,v̂
)
T
,36,1 = (Ah−A

ĥ
)K1,v̂−(Ev−Ev̂)K3,ĥ

,

36,2 = (Ah−A
ĥ
)K2,v̂−(Ev−Ev̂)K4,ĥ

,36,5 = AhQ1−EvQ3,ĥ
+QT

4,ĥ
−Y

ĥ,v̂
,36,6 = −He(EvQ4,ĥ

),37,2 = ε1(BYĥ,v̂
)
T
,37,5 = Q1−TR1

1,ĥ,v̂
,

37,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
,37,7 = −ε1He(TR1

1,ĥ,v̂
),38,5 = Q

3,ĥ
− R3

1,ĥ,v̂
,38,6 = Q

4,ĥ
− R4

1,ĥ,v̂
,38,7 = −ε1(TR

2

1,ĥ,v̂
)
T
− ε1R

3

1,ĥ,v̂
,

38,8 = −ε1He(R4
1,ĥ,v̂

), B = I − B(S∗2B)
−1S∗2 , R

1

1,ĥ,v̂
=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

,R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, and Y
ĥ,v̂

=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

.

Theorem 4: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A*=0 and Ch 6= C
ĥ
. Given constants ε > 0,

ε1 > 0 and ε2 > 0, the closed-loop systems are asymptotically stable if positive definite matrices P1 and Q1 and a set of matrices P3,i,k,
P4,i,k, Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R

11
1,i,k

, R12
1,i,k

, R11
2,i,k

, R12
2,i,k

,R2
1,i,k

, R3
1,i,k

, R4
1,i,k

, R2
2,i,k

, R3
2,i,k

, and R4
2,i,k

exist, where i ∈ {1, · · · , r} and
k ∈ {1, · · · , re}, such that the following LMIs hold:

Frontiers in Neurorobotics | www.frontiersin.org 18 July 2022 | Volume 16 | Article 820389144

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Huang et al. Non-Fragile Observer-Based Sliding Mode Controller



































He(K
3,ĥ
) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

32,1 32,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

33,1 33,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗ ∗ ∗

34,1 34,2 34,3 34,4 ∗ ∗ ∗ ∗ ∗ ∗

0 35,2 0 35,4 35,5 ∗ ∗ ∗ ∗ ∗

36,1 36,2 −Y
ĥ,v̂

0 36,5 36,6 ∗ ∗ ∗ ∗

K1,v̂ 37,2 0 37,4 37,5 37,6 37,7 ∗ ∗ ∗

K
3,ĥ

K
4,ĥ

0 0 38,5 38,6 38,7 38,8 ∗ ∗

K1,v̂ 39,2 39,3 39,4 0 39,6 0 0 39,9 ∗

K
3,ĥ

K
4,ĥ

−R3
2,ĥ,v̂

310,4 0 0 0 0 310,9 310,10



































< 0, (46)

where32,1 = A
ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂

+ KT

4,ĥ
,32,2 = He(A

ĥ
K2,v̂ − Ev̂K4,ĥ

),33,1 = K1,v̂ + εK
3,ĥ

− P1,33,2 = K2,v̂ + εK
4,ĥ

+ (BY
ĥ,v̂
)
T
,

34,1 = K
3,ĥ

+ε(A
ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂
)−P

3,ĥ,v̂
,34,2 = K

4,ĥ
−P

4,ĥ,v̂
+εA

ĥ
K2,v̂−εEv̂K4,ĥ

,34,3 = −εP
3,ĥ,v̂

+εBY
ĥ,v̂
,34,4 = −εHe(P

4,ĥ,v̂
),

35,2 = (BY
ĥ,v̂
)
T
,35,4 = ε(BY

ĥ,v̂
)
T
,35,5 = He(Q

3,ĥ
),36,1 = (Ah − A

ĥ
)K1,v̂ − (Ev − Ev̂)K3,ĥ

,36,2 = (Ah − A
ĥ
)K2,v̂ − (Ev − Ev̂)K4,ĥ

,

36,5 =AhQ1 − EvQ3,ĥ
+ QT

4,ĥ
− Y

ĥ,v̂
, 36,6 = −He(EvQ4,ĥ

), 37,2 = K2v̂ + ε1(BYĥ,v̂
)
T
,37,4 = ε1ε(BYĥ,v̂

)
T
, 37,5 = Q1 − ThR

1

1,ĥ,v̂
,

37,6 = −ε1(Yĥ,v̂
)T − ThR

2

1,ĥ,v̂
,37,7 = −ε1He(ThR

1

1,ĥ,v̂
), 38,5 = Q

3,ĥ
− R3

1,ĥ,v̂
,38,6 =Q

4,ĥ
− R4

1,ĥ,v̂
,38,7 = −ε1R

3

1,ĥ,v̂
− ε1

(

ThR
2

1,ĥ,v̂

)T
,

38,8 = −ε1He(R4
1,ĥ,v̂

), 39,2 = K2,v̂ + ε2(BBYĥ,v̂
)
T
, 39,3 = −T

ĥ
R1
2,ĥ,v̂

, 39,4 = ε2ε(BYĥ,v̂
)
T
− T

ĥ
R2
2,ĥ,v̂

, 39,6 = −ε2(Yĥ,v̂
)T ,

39,9 = −ε2He(T
ĥ
R1
2,ĥ,v̂

), 310,4 = −R4
2,ĥ,v̂

,310,9 = −ε2(Tĥ
R2
2,ĥ,v̂

)
T
− ε2R

3

2,ĥ,v̂
, 310,10 = −ε2He(T

ĥ
R4
2,ĥ,v̂

), B = I − B(S∗2B)
−1S∗2 ,

R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, R2
2,ĥ,v̂

=

[

0p×n

R21
2,ĥ,v̂

]

, and Y
ĥ,v̂

=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

.

The corresponding proof can be obtained according to the proofs given for theorems 1 and 2, because theorems 3 and 4 are special
cases of theorems 1 and 2, respectively. Therefore, the specific process is omitted here.

Non-Fragile Observer-Based Adaptive Integral Sliding Mode Controller Design
In practical applications, it is difficult to accurately obtain the bounds of unknown uncertainties and perturbations in controller and
observer gains. Hence, an adaptive integral sliding mode controller is designed for T-S fuzzy descriptor systems with uncertainties
and perturbations.

Theorem 5: Suppose that the T-S fuzzy descriptor systemmatrices in (2) satisfy1A∗ 6= 0, and Ch = C
ĥ
= C∗. Assume that matrices

Fi,k, K1,k, K2,k, K3,i, K4,i, and Li,k, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r}, satisfy theorem 1 and ζ > 0. System (2) can be driven to the
sliding surface (7) and maintain sliding motion based on the following ISMC equation:

u(t) = F∗
ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)− (S∗B∗)−1(

∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+

∥

∥S∗M
∥

∥

∥

∥

∥
NX̂∗(t)

∥

∥

∥
+

∥

∥S∗ML

∥

∥

∥

∥

∥
NLL

∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+ ζ )

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

− ‖MF‖

∥

∥

∥
NFF

∗

ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

. (47)

Proof: Consider the following Lyapunov function candidate:

V(sX̂∗ (t)) =
1

2
sT
X̂∗
(t)sX̂∗ (t). (48)

The derivative of the Lyapunov function candidate (48) can be obtained as:

V̇(sX̂∗ (t)) = sT
X̂∗
(t)ṡX̂∗ (t)

= sT
X̂∗
(t)

{

S∗(B∗u(t)+ (L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(y(t)− C∗X̂∗(t)))− S∗B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

}

. (49)
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By substituting (47) to (49), Equation (49) can be rewritten as

V̇(sX̂∗ (t)) = sT
X̂∗
(t)

{

S∗((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(y(t)− C∗X̂∗(t)))− S∗B∗1F∗

ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)+

S∗B∗ ‖MF‖

∥

∥

∥
NFFĥ,v̂K

−1

ĥ,v̂
X̂∗(t)

∥

∥

∥

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

−

∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

−

∥

∥

∥
S*M

∥

∥

∥

∥

∥

∥
NX̂∗(t)

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

−

∥

∥

∥
S*ML

∥

∥

∥

∥

∥

∥
NLL

∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥







. (50)

Then, from 1A∗ = MF(t)N, FT(t)F(t) ≤ I, 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, STL SL ≤ I, 1F∗

ĥ,v̂
=MFSFNFF

∗

ĥ,v̂
, and STF SF ≤ I, it follows that:

V̇(sX̂(t)) ≤ sT
X̂
(t)

{

−ζS∗B∗
(S∗B∗)−1sX̂∗ (t)

∥

∥sX̂∗ (t)
∥

∥

}

≤ −ζ
∥

∥sX̂∗ (t)
∥

∥ . (51)

From the above analysis, T-S fuzzy descriptor systems can reach the desired sliding mode surface in finite time even in the presence of
uncertainties and external disturbances.

In some special cases, T-S fuzzy descriptor systems may not contain uncertainties, so the following theorem gives an observer-
designed ISMC strategy in this case.

Theorem 6: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A∗ = 0 and Ch = C
ĥ
= C∗. Additionally, assume

that matrices Fi,k, K1,k, K2,k, K3,i, K4,i, and Li,k, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r}, satisfy theorem 3 and that ζ > 0. System (2)
can be driven to the sliding surface and maintain sliding motion based on the following ISMC equation:

u(t) = F∗
ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)− (S∗B∗)−1(

∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+ ζ )

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

. (52)

The corresponding proof can be obtained according to the proofs given for theorem 5, because theorem 6 is a special case of theorem
5. Therefore, the specific process is omitted here.

EXAMPLES

In this section, a simple numerical example is simulated to verify the effectiveness and superiority of the proposed method. Consider
the following T-S fuzzy descriptor system:

∑2

k=1
vk(ξ (t))(Ek + 1E)ẋ(t) =

∑2

i=1
hi(z(t))((Ai + 1A)x(t)+ Bu(t)), (53)

where E1 =

[

1.1 −0.1
−0.2+ b 1.5

]

, E2 =

[

0.9 −0.1
0.2 0.2

]

, A1 =

[

−0.2 −1
−0.1 −1.9

]

, A2 =

[

1+ a 0.6
1.7 −0.3

]

,B =

[

0.7
0

]

, C =
[

1 0
]

, a ∈ [−10, 2],

b ∈ [−0.6, 1],x(t) =
[

x1(t) x2(t)
]T
,h1(z(t)) = x22(t)/4 , h2(z(t)) = 1− h1(z(t)), v1(ξ (t)) = 1/(1+ x22(t)) , and v2(ξ (t)) = 1− v1(ξ (t)).

Case 1: 1E = 0and1A = 0
The state feedback controller in (Lin et al., 2006) and the sliding mode controller in (Kchaou et al., 2014) for a class of fuzzy

descriptor systems are designed under conditions for which the system states must be measured. Moreover, in (Guerra et al., 2015; Li
et al., 2018), the premise variables were dependent on measurable vectors, e.g., the system states x1(t) andx2(t) based on the observer
strategy used. However, it is challenging to directly obtain the value of x2(t) with sensors. Therefore, the methods in (Lin et al., 2006;
Kchaou et al., 2014; Guerra et al., 2015; Li et al., 2018) cannot be directly applied to T-S fuzzy descriptor systems with unmeasurable
system states and premise variables. Several combinations of a and b are selected to compare the feasible solution region size of theorem
3 with those of theorems 2 (Ichalal et al., 2011) and 1 (Asemani and Majd, 2013), as shown in Figures 2A,B. These Figures show that
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the H∞ control method (Asemani and Majd, 2013) is less
conservative than the PDC control method based on the
traditional quadratic Lyapunov function (Ichalal et al., 2011)
for a T-S fuzzy system. The feasible area of the proposed
observer-based non-PDC ISMC method for a T-S fuzzy
descriptor system is larger than that of the previous two
methods. Therefore, in the non-PDC ISMC method, the fuzzy
Lyapunov function and descriptor redundancy lead to less
conservative results.

When 1A∗ = 0, the following values are set: a = 1,
b = 0.5, and ε = 0.0001. Based on theorem 3 and the
MATLAB LMI toolbox, the coefficient matrices of the observer-
based non-PDC integral sliding mode controller are obtained
as follows:

L11 =
[

34.8381 4.3355
]T
; L12 =

[

34.4535 1.2693
]T
;

L21 =
[

31.8954 2.2550
]T
; L22 =

[

31.3404 0.4542
]T
;

F11 =
[

−0.0306 0.0082
]

; F12 =
[

−0.0200 0.0024
]

;

F21 =
[

−0.0280 0.0039
]

; F22 =
[

−0.0175 0.0051
]

;

K11 =

[

0.0006 −0.0007
−0.0007 0.0022

]

;K12 =

[

0.0006 −0.0007
−0.0007 0.0022

]

;

K21 =

[

−1.3053e−6 −1.9676e−7

−1.2372e−7 9.3139e−8

]

;

K22 =

[

−1.9118e−6 −2.4874e−7

1.4374e−8 2.4554e−7

]

;

K31 =

[

−0.0031 0.0005
0.0008 −0.0033

]

;K32 =

[

−0.0031 0.0004
0.0005 −0.0018

]

;

K41 =

[

0.0181 −0.0007
3.4515e−5 0.0040

]

;K42 =

[

0.0166 −0.0006
−0.0011 0.0021

]

.

The controller parameters are selected as ζ = 0.003andS* =
[

1 1 0.7 0
]

. Assuming the initial states of x(0) =
[

x1(0) x2(0)
]T

=
[

0.1 0.2
]T
and x̂(0) =

[

x̂1(0) x̂2(0)
]T

=
[

−0.5 −0.4
]T
, the state responses, control input, and sliding

surface for the closed-loop system are shown in Figure 3. The
simulation results show that the proposed sliding mode observer
can accurately estimate the system state after four s, and that the
closed-loop system is asymptotically stable.

Case 2: 1E 6= 0and1A 6= 0.
Assume that the system uncertainties, observer gain

perturbation, and controller gain perturbation are expressed by

MA =
[

0.06 0.02
]T
, ME =

[

0.04 0.01
]T
, NA =

[

0.02 0.1
]

,
NE =

[

0.03 0.05
]

, FA (t) = 0.5 sin(x1(t)), FE (t) = 0.2 cos(x1(t)),

ML =
[

0.05 0.2
]T
, NL =

[

0.01 0.12
]

, MF = 0.1, NF = 0.2,
SL = 0.5 sin(x1(t)), and SF = 2sin(x1(t)) cos(x1(t)). In
this case, the parameters are selected as a = 1, b = 0.5,
ε = 0.1, and ε1 = 0.001. Moreover, using theorem 1 and
the MATLAB LMI toolbox, the following coefficient matrices
are obtained:

L11 =
[

42.1615 4.6701
]T
; L12 =

[

41.5437 1.4550
]T
;

L21 =
[

39.0960 2.5140
]T
; L22 =

[

37.9514 0.5004
]T
;

F11 =
[

−0.0349 0.0160
]

; F12 =
[

−0.0237 0.0075
]

;

F21 =
[

−0.0293 0.0070
]

; F22 =
[

−0.0126 0.0030
]

;

K11 =

[

0.0018 −0.0015
−0.0015 0.0046

]

;K12 =

[

0.0018 −0.0015
−0.0017 0.0039

]

;

K21 =

[

−0.0015 −0.0004
0.0001 0.0002

]

;

K22 =

[

−0.0022 −0.0004
0.0012 0.0006

]

;

K31 =

[

−0.0058 0.0022
0.0010 −0.0059

]

;K32 =

[

−0.0054 0.0015
0.0007 −0.0031

]

;

K41 =

[

0.0227 −0.0006
0.0006 0.0073

]

;K42 =

[

0.0186 −0.0005
−0.0012 0.0038

]

.

It is obvious that different initial system states will lead to
different simulation results. Therefore, if the proposed method
does not have a wide operating range, the system will not
be stable when changing the initial parameters. Therefore, the
following initial values of the systems are set to verify the
effectiveness of the proposed method for a wide operating

range: initial simulation case 1:x(0) =
[

0.1 0.2
]T
, x̂(0) =

[

−0.5 −0.4
]T
; initial simulation case 2: x(0) =

[

−0.8 0.5
]T
,

x̂(0) =
[

0.6 −0.7
]T
; initial simulation case 3: x(0) =

[

0.8 −0.5
]T
, x̂(0) =

[

−0.6 0.7
]T
; initial simulation case 4:

x(0) =
[

−0.5 −0.7
]T
, x̂(0) =

[

0.3 0.5
]T
.

When the controller parameters are set as ζ = 0.003and S∗ =
[

1 1 0.7 0
]

, the time responses for nonlinear states, the control
input, and the sliding mode surface are as shown in Figures 4–
6, respectively. The simulation results demonstrate that the
system state models display good convergence performance;
even when the system has uncertain characteristics, the sliding
mode observer can accurately estimate the real states for
a nonlinear system with different initial state values, and
the designed controller has good robustness and is not
fragile to system uncertainties, observer perturbations, and
controller perturbations.

CONCLUSIONS

The problem of non-fragile observer-based adaptive ISMC for
a class of T-S fuzzy descriptor systems with unmeasurable
premise variables is considered in this study. For unmeasurable
states, a sliding mode observer is designed, and an integral
sliding mode surface is constructed considering the features of
the fuzzy sliding mode observer system. Using the Lyapunov
theory and designing a fuzzy Lyapunov function, sufficient
conditions in terms of LMIs are obtained; additionally,
asymptotically stable dynamic estimation error and sliding
mode dynamics are achieved. An observer-based ISMC strategy
is obtained to meet the reachability conditions. Moreover, a
non-fragile observer and a non-fragile adaptive controller are

Frontiers in Neurorobotics | www.frontiersin.org 21 July 2022 | Volume 16 | Article 820389147

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Huang et al. Non-Fragile Observer-Based Sliding Mode Controller

FIGURE 6 | Nonlinear state x2(t) and the estimatedx̂2 (t). (A) Initial simulation case 1. (B) Initial simulation case 2. (C) Initial simulation case 3. (D) Initial simulation case

4.

developed such that system uncertainties and perturbations
associated with both the observer and the controller can be
mitigated. Simulation examples are presented to demonstrate
the excellent state estimation performance and effectiveness of
the controller.
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