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Editorial on the Research Topic

Insights in molecular diagnostics and therapeutics: 2021

The most recent advances and discoveries in biomedical research, together with

technological progress, have made a paradigm shift from traditional medicine towards

more precise and predictable health care, customized for an individual patient at a specific

time. In this era of precision medicine, having validated biomarkers to inform clinical

decision-making is crucial. Biomarkers have various applications including disease

diagnosis and monitoring, prognosis, and prediction of response to treatment. This

Research Topic collects some of the latest molecular diagnostic and therapeutic advances

and their studies in precision medicine.

The interplay between basic and applied research is essential for the study of themolecular

and cellular mechanisms that regulate biological systems. The correlation between the

integrated “omics” data, such as the genome, transcriptome, proteome, and other “omics”

information, should be considered in a patient-specific, rather than symptom-specific,

approach with precision medicine (Abdelhalim et al., 2022). This approach must be

adapted to each individual’s unique omics leading to personalized management of

diseases. While most existing studies analyze the omics data separately, data integration is

crucial on the horizon of precisionmedicine by usingmachine learning or artificial intelligence

approaches (Hasanzad et al., 2021). However, the use of “omics” technologies generates

enormous amounts of data that require complex computational analyses and interpretations.

In this Research Topic, five original research articles (Jiang et al.; Cao et al.; Sun et al.; Wang

et al.; Yuan et al.) presented the interesting “omics” studies that identify new diagnostic and

prognostic biomarkers using bioinformatic tools and public databases in diverse types of

cancer. Technologies such as array-based hybridization assays and next-generation sequencing

promote the identification of new molecular targets and the development of prognostic and

predictive biomarkers for their use in precision medicine (Wang and Zheng, 2021). Sorokin

et al. used public databases to compare and validate gene signatures of microsatellite instability

status by RNA-Seq as diagnostic biomarkers in solid tumors. Moreover, RNA expression-
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based signature is used by Gudkov et al. to predict sorafenib

response in kidney cancer. The identification of new prognostic

and predictive biomarkers is essential for cancer drug development

and therapeutic decision-making for individual patients. One of the

greatest challenges today is to develop prognostic and predictive

biomarkers that translate the genomic information of individual

tumors into a personalized therapeutic approach. In this regard, Zou

et al. investigated the role of Toll-like receptor (TLR) subtypes

expression in kidney renal clear cell carcinoma (KIRC).

Bioinformatics analysis and experimental data demonstrate that

the occurrence and development of KIRC are closely related to TLRs

and TLRs can be early diagnostic and prognostic biomarkers

of KIRC. In another way, Wang et al. explored the diagnostic

and prognostic values of long non-coding RNA AP000695.2 in

lung adenocarcinoma. Using a data mining approach in The

Cancer Genome Atlas and the Gene Expression Omnibus

databases, they demonstrated that a higher expression of

AP000695.2 correlated with aggressive clinicopathological

characteristics and AP000695.2 was an independent

prognostic indicator for the overall survival, disease-free

survival, and progression-free survival in patients with lung

adenocarcinoma. Bioinformatics methods are also used by

Zhang et al. to study the impacts of N6-methyladenosine

(m6A) methylated mRNAs on epigenetic changes after

myocardial infarction. In this Research Topic, another

interesting retrospective study analyzes new potential

biomarkers of idiopathic pulmonary fibrosis (IPF) by

mRNA-Seq analysis of IPF lung tissue obtained from

surgical lung biopsy and lung transplantation (Qian et al.).

Through bioinformatics analyses using Gene Ontology and

Kyoto Encyclopedia of Genes and Genomes public databases,

the authors identified differentially expressed transcripts,

suggesting the synergic role of extracellular matrix

remodeling, lipid metabolism, and immune effects in the

early development of IPF.

Indeed, bioinformatic tools are essential for data

management in modern biology, life sciences, and medicine.

In an interesting work, Zhang et al. through metagenomic next-

generation sequencing and bioinformatics analysis, explored the

changes in the lung microbiome before and after treatment in

acute respiratory distress syndrome (ARDS) patients

demonstrating the key role of respiratory tract microbiome in

the pathogenesis and development of ARDS.

Last but not the least, Mannucci et al. reviewed the recent

advances in the role of oxidative stress in the pathogenesis of

male infertility, underlining the clinical use of redox biomarkers

and the new treatment of oxidative-stress-mediated male

infertility.

Together, the articles comprising this Research Topic shed some

light on the current status of molecular diagnostic and therapeutic

advances. Each report raises questions and indicates aspects that

require further attention and scientific inquiry. The progress of

molecular diagnostics will continue to grow in the race to enhance

care for individuals using genomic and metagenomic information

followed by artificial intelligence data evaluation and machine

learning algorithms. This approach should combine traditional

clinical data with patients’ biological profiles including various

omics-based datasets to create a new and exciting path of

personalized medicine.
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Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker.
In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of
chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors,
MSI is routinely detected by the size of marker polymerase chain reaction products
encompassing frequent microsatellite expansion regions. Alternatively, MSI status is
screened indirectly by immunohistochemical interrogation of microsatellite binding
proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide
spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were
deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene
products with only one common gene. However, they were developed and tested on the
incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated
experimentally on independent RNAseq samples. In this study, we, for the first time,
systematically validated these three RNAseq MSI signatures on the literature colorectal
cancer (CRC) (n � 619), endometrial carcinoma (n � 533), gastric cancer (n � 380), uterine
carcinosarcoma (n � 55), and esophageal cancer (n � 83) samples and on the set of
experimental CRC RNAseq samples (n � 23) for tumors with known MSI status. We found
that all three signatures performed well with area under the curve (AUC) ranges of 0.94–1
for the experimental CRCs and 0.94–1 for the TCGACRC, esophageal cancer, and uterine
carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric
cancer samples, only two signatures were effective with AUC 0.91–0.97, whereas the third
signature showed a significantly lower AUC of 0.69–0.88. Software for calculating these
MSI signatures using RNAseq data is included.

Keywords: microsatellite instability, RNA sequencing, NGS, RNAseq, gene signatures, experimental validation
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INTRODUCTION

Microsatellite instability (MSI) results from and is a marker of
defective DNA mismatch repair (dMMR). Tumors accumulate
multiple mutations across the genome (Ryan et al., 2017). Short
tandem repeats are particularly frequent targets to mismatch
errors, and dMMR-linked mutations are prone to be present in
microsatellite regions (tandem repeats of up to six nucleotides
short stretches of DNA) (Johansen et al., 2019). Detectable
expansion or shrinkage of microsatellite repeats is referred to
as MSI (Marcus et al., 2019).

MSI was the second clinically approved predictive biomarker
for the PD1-specific immunotherapy in adult and pediatric
advanced cancer patients. In 2017, the approval of the PD1-
specific checkpoint inhibitor antibody pembrolizumab for
patients with high MSI was based on the evidence of clinical
efficacy from five clinical trials (Marcus et al., 2019). This was the
first time when a cancer drug was approved based on a general,
not a tumor type-specific biomarker.

Tumors with dMMR also have more mutations in non-
microsatellite DNA and thus have more neoantigens. For
example, an average figure of ∼1,800 mutations and ∼580
neoantigens was detected in colorectal cancers (CRCs) with
dMMR compared with only ∼70 mutations and ∼20 predicted
neoantigens in CRCs with normal MMR (Le et al., 2015). An
increased amount of neoantigens in dMMR tumors promotes
tumor infiltration by lymphocytes (Dudley et al., 2016; Giannakis
et al., 2016), which may cause a more effective response to
immunotherapy (Luchini et al., 2019). This provides a
theoretical basis for MSI/dMMR biomarker effectiveness for
the treatment response to immune checkpoint inhibitors
targeting PD-1, PD-L1, and CTLA-4 proteins (Le et al., 2015).

The Food and Drug Administration did not specify which
assay should be used to measure MSI. Currently, there are three
basic options available for determining MSI status in clinical
practice: immunohistochemistry (IHC) for testing dMMR,
polymerase chain reaction (PCR), and genomic/exome/panel
sequencing for detecting MSI (Ryan et al., 2017; Baretti and
Le, 2018; Waalkes et al., 2018).

IHC test interrogates expressions of four proteins: MLH1,
MSH2, MSH6, and PMS2. dMMR is diagnosed when there is
detected loss of expression of one ormore such proteins (Danaher
et al., 2019). IHC tests for dMMR/MSI is simple and cost-
effective, but it has a downside of relatively low analytic
accuracy due to technical inconsistencies such as tissue
fixation issues (Engel and Moore, 2011) and biological reasons
such as missense mutations in MMR genes that can functionally
inactivate protein without altering its IHC-tested expression level
(Shia, 2008).

Alternatively, several PCRMSI panels have been designed, and
two are most frequently used in practice: (1) two mononucleotide
(BAT-25 and BAT-26) and three dinucleotide (D5S346, D2S123,
and D17S250) repeat panel (Boland et al., 1998) and (2) five poly-
A mononucleotide (BAT-25, BAT-26, NR-21, NR-24, and NR-27)
repeat panel. The latter has greater sensitivity and specificity
compared with the (1) panel (Suraweera et al., 2002). Moreover,
unlike (1), panel (2) has no requirement of having both tumors

and paired healthy tissue for the test (Shemirani et al., 2011). If at
least two biomarkers in either panel lose stability, the tumor is
diagnosed as MSI-positive.

As PCR testing is based on a limited number of specific
microsatellite sites, this approach cannot capture full
microsatellite profiles and thus cannot detect ∼0.3–10% of MSI
cases (16). Furthermore, MSI prevalence and type are markedly
different across the different cancer types. For example, lung,
breast, and prostate cancers have only ∼1–2% MSI incidence
(Luchini et al., 2019; Marcus et al., 2019). This proportion is
higher for gastric, ovarian, and cervical cancers and is maximal
for CRC. These observations are reflected in specific diagnostic
guidelines, and MSI testing is not routinely recommended for
most tumor types. These factors limit the use of the PCRMSI test
on a broad scale (Wang et al., 2021).

DNA sequencing tests use either whole-exome sequencing
(WES) or cancer gene panels. For targeted gene panels, the
number of genes varies from around 200 to >5,000 genes
(Waalkes et al., 2018). Thus, the analytic sites for testing MSI
are strongly different among the different targeted panels,
whereas the WES approach can provide more objective data,
as evidenced by ∼100% agreement with gold standard IHC and
PCR MSI testing methods for 130 CRC patients when using the
MSI sensor method (Johansen et al., 2019).

As opposed to IHC- or PCR-based MSI testing, which are
most suitable for CRC and other cancers belonging to the
spectrum of Lynch syndrome, the sequencing MSI approach
can be used for more tumor types. It can provide an
advantage of combining MSI analysis with mutation screening
and tumor mutation burden analysis (Wang et al., 2021).
However, genomic deep sequencing-based testing has major
challenges of high cost and lack of wide availability (Waalkes
et al., 2018).

On the other hand, RNA sequencing (RNAseq) can provide
another type of data for MSI assessment. In turn, the RNAseq
approach has several serious advantages that make it another
candidate for an emerging method of choice for MSI testing.
RNAseq is a well-established technology for tumor specimens,
including formalin-fixed, paraffin-embedded (FFPE) tissue
samples (Buzdin et al., 2020). Typically, one RNAseq analysis
is less expensive than for WES or panel genomic sequencing
(Bossel Ben-Moshe et al., 2018). It can be informative for the
assessment of IHC biomarkers (Sorokin et al., 2020c; 2020b),
expression of cancer drug target genes (Buzdin et al., 2020;
Sorokin et al., 2020d), tumor-specific molecular pathway
activation (Buzdin et al., 2018; Borisov et al., 2020a), for
personalized modeling of tumor drug response (Kim et al.,
2020; Tkachev et al., 2020), and even for tumor mutation
burden assessment (DiGuardo et al., 2021). Furthermore,
RNAseq data that inform on total gene expression profiles can
also be applicable for generating MSI gene signatures. Three such
signatures were recently developed (Danaher et al., 2019;
Pačínková and Popovici, 2019; Li et al., 2020) based on TCGA
project (Tomczak et al., 2015) publicly available RNAseq data for
CRC samples annotated with MSI status by gold standard IHC
and/or PCR methods. A signature established by Li et al. (2020)
includes 25 genes, a signature by Pačínková and Popovici (2019)
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includes 15 genes, and a double signature by Danaher et al.
(2019)—14 genes. Interestingly, those signatures are mostly
different by gene content and have only one common gene
(Figure 1).

However, these signatures were developed and validated on
the same TCGA samplings and were never validated
experimentally on independent RNAseq profiles. In this study,
we, for the first time, systematically validated these three RNAseq
MSI signatures on the literature CRC (n � 619), endometrial
carcinoma (n � 533), gastric cancer (n � 380), uterine
carcinosarcoma (n � 55), and esophageal cancer (n � 83)
samples and on the set of experimental CRC RNAseq samples
(n � 23) for the tumors with known MSI status. As the gold
experimental standard, we used seven PCR MSI biomarkers.

We found that all three signatures performed well with area
under the curve (AUC) ranges of 0.94–1 for the experimental
CRCs and 0.94–1 for the TCGA CRC, esophageal cancer, and
uterine carcinosarcoma samples. However, for the TCGA
endometrial carcinoma and gastric cancer samples, only two
signatures were effective with AUC 0.91–0.97, whereas the
third signature showed a significantly lower AUC of 0.69–0.88.
Finally, we provide software for calculating these MSI signatures
using RNAseq data.

RESULTS

Microsatellite Instability Data Curation and
Analysis
For the literature (TCGA) dataset, we extracted MSI statuses for
1,670 available RNAseq samples from the Broad Firehose
webpage. These MSI statuses obtained using IHC or PCR
profiling were then considered as the gold standards for the
assessment of transcriptomic signatures. As only MSI-high
tumors are considered for specific therapeutic options, we
pooled MSI-low and MSS (microsatellite stable) samples in a
single class for further analyses. Totally, we obtained 1,340 MSI-
low/MSS and 330 MSI-high profiles. These samples represented

CRC, endometrial carcinoma, gastric cancer, uterine cancer, and
esophageal cancer (Table 1). This was higher than the samplings
used previously to validate Li, Pacinkova and Popovici, and
Danaher signatures in the original studies (a total of 1,302,
626, and 689 samples, respectively; Table 1). We checked
RNAseq gene signatures in binary classifier mode.

For the experimental group, we profiled gene expression by
RNAseq using FFPE tumor tissue blocks for a total of 23 CRC
patients. In addition, we also analyzed a control group of 13 non-
CRC tumor blocks to assess MSI signature performance on these
samples as well. Among them, five patients had cervical cancer,
two had breast cancer, two had gastric cancer, two had
glioblastoma, one had ovarian cancer, and one had
endometrial carcinosarcoma (Supplementary Table S1). In
total, the experimental group (n � 36) represented 27 female
and nine male patients. The patient age varied from 31 to
84 years; the mean patient age in the experimental group was
60.36 years. More detailed patient information is given in
Supplementary Table S1.

We performed RNAseq for each tumor sample and obtained
∼3.75–78.02 million reads uniquely mapped on known human
Ensembl genes (genome version GRCh38 and transcriptome
annotation GRCh38.89), on the average ∼15.5 million gene-
mapped reads per library.

FIGURE 1 | Overlap between gene composition of MSI expression
signatures developed by Li et al. (2020), Pačínková and Popovici (2019), and
Danaher et al. (2019).

TABLE 1 | Characteristic of literature and experimental cancer patient groups.

Validation set MSI-high MSI-low/MSS Total

Colorectal cancer (CRC)

Current experimental 6 17 23
Current TCGA 85 534 619
Li TCGA 55 320 375
Pacinkova and Popovici TCGA 35 140 175
Danaher TCGA 27 126 153

Endometrial cancer (UCEC)

Current TCGA 170 363 533
Li TCGA 123 244 367
Pacinkova and Popovici TCGA 52 64 116
Danaher TCGA 71 176 247

Gastric cancer (STAD)

Current TCGA 71 309 380
Li TCGA 80 335 415
Pacinkova and Popovici TCGA 54 281 335
Danaher TCGA 64 225 289

Uterine carcinosarcoma (UCS)

Current TCGA 2 53 55
Li TCGA 2 87 89
Pacinkova and Popovici TCGA — — —

Danaher TCGA — — —

Esophageal cancer (ESCA)

Current TCGA 2 81 83
Li TCGA 2 54 56
Pacinkova and Popovici TCGA — — —

Danaher TCGA — — —

Control

Current experimental 1 12 13
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For these samples, “gold standard” MSI statuses were
determined by PCR test for seven marker microsatellite loci:
BAT25, BAT26, BAT40, NR21, NR24, NR27, and CAT25 that are
included in a routinely used clinical panel that requires no healthy
tissue control (Suraweera et al., 2002). When there were ≥2
marker loci with detected unstable microsatellite length, these
samples were considered MSI-high. Otherwise, the samples were
put to the common MSI-low/MSS group. In the experimental
group, there were a total of seven MSI-high and 29 MSI-low/MSS
samples (Table 1, Supplementary Table S2).

Performance of Microsatellite Instability
RNAseq Gene Signatures
By performing PubMed and Google Scholar literature search with
keywords “gene signature,” “gene expression,” “RNA
sequencing,” “microsatellite instability,”and “MSI” in March
2021, we extracted 73 hits that were manually processed and
returned three recent original publications. These three unrelated
research papers authored by Li et al. (2020), Pačínková and
Popovici (2019), and Danaher et al. (2019) communicated
different gene signatures of MSI status. All these signatures
were deduced and initially validated on TCGA CRC samples
available at the date of research (Table 1). For all the signatures
identified, the initial bioinformatic validation cohorts were
smaller than those extracted from TCGA in the current study
(Table 1).

The signatures included 15 genes (Li), 25 genes (Pacincova
and Popovici), and 14 genes (Danaher) (Figure 1). We compared
gene compositions of different signatures and found that they
were largely different and shared only one common gene,MLH1,
which encodes for mutL homolog 1 that can heterodimerize with
mismatch repair endonuclease PMS2 to formMutL alpha, part of
the DNA mismatch repair system (Figure 1). Li signature shared
four other genes with Danaher signature: EPM2AIP1, RNLS,
SMAP1, and TTC30A. These genes encode for EPM2A
interacting protein 1, renalase, small ArfGAP 1, and
tetratricopeptide repeat domain 30A, respectively. Pacincova
and Popovici signature also had two other common genes
with Li signature: RPL22L1 and SHROOM4 encode for
ribosomal protein L22 like 1 and shroom family member 4,
respectively. Pacincova and Popovici signature had no other
common genes with the Danaher signature (Figure 1).

The experimental and literature samples were then used to
assess the performances of those three signatures. All signature
values were calculated as described in the original papers. We
created and made publicly available the code for signature
calculation at Gitlab: https://gitlab.com/ef.viktor/msi_signatures.

The signatures were validated using TCGA RNAseq datasets
for tumor samples annotated by MSI status: CRC (n � 619),
endometrial carcinoma (n � 533), gastric cancer (n � 380),
uterine carcinosarcoma (n � 55), and esophageal cancer (n �
83) datasets and on the set of experimental CRC RNAseq samples
(n � 23) and control experimental dataset for non-CRC cancer
samples (n � 13). To assess signature biomarker quality, we used
area under the ROC curve (ROC AUC) value as the measure.
AUC reflects biomarker robustness and depends on its sensitivity

and specificity (Borisov et al., 2020b). It varies between 0.5 and 1,
and the typical discrimination threshold is 0.7, where greater
values denote high-quality biomarkers and vice versa (Boyd,
1997). AUC is often used for scoring different types of
molecular biomarkers in oncology (Liu et al., 2018; Tanioka
et al., 2018; Chen et al., 2019; Sorokin et al., 2020a). AUC and
95% confidence intervals were calculated using DeLong’s method
implemented in pROC R-package. The entire experimental

FIGURE 2 | Performance test of MSI RNAseq gene signatures. All
signatures were tested for assessment of MSI status on CRC experimental
dataset, non-CRC experimental dataset, TCGA CRC dataset, TCGA UCEC
dataset, TCGA STAD dataset, and joint TCGA UCS + ESCA dataset.
Results for Li et al. (2020) (A), Pačínková and Popovici (2019) (B), and
Danaher et al. (2019) (C) gene signatures are shown.
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dataset contained different cancer types; therefore, AUC was
calculated only for the CRC subgroup of the experimental
samples.

In our analysis, Li MSI signature (Figure 2A) scored AUC �
1.0 for the experimental CRC dataset, AUC � 0.9462 for the
TCGA CRC, AUC � 0.9397 for the TCGA uterine corpus
endometrial carcinoma (UCEC), AUC � 0.9664 for the TCGA
STAD dataset, and AUC � 0.9981 for the TCGA joint dataset of
UCS + ESCA samples. Pacincova and Popovici signature
(Figure 2B) performed as high as AUC � 0.9412 for the
experimental CRC dataset, AUC � 0.9583 for the TCGA CRC

dataset, AUC � 0.6946 for the TCGA UCEC, AUC � 0.8827 for
the TCGA STAD dataset, and AUC � 0.9515 for the TCGA joint
dataset of UCS + ESCA samples. In turn, Danaher signature
(Figure 2C) showed AUC � 0.9902 for the experimental CRC
dataset, AUC � 0.9396 for the TCGA CRC dataset, AUC � 0.9442
for the TCGAUCEC, AUC � 0.9589 for the TCGA STAD dataset,
and AUC � 1 for the TCGA joint dataset of UCS + ESCA samples
dataset.

Similar to variations in AUC metrics for the three signatures
tested, their extents related differently to the true-positive or true-
negative MSI statuses (Figures 3A–C).

FIGURE 3 | Distribution of scores for MSI RNAseq gene signatures. X-axis shows MSI signature score, Y-axis—number of samples. All signatures were tested for
assessment of MSI status on CRC experimental dataset, experimental non-CRC (control) dataset, TCGA CRC dataset, TCGA UCEC dataset, TCGA STAD dataset, and
joint TCGA UCS + ESCA dataset. Results for Li et al. (2020) (A), Pačínková and Popovici (2019) (B), and Danaher et al. (2019) (C) gene signatures are shown.
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In the experimental CRC group, there were 6 MSI-high and
17MSI-low samples. However, in the experimental control group
that included non-CRC cancers, there was only one MSI-high
sample for endometrial carcinosarcoma, whereas all other
samples were MSI-low (Supplementary Table S2). All three
signatures supported the true MSI status of samples in the
control group (Figures 3A–C).

Assessment of MSI signatures is summarized in Table 2. It can
be seen that Li signature showed the highest AUC in the
experimental CRC group, followed by Danaher and Pacincova
and Popovici signatures, respectively (Table 2). Also, all three
signatures performed accurately on TCGA CRC, esophageal
cancer, and uterine carcinosarcoma samples with AUC 0.94-1
and highly overlapping 95% confidence intervals. However, in the
endometrial carcinoma (UCEC) cohort of TCGA data, Pacincova
and Popovici signature showed low AUC below 0.7 threshold,
whereas two other signatures showed AUC of at least 0.94. The
latter also showed lower performance for TCGA gastric cancer
samples (AUC � 0.88 vs. 0.96–0.97 in the other two signatures).

Thus, we conclude that in our tests, all three signatures were
equally effective for the CRC, esophageal cancer, and uterine
carcinosarcoma samples, whereas for the endometrial carcinomas
and gastric cancer samples, the Danaher and Li signatures were
found more effective.

We also separately analyzed only early-stage (stages I, IA, and
IB) cancer patients from TCGA. In this case, statistical analysis
could be performed only for CRC and gastric cancer groups
because there were no early-stage MSI-high patients in the other
groups. There were 16/13 MSI-high and 89/42 MSI-low samples
in CRC and gastric cancer groups, respectively (Supplementary
Figure S1). All three signatures performed accurately on early-
stage TCGA CRC with AUC 0.966–0.997 and highly overlapping
95% confidence intervals (Supplementary Figure S2). AUC for
Li signature was the highest for predicting MSI status in gastric
cancer (AUC � 0.956), followed by Danaher (AUC � 0.934) and
Pacincova and Popovici (AUC � 0.919) signatures
(Supplementary Figure S2).

DISCUSSION

In this study, we, for the first time, systematically compared and
validated RNAseq gene signatures of MSI status in human solid
tumors. All the signatures performed well on both literature and
experimental samplings with the MSI statuses determined using
the gold standard techniques routinely used in cancer molecular
diagnostics. Interestingly, these three signatures were developed

by different teams using different logical rationale and were
mostly nonoverlapping with only one common gene, MLH1,
which protein product heterodimerizes to form MutL alpha
(Lindner et al., 2021; Pannafino and Alani, 2021), important
actor of the DNA mismatch repair system that is widely
associated with the Lynch syndrome known as hereditary
nonpolyposis CRC, and MSI (Yamamoto and Imai, 2019;
Lindner et al., 2021; Stinton et al., 2021).

However, the functions of most other genes in the three MSI
signatures strongly differ. We used Gene Ontology (GO) analysis
to identify GO term “biological processes” enriched among the
genes forming each signature. Of note, we found 23 enriched
biological processes in Li gene signature (Figure 4), 30 in
Danaher signature (Figure 5), and no significantly enriched
processes in Pacincova and Popovici signature.

Themost significant terms in Li signature were associated with
meiosis, mismatch repair, and (unexpectedly) with glycogen
biosynthesis (Figure 4). Interestingly, there were previously
only indirect links reported for the glycogen metabolism and
Lynch syndrome (Kato, 2020) or MSI (Krausova and Korinek,
2014; Oh et al., 2016), e.g., through the Wnt signaling pathway
(Krausova and Korinek, 2014). In Danaher signature, the most
significant terms were associated with mismatch repair and with
somatic hypermutation of immunoglobulin genes and
physiologically related processes: somatic diversification of
immune receptors and immunoglobulins (Figure 5). The latter
feature is widely associated with Lynch syndrome and MSI
(Anghileri et al., 2021; Mäki-Nevala et al., 2021). Among the
signatures by Li and Danaher, “Mismatch repair” was the only
common GO term (highlighted in italic on Figures 4 and 5), and
mismatch repair deficiency is one of the most obvious reasons for
MSI (Jin and Sinicrope, 2021). However, analysis of Pacincova
and Popovici signature returned no enriched functional terms,
thus evidencing that it contains quite a functionally
heterogeneous gene set.

We then performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment and gene set
enrichment (GSEA) analyses. The analyses returned three
common statistically significantly enriched pathways for
Danaher signature: “Mismatch repair,” “Platinum drug
resistance,” and “Colorectal cancer” (Supplementary
Figures S3 and S4). Thus, GSEA and KEGG analyses
confirmed our previous finding that Danaher signature is
enriched by mismatch repair genes. However, neither
KEGG pathway enrichment nor GSEA provided
significantly enriched pathways for both Pacincova and
Popovici and Li signatures.

TABLE 2 | AUC scores and (95% confidence interval) for three RNAseq MSI gene signatures.

Signature Li et al. (2020) Pacinkova and Popovici (2019) Danaher et al. (2019)

Experimental (CRC), n � 23 1.0 (1–1) 0.9412 (0.8506–1) 0.9902 (0.963–1)
TCGA (CRC), n � 619 0.9462 (0.9129–0.9795) 0.9583 (0.9313–0.9854) 0.9396 (0.9011–0.9782)
TCGA (UCEC), n � 533 0.9397 (0.9161–0.9633) 0.6946 (0.6487–0.7404) 0.9442 (0.9202–0.9682)
TCGA (UCS + ESCA), n � 138 0.9981 (0.993–1) 0.9515 (0.8771–1) 1.0 (1–1)
TCGA (STAD), n � 380 0.9664 (0.9405–0.9922) 0.8827 (0.839–0.9263) 0.9589 (0.9261–0.9918)
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This apparent gene content diversity among the signatures
demonstrates that MSI can be associated with several or many
processes that are not exclusively linked with DNA
hypermutation and repair. This gives hope for building
next-generation MSI signatures with even better
performance/classifier scores.

Our results also imply that the Li and Danaher signatures may
be effective for the CRCs, esophageal cancers, uterine
carcinosarcomas, endometrial carcinomas, and gastric cancers.
However, the overall effectiveness of Pacincova and Popovici
signature in our tests was lower and limited to the first three
among the cancer types discussed earlier. Moreover, all three
signatures performed well for predicting MSI status in early-stage
CRC and gastric cancer. Interestingly, the Li and Danaher
signatures that were significantly enriched by genes for certain
biological processes (Figures 3 and 4) were effective for more
cancer types than Pacincova and Popovici signature that lacked
enriched GO terms.

In addition, the current experimental dataset may serve for
validating new such signatures. Finally, we implemented here all

the MSI signatures assessed as the free code ready to use with the
user RNAseq data. In the future and after careful clinical
validation, this may have a practical significance for
establishing MSI statuses by screening, when available,
RNAseq data for the cancers not necessarily strongly
associated with the Lynch syndrome.

MATERIALS AND METHODS

Patients and Samples
In this study, we investigated MSI status-annotated RNAseq
profiles for a total of 1,693 cancer samples (one sample per
individual patient). Among them, there were 619 literature
CRC samples from TCGA cohort, 533 TCGA UCEC samples,
380 TCGA gastric cancer samples, 55 TCGA uterine
carcinosarcoma samples, 83 TCGA esophageal cancer samples,
and 36 experimental samples profiled by RNA sequencing in this
study. TCGA RNAseq samples were extracted from five source
datasets: COAD (colon cancer, n � 389) and READ (rectal cancer,

FIGURE 4 | Biological process GO terms for genes included in Li signature. Visualized using R package enrichplot (http://bioconductor.org/packages/release/
bioc/html/enrichplot.html). All terms passed Benjamini–Hochberg adjusted p-value threshold of 0.05.
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n � 230) for “CRC,” UCEC (endometrial carcinoma, n � 533),
STAD (gastric cancer, n � 380), UCS (uterine carcinosarcoma,
n � 55), and ESCA (esophageal cancer, n � 83). MSI annotated
TCGA data were downloaded from https://gdac.
broadinstitute.org/.

The experimental dataset included 23 colon cancer samples,
five cervical cancer samples, two breast cancer, two gastric cancer
samples, two glioblastoma samples, one ovarian cancer sample,
and one endometrial carcinosarcoma sample. All experimental
specimens were stored in the form of FFPE tissue blocks.

Gene Expression Profiling
To isolate RNA, 10-µM thick paraffin slices were trimmed from
each FFPE tissue block using a microtome. RNA preps were
extracted using QIAGEN RNeasy FFPE Kit. RNA 6000 Nano or
Qubit RNA Assay kits were used to measure RNA concentration.
RNA integrity number was measured using Agilent 2100 bio-
Analyzer. For depletion of ribosomal RNA and library
construction, KAPA RNA Hyper with rRNA erase kit (HMR
only) was used. Different adaptors were used for multiplexing
samples in one sequencing run. Library concentrations and

quality were measured using Qubit ds DNA HS Assay kit (Life
Technologies) and Agilent Tapestation (Agilent). RNA
sequencing was done using Illumina NextSeq 550 equipment
for single-end sequencing, 50-bp read length, for approximately
30 million (mln) raw reads per sample. Data quality check was
done on Illumina SAV. De-multiplexing was performed with the
Illumina Bcl2fastq2 v 2.17 program. Sequencing data were
deposited in National Center for Biotechnology Information
Sequencing Read Archive under accession ID PRJNA744404.

Processing of Experimental RNAseq Data
RNAseq FASTQ files were processed with STAR aligner (Dobin
et al., 2013) in “GeneCounts” mode with the Ensembl human
transcriptome annotation (Build version GRCh38 and transcript
annotation GRCh38.89). Ensembl gene IDs were converted to
HUGO Gene Nomenclature Committee (HGNC) gene symbols
using the Complete HGNC dataset (https://www.genenames.org/,
database version from July 13, 2017). Totally, expression levels were
established for 36,596 annotated genes with the corresponding
HGNC identifiers. Quantile normalization (qnorm python
package) was used to normalize gene expression values.

FIGURE 5 | Biological process GO terms for genes included in Danaher signature. Visualized using R package enrichplot (http://bioconductor.org/packages/
release/bioc/html/enrichplot.html). All terms passed Benjamini–Hochberg adjusted p-value threshold of 0.05.
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Calculating Li et al. Signature Values
MSI RNAseq signature described by Li et al. (2020) was calculated
according to the original paper. This signature defines LYG1,
MSH4, and RPL22L1 genes as “plus”-genes and DDX27,
EPM2AIP1, HENMT1, MLH1, NHLRC1, NOL4L, RNLS,
RTFDC1, SHROOM4, SMAP1, TTC30A, and ZSWIM3 as
“minus”-genes. The final score is a sum of log10-transformed
normalized gene expression levels with consideration of each
gene sign.

Calculating Pacincova and Popovici
Signature
MSI RNAseq signature described by Pacincova and Popovici was
calculated according to the original paper (Pačínková and
Popovici, 2019). This signature defines AGR2, TNNT1, VNN2,
TNFSF9, TRIM7, and RPL22L1 genes as “plus”-genes and ACSL6,
ARID3A, ASCL2, AXIN2, EPDR1, GGT7, GNG4, KHDRBS3,
KRT23, MLH1, NKD1, PLAGL2, PRR15, RUBCNL,
SHROOM2, SHROOM4, TFCP2L1, TNNC2, and VAV3 genes
as “minus”-genes. The final score is a sum of log10-transformed
gene expression levels with consideration of each gene sign.

Calculating Danaher et al. Signature
MSI RNAseq signature described by Danaher et al. (2019)was
calculated according to the original paper. This signature
includes MLH1, MSH2, MSH6, and PMS2 genes for
calculating MMR loss score (MLS). First, a minimal Z-score
(Zmin) of log2-transformed gene expressions was found. The
final MLS � (Zmin + 1.03)/0.69, where 1.03 and 0.69 are the
theoretical expectation and standard deviation of the
minimum of four standard normal random variables,
respectively.

Hypermutation predictor score was calculated by multiplying
log2-transformed expressions of EPM2AIP1, TTC30A, SMAP1,
RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76
genes by coefficients from the table given in the original article.
The final hypermutation predictor score is a Z-score of the
calculated value. The resulting MSI predictor score was
calculated as follows:

�������������������������
min(MLS, 0)2 +max(HPS, 0)2

√

The MSI predictor score is further used as a predictor of MSI-
high status.

Functional Gene Set Enrichment Analysis
KEGG and GO analyses were performed using the R clusterProfiler
package. EnrichKEGG and enrichGO functions were used to
implement enrichment analysis. GSEA analysis was performed
using the web service http://www.webgestalt.org. The following
non-default parameters were selected: KEGG pathways were used
as a functional database, and the minimum number of genes for a
category was set to 3. We used Benjamini–Hochberg false discovery
rate correction method and applied a p-value threshold of 0.05 as a
cutoff value for filtering pathways and GO terms.

Experimental Microsatellite Instability
Assessment by Polymerase Chain Reaction
Genomic DNA was isolated from FFPE tissue sections using
the QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia, CA).

We performed MSI analysis using a set of five so-called “main”
mononucleotide repeat markers: BAT25, BAT26, NR21, and NR24
selected from the revised Bethesda panel (Suraweera et al., 2002) and
NR27 selected from the modified pentaplex panel (Buhard et al.,
2006). Two additional mononucleotide repeat markers were also
included: BAT40, as it was shown to improve the sensitivity of MSI
testing in both CRC and extra-colonic tumors (Hartmann et al.,
2002; Pagin et al., 2013) andCAT-25, which was reported to increase
the sensitivity for identifying dMSH6 tumors (Takehara et al., 2018).

The primer sequences were taken from previous reports
(Hartmann et al., 2002; Suraweera et al., 2002; Buhard et al.,
2006; Takehara et al., 2018). The sequences of fluorescently
labeled oligonucleotides are listed in Table 3.

The marker DNA products were PCR amplified using the
qPCRmix-HS (Evrogen, Russia). PCR was carried out in a 20-
μl final volume containing 1× qPCRmix-HS, 2 pmoles of each
primer, and approximately 20 ng of DNA template.

The marker sets (1) BAT25, BAT26, NR21, and NR27 and
(2) BAT-40 and CAT-25 were co-amplified in one PCR tube

TABLE 3 | Oligonucleotide sequences and fluorescent labels used.

Marker Gene Primer sequence and fluorescent labels (59-39) Length (bp)

BAT26 hMSH2 Forward FAM-CTGCGGTAATCAAGTTTTTAG 183
Reverse AACCATTCAACATTTTTAACCC

BAT25 c-kit Forward R6G-TACCAGGTGGCAAAGGGCA 153
Reverse TCTGCATTTTAACTATGGCTC

NR24 Zinc finger 2 (ZNF-2) Forward TAMRA-GCTGAATTTTACCTCCTGAC 131
Reverse ATTGTGCCATTGCATTCCAA

NR21 SLC7A8 Forward FAM-GAGTCGCTGGCACAGTTCTA 109
Reverse CTGGTCACTCGCGTTTACAA

NR27 Inhibitor of apoptosis Protein-1 (IAP1) Forward R6G-AACCATGCTTGCAAACCACT 87
Reverse CGATAATACTAGCAATGACC

BAT40 3-β-hydroxysteroid dehydrogenase (HSD3B1) Forward ROX-AGTCCATTTTATATCCTCAAGC 145
Reverse GTAGAGCAAGACCACCTTG

CAT25 Caspase 2 Forward ROX-CTTCCCAACTTCCCTGTTCTTT 109
Reverse TGAGCTGAGATCGTGCCACT
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per set. The marker NR-24 was amplified in a separate
PCR tube.

PCR conditions for the tetraplex and duplex assays consisted
of an initial 2-min denaturation step at 94C, followed by 37 cycles
at 94°C for 20 s, 54°C for 10 s, and 72°C for 12 s, with a final
extension at 72°C for 2 min. Conditions for monoplex reaction
differed in annealing temperature: 53°C.

AmplifiedPCRproductswere analyzed by capillary electrophoresis
performed on ABI prism 3130 × l System (Applied Biosystems,
United States). The microsatellite marker lengths were detected by
Sequence Scanner software (Applied Biosystems, United States).

The cutoff for MSI status classification was chosen on the basis of
the threshold of approximately 40%, according to Umar A. et al.
(2004). Tumorswith instability atP2 of thefivemainmononucleotide
markers were defined as MSI-H. Samples with instability at one main
marker were further tested with the additional markers. Tumors with
at least one unstable additional marker were defined as MSI-high.
Otherwise, tumors were classified as MSI-low/MSS.
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The Impact of Oxidative Stress in Male
Infertility
Amanda Mannucci1, Flavia Rita Argento1, Eleonora Fini 1, Maria Elisabetta Coccia2,
Niccolò Taddei1, Matteo Becatti 1*† and Claudia Fiorillo1†

1Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy, 2Assisted
Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy

At present infertility is affecting about 15% of couples and male factor is responsible for
almost 50% of infertility cases. Oxidative stress, due to enhanced Reactive Oxygen
Species (ROS) production and/or decreased antioxidants, has been repeatedly
suggested as a new emerging causative factor of this condition. However, the central
roles exerted by ROS in sperm physiology cannot be neglected. On these bases, the
present review is focused on illustrating both the role of ROS inmale infertility and their main
sources of production. Oxidative stress assessment, the clinical use of redox biomarkers
and the treatment of oxidative stress-related male infertility are also discussed.

Keywords: oxidative stress, ROS, reactive oxygen species, male infertility, spermatozoa, semen parameters

INTRODUCTION

Infertility is a multifactorial disease affecting 15% of couples and defined as the inability to achieve
spontaneous pregnancy after 12 months or more of regular unprotected sexual intercourse (Sharlip
et al., 2002; Aitken, 2020). Male factor is responsible for almost 50% of infertility cases, contributing
equally as female factor (Athayde et al., 2007; Wagner et al., 2018). Male infertility diagnosis is
commonly based on standard semen parameters analysis (Nallella et al., 2006), according to the
WHO guidelines, nevertheless, a large proportion of infertile males does not receive a clear diagnosis,
considering them as idiopathic or unexplained cases (Sharlip et al., 2002).

Many studies suggested oxidative stress, a condition characterized by an imbalance between reactive
oxygen species (ROS) production and antioxidant defence systems, as a new emerging factor in unexplained
male infertility (Saleh and Agarwal, 2002; Makker et al., 2009; Agarwal et al., 2018; Cito et al., 2020).

At physiological levels, ROS are associated with the development of sperm fertilization properties,
promoting chromatin compaction in maturing spermatozoa, motility, chemotaxis, sperm capacitation,
hyperactivation, acrosome reaction and oocyte interaction (Kothari et al., 2010; Du Plessis et al., 2015). An
excessive ROS production represents an important cause of sperm injury. Indeed, due to the large amount
of membrane unsaturated fatty acids and the lack of cytoplasmic antioxidant enzymes, spermatozoa are
highly susceptible to oxidation (Agarwal et al., 2017), with consequent detrimental effects on sperm
quality/functioning (Aitken and Baker, 2006; Venkatesh et al., 2011; Barati et al., 2020).

Here, we discuss about the different roles of ROS on spermatozoa pathophysiology, paying
particular attention to ROS effects on semen parameters. Finally, we focus on the available
techniques to assess redox status in biological fluids and the clinical use of redox biomarkers for
diagnosis and management of male infertility.

Oxidative Stress
Oxygen has a central role in life, displaying both beneficial and harmful effects on biological systems.
The main oxygen involvement is in adenosine-5-triphosphate (ATP) generation via mitochondrial
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oxidative phosphorylation (Burton and Jauniaux, 2011;
Lushchak, 2014), a reaction also implicated in ROS and RNS
production (Pham-Huy et al., 2008).

At moderate levels, ROS/RNS play an important role in
regulating several intracellular signaling pathways, immune
and mitogen responses and in maintaining cellular
homeostasis (Kruk et al., 2019). On the contrary, higher
ROS levels can be responsible for oxidative damages on
proteins, lipids and nucleic acids (DNA, RNA), with
harmful cellular effects. However, a complex system of
antioxidant molecules has been evolved to maintain a redox
balance and avoid biological system injury (Burton and
Jauniaux, 2011; Kruk et al., 2019).

Several conditions (as environmental factors, excessive
physical exercise, deficiencies in antioxidants, immune system
dysfunctions, chronic disorders) may alter oxidant/antioxidant
balance, leading to oxidative stress (Halliwell, 2007).

Oxidative stress mediates tissue injury and cell death,
displaying a pathological role in several disorders including
inflammation and aging, cardiovascular and neurodegenerative
diseases, autoimmune disorders, cancer and reproductive system
alterations (Burton and Jauniaux, 2011; Birben et al., 2012; Kruk
et al., 2019).

The Physiological Role of ROS in
Spermatozoa
Physiologically, ROS are considered regulators of several
intracellular pathways, modulating the activation of different
transcription factors (Burton and Jauniaux, 2011). ROS
stimulate cyclic adenosine monophosphate (cAMP) in sperms,
promoting tyrosine phosphorylation by tyrosine phosphatase
inhibition (Wagner et al., 2018). This molecular mechanism
results in the activation of several transcription factors
involved in intracellular signaling cascades for sperm
physiology. Indeed, several studies showed that higher ROS
levels stimulate sperm capacitation and hyperactivation,
acrosome reaction, motility and chemotaxis and chromatin
compaction in maturing spermatozoa (Du Plessis et al., 2015;
Wagner et al., 2018). Furthermore, ROS can improve sperm
capacity of binding to the zona pellucida, inducing sperm-
oocyte fusion (Wagner et al., 2018). By the way, antioxidant
molecules may alter spermatozoa maturation, interfering with
physiological sperm function. Particularly, it was showed that
catalase or superoxide dismutase (SOD) inhibit sperm
capacitation or acrosome reaction, supporting the evidence of
the central involvement of ROS in spermatozoa functioning
(Wagner et al., 2018).

The Pathological Role of ROS in
Spermatozoa
Besides to the physiological role of ROS, excessive ROS
generation and oxidative stress seem to be associated with
harmful effects on spermatozoa, resulting in morphological
and dynamic cellular properties alterations and finally in lower
fertilization ability.

During recent years, a growing literature has shown that an
altered redox balance in seminal fluid may display deleterious
effects on sperm homeostasis, leading to male infertility (Agarwal
et al., 2008; Makker et al., 2009; Agarwal et al., 2014b; Sabeti et al.,
2016; Agarwal et al., 2017; Agarwal et al., 2018; Majzoub and
Agarwal, 2018).

Blood and plasma redox status alterations have been reported
in infertile men, as recently described in a study (Cito et al., 2020)
showing higher blood leukocytes ROS production, increased
plasma lipid peroxidation (LPO) and reduced plasma total
antioxidant capacity (TAC) in oligoasthenozoospermic men
compared to healthy subjects (Cito et al., 2020). In line with
this, several findings also suggest that ROS-mediated sperm
oxidation may induce cellular dysfunctions, affecting
spermatozoa concentration, total number and motility
(Agarwal et al., 2008; Agarwal et al., 2014b).

Spermatozoa are particularly susceptible to ROS-induced
oxidation due to the presence, in their plasma membrane, of
elevated levels of polyunsaturated fatty acids as docosahexaenoic
acid containing six double bonds per molecule (Aitken et al.,
2014). Indeed, ROS mediate the hydrogen abstraction from the
hydrocarbon side-chain of a fatty acid, yielding to a carbon-
centered lipid radical (L·) whose interaction with oxygen
produces a lipid peroxyl radical (LOO·), able to react with an
adjacent fatty acid propagating the process. Following internal
molecular rearrangements conjugated dienes and hydroperoxides
are generated (Phaniendra et al., 2015; Yoshida et al., 2015).

LPO products can also react with proteins, DNA and
phospholipids, generating end-products involved in cellular
dysfunction. Particularly, the interaction of LPO products with
amino residues can result in protein oxidation, affecting protein
structural and functional features (Niki, 2014). In this context, it
was observed that LPO products as 4-hydroxy-2-nonenal
(4HNE) are able to propagate ROS generation via interaction
with proteins of the sperm mitochondrial electron transport
chain (Aitken et al., 2014).

Lipid peroxidation is strictly associated with fluidity and
permeability membrane alterations, inhibition of membrane-
bound enzymes and receptors and activation of apoptotic
cascade, supporting oxidative stress involvement in motility
and morphology sperms abnormalities (Nowicka-Bauer and
Nixon, 2020). Among LPO products, 4HNE seems to be
highly responsible for cytotoxic effects on cellular sperm
membrane, inducing loss of membrane integrity, motility
alterations and compromising sperm-oocyte interactions
(Baker et al., 2015; Walters et al., 2018; Nowicka-Bauer and
Nixon, 2020) It was observed that 4HNE-mediated effects
depends on several factors: cellular differentiation status,
amount of substrates for 4HNE attack and antioxidant defense
systems (Walters et al., 2018).

ROS can also affect sperm functioning by post-translational
oxidative protein modifications (Salvolini et al., 2012; Morielli
and O’Flaherty, 2015). The important association between
protein oxidation markers, as three nitro-tyrosines (3NT), and
sperm motility and morphology in oligoasthenoteratospermia
has been reported (Kalezic et al., 2018). In particular, signs of
sperm protein S-glutathionylation and tyrosine nitration were
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found in infertile men (Salvolini et al., 2012; Morielli and
O’Flaherty, 2015). Accordingly, higher peroxynitrite levels in
human asthenozoospermic sperm samples, emphasizing their
negative impact on sperm motility through the formation of
three nitro-tyrosines were reported (Vignini et al., 2006).

Several investigations observed that not all sperm proteins are
equally susceptible to ROS or to lipid aldehydes (Nowicka-Bauer
and Nixon, 2020). The principal 4HNE target proteins are
represented by metabolic enzymes, involved in bioenergetic
pathways needed for sperm motility (Moscatelli et al., 2019).
Several proteomics studies have been performed on infertile men
spermatozoa in this context. A downregulation of proteins
involved in bioenergetic pathways in altered spermatozoa of
asthenozoospermic men was revealed (Amaral et al., 2014;
Moscatelli et al., 2019). Particularly, some authors observed
alterations in proteins associated with metabolic pathways as
glycolysis, pyruvate metabolism, TCA or beta-oxidation in
asthenozoospermic men, supporting that oxidative stress
compromises sperm functionality by altering bioenergetic
pathways (Elkina et al., 2011; Guo et al., 2019).

It is traditionally accepted that nucleic acids represent another
crucial target of oxidative stress. Both nuclear and mitochondrial
DNA are vulnerable to hydroxyl radical (OH.) attack, leading to
the formation of several biomarkers of oxidative stress. OH. can
react with guanine to produce 8-hydroxy-2′-deoxyguanosine (8-
OH-G), an important marker of DNA oxidative damage,
detectable in several biological samples (Burton and Jauniaux,
2011).

The lack of adequate antioxidant systems makes spermatozoa
highly susceptible to DNA oxidation (Agarwal et al., 2003; Aitken
et al., 2014). Sperm DNA oxidation is also due to the lack of
complete DNA repair strategies in spermatozoa. Indeed, if the 8-
oxoguanine glycosylase (OGG1) is able to remove the 8OHdG
residue from DNA producing an abasic site, sperms do not
possess any base excision repair system for the insertion of a
new base (Aitken et al., 2014).

Several studies indicated that ROS generation is associated
with DNA fragmentation and poor chromatin packaging,
promoting apoptosis with relevant consequences on sperm
count (Aitken et al., 2014; Iommiello et al., 2015). Patients
with asthenozoospermia show enhanced mtDNA copy number
and reduced mtDNA integrity that are associated with higher
ROS generation (Bonanno et al., 2016). Accordingly, other
reports underlined the significant association between NO and
8-OHdG levels and semen parameters abnormalities
(Gholinezhad et al., 2020), supporting redox status assessment
for helping male infertility diagnosis and monitoring.

MAIN SOURCES OF ROS

It is largely accepted that several exogenous factorsmay contribute to
inflammation and redox status alterations, promoting male
infertility. Environmental pollution, lifestyle factors as smoke,
alcohol, obesity, varicocele, bacterial/viral infections,
microorganism mutations or sexual transmitted disorders are
actively involved (Iommiello et al., 2015; Agarwal et al., 2018).

However, seminal fluid oxidative stress is mostly due to
leukocytes -that produce 1,000 more times ROS than normal
spermatozoa- and to immature spermatozoa (Agarwal et al.,
2003; Iommiello et al., 2015; Agarwal et al., 2018).

Leukocytospermia. According to WHO guidelines,
leukocytospermia, defined as peroxidase-positive leukocytes
concentration >1 × 106 per mL of semen, has been found in
about 10–20% of infertile men (Saleh et al., 2002; Agarwal et al.,
2018). Granulocytes and macrophages are the main cellular types
found in the ejaculate and are responsible for ROS generation
which is largely associated to glucose-6-phosphate
dehydrogenase (G6PDH) activity, producing high amount of
NADPH that, in turn, strongly stimulates NADPH oxidase,
one of the major ROS sources (Agarwal et al., 2003; Agarwal
et al., 2018). New emerging observations revealed that seminal
WBC could improve sperm ability to generate ROS in a direct
manner or by soluble products released in sperm
microenvironment (Saleh et al., 2002). However, the clinical
significance of leukocytospermia and its role in sperm quality
is still under debate.

Higher seminal WBC levels were observed in infertile men
compared to healthy controls and leukocytospermia was
significantly correlated with alterations in sperm number,
motility and morphology (Wolff, 1995). Moreover, in vitro
experiments showed that WBC damaged sperm function and
hamster ovum penetration, representing important prognostic
factors for Assisted Reproductive Technologies (ART) success
rate (Wolff, 1995). In line with this evidence, further
investigations supported WBC as a trigger factor for
spermatozoa ROS generation, leading to reduced sperm
quality and sperm DNA damage (Saleh et al., 2002; Agarwal
et al., 2014a). Leukocytospermia was associated with alterations
in sperm concentration, motility and morphology in
leukocytospermic patients respect to nonleukospermic patients
or healthy subjects. In vitro experiments also underlined that ROS
levels remained increased in pure sperms suspensions of
leukocytospermic patients also after WBC removal or phorbol
12-myristate 13-acetate (PMA)-induced ROS stimulation.
Similar results were obtained after sperm incubation with
WBC (Saleh et al., 2002).

Moreover, semen WBC, even at low concentrations,
resulted positively correlated with oxidative stress,
suggesting that semen WBC removal could be useful to
reduce oxidative stress in samples used for ART (Sharma
et al., 2001; Agarwal et al., 2014a).

Immature spermatozoa. When spermatogenesis is
defective, alterations in cytoplasmic extrusion mechanisms
are observed and spermatozoa are released with an excess of
residual cytoplasm (cytoplasmic droplets) (Agarwal et al.,
2003). Immature spermatozoa are associated with higher
ROS generation, via G6PDH and higher creatine
phosphokinase (CK) levels (Cayli et al., 2004). The clinical
significance of CK in sperm maturity and quality is
controversial (Hallak et al., 2001; Cayli et al., 2004;
Muratori et al., 2015). Some reports described higher CK
levels in oligozoospermic men than in healthy subjects and
a significant association between CK levels and semen
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parameters (concentration, motility and morphology),
suggesting this marker as a good predictor of sperm quality
in the follow-up of patients treated for male infertility (Hallak
et al., 2001). Other authors found no difference in CK amount
between cells with or without DNA fragmentation, showing no
involvement of immature spermatozoa in DNA damage
(Muratori et al., 2015). In this context, it was observed that
spermatozoa at different stages of maturation are
characterized by variations in ROS levels, membrane lipid
content, chromatin compaction, morphology and motility.
Immature spermatozoa showed higher ROS generation and
DNA damage and could be considered an important cause of
male infertility, inducing oxidation in mature sperm cells
during sperm migration from the seminiferous tubules to
the epididymis (Ollero et al., 2001).

Mithocondria. Another potential ROS source in spermatozoa is
represented by mitochondria. Indeed, factors as electromagnetic
radiation, polyunsaturated fatty acids or apoptotic factors may
alter the electron transport chain on mitochondrial membrane,
resulting in excessive ROS generation. Several reports indicate
sperm mitochondrial dysfunction and oxidative stress as potential
factors involved in asthenozoospermia (Nowicka-Bauer et al., 2018).
Particularly, interferences in the mitochondrial electron flow at
complexes I and III may trigger ROS generation and cause
sperm tail oxidation, leading to DNA damage and motility
aberrations (Koppers et al., 2008). Sperm mitochondrial
dysfunctions enhance ROS production and are associated with
sperm quality impairment and loss of fertilization potential.
Particularly, a significant correlation between sperm
mitochondrial functioning and sperm motility was reported
(Cassina et al., 2015).

OXIDATIVE STRESS EFFECTS ON SEMEN
PARAMETERS

During these years, the potential correlation between
spermatozoa ROS production and semen parameters has been
largely investigated (Athayde et al., 2007; Hosseinzadeh Colagar
et al., 2013; Agarwal et al., 2014a; Bonanno et al., 2016; Aitken,
2017; Dobrakowski et al., 2017; Dorostghoal et al., 2017). The
detrimental effects of ROS on sperm motility and morphology
has been repeatedly reported. In vitro experiments demonstrated
that lipid aldheydes addiction to spermatozoa promoted loss
motility in human sperm cells (Agarwal et al., 2014a) (Figure 1).

Accordingly, seminal fluid LPO and TAC levels were
significantly correlated with sperm motility, morphology and
sperm count in astheno- and oligoastheno-teratospermic men
(Khosrowbeygi and Zarghami, 2007; Hosseinzadeh Colagar et al.,
2013).

The key role of oxidative stress in spermatozoa alterations is
also supported by evidence of beneficial effects of therapeutic
supplementation with antioxidants on semen quality in infertile
men (Gambera et al., 2019). In particular, therapeutic Coenzyme
Q10 treatment improved semen parameters (sperm
concentration and motility), redox status and sperm DNA
fragmentation in idiopathic male infertility (Alahmar et al.,
2021). Interestingly, an improvement in sperm concentration
and motility after vitamin D supplementation in vitamin D
deficient infertile male with oligoasthenozoospermia was
observed (Wadhwa et al., 2020). The positive effects of an
antioxidant therapy (Gambera et al., 2019) on semen quality
has been suggested as a useful tool to improve successful
conception rate in patients with oligoasthenozoospermia
undergoing intracytoplasmic sperm injection (ICSI).

On the contrary, other authors reported no correlation
between ROS levels and sperm motility, underling that it is
still unclear if reduced sperm functional performances are due
to lower sperm number or to a direct ROS effect (Whittington
et al., 1999).

In this context, the usefulness of a new blood diagnostic tool to
evaluate sperm morphological and/or functional abnormalities,
supporting male infertility diagnosis and management, is
increasingly evident.

In this regards, blood SOD and GSH levels were found to
positively correlate with sperm count and motility, while
enhanced MDA levels were associated with altered sperm
morphology (Shamsi et al., 2010). In line with this, signs of
oxidative stress in seminal fluid and reduced plasma TAC in
infertile men were described. Particularly, plasma TAC
significantly and positively correlated both with seminal fluid
TAC and with semen parameters (Benedetti et al., 2012),
indicating that plasma redox status reflects the redox status of
seminal fluid microenvironment and sperm quality.

In agreement, it has been shown that higher MDA and Nitric
Oxide (NO) levels in plasma and seminal fluid of infertile men
correlated with semen parameters, supporting that blood redox
status is associated with semen parameters (Taken et al., 2016).

However, reports about the existing association between
blood and seminal fluid oxidative stress are still limited and

FIGURE 1 | Oxidative stress negatively affects sperm cells causing
mitochondrial injury and alterations in lipids, nucleic acids and proteins.
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controversial, potentially due to different strategies and
applied methodologies. Indeed, no correlation was found
between blood and seminal fluid oxidative status, suggesting
the independence of seminal fluid redox homeostasis from
systemic microenvironment and external factors (Guz et al.,
2013).

OXIDATIVE STRESS ASSESSMENT AND
CLINICAL USEOFREDOXBIOMARKERS IN
MALE INFERTILITY
The analysis of semen parameters according to the WHO
guidelines represents, currently, the gold standard for male
infertility diagnosis. However, several studies showed that
ROS-induced sperm oxidation can result in sperm quality
alterations, leading to a decrease in sperm fertilizing potential
(Agarwal and Majzoub, 2017; Dutta et al., 2019; Martins and
Agarwal, 2019). Based on this evidence, new tests aimed to
evaluate male fertility by monitoring oxidative stress status are
needed.

Assays for oxidative stress detection may suggest new
biochemical approaches to improve male infertility diagnosis
and management, using simple, fast and less expensive
techniques (Agarwal and Majzoub, 2017; Agarwal et al., 2019).

Oxidative stress can be evaluated in different biological
samples (plasma, serum, urine, follicular/peritoneal/seminal
fluid), obtaining an accurate picture of redox status and
eventually planning a therapeutic supplementation with
antioxidants where it’s needed.

Different oxidative stress assays exist, focusing on ROS
generation, lipid peroxidation products and total antioxidant
capacity. ROS measurement in semen include different
methods as chemiluminescence, nitro blue tetrazolium (NBT)
test, cytochrome c reduction test and electron spin resonance
(Dutta et al., 2019; Martins and Agarwal, 2019).

However, several reports underlined the central use of
cytometry to assess intracellular ROS production in blood cells
as erythrocytes and leucocytes, in spermatozoa as well as in other
cellular categories by incubating cells with the fluorescent probe
H2DCF-DA (2.5 µM) (Invitrogen, Carlsbad, CA, United States)
(Becatti et al., 2016a; Becatti et al., 2017a; Becatti et al., 2018; Cito
et al., 2020). Due to its susceptibility to ROS-induced oxidation by
hydrogen peroxide, peroxynitrite, hydroxyl radicals and also by
superoxide anions, H2DCF-DA is now considered among the
principal methods for measuring intracellular ROS levels, sensing
redox status variations and cellular oxidative stress (Eruslanov
and Kusmartsev, 2010).

Cytofluorimetric analysis can be also employed for the
assessment of membrane lipid oxidation, using the fluorescent
probe BODIPY 581/591 C11. This approach was proposed to
investigate redox status alterations both in erythrocytes of RVO
(Becatti et al., 2016b) and SSNHL (Becatti et al., 2017b) patients.

Moreover, fluorescent anisotropy of cellular membranes, a
new method to evaluate membrane fluidity, could be a future
innovation for further investigations about spermmotility defects
(Becatti et al., 2016b; Becatti et al., 2017b).

Oxidative stress assessment is also performed by evaluating
LPO and TAC levels in biological fluids (Martins and Agarwal,
2019). LPO levels can be detected by measuring lipid oxidation
end products as MDA, 4HNE, isoprostanes with
spectrofluorimetric or immunochemical assays (Agarwal and
Majzoub, 2017). Thiobarbituric Acid (TBA) Assay or the
ALDETECT Assay are the mostly used tests for LPO
assessment. Highly sensitive high pressure liquid
chromatography (HPLC) is promoted for low MDA
concentrations (Grotto et al., 2007), whereas commercial
immunoassays or mass spectrometry represent an alternative
method to evaluate lipid peroxidation end products as
isoprostanes (Morrow, 2005).

Parallelly, TAC level can be measured using enhanced-
chemiluminescence or colorimetric techniques (Martins and
Agarwal, 2019). Among chemiluminescent methodologies,
Oxygen Radical Absorbance Capacity (ORAC) Assay is based
on the intensity fluorescence decay of a fluorescent probe,
fluorescein, consequent to its oxidation by free radical species
(particularly peroxyl radical), generated after the thermal
decomposition of 2,2′-azobis (2-amidinopropane)
dihydrochloride (AAPH) azo-compound. Colorimetric
methods evaluate the antioxidant capacity of samples to
inhibit the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) to ABTS + by metmyoglobin
(Martins and Agarwal, 2019).

Based on redox biomarkers alterations in infertile men, several
studies emphasized the elaboration of a specific global parameter/
index able to discriminate fertile from infertile men better than
ROS or TAC alone (Roychoudhury et al., 2016). Particularly,
ROS-TAC score, derived from both ROS levels and antioxidant
capacity in a given set of patients, was proposed as a new tool to
investigate redox status in male infertility. Infertile men withmale
factor or idiopathic diagnoses had significantly different ROS-
TAC scores than controls (Sharma et al., 1999; Vatannejad et al.,
2017). Particularly, the potential use of ROS-TAC score for
predicting the oxidative damage of semen samples in
asthenozoospermic men was proposed (Vatannejad et al., 2017).

New emerging data have also shown oxidation reduction
potential (ORP) measurement as a new fast, easy and
reproducible method to assess oxidative stress in seminal fluid
(Agarwal and Majzoub, 2017; Martins and Agarwal, 2019).

ORP indicates the ratio between oxidant and antioxidant
molecules, evaluating the potential for electrons to move from
a chemical specie to another. ORP is assessed by MiOSYS test,
that measures electron transfer from antioxidants to oxidants in
presence of a low voltage reducing current. The obtained data
represent oxidant and antioxidant activity in a sample:
particularly, high ORP levels indicate enhanced oxidant
activity and therefore a condition of oxidative stress (Agarwal
and Majzoub, 2017).

Some evidence reports a good association between ORP level
and semen parameters (Agarwal et al., 2017; Majzoub et al., 2018;
Homa et al., 2019) being found higher ORP levels in infertile men
than in healthy controls (Agarwal et al., 2017). Moreover, a
negative correlation between ORP value and semen parameters
(sperm concentration and total count, motility and morphology)
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was observed suggesting ORP as a further predictor for male
infertility diagnosis and management (Agarwal et al., 2017). In
line with this, further investigations confirmed the significant
association of ORP both with semen parameters and DNA
fragmentation in infertile men (Majzoub et al., 2018; Homa
et al., 2019). Importantly, it was also shown that ORP is a
more accurate tool for investigating redox status in male
infertility than chemiluminescent ROS assessment (Homa
et al., 2019).

TREATMENT OF OXIDATIVE STRESS
RELATED MALE INFERTILITY

Currently, defined guidelines for treatment of oxidative stress-
related male infertility are still lacking, in partly due to the
unknown etiology of this condition (Agarwal et al., 2019).
However, during these years several clinical trials have been
developed to investigate the effects of antioxidant
supplementation (as L-carnitine, selenium, Coenzyme Q10,
ubiquinol, vitamin C and E) on seminal fluid oxidative stress
and semen parameters (Majzoub and Agarwal, 2018; Dutta et al.,
2019). Many of them reported promising effects of antioxidants
on sperm concentration, motility, morphology and DNA
fragmentation (Gambera et al., 2019; Alahmar et al., 2021).
Twenty clinical trials focused on antioxidant therapy effects on
seminal oxidative stress were analyzed. Nineteen of them revealed
an improvement in sperm redox status and semen parameters
and a good correlation with pregnancy outcome (Gharagozloo
and Aitken, 2011).

However, the role of antioxidant therapy in male infertility is
still controversial. In a randomized clinical trial, it was showed
that 3 months of antioxidant treatment did not improve semen
parameters and DNA fragmentation in infertile men and no
beneficial effect on pregnancy or live birth rates was observed
(Steiner et al., 2020).

These observations indicate that evidence to support the use of
antioxidants in male infertility are still uncertain. However,

traditional semen analysis together with oxidative stress
assessment display a great potential to perform accurate
evaluation of infertile patients (Agarwal et al., 2019).

CONCLUSION

Oxidative stress is centrally involved in sperm dysfunctions
and represent a new pathological mechanism of male
infertility (Agarwal et al., 2008; Hosseinzadeh Colagar
et al., 2013; Agarwal et al., 2018). Based on previously
reported investigations and results, new methods and
diagnostic approaches for male reproductive disorders are
needed. Together with seminal fluid oxidative stress
assessment, blood redox status monitoring and leukocytes
ROS levels, could represent a new potential and less invasive
practice for clinicians to evaluate sperm cells quality and
fertilization ability. The considered redox parameters may
therefore be useful to develop new therapeutic strategies based
on antioxidant supplementation in order to reduce systemic
oxidative stress in infertile men, improving male infertility
diagnosis and management and ART success rate.
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Background: Toll-like receptors (TLRs) are important initiators of innate and acquired
immune responses. However, its role in kidney renal clear cell carcinoma (KIRC) remains
unclear.

Methods: TLRs and their relationships with KIRC were studied in detail by ONCOMINE,
UALCAN, GEPIA, cBioPortal, GeneMANIA, FunRich, LinkedOmics, TIMER and TRRUST.
Moreover, we used clinical samples to verify the expressions of TLR3 and TLR4 in early
stage of KIRC by real-time fluorescence quantitative polymerase chain reaction (RT-
qPCR), flow cytometry (FC) and immunohistochemistry (IHC).

Results: The expression levels of TLRs in KIRC were generally different compared with
adjacent normal tissues. Moreover, the expressions of TLR3 and TLR4 elevated
significantly in the early stage of KIRC. Overexpressions of TLR1, TLR3, TLR4 and
TLR8 in KIRC patients were associated with longer overall survival (OS), while inhibition
of TLR9 expression was related to longer OS. Additionally, overexpressions of TLR1, TLR3
and TLR4 in KIRC patients were associated with longer disease free survival (DFS). There
were general genetic alterations and obvious co-expression correlation of TLRs in KIRC.
The PPI network between TLRs was rather complex, and the key gene connecting the
TLRs interaction was MYD88. The GO analysis and KEGG pathway analysis indicated that
TLRs were closely related to adaptive immunity, innate immunity and other immune-related
processes. RELA, NFKB1, IRF8, IRF3 and HIF1A were key transcription factors regulating
the expressions of TLRs. What’s more, the expression levels of all TLRs in KIRC were
positively correlated with the infiltration levels of dendritic cells, macrophages, neutrophils,
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B cells, CD4+ T cells and CD8+ T cells. Finally, the results of RT-qPCR, FC and IHC
confirmed that TLR3 and TLR4 were significantly elevated in the early stage of KIRC.

Conclusion: The occurrence and development of KIRC are closely related to TLRs, and
TLRs have the potential to be early diagnostic biomarkers of KIRC and biomarkers for
judging the prognosis and immune status of KIRC. This study may provide new insights
into the selection of KIRC immunotherapy targets.

Keywords: KIRC, TLRs, prognosis, diagnosis, biomarkers

INTRODUCTION

Renal cell carcinoma (RCC) can be divided into different
subtypes according to its histological characteristics with
unique genetic and molecular alterations, different clinical
processes and therapeutic responses (Linehan et al., 2010;
Linehan and Ricketts, 2013; Moch et al., 2016). RCC is a
tumor originating from renal epithelium (Sanchez-Gastaldo
et al., 2017; Zou and Mo, 2021). The most common
pathological subtype of RCC is kidney renal clear cell
carcinoma (KIRC), accounting for about 75% of RCC
(Linehan and Ricketts, 2019). Lipid accumulation and storage
are the main pathological features of KIRC (Xiao et al., 2019), and
KIRC is the most common cause of death associated with RCC
(Hsieh et al., 2017). Local KIRC can be treated by surgical
resection, but the treatment of advanced KIRC is still a clinical
challenge, and the 5-years overall survival (OS) rate is 0–20%
(Petitprez et al., 2021). Patients with recurrent or distant
metastasis of KIRC have a poor prognosis and a short median
survival (Zheng et al., 2017), moreover, the prognosis of KIRC
patients is mainly based on tumor lymph node metastasis (TNM)
stage (Pichler et al., 2013; Qin et al., 2013; Zheng et al., 2017), and
there is a lack of biomarkers to determine the prognosis of
patients, so the identification of early diagnostic biomarkers
for KIRC and biomarkers that can assess patient prognosis are
critical to the management and treatment of patients with KIRC.

Toll-like receptors (TLRs) are considered to be the key to
identify pathogens and control immune response (Marin-
Acevedo et al., 2018). TLRs play a crucial role in both innate
and subsequent adaptive immunity because of its ability to sense
foreign substances, known as pathogen-associated molecular
patterns (PAMPs) (Shetab Boushehri and Lamprecht, 2018).
In addition to PAMPs, TLRs can also recognize endogenous
ligands. When tissue damage or cell death occurs, cells secrete
alarmins, also known as danger-associated molecular patterns
(DAMPs), but excessive release of the substance is associated with
autoimmune diseases and cancer (Chan et al., 2012; Zhao et al.,
2014; Urban-Wojciuk et al., 2019). TLRs are expressed in a variety
of cells, including immune cells, fibroblasts, and epithelial cells,
and their primary role is to protect the host against microbial
infection (Kawasaki and Kawai, 2014; Chen et al., 2018). More
and more studies have shown that TLRs also play an important
role in the occurrence and development of cancer (Wang et al.,
2018; Wu et al., 2018), and different TLRs play different roles in
different cancers (Dajon et al., 2017). However, the effect of TLRs
on KIRC and its mechanism are not clear. In this study, we

systematically investigated the expressions of TLRs in KIRC by
ONCOMINE, UALCAN and GEPIA databases, and analyzed the
relationships between the expressions of TLRs and tumor stage
and prognosis in patients with KIRC by GEPIA. In addition, we
obtained the genetic alteration information of TLRs and
spearman’s correlation of co-expression between TLRs through
cBioPortal. We explored the protein-protein interaction (PPI)
network of TLRs by GeneMANIA, and obtained the most critical
gene associated with TLRs by FunRich, and conducted detailed
GO analysis and KEGG pathway analysis of TLRs through
LinkedOmics database. At the same time, we investigated the
key transcription factors regulating TLRs through TRRUST.
What’s more, we studied the relationships between the
expression levels of TLRs in KIRC and the levels of immune
cell infiltration by TIMER, and evaluated the effects of TLRs and
immune cell infiltration on the survival risk of KIRC. Finally, we
used clinical samples to verify the expressions of TLR3 and TLR4
in early stage of KIRC by RT-qPCR, flow cytometry (FC) and
immunohistochemistry (IHC). Our study provides new insights
into TLRs and their relationships with KIRC, contributing to the
research of early diagnosis and therapeutic targets of KIRC.

MATERIALS AND METHODS

ONCOMINE
ONCOMINE is a powerful bioinformatics tool for genome-wide
expression analysis (Rhodes et al., 2004). The expressions of TLRs
in renal cell carcinoma were evaluated by ONCOMINE, so as to
speculate the expressions of TLRs in KIRC. In this study, we used
the following criteria: p value as 0.05, gene rank as top 10%, fold
change as 2 and data type as all (DNA and mRNA).

UALCAN
UALCAN is a website for mining TCGA and MET500 cohort
data. It has a variety of functions, including evaluating the
expressions of different genes in different cancers and the
effect of gene expression on cancer survival (Chandrashekar
et al., 2017). Through the “TCGA Gene Analysis” of the
UALCAN, this study explored the expressions of TLRs in
KIRC compared with normal tissues.

GEPIA
GEPIA is a website that can be used to analyze RNA expression
levels in a variety of tumors and corresponding normal tissues. It
also has many functions such as evaluating the effect of different
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RNA expression levels on the prognosis of cancer (Tang et al.,
2017). In this study, we compared the expressions of TLRsmRNA
in KIRC and corresponding normal tissues, as well as the
expression levels of TLRs in different stage of KIRC through
the “Expression DIY” module of GEPIA. Additionally, we also
investigated the effects of TLRs on the survival of patients with
KIRC through the “Survival” module.

cBioPortal
cBioPortal is a powerful website for analyzing multidimensional
cancer genome data. It can visualize data from cancer tissues and
cells into easy-to-understand genetic and gene co-expression
events (Gao et al., 2013). Based on the TCGA database of 538
cases of renal clear cell carcinoma (TCGA, Firehose Legacy), the
genetic alteration and co-expression of TLRs were obtained from
cBioPortal, the threshold of Protein expression z-scores (RPPA)
and mRNA expression z scores (RNA Seq V2 RSEM) was set
to ±2.0.

GeneMANIA
GeneMANIA is a convenient and versatile website for analyzing
PPI, co-expression, pathways and related functions (Warde-
Farley et al., 2010). This study studied the related functions of
TLRs and its PPI network through GeneMANIA.

FunRich
FunRich (3.1.3 exe), a bioinformatics tool, can perform analysis of
multiple genes or proteins data sets provided (Fonseka et al., 2020).
Through FunRich, we obtained the most critical gene associated with
TLRs, and carried out relevant research on this gene.

LinkedOmics
LinkedOmics is a tool that can be used to analyze the multi-omics
data of 32 cancer types from TCGA (Vasaikar et al., 2018). In this
study, “GO analysis” and “KEGG Pathway” enrichment analysis
of TLRs were carried out using the “Gene Set Enrichment
Analysis” tool in “LinkInterpreter” module. We set the “Rank
Criteria” as meta p-value, the “Minimum Number of Genes Size”
as 3 and the “Simulations” as 500. Statistical analysis was
conducted using Person Correlation Test.

TIMER
TIMER, a reliable utility, allows users to enter specific parameters
to systematically assess immune cell infiltration in different
tumors and its impact on clinical outcomes (Li et al., 2017). In
this study, the correlations between the expressions of TLRs and
the levels of immune cell infiltration in KIRC were evaluated
using the “Gene” module, and the correlations between the
clinical prognosis of KIRC and the expressions of TLRs and
immune cells were evaluated by “Survival” module.

TRRUST
TRRUST is a powerful tool for querying transcription factors that
regulate gene expression, and can provide regulatory information
on the interaction of many transcription factors in humans and
mice (Han et al., 2018). In this study, TRRUST was used to query
the transcription factors related to regulating TLRs.

Tissue Collection
Six KIRC tumor tissues and adjacent nontumor tissues were
obtained from The First Affiliated Hospital of Guangxi Medical
University. The study was approved by the Ethics Committee of
The First Affiliated Hospital of Guangxi Medical University
(Approval Number: 2021KY-E-182) and all the participants in
the experiment gave their informed consent.

Real-Time Fluorescence Quantitative
Polymerase Chain Reaction
Total RNA was extracted by Total RNA Kit I (R6834, Omega).
According to the instructions for the use of PrimeScript RT
reagent kit (RR036a, Takara, Kyoto, Japan). RNA was reverse
transcribed into cDNA, and then cDNA was detected by RT-
qPCR using FastStart Essential DNA Green Master
(06,924,204,001, Roche) and LightCycler® 96 Instrument
(Roche). Three repeated assays were set for each sample.
Using glyceraldehyde-3-phosphate dehydrogenase (GADPH)
as internal reference, the relative expressions of target genes
were analyzed by 2−ΔΔCt method. The primer sequences of
TLR3 were as follows: 5′-TTGCCTTGTATCTACTTTTGG
GG-3’ (Forward); 5′-TCAACACTGTTATGTTTGTGGGT-3’
(Reverse). The primer sequences of TLR4 were as follows: 5′-
AGACCTGTCCCTGAACCCTAT-3’ (Forward); 5′-CGATGG
ACTTCTAAACCAGCCA-3’ (Reverse).

Flow Cytometry
Flow cytometry (FC) was used to analyze the expressions of TLR3
and TLR4 in KIRC relative to adjacent nontumor tissues. Fresh
human KIRC tissue and adjacent nontumor tissue samples were
collected in the First Affiliated Hospital of Guangxi Medical
University and prepared into single cell suspension. Firstly, all
tissues were cut into small pieces with scissors. After washing
twice by D-PBS (311–425-CL, Wisent), the sample was
transferred to digestive juice (0.1 mg/ml collagenase I
(10,103,578,001, Roche) and 1 mg/ml dnase I (10,104,159,001,
Roche) in HBSS (14,025,092, Gibco) solution) and gently shaken
at 37°C for 30 min. Digestion was terminated using 10% fetal
bovine serum (FBS; SH30070.03, HyClone) in RPMI 1640 and the
disaggregated cell suspensions were passed through a 100 μm cell
strainer (352,350, Falcon). The cell suspensions were washed
thoroughly with D-PBS containing 1% FBS. Red blood cells were
eliminated by 1X red blood cell (RBC) lysis buffer (420,301,
BioLegend) for 5 min on ice and lysis was terminated by dilution
with D-PBS containing 1% FBS, filtered through a 40 μm cell
strainer (352,340, Falcon). Then, the cell suspensions were
washed thoroughly with D-PBS containing 1% FBS. Finally,
cells obtained by centrifugation were resuspended using PBS.
Then, single cell suspensions of normal and cancer tissues of
kidney were transferred to Fixation Buffer (420,801, Biolegend)
for 20 min at room temperature and dark. Precipitation obtained
by centrifugation were washed two times by 1× Intracellular
Staining PermWash Buffer (421,002, Biolegend). Then, about 106

cells were incubated with TLR3 (bs-1444R, Bioss) or TLR4 (bs-
20594R, bioss) diluted by 1× Intracellular Staining Perm Wash
Buffer for 20 min at room temperature. Cells were washed two
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times by 1× Intracellular Staining Perm Wash Buffer. The cells
were then incubated with Alexa Fluor 488-conjugated donkey
anti-rabbit IgG antibodies (1:2000, ab150061, Abcam) for 20 min
at room temperature and dark. After washed twice, the cells were
resuspended in PBS for flow cytometry analysis. All samples were
loaded on a BD C6 Plus for flow cytometry analysis. The data
were analyzed using flowjo V10.0.

Immunohistochemistry
Three cases of KIRC tissues and adjacent nontumor tissues from
the First Affiliated Hospital of Guangxi Medical University were
collected. After fixation with 4% paraformaldehyde for 24 h,
paraffin embedding and section were performed. The sections
were dewaxed and hydrated using xylene and gradient alcohol.
Then, the sections were treated with EDTA at pH 8.5 (C1034,
Solarbio) to induce epitope retrieval by heating. After washing
three times with PBS, the sections were incubated with an
endogenous peroxidase inhibitor (SP-9001, ZSGB-BIO) for
10 min. Then the sections were washed with PBS three times
and incubated with normal goat serum blocking solution (SP-
9001, ZSGB-BIO) for 15 min. Primary antibodies (TLR3, 1:200;
TLR4, 1:200) were incubated overnight at 4°C. After 30 min of
room temperature balance the next day, incubated with
Biotinylated Second Antibody (SP-9001, ZSGB-BIO) for
15 min. Then the sections were washed with PBS three times
and incubated with Streptavidin-Enzyme Conjugate (SP-9001,

ZSGB-BIO) for 15 min. After washing three times with PBS, the
sections were incubated with DAB chromogenic fluid (ZLI-9018,
ZSGB-BIO) for 5 min. Finally, after redyeing with hematoxylin,
the slices were fixed with neutral gum. The images were captured
using microscope (Olympus, CX23) and then processed with
ImageJ software (NIH).

Statistical Analysis
All experimental data were statistically analyzed using GraphPad
Prism 7. t-test was used to analyze the expressions of TLR3 and
TLR4 in KIRC tissues relative to adjacent nontumor tissues. In
this paper, p < 0.05 was considered statistically significant.

RESULTS

Toll-Like Receptors Expression Levels in
Renal Cell Carcinoma and Adjacent
Nontumor Tissues
Expressions of TLRs in renal cell carcinoma relative to
adjacent nontumor tissues were retrieved from
ONCOMINE database. The results demonstrated that the
expressions of TLR1, TLR2, TLR3, TLR4, TLR7 and TLR8
were significantly elevated, while the expression of TLR5 was
significantly decreased in RCC tissues (Figure 1). We also

FIGURE 1 | Expression levels of TLRs in kidney cancer. The figure showing expression profiles of TLRs in tumor and paired normal tissue samples from the
ONCOMINE database.
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evaluated the transcript expression levels of TLRs in KIRC by
UALCAN. Compared with nontumor tissues, the expressions
of TLR1 (p = 5.52E-05), TLR2 (p < 1E-12), TLR3 (p = 1.62E-
12), TLR4 (p = 5.63E-07), TLR6 (p = 1.62E-12), TLR7 (p < 1E-
12), TLR8 (p = 1.62E-12), TLR9 (p = 1.62E-10) and TLR10
(p = 1.62E-12) transcripts in KIRC were significantly elevated,
while the transcript expression level of TLR5 was significantly
decreased (Figure 2). Meanwhile, we also used GEPIA to
compare the relative expression levels of all TLRs in KIRC
tissues. The results showed that the TLR3 expression was the
highest compared with other TLRs in KIRC tissues (Figure 3).

To further identify TLRs associated with the occurrence,
progression, and clinical prognosis of KIRC, we evaluated
TLRs expression levels at different pathological stages of
KIRC. We found that there were significant correlations of
TLR3 (p = 0.008) and TLR4 (p = 0.001) expressions with the
pathological stages of KIRC, while there were no significant
correlations in the expressions of other TLRs at different
pathological stages of KIRC (Figure 4). The expressions of
TLR3 and TLR4 elevated significantly in the early stage of
KIRC, indicating that TLR3 and TLR4 played an important
role in the early diagnosis of KIRC. In addition, all these data

FIGURE 2 | The transcript expression levels of TLRs in KIRC. Box plots showing the transcript expression levels of TLR1 (A), TLR2 (B), TLR3 (C), TLR4 (D),
TLR5 (E), TLR6 (F), TLR7 (G), TLR8 (H), TLR9 (I) and TLR10 (J) in KIRC compared with normal tissues.
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indicated that TLRs played a momentous influence in the
occurrence and progression of KIRC.

The Effects of Toll-Like Receptors on the
Prognosis of Kidney Renal Clear Cell
Carcinoma
In order to evaluate the effects of TLRs on the prognostic
value of KIRC, we used GEPIA to assess the correlations of
TLRs with the disease free survival (DFS) and overall survival
(OS) of KIRC (Figures 5, 6). High expressions of TLR1 (p =
0.018), TLR3 (p = 2.6e-09), TLR4 (p = 5.4e-05) and TLR8 (p =
0.035) in patients with KIRC were associated with longer OS
(Figures 5A,C,D,H), while low expression of TLR9 (p =
0.018) in patients with KIRC was associated with longer
OS (Figure 5I). Moreover, we found that high expressions
of TLR1 (p = 0.017), TLR3 (p = 0.00013) and TLR4 (p =
0.00078) in patients with KIRC were associated with longer
DFS (Figures 6A,C,D), but there were no significant
correlations between the expressions of other TLRs and
the DFS of KIRC (Figure 6).

Analyses of Genetic Altetation,
Co-Expression and Protein-Protein
Interaction of Toll-Like Receptors in
Patients With Kidney Renal Clear Cell
Carcinoma
Next, we systematically analyzed the molecular characteristics of
TLRs in patients with KIRC. First of all, we analyzed the genetic
alterations and co-expression of TLRs in 538 KIRC patients using
cBioPortal. In the KIRC samples, the results showed that the
altered/profiled ratio of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6,
TLR7, TLR8, TLR9 and TL10 is 5, 4, 6, 3, 5, 5, 4, 4, 12 and 5%,
respectively (Figure 7A). High mRNA expression and deep
deletion were the most common changes in these samples.
Next, we explored the spearman’s correlation of co-expression
among TLRs. The results showed that there were general positive

correlations between TLRs co-expression (Table 1). Not only
that, we also analyzed the PPI network between TLRs through
GeneMANIA. The functions of these TLRs were mainly
related to toll-like receptor signaling pathway, pattern
recognition receptor signaling pathway, innate immune
response-activating signal transduction, activation of
innate immune response, positive regulation of innate
immune response, positive regulation of defense response
and regulation of innate immune response (Figure 7B). Next,
we further studied the major genes that interacted with TLRs
through FunRich. The results showed that MYD88 was the
key gene to connect the interaction between TLRs
(Figure 7C), indicating that MYD88 plays a crucial role in
the expressions of TLRs.

Gene Set Enrichment Analysis of Toll-Like
Receptors in Kidney Renal Clear Cell
Carcinoma Patients
LinkedOmics was used for gene enrichment analysis of TLRs. We
studied TLRs-related GO analysis and KEGG pathway. Many
biological processes (BP) of significant enrichment of TLRs were
closely related to the occurrence and development of KIRC,
including adaptive immune response, regulation of leukocyte
activation, immune response-regulating signaling pathway,
lymphocyte mediated immunity, leukocyte cell-cell adhesion,
positive regulation of cytokine production, interferon-gamma
production, regulation of immune effector process, regulation
of cell-cell adhesion, positive regulation of defense response,
leukocyte differentiation and lymphocyte activation involved
in immune response (Figure 8A). In addition, side of
membrane, secretory granule membrane, tertiary granule,
receptor complex, specific granule, endocytic vesicle,
membrane region, mast cell granule, cell leading edge, MHC
protein complex, protein complex involved in cell adhesion,
neuron spine, immunological synapse, PML body,
chromosomal region, phagocytic cup and ficolin-1-rich granule
were the most obviously enriched projects in the cellular

FIGURE 3 | Relative expression levels of TLRs in KIRC.
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components (CC) (Figure 8B). The molecular functions (MF)
involved in the enrichment of TLRs mainly included cytokine
binding, antigen binding, cytokine receptor activity, peptide
receptor activity, cytokine receptor binding, MHC protein
binding, SH3 domain binding, coreceptor activity, SH2
domain binding, lipopolysaccharide binding, carbohydrate

binding and purinergic receptor activity (Figure 8C). Among
the TLRs-enriched KEGG pathway, Th17 cell differentiation, Th1
and Th2 cell differentiation, Toll-like receptor signaling pathway,
TNF signaling pathway, JAK-STAT signaling pathway and cell
adhesion molecules were significantly correlated with the
tumorigenesis of KIRC (Figure 8D).

FIGURE 4 | The association of TLRs expression levels with different pathological stages of KIRC. (A) TLR1, (B) TLR2, (C) TLR3, (D) TLR4, (E) TLR5, (F) TLR6, (G)
TLR7, (H) TLR8, (I) TLR9, (J) TLR10.
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FIGURE 5 | Effects of TLRs on overall survival time of patients with KIRC. (A) TLR1, (B) TLR2, (C) TLR3, (D) TLR4, (E) TLR5, (F) TLR6, (G) TLR7, (H) TLR8, (I)
TLR9, (J) TLR10.
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FIGURE 6 | Effects of TLRs on disease free survival time of patients with KIRC. (A) TLR1, (B) TLR2, (C) TLR3, (D) TLR4, (E) TLR5, (F) TLR6, (G) TLR7, (H) TLR8, (I)
TLR9, (J) TLR10.
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FIGURE 7 |Genetic alteration, function enrichment of PPI network, genetic interaction analyses of TLRs in KIRC patients. (A)Genetic alteration of different TLRs in
KIRC. (B) Functional enrichment of TLRs-related PPI network in KIRC. (C) The key gene connecting the TLRs interaction was MYD88.

TABLE 1 | Correlation of co-expression between TLRs.

TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10

TLR1 1.000 0.669 0.502 0.613 0.623 0.750 0.870 0.851 0.061 0.678
TLR2 0.669 1.000 0.157 0.352 0.605 0.774 0.679 0.751 0.297 0.661
TLR3 0.502 0.157 1.000 0.467 0.134 0.261 0.441 0.430 −0.268 0.212
TLR4 0.613 0.352 0.467 1.000 0.359 0.497 0.609 0.607 −0.079 0.365
TLR5 0.623 0.605 0.134 0.359 1.000 0.613 0.631 0.605 0.213 0.531
TLR6 0.750 0.774 0.261 0.497 0.613 1.000 0.746 0.792 0.364 0.696
TLR7 0.870 0.679 0.441 0.609 0.631 0.746 1.000 0.901 0.139 0.732
TLR8 0.851 0.751 0.430 0.607 0.605 0.792 0.901 1.000 0.182 0.694
TLR9 0.061 0.297 −0.268 −0.079 0.213 0.364 0.139 0.182 1.000 0.376
TLR10 0.678 0.661 0.212 0.365 0.531 0.696 0.732 0.694 0.376 1.000
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FIGURE 8 | The GO and KEGG pathway analyses of TLRs in KIRC. (A) Biological processes involved in TLRs in KIRC. (B) Cellular components involved in TLRs in
KIRC. (C) Molecular functions involved in TLRs in KIRC. (D) KEGG pathways involved in TLRs in KIRC.

TABLE 2 | The key transcription factors regulating the expressions of TLRs in KIRC patients.

Key TF Description Target genes p Value FDR

RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) 4 (TLR2, TLR3, TLR7, TLR9) 1.23E-05 2.31E-05
NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 4 (TLR2, TLR3, TLR7, TLR9) 1.27E-05 2.31E-05
IRF8 interferon regulatory factor 8 2 (TLR3, TLR4) 1.39E-05 2.31E-05
IRF3 interferon regulatory factor 3 2 (TLR3, TLR4) 2.64E-05 3.31E-05
HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) 2 (TLR2, TLR6) 0.00084 0.00084
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FIGURE 9 | The relationships between the expression levels of TLRs and immune cells infiltration in KIRC. The associations of immune cells infiltration levels with the
expression levels of TLR1 (A), TLR2 (B), TLR3 (C), TLR4 (D), TLR5 (E), TLR6 (F), TLR7 (G), TLR8 (H), TLR9 (I) and TLR10 (J) in KIRC.
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Key Transcription Factors Associated With
Toll-Like Receptors in Kidney Renal Clear
Cell Carcinoma Patients
Through TRRUST, we explored the transcription factors that
regulated the expression of TLRs in KIRC patients. The
results showed that the key transcription factors of TLRs
were RELA, NFKB1, IRF8, IRF3 and HIF1A (Table 2).
NFKB1 and RELA were key transcription factors that
regulated the expressions of TLR2, TLR3, TLR7 and TLR9.
IRF3 and IRF8 were key transcription factors that regulated
the expressions of TLR3 and TLR4. HIF1A was the key
transcription factor that regulated the expressions of TLR2
and TLR6.

Correlations Between the Expressions of
Toll-Like Receptors and Immune Cell
Infiltration Levels in Kidney Renal Clear Cell
Carcinoma Patients
We comprehensively studied the correlations between the
expressions of TLRs and the levels of immune cell
infiltration in patients with KIRC by TIMER. To our
surprise, the expressions of all TLRs in KIRC were
positively correlated with the infiltration levels of dendritic
cells, neutrophils, B cells, macrophages, CD8+ T cells and
CD4+ T cells (Figure 9). Not only that, we also established a
cox proportional hazard model of the effects of TLRs and six
kinds of immune cells infiltration on patients with KIRC. The
results indicated that B cells (coef = −3.497, p = 0.031),
CD8+T cells (coef = −1.967, p = 0.026), CD4+T cells (coef
= −4.418, p = 0.009), TLR3 (coef = −0.216, p = 0.014), TLR4
(coef = −0.394, p = 0.024) and TLR8 (coef = −0.926, p = 0.002)
were negatively associated with the risk of survival in patients
with KIRC, while dendritic cells (coef = 4.130, p < 0.001) and
TLR9 (coef = 1.311, p < 0.001) were positively associated with
the risk of survival in patients with KIRC (Table 3).

Verification the Expressions of TLR3 and
TLR4 in Early Stage of Kidney Renal Clear
Cell Carcinoma and Adjacent Nontumor
Tissues
Finally, we used clinical samples to compare the differences of
mRNA and protein expressions of TLR3 and TLR4 in the early
stage of KIRC tissues and adjacent nontumor tissues. The
characteristics of patients for verifying mRNA and protein
expression levels were shown in Tables 4, 5, respectively. The
results of RT-qPCR showed that the expression of TLR3 mRNA
in KIRC was significantly elevated than that in adjacent
nontumor tissues, and TLR4 mRNA also showed the same
trend (Figure 10A). What’s more, the results of FC showed
that the relative expression of TLR3 at the protein level in
KIRC was significantly elevated than that in adjacent
nontumor tissues, and the expression of TLR4 at the protein
level showed the same trend (Figures 10B,C). In addition, the
results of IHC were consistent with the results of RT-qPCR and
FC (Figure 10D). Our results confirmed that TLR3 and TLR4
were significantly elevated in the early stage of KIRC compared
with adjacent nontumor tissues.

DISCUSSION

KIRC can be cured in early diagnosis, but when the disease is
metastatic, it is the cancer with the worst prognosis in the urinary
system (Angulo et al., 2021). Therefore, early diagnosis of KIRC is
important for its therapeutic efficacy and prognosis. However,
there is currently a lack of clear clinical biomarkers that can be
used to diagnose the early stage of KIRC (Siegel et al., 20182018),
and prognosis of patients is mainly determined by TNM stage
(Pichler et al., 2013; Qin et al., 2013; Zheng et al., 2017). In
addition, molecular biomarkers can provide the possibility of
accurate prediction of cancer prognosis and early diagnosis
(Tamayo et al., 2011). Therefore, the research on molecular
biomarkers for early diagnosis and prognosis of KIRC patients
could bring great benefits to the majority of KIRC patients and
provide a refined management strategy for KIRC patients.

Toll-like receptor (TLRs) are important initiators of innate
and acquired immune responses (Zhang et al., 2021). Ten kinds
of TLRs have been identified in humans, and they are expressed in
varieties of cells, including B cells, T cells and many other non-
immune cells (Nouri et al., 2021; Rameshbabu et al., 2021). There
is growing evidence that TLRs play a significance role in a variety
of pathological processes, including inflammation, tumor,
autoimmune diseases, immunotherapy and vaccination (Vidya
et al., 2018). Although the studies of the associations between
TLRs and cancer have increased in recent years, there are few
studies on the effects of TLRs on KIRC.

Therefore, we used multiple databases to study the
relationships between TLRs and KIRC. First of all, we
preliminarily studied the expressions of TLRs in kidney cancer
through ONCOMINE, and found that the expressions of TLR1,
TLR2, TLR3, TLR4, TLR7 and TLR8 in kidney cancer were
significantly higher than those in the corresponding normal

TABLE 3 | Cox proportional hazard model of TLRs and 6 kinds of immune cells
infiltration in KIRC patients.

Coef HR 95%CI_l 5%CI_u p.value Sig

B_cell −3.497 0.030 0.001 0.721 0.031 *
CD8_Tcell −1.967 0.140 0.025 0.788 0.026 *
CD4_Tcell −4.418 0.012 0.000 0.324 0.009 *
Macrophage −0.565 0.568 0.029 11.176 0.710
Neutrophil 2.300 9.977 0.067 1,480.962 0.367
Dendritic 4.130 62.203 7.655 505.431 <0.001 ***
TLR1 0.401 1.494 0.932 2.395 0.096
TLR2 0.102 1.108 0.848 1.447 0.452
TLR3 −0.216 0.806 0.679 0.957 0.014 *
TLR4 −0.394 0.674 0.479 0.949 0.024 *
TLR5 −0.082 0.921 0.676 1.254 0.600
TLR6 0.570 1.768 1.012 3.089 0.045 *
TLR7 0.045 1.046 0.621 1.762 0.867
TLR8 −0.926 0.396 0.221 0.711 0.002 **
TLR9 1.311 3.709 1.924 7.148 <0.001 ***
TLR10 0.077 1.080 0.610 1.913 0.793

*p < 0.05, **p < 0.01, ***p < 0.001.
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tissues, while the expression of TLR5 was significantly lower in
kidney cancer. Moreover, we further studied the expressions of
TLRs in KIRC by UALCAN. The results showed that the
expressions of TLRs transcripts in KIRC were elevated than
that in adjacent nontumor tissues, except for TLR5. We then
evaluated the expressions of all TLRs in KIRC tumor tissues by
GEPIA and found that TLR3 was particularly highly expressed in
KIRC, followed by TLR4 and TLR2, which was consistent with
the results of UALCAN database. Then we further evaluated the
expression levels of TLRs at different stages of KIRC, and
discovered that the expressions of TLR3 and TLR4 were
significantly different at different stages, and TLR3 and TLR4
were significantly increased in the early stage of KIRC. Finally, we
also used clinical samples to verify that the expressions of TLR3
and TLR4 were significantly elevated in the early stage of KIRC by
RT-qPCR, FC and IHC. These results suggested that TLRs were
likely to be important biomarkers for early diagnosis of KIRC,
especially TLR3 and TLR4.

Next, we continued to study the effects of TLRs on the
survival outcome of KIRC. Overexpressions of TLR1, TLR3,
TLR4 and TLR8 significantly prolonged the OS in patients
with KIRC, while downregulation of TLR9 significantly
prolonged the OS. Moreover, Overexpressions of TLR1,
TLR3 and TLR4 significantly prolonged the DFS in
patients with KIRC. All of these results suggested that
TLRs had the potential to become important biomarkers
for predicting prognosis in patients with KIRC, especially
TLR1, TLR3, and TLR4.

In order to learn more about TLRs and to understand the
possible mechanisms of the effects of TLRs on KIRC patients, we
investigated the genetic alteration of TLRs and co-expression of
TLRs in KIRC using cBioPortal. There were frequent genetic
alterations of TLRs in KIRC. Elevated mRNA expression and
deep deletion were the most common changes. Some studies have
shown that many factors contribute to the occurrence and
development of tumors, and genetic alterations play an
indispensable role in this process (Yap et al., 2015; Zeng et al.,
2019). What’s more, co-expression of TLRs was found a clear
association, suggesting that all of these TLRs play a momentous
synergistic role in the occurrence and development of KIRC.

Next, we concentrated on the PPI network, GO analysis and
KEGG pathway analysis of TLRs. Not surprisingly, the functions
of these TLRs were mainly related to toll-like receptor signaling
pathway, activation of innate immune response, pattern
recognition receptor signaling pathway, positive regulation of
innate immune response, innate immune response-activating
signal transduction, positive regulation of defense response
and regulation of innate immune response. The GO and
KEGG pathway analyses of TLRs indicated that TLRs were
mainly associated with regulation of leukocyte activation,
immune response-regulating signaling pathway, adaptive
immune response, lymphocyte mediated immunity, leukocyte
cell-cell adhesion, positive regulation of cytokine production,
interferon-gamma production, regulation of immune effector
process, regulation of cell-cell adhesion, cytokine binding,
positive regulation of defense response, MHC protein complex,
protein complex involved in cell adhesion, cytokine receptor
activity, cytokine receptor binding, antigen binding, TNF
signaling pathway, Th1 and Th2 cell differentiation, Toll-like
receptor signaling pathway, Th17 cell differentiation, cell
adhesion molecules and JAK-STAT signaling pathway. Some
studies have demonstrated that tumorigenesis is closely related
to immune dysfunction (Raja et al., 2018; Nakamura et al., 2020).
Moreover, our study indicated that TLRs were closely related to
adaptive immunity, innate immunity and other immune-related
processes, and that genetic alterations in TLRs were very common
in KIRC, so we have every reason to believe that the occurrence of
KIRC is closely related to TLRs.

Next, through FunRich, we found that the most critical
gene that affected the interaction between TLRs was MYD88.
Most TLRs depend on MYD88 for the regulation of multiple
signal pathways and immune responses (Kim et al., 2019).
MyD88 is involved in the development of various cancers by
acting downstream of TLRs (Skorka et al., 2021). The results
of our study and previous conclusions suggested that MYD88
played a bridging role in human immune homeostasis
mediated by TLRs.

In order to learn more about TLRs-related information, we
have also explored TLRs-related transcription factors. Our study
found that the key transcription factors of TLRs were RELA,

TABLE 4 | The characteristics of patients for RT-qPCR.

Patients Sex Years of age Tumor location Tumor size (cm) TNM stage Histological type

Sample1 Male 40 Right 4.8 × 4 × 3.5 T1N0M0 KIRC
Sample2 Male 50 Right 2.5 × 2 × 2 T1N0M0 KIRC
Sample3 Female 41 Left 4.5 × 4 × 4 T1N0M0 KIRC

TABLE 5 | The characteristics of patients for FC.

Patients Sex Years of age Tumor location Tumor size (cm) TNM stage Histological type

Sample4 Male 38 Right 2.5 × 2 × 1.5 T1N0M0 KIRC
Sample5 Male 54 Right 2.5 × 2 × 2 T1N0M0 KIRC
Sample6 Female 64 Left 9 × 9 × 7.5 T2N0M0 KIRC
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FIGURE 10 | Differential expressions of TLR3 and TLR4 in KIRC and adjacent nontumor tissues. (A) Expression levels of TLR3 mRNA and TLR4 mRNA in KIRC
relative to adjacent nontumor tissues. (B, C) The proportion of TLR3+ or TLR4+ cells in KIRC and adjacent nontumor tissues was detected by flow cytometry. (D) The
percentage contribution of TLR3+ or TLR4+ cells in KIRC and adjacent nontumor tissues was detected by IHC. Control group: adjacent nontumor tissues. *p < 0.05; **p
< 0.01; ***p < 0.001; ****p < 0.0001.
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NFKB1, IRF8, IRF3 and HIF1A. Previous studies demonstrated
that RELA phosphorylation involved in the progression of
various diseases including inflammatory disease and cancer by
regulating NF-κB signaling (Lu and Yarbrough, 2015) and RELA
also played a key role in mediating oncogene-induced aging
(Lesina et al., 2016). NFKB1 is a cancer and inflammation
inhibitor that plays an inhibitory role in the occurrence and
development of a number of cancers by inhibiting the NF-κB
signaling pathway (Cartwright et al., 2016; Concetti and Wilson,
2018). In addition, studies have shown that the loss of NFKB1 can
lead to inflammation and the progression of cancer by increasing
the expression of TNF (Low et al., 2020). IRF8, a tumor
suppressor, is also a potential therapeutic option to overcome
tumor drug resistance (Wu et al., 2020). IRF3, interferon
regulatory factor 3, a tumor suppressor, plays an important
role in inhibiting infection and cancer (King et al., 2017; Tian
et al., 2020). HIF1A is a hypoxia inducible factor, and its absence
increases tumor aggressiveness and metastatic activity (Tiwari
et al., 2020). All these results provide insight into the complicated
relationship among KIRC, TLRs and transcription factors. In
addition, it also provides a further basis for TLRs to become early
diagnostic biomarkers and judge the prognosis of patients
with KIRC.

The tumor promoting or anticancer effects of TLRs may be
related to the tumor microenvironment of immune cell
infiltration and the types of cancers (Patra et al., 2020),
therefore, we investigated the relationship between the
expressions of TLRs in KIRC and the levels of immune cells
infiltration by TIMER. Surprisingly, our results showed that the
expressions of all TLRs in KIRC were significant positively
correlated with the infiltration levels of dendritic cells,
macrophages, neutrophils, B cells, CD8+ T cells and CD4+

T cells. There is growing evidence that immune cells
infiltration is an important determinant of tumor therapeutic
response and clinical outcome (Bindea et al., 2013; Liu et al.,
2017). These results, combined with the differential expression of
TLRs in KIRC and the significant effects of TLRs expressions on
the prognosis of patients with KIRC, indicate that TLRs have the
potential to be early diagnostic biomarkers of KIRC and
biomarkers for judging the prognosis and immune status of
KIRC patients. Further studies are needed to verify our results
and explore how TLRs affect the immune microenvironment
of KIRC.

CONCLUSION

In summary, the expression levels of TLRs in KIRC were
generally different compared with adjacent normal tissues.
Moreover, the expressions of TLR3 and TLR4 elevated
significantly in the early stage of KIRC. Different TLRs
had different effects on the prognosis of KIRC patients.
TLRs can be used as important biomarkers for early
diagnosis and prognosis assessment in patients with
KIRC, especially TLR3 and TLR4. There were general
genetic alterations and obvious co-expression correlation

of TLRs in KIRC. The PPI network between TLRs was
rather complex, and the key gene connecting the TLRs
interaction was MYD88. The GO analysis and KEGG
pathway analysis indicated that TLRs were closely related
to adaptive immunity, innate immunity and other immune-
related processes. RELA, NFKB1, IRF8, IRF3 and HIF1A were
key transcription factors regulating the expressions of TLRs.
What’s more, the expressions of all TLRs in KIRC were
significantly positively correlated with the infiltration
levels of dendritic cells, macrophages, neutrophils, B cells,
CD8+ T cells and CD4+ T cells. Taken together, the
occurrence and development of KIRC is closely related to
TLRs, and TLRs have the potential to be early diagnostic
biomarkers of KIRC and biomarkers for judging the
prognosis and immune status of KIRC patients. The
results of our study may provide new insights into the
selection of KIRC immunotherapy targets.
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Validated Impacts of
N6-Methyladenosine Methylated
mRNAs on Apoptosis and
Angiogenesis in Myocardial Infarction
Based on MeRIP-Seq Analysis
Yingjie Zhang1†, Wenjie Hua1†, Yini Dang2†, Yihui Cheng1†, Jiayue Wang1, Xiu Zhang1,
Meiling Teng1, Shenrui Wang1, Min Zhang2, Zihao Kong2, Xiao Lu1* and Yu Zheng1*

1Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2Department of
Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Objectives: N6-methyladenosine (m6A) is hypothesized to play a role in the regulation of
pathogenesis of myocardial infarction (MI). This study was designed to compare
m6A-tagged transcript profiles to identify mRNA-specific changes on pathophysiological
variations after MI.

Methods: N6-methyladenosine methylated RNA immunoprecipitation sequencing
(MeRIP-seq) and RNA sequencing (RNA-seq) were interacted to select m6A-modified
mRNAs with samples collected from sham operated and MI rat models. m6A methylation
regulated mRNAs were interacted with apoptosis/angiogenesis related genes in
GeneCards. Afterwards, MeRIP-quantitative real-time PCR (MeRIP-qRT-PCR) was
performed to measure m6A methylation level of hub mRNAs. m6A methylation variation
was tested under different oxygen concentration or hypoxic duration in H9c2 cells and
HUVECs. In addition, Western blot and qRT-PCR were employed to detect expression of
hubmRNAs and relevant protein level. Flow cytometry and Tunel assay were conducted to
assess apoptotic level. CCK-8, EdU, and tube formation assay were performed to
measure cell proliferation and tube formation ability.

Results: Upregulation of Mettl3 was firstly observed in vivo and in vitro, followed by
upregulation of m6A methylation level. A total of 567 significantly changed m6A methylation
peaks were identified, including 276 upregulated and 291 downregulated peaks. A total of
576 mRNAs were upregulated and 78 were downregulated. According to combined
analysis of MeRIP-seq and RNA-seq, we identified 26 significantly hypermethylated and
downregulated mRNAs. Based on qRT-PCR and interactive analysis, Hadh, Kcnn1, and
Tet1 were preliminarily identified as hub mRNAs associated with apoptosis/angiogenesis.
MeRIP-qRT-PCR assay confirmed the results from MeRIP-seq. With the inhibition of Mettl3
in H9c2 cells and HUVECs, downregulated m6A methylation level of total RNA and
upregulated expression of hub mRNAs were observed. Increased m6A level was verified
in the gradient context in terms of prolonged hypoxic duration and decreased oxygen
concentration. Under simulated hypoxia, roles of Kcnn1 and Tet1 in angiogenesis andHadh,
Tet1, and Kcnn1 in apoptosis were further confirmed with our validation experiments.
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Conclusion: Roles ofm6A-modifiedmRNA transcripts in the context ofMIwere preliminarily
verified. In the context of m6A methylation, three hub mRNAs were validated to impact the
process of apoptosis/angiogenesis. Our study provided theoretical basis and innovative
targets for treatment of MI and paved the way for future investigations aiming at exploring
upstream epigenetic mechanisms of pathogenesis after MI.

Keywords: myocardial infarction, m6A methylation, mRNA, angiogenesis, apoptosis

1 INTRODUCTION

Myocardial infarction (MI), due to the reduction or interruption of
the blood supply of the coronary artery, always results in ischemia
of the corresponding myocardium leading to myocardial necrosis
(Saleh and Ambrose, 2018). It is characterized by an elevated ST-
segment in the electrocardiogram, and is one of the most common
causes of death worldwide (Lu et al., 2015). At present, the
reperfusion therapy to restore the blood circulation of the heart
has become a common method for the treatment of MI, however
the subsequent reperfusion injury would impair endothelial
function and aggravate myocardial cell death (Thygesen et al.,
2007; Puymirat et al., 2019). Upon these concerns, exploration of
strategies on compensating myocardial cell regeneration and death
after MI becomes the most warranted task in this research field. In
addition, understanding the microscopic regulations in MI might
be essential to reveal the pathophysiological mechanisms behind
MI and might shed light on uncovering novel therapies for the
treatment of MI.

Robust studies have explored the mechanisms of myocardial cell
regeneration and death after MI. Integrin-linked kinase (ILK) has
been reported to be an important factor regulating apoptosis and
angiogenesis. In hypoxic condition, upregulation of ILK increased
phosphorylation of protein kinase B and mammalian target of
rapamycin, resulting in enhanced mesenchymal stem cells (MSCs)
survival and vascular endothelial growth factors expression level. In
addition, transplantation of MSCs rich in ILK could further
improve angiogenesis at 3 weeks (Zeng et al., 2017). Exosomes
derived from TIMP2-modified MSCs significantly increased the
expression of antiapoptotic bcl-2, followed by decreased
proapoptotic Bax and pro-caspase9 level, and finally attenuated
apoptosis in MI injury via Akt/Sfrp2 pathway in vivo (Ni et al.,
2019). However, the upstream regulation of these pathways has not
been well documented. Recent studies on epigenetic regulation
have revealed the relationships between epigenetic modifications
and cardiovascular diseases. Epigenetics, including the reversible
modification of DNA and protein, were proven to independently
regulate gene expression of DNA and protein. It was not until
recently that RNAmodification was believed to be the third layer of
epigenetics, regulating RNA processing and metabolism. There has
been uncovered with more than 100 modifications in RNAs,
including 5-methylcytosine (m5C), N6-methyladenosine (m6A),
and N1-methyladenosine (m1A). Among which, m6A
methylation was demonstrated to be the common and abundant
internal modification of eukaryotic messenger RNA (mRNA)
(Meyer et al., 2012). It is a dynamic reversible process regulated
by methyltransferases (writers), demethylases (erasers), and

binding proteins (readers). ALKBH5 was responsible for
reducing m6A methylation and ALKBH5 (one of the
demethylases) knockout mice exhibited decreased cardiac
regenerative ability and cardiac function after neonatal apex
resection (Han et al., 2021). The expression of METTL3 was
increased in cardiac fibrotic tissue with chronic myocardial
infarction. It promoted proliferation of cardiac fibroblasts,
fibroblast-to-myofibroblast transition, and collagens
accumulation, while silence of METTL3 (one of the
methyltransferases) alleviated cardiac fibrosis in MI mice (Li
et al., 2021). These findings emphasized the importance of m6A
methylation in individual mRNAs and provided new insights into
therapeutic strategies. Nonetheless, there is limited knowledge of
the whole picture of m6A modification on mRNAs after MI and
how performance of m6A methylated mRNAs on the downstream
functional phenotypes.

Upon the above concerns, we aimed to systematically compare the
m6A-tagged transcript profiles of heart tissue from rat MI models
with those from sham operated (SO) rats to identify gene-specific
changes inmRNAmethylation and contribute to the development of
MI. Specifically, we first observed the change of methyltransferases in
vivo and vitro followed by the verification of m6A methylation in the
gradient context of prolonged hypoxic duration and decreased
oxygen concentration. We then identified m6A methylation
regulated mRNAs between the SO group and the MI group by
combined analysis of N6-methyladenosine methylated RNA
immunoprecipitation sequencing (MeRIP-seq) and RNA
sequencing (RNA-seq), then top 10 hypermethylated and
downregulated mRNAs were selected and validated in rats
through quantitative real-time reverse transcription-polymerase
chain reaction (qRT-PCR). Afterward, we interacted the hub
mRNAs with genes related to apoptosis and angiogenesis in open-
source datasets. We finally validated the role of methyltransferase in
the regulation of m6A methylation and selected hub mRNAs in
angiogenesis and apoptosis. With the exploration of potential roles
for the m6A modified mRNA transcripts in the physiological and
pathological mechanisms underlying MI, a theoretical basis and
innovative targets could be identified for the treatment of MI.

2 MATERIALS AND METHODS

2.1 Models
2.1.1 Animal MI Model
Male Sprague-Dawley (SD) rats aged 10 weeks and weighing
250–300 g were collected from Beijing Vital River Laboratory
Animal Technology Co. Ltd. The current study was carried out
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in accordance with the guidelines of the Chinese Council on Animal
Protection and approved by the Institutional Animal Care and Use
Committee of Nanjing Medical University (reference number of
10091). SD rats were randomly divided into the sham operated (SO)
group and the myocardial infarction (MI) group. Ligation of left
anterior descending coronary artery was conducted in the MI group
and myocardial ischemia was confirmed with elevated ST-segment
in electrocardiogram. However, string went through the
corresponding myocardial region without ligation in the SO
group. Finally, heart samples were collected from the infarction
area in the MI group and the corresponding region in the SO group.
Heart samples were refrigerated at −80°C for further detection.

2.1.2 Cell Hypoxic Model
H9c2 cells were cultured in Dulbecco’s modified eagle medium
(Gibico, Waltham, CA) supplemented with 10% fetal bovine
serum (Gibico, Waltham, CA) and 1% of penicillin/
streptomycin at 37°C in an incubator with 95% humid air and
5% CO2 (Wang M. et al., 2020). Human umbilical vein
endothelial cells (HUVECs) were maintained in endothelial
cell growth medium-2 bullet kit (Lonza, Basel, BS, CH) at
37°C in an incubator with 95% humid air and 5% CO2 (Chen
et al., 2020). To simulate myocardial ischemia, H9c2 cells and
HUVECs were managed with hypoxia. Specifically, they were
placed in a hypoxic incubator containing 94% N2, 5% CO2, and
1% O2 for 24 h. Meanwhile, the control group was maintained in

a normal atmosphere of 95% air and 5% CO2 at 37°C (Zhu et al.,
2021). Afterward, H9c2 cells and HUVECs were cultured in
consistent 1% O2, 2% O2, and 5% O2 hypoxic condition for
24 h to explore the impact of different concentrations of oxygen
on m6A methylation level. These cells were also cultured with 1%
oxygen concentration for 12, 24, and 48 h to explore the impact of
different hypoxic duration on m6A methylation level. H9c2 cells
and HUVECs were then treated with 25 μM Mettl3 inhibitor
(STM2457) for 24 h to explore the role of Mettl3 on m6A
methylation level (Yankova et al., 2021).

2.2 MeRIP-Seq and Bioinformatic Analysis
The detailed procedure of MeRIP-Seq analysis and validation of
newly discovered hub mRNAs on apoptosis and angiogenesis are
demonstrated in Figure 1.

2.2.1 Methylated RNA Immunoprecipitation
Sequencing
Total RNA was isolated and purified using TRIzol reagent
(Invitrogen, Carlsbad, CA) following the manufacturer’s
procedure. The RNA amount and purity of each sample was
quantified using NanoDrop ND-1000 (NanoDrop, Wilmington,
DE). The RNA integrity was assessed by Bioanalyzer 2100 (Agilent,
Santa Clara, CA) with RIN number >7.0 and confirmed by
electrophoresis with denaturing agarose gel. Afterward,
Epicentre Ribo-Zero Gold Kit (Illumina, San Diego, CA) was

FIGURE 1 | Flowchart of study procedure. SO, sham operated; MI, myocardial infarction; qRT-PCR, quantitative reverse transcription polymerase chain reaction;
MeRIP-qRT-PCR, MeRIP-quantitative real-time PCR; CCK-8, cell counting kit-8; EdU, 5-ethynyl-20-deoxyuridine.
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used to deplete ribosomal RNA (rRNA) from total RNA. The
ribosomal-depleted RNA was fragmented into small pieces using
Magnesium RNA Fragmentation Module (New England Biolabs,
Ipswich, MA). Then the cleaved RNA fragments were incubated
with m6A-specific antibody (Synaptic Systems,Walldorf, BW, DE)
in immunoprecipitation (IP) buffer (50 mM Tris-HCl, 750 mM
NaCl, and 0.5% Igepal CA-630). Subsequently, the IP RNA was
reverse transcribed to create cDNA by SuperScript™ II Reverse
Transcriptase (Invitrogen, Waltham, CA). Eluted fragments
containing m6A and untreated input control fragments were
converted to construct the strand-specific cDNA library by
dUTP method (Dominissini et al., 2013). The average insert
size of the final cDNA library was 300 ± 50 bp. We finally
performed 2 × 150 bp paired-end sequencing (PE150) with an
illumina Novaseq™ 6000 (LC-Bio Technology CO., Ltd.,
Hangzhou, China) (Meng et al., 2014; Li M. et al., 2019).

2.2.2 RNA-Seq
Total RNA was isolated and purified using TRIzol reagent
(Invitrogen, Carlsbad, CA). For RNA-seq analysis, rRNA was
depleted, according to the protocol of the Epicentre Ribo-Zero
Gold Kit (Illumina, San Diego, CA). Subsequently, the ribosomal-
depleted RNA was fragmented into small pieces using
Magnesium RNA Fragmentation Module (New England
Biolabs, Ipswich, MA). The fragments were converted to
construct the strand-specific cDNA library with dUTP method
and were sequenced by illumina Novaseq™ 6000 (LC-Bio
Technology CO., Ltd., Hangzhou, China) (Wang Q. et al., 2020).

2.2.3 Bioinformatic Analysis
Fastp software was used to remove the reads containing adaptor
contamination, low quality bases, and undetermined bases with
default parameters (Chen et al., 2018). Then sequence quality of
IP and input samples were verified with fastp. HISAT2 were used
to map reads to the reference genomeRattus norvegicus (Version
101) (Kim et al., 2015). Mapped reads of IP and input libraries
were then provided with “exomePeak” package (Meng et al.,
2014). m6A peaks from the corresponding libraries were
visualized with IGV software (Broad Institute, Cambridge,
MA) (Thorvaldsdóttir et al., 2013). MEME and HOMER
software were used for de novo and known motif findings
followed by localization of the motif with respect to peak
summit (Bailey et al., 2009). The information of m6A peaks
was obtained by intersection with gene architecture using
“ChIPseeker” package (Yu et al., 2015). Then StringTie was
used to obtain expression for all mRNAs from input libraries
by calculating Fragments Per Kilobase of exon model per Million
mapped fragments (FPKM) (Pertea et al., 2015). The
differentially expressed mRNAs were selected with |log2FC|>1
and p value < 0.05 by “edgeR” package (Robinson et al., 2010).

2.3 Validation
Expression of top 10 hypermethylated and downregulated mRNAs
was first validated with qRT-PCR testing. Subsequently, the m6A
RNA methylation level was measured in histological and cellular
level. qRT-PCR and Western blot were performed to verify the
expression of genes and corresponding proteins.MeRIP-quantitative

real-time PCR was performed to measure m6A methylation level of
hub genes. Flow cytometry and Tunel assay were carried out to
assess the apoptosis level. Cell counting kit-8 (CCK-8), 5-ethynyl-20-
deoxyuridine (EdU), and tube formation assay were performed to
test cell proliferation and tube formation ability.

2.3.1 Quantification of Total m6A Methylation Level
m6A RNA methylation level was detected using the EpiQuik™
m6A RNAMethylation Quantification kit (Epigentek, New York,
NY) according to the manufacturer’s protocol (Liu et al., 2020).
Briefly, a negative control and a standard curve consisting of six
different concentrations (ranged from 0.02 to 1 ng of m6A) were
prepared. There was 200 ng of total RNA used for each reaction.
After RNA binding to the 96-well plates, diluted capture anti-
m6A antibodies were added, then 100 µl of developer solution to
each well, and incubated at room temperature for 10 min without
light. There was 100 µl of stop solution added afterward to each
well to stop enzyme reaction. The optical density at 450 nm was
measured using a microplate reader (Thermo Fisher Scientific,
Waltham, CA). Percentage of m6A within the total RNA was
calculated (Dang et al., 2020; Liu et al., 2020).

2.3.2 Screening Strategy for Angiogenesis and
Apoptosis Related Genes
We first obtained m6A methylation regulated hub genes by qRT-
PCR, then, the hub genes were interacted with genes related to
angiogenesis and apoptosis in the GeneCards. Results were
visualized by Venn diagram (Liang et al., 2019).

2.3.3 MeRIP-Quantitative Real-Time PCR
RNA sample from myocardial tissue and H9c2 cells was
fragmented (300 nt) after incubation with fragmentation buffer
at 94°C for 4 min. A total of 5% of fragmented RNA was saved as
input control. The procedure of m6A-IP sample preparation was
similar to that of MeRIP-seq (Deng et al., 2021). Finally, both
input control and m6A-IP samples were subjected to qRT-PCR
with gene-specific primers listed in Supplementary Table S1.

2.3.4 qRT-PCR
Total RNA was extracted from cells and myocardial tissues and
complementary DNA (cDNA) was synthesized using total RNA
with the PrimeScript™ RT reagent kit with gDNA Eraser (TaKaRa,
Kusatsu, Japan) according to themanufacturer’s instructions. qRT-
PCR was performed with the Pro-17 Steponeplus system (Applied
Biosystems, Carlsbad, CA) (Saeidi et al., 2018). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as internal control
to normalize the expression of genes. There are 25 pairs of primer
listed in Supplementary Table S2. Relative expression of
differentially expressed genes were analyzed with the 2−△△CT

method (Jozefczuk and Adjaye, 2011).

2.3.5 Western Blot Analysis
H9c2 cells and HUVECs were lysed using RIPA lysis buffer
(Beyotime, Shanghai, China). Protein concentration was
determined using the BCA Protein Assay kit (New Cell and
Molecular Biotech, Suzhou, China). Specifically, the
corresponding protein was separated with 7.5 and 10% SDS-
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PAGE and transferred to polyvinylidene difluoride membranes.
Afterward, the membranes were blocked with 5% skim milk for
2 h in room temperature (Qiu et al., 2020). They were incubated
with primary antibodies against GAPDH (Proteintech, Wuhan,
China); Tet1 (Signalway Antibody, College Park, MD); Hadh
(Signalway Antibody, College Park, MD); Kcnn1 (Signalway
Antibody, College Park, MD); Caspase3 (Proteintech, Wuhan,
China); and Cleavd-caspase3 (Cell Signaling Technology,
Danvers, MA); bcl-2 (Abcam, Cambridge, MA); Bax (Abcam,
Cambridge, MA); HIF-1α (Abcam, Cambridge, MA); and Mettl3
(Proteintech, Wuhan, China) overnight at 4°C. Then, the
membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (Abcam, Cambridge, MA) for
1 h. The bands were analyzed with chemiluminescence Western
blotting detection system (Tanon, Shanghai, China) (Gu et al., 2018;
Ren et al., 2018; Li X. et al., 2020).

2.3.6 Flow Cytometry
Annexin V-Fluorescein isothiocyanate (FITC) and propidium
iodide (PI) staining kit (Vazyme, Nanjing, China) were used to
identify apoptotic H9c2 cells. Flow cytometry analysis was
performed through Cytoflex (Beckman Coulter, Brea, CA) and
data was analyzed using FlowJo software (Tree Star, SanCarlos,
CA). The second quadrant (FITC+/PI+) showed the late
apoptotic cells and the fourth quadrant (FITC+/PI-) presented
the early apoptotic cells (Luo et al., 2019; Zhang et al., 2019; Wei
J. et al., 2020; Li Y. et al., 2020).

2.3.7 Tunel Analysis
TUNEL BrightGreen Apoptosis Detection kit (Vazyme, Nanjing,
China) was used for Tunel staining based on the manufacturer’s
instructions. Briefly, the H9c2 was fixed in 4% PFA at 4°C for
25 min. Then the cells were incubated with Proteinase K (20 μg/
ml) for 5 min. After incubation with 1×equilibration buffer for
30 min, the cells were treated with BrightGreen Labeling Mix and
Recombinant TdT Enzyme for 1 h at 37°C. The nucleus was
stained with DAPI (2 μg/ml) away from light for 10 min (Shi
et al., 2021). The Tunel staining images were photographed with a
fluorescence microscope (Bio-tek, Winusky, VT) (Zhang et al.,
2016; Li T. et al., 2019; Luo et al., 2019; Sharma et al., 2021).

2.3.8 Cell Counting Kit-8
Cell suspension with a concentration of 5×103 each well was
digested with trypsin and inoculated into a 96-well plate with
100 μL per well (Yu et al., 2021). After conventional culture for 24,
48, and 72 h, 10 μl CCK-8 solution (MedChemExpress, Shanghai,
China) was added to each well and incubated for another 2 h. The
absorbance value at 450 nm was finally measured by enzyme
labeling instrument (Chen et al., 2019; Chen and Ling, 2019; Li X.
et al., 2020; Zhou et al., 2020; Sun et al., 2021).

2.3.9 EdU Assay
EdU incorporation assay kit (Ribobio, Guangzhou, China) was
used for the measurement of cell proliferation (Liu et al., 2018).
The cell suspension with a concentration of 8×103 each well was
digested with trypsin and inoculated into a 96-well plate with
100 μl per well, followed by the addition of 50 μM EdU diluent.

After 2 h, cells were fixed in 4% paraformaldehyde, cultivated
with 100 μl of 0.5% Triton X-100 and mixed with 100 μL of
1×Apollo® 567 fluorescent staining solution (Xu et al., 2019). The
cell nucleus was finally subjected to DAPI staining in a dark
environment. Images were finally obtained from Cytation1 (Bio-
tek, Winusky, VT).

2.3.10 Tube Formation Assay
Matrigel (BD Biosciences, Franklin Lake, NJ) was used for tube
formation assay to assess the tube-forming ability of HUVECs
(Cheng et al., 2017). Briefly, it was dissolved at 4°C overnight, and
each well of the 96-well plate was then coated with 50 μl of
Matrigel. The plate was then left to polymerize at 37°C for 1 h
incubation. The HUVECs (2×104 cells/100 μl) were then seeded
into each well. After 6 h of incubation at 37°C, tube formation was
photographed at ×50 magnification. Tube formations were
calculated with the number of branches using ImageJ software
(National Institutes of Health, Bethesda, MD) (Li et al., 2017;
Hanlon et al., 2019).

2.4 Statistical Analysis
Data were presented as mean with standard deviation. Results of
qRT-PCT, MeRIP-qRT-PCR, total m6A methylation level, tube
formation assay, and flow cytometry were analyzed with
Student’s t-test. CCK-8 assay data across 24, 48, and 72 h was
analyzed with two-way analysis of variance (ANOVA). Statistical
significance was considered with p value less than 0.05. All
analyses were performed using SPSS 22.0 (International
Business Machines Corporation, Armonk, NY) and GraphPad
Prism 9 (GraphPad, San Diego, CA).

3 RESULTS

3.1 Overview of Methylated RNA
Immunoprecipitation Sequencing
In the MeRIP-seq library, on average 86,616,150 and 90,985,883
valid reads were obtained in two groups of myocardial samples,
while 81,704,807 and 90,279,353 valid reads were obtained in the
RNA-seq library (Supplementary Table S3). In myocardial IP
samples, the average mapping ratios of valid reads in the SO and
the MI groups were 90.79 and 91.50%, respectively. The average
mapping ratios of valid reads were 92.53 and 91.78% in the input
samples (Supplementary Table S4). The valid data that mapped
to the reference genome can be defined as the alignment to exon,
intron, and intergenic according to the regional information. The
average ratios of IP and input samples to exons were 67.91 and
55.20% in the SO group while 68.34 and 52.29% in the MI group,
respectively (Supplementary Figure S1).

3.2 Mettl3 Induced Upregulation of m6A
Methylation Level in Myocardial Tissue,
H9c2 Cells, and HUVECs
Upregulation of Mettl3 was first observed in vivo (rat MI model)
and in vitro (hypoxic H9c2 cells and HUVECs), followed by
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upregulation of m6A methylation level (Figures 2A,B). Through
the analysis of MeRIP-seq, we identified 17,627 distinct m6A
peaks in 9889 mRNAs in the SO samples and 16,933 distinct m6A
peaks in 9764mRNAs in theMI samples (Figure 2C). There were
567 significantly variated peaks identified, in which 276 peaks
were upregulated and 291 were downregulated (Figure 2D). The
top 20 differentially m6A methylated peaks are shown in Table 1.
We analyzed the distribution patterns of differentially m6A
methylated peaks. A total of 45.54% of the m6A methylated
peaks harbored in the 3′UTR and 16.36% enriched in the
5′UTR (Figure 2E). All differentially m6A methylated peaks
within mRNAs were mapped to chromosomes (Figure 2F).
The top five chromosomes harboring the most m6A peaks
were listed as follows: chr1 (646), chr10 (436), chr11 (130),
chr12 (176), and chr13 (170). Finally, we conducted motif
prediction for samples and demonstrated the predicted motif
in Figure 2G.

3.3 Hub mRNAs Associated with
Angiogenesis and Apoptosis
Based on the results of RNA-seq, 576 mRNAs were significantly
upregulated, and 78 mRNAs were downregulated. The top 20
differentially expressedmRNAs are listed inTable 2. Volcano plots
and heatmap plots of differentially expressed mRNAs are shown in
Figures 3A,B. Combined analysis of m6A methylation and
mRNAs expression levels was performed according to the
following thresholds: |log2FC|>1, p < 0.05 for m6A methylation
and |log2FC|>0.5, p < 0.05 for mRNAs expression. As a result, we
obtained 377 mRNAs where their m6A peaks and mRNA
expression both changed significantly. The relationships
between m6A methylation and mRNAs expression are shown in
the four-quadrant graph and Venn diagram (Figures 3C,D).
Accordingly, there were 124 significantly hypomethylated and
upregulated mRNAs, 26 significantly hypermethylated and

FIGURE 2 | Mettl3 induced upregulation of m6A methylation level in myocardial tissue, H9c2 cells, and HUVECs. (A) m6A methylation level of MI rat and hypoxic
cells; (B) expression of m6Amethylation enzymes in myocardial tissue samples and cells by qRT-PCR; (C) number of peaks in the SO andMI group; (D) volcano plots for
differentially methylatedm6A peaks; (E) distribution of differentially methylatedm6A peaks in the SO andMI group; (F) distribution patterns of differentially m6Amethylated
peaks on chromosomes; (G) sequence motif for the m6A peak regions. UTR, untranslated region; Exon, expressed region; SO, sham operated; MI, myocardial
infarction. *p < 0.05.
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downregulated mRNAs, 173 significantly hypermethylated and
upregulated, and 54 significantly hypomethylated and
downregulated mRNAs. The top 10 hypermethylated and
downregulated mRNAs are list in Table 3. Meanwhile, we
provided the detailed information of the top 10
hypermethylated and upregulated mRNAs, the top 10
hypomethylated and downregulated mRNAs, and the top 10
hypomethylated and upregulated mRNAs in Supplementary
Tables S5–S7. Expression of hub mRNAs, including Hadh,
Arfgef3, Sez6, Psmg3, Kcnn1, Tet1, Myo1b, Ptprz1, Ank2, and
Pwwp3b were compared between the SO and the MI groups by
qRT-PCR testing. Among them, the expression of Hadh, Arfgef3,

Sez6, Kcnn1, and Tet1 were significantly downregulated in the MI
group (Figure 3E). After interaction of the above three hub
mRNAs with apoptosis and angiogenesis-related genes in
GeneCards, Hadh, Tet1, and Kcnn1 were finally identified to be
significantly associated with apoptosis, and Tet1 and Kcnn1 were
significantly correlated to angiogenesis (Figure 3F).

3.4 m6A Methylation Influenced by Hypoxia
in a Time- and Dose-Dependent Pattern
Upon our previous observation, m6A methylation level was
upregulated by Mettl3 in vivo and in vitro (Figures 2A,B). We

TABLE 1 | Top 20 differentially methylated mRNAs

mRNA Chromosome Peak region Peak start Peak end p-value Log2FC Up/Down

Bach1 chr11 3′ UTR 27,397,948 27,398,514 6.30E-86 8.96 Up
Rrn3 chr10 3′ UTR 3,213,487 3,213,996 9.99E-270 8.32 Up
Senp5 chr11 Exon 72,064,886 72,067,150 2.45E-09 8.06 Up
LOC100910130 X Exon 156,395,518 156,397,956 1.00E-11 7.68 Up
Hnrnph3 chr20 Exon 27,176,410 27,177,224 1.26E-33 6.91 Up
Gspt1 chr10 Exon 4,412,071 4,426,636 8.50E-03 6.39 Up
Bdkrb1 chr6 3′ UTR 129,439,859 129,440,455 1.20E-04 6.38 Up
Scart1 chr1 Exon 212,701,635 212,704,224 7.20E-02 5.70 Up
Natd1 chr10 5′ UTR 45,065,415 45,071,643 2.90E-02 5.39 Up
Gata6 chr18 Exon 2,417,213 2,417,483 6.46E-08 5.18 Up
Tap2 chr20 5′ UTR 3,995,544 3,996,581 7.94E-26 −9.94 Down
Nfat5 chr19 5′ UTR 38,533,016 38,533,316 3.98E-25 −9.69 Down
Sp3 chr3 Exon 59,646,075 59,646,253 1.25E-50 −9.63 Down
Cd248 chr1 Exon 220,353,416 220,354,637 1.26E-50 −8.79 Down
AABR07048992 chr5 5′ UTR 99,032,868 99,033,107 1.00E-132 −8.25 Down
Nfs1 chr3 5′ UTR 151,687,398 151,688,149 6.76E-09 −7.34 Down
Rpusd2 chr3 Exon 110,836,072 110,836,252 2.18E-04 −7.17 Down
Ranbp2 chr20 Exon 28,047,206 28,047,481 9.77E-06 −6.81 Down
Capns1 chr1 Exon 91,063,753 91,063,928 6.30E-11 −6.04 Down
Raver2 chr5 Exon 119,938,132 119,938,341 1.50E-02 −5.95 Down

FC, fold change.

TABLE 2 | Top 20 differentially expressed mRNAs.

mRNA Chromosome Gene start Gene end p-value Log2FC Up/Down

Gm47305 chr6 91,680,317 91,680,386 8.33E-67 12.06 Up
Ccn4 chr7 107,695,215 107,723,772 1.10E-23 8.30 Up
Mmp12 chr8 5,606,592 5,616,493 1.27E-15 8.28 Up
Col11a1 chr2 216,863,428 217,056,523 1.12E-57 7.95 Up
Grem1 chr3 105,203,309 105,214,989 1.22E-16 7.65 Up
Comp chr16 20,798,437 20,807,070 1.57E-68 7.59 Up
Card14 chr10 108,440,950 108,468,310 3.02E-19 7.48 Up
Angptl7 chr5 165,312,130 165,316,652 2.84E-49 7.37 Up
Fam180a chr4 62,844,971 62,860,446 4.73E-33 7.36 Up
Ccn5 chr3 160,207,913 160,219,331 1.24E-134 7.18 Up
Ptprh chr1 72,810,545 72,859,161 1.54E-05 −6.83 Down
Fam111a chr1 229,003,961 229,019,527 3.80E-07 −4.96 Down
Gp6 chr1 73,040,901 73,064,641 2.80E-03 −4.22 Down
7SK chr17 90,799,609 90,799,914 2.00E-06 −3.90 Down
AABR07069186 chr8 10,985,553 10,988,077 4.10E-04 −3.47 Down
Gzmc chr15 35,392,162 35,394,792 3.81E-04 −3.41 Down
Sec14l5 chr10 10,591,251 10,629,735 2.36E-13 −3.34 Down
Pdzk1 chr2 198,965,685 198,999,323 5.50E-03 −3.31 Down
Klk12 chr1 99,706,780 99,711,004 3.10E-02 −3.25 Down
Alas2 X 23,167,696 23,187,341 2.90E-04 −3.18 Down

FC, fold change.
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afterward detected upregulated m6A methylation level of hub
mRNAs with MeRIP-qRT-PCR, which further confirmed our
results from transcriptome-wide MeRIP-seq analysis (Figures

4A,B). With the inhibition of Mettl3 in H9c2 cells and
HUVECs, downregulated m6A methylation level of total RNA
and upregulated expression of hubmRNAs were detected (Figures

FIGURE 3 | Hub mRNAs associated with angiogenesis and apoptosis. (A) Volcano plots for differentially expressed mRNAs; (B) heatmap plots for differentially
expressed mRNAs; (C) four-quadrant graph for m6A methylation regulated mRNAs; (D) Venn diagram showing the relationships between m6A methylation and mRNAs
expression; (E) validation of the top 10 hypermethylated and downregulated mRNAs in MI rats; (F) Venn diagram showing the relationship between hub mRNAs and
apoptosis/angiogenesis. Hypo-Up, hypomethylated and upregulated; hyper-Up, hypermethylated and upregulated; Hypo-Down, hypomethylated and
downregulated; hyper-Down, hypermethylated and downregulated. SO, sham operated; MI, myocardial infarction. *p < 0.05, **p < 0.01, ***p < 0.001.
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4C–F). After treating with different oxygen concentration (1% O2,
2% O2, and 5% O2) for 24 h, m

6A methylation level in H9c2 cells
and HUVECs progressively decreased with the increase of oxygen
concentration (Figure 4G). Afterward, these cells were treated with
different hypoxic duration (12, 24, and 48 h) at 1% of oxygen. m6A
methylation level in H9c2 cells and HUVECs gradually increased
with prolonged hypoxic duration (Figure 4H). Variation of m6A
methylation in the simulated hypoxic context demonstrated a
time- and dose-dependent pattern.

3.5 m6A Methylation Regulated Hub mRNAs
Play a Role on Apoptosis in vitro
As presented in Figures 5A,B, Hadh, Tet1, and Kcnn1 were
significantly downregulated after hypoxia. The apoptosis rate of
cardiomyocytes exposed to hypoxia increased significantly
(Figures 5C,D). As compared to the control group, the
expressions of cleaved-caspase3 and Bax increased
significantly, while the expressions of bcl-2 decreased in the
hypoxia group based on Western blot (Figure 5E).

3.6 m6A Methylation Regulated Hub mRNAs
Play a Role on Angiogenesis in vitro
Kcnn1 and Tet1 determined by qRT-PCR and Western blot were
significantly decreased in the hypoxia group (Figures 6A,B). The
effects of hypoxia on cell proliferation and angiogenesis were
revealed by CCK-8, EdU, and tube formation assay. Cell viability
and EdU-positive cells were significantly decreased due to
hypoxia (Figures 6C,D). All indicators of tube formation
ability, including the total branching points, total tube length,
and total loops, were markedly decreased in the hypoxia group
(Figure 6E).

4 DISCUSSION

DNA methylation and histone modification have been extensively
investigated in genetic and cellular biology (Panneerdoss et al.,
2018). However, roles of reversible RNA methylation in the
cardiovascular field have been under development in recent
years (Mongelli et al., 2020). In the hypoxia/reoxygenation-
treated cardiomyocytes, low-expression of METTL3 and over-

expression of ALKBH5 were observed to inhibit autophagy and
apoptosis (Song et al., 2019). In addition, over-expression of
ALKBH5 was verified to reduce infarct size, restore cardiac
function, and facilitate cardiomyocyte proliferation after MI
(Han et al., 2021). These promising results preliminarily
revealed the roles of m6A methylation on mRNAs in ischemic
heart diseases. However, information regarding systematic and
comprehensive analysis is limited. In the current study, we
observed the overall m6A methylation level was significantly
upregulated with the upregulation of Mettl3 in MI rat and
hypoxic cells. We demonstrated the landscape changes of m6A
methylation on mRNA regulated apoptosis and angiogenesis in
MI. Meanwhile, we explored the impact of oxygen concentration
and hypoxic duration on m6A methylation. Upon which, several
hypermethylated and downregulated mRNAs were successfully
identified after MI by combined analysis of MeRIP-seq and RNA-
seq. It further provided potential targets for treatment and
scientific purposes. However, how and what performance of
these m6A methylated mRNAs may have on MI need to be
further elaborated.

Followed by the newly proposed mechanisms of upstream
methylation on mRNA in this research field, the final
destination is to compensate or improve the downstream
functional impairment launched by MI. According to the
literature review, apoptosis plays a role in the process of tissue
damage after MI, which appears to have pathological and
therapeutic implications (Krijnen et al., 2002). Therefore, the
upcoming question in front of us was whether the m6A
methylated mRNAs would play a role in the regulation of
cardiomyocyte apoptosis. In this regard, we interacted our
newly identified m6A methylated mRNAs and apoptosis related
genes in the GeneCards and three of them were correlated to
apoptosis (e.g., Tet1, Hadh, and Kcnn1). Over-expression of Tet1
increased cell apoptosis and inhibited cell growth in osteosarcoma
cells (Teng et al., 2019). Over-expression of Hadh linked to cell
apoptosis in acute myeloid leukemia (Wei L. et al., 2020). However,
the relationship between Kcnn1 and apoptosis has not been
validated according to previous studies. We afterward validated
the m6A methylation regulated mRNAs on apoptosis in hypoxic
H9c2 cells and found them6Amethylation level was upregulated in
hypoxic H9c2 cells. Our results of MeRIP-qRT-PCR demonstrated
that m6A methylation of three hub mRNAs was significantly
upregulated, while their expression levels were downregulated in

TABLE 3 | Top 10 hypermethylated and downregulated mRNAs.

mRNA Chromosome m6A regulation Regulation FPKM of MI input FPKM of SO input

Hadh chr2 Up Down 87.12 249.88
Arfgef3 chr1 Up Down 0.40 1.10
Pwwp3b X Up Down 0.53 1.11
Sez6 chr10 Up Down 0.35 0.71
Psmg3 chr12 Up Down 1.28 2.62
Kcnn1 chr16 Up Down 0.85 1.70
Tet1 X Up Down 0.29 0.58
Myo1b chr9 Up Down 12.53 21.41
Ptprz1 chr4 Up Down 0.25 0.41
Ank2 chr2 Up Down 11.74 18.99

FPKM, fragments per kilobase of exon model per million mapped fragments; MI, myocardial infarction; SO, sham operated.
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MI rat and hypoxic cells. In addition, inhibition of Mettl3
downregulated the overall m6A level and upregulated the
expression of Hadh, Tet1, and Kcnn1 in hypoxic H9c2 cells.
Apoptosis was accompanied with variations of hub proteins, for
instance, decrease of bcl-2 and increase of Bax, Caspase3, and
cleaved-caspase3. Taken together, these three hub mRNAs
regulated by m6A methylation were preliminarily verified to
impact the process of cardiomyocyte apoptosis after MI.

As the exacerbation of myocardial injury, it is likely leading to
heart failure and sudden death (Zouggari et al., 2013). Early

revascularization in the infarcted region is essential for
promoting the survival of myocardial cells, reducing infarct size,
and improving the prognosis of patients with MI (Keeley et al.,
2003; Guo et al., 2017). Upon this perspective, angiogenesis has
been reported to be an integral and indispensable part of the
myocardial healing process following ischemic events (Cochain
et al., 2013). The inhibition of angiogenesis accelerated heart failure
in a murine model and various treatments were proposed to
ameliorate infarction size, left ventricular remodeling, and
cardiac function after MI via promoting angiogenesis in animal

FIGURE 4 | m6A methylation influenced by hypoxia in a time- and dose-dependent pattern. (A) MeRIP-qRT-PCR validation of hub mRNAs in MI rat; (B) MeRIP-
qRT-PCR validation of hub mRNAs in H9c2 cells; (C) m6A methylation levels of H9c2 cells with Mettl3 inhibitor; (D) m6A methylation levels of HUVECs with Mettl3
inhibitor; (E) Mettl3 protein level of H9c2 cells and HUVECs with Mettl3 inhibitor. HIF-1α was used as positive control. GAPDH was used as loading control; (F) protein
level of hub mRNAs in H9c2 cells and HUVECs with Mettl3 inhibitor; (G)m6A methylation levels of H9c2 cells and HUVECs with different concentrations of oxygen;
(H) m6A methylation levels of H9c2 cells and HUVECs with different hypoxic duration. SO, sham operated; MI, myocardial infarction; DMSO, dimethyl sulfoxide. *p <
0.05, **p < 0.01, ***p < 0.001. *STM2457 is the inhibitor of Mettl3.
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models of MI (Shiojima et al., 2005; Zeng et al., 2010; Shindo et al.,
2016; Gou et al., 2020). In the past several decades, attentions have
been shifted to investigate the mechanical associations between
angiogenesis and epigenetics. mRNAs are responsible for protein
translation and can directly regulate the synthesis of proteins such
as vascular endothelial growth factor in the context of MI.
However, the upstream regulation of mRNAs has not been well
clarified. In the current study, two m6A methylation regulated
mRNAs (e.g., Kcnn1 and Tet1) were detected by interaction
analysis of five hub mRNAs and angiogenesis-related genes.
Kcnn1 is one of the members in the calcium activated
potassium channel subfamily. It was previously reported to be
associated with the development of atrial fibrillation while its role
in angiogenesis in the context of MI has not been reported (Park
et al., 2014; Rahm et al., 2021). On the other hand, Tet1, as one of
translocation enzymes mediating 5-methylcytosine (5mC)
hydroxylation, was reported to participate in the facilitation of
DNA demethylation (Gomes et al., 2020). In addition, inhibition of
Tet1 expression may contribute to tumor growth and angiogenesis
in vivo (Si et al., 2019). Upon this condition, we explored the
impact of Kcnn1 and Tet1 on angiogenesis in hypoxia-induced
HUVECs to further verify their roles after MI. Not surprisingly, in

the context of hypermethylated and downregulated Kcnn1 and
Tet1, CCK-8, EdU, and tube formation assay potentially indicated
that hypoxia inhibits endothelial cell proliferation and
angiogenesis. Meanwhile, we found the overall level of m6A
methylation of total RNA was upregulated in hypoxic
endothelial cells. Inhibition of Mettl3 downregulated the overall
m6A level and upregulated the expression of Tet1 and Kcnn1 in
hypoxic HUVECs. These results suggested that m6A methylated
Kcnn1 and Tet1 may play an essential role in angiogenesis. Further
studies to be conducted in knockdown and over-expressionmodels
would be helpful to validate the role of m6A methylation on
mRNAs in the process of angiogenesis.

Similar to other MeRIP-seq and RNA-seq studies, the
reproducibility of MeRIP-seq was considered poor.
Fortunately, heart tissues of our animal model were
consistently collected from similar regions in a standard
environment, which guaranteed the homogeneity at the
histological level to some extent. In addition, we performed
a rescue experiment to verify the reproducibility of our
sequencing results. However, it needs to be further verified
with well-designed in vitro or in vivo studies. Finally, our
results supplemented information of m6A methylated mRNAs

FIGURE 5 |m6A methylation regulated hub mRNAs play a role on apoptosis in vitro. (A) Expression of apoptosis related mRNAs by qRT-PCR; (B) protein level of
Tet1, Kcnn1, and Hadh byWestern blot; (C) apoptosis rate by flow cytometry; (D) apoptotic status by Tunel staining; (E) protein level (Caspase3, cleaved-caspase3, bcl-
2, Bax, and HIF-1α) by Western blot. *p < 0.05, **p < 0.01, ***p < 0.001.
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in MI, which was conducive to the broadening of research
ideas in this direction and provided reference for further
studies.

5 CONCLUSION

The overview of upstream epigenetic changes after MI were
demonstrated with emphasizing the essential role of m6A
methylated mRNAs after MI. Five m6A methylation
regulated mRNAs were newly identified by interaction
analysis of MeRIP-seq and RNA-seq. In the context of m6A
methylation, three of hub mRNAs were validated to impact the
process of cardiomyocyte apoptosis and angiogenesis. Our
study paved the way for future investigations aiming at
exploring the upstream epigenetic mechanisms in the
pathogenesis of MI.
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Complex Involvement of the
Extracellular Matrix, Immune Effect,
and Lipid Metabolism in the
Development of Idiopathic Pulmonary
Fibrosis
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Zhengfang Lin3,2, Rui Wei1,2, Mengmeng Mao1,2, Ziyi Zhang1,2, Gui Zhao1,2, Junye Bai1,2,
Qian Han1,2*†, Zhongfang Wang3,2*† and Qun Luo1,2*†

1Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 2National
Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China, 3State Key Laboratory of
Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Background and objective: Idiopathic pulmonary fibrosis (IPF) is an aggressive fibrotic
pulmonary disease with spatially and temporally heterogeneous alveolar lesions. There are
no early diagnostic biomarkers, limiting our understanding of IPF pathogenesis.

Methods: Lung tissue from surgical lung biopsy of patients with early-stage IPF (n � 7),
transplant-stage IPF (n � 2), and healthy controls (n � 6) were subjected to mRNA
sequencing and verified by real-time quantitative PCR (RT-qPCR),
immunohistochemistry, Western blot, and single-cell RNA sequencing (scRNA-Seq).

Results: Three hundred eighty differentially expressed transcripts (DETs) were identified in
IPF that were principally involved in extracellular matrix (ECM) remodeling, lipid metabolism,
and immune effect. Of these DETs, 21 (DMD, MMP7, POSTN, ECM2, MMP13, FASN,
FADS1, SDR16C5, ACAT2, ACSL1, CYP1A1, UGT1A6, CXCL13, CXCL5, CXCL14,
IL5RA, TNFRSF19, CSF3R, S100A9, S100A8, and S100A12) were selected and
verified by RT-qPCR. Differences in DMD, FASN, and MMP7 were also confirmed at a
protein level. Analysis of scRNA-Seq was used to trace their cellular origin to determine
which lung cells regulated them. The principal cell sources of DMD were ciliated cells,
alveolar type I/II epithelial cells (AT cells), club cells, and alveolar macrophages (AMs);
MMP7 derives from AT cells, club cells, and AMs, while FASN originates from AT cells,
ciliated cells, and AMs.
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Conclusion: Our data revealed a comprehensive transcriptional mRNA profile of IPF and
demonstrated that ECM remodeling, lipid metabolism, and immune effect were
collaboratively involved in the early development of IPF.

Keywords: idiopathic pulmonary fibrosis, mRNA sequencing, extracellular matrix remodeling, lipid metabolism,
immune effect

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive,
fibrosing interstitial lung disease (ILD) of unknown cause,
characterized by a histopathologic and/or radiologic pattern of
usual interstitial pneumonia (UIP) with spatial heterogeneity,
temporal heterogeneity, and honeycomb lesions (Lederer and
Martinez, 2018; Lynch et al., 2018; Plantier et al., 2018; Raghu
et al., 2018). IPF is difficult to differentiate from other ILDs
(Schoenheit et al., 2011). Effective treatment is largely confined to
lung transplantation, but this is limited by donor availability and
transplantation complications (Mushiroda et al., 2008; Lederer and
Martinez, 2018; Raghu et al., 2018). IPF treatments in the clinic have
consistently failed, in part due to the limited understanding of IPF
and lack of predictive diagnostic/prognostic biomarkers. Over the
past decades, many studies (Martinez et al., 2017; Desai et al., 2018;
Morse et al., 2019; Sivakumar et al., 2019) have revealed that IPF is
associated with extracellular matrix (ECM) remodeling, lipid
metabolism, and immune effect. For example, repeat exposure to
a damaging environment can cause alveolar epithelial damage, while
alveolar type II epithelial cells (AT2) are abnormally activated to
initiate pulmonary fibrosis and promote proliferation, apoptosis,
aging, and partial epithelial–mesenchymal transition (Martinez
et al., 2017). In addition, Morse et al. reported that macrophages
are highly plastic and functionally heterogeneous in IPF (Morse et al.,
2019). Patients with IPF also show downregulation of cholesterol
homeostasis pathway-related genes (Sivakumar et al., 2019) and low
peripheral blood HDL-C levels (Aihara et al., 2013). Although these
studies have shed light on pathways that could lead to IPF, our
understanding of their involvement remains very limited. Several
studies have utilized mRNA-Seq (Konishi et al., 2009; Steele et al.,
2015; Kusko et al., 2016; Paplińska-Goryca et al., 2019; Wang et al.,
2019) to identify genes and/or pathways that are differentially
regulated, providing clues to specific mechanisms that underlie the
occurrence and development of IPF. Nonetheless, these have been
based on transplant-stage IPF samples. Because of the heterogeneity
of UIP in IPF, a broader array of IPF lung tissue (including early and
transplant stage) would provide more complete biological
information about the IPF transcriptome and more clues to the
common pathogenesis of IPF.

In the present study, we hypothesized thatmRNA-Seq analysis of
IPF lung tissue obtained from surgical lung biopsy (SLB) and lung
transplantation would provide more comprehensive biological
information and facilitate early diagnosis and a better
understanding of the comprehensive pathogenesis of
heterogeneous IPF. We performed mRNA-Seq on lung tissue
from a cohort of patients with early-stage IPF (n � 7) who
underwent SLB and those with transplant-stage IPF (n � 2) who
underwent lung transplantation and compared the results with tissue

obtained from healthy controls. Of the 380 differentially expressed
transcripts (DETs), 21 target DETs that were mainly related to ECM
remodeling, immune effect, and lung lipid metabolism-related
pathways were selected for further verification by real-time
quantitative PCR (RT-qPCR) and single-cell RNA sequencing
(scRNA-Seq) analysis. Our findings highlighted the central and
coordinating roles of different cells, pathways, and genes in the
development of IPF.

MATERIALS AND METHODS

Study Design and Inclusion Criteria for
Participants
This was a retrospective, single-center study that involved
patients with IPF and healthy control (HC) treated at the ILD
Center of the First Affiliated Hospital of Guangzhou Medical
University between 2014 and 2018. The study protocol was
approved by the local independent ethics committee (2020-
71). Informed consent was obtained from participants.

mRNA Expression Analysis
Total RNAs of tissue were extracted using a Trizol reagent kit,
and sequencing and analysis performed using the Illumina
novaseq 6000 platform and Bowtie2, HISAT2 (v2.1.0),
StringTie (v1.3.1), and R package gmodels, respectively.
Patient inclusion and exclusion criteria, methods of mRNA
expression analysis, 21 target gene selection and RT-qPCR,
protein expression, and cell sources of DMD, MMP7, and
FASN are detailed in the Supplementary Materials.

Statistical Analysis
Total transcript expression data were analyzed using Fisher’s exact
test or Wald test at a false discovery rate (FDR) of 5% and |log2FC|
> 1. Statistical analysis for RT-qPCR and Western blot (WB) was
performed with a two-tailed Student’s t-test using GraphPad Prism
software (v 8.0.2.263), or SPSS (v25.0). Results are shown as
mean ± SD in the table or mean ± SEM in figures. All expression
experiments conducted in vitro were repeated at least three times
with three samples. Statistical significance was set at p < 0.05.

RESULTS

Clinical Characteristics of Participants
Ten patients with suspected IPF and six healthy controls were
initially recruited to the study. IPF was confirmed in nine out of
the ten patients (seven with early-stage disease and two with
transplant-stage disease, all with a pathological UIP pattern).
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Compared to healthy lung tissue sections (Figures 1A, D),
patients with early-stage IPF had fewer fibrotic lesions [shown
in high-resolution computed tomography (HRCT) (Figure 1B)],
retained more alveolar units (shown by hematoxylin and eosin
staining) (Figure 1E) and had better lung function than those
with transplant-stage IPF which is characterised by typical UIP
along with significant honeycomb change (Figures 1C, F).
Characteristics and comparison of both groups are shown in
Table 1, Supplementary Table S1, Figure 1, and Supplementary
Figure S2.

IPF mRNA-Seq Data
The mRNA-Seq experiments were performed using nine IPF and
six HC lung tissue samples, and 101,590 transcripts were
identified. Principal component analysis of all transcripts
revealed that the transcriptional mRNAs of IPF tissue differed
to those of the HC samples (Figure 2A). A total of 380 DETs in
the IPF group were identified at an FDR of 5% and |log2FC| > 1,
of which 195 were upregulated and 185 were downregulated.
Interestingly, there were some significantly different DETs,
including DMD, RBM6, S100A8, S100A9, and CYP1A1
(Figure 2B and Supplementary Table S2). Figure 2C shows
the heat map of 380 DETs cluster analysis.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
Following Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses for downregulated and
upregulated DETs, significant BP (biological process) terms of GO
and KEGG pathways were identified and are shown in Figure 3.
Processes enriched by upregulated DETs involved principally ECM
organization, extracellular structure organization, and cell adhesion.
Those enriched BPs were largely related to response to stress, small
molecule metabolic processes, and lipid metabolic processes. The

TABLE 1 | Characteristics of participants in mRNA-Seq study.

IPF (n = 9) HC (n = 6) t value p-value

Age, year 57.67 ± 8.34 33.33 ± 10.50 5.00 0.0044
Male gender, No. (%) 9 (100) 6 (100) NA NA
Race (No.) Asian (9) Asian (6) NA NA
Lung sample source 9 6 NA NA
SLB 7 0 NA NA
Transplantation 2 6 NA NA
FVC pred, % 79.69 ± 26.38 NA NA NA
DLco pred, % 58.75 ± 22.57 NA NA NA

Data are presented as mean ± SD. The p-value was obtained using a two-tailed
Student’s t-test. Abbreviations: SLB, surgical lung biopsy; NA, not available; FVC, forced
vital capacity; DLco, diffusing capacity of lungs for carbon monoxide.

FIGURE 1 |Representative HRCT (A–C) and histology (D–F) findings in patients with IPF (B, C, E, F) and healthy controls (A, D). (A andD) The normal appearance
of HRCT and histopathology from HC. (B) The HRCT topographies in the IPF patients at early stage of SLB demonstrating subpleural, basal-predominant (often
heterogeneous) subtle reticulation, mild ground glass opacity (GGO), or distortion (indeterminate for UIP). (C) The HRCT topographies in the IPF patients at the transplant
stage from lung transplantation demonstrating a typical UIP with characteristics of subpleural, basal-predominant (heterogeneous) honeycombing, and
bronchiolectasis. (E and F) Histopathology patterns of UIP, characterized by dense fibrosis with a predilection for subpleural and paraseptal parenchyma with
associated architectural distortion in the form of microscopic honeycomb change black circle pointed juxtaposed with relatively unaffected lung parenchyma (*) and
fibroblast foci (square circle). Among them, E comes from the IPF lung tissue of SLB, with more relatively unaffected lung parenchyma (*), while F is from transplanted IPF
lung tissue, with honeycomb change (black circle). The red circle is the area of the biopsy shown in HRCT, while the square circle is used for magnification to present very
dense fibrosis (collagen fibers and fibroblasts). Abbreviation: SLB, surgical lung biopsy.
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KEGG pathways enriched by upregulated DETs were mainly the
Toll-like receptor signaling pathway and ECM–receptor interaction,
while KEGG pathways enriched by downregulated DETs involved
fatty acid metabolism and fatty acid biosynthesis. Interestingly, the
cytokine–cytokine receptor interaction pathway was enriched by
both upregulated and downregulated DETs. Taken together, these
enriched pathways were classified into three main biological
processes: ECM remodeling, lipid metabolism, and immune effect.

Selection and Verification of Target Genes
Target genes were selected based on the criteria of |log2FC| > 2 and
genes expressed in at least two-thirds of IPF or HC samples. In total,
21 target genes were selected and classified into the following groups:

1) DMD, MMP7, POSTN, ECM2, and MMP13 related to ECM
remodeling, 2) FASN, FADS1, SDR16C5, ACAT2, ACSL1,
CYP1A1, and UGT1A6 associated with lipid metabolism, and 3)
CXCL13, CXCL5, CXCL14, IL5RA, TNFRSF19, CSF3R, S100A9,
S100A8, and S100A12 allied with immune effect. Following mRNA-
Seq analysis, we determined that each of the 21 target genes may
have multiple DETs: two transcripts in DMD, two in ECM, four in
CYP1A1, three in SDR16C5, two in FASN, and three in CSF3R
(Figure 4A). In addition, analysis of IPF scRNA-Seq data
(unpublished) with deeper sequencing revealed that, except for
CYPA1A1, the trend of the relative expression in IPF over HC
was similar to that of mRNA-Seq (Figure 4B). RT-qPCR results also
revealed that 11 genes (DMD, MMP7, POSTN, ECM2, MMP13,
UGT1A6, CXCL13, CXCL5, CXCL14, IL5RA, and TNFRSF19) were

FIGURE 2 |Overview of the differential expression of transcripts between lung tissue samples from patients with IPF and healthy controls. (A) Principal component
analysis of the mRNA-Seq for lung tissue samples shows a clear separation of the samples from HC and samples from patients with IPF. (B) Volcano plots depict
significantly dysregulated gene changes of the IPF versus control at a false discovery rate (FDR)＜0.05 and |log2FC| > 1. Downregulated genes are shown in blue, and
upregulated genes shown in red. DMD is a transcript with the lowest p-value. (C) Heat map shows the overall distribution of each differentially expressed transcript
in all samples from IPF and HC. Abbreviations: FC, fold change; IPF1–IPF7, the lung samples of IPF with early stage from SLB; IPF8–IPF9, the lung samples of IPF with
transplant stage from lung transplantation.
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upregulated, while 10 genes (FASN, FADS1, SDR16C5, ACAT2,
ACSL1, CYP1A1, CSF3R, S100A9, S100A8, and S100A12) were
downregulated when compared with HC (Figure 4C).

Further Analyses of DMD, MMP7, and FASN
To further verify the regulated genes, WB analysis was performed
using IPF and HC tissue for DMD (the most differentially
expressed transcript in mRNA-Seq analysis), MMP7 and
FASN (the most significant fold change and significant
statistical change in RT-qPCR). The immunohistology
chemistry (IHC) results in Figure 5A show that: 1) DMD
protein was expressed in the majority of the lung tissues and
lung cells, mainly in the nucleus around the alveoli and around
the bronchial lumen but also in the cytoplasm and in the muscle
cell membrane in the IPF and HC groups; 2) MMP7 protein was
clearly evident in the cytoplasm around the alveoli and bronchial
lumen in the IPF group, but expression was low in the HC group;
and 3) protein distribution of FASN was similar to that of DMD,
mainly in the cytoplasm around the alveoli and bronchial lumen,
and the staining of HC was darker than that in IPF. Next, we

performed WB and further conformed that the protein
expression of DMD and MMP7 in the IPF group was also
significantly higher than that in the HC group, while the
protein expression of FASN was clearly lower (Figure 5B).
Finally, using the IPF scRNA-Seq data, we compared the cell
sources of differentially expressed DMD, MMP7, and FASN
genes in IPF and HC (Figures 5C, D). We demonstrated that
DMDwas mainly expressed in ciliated cells, AT cells, and alveolar
macrophages (AMs) in HC while mostly expressed in ciliated
cells, AT cells, and club cells in IPF lung tissue and that DMD
expression was upregulated in AT (1.5-fold) and club cells (2.7-
fold) in IPF lung tissue (Figure 5E). Moreover, MMP7 was
mainly expressed in AT cells, club cells, and AMs in both IPF
and HC lung tissue, and it was 30.7-, 4.4-, and 11.1-fold
upregulated in AT cells, club cells, and AMs of IPF. Finally,
FASN was mainly expressed in AT cells, ciliated cells, and AMs in
both groups and was about 2-fold downregulated in AT and
ciliated cells in IPF. In addition, it is worthy to note that DMD,
MMP7, and FASN were higher in early-stage than in the
transplant-stage IPF tissue (Supplementary Figure S1).

FIGURE 3 |GO (A) and KEGG (B) enrichment analysis of 380 differentially expressed transcripts (DETs). (A) The bar graphs represent the top 10 BP terms with the
lowest p-value for upregulated and downregulated gene expression patterns. The numbers and parenthesis value on each bar graph separately represent the numbers
of DETs enriched in it and the p-value. (B) The solid dots represent the top 15 KEGG pathways with the lowest p-values for upregulated and downregulated gene
expression patterns. Different colored dots indicate the different p-value, while dots of different diameters represent the numbers of DETs enriched. Abbreviations:
Up, upregulation in IPF group; Down, downregulation in IPF group.
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DISCUSSION

IPF is usually characterized by a histopathologic and/or
radiologic pattern of UIP with spatial heterogeneity, temporal
heterogeneity, and the presence of honeycomb lesions (Lederer
andMartinez, 2018; Lynch et al., 2018; Plantier et al., 2018; Raghu
et al., 2018). Investigation of more comprehensive IPF specimens
will help better understand the pathogenesis of IPF and unravel
an in-depth mechanism underneath. Recently, an increasing
number of studies have focused on the pathogenesis of IPF

using high-throughput mRNA-Seq and scRNA-Seq.
Nonetheless, the sources of tissue of the most previous IPF
transcriptome studies are mainly from patients undergoing
lung transplantation (Vukmirovic et al., 2017; Luzina et al.,
2018; McDonough et al., 2019), which is generally considered
as “late” IPF tissue. In this study, in addition to lung tissue
specimens from transplant-stage IPF, more early-stage IPF
specimens obtained from SLB were included for mRNA-Seq
analysis. This is helpful to identify the complete
transcriptional profile of IPF and help better the

FIGURE 4 | Selection and verification of 21 target genes related to ECM remodeling, lipid metabolism, and immune effect. (A) The fpkm expression of 21 target
genes related to ECM remodeling, lipid metabolism, and immune effect via mRNA-Seq analysis from lung tissues of IPF and HC. fpkm, fragments per kilobase million;
Gene(NO.) represents having one or more differential transcripts of the gene in IPF compared with HC. (B) The fpkm expression of the 21 target genes via scRNA-Seq
data from lung tissue of 9 (6 from SLB, 3 from lung transplantation) IPF and 4 HC. Compared with HC, the trend of IPF gene fpkm expression detected by scRNA-
Seq was opposite to that of mRNA-Seq (#). (C) Relative expression of the 21 target genes in lung tissue of 11 (5 from SLB, 6 from lung transplantation) IPF and 7 HC via
RT-qPCR experience. RPLPOwas the internal reference. The bar graphs showmean ± SEM. Statistical significance was set at p < 0.05, and *p < 0.05, **p < 0.01, and
***p < 0.001 compared with HC group using a two-tailed Student’s t-test.
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FIGURE 5 | Protein expression of and cell origins of DMD, MMP7, and FASN based onmultiple analyses of IHC (A), WB (B), and scRNA-Seq (C–E). (A) The protein
distribution of DMD, MMP7, and FASN in lung tissue of IPF and HC via IHC experience. Each gene displays protein expression in the two fields of alveoli and bronchi. In
addition, brown indicates that the gene has protein expression, and the darker the color, the greater the expression. (B) The protein expression of DMD, MMP7, and
FASN in lung tissue of IPF and HC by WB experience, showing WB exposure bands (on the left) and bar charts of statistical analysis (on the right). Lung tissue
derived from 8 IPF (4 from SLB and 4 from transplantation) and 4 HC. And GAPDH served as the internal reference. Error bars indicate mean ± SEM, and their three
results were consistent with that of mRNA-Seq according to a two-tailed Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001. (C–E) tSNE plots (C) displaying the

(Continued )
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understanding of earlier development of IPF. In the present study,
we identified several important pathways and categorized them
into three biological processes, including ECM remodeling, lipid
metabolism, and immune effect, and genes (DMD, MMP7,
POSTN, ECM2, MMP13, FASN, FADS1, SDR16C5, ACAT2,
ACSL1, CYP1A1, UGT1A6, CXCL13, CXCL5, CXCL14,
IL5RA, TNFRSF19, CSF3R, S100A9, S100A8, and S100A12)
involved in the processes. Additionally, we demonstrated the
differential expression of DMD, MMP7, and FASN in AT cells,
AMs, club cells, and ciliated cells of IPF.

Several genes such as MMP7, CSF3R, and S100A12 identified
and characterized in our study have previously been reported
(Deng et al., 2018; Chung et al., 2019; McDonough et al., 2019).
For instance, we demonstrated that MMP7 was mainly enriched
in ECM organization and ECM–receptor interaction, similar to a
previous study, which described that MMP7 in blood levels has
been consistently associated with IPF disease progression and
survival (McDonough et al., 2019). We found that MMP7 mainly
upregulated in the bronchi and alveoli of IPF; in addition, the
main cell sources of MMP7 were AT cells, club cells, and AMs
based on scRNA-Seq analysis. FASN was mainly enriched in fatty
acid synthase andmainly downregulated in AT cells, ciliated cells,
and AMs in the lung tissues of IPF. In fact, the phenomenon of
lipid metabolism disorder in IPF patients has also been verified in
animal models of fibrosis; for example, Chung et al. (2019) found
the loss of AEC2 cell-specific FASN in bleomycin-induced
pulmonary fibrosis in mice and the loss of lipid synthesis in
AEC2 cells during mitochondrial injury could aggravate
pulmonary fibrosis.

Despite the confirmation of inflammatory cytokines and
innate and adaptive immune cell infiltration in IPF, several
clinical experiments of immunosuppressive therapy for IPF
have failed. This has downplayed the role of chronic
inflammation and immune effect in the pathogenesis of IPF
(Thannickal et al., 2014). Nonetheless, according to our current
research results, failure of therapies based on immune
intervention may be due to limited knowledge about the
involvement of immune disorders in IPF. In our study, a
great number of immune factors were altered in IPF patients,
including upregulation of CXCL5, CXCL13, CXCL14, IL5RA,
and TNFRSF19 and downregulation of CSF3R, S100A8,
S100A9, and S100A12. Leurs and Lindholm (2013) reported
that S100A12 was involved in the activation of signal
transduction pathways in endothelial cells, vascular smooth
muscle cells, and inflammatory cells, further leading to the
transcription and secretion of proinflammatory cytokines and
cell adhesion molecules. It has been reported that a high
concentration of S100A12 in peripheral blood indicated a
low overall survival rate of IPF, suggesting that the excessive
inflammatory-immune response led to a worse prognosis

(Richards et al., 2012). In addition to immune-related genes,
there are also reports about immune cells in relation to IPF.
Duffield et al. (2005) and Wynn (2011) revealed AMs were
depleted in the early inflammation/maintenance phase of the
fibrotic reaction in CD11b-DTR mice. This may have led to a
relative reduction in scar formation and myofibroblasts,
although fibrosis continued if AMs were consumed in the
late remodeling/recovery stage of fibrosis.

DMD is a novel gene closely related to ECM remodeling in
IPF. We found that DMD was mainly expressed by ciliated cells
and secondarily expressed in AT and club cells in the lung tissue.
Interestingly, there was an about 1.5-fold upregulation of DMD in
AT and club cells of IPF tissue, while there was no significant
difference between the ciliated cells of IPF and HC groups,
suggesting that the role of DMD in IPF development may be
cell type-dependent. It is worthy of note that the DMD gene is one
of the largest protein-coding genes in the human genome,
existing on the X chromosome, and encodes and synthesizes
427 KDa dystrophin protein that is distributed principally in the
myocardium, smooth muscle, and skeletal muscle (Tuffery-
Giraud et al., 2017). Edematous cells in Duchenne and Becker
muscular dystrophy, X-linked dilated cardiomyopathy, and other
muscle diseases result in cell fragmentation, leading to increased
intracellular calcium ions that serve as a second messenger to
activate the inflammatory cascade in organs (Sironi et al., 2002;
Nardes et al., 2012; Kamdar and Garry, 2016). At present, the
mainstream theory about the muscle degeneration and fibrosis
causes of Duchenne muscular dystrophy (Mann et al., 2011) is
that the integrity of the dystrophin protein in muscle cell
membrane is lost and destroyed. When mechanically
stimulated, sodium and calcium influx can be amplified and
promote inflammatory cells to release various fibrogenic
factors with consequent proliferation and differentiation of
fibroblasts into myofibroblasts. Both can secrete ECM and
ECM remodeling factors, with a subsequent imbalance of
ECM synthesis and degradation and with consequent fibrosis.
The histological feature of IPF is the gradual deposition of ECM
and the gradual decrease in parenchymal cells. We hypothesize
that dystrophin protein lesions occur in the lung tissue of IPF,
especially in AT and club cells, and may lead to an imbalance
between ECM synthesis and degradation in the lungs, promoting
the occurrence and development of IPF.

The results of our study, from changes in the overall molecular
level of IPF to alterations in the lung cells, showed that ECM
remodeling, lipid metabolism, and immune effect are complex
during the early development of IPF, suggesting that no single
cell, gene, or pathway can contribute to the complex and
heterogeneous nature of the disease. In addition, our findings
supplement and reinforce the present transcriptome profile of
human IPF disease.

FIGURE 5 | expression level of DMD, MMP7, and FASN in all cell clusters from IPF and HC, pie chart (D) showing three lung cell sources expressing DMD, MMP7, and
FASN genes, and histogram (E) showing the differential expression of the first three cells of DMD, MMP7, and FASN in IPF and HC groups. Compared with HC, the gene
expression of DMD, MMP7, and FASN in IPF was upregulated or downregulated by at least 1.5-fold (*).
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Comprehensive Analysis of the
Prognostic and Immunological Role of
PAFAH1B in Pan-Cancer
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Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) plays a critical role in cancer
initiation, metastasis, and progression; however, it remains unknown how PAFAH1B3
impacts cancer diagnosis and prognosis or regulates the immune response to different
types of cancer. In this study, PAFAH1B3 was elevated in human pan-cancer, and this
correlated with greater pathology and poor prognosis, in particular for non-small cell lung
cancer (NSCLC) and liver hepatocellular carcinoma (LIHC). In addition, PAFAH1B3
expression was positively associated with tumor mutational burden (TMB),
microsatellite instability (MSI), immune cell infiltration, immune-modulatory related gene
expression, and diverse cancer drug sensitivity in human cancer. Increased PAFAH1B3
expression correlated with poor overall survival (OS), disease-specific survival (DSS), and
progression-free interval (PFI) of NSCLC and LIHC, and has potential as an independent
risk factor for overall survival (OS), disease-specific survival (DSS), and progression-free
interval (PFI) during LIHC. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis confirmed that PAFAH1B3 is primarily involved in immune regulation. More
importantly, results demonstrated that PAFAH1B3 was upregulated in liver cancer cells
lines and that knockdown of this gene significantly inhibited cell proliferation, migration, and
invasion in liver hepatocellular carcinoma (LIHC). In summary, this study elucidates the
clinical significance and biological function of PAFAH1B3 during liver hepatocellular
carcinoma (LIHC) and may serve as a potential biomarker for the diagnosis and
prognosis of various cancer types.

Keywords: PAFAH1B3, pan-cancer, immune cell infiltration, drug sensitivity, prognostic biomarker, multi-omics
integrative analysis, cell proliferation, cell migration

INTRODUCTION

Cancer affects millions of people each year and poses a substantial societal and economic burden
worldwide. Despite available surgical and chemotherapeutic treatment modalities, cancer prognosis
often remains poor. Cancer hallmark genes (e.g., BRCA1, CDK1, E2F1, and EGFR) are responsible
for the most essential phenotypic characteristics of malignant transformation and progression (Nagy
et al., 2021). Thus, there is an urgent need to identify specific molecular targets to improve cancer
diagnosis and treatment.

Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3), one of the catalytic subunits of
PAFAH, plays an important role in apoptosis (Monillas et al., 2015), cancer metastasis (Stafforini,
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2015), and angiogenesis during cancer (Sun et al., 2015).
PAFAH1B3 is involved in diverse cancer-related signaling
pathways, including PAF and WNT, and facilitates cancer
progression (Manya et al., 1999; Livnat et al., 2010). By
modulating tumor-suppressing lipids, PAFAH1B3 promotes
cancer cell aggressiveness (Kume and Shimizu, 1997). In
addition, Michael et al. showed that PAFAH1B3 may be a
potential target for tyrosine kinase inhibitors (TKIs) in breast
cancer (BRCA) (Fiedler et al., 2018). PAFAH1B3 was found to
play a crucial role in the brain development process. lissencephaly
associated mutations will destroy the interaction between
PAFAH1B3 and PAFAH1B2, leading to inhibitions in the
neuronal migration (Xing et al., 2011). These studies indicate
that PAFAH1B3 regulates diverse biological functions in cancer
initiation, metastasis, and progression, and may be a promising
prognostic and therapeutic biomarker for pan-cancer. However,
the specific role of PAFAH1B3 in diagnosis, prognosis, and
immune regulation in various types of cancer remains
unexplored.

In this study, public databases were used for the first time to
show that PAFAH1B3 is highly expressed in diverse cancer types.
PAFAH1B3 expression correlates significantly with pathology
and poor prognosis and is highly accurate at predicting cancer
progression. In addition, PAFAH1B3 expression was positively
associated with tumor mutational burden (TMB), microsatellite
instability (MSI), immune cell infiltration, immune-modulatory
related gene expression, and diverse cancer drug sensitivity in
human cancer. Finally, high expression of PAFAH1B3 correlated
with poor overall survival (OS), disease-specific survival (DSS),
and progression-free interval (PFI) in non-small cell lung cancer
(NSCLC) and liver hepatocellular carcinoma (LIHC), and has the
potential as an independent risk factor for overall survival (OS),
disease-specific survival (DSS), and progression-free interval
(PFI) in liver hepatocellular carcinoma (LIHC). Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was used to confirm that PAFAH1B3 is primarily
involved in immune regulation. More importantly, results
demonstrated that PAFAH1B3 was up-regulated in liver
hepatocellular carcinoma (LIHC) cells lines. Knockdown of
PAFAH1B3 significantly inhibited cell proliferation, migration,
and invasion in liver hepatocellular carcinoma (LIHC). In
summary, PAFAH1B3 is a potential biomarker for diagnosis
and prognosis in different cancer types and a promising
molecular target for LIHC.

MATERIALS AND METHODS

Analysis of the Expression of PAFAH1B3 in
Pan-Cancer
We utilized TIMER (https://cistrome.shinyapps.io/timer/) (Li
et al., 2017), TCGA (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga), Genotype-
Tissue Expression (GTEx) database, ualcan database (http://
ualcan.path.uab.edu/) (Chandrashekar et al., 2017), and CCLE
database (https://portals.broadinstitute.org/ccle/) (Ghandi et al.,
2019) to examine the expression of PAFAH1B3 in pan-cancer

tissue and cancer cells lines (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01;
***, p < 0.001).

Analysis the Prognosis and Clinical
Information of PAFAH1B3 in Pan-Cancer
We employed the GEPIA databases (http://gepia.cancer-pku.cn/)
and prognoscan databases (http://dna00.bio.kyutech.ac.jp/
PrognoScan/index.html) (Mizuno et al., 2009; Tang et al.,
2017) to examine the OS and RFS of PAFAH1B3 in pan-
cancer; additionally, the correlation between the pathology
stage and PAFAH1B3 expression was analysis by GEPIA, the
correlation between the tumor stage and PAFAH1B3 expression
was analysis by GEPIA (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***,
p < 0.001).

Analysis of the GeneMutation of PAFAH1B3
in Pan-Cancer
The gene mutation information of PAFAH1B3 in pan-cancer was
analyzed by Cerami et al. (2012).

Analysis of the Function of PAFAH1B3 in
Pan-Cancer
We utilized the cbioportal database (https://www.cbioportal.org/)
to analyze the co-expression genes in pan-cancer. KEGG
enrichment analyses was analysed by the cluster Profiler
package and using ggplot2 package for visualization (Yu et al.,
2012; Ito and Murphy, 2013).

Analysis of the Immunological Functions of
PAFAH1B3 in Pan-Cancer
We employed the TIMER (https://cistrome.shinyapps.io/timer/)
and XCELL tools (https://xcell.ucsf.edu/) to analyze the
immunological roles of PAFAH1B3 (Li et al., 2017; Aran et al.
, 2017), including the correlation between the diverse immune
cells and immune regulator. The TISIDB (http://cis.hku.hk/
TISIDB/) was utilized to analysis the expression of PAFAH1B3
in molecular subtypes and immune subtypes of diverse cancers
(Ru et al., 2019). The TMB and MSI scores were obtained from
TCGA. Correlation analysis between the PAFAH1B3 expression
and TMB or MSI was performed using spearman’s methods (ns,
p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).

Correlation Between PAFAH1B3
Expression and Cancer Drug Sensitivity
We utilized GDSC and CTRP databases to analyze the correlation
between PAFAH1B3 expression and drug sensitivity (Basu et al.,
2013; Yang et al., 2013).

Cell Culture
The LO2 cell line was purchased from the cell bank of Kunming
Institute of Zoology, and cultured in DMEM media (Lonza, CC-
3170). Liver cancer cell lines, including HepG2, Hu7, and SMCC-
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7721, were purchased from Cobioer, China, with STR document,
HepG2, Hu7, and SMCC-7721 cells were all cultured in DMEM
medium (Corning) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin. The siRNA for
PAFAH1B3 were synthesized by RIBOBIO, and a scrambled
siRNA was synthesized as a negative control. Transfection was
performed using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions. Total RNA was collected 48 h
after transfection.

Quantitative Real-Time PCR
The qRT-PCR assay was performed as documented (Jiang et al.,
2018). The primer sequences are as follows: PAFAH1B3-F: ACA
TCCGGCCCAAGATTGTG, PAFAH1B3-R: GGGCTGTCG
CTCATTCACC, PAFAH1B1-F: TCTTGGTCAGAAACGAGA
CCC, PAFAH1B1-R: GTGGTCGAATGAAATGTCCTGTA.
PAFAH1B2-F: CAAACCCAGCAGCTATTCCG, PAFAH1B2-
R: GAACAGTACATCAGGCTCTTTGT. BRCA1-F: GCTCGT
GGAAGATTTCGGTGT, BRCA1-R: TCATCAATCACGGAC
GTATCATC. CDK1-F: ACCGAAGGGAGAACGACGAA,
CDK1-R: GAACGCTTTGAACTTCCCGAT. E2F1-F: ACG
CTATGAGACCTCACTGAA, E2F1-R: TCCTGGGTCAAC
CCCTCAAG. β-actin-F: CTTCGCGGGCGACGAT, β-actin-R:
CCATAGGAATCCTTCTGACC. The expression quantification
was obtained with the 2−ΔΔCT method (ns, p ≥ 0.05; *, p < 0.05; **,
p < 0.01; ***, p < 0.001).

Cell Proliferation and Colony Formation
Assays
Cell proliferation, colony formation, and tumor sphere formation
assay were performed as previously documented (Xiong et al.,
2021). Briefly, for cell proliferation assay, indicated cells were
plated into 12-well plates at a density of 1.5 × 104, and the cell
numbers were subsequently counted each day using an automatic
cell analyzer countstar (Shanghai Ruiyu Biotech Co., China, IC
1000). For the colony formation assay, indicated cells were seeded
in a 6-well plate (China, NEST, Cat. 703001) with 600 cells per
well supplemented with 2 ml cell culture medium, and the cell
culture medium was changed every 3 days for 2–3 weeks, and
then indicated cells were fixed with 4% PFA and stained with
0.5% crystal violet (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p <
0.001).

Cell Migration and Invasion Assays
Cell migration assays was performed as previously documented
(Xiong et al., 2021). Briefly, to produce a wound, the monolayer
cells in a 6-well plate were scraped in a straight line with pipette
tips. The plate was then washed with PBS to remove detached
cells. Photographs of the scratch were taken at indicated time
points using Nikon inverted microscope (Ti-S) (ns, p ≥ 0.05; *, p <
0.05; **, p < 0.01; ***, p < 0.001).

Statistical Analysis
Analysis the PAFAH1B3 expression pan-cancer was estimated
using t-tests. The correlations between clinicopathological
characteristics and PAFAH1B3 expression were evaluated

using the Chi-squared test, Fisher exact test, Kruskal–Wallis
(KW) test, Wilcoxon signed-rank test, Wilcoxon rank sum
test, and logistic regression. Through univariate and
multivariate analysis combined with Cox logistic regression
models, other clinical factors impacting the survival and the
PAFAH1B3 expression level were found. Kaplan-Meier
analysis was employed to examine the survival time of patients
stratified according to high or low level of the PAFAH1B3
expression. For all figures, *, **, *** indicate p < 0.05, p <
0.01, and p < 0.001, respectively.

RESULTS

Analysis of the Expression and Prognosis
Values of PAFAH1B3 in Pan-Cancer
Tumor Immune Estimation Resource (TIMER) database analysis
was used to assess PAFAH1B3 in diverse cancers, and was shown
to be significantly elevated in adenoid cystic carcinoma (ACC),
bladder urothelial carcinoma (BLCA), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), head and neck squamous cell carcinoma
(HNSC), kidney renal papillary cell carcinoma (KIRP), LIHC,
lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), prostrate adenocarcinoma (PRAD), rectum
adenocarcinoma (READ), stomach adenocarcinoma (STAD),
thyroid cancer (THCA), and uterine corpus endometrial
carcinoma (UCEC). Interestingly, lower expression of
PAFAH1B3 was observed in KICH and KIRC (Figure 1A).
Given that some cancers lack normal tissue data in TCGA
databases, PAFAH1B3 expression was also assessed in pan-
cancers using the TCGA/GTEx databases. PAFAH1B3
expression was higher in ACC, BLCA, BRCA, cervical
squamous cell carcinoma (CESC), COAD, CHOL, diffuse large
B-cell lymphoma (DLBCL), ESCA, glioblastoma (GBM), HNSC,
KIRP, low-grade glioma (LGG), LIHC, LUAD, LUSC, ovarian
cancer (OV), pancreatic adenocarcinoma (PAAD), PRAD,
READ, skin cutaneous melanoma (SKCM), STAD,
tenosynovial giant cell tumor (TGCT), THCA, thymus cancer
(THYM), UCEC, and uterine carcinosarcoma (UCS)
(Figure 1B). In addition, Cancer Cell Line Encyclopedia
(CCLE) databases analysis showed that PAFAH1B3 was
overexpressed in many cancer cell lines (Figure 1C). To verify
these results, UALCAN database analysis was used to assess
PAFAH1B3 protein expression in human cancers. PAFAH1B3
was significantly elevated in breast cancer, colon cancer, ovarian
cancer, clear cell renal cell carcinoma (RCC), and UCEC
(Figure 1D). Overall, these results showed that PAFAH1B3
was upregulated in many human cancer types.

Since PAFAH1B3 expression was associated with the
pathology of many cancer types, the ability of PAFAH1B3 to
prognose pan-cancer was explored. OS, DSS, and PFI analysis of
various cancer types showed that increased PAFAH1B3
expression correlated with poor overall survival for ACC,
LIHC, LUAD, mesothelioma (MESO), sarcoma (SARC), and
SKCM (Figure 2A), and poor DSS in BLCA, SARC, LIHC,
LUAD, MESO, and SKCM (Figure 2B).
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FIGURE 1 | Expression analysis for PAFAH1B3 in human cancers. (A) The expression of PAFAH1B3 in pan-cancer analysis by TIMER database. (B) The
expression of PAFAH1B3 in pan-cancer analysis by TCGA/GTEx database. (C) The expression of PAFAH1B3 in diverse cancer cells lines examine by the CCLE
database. (D) The protein expression of PAFAH1B3 in various cancers analysis by Ualcan database.
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Since previous results have shown that PAFAH1B3 expression
correlates with prognosis for a wide range of cancers, this study
assessed whether PAFAH1B3 may act as a detection index for
cancer diagnosis. Receiver operating characteristic (ROC) curve

analysis was used to assess the diagnostic value of PAFAH1B3 in
various human cancers and found that it had moderate accuracy
(AUC > 0.75) in predicting BLCA, BRCA, CHOL, COAD, ESCA,
GBM, HNSC, KICH, KIRP, LAML, LGG, LIHC, LUAD, LUSC,

FIGURE 2 | Analysis of the prognosis values for PAFAH1B3 in human cancers. (A) The OS of PAFAH1B3 in diverse cancers was examined by the TCGA database.
(B) The DSS for PAFAH1B3 in pan-cancer examine by TCGA database.
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FIGURE 3 | ROC curve analyses and AUC values for PAFAH1B3 in diverse cancer. (A–D) ROC curve analysis and AUC values for PAFAH1B3 in BLCA, BRCA,
CHOL, and COAD. (B) ROC curve analysis and AUC values for PAFAH1B3 in ESCA, GBM, HNSC, and KICH. (C) ROC curve analysis and AUC values for PAFAH1B3 in
KIRP, LAML, LGG, and LIHC. (D) ROC curve analysis and AUC values for PAFAH1B3 in LUAD, LUSC, OV, and PAAD. (E) ROC curve analysis and AUC values for
PAFAH1B3 in PRAD, READ, STAD, and SKCM. (F) ROC curve analysis and AUC values for PAFAH1B3 in TGCT, THCA, THYM, and THYM.
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FIGURE 4 | PAFAH1B3 mutation landscape in various cancer types. (A) PAFAH1B3 mutation level in pan-cancer examined by the cBioPortal database. (B)
PAFAH1B3 mutation frequency in pan-cancer examined by the cBioPortal database. (C) The DNA methylation of PAFAH1B3 in pan-cancer (D) Mutation diagram of
PAFAH1B3 in pan-cancer was examined by the cBioPortal database. (E) The correlation between PAFAH1B3 mutation and poor prognosis in patients.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 7994977

Yuan et al. Role of PAFAH1B3 in Pan-Cancer

77

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


OV, PAAD, PRAD, THCA, THYM, and UCS (Figures 3A–F)
and high accuracy (AUC > 0.90) in predicting BRCA, CHOL,
COAD, KICH, LAML, LUAD, LUSC, OV, PAAD, READ, SKCM,
STAD, TGCT, THCA, THYM, and UCS. These results confirm
that PAFAH1B3 has the potential to act as a detection index for
the diagnosis of many cancer types with high sensitivity and
specificity.

Analysis of the Mutation Landscape of
PAFAH1B3 in Various Cancer Types
Alterations in PAFAH1B3 copy numbers were assessed using the
cBioPortal database. In various human cancers, the mutation
frequency was higher in UCEC, OV, SARC, and PRAD than in
other cancers (Figure 4A). Amplification was the most common
type of alteration, followed by shallow depletion and diploid
(Figure 4B). DNA methylation analysis showed that PAFAH1B3
expression was negatively associated with DNA methylation in
LIHC, THCA, HNSC, and SARC (Figure 4C). To examine the
PAFAH1B3 mutation landscape in various cancer types, 21 VUS,
16missense sites, three truncation sites, one splice, and one fusion
situated between amino acids 0 and 231 were identified in
PAFAH1B3 using the cBioPortal database (Figure 4D).
PAFAH1B3 genetic alterations were associated with overall
survival, disease-specific survival, and progression-free interval
in cancer patients (Figure 4E). These results confirm that
PAFAH1B3 genetic alterations affect PAFAH1B3 expression
and prognostic ability.

Correlations Between PAFAH1B3
Expression and Immune and Molecular
Subtypes, Tumor Mutational Burden, and
Microsatellite Instability in Pan-Cancer
The correlation between PAFAH1B3 expression and
development of different immune and molecular subtypes in
pan-cancer was assessed using the TISIDB database. Results
showed that PAFAH1B3 has different expression patterns in
pan-cancer (Supplementary Figures S1A–D). For example,
while PAFAH1B3 was highly expressed in C2 of LIHC, it was
poorly expressed in C3. PAFAH1B3 was uniquely expressed in
different molecular subtypes of cancer (Supplementary Figures
S2A–D). For example, PAFAH1B3 expression was higher in the
C2C-CIMP subtype of LIHC. These results confirm that
PAFAH1B3 expression is associated with different immune
and molecular subtypes of cancer.

Correlations Between PAFAH1B3
Expression and Tumor Mutational Burden
and Microsatellite Instability in Pan-Cancer
Tumor Mutational Burden (TMB), the number of DNA
mutations in cancer, has emerged as a sensitive and specific
biomarker in response to immune checkpoint inhibitors (Addeo
et al., 2021). PAFAH1B3 expression was positively associated
with the TMB in MESO, LUAD, STAD, PAAD, ACC, LGG,
DLBC, UVM, and PRAD (r > 0.2, p < 0.01), and negatively

associated with the TMB in THYM (Supplementary Figure
S3A). Microsatellite instability (MSI) represents a hyper-
mutable state of DNA sequences caused by the lack of DNA
mismatch repair activity (Boland and Goel, 2010). PAFAH1B3
expression was positively correlated with the MSI in DLBC,
STAD, PAAD, MESO, ESCA, UCEC, and LIHC (r > 0.15, p <
0.01), and negatively correlated with the MSI in TGCT, LAML,
COAD, UCS, and READ (Supplementary Figure S3B).

Correlation Between PAFAH1B3
Expression and Immune Infiltration, Drug
Sensitivity
Immune cell infiltration is important to cancer progression.
TIMER results showed that PAFAH1B3 expression correlated
with CD8+ T cell abundance in 27 cancers, CD4+ T cell
abundance in 28 cancers, neutrophil abundance in 30 cancers,
dendritic cell (DC) abundance in 30 cancers, macrophage
abundance in 27 cancers, and B cell abundance in 29 cancers
(Figure 5A). To verify these results, xCell was used to assess the
correlation between PAFAH1B3 expression and immune cell
infiltration in many cancer types. Expression correlated
positively with 38 immune cell types in 25 cancers and
correlated negatively with 32 immune cell types in two cancers
(Figure 5B). Findings indicate that PAFAH1B3 expression is
significantly correlated with immune cell infiltration during
human cancer.

To further determine the relationship between PAFAH1B3
and the tumor microenvironment, TCGA analysis was used to
measure the correlation between PAFAH1B3 and immune
checkpoint-related genes. PAFAH1B3 expression was
positively associated with immune checkpoint-related genes
such as CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, SIGLEC15, and TIGIT, in 31 cancers
(Supplementary Figure S4). The TISIDB tool showed that
PAFAH1B3 expression was positively associated with genes for
28 tumor-infiltrating lymphocytes, 45 immune-stimulators,
24 immune-inhibitors, 41 chemokines, 18 receptors, and
21 MHCs in pan-cancer (Supplementary Figures S5A,B).
These findings indicate that PAFAH1B3 plays an important
role in regulating the immune response to human cancer.

The correlation between PAFAH1B3 expression and
sensitivity to different drugs was assessed using cancer cell
lines from the Genomics of Drug Sensitivity in Cancer
(GDSC) database and the Cancer Therapeutics Response
Portal (CTRP) database. In the GDSC database, PAFAH1B3
expression was positively correlated with Z-LLNle-CHO,
XMD8-85, CGP-60474, A-770041, dasatinib, bortezomib,
AZ628 and JW-7-52-1 (r > 0.17, p < 0.0001) sensitivity, and
negatively correlated with Navitoclax, GSK1070916, WZ3105,
and SB52334 (r < −0.10, p < 0.0001) sensitivity (Supplementary
Figure S6A). In the CTRP database, PAFAH1B3 expression was
positively correlated with trametinib, dasatinib, BRD-K44224150,
and BRD-A05715709 (r > 0.10, p < 0.0001) sensitivity, and
negatively associated with GSK-J4, SR8278, BRD-K48334597,
MI-2, HBX-41108, pifithrin-mu, cerulenin, SB-525334,
valdecoxib, belinostat, PX-12, and skepinone (r < −0.20, p <
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0.0001) sensitivity (Supplementary Figure S6B). These results
suggest that PAFAH1B3 is significantly associated with diverse
drug sensitivity in different cancer cell lines and may be a
promising therapeutic target for cancer.

Correlation Between PAFAH1B3 and
Clinical Characteristics in NSCLC and LIHC
Comprehensive bioinformatics was performed to assess the
correlation between PAFAH1B3 overexpression and NSCLC
pathology. Overexpressed PAFAH1B3 in NSCLC (Figure 6A)
was strongly associated with pathologic stage, TNM stage,
residual tumor, and outcome of primary therapy (Figure 6B).
High expression of PAFAH1B3 had a worse OS for most clinical
and demographic NSCLC subgroups including pathologic stage,
TN stage, residual tumor, gender, age, smoking status, and race
(Figure 6C). These results confirm that PAFAH1B3 plays a
critical role in the progression of NSCLC.

The correlation between PAFAH1B3 expression and
pathology of LIHC was also assessed. High PAFAH1B3
expression was significantly associated with histologic stage,

tumor status, pathologic stage, TNM stage, residual tumor,
vascular invasion, race, BMI, gender, age, weight, and height
(Figures 7A–D). In addition, overexpression of PAFAH1B3 had
a worse OS in most clinical and demographic subgroups of LIHC,
including pathologic stage, histologic stage, TNM stage, residual
tumor, gender, age, adjacent hepatic tissue inflammation, height,
and weight (Figures 8A–D and Table 1). Univariate and
multivariate Cox regression analyses showed that TM stage,
pathologic stage, tumor status, and PAFAH1B3 expression
were significantly associated with OS (Table 2). These results
confirm that PAFAH1B3 plays a critical role in LIHC
progression.

A nomogram was created to integrate PAFAH1B3 as a LIHC
biomarker, including the TNM stages, tumor status, histologic
stage to predict OS, DSS, and PFI. The C-indices of OS, DSS, and
PFI were 0.680, 0.871, and 0.808, respectively. The calibration
curves all presented desirable predictions for the three
nomograms for 1-, 3-, and 5-years clinical outcomes (Figures
9A–F). Thus, this nomogram may be a model for predicting
LIHC survival with PAFAH1B3 than an individual prognostic
factor.

FIGURE 5 | Analysis of the correlation between the PAFAH1B3 expression and immune cells infiltration. (A) The correlation between PAFAH1B3 expression and
immune cells infiltration in pan-cancer was examined by the TIMER database. (B) The correlation between PAFAH1B3 expression and diverse immune cells infiltration in
pan-cancer examine by Xcell database. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 7994979

Yuan et al. Role of PAFAH1B3 in Pan-Cancer

79

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Analysis of the Biological Functions of
PAFAH1B3 in LIHC

To perform Gene Ontology (GO) and KEGG enrichment
analysis, 1,013 DEGs (lncRNA and mRNA) were acquired
with threshold values of |log2 fold-change (FC)| > 2.0 and
adjusted p-value < 0.01, including 813 upregulated genes and
200 downregulated genes (Figures 10A–D). For the cellular

components of GO term, the DEGs mainly involved those on
the external side of the plasma membrane, including MHC class
II protein complex, immunological synapse, MHC protein
complex, secretory granule membrane, clathrin-coated
endocytic vesicle membrane, endocytic vesicle, tertiary granule
membrane, tertiary granule, clathrin-coated endocytic vesicle,
endocytic vesicle membrane, ficolin-1-rich granule, an integral
component of the luminal side of endoplasmic reticulum

FIGURE 6 | PAFAH1B3 Is Correlated With Clinical Characteristics and Prognosis in NSCLC. (A) The expression of PAFAH1B3 in NSCLC. (B) The correlation
between PAFAH1B3 expression and Clinical Characteristics in NSCLC, including the pathologic stage, TNM stage, residual tumor, and primary therapy outcome. (C)
The prognosis of PAFAH1B3 in NSCLC.
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membrane, luminal side of the endoplasmic reticulum
membrane, colin-1-rich granule membrane, clathrin-coated
vesicle membrane, and lysosomal membrane (Figure 10E). For
the biology process of GO term, the DEGs mainly involved T cell
activation, lymphocyte differentiation, regulation of lymphocyte
activation, leukocyte cell-cell adhesion, regulation of T cell
activation, regulation of leukocyte cell-cell adhesion, positive
regulation of cell activation, T cell differentiation, positive
regulation of leukocyte cell-cell adhesion, positive regulation of

leukocyte activation, regulation of lymphocyte proliferation,
regulation of mononuclear cell proliferation, regulation of
leukocyte proliferation, and positive regulation of T cell
activation (Figure 10F). For the molecular function of GO
term, the DEGs mainly involved cytokine receptor activity,
carbohydrate-binding, cytokine binding, MHC protein
binding, MHC protein complex binding, MHC class II
receptor activity, G protein-coupled chemoattractant receptor
activity, chemokine receptor activity, C-C chemokine receptor

FIGURE 7 | PAFAH1B3 Is Correlated With Clinical Characteristics in LIHC. (A–D) The correlation between PAFAH1B3 expression and Clinical Characteristics in
LIHC, including the histologic stage, Tumor status, pathologic stage, TNM stage, residual tumor, vascular invasion, race, BMI, Gender, age, weight, and height.
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activity, chemokine binding, C-C chemokine binding, MHC class
I protein binding, pattern recognition receptor activity,
coreceptor activity, and immunoglobulin binding
(Figure 10G). KEGG enrichment analysis showed that the
DEGs were mainly involved in hematopoietic cell lineage, Th1
and Th2 cell differentiation, Th17 cell differentiation, cell
adhesion, the intestinal immune network for IgA production,
allograft rejection, Staphylococcus aureus infection, graft-versus-

host disease, type I diabetes mellitus, Leishmaniasis infection,
autoimmune thyroid disease, B cell receptor signaling, primary
immunodeficiency, T cell receptor signaling, tuberculosis,
inflammatory bowel disease, natural killer cell-mediated
cytotoxicity, and chemokine signaling (Figure 10H).

GSEA enrichment of the DEGs was also assessed and results
indicated that these genes mainly participated in JAK-STAT3
signaling, cell adhesion, chemokine signaling, T cell receptor

FIGURE 8 | PAFAH1B3 Is Correlated With Prognosis in LIHC. (A–D) The correlation between PAFAH1B3 and OS in different clinical subgroups of LIHC, including
pathologic stage, histologic stage, TNM stage, residual tumor, gender, age, adjacent hepatic tissue inflammation, height, and weight.
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signaling, Toll-like receptor signaling, neuro-active ligand-receptor
interaction, cytokine receptor interaction, MAPK signaling, vascular
smooth muscle contraction, apoptosis, focal adhesion, and WNT
signaling (Figures 11A–C). Findings show that PAFAH1B3 plays an
important role in regulating immune responses.

PAFAH1B3 Knockdown Inhibits LIHC Cell
Proliferation and Migration
A loss of function assay was performed to examine the functional
role of PAFAH1B3 in LIHC cancer cells. PAFAH1B3 was
upregulated in LIHC cell lines (Figure 12A) and inhibited by
siRNA in SMC7721 and Hu7 cells. Knockdown efficacy was
verified using real-time RT-PCR, using cell lines expressing a
negative control as the control (Figure 12B). As expected,
PAFAH1B3 knockdown inhibited SMC7721 and Hu7 cell
proliferation (Figure 12C) and colony formation ability (Figures
12D,E). Trans-well and invasion assays showed that cancer cell
migration and invasion were dramatically repressed in PAFAH1B3
knockdown cells compared with the control group (Figures 12F,G).
These results support an oncogenic role for PAFAH1B3 in LIHC.

DISCUSSION

Emerging evidence shows that PAFAH1B3 plays an important
role in apoptosis (Nagy et al., 2021), cancer metastasis (Monillas

et al., 2015), and angiogenesis during cancer (Stafforini, 2015).
Previous studies show that PAFAH1B3 is highly expressed in
HSCC and is positively correlated with cervical lymph node
metastasis. Depletion of PAFAH1B3 suppresses cell
proliferation, migration, and induces apoptosis, thereby
disrupting cell cycle processes (Xu et al., 2019). PAFAH1B3
may serve as a potential therapeutic target for HSCC patients.
However, no studies have analyzed the clinical significance of
PAFAH1B3 in pan-cancer.

Pan et al. found that PAFAH1B3 was more highly expressed in
the HSCC tumor tissues than adjacent non-tumor samples.
Moreover, increased PAFAH1B3 expression was positively
correlated with cervical lymph node metastasis and adverse
clinical outcome in HSCC (Xu et al., 2019). Furthermore,
depletion of PAFAH1B3 inhibited the cell proliferation via
modulating cell apoptosis and disrupting cell cycle process,
and the migratory and invasive capacities were also attenuated
in the absence of PAFAH1B3 (Xu et al., 2019). Yuan et al. found
that PAFAH1B3 was overexpressed in osteosarcoma tissues and
cell lines. Moreover, depletion of PAFAH1B3 inhibits the
osteosarcoma cell proliferation and induced cell apoptosis
in vitro, and also reduced osteosarcoma growth in vivo. This
research confirmed that PAFAH1B3 could be a novel therapeutic
target for osteosarcoma patients (Fan et al., 2021).

In this study, PAFAH1B3 was highly expressed in ACC,
BLCA, BRCA, CESC, COAD, CHOL, DLBC, ESCA, GBM,
HNSC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD,

TABLE 1 | PAFAH1B3 expression associated with clinical pathological characteristics in LIHC (logistic regression).

Characteristics Total(N) Odds ratio (OR) p Value

T stage (T2 and T3 vs. T1) 358 2.426 (1.591−3.723) <0.001
Pathologic stage (Stage III & Stage IV vs. Stage I and Stage II) 350 1.922 (1.182−3.162) 0.009
Histologic grade (G3 and G4 vs. G1 & G2) 369 3.315 (2.132−5.217) <0.001
Age (>60 vs. ≤60) 373 0.657 (0.436−0.987) 0.044
Weight (>70 vs. ≤70) 346 0.504 (0.327−0.772) 0.002
Height (≥170 vs. <170) 341 0.494 (0.317−0.764) 0.002
Race (Black or African American vs. Asian) 177 0.810 (0.295−2.262) 0.681

TABLE 2 | Univariate and multivariate Cox regression analyses of clinical characteristics associated with OS of LIHC.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p Value Hazard ratio (95% CI) p Value

T stage 370
T1 183 Reference
T2 94 1.428 (0.901−2.264) 0.129 1.390 (0.755−2.561) 0.291
T3 and T4 93 2.949 (1.982−4.386) <0.001 1.776 (0.238−13.258) 0.575
M stage 272
M0 268 Reference
M1 4 4.077 (1.281−12.973) 0.017 1.110 (0.263−4.688) 0.887
Pathologic stage 349
Stage I and Stage II 259 Reference
Stage III and Stage IV 90 2.504 (1.727−3.631) <0.001 1.483 (0.203−10.856) 0.698
Tumor status 354
Tumor free 202 Reference
With tumor 152 2.317 (1.590−3.376) <0.001 1.915 (1.202−3.052) 0.006
PAFAH1B3 373 1.235 (1.095−1.392) <0.001 1.198 (1.036−1.385) 0.015
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READ, SKCM, STAD, TGCT, THCA, THYM, UCEC, and UCS,
and high expression was associated with pathology in BRCA,
HNSC, KIRC, LIHC, LUAD, TGCT, and THCA. Increased
PAFAH1B3 expression also correlated with poor prognosis in
ACC, LIHC, LUAD, MESO, SARC, and SKCM. Findings
confirmed that PAFAH1B3 had a moderate accuracy (AUC >
0.75) in predicting BLCA, BRCA, CHOL, COAD, ESCA, GBM,
HNSC, KICH, KIRP, LAML, LGG, LIHC, LUAD, LUSC, OV,
PAAD, PRAD, THCA, THYM, and UCS, confirming that

PAFAH1B3 has the potential to act as a detection index for
the diagnosis of diverse cancers.

PAFAH1B3 expression was also associated with immune and
molecular subtypes of cancer, including UCEC, BLCA, BRCA,
STAD, SKCM, MESO, LUSC, LUAD, LIHC, LGG, CESC, and
KIRC. TMB andMSI play a significant role in tumor immunotherapy.
PAFAH1B3 expression was positively correlated with the TMB in
MESO, LUAD, STAD, PAAD, ACC, LGG, DLBC, UVM, and PRAD,
negatively correlated with the TMB in THYM, positively correlated

FIGURE 9 | Nomogram and calibration curve for predicting the probability of 1-, 3-, and 5-years OS for LIHC patients. (A–C) A nomogram integrates PAFAH1B3
and other prognostic factors in LIHC from TCGA data, (D–F) The calibration curve of the nomogram.
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FIGURE 10 | Identifying differentially expressed genes between high and low expression of PAFAH1B3 groups. (A) Volcano plot of differential lncRNA profiles
between PAFAH1B3 high expression and PAFAH1B3 low expression. (B) Hot map of the top 15 DEGs (lncRNA) between PAFAH1B3 high expression and PAFAH1B3
low expression. (C) Volcano plot of differential mRNA profiles between PAFAH1B3 high expression and PAFAH1B3 low expression. (D) Hot map of the top 15 DEGs
(mRNA) between PAFAH1B3 high expression and PAFAH1B3 low expression. (E–G) The GO term of PAFAH1B3 analysis by using differentially expressed genes.
(H) The KEGG term of PAFAH1B3 analysis by using differentially expressed genes.
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with the MSI in DLBC, STAD, PAAD, MESO, ESCA, UCEC, and
LIHC, and negatively correlated with the MSI in TGCT, LAML,
COAD,UCS, and READ. These results confirm that PAFAH1B3may
serve as a tumor immunotherapy-related biomarker. PAFAH1B3 was
primarily involved in cell proliferation and oxidative phosphorylation
signaling pathways in various cancers.

Chen et al. showed that PAFAH1B3 was up-regulated in
gastric cancer. High PAFAH1B3 expression was significantly
correlated with high M1 macrophage and CD8-positive T cell
infiltration scores. PAFAH1B3 knockdown inhibited the
proliferation, migration, and the activation of oncogenic
signaling in gastric cancer cells (Xie et al., 2021). Immune cell
infiltration plays an indispensable role in cancer progression. In
this study, PAFAH1B3 expression was significantly correlated
with CD8+ T cell abundance in 27 cancers, CD4+ T cell
abundance in 28 cancers, neutrophil abundance in 30 cancers,
DC abundance in 30 cancers, macrophage abundance in 27
cancers, and B cell abundance in 29 cancers. PAFAH1B3
expression also correlated positively with immune checkpoint-
related genes such as CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, SIGLEC15, and TIGIT in 31 cancers. TISIDB analysis
showed that PAFAH1B3 expression was positively associated with
genes for 28 tumor-infiltrating lymphocytes, 45 immune-

stimulators, 24 immune-inhibitors, 41 chemokines, 18 receptors,
and 21MHCs in pan-cancer. These findings indicate that
PAFAH1B3 plays an important role in regulating the immune
response during human cancer. PAFAH1B3 was also significantly
associated with diverse drug sensitivity in many cancer cell lines and
maybe a promising therapeutic target for cancer.

This study further assessed the correlation between
PAFAH1B3 and clinical characteristics and prognosis of
NSCLC. High PAFAH1B3 expression was significantly
associated with pathologic stage, TNM stage, residual tumor,
and primary therapy outcome. Higher expression of PAFAH1B3
had a worse OS in most clinical and demographic subgroups of
NSCLC, including pathologic stage, TN stage, residual tumor,
gender, age, smoking status, and race.

As the most common subtype of NSCLC, accumulating evidence
has confirmed that LUAD and LUSC differ from each other in their
bio-pathology, molecular, clinical characteristics, and therapeutic
effect (Faruki et al., 2017). In this study, we found that high
PAFAH1B3 expression was significantly associated with histologic
stage, tumor status, pathologic stage, TNM stage, residual tumor,
vascular invasion, race, BMI, gender, age, weight, and height in
LIHC. Univariate and multivariate Cox regression analyses showed
that TM stage, pathologic stage, tumor status, and PAFAH1B3

FIGURE 11 | GSEA enrichment PAFAH1B3-related signaling pathway in LIHC (A–C) GSEA enrichment PAFAH1B3-related signaling pathway in LIHC.
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FIGURE 12 | Knockdown of PAFAH1B3 inhibits LIHC progression. (A) The expression PAFAH1B3 in LIHC cells lines was examined by qRT-PCR assay. (B)
Establishment of PAFAH1B3 knockdown cell lines in SMC-7721 and Hu7 verified by qRT-PCR assay. (C) knockdown of PAFAH1B3 dramatically inhibits SMC-7721
and Hu7 cells proliferation examined by growth curve assay. (D–E) knockdown of PAFAH1B3 dramatically inhibits SMC-7721 and Hu7 cells colony formation ability.
(F–G) knockdown of PAFAH1B3 dramatically inhibits SMC-7721 and Hu7 cells migration and invasion abilities.
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expression were significantly associated with the OS. TNM stages,
tumor status, histologic stage, and PAFAH1B3 expression were also
included in a nomogram to predict OS, DSS, and PFI during LIHC.
The C-indices of OS, DSS, and PFI were 0.680, 0.871, and 0.808,
respectively.

Previous study showed that PAFAH1B3 plays a functional role
in spindle formation and meiotic progression during bovine
oocyte maturation (Vandenberghe et al., 2018). Aberrant
higher expression of PAFAH1B3 promotes the cell
proliferation and inhibits cell apoptosis of osteosarcoma (Xu
et al., 2019). Recent study confirmed that high PAFAH1B3
expression was associated with high M1 macrophage and
CD8-positive T cell infiltration scores (Xie et al., 2021).

To better understand the role of PAFAH1B3 in LIHC, KEGG
enrichment analysis showed that these DEGs were primarily
involved in the hematopoietic cell lineage, Th1 and Th2 cell
differentiation, Th17 cell differentiation, cell adhesion, the
intestinal immune network for IgA production, allograft
rejection, Staphylococcus aureus infection, graft-versus-host
disease, type I diabetes mellitus, Leishmaniasis infection,
autoimmune thyroid disease, B cell receptor signaling, primary
immunodeficiency, T cell receptor signaling, tuberculosis,
inflammatory bowel disease, natural killer cell-mediated
cytotoxicity, and chemokine signaling.

Bastian et al. found that platelet-activating factor acetylhydrolase
expression in BRCA1 Mutant Ovarian cancer as a protective factor
and potential negative regulator of the Wnt Signaling pathway. In
this study, we showed that high PAFAH1B3 expression was
associated with the JAK-STAT3 signaling, cell adhesion,
chemokine signaling, T cell receptor signaling, Toll-like receptor
signaling, neuro-active ligand-receptor interaction, cytokine receptor
interaction, MAPK signaling, vascular smooth muscle contraction,
apoptosis, focal adhesion, and Wnt signaling.

PAFAH1B3 is overexpressed in gastric cancer and knockdown of
PAFAH1B3 inhibits proliferation, migration, and activation of
oncogenic signaling in gastric cancer cells (Xie et al., 2021).
Findings from this study showed that PAFAH1B3 was
upregulated in LIHC cancer cell lines and knockdown of
PAFAH1B3 inhibited the proliferation, migration, and invasion
ability of LIHC cancer cells. These results demonstrate that
PAFAH1B3 expression is correlated with LIHC progression.

CONCLUSION

In summary, this study showed that PAFAH1B3 was elevated in
multiple types of human cancer, and high expression correlated
with poor prognosis. High expression of PAFAH1B3 was also
associated with TMB, MSI, immune cell infiltration, and

sensitivity to multiple cancer drugs. Finally, PAFAH1B3 was
shown to play a critical role in the progression of LIHC, in
part by promoting cell proliferation, migration, and
invasion. Results indicate that PAFAH1B3 may serve as a
biomarker for the clinical detection of cancer. This
study provides the first evidence that PAFAH1B3 impacts
cancer progression and immune responses to human pan-
cancer.
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GLOSSARY

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 79949720

Yuan et al. Role of PAFAH1B3 in Pan-Cancer

90

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Systematic Analysis and Validation of
the Prognosis, Immunological Role
and Biology Function of the
Ferroptosis-Related lncRNA GSEC/
miRNA-101-3p/CISD1 Axis in Lung
Adenocarcinoma
Xiulin Jiang1,2†, Yixiao Yuan1†, Lin Tang1, Juan Wang1, Dahang Zhang1 and Lincan Duan1*

1The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital),
Kunming, China, 2Key Laboratory of Animal Models and Human DiseaseMechanisms of Chinese Academy of Sciences, Kunming
Institute of Zoology, Kunming, China

Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for
approximately 85% of pulmonary malignancies. Emerging evidence has demonstrated
that ferroptosis plays a central role in both immunities as well as tumor proliferation.
However, the clinical significance, immunological function, and upstream modulatory
mechanism of ferroptosis-related genes in LUAD remain unclear. Here, we utilized
various bioinformatics data to identify differentially expressed (DEGs) and prognosis-
related ferroptosis (FRGs) genes in LUAD. Based upon identified DEGs, FRG, and
ceRNA modulatory networks were constructed. Pearson’s correlation analysis was
used to evaluate the correlation between FRGs and the tumor mutational burden,
microsatellite instability, tumor-infiltrating immunity, cellular checkpoint control, and
drug sensitivity in LUAD. A loss-of-function analysis was performed to verify the
function of CISD1 in LUAD progression. Our findings revealed that certain FRGs
(CISD1, ATP5MC3, PGD, SLC7A11, ACSL3, and FANCD2) are significantly
upregulated in LUAD and that their elevated expression is associated with both
advanced tumor stage and unfavorable prognosis. Furthermore, Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment results revealed these FRGs to be primarily
involved in ferroptosis and glutathione metabolism in LUAD. We constructed a prognostic
FRG-based model capable of accurately predicting LUAD patient overall survival with high
specificity. The upstream lncRNA GSEC/miRNA-101-3p regulatory axis involving CISD1,
ATP5MC3, and PGD was identified to be relevant in tumor progression. We also found
GSEC, CISD1, ATP5MC3, and PGD to be upregulated, with miRNA-101-3p
downregulated, in the setting of LUAD. Immunohistochemical analysis revealed CISD1,
ATP5MC3, and PGD overexpression in LUAD tissue samples; CISD1 knockdown was
noted to significantly inhibit LUAD proliferation and migration. In summary, this study
characterizes relevant functional roles of the lncRNA GSEC/miR-101-3p axis in the setting
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of LUAD and suggests diagnostic and therapeutic biomarkers potentially useful in the
clinical management of this illness.

Keywords: NSCLC, ferroptosis, ceRNA, immune cell infiltration, cell proliferation, cell migration

INTRODUCTION

Lung cancer remains the commonest fatal condition globally,
with an estimated 2.09 million new cases and 1.76 million deaths
annually (Rivera andWakelee, 2016). Non-small cell lung cancer,
the most frequently encountered disease subtype, typically results
in adverse clinical outcomes and carries a 5-year survival rate of
only 18% (Schwartz and Cote, 2016). Despite advances in early
detection and treatment standardization, management strategies
remain varied and range from chemo-radiotherapy to
immunotherapy. Urgent identification of novel, specific
biomarkers with clinicopathological and prognostic
significance is thus necessary for developing successful lung
adenocarcinoma (LUAD) management strategies.

Ferroptosis describes a recently discovered type of
programmed cell death distinct from apoptosis that is iron-
dependent and characterized by both lipid peroxidation and
reactive oxygen species production (Wang et al., 2019; Luo
et al., 2021; Xu et al., 2021). Ferroptosis has been reported to
play an essential role in lung cancer progression; the interaction
of LINC00336 with ELAVL1 was found to result in the inhibition
of ferroptosis in LUAD (Wang et al., 2019). Similarly, the
interaction of G3BP1 with lncRNA-P53RRA was reported to
facilitate both ferroptosis and apoptosis in lung cancer via
regulation of p53 expression (Mao et al., 2018). Ferroptosis
was additionally reported to be regulated via cellular redox
and cell cycle signaling pathways (Yang and Stockwell, 2016).
Prior studies have suggested several oncogenic signaling
pathways related to the ferroptosis process to inhibit tumor
progression via modulation of ferroptosis (Kang et al., 2019;
Mou et al., 2019). For instance, P53, a well-studied tumor-
suppressor gene, was reported to suppress cystine/glutamate
antiporter expression and thus inhibit the ferroptosis process
(Mou et al., 2019). However, a comprehensive analysis has yet to
establish the prognostic value of ferroptosis-related genes (FRGs)
and their relevant upstream regulatory axis in LUAD.

Analysis of gene expression, mutation, DNAmethylation, and
prognostic value in LUAD revealed CISD1, ATP5MC3, PGD,
SLC7A11, ACSL3, and FANCD2 to be significantly upregulated
in LUAD and elevated expression of these FRGs to be associated
with advanced tumor stage and poor prognosis. Furthermore,
KEGG enrichment findings revealed these FRGs to primarily be
involved in both ferroptosis and glutathione metabolism in the
setting of LUAD. Six prognosis-related genes were also used to
construct an FRG-based prognostic model capable of accurately
predicting LUAD patient overall survival with high specificity.
Finally, CISD1, ATP5MC3, PGD, SLC7A11, ACSL3, and
FANCD2 expression was confirmed to significantly correlate
with tumor mutational burden (TMB), microsatellite
instability (MSI), immune cell infiltration, cellular checkpoint
dysfunction, and cancer sensitivity to drugs. Additionally, we

identified the upstream regulatory (namely, the lncRNA GSEC/
miRNA-101-3p) axis of relevant FRGs (CISD1, ATP5MC3, PGD)
and found GSEC, CISD1, ATP5MC3, and PGD to be
upregulated, with miRNA-101-3p downregulated, in the
setting of LUAD. Knockdown of CISD1 was noted to
significantly inhibit the proliferative and migratory capabilities
of LUAD cells. In summary, by characterizing the functional roles
of the lncRNA GSEC/miR-101-3p axis in LUAD, we suggest
diagnostic and therapeutic biomarkers potentially useful in the
future clinical management of this condition.

MATERIALS AND METHODS

Data Collection
The Cancer Genome Atlas (TCGA)-LUAD cohort data and
corresponding clinical information of 535 LUAD patients were
downloaded from the TCGA website up to November 14, 2020
(https://portal.gdc.cancer.gov/repository). The gene expression profiles
were normalized using the scale method provided in the “limma” R
package. Data analysis was performed with the R (version 3.6.3) and
ggplot2 (3.3.3) packages. The expression data were normalized to
transcripts per kilobase million (TPM) values before further analysis.

Identification of Differentially Expressed 34
FRGs
A total of 34 FRGs were obtained from previous reviews (Su et al.,
2020; Feng et al., 2020), which are shown in Supplementary Table
S1. The difference in FRG expression in LUAD and normal tissues
was identified using the “limma” packages. We then constructed a
gene–gene interaction network for 34 FRGs using the GeneMANIA
(http://www.genemania.org) database (Warde-Farley et al., 2010).

Gene Mutation Analysis of FRGs
The mutation frequency and oncoplot waterfall plot of 34 FRGs in
LUADpatientswere analyzed by theGene SetCancerAnalysis (http://
bioinfo.life.hust.edu.cn/web/GSCALite/) database (Liu et al., 2018).

Functional Enrichment Analysis
Gene Ontology (GO), consisting of the biological process (BP),
cellular component (CC), and molecular function (MF) categories,
was conducted with the “ggplot2” package in R software. Similarly,
this package was also utilized to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis (Ito and Murphy, 2013).

Development of the Ferroptosis-Related
Gene Prognostic Model
Development of the FRG prognostic model was performed as
documented (Lin et al., 2021). Briefly, we performed the Cox
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regression analysis to examine the prognostic significance of the
FRGs. For Kaplan–Meier curves, p-values and hazard ratios
(HRs) with 95% confidence intervals (CIs) were generated by
log-rank tests and univariate Cox proportional hazard regression.
FRGs with a significant prognostic value was selected for further
analysis. Based on these prognostic FRGs, LASSO Cox regression
analysis was then used to construct the prognostic model. The
TCGA LUAD patients were divided into low- and high-risk
subgroups according to the median risk score, and the overall
survival time was compared between the two subgroups via
Kaplan–Meier analysis. The predictive accuracy of each gene
and the risk score was evaluated by performing time receiver-
operating characteristic (ROC) analysis. Considering the clinical
characteristics, a predicted nomogram was developed to predict
the 1-, 3-, and 5-year overall survival. A forest was used to show
the p-value, HR, and 95% CI of each variable through the “forest
plot” R package.

Prediction of lncRNA and ceRNA Network
Construction
We used starbase (http://starbase.sysu.edu.cn/) to predict the
potential upstream miRNAs of FRGs and examine the
expression, prognosis, and correlation between miRNA-101-3p
and lncRNA, as well as to predict the binding sites among
miRNA, mRNA, and lncRNA (Li et al., 2014). We utilized
lncLocator (www.csbio.sjtu.edu.cn/bioinf/lncLocator.) and
CPC2 (http://cpc2.cbi.pku.edu.cn) to explore the subcellular
localization and the protein-coding ability of lncRNAs (Kang
et al., 2017; Cao et al., 2018).

Analysis of the Immunological Roles of
FRGs in Lung Cancer
We utilize TIMER (https://cistrome.shinyapps.io/timer/) and
XCELL tools (https://xcell.ucsf.edu/) to examine the
immunological roles of FRGs (Aran et al., 2017; Li et al.,
2017), including the correlation between diverse immune cells
and immune regulators. The TMB and MSI scores were obtained
from TCGA. A correlation analysis between the FRG expression
and TMB or MSI was performed using Spearman’s method.

Analysis of the Correlation Between the
FRGs Expression and Drug Sensitivity
We utilize the Genomics of Drug Sensitivity in Cancer (GDSC)
(www.cancerRxgene.org) and the Cancer Therapeutics Response
Portal (CTRP) databases to analyze the correlation between FRG
expression and drug sensitivity (Basu et al., 2013; Yang et al.,
2013).

Cells and Cell Culture Conditions
The BEAS-2B cell line was purchased from the cell bank of
Kunming Institute of Zoology and cultured in BEGM media
(Lonza, Morrisville, NC, USA, CC-3170). Lung cancer cell lines,
including A549 and H1975, were purchased from Cobioer
(Nanjing, China), with the STR document; A549 and H1975

cells were all cultured in RPMI 1640 medium (Corning,
Tewksbury, MA, USA) supplemented with 10% fetal bovine
serum (Cat# 10099141C, Gibco, Grand Island, NY, USA) and
1% penicillin/streptomycin.

Quantitative Real-Time PCR
The qRT-PCR assay was performed as documented (Jiang et al.,
2018). Total RNA was extracted according to the manufacturer’s
protocol, and then reverse-transcribed using RT Reagent Kit
(Takara Bio, Beijing, China, Cat# RR047A; Tiangen Biotech,
Beijing, China, Cat# KR211-02). Real-time PCR was
performed by FastStart Universal SYBR Green Master Mix
(Roche, Cat# 04194194001; Tiangen Biotech, Beijing, China,
Cat# FP411-02) using an Applied Biosystems 7500 machine.
The primer sequences are listed as follows: GSEC-F: TTCCAA
TTAACCTGGCCGGAG, GSEC-R: GTCAGCCAACCCATT
GCAAC, PGD-F: ATGGCCCAAGCTGACATCG, PGD-R:
AAAGCCGTGGTCATTCATGTT, CISD1-F: CTGACTTCC
AGTTCCAGCGT, CISD1-R:TGATCAGAGGGCCCACATTG,
ATP5G3-F: ATGTTCGCCTGCGCCAAG, ATP5G3-R: GGC
AAACAAGATCAAGAACGCA, miRNA-101-3p: TACAGT
ACTGTGATAACTGAA. β-Actin was used to normalize
expression levels: β-actin-F: CTTCGCGGGCGACGAT, β-
actin-R: CCATAGGAATCCTTCTGACC. The expression
quantification was obtained with the 2−ΔΔCt method.

Cell Proliferation and Cell Migration Assays
Cell proliferation assay was performed as previously described (Xu
et al., 2020). Briefly, the indicated cells were plated onto 12-well
plates, and the cell numbers were subsequently counted each day
using an automated cell analyzer Countstar (Shanghai Ruiyu
Biotech Co., Shanghai, China, IC1000). Cell migration assay was
performed as previously described (Xiong et al., 2021). For
transwell assay, 1-2×104 cells in 100 l serum-free medium were
plated in an 8.0-µm, 24-well plate chamber insert (Corning Life
Sciences, catalog no. 3422), with a medium containing 10% FBS at
the bottom of the insert. Cells were incubated for 24 h and then
fixed with 4% paraformaldehyde for 20 min. After washing, cells
were stained with 0.5% crystal violet-blue. The positively stained
cells were examined under the microscope.

Immunohistochemistry Staining
The immunohistochemistry staining assay was performed as
documented (Dixon et al., 2012). Briefly, cancer tissues were
collected; the primary antibody was incubated overnight and the
second antibody incubated. Finally, the instrument was
developed. Detailed information of the primers used in this
study is as follows: PGD, Catalog number: #13389, dilution, 1:
100, CST, Shanghai, China; CISD1, Catalog number: #83775,
dilution, 1:200, CST, Shanghai, China; and ATP5MC3, Catalog
number: ab129742, dilution, 1:100, Abcam, Shanghai, China.

Statistical Analysis
Analysis of the FRG expression lung cancer was estimated using
t-tests. For survival analysis, the HR and p-value were calculated
employing univariate Cox regression analysis. Kaplan–Meier
analysis was used to examine the survival time of patients
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FIGURE 1 | Analysis of the expression and genemutation of FRGs in LUAD. (A) The gene–gene interaction networks of FRG analysis by the GeneMANIA database.
(B–D) The expression of FRGs in LUAD is examined by the TCGA database. (E) The mutation frequency and classification of FRGs in LUAD were examined by GSCA
tools. For all figures, p, pp, and ppp indicate p < 0.05, p < 0.01, and p < 0.001, respectively.
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stratified according to high or low levels of the FRG expression.
p-values less than 0.05 were considered statistically significant.
For all figures, p, pp, and ppp indicate p < 0.05, p < 0.01, and p <
0.001, respectively.

RESULTS

Analysis of FRG Expression and Mutation in
LUAD
The expression of 34 FRGs and their function in the setting of
LUAD was analyzed using data obtained from the TCGA
database (Supplementary Table S1). Findings confirmed 26
genes to be upregulated and seven genes to be downregulated
in lung cancer; no other significant differences were noted
(Figures 1A–D). Furthermore, analysis of FRG mutations in
LUAD revealed 97 of 127 (76.38%) samples to exhibit genetic
mutations; ZEB1 exhibited the highest mutation frequency and
was followed by ACACA and ABCC1 (Figure 1E). Finally,
analysis of correlations among copy number variation (CNV),
DNA methylation, and FRG expression in LUAD revealed
FDFT1, IREB2, NFS1, TFRC, HSBP1, ACO1, LPCAT3, CARS,
GSS, ACACA, ACSL3, CISD1, SLC1A5, and NCOA4 expression
to positively correlate with their respective CNV (Supplementary
Figure S1A). Meanwhile, DNA methylation was found to
negatively associate with CBS, FDFT1, STEAP3, FADS2,
SCL1A5, GCLM, GOT1, SLC7A11, CD44, ACSL3, and G6PD
expression in LUAD (Supplementary Figure S1B). Collectively,
these data indicate that CNV and DNA methylation exert a
critical influence on FRG expression in LUAD.

Analysis of FRG Function in LUAD
To explore the function of FRGs in LUAD, GO and KEGG
enrichment analyses were performed. Results revealed 34 FRGs
to be primarily involved in cellular responses to oxidative and other
chemical stress, reactive oxygen species metabolism, extracellular
stimuli, nutrient levels, biosynthetic processes, and iron ion
binding (Figure 2A). Furthermore, KEGG pathway enrichment
analysis revealed these FRGs to be primarily involved in vascular
fluid dynamics and pathogenesis of atherosclerosis, HIF-1
signaling, lipid metabolism, ferroptosis, amino acid metabolism,
necroptosis, thyroid hormone synthesis, serotonergic
communication, and inflammatory bowel disease pathogenesis,
as well as the metabolism of arachidonic acid, aspartate, alanine,
glutamate, and 2-monocarboxylic acid (Figure 2B). Collectively,
these data confirm that FRGs influence cancer cell metabolism,
with ferroptosis playing an essential role in LUAD progression.

The Prognostic Value of FRGs in LUAD
An investigation of the correlation between FRG expression and
tumor stage revealed only ATP5G3, CISD1, and PGD expression to
positively correlate with the LUAD stage (Figure 3A). Evaluation of
the prognostic value of FRGs revealed elevated SLC7A11, PGD,
FANCD2, CISD1, ATP5G3, and ASCL3 expression to closely
correlate with adverse clinical outcomes in LUAD (Figure 3B).
The diagnostic value of FRGs was evaluated using ROC analysis.
Findings confirmed SLC7A11, FANCD2, CISD1, and ATP5G3
expression to accurately predict the LUAD prognosis area under
the curve (AUC > 0.8) (Figure 3C). Higher levels of SLC7A11,
FANCD2, SIDS1, ATP5G3, and ASCL3 expression were similarly
found to correlate with disease-specific survival in LUAD

FIGURE 2 | Analysis of the functions of FRGs in LUAD. (A) The biological process involved by FRGs in LUAD. (B) The KEGG pathway is involved by FRGs in LUAD.
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FIGURE 3 | Analysis of the prognosis of FRGs in LUAD. (A) The pathologic stage of FRGs in LUAD is examined by the GEPIA database. (B) The overall survival of
FRGs in LUAD was examined by the GEPIA database. (C) The ROC curve of FRGs in LUAD is examined by the TCGA database.
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(Supplementary Figure S2A). Elevated SLC7A11, ATP5G3, and
ASCL3 expressions were found to correlate with progression-free
survival in LUAD (Supplementary Figure S2B). Our findings thus
confirm that FRG plays an essential role in LUAD progression.

Construction of an FRG-Based Prognostic
Model
A Lasso Cox regression prognostic model based on the six
aforementioned FRGs was constructed (Figures 4A,B) with
the risk score=(0.0387)*PGD+(0.082)*ATP5MC3+(0.2118)
*CISD1+(0.0029)*SLC7A11+(0.2104)*ACSL3+(0.1528)
*FANCD2. Patients suffering LUAD were divided into two
groups based on the risk score. Risk score distribution,
survival status, and gene expression data are presented in
Figure 4C. Patient risk of death increased and survival time
decreased as the risk score increased (Figure 4C). Kaplan–Meier
survival analysis suggested that LUAD patients with high-risk
scores possess a worse overall survival probability as compared to
those with low-risk scores (median time = 3.3 vs. 4.2 years, p =
0.00198; Figure 4D), with AUCs of 0.653, 0.617, and 0.588 noted

on 1-, 3-, and 5-year receiver operating characteristic (ROC)
curves, respectively (Figure 4E). The above results were verified
by the GEO dataset; Kaplan–Meier survival analysis suggested
that LUAD patients with high-risk scores possess a worse overall
survival probability as compared to those with low-risk scores
(median time = 2.9 vs. 4.9 years, p = 6.52e-08), with AUCs of 0.66,
0.693, and 0.664 noted on 1-, 3-, and 5-year ROC curves,
respectively (Supplementary Figures S6A–D). A nomogram
predictive of patient survival state was constructed. Univariate
and multivariate analyses revealed ATP5MC3 expression and
TNM stage to be independent factors affecting LUAD prognosis
(Figures 5A,B). The nomogram could accurately predict 1-, 3-,
and 5-year overall survival rates as compared with an ideal model
of the entire cohort (Figures 5C,D).

Analysis of the Correlation Between FRG
Expression and TMB, MSI, and Drug
Sensitivity
Emerging evidence has suggested that TMB andMSI may serve as
potential predictive biomarkers for immunotherapy efficacy in

FIGURE 4 | Construction of a prognostic FRG model in LUAD. (A) LASSO coefficient profiles of six FRGs. (B) Plots of the ten-fold cross-validation error rates. (C)
Distribution of risk score, survival status, and the expression of six prognostics FRGs in LUAD. (D,E)Overall survival curves for LUAD patients in the high-/low-risk group
and the ROC curve of measuring the predictive value. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 8 | Article 7937327

Jiang et al. Function of FRG in LUAD

97

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the setting of lung cancer (Goodman et al., 2019). As such, several
studies have reported that the expression of FRGs significantly
correlates with tumor immune infiltration. Correlation analysis
revealed FANCD2, ATP5MC3, and PGD expression to positively
correlate with TMB (Supplementary Figure S3A); FANCD2
expression was also noted to positively correlate with MSI.
Meanwhile, CISD1 expression was found to negatively
correlate with MSI in LUAD (Supplementary Figure S3B). To
explore potential therapeutic targets, gene-set co-expression
analysis was utilized to explore the relationship between FRG
expression and drug sensitivity. Results revealed SLC7A11
expression to positively correlate with sensitivity to PRIMA-1,
PX-12, necrosulfonamide, methylstat, piperlongumine, SMER-3,
NSC95397, manumycin A, ML162, PL-DI1S, 3R-RSL-3,
pifithrin-mu, and cerulenin (r > 0.36). Expression of ACSL3
was found to positively correlate with sensitivity to tozasertib,
PRIMA-1, PX-12, manumycin A, BRD-K30748066, ML210,
BRD-A94377914, 1S, 3R-RSL-3, and docetaxel (r > 0.30). On
the contrary, PGD expression was found to negatively correlate
with sensitivity to tivantinib, SCH-79797, BI-2536, GW-405833,

GSK461364, nakiterpiosin, docetaxel, SB-743921, bafilomycin
A1, linifanib, ceranib-2, BRD-K70511574, BRD-K01737880,
FQI-2, and BRD-K30748066 (r < -0.22). Expression of
ATP5MC3 was found to negatively correlate with sensitivity to
BRD-K30748066, marinopyrrole A, COL-3, dinaciclib, BI-2536,
alvocidib, methotrexate, and bafilomycin A1 (r < -0.22). The
expression of FANCD2 was found to negatively correlate with
sensitivity to GSK-J4, BRD-K30748066, COL-3, docetaxel,
GSK461364, BRD-K66453893, tivantinib, BI-2536, narciclasine,
BRD-K70511574, and triazolothiadiazine (r < -0.34;
Supplementary Figure S3D). These findings thus underscore
that FRG expression either positively or negatively correlates with
LUAD sensitivity to drugs.

FRG Expression Associated With LUAD
Immune Infiltration
Analysis of CISD1, FANCD2, PGD, ASCL1, ATP5MC3, and
SLC7A11 expression in the setting of C1 and C2 LUAD
subtypes revealed high CISD1, FANCD2, and ATP5MC3

FIGURE 5 | Construction of a predictive nomogram in LUAD. (A,B) Hazard ratio and p-value of the constituents involved in univariate and multivariate Cox
regression considering clinical parameters and six prognostics FRGs in LUAD. (C,D)Nomogram predicts the 1-, 3-, and 5-year overall survival rate of LUAD patients and
calibration curve for the overall survival nomogram model in the discovery group. A dashed diagonal line represents the ideal nomogram. *p < 0.05, **p < 0.01, ***p <
0.001.
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expression in the C2 subtype and high PGD and SLC7A11
expression in the C1 subtype (Supplementary Figures S4A,B).
Analysis of data obtained from the TIMER database revealed FRG
somatic copy number alterations to significantly correlate with
levels of immune cell infiltration in LUAD (Supplementary
Figures S5A–F). As ferroptosis plays crucial roles in both
immunity and pulmonary carcinogenesis (Huang et al., 2021),
the correlation between CISD1, FANCD2, PGD, ASCL3,
ATP5MC3, and SLC7A11 expression and tumor immune
infiltration in LUAD was evaluated utilizing data obtained from
the TIMER database. Expression of ASCL3 was found to positively
correlate with the level of infiltration by central memory T cells, T
helper cells, T follicular helper cells, B cells, natural killer cells,
CD56 bright natural killer cells, activated dendritic cells, cytotoxic
cells, and mast cells. On the contrary, ATP5MC3 expression was
found to negatively correlate with the level of infiltration by
cytotoxic cells, dendritic cells, interstitial dendritic cells, T cells,
eosinophils, macrophages, T helper one cells, B cells, mast cells,
plasmacytoid dendritic cells, T follicular helper cells, natural killer
cells, and central and effector memory T cells. The expression of
CISD1 was found to negatively correlate with the level of
infiltration by mast cells, T cells, cytotoxic cells, B cells,

eosinophils, natural killer cells, T helper 17 cells, CD56 bright
natural killer cells, CD8 T cells, plasmacytoid dendritic cells, T
follicular helper cells, and central and effector memory T cells
(Figure 6A). The expression of FANCD2 was found to negatively
correlate with the level of infiltration by cytotoxic cells,
macrophages, CD56 bright natural killer cells, neutrophils,
B cells, T helper 17 cells, natural killer cells, plasmacytoid
dendritic cells, T follicular helper cells, dendritic cells, CD8
T cells, eosinophils, interstitial dendritic cells, and mast cells.
Similarly, the PGD expression was found to negatively correlate
with the level of infiltration by mast cells, eosinophils, interstitial
dendritic cells, natural killer cells, cytotoxic cells, macrophages,
dendritic cells, plasmacytoid dendritic cells, CD8 T cells, B cells, T
helper one cell, T cells, T follicular helper cells, and effector and
memory T cells. The expression of SLC7A11 was found to
negatively correlate with the level of infiltration by eosinophils,
mast cells, cytotoxic cells, activated dendritic cells, B cells, CD8
T cells, natural killer cells, regulatory T cells, T cells, plasmacytoid
dendritic cells, T helper one cell, macrophages, interstitial dendritic
cells, dendritic cells, and T follicular helper cells (Figure 6B).

As immune checkpoints play a crucial role in tumor
immunosuppression, we analyzed the distribution of a relevant

FIGURE 6 | Analysis of the association between FRG expression and immune infiltration level in LUAD. (A,B) The association between FRG expression and
immune infiltration level in LUAD.
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gene expression in stage I–IV LUAD tissues (Figure 7A). We
additionally evaluated the relationship between FRG and immune
checkpoint-related gene (including CD274, CTLA4, HAVCR2,
LAG3, PDCD1, PDCD1LG12, TIGIT, SIGLEC15) expression in
LUAD via Pearson correlation analysis; results revealed the
expression of SLC7A11, PGD, CISD1, ATP5MC3, and ACSL3
to negatively correlate with that of CD274, CTLA4, HAVCR2,
LAG3, PDCD1, PDCD1LG12, TIGIT, and SIGLEC15.
Meanwhile, FANCD2 expression was found to positively
correlate with checkpoint-related gene expression (Figure 7B).
These findings confirm that FRG expression significantly
correlates with that of immune checkpoint-related genes
in LUAD.

Analysis of the Upstream FRG Molecular
Regulatory Axis
The aforementioned evidence suggests that ATP5MC3, PGD,
and CISD1 expression correlates with both stage and
progression of LUAD. To further explore the relevant
upstream FRG regulatory axis, data obtained from various
public databases were used to construct a network of

mRNA–miRNA–lncRNA interactions. We found miRNA-
101-3p to most significantly bind the 3′UTR of ATP5MC3,
PGD, and CISD1 (Figure 8A). Further analysis revealed
miRNA-101-3p to be decreased in lung cancer based on
TCGA-LUAD and GSE74190 datasets (Figures 8B,C).
Moreover, downregulated miRNA-101-3p expression
correlated with the manifestation of poorer clinical features
and prognosis among lung cancer patients (Figures 8D,E).
Analysis of miRNA-101-3p ROC curve data revealed an
AUC value of 0.864 among lung cancer patients (Figure 8F).
We also found miRNA-101-3p expression to significantly
negatively correlate with ATP5MC3, PGD, and CISD1
expression in LUAD (Figure 8G). To predict and obtain the
PVT1 and GSEC lncRNAs, starbase and lncbase were utilized
(Figures 8H–J). According to the ceRNA theory, lncRNA
negatively and positively correlates with miRNA and mRNA
expression, respectively. We found only GSEC to negatively
correlate with miRNA-101-3p expression (Figure 8K) and
positively correlate with ATP5MC3, PGD, and CISD1
expression in LUAD (Figure 9A). Importantly, GSEC was
found to be highly expressed in the setting of this
malignancy based on the GSE81089 dataset (Figure 9B) and

FIGURE 7 | Analysis of the correlation between FRG expression and diverse immune modulators. (A) The expression of immune checkpoint-related genes in
diverse pathologic stages and normal samples. (B) The correlation between FRGs expression and diverse immune checkpoint-related genes in LUAD. For all figures, p,
pp, and ppp indicate p < 0.05, p < 0.01, and p < 0.001, respectively.
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primarily localized to the cytoplasm as determined using the
lncLocator and AnnoLnc RNA tools (Figure 9C). However,
GSEC was not found to possess coding potential (Figure 9D).
High levels of GSEC expression were found to correlate not only

with tumor stage but also with poor prognosis in LUAD.
Analysis of the GSEC ROC curve data revealed an AUC
value of 0.813 in LUAD patients (Figures 9E–G). In
summary, our findings confirm that the lncRNA GSEC/

FIGURE 8 | Prediction and analysis of the upstream miRNAs of FRGs in LUAD. (A) Prediction of the potential miRNAs of FRGs in LUAD examined by starbase.
(B,C) The expression of miRNA-101-3p in LUAD was examined by TCGA/GEO databases. (D) The correlation between FRGs and clinical features in LUAD. (E) The
prognosis value of miRNA-101-3p in LUAD. (F) ROC curve analyses and AUC values for miRNA-101-3p in LUAD. (G) Pearson’s correlation analysis determined the
correlation between miRNA-101-3p and ATP5MC3, CISD1, and PGD expression in LUAD examined by starbase. (H) Explored the potential lncRNAs of miRNA-
101-3p in LUAD by starbase. (I,J) The expression of GESC and PVT1 in LUAD was examined by starbase. (K) Pearson’s correlation analysis determined the correlation
between miRNA-101-3p and GSEC in LUAD. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9 | Construction of lncRNA/miRNA/FRG interaction network. (A) Pearson’s correlation analysis determined the correlation between GSEC and
ATP5MC3, CISD1, and PGD in LUAD. (B) The expression of GESC in LUAD is examined by the GEO dataset. (C) The subcellular location of GESC is examined by
lncLocator and Annolnc2 databases. (D) The coding ability of GESC is examined by coding potential calculator databases. (E) The pathologic stage of GESC in LUAD is
examined by GEPIA databases. (F)ROC curve analyses and AUC values for GSEC in LUAD. (G) The prognosis of GESC in LUAD is examined by GEPIA databases.
*p < 0.05, **p < 0.01, ***p < 0.001.
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miRNA-101-3p axis modulates ATP5MC3, PGD, and CISD1
expression in LUAD.

Knockdown of CISD1 Inhibits LUAD
Proliferation and Migration
To verify the aforementioned findings, a qRT-PCR assay was used
to detect GSEC, ATP5MC3, PGD, CISD1, and miRNA-101-3p
expression in LUAD cell lines. While we found GSEC,

ATP5MC3, PGD, and CISD1 expression to be upregulated in
LUAD cells (Figure 10A), miRNA-101-3p expression was noted
to be decreased (Figure 10B). The immunohistochemical
evaluation further revealed PGD, ATP5MC3, and CISD1
overexpression in LUAD tissues (Figures 10C–E). As prior
literature has detailed the roles of PGD and ATP5MC3 in
LUAD, we focused on further studying the influence of CISD1
on LUAD cell proliferation and migration via the utilization of
target siRNA transfected into H1975 cells. We found that CISD1

FIGURE 10 | Depletion of CISD1 inhibits LUAD cell proliferation and migration. (A,B) The expression of GSEC, FRGs, and miRNA-101-3p in LUAD cell lines was
examined by qRT-PCR assay. (C–E) The expression of PGD, ATP5MC3, and CISD1 in LUAD tissue was examined by IHC assay. (F) The expression of CISD1 in H1975
cells after knockdown of CISD1was examined by qRT-PCR assay. (G,H) The growth curve and colony formation assays were utilized to detect the silencing of CISD1 on
the growth of H1975 cells. (I) The transwell assay was utilized to detect the silencing of CISD1 on the migration of H1975 cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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expression was decreased after CISD1 knockdown in this cell line
(Figure 10F). Growth curve and colony formation findings
revealed that CISD1 knockdown significantly inhibits cell
proliferation (Figures 10G,H). Transwell assays indicated that
the migratory capability of H1975 cells was significantly
suppressed via CISD1 downregulation (Figure 10I). These
findings confirm that CISD1 functions as an oncogene,
promoting cell growth and migration among LUAD cells.

DISCUSSION

An iron-dependent type of programmed cell death, ferroptosis
differs from other forms of cell death such as apoptosis, necrosis,
and autophagy. The ferroptosis process generally results in
excessive lipid peroxidation and is induced by abnormalities in
cellular redox processes. Importantly, ferroptosis is understood to
play an indispensable role in the elimination of carcinogenic cells
(Hirschhorn and Stockwell, 2019). Activation of Ras/mitogen-
activated protein kinase signaling increases the sensitivity of
cancer cells to ferroptosis and thus leads to the maintenance
of relative iron abundance in cancer via control of transferrin
receptor and ferritin expression (Dixon et al., 2012). Knockdown
of FMS-like tyrosine kinase three was reported to reduce lipid
peroxidation and inhibit p22phox activity, resulting in the
inhibition of ferroptosis among malignant cells (Song et al.,
2018). Recently, 5-monophosphate was reported to increase
Beclin1 phosphorylation and inhibit system Xc activity, thus
facilitating ferroptosis (Kang et al., 2018). However, the
modulatory mechanism of the ferroptosis process and
associated FRG expression correlated with LUAD progression
remains to be elucidated.

Here, we first investigated the expression and prognostic value
of FRGs in LUAD.We found a total of 26 genes to be upregulated;
seven genes were found to be downregulated in LUAD as
compared with normal tissue. Meanwhile, the expression of
FDFT1, IREB2, NFS1, TFRC, HSBP1, ACO1, LPCAT3, CARS,
GSS, ACACA, ACSL3, CISD1, SLC1A5, and NCOA4 was found
to positively correlate with respective CNV in LUAD. Levels of
DNA methylation were found to negatively associate with CBS,
FDFT1, STEAP3, FADS2, SCL1A5, GCLM, GOT1, SLC7A11,
CD44, ACSL3, and G6PD expression in LUAD. Collectively,

these data indicate that CNV and DNA methylation exert
critical effects on FRG expression in LUAD.

Functional enrichment analysis revealed 33 FRGs to be
primarily involved in vascular fluid dynamics and
atherosclerosis, HIF-1a signaling, lipid metabolism, ferroptosis,
cysteine and methionine metabolism, glutathione metabolism,
amino acid biosynthesis, necroptosis, arachidonic acid
metabolism, thyroid hormone synthesis, serotonergic
communication, alanine metabolism, aspartate metabolism,
glutamate metabolism, inflammatory bowel disease, 2-
monocarboxylic acid metabolism, and arginine biosynthesis.
Our findings demonstrate that FRGs play an important role in
both LUAD pathogenesis and illness progression.

Prognosis analysis revealed increased SLC7A11, PGD,
FANCD2, CISD1, ATP5G3, and ASCL3 expression to closely
correlate with poor LUAD clinical prognosis. Importantly, levels
of ATP5G3, CISD1, and PGD expression were found to positively
correlate with tumor stage. Analysis ROC curve data revealed
SLC7A11, FANCD2, CISD1, and ATP5G3 to be highly accurate
markers in LUAD (AUC > 0.8). These findings suggest that FRG
expression correlates with LUAD prognosis. A highly accurate
five-gene prognostic model capable of predicting overall LUAD
patient survival was constructed based on SLC7A11, PGD,
FANCD2, SIDS1, ATP5G3, and ASCL3 using Lasso Cox
regression analysis. A predictive nomogram useful in
predicting 3- and 5-year overall survival rates as compared to
an ideal model in the studied cohort was similarly developed.
Here, we identified a pyroptosis-related prognostic gene signature
for LUAD, further advancing potential prognostic methods
relevant to LUAD.

Here, SLC7A11, PGD, FANCD2, CIDS1, ATP5G3, and
ASCL3 were found to serve as effective gene signatures for
predicting LUAD prognosis. An important cystine/glutamate
antiporter regulated by p53, SLC7A11 plays suppressive roles
in the ferroptosis process. The SLC7A11-mediated importation of
cystine enhances glutathione biosynthesis and increases GPX4-
mediated detoxification of lipid peroxides, thereby inhibiting
ferroptosis (Stockwell and Jiang, 2020). A prior study reported
PGD capable of predicting overall survival in the setting of
papillary thyroid carcinoma (Yang et al., 2021). In addition,
FANCD2 was reported to inhibit ferroptosis and protect from
bone marrow injury (Song et al., 2016).

Importantly, we found FRG expression to significantly
correlate with tumor immune infiltration. Furthermore, we
found that SLC7A11, PGD, CISD1, ATP5MC3, and ACSL3
expression significantly negatively correlates with CD274,
CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG12, TIGIT, and
SIGLEC15 expression. However, FANCD2 expression was found
to positively correlate with checkpoint-related gene expression in
LUAD. As such, these data confirm that FRG expression is
associated with immune checkpoint-related gene expression
in LUAD.

The lncRNA GSEC was previously reported to upregulate
EIF5A2 expression via miR-588 sponging and subsequently
facilitate cell proliferation, migration, and invasion capabilities
in osteosarcoma (Liu et al., 2020). High levels of GSEC expression
were reported in triple-negative breast cancer tissue and cell lines,

FIGURE 11 | A working model for lncRNA GSEC/miR-101-3p/CISD1
axis in LUAD.
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with GSEC knockdown significantly decreasing these
proliferative, migratory, and invasive capabilities. The
sponging of miR-202-5p by GSEC, along with resultant
increased AXL expression, was reported to enhance LUAD
progression (Zhang et al., 2021). Similarly, miRNA-101-3p was
reported to inhibit both proliferative and migratory capabilities of
gastric carcinoma cells and enhance apoptosis via PIM-1
expression modulation (Wu et al., 2019). Indeed, in an LUAD
setting of miRNA-101-3p downregulation, overexpression of
miR-101-3p mimics was reported to reduce rates of tumor
growth and progression in vitro (Liu et al., 2021). In this
study, data obtained from various public databases were used
to illustrate novel mRNA–miRNA–lncRNA interactions
(namely, the lncRNA GSEC/miR-101-3p/ATP5MC3/PGD/
CISD1 axis) detailing modulation of FRG expression following
the ceRNA hypothesis (Figure 11). Although we found GSEC,
ATP5MC3, PGD, and CISD1 to be upregulated in LUAD cell
lines, miRNA-101-3p expression was found to be decreased. The
immunohistochemical evaluation also confirmed increased
expression of ATP5MC3, PGD, and CISD1 in LUAD tissue.
Knockdown of CISD1 was found to significantly inhibit the
proliferative and migratory capabilities of LUAD cells.

CONCLUSION

Here, we found that GSEC, CISD1, ATP5MC3, and PGD are
upregulated, and miRNA-101-3p is downregulated, in LUAD.
Knockdown of CISD1 was found to significantly inhibit the
proliferative and migratory capabilities of LUAD cells. In
summary, this study characterizes the functional roles of
the lncRNA GSEC/miR-101-3p/CISD1 axis in LUAD and
suggests potential diagnostic and therapeutic biomarkers
for future clinical application in the management of this
illness.
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Background:Hepatocellular carcinoma (HCC) is a tumor with highmorbidity andmortality
worldwide. lysine acetylation regulators (LARs) dynamically regulate Lysine acetylation
modification which plays an important regulatory role in cancer. Therefore, we aimed to
explore the potential clinical prognostic value of LARs in HCC.

Methods: Differentially expressed LARs in normal liver and HCC tissues were obtained
from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) datasets. To identify genes with prognostic value and establish the risk
characteristics of LARs, consensus clustering was employed. We used univariate Cox
regression survival analysis and LASSO Cox regression based on LARs to determine the
independent prognostic signature of HCC. CIBERSORT and Gene Set Enrichment
Analysis (GSEA) were used to estimate immune infiltration and functional enrichment
analysis respectively. The expression of LAR was detected by Real-time quantitative
polymerase chain reaction (RT-qPCR). statistical analyses were conducted using SPSS
and R software.

Results: In this study, the 33 LARs expression data and corresponding clinical information
of HCC were obtained using TCGA and ICGC datasets. We found majority of the LARs
were differentially expressed. Consensus cluster analysis was carried out based on the
TCGA cohort, and three HCC subtypes (cluster 1, 2, and 3) were obtained. The LA3
subgroup had the worst clinical outcomes. Nine key LARs were identified to affect
prognosis. The results showed that LARs signature has a strong independent
prognostic value in HCC patients, whether in the training datasets or in the testing
datasets. GSEA results showed that various tumor-related processes and pathways
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were abundant in the high-risk groups. RT-qPCR results showed that HAT1, HDAC1,
HDAC2, HDAC4, and HDAC11 were highly expressed in HCC cells.

Conclusion: Our results suggest that LARs play critical roles in HCC and are helpful for
individual prognosis monitoring and clinical decision-making of HCC.

Keywords: lysine acetylation regulators, hepatocellular carcinoma, prognostic signature, overall survival,
nomogram

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors worldwide, ranking sixth in cancer incidence
and fourth in mortality worldwide (Kulik and El-Serag, 2019;
Huang et al., 2021). HCC risk factors include viral infections,
obesity, nonalcoholic fatty liver disease, and high intake of
aflatoxin (Caruso et al., 2021). Progress has been made in
recent years regarding HCC, and the clinical prognosis of
HCC has improved to a certain extent.(Fan, 2012). However,
due to the high heterogeneity and high incidence of recurrence
and metastasis, the overall prognosis with HCC remains
unsatisfactory (Nault et al., 2020). Therefore, it is urgent to
need to develop novel therapeutic targets for HCC patients,
and act as effective predictive markers to evaluate HCC
patient prognosis.

Cancer is a multifactorial disease that results from the
interaction between genetic abnormalities and epigenetic
changes. Epigenetic changes are an important sign of cancer
progression (Baylin and Jones, 2016; Feinberg et al., 2016; Cavalli
and Heard, 2019). Post-translational modification (PTM) is an
important way to regulate protein function and affect cell
behavior, and act as a signal marker in cancer cells (Chen
et al., 2020; Figlia et al., 2020). Lysine acetylation is an
important reversible and dynamic protein PTM that is
exceedingly important for gene expression. It plays an
important role in transcription factor activity, chromatin
remodeling, and metabolic enzyme activity, and is related to
tumorigenesis, tumor progression, and metastasis (Choudhary
et al., 2014; Kaypee et al., 2016; Narita et al., 2019). Lysine
acetylation is a reversible epigenome modification regulated by
two clusters of opposing enzymes: lysine acetyltransferases
(KATs) and histone deacetylases (HDACs) (Falkenberg and
Johnstone, 2014; Sheikh and Akhtar, 2019). KATs are
primarily divided into two types according to their cellular
localization and acetylated chromatin histone ability: type a
KATs and type b KATs. The main KAT families are the
GCN5-related N-acetyltransferase (GNAT) (Bienvenut et al.,
2020), p300/CBP (KAT3) (Lipinski et al., 2020)and MYST
(MOZ, Ybf2, Sas2, and TIP60) families (Baell et al., 2018).
Moreover, two other KAT families belong to the nuclear
receptor family of transcription factor-related KATs and
KATs. HDACs are roughly divided into classical HDACs,
including type I (homologues of yeast Rpd3, including HDAC
1, 2, 3, and 8), II (homologues of yeast Hda1, including HDAC 4,
5, 6, 7, 9, 10), IV (HDAC 11), and NAD + -dependent III HDAC
or sirtuins, similar to yeast Sir2 (Li et al., 2020). Although the

molecular regulation mechanism of LARs in HCC has been
discussed, there is a lack of comprehensive research (Chai
et al., 2021). Therefore, we systematically studied the role of
LARs in HCC in order to provide potential prognostic markers
and therapeutic targets.

In this study, we grouped 368 HCC patients based on LARs
and identified three subgroups with differences in prognosis. The
risk score be calculated by the LASSO-Cox regression to establish
a LARs signature. We also discuss the relationship between the
LAR risk model and immunity. Finally, we performed
experiments to verify the LARs mRNA expression. Our
findings reveal the possible role of LARs in HCC, which is of
substantial significance for accurate HCC treatment.

MATERIALS AND METHODS

Data Acquisition
RNA-seq data for HCC samples were selected from the TCGA
dataset (https://portal.gdc.cancer.gov/), and clinical data related
to the patient were downloaded simultaneously. The study
included 368 HCC and 50 normal liver tissue samples. The
RNA-seq data of the verification set and the corresponding
clinicopathological information were downloaded from ICGC
dataset (https://dcc.icgc.org/), including 232 HCC samples and
202 normal samples adjacent to cancer. We obtained 33 LARs
were obtained from previously published literature (Narita et al.,
2019), of which 13 belonged to the acetyltransferase family, and
20 belonged to the deacetylase class. The 33 LARs information is
provided in Supplementary Table S1.

Analysis of the LARs Regulatory Factors
in HCC
The differential expression of LARs in HCC and normal liver
tissue samples was analyzed with the “limma” R package and
visualized by heatmap. The protein-protein interactions (PPI)
network between differentially expressed LARs were analyzed
with the STRING website (http://string-db.org/). In addition, the
correlation between these LARs was calculated using Pearson
correlation network analysis.

Consensus Clustering Analysis
In the TCGA cohort, the expression of 33 LARs were analyzed to
determine the HCC subtype by the “ConsensusClusterPlus” R
package (Wilkerson and Hayes, 2010). The method was based on
the classical K-Means algorithm, with the Euclidean distance,
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iterated 50 times, and 80% of tumor samples were taken in each
iteration. The number of clusters was set to 2–9, and we
determine the best cluster number through the clustering score
for the cumulative distribution function (CDF). According to
different subgroups, the survival curve was drawn with survival R
packet. Combined with clinical characteristics, heat maps were
used to analyze the expression and distribution of LARs in
different subgroups.

Establishment and Verification of a
Prognostic Risk Model
In the TCGA dataset, the survival information of HCC
patients and the expression data of LARs were combined,
and Cox regression analysis was performed to obtain the
hazard ratio (HR) with its 95% confidence interval (CI) for
each LARs. According to HR to identify protective genes (HR
< 1) and dangerous genes (HR > 1), LARs with p < 0.05, were
selected for the next analysis. According to the LARs related to
prognosis, nine risk genes were identified using the LASSO
algorithm, and the risk coefficient of each gene was obtained.
We constructed a risk-scoring equation based on LAR
expression:

Risk score � ∑
n

i�1
(Coefipxi)

where Coefi refers to the risk coefficient of the gene and xi is the
expression value of the gene.

Taking the median risk score as the cutoff value, HCC patients
were classified into high-risk and low-risk group. Using the
“survival” R package to perform Kaplan–Meier survival curve
analysis, we drew a risk curve from low to high patient risk values,
and the package “timeROC” was used to depict the ROC curve,
calculate the area under the curve (AUC), and evaluate the
accuracy, the sensitivity and the specificity of the model.
Principal component analysis (PCA) and t-distribution
stochastic neighbor embedding (t-SNE) methods were used to
study the distribution of different populations by using R
packages stats and Rtsne.

Construction and Verification of Predictive
Nomogram
Clinicopathological characteristics and risk scores were
integrated with survival data to obtain independent
prognostic analysis input files, and The R package
“survival” was used to perform univariate Cox and
multivariate Cox regression analyses on the input files to
evaluate the role of predictive model risk scores in
prognostic prediction. The results were a forest map for
visualization. Then, we used the “rms” R package to
construct these independent prognostic factors, and
constructed 1-, 3-, and 5-years forecast nomograms and
corresponding calibration charts. The concordance index
(C-index) was applied to evaluate the performance of the
nomogram, and the calibration curve of the nomogram was

used to evaluate the consistency between actual and
predicted value.

Immune Infiltration Analysis
Based on the TCGA database, the “CIBERSORT” R package was
used to calculate the infiltration proportions of 22 immune cells
in each HCC patient and displayed with a barplot, heatmap, and
violin chart. The correlation between the expression and
distribution of 22 infiltrating immune cells in the two groups
was analyzed, and the related heat map was drawn. Red denotes a
positive correlation, blue indicates a negative correlation.

Gene Set Enrichment Analysis
Gene expression data were analyzed by Gene Set Enrichment
Analysis (GSEA) software (http://www.gsea-msigdb.org/gsea/
index.jsp). The related pathways and molecular mechanisms of
HCC patients were evaluated using the “Hallmark” and the
“KEGG” gene sets. The minimum and maximum gene set
sizes were 10 and 500, respectively. The nominal (NOM)
p-value < 0.05 and false discovery ratio (FDR) q value < 0.25
were considered statistically significant.

Cell Culture
Human hepatic cell line, THLE-2 was purchased from the
American Type Culture Collection (MA, USA), and HCC cell
line (MHCC-97H, HepG2, LM3) was purchased from the
National Collection of Authenticated Cell Cultures (Shanghai,
China). The cell lines were cultured in Dulbecco’s modified Eagle
medium (Gibco, TX, USA), supplemented with 10% fetal bovine
serum (Gibco) in a humidified incubator (37°C, 5% CO2).

Reverse-Transcription Quantitative PCR
Total RNA was extracted from cells using TRIzol reagent
(Invitrogen, MA, USA). cDNA was synthesized using the
PrimeScript RT reagent kit (Takara, Shiga, Japan) following
the manufacturer’s instructions. The samples were amplified
by qPCR using SYBR Green qPCR Master Mix (Thermo
Fisher Scientific, MA, USA). The primer sequence information
is provided in Supplementary Table S2.

Statistical Analysis
All statistical analyses were conducted using R. 4.0.4 (https://
www.r- project. org/) and SPSS Statistics software (version 25,
https://www.ibm.com/products/software). The student’s t-test
was used to compare the differences between the two groups.
A value of p < 0.05 indicated that a statistically significant
difference.

RESULTS

Expression Characteristics and
Interactions of LARs
The expression characteristics of 33 LARs were analyzed using
TCGA and ICGC datasets. Compared with normal liver tissues,
23 same LARs were abnormally expressed in HCC in the ICGC
and TCGA datasets (Figures 1A,B) Genes marked in red indicate
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that they were differentially expressed in the two databases.
Considering the similarity of biological functions of LARs, we
analyzed the interaction and correlation between 33 LARs
differentially expressed in the TCGA dataset. A PPI network
analysis showed that these LARs frequently interact with each
other, and HDACs and KATs have a particularly high interaction
with other LARs (Figure 1C). Figure 1D shows the correlation of
33 LARs in HCC. We found that there was a significant
correlation between the gene expression patterns of LARs in
the same functional category, and there was a high correlation
between acetyltransferase and deacetylase. In correlation analysis,
there was a high correlation among KAT2A, HDAC10, SIRT6

and SIRT7, while SIRT6 was negatively correlated with the
expression of KAT2B, HDAC6 and HDAC7 in HCC.

Identification of Hepatoma Subsets by
Consensus Clustering
In order to establish the prognostic characteristics based on LARs,
Pearson correlation coefficient analysis was carried out.
Consensus clustering analysis was used to divide 368 samples
into k groups (k = 2–9) (Figures 2A,B). According to the
cumulative distribution function (CDF) value, k = 3 is the best
number of clusters for dividing HCC queues, that is, cluster 1,

FIGURE 1 | The expression characteristics and correlation of LARs in hepatocellular carcinoma (HCC). (A) Heatmaps present the overall expression of LARs in
HCC tissues and normal liver tissues from The Cancer Genome Atlas (TCGA). The red mark indicates that the gene is differentially expressed in the two data sets. (B)
Heatmaps presented the overall expression of LARs in HCC tissues and normal liver tissues from the International Cancer Genome Consortium (ICGC). (C) STRING
online tool was used to analyze the interaction of LARs regulatory factors. (D) Spearman correlation analysis of 33 regulatory genes in the HCC cohort. *p < 0.05,
**p < 0.01, ***p < 0.001.
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cluster 2 and cluster 3 (Figure 2C). In order to understand the
differences among the three subgroups in more detail, we used
principal component analysis (PCA) to evaluate the classification
of mRNA expression profiles, and the analysis showed that there
were significant differences among the three subgroups
(Figure 2D). In addition, the results of survival analysis
showed that there was a great difference in OS time among
the three clusters, and the OS of patients with cluster 3 was
significantly lower than that of cluster 1 (Figure 2E).
Subsequently, we evaluated the relationship between clusters
and clinicopathological features (Figure 2F). There are
differences in pathological characteristics such as grade, age,
sex, and status among the three groups, and there are also

differences in expression levels of LARs between the three
clusters.

Building a LARs Signature Using LASSO
Cox Regression
In the TCGA dataset, we performed univariate Cox regression
analysis to explore the prognostic values of LARs. We found
that 10 LARs were significantly associated with OS in HCC
patients (Figure 3A). Among the 10 genes, ESCO2, HAT1,
HDAC1, HDAC2, HDAC4, and HDAC11 are risk factors for
HCC, with a risk ratio >1, while KAT8, HDAC6, SIRT3, and
SIRT5 are protective factors, with a risk ratio <1. LASSO cox

FIGURE 2 | (A) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (B) Relative change in area under the CDF curve for k = 2 to 9. (C)
Consensus clustering matrix for k = 3. (D) PCA of the total RNA expression profile in TCGA dataset. (E) Kaplan–Meier survival curves for HCC in the three subgroups
defined by the consensus expression of 33 LARs. (F) The different expression levels of LARs and clinicopathological feature contributions.
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regression analysis was then used to build a prognostic model
from the 10 LARs for HCC patients in the TCGA dataset.
Based on the minimum standard, the prognostic features
based on 9 LARs are successfully developed (Figure 3B,
Supplementary Figure S1A). Nine LARs coefficients were
visualized from high to low using the LASSO algorithm, as
shown in Figure 3C. Detailed information is provided in
Supplementary Table S3.

Evaluation and Validating of the Prognostic
Model in TCGA Dataset
According to the risk score, HCC patients in the training group
were divided into high-risk group and low-risk group. Survival
analysis showed that patients in the high-risk group had worse
survival compared with those in the low-risk group (Figure 4A).
The increase in LARs-related gene expression and mortality in
HCC patients were parallel to the increase in risk score
(Figure 4B). The AUC values of 1-year, 2-years and 3-years
calculated by TCGA dataset are 0.732, 0.701 and 0.695
respectively (Figure 4C), indicating that our LARs prognostic

characteristics have a good predictive ability. PCA and t-SNE
analysis revealed that distribution patterns of patients were
significantly different in the different risk groups (Figures
4D,E). Then, Kaplan-Meier survival analysis was performed
to investigate the prognostic value of a single LAR in HCC
patients. The results showed that the expression of ESCO2,
HDAC2, HDAC11, HDAC1, HAT1, HDAC6, and SIRT3 were
found to be linked to the prognosis of HCC (Figures 4F–N). To
evaluate the predictive value of LARs signature obtained from
the training set, we used the ICGC database as external
verification dataset. Using the same formula, the risk scores
of the patients in the validation set were calculated and grouped.
As shown in Supplementary Figures S2A,B, the survival time
of patients in the high-risk group was significantly shorter than
that in the low-risk group (p < 0.001). Moreover, the verification
results showed that the AUC expression of LAR-related mRNA
was 0.752, 0.656, and 0.685 at 1, 2, and 3 years, respectively
(Supplementary Figure S2C). The PCA and t-SNE analysis
successfully separated and confirmed two patient subgroups
(Supplementary Figures S2D–E). Kaplan-Meier survival curve
revealed that patients with high expression of ESCO2, HDAC2,

FIGURE 3 | (A) Univariate Cox regression analysis was used to calculate the hazard ratios (HRs), 95% confidence intervals, and p-values for screening the
prognostic LARs. (B), (C) LASSO regression was performed to calculate the minimum criteria (B) and coefficients (C).
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HDAC11, HAT1 and HDAC6 had poorer OS expression than
patients with low expression. (Supplementary Figures S2F–N),
which is consistent with results from training set. These results
revealed that the LARs signature is excellent in predicting the
prognosis of HCC in the validation set.

Independent Prognostic Value of LARs
Signature
According to the heat map of risk and clinical correlation, the
high-risk score was positively correlated with tumor
classification, stage, grade, age, and status in the TCGA dataset

FIGURE 4 | Prognostic value of the risk model in TCGA cohort. (A) Survival analysis of patients in the high-risk and low-risk groups based on the prediction risk
score formula. (B) The median value of risk scores with survival and statuses of HCC patients depends on the risk model in the TCGA cohort and the distribution of risk
scores with survival and statuses of HCC patients depends on the risk model in the TCGA cohort. (C) 1-, 2-, and 3-years receiver operating characteristics (ROC) curves
of the risk model for assessing the prognostic performance of the gene signature in the TCGA cohort. (D) Principal component analysis of HCC patients in TCGA
cohort. (E) t-distributed stochastic neighbor embedding (t-SNE) analysis of HCC patients in TCGA cohort. (F–N) Kaplan–Meier survival analysis of the association
between mRNA expression of LARs and OS in HCC patients. The HCC sample information was derived from TCGA databases.
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(Figure 5A). In the ICGC dataset, the high-risk group was
positively correlated with stage and status (Figure 5B).
According to the risk and clinical correlation heat map of
TCGA and ICGC datasets, HDAC1, HDAC2, HDAC4,

HDAC11, HAT1, and ESCO2 were suggested to be high-
risk LARs. In TCGA cohort, according to univariate Cox
regression analysis, staging (HR = 1.657, 95% CI,
1.353–2.031, p < 0.001) and risk score (HR = 1.083, 95%

FIGURE 5 | (A) The differential expression levels of the included 9 LARs and the distributions of clinicopathological characteristics were compared between low-
and high-risk subgroups in the TCGA cohort. (B) The differential expression levels of the included 9 LARs and the distributions of clinicopathological characteristics were
compared between low- and high-risk subgroups in the ICGC cohort. (C), (D) Univariate (C) and multivariate (D) Cox regression analyses of the OS and
clinicopathological features of patients from TCGA datasets. (E), (F) Univariate (E) and multivariate (F) Cox regression analyses of the OS and clinicopathological
features of patients from ICGC datasets. (G) A line chart was established to predict the 1-, 3-, and 5-years survival rates of HCC patients. (H) The 1-year alignment
diagram calibration curve of the entire TCGA queue.
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CI, 1.060–1.107, p < 0.001) were significantly correlated with
OS (Figure 5C). Multivariate analysis by Cox regression
showed that, after correcting for other confounding factors,
staging (HR = 1.515, 95% CI, 1.220–1.881, p < 0.001) and risk
score (HR = 1.078, 95% CI, 1.051–1.106, p < 0.001) were still
statistically significant (Figure 5D). The results were
validated using the ICGC queue (Figures 5E,F). Based on

multivariate analysis by Cox regression, sex, age, stage, and
risk scores were introduced into the line chart to
quantitatively predict the OS of HCC patients (Figure 5G).
The calibration curves of the 1-, 3-, and 5-years line diagrams
were very close to the best prediction curve, and the predicted
OS rate and the actual observation value were highly
consistent. (Figure 5H, Supplementary Figures S1B–F).

FIGURE 6 | Distribution and visualization of immune cell infiltration in HCC patients. (A) The histogram shows 21 specific immune components represented by
different colors in each sample. (B) The correlation matrix of the proportion of 21 types of immune cells. (C) DEIRGs heat map of patients with high and low tumor
mutational load (TMB). (D) Violin pictures with different degrees of immune cell infiltration in patients with high and low TMB. Blue and red represent low- and high-risk
samples, respectively.
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Correlation Between LARs-Related
Signature and Immune Infiltration
To further immune infiltration analysis, we employed
CIBERSORT to calculate the infiltration abundance of 22
immune cell types between high-and low-risk HCC samples
in the TCGA dataset. The infiltration ratio of immune cells was
shown in Figure 6A. We also assessed the association between
22 types of immune cells, and the heat map revealed that the
proportions of different subpopulations of tumor-infiltrating
immune cells were weakly to moderately correlated (Figure 6B).
Next, we used the heat map (Figure 6C) and the violin map

(Figure 6D) to reveal possible differences in immune cell
expression between groups. The results showed that memory
activated CD4+ T cells and macrophages M0 were higher
expressed in the high-risk group, while T cells gamma delta,
NK cells regulatory, Macrophages M2, T cells follicular helper,
and Resting mast cells were more infiltrated in the low-
risk group.

Gene Set Enrichment Analysis
GSEA was used to study tumor markers and signal pathways in
patients with low-risk and high-risk HCC in TCGA dataset. We

FIGURE 7 | (A,B)Gene Set Enrichment Analysis was conducted to predict the potential functions and pathways regulated by LARs based on TCGA datasets. (C)
The RT-qPCR results of the 5 LARs genes was evaluated using the 2-ΔΔCT method. *p < 0.05, **p < 0.01 and ***p < 0.001.
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determined that four tumor characteristics, namely E2F targets,
G2/M checkpoint, mitotic spindle and Wnt/β-catenin signaling
were significantly enriched in high-risk HCC patients
(Figure 7A). GSEA-based KEGG pathway analysis confirmed
that cell cycle, notch signaling pathway, pathways in cancer and
phosphatidylinositol signaling system were enriched in the high-
risk subgroup (Figure 7B).

Validation of LARs Expression Levels
We used RT-qPCR to verify the expression level of these
prognosis-related LARs genes.

Our results showed that compared with the HCC cell line
(THLE-2), the expression of HAT1, HDAC1, HDAC2, HDAC4
and HDAC11 were up-regulated in the HCC cell line (97H,
HepG2, LIM3) (Figure 7C).

DISCUSSION

HCC is a serious malignant tumor worldwide. Furthermore, the
incidence of HCC has continued to increase (Yang J. D. et al.,
2019). Considering the huge heterogeneity of HCC, there is an
urgent need to identify new prognostic biomarkers and establish a
more accurate prognostic model. Lysine acetylation is a common
cellular protein modification that regulates several cellular
processes and participates in tumorigenesis and metastasis
(Sabari et al., 2017). Related HCC studies have reported that
LARs play an important role in HCC (Chai et al., 2021).
Therefore, LARs may have considerable potential as
biomarkers to predict HCC patient prognosis.

In this study, We found that the mRNA expression levels of
majority of the evaluated LARS were closely related to the
clinicopathological characteristics of HCC. Through the
differential expression analysis of 852 genes, we screened 33
genes as potential prognostic factors to construct a prognostic
model. The risk score model was constructed using LASSO Cox
regression analysis, and nine differentially expressed genes
(ESCO2, HAT1, KAT8, HDAC1, HDAC2, HDAC4, HDAC6,
SIRT3, and HDAC11) were screened. The risk scoring model had
good prediction effectiveness on both TCGA and ICGC datasets.
Independent prognostic models suggest that LARs might serve as
a potential prognostic prediction in HCC patients, and the high-
risk groups exhibits remarkably lower OS rate of HCC patients
than the low-risk group. The AUC value of the risk score model in
the ICGC and TCGA cohorts performed well in predicting short-
term survival (1–3 years). Univariate and multivariate Cox
regression analysis of the two cohorts indicated that the
prognostic characteristics of LAR-related genes were accurate,
reliable, and explainable. GSEA results showed that various
tumor-related signal transduction pathways were abundant in
the high-risk groups. RT-qPCR results showed that HAT1,
HDAC1, HDAC2, HDAC4, and HDAC11 were highly
expressed in HCC cells.

We identified nine risk prognostic genes, namely HAT1,
KAT8, ESCO2, HDAC1, HDAC2, HDAC4, HDAC6, SIRT3,
and HDAC11. The risk score of this feature is related to
invasive clinicopathological features and can also function as

an independent prognostic factor for overall survival. HAT1 was
identified as the first histone acetyltransferase. As a carcinogenic
protein, HAT1 may promote cell proliferation and induce
cisplatin resistance in HCC. Therefore, targeted HAT1
inhibitors are feasible strategies for the effective treatment of
advanced HCC (Jin et al., 2017). KAT8 is mainly involved in the
acetylation of histone H4 lysine 16 (H4K16) and certain non-
histones. KAT8 consumption significantly promotes HCC cell
migration and invasion. (Wei et al., 2021). The role of ESCO2 in
HCC has not yet been reported. However, ESCO2 promotes
proliferation and metastatic metabolic reprogramming of lung
adenocarcinoma cells in vitro and in vivo (Zhu et al., 2021).
Moreover, ESCO2 knockdown inhibits cell proliferation and
induces apoptosis in human gastric cancer cells (Chen et al.,
2018). HDAC1 and HDAC2 are enzymes that regulate gene
transcription and participate in cell cycle progression,
differentiation, apoptosis, and tumorigenesis. Pharmacological
or transcriptional inhibition of HDAC1 and HDAC2 can lead to
cell cycle arrest and apoptosis in HCC (Zhou et al., 2018).
Targeted inhibition of HDAC4 has been shown to inhibit the
growth and metastasis of HCC, and HDAC4 can promote the
proliferation, migration and invasion of nasopharyngeal
carcinoma cells in vitro, as well as tumor growth and lung
metastasis in vivo (Freese et al., 2019; Cheng et al., 2021).
HDAC6 is a tumor suppressor that inhibits Let-7i-5p to
induce TSP1/CD47-mediated anti-tumorigenesis and
phagocytosis of HCC. In our study, we found that HDAC6
expression was down-regulated in HCC patients, which is in
line with the results of the current study (Yang H. D. et al., 2019).
SIRT3 inhibits the growth and cell proliferation and promotes
apoptosis in HCC cells. The low expression or lack of SIRT3 in
HCC tissues suggests that SIRT3 expression may affect the
occurrence and development of HCC (Liu et al., 2021).
HDAC11 is the only IV histone deacetylase. It forms a
complex with early growth response (Egr-1) of p53
transcription factor, which induces deacetylation of Egr-1,
inhibits p53 transcription, and promotes the occurrence of
HCC (Gong, 2019).

Tumor microenvironment plays an important role in the
occurrence and development of tumor. In many solid organ
malignant tumors, tumor infiltrating immune cells have high
prognostic value for tumor progression and patient survival
(Gajewski et al., 2013; Lamplugh and Fan, 2021). In this study,
the proportion of memory-activated CD4 T cells and M0
macrophages was higher in patients with high risk score,
which confirmed the role of LARs in the regulation of tumor
immune invasion. Functional enrichment analysis showed that
LARs was mainly involved in the immune pathway. Therefore,
the poor prognosis of high-risk HCC patients may be due to this
tumor immunosuppressive microenvironment.

As far as we know, this is the first study to identify the LAR
genes related to the prognosis of HCC and to construct the related
risk model for prognostication. The model is verified in two
external independent HCC queues. LARs features have strong
and stable prognostic value and have a broad prospect in clinical
application. However, this study still has its limitations. First of
all, although our model has been well verified in two large
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databases, TCGA and ICGC, our study is still a retrospective
study, and some prospective studies are needed to verify its
clinical application. In addition, it is very important to verify
the functional characteristics and molecular mechanism of LARs
gene through biological experiments and clinical studies. All in
all, further investigations with some wet lab evidence are needed
to validate our findings and improve the statistical power to
achieve more meaningful results.

CONCLUSION

In summary, our results suggest that LARs’ risk score model can
be used as a potential prognostic factor of HCC, which may be
helpful for personalized management of cancer in the clinical
environment.
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Gene Expression-Based Signature
Can Predict Sorafenib Response in
Kidney Cancer
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Sorafenib is a tyrosine kinase inhibitory drug with multiple molecular specificities that is
approved for clinical use in second-line treatments of metastatic and advanced renal cell
carcinomas (RCCs). However, only 10–40% of RCC patients respond on sorafenib-
containing therapies, and personalization of its prescription may help in finding an
adequate balance of clinical efficiency, cost-effectiveness, and side effects. We
investigated whether expression levels of known molecular targets of sorafenib in RCC
can serve as prognostic biomarker of treatment response.We used Illumina microarrays to
profile RNA expression in pre-treatment formalin-fixed paraffin-embedded (FFPE) samples
of 22 metastatic or advanced RCC cases with known responses on next-line sorafenib
monotherapy. Among them, nine patients showed partial response (PR), three
patients—stable disease (SD), and 10 patients—progressive disease (PD) according to
Response Evaluation Criteria In Solid Tumors (RECIST) criteria. We then classified PR + SD
patients as “responders” and PD patients as “poor responders”. We found that gene
signature including eight sorafenib target genes was congruent with the drug response
characteristics and enabled high-quality separation of the responders and poor
responders [area under a receiver operating characteristic curve (AUC) 0.89]. We
validated these findings on another set of 13 experimental annotated FFPE RCC
samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by RNA sequencing
and observed AUC 0.97 for 8-gene signature as the response classifier. We further
validated these results in a series of qRT-PCR experiments on the third experimental set of
12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients), where 8-gene
signature showed AUC 0.83.

Keywords: renal cell carcinoma, kidney cancer, gene signature, mRNA expression, RNA sequencing, microarray
profiling, sorafenib response, tyrosine kinase inhibitor
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INTRODUCTION

According to the estimates for 2020, globally there were ~431,000
new cases of kidney cancer and ~179,000 associated deaths (Sung
et al., 2021). Renal cell carcinoma (RCC) is the most common
subtype of kidney cancer in adults, responsible for nearly 90% of
all cases and prone to distant metastasis (He et al., 2021). RCC
arises from the renal parenchyma, and the incidence of RCC is
still increasing in most countries (Bhatt and Finelli, 2014; Du
et al., 2020). Approximately 25–30% of RCC patients are
diagnosed at a metastatic or locally advanced disease stage,
and another third of RCC patients will recur after receiving a
successful first-line treatment (Sánchez-Gastaldo et al., 2017).
RCC includes several different histological subtypes with distinct
biological behaviors and prognoses.

RCCs are frequently characterized by inactivation of the VHL
tumor suppressor gene. This leads to deficiency of its encoded
protein, which is part of an E3 ubiquitin ligase complex that
degrades alpha subunit of hypoxia inducible factor 2 (HIF-2α).
The resulting excessive accumulation of HIF-2α can
transcriptionally upregulate oncogenic hypoxia-responsive
genes, including platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VEGF) (Choueiri and
Kaelin, 2020). In turn, VEGF and PDGF promote
angiogenesis, cell growth and survival, and RCC progression
by activating the respective tyrosine kinase receptors PDGFR
and VEGFR. This leads to high vascularization of RCC and to its
high metastatic potential (He et al., 2021). Patients with
metastatic RCC are insensitive to chemotherapy and
radiotherapy, and have a poor survival prognosis (Choueiri
and Motzer, 2017).

Sorafenib is a tyrosine kinase inhibitor with multiple
specificities that targets at least ten tyrosine kinase molecules:
RAF1, BRAF, RET, FLT1, FGFR1, KIT, PDGFRB, FLT3, FLT4,
and KDR (Adnane et al., 2006). Sorafenib is thought to have a
dual suppressive effect on tumors by blocking both angiogenesis,
and cell proliferation and survival through the inhibition of
VEGFR/PDGFR and BRAF/RET/FLT/FGFR/KIT/KDR
signaling axis, respectively (Wilhelm et al., 2004, 2006). It is
the first targeted drug approved for treatment of metastatic or
locally advanced RCC by US FDA, which revolutionized
treatment of kidney cancer and accelerated development and
registration of other targeted therapeutics (Escudier et al., 2019).
Since then, several other specific agents against VEGF, PDGF,
and their receptors have been approved for the treatment of RCC,
including sunitinib, axitinib, cabozanitinib, lenvatinib,
pazopanib, and bevacizumab (Dizman et al., 2020). In
addition, mTOR-specific inhibitors temsirolimus and
everolimus were also approved for the treatment of this
disease (Dizman et al., 2020). According to the National
Comprehensive Cancer Network (NCCN) guidelines, sorafenib
and sunitinib are recommended as drugs for metastatic RCC,
where sorafenib has a lower toxicity than sunitinib (Deng et al.,
2019). Moreover, sorafenib is also approved as the first-line
treatment of metastatic RCC according to the latest guidelines
of Chinese Society of Clinical Oncology (He et al., 2021). In
clinical practice, it is also effective in hepatocellular and thyroid

cancers (Escudier et al., 2019), myeloid leukemia, mesothelioma,
and prostate cancer (Méndez-Blanco et al., 2018).

However, only 10–40% of RCC patients respond on
sorafenib-containing therapeutic schemes (Larkin and Eisen,
2006; Escudier et al., 2007; Guevremont et al., 2009), and
personalization of its prescriptions may help in finding an
adequate balance of clinical efficiency, cost-effectiveness, and
side effects. Nowadays, there are no clinical biomarkers of
response on sorafenib treatment in RCC, and the molecular
mechanisms of sorafenib resistance in RCC are not sufficiently
understood (He et al., 2021). Currently, several RCC sorafenib
resistance biomarkers were identified by RNA expression assays
in drug responder and non-responder tumors: long non-coding
RNAs GAS5 (Liu et al., 2019) and SRLR (Xu et al., 2017),
microRNA miR-21, and genes ANGPTL3 (Bao et al., 2018),
CXCR4, CD34 (Aziz et al., 2014), FGFR1 (Ho et al., 2015),
FRS2A, GLUT1, HO-1 (Zheng et al., 2015), SOX5, and SOX9 (Li
et al., 2015; He et al., 2021). In addition, expression of AKT
protein was reported to be a biomarker of enhanced resistance
against sorafenib in RCC patients (Jonasch et al., 2010).
However, despite those important observations, no diagnostic
settings were constructed to predict effectiveness of sorafenib
for RCC patients.

Drug target expression levels, e.g., determined by
immunohistochemistry, are already used as the biomarkers of
treatment response in some solid cancers (Hechtman et al., 2017)
including breast cancer (Nicolini et al., 2018) and gastric cancer
(Abrahao-Machado and Scapulatempo-Neto, 2016). In addition,
profiling of gene expression at RNA level is a powerful tool for
discovery of drug efficiency biomarkers and for cancer therapy
personalization (Buzdin et al., 2019). Previously, we showed that
gene expression levels established from standardized RNA
sequencing data can be used as robust estimators of the
corresponding protein levels for several cancer biomarkers in
tumor biosamples, including formalin-fixed paraffin-embedded
(FFPE) specimens (Sorokin et al., 2020b).

In this study, we investigated FFPE biosamples of pre-
treatment RCC tissues from 47 patients with known response
status on next-line monotherapy with sorafenib. Illumina
microarrays were used to profile RNA expression in FFPE
samples of 22 metastatic or advanced RCC cases. Among
them, nine patients showed partial response (PR), three
patients—stable disease (SD), and 10 patients—progressive
disease (PD) according to RECIST criteria. We then classified
PR + SD patients as “responders” and PD patients as “poor
responders”. We found that gene signature including eight
sorafenib target genes was congruent with the drug response
characteristics, and enabled high-quality separation of the
responders and poor responders [area under a receiver
operating characteristic curve (AUC) 0.89]. We validated these
findings on another set of 13 experimental annotated FFPE RCC
samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by
RNA sequencing and observed AUC 0.97 for 8-gene signature as
the response classifier. We further validated these results in a
series of qRT-PCR experiments on the third experimental set of
12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients),
where 8-gene signature showed AUC 0.83.
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MATERIALS AND METHODS

Patients and Samples
All patients enrolled in this study have previously signed written
informed consents to participate in the observational clinical
investigation, and for publication of depersonalized molecular
profiles and study results in the form of gene activity profiles
associated with age, sex, and results of sorafenib monotherapy
treatment estimated according to RECIST criteria (Eisenhauer
et al., 2009). The patients provided written informed consent that
their tumor samples will be subjected to gene expression profiling
using either microarray technology or next-generation
sequencing or qRT-PCR. Twenty-two patients signed
agreement that their biosamples are profiled with the Illumina
HT-12 bead arrays (Table 1). Thirteen patients signed agreement

that their biosamples are profiled by RNA sequencing using
Illumina HiSeq3000 next generation sequencing platform
(Table 2). Twelve patients signed agreement that their
biosamples are profiled by qRT-PCR, but not using expression
microarrays or RNA sequencing (Table 3).

The study was conducted in accordance with the Declaration
of Helsinki ethical principles. The patient groups, design of this
study, and its public presentation in the form of a research paper
were approved by the local ethical committees at I.M. Sechenov
First Moscow StateMedical University, Moscow City Oncological
Hospital №. 62, and Moscow City Clinical Oncological
Dispensary №. 1.

Biosamples were collected prospectively in the period from
May 2015 until July 2020. All biosamples obtained from all the
patients in this study were FFPE RCC tumor blocks obtained
from primary tumor sites and evaluated by a pathologist, with
cancer cell content of at least 60%. All patients were treated with
sorafenib in first-line therapy and their responses were assessed
according to RECIST criteria (Eisenhauer et al., 2009).

Twenty-two samples from kidney cancer patients were
analyzed using Illumina HumanHT-12 WG-DASL V4.0 R2
gene expression array (Table 1). Among them, patients with
progressive disease were considered as poor responders (n = 10),
whereas patients with partial response and stable disease were
classified as the responders (n = 12).

Gene expression for 13 other RCC samples was profiled by
RNA sequencing using Illumina HiSeq3000 next generation
sequencing platform (Table 2). Similarly, patients with
progressive disease were considered as poor responders (n =
10), whereas patients with partial response and stable disease
were classified as the responders (n = 3).

Finally, patients in the third set of 12 RCC patients were
profiled by quantitative reverse transcription PCR (qRT-PCR)
assay (Table 3). According to the aforementioned criteria, five
patients were considered poor responders, and seven
patients—treatment responders.

Gene Expression Assays
RNA Extraction
To isolate RNA, 10-µm-thick paraffin slices were trimmed from
each FFPE RCC tissue block using microtome. RNA was

TABLE 1 | Clinical information for RCC patients profiled using Illumina HumanHT-
12 WG-DASL V4.0 R2 gene expression arrays

Patient ID Response status Age Gender T N M Grade

18 Partial response 66 Male 2 0 1 4
26 Stable disease 64 Female 3 2 1 4
27 Progressive disease 53 Male 3 0 1 4
31 Partial response 62 Male 2 2 0 3
36 Progressive disease 60 Male 2 0 0 2
37 Partial response 49 Female 3 1 1 4
46 Progressive disease 45 Male 3 0 0 3
49 Progressive disease 66 Female 3 0 0 3
54 Partial response 55 Female 2 0 0 2
58 Progressive disease 65 Female 3 1 0 3
60 Progressive disease 59 Male 2 0 0 2
62 Progressive disease 58 Male 1 0 0 1
72 Partial response 56 Female 3 1 0 3
73 Progressive disease 48 Male 3s 0 0 3
74 Partial response 53 Male 4 2 1 4
88 Stable disease 59 Female 3 0 0 3
91 Stable disease 67 Female 3 2 1 4
94 Progressive disease 74 Female 3 1 1 4
97 Partial response 70 Female 3 0 0 3
122 Partial response 61 Male 3a 0 0 3
128 Partial response 68 Female 3 0 1 4
135 Progressive disease 50 Male 3 0 0 3

TABLE 2 | Clinical information for RCC patients profiled using Illumina
HiSeq3000 next-generation sequencing platform in this study

Patient ID Response Age Gender T N M Grade

KC11 Progressive disease 62 Female 3 1 1 4
KC14 Progressive disease 68 Female 3 0 1 4
KC19 Partial response 46 Female 3 0 0 3
KC21 Progressive disease 41 Male 3 0 1 4
KC23 Progressive disease 53 Male 3 0 1 4
KC26 Stable disease 55 Male 3 0 1 4
KC36 Progressive disease 64 Female 3a 0 1 4
KC37 Partial response 54 Male 3a 0 1 4
KC46 Progressive disease 55 Male 3b 2 1 4
KC57 Progressive disease 58 Male 3b 0 1 4
KC92 Progressive disease 55 Male 3 0 0 3
KC93 Progressive disease 65 Female 2 0 0 2
KC96 Progressive disease 47 Male 3 0 0 3

TABLE 3 | Outline of clinical information of patients whose samples were profiled
using RT-PCR platform in this study

Patient ID Response Age Gender T N M Grade

III-1 Partial response 67 Male 3 0 1 4
III-2 Stable disease 45 Female 2 0 0 2
III-3 Partial response 48 Female 3 0 0 3
III-4 Progressive disease 65 Female 1 0 1 4
III-5 Progressive disease 59 Male 3 1 1 4
III-6 Progressive disease 53 Female 4 0 0 3
III-7 Progressive disease 58 Male 1 0 0 1
III-8 Progressive disease 51 Male 3b 2 1 4
III-9 Partial response 71 Female 4 1 0 3
III-10 Stable disease 59 Male 1 0 0 1
III-11 Stable disease 70 Male 3 1 1 4
III-12 Partial response 47 Male 3 1 1 4
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extracted from FFPE slices using QIAGEN RNeasy FFPE Kit
following the manufacturer’s protocol. RNA 6000 Nano or Qubit
RNA Assay kits were used to measure RNA concentration. RNA
Integrity Number (RIN) was measured using Agilent 2100 bio-
Analyzer.

Microarray Gene Expression Profiling
Gene expression profiling was done according to Lezhnina et al.
(2014) at Dr. Olga Kovalchuk’s laboratory, University of
Lethbridge, Alberta, Canada. The profiling was done using
Illumina HumanHT-12 WG-DASL V4.0 R2 gene expression
bead arrays. BeadChips were scanned using Illumina
BeadArray Reader and the Bead Scan Software (Illumina).

RNA Sequencing
RNA sequencing was done according to Suntsova et al. (2019)
and Sorokin et al. (2020d) at the Department of Pathology and
Laboratory Medicine, University of California Los Angeles. For
depletion of ribosomal RNA and library construction, KAPA
RNA Hyper with rRNA erase kit (HMR only) was used.
Different adaptors were used for multiplexing samples in one
sequencing run. Library concentrations and quality were
measured using Qubit ds DNA HS Assay kit (Life
Technologies) and Agilent Tapestation (Agilent). RNA
sequencing was done using Illumina HiSeq 3000 equipment
for single-end sequencing, 50 bp read length, for approximately
30 million (mln) raw reads per sample. Data quality check was

done on Illumina SAV. De-multiplexing was performed with
Illumina Bcl2fastq2 v 2.17 program.

Quantitative Reverse Transcription PCR
Quantitative reverse transcription PCR (qRT-PCR) panel was
developed to measure the expression level of eight target and six
housekeeping genes in kidney cancer samples using Evrogen
Reverse transcription polymerase and Evrogen Taq polymerase
kit with SYBR Green for the PCR product detection. PCR mix
composition included (25 µl total volume)

Buffer (HS-qPCRmix-HS SYBR; Evrogen, Moscow,
Russia)—5 μl;
Primers 1 µl (0.4 µM each);
RNA solution—1–3 µl (2–6 ng total RNA per mix);
MMLV-RT (Evrogen)—2 µl;
Water—13–15 µl.

The oligonucleotide sequences for PCR primers are listed in
Table 4. Following reverse transcription reaction, the PCR mix
was melted at 95°C for 5 min, and then the following cycling
conditions were applied using CFX Touch Real-Time PCR
Detection System (BioRad):

95°C—30 s.
60°C—30 s.
72°C—30 s.

Each experiment was carried out in quadruplicate.

Processing of Gene Expression Data
Illumina HumanHT-12 WG-DASL V4.0 R2 Gene
Expression Array
Probe IDs were mapped to HGNC gene symbols (Yates et al.,
2017) using the manufacturer’s annotation table. Gene expression
values were normalized using quantile normalization protocol
(Bolstad et al., 2003) prior to further processing. R package
preprocessCore was used to perform quantile normalization.

Illumina HiSeq3000 RNAseq Profiles
RNA sequencing FASTQ files were processed with STAR aligner
(Dobin et al., 2013) in “GeneCounts” mode with the Ensembl
human transcriptome annotation (Build version GRCh38 and
transcript annotation GRCh38.89). Ensembl gene IDs were
converted to HGNC gene symbols using Complete HGNC
dataset (https://www.genenames.org/, accessed on 2017 July
13). In total, expression levels were established for 36,596
annotated genes with the corresponding HGNC identifiers.
Raw gene counts were normalized using R DESeq2 package
(Love et al., 2014).

Quantitative Reverse Transcription PCR
For each sorafenib target gene from the RCC drug sensitivity gene
signature (RAF1, BRAF, FLT1, FGFR1, KIT, PDGFRB, FLT3,
FLT4, KDR), we performed normalization using expression of
six housekeeping genes selected according to Chang et al. (2011)
(ACTB, GAPDH, POLR2C, PSMB2, DIABLO, VCP). For each

TABLE 4 | Sequences of qRT-PCR primers used in this study

Target gene Oligonucleotide sequencea (59–39)

RAF1 F, CTGGCTCCCTCAGGTTTAAGAA
R, AAGCTCCCTGTATGTGCTCC

FLT3 F, CTCAAGGAAACGGCCATCCT
R, AACACGGCCATCCACATTCT

FLT1 F, TGTCGTGTAAGGAGTGGACC
R, GCACCTGCTGTTTTCGATGT

FGFR1 F, GAGTGACTTCCACAGCCAGA
R, GGATGCACTGGAGTCAGCAG

BRAF F, CAGAGGACAGTGGTACCTGC
R, CAGCACAGCACTCTGGGATT

PDGFRB F, GCAAAACCACCATTGGGGAC
R, TGCGTTCACAGAGACGTTGA

KDR F, GAAACTGACTTGGCCTCGGT
R, CACGACTCCATGTTGGTCACT

KIT F, GCACAATGGCACGGTTGAAT
R, GGTGTGGGGATGGATTTGCT

ACTB F, ACAGAGCCTCGCCTTTGC
R, CGCGGCGATATCATCATCCA

VCP F, TGGAAGCGTATCGACCCATC
R, CTTTGAACTCCACAGCACGC

DIABLO F, AATGGCGGCTCTGAAGAGTT
R, AAACTCGAGCCAAGCAGGAA

EIF3B F, GGCGAACACCATCTTCTGGA
R, TGTCCACAAACGCTAAGGCA

PSMB2 F, GCAGCAGCTAACTTCACACG
R, AGCCAGGAGGAGGTTCACAT

POLR2C F, TCTTCATCGCTGAGGTTCCC
R, ATCCAAGCCTGTGAGCAATGA

aF—forward, R—reverse.
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gene, we calculated ΔCt by subtracting the value of the threshold
cycle of cDNA amplification of a target gene from the geometric
mean value of the threshold cycle of cDNA amplification of the
housekeeping genes. The gene signature score was calculated as
sum of ΔCt values for all genes included in the signature.

Gene Expression Analysis and Visualization
Differential gene expression analysis was performed using
Student t-test. The observed clinical responses were used for
investigation of molecular signature using ROC-AUC analysis
(Fawcett, 2006). Area under a receiver operating characteristic
curve (ROC-AUC) values were calculated using ROCR package
in R environment (Sing et al., 2005). Patient survival analysis and
visualization were performed using R packages survival,
survminer, and ggplot2.

Sorafenib In Vitro Efficiency Data
From Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/downloads/bulk_download,
accessed on 2021 March 30), we downloaded log10-
transformed IC50 values for sorafenib in 732 cancer cell lines
corresponding to 13 different tumor types and 50 subtypes
(Supplementary Table S1). For each cell line, we downloaded
raw gene expression data from ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3610/) in CEL
format, experimentally profiled using Affymetrix Human
Genome U219 Array. CEL files were normalized and background
correction was applied using rma function of affy R package.

Mutation Analysis
For mutation analysis, we used gene expression and genetic
features data from GDSC database (https://www.cancerrxgene.
org). We used data for 802 solid and 167 blood cancer cell lines
with available genetic mutational profiles. For each mutation,
we compared IC50 values for sorafenib between mutant and
wild-type cell lines using non-parametric Mann–Whitney U
test. Then we applied false discovery rate (FDR) correction to
adjust for comparing multiple genetic features. Genetic features
with FDR-corrected p-values <0.1 and more than 2-fold IC50

differences were considered as significant. Mann–Whitney U
tests and FDR correction were performed using scipy and
statsmodels Python libraries implemented in GDSC web
interface.

RESULTS

Study Population
In total, 47 RCC patients were enrolled in this study (21 female
and 26 male patients, age range 41–74, mean 58 y.o.). The
biosamples were FFPE RCC tumor tissue blocks collected in
the period from May 2015 until July 2020. Gene expression was
profiled using three different methods: microarray hybridization
using Illumina HT-12 bead array, Illumina RNA sequencing, and
qRT-PCR. Each patient provided a written informed consent and
agreed that his/her biosample is profiled with one of the
aforementioned methods. In the microarray group, there were

22 patients including 11 women and 11 men, age range 45–74,
mean 59 y.o.; in RNAseq group—13 patients including 5 women
and 8 men, age range 41–68, mean 56 y.o.; in qRT-PCR group,
there were 12 patients including 7 men and 5 women, age range
45–71, mean 58 y.o. (Tables 1–3). The patients whose response
status on next-line sorafenib monotherapy treatment according
to RECIST criteria was “Progressive disease” were considered as
poor responders, and the patients with statuses “Partial response”
and “Stable disease” were considered as the responders. No
“Complete response” outcomes according to RECIST
(disappearance of all target lesions) were detected. This is in
line with a previous study by Escudier et al., where only 1 out of
451 RCC patients treated with sorafenib had a complete response
(Escudier et al., 2007). In total, 25 patients were classified as the
poor responders, and 22—as the responders (Tables 1–3).

Specifically, there were 10 non-responders and 12 responders
in the microarray group, 10 non-responders and three responders
in the RNAseq group, and five non-responders and seven
responders in the qRT-PCR group.

Differential Gene Expression Analysis and
Generation of Sorafenib Response
Signature
In the samples profiled by Illumina microarrays, we screened
differential gene expression between the responder and poor
responder biosamples. We aimed to generate sorafenib
response gene signature and focused on expression levels of
sorafenib target genes to avoid over-training. Using prior
knowledge such as biological function of the genes is a well-
established technique for feature selection as reviewed in Hira and
Gillies (2015). At the single gene level, we observed a significant
difference between the responders and poor responders only for
FLT1 and PDGFRB genes, which were both upregulated in the
responders group (Table 5; Figure 1). Multiple logistic regression
analysis did not provide significant coefficients for any of the
sorafenib target genes.

In the previous studies, drug response statuses could correlate
with the drug target gene expression levels (Tkachev et al., 2020),
and for generating sorafenib drug response signature, we selected
sorafenib target genes whose expression levels were greater in the
responders than in the poor responders. Except two genes that
were downregulated in the responders (RET and FLT4), the
remaining eight sorafenib target genes that were upregulated
were used to construct the molecular signature. Complex models
with relatively small number of samples are often overfitted;
therefore, we calculated the signature score as sum of log10-
transformed normalized gene expression values, thus reducing
data dimensionality.

This signature was tested to predict sorafenib response status
in the microarray-profiled dataset. To assess the signature
biomarker quality, we used AUC value as the measure. AUC
reflects biomarker robustness and depends on its sensitivity and
specificity (Borisov et al., 2020). It varies between 0.5 and 1, and
the typical discrimination threshold is 0.7, where greater values
denote high-quality biomarkers, and vice versa (Boyd, 1997).
AUC is often used for scoring different types of molecular
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TABLE 5 | Differential expression analysis of sorafenib responders (n = 12) and poor responders (n = 10) in microarray-profiled RCC samples

HGNC gene ID T-test p-value Log2(fold change responders vs. poor responders)

RAF1 0.56 0.072
BRAF 0.37 0.071
RET 0.54 −0.037
FLT1 0.0032* 1.155
FGFR1 0.1 0.149
KIT 0.72 0.029
PDGFRB 0.013 0.273
FLT3 0.67 0.011
FLT4 0.54 −0.010
KDR 0.2 0.119

*p < 0.05.

FIGURE 1 | Distribution of sorafenib target gene expressions, and of the gene signature generated, among the sorafenib responder and poor responder groups of
22 RCC samples profiled by microarrays. For every gene, log10-transformed normalized expression is shown.
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biomarkers in oncology (Liu et al., 2018; Tanioka et al., 2018;
Chen et al., 2019; Sorokin et al., 2020a).

For the gene signature biomarker capacity, we obtained AUC
value 0.89 (Figure 2B), which evidences its high prediction
robustness. Using an assumption of equal frequency of type I
and type II errors, we obtained threshold gene signature score of
16.41. This threshold corresponded to sensitivity 0.83, specificity
0.8, and Matthew’s correlation coefficient (MCC) 0.63; error
matrix is shown on Supplementary Table S2. Interestingly,
t-test p-value of the gene signature for comparison between
the good and poor sorafenib responders (p = 0.00046) was
lower than the respective p-value for any of the single
sorafenib target genes (Figure 1).

We then tested the ability of the sorafenib response gene
signature to predict good/poor response status using two
alternative experimental platforms (RNAseq and qRT-PCR)
and different sets of annotated RCC biosamples (n = 13 and
n = 12, respectively).

Specifically, the signature score for RNAseq data was
calculated in the same way as for the microarray dataset: sum
of the log-transformed expression values for the same eight
sorafenib target genes. For the qRT-PCR dataset, we totalized
ΔCt values for the selected sorafenib targets. For those two
platforms, we obtained AUC scores of 0.97 and 0.83,
respectively (Figures 3, 4; error matrices are shown on
Supplementary Tables S3, S4, respectively).

FIGURE 2 | Performance of sorafenib response gene signature in microarray-profiled RCC set. (A) Distribution of gene signature score in 22 RCC samples profiled
by expression microarrays. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature score in 22 RCC samples profiled by
expression microarrays. Validation of sorafenib response gene signature.

FIGURE 3 | Performance of sorafenib response gene signature in RNAseq-profiled RCC set. (A)Distribution of gene signature score in 13 RCC samples profiled by
RNA sequencing. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature score in 13 RCC samples profiled by RNA
sequencing.
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For the RNAseq dataset, we also used an assumption of equal
frequency of type I and type II errors and obtained threshold gene
signature score of 14.35, sensitivity 1.00, specificity 0.9, and MCC
0.82. Similarly, in the case of qRT-PCR dataset, a threshold of
−8.03 was obtained, which corresponded to sensitivity 0.71,
specificity 1.0, and MCC 0.71.

The high scores of AUC, MCC, sensitivity, and specificity
values observed for all three cohorts suggest in favor of the
proposed sorafenib response gene signature usefulness as the
new combinatorial expression biomarker.

We further validated the sorafenib response gene signature using
bioinformatics analysis of publicly available cell line gene expression
data annotated with sorafenib sensitivity information.We calculated

molecular signature scores for 735 samples of different cancer cell
lines extracted through the GDSC database (Yang et al., 2013).

We then compared gene signature scores with the log10-
transformed IC50 micromolar values of sorafenib. IC50 shows
sorafenib concentration that reduces cell viability by 50%, and
therefore IC50 is an inverse measure of drug efficiency (high IC50

suggests strong drug resistance, and low IC50 means high
sensitivity to a drug). We observed a statistically significant
negative correlation between sorafenib IC50 and gene signature
score (Figure 5), Spearman correlation −0.195, p = 10−7.

We then modeled ability of the gene signature to predict
sorafenib IC50 in the tumor cell lines. Using GDSC data, we
selected top and bottom 5% cell lines by sorafenib IC50, and
associated them with the sorafenib poor and good responders,
respectively. In this test, AUC value for prediction of high or low
sorafenib IC50 by gene signature score was 0.77 (Figure 6).

Based on the assumption of equal importance of type I and type II
errors, in this setting we obtained gene signature score threshold of
9.8, MCC coefficient 0.32, sensitivity 0.63, and specificity 0.66; error
matrix for this analysis is shown on Supplementary Table S5.

Mutations Associated With Sorafenib
Activity In Vitro
Using the GDSC dataset, we further investigated the connection
between sorafenib IC50 and annotated mutations in the GDSC cell
lines. P-value cut-off was set according to GDSC default parameters
(threshold FDR corrected p < 0.1 and fold change >2). With the
internal GDCS analytic interface, we identified mutations in two
genes that were statistically significantly linked with IC50 of
sorafenib: FLT3 and SMARCA4 (Figure 7; Table 6). The
observed genetic features contained different driver mutations in
both genes. Noteworthy, FLT3 gene product is one of the molecular
targets of sorafenib. Thus, strong linkage of driver mutations in this
gene with the sensitivity to sorafenib directly confirms its implication

FIGURE 4 | Performance of sorafenib response gene signature in microarray-profiled RCC set. (A) Distribution of gene signature score in 22 RCC samples profiled
by expression microarrays. (B) ROC (receiver-operator characteristic) curve for prediction of response status by gene signature score in 22 RCC samples profiled by
expression microarrays. In vitro validation of sorafenib response gene signature.

FIGURE 5 | Dependence of sorafenib resistance gene signature score
and sorafenib IC50 in GDSC pan-cancer dataset. Blue line and shadow around
it show linear approximation and 5% confidence interval. Figure built using
ggplot function in R.
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FIGURE 6 | Performance of sorafenib response gene signature in 76 cancer cell lines (top 5% and bottom 5% cell lines from GDSC dataset, sorted by sorafenib
IC50). (A) Distribution of gene signature score in 76 cancer cell lines. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature
score in 76 cancer cell lines. (C) Distribution of gene signature score in all cancer cell lines.

FIGURE 7 |Distribution of log10-transformed p-value and IC50 difference between groups with and without gene-specificmutations and copy number alternations
in GDSC database.
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in the mechanisms of cancer cells’ resistance to sorafenib. For the
second gene (SMARCA4), we found no previous associations with
sorafenib efficacy in the literature. However, molecular function of
this gene product is ATP-dependent chromatin remodeling and
overall transcriptional activation, and SMARCA4 mutations are
linked with many cancers (Fountzilas et al., 2021; Nambirajan
and Jain, 2021; Pastorczak et al., 2021).

DISCUSSION

Sorafenib is a targeted tyrosine kinase inhibitor (TKI) with
multiple molecular specificities, which is widely used to treat
kidney cancer due to relative clinical efficacy and affordability
(Sheng et al., 2016; Cai et al., 2017). However, sorafenib response
rate in RCC varies between 10 and 40% (Larkin and Eisen, 2006;
Escudier et al., 2007; Guevremont et al., 2009), thus personalized
approach is needed to select the patients who would more likely
benefit from the treatment with this drug.

High-throughput gene expression profiling is becoming a
powerful tool for finding new cancer biomarkers (Buzdin
et al., 2019; Tsimberidou et al., 2020). Moreover, aggregating
gene expression levels into functional groups like molecular
pathways or gene signatures can increase efficiency of the
biomarkers and even enhance stability of experimental data
(Borisov et al., 2017; Buzdin et al., 2018). Previously we used
this approach to establish biomarkers of trastuzumab response in
metastatic/recurrent HER2-positive breast cancers (Sorokin et al.,
2020a), ramucirumab response in gastric cancer (Sorokin et al.,
2020d), and for building gene signature for ganglioside GD2
expression in cancer cells (Sorokin et al., 2020c).

In this study, we identified and validated an 8-gene expression
signature that predicts sorafenib response in RCC patients. The
signature was validated on the independent patient groups using
three different methods of gene expression profiling: by Illumina
HT-12 microarrays, by RNA sequencing, and by qRT-PCR. The
sorafenib response signature includes eight sorafenib target genes:
RAF1, BRAF, FLT1, FGFR1, KIT, PDGFRB, FLT3, and KDR.
Among them, increased expressions of single genes FLT1 and
PDGFRB were positively associated with the sorafenib response,
whereas other genes showed similar trends, which were however
not statistically significant. At the same time, the gene signature
could show better efficacy than any of the separately taken
enclosing genes, thus evidencing better efficacy of a cumulative
complex expression biomarker. On the other hand, significant
association of sorafenib target gene FLT3 was confirmed at the
level of driver mutations in GDSC data, thus implying a peculiar
role for this gene in the sorafenib activity mechanism.

Sorafenib has a strong overlap in the molecular specificities with
regorafenib (Granito et al., 2021) and with several other TKI drugs

(Shah et al., 2020; Das et al., 2021), and theoretically the same drug
target–based gene signature approach can be translated on finding
new response biomarkers for other TKIs as well, and for different
cancer types. However, such an approach would require
accumulating enough tumor gene expression data connected with
the specific drug response statuses, which is frequently a difficult task
to implement. For example, to the best of our knowledge, the high-
throughput experimental expression profiles that were associated
here with the sorafenib response are the first such RCC dataset
published in the literature. Accumulation and publishing of more
molecular profiles connected with the TKI response statuses in RCC
and other tumors would clearly enhance development of next-
generation drug response prediction biomarkers.

For the current sorafenib 8-gene expression signature, we
developed a qRT-PCR–based diagnostic panel that enables
cost-effective molecular profiling. The panel was validated on
an independent cohort of RCC patients with AUC = 0.83, which
opens an avenue for further molecular testing on bigger patient
cohorts and, if successful, for the development of diagnostic tools
supporting personalized sorafenib prescriptions. Such a study
would also be needed to validate the exact threshold developed for
qRT-PCR signature established herein.

Interestingly, the same 8-gene signature was also validated
using GDSC project cell line gene expression data connected with
the tested drug sensitivities (Yang et al., 2013): a modest (−0.195)
yet highly statistically significant (p = 10−7) correlation was
observed for the gene signature score and sorafenib IC50. The
GDSC collection accumulated data for various cancer cell lines.
Cell lines are heterogeneous and derived from tumors of various
origin, not only kidney cancer. In addition, in vitro culturing may
have an impact on gene expression. Despite all these factors, we
still obtained statistically significant performance of the gene
signature. Potentially, this may indicate that this gene
signature is not specific to RCC but may be also predictive for
the other cancer types. Thus, further clinical investigations are
needed to assess its performance in cancers other than RCC.
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Long Non-Coding RNA AP000695.2
Acts as a Novel Prognostic Biomarker
and Regulates the Cell Growth and
Migration of Lung Adenocarcinoma
Chunyan Wang1†, Jishu Guo2†, Rongyan Jiang3, Chenyang Wang1, Chenglong Pan1,
Zhi Nie4,5* and Xiulin Jiang6*
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Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have
been found to be implicated in the progression of lung adenocarcinoma (LUAD). LncRNA-
AP000695.2 (ENSG00000248538) is a long non-coding RNA (lncRNA) that is widely
increased in many tumor types including lung adenocarcinoma (LUAD). However, the
aberrant expression profile, clinical significance, and biological function of AP000695.2 in
human lung adenocarcinoma (LUAD) need to be further investigated. This study mines key
prognostic AP000695.2 and elucidates its potential role and molecular mechanism in
regulating the proliferation andmetastasis of LUAD. Here, we discovered that AP000695.2
was significantly upregulated in lung adenocarcinoma tissues compared with healthy
adjacent lung tissue and higher in LUAD cell lines than in normal human bronchial epithelial
cell lines. A higher expression of AP000695.2 was positively correlated with aggressive
clinicopathological characteristics, and AP000695.2 served as an independent prognostic
indicator for the overall survival, disease-free survival, and progression-free survival in
patients with LUAD. Receiver operating curve (ROC) analysis revealed the significant
diagnostic ability of AP000695.2 (AUC = 0.838). Our in vivo data confirmed that
AP000695.2 promotes the proliferation, migration, and invasion of LUAD cells. GSEA
results suggested that AP000695.2 co-expressed genes were mainly enriched in immune-
related biological processes such as JAK-STAT signaling pathway and toll-like receptor
signaling pathway. Single-sample GSEA analysis showed that AP000695.2 is correlated
with tumor-infiltrating immune cells in lung adenocarcinoma. Our findings confirmed that
AP000695.2 was involved in the progression of lung adenocarcinoma, providing a novel
prognostic indicator and promising diagnostic biomarker in the future.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death
worldwide, according to cancer statistics 2020. The incidence
rate of lung cancer ranks second, while the death rate of lung
cancer ranks first (Siegel et al., 2020). Lung cancer includes small
cell lung carcinoma (SCLC) and non-small cell lung carcinoma
(NSCLC). NSCLC includes lung adenocarcinoma (ADC), lung
squamous cell carcinoma (SCC), and large-cell lung carcinoma.
NSCLC accounts for approximately 85% of all cases (Molina
et al., 2008). Despite various treatments applied to the diagnostic
and therapeutic for lung cancer, the five-year survival rate of lung
cancer remains poor (Reck and Rabe 2017). As an important
treatment of lung cancer, chemotherapy is widely used in the
clinical treatment of patients. However, the drug resistance of
patients to chemotherapeutic drugs has become amajor challenge
to patient prognosis, leading to lung cancer recurrence and
metastasis (Zhang et al., 2020). Cisplatin (DDP) was reported
to be a common chemotherapeutic drug which plays an
important role in the treatment of lung cancer (Dasari and
Bernard Tchounwou 2014). Nevertheless, the drug resistance
to chemotherapeutic drugs usually leads to poor treatment
effects, leading to malignant progression and recurrence of
LUAD (Fennell et al., 2016). Elucidating the complex
molecular mechanism underlying drug resistance and
identifying the key molecules regulating drug resistance are
crucial for the treatment of lung cancer.

LncRNAs are a kind of ncRNAs whose transcripts with a
length of more than 200 nucleotides do not have protein-coding
potential. Mounting evidence has demonstrated that lncRNA
abnormal expression and over-activation are usually involved
in cancer initiation and progression (Zhang et al., 2020).
LncRNAs can modulate the gene expression via influencing
the structure of chromatin (Wang et al., 2011), histone
modification (Luco et al., 2010), and to sponging microRNA
(Yang et al., 2014). Aberrantly expressed lncRNAs have been
reported to correlate with the development and progression of
lung cancer (Chen et al., 2020a). It has been confirmed that
lncRNA plays an important role in regulating cancer
chemoresistance (Zhang et al., 2020). For example, Chen et al.
found that lncRNA SNHG14 was upregulated in the A549/DDP
cell line compared to that in the A549 cell line, and SNHG14
promotes the DDP-resistance of non-small cell lung cancer cells
by modulating the miR-133a/HOXB13 signaling pathway (Xu
et al., 2020). Furthermore, it has been confirmed that
lincAK126698 improves the expression of β-catenin and
promotes DDP-induced apoptosis (Yang et al., 2013).
Moreover, it has been confirmed that lncRNA bladder cancer-
associated transcript 1 was highly expressed in DDP-resistant
NSCLC cells and promotes chemoresistance via modulating the
miR-17/ATG7 axis (Huang et al., 2019). LncRNA-NNT-AS1 is
elevated in DDP-resistant NSCLC tissues and cells, and the
overexpression of lncRNA NNT-AS1 boosts cell proliferation
and inhibits cell apoptosis by regulating the MAPK signaling
pathway (Cai et al., 2018). Wang J. et al (2020) showed that
LINC01116 was highly expressed in cisplatin-resistant LUAD
specimens and A549/DDP cells. Depletion of LINC01116

reduced cell viability and cell migration, elevated cell
apoptosis, and improved the sensitivity to DDP in A549/DDP
cells. In our previous study, we developed a new method called
CVAA (Cross-Value Association Analysis), which functions
without a normalization and distribution assumption. We
applied it to large-scale pan-cancer transcriptome data
generated by The Cancer Genome Atlas (TCGA) project and
successfully discovered numerous new differentially expressed
genes (DEGs) (Jiang et al., 2021). AP000695.2 is one of these
DEGs. Based on our analysis, AP000695.2 is a long non-coding
RNA that is highly expressed in various human cancers, including
lung cancer. However, the clinical significance and function of
AP000695.2 associated with DDP resistance in LUAD remain to
be elucidated.

In this study, we explored the diagnostic and prognostic
significance of AP000695.2 in lung adenocarcinoma by data
mining in The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) datasets. Subsequently, gene set
enrichment analysis (GSEA) was used to examine the possible
biological functions and signaling pathways of AP000695.2 in
lung adenocarcinoma. Moreover, we also examined the
relationship between AP000695.2 expression and immune cell
infiltration levels to explore the possible mechanisms by which
AP000695.2 affected lung cancer occurrence and progression.
Finally, cell viability assay, flow cytometry, colony formation,
transwell, and wound healing assays were used to determine the
biological function of AP000695.2 in lung adenocarcinoma.

MATERIALS AND METHODS

Data Collection
TCGA-LUAD dataset and clinical information of LUAD patients
were downloaded from TCGA website (https://portal.gdc.cancer.
gov/repository). AP000695.2 expression data from GSE81089
datasets were downloaded from the GEO database and
validated AP000695.2 expression.

Nomogram Construction and Evaluation
Based on the multivariate Cox analysis results, we established a
nomogram to predict the prognosis of LUAD patients. According
to the prognosis model, we calculated each patient’s risk score as
the total score of each parameter, which could predict the
prognosis of LUAD patients. The accuracy estimation of
nomogram prediction was obtained from a calibration plot.
The nomogram discrimination was determined using a
concordance index (C-index), and 1,000 resamples were used
in the calculation by the bootstrap approach. In this study, all
statistical tests were two-tailed, with a statistical significance level
of 0.05.

Gene Set Enrichment Analysis
Using the clusterProfiler package, the subtype-specific gene
expression patterns and potential cellular pathways were
elucidated on GSEA software (Subramanian et al., 2005).
Based on the AP000695.2 expression level, we divided gene
expression data into high-AP000695.2 and low-AP000695.2
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groups, and each analysis included 1,000 times of gene set
permutations. A p value of less than 0.05 was considered
statistically significant.

Immune Infiltration Analysis by ssGSEA
We used a GSVA R package to examine the lung adenocarcinoma
immune infiltration of 24 tumor-infiltrating immune cells in
tumor samples through ssGSEA (Bindea et al., 2013;
Hänzelmann et al., 2013). The correlation between
AP000695.2 and infiltration levels of immune cells was
analyzed by the Spearman correlation, and these immune cells
with the different expression groups of AP000695.2 were
analyzed by the Wilcoxon rank-sum test.

Cell Culture
The BEAS-2B cell line was purchased from the Cell Bank of
Kunming Institute of Zoology and cultured in BEGM (Lonza,
CC-3170). Lung cancer cell lines, including A549, H1299, and
SPC-A1, were purchased from Cobioer, China, with STR
documents, and were cultured in an RPMI-1640 medium
(Corning) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin.

Constructs, Lentiviral Preparation, and
Establishment of Different Cell Lines
For shRNA knockdown experiments, independent shRNAs
targeting a different region of AP000695.2 RNA were
constructed using a pLKO.1 vector (Addgene), and the oligo
sequences were provided as follows: lentiviruses were generated
according to themanufacturer’s protocol, and indicated cells were
infected by viruses twice with 48 and 72 h viral supernatants
containing 4 μg/ml polybrene, and stable cell lines were
established by appropriate puromycin selection. The two
independent AP000695.2 targeting sequences are: shRNA#1,
5′-GTGTTGTATGACCCCGTTTTC-3’ and shRNA#2, 5′-ATA
CGCACTGACAAACAACAC-3’.

Cell Proliferation Assays
For the cell proliferation assay, a total of 2 × 104 indicated cells
were plated into 12-well plates in triplicate, and the exact cell
numbers for each day were determined using an automatic cell
analyzer countstar. Cell migration assay was performed as
previously described (Jiang et al., 2022). To produce a wound,
the monolayer cells in a 6-well plate were scraped in a straight
line with pipette tips. The plate was then washed with warm
PBS to remove detached cells. Photographs of the scratch were
taken at indicated time points using a Nikon inverted
microscope (Ti-S). The gap width was calculated with
GraphPad Prism software. For transwell assay, 1–2×104 cells
in 100 μL serum-free medium were plated in an 8.0-μm, 24-
well plate chamber insert, with a medium containing 10% FBS
at the bottom of the insert. The cells were incubated for 24 h
and then fixed with 4% paraformaldehyde for 20 min. After
washing, the cells were stained with 0.5% crystal violet-blue.
The positively stained cells were examined under the
microscope.

Real-Time RT-PCR Assay
A real-time RT-PCR assay was performed as previously described
(Jiang et al., 2022). The primer used in this study is as follows: β-
actin-F: AAGTGTGACGTGGACATCCGC, β-actin-R: CCGGAC
TCGTCATACTCCTGCT, AP000695.2-F: GATGAAAGACCG
CGTTGTTT, and AP000695.2-R: CTCTTCGGAGGAAATAC.

Statistical Analysis
Data are represented as mean ± SEM, and error bars indicate
SEM. p values were calculated by either unpaired or paired two-
tailed Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 0.001. All
analyses were performed using GraphPad Prism software
(GraphPad Software, Inc.).

RESULTS

The Expression and Prognostic Value of
AP000695.2 in Pan-Cancer
To explore the expression of AP000695.2 in diverse human
cancer, the AP000695.2 RNA expression data of multiple
human cancers and normal tissues were examined. Based
on the best cutoff score, we found that AP000695.2
expression was higher in various tumor tissues. As shown
in Figure 1A, AP000695.2 expression was extremely
significant in bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell
carcinoma (CESC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), uterine corpus
endometrial carcinoma (UCEC), and uterine carcinosarcoma
(UCS) (Figure 1A). Furthermore, we found that AP000695.2
with high expression was associated with adverse clinical
outcomes in ESAD, GBM, KICH, KIRC, LGG, LIHC,
LUAD, MESO, PAAD, SARC, STAD, and UCEC
(Figures 1B–D).

The Correlation Between AP000695.2
Expression Levels and Clinical Parameters
in Lung Adenocarcinoma
We simultaneously analyzed the expression profiles of
AP000695.2 (ENSG00000248538) based on TCGA database.
Results confirmed that AP000695.2 was highly expressed in
lung adenocarcinoma compared to the normal samples
(Figure 2A). There were 59 pairs of lung adenocarcinoma
cancer samples and matched adjacent normal samples from
TCGA data. We found that AP000695.2 was elevated in lung
adenocarcinoma samples than in matched adjacent normal
samples (Figure 2B). Moreover, we found that AP000695.2
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was increased in lung cancer tissues by analyzing the GEO
dataset (Figure 2C). To examine the clinical relevance of
AP000695.2 in LUAD, 535 LUAD patients with clinical
characteristics were divided into two subgroups based on
the mean value of relative AP000695.2 expression. We then

explored the correlations between AP000695.2 expression and
clinical features, including pathologic stage, TNM stage, and
residual tumor. We found that AP000695.2 expression was
significantly correlated with pathologic stage, TNM stage, and
residual tumor (Figures 2D–G). Furthermore, ROC analysis

FIGURE 1 | Expression level and prognosis of lncRNA-AP000695.2 in human cancer. (A) Expression of lncRNA-AP000695.2 in normal and tumor tissues in TCGA
and GTEx data, based on the best cutoff score to distinguish high- and low-expression groups. (B–D) Correlation between AP000695.2 expression and cancer survival
prognosis. *p < 0.05, **p < 0.01, and ***p < 0.001.
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showed that AP000695.2 could be used to differentiate LUAD
patients from normal controls with a specificity (AUC = 0.838)
(Figure 2H). This result is also validated by the GEO
dataset (Figure 2I). Moreover, Kaplan–Meier analysis
showed that LUAD patients with higher AP000695.2
expression were associated with adverse overall survival
(OS), disease-free survival, and progression-free survival
(PFS) (Figures 2J-L).

Univariate and Multivariate Cox Regression
Analyses
Univariate Cox regression analysis was conducted to
determine whether the AP000695.2 expression level and
pathologic stage might be valuable prognostic biomarkers
in TCGA-LUAD cohort. In univariate Cox regression

analysis, the high expression of AP000695.2, pathologic
stage, and TNM stage was associated with overall survival
in LUAD patients. To assess whether AP000695.2 could be an
independent prognostic factor for LUAD patients,
multivariate Cox survival analysis showed that AP000695.2
expression could be an independent prognostic factor for
LUAD (Tables 1).

To examine whether the prognostic values of AP000695.2 was
applicable to other clinical features, all patients were divided into
various subgroups based on the clinical features. Survival analyses
performed in the subgroups indicated that AP000695.2
performed well in subgroups such as stages I-II (p = 0.003),
T1-T2 (p = 0.004), N0-N1 (p = 0.009), M0 (p = 0.003), R0 (p =
0.01), female (p = 0.005), male (p = 0.032), race, white (p = 0.027),
>65years (p = 0.015), <65years (p = 0.002), CR (p = 0.002), and
smoker (p = 0.001) in TCGA-LUAD cohort (Figures 3A–C).

FIGURE 2 | Clinical significance of lncRNA-AP000695.2 in lung adenocarcinoma. (A) Expression of lncRNA-AP000695.2 in lung cancer based on TCGA dataset.
(B) Expression levels of lncRNA-AP000695.2 in 59 paired adjacent normal tissues and paired samples. (C) Expression levels of lncRNA-AP000695.2 in lung cancer
based on the GEO dataset. (D–G) Correlation between lncRNA-AP000695.2 expression and clinical parameters includes pathological and TNM stages. (H–I) ROC
curves were used to determine the diagnostic value of lncRNA-AP000695.2 in lung adenocarcinoma based on TCGA-LUAD and GEO datasets. (J–L)
Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high-lncRNA-AP000695.2 expression exhibited poor overall survival, disease-specific
survival, and progression-free survival based on TCGA-LUAD dataset. *p < 0.05, **p < 0.01, and ***p < 0.001.
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TABLE 1 | Univariate and multivariate Cox regression analyses of different parameters on overall survival in lung adenocarcinoma.

Characteristic Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

T stage 523
T1 and T2 457
T3 and T4 66 2.317 (1.591–3.375) <0.001 1.638 (1.018–2.635) 0.042
N stage 510
N0 and N1 437
N3 and N2 73 2.321 (1.631–3.303) <0.001 1.293 (0.626–2.674) 0.488
Pathologic stage 518
Stage II and Stage I 411
Stage IV and Stage III 107 2.664 (1.960–3.621) <0.001 1.802 (0.839–3.871) 0.131
M stage 377
M0 352
M1 25 2.136 (1.248–3.653) 0.006 1.192 (0.541–2.626) 0.664
AC022784 1 526 1.251 (1.141–1.372) <0.001 1.168 (1.053–1.296) 0.003

FIGURE 3 |Kaplan–Meier survival analyses for prognostic values of AP000695.2 in different subgroups stratified by clinical features. (A–C)Kaplan–Meier curves for
overall survival of AP000695.2 in subgroups including stages I-II, T1-T2, N0-N1, M0, R0, female, male, race, white, age>65years, age <65years, CR, and smoker in
TCGA-LUAD cohort.
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Validation of the Prognostic Significance of
AP000695.2 in Lung Adenocarcinoma
Cohorts
The GEO dataset was used to validate the prognostic significance
of AP000695.2 in LUAD, and we showed that the LUAD patients
in the high-expression group had shorter OS in the GEO cohorts
(Figures 4A,B). Moreover, the ROC curve was also used to assess
the predictive power of AP000695.2 in OS, and the AUC for the
overall survival rate of LUAD patients was 0.984 and 0.962 in the
GEO cohort (Figures 4C,D). Taken together, these results suggest
that AP000695.2 is a moderately sensitive index for predicting the
prognosis of LUAD patients and can act as an effective prognostic
biomarker in LUAD.

Construction and Validation of an
AP000695.2-Based Nomogram
The multivariate analysis result confirmed that AP000695.2 is an
independent prognostic factor in LUAD. We then constructed a
prediction model for overall survival, disease-free survival, and
progression-free survival by integrating AP000695.2 expression
and pathologic stage. We established a nomogram to integrate
AP000695.2 as an LUAD biomarker, and higher total points on

the nomogram for OS, PFS, and DFS indicated a worse prognosis
(Figures 5A–F). These findings indicated that the nomogram
could well predict clinical outcomes of lung adenocarcinoma
patients.

AP000695.2-Related Signaling Pathways
Based on Gene Set Enrichment Analysis
To explore the influence of potential signaling pathways of
AP000695.2 in LUAD, gene set enrichment analysis (GSEA)
was performed on the datasets with high and low expressions
of AP000695.2. We only selected the top nine datasets with a high
normalized enrichment score (NES) and significant p-value. The
results showed that cell apoptosis, focal adhesion, cell cycle, cell
adhesion molecules cams, JAK-STAT signaling pathway, MAPK
signaling pathway, natural killer cell-mediated cytotoxic, tight
junction, T-cell receptor signaling pathway, toll-like receptor
signaling pathway, chemokine signaling pathway, and
cytokine–cytokine receptor interaction were significantly
enriched in the high-AP000695.2 expression group in TCGA
datasets (Figures 6A–C). These results suggested that
AP000695.2 might participate in the regulation of cell
apoptosis and immune response in LUAD.

FIGURE 4 | Predictive powers for the prognosis of AP000695.2 in LUAD patients. (A–B) Kaplan–Meier survival validation of the prognostic values of AP000695.2 in
LUAD patients based on the GEO cohorts. (C–D) ROC curves show the AUC of AP000695.2 for predicting the overall survival of LUAD patients.
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Correlation Between AP000695.2
Expression and Immune Infiltration
ssGSEA with Spearman’s rank correlation was utilized to
determine the relationship between AP000695.2 expression
and infiltrating immune cells in LUAD. The results confirmed
that AP000695.2 was positively correlated with infiltration levels
of Th2 cells, neutrophils, macrophages, NK CD56dim cells, Ted,
Th1 cells, NK cells, TReg, pDC, and aDC (p < 0.001) and was
negatively correlated with that of eosinophils, CD8 T cells, NK

CD56bright cells, Th17 cells, B cells, mast cells, Tcm, and TFH
(Figure 7A). Furthermore, we found that patients in the
AP000695.2 high-expression group showed an increase in the
numbers of infiltrating aDC, macrophages, neutrophils, NK
CD56dim cells, NK cells, pDC, Tgd, Th1 cells, and Th2 cells.
On the contrary, patients in the AP000695.2 low-expression
group showed a reduction in the numbers of infiltrating
eosinophils, CD8 T cells, NK CD56bright cells, Th17 cells,
B cells, mast cells, Tcm, and TFH (Figure 7B).

FIGURE 5 | Construction and performance validation of the lncRNA-AP000695.2-based nomogram for lung adenocarcinoma patients. (A–D) Nomogram to
predict the overall survival, disease-free survival, and progression-free survival of lung cancer patients, and the calibration curve and Hosmer–Lemeshow test of
nomograms in TCGA-lung adenocarcinoma cohort for overall survival, disease-specific survival, and progression-free survival.
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AP000695.2 Promotes Proliferation and
Migration of Lung Adenocarcinoma Cells In
Vitro
The aforementioned studies suggested that AP000695.2
expression was elevated in LUAD tissues, and AP000695.2
may involve in the progression of LUAD. To further determine
the function of AP000695.2 in LUAD, we found that
AP000695.2 was elevated in H1650, H1975, and H1299 lung
cancer cell lines compared to the human bronchial epithelial
cells (BEAS-2B) (Figure 8A). Furthermore, specific shRNA for
AP000695.2 was utilized to construct H1299 and H1975 cells
with stable knockdown of AP000695.2 expression. The
knockdown efficiencies were examined by qRT-PCR assay
(Figures 8B,C). The knockdown of AP000695.2 inhibited
the cell proliferation capacity of H1299 and H1975 cells
(Figures 8D,E) on BrdU and colony assays. Moreover,
transwell assay and wound healing showed that depletion of
the AP000695.2 expression level significantly reduced the cell
migration and invasion abilities of H1299 and H1975 cells
(Figures 8F,G). These results confirmed that AP000695.2
plays a role of an oncogene in lung cancer cells.

AP000695.2 Facilitates Cisplatin Resistance
in Lung Adenocarcinoma In Vitro
We utilized the GDSC database to explore the potential drug
that correlated with AP000695.2. The results confirmed that
AP000695.2 was positively correlated with the diverse drug,
including cisplatin (DDP) (r = 0.43, p < 0.001) which was
reported to be a common chemotherapeutic drug for LUAD
patients (Figure 9A). To further determine the function of
DDP resistance in LUAD, we utilized DDP-sensitive, parental
LUAD cell lines H1299 and their isogenic DDP-resistant
counterparts H1299 as experimental cell lines. We found
that AP000695.2 was elevated in H1299-DDP-resistant cells
than in H1299 DDP-sensitive cells (Figure 9B). Then, we
treated LUAD cells with DDP and calculated the IC50 value.
The results confirmed that AP000695.2 knockdown
significantly decreased the IC50 value of DDP (Figure 9C).
Likewise, AP000695.2 knockdown significantly promotes the
DDP-induced cell apoptosis in H1299-DDP-resistant cells
(Figures 9D,E). Overall, an increased AP000695.2
expression could promote DDP resistance of LUAD cells.

FIGURE 6 | Identification of lncRNA-AP000695.2-related signaling pathways in lung adenocarcinoma. (A–B) Top 12 significant KEGG pathways associated with
AP000695.2 were examined by GSEA software.
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DISCUSSION

Despite there being many different treatments, the prognosis of
lung cancer is an advanced stage and the survival rate of patients
is very low (Hirsch et al., 2017). The initiation and progression of
lung cancer is an exceedingly complicated process that involves
genetic mutations, tumor microenvironment, and the
dysregulation of epigenetic pathways (Govindan et al., 2012;
Duruisseaux and Esteller 2018). It has been shown that
lncRNAs maybe serve as effective and specific molecular
markers for lung cancer diagnosis. For example, NEAT1 was
highly expressed in NSCLC tissues, and its higher expression was
associated with the TNM stage and lymphatic metastasis, and the
ROC curve of NEAT1 in NSCLC was 0.878, which showed good
diagnostic potential in NSCLC (Jen et al., 2017). Li et al. reported
that lncRNA UPLA1 was overexpressed in NSCLC tissues and
correlated with tumor size and lymph node metastasis, and
lncRNA UPLA1 had an ROC curve of 0.756 for
discriminating NSCLC from normal controls, with a sensitivity
and specificity of 76.2% and 72.1%, respectively (Han et al., 2020).
In this study, we found that lncRNA-AP000695.2 was highly
expressed in LUAD and correlated with adverse clinical features,
including pathologic stage, TNM stage, and residual tumor. The
survival analysis results showed that patients with high
expression of AP000695.2 correlated with OS, DFS, and PFS
in the LUAD patients of TCGA data.

Furthermore, univariate and multivariate analyses as standard
and reliable statistical methods were utilized to confirm whether
lncRNA can be regarded as an independent tumor marker for
predicting the prognosis of lung cancer patients. By univariate
and multivariate analyses, some lncRNAs have also been
identified as independent prognostic markers in lung cancer. For
instance, lncRNA CASC9 was shown to be increased in NSCLC and
correlated with poor prognosis. Forced lncRNA CASC9 expression
promotes NSCLC cell proliferation and chemoresistance via
epigenetic repression of DUSP1, and univariate and multivariate
analyses reported that lncRNA CASC9 can be regarded as
independent prognostic markers in lung cancer (Chen et al.,
2020b). In this study, we confirmed that AP000695.2 expression
could be an independent prognostic factor for LUAD. We also
established a nomogram to integrate AP000695.2 as an LUAD
biomarker, and higher total points on the nomogram for overall
survival, progression-free survival (PFS), and disease-specific
survival (DSS) indicated a worse prognosis.

LncRNAs are a class of RNAs with more than 200 nucleotides in
length. Although lncRNAs do not have protein-coding capabilities,
they play essential roles in various biological processes and diseases
(Wang et al., 2018). The aberrant regulation of lncRNAs is associated
with tumorigenesis, metastasis, and drug resistance (Liang et al.,
2021). It has been confirmed that lncRNATUC338 via activating the
MAPK pathway leads to lung cancer progression (Zhang et al.,
2018). Additionally, You et al. found that lncRNA-RP11-468E2.5

FIGURE 7 | Correlation analysis of lncRNA-AP000695.2 expression and infiltration levels of immune cells in LUAD tissues. (A) Correlation between the relative
abundances of 24 immune cells and lncRNA AP000695.2 expression level. (B) Box plots of the correlations between lncRNA-AP000695.2 or molecular model
expression and infiltration levels of immune cells. *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 89592710

Wang et al. Function of AP000695.2 in LUAD

141

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 8 | lncRNA-AP000695.2 promotes LUAD cell proliferation, migration, and invasion in vitro. (A) Relative expression level of lncRNA AP000695.2 in lung
adenocarcinoma cancerous cell lines, including H1650, H1975, and H1299 examined by real-time RT-PCR, compared with normal human bronchial epithelial cell lines:
BEAS-2B. (B–C) Establishment of lncRNA-AP000695.2 knockdown cell lines in H1299 and H1975 cells verified by real-time RT-PCR. (D–E) Knockdown of lncRNA-
AP000695.2 significantly inhibits cell proliferation in H1299 and H1975 cells as measured by BrdU and colony formation. (F–G) Knockdown of lncRNA
AP000695.2 dramatically inhibits H1299 and H1975 cells’ migration ability examined by transwell and wound healing assays. *p < 0.05, **p < 0.01, and ***p < 0.001.
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regulates colorectal cancer cell proliferation and promotes apoptosis
by modulating the JAK/STAT signaling pathway by targeting
STAT5 and STAT6 (Jiang et al., 2019). For example, Li et al.
found that ZFPM2-AS1 was found to facilitate cell proliferation,
migration, and invasion via involvement in the JAK-STAT andAKT

pathways in NSCLC (Wang X et al., 2020). Moreover, Guo et al.
found that lncRNA- XLOC_098,131, via sponging miR-548s and
thereby upregulation of FOS expression, leads to the production of
more immunoglobulins and the promotion of antigen presentation
(Fan et al., 2019). In this study, we found that the high expression of

FIGURE 9 | lncRNA-AP000695.2 contributes to DDP resistance of LUAD. (A) Relationships between AP000695.2 expression and different drugs were examined
by the GDSC database. (B) Expression of AP000695.2 in DDP-resistant and matched parental LUAD cells, normalized to 18sRNA expression. (C) AP000695.2
knockdown increases the sensitivity of H1299/CDDP-resistant cells to CDDP, detected by CCK-8 assay. (D–E) AP000695.2 knockdown increases the CDDP-induced
apoptosis rate in H1299/DDP-resistant cells detected by FCM.
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AP000695.2 was highly associated with cell apoptosis, focal
adhesion, cell cycle, cell adhesion molecules cams, JAK-STAT
signaling pathway, MAPK signaling pathway, natural killer cell-
mediated cytotoxic, tight junction, T-cell receptor signaling pathway,
toll-like receptor signaling pathway, chemokine signaling pathway,
and cytokine–cytokine receptor interaction that were significantly
enriched, which indicated that AP000695.2 might have a crucial role
in immune response regulation and cell proliferation. The JAK-
STAT signaling pathway was reported to play crucial roles in the
regulation of intracellular signal transduction and cellular immune
response. These results indicated that AP000695.2 may be correlated
with the JAK-STAT signaling pathway, MAPK signaling pathway,
and toll-like receptor signaling pathway in cancer development and
progression.

The tumor microenvironment plays a crucial role in cancer
progression and can be used as a biomarker for diagnosis and
prognosis (Lee and Cheah 2019). For instance, tumor-associated
macrophages are regarded as essential components of the tumor
microenvironment and play critical roles in the modulation of
cancer progression (Pan et al., 2020). In this finding, we found
that AP000695.2 expression was positively associated with
infiltration levels of Th2 cells, neutrophils, macrophages, NK
CD56dim cells, Tgd, Th1 cells, NK cells, TReg, pDC, and aDC
(p < 0.001) and was negatively correlated with that of eosinophils,
CD8 T cells, NK CD56bright cells, Th17 cells, B cells, mast cells,
Tcm, and TFH. Furthermore, we found that patients in the
AP000695.2 high-expression group showed an increase in the
numbers of infiltrating aDC, macrophages, neutrophils, NK
CD56dim cells, NK cells, pDC, Tgd, Th1 cells, and Th2 cells.
This correlation means that AP000695.2 expression was
significantly positively correlated with the infiltrating levels of
aDC, macrophages, neutrophils, NK CD56dim cells, NK cells,
pDC, Tgd, Th1 cells, and Th2 cells in LUAD. On the contrary,
patients in the AP000695.2 low-expression group showed a
reduction in the numbers of infiltrating eosinophils, CD8 T cells,
NK CD56bright cells, Th17 cells, B cells, mast cells, Tcm, and TFH.
This correlationmeans that AP000695.2 expression was significantly
negatively correlated with the infiltrating levels of eosinophils, CD8
T cells, NKCD56bright cells, Th17 cells, B cells, mast cells, Tcm, and
TFH in LUAD. Based on the aforementioned findings, we proposed
that AP000695.2 may be involved in the immune response by
affecting diverse immune cells infiltrating in the tumor
microenvironment of lung cancer. In in vitro assay, we show that
knockdown of AP000695.2 in H1299 and H1975 inhibited cell
proliferation and migration.

Cisplatin is a common drug in lung cancer chemotherapy.
However, owing to primary or acquired drug resistance, DDP
has not achieved a satisfactory therapeutic effect in most LUAD
patients. Therefore, identifying and validating the key regulators
involved in drug resistance, especially epigenetic modifications, can
provide crucial information for overcoming DDP resistance in
LUAD. In this finding, by the analysis of TCGA and GDSC
datasets, we found the key lncRNAs involved in DDP resistance
in LUAD. Among these lncRNAs, AP000695.2 was elevated in
DDP-resistant LUAD cells than in DDP-sensitive cells,
confirming that AP000695.2 was related to DDP resistance.
Then, we found that the knockdown of AP000695.2 significantly

improved the sensitivity of lung cancer cells to DDP and induced cell
apoptosis. Through loss-of-function experiments performed in vitro,
we uncover that AP000695.2 promoted DDP resistance in LUAD.
To our knowledge, this finding is the first to confirm the crucial role
of AP000695.2 in DDP resistance in LUAD.

This study improves our understanding of the correlation
between AP000695.2 and LUAD, but some limitations still exist.
First, although we explored the correlation between AP000695.2 and
immune infiltration in LUAD patients, there is a lack of experiments
to validate the function of AP000695.2 in the tumor
microenvironment regulation of LUAD. Second, we uncover that
depletion of AP000695.2 inhibits cell proliferation and cell migration
of LUAD cells. However, the potential molecular mechanisms of
AP000695.2 in cancer progression need to be explored in further
studies. Third, we did not conduct the Western blot experiments to
detect the expression of the related signaling pathway molecules
(JAK/MAPK, etc.) after knocking down AP000695.2 in lung cancer
cells. In the future, we will pay more attention to the function of
AP000695.2 in tumor metastasis and tumor microenvironment
regulation of LUAD. Furthermore, we will perform more in vivo
and in vitro experiments to explore the function and the potential
molecular mechanisms of AP000695.2 in tumor metastasis and
tumor microenvironment regulation of LUAD.

CONCLUSION

In conclusion, this study uncovers the biological function of
AP000695.2 in LUAD for the first time. AP000695.2 was highly
expressed in LUAD and associated with adverse clinical outcomes in
LUAD patients, and AP000695.2 expression in LUAD is associated
with pathologic stage, TNM stage, and residual tumor. Furthermore,
AP000695.2 plays a significant role in regulating cell proliferation,
cell migration, and DDP resistance. Our findings showed that
AP000695.2 has the clinical potential to reverse DDP resistance
and achieve better clinical outcomes in LUAD patients and may
serve as a promising diagnostic and prognostic biomarker
for LUAD.
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Background: Acute respiratory distress syndrome (ARDS) is an unresolved challenge in
the field of respiratory and critical care, and the changes in the lung microbiome during the
development of ARDS and their clinical diagnostic value remain unclear. This study aimed
to explore the role of the lung microbiome in disease progression in patients with sepsis-
induced ARDS and potential therapeutic targets.

Methods: Patients with ARDS were divided into two groups according to the initial site of
infection, intrapulmonary infection (ARDSp, 111 cases) and extrapulmonary infection
(ARDSexp, 45 cases), and a total of 28 patients with mild pulmonary infections were
enrolled as the control group. In this study, we sequenced the DNA in the bronchoalveolar
lavage fluid collected from patients using metagenomic next-generation sequencing
(mNGS) to analyze the changes in the lung microbiome in patients with different
infectious site and prognosis and before and after antibiotic treatment.

Results: The Shannon–Wiener index indicated a statistically significant reduction in
microbial diversity in the ARDSp group compared with the ARDSexp and control
groups. The ARDSp group was characterized by a reduction in microbiome diversity,
mainly in the normal microbes of the lung, whereas the ARDSexp group was characterized
by an increase in microbiome diversity, mainly in conditionally pathogenic bacteria and
intestinal microbes. Further analysis showed that an increase in Bilophila is a potential risk
factor for death in ARDSexp. An increase in Escherichia coli, Staphylococcus aureus,
Candida albicans, enteric microbes, or conditional pathogens may be risk factors for death
in ARDSp. In contrast, Hydrobacter may be a protective factor in ARDSp.

Conclusion: Different initial sites of infection and prognoses are likely to affect the
composition and diversity of the pulmonary microbiome in patients with septic ARDS.
This study provides insights into disease development and exploration of potential
therapeutic targets.
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1 INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a clinical syndrome
that occurs during severe infections, shock, trauma, and burns and
is mostly caused by sepsis (Force et al., 2012; Matthay et al., 2019).
It is characterized by hypoxemia and respiratory distress. Owing to
its rapid progression, high mortality rate, and lack of effective
treatments, ARDS is one of the leading causes of death in patients
with acute and critical illnesses. In ARDS, damage to alveolar
epithelial cells and pulmonary capillary endothelial cells causes
increased alveolar-capillary permeability and the collection of
protein-laden edema fluid in the alveolar lumen, eventually
leading to diffuse interstitial lung edema (Matthay et al., 2019).
In recent years, there has been increasing interest in research on
ARDS, and the exploration of timely and effective treatments and
prognostic markers for ARDS remains a hot topic of research.

In a previous study, we found that the use ofmetagenomic next-
generation sequencing (mNGS) for ARDS caused by severe
pneumonia improved clinical diagnosis and guided the clinical
use of drugs, thereby improving patient prognosis (Zhang et al.,
2020). In addition, changes in the lung microbiome in patients can
be explored usingmNGS. Research on the relationship between the
lungmicroenvironment and the etiology of ARDS is still in its early
stages. Dickson et al. (2018) suggested the presence of interactions
between alterations in the pulmonary microbiome and ARDS.
ARDS infections or other lung injuries can directly alter the lung
microbiome, including ventilator-induced injury and aspiration.
Alterations in the pulmonary microbiome may, in turn, contribute
to lung injury by promoting increased pulmonary vascular
permeability, the establishment of stark oxygen gradients, a
surge in inflammatory molecules for bacterial growth (Freestone
et al., 2012; Dickson et al., 2015), and damage to host defenses,
ultimately altering the alveolar microenvironment. Once both lung
microbial imbalance and lung injury occur, they interact via a
positive feedback loop. Therefore, regulation of the microbiome is
likely to be a potential therapeutic or prophylactic target for ARDS
(Dickson, 2016). However, the relationship between alterations in
the microbiome and ARDS and their influence on disease
regression and prognosis remain to be further evaluated.

This study aimed to explore the role of the lung microbiome
in disease progression in patients with sepsis-induced ARDS.
Moreover, potential therapeutic targets were screened based on
changes in the microbiome in the lung microenvironment.

2 MATERIALS AND METHODS

2.1 Ethics and Informed Consent
The study protocol was reviewed and approved by the Ethics
Review Committee of Jiangmen Central Hospital (No. 2019-15).
Written informed consent was obtained from the patients or their
legal representatives before the collection of bronchoalveolar

lavage fluid (BALF) samples by bronchoalveolar lavage using
fiberoptic bronchoscopy.

2.2 Patients
A retrospective analysis was conducted on patients with ARDS
caused by sepsis who were admitted to the intensive care unit
(ICU) of Jiangmen Central Hospital from January 2018 to June
2021. The inclusion criteria were as follows: 1) the diagnosis of
ARDS met the Berlin 2012 definition (Force et al., 2012), 2) the
etiology of ARDS was sepsis, 3) the age was greater than 18 years,
and 4) the clinical profile was complete. The exclusion criteria
were as follows: 1) ARDS caused by non-infectious factors, 2) age
<18 years, and 3) an incomplete clinical profile. The patients were
divided into two groups according to their initial infection status:
intrapulmonary infection-induced ARDS (ARDSp group) and
extrapulmonary infection-induced ARDS (ARDSexp group). The
ARDSp group included 111 patients, the ARDSexp group
included 45 patients, and the control group included 28
patients, including patients with mild pulmonary infection and
non-ARDS, all of whom had a good prognosis and did not return
to the ICU within 90 days of being transferred out of the ICU.

2.3 General Treatment Plan
All patients with sepsis were treated according to the sepsis guidelines
(Rhodes et al., 2017) and empirical anti-infective therapy in
conjunction with clinical indicators of infection and imaging
information. Patients with ARDS were mechanically ventilated
according to the ARDS ventilation guidelines (Bein et al., 2016;
Griffiths et al., 2019), and the anti-infective regimen was adjusted
according to the patient’s inflammatory indicators, imaging data, and
microbiological tests.

2.4 BALF Collection Process
All patients were intubated and mechanically ventilated in the ICU,
and BALF specimens were obtained using a fiberoptic bronchoscope
(Chinese Thoracic Society, 2017). Baseline specimens were collected
within 24 h of ARDS diagnosis in the ICU before antibiotic
administration. Some patients were treated for 7 days, and post-
treatment specimens were retained. The baseline and post-treatment
specimens were sent to the laboratory for pathogenic culture. The
remaining specimens were also sent to the clinical experimental
center for DNA extraction and stored at -20°C for research purposes.
All laboratory consumables were purchased from Guangzhou Jet
Bio-Filtration Co., Ltd. (China). The final specimens were sent to
Guangdong Longsee Biomedical Co., Ltd. for metagenomic
sequencing, including Bacterial nucleic acid purification, DNA
library preparation, high-throughput sequencing, bioinformatics
analysis, and pathogenic data interpretation (Miao et al., 2018).

2.5 Experimental Groups
As shown in Figure 1, patients in all groups were stratified
according to their prognosis. Those who improved in the ICU
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with treatment and ventilation and could be successfully
transferred out of the ICU within 7 days were defined as the
“survival group,” while those who did not benefit from ICU care
and died of organ failure were defined as the “dead group.” Based
on different etiologies with different prognoses, 57 cases were
classified as the ARDSp-survival group, 54 cases as the ARDSp-
dead group, 20 cases as the ARDSexp-survival group, and 25 cases
as the ARDSexp-dead group. We analyzed the similarities and
differences in the microbiome between the different groups and
searched for microbial markers associated with prognosis using
metagenomic DNA sequencing of the BALF collected from these
patients.

Thirty patients with complete data in the ARDSp group,
including pre-treatment and post-treatment data, were selected
and divided into the pre-treatment group (ARDSp-preT group)
and post-treatment group (ARDSp-poT group). The ARDSp-
poT-survival (post-treatment) group was defined as the post-
treatment-survival group, with 15 cases, based on the
improvement after ICU care allowing the cessation of
ventilator use and survival within 7 days of transfer out of
ICU transfer. Conversely, the ARDSp-poT-dead group was
defined as a failure of treatment in the ICU and death due to
organ failure (15 cases). The control group included 28 cases. The
similarities and differences in the microbiome between the
different groups were also analyzed.

2.6 Pathogenic and Background
Microorganisms
In total, 2,728 microorganisms were sequenced in this study. The
MetaPhlAn database was used for the taxonomic assignment (Truong
et al., 2015). As the RPM values of different microorganisms varied
considerably, the microorganisms were divided into pathogenic and
backgroundmicroorganisms andwere analyzed separately. Pathogenic
microorganisms had significantly higher RPM values than the
background microorganisms. We extracted common nosocomial
infection pathogenic microorganisms, including common bacteria,
fungi, viruses, and specific pathogens, based on 2019 CHINET
surveillance data (Hu et al., 2020) and common pathogenic
microorganisms in sequencing laboratory testing, and defined 57
microorganisms as pathogenic microorganisms (Supplementary
Table S1). The remaining microorganisms were considered
background microorganisms, with a total of 1,040 at the genus level.

2.7 Metagenomic Next-Generation
Sequencing and Analysis
2.7.1 Nucleic Acid Extraction and Library Preparation
DNA was extracted using nucleic acid extraction kit (#20150013,
Hybribio, China) and stored at -20°C to prevent degradation.

A DNA library was constructed using the VAHTS®
Universal Plus DNA Library Prep Kit for Illumina

FIGURE 1 | Schematic diagram of the experimental groupings.
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(Guangdong Longsee Biomedical Co., Ltd, China). All
experiments were performed on ice. The reaction system was
prepared in sterile PCR tubes according to the manufacturer’s
instructions, and DNA fragmentation and adapter ligation were
performed by polymerase chain reaction (PCR). The products
were purified using VAHTS DNA Clean Beads. Library
amplification was then performed by PCR and the amplified
products were purified again. PCR primer information is shown
in Supplementary Table S2.

2.7.2 Bioinformatics Analysis
After library preparation, high-throughput sequencing was
performed using the NextSeq CN500 sequencing platform, and
sequencing data were formatted using the official Illumina software
bcl2fastq to obtain FASTQ files for individual samples. Quality
control was performed using the quality control software fastp
(version 0.20.0) to remove bases with an average qc value <20
within 4 bp of the end and to remove reads <70 bp in length in the
FASTQ files. After quality control, the host genome was removed
by matching the quality-controlled reads to the human genome
(hg39) using Bowtie (version 1.2.2) and retaining unmatched reads
for subsequent analysis. After removing the human reads, the
remaining reads were matched to a reference genome database of
five pathogenic microorganisms (Longsee Clinical Pathogen
Sequence Database) using bowtie2 (version 2.3.4.1) in an end-
to-end matching mode. The results were further standardized in
Python and R before analysis (RPM = number of reads on match/
total number of reads p 1000000).

2.8 Statistical Analysis
We divided the microorganisms into pathogenic and background
microorganisms, and counted the number of positive and negative
sequencing results for each group separately. Among pathogenic
microorganisms, those with RPM values ≥1 were defined as
positive and those with RPM values <1 as negative; among
background microorganisms, those with RPM values >0 were
defined as positive and those with RPM values = 0 as negative.

To analyze the positive rate of the microbiota, we used the chi-
square test or Fisher’s test and presented the data using a
histogram. To analyze the abundance of the microbiota, we
log2-processed the RPM values from the sequencing results,
compared the median values using a paired t-test, and
presented the data using a heatmap. Analyses were performed
using GraphPad 9.3 or R4.1.2. Statistical significance was set as p <
0.05. Cox and cluster analyses were performed using the SPSS
software (version 26.0) and multiple experiment viewer,
respectively. Principal component analysis (PCA) was
performed using GraphPad prism 9.3 and the Adonis analysis
was performed on the Omicshare platform. The Shannon–Wiener
index was calculated as follows: H � ∑(pi)(lnpi).

3 RESULTS

3.1 Patient Clinical Characteristics
A total of 156 patients with sepsis-induced ARDS were selected
for this study and were divided into two groups according to their

initial infection status: intrapulmonary infection-induced ARDS
(ARDSp, n = 111), and extrapulmonary infection-induced ARDS
groups (ARDSexp, n = 45), and a control group (n = 28,
Figure 1). No significant statistical difference in age and sex
was found between the ARDS and control groups (Table 1). The
ARDS group was divided into the ARDSp group and the
ARDSexp group for comparison, but there was no significant
statistical difference in the basic characteristics of the two groups.
(Table 2). Pre-treatment laboratory tests showed that the
ARDSexp group had significantly different results compared
with the ARDSp group, including PCT (p < 0.001), PLT (p =
0.011), Scr (p = 0.041), T. Bil (p = 0.014), Lac (p < 0.001), pre-
treatment APACHE II (p < 0.001), and the SOFA score (p <
0.001; Table 3). In addition, a higher number of patients in the
ARDSexp group required treatment with vasoactive drugs (p <
0.001) and CRRT (p < 0.001) than in the ARDSp group, with no
statistical difference in the 90-day all-cause mortality (Table 4).
These findings suggest that patients in the ARDSexp group were
sicker than those in the ARDSp group; however, there was no
significant difference in the prognosis between the two groups.

3.2 Comparison of the Lung Microbiome
Between the ARDSp and ARDSexp Groups
ARDS may be caused by several pathogenic microorganisms,
including bacteria, fungi, viruses, and specific pathogens. We first
compared the composition and abundance of pathogenic
microorganisms among the control, ARDSp, and ARDSexp
groups. Shannon’s diversity index results suggested that the
ARDSp group had less microbiome diversity compared with
the ARDSexp and control groups (Supplementary Figure 7A).
Further analysis revealed that the ARDSp group had a higher
positive rate for Escherichia coli, Staphylococcus haemolyticus, and
fungi than the control group (Figure 2A); the ARDSexp group
had a higher positive rate for Escherichia coli than both groups
(Figure 2B). No statistically significant difference in the
pathogenic microorganisms was found between the ARDSp
and ARDSexp groups (Supplementary Figure 1A).

Furthermore, we performed PCA on background
microorganisms among the control, ARDSp, and ARDSexp
groups. As shown in the graph (Figure 2C), the control group
had the most concentrated community composition, whereas
both the ARDSp and ARDSexp groups had a larger number of
different microorganism species than the control group. This

TABLE 1 | General information for the ARDS group versus the control group.

ARDS (n = 156) Control (n = 28) p value

Age (years)

≥60, n (%) 95 (60.9) 13 (46.4) 0.152
<60, n (%) 61 (39.1) 15 (53.6)

Gender

Male, n (%) 106 (67.9) 16 (57.1) 0.265
Female, n (%) 50 (32.1) 12 (42.9)
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TABLE 2 | Patient characteristics and baseline information for the ARDS group versus the ARDSexp group.

ARDSp (n = 111) ARDSexp (n = 45) p value

Age (years)

≥60, n (%) 68 (61.3) 27 (60.0) 0.884
<60, n (%) 43 (38.7) 18 (40.0)

Gender

Male, n (%) 77 (69.4) 29 (64.4) 0.550
Female, n (%) 34 (30.6) 16 (35.6)

Underlying diseases

Hypertension, n (%) 35 (31.5) 11 (24.4) 0.379
Coronary heart disease, n (%) 11 (9.9) 3 (6.7) 0.521
COPD, n (%) 19 (17.1) 4 (8.9) 0.189
Chronic nephrosis, n (%) 12 (10.8) 3 (6.7) 0.426
Diabetes, n (%) 19 (17.1) 11 (24.4) 0.293
Immunosuppression, n (%) 15 (13.5) 3 (6.7) 0.225
Tumor, n (%) 9 (8.1) 4 (8.9) 0.873
Smoking, n (%) 35 (31.5) 8 (17.8) 0.082
Drinking, n (%) 14 (12.6) 4 (8.9) 0.435

Primary site of infection

Lung, n (%) 111 (100) 0 (0) —

Blood, n (%) 0 (0) 7 (15.6) —

Gastrointestinal tract, n (%) 0 (0) 18 (40.0) —

Liver, gallbladder, and pancreas, n (%) 0 (0) 9 (20.0) —

Skin, n (%) 0 (0) 10 (22.2) —

Urinary system, n (%) 0 (0) 1 (2.2)

The difference between the two groups was tested by the chi-square test. p < 0.05 was considered statistically significant. COPD, chronic obstructive pulmonary disease.

TABLE 3 | Comparison of laboratory examination, ventilator parameters, APACHE II score, and SOFA score before treatment between the two groups of patients.

ARDSp (n = 111) ARDSexp (n = 45) p value

Laboratory examination before treatment

PCT (ug/L) 1.9 (0.4, 10.0) 16.2 (6.0, 72.8) < 0.001*
WBC (109/L) 13.0 (6.9, 17.2) 13.2 (8.2, 19.2) 0.197
PLT (109/L) 176 (112, 218) 115 (57, 204) 0.011*
Scr (μmol/L) 90 (70, 188) 142 (89, 260) 0.041*
T.Bil (mmol/L) 12.4 (7.4, 22.9) 21.0 (11.3, 50.9) 0.014*
ALT (IU/L) 24 (13, 51) 37 (25, 87) 0.259
Lac (mmol/L) 1.8 (1.2, 2.8) 3.6 (1.7, 7.6) < 0.001*
OI 148 (106, 181) 164 (140, 210) 0.084
APACHE II score before treatment 21 (18, 23) 22 (19, 25) < 0.001*
SOFA score before treatment 7 (5, 8) 8 (6, 10) < 0.001*

Patient physiological index measurements are presented as median (interquartile). p < 0.05 is considered statistically significant. PCT, procalcitonin; WBC, white blood cell; PLT, platelet;
Scr, serum creatinine; T.Bil, total bilirubin; ALT, alanine aminotransferase; Lac, lactic acid; OI, oxygen index; APACHE, acute physiology and chronic health evaluation; SOFA, sequential
organ failure assessment.

TABLE 4 | Comparison of special ICU treatment and prognosis between two groups of patients.

ARDSp (n = 111) ARDSexp (n = 45) p value

Use of vasoactive drugs, n (%) 51 (45.9) 39 (86.7) < 0.001*
CRRT, n (%) 13 (11.7) 20 (44.4) < 0.001*
ECMO, n (%) 8 (7.2) 0 (0) 0.106
Prone ventilation, n (%) 22 (19.8) 3 (6.7) 0.053
All-cause mortality at 90 days, n (%) 54 (48.6) 25 (55.6) 0.619

The difference between the two groups was tested by chi-square test. p < 0.05 was considered statistically significant. CRRT, continuous renal replacement therapy; ECMO,
extracorporeal membrane oxygenation.
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FIGURE 2 | Comparison of the pulmonary microbiome between the ARDSp and ARDSexp groups. Comparison of pathogenic microorganisms. (A) Compared
with the control group, the ARDSp group had a higher positive rate for Escherichia coli, Staphylococcus haemolyticus, and Fungus. (B) Compared with the control
group, the ARDSexp group had a higher positive rate for Escherichia coli. Comparison of background microorganisms: (C) PCA showed that the community
composition of ARDSp and ARDSexp groups was different from that of the control group. (D) ARDSp group had a predominantly reduced positive rate for the
ARDSp group compared with the control group, except for Shigella. (E) ARDSexp group showed a predominant increase in the positive rate in the ARDSexp group
compared with the control group, except for Hydrobacter. (F) ARDSexp group has a higher positive rate of the microbiome compared with the ARDSp group. R2:
variation; P-adjust: p value was adjusted by using the Benjamini–Hochberg (BH) method. Note: asterisk represents the microbiome with a simultaneous increase or
decrease in positive rate and abundance comparisons.
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indicates that the community composition of the background
microorganisms was relatively consistent in the control group,
and there were a few abnormally increased background
microorganisms in the ARDSp and ARDSexp groups. In a
subsequent comparison between the ARDSp, ARDSexp, and
control groups, we found that the ARDSp group was

characterized by a reduction in both positivity and abundance
compared with the control group (Figure 2D; Supplementary
Figure 1B), suggesting that the ARDSp microbiome was
characterized by a reduction in diversity. Therefore, we
speculate that an increase in pathogenic microorganisms
inhibits the growth of the “normal” respiratory microbiome.

FIGURE 3 |Microbial analysis associated with the prognosis of the ARDSp group. Comparison of background microorganisms: (A) PCA showed the community
composition of ARDSp-survival and ARDSp-dead groups was significantly different from that of the control group. (B) ARDSp-survival group had a predominantly
reduced rate of positivity compared with the control group. (C) ARDSp-dead group also had a predominantly reduced positive rate when compared with the control
group. (D) There were four pathogenic microorganisms with statistically significant differences in the positive rate in the ARDSp-dead group compared with the
ARDSp-survival group. (E) No simultaneous increases in the background microbiome were found in the ARDSp-dead group compared with the control and ARDSp-
survival groups. (F) No simultaneous decreases in the background microbiome were found in the ARDSp-dead group compared with the control and ARDSp-survival
groups. R2: variation; P-adjust: p value was adjusted by using the Benjamini–Hochberg (BH) method.
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Interestingly, increased positivity and an abundance of intestinal
microbes such as Shigella in ARDSp were observed. In contrast,
the ARDSexp group presented a predominant increase in the
positivity of microbes including Comamonas, Klebsiella,
Staphylococcus, Ruminococcus, Tyzzerella, Odoribacter,
Lachnospiraceae, and Erwinia, implying that the ARDSexp
microbiome was characterized by an increased diversity of the
microbiome (Figure 2E; Supplementary Figure 1C), most of
which are of intestinal origin. In addition, the ARDSexp group
had a higher positive rate and abundance of microbes than the
ARDSp group such as Cutibacterium (Figure 2F; Supplementary
Figure 1D), which were also mainly of intestinal origin.

3.3 Microbial Analysis Associated With the
Prognosis of the ARDSp Group
We divided the ARDSp group into ARDSp-survival and ARDSp-
dead groups according to different prognoses and performed
PCA together with the control group (Figure 3A). PCA results
showed that there was a relatively large amount of taxonomic
overlap between the control and ARDSp-survival groups, with
more obviously isolated specimens in the ARDSp-dead group.
This suggests that the control and ARDSp-survival groups had a
relatively similar microbial community composition, whereas the
ARDSp-dead group had several abnormally increased
background microorganisms.

The pathogenic microorganisms and background
microbiome that increased or decreased simultaneously in
the ARDSp-dead group compared with the control and
ARDSp-survival groups are probably related to prognosis.
Therefore, we compared the composition and abundance of
microorganisms among these three groups. The Shannon index
result suggested that the ARDSp group had less diversity than
the control group; however, there was no statistically significant
difference in the microbial diversity between the ARDSp-
survival and ARDSp-dead groups (Supplementary
Figure 2B). In addition, the ARDSp-dead group had a
significantly higher positive rate for pathogenic
microorganisms including total pathogens, total fungi,
Staphylococcus haemolyticus, and Escherichia coli than the
control group (Supplementary Figure 2B). Compared with
the ARDSp-survival group, the ARDSp-dead group had a
significantly higher positive rate for Pseudomonas aeruginosa
(Supplementary Figure 2C).

Moreover, the ARDSp-survival and ARDSp-dead groups
showed a predominant decrease in the positivity and
abundance of background microorganisms compared with the
control group (Figures 3B–D; Supplementary Figure 2E,F).
Nevertheless, no prognosis-related microbes were identified
among pathogenic or background microorganisms
(Figures 3E,F).

3.4 Microbial Analysis Associated With the
Prognosis of the ARDSexp Group
We divided the ARDSexp group into ARDSexp-survival and
ARDSexp-dead groups according to different prognoses and

performed PCA together with the control group (Figure 4A).
The PCA results revealed that there was a relatively large
taxonomic overlap between the control and ARDSexp-survival
groups, whereas the ARDSexp-dead group had more distinct
isolated specimens. This suggests that the control and ARDSexp-
survival groups had a similar microbial community composition,
whereas the ARDSexp-dead group had several abnormally
increased background microorganisms.

Therefore, we compared the differences in the composition
and abundance of microorganisms among the three groups. The
Shannon index result indicated a similar diversity between the
ARDSexp-survival, ARDSexp-dead, and control groups
(Supplementary Figure 7C). The ARDSexp-dead group had
significantly higher positive rates for Escherichia coli and
Haemophilus influenzae than the control and ARDSexp-
survival groups, respectively (Supplementary Figure 3A,B).
However, no pathogenic microbial markers that might be
associated with prognosis were identified.

In addition, the ARDSexp-survival and ARDSexp-dead groups
showed a predominant increase in the positivity and abundance
of background microorganisms compared with the control group
(Figures 4B–D and Supplementary Figure 3E,F). In contrast,
the ARDSp group showed a decrease in these microorganisms.
Notably, there was a simultaneous increase in the
microorganisms of the ARDSexp-dead group including
Bifidobacterium, Bilophila, Mediterranea, Anaerostipes, Bacillus,
Dorea, and Collinsella (Figure 4E), when compared with the
ARDSexp-survival and control groups. Further prognostic
survival analysis was conducted and the results indicated that
these seven microbes were strongly associated with poor
prognosis (Figures 5A–G). In contrast, the Cox univariate
analysis showed that increased pre-treatment APACHE II and
SOFA scores and increased Bifidobacterium, Bilophila,
Mediterranea, Bacillus, Dorea, and Collinsella may be risk
factors for ARDS (Figure 5H). Furthermore, the Cox
multivariate analysis also indicated that the increase in
Bilophila was most likely associated with mortality in patients
with ARDS (Figure 5I).

3.5 Changes in the LungMicrobiome Before
and After Treatment in the ARDSp Group
To explore the changes in the lung microbiome before and after
treatment in the ARDSp group, 30 cases with complete pre-and
post-treatment comparative data were selected for analysis and
screened for pathogenic organisms associated with death
(potential risk factors for death) and markers associated with
survival (potential protective factors for survival). Alpha diversity
analysis showed that the ARDSp-preT group had lesser microbial
diversity than the control group. There was a minor but not
statistically significant increase in the microbial diversity after
treatment compared with pre-treatment (Supplementary
Figure 7D).

We conducted a cluster analysis to determine differences in
pathogenic microorganisms and found that Escherichia coli,
Staphylococcus aureus, and Candida albicans were significantly
increased in the ARDSp-poT-dead group, whereas Acinetobacter
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FIGURE 4 | Microbial analysis associated with the prognosis of the ARDSexp group. Comparison of background microorganisms: (A) PCA showed that the
community composition of the ARDSexp-dead group was different from that of the control group. (B) ARDSexp-survival group had a predominantly elevated positive
rate compared with the control group. (C) ARDSexp-dead group had an elevated positive rate compared with the control group. (D) ARDSexp-dead group had a
predominantly elevated positive rate when compared with the ARDSexp-survival group. (E) ARDSexp-dead group had seven increased backgroundmicrobiomes,
Bifidobacterium,Bilophila,Mediterranea, Anaerostipes,Bacillus,Dorea, andCollinsella compared with the control and ARDSexp-survival groups. R2: variation; P-adjust:
p value was adjusted by using the Benjamini–Hochberg (BH) method.
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baumannii and Acinetobacter nosocomialis were increased or
unchanged, mainly in the ARDSp-poT-survival group
(Figure 6A). An analysis of the microbial composition and
abundance revealed increasing trends in positivity (p = 0.014,
p = 0.080, and p = 0.002, respectively) and abundance (p = 0.524,
p = 0.015, and p = 0.001, respectively) for Escherichia coli,
Staphylococcus aureus, and Candida albicans in the ARDSp-
poT-dead group (Figures 6B,D). The microorganisms that
showed a significant increasing trend in positivity in the

ARDSp-poT-dead group included Klebsiella pneumoniae,
Escherichia coli, and Candida albicans (Supplementary
Figure 4A). There was also a decreasing trend in the positivity
and abundance of Acinetobacter baumannii and Acinetobacter
nosocomialis; however, the result was not statistically significant
(Figures 6C,E).

In addition, the PCA showed that the ARDSp-poT-survival
and control groups were relatively concentrated in background
microorganism composition, and the ARDSp-poT-dead and

FIGURE 5 | Validation of screened microbial markers associated with ARDSexp prognosis. (A–G) Kaplan–Meier analysis revealed that patients with one of the
increased background microbiomes including Bifidobacterium, Bilophila, Mediterranea, Anaerostipes, Bacillus, Dorea, and Collinsella, had a shorter survival time. (H)
Cox univariate analysis revealed that elevated pre-treatment APACHE II and SOFA scores and increased Bifidobacterium, Bilophila, Mediterranea, Anaerostipes,
Bacillus, Dorea, andCollinsellawere likely to be contributing factors to the death of ARDS patients. (I)Cox multivariate analysis revealed that Bilophilawas the most
significant and underlying risk factor for mortality in ARDS patients.
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FIGURE 6 | Changes in pulmonary pathogenic microorganisms before and after treatment in the ARDSp group (30 pairs). (A) Cluster analysis revealed that
Escherichia coli, Staphylococcus aureus, and Candida albicans increased significantly in the ARDSp-poT-dead group, while Acinetobacter baumannii and
Acinetobacter nosocomialis increased or remained unchanged mainly in the ARDSp-poT-survival group. (B–E) Comparison of the positive rate and abundance of the
aforementioned five pathogenic microorganisms in the ARDSp-poT-dead group versus the ARDSp-poT-survival group.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 86257011

Zhang et al. Pulmonary Microbiome in ARDS

156

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ARDSp-preT groups had significantly distinct background
microorganisms. These results indicated that the microbial
community composition of the control and ARDSp-poT-
survival groups were relatively similar, whereas the ARDSp-
poT-dead and ARDSp-preT groups had several unusual
background microorganisms (Figure 7A).

We speculated that the microorganisms that were increased
in the ARDSp-poT-survival group compared with the ARDSp-
preT group (Supplementary Figure 6E), especially those
decreased in the ARDSp-poT-dead group compared with the
ARDSp-poT-survival group and the control group (Figure 7B;
Supplementary Figure 6C), were potential ARDSp protective
factors. Notably, the most common microorganism was
Hydrobacter (Figure 7D); Hydrobacter had the highest
positivity or abundance values in the control group and

decreased as prognosis deteriorated or increased as prognosis
improved (Figures 7E,F). In contrast, we speculated that the
microorganisms that were increased in the ARDSp-poT-dead
group compared with the ARDSp-preT group (Supplementary
Figure 6A), in the ARDSp-poT-dead group compared with the
ARDSp-poT-survival group (Figure 7B), and an increase of in
the ARDSp-poT-dead group compared with the control group
(Supplementary Figure 6C) were potential risk factors for
death in patients with ARDSp. The common microorganisms
identified simultaneously were Cryptococcus, Escherichia, and
Lachnospiraceae (Figure 7C), which showed the least difference
in either positivity or abundance in the control group. These
three microorganisms increased as the prognosis worsened or
decreased as the prognosis improved (Supplementary
Figure 4D-I).

FIGURE 7 | Changes in pulmonary background microorganisms before and after treatment in the ARDSp group (30 pairs). (A) PCA showed the community
composition of the ARDSp-poT-dead group was different from that of the control group. (B) There were six background microorganisms with statistically significant
positive rates in the ARDSp-poT-dead group compared with the ARDSp-poT-survival group. (C) Co-increased microorganisms in the ARDSp-poT-dead group
compared with the ARDSp-preT group, the ARDSp-poT-dead group compared with the ARDSp-poT-survival group, and the ARDSp-poT-dead group compared
with the control group included Cryptococcus, Escherichia, and Lachnospiraceae. (D) Commonly reduced microbiome in the ARDSp-preT group compared with the
ARDSp-poT-survival group, the ARDSp-poT-dead group compared with the ARDSp-poT-survival group, and the ARDSp-poT-dead group compared with the control
group were Hydrobacter. (E,F) Comparison of Hydrobacter in the four groups in terms of positive rate and abundance. R2: variation; P-adjust: p value was adjusted by
using the Benjamini–Hochberg (BH) method.
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4 DISCUSSION

In this study, we investigated the changes in the lung microbiome
of patients with sepsis-induced ARDS by mNGS sequencing. We
compared the basic clinical characteristics and lung microbial
composition of patients in each group and found significant
differences between the ARDSp and ARDSexp groups. In
addition, we found that the microbial diversity in ARDS
induced by intrapulmonary infection was significantly
decreased; however, there was no major difference among
groups with different prognoses. The microbial profile of the
ARDSp group was characterized by a reduced microbiome
diversity, dominated by a decline in normal microbes in the
lungs. The microbial profile of the ARDSexp group was
characterized by an increased diversity of the microbiome,
mainly in conditionally pathogenic bacteria and intestinal
microbes. A comparison of the lung microbiome between the
two groups indicated an increase in the pathogenic
microorganisms Escherichia coli, Staphylococcus aureus, and
Candida albicans in the lung, or an increase in enteric
microbes or conditionally pathogenic bacteria, is potential a
risk factor for death in ARDSp. The background microbiome
Hydrobactermay be a protective factor for survival in ARDSp and
the increase in Bilophila may be a mortality indicator in
ARDSexp.

In addition, the differences in the microbiome between the
ARDSp and ARDSexp groups at the baseline level were mainly
manifested as differences in background bacterial
microorganisms. The PCA results revealed significant
differences in the microbial composition between the ARDSp,
ARDSexp, and control groups. For example, the detection rate
and abundance of the ARDSp microbiome were lower than those
of the control and ARDSexp groups which had the highest
detection rate and abundance, suggesting a decrease in the
diversity of the ARDSp microbiome and an increase in the
diversity of the ARDSexp microbiome. In ARDSexp, the
epithelium and endothelium remain intact because of sepsis-
induced increased vascular permeability and interstitial edema of
the lungs; thus, the environment for the growth of the respiratory
microbiome is not damaged. Increased vascular permeability
leads to protein extravasation, which provides the necessary
and abundant nutrients for bacterial growth to ensure that the
normal respiratory microbiome is not reduced. The diversity of
the microbiome possibly and significantly increases with the
migration of the microbiome and the growth of environmental
pathogens. Kyo et al., 2019analyzed the pulmonary microbiome
of the BALF of patients with ARDS and discovered an increasing
trend in pulmonary bacterial burdens, such as 16S rRNA gene
copy number, and a pronounced decrease in α diversity.
However, the results do not account for the origin of infection
(pulmonary or extrapulmonary), and pneumonia was the main
disease etiology, accounting for 65% of the cases. Dickson et al.,
2016found that the lung microbiome was enriched with enteric
bacteria and increased bacterial diversity in a mouse model of
lung injury with abdominal sepsis caused by appendiceal ligation
and puncture (Dickson et al., 2016), which is in accordance with
our observations of the ARDSexp group. In our study, further

analysis of the variation in the species of the ARDSp group versus
the ARDSp group revealed that the background microorganisms
Hydrobacter, Sphingomonas, Curvibacter, Rhodococcus,
Brevundimonas, Vibrio, and Microbacterium were decreased in
the ARDSp group compared with the control group. Several
reports have indicated that Sphingomonas, Brevundimonas, and
Methylobacterium are pulmonary microbes and conditionally
pathogenic bacteria (Hilty et al., 2010; Huffnagle and Dickson,
2015; O’Dwyer et al., 2019). Therefore, the ARDSp microbiome is
characterized by an increased abundance of pathogenic
microorganisms and a decrease in other pulmonary respiratory
microbiomes. In contrast, the ARDSexp group was characterized
by an increase in different background microorganisms
compared with the control group, both in terms of positivity
and abundance. These microbes have been reported to be
widespread, including oral and respiratory sources such as
Staphylococcus and Klebsiella (Hostacka, 2001; Dyke, 2003)
and intestinal microbes such as Erwinia, Lachnospiraceae,
Shigella, and Lactobacillus (Starr and Chatterjee, 1972; Baker
and The, 2018; Vacca et al., 2020). Hence, the microbiome of
ARDSexp is characterized by an increase in the bacterial load,
microbiome diversity, conditionally pathogenic bacteria, and
intestinal microbes.

In addition, we compared the similarities and differences in
the baseline levels of the lung microbiome in the survival and
dead groups to screen for microbes associated with prognosis. In
the ARDSp group, no microbe was identified. This result may be
because the main etiology of ARDSp was severe pneumonia,
which has a wide variety of infectious pathogenic
microorganisms, and the infection characteristics and
microbial features of different pathogenic microorganisms
vary. Therefore, screening for meaningful microbes at the
baseline is challenging. Future studies with a larger number of
patients to quantity and stratify the analysis based on different
pathogenic microorganisms, such as bacteria, fungi, and viruses
are required to identify potential biomarkers. In the ARDSexp
group, the microbiome was characterized by an increased lung
bacterial load and microbiome diversity, and an increase in both
conditionally pathogenic and enteric microbes and background
microorganisms. Although pathogenic microorganisms related to
prognosis were not identified, an increase in Bilophila among the
background microbiome is most likely a risk factor for death in
ARDSexp. Bilophila, a genus of intestinal microbes, can be
isolated and cultured in abdominal infections, pulmonary
infections, or infections at other sites. Moreover, the presence
of increased bacterial load and Enterobacteriaceae in the
pulmonary microbiome is associated with poor prognosis in
patients with ARDS, which is consistent with our results.
(Finegold et al., 1992; Cheung et al., 2019; Dahl et al., 2020).
Therefore, an increase in Bilophila is a potential indicator for
ARDSexp mortality.

ARDSp cases with complete data before and after treatment
were selected for analysis and comparison. A cluster analysis of
pathogenic bacteria showed that Escherichia coli, Staphylococcus
aureus, and Candida albicans were more abundant in the
ARDSp-poT-dead group than in the ARDSp-preT group. The
ARDSp-poT-dead group exhibited increased positivity or
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abundance of Escherichia coli, Candida albicans, Staphylococcus
aureus, and Klebsiella pneumoniae compared with the ARDSp-
poT-survival group. These results suggest that the pathogenic
bacteria Escherichia coli, Staphylococcus aureus, and Candida
albicans are potential risk factors for ARDSp death. In a
retrospective analysis of the anti-infective regimens for these
patients, we found that all regiments included treatment for
Escherichia coli and Staphylococcus aureus and that 53.3% of
non-surviving patients had received treatment for Candida
albicans. These findings suggest that the increase in these
pathogens was not strongly correlated with the anti-infective
regimen, indicating a poor prognosis of ARDSp. Escherichia,
Lachnospiraceae, Cryptococcus, and other enteric microbes and
conditionally pathogenic bacteria may be associated with the risk
of death in ARDSp, which is consistent with previous studies
showing that the lung microbiome was enriched in enteric
bacteria in mouse models of sepsis and patients with ARDS.
Intestinal-specific microbes (Bacteroides) are common and
abundant in the BALF of patients with ARDS and correlate
with the intensity of systemic inflammation (Dickson et al.,
2016), suggesting an interaction between the lower respiratory
tract and the gastrointestinal tract. Dickson et al., 2020reported
that increased bacterial load and gut-associated bacterial
enrichment help predict the prognosis of patients with ARDS.
In addition, the presence of Candida in septum cultures is
associated with increased mortality in immunosuppressed
patients (Pendleton et al., 2018). This observation may support
the hypothesis that the increase in the pathogenic bacteria
Escherichia coli, Staphylococcus aureus, and Candida albicans,
and the increase in the intestinal microbiome, are important
contributors to mortality in ARDSp; therefore, treatment
targeting the intestinal microbiome in patients with ARDS
should be considered.

We identifiedHydrobacter as a possible protective factor against
ARDSp. Hydrobacter was the most abundant in the control group
and was associated with a better prognosis (Figures 7E,F). Little
attention has been paid to the role of microbes such asHydrobacter
in the lower respiratory tract; however, the presence of a “normal
microbiome” in the respiratory tract may be closely associated with
the pathogenesis and development of ARDSp. Hydrobacter can be
found in pure water (Eder et al., 2015); however, it remains
unknown whether it belongs to the normal microbiota of the
respiratory tract and whether it acts alone or in concert with other
microbiomes. Extensive studies have demonstrated the positive
effects of commensal microorganisms on human health (Nembrini
et al., 2011; Fyhrquist et al., 2014; Zhang et al., 2021); therefore,
microbial agents have potential clinical applications inmaintaining
lung function. Nevertheless, further studies are required to
determine whether microbes such as Hydrobacter can serve as
therapeutic targets for ARDS.

This study was limited by the absence of RNA sequencing data,
missing information on RNA viruses, and microbial transcriptome
alterations. The lack of 16s rRNA sequencing for microbial analyses
hinders comparisons of the total bacterial abundance (using
quantitative PCR), relative abundance (taxonomic composition of
the specimen community), and community characteristics (e.g.,
diversity) for the whole sample. Greater efforts are needed to

combine 16S rRNA and metagenomic sequencing to conduct
more precise analyses of the community composition, diversity,
evolutionary relationships, and gene functions. In addition, the
results were potentially biased owing to inadequate sample
quantity, the influence of retrospective analysis, and numerous
clinical factors. Moreover, the application of BALF must consider
the risk of sample contamination. However, in this study, all patients
received an aseptically operated endotracheal tube; therefore, the risk
of bacterial contamination was considered minimal. Antibiotic
treatments may also affect alterations in the respiratory
microbiome; however, previous studies have shown that in
patients with traumatic ARDS, the antibiotic application is not
significantly linked to the composition of the respiratory
microbiome (Panzer et al., 2018). In addition, the patients were
treated according to the criteria of the sepsis guidelines; thus, we
believe that the impact of antibiotics was minimal. Further
multicenter and prospective controlled studies are needed to
recruit more patients and subdivide infections at different sites
and with different pathogens to better understand the microbial
profile of ARDS with different etiologies.

In general, the interaction or synergy between the lung
microbiome and gut microbiome plays a regulatory role in the
inflammatory immune response of the body. The association
between microorganisms and their hosts is intricate and poorly
understood. Their interaction should be balanced and mutually
constrained, implying that no single microbe can affect the
microbial function completely, while changes in any one part
can influence the development of health and disease. To date, it
remains unclear whether alterations in the microbial community
in one region affect other regions or whether systemic effects
produce a specific microbial community in a specific tissue (Lyon,
2017). Moreover, no systematic or large-scale studies have been
undertaken; therefore, further longitudinal studies should be
performed to correlate microorganisms with the severity of
lung disease in humans and animals, thereby facilitating their
application in etiological determination and disease control.
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Despite immune checkpoint blockade (ICB) therapy contributed to significant advances in
cancer therapy, only a small percentage of patients with colorectal cancer (CRC) respond
to it. Identification of these patients will facilitate ICB application in CRC. In this study, we
integrated multiple CRC cohorts (2,078 samples) to construct tumor microenvironment
(TME) subtypes using TME indices calculated by CIBERSORT and ESTIMATE algorithms.
Furthermore, a surrogate quantitative indicator, a tumor microenvironment immune gene
(TMEIG) score system, was established using the key immune genes between TME
clusters 1 and 2. The subsequent analysis demonstrated that TME subtypes and the TMEIG
score system correlated with clinical outcomes of patients in multiple CRC cohorts and
exhibited distinct immune statuses. Furthermore, Tumor Immune Dysfunction and Exclusion
(TIDE) analysis indicated that patientswith low TMEIG scores weremore likely to benefit from
ICB therapy. A study on two ICB cohorts (GSE78220 and IMvigor210) also validated that
patients with low TMEIG scores exhibited higher ICB response rates and better prognoses
after ICB treatment. The biomarker evaluation module on the TIDE website revealed that the
TMEIG score was a robust predictive biomarker. Moreover, differential expression analysis,
immunohistochemistry, qPCR experiments, and gene set prioritization module on the TIDE
website demonstrated that the five genes that constitute the TMEIG score system
(SERPINE1, FABP4, SCG2, CALB2, and HOXC6) were closely associated with
tumorigenesis, immune cells, and ICB response indices. Finally, TMEIG scores could
accurately predict the prognosis and ICB response of patients with CRC. SERPINE1,
FABP4, SCG2, CALB2, and HOXC6 might be potential targets related to ICB treatment.
Furthermore, our study provided new insights into precision ICB therapy in CRC.

Keywords: tumor microenvironment, immune checkpoint therapy, colorectal cancer, prognosis, ICB response
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common
malignant tumors globally, with high morbidity and
mortality. Tumor immunotherapies involving immune
checkpoint blockade (ICB) have contributed to significant
advancements in the treatment of many tumors (Topalian
et al., 2012), such as melanoma (Luke et al., 2017), bladder
cancer (Pettenati and Ingersoll, 2018), and non–small cell
lung cancer (Huang et al., 2021). However, most patients with
CRC exhibit poor responses to immune checkpoint blockade
(ICB) therapy. The biomarkers that predict the efficacy of ICB
therapy include the expression of programmed death-ligand 1
(PD-L1) (Nishino et al., 2017), tumor mutation load (Snyder
et al., 2014), mismatch repair deficiency (Le et al., 2015), and
gut microbiota (Daillère et al., 2016; Routy et al., 2018).
However, there is still a lack of effective tools to predict
the ICB response in CRC, which impedes the application of
ICB therapy in CRC. Therefore, there is an urgent need to
establish effective and reliable tools for predicting response to
ICB therapy and achieving precision therapy in patients
with CRC.

The tumor microenvironment (TME) mainly contains
tumor, immune and stromal cells, and small molecules
(Vitale et al., 2019). TME of CRC exhibits remarkable
heterogeneity (Zhang et al., 2020), which can cause
variation in tumor biology, thus affecting the efficacy of
multiple therapies (Casey et al., 2015; Wu and Dai, 2017),
including chemotherapy (Hanoteau et al., 2019), radiotherapy
(Yin et al., 2019; Sheng et al., 2020), and immune checkpoint
therapy (Lei et al., 2020; Sheng et al., 2020). In addition, the
TME can predict the prognosis of patients with CRC (Pagès
et al., 2005). For example, a high M1:M2 density ratio in tumor
stroma was associated with better cancer-specific survival
(Väyrynen et al., 2021). Immune cells in the TME play
critical roles in the efficacy of immunotherapy (Arce Vargas
et al., 2018; Väyrynen et al., 2021). Patients with higher CD8
cells in the TME exhibit more favorable responses to ICB
(Pagès et al., 2005). T cell-dendritic cell crosstalk facilitates
successful anti–PD-1 immune therapy (Zhao et al., 2019).
Therefore, studying TME heterogeneity will help reveal the
biological characteristics of CRC, assist the implementation of
precision therapy, and guide the application of ICB. However,
the TME is an extremely complex system. It is critical to
establish a simple surrogate gene model of the TME to
predict the prognosis of patients and the efficacy of ICB
therapy.

In the present study, we integrated transcriptome data of 1,175
patients with colorectal cancer from the GPL570 platform and
then employed CIBERSORT, ESTIMATE, and ssGSEA
algorithms to assess the characteristics of the TME. Based
on TME heterogeneity, two TME subtypes (clusters 1 and 2)
with different survival statuses were identified using a
consensus clustering algorithm. Weighted gene co-
expression network analysis (WGCNA), linear models for
microarray data (LIMMA), and other bioinformatics
analyses were used to identify the hub TME immune genes

between subtypes. Then, patients were also divided into two
tumor microenvironment immune gene (TMEIG) subtypes
(clusters A and B) with different survival statuses according to
the hub TME immune genes. Moreover, a robust prognostic
scoring system (TMEIG score) was developed using these
TME immune genes, which could effectively predict overall
survival (OS), progression-free survival (PFS), and disease-
specific survival (DSS) of patients with CRC. The prognostic
TMEIG score system was also verified in multiple cohorts,
such as TCGA-COAD. Notably, we validated that the TMEIG
score could predict ICB response in multiple immunotherapy
cohorts and is expected to guide the application of ICB
in CRC.

MATERIALS AND METHODS

Data Source and Process
Ten data sets were downloaded from the public database,
including clinical data and transcriptome data of 2,078
patients with CRC. GSE39582, GSE14333, GSE17536,
GSE17537, and GSE72968 were all microarray data of the
GPL570 platform and integrated as a training set (the
combined GEO cohort). The CEL format data of the
microarray was downloaded using the “GEOquery” package
(Davis and Meltzer, 2007). ReadAffy function in the “affy”
package was used to read data in CEL format (Gautier
et al., 2004), background correction and standardization
were carried out with RMA, and then the “SVA” package
was used to remove batch effect among the data sets
(Chakraborty et al., 2012). Probes corresponding to multiple
genes were deleted, and the average expression level was taken
when multiple probes corresponded to one gene. Clinical data
and FPKM value (fragments per kilobase million) of TCGA-
COAD were obtained from the UCSC website as an external
validation set (Navarro Gonzalez et al., 2021). Then, FPKM
was converted to TPM (transcripts per kilobase million) for
subsequent analysis. GSE39582, GSE17536, and GSE17537
were used as the internal validation sets. The paired
samples of GSE44076, GSE32323, GSE89076, and
GSE113513 datasets have been reserved for verifying the
gene expression level in the TMEIG score system. Detailed
information on the data sets is shown in Supplementary
Table S1.

Characteristics of the Tumor
Microenvironment
CIBERSORT (Newman et al., 2015) and ESTIMATE (Becht et al.,
2016) algorithms can infer the composition of 22 types of
immune cells, immune score, stroma score, and tumor purity
in the TME based on transcriptome data. In this study,
transcriptome data from the combined GEO dataset (1,175
samples) and TCGA COAD dataset (471 tumors) were used
for CIBERSORT and ESTIMATE analyses. After filtering out low
expression immune cells, 15 types of immune cells were retained.
ssGSEA is another algorithm for estimating immune cell
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composition in solid tumor TME and can also be used to calculate
adaptive and innate immune components of samples. In the
present study, the adaptive and innate immune scores of each
sample were obtained with the “GSVA” package. ssGSEA
parameters were set as follows: method = “ssgsea,” KCDF =
“Gaussian.”

Unsupervised Clustering
“ConsensusClusterPlus” is a re-sampling unsupervised clustering
method to verify the rationality of clustering (Wilkerson and
Hayes, 2010). In the combined GEO cohort, TME subtypes and
TMEIG subtypes were obtained using “ConsensusClusterPlus”
package. The parameters were set as follows: MaxK = 9, REPS =
1,000, pItem = 0.8, pFeature = 1, clusterAlg = “PAM,” distance =
“Euclidean,” and seed = 1.

Weighted Gene Co-Expression Network
Analysis
WGCNA analysis was used to identify gene modules most associated
with traits (Langfelder and Horvath, 2008). Stromal score, immune
score, estimate score, tumor purity, adaptive immune, innate
immune, TME cluster 1, and TME cluster 2 were inputted as
traits. The key parameters of WGCNA were set as follows: soft
threshold power β = 4, scale-free R2 = 0.89. The relationship
between modules and traits was analyzed using the Pearson
correlation method. Gene significance (GS) and module
membership (MM) are two important indicators in
WGCNA analysis. GS is the correlation between the gene
and trait. MM is defined as the correlation of the module
eigengene and the gene expression profile. Genes with GS > 0.2
and MM > 0.8 are usually considered hub genes.

Functional Enrichment Analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000) analyses were
employed to explore the biological functions of the modules in
WGCNA using the R package “clusterprofiler” (Yu et al., 2012).
An adjusted p-value of less than 0.05 was regarded as statistically
significant. In addition, Gene Set Enrichment Analysis (GSEA)
was conducted (Subramanian et al., 2005). The gene sets
“c2.cp.kegg.v6.2.symbols.gmt,” “c5.all.v7.0.symbols.gmt,” and
“h.all.v7.2.symbols.gmt” on MSigDB website were chosen as
the reference gene sets (Liberzon et al., 2015). The log fold
change (FC) of differentially expressed genes between two
groups was used as the input list for GSEA analysis. When
analyzing the biological functions related to one gene, the
Pearson correlation coefficient was used as the input list.

Construction and Validation of TMEIG Score
First, univariate Cox proportional hazards regression was
employed to identify the prognostic genes using the “survival”
R package. Genes with a p-value less than 0.05 were regarded as
the candidates, input to least absolute shrinkage and selection
operator (LASSO) regression (Friedman et al., 2010). After ten
cross-validations, five prognostic genes and the corresponding

coefficient remained when lambda = 0.0713387182. Then,
TMEIG score was established as follows:

TMEIG score � ∑
i

Coefficient of (i) × Expression of gene (i)

The regression coefficient of the gene was designated (i) in the
LASSO regression model. The combined GEO cohort was used as
a training set, whereas GSE39582, GSE17536, and GSE17537
were used as the internal validation sets. In addition, the TCGA
COAD cohort served as the external validation set.

Survival Analysis
Only GSE39582, GSE17536, GSE17537, and GSE72968 had overall
survival data in the combined GEO cohort (Supplementary Table
S2). The survival time was converted to months, and samples with a
survival time of less than 1month were removed during survival
analysis. Finally, 864 samples in the combined GEO cohort and 435
samples in the TCGA COAD cohort were used for survival analysis
(Supplementary Table S2). According to the best cutoff value
determined using the “survminer” package, the patients were
divided into high and low expression groups. Log-rank test was
employed to evaluate statistical significance. Kaplan–Meier (KM)
plots were visualized using the “survminer” R package. The risk
factors diagrams were visualized using the “ggrisk” R package.

Analysis of Mutation Data
The mutation data of TCGA COAD were downloaded from the
TCGA website and analyzed using the “maftools” package
(Mayakonda et al., 2018). The tumor mutation burden (TMB)
was calculated using the following formula: (total mutation/total
covered bases) × 106. The driver genes in somatic alterations were
also identified using the “maftool” package.

ICB Response Prediction
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was
employed to predict ICB response based on the gene expression
related to T cell dysfunction (Dysfunction) and T cell exclusion
(Exclusion). The lower the TIDE score is reportedly associated
with a better immunotherapy response (Jiang et al., 2018).
Furthermore, the scores of cancer-associated fibroblasts (CAF),
Dysfunction, Exclusion, M2 macrophages (M2), myeloid-derived
suppressor cells (MDSC), and TIDE were obtained from the TIDE
website. The IMvigor210 cohort is a large cohort of patients with
metastatic urothelial cancer under anti–PD-L1 therapy
(atezolizumab), which can be downloaded from the Creative
Commons 3.0 license. GSE78220 is an anti–PD-1 therapy cohort
containing mRNA expression data from pre-treatment melanomas.
The two cohorts were used to validate the predictive power of the
TMEIG score for ICB response.

Cell Culture
The human CRC cell lines SW620, RKO, HCT116, HT29, and
NCM460 (ATCC) were cultured in RPMI-1640 medium (Gibco,
United States ) supplemented with 10% fetal bovine serum (FBS,
Biological Industries, United States ) at 37°C in a humidified 5%
CO2 atmosphere.
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RNA Extraction and Quantitative
Real-Time PCR
Total RNAs of cell lines were extracted by TRIzol reagent
(Invitrogen, United States ) and then was reversely transcribed as
cDNA viaPrimeScript™ RTMasterMix (Takara, Japan). Quantitive
real-time PCR was performed using PowerUp™ SYBR™ Green
Master Mix (Applied Biosystems, United States) in the StepOne™
Real-Time PCR System (Applied Biosystems). Each reaction was
tested in triplicate. ACTB was used as the internal reference, and the
2(−ΔΔCT) method was used for calculating the relative mRNA
expression. The following primer sets were used:

Human FABP4: Forward: 5ʹ-GGGCCAGGAATTTGACGAAG-
3ʹ, Reverse: 5ʹ-TCGTGGAAGTGACGCCTTTC-3ʹ; Human SCG2:
Forward: 5ʹ-GTGAAGCGAGTTCCTGGTCA-3ʹ, Reverse: 5ʹ-ATG
CTCTTTGATGGCCTGCT-3ʹ; Human CALB2: Forward: 5ʹ-GAA
GGCAAGGAAAGGCTCTGG-3ʹ, Reverse: 5ʹ-GCCATCTCGATT
TTCCCATCTG-3ʹ; Human SERPINE1: Forward: 5ʹ-CCTGGTTCT
GCCCAAGTTCT-3ʹ, Reverse: 5ʹ-CCATGCGGGCTGAGACTA
TG-3ʹ; Human HOXC6: Forward: 5ʹ-CACTAACCCTTCCTT
ATCCTGCC-3ʹ, Reverse: 5ʹ-TCATAGGCGGTGGAATTGAGG-
3ʹ; Human ACTB: Forward: 5ʹ-GATTCCTATGTGGGCGACGA-
3ʹ, Reverse: 5ʹ-AGGTCTCAAACATGATCTGGGT-3ʹ.

Immunohistochemistry
For the IHC experiment, we collected 16 pairs of CRC tissue (cancer
and adjacent normal tissue) from patients who received surgery at
the Department of Colorectal Cancer Surgery, the Second Affiliated
Hospital of Harbin Medical University (Harbin, China) between
January 2014 and December 2020. Ethics approval was also granted
by the Ethics Committee of Harbin Medical University (No. KY
2022-063). The primary antibodies used in IHC were as follows:
anti-FABP4 (Proteintech, #12802-1-AP, 1:200 dilution), anti-SCG2
(Proteintech, #20357-1-AP, 1:200 dilution), anti-CALB2
(Proteintech, #12278-1-AP, 1:200 dilution), anti-HOXC6
(Affinity, #DF3078, 1:150 dilution), and anti-PAI1 (SERPINE1)
(Affinity, #AF5176, 1:200 dilution). Paraffin sections were
incubated with primary antibodies at 4°C overnight, followed by
treatment with HRP-conjugated secondary antibodies at 37°C
temperature for 60 min following PBS rinse. Then, tissues were
counter-stained with hematoxylin and further treated with DAB for
2 min. The IHC results were independently analyzed by two
experienced pathologists. A staining scoring system was evaluated
by both staining intensity (negative = 0, weak = 1, and strong = 2)
and staining area (<5%= 0, 5%–25% = 1, 25%–50%= 2, 50%–75%=
3, and >75% = 4). The staining intensity score was computed, and
the score of the staining area was the final staining score. A total
score of≤3was considered aweak expression. A total score of>3was
considered a strong expression. The details of IHC performance and
scoring system are described in Supplementary Table S3.

Statistical Analysis
Heat maps were visualized with the “ComplexHeatmap” package
(Gu et al., 2016). The “ggplot2” package was used to visualize
boxplots, scatter plots, and Sankey plots. The log-rank test and
Pearsonmethod were used for KM survival and correlation analyses,
respectively. The difference between the two groups was tested by the
Wilcox test. It should be noted that * represented a p-value less than

0.05, ** represented a p-value less than 0.01, *** represented a p-value
less than 0.001, and **** represented a p-value less than 0.0001. All
analyses were performed in R 4.0.3.

RESULTS

Depicting the Heterogeneity of the Tumor
Microenvironment in a Large CRC Cohort
The flow diagram describes the construction of TME subtypes
and the TMEIG score in CRC (Figure 1). We integrated
microarray data of 1,175 patients with CRC from the GPL570
platform and then used the combat function of the “SVA”
package to remove batch effects. The principal component
analysis (PCA) diagrams of five cohorts before and after batch
effect removal are shown in Figures 2A,B. The results indicated
that the batch effect was negated, and the combined cohort could
be used for subsequent analysis. To fully dissect the heterogeneity
of the TME in patients with CRC, the CIBERSORT algorithm was
used to assess the proportion of immune cells in the TME.
Macrophages and mast cells were the most abundant immune
populations in the combined GEO cohort, followed by memory
resting CD4 and CD8 T cells. Figures 2C,D shows the proportion
of immune cells in each patient, which partly reflects the
heterogeneity of immune cells in the TME. A total of 15 types
of immune cells were retained after eliminating low expression
cells (such as memory B cells, CD4 naive T cells, gamma delta
T cells, activated NK cells, monocytes, resting mast cells, and
eosinophils). The detailed results of the CIBERSORT analysis are
shown in Supplementary Table S4. Then, the ESTIMATE
algorithm was used to calculate patients’ immune scores and
stromal scores. Collectively, CIBERSORT and ESTIMATE
algorithms were used to comprehensively describe the
correlations among the immune cells, immune score, and
stromal score in the tumor microenvironment of patients with
CRC (Figure 2E). Resting NK cells were inversely correlated with
M0/M1/M2 macrophages (correlation values = −0.09, correlation
values = −0.28, correlation values = −0.26; p-value < 0.05;
Supplementary Table S4). Furthermore, CD8 T cells were
negatively related to M0 macrophages (correlation values =
−0.31, p-value < 0.05) and positively related to M1
macrophages (correlation values = 0.16, p-value < 0.05).

Tumor Microenvironment Cluster 2 has
Better Survival and Exhibits a Different
Immune State
Based on these quantitative indicators describing the TME, we
conducted unsupervised clustering in these 1,175 patients using
the “ConsesusClusterPlus” package. As shown in Supplementary
Figure S1, the clustering result was the most stable when K = 2. The
PCA plot also demonstrated significant differences between the two
clusters (Figure 3A). Then, survival analysis was employed to
compare the prognosis between the two TME clusters
(Supplementary Table S5). The OS in TME cluster 2 was
significantly better than that in TME cluster 1 (Figure 3B log-
rank test, p = 0.047). Furthermore, we explored 11 critical biological
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gene signatures between the two TME subtypes using a heat map
(Mariathasan et al., 2018). The results indicated that cell cycle genes
and DNA damage repair (DDR) genes were markedly decreased,
and angiogenesis (Angio) markers, TGFβ receptor and ligand
(TGFβ), antigen-processing machinery (APM), and F-TBRS
genes were significantly increased in TME cluster 1 as compared
to TME cluster 2 (Figure 3C). In addition, CD8 Teff cells and
immune checkpoint signatures (ICI) were highly expressed in TME
cluster 1 (Figures 3C–E). The low expression of cell cycle-associated
genes may indicate that tumor cells in TME cluster 1 were in a
dormant phase and were not easily cleared by the immune system. A
comparison of the immune score and stromal score revealed that the
immune score and stromal score of TME cluster 1 were higher than
those of TME cluster 2 (Figure 3D). CIBERSORT analysis
demonstrated that immunosuppressive cells (M0, M1, and M2)
were significantly reduced, and immunoreactive cells (CD8 T cell,

CD4 memory resting T cells, resting dendritic cells, and activated
dendritic cells) were significantly increased in the TME cluster 2
(Figure 3F). Furthermore, the GSEA results indicated that immune-
related functions (activation of immune response, positive regulation
of cytokine production, cytokine–cytokine receptor interaction, and
IL6-JAK-STAT3 signaling) significantly varied between TME
clusters 1 and 2 (Figures 3G–I; Supplementary Table S6).

Identification of Key Tumor
Microenvironment Immune Genes Between
Tumor Microenvironment Subtype
To identify key gene modules in TME clusters 1 and 2,
WGCNA analysis was employed. The WGCNA analysis
processes are shown in Supplementary Figures S2A–E.
Adaptive immunity and innate immunity were derived from

FIGURE 1 | Flow diagram of the study describing the process by which tumor microenvironment (TME) subtypes and the key tumor microenvironment immune
gene (TMEIG) scoring system were identified. (A) Identification of TME subtypes. (B) Construction of TMEIG subtypes. (C) Establishment of TMEIG score. (D) Validation
of TMEIG score in immune therapy cohorts.
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ssGSEA analysis. Stromal score, immune score, estimate score,
tumor purity, adaptive immunity, innate immunity, and TME
clusters 1 and 2 were used as traits. The heat map of
module–trait relationships is shown in Figure 4A. Results
indicated that blue (cor = 0.79, p < 1e−200), brown (cor =
0.53, p = 2.2e−63), and green (cor = 0.98, p < 1e−200) modules
displayed the high correlations with adaptive immunity
(Figures 4B–D).

Thus, the blue, brown, and green modules were identified as
the key modules. We performed GO and KEGG analyses to
explore the biological functions of genes within the key modules.
As shown in Supplementary Figures S2F–H, GO and KEGG
terms were closely related to the immune function, such as
regulation of immune system process, cytokine production,
TNF signaling pathway, TNF superfamily cytokine production,

and TNF superfamily cytokine production. In the three modules,
223 genes with GS > 0.2 and MM > 0.8 were identified as
candidate genes. We used the “Limma” package to obtain the
differentially expressed genes (DEGs) between TME clusters 1
and 2, and the results are shown in the volcano map (Figure 4E).
p-value < 0.05 and logFC >0.5 were set as parameters, and 719
DEGs were obtained (698 upregulated and 21 downregulated).
Since there were very few downregulated genes, we mainly used
the upregulated genes to compare with the candidate genes of
WGCNA. A total of 202 TMEIGs were eventually identified after
comparing candidate genes with upregulated genes (Figure 4F).

TMEIG Cluster a Has a Better Prognosis
A total of 202 TMEIGs were again used for unsupervised
clustering in the combined GEO cohort, and the clustering

FIGURE 2 |Heterogeneity of the TME in patients with colorectal cancer. (A,B) PCA diagrams of five cohorts (GSE39582, GSE14333, GSE17536, GSE17537, and
GSE72968) before and after batch effect removal. (C) Boxplot cells, immune score, and stromal score (calculated using the ESTIMATE algorithm) in TME of patients with
CRC were analyzed using the “corrplot” R package. Red and blue colors represent positive and negative, depicting the proportion of 22 types of immune cells in TME
estimated using the CIBERSORT algorithm. (D) The distribution of 22 types of immune cells in each patient. (E) Pearson correlation between immune correlations,
respectively. The correlation p-values were less than 0.05 in all cases except those marked with “x” symbols.
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process is shown in Supplementary Figures S3A–E. The
clustering result was most stable when k = 2. PCA plot also
revealed significant differences between the TMEIG subtypes
(Figure 4G; Supplementary Table S7). The KM plots revealed
that patients in TMEIG cluster A exhibited better OS (Figure 4H,
log-rank test, p = 0.047). Similarly, the heat map of tumor-related

pathways showed that cell cycle and DDR signatures were
significantly decreased in TMEIG cluster B. Angio,
transforming growth factor-beta (TGFβ), antigen processing
machinery (APM), TGF-beta response signatures (TBRS) of
fibroblasts (F-TBRS), and immune checkpoint signatures were
increased in TMEIG cluster B as compared to that in cluster A

FIGURE 3 | Identification of the TME subtypes and analysis of biological functions. (A) PCA analysis demonstrates that the TME subtypes display distinct gene
expression signatures. (B) The survival analysis of TME subtypes in the combined GEO cohort. (C) Relationship between TME subtypes and 11 critical biological
pathways. Rows of the heat map represent gene expression grouped by pathway. Red and blue colors represent high and low expression, respectively. EMT (epithelial
to mesenchymal transition), Angio (angiogenesis), ICI (immune checkpoint genes), DDR (DNA damage-repair), and APM (antigen-processing machinery). (D) The
boxplot of the immune score and stromal score between TME subtypes calculated by ESTIMATE analysis. (E) The boxplot of seven immune checkpoint genes between
TME subtypes. (F) The distribution of 15 types of immune cells between TME subtypes estimated by CIBERSORT analysis. (G–I) GSEA analysis of GO function, KEGG
pathway, and Hallmark gene set of both TME subtypes. The difference between the two groups was assessed using the Wilcox test. The log-rank test was used for KM
survival analysis.
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(Supplementary Figure S3J). ESTIMATE analysis showed that
TMEIG cluster B had higher immune and stromal scores than
TMEIG cluster A (Figure 4I). CIBERSORT analysis showed that
immunosuppressive cells (M0/M1/M2 macrophages) increased
significantly in TMEIG cluster B, whereas immunoreactive cells
(CD8 T cell, CD4 memory resting T cells, resting dendritic cells,
and activated dendritic cells) decreased significantly compared to

TMEIG cluster A (Figure 4K). GSEA results indicated that
immune-related functions (activation of immune response,
cytokine-cytokine receptor interaction, and inflammatory
response) significantly varied between TMEIG cluster A and
TMEIG cluster B (Figures 4L–N). These results demonstrated
that TMEIG subtype clustering accurately reflected the
differences between TME subtypes.

FIGURE 4 | Identification of TMEIG and TMEIG subtypes. (A) Heatmap of module trait relationships in the combined GEO cohort. Each row contains the
corresponding correlation values and p-value. Red and blue colors represent the positive and negative correlations, respectively. (B–D) Scatter plots of the correlation
betweenmodule eigengenes and adaptive immune in blue, brown, and greenmodules. (E) The volcano plot of the differentially expressed genes between TME clusters 1
and 2. (F) The intersection genes of WGCNA module genes and differentially expressed genes were considered the TMEIGs. (G) PCA plot demonstrates that the
TMEIG subtypes display distinct gene expression patterns. (H) The survival analysis of TMEIG subtypes in the combined GEO cohort. (I) The boxplot of the immune
score and stromal score between TMEIG subtypes. (J) The boxplot of seven immune checkpoint genes between TMEIG subtypes. (K) The distribution of 15 types of
immune cells between TMEIG subtypes. (L–N) GSEA analysis of GO function, KEGG pathway, and Hallmark gene set between TMEIG subtypes. The difference
between the two groups was assessed using the Wilcox test. The log-rank test was used for KM survival analysis.
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Patients With High Tumor
Microenvironment Immune Gene Scores
Have a Poorer Prognosis in Multiple CRC
Cohorts
Gene signature is a simple and effective model widely used in clinical
practice (Paik et al., 2004; van ’t Veer et al., 2002; Parker et al., 2009).
To further facilitate the application of TME subtypes in CRC, we

intended to construct a TMEIG score system. First, 662 genes were
obtained by comparing 2,799 genes in blue, brown, and green
modules with 698 DEGs (Supplementary Figure S4A).
Univariate Cox regression analysis was performed in the
combined GEO cohort and TCGA COAD cohort. With a
p-value less than 0.05, 287 and 47 prognostic genes were
obtained from the combined GEO and TCGA COAD cohorts,
respectively. Then, Lasso regression was used to identify 27 common

FIGURE 5 | Clinical significance of TMEIG score. (A–H) The survival analysis of TMEIG score in multiple colorectal cancer cohorts. OS represents overall survival,
DFS represents disease-free survival, and DSS represents disease-specific survival. (I–N) The relationship between clinicopathological parameters and TMEIG score in
TCGA COAD. The TMEIG score was transformed to log2 format for analysis. Clinicopathological parameters are collated from the UCSC website. (O) The risk factor
diagrams of the combined GEO cohort. (P) The Sankey diagram revealed the correlation between the TME cluster, TMEIG score, and TMEIG cluster in the
combined GEO cohort. (Q,R) The stacked histogram exhibits the distribution of the TME cluster and TMEIG cluster between high and low TMEIG score groups. (S) ROC
plot shows the predictive value of the TMEIG score combined with age, sex, M stage, and TNM stage in the GSE39582 cohort using stepwise Cox regression. The
difference between the two groups was assessed using the Wilcox test. The log-rank test was used for KM survival analysis.
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genes in the combined GEO cohort (Supplementary Figure S4B).
Details of the Lasso regression are shown in Supplementary Figures
S4C and D. After cross-validating the results ten times, five genes
(SERPINE1, FABP4, SCG2, CALB2, and HOXC6) and their
corresponding lambda coefficients were obtained when lambda =
0.0713387182. The TMEIG score was constructed based on the
expression and coefficient of the five genes as described in the
methods. According to the optimal cutoff value, patients were
divided based on whether their TMEIG scores were high or low
(Supplementary Table S8). OS analysis suggested that the high
TMEIG scores were associated with poor prognosis in patients with
CRC (Figure 5A, log-rank test, p < 0.0001).

Internal validation cohorts indicated that the OS of the patients
with high TMEIG scores was poorer than those with low scores
(Figures 5B–D, GSE39582, GSE17536, GSE17537, log-rank test, p <
0.0001). In addition, the PFS andDSS in the lowTMEIG score group
were superior to those of the high TMEIG score group (Figures
5E–G, GSE17536 DFS, GSE17536 DSS, GSE17537 DFS, log-rank
test, p < 0.0001). Then, the TCGA COAD cohort also revealed that
the overall survival of the high TMEIG score group was poorer
(Figure 5H; Supplementary Table S8). When analyzing the
relationship between clinicopathological parameters and the
TMEIG score, we observed that the scores of patients exhibiting
stage III & IV, T 3 & 4, lymphatic invasion, and venous invasion
were significantly higher (Figures 5I–N; Supplementary Table S9),
suggesting the high TMEIG score was associated with poor clinical
prognosis. Furthermore, the risk factor diagrams of the combined
GEO and TCGA COAD cohorts indicated that the high TMEIG
score group had significantly higher mortality than the low TMEIG
score group (Figure 5O; Supplementary Figure S4E). All the results
demonstrated poor prognoses in patients with high scores. The
distribution of patients in the TME clusters, TMEIG clusters, and
TMEIG score groups are shown in Figure 5P, which indicates that
most patients in TME cluster 1 belonged to TMEIG cluster B and the
high TMEIG score group. Consistent with the results, the high
TMEIG score group had a higher proportion of patients in TME
cluster 1 and TMEIG cluster B (Figures 5Q,R). Moreover, patients
in TME cluster 1 and TMEIG cluster B exhibited higher TMEIG
scores than that in TME cluster 2 and TMEIG cluster A
(Supplementary Figures S4F,G). This evidence demonstrated
that the TMEIG score could effectively surrogate TME and
TMEIG subtypes. Furthermore, TMEIG score, age, sex, and T, N,
M, and TNM stages were included in stepwise Cox regression in the
GSE39582 cohort, which possessed comprehensive clinical
information. Results indicated that TMEIG score combined with
age, sex, M stage, and TNM stage exhibited the best predictive power
(Supplementary Figure 5S, AUC: 0.75, 0.69, 0.7, 0.72, and 0.73 at 1,
3, 5, 7, and 10 years, respectively), and was validated in the TCGA
COAD cohort (Supplementary Figure S4H).

Patients With High Tumor
Microenvironment Immune Scores Are
More Likely to Benefit From Immune
Checkpoint Blockers
To evaluate whether the TMEIG score could predict the
efficacy of ICB treatment, we analyzed the expression of

crucial immune checkpoint molecules between high and low
TMEIG score groups. The results showed that the expression
of immune checkpoint molecules (PD-1 [PDCD1], PD-L1
[CD274], cytotoxic T-lymphocyte associated protein 4
[CTLA4], B- and T-lymphocyte attenuator [BTLA], T cell
immunoglobulin and ITIM domain [TIGIT], hepatitis A
virus cellular receptor 2 [HAVCR2], and lymphocyte-
activation gene 3 [LAG3]) was significantly higher in the
high score group (Figure 6A). Patients with CRC who have
microsatellite instability-high (MSI-H) tumors are more likely
to benefit from immune checkpoint inhibitors than patients
with microsatellite stable (MSS)/MSI-low (MSI-L). To explore
the relationship between TMEIG score and MSI status, the
MSI status of TCGA COAD patients was downloaded from the
supplements of previous studies focusing on MSI detection
(Supplementary Table S10). There were 72 patients identified
as MSI-H and 355 identified as MSI-L/MSS in TCGA COAD
determined by MSI-PCR. We then analyzed whether the
TMEIG score had prognostic value across MSI-H and MSI-
L/MSS subgroups. KM plots demonstrated that patients with
high TMEIG scores exhibited poor overall survival in MSI-H
and MSI-L/MSS subgroups (Supplementary Figures S5A,B).
Further analysis showed that patients with MSI-H possessed
higher TMEIG scores (Figure 6B, p = 6.9e−06). Next, we
explored the proportion of patients with MSI-H and MSI-L/
MSS in high and low TMEIG score groups. We observed more
MSI-H CRC patients in the high TMEIG score group
(Supplementary Figure S5C, High: 26%, Low: 14%).
Previous studies reported that TMB was a predictor of the
efficacy of ICB therapy. When exploring the TMB of patients
from the TCGA COAD cohort, results indicated no statistical
difference between high and low TMEIG score groups
(Figure 6C). In addition, the top six driver genes with the
highest alteration frequency were further analyzed. The
alteration frequency of APC, TP53, TTN, KRAS, PIK3CA,
and MUC16 in high and low TMEIG score groups are
displayed in Supplementary Figure S5D. The ESTIMATE
algorithm revealed that immune, stromal, and estimate
scores were significantly higher in the high TMEIG score
group (Figure 6D). Furthermore, pathway heat maps
demonstrated that EMT, angiogenesis (vimentin [VIM],
Twist-related protein 1 [TWIST1], zinc finger E-box
binding homeobox 1 and 2 [ZEB1 and ZEB2]), and T-cell
factor-beta (TCFβ) signatures were significantly more
activated in the high TMEIG score group. In contrast, cell
cycle and DDR signatures were highly expressed in the low
TMEIG score group (Figure 6E). These results indicated
significant differences in the TME and biological pathways
between high and low TMEIG score groups. To dissect the
relationship between TMEIG score and ICB response, we used
the TIDE algorithm to predict ICB response based on
transcriptome signatures. The TIDE algorithm (Figure 6F)
showed that the TMEIG score was positively correlated with
CAF (R = 0.68, p < 2.2e−16), Dysfunction (R = 0.37, p <
1.7e−15), and Exclusion (R = 0.14, p < 0.0036), and negatively
correlated with M2 macrophages (R = 0.51, p < 2.2e−16) and
MDSC (R = −0.3, p < 2.7e−10). In addition, there was a strong
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positive correlation between the TMEIG and TIDE scores
(Figure 6F, R = −0.15, p < 0.003).

Then, we explored the predictive power of the TMEIG
score in two ICB therapy cohorts. In IMvigor210 and
GSE78220 cohorts, the ICB response rates were
significantly lower in the high TMEIG score group (Figures
6G,H). Notably, patients with high TMEIG scores exhibited
worse overall survival (Figures 6I,J; IMvigor210: log-rank
test, p = 0.018, GSE78220: log-rank test, p = 0.053). The

insignificant result in GSE78220 (28 patients) can be
attributed to the small sample size. Furthermore, the
biomarker evaluation module on the TIDE website was
used to assess the accuracy of the TMEIG score using
multiple ICB cohorts as compared to other published
biomarkers. The TMEIG score demonstrated an AUC of
more than 0.5 in nine out of 16 ICB cohorts
(Supplementary Figure S6), demonstrating its robustness
as a predictive biomarker (Fu et al., 2020).

FIGURE 6 | The correlation between TMEIG score and ICB response. (A) The boxplot of seven immune checkpoint genes between the high and low TMEIG score
groups in the TCGA COAD cohort. (B) The TMEIG score between MSI-H and MSI-L/MSS subgroups. The boxplot showed that patients with MSI-H possessed higher
TMEIG scores than MSI-L/MSS (Wilcox test, p = 6.9e−06). The TMEIG score was transformed to log2 format for analysis. (C) TMB difference in the high and low TMEIG
score groups in the TCGA COAD cohort. (D) Relationship between TME subtypes and 11 critical biological pathways in the TCGA COAD cohort. Rows of the heat
map represent gene expression grouped by pathway. (F) The Pearson correlation analysis between TMEIG score and tumor-associated fibroblast (CAF), T cell
dysfunction (Dysfunction), T cell exclusion (Exclusion), M2 macrophage (M2), myeloid-derived suppressor cell (MDSCs), and TIDE score. The TMEIG score was
transformed to log2 format for analysis. (G,H) The stacked histogram exhibits the distribution of ICB response rates between high and low TMEIG score groups in
IMvigor210 and GSE78220 cohorts. The blue (CR/PR) indicates patients who responded to ICB, whereas the red (SD/PD) represents patients who did not respond to
ICB treatment. (I and J) Survival analysis in ICB treatment cohorts (IMvigor210 and GSE78220) using the log-rank test. The difference between the two groups was
assessed using the Wilcox test.
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The Biomarker Genes Are Differentially
Expressed in CRC and Significantly
Correlate With Immune Cells
To further understand the functions of the biomarker genes
consisting of the TMEIG score, we analyzed the expression
levels of SERPINE1, FABP4, SCG2, CALB2, and HOXC6 in the
TCGA-COAD cohort. The results demonstrated that the
expression values of SERPINE1 and HOXC6 were significantly

upregulated in tumors, whereas FABP4, SCG2, and CALB2 were
highly expressed in normal tissues (Figure 7A). Furthermore, the
same results were found in paired differential expression in
multiple CRC cohorts (Figures 7B–E, GSE32323, GSE44076,
GSE89076, and GSE113513). Our immunohistochemistry
(IHC) results revealed that CALB2 exhibited relevant stronger
staining in two cases of tumor (2/16), with the other 14 cases
displaying low expression (14/16). For FABP4, seven and two
cases in tumor and normal samples, respectively, exhibited

FIGURE 7 | Exploring the biological functions of biomarker genes. (A)Comparison of biomarker gene expression between normal tissue and cancer tissue in TCGA
COAD. (B–E) Comparison of biomarker gene expression between cancer tissues and paired normal tissues, statistically assessed using Wilcox test. (F) The
representative immunohistochemical images of FABP4, SCG2, CALB2, SERPINE1, and HOXC6. A total of 16 pairs of CRC tissue (cancer and adjacent normal tissue)
were collected for IHC. (G) The heatmap shows the Pearson’s correlation between five biomarker genes and immune cells in the combined GEO cohort. Red
represents positive correlation, whereas blue represents negative correlation. (H) The correlation between five biomarker genes and four immunosuppressive indices
(columns), including T cell dysfunction score (first column, T dysfunction value in core dataset), association with ICB survival outcome (second column, z-score in the
Cox-PH regression in immunotherapy), log-fold change (logFC) in CRISPR screens (third column, helping identify regulators whose knockout can mediate the efficacy of
lymphocyte-mediated tumor killing in cancer models), and T cell exclusion score (fourth column, assessing the gene expression levels in immunosuppressive cell types
that drive T cell exclusion). Genes (rows) are ranked by average value across four immunosuppressive indices analyzed using the TIDE website.
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stronger staining, whereas nine and 14 cases in tumor and normal
samples, respectively, were with low staining intensity. For
HOXC6, seven and nine samples out of 16 exhibited strong
staining in normal and tumor samples, respectively. The
protein level of SCG2 was high in 12 cases of CRC samples
(12/16) and 11 cases of normal samples (11/16). SEP1NG1 was
found strongly stained in 11 cases of tumor samples (11/16) and
nine cases of normal samples (9/16). Representative
immunohistochemical images are shown in Figure 7F, and the
high-resolution images are shown in Supplementary Figure S7.
The qPCR experiments (Supplementary Figure S8A) revealed
that the expression of HOXC6 and SERPINE1 was significantly
upregulated in RKO and HT29 cell lines, and FABP4 expression
was downregulated in nearly all CRC cell lines analyzed.
Although SCG2 and CALB2 were downregulated in patients
with CRC in multiple cohorts, qPCR experiments showed that
their expression was upregulated in several CRC cell lines (such as
HCT116 and HT29). This discrepancy may be due to false
positives in RNA sequencing or the heterogeneity between
clinical tissues and tumor cells. Studies involving more clinical
samples or cell lines may be needed to confirm the expression of
the two genes at the RNA and protein levels in the future. KM
plots of these genes are displayed in Supplementary Figure S9A.
Results indicated that all genes were closely related to OS. GSEA
analysis indicated that the five genes were involved in multiple
cancer biological functions: cell motility, angiogenesis, cell
migration, programmed cell death, MAPK signaling pathway,
and PI3K-Akt signaling pathway. Notably, the immune-related
pathway “cytokine-cytokine receptor interaction” was also
significantly enriched in most of these genes (SERPINE1,
FABP4, SCG2, and HOXC6) (Supplementary Figure S9B).
Next, we summarized several immunological molecules from
our previous studies, such as immune checkpoint genes and
cytotoxic genes, and analyzed the correlation with five genes
in TCGA COAD (Supplementary Figures S8B,C). Results
demonstrated that most of the five genes were significantly
correlated with immune checkpoint genes (BTLA, CD274,
CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT) and cytotoxic
genes (granzyme A [GZMA], GZMB, GZMK, GZMM,
interferon-gamma [IFNG], perforin 1 [PRF1], and tumor
necrosis factor superfamily member 11 [TNFSF11]), which
revealed that these genes might play an important role in
tumor immunity. We then explored the correlation between
the five genes and immune cells infiltrating the TME. As
shown in the correlation heatmap, the five genes were
positively related to macrophages (such as M0, M1, and M2),
inversely correlated with resting NK cells and resting memory
CD4+ T cells, CD8+ T cells, and activated memory CD4+ T cells
(Figure 7G), which might explain the poor ICB response in the
high TMEIG score group. Moreover, the gene set prioritization
module on the TIDE website indicated thatHOXC6 was the most
appropriate target to treat TME resistance to ICB (Figure 7H).
The expression of HOXC6 was positively associated with T cell
dysfunction in GSE12417, METABRIC, and TCGA Endometria
datasets (Figure 7H, left panel). In addition, high HOXC6
expression was also associated with poorer ICB outcomes in
multiple cohorts treated with ICB (Figure 7H, second to left

panel). Among the immune-suppressive cell types, HOXC6 was
highly expressed on the MDSC and CAF (Figure 7H, right
panel).

DISCUSSION

Understanding the heterogeneity of the tumor
microenvironment is required to elucidate the biological
properties of CRC and guide the treatment strategies.
Moreover, the TME heterogeneity is closely related to the
efficacy of ICB therapy (Lee et al., 2014; Nishino et al., 2017;
Cristescu et al., 2018; Mariathasan et al., 2018). Thus,
understanding TME heterogeneity may provide new insights
into CRC immunotherapy.

In this study, we constructed TME subtypes based on the TME
landscape of patients with CRC, which can accurately distinguish
the heterogeneity of the TME and predict the clinical prognosis.
The patients were then re-clustered by TMEIGs identified by
WGCNA and differential expression analysis. Two TMEIG
subtypes were obtained, reflecting heterogeneity in TME and
clinical prognosis. Gene signature is a simple and effective model
widely used in clinical practice (Paik et al., 2004; van ’t Veer et al.,
2002; Parker et al., 2009). Therefore, we established a TMEIG
score system to quantify the TME heterogeneity in patients with
CRC. The Sankey plots revealed that the TME and TMEIG
subtypes were consistent with the TMEIG score, suggesting
that the TMEIG score could be utilized as a surrogate
biomarker of TME heterogeneity.

Tumor mutation burden (TMB) (Chan et al., 2019),
microsatellite instability (MSI) status (Ganesh et al., 2019),
and immune checkpoint genes are important factors affecting
ICB therapy. Patients with high levels of TMB and MSI-H
exhibited better ICB therapy responses. In this study, there
was no significant difference in TMB between high and low
TMEIG score groups. However, patients with MSI-H possessed a
higher TMEIG score, and there were more patients with MSI-
high CRC in the high TMEIG score group. In addition, the
expression of immune checkpoint molecules was higher in
patients with high TMEIG scores. Patients with high
expression of PD-L1 and PD-1 are more likely to benefit from
ICB therapy (Topalian et al., 2012; Nishino et al., 2017). These
results indicate that patients with high TMEIG scores tend to
respond better to ICB therapy. However, ICB response is
influenced by numerous factors, such as EMT (Jiang and
Zhan, 2020), angiogenesis (Tian et al., 2017; Voron et al.,
2014), and the TCF-β pathway (Mariathasan et al., 2018;
Tauriello et al., 2018). EMT, angiogenesis, and TCFβ pathway
activation inhibit the efficacy of immune checkpoint therapy. The
pathway heatmap revealed that EMT, angiogenesis (VIM,
TWIST1, ZEB1, and ZEB2), and TCFβ signatures were
significantly activated in the high TMEIG score group
(Figure 7E). Furthermore, the TIDE score predicted the
efficacy of ICB therapy based on two mechanisms of tumor
immune escape (T cell dysfunction and T cell exclusion)
(Jiang et al., 2018). A higher TIDE score is related to poorer
ICB response and survival in patients receiving anti–PD-1 and
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anti-CTLA4 therapies (Jiang et al., 2018). In the present study, the
TMEIG score was positively related to dysfunction and exclusion
scores (Figure 6F). It indicated that patients with high TMEIG
scores possessed fewer CTL cells, which were majorly
dysfunctional in the TME. In line with the above results, the
TMEIG score was positively correlated with the TIDE score (R =
0.15, p = 0.003), indicating that patients in the high TMEIG score
group exhibited poorer ICB response. The prediction of ICB
response by MSI, TMB, or PD-L1 is based on the presence of CTL
cells in the TME. Hence, we speculated that patients with high
TMEIG scores mainly tend to exhibit poor ICB therapy response
due to fewer CTL cells that are primarily dysfunctional. Since
there was no suitable public ICB treatment CRC cohorts at the
time of publication, we only used transcriptome data from other
tumor types to verify the predictive power of the TMEIG score.
Nevertheless, validation in melanoma and urothelial cancer
datasets may indirectly suggest that the TMEIG score predicts
the efficacy of immune checkpoint therapy in CRC. In accordance
with TIDE results, a higher TMEIG score was associated with
poorer ICB response and prognosis in two ICB treatment cohorts.
In conclusion, the evidence demonstrated that the TMEIG score
might serve as a reliable ICB biomarker in CRC. We will further
validate our results once transcriptome data of CRC patients
undergoing immune checkpoint therapy becomes publicly
available or establish our own cohort regarding this point.

In our study, the TMEIG score was determined by SERPINE1,
FABP4, SCG2, CALB2, and HOXC6 expression. HOXC6 is a
member of the homeobox family, which encode transcription
factors that play a critical role in morphogenesis in all
multicellular organisms. HOXC6 expression was higher and
negatively associated with prognosis in right-sided colon
cancer than in left-sided colon cancer. This finding was
further validated by tissue microarray analysis. HOXC6
facilitated proliferation and metastasis through the dickkopf-1
(DKK1)/Wnt/β-catenin axis in right-sided colon cancer (Qi et al.,
2021; Garris et al., 2018). The role of FABP4, which encodes the
fatty acid–binding protein found in adipocytes, is unclear in CRC.
A study demonstrated that FABP4 was downregulated in CRC
(Zhao et al., 2019). IHC and ELISA data from another study
revealed that FABP4 and plasma FABP4 concentrations were
higher in CRC tissues than in normal tissues (Zhang et al., 2021).
Thus, the role of FABP4 in CRC must be investigated further. In
addition, mRNA and protein levels of SCG2, a member of the
chromogranin family of acidic secretory proteins, were
significantly downregulated in CRC tissues (Wang et al., 2021;
Fang et al., 2021). Mechanistically, SCG2 inhibits tumor growth
and angiogenesis by disrupting the activities of HIF-1α/VEGF in
malignant CRC tissues (Fang et al., 2021). In vitro and in vivo
studies have shown that CALB2 promotes hepatocellular
carcinoma metastasis via the TRPV2-Ca2+-ERK1/2 signaling
pathway (Chu et al., 2022). Although fluorouracil (5-FU)
treatment reduced the mRNA and protein expression of
CALB2 in CRC, their expression levels were not quantified
and compared in tumor and normal tissues (Stevenson et al.,
2011). SERPINE1 expression is reportedly upregulated in CRC
tissues and is associated with tumor invasiveness and
aggressiveness (Mazzoccoli et al., 2012). Our study also reports

the same trend (Figures 7A–E). Nevertheless, the roles of
HOXC6, SERPINE1, FABP4, SCG2, and CALB2 in
tumorigenesis, cancer immunity, and ICB treatment are poorly
understood. In the present study, IHC and qPCR results
preliminarily elucidated the expression levels of these five
molecules in CRC and normal tissues. Larger clinical sample
sizes are required to verify mRNA and protein expression levels
reported in this study and whether protein levels can be used to
predict the prognosis of patients suffering from CRC and their
response to ICB therapy. In addition, we observed that the five
genes were significantly associated with immune cells of TME,
immune checkpoint genes, and cytotoxic genes. Immune
checkpoint genes and cytotoxic genes were collected from our
previous study (Wang et al., 2022). Moreover, heatmaps also
demonstrated that these genes, especially HOXC6, were closely
associated with four immunosuppressive indices, including T cell
dysfunction score, T cell exclusion score, association with ICB
survival outcome, and logFC in CRISPR screens. Collectively, the
roles of the five genes in tumor immunity are worthy of
investigation, which will be the focus of our future research.

Our study has numerous advantages. First, datasets of the
combined GEO cohort were downloaded from the GPL570
platform, which reduced the batch effect caused by different
platform processes. Second, a large cohort with more than 1,000
samples was used for clustering, guaranteeing stable clustering
results. Third, the prognostic power and predictive ICB response
of the TMEIG score have been validated in multiple cohorts.
However, the study design does have a few drawbacks. First, the
predictive ICB response power of the TMEIG score was assessed
in melanomas and metastatic urothelial cancer. These data must
be verified using patients with CRC. Second, the relationship
between the five molecules of the TMEIG score system and
tumorigenesis, immune system, and ICB response were not
investigated in this study. Future in vivo and in vitro studies
from our group will focus on these aspects.

In conclusion, we identified the TME subtypes that
comprehensively depicted the TME, revealed multiple aspects of
CRC biology, and assessed variation in the prognosis of patients with
CRC. TMEIG score is a robust marker to predict patients’ prognosis
and may serve as a predictor of ICB response in CRC. Moreover, we
identified several potential targets that may play a critical role in ICB
treatment, of which HOXC6 may be the most significant.
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Supplementary Figure S1 | Processes of constructing TME subtypes. (A–D)
Consensus matrixes of the combined GEO cohort for each k (k = 2–5), displaying the
clustering stability using 1000 iterations of hierarchical clustering. (E) Empirical
cumulative distribution function plots display consensus distributions for each k.
When k = 2, the distribution reaches an approximate maximum, indicating maximum
stability.

Supplementary Figure S2 | Details of the WGCNA analysis. (A and B) Analysis of
the scale-free fit index and themean connectivity for various soft-thresholding power
values. (C) Hierarchical clustering dendrograms of co-expressed genes in modules.
(D and E) The correlation between modules. (F–H) The GO and KEGG enrichment
terms are in blue, brown, and green modules.

Supplementary Figure S3 | Details of constructing TMEIG subtypes. (A–D)
Consensus matrixes of the combined GEO cohort for each k (k = 2–5),
displaying the clustering stability using 1000 iterations of hierarchical clustering.

(E) Empirical cumulative distribution function plots display consensus distributions
for each k. When k = 2, the distribution reaches an approximate maximum, indicating
maximum stability. (F) Relationship between TMEIG subtypes and 11 critical
biological pathways.

Supplementary Figure S4 |Details of constructing the TMEIG score system. (A)
The Venn diagrams show the intersection between genes in blue, brown, and
green modules and DEGs. (B) The intersection of prognostic genes in the TCGA
COAD cohort and the combined GEO cohort. (C,D) Details of the Lasso
regression. (E) The risk factor diagrams of the TCGA COAD cohort. (F and
G) The TMEIG score between TME Clusters as well as TMEIG Cluster. (H) ROC
plot shows the predictive value of the TMEIG score combined with age, sex, M
stage, and TNM stage in the TCGA COAD cohort using stepwise Cox
regression.

Supplementary Figure S5 | Exploring the TMEIG score groups. (A) The KM plot of
high and low TMEIG groups in MSI-H subgroups (log-rank p-value = 0.037). (B) The
KM plot of high and low TMEIG groups in MSI-L/MSS subgroups (log-rank p-value =
0.0039). (C) The stacking histogram shows the proportion of patients with MSI-H
andMSI-L/MSS in high and TMEIG score groups. Red represents patients with MSI-
H, and blue represents those with MSI-L/MSS. (D) The OncoPrint shows the top six
mutated genes between high and low TMEIG score groups, including APC, TP53,
TTN, KRAS, PIK3CA, and MUC16. There are 100 and 274 patients in the high and
low TMEIG score groups, respectively. Individual patients are represented in each
column.

Supplementary Figure S6 | Comparison of TMEIG score and other biomarkers.
AUC is employed to evaluate the prediction performance of the TMEIG score
(Custom) and other common biomarkers on ICB response in 16 ICB treatment
cohorts using the TIDE website.

Supplementary Figure S7 | High-definition images of IHC.

Supplementary Figure S8 | Exploring the role of the five biomarker genes. (A) The
qPCR data of FABP4, SCG2, CALB2, SERPINE1, and HOXC6. NCM460 is a
normal human colonic epithelial cell line, whereas SW620, RKO, HCT116, and
HT29 are human CRC cell lines. NS, not significant. The statistical significance
was assessed using one-way ANOVA. (B) Pearson correlation between the five
genes and immune checkpoint genes (BTLA, CD274, CTLA4, HAVCR2, LAG3,
PDCD1, and TIGIT) in TCGA COAD. (C) Pearson correlation between the five
genes and cytotoxic genes (GZMA, GZMB, GZMK, GZMM, IFNG, PRF1, and
TNFSF11) in TCGA COAD.

Supplementary Figure S9 | Survival and GSEA analyses of the five biomarker
genes. (A) Survival analysis ofSERPINE1, FABP4,SCG2,CALB2, andHOXC6 in the
TCGA COAD cohort. (B) GSEA analysis of SERPINE1, FABP4, SCG2, CALB2, and
HOXC6 in the combined GEO cohort. Data from “c2.cp.kegg.v6.2.symbols.gmt”
and “c5.all.v7.0.symbols.gmt” in the MSigDB website were chosen as the reference
gene sets.

Supplementary Table S1 | Cohorts information used in this study.

Supplementary Table S2 | Survival data of the combined GEO and TCGA COAD
cohorts.

Supplementary Table S3 | Details of immunohistochemistry experiment in this
study.

Supplementary Table S4 | CIBERSORT results of the combined GEO cohort.

Supplementary Table S5 | TME clusters in the combined GEO cohort.

Supplementary Table S6 | Results of GSEA analysis between TME clusters in the
combined GEO cohort.

Supplementary Table S7 | TMEIG clusters in the combined GEO cohort.

Supplementary Table S8 | TMEIG score in the combined GEO and TCGA COAD
cohorts.

Supplementary Table S9 | Clinical data of the TCGA COAD cohort.

Supplementary Table S10 | MSI information of the TCGA COAD cohort.
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Systematic analysis of MCM3 in
pediatric medulloblastoma via
multi-omics analysis
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Jiajia Wang1, Shuangwei Tian1, Qinhua Wang1,
Baocheng Wang1, Heng Zhao1, Feng Jiang1* and Jie Ma1*
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School of Medicine, Shanghai, China

Minichromosomemaintenance proteins are DNA-dependent ATPases that bind

to replication origins and allow a single round of DNA replication. One member

of this family, MCM3, is reportedly active in most cancers. To systematically

elucidate the mechanisms affected by aberrant MCM3 expression and evaluate

its clinical significance, we analyzed multi-omics data from the GEO database

and validated them in cell lines and tumor samples. First, we showed the

upregulation of MCM3 in medulloblastoma (MB) at bulk and single-cell RNA

sequence levels and revealed the potential role of MCM3 via DNA replication.

Then we found the dysregulation of MCM3 might result from abnormal

methylation of MCM3. Moreover, we discovered that MCM3 might affect

varied biological processes such as apoptosis, autophagy, and ferroptosis

and that MCM3 was correlated with immune components such as fibroblast

and neutrophils, which were associated with overall survival in different

medulloblastoma subtypes. Furthermore, we found that MCM3 expression

was correlated with the IC50 values of cisplatin and etoposide. The

nomogram of MCM3-related genes showed the reliable and better

prediction of 1- and 5-year survival compared to current histological and

molecular classifications. Overall, the results of our study demonstrated that

MCM3might serve as a potential biomarker with clinical significance and better

guidance than current histological and molecular classifications for clinical

decision-making.

KEYWORDS

MCM3, medulloblastoma, multi-omics, DNAmethylation, single cell, RNA sequencing,
prognosis, nomogram

Introduction

Medulloblastoma (MB), the leading cause of cancer-related death in children, is one of

the most common pediatric brain tumors (Hovestadt et al., 2020). In recent years,

individualized therapy models have emerged based on molecular subtypes and risk

stratification. Surgical resection, cytotoxic chemotherapy, and craniospinal irradiation

(for non-infants usually ≥3 years of age at diagnosis) constitute the standard therapy for
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MB. The estimated 5-year overall survival has remained

unchanged during the past two decades, ranging from 60% to

80% (Lannering et al., 2012; von Bueren et al., 2016). Despite these

high estimates, the drawbacks of current treatment strategies

include toxic effects on neurocognition and the neuroendocrine

systems, sluggish identical therapies concerning radiotherapy and

cytotoxic chemotherapy in developing children, lack of indicators

for novel clinical medications, etc. Therefore, more therapeutic

targets and less toxic strategies are required.

Non-invasive methods have made great advances with the

identification of molecular subtypes based on DNA methylation.

Similarly, as another clinical evaluation method, magnetic

resonance imaging (MRI) also helps the differentiation of

medulloblastoma from other pediatric brain tumors and risk

stratification based on different features of T1 and T2-weighted

MRI (Duc et al., 2020; Minh Thong and Minh Duc, 2020; Zhang

et al., 2022). In addition, cellular proliferation plays an essential

role in tumor content, especially in highly malignant cancers (Gu

et al., 2021; McCarthy et al., 2021; Newman et al., 2021; Qiu et al.,

2021). As the molecular mechanisms involved have been

uncovered gradually, increasing numbers of informative

biomarkers have been identified to evaluate the degree of

malignancy of various cancers, including proliferating cell

nuclear antigen (PCNA) and marker of proliferation Ki-67

(MKi67). Additionally, eukaryotic DNA replication guarantees

genome stability. The minichromosome maintenance (MCM)

proteins play a role as subunits of pre-replication complexes in

the G1 phase and bind to replication origins and restrict DNA

synthesis to a single round of DNA replication (Madine et al.,

1995; Sedlackova et al., 2020). MCM proteins can reflect the cell

cycle status due to their stable state during the cell cycle and

proteolysis in quiescent cells (G0) (Musahl et al., 1998; Madine

et al., 2000). Some studies have reported other functions of MCM

proteins in different cancers, such as their relationships to the

immune response in brain gliomas (Söling et al., 2005), execution

of apoptosis (Schwab et al., 1998), regulation of autophagy

(Puustinen et al., 2020), resistance to anti-tumor therapies

(Shrestha et al., 2021), and stemness of cancer cells (Wang

et al., 2020). The dysregulated expression of MCM3 has also

been demonstrated in varied tumors and could serve as a target

or prognostic biomarker (Stewart et al., 2017; Iglesias-Gato et al.,

2018; Zhao et al., 2020). To date, there is only one study has

reported the expression of MCM3 in various MB cell lines, and

evidence of its systematic roles in MB remains deficient.

The present study systematically analyzed the functions of

MCM3 in pediatric MB combined with clinical tumor specimens

via multi-mics bioinformatic analysis. The results revealed its

potential roles as a therapeutic target and a tool for better

guidance compared to current histological and molecular

classifications for clinical decision-making.

Materials and methods

Public data collection and construction of
the validation cohort

The normalized pediatric MB datasets of DNA

Methylation, mRNA array, and single-cell RNA sequencing

(including GSE85212, GSE54880, GSE85217, GSE42656,

GSE50161, and GSE155446) were obtained from Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/) database. In addition, 62 clinical tumor tissues were

collected from children diagnosed with primary MB who

received surgical treatment in our medical center (Xinhua

Hospital Affiliated to Shanghai Jiao Tong University of

Medicine) between July 2012 and October 2017. The study

protocol was approved by the Ethics Committee of the Xinhua

Hospital Affiliated with Shanghai Jiao Tong University School

of Medicine (Approval No. XHEC-D-2021-076, Approval

Date. 2021-10-21). Written informed consents were

obtained from all patients.

RNA sequencing of clinical samples

RNA-seq service was provided by MAJORBIO (Shanghai,

China), and completed on a HiSeq4000 instrument. The RNA-

seq reads were mapped to the hg38 reference genome using

STAR (v2.5.3a) (Dobin et al., 2013). Fragments per kilobase of

transcript per million fragments mapped (FPKM) was

calculated, and a mean FPKM ≥ 1 was set as the threshold

to determine the active genes in all samples.

Expression features of MCM3 in different
cancers

The Gene Expression Profiling Interactive Analysis

(GEPIA.2) database was used to determine the differential

expression of MCM3 in various cancers (Tang et al., 2019).

The expression features in different brain tumors, biological

functions, and gene effects in MB cell lines were analyzed from

the CCLE database (Ghandi et al., 2019). The function of

MCM3 was investigated in the Biological General Repository

for Interaction Datasets-Open Repository for CRISPR Screens

(BioGRID ORCS) database (Oughtred et al., 2019). The gene

effects on cancer cells were studied using the DepMap

database (Tsherniak et al., 2017). The relationships between

MCM3 and clinical features were investigated with GEO data

and validated in our own data by utilizing the R programing

language.
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Differential gene expression and
functional enrichment analyses

Differential expression analysis was performed with two

datasets (GSE42656 AND GSE50161) using R/limma (Ritchie

et al., 2015). The differentially expressed genes (DEGs) were

obtained by the intersecting DEGs from the two datasets. The

DEGs from GSE50161 were analyzed by comparing the tumor

group to fetal and adult normal brain tissues, respectively, to

reduce the impact of developmental genes. The criteria for DEG

analysis were p < 0.05 and fold change (FC) > 2. The interaction

network between DEGs was predicted using the online STRING

tool (Szklarczyk et al., 2021). The hub genes and related biological

processes were identified in Cytoscape (ClueGO) (Shannon et al.,

2003).

Data processing and analysis of MCM3 in
single-cell RNA sequencing data

The count matrix obtained from GEO was processed using

the Seurat package to get the Seurat object, filtered with a

criterion of >500 and <7,800 genes, and normalized using the

NormalizeData function (Butler et al., 2018). Highly variable

genes between cells were then identified using the

FindVariableFeatures function for the subsequent principal

component analysis (PCA). Ten principal components were

presented for uniform manifold approximation and projection

(UMAP) dimension reduction to obtain a two-dimensional

representation of the cell state. The FindClusters function was

used for clustering with a selection of resolution of 0.3. The

singleR package was applied for cell annotation, in which non-

immune cells were treated as tumor cells for simplified analysis

(Aran et al., 2019). The expression values of MCM3 in different

clusters or groups were analyzed using the FeaturePlot function

in the Seurat package. Cells expressing MCM3 were extracted

and classified as showing high or low expression levels according

to the mean expression value. Moreover, the DEGs between them

were identified using the FindMarkers function and analyzed

with enrichment analysis to investigate the biological process

affected.

Effects of MCM3 dysregulation

Single-sample gene set variation analysis (ssGSVA) was

performed in R/GSVA to analyze the biological functions

between high and low-risk classifications of MCM3 (Sonja

et al., 2013). Gene ontology (GO) and pathway enrichment

analysis (Kyoto Encyclopedia of Genes and Genomes

(KEGG)) were performed in R/clusterProfiler (Yu et al., 2012)

to analyze the intersected processes shared between the MCM3-

correlated genes and DEGs. P values <0.05 and FDR <25% were

considered statistically significant. Immune infiltration was

evaluated using the “xCell” (Aran et al., 2017), “ESTIMATE”

(Yoshihara et al., 2013), and “CIBERSORT” (Newman et al.,

2015) packages in R. The immune indexes related to survival rate

were identified using the “survival” package in R. Their

correlations with MCM3 expression were also analyzed. The

genes related to apoptosis, autophagy, and ferroptosis were

obtained from corresponding online databases, including Gene

Set Enrichment Analysis (GSEA) (Subramanian et al., 2005),

AmiGo 2 (Park et al., 2015), HAMdb (Wang et al., 2018) and

FerrDb (Zhou and Bao, 2020).

DNA methylation analysis of MCM3 in MB

Missing values in the beta value matrixes were processed

using the “impute” package in R. The probes were filtered and

normalized using the “ChAMP” package (Andrew et al.,

2014). The data quality was then checked by principle

component analysis (PCA) and heatmaps. The

MCM3 probes were analyzed via differential, correlation,

and survival analyses to identify methylation sites affecting

MCM3 expression.

Prognostic model construction and
analysis of drug susceptibility

Survival data of GSE85217 was downloaded and filtered

(age <18 years). This discovery set was then randomly divided

into training and test sets in a 7:3 ratio. The data set of 62 RNA

sequencing data from our medical center was treated as the

independent validation set for the prognostic model. The overall

survival and MCM3-related genes were identified using

univariate Cox regression and lasso regression analyses. A

nomogram containing a multigene panel and clinical features

was used to predict the survival probability. The pRRophetic

package in R was used to predict the drug sensitivity of each

sample according to the gene expression matrix and to evaluate

the correlation between MCM3 expression and IC50 values

(Geeleher et al., 2014).

shRNA plasmid

For the generation of shRNA plasmids, double-strand

oligonucleotides were annealed and cloned into the CMV-

EGFP-F2A-puro vector. The oligonucleotides of shRNA were

synthesized by OBIO Technology (Shanghai, China). The target

oligonucleotides were:

shMCM3-1: GGATGAATCAGAGACAGAA; shMCM3-2:

GCAGTCAATCGGCATGAAT; shMCM3-3: GCCTCACAG

AATCCATCAA.
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Cell transfection

D425 and D458 cell lines were kind gifts from Shanghai Jiao

Tong University of Medicine School, China. The D283 and

D458 cell lines were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 1%

penicillin–streptomycin and 10% FBS. At 48 h post-infection,

the cells were harvested and subjected to protein extraction or

other cellular experiments.

RNA extraction and real-time RT-PCR

Total RNA was extracted using TRIzol Reagent (Takara,

9108) according to the manufacturer’s instructions. A High-

capacity cDNA Reverse Transcription Kit (Takara, RRO47A)

was used to perform the reverse transcription reactions.

Quantitative PCR was performed on an ABI VERTI Real-

Time PCR instrument. The relative mRNA levels were

normalized to GAPDH. The qPCR primer sequences were:

MCM3, 5′-TCAGAGAGATTACCTGGACTTCC-3′
(forward); 5′-TCAGCCGGTATTGGTTGTCAC-3′ (reverse).

Western blot assay

The target protein was extracted, and its concentration was

quantified using a BCA Protein Assay Kit (Pierce, 23227). Protein

samples were separated by sodium dodecyl sulfate-

polyacrylamide gel (SDS-PAGE) and transferred onto

polyvinylidene difluoride (PVDF) membranes (Millipore). The

membranes were blocked with 5% fat-free milk (BD Biosciences,

232100) and then incubated with primary antibodies against

MCM3 (1:1,000; Cell Signaling Technology, 13421S), MCM2 (1:

1,000; Cell Signaling Technology, 12191), MCM7 (1:2,000;

Proteintech, 66905-1), and CDC45 (1:1,000; Cell Signaling

Technology, 9405S), respectively. The secondary antibodies

were HRP-linked goat anti-mouse IgG (1 ml; Cell Signaling

Technology, 7076). The chemical fluorescence images of the

proteins were visualized using a chemiluminescent substrate

(Epizyme Biotech, Shanghai, China).

Cell proliferation assay

The effects of etoposide (XY91494, X-Y Biotechnology, China)

and cisplatin (ST1164, Beyotime, China) on cell proliferation under

different conditions were determined using Cell Counting Kit-8

(CKK-8) reagents (B34304, Bimake, China). Cells were plated in 96-

well plates (4 replicates per condition), treated with serial drug

concentrations, and incubated in normoxic conditions (37°C, 5%

CO2, 21% O2) for 24, 48, and 72 h. The CKK-8 assays were

performed to determine the IC50 values at each time point.

Results

Dysregulated MCM3 expression in
pediatric MB and identification of MCM3-
related signaling pathways and genes

The RNA-seq data of different brain tumor cell lines from the

Cancer Cell Line Encyclopedia (CCLE) showed the highest

MCM3 mRNA expression level in MB (Figure 1A). The

GEPIA 2 database also revealed higher MCM3 mRNA

expression levels in cancer tissues compared to those in

normal tissues in the Oncomine database (Supplementary

Figure S1A). The CRISPR function of MCM3 data from the

BioGRID ORCS database revealed its function in the cell cycle

and potential roles in immune response (Figure 1B). Differential

analysis in GSE42656 and GSE50161 showed

MCM3 upregulation in malignant samples compared to

normal (Figure 1C), adult (Supplementary Figure S1B), and

fetal brain tissues (Supplementary Figure S1C, Supplementary

Tables S1–S3). Moreover, 255 genes were dysregulated in the two

data sets based on the criteria of the absolute logFC >1 and the

adjusted p-value <0.05 (Figure 1D). The heatmap also showed

the differential expression of 255-DEGs (Figure 1E;

Supplementary Figures S1D,E). Hub genes analysis revealed

the core role of MCM3 in these DEGs (Supplementary Figure

S1F) and top 3 ranking among hub genes (Supplementary Figure

S1G). Enrichment analysis via STRING and ClueGO indicated

that DNA replication was the main pathway involved

(Figure 1F). The gene effect analysis of the DepMap database

also indicated the dependence of cancer cells on MCM3

(Figure 1G). In addition, knockdown of the MCM3 protein

level was performed by sh-MCM3 in both D283 and

D458 cell lines, which was confirmed by RT-PCR (Figure 1H)

and WB (Figure I). The cell viability decreased significantly at

72 h in the sh-MCM3 groups compared to that in the sh-Control

groups in both D283 and D458 cell lines. These results revealed

the dysregulation of MCM3 in cancers, especially MB, and that

MCM3 was essential for the survival of malignant cells in MB.

MCM3 drives the malignant
transformation of non-immune cells via
DNA replication-related pathways

A total of 38,328 cells were divided into 30 clusters

comprising six cell types including astrocytes, neurons,

B-cells, T-cells, macrophages, and monocytes (Figure 2A) by

SingleR. MCM3 expression in all clusters was heterogeneous

(Figure 2B). Heterogeneity was also observed in malignant cells,

namely non-immune cells, and non-tumor clusters (Figure 2C).

Compared to non-tumor cells, MCM3 was significantly

overexpressed in tumor cells (Figure 2D). We then

investigated the effect of MCM3 on cell biology processes at
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FIGURE 1
MCM3 expression levels among brain tumor cell lines (A). Functional annotation of MCM3 from the BioGRID ORCS database by CRISPR (B).
MCM3 upregulation in the tumor group of GSE50161 (C). 255 DEGs showed dysregulation in the three contrast sets (D). The normal and
medulloblastoma samples fromGSE50161 clustered respectively according to the expression of DEGs (E). Hub genes analysis viaCytoscape showing
the main biological functions with which MCM3 is involved (F). Gene effects (namely the dependency of the cell on genes) of MCM3 reflect its
essentiality for cancer cell survival (G). Confirmation of MCM3 knockdown by shRNA-1 and shRNA-3 on RNA level by QT-PCR (H) in both D283 and
D458 cell lines (H). Significantly decreased cell viability in sh-MCM3 cell lines (I).
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FIGURE 2
Cell annotations according to SingleR and cell classifications of malignant and non-malignant Cell annotations according to SingleR and cell
classifications of malignant and non-malignant cells (A). Heterogeneity of MCM3 expression in different clusters (B). Heterogeneity of MCM3 express
ion in tumor and non-tumor cells (C). MCM3 over-expression in tumor cells compared to non-tumor cells (D). Top 20 DEGs (E) and the top10 GO (F)
annotations of 159 DEGs between the two groups of malignant cells (high and low MCM3 expression).
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the single-cell level. A total of 7,536 cells expressing

MCM3 were classified as high and low levels according to

the mean MCM3 expression level. The top 20 DEGs of the

two groups were then identified (Figure 2E). GO analysis was

performed of the 159 DEGs after filtering for log fold-

change >0.25 and a minimum fraction of 0.25. Like the

enrichment analysis in bulk RNA sequencing, the biological

processes associated with DNA replication and cell cycle were

significantly enriched, in addition to double-strand break repair

(Figure 2F). Therefore, MCM3 overexpression might be

associated with the malignant transformation of cells via the

dysregulation of DNA replication and cell cycle.

FIGURE 3
GO enrichment analysis of DEGs for different MCM3 expression levels showing the dysregulation of the cell cycle and DNA replication (A). GO
analysis of MCM3-correlated genes and DEGs revealed overlap only for “Double-strand break repair via break-induced replication”, with only four
genes in this biological process differentially expressed and significantly correlated with MCM3 (B). Significant correlations of MCM3 with MCM2,
MCM7, and CDC45 were (C–E). MCM2, MCM3, MCM7, and CDC45 are the main components of the pre-replicative complex (F). MCM7 and
CDC45 are correlated with MCM3 at the protein level via WB analysis in D283 and D458 cell lines (G).
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MCM3 affects tumorigenesis via CDC45-
MCM2-7-GINS helicases

To investigate the potential mechanism by which

MCM3 drives tumorigenesis in MB, we performed GSEA on

samples with high and low MCM3expression levels.

Dysregulation of MCM3 expression was mainly associated with

cell cycle and DNA replication (Figure 3A). Moreover, enrichment

analysis of the MCM3-correlated genes and 255 DEGs respectively

showed an intersection only for “Double-strand break repair via

break-induced replication” (Figure 3B). Only four genes—MCM2,

MCM3, MCM7, and CDC45—met both the criterion of different

expression, and were correlated with MCM3 expression and were

included in further analysis (Figures 3C–E). The results of the

enrichment analysis demonstrated their important roles in

recruitment in the pre-replicative complex (pre-RC) during the

initiation of DNA replication (Figure 3F). Furthermore, in both

D458 and D283 cells, the protein levels of MCM7 and

CDC45 significantly decreased as with MCM3 knockdown

(Figure 3G). MCM2 is more stable than other MCMs and

might maintain its protein level by reducing cytoplasmic

proteolysis, or some other mechanism (Sedlackova et al., 2020).

Therefore, MCM3 might play a role in MB via the dysfunction of

pre-replicative complex and CDC45-MCM-GINS (CMG)

helicases formed by MCM2, MCM3, MCM7, and CDC45.

MCM3 expression is related to clinical
parameters

Table 1 includes data from 628 patients with prognosis data

from GSE85217 and 62 patients with prognosis and RNA-seq

data from our cohort. MCM3 expression did not change

significantly with age (Figure 4A) or between sexes

(Figure 4B); however, children with metastasis showed lower

MCM3 expression levels (Figure 4C). Moreover, MCM3 was

significantly correlated with histology and molecular subtypes

(Figures 4D,E). Thus, more malignant histology and molecular

subgroups, such as Large Cell and Anaplastic (LCA), Sonic

Hedgehog (SHH)-MB, and Group3-MB, showed higher

expression levels of MCM3. In addition, the patients from

GSE85217 were classified into high and low-risk groups

according to the cut-off value determined by ROC analysis

after excluding adult samples. The low-MCM3 group showed

better overall survival (Figure 4F), which was validated in our

cohort (Figure 4G). Furthermore, our cohort showed that

patients with high MCM3 expression had a high risk of

metastasis (Figure 4H). In addition, the Sankey plots also

revealed higher proportions of low-risk patients in WNT and

Group4 MB, and better prognosis in the low-risk group

(Figure 3I). Therefore, MCM3 expression was related to

current major clinical parameters and had potential clinical

significance.

MCM3 dysregulation remodels the
immune microenvironment and affects
multiple cell death-related processes

To systematically investigate the effect of

MCM3 dysregulation in MB, we first analyzed tumor-

infiltrating cells via three algorithms, including ESTIMATE,

CIBERSORT, and XCELL. The results revealed the differential

infiltration of immune cells, such as cytotoxic lymphocytes,

fibroblasts, CD4 T cells, macrophages, etc. (Supplementary

Figure S2). MCM3 was correlated with varied components of

the immune microenvironment based on the ESTIMATE score

(Figure 5A). Subgroup analysis of four molecular subgroups

revealed that the varied immune components were associated

with OS in different subtypes, such as fibroblasts in SHH

(Figure 5B), neutrophils and stromal score in SHH

(Supplementary Figures S3A,B), neutrophils in WNT MB

(Supplementary Figure S3C), and stromal and estimate scores

TABLE 1 Data of RNA-seq included for Kaplan-Meier analysis.

GSE85217 Our cohort

(n = 628) (n = 62)

Gender

Female 212 (33.8%) 25 (40.3%)

Male 405 (64.5%) 37 (59.7%)

NA 11 (1.8%) NA

Age

Mean (SD) 7.30 (4.10) 5.20 (3.22)

Median (Min, Max) 7.00 (0.24,17.3) 4.45 (0.334,16.1)

Histology

Classic 340 (54.1%) 41 (66.1%)

Desmoplastic 86 (13.7%) 7 (11.3%)

LCA 67 (10.7%) 9 (14.5%)

MBEN 17 (2.7%) 5 (8.1%)

NA 118 (18.8%) NA

Metastasis

Yes 165 (26.3%) 28 (45.2%)

No 333 (53.0%) 34 (54.8%)

NA 130 (20.7%) NA

Dead

Yes 147 (23.4%) 21 (33.9%)

No 398 (63.4%) 41 (66.1%)

NA 83 (13.2%) NA

Overall Survival (years)

Mean (SD) 4.88 (3.66) 3.93 (2.74)

Median (Min, Max) 3.92 (0.0192,19.0) 3.29 (0.186,10.0)

NA 90 (14.3) NA
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in Group4 MB(Supplementary Figures S3D,E). In addition,

other biological processes were also analyzed, including

apoptosis, autophagy, and ferroptosis (Figure 5C). First, the

DEGs and MCM3-correlated genes were analyzed with the

three process-related genes to obtain the intersection genes;

for example, CDK5RAP3 and TOP2A in apoptosis, DNM3,

GABARAPL1, GABBR2, OPTN (Supplementary Figures

S3F–I), SCNA and MAPK10 in autophagy (Figure 5C), and

MT3 in ferroptosis (Figure 5C). Only DNM3, GABARAPL1,

GABBR2, SNCA (Supplementary Figures S3J -L), CDK5RAP3,

TOP2A, SCNA and MAPK10 (Figure 5C) were associated with

OS. Therefore, MCM3 might affect the development of MB via

these genes.

Abnormal MCM3 demethylation may
contribute to its expression dysregulation

Considering the epigenetic disorders in pediatric brain

tumors (Lin et al., 2016; Northcott et al., 2017; Petralia et al.,

2020), we investigated the cause of MCM3 dysregulation at the

methylation level. The PCA and heatmap revealed significant

differences between the tumor and normal groups (Figure 6A),

while the heatmaps demonstrated the acceptable quality control

(Figures 6B–C). MCM3 probes were then obtained according to

the beadchip annotation. Among the 14 probes for MCM3,

probes 7 and 13 were filtered, respectively, after data

normalization of GSE85212 and GSE54880. “cg02243303” and

FIGURE 4
Relationships between MCM3 expression and clinicopathologic features. Correlation of MCM3 expression with age (A), sex (B), metastasis
status (C), histology (D) and molecular subtypes (E). MCM3 expression is correlated with OS in samples from children (GSE85217, n = 628) (F).
Validation of the prognostic value of MCM3 in our patient cohort (G). Correlation of MCM3 expression level with metastasis in our cohort (H).
Relationships among molecular subtype, MCM3 risk classification, and survival state (I).
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“cg21858961” differed significantly between normal and tumor

groups and were associated with OS (Figures 6D–E). Moreover,

MCM3 expression was correlated with the methylation level of

the two sites (Figures 7F–G). Therefore, “cg02243303” and

“cg21858961” hypomethylation might be involved in

MCM3 regulation in MB.

FIGURE 5
Correlations of MCM3 with fibroblasts, endothelial cells, neutrophils, cytotoxic lymphocytes, estimate score, and stromal score (A). Association
of fibroblasts with OS in the SHH subtype (B). Kaplan–Meier analysis of genes related to apoptosis, autophagy, and ferroptosis that were correlated
with MCM3 and differentially expressed. CDK5RAP3, TOP2A, SNCA, MAPK10 are correlated with MCM3 and associated with OS (C).
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The prognostic model based on MCM3-
related genes performs better than
current tumor classifications

We next investigated the clinical significance of MCM3. First,

given its extensive influence, genes correlated with MCM3

(11,008 genes) and associated with OS (RAP2B, ARHGEF40,

ADGRG6, ALS2CL, FZD4, TJP2, EIF2AK3, FBLIM1, DGLUCY,

C6orf141, APLN, FCRL1, ZCCHC13, ZMYND15, FAM163B,

LBHD1, UEVLD) were included in univariate and lasso

regression analyses to construct gene signatures (Supplementary

Figures S4A,B). Kaplan–Meier analysis revealed that a low risk score

showed a dramatically longer OS compared to that for a high risk

score (Figure 7A). The testing data set for internal validation

(Supplementary Figure S4C) and our cohort data (Supplementary

Figure S4D) also confirmed the prognostic value of the gene

FIGURE 6
The PCA and heatmap showing the significant difference between normal and tumor samples (A,B) and the high correlation within groups (C).
The “cg02243303” and “cg2185896” probes are significantly associated with OS (D,E) and negatively correlated with MCM3 expression (F,G).
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FIGURE 7
Significant association of the gene signature based on MCM3-related genes with OS (A). The AUC values of the training set, internal validation
set, and our cohort are higher than those for histological classification and molecular subtyping (B). The forest plot showed that the gene signature
was the only independent factor (C). DCA demonstrating the better performance of the risk score compared to the current histological classification
andmolecular subtyping (D). Positive expression of MCM3 expression with sensitivity to etoposide (E) and cisplatin (F). Decreased IC50 values of
cisplatin (G) and etoposide (H) in the sh-MCM3 groups in both D283 and D458 cell lines.

Frontiers in Molecular Biosciences frontiersin.org12

Cao et al. 10.3389/fmolb.2022.815260

190

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.815260


signature. The AUC of 5-year survival was 0.83 (Figure 7B).

Although the AUC values of the validation set and our cohort

were relatively lower, all were significantly higher than those of

histological and molecular subtypes (Figure 7B). Moreover, the

multivariate Cox regression analysis revealed that only the risk

score was the independent factor (Figure 7C). In addition, the

nomogram model predicting 1-year and 5-year probabilities can

be explored on the website (https://cll12345.shinyapps.io/

DynNomapp/). The C-index of the nomogram was 0.784 (CI: 0.

723–0.831), suggesting its reliability. Moreover, decision curve

analysis (DCA) of the nomogram showed that the prognostic

model performed better than the current strategies for MB

classification (Figure 7D). Finally, owing to the predominance of

conventional chemotherapies in the treatment of MB, we evaluated

the correlation between MCM3 expression and drug sensitivities.

Patients with low MCM3 expression were more sensitive to

etoposide and cisplatin treatment (Figures 7E,F). Furthermore,

we validated the decrease in the IC50 of etoposide and cisplatin

by knocking down MCM3 expression in both D283 and D458 cell

lines (Figures 7G,H). Therefore, MCM3 might be used to guide

prognostic assessment and MCM3 targeted therapy might be a new

potential strategy to reduce chemotherapy doses, which is of great

significance for individualized chemotherapy in children.

Discussion

The results of this study demonstrated the dysregulation of

MCM3 in most common cancers and showed its expression level

in MB cell lines of pediatric brain tumors, which indicated its

potential correlation with tumorigenesis. The CRISPR screening

data, covering multiple cancer cell lines from the BioGRIDORCS

database, also indicated its essential role in malignant cells and

potential relationships with apoptosis, autophagy, and

ferroptosis. We then showed MCM3 overexpression in MB, its

core place in DEGs, and the biological process it drove at bulk

and single-cell RNA-seq levels. We also investigated the

correlations between MCM3 and clinical features, finding that

the MCM3 expression level was related to high-risk

clinicopathologic and molecular subtypes and poor prognosis.

We further performed GSEA based on high and low

MCM3 expression levels and found that MCM3 might

promote tumorigenesis through the dysfunction of the pre-

replicative complex and CDC45-MCM-GINS (CMG) helicases

formed byMCM2,MCM3,MCM7, and CDC45. Considering the

reported relationships with immune response, apoptosis,

autophagy, and ferroptosis, we also found that MCM3 was

correlated with immune microenvironment components and

might affect genes related to the above biological processes,

such as CDK5RAP3, TOP2A, OPTN, MAPK10, etc., which

indicated that MCM3 might affect tumorigenesis through a

variety of mechanisms. In addition, we investigated the

mechanisms of MCM3 dysregulation at the DNA methylation

level and identified two differential sites that were associated with

OS and correlated with MCM3 expression, which indicated that

abnormal methylation might result in MCM3 dysregulation.

Finally, we discovered the correlation of MCM3 expression

with sensitivity to chemotherapy medications, including

etoposide and cisplatin.

MCM3, a member of the MCM family of DNA-dependent

ATPases that bind to replication origins and support a single

round of DNA replication, has demonstrated dysfunction in

most cancers. As shown in Figure 1, MCM3 is upregulated in

various tumors compared to normal tissues. MB is a highly

heterogeneous tumor with the highest incidence andmalignancy.

Molecular subtypes have been described as a reference for

prognosis and individual therapy; however, the high costs of

this analysis limit its popularity in primary medical care. Thus,

there is an urgent need to identify low-cost biomarkers to guide

clinical decision-making. As reported in other tumors, MCM3 is

also upregulated in MB based on bulk RNA-seq data. Moreover,

we also investigated its expression at the single-cell level. As

shown in Figure 2, MCM3 was overexpressed in tumor cells and

might be related to malignant transformation.

The present study also evaluated the impact of

MCM3 dysregulation according to previous reports (Söling

et al., 2005; Puustinen et al., 2020). First, we studied the

association of MCM3 expression within the MB

microenvironment via different methods. We found the

differential immune infiltration between high and low

MCM3 expression levels, including higher infiltration levels of

cytotoxic lymphocytes in the high MCM3 group and higher

infiltration levels of fibroblasts and M2 macrophages in the low

MCM3 group. Moreover, immune components such as

neutrophils and fibroblasts, as well as stromal and estimate

scores, were associated with OS in MB subtypes, indicating the

potential role of MCM3 by affecting immune infiltration. We also

evaluated the association ofMCM3with apoptosis, autophagy, and

ferroptosis-related genes, in which some differentially expressed

genes were correlated with MCM3 and associated with OS.

Therefore, MCM3 might also influence prognosis via these

genes, which requires further robust experimental verification.

Considering the low mutation burden of pediatric brain

tumors, we investigated the mechanism of MCM3 expression

dysregulation. As expected, 2 of 13 sites in MCM3 showed

hypermethylation in MB and were associated with OS.

Moreover, the hypermethylation state was significantly

correlated with MCM3overexpression. Previous studies also

reported that MCM3 hypomethylation could increase its

expression in hepatocellular carcinoma (Hua et al., 2020) and

osteosarcoma (Zhou et al., 2021), and was negatively associated

with prognosis. We also identified that “double-strand break

repair via break-induced replication” might be the most affected

biological processes in GSEA of MCM3 correlated and

differential genes between the high and low MCM3 expression

groups (Figure 3B). Meanwhile, MCM7 and CDC45, which were
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involved in this process, were correlated with MCM3 and

differentially expressed between normal and tumor tissues.

Our results also verified that MCM3 expression was

correlated with other clinical parameters, especially molecular

subtypes and OS, with low-risk classification based on

MCM3 expression commonly observed in the WNT MB and

surviving groups (Figure 4). This indicated that MCM3 might be

a low-cost biomarker for MB risk classification. MCM3 could

also guide for chemotherapy selection according to its robust

correlation (r2 = 0.54 and r2 = 0.33) with cisplatin and etoposide,

which might contribute to individualized therapy to reduce their

toxic side effects in children (Figures 7E,F).

Despite the results, this study has several limitations. First,

while our results demonstrated the correlations between

MCM3 and multiple biological processes through

bioinformatics analysis, further validation studies are needed

to reveal the crosstalk between them. Second, further studies

of the MCM-associated mechanisms via CMG helicases might

also provide a direction for novel target development. In

addition, although our prognostic model demonstrated a

better performance than current histological and molecular

subtypes, further clinical translation is needed.

Conclusion

Overall, we systematically studied abnormal MCM3 expression

and affected biological processes in bulk and single-cell RNA-seq. Our

results showed MCM3 overexpression in MB and its relationships to

clinical parameters. We also discovered that MCM3 might affect

varied biological processes by aberrant methylation of MCM3 and

dysregulation of the complex consisting of MCM2, MCM3, MCM7,

and CDC45. Importantly, our results indicated that MCM3 might

serve as a potential biomarker of prognosis prediction and better

guidance compared to current histological and molecular

classification systems for clinical decision-making.
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SUPPLEMENTARY FIGURE S1
Dysregulation ofMCM3 inmost cancers compared to corresponding normal
tissues . MCM3 upregulation in the tumor group compared to adult normal
samples from GSE42656 (B). MCM3 upregulation in the tumor group
compared to fetal normal samples fromGSE42656 (C). The adult normal and
medulloblastoma samples from GSE42656 clustered according to the
expression of 255-DEGs (D). The fetal normal and medulloblastoma
samples from GSE42656 clustered respectively according to the expression
of 255-DEGs (E). The core position of MCM3 among DEG interactions (F).
Ranking of MCM3 within the top three hub genes (G).

SUPPLEMENTARY FIGURE S2
Estimation of tumor-infiltrating cells via three algorithms, including
ESTIMATE, CIBERSORT, and XCELL, showing differential infiltration of
immune cells, including cytotoxic lymphocytes, fibroblasts, CD4 T cells,
macrophages, etc.

SUPPLEMENTARY FIGURE S3
Association of neutrophils with OS in the SHH subtype . Association of
stromal score with OS in the SHH subtype (B). Association of
neutrophils with OS in WNT MB (C). Association of stromal score
with OS in the Group4 subtype (D). Associations of estimate score
with OS in Group4 MB (E). Negative correlations of the expression of
autophagy-related genes (DNM3, GABARAPL1 GABBR2, and OPTN)
with MCM3 expression (F–I). Relationship of the expression of
autophagy-related genes (DNM3, GABBR2 and GABARAPL1) with
OS (J–L).

SUPPLEMENTARY FIGURE S4
Lasso regression analysis with MCM3-correlated genes in GSE85217, in
which 17 genes constituted themulti-gene signature . Association of the
risk score with OS in the internal validation set (C). Association of the
risk score with OS in our cohort (D).
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