Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Despite the enormous amounts of resources and efforts for AD drug development during the last three decades, no effective treatments have been developed that can slow or halt the progression of the disease. Currently available drugs for treating AD can only improve clinical symptoms temporarily with moderate efficacies. In recent years, the scientific community has realized these challenges and reconsidered the future directions of AD drug development. The most significant recent changes in AD drug development strategy include shifting from amyloid-based targets to other targets, such as tau, and efforts toward better designs for clinical trials. However, most AD drug development is still focused on a single mechanism or target, which is the conventional strategy for drug development. Although multifactorial mechanisms and, on this basis, multi-target strategies have been proposed in recent years, this approach has not been widely recognized and accepted by the mainstream of AD drug development. Here, we emphasize the multifactorial mechanisms of AD and discuss the urgent need for a paradigm shift in AD drug development from a single target to multiple targets, either with the multi-target–directed ligands approach or the combination therapy approach. We hope this article will increase the recognition of the multifactorial nature of AD and promote this paradigm shift. We believe that such a shift will facilitate successful development of effective AD therapies.
In this review, we undertake a critical appraisal of eight published studies providing first evidence that a history of attention-deficit/hyperactivity disorder (ADHD) may increase risk for the later-life development of a neurodegenerative disease, in particular Lewy body diseases (LBD), by up to five-fold. Most of these studies have used data linked to health records in large population registers and include impressive sample sizes and adequate follow-up periods. We identify a number of methodological limitations as well, including potential diagnostic inaccuracies arising from the use of electronic health records, biases in the measurement of ADHD status and symptoms, and concerns surrounding the representativeness of ADHD and LBD cohorts. Consequently, previously reported risk associations may have been underestimated due to the high likelihood of potentially missed ADHD cases in groups used as “controls”, or alternatively previous estimates may be inflated due to the inclusion of confounding comorbidities or non-ADHD cases within “exposed” groups that may have better accounted for dementia risk. Prospective longitudinal studies involving well-characterized cases and controls are recommended to provide some reassurance about the validity of neurodegenerative risk estimates in ADHD.