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Chemical sensing is likely the most primordial sensory modality that emerged in the evolution 
of life. Without chemical sensing life on earth would probably not exist. It is used for detecting 
nutrients, avoiding threats, finding mating partners and various forms of communication and 
social interaction between animals.  
 
The advent of artificial sensors has created a myriad of problems in the areas of chemical 
detection and identification with applications in food quality and pollution control, chemical 
threat detection, health monitoring, robot control and even odor and taste synthesis. Efficient 
algorithms are needed to address the many challenges of chemical sensing in these areas, 
including (but not limited to) sensitivity levels, sensor drift, concentration invariance of 
analyte identity and complex mixtures. Defining and improving analysis methods for artificial 
chemical sensing remains an active research area in engineering and machine learning alike.  
 
In the course of evolution animals, bacteria and plants have developed sophisticated methods 
and algorithms for solving difficult problems in chemical sensing very efficiently. Complex 
signaling pathways inside single cells can trigger movement toward the source of a nutrient. 
Complex networks of neurons appear to be able to compute odor types and the distance to a 
source in turbulent flows. These networks of neurons use a combination of temporal coding, 
layered structures, simple Hebbian learning rules, reinforcement learning and inhibition to 
quickly learn about chemical stimuli that are critical for their survival. Olfaction is a vibrant 
filed of research because recent technological advances allow monitoring and manipulating 
brain areas inaccessible in the past thus allowing for rapid progress. This is particularly 
relevant because to this date the best solutions to many general chemical sensing problems are 
still found in animals rather than artificial devices. Many lessons may yet have to be learned 
from biological systems to solve the complex problems of chemical sensing with similar 
success as animals routinely do.  
 
This special issue has the ambitious goal of bringing together biologists and engineers to 
report on biological solutions and engineering approaches to chemical sensing challenges in 
order to better understand in what aspects both fields can find common ground of discussion 
and to thus promote novel areas of interdisciplinary research.
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It is widely recognized that further breakthroughs in science
and technology may rely on multidisciplinary research efforts.
Breaking the boundaries of well-established research fields and
combining methodologies from disparate areas can foster innova-
tive and translational research. Chemical sensing is no exception.
Perhaps more than any other sensory modality, chemical sensing
is plagued with major technical and conceptual challenges: the
turbulent nature of the signal carrier, the long term instability,
lack of sensitivity, and slow response times of sensors and the lack
of a reliable odor map to characterize mammalian perception.
When facing these hurdles, the designers of artificial devices for
gas recognition look at the olfactory system of animals for inspi-
ration because animals seemingly effortlessly accomplish some of
the unsolved challenging problems in machine olfaction: recog-
nizing odors and odor mixtures from a chemical background,
segmenting mixtures of odors into components, being sensitive
and robust and extracting the same odor percept over a wide
range of concentrations.

Our challenge in bio-mimetic chemical sensing is to identify
at all levels from the olfactory receptors to the central nervous
system, what are the key ingredients to these impressive abilities.
The goal of this research topic is to document highlights from this
ongoing effort and to compile an up-to-date overview not only
from the academic point of view but also with respect to industrial
applications.

This research topic emanates from our own effort to bridge
the anatomical and physiological data of the olfactory system,
in particular in insects, to explain pattern recognition (Huerta
et al., 2004; Nowotny et al., 2005; Huerta and Nowotny, 2009)
and apply them to real problems with artificial sensor arrays and
other applications (Muezzinoglu et al., 2008, 2009; Huerta et al.,
2012). This research topic therefore brings together researchers
from chemistry, neuroscience, physics, biology, and computer sci-
ence, and the described work extends from fundamental scientific
questions to technological applications.

On the scientific side the contributions tackle three core issues:
concentration-invariant representations of odors, properties, and
the potential role of oscillations in the olfactory system and the
nature of odor interactions in mixtures.

Cleland et al. (2012) address concentration-invariant odor
perception in rats and find that there are six known mechanisms
that combine to achieve odor representations that do only

minimally depend on concentration. Yamani et al. (2012) take
a different view on concentration-invariant odor perception.
Taking inspiration from the convergence of olfactory receptor
neurons onto glomeruli and the use of latency as the coding sig-
nal they design a bio-mimetic information processing method
for a metal oxide gas sensor array. Martinelli et al. (2011) on the
other hand have identified another advantage of latency coding.
They propose a bio-inspired solution to accelerate the response to
odors using a network that uses the spike latency to discriminate
volatile gases.

The presence of clear but transient oscillations in many olfac-
tory systems has baffled scientists for a long time. The review
of Assisi and Bazhenov (2012) summarizes their extensive work
on the origin of these oscillations. However, Daly et al. (2011)
report that they discovered that in the hawk moth Manduca Sexta
oscillatory patterns have quite different characteristics than pre-
viously reported: oscillations are frequency modulated by odor
input rather than amplitude-modulated, they are local rather
than global and spikes lock to the oscillations during baseline
activity more than during odor stimuli. Schmuker et al. (2011)
address the problem of concurrent odor recognition and odor
concentration estimation using models of the bee olfactory sys-
tem and demonstrate that either goal can be achieved by the
same antennal lobe network depending on the strength of lateral
inhibition. In a similar direction, Proske et al. (2012) investigate
different network topologies in an antennal lobe model of the
fruit fly Drosophila and find that networks with a heterogeneous,
correlation based inhibitory network lead to the best discrimi-
nation performance. Capurro et al. (2012) address the problem
of odor interactions in odorant blends. Comparing experimental
data from local and projections neurons with a reduced model
they conclude that the experimentally observed odor interac-
tions can be explained solely through local neuron and projection
neuron response profiles and a simple mechanism of lateral
inhibition.

On the technological side we are pleased to have received
a variety of articles describing applications of chemical sen-
sors and electronic noses, robotics, and a clinical application for
hyposmia/anosmia characterization (Yánez et al., 2012).

Vergara and Llobet (2012) address the problem of better
selectivity on sensor technology using signal modulation which
is directly related to the oscillatory behavior investigated in the
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biological systems above. In robotic implementations of gas
sensing, Hernandez Bennetts et al. (2012) compare biologically
plausible models and statistical strategies for odor localization.
Their results are not too optimistic because, as they argue, cur-
rent sensor technology still differ fundamentally in their sensing
and actuation capabilities from highly sensitive and fast biolog-
ical chemical receptors. It is clear that we still need to develop
more sensitive, faster, and more stable sensors to be able to take
full advantage of bio-inspired technology here. Nevertheless, in
the meantime, until this technology is fully developed there are
alternative hybrid approaches that allow testing strategies with
simulated gas sensor responses and real robots as described in
this research topic by Rhodes and Anderson (2012). This idea may
point out a direction in which multidisciplinary approaches can

advance in seeking the prospects of the neuro-inspired algorithms
for information processing.

In summary this special issue is providing an overview of the
frontiers in olfactory processing in the brain and the current
challenges in applying these neuro-inspired principles in artifi-
cial olfaction. Much progress has been made, and it is becoming
clear that the path to future breakthroughs does not emerge from
isolated fields, but from multidisciplinary efforts like the ones
presented here.
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Concentration invariance—the capacity to recognize a given odorant (analyte) across
a range of concentrations—is an unusually difficult problem in the olfactory modality.
Nevertheless, humans and other animals are able to recognize known odors across
substantial concentration ranges, and this concentration invariance is a highly desirable
property for artificial systems as well. Several properties of olfactory systems have
been proposed to contribute to concentration invariance, but none of these alone can
plausibly achieve full concentration invariance. We here propose that the mammalian
olfactory system uses at least six computational mechanisms in series to reduce the
concentration-dependent variance in odor representations to a level at which different
concentrations of odors evoke reasonably similar representations, while preserving
variance arising from differences in odor quality. We suggest that the residual variance
then is treated like any other source of stimulus variance, and categorized appropriately
into “odors” via perceptual learning. We further show that naïve mice respond to different
concentrations of an odorant just as if they were differences in quality, suggesting that,
prior to odor categorization, the learning-independent compensatory mechanisms are
limited in their capacity to achieve concentration invariance.

Keywords: learning, odor representations, categorization, generalization, olfactory bulb, concentration invariance,

mice, computational neuroscience

INTRODUCTION
In natural environments, odorants (analytes) can vary over many
orders of magnitude in concentration—from ripe fruit or carrion
in close proximity to the subtle scents of a trail of secretions or
distant prey. In order to recognize known odors across the ranges
of concentration at which they may be encountered, the olfac-
tory system must in some way achieve concentration invariance
in its odor representations, somehow separating concentration-
dependent effects from information representing odor quality so
that the odor source can be correctly identified.

Intensity invariance is a common problem across sensory sys-
tems, largely because the physical properties of the external envi-
ronment vary to a much wider extent than the limited dynamic
ranges of primary sensory receptors are able to capture. However,
the problem is particularly acute in chemosensory modalities.
Like all sensory receptors, primary chemosensors exhibit broad
receptive fields that respond differentially to changes in inten-
sity (concentration) as well as to changes in stimulus quality.
Additionally, however, increasing odorant concentrations also
recruit novel, lower-affinity ligand-receptor interactions that can
interfere in unpredictable ways with existing interactions. The
net effect is that, in addition to relatively predictable mono-
tonic changes in receptor activation levels, concentration changes
affect odor representations in unpredictable ways that are indis-
tinguishable from changes in odor quality. Indeed, these effects
essentially are changes in odor quality, as they arise from qualita-
tive changes in the pattern of ligand-receptor interactions across

the olfactory epithelium (Figure 1); interestingly, some odor-
ants are perceived to shift in quality more than others when
presented at different concentrations (Gross-Isseroff and Lancet,
1988; Johnson and Leon, 2000; Wright et al., 2005). The prob-
lem of olfactory concentration invariance consequently has been
of considerable and persistent interest (Gross-Isseroff and Lancet,
1988; Duchamp-Viret et al., 1990; Bhagavan and Smith, 1997;
Cleland and Linster, 2002; Cleland and Narla, 2003; Stopfer et al.,
2003; Cleland et al., 2007; Uchida and Mainen, 2007).

Animals, including humans, are able to recognize many odors
across reasonably wide ranges of concentration, and this capacity
is critical for the utility of artificial noses as well. What algo-
rithms underlie this capability of biological olfactory systems,
and how can they be adapted to artificial systems? To date, sev-
eral alternatives have been explored, many with considerable
merit, though none plausibly achieve the nominal goal of con-
centration invariance in its entirety. We here argue that true
concentration invariance in chemosensory systems is not achiev-
able, and instead outline a practical if imperfect solution to the
problem that is effective in biological systems and calls for spe-
cific design elements in biomimetic artificial systems. Specifically,
the unpredictable effects of concentration-dependent variance at
the ligand-receptor interface produce a lossy, and therefore irre-
versible, transformation in the representation of a given odor
across concentrations that is indistinguishable from the effects
of quality-dependent variance. Rather than attempt solely to
unravel the respective effects of concentration and quality on odor
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A B

FIGURE 1 | Depiction of the problem of concentration invariance. (A)

Simple models of concentration invariance are predicated upon the principle
that increases in concentration generate predictably monotonic increases in
the activation levels of all sensitive receptors. The broad aggregate
dose-response curves of glomeruli, hypothesized to combine inputs from
similarly tuned OSNs that exhibit different half-activation concentrations
owing to differences in receptor reserve, can in principle extend this
quasi-linear range and thereby improve the similarity of relational
representations of odorants across concentrations. Top panel. In a
computational model of ligand-receptor interactions, three ORs are activated
by three odotopes of an odorant presented at a range of concentrations
(five of which are labeled: [1]–[5]). Dose-response curves that do not rise
to a maximum value of 1 connote odotopes that are partial agonists for
their cognate ORs. Ligand-receptor interaction i exhibits a glomerular Hill
equivalent [exponent of the population dose-response function; (Cleland and
Linster, 1999)] of 0.2, yielding a quasi-linear dose-response range extending
across roughly five orders of magnitude in concentration. Interactions
ii and iii exhibit somewhat higher—i.e., less extreme—Hill equivalents in
this example and hence have steeper, narrower dose-response curves.
As a result of these broadened curves, the relational representation of
the odorant across concentrations is recognizable to some degree

across modest concentration ranges. Middle panel. Primary odor
representations at five concentrations, directly read as activation levels at
each of the three OR interactions depicted (identified on graph of
concentration [5]). Lower panel. Data from the middle panel, divisively
normalized so that the activity resulting from each odor presentation sums to
a constant. Odor representations at concentrations [4] and [5], and to some
extent [3], are reasonably similar. This similarity across concentrations will
improve if the quasi-linear ranges of OR interactions ii and iii are extended
to resemble that of interaction i. (B) Top panel. Allosteric and other
non-competitive interactions, even low-affinity interactions, can render
dose-response profiles at individual ORs non-monotonic, generating
variance that cannot be resolved by broadening glomerular intensity tuning
ranges. Adding low-affinity non-competitive interactions to the model
generated clearly non-monotonic dose-response profiles for odotopes i and
iii. Middle panel. Primary odor representations at five concentrations,
directly read as activation levels at each of the three OR interactions
depicted (identified on graph of concentration [2]). Lower panel. Data
from the middle panel, divisively normalized so that the activity resulting
from each odor presentation sums to a constant. Odor representations
are unrecognizable across even similar concentrations, even after
normalization.

representations, we propose that a series of design features in
the vertebrate olfactory system serve to (a) extend the capacity
of the system to represent variance within a monotonic, quasi-
linear regime, (b) utilize this capacity to reduce the magnitude
of variance attributable to concentration changes when possible,
and finally (c) categorize the range of odorant representations
attributable to concentration series together via the same learn-
ing process by which variance in odor quality is categorically
grouped so as to form odors. In essence, different concentra-
tions of a given odorant are treated as a range of reasonably
similar odors that can come to be interpreted as the same odor
via learning. This proposed series of design features includes,
in order: (1) adaptive sampling behaviors, (2) expansion of the
quasi-linear range of olfactory receptor dose-response curves via

receptor reserve and axonal convergence, (3) compression of this
broad intensity tuning range into the modest dynamic range of
single neurons, (4) dynamical matching of pre and postsynaptic
dose-response curves at the first synapse in order to optimize the
detection of small changes in the chemosensory environment, (5)
relational normalization, the first stage at which there is competi-
tion among different chemosensors, and finally (6) generalization
of the odor representation across concentrations by categorical
learning.

THEORETICAL FOUNDATIONS
PRINCIPLES OF ODOR LIGAND-RECEPTOR INTERACTION
Primary olfactory sensory neurons (OSNs) in the vertebrate
nasal cavity each canonically express one or a few species of
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odorant receptor proteins (ORs). In mice, there are over 1000
different functional odorant receptors expressed (Mombaerts,
2004), and millions of OSNs in the nasal cavity. The thou-
sands of OSNs that express any given OR complement are
distributed around the nasal cavity (Schoenfeld and Cleland,
2005, 2006), but their axonal projections converge and arborize
together to form discrete target locations on the superficial
olfactory bulb known as glomeruli (Figure 2). Setting aside the
fact that glomeruli are anatomically duplicated—most glomeruli
are replicated on the medial and lateral aspects of each olfac-
tory bulb, yielding four glomeruli in total per OR per animal;
(Schoenfeld and Cleland, 2005)—there is a direct correspon-
dence between a given glomerulus, the OR complement expressed
by its constituent OSNs, and the primary chemoreceptive field

expressed by that OR complement (Belluscio et al., 2002; Treloar
et al., 2002).

The chemoreceptive fields of individual ORs are measurable
(Araneda et al., 2000), but ultimately unknowable in practice for
computational purposes. A complete functional characterization
of an OR would require not only an exhaustive list of strong
and moderate agonists, but also a comparably exhaustive char-
acterization of odorants acting as weak agonists, antagonists, and
non-competitive allosteric modulators that would by their pres-
ence impair that OR’s capacity to respond to odorant agonists.
Interfering ligands in this sense need not be odorants arising from
distinct sources, or even different molecules within odor mixtures
(which comprise most natural odors), but also can arise from
multiple receptor binding sites presented by individual odorant

FIGURE 2 | Circuit diagram of the mammalian olfactory bulb (two

glomeruli shown, with corresponding postglomerular circuitry). The
axons of olfactory sensory neurons (OSNs) expressing the same odorant
receptor type (denoted by the shape and color of the receptor) converge
together to form glomeruli (shaded ovals) on the surface of the olfactory bulb.
Multiple classes of olfactory bulb neuron also innervate each glomerulus.
Glomerular interneuron classes are heterogeneous, and include olfactory
nerve-driven periglomerular cells (PGo), external tufted cell-driven
periglomerular cells (PGe), and multiple subtypes of external tufted cells (ET).
Superficial short-axon cells (sSA) are not associated with specific glomeruli
but project broadly and laterally within the deep glomerular layer, interacting

with glomerular interneurons. Principal neurons include mitral cells (Mi),
which interact via reciprocal connections in the external plexiform layer (EPL)
with the dendrites of inhibitory granule cells (Gr), thereby receiving recurrent
and lateral inhibition. Middle/deep tufted cells, another class of olfactory bulb
principal neurons, are not depicted. OE, olfactory epithelium (in the nasal
cavity); GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell
layer; IPL, internal plexiform layer; GCL, granule cell layer. Filled triangles
denote excitatory (glutamatergic) synapses; open circles denote inhibitory
(GABAergic) synapses. Speckles surrounding OSN terminals connote
volume-released GABA and dopamine approaching presynaptic GABAB and
dopamine D2 receptors. Figure adapted from (Cleland, 2010).
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molecules. In the relatively unregulated chemical environment to
which the nasal cavity is subjected, these complex pharmacolog-
ical interactions can substantially impact the net activation levels
of OSNs, and therefore alter the primary odor representation.

ODOR SPACE
As the competitive and non-competitive ligand-receptor inter-
actions underlying primary olfactory transduction are unknow-
ably complex, models of olfactory similarity space—commonly
referred to as “odor space” and analogous to the one-dimensional
space of pitch similarity in audition or the two-dimensional space
of retinotopic location in early vision—cannot be usefully based
on the physicochemical properties of odorants. Whereas in audi-
tion the tonotopic distribution of frequency sensitivities across
the lengths of the cochlea or cochlear nucleus subdivisions can be
mapped with respect to physical frequency itself (Luo et al., 2009),
the analogous relationship in olfaction between OSN activation
levels and the physicochemical properties of odorant molecules
cannot practically be systematically measured. However, the pat-
tern of OSN activation levels itself is a perfectly valid, albeit
species-specific, foundational metric on which to base analyses
of odor similarity. In this metric, any given olfactory represen-
tation (at a point in time) is uniquely defined as the pattern of
levels of activation across each of the ∼1000 (in mice) ORs, with
no reference made to the many possible configurations of ago-
nists, antagonists, and allosteric site ligands that could underlie
that pattern. (Indeed, there is by definition no way for the olfac-
tory system to distinguish among different ligand configurations
that result in the same pattern of input activity, so from the per-
spective of olfactory coding no information is lost). Moreover,
the elemental odor stimulus is defined here not as an odorant
molecule or molecular epitope per se, but rather an odotope, here
defined as “the net effect of a given odorant molecule on a sin-
gle type of odorant receptor” without direct correspondence to
molecular structural features (Cleland, 2008). Any changes in
the pattern of chemoreceptor activation consequently are treated
equally, whether deriving from differences in concentration or in
ligand complement.

In this framework, odor space is concretely defined as hav-
ing a dimensionality equal to the number of different ORs—in
mice, roughly 1000—because each OR can in principle be acti-
vated independently of any other. Conveniently, these dimen-
sions directly correspond to olfactory bulb glomeruli and hence
can be directly observed using various experimental techniques
(Friedrich and Korsching, 1997; Belluscio and Katz, 2001; Leon
and Johnson, 2003; Fletcher et al., 2009). Theoretically, any given
odor representation can at a given point in time be described
by an n-dimensional vector, where n is the number of differ-
ent ORs in the system, and the magnitude in each dimension
ranges from 0 (no activity) to 1 (maximal activation). However,
the utility of this vector model is limited by the problem of
variance.

VARIANCE
Variance in stimulus quality is inescapable. Even subsequent
presentations of the same odorant under experimentally con-
trolled conditions will not evoke exactly the same pattern of

neural activity. Rather, each of these different evoked activity
patterns constitutes a different n-dimensional vector; however,
these vectors can be bound together into a common perceptual
quality by virtue of their overall similarity. That is, odor rep-
resentations are not single vectors, but n-dimensional clouds of
vectors in odor space with characteristic sizes and shapes. The
probabilistic boundaries that define the size and shape of such
clouds define the region within which a meaningful odor (such
as “apple”) will be recognized irrespective of within-category
variability (e.g., cultivar, ripeness, temperature, growing-season
variables). Outside of these boundaries, an odor stimulus will
be judged as to some degree different from that representation
in its quality or implications. Quantitatively, these clouds con-
stitute n-dimensional probability density functions (PDFs) that
correspond to what might be termed odors, as distinct from odor-
ants: learned ranges of chemosensory activation patterns that
convey the same meaning. Importantly, the degree of tolerable
variance in each dimension is an integral part of the odor rep-
resentation; large changes in some dimensions may be included
in the same odor representation whereas small differences in
other dimensions may indicate a different odor with different
implications.

These odor PDFs can be behaviorally measured using general-
ization gradients [Figure 3; (Shepard, 1987; Linster and Hasselmo,
1999; Tenenbaum and Griffiths, 2001; Cleland et al., 2002)].
Olfactory generalization gradients are systematically regulated by
learning, and directly measure how progressively increasing dis-
similarity among odors yields a corresponding decline in animals’
expectation of similar outcomes (Daly et al., 2001; Wilson and
Stevenson, 2006; Cleland et al., 2009; Fernandez et al., 2009).
Olfactory generalization gradients in vertebrates also are regu-
lated by extrinsic neuromodulation within olfactory bulb and
piriform cortex (Linster and Cleland, 2002; Wilson et al., 2004;
Mandairon et al., 2006; Mandairon and Linster, 2009); the level of
activity in ascending neuromodulatory inputs reflects behavioral
state and may underlie animals’ capacity to alter the perception of
similarity in accordance with task demands.

LEARNING ABOUT ODOR VARIANCE
Multiple types of olfactory generalization gradient can be used
to measure the sizes and shapes of odor representations (Cleland
et al., 2002). In non-associative generalization gradients [also
known as cross-habituation or spontaneous discrimination gra-
dients; (Cleland et al., 2002; Mandairon et al., 2006)], an animal
is repeatedly presented with an odorant until its investigation
time drops to an asymptotic minimum. Presentation of highly
dissimilar odorants will still evoke a full investigation response,
whereas odorants similar to the habituated odorant evoke par-
tial responses. The function of investigation time with respect
to odorant similarity defines the probabilistic boundary of the
odor representation. Associative generalization gradients are sim-
ilar in principle, but are measured by conditioning an animal
to work (dig) for a reward when an odor cue is delivered.
Presentation of odorants dissimilar to the conditioning odor-
ant evokes no conditioned response, whereas presentation of
perceptually similar odorants elicits a digging response that
declines in perseverance as the odorant cue becomes more
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FIGURE 3 | Olfactory generalization gradients in mice. (A) Associative
generalization from a conditioned odorant stimulus (CS) to a series of four
sequentially similar odorants (S1-S4) plus one structurally and perceptually
dissimilar control odorant (D). Presenting all odorants at a higher
concentration (theoretical vapor-phase partial pressure of 1.0 Pa; black line)
yielded a steeper, narrower generalization gradient than did identical training
with low-concentration odorants (0.01 Pa; gray line), reflecting the
learning-theoretic principle that higher CS salience supports greater learning.
Twelve training trials were administered prior to testing. Figure adapted from
Cleland et al. (2009). (B) Increasing the number of training trials (CS-reward
pairings) prior to testing progressively increased perseverance and sharpened
associative generalization gradients. 3×: three training trials; 6×: six training
trials; 12×: 12 training trials. Figure adapted from Cleland et al. (2009).
(C) Generalization gradients adapt to the variance of the conditioning odor.
The high-variance conditioning group (see Methods) generalized fully across
the range of CS variability (no difference in digging times between 50:50 and
either C4 or C5; Welch test, t(46.36) = 0.444, p = 0.659; t(47.43) = 0.854,
p = 0.398, respectively), whereas the low-variance group clearly

distinguished both C4 and C5 from the 50:50 odor mixture CS
(significant differences in digging times; Welch test, t(56.87) = 2.583,
p = 0.012; t(43.45) = 3.314, p = 0.002, respectively). (D) Mice perceive
sufficiently different concentrations of novel odorants as distinct odors.
One group of mice was conditioned to an odorant CS at a high
concentration (1.0 Pa; black line, test concentrations in Pa listed in
Roman font on x-axis) and tested on two lower concentrations of that
odorant as well as a dissimilar control odorant (D) at 1.0 Pa. A second
group was conditioned to the same odorant CS at a low concentration
(0.01 Pa; gray line, test concentrations in Pa listed in italic font on x-axis)
and tested on two higher concentrations of that odorant as well as a
dissimilar control odorant (D) at 0.01 Pa. Both groups treated the test odorant
that was two orders of magnitude higher or lower in concentration as a
distinct odor, roughly comparable in similarity to a structurally dissimilar
odorant D. See the Learning-Dependent Construction of Odor
Representations section for analysis details. Odor sets and vol/vol dilutions
are detailed in Table 1. In all figures, error bars denote the standard error
of the mean.

dissimilar from the conditioning odorant [Figures 3A,B; (Linster
and Hasselmo, 1999; Cleland et al., 2002, 2009)]. The function
of perseverance (e.g., digging time) with respect to odorant
similarity yields a generalization gradient that delineates the
consequential region (Shepard, 1987) of the underlying odor
representation.

Critically, the shape of olfactory generalization gradients
is modified by learning. Classical learning determinants such
as conditioned stimulus salience and unconditioned stimulus
valence systematically modify associative generalization gradi-
ents, as do changes in the numbers of training trials prior to
testing (Cleland and Narla, 2003; Cleland et al., 2009). That
is: increased learning in these studies corresponds to progres-
sively sharper generalization gradients (Figures 3A,B; adapted
from Cleland et al., 2009). Considering these generalization

gradients as PDFs of odor quality—that is, maps of gradually
declining probability that increasingly dissimilar odor stimuli
have the same implications as the conditioned odorant—this
learning effect directly reflects the statistical principle that the
standard error of the mean is reduced as the number of sam-
ples increases. In a broader sense, learned generalization gradi-
ents reflect the fundamental principle of sensory representation
described above: generalization gradients are reflections of per-
ceptual learning, in which the olfactory system progressively
adapts its internal representation of odor space, through expe-
rience, to the statistics of odor encounters and consequences in
the world (Wilson and Stevenson, 2006; Fernandez et al., 2009;
Wright et al., 2009).

A corollary of this principle is that the different primary odor
representations arising from the range of odor qualities that
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correspond to a meaningful common odor such as “apple” should
be bound together into the same odor PDF so as to comprise a
common percept. In a generalization framework, this connotes
a region of full generalization across the range of odor quali-
ties that exhibits no significant dissimilarity-dependent reduction
in the operant response. This principle of generalization across
similar stimulus qualities in a continuous metric space has been
theoretically described in a Bayesian framework (Tenenbaum and
Griffiths, 2001). We tested the predictions of this theory in a
study in which two groups of mice were trained to the same
degree with the same mean conditioned odorant, but with dif-
ferent degrees of variance in odor quality across training trials.
As predicted, we observed that the full-generalization window of
the olfactory generalization gradient expanded to contain all of
the conditioned variance, and that generalization began to fall off
just outside of the boundaries of stimulus quality defined by the
training experience (Figure 3C).

ADDRESSING THE PROBLEM OF CONCENTRATION
INVARIANCE
Ideally, changes in odorant concentration simply would increase
the activity of all sensitive receptors proportionally, such that
subsequent processing could easily extract the portion of stimulus
variance attributable to odor quality differences. This, of course,
is not the case. The sigmoidal dose-response relationships of
ligand-receptor interactions have a limited quasi-linear range, but
also long asymptotic tails at the extremes such that concentration
changes alter the relational pattern of receptor activation on which
odor quality representations are based (Figure 1A). Given that
the quasi-linear range of ligand-receptor interactions is strictly
limited by mass action law (Cleland and Linster, 1999), these
distorting effects on relational representations are substantial.
Moreover, the Hill coefficients of individual odorant receptors
are often substantially greater than unity (Firestein et al., 1993),
exacerbating this problem; in such neurons, the range between
a concentration evoking 10% activation and that evoking 90%
activation (EC10−90) can be substantially less than two orders
of magnitude. In intact olfactory epithelia, the median EC05−95

dynamic range has been estimated at 0.3–1.2 log units (Rospars
et al., 2000). Finally, the emergence of lower-affinity ligands inter-
acting with activated receptors can alter dose-response curves in
the same way as would a novel odor component, altering effec-
tive ligand potencies and even rendering dose-response functions
non-monotonic if allosteric or other non-competitive interactions
arise [Figure 1B; discussed further in (Cleland and Linster, 1999;
Cleland, 2008)]. The inevitable consequence of these physical
principles is that, while a substantial fraction of the variance in
odor representations attributable to odor concentration can be
minimized, changing odor concentrations nevertheless results in
significant residual representational differences that are indistin-
guishable from changes in odorant quality. This predicts that naïve
animals will respond to different odor concentrations as if they
were different odorants, which indeed is the case in both mice
(Figure 3D) and honeybees (Choudhary, 2009).

The second problem of concentration is common among
sensory systems: the fact that the narrow dynamic range of
ligand-receptor interactions, as constrained by mass action law, is

far more limited than the range of external environmental prop-
erties that are to be measured. Indeed, to be able to resolve large
differences in concentration at all is a substantial feat of biolog-
ical engineering, as no individual sensor is capable of resolving
such a broad concentration range. Moreover, if multiple differ-
ent sensors (olfactory receptor types) with differing affinities for a
given ligand were employed systematically to resolve such a broad
concentration range, their otherwise unrelated chemoreceptive
fields would render odor quality and concentration irrevocably
intertwined, such that little or none of the variance attributable
to concentration could be identified as such. While this remains
a problem, it is made considerably more tractable in olfaction
by the early processing strategies outlined in the Broadening
of the Aggregate Dose-Response Curves of Glomeruli, Intensity
Compression at the First Synapse, and Adaptation to Background
Odor Intensity sections below.

In sum, as briefly outlined above, the solution of the biolog-
ical olfactory system to the problem of concentration is likely to
involve multiple coordinated processing mechanisms, which we
propose include the following: (1) constraining stimulus vari-
ance somewhat by behaviorally regulating the concentrations
presented to the olfactory epithelium, (2) substantially extending
the quasi-linear dynamic range of each individual olfactory recep-
tor class via receptor reserve and axonal convergence, thereby
reducing the distorting effects of concentration on relational
representations, and (3) compressing the absolute range of inten-
sities exhibited by OSN populations within each glomerulus to
match the dynamic ranges of postsynaptic second-order neurons.
This intensity compression stage collapses the expanded quasi-
linear dynamic range generated at the glomerulus (Broadening of
the Aggregate Dose-Response Curves of Glomeruli, below), thereby
eliminating a substantial fraction of the variance attributable
to concentration (Intensity Compression at the First Synapse,
below). Processing at this stage also appears to include (4) an
adaptive component that adjusts to stable odor backgrounds
so as to emphasize changes in the chemosensory environment
rather than always being dominated by the strongest stimuli,
and (5) an additional, competitive stage of normalization across
the input (glomerular) layer of olfactory bulb. The remaining
concentration-dependent variance, while substantially reduced
in magnitude, cannot be differentiated from quality-dependent
variance and, we here propose, (6) is perceived as quality variance
until and unless the animal learns to categorize this variance into
a single odorant.

ADAPTIVE SAMPLING BEHAVIORS
Animals are capable of modulating the intensity of sniffing behav-
ior, potentially increasing the concentration of weak odorants and
limiting the intensity of strong odors in the nasal cavity by reg-
ulating the depth and frequency of inhalation (Verhagen et al.,
2007, but see Teghtsoonian et al., 1978), and possibly even manip-
ulating odor quality to a limited extent by altering the deposition
pattern of odorants onto regions of the nasal mucosa that are dif-
ferentially enriched with particular ORs (Schoenfeld and Cleland,
2006). Control over sniffing may be particularly important for
limiting the access of highly intense odors to the nose, as the
capacity for differentiation among odors is sharply reduced when
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odorants are extremely strong. The regulation of sampling behav-
iors (sniffing, antennal flicking) and their role in perception is
an ongoing field of research (Koehl, 2006; Carey et al., 2009;
Shusterman et al., 2011; Wesson et al., 2011).

BROADENING OF THE AGGREGATE DOSE-RESPONSE CURVES
OF GLOMERULI
Broadening the dose-response curves of olfactory ligand-receptor
interactions until the quasi-linear portions of their concentra-
tion tuning ranges extend across multiple orders of magnitude
would enable a substantial fraction of concentration-dependent
variance in odor representations to be quasi-linearized, such that
it subsequently could be selectively removed from the represen-
tation by some form of normalization. However, the breadth of
the quasi-linear region [EC10−90; (Cleland and Linster, 1999)]
of individual ligand-receptor binding curves is limited by mass
action law to less than two orders of magnitude; moreover, the
reported Hill coefficients of isolated olfactory receptor neurons
(Firestein et al., 1993) suggest that many of these dose-response
relationships are even narrower than they need be (based on a
minimum Hill coefficient of unity).

The olfactory system appears to have utilized convergence to
engineer a solution to this conundrum. Thousands of individ-
ual OSNs that express the same odorant receptor complement
project their axons convergently onto single locations on the
surface of the olfactory bulb to form glomeruli [indeed, a sub-
stantial fraction of the glomerular volume is made up of their
axonal arborizations; (Kosaka et al., 2001; Nawroth et al., 2007)].
These convergent OSNs share the same receptive field for qual-
ity, but may be differently attuned for ranges of concentration
via differences in receptor reserve (Zhu, 1993) such that the net
dose-response curve of the convergent population can be greatly
extended so as to span several orders of magnitude (Cleland
and Linster, 1999). Indeed, aggregate glomerular dose-response
curves, as assessed by imaging studies, can span several orders
of magnitude (Friedrich and Korsching, 1997; Wachowiak et al.,
2002).

This substantial broadening of glomerular dose-response rela-
tionships prior to the first synapse, when followed by a normal-
ization process, can greatly reduce the magnitude of the variance
that is attributable to concentration (Figure 1A). Theoretical cal-
culations of dissimilarities among representations of the same
odorant across even small concentration differences suggest
that concentration-invariant perception would not be remotely
possible if the broadening of the quasi-linear range of these
glomerular activation functions did not enable the extraction
of much of this concentration-dependent variance component
(Cleland et al., 2007). Nevertheless, this process is imperfect
in its linearity and also contributes nothing towards resolution
of the problem of allosteric and noncompetitive interactions
(Figure 1B).

INTENSITY COMPRESSION AT THE FIRST SYNAPSE
The broadened aggregate dose-response relationships observed in
OB glomeruli enable olfactory stimuli to be encoded over broad
ranges of concentration. However, as this broad dynamic range
greatly exceeds the dynamic range of any one ligand-receptor

relationship, it must be compressed if the full dose-response rela-
tionship is to be encodable by individual postsynaptic neurons
such as mitral, tufted, and periglomerular cells (or, potentially,
across small groups of such cells). Indeed, mitral and tufted cells
are able to differentially respond to concentration changes across
reasonably wide concentration ranges (Hamilton and Kauer,
1989; Wellis et al., 1989; Duchamp-Viret et al., 1990; Nagayama
et al., 2004).

Compression of the absolute range of input intensity into
a manageable dynamic range appears to be mediated in large
part by feedback inhibition onto the presynaptic terminals of
OSNs, mediated by presynaptic GABAB receptors that reduce cal-
cium influx into terminals and thereby reduce transmitter release
(Nawroth et al., 2007; Pirez and Wachowiak, 2008). OSN activity
monosynaptically excites a subclass of GABAergic periglomeru-
lar interneurons [PGo cells; Figure 2; (Shao et al., 2009)] and
indirectly excites another subclass of GABAergic periglomeru-
lar cells (PGe cells), both of which release GABA in the vicinity
of OSN presynaptic terminals (as well as onto the dendrites of
mitral cells). The resulting presynaptic inhibition substantially
constrains the output of convergent OSN populations. Notably,
the magnitude (weight) of this presynaptic inhibition is consistent
across both weak and strong levels of afferent excitation (Pirez
and Wachowiak, 2008), and is not observably activity-dependent,
at least on the timescales studied to date. In principle, sta-
ble presynaptic feedback inhibition is precisely the computation
required to compress a monotonic dose-response relationship
into a narrower dynamic range, appropriate for the graded excita-
tion of postsynaptic neurons. An important outstanding question
is the degree to which the level (as opposed to the weight) of
this presynaptic feedback inhibition is determined independently
for each glomerulus versus how much it may be regulated by an
average level of activation computed across many glomeruli. PGo-
mediated inhibition would clearly generate the former, whereas
PGe-mediated inhibition, evoked in large part via excitation by
external tufted (ET) cells, may to some extent mediate the latter
(Cleland et al., 2007). This latter possibility should not be con-
fused with presynaptically mediated center-surround inhibition
among glomeruli, which has been clearly ruled out (Pirez and
Wachowiak, 2008).

ADAPTATION TO BACKGROUND ODOR INTENSITY
In addition to GABAB receptors, OSN terminals presynapti-
cally express D2-type dopamine receptors (Nickell et al., 1991),
which respond to transmitter released by a dopaminergic sub-
set of periglomerular neurons (Halasz et al., 1981; Gall et al.,
1987; Toida et al., 2000). Like the GABAB receptors with which
they are co-expressed, presynaptic D2 receptors are inhibitory
(Hsia et al., 1999; Berkowicz and Trombley, 2000; Ennis et al.,
2001; Davila et al., 2003), reducing the release of glutamate from
OSN terminals in glomeruli. An important functional difference
between these GABAB-ergic and dopaminergic feedback loops,
however, is that the weight of dopaminergic feedback appears
to be regulated by a running average level of afferent activation
over a timescale of many minutes to hours. Specifically, sharply
reducing odor stimulus levels through naris occlusion reduces
dopamine levels in olfactory bulb (Brunjes et al., 1985), but also,
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on a somewhat longer timescale, reduces the expression of tyro-
sine hydroxylase in the dopaminergic periglomerular cells of the
rat and mouse olfactory bulbs (Baker, 1990; Stone et al., 1990;
Baker et al., 1993; Cho et al., 1996). As tyrosine hydroxylase is the
rate-limiting enzyme for dopamine synthesis, reduced expression
levels reflect reductions in the weight of dopaminergic feedback
inhibition, suggesting a feedback-regulated system that gravitates
toward a stable homeostatic level of activity. By this model, if
input to a given glomerulus is consistently weak over many min-
utes or hours, dopaminergic feedback inhibition will be weakened
until some homeostatic target level of average afferent activity is
detected among postsynaptic neurons. Similarly, if high levels of
presynaptic activity persist over a similar timescale, dopaminer-
gic feedback inhibition will gradually increase in strength until
the average level of postsynaptic activity is reduced to this same
homeostatic baseline. The utility of such a mechanism is that
the system adapts to stable background odor levels, effectively re-
zeroing with respect to any background such that subtle changes
in odor can be detected even within a strongly odorous environ-
ment. In essence, this imposes a timescale on olfactory perception
that privileges changing signals over static background, analo-
gous to a Pacinian corpuscle or the perception of visual motion.
Additionally, this adaptive mechanism is likely to help keep the
absolute range of total OSN output levels within a glomerulus
adjusted to the absolute dynamic range for input to postsynaptic
neurons, assuming that the homeostatic set point for OSN output
is appropriate to this purpose.

This model predicts that manipulating dopamine D2 recep-
tor activation levels in the olfactory bulb would affect the
perceived concentration of odorants, which is indeed the case
(Wei et al., 2006; Escanilla et al., 2009). Briefly, administration
of D2 receptor agonists, either systemically or via direct infu-
sion into olfactory bulb, reduced rats’ performance levels in
a concentration-sensitive odor discrimination task, whereas D2
antagonists improved their performance levels, both in a dose-
dependent manner. Blocking D2 receptors also mimics the effects
of olfactory deprivation on the activity of mitral/tufted cells
(Wilson and Sullivan, 1995).

RELATIONAL NORMALIZATION
Normalization of outputs from all glomeruli with respect to the
total activity level across the olfactory bulb in principle can pre-
serve the relative levels of activity among activated glomeruli
while keeping the total bulbar activation level roughly con-
stant, generating the first competitive interaction among different
glomerular columns and thereby forming a relational odor rep-
resentation (Cleland et al., 2007). Competitive normalization,
unlike intensity compression as described above, can generate
non-monotonic dose-response functions in second-order neu-
rons (e.g., mitral cells) as increasingly active glomerular columns
outcompete less strongly activated columns, such that mitral cells
innervating the outcompeted columns become less strongly acti-
vated, or even inhibited, as concentrations rise (Cleland and
Sethupathy, 2006; Cleland, 2010). Indeed, increasing odorant
concentrations do not generally increase spike rates in mitral
cells monotonically; rather, mitral cell responses vary across
concentrations in more complex ways, sometimes transitioning

from excitation to inhibition, or vice versa, as odorant concentra-
tions rise (Wellis et al., 1989; Chalansonnet and Chaput, 1998).
Importantly, net activity among olfactory bulb neurons changes
considerably less across concentrations than does that in OSNs,
and raw maps of (predominantly presynaptic) glomerular activa-
tion in response to odorant presentation predict the perceptual
similarity of odorants far less well than do the same maps after
global normalization (Cleland et al., 2007). Moreover, global
normalization is an important requirement for some models of
olfactory contrast enhancement (Cleland and Sethupathy, 2006).

Evidence for a cellular or network mechanism that can medi-
ate global normalization in the olfactory bulb is incomplete. A
measure of constitutive GABA release from granule cells may help
dampen mitral cell responses, although granule cells’ inhibitory
synapses onto mitral cells are electrotonically distant from the pri-
mary dendrite in which mitral cell spikes can be initiated, and
there is no evidence that lateral inhibition mediated by gran-
ule cells would be sufficiently broad and unbiased to globally
normalize afferent activation patterns. Indeed, measurements of
intercolumnar inhibitory efficacies in olfactory bulb suggest a
sparse and highly specific lateral inhibitory map (Fantana et al.,
2008). Alternatively, theoretical modeling of a lateral excita-
tory network in the deep glomerular layer (Figure 2; ET and
sSA cells) has illustrated a mechanism by which global nor-
malization of bulbar activity could be effected postsynaptically,
utilizing an anatomically center-surround connectivity matrix
(Aungst et al., 2003) to generate a uniform level of inhibition
proportional to the total input activity across the olfactory bulb
and delivered onto mitral cells (Cleland et al., 2007; Cleland,
2010). The potential interactions between this GABAA-dependent
mechanism and the presynaptic feedback inhibition mechanisms
described above remain to be explored, both theoretically and
experimentally.

LEARNING-DEPENDENT CONSTRUCTION OF ODOR
REPRESENTATIONS
The work described above suggests several circuit mechanisms,
working sequentially and in concert, that can substantially
reduce the variance in odor representations attributable to
concentration—e.g., that would be generated by different concen-
trations of the same odorant. However, they do not and cannot
suffice to provide true concentration invariance in odor repre-
sentations. We here propose that the remaining variance in odor
representations generated by different concentrations of the same
odorant is treated in the same way as variance deriving from
changes in odor quality. That is: different concentrations of the
same odorant are treated as different odors until and unless the
animal learns that they have similar implications and categorizes
them together into a common odor representation, as depicted
for ranges of similar odorants in Figure 3C.

This model makes two predictions. First, it predicts that naïve
animals will perceive different concentrations of the same odor-
ant as different, and will generalize between them partially or
not at all. Second, in order for these different concentrations to
be bound together efficiently by learning, the prior processing
stages described above presumably must have removed enough
concentration-dependent variance for their representations to be
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at least somewhat similar. (The validity of this second prediction
may vary depending on the specific odorants in question—
notably, pentanal and 2-hexanone have been reported to change
in perceptual quality to humans given modest concentration
changes, whereas pentanoic acid, methyl pentanoate, and pen-
tanol do not; Johnson and Leon, 2000). We here show that
different odor concentrations are treated by naïve mice as if
they were different odors, and that the degree of perceptual
similarity decreases with increasing concentration differences
(Figure 3D; see Methods). Specifically, for the 1.0 Pa conditioned
stimulus (black line), independent-measures analysis of variance
(ANOVA) demonstrated a significant difference in digging time
among the four trials, F(3,116) = 7.964, p < 0.001. Comparing
the 1.0 Pa CS to the 0.01 Pa test odorant using Tukey’s honestly
significant difference (HSD) criterion demonstrated a significant
decline in perseverance, p = 0.040. Similarly, for animals condi-
tioned with an 0.01 Pa CS (gray line), ANOVA again demonstrated
a significant difference in digging time among the four trials,
F(3,112) = 3.353, p = 0.022. Comparing the 0.01 Pa CS to the
1.0 Pa test odorant confirmed a significant decline in perseverance
(Tukey’s HSD, p = 0.035). Thus, after conditioning to an odor
CS, animals treated an odorant presented at two orders of magni-
tude higher or lower concentration as a distinct odor. Moreover,
the magnitude of the decline in generalization across these two
orders of magnitude in concentration is roughly comparable to
the degree of difference between the CS and a highly dissimilar
control odorant D, indicating that odorants presented at these
two different concentrations can be perceived as differently as two
quite different odorants.

SUMMARY AND CONCLUSIONS
Concentration invariance in the olfactory system is important
in that odors from natural sources vary substantially in con-
centration from any given vantage point, and there is obvi-
ous benefit to being able to identify such odors irrespective
of this variance. Indeed, several sequential, coordinated mech-
anisms in the olfactory system appear to be able to reduce
the impact of concentration-based changes in odor represen-
tations substantially. However, unavoidable non-linearities in
signal processing and the particular problem of interference
from lower-affinity ligands render complete concentration invari-
ance unachievable. In this behavioral paradigm, the remaining
concentration-dependent effects on primary odor representa-
tions are indistinguishable from quality-dependent changes that
signal the presence of different odors, and indeed modestly
different concentrations of a given odorant are perceived as
different odors by naïve animals. However, after this prepro-
cessing cascade, moderately different odorant concentrations
are not perceived as enormously different in quality, as presy-
naptic imaging studies would suggest, but rather as modestly
different in quality; tenfold concentration differences remain
quite perceptually similar, whereas one hundred-fold concen-
tration differences approach asymptotic dissimilarity. Critically,
odor representations that are at least moderately similar in per-
ceptual quality (i.e., ranges of odor qualities in odor space)
and that predict the same outcome can be grouped together
through learning.

METHODS
BEHAVIORAL PROCEDURES
Olfactory generalization gradients were measured in mice accord-
ing to established procedures (Cleland et al., 2002, 2009). Briefly,
age-matched cohorts of male CD-1 mice (outbred strain; Charles
River Laboratories, Wilmington, MA) were shaped (trained to
dig for rewards in response to odor cues) from five to eight
weeks of age and subsequently employed in experiments. Mice
were maintained on a shifted 12L:12D cycle; all behavioral train-
ing was conducted during their dark cycle (9:00 a.m.–9:00 p.m.).
Water was continuously available; mice were food-deprived for
up to 18 hours preceding each session to motivate them to obtain
sucrose rewards. Mice were fed immediately after an experimental
session, and were not deprived of food on two subsequent days.
All procedures were performed under the auspices of a protocol
approved by the Cornell University Institutional Animal Care and
Use Committee.

During each conditioning trial, two sand-filled dishes were
placed in a chamber; one contained a sucrose reward and was
scented with the conditioned odorant CS, whereas the other
contained no reward and no odorant. Each trial began when
the mouse entered the chamber, at which point it encoun-
tered the dishes and was allowed to dig in both dishes until it
retrieved the reward. The mouse was then removed for a one
minute intertrial interval, during which the dishes were pre-
pared for the next trial. After the training trials were complete
(12 training trials, except for Figure 3B), the test trials were
begun. In the test trials, one dish was scented either with the
CS odorant or with one of a series of similar or dissimilar test
odorants, whereas the other contained no odorant, and nei-
ther dish contained any reward. The amount of time that a
mouse spent digging in the scented sand (perseverance) served
as the dependent variable. The duration of test trials was one
minute, whereas conditioning trials ended after mice recov-
ered the sucrose reward (up to a maximum of one minute).
Intertrial intervals were one minute long, and test trials began
directly after the completion of the conditioning trials. In all
cases, data are aggregates of multiple separate odor sets aver-
aged together to ensure that results are not specific to a given
odorant series (Table 1), and testing orders were randomized and
counterbalanced.

Figures 3A,B are adapted from (Cleland et al., 2009); exper-
imental details can be found therein. All odorants included in
Figure 3B were presented at 0.01 Pa. In the experiment com-
prising Figure 3C, two groups of mice were assembled, a low-
variance conditioning group and a high-variance conditioning
group. A homologous series of four odorants (C3–C6, arbitrary
labels) plus a dissimilar odorant D were employed; all odor-
ants were presented at 1.0 Pa. Mice were given 12 training trials
with a conditioned odorant, which was a mixture of odorants
C4 and C5. Specifically, the low-variance group was trained on
a 50:50 mixture of C4 and C5 for all 12 trials, whereas the high-
variance group was trained on six different C4:C5 mixture ratios
centered on but not including 50:50 (specifically: 95:5, 80:20,
60:40, 40:60, 20:80, 5:95, each presented twice in a randomized
and counterbalanced order). Both groups then were tested using
an identical set of six test odorants: the 50:50 mixture, unmixed
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odorants C4 and C5, the structurally similar odorants C3 and C6,
and a dissimilar control odorant D.

In the experiment comprising Figure 3D, two groups of
mice were conditioned to an odorant CS over 12 training tri-
als and then tested using that same odorant at three different
concentrations as well as with a structurally different odorant
presented at the same vapor-phase concentration as the con-
ditioned odorant. Critically, one group was trained on a rel-
atively high concentration (1.0 Pa; see Odor Sets and Dilutions
below) and tested on lower concentrations, whereas the other was
trained on a relatively low concentration (0.01 Pa) and tested on
higher concentrations. This enabled us to rule out an alterna-
tive interpretation, derived from work in honeybees (Pelz et al.,
1997), in which the higher-concentration odorant might sim-
ply comprise a superior exemplar of the odorant, such that
animals’ responses to a higher-concentration odorant would be
stronger than those to a lower concentration irrespective of which
concentration had been explicitly conditioned. Note that the
absolute level of conditioning to the lower concentration is less

than that to the higher concentration, as expected (compare to
Figure 3A), so the two generalization gradients are considered
separately.

ODOR SETS AND DILUTIONS
Multiple odor sets were used to enable counterbalancing among
subjects and ensure that results were not dependent on the use
of specific odor sets. All mice in a cohort were tested using
every odor set employed in the corresponding study. Each odor
set consisted of a homologous series of 2–5 structurally sim-
ilar, unbranched aliphatic odorant molecules plus one struc-
turally dissimilar odorant used as a control; one study also
utilized a binary mixture of two structurally adjacent odorants,
whereas another utilized multiple concentrations of single con-
ditioned odorants (see Behavioral Procedures above; Table 1).
Vapor pressures of pure odorants were estimated with the Hass-
Newton equation as implemented in ACD/Boiling Point and
Vapor Pressure Calculator (version 4.5; Advanced Chemistry
Development, Toronto, ON, Canada); pure odorants were

Table 1 | Odorant sets with corresponding vol/vol dilutions in mineral oil.

Odorant Dilution for 1.0 Pa Odorant Dilution for 1.0 Pa

FIGURE 3C n-hexanoic acid 1.49× 10−2

Acetic acid 0.78× 10−4 n-heptanoic acid 4.63 × 10−2

Propanoic acid 3.31 × 10−4 n-octanoic acid 13.7 × 10−2

n-butanoic acid 12.7 × 10−4 n-nonanoic acid 36.8× 10−2

n-pentanoic acid 45.0× 10−4 neryl acetate 16.4× 10−2

3-heptanone 6.46× 10−4

FIGURE 3D

Propyl acetate 0.63× 10−4 n-amyl acetate 7.23 × 10−4

n-butyl acetate 2.19 × 10−4 anisole 5.15× 10−4

n-amyl acetate 7.23 × 10−4

n-hexyl acetate 22.7× 10−4 n-butanoic acid 12.7 × 10−4

Anisole 5.15× 10−4 3-heptanone 6.46× 10−4

n-pentanol 0.74× 10−3 2-furyl methyl ketone 2.59 × 10−3

n-hexanol 2.55 × 10−3 n-butyl n-butyrate 1.65× 10−3

n-heptanol 8.38 × 10−3

n-octanol 26.7× 10−3 n-butyl n-pentanoate 5.72 × 10−3

2-furyl methyl ketone 2.59× 10−3 Citronellal 16.6× 10−3

n-hexanal 2.21× 10−4 n-hexanol 2.55 × 10−3

n-heptanal 7.07 × 10−4 neryl acetate 1.64× 10−3

n-octanal 14.7 × 10−4

n-nonanal 63.2× 10−4 octanal 1.47 × 10−3

2,3,5-trimethylpyrazine 13.9× 10−4 trans-2-hexenyl acetate 1.63× 10−3

n-butyl propanoate 0.60× 10−3 n-hexanoic acid 14.9 × 10−3

n-butyl n-butyrate 1.65 × 10−3 n-heptanol 8.38× 10−3

n-butyl n-pentanoate 5.72 × 10−3

n-butyl n-hexanoate 16.3× 10−3 hexanal 2.21 × 10−4

n-butyl glycidyl ether 1.85× 10−3 2-hexanone 1.80× 10−4

Odorants were diluted in mineral oil to concentrations theoretically emitting vapor-phase partial pressures of 1.0, 0.1, or 0.01 Pa as indicated; consequently, odorants

with different vapor pressures were diluted to correspondingly different extents in the liquid phase. Vol/vol dilutions in mineral oil to 1.0 Pa are shown for the data

contributing to Figures 3C,D; dilutions for Figures 3A,B are presented in Cleland et al. (2009). Odorants used as conditioning odorants are denoted in boldface; for

Figure 3C, the conditioning odorant was a mixture of the two boldface odorants in each odor set (with 50:50 or variable mixture ratios of the two diluted odorants

as described in that study).
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diluted in mineral oil to concentrations theoretically emitting
vapor-phase partial pressures of 1.0, 0.1, or 0.01 Pa as indicated.
Solvent surface effects and other non-linearities were neglected.
These dilutions should be considered a reduction in the variance
of odor concentrations rather than true gas-phase concentra-
tion matching as could be achieved by gas chromatographic
measurements. Odorants were diluted at least 18 hours in advance
of each experiment to ensure an even distribution of odorant

within the mineral oil solvent. These procedures have been
utilized in previous studies (Cleland et al., 2002, 2009; Cleland
and Narla, 2003).
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Sensory perception results from the way sensory information is subsequently transformed
in the brain. Olfaction is a typical example in which odor representations undergo con-
siderable changes as they pass from olfactory receptor neurons (ORNs) to second-order
neurons. First, many ORNs expressing the same receptor protein yet presenting heteroge-
neous dose–response properties converge onto individually identifiable glomeruli. Second,
onset latency of glomerular activation is believed to play a role in encoding odor quality and
quantity in the context of fast information processing.Taking inspiration from the olfactory
pathway, we designed a simple yet robust glomerular latency coding scheme for process-
ing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house
SnO2 sensor array. Glomerular convergence was achieved by noting the possible analogy
between receptor protein expressed in ORNs and metal catalyst used across the fabricated
gas sensor array. Ion implantation was another technique used to account both for sensor
heterogeneity and enhanced sensitivity.The response of the gas sensor array was mapped
into glomerular latency patterns, whose rank order is concentration-invariant. Gas recogni-
tion was achieved by simply looking for a “match” within a library of spatio-temporal spike
fingerprints. Because of its simplicity, this approach enables the integration of sensing and
processing onto a single-chip.

Keywords: glomerular convergence, latency coding, olfaction, electronic nose, chemical sensing, gas sensors,

neuromorphic engineering

INTRODUCTION
Identifying and localizing volatile compounds is an important
challenge in numerous applications such as, among others, explo-
sive detection (civil or military security), aliment quality control,
air pollution analysis (Gardner and Bartlett, 1999; Röck et al.,
2008). During the past few years, there has been an increasing
effort for developing low-cost microelectronic gas sensors allowing
quantitative and qualitative analyses (Röck et al., 2008). Never-
theless, whatever the technology is (e.g., metal oxide, conducting
polymer, piezo-electric quartz), a common feature of the sensors
is their lack of selectivity (Röck et al., 2008). Gas sensors react to a
large number of chemical compounds and it seems likely that the
situation will continue in the long run. We can even ask whether
it is useful to have selective sensors as it is cost intensive and time
consuming to develop a specific sensor for every odorant to be
detected. Note that lack of selectivity is also encountered in olfac-
tory receptor neurons (ORNs). Yet, biological systems are not less
very efficient. Mice and bees for example recognize learned odors
in less than 200 ms (Abraham et al., 2004; Buck, 2005; Bhandawat
et al., 2010; Chen et al., 2011), thereby indicating a rapid process-
ing of the olfactory input. More strickling is the fact that primary
olfactory centers in insects and vertebrates share a common design
both at anatomical (cellular organization) and functional (mech-
anisms for olfactory coding) levels (Hildebrand and Shepherd,
1997; Strausfeld and Hildebrand, 1999; Jacquin-Joly and Lucas,
2005). The efficiency of biological olfactory systems and their
similarities across species imply that nature has found an optimal

solution for encoding odors (Ache and Young, 2005). The current
knowledge about architectural and computational strategies used
in biological systems should therefore guide the development of
algorithms for processing gas sensor data.

The concept of electronic nose as a bionic system of artificial
olfaction appeared about 30 years ago (Persaud and Dodd, 1982).
It consisted in using an array of different sensors whose activation
pattern contains the signature of the odorant to be identified, in
the same way as our olfactory perception results from the acti-
vation of multiple ORNs by the odorant molecules. The analogy
stops here however. The current artificial noses are only a weak
imitation of the sense of smell with performance far below that of
their biological counterparts. The reason is twofold.

• The organization of both systems, artificial and biological, is
not comparable. In electronic noses, the sensing elements are
mapped on a two-dimensional array without particular orga-
nization. In biological olfactory systems on the contrary, the
sensory neurons distributed on insect antennae or in vertebrate
epithelia converge onto individually spherical neuropils, called
glomeruli, where all synaptic connections between ORNs and
second-order neurons are made (Figure 1). Olfactory glomeruli
are individually identifiable across animals and are functionally
specialized in terms of odor processing (Rospars, 1988; Baier
and Korsching, 1994). It is now well established that single ORN
projects onto a few (most often only one) glomeruli and that
all ORNs from a given glomerulus express the same olfactory
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FIGURE 1 | Schematic of the olfactory pathway (olfactory bulb)

illustrating that the ORNs expressing the same OR converge onto

spherical individual neuropils, called glomeruli, where all synaptic

connections between ORNs and second-order neurons (mitral cells)

are made.

receptor (OR), (Mombaerts, 1996, 2001; Vosshall et al., 2000).
The ORNs of a given glomerulus are thus homogeneous in terms
of receptor type. It has been shown however that in an homo-
geneous population with same OR, the ORNs present variable
odorant response properties (Grosmaitre et al., 2006; Grémiaux
et al., 2011). Computational advantages for such a variability
are still unclear but they could include lower detection thresh-
olds and wider dynamic ranges by averaging many independent
inputs (Grosmaitre et al., 2006).
• The processing of gas sensor arrays currently based on statisti-

cal methods (e.g., discriminant analysis, kernel methods) is very
far from the biological reality (neurons firing action potentials
or spikes). Second-order neurons (mitral cells in the vertebrate
olfactory bulb, projection neurons in the insect antennal lobe)
were found to encode information in a few spikes, using rel-
ative latencies after stimulus onset as an information carrier
(Hopfield, 1995; Margrie and Schaefer, 2003; Junek et al., 2010;
Belmabrouk et al., 2011; Smear et al., 2011). Timing of activity
relative to the sampling behavior (e.g., sniffing in rodents) leads
to a concentration-invariant code for odor identity (Hopfield,
1995; Margrie and Schaefer, 2003) and may play a significant
role in the context of fast information processing, a rat for
example recognizing a novel odor in less than 200 ms (Abra-
ham et al., 2004; Wesson et al., 2008) and a drosophila in 90 ms
(Bhandawat et al., 2010).

Taking inspiration from the organizational and functional charac-
teristics of the olfactory pathway (glomerular convergence and
latency coding), we designed a simple yet robust glomerular
latency coding scheme for processing gas sensor data.

MATERIALS AND METHODS
SENSOR ARRAY FABRICATION AND CHARACTERIZATION
Using an in-house 5 μm, 2-metal, 1-poly process, we have fab-
ricated a 4× 4 gas sensor array consisting of 16 SnO2 sensors,

corresponding to different combinations of dopants and catalysts.
The structure of the fabricated 4× 4 gas sensor array is shown in
Figure 2. Sensors belonging to the same column share the same
metal catalyst (Pt, Ag, or Au), while row wise sensors share the
same dopant (B, P, or H). Note that a single row of sensors has
no implanted dopant (ND) and a single column of sensors has
no metal catalyst (NC). Each individual sensor integrates a micro-
hotplate (MHP) heater (Figure 2), which consists of a membrane
stretched over a rigid frame (Graf, 2007). The membrane plays
two roles: (i) it acts as a support for the functional elements of the
sensor (e.g., heater and sensing layer), and (ii) it provides thermal
isolation of the hot sensing area through its low heat conductiv-
ity (Graf, 2007). The presence of a target gas is detected through
changes in the conductance of the sensing film, which depends on
the gas type and concentration, its operating temperature but also
on the deposited sensing film. In our array, a 100-nm SnO2 film
was deposited on the MHP structure, using sputtering and lift-off
techniques. Dopant implantation (B, P, or H) was selectively car-
ried out at a dose of 5× 1012 cm−2 and energy of 30 keV. Different
catalysts (Pt, Ag, or Au) were subsequently deposited on individ-
ual sensing films by RF sputtering. Each MHP is a 190× 190-μm2

oxide/low-stress nitride/oxide (O/N/O) multilayer membrane. A
2.8-μm air gap separates MHP and substrate to reduce heat losses
to the substrate. The air gap was formed by etching a sacrificial
polysilicon layer. A serpentine Pt microheater was patterned at
the center of the MHP, using sputtering and lift-off techniques
(Figure 2). The microheater has a width of 10 μm and a thick-
ness of 100 nm. Its resistance is about 297 Ω at room temperature
and 441 Ω at the 300˚C operating temperature. Plasma enhanced
chemical vapor deposition (PECVD) was used to deposit an insu-
lating oxide/nitride/oxide multilayer on top of the microheater.
The resistance change of each individual sensing film is measured
across two Pt electrodes. In the fabricated 4× 4 gas sensor array,
the catalysts play the role of the receptor and the dopants add
heterogeneity in the sensors’ responses.

The fabricated electronic nose was characterized in a controlled
laboratory environment, using an automated gas delivery system
(Figure 3). Test gases used in the experiments were methane, car-
bon monoxide, and ethanol. Flow rates were set by adjusting the
voltage of computer controlled mass-flow-controllers (MFCs).
The control of the gas concentration, within the 2.5-cm radius
30 cm3 cylinder testing chamber, was achieved by mixing the tar-
get gas with dry air at different flow rates. The relative small size
of the chamber contributes to the uniformity of the gas concen-
tration across the sensor array. Prior to each gas exposure, the
surface of the sensor array was cleaned by injecting dry air. The
sensor array was subsequently exposed to the target gas for up to
300 s. Throughout each clean-and-expose-cycle, resistance varia-
tions across the array were recorded simultaneously using 10-bit
digital multimeters. The sensor steady state resistance was sampled
just before the end of the analyte injection period.

SPIKE LATENCY CODING
In the generalist olfactory pathway, ORNs are sensitive to multiple
odorants, and each odorant activates thousands of ORNs, leading
to a massive combinatorial code at the receptor level. Yet this code
is not only combinatorial, it is also structured temporally by the
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FIGURE 2 |The fabricated 4 × 4 SnO2 gas sensor array with the

structure of an individual sensor highlighted on the right. There are
16 SnO2 sensors, corresponding to different combinations of dopants and
catalysts. Sensors belonging to the same column share the same metal

catalyst (Pt, Ag, or Au), while row wise sensors share the same dopant (B, P,
or H). A single row has no dopant (ND) and a single column has no metal
catalyst (NC). Note that the above sensor numbering is kept for all
subsequent figures.

FIGURE 3 | Experimental setup used to characterize the gas sensor array:

(A) four mass-flow-controllers, (B) a data-acquisition-board (DAQ), (C) a

desktop computer, (D) power supplies and digital multimeters, (E) a

chamber housing the gas sensor array packaged in a (F) 24-pins Ceramic

Dual-Inline-Package (CDIP24) and (G) three gases namely H2, ethanol,

and CO.

sampling behavior of the animal (e.g., sniffing in rodents) which
provides a temporal frame of reference. Recent evidence shows
that mice are able to discriminate between olfactory inputs merely
on the basis of timing information relative to the respiration cycle
(Smear et al., 2011). Electrophysiological recordings in the mouse
olfactory bulb have revealed that the firing latency of mitral cells
relative to the respiration cycle depends on odor intensity in a log-
arithmic way (Margrie and Schaefer, 2003) and theoretical works
have suggested that such a logarithmic transformation makes rel-
ative latencies invariant to odor concentration (Hopfield, 1995).

We have exploited the above ideas to design a spike latency coding
scheme that converts the sensor responses into a unique sequence
of latency spikes (Martinez et al., 2006; Ng et al., 2009; Chen et al.,
2011). The firing latency t i associated to the i-th sensor exposed
to a target gas j is proportional to the logarithm of the sensor
resistance

ti = ln Rij

γij
(1)
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where γij is a parameter which depends both on the type of gas
j and sensing material i and Rij is the resistance of sensor i when
exposed to target gas j. The resistance Rij is here modeled as a
power law (Gardner and Bartlett, 1999; Yamazoe and Shimanoe,
2008) leading to

ti = ln αij

γij
− ln Cj given that Rij = αijCj

−γij (2)

where αij is a parameter depending both on sensor i and gas j and
C j is the concentration of gas j. Considering the previous equation,
the relative latency between sensors p and q can be expressed as

tpq = ln αpj

γpj
− ln αqj

γqj
(3)

Note that the relative latency is concentration independent (C j

does not appear in Eq. 3) while being gas dependent (both
α and γ depend on the type of gas). As a result, the rank
order (i.e., firing order of sensors) can be used as a signature
(Figure 4, top) and gas recognition can be simply achieved by
looking for a match within a library of spatio-temporal spike
signatures.

GLOMERULAR LATENCY CODING
In the olfactory pathway, each glomerulus receives inputs
from ORNs expressing the same OR (Figure 1). We
have emulated glomerular convergence in the fabricated
gas sensor array, by making an analogy between OR
expressed and metal catalyst used. In this way, we defined
four glomeruli (considering the four types of sensors
Pt, Ag, Au, and NC), each one receiving four sen-
sory inputs. We further considered that the elemen-
tary unit of the olfactory code is a glomerular module
that consists of a glomerulus together with its associated
second-order neurons (Mori et al., 1999; Koulakov et al.,
2007). The onset latency of a glomerular module p was
defined as

tp =

∑

i∈p
ln
(
Rij
)

∑

i∈p
γij

(4)

where the sensors i are of the same type (i.e., with same cat-
alyst p). Considering a power law sensor response leads to

tp =

∑

i∈p
ln
(
αij
)

∑

i∈p
γij

− ln Cj (5)

and the relative latency between two glomerular mod-
ules p and q (catalysts p and q) is expressed as

tpq =

∑

i∈p
ln
(
αij
)

∑

i∈p
γij

−

∑

i∈q
ln
(
αij
)

∑

i∈q
γij

(6)

As for the spike latency coding, the relative latency is concentration
independent (C j does not appear in Eq. 6) while being gas depen-
dent (both α and γ depend on the type of gas). The glomerular
latency code (Figure 4, bottom) is however more compact than the
spike latency code (Figure 4, top). For both spike and glomeru-
lar latency codes, the parameters required to convert the sensor
resistances into firing times are the sensitivities γij (see Eqs 1 and
4). These parameters were estimated empirically by calibration,
i.e., by exposing the sensor array to each target gas j delivered at
different known concentrations C j ranging from 20 to 200 ppm,
and determining the slope of the linear regression of ln Rij ver-
sus ln C j. Because individual γij parameters depend both on the
type of gas j and sensing material i, 64 parameters have been
extracted given that we considered four target gases and 16 dif-
ferent sensors. The range of sensitivity values was found to be
0 < γij < 1.1.

RESULTS
SENSORS WITH THE SAME CATALYST EXHIBIT SIMILAR BEHAVIORS
Hydrogen, methane, carbon monoxide, and ethanol, at concen-
trations ranging from 20 to 200 ppm, were used to characterize
the fabricated gas sensor array, operated at 300˚C. Examples of
recorded response curves of individual sensors exposed to ethanol
at different concentrations are shown in Figure 5. Note that follow-
ing each gas exposure (at a given concentration), the gas chamber
was subsequently cleaned by injecting dry air. After the clean-
ing process, the sensor array was exposed to the same gas but at
another concentration level. Observe that increasing gas concen-
tration has the effect of decreasing the sensor resistance, which
follows a power law. This is the case because all target gases are
reducing gases. When dry air is injected, the sensor resistance
increases back to the initial baseline resistance. Interestingly, we
found that the sensors sharing the same catalyst exhibited similar
sensitivities to the target gases. As an example, the sensitivities of
the sensors to ethanol, as measured by the γij parameters, were
0.95± 0.09 (mean± SD) with catalyst Pt (red curves in Figure 5),
0.22± 0.06 with Au (black curves in Figure 5), and 0.29± 0.08
with Ag (blue curves in Figure 5).

One major challenge to gas identification is the inherent drift
of gas sensors, which results in temporal variations of the sensor
response with repeated experiments. Figure 6 shows the drift of
the sensors as defined by (Rij − R′ij)/Rij where Rij is the resistance

of sensor i exposed to gas j measured in the first cycle while R′ij
is the sensor resistance measured after the experiment has been
repeated n times. The drift sensitivities, computed as the slopes of
the linear regressions in Figure 6, were 0.76± 0.002 (mean± SD)
with catalyst Pt (red curves in Figure 6), 0.23± 0.0003 with Au
(black curves in Figure 6), and 0.25± 0.001 with Ag (blue curves
in Figure 6). As within catalyst-group variances are small, these
results indicate that sensors with the same catalyst exhibit similar
drift behaviors.

SPIKE LATENCY CODING GREATLY SIMPLIFIES THE TASK OF GAS
RECOGNITION
Most current approaches to gas identification rely on statistical
pattern-recognition techniques (Gutierrez-Osuna, 2002). The sil-
icon area and thus cost associated to their implementation are too
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FIGURE 4 | Spike and glomerular latency coding. Top: spike
latency coding (Eq. 1) converts the response of the fabricated
4× 4 sensor array into a unique sequence of 16 spikes with the
firing latency mapping the strength of the stimulation across the
array. Sensor numbering corresponds to that of Figure 2, with a

single color associated to sensors sharing the same catalyst (Au, Ag,
Pt, or NC). Bottom: glomerular latency coding (Eq. 4) converts
the sensor array into a unique sequence of four spikes which correspond
to the four virtual glomeruli defined by grouping the sensors according to
their catalysts.

FIGURE 5 | Sensor array response to ethanol at concentrations ranging

from 20 to 200 ppm. After each exposure, the sensor array is cleaned by
injecting dry air. Observe that sensor resistances decrease during exposures

because all target gases are reducing gases. Sensors sharing the same
catalyst are plotted with the same color. ND stands for No Dopant and NC for
No Catalyst.

prohibitive to envision their on-chip integration with the sensor
array (Gutierrez-Osuna, 2002). To address this issue, we have
developed a bio-inspired encoding scheme that can convert the
response of the sensor array into a unique sequence of spikes, with
the firing delay mapping the strength of the stimulation across the
array. In spike latency coding (Eq. 1 in Materials and Methods, see
also Figure 4 top), the inter-spike interval is concentration inde-
pendent while the firing order of the spikes is gas dependent. This
means that the rank order (i.e., firing order of sensors) can be used
as a signature to identify the target gas. We have experimentally

validated this encoding scheme using the fabricated in-house 4× 4
SnO2 gas sensor array. For any target gas (methane, hydrogen,
ethanol, and carbon monoxide) the rank order of the spike latency
code did not change much when the gas concentration increased.
The corresponding rank order signatures are shown in Figure 7A,
with a correct detection rate ranging from 80 to 99.1% (Table 1).
These results suggest that the traditionally complex and compu-
tationally intensive task of gas recognition can be dramatically
simplified to the task of looking for a match within a library of
spatio-temporal spike signatures. To assess the benefit of spike
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FIGURE 6 | Drift behavior of sensors sharing the same catalyst as a function of the number of clean-expose cycles. The injected gas was ethanol at
200 ppm. Note that the sensor drift behavior is mainly determined by the catalyst and not the type of dopant. ND stands for No Dopant and NC for No Catalyst.

FIGURE 7 | Rank order signatures of the target gases at

concentrations of 20 and 200 ppm using spike latency coding

(A) and glomerular latency coding (B). In spike latency coding (A) the rank
order corresponds to the sensor labeling given in Figure 2. In glomerular
latency coding (B), the rank order (1, 2, 3, 4) corresponds to four virtual

glomeruli formed by catalysts Au, Ag, Pt, and NC, respectively. Note
that the rank order signature is 100% concentration-invariant in the
case of glomerular latency coding. The resistance to time conversion was
achieved using Eqs 1 and 4 for spike and glomerular latency codes,
respectively.

encoding in terms of pattern separability, we projected the 16-
dimensional spike vectors onto a two-dimensional space by using
principal component analysis (PCA). The first two eigenvectors
accounted for 99.7% of the variance and four clusters correspond-
ing to the target gases were easily identifiable (see Figure 8B).
For comparison, the raw sensor data (sensor resistances) were also
projected using PCA and a much larger within-class scatter was
obtained (Figure 8A).

GLOMERULAR CONVERGENCE INCREASES ROBUSTNESS
In the mammalian olfactory bulb and the insect antennal lobe,
glomeruli are generally thought to represent functional units of
olfactory coding. A glomerulus receives axonal inputs from thou-
sands of ORNs that all express the same OR. This glomerular
convergence is believed to provide improved signal-to-noise ratio
as well as increased sensitivity. We have emulated glomerular con-
vergence using the fabricated in-house 4× 4 SnO2 gas sensor array,
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Table 1 | Performance comparison between spike and glomerular

latency coding.

Target gas Gas recognition performance (%)

Spike latency

coding (16-spike

rank order; %)

Glomerular latency

coding (4-spike

rank order; %)

Hydrogen (H2) 99.1 100

Carbon monoxide (CO) 80 100

Ethanol (C2H5OH) 91.82 100

Methane (CH4) 99.1 100

by noting the possible analogy between OR protein expressed and
metal catalyst used across the sensor array. In this way, we defined
four glomeruli by considering the four types of sensors (catalysts
Au, Pt, Ag, and NC), each one processing inputs from four sen-
sors (glomerular latency coding given by Eq. 4 in Materials and
Methods, see also Figure 4 bottom). The proposed glomerular
latency coding serves two computational functions. (i) It leads
to a more compact odorant representation (e.g., four glomeru-
lar spikes in Figure 7B) than that available at the sensory level.
(ii) It averages out uncorrelated noise by summation of sen-
sory inputs of the same type, resulting in 100% accuracy for our
dataset (Table 1). These bio-inspired computational advantages
were obtained because the processed sensors had similar gas affin-
ity, similarly to ORNs of the same type converging to a given
glomerulus.

To assess the gas affinity of the sensors sharing the same cat-
alyst, we projected the sensors’ responses of each gas onto a
two-dimensional space by using PCA (Figure 9). Four separate
clusters corresponding to the four catalysts were identified. The
clusters were well separated for three gases (methane, hydrogen,
and carbon monoxide) and the model thus mimics the formation

FIGURE 8 | Pattern separability achieved with spike latency coding (B)

as compared to the raw sensor data (A). For spike latency coding (B), the
16-dimensional spike vectors were projected onto a two-dimensional space
by using principal component analysis (PCA). The first two eigenvectors
accounted for 99.7% of the variance and four clusters corresponding to the
target gases were easily identifiable. For comparison, the raw sensor data
(sensor resistances) were also projected using PCA and a much larger
within-class scatter was obtained (A).

of individual glomeruli. For ethanol however, only the Pt cluster
is well separated, with the other catalyst clusters exhibiting simi-
lar response to ethanol. This difference can be explained from the
mean sensitivities to ethanol (γij= 0.95 on average for Pt versus
0.22 and 0.29 for Au and Ag). For comparison,we performed a sim-
ilar analysis by grouping the sensors according to their dopants.
The PCA plots did not reveal any particular clusters for any of
the target gases specified above (see Figure 9). All together, these
results suggest that sensors sharing the same catalyst have similar
gas affinity to the majority of the target gases (methane, hydrogen,
and carbon monoxide) thereby validating the analogy with ORNs
expressing the same OR.

DISCUSSION
SENSORY MISMATCH
The front-end of the olfactory pathway comprises a massive
number (∼10–100 million) of ORNs, each of which selectively
expresses one or a few genes from a large (∼1,000) family of recep-
tor proteins (Buck, 2005). This massively redundant representa-
tion improves signal-to-noise ratio, providing increased sensitivity
in the subsequent processing layers (Pearce et al., 2003; Koickal
et al., 2007). Unlike the biological olfactory system, the electronic
nose uses very few sensors with commonly one replica of only
several sensor types. Progress in the fabrication of largely redun-
dant and diverse arrays has been hindered by process complexity,
variability, and cost. This is not surprising given the number of
process variables (e.g., sputtering power, substrate temperature,
reactant concentration, etc.) that can affect a material (Pearce et al.,
2003; Röck et al., 2008). Even if a high degree of sensory diversity
and redundancy was implemented, the number of connections
required to read-out such an array would still be unmanageable

FIGURE 9 |The sensors’ responses to target gases (methane,

hydrogen, ethanol, and carbon monoxide) were projected onto

two-dimensional spaces by using PCA. The first two eigenvectors
accounted for more than 99% of the variance. Top: grouping the sensors
according to their catalysts revealed four identifiable clusters mimicking
the formation of biological glomeruli (Glom1, 2, 3, and 4). Bottom:
grouping the sensors according to their dopants did not reveal any
particular clustering.
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using conventional read-out techniques. In this work, we fixed the
size of our gas sensor array to 4× 4 to limit the complexity and
cost associated to the fabrication process.

ROLE OF THE CATALYST
When an odorant binds to an odor receptor, the receptor under-
goes structural changes. This activates the olfactory-type G protein
that is inside the OR neuron. Molecular studies have suggested that
each ORN expresses a single type of OR genes. ORN specificity
has been ascribed to that of its OR protein. Achieving analogous
selective sensor response toward particular target gases involves
altering the sensing surface. This can be achieved, during sen-
sor fabrication, through the introduction of dopants (e.g., P, B,
H) and/or metal additives (e.g., Pt, Ag, Au). In the fabricated
4× 4 SnO2 sensor array, we emulated ORN specificity through
the use of catalysts, with each playing the role of the OR pro-
tein. This is possible because catalysts are known to dominate the
sensing mechanism and the equilibrium rate of the redox reac-
tions between detected gas and sensor surface (Vlachos et al.,
1997). This may explain why sensors sharing the same catalysts
are seen to exhibit the same drift behavior (Figure 6). Mech-
anisms proposed to explain the catalyst control are all based
on oxygen reactions at the sensor surface. The sensitivity pro-
vided by a given metal catalyst has been shown to depend on
its work function because the depletion region formed inside the
semiconductor has the effect of reducing the electron availabil-
ity of semiconducting grains. This makes their active size smaller
than the geometrical one. Furthermore, experimental results have
shown that sensitivity provided by a given catalyst is directly cor-
related to the active grain size (Vlachos et al., 1997). In regard to
the implanted dopants, their effect is to further enhance the sen-
sitivity of the sensor by introducing impurities into the sensing
material. These impurities take up some of the substitutional and
interstitial sites in the lattice, creating more oxygen vacancies for
adsorption.

GLOMERULAR CONVERGENCE
Experimental studies have established that ORNs expressing the
same OR converge precisely to a single glomerulus (or a small
number of glomeruli). The implications of this convergence, in
terms of coding are believed to be twofold: improved sensitivity
so as to ensure detection and increased signal-to-noise ratios by
averaging out of uncorrelated noise (Laurent, 1999). Raman et al.
(2006) have sought to emulate this glomerular convergence by
dynamically modulating the operating temperature so as to create
thousands of virtual sensors.

However, the specificity of the sensors belonging to the same
glomerulus cannot be controlled as it is in our technique with the
analogy made between the receptor protein expressed in ORNs and
the metal catalyst used in SnO2 sensors. Although capable of emu-
lating a large number of pseudo-sensors, the approach followed in
Raman et al. (2006) provides highly correlated and redundant
data given that only two real sensors are used. In contrast, the sen-
sors sharing the same catalysts in our fabricated gas sensor array
exhibited different dopants to mimic the variability in terms of
odorant response properties found in ORNs expressing the same
OR (Grosmaitre et al., 2006; Grémiaux et al., 2011).

PRACTICAL LIMITATIONS
The actual number of virtual glomeruli was limited to 4, because
of process complexity and cost considerations. Increasing the
number of glomeruli to n, would increase the discriminability
capability with the number of possible rank order codes increas-
ing from 4! (i.e., 24) to n! Increasing the number of ORNs
converging into a single glomerulus would further improve the
sensitivity. Concentration-invariance of glomerular latency cod-
ing resulted from the power law sensor response. However, this
relationship might break down at very low concentrations (Gard-
ner and Bartlett, 1999). Our experimental setup does not allow
us to control gas concentration at those levels, which would be
required for applications such as trace detection of explosives or
drugs. Another important factor that needs to be considered is the
impact of long-term drift which occurs as a result of dynamic
processes (e.g., poisoning or aging) or environmental changes
(e.g., temperature and pressure conditions). Our experimental
results (Figure 6) show that sensors sharing the same catalyst
(i.e., belonging to the same glomerulus) exhibit the same long-
term drift behavior. This observation was also reported by Sulz
et al. (1993) who suggested that the overall sensor drift behavior
is mainly determined by the chosen catalyst rather than the cho-
sen dopant (Sulz et al., 1993). Vlachos et al. (1997) explained that
such a behavior may be most probably due to the fact that cat-
alysts dominate the sensing mechanism and the equilibrium rate
(Vlachos et al., 1997). The above results suggest that the specificity
of the catalyst and thus that of its associated glomerulus is still
preserved after long-term drift. These observations could explain
why the rank order of the glomerular latency code did not change
after hundreds of measurements taken.

HARDWARE CONSIDERATIONS
In existing electronic noses, all sensor data need to be trans-
ferred to the pattern-recognition engine to identify ambient
gases (Gutierrez-Osuna, 2002). The size and power consump-
tion required to support this traditional architecture are pro-
hibitive because most of the current approaches for processing
multivariate sensor data are direct applications of statistical and
chemometric pattern-recognition techniques (Gutierrez-Osuna,
2002). In addition, these techniques rapidly break down when
the dimensionality of the input space becomes large. As a result,
the co-integration of sensor and circuitry has been so far limited
to on-chip signal amplification, conditioning, and/or analog-to-
digital conversion (Hagleitner et al., 2001; Hierlemann and Baltes,
2003; Graf, 2007). In contrast, the proposed glomerular latency
coding turns the task of gas recognition into a simple code match-
ing task. The matching can be carried out by means of simple XOR
gates, enabling the integration of sensing, and processing elements
on a single-chip. Furthermore, “fingerprint matching” can easily
handle large sensor arrays, since it can be aborted as soon as the
detected spike does not match. The proposed scheme requires a
single off-line calibration to determine gas fingerprints, while gas
parameters γi can be stored on-chip.

Although the proposed glomerular latency coding constitutes
an excellent tradeoff between classification accuracy and imple-
mentation complexity, further work is required to generalize these
results to other types of sensors and target gases.
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Experimental studies have shown that the reactions to external stimuli may appear only
few hundreds of milliseconds after the physical interaction of the stimulus with the proper
receptor.This behavior suggests that neurons transmit the largest meaningful part of their
signal in the first spikes, and than that the spike latency is a good descriptor of the informa-
tion content in biological neural networks. In this paper this property has been investigated
in an artificial sensorial system where a single layer of spiking neurons is trained with
the data generated by an artificial olfactory platform based on a large array of chemical
sensors. The capability to discriminate between distinct chemicals and mixtures of them
was studied with spiking neural networks endowed with and without lateral inhibitions
and considering as output feature of the network both the spikes latency and the average
firing rate. Results show that the average firing rate of the output spikes sequences shows
the best separation among the experienced vapors, however the latency code is able in
a shorter time to correctly discriminate all the tested volatile compounds. This behavior is
qualitatively similar to those recently found in natural olfaction, and noteworthy it provides
practical suggestions to tail the measurement conditions of artificial olfactory systems
defining for each specific case a proper measurement time.

Keywords: spike latency, spiking neural networks, artificial olfactory systems, color indicators

INTRODUCTION
The processing of signals from sensorial inputs is an important
function in all living beings. In most multicellular animals this
process is carried out by the nervous system that is formed by
a dense network of specialized cells called neurons. Experimen-
tally gained evidences about the functionalities of the nervous
system led to the design of mathematical models with the twofold
purpose to elucidate the physiological processes and also to arti-
ficially reproduce the natural functions. During the years, these
models, broadly called artificial neural networks, have progres-
sively extended the similarity with Nature including functions
and structures as those became known by physiological investi-
gations. To this regard, neural networks involving spiking neu-
ron units raise the level of biological similarity (Maass, 1997,
1999), incorporating the spatio-temporal computation (Ferster
and Spruston, 1995). Although the behavior of individual neu-
rons is well characterized by phenomenological models (Gerstner
and Kistler, 2002), it is not yet completely clear how the informa-
tion is distributed in the spike patterns and which code neurons
use to transmit this information. To this end, behavioral stud-
ies show that the reaction times of several animals to external
stimuli can be surprisingly short (Rieke et al., 1996). Moreover,
recent findings evidences that neurons in the cortex can per-
form very fast analog computations. For example, humans can
analyze and identify visual inputs in less than 100 ms. Then, con-
sidering that this process involves at least 10–15 synaptic steps

from the retina to the temporal hemisphere, less than 10 ms is the
remaining time for the neuron processing (Thorpe et al., 1996).
These evidences are not compatible with the analysis performed
with standard descriptors like firing rate (Michael and Johnson,
2003) but they are compatible with alternative descriptors, such
as spike latencies. This does not mean that the rate coding is not
used, instead that when fast processing is needed, latency coding
schemes are preferred (Maass, 1999). Spike latency is defined as
the time interval between the application of the stimulus and the
first spike.

The importance of the processing of this feature is found in
more brains zones like the visual or auditory area (Heil, 2004;
Gollisch and Meister, 2008). The very fast discrimination and
recognition of odors shown by several animals to particular stimuli
suggests that this feature can play a significant role also in olfaction
(Galizia and Menzel, 2000; Uchida and Mainen, 2003). This con-
jecture is supported by the recent observation that raise the level of
biological similarity latency patterns of olfactory glomeruli con-
tain a quantity of information that is sufficient for higher brain
centers to identify odors and their concentrations (Junek et al.,
2010).

The features of spike encoding attracts also researchers inves-
tigating artificial senses as a step toward the implementation of
biological computational paradigms.

The studies on artificial senses are rather advanced for “physi-
cal” senses such as sight and hearing, while the artificial analog of
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those senses involving chemistry, such as olfaction and taste, are
still rather primitive.

Artificial olfaction stemmed at the end of the eighties from
the observation that solid-state gas sensors and olfactory recep-
tors (in amphibians, insects, and mammals) are characterized by
a wide receptive field (Sicard and Holley, 1984; Malnic et al., 1999;
Hallem et al., 2004). This conjecture evolved in the electronic nose
concept that is defined as an ensemble of partially specific chemi-
cal sensors complemented by some pattern recognition algorithm
(Persaud and Dodds, 1982; Gardner and Bartlett, 1994).

Besides the combinatorial sensitivity of receptors olfaction
reveals a complex structure that is supposed to play a relevant
part in odor recognition (Firestein, 2001). Olfaction is based on
few hundreds of different receptor classes expressed by millions
of olfactory neurons organized in the olfactory epithelium at the
interface with the external environment. The large redundancy of
the epithelium, namely many olfactory neurons carrying the same
receptors, is used by the convergence of olfactory neurons signals
into structures called glomeruli that are organized in the olfactory
bulb. Many experimental evidences support the common opin-
ion that each olfactory neuron expresses only one type of receptor
and that each glomerulus receives signals from olfactory neurons
carrying the same type of receptor (Imai et al., 2006).

The features of spike encoding attracts also researchers investi-
gating artificial olfaction as a step toward the implementation of
biological computational paradigms (Martinelli et al., 2006; Chen
et al., 2011). In these works integrate and fire models were opti-
mized with the purpose of increasing odor recognition. A more
complex approach was made by Koickal et al. (2007) who imple-
mented in a chip a bio-inspired signal processing of the sensor
signals and indicated with simulated data the potential impact of
spike latency in odor identification. Noteworthy, all these stud-
ies were concerned with arrays of few sensor units (where each
sensor actually plays the role of an artificial glomerulus). The dis-
crimination content of the latency coding in natural olfaction is
then a very interesting aspect that could also produce remark-
able advantages in artificial olfaction. Eventually, the application
of this concept could indeed allow reducing the measurement time
with a consequent minor exposure of the sensors to the samples
and probably a reduced rate of poisoning of the sensor surface.
On the other hand, the exploitation of latency requires the use
of a sensor system incorporating the main features of the natural
olfaction. These are the very large number of individual sensors,
the glomeruli layer and the spike encoding and processing of the
sensor signals. The difficulties to design and assemble large sensor
arrays are brilliantly solved by optical sensors. Several years ago it
was demonstrated that an image sensor (such as a CCD camera)
could conveniently measure, at once, the optical changes occur-
ring in a large number of fluorescent indicators deposited on the
tips in a bundle of optical fibers (Dickinson et al., 1999).

The basic property of an image sensor is the segmentation of a
whole scene into a number of elementary units, called pixels. Each
pixel corresponds to one photo detector measuring the light inten-
sity shining from a section of the whole scene. Eventually, when an
image sensor captures a sensitive surface coated by a continuous
layer of chemical indicators, the sensing layer is segmented into
a number of elementary units corresponding to the pixels of the

image. Then, since it is possible to evaluate the optical properties
of single pixels, each pixel of the image may correspond to an
individual sensor. To this end, even low-resolution images may
result in thousands of independent sensing units, then under the
hypotheses that different types of indicators are optically different
(this trivially means that each indicator has a different color) it is
possible to cluster the camera evaluation of the color of individual
pixels in abstract classes each containing pixels carrying the same
chemical indicator (Di Natale et al., 2008).

In this paper, a spiking neural network, mimicking the first
signal elaboration of the glomerular layer spikes sequences, has
been studied with data generated by an artificial olfactory platform
based on the principle described above.

The platform is formed by an artificial epithelium composed
of a layer of chemical indicators. The concept is illustrated in
Figures 1 and 2. The sensing layer is illuminated by a program-
mable computer screen and imaged by a digital camera (Filippini
et al., 2006). Each single pixel composing the image is then consid-
ered as an independent sensor characterized by a proper optical set
of features given by the chemical reporters spotted on its area (Di
Natale et al., 2008). Then, by exploiting their optical signature, the
pixels can be unsupervisedly grouped in classes giving rise to an
analog of the Olfactory Receptors Neurons–Glomerulus relation-
ship (Korsching, 2002). This platform can then efficiently mimic
the dynamics between signals of single receptors and how these
are transformed by the convergence into the glomeruli. Hardware
development is limited to the receptor units (the color indicators)
while glomeruli are a software implementation. Post-glomeruli
processing can be easily accomplished via software and results can
be strongly connected to the physical and chemical properties of
the interaction of volatile compounds with the receptor layer.

In this way, it is possible to define a processing architecture that
describes the pixels as artificial olfactory receptor neurons and the
convergence classes as a unit, where the mean signals of the afferent
artificial olfactory receptor neurons are the output signals of artifi-
cial glomeruli. This architecture that preserves many features of its
biological counterpart offers also interesting practical advantages
such as the largest signal to noise ratio of glomeruli with respect
to the signals of individual sensors and a very large tolerance to
single sensors fault events.

Glomeruli output signals are encoded into spike sequences and
then utilized as input to a spiking neural network. The latency of
the first two spikes of the neurons of the spiking neural network has
been considered as the network output, and the application of the
principal component analysis (PCA) to these quantities revealed
the capability of latencies to discriminate between different volatile
compounds.

MATERIALS AND METHODS
A spiking neural network has been applied to process the data
produced by the artificial olfactory platform described above. The
scheme of the whole system is shown in Figure 3. In order to
feed the spiking neural network in a way similar to natural sys-
tems, the glomerular units besides to average all the signals from
their afferent artificial olfactory neurons (corresponding to the
individual pixels of the image sensor) have to encode the ana-
log signals into spikes. The spiking network is formed by a single
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FIGURE 1 | Schematics of the architecture of the Artificial olfactory

system. The pixels defining the indicator spots, forming the artificial
epithelium, converge, according to their optical signatures to the units of a
convergence layer mimicking the role of the olfactory bulb. According to this

analogy the units in this layer can be considered as artificial glomeruli. In this
layer the average of the signals of the afferent pixels is calculated and then
encoded as a spike sequence that is utilized as the input to the processing
spiking neural network.

FIGURE 2 | Picture of the artificial epithelium, differently colored spots

are the indicators characterized by different hues. The colorless
background is coated by the supporting polymer.

layer. Each neuron of the network receives the excitatory inputs
from the glomeruli and it is contemporaneously inhibited by the
two adjacent neurons.

ARTIFICIAL EPITHELIUM
The sensing layer was formed by eight molecular indica-
tors. Six of them were metal complexes of the (5,10,15,20-
tetraphenylporphyrin),namely (5,10,15,20-tetraphenylporphyrin)
palladium [PdTPP], (5,10,15,20-tetraphenylporphyrin)rhodium
[RhTPP], (5,10,15,20-tetraphenylporphyrin)zinc [ZnTPP], (5,10,
15,20-tetraphenylporphyrin)molybdenum [MoTPP], (5,10,15,20-

tetraphenylporphyrin)iron [FeTPP], (5,10,15,20-tetraphenylporp
hyrin)manganese [MnTPP], a Silicon (phthalocyanine) [SiPC],
and finally a pH indicator known as Nile Blue (NB). The sens-
ing molecules were dispersed in a membrane based on plasticized
poly(vinyl chloride) (PVC; membrane composition in weight:
33% PVC, 66% bisethylhexyl sebacate and 1% indicator). The
sensing layer was prepared onto a 25-mm diameter transparent
substrate, a Thermanox plastic coverslip provided by Nunc. The
polymer membrane was at first casted onto the coverslip to fully
coat the surface. Then each indicator-polymer membrane was
randomly spotted in several replicas, in a number variable from
6 to 11, above the polymeric coating, to obtain the appearance
shown in Figure 2. The polymer layer has the main function to
support the sensing molecules avoiding the formation of indi-
cator aggregations, maintaining the molecules in a semi-solvent
condition.

MEASUREMENT SETUP
Absorbance properties of the sensing spots were measured accord-
ing to the computer screen photo-assisted technique (CSPT) where
a computer screen is used as light source and a digital camera
is used as a detector (Filippini et al., 2003). It was shown that
such an arrangement, even if based on low-cost components, has
enough sensitivity to capture the changes of the optical prop-
erties occurring in layers of metalloporphyrins when these are
exposed to volatile compounds (Filippini et al., 2006) with a sen-
sitivity comparable with that exhibited by solid-state sensors such
as quartz microbalances (Di Natale et al., 2010). Experiments were
carried out with a computer screen (Philips 170S4) and a webcam
(Philips SPC650NC/97). The camera was operated at a resolution
of 160× 120 pixels, the signal intensities were given in camera
units according to the 8-bit analog to digital conversion of the
light intensity embedded in the camera driver. The arrangement
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FIGURE 3 | Conceptual scheme of the CSPT setup. (A) Both the screen and the camera are connected to the same computer where all the measurements
are controlled and data are recorded. (B) The sensing layer is enclosed in a gas-tight and transparent cell where vapors can be passed. The cell is leaned over
the surface of a LCD screen.

of the experimental setup is shown in Figure 3. The plastic sub-
strate was placed in a sealed cell with transparent windows in
order to be probed by light. Organic vapors diluted in a nitrogen
flow were passed through the cell. The tested volatile organic com-
pounds (VOCs) were two alcohols (ethanol and butanol) and three
amines (trimethylamine, triethylamine, and butylamine). Mix-
tures of ethanol and butanol, trimethylamine and triethylamine,
and trimethylamine and ethanol have also been tested. Besides
trimethylamine, all compounds are liquid at standard pressure
and temperature, then the gas samples were obtained diluting
the saturated pressure at room temperature in a pure nitrogen
gas flow. Mass flow controllers regulated the dilution factor and
the total flow during the measurements. The same dilution factor
(5%) was applied for all the compounds, due to the different phase
change parameters, the concentration of the different compounds
covered an interval from 1100 ppm for butylamine to 9000 ppm
for ethanol. Trimethylamine was measured from a certified bottle
where it was diluted in pure nitrogen gas at the concentration of
500 ppm. Each vapor was measured in triplicate. For each vapor
the sensing layer was exposed for 400 s and then kept 1100 s under
pure nitrogen gas flow to purge the indicators and to restore the
initial conditions.

These compounds are moderate Lewis acids and bases that are
known to elicit color change in porphyrins and acid-base indi-
cators. The opposite behavior of amines and alcohols provides a
significant test where the straightforward discrimination of amines
from alcohols is complemented by the recognition of the subtle dif-
ferences between compounds inside each family. Binary mixtures
were also tested to study the interference of compounds belonging
to the same family or to different families. In order to evaluate also
the reproducibility of the sensor system each vapor and mixture
was measured in triplicate.

The reaction to gas was probed with a pure green light illumi-
nation. As known from previous investigations, the wavelengths
contained in this color are suitable to appreciate the spectral
changes occurring in all the indicators. Hence the sensing layer
was illuminated with a pure green light, obtained with the RGB
code: [0 255 0]. As a consequence, the intensity of the camera

green channel of each pixel was the sensors output signal. During
the exposure to gas, the camera took a still image each 5 s.

GLOMERULI LAYER DEFINITION AND ANALOG-TO-SPIKING
CONVERSION
As previously mentioned, CSPT gives the opportunity to introduce
an elegant and simple methodology to reproduce the connec-
tion between the olfactory receptors and the glomeruli. Under
the hypothesis that the indicators are characterized by different
colors, it is possible comparing the color measured in each pixel to
assign pixels to classes whose elements are pixels carrying similar
indicators. In this way, the physical pixels are the artificial olfactory
neurons and the abstract classes are the olfactory glomeruli. CSPT
offers a powerful method for color measuring, it is based on the
formation of a fingerprint obtained exposing the sample to a set
of colors achieved blending the RGB values regulating the LCD
screen color, and measuring the resulting appearance of the sample
in the three channels (red, green, and blue) of the digital cam-
era. This method was demonstrated to be able to discriminate
between subtle color changes in colorimetric tests (Filippini and
Lundström, 2006). For the scope of glomeruli definition the sens-
ing layer was illuminated by the computer screen programmed to
display a rainbow of 50 colors from purple to red. The layer was
imaged by the webcam encoding the color in an 8-bit scale sepa-
rated in the red, green, and blue channels. The signals from the red,
green, and blue channels were concatenated, in this order, to form
a fingerprint vector. As a result, the color of pixels was encoded
in a fingerprint vector composed by 50 illumination colors× 3
camera color channels. Figure 4 shows the collected fingerprints.
In the ideal case of a perfectly homogeneous distribution of the
indicators and a uniform screen illumination, only nine differ-
ent fingerprints (corresponding to the eight indicators and the
polymer substrate) should be visible in Figure 4. Actually, the fin-
gerprints are almost continuously distributed evidencing a high
level of non-homogeneity in sensing spot formation. The cluster-
ing of the fingerprints of Figure 4 is in principle a straightforward
supervised operation. Indeed, the position of each spot is known
and indicators can be easily identified by their color. However,
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FIGURE 4 | Computer screen photo-assisted technique fingerprints

of all the pixels imaged in Figure 2. The fingerprints are formed
concatenating the red, green, and blue channels levels read by the
camera under the exposure to a rainbow of 50 colors from purple to

pure red. The fingerprints are differently colored according to the
indicator imaged in the corresponding pixel. Straightforwardly, the
largest signals are obtained for the pixels were the pure supporting
polymer is imaged.

it is interesting to incorporate in the artificial platform architec-
ture an automatic procedure clustering together pixels imaging
the same kind of indicators. This gives rise to an elegant mimic
of natural olfactory neurons where pixels are the olfactory neu-
rons, and the indicators are the olfactory receptor. The receptor
itself provides both the chemical sensitivity and the criteria to
the convergence to the relevant glomeruli. The efficiency of CSPT
to capture colors allows using automatic clustering with a negli-
gible amount of misclassifications. From a biomimetic point of
view, clustering of similar pixels provides the same class member-
ship disregarding the arrangement of spots, i.e., the distribution
of a given type of olfactory receptor neurons in the epithelium.
From a practical point of view this allows for instance a prompt
replacement of the artificial epithelium and even a simple commu-
nication of signals between different sensing units (Polese et al.,
2011).

The fingerprints of Figure 4 can be conveniently clustered into
an arbitrary number of classes by means of any unsupervised clas-
sification algorithm. Here a simple K-nearest neighbor (KNN)
algorithm has been chosen (Duda et al., 2000). According to the
practical implementation of the artificial epithelium, shown in
Figure 2, the indicators cover only a portion of the sensing layer.
The rest of the area is coated with the supporting polymer and
its color is clearly different from the color of the indicators, this
is quite visible in Figure 2 where the polymer-coated pixels are
clearly separated from the dyed pixels. In order to limit the analy-
sis to the pixels carrying information about the indicators, the
polymer-coated pixels were segregated applying a two classes KNN
classifier. Here the obvious choice of two classes was made possi-
ble by the straightforward difference between the fingerprints of
dyed and non-dyed pixels. However, the number of classes is a free

parameter of unsupervised classifiers, and the number of classes
has to be chosen according to the specific conditions of each appli-
cation. In this case, the number of classes can be chosen in order
to abide the biological paradigm according to which in a single
glomerulus only olfactory neurons expressing the same recep-
tor converge. This means that in the artificial system the classes
defined by KNN have to contain only pixels carrying the same
(or very similar) indicators. In order to fulfill this requirement,
a number of classes greater than the actual number of indicators
is necessary and here, 13 classes have been considered. This num-
ber, empirically chosen, is large enough to avoid misclassifications,
and at the same time, it is sufficiently small to guarantee that each
class collects a sufficient number of artificial olfactory neurons
adequate to provide, through the signal averaging, a significant
increase of the signal to noise ratio. Besides averaging the incom-
ing pixel signals, glomeruli are requested to encode the signal into
spikes in order to be processed by the spiking neural network.
Here, an “integrate and fire” (I/F) algorithm was used (Gerstner
and Kistler, 2002). The algorithm is conveniently described by the
equivalent electronic circuit shown in Figure 5. The inter-spike
time is determined by the magnitude of the analog input signal
and the circuit time constant, that is given by the product of the
two algorithm parameters: R and C, according to the following
equation:

u (t ) = R · I (t )− C · R · du (t )

dt
(1)

I (t ) is the input signal and u(t ), the voltage across the capac-
itance. The circuit generates a spike anytime the voltage u(t )
reaches the threshold value (Vthreshold in Figure 5). The critical
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FIGURE 5 |The I/F algorithm implemented in the glomeruli units is

represented through its electronic equivalent circuit. The average signal
of the pixels pertaining to the glomerulus is represented by the input
current i (t ) and the output voltage is the encoded spiking sequence. Circuit
elements, including the operational amplifier, are ideal and their values are
internal parameters of the algorithm.

parameter of the algorithm is the time constant that is defined
as the product of R and C in the analog equivalent circuit. This
value has been empirically fixed to 21.3 s to obtain a sufficiently
large number of spikes from the glomeruli signals. The same
parameters were applied for all the glomeruli. Figure 6 shows
a typical analog glomeruli signal emerging as a consequence of
the exposure of the artificial epithelium to a vapor. To obtain
only to the contribution of the effect of the gas, the glomeruli
signals value recorded immediately before the exposure to gas
was subtracted from the recorded signal. The difference signals
were then converted into spike sequences and processed by the
spiking neural network, according to the procedure outlined in
Figure 1.

It is important to note that the signals can be either posi-
tive or negative indicating that the interaction of the indicator
with the volatile compound elicits different changes in the opti-
cal spectrum of the indicator including a change of magnitude
and a shift of the optical features. A combination of these changes
with the spectral response of the camera green channel and the
green light spectra of the LCD screen may then result in pos-
itive or negative changes of the camera signal. In a few cases
a negative change of the intensities in the green camera chan-
nel was observed and only for one of the glomeruli. According
to Eq. 1, a negative analog signal does not cause a spike train.
The glomerulus exhibiting negative signals was therefore not a
part of the further processing in the spiking network. Actually
also other sensors can present signals that can be either posi-
tive or negative, this is the case, for instance, of the metal-oxide
semiconductor gas sensors used in a previous study (Chen et al.,
2011).

THE SPIKING NEURAL NETWORK
The spiking neural network used to process the artificial olfac-
tion data was composed by neurons arranged in a single layer
as shown in Figure 1. The neurons were defined according to

FIGURE 6 | Example of analog glomeruli signals. These signals were
caused by the exposure to trimethylamine vapors (about 500 ppm in
nitrogen).

a phenomenological neuron model (Gerstner and Kistler, 2002)
and they were endowed of both excitatory (from the glomeruli)
and inhibitory (from the other network neurons) inputs. As a
consequence the relative position of the neurons in the network
architecture and the inputs distribution into the various neuron
units are important. Since, the glomeruli have been defined above
as structure-less abstract entities it is necessary to introduce an
ordering criteria. As illustrated in Section “Glomeruli layer defini-
tion and analog-to-spiking conversion” the color of the indicators
is an optimal quantity to identify the indicators in the array,
and the glomeruli have been simply defined applying the KNN
algorithm to the CSPT fingerprints. Here, the same quantity is
further used to define the interface between the glomeruli units
and the spiking neural network. Each glomerulus is defined by
its KNN centroid vector, roughly corresponding to the average
of the CSPT fingerprints. The connection between glomeruli and
neural network neurons has been based on a hierarchical clus-
tering of the centroid fingerprint vectors. The outcome of the
process is illustrated in Figure 7A where the 13 centroid finger-
prints are shown in the plane of the first two principal components
of the PCA calculated on the centroid fingerprints matrix. In
figure the mapping between the glomeruli and the neural net-
work neurons is also visible. All the glomeruli signals contribute
to their relevant neuron with an excitatory input. The number of
network neurons has been fixed to 12. With this number of neu-
rons the excitatory inputs are between 2 and 4 for each neuron.
In Figure 7B the relationship between the chemical indicators,
the glomeruli, and the neural network neurons is shown. In this
figure the neurons are ordered according to a hierarchical cluster-
ing criteria visible in Figure 7A. This order is important because
each neuron receives inhibitory inputs from the first neighbors in
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the list shown in Figure 7B. Finally it is worth the remark that
since the chemical sensitivity of the indicator and its color are
not correlated, no chemotopic feature is expected to be found in
the neural network structure. According to the phenomenolog-
ical neuron model, the neuron state is controlled by the action
potential (AP):

APj (t ) =
∑

i∈input

wij · kernel (t − tn) ·H (t − tn)

+
∑

tm

Refractory (t − tn) ·H (t − tn) (2)

FIGURE 7 | (A) Scores plot of the first two principal components of the
PCA of the matrix of the centroid fingerprints as defined by the application
of the KNN to the fingerprints matrix. Closed regions show the
membership of glomeruli to the network neurons. (B) Relationship
between chemical indicators, glomeruli, and neural network neurons
excitatory inputs. Glomeruli signals contribute as excitatory inputs to the
spiking neural network neurons. The arrows between the network neurons
indicate the inhibitory signals.

where H (t–t m) is the Heaviside function. When a pre-synaptic
spike occurs at the time t= t n, it produces an AP variation pro-
portional to the kernel function through the pre-synaptic weight
(w ij). Once the AP reaches the threshold (θ) at the time t= t m

the neuron fires and the AP is reset to zero by the refrac-
tory function. The expression of the learning, the kernel and
the refractory functions are shown in Table 1. The excitatory
weights are trained with a Hebbian learning rule where the
change, δw in the upgrade coefficient, w, observes the following
equation:

δw = η ·
[
∑

ti

win +
∑

t0

wout +
∑

ti ,t0

w (t0 − ti)

]

(3)

where w in is the discrete increment of the input weight corre-
sponding to one input spike, wout is the discrete decrement of the
input weight corresponding to one output spike, and w(t 0–ti) is
the learning function, t i and t 0 are the input and output firing
time and η is the learning rate.

The initial values of the synaptic weights of the excitatory
input are randomly generated in the range (0, 1) and the APs
were initially set to zero. For the inhibitory connections, two
configurations of synaptic coefficients have been considered in
the analysis. In the first configuration, the coefficients have been
randomly generated in the range (−3, −0.5) and in the second
case the contribution of the inhibition has been removed setting
all the inhibitory synaptic weights to zero. In both cases these
coefficients have been maintained constant during the following
network training. The neural network was unsupervisedly trained
presenting 100 times, in a randomized order, the spiking sequences
encoding the artificial glomerular responses to the tested vapors.
In order to evaluate the performance of the complete artificial
olfactory system (composed by the physical layer of receptors,
the abstract glomeruli layer, and the spiking neural network) to
discriminate the tested volatile compounds, the output of the net-
work have been described by two features describing the short
time response and the long time response of to the applied stim-
ulus, respectively. The short time response is considered by the
latencies of the first two spikes of each neuron, while the long
time response is explained by the neurons firing rate averaged in
the time window corresponding to the application of the stim-
ulus. To study the contribution of the spiking neural network

Table 1 | List of the functions describing the phenomenological

neuron model used in the spiking neural network.

Learning function if Δt ≤ 0 W(Δt) = η · exp(Δt/tsyn)

×[A+(1−Δt/τ̃+)

+A− · (1−Δt/τ̃−)]
f Δt > 0 W(Δt) = η · [−A+ ·Δt/τ̃+ − A− ·Δt/τ̃−

]

Kernel function 1
1− τm

τs

· [exp(−ti/τs)− exp(−ti/τm)]
Refractory

function

−ϑ exp(−t r/τ)

The different τ’s appearing in the definitions are time constants, A± are constant

parameters and θ is the neuron threshold.

Frontiers in Neuroengineering www.frontiersin.org December 2011 | Volume 4 | Article 16 | 34

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Martinelli et al. Latency in artificial olfaction

to the overall discrimination capabilities of the whole olfactory
system, two additional features describing the glomeruli signals
have also been considered. Also in this case a short time and a
long time response have been examined. The first feature was
calculated as the analog glomeruli signals at the time when the
slowest neuron of the spiking network fires its second spike, while
the long time response is simply the maximum signal showed by
glomeruli during the stimuli application. Figure 8 illustrates the
definition of these features. In correspondence to the exposure
to each volatile compound and for each feature, a vector com-
posed by the ordered sequence of features was arranged. The whole
set of experiment resulted then in matrices whose elements were
the above illustrated features. The matrices were then analyzed
with (PCA; Joliiffee, 2002). The main advantage of PCA, in this
case, is the possibility to plot in the principal components plane
the multidimensional datasets, in this way a simple and effec-
tive evaluation of the discrimination capability of each feature
can immediately be obtained by a simple visual inspection of the
plots.

RESULTS AND DISCUSSION
It is important to remark that this paper does not intend to provide
a faithful replica of the olfactory circuits but rather it is centered
on the study of the information content of the spiking sequence
and in particular of the spikes latency coding. Then the com-
plexity of the network was kept as low as possible adopting an
architecture with a single layer of spiking neurons. Two different
topologies characterized by the presence and the absence of lateral
inhibitions were taken into consideration. The object of the paper

FIGURE 8 | Illustration of the features used to describe both the

spiking neural network and the glomeruli layer response to vapors. The
time at which DR is calculated corresponds to the time when the slowest
neuron fires its second spike. The average firing rate is calculated in the
time interval T*.

was the investigation of the vapor recognition properties of the
spike latency. The latency time of the first spike indicated a limited
gas discrimination while a significant improvement was obtained
considering as the measurement descriptor the latency times of the
first two spikes fired by each neuron of the network (i.e., T1 and
T2 in Figure 8). All glomeruli generates their first two spikes in less
than 120 s providing about 65% of reduction of measuring time
with respect to the standard measurement protocol where the end
of measure occurs when the analog signals reach their steady-state
values.

The ensemble of the latency times were joined to form a vec-
tor and the matrix collecting the whole experiment was processed
by PCA.

Figure 9 shows the plot of the first two principal compo-
nents of the latency feature of the spiking neural network trained
with the lateral inhibition. All the VOCs are discriminated and
only a little overlap between Triethylamine and Triethylamine–
Trimethylamine mixture is present. This is expected because of
the chemical similarity between these compounds. The presence
of the lateral inhibition increasing the differences among the neu-
rons distributes the information carried by the glomeruli into
the network neurons. As a partial proof, it was observed that
without inhibition (Figure 10) the discrimination performance

FIGURE 9 | Scores plot of the first two principal components of the

PCA of the matrix of latencies of the first two spikes of each neuron of

the network trained with the lateral inhibition. Labels indicate the
measured vapors.
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FIGURE 10 | Scores plot of the first two principal components of the

PCA of the matrix of latencies of the first two spikes of the neurons of

the network trained without the lateral inhibition. Labels indicate the
measured vapors.

was reduced to the basic, and somewhat chemically straightfor-
ward, separation between alcohols and amines. Furthermore, if
a certain separation among alcohols can actually be observed
the amines are completely overlapped in Figure 10. This result
is somewhat unexpected because the response of the individ-
ual receptors to amines is much larger with than to alcohols.
This suggests that the absence of inhibition makes the network
unable to capture the differences among different gases when
a large response is obtained for the chemical indicators. It is
interesting to note that a larger analog signal corresponds to an
increase of the spike rate from the convergence layer. The satu-
ration effect could only be related to the frequency response of
the network and the I/F algorithm. It could probably be avoided
by a careful choice of the parameters. Nonetheless it is interesting
to observe that inhibition prevents the occurrence of the satura-
tion effects maintaining unaltered the olfactory system properties
in the whole range of signals even for a non-optimized choice of
parameters.

To point out the contribution of the spiking neural network,
the classification properties of the analog glomeruli signals was
considered. In Figure 11 the plot of the first two principal com-
ponents of the PCA of the matrix of the glomeruli analog signals
is shown. To consider the short time response, the glomeruli sig-
nal was considered at the time when the slowest neuron of the
spiking neural network, trained with lateral inhibition, fires its sec-
ond spike. According to Figure 11 the discrimination of volatile

FIGURE 11 | Scores plot of the first two principal components of the

PCA of the matrix of the analog signals of the glomeruli evaluated at

the time when the slowest neuron fires the second spike. The network
was trained with the lateral inhibition and for each measure presentation,
the coefficient updating procedure was stopped when the slowest neuron
fires the second spike. Labels indicate the measured vapors.

compounds appears worse with respect to that obtained with the
spike latencies of the network with inhibition. Another interesting
detail to note is that the explained variance of the first two prin-
cipal components of the PCA of the latencies matrices (Figures 9
and 10) are significantly less with respect to the first two prin-
cipal components of the PCA of the matrix collecting the analog
glomeruli signals (Figure 11). This result indicates that the spiking
network performs a faster separation of the different sources of
information; furthermore, in presence of lateral inhibition the
differences among neurons responses are more prominent and
then the signal decorrelation becomes more evident. However,
in the experiment described here the contribution to the classi-
fication of the principal components of order higher than two is
negligible. It is also important to note that for the network with
inhibition, the odor recognition property does not change signif-
icantly considering further latencies related to spikes beyond the
second spike (data not shown). The classification improves but
not dramatically when the average firing rate is considered (see
Figure 12). These results are qualitatively similar to that obtained
using the maximum glomerular signal (see Figure 13) suggesting
that when the sensors reach the dynamic equilibrium with the
gas, the classification is completely explained in the input data
and the contribution of the network processing becomes negli-
gible. It is interesting to note that for the average firing rate the
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FIGURE 12 | Scores plot of the first two principal components of the

PCA of the matrix of the average firing rate of the neurons of the

network trained with the lateral inhibition. Labels indicate the measured
vapors.

variance explained by the first two principal components is more
than 95% confirming the large correlation of the neurons firing
rates. This result also suggests that the lateral inhibition mainly
influences the distribution of the information content carried by
the neuron in the initial part of the signal while in the last part its
contribution is related to a sort of a scale factor of the glomeruli
signals. As further confirmation of this hypothesis, no decrease of
performance is observed removing the inhibition using the firing
rate as the input (data not shown). This result leads to believe
that the lateral inhibition, in this network structure, affects sig-
nificantly only the information contained in the initial part of the
spike sequences. In order to show the importance of the initial part
of the response, the network was also trained stopping the learn-
ing procedure immediately after the second spike of the slowest
neuron is fired. Surprisingly, the results of the PCA calculated with
the latencies of the first two spikes and the firing rate are qualita-
tively similar. This result indicates that the very initial part of the
response is of outmost importance and then only this portion of
the response could be used in reducing dramatically the compu-
tational and the experimental time. Noteworthy, the length of the
initial part is dynamically determined by the network as the time
necessary to get two spikes from all the neurons and then this time
can be variable according to the magnitude and the dynamics of
the receptor responses. Ultimately, for a given set of receptors this
time depends on the kind of vapor. The reduction of measurement
time using only the first portion of sensor response was attempted

FIGURE 13 | Scores plot of the first two principal components of the

PCA calculated on the matrix of the maximum analog signals of the

glomeruli. Labels indicate the measured vapors.

in the past as by using the dynamic properties of sensors (Davide
et al., 1995; Di Natale et al., 1995; Eklöv et al., 1997; Nakamoto
et al., 1997; Gutierrez-Osuna et al., 1999; Muezzinoglu et al., 2009).
In these studies the measurement time was generally determined
according to a previous knowledge about the dynamics of the
sensors. In the present case the duration of the measurement is
determined by the network processing the global set of receptors
hierarchically arranged in glomeruli-like structures and the length
of time necessary for a single measurement is variable for each
sample but always less than 35% of the time necessary for the ana-
log signal to reach the steady-state. It is important to remark that
the dynamic responses of the chemical reporters in the sensing
layer are also affected by their spatial arrangement with respect to
the inlet and the outlet of the cell where the sensor layer is accom-
modated. As a consequence, also the latency pattern of the network
is dependent by the position of the chemical indicators giving a
further degree of freedom for the system design and optimization.
Furthermore, considering that the indicators are immersed in a
supporting polymer layer, the latency pattern depends also on the
diffusion of volatile compounds through the polymer. This feature
was demonstrated to lead to a sort of artificial olfactory mucosa
(Dini et al., 2009) mimicking the separation of volatile compounds
characterized by different alkyl chain lengths and steric effects
(Kent et al., 1996). The possibility to use the latency as features for
discrimination tasks can open a different approach to chemical
sensing. Actually exploiting these descriptors it would be possible
to define the gas exposure as the time necessary to obtain the
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occurrence of the first spikes at the network output. This strat-
egy would offer some interesting aspects. The first is related
to the measurement time that it should be not fixed but it
should adapt itself on the gas under measure. Moreover this
approach should guarantee a short measurement time with
respect to the standard protocol counteracting the aging and
poisoning of the devices that is probably the main cause of
the chemical sensor drift (Martinelli et al., 2011). It is impor-
tant to remark, that these results have been derived from an
experiment aimed at measuring a limited set of volatile com-
pounds. However, since the test compounds (amines and alco-
hols) are good representative of donor and acceptor molecules,
they elicit a sufficiently range of responses. The findings here
outlined may substantially be corroborated by more extensive
measurements with a larger number of repetitions to study
the relationship between the network property and the sensors
reproducibility.

CONCLUSION
An artificial olfactory system based on a large array of opto-
chemical sensors coupled with a bio-inspired signal processing
architecture is shown. The processing strategy took into consid-
eration a convergence layer that mimics the role of glomeruli and
encodes the signals of the sensors into sequences of spikes to be
processed by a spiking neural network. The aim of this work was
to investigate the possibility to use the spike latency of the net-
work outputs as a useful descriptor for the odor recognition. The
results show that the first two spikes of neural network neurons
contain enough information to discriminate the different vapors
confirming the experimental evidences obtained on animals. It
has also been put in evidence the fundamental role of the lateral
inhibition in the information processing of the very initial part
of sensor signals and how it is possible to exploit the character-
istics of the latency coding to define an adaptive gas exposure
strategy.
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In a variety of neuronal systems it has been hypothesized that inhibitory interneurons
corral principal neurons into synchronously firing groups that encode sensory information
and sub-serve behavior (Buzsáki and Chrobak, 1995; Buzsáki, 2008). This mechanism is
particularly relevant to the olfactory system where spatiotemporal patterns of projection
neuron (PN) activity act as robust markers of odor attributes (Laurent et al., 1996; Wehr and
Laurent, 1996). In the insect antennal lobe (AL), a network of local inhibitory interneurons
arborizes extensively throughout the AL (Leitch and Laurent, 1996) providing inhibitory
input to the cholinergic PNs. Our theoretical work has attempted to elaborate the exact
role of inhibition in the generation of odor specific PN responses (Bazhenov et al., 2001a,b;
Assisi et al., 2011). In large-scale AL network models we characterized the inhibitory
sub-network by its coloring (Assisi et al., 2011) and showed that it can entrain excitatory
PNs to the odor specific patterns of transient synchronization. In this focused review, we
further examine the dynamics of entrainment in more detail by simulating simple model
networks in various parameter regimes. Our simulations in conjunction with earlier studies
point to the key role played by lateral (between inhibitory interneurons) and feedback (from
inhibitory interneurons to principal cells) inhibition in the generation of experimentally
observed patterns of transient synchrony.

Keywords: inhibition, network, coloring, transient synchrony, olfaction, antennal lobe

INTRODUCTION
The dynamics of neuronal networks have often been associated
with the detection of changes in the environment or as markers of
expected and ongoing behavior. In olfactory networks this asso-
ciation is particularly well charted. Odor detection begins when
odorant molecules bind to olfactory receptors, initiating a sec-
ond messenger cascade that leads to the opening of ion channels,
the depolarization (usually) of the receptor neuron cell mem-
brane (Matthews and Reisert, 2003), and the generation of action
potentials. Olfactory receptor neurons (ORNs) are preferentially
sensitive to some odors and less so to others (Anderson et al.,
1995; Hallem et al., 2004; Hallem and Carlson, 2006). This pref-
erence appears to be static, in that, odor rank orders are retained
throughout the duration of the stimulus (Friedrich and Laurent,
2001; Bhandawat et al., 2007; Olsen et al., 2007). Chemically sim-
ilar odors elicit responses from overlapping groups of ORNs that
project onto a significantly smaller number of excitatory projec-
tion neurons (PNs) and inhibitory local interneurons (LNs) in
the antennal lobe (AL). It has been suggested that the representa-
tion of a high dimensional, complex and as a first approximation,
static input by convergence onto a few, albeit dynamic, PNs
and LNs must enhance the fidelity of the input while unfolding
the odor representation along the temporal dimension (Laurent,
2002) [In the locust∼50,000 ORNs converge onto∼900 PNs and
300 LNs (Ernst et al., 1977)]. In the AL, LNs extend extensive
connections to PNs and to each other (Leitch and Laurent, 1993,
1996). The interaction between AL neurons produces spatiotem-
poral activity that evolves over multiple time scales (Laurent et al.,

1996; Wehr and Laurent, 1996; Wilson et al., 2004). This evolu-
tion produces a progressive decrease in the overlap between the
representations of chemically related odors (for example, several
aromatic amino acids) (Friedrich and Laurent, 2001; Wilson et al.,
2004) thereby increasing the ability of the system to discriminate
between odors.

Local field potentials (LFP) recordings from different insects
including locust (Laurent and Davidowitz, 1994; Laurent et al.,
1996; Wehr and Laurent, 1996), moth (Ito et al., 2009), hon-
eybee (Stopfer et al., 1997) and fly (Tanaka et al., 2009) have
revealed fast 20–40 Hz oscillations that persist in spite of large
changes in both the identity and the concentration of an odor
(Stopfer et al., 2003). Successive oscillatory cycles are constructed
from a dynamically evolving constellation of PN spikes. Odor
attributes determine the identity of PNs that spike during a given
oscillatory cycle. A given PN may be phase locked to specific
cycles following the onset of an odor and spike randomly or
remain silent during other cycles. Such transient synchroniza-
tion between PNs was suggested to play a key role in encoding
the odor representation (Laurent, 2002). Spatiotemporal pat-
terns generated by PNs provide input to Kenyon cells (KCs)
of the mushroom body via two pathways, a direct excita-
tory pathway from PNs to KCs and a feed-forward inhibitory
pathway leading from lateral horn interneurons (LHIs) (Perez-
Orive et al., 2004). Recent studies have also identified the role
of a single neuron (the giant GABAergic cell) that provides
feedback inhibitory input to KCs (Papadopoulou et al., 2011)
(Figure 1).
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FIGURE 1 | Schematic of the insect olfactory system. Projection neurons
(PNs) and local inhibitory interneurons (LNs) receive convergent input from
odorant receptor (OR) neurons. Output from PNs is sent to Kenyon cells
(KCs) of the Mushroom body (MB) and that also receive feed-forward
inhibition from lateral horn interneurons (LHI). Giant GABAergic neuron
(GGN) provides feedback inhibition to KCs.

In this article we discuss the relationship between the struc-
ture of the AL network and the dynamics that emerges from it,
within the context of our earlier theoretical studies (Bazhenov
et al., 2001a,b; Assisi et al., 2011). The efficacy and the relevance
of the AL in representing an odor can only be inferred from its
effect on subsequent layers, namely the KCs of the mushroom
body. In contrast to PNs that fire promiscuously in response to
an odor input, KCs generate a sparse and highly odor specific
response. Owing to the intrinsic properties of KCs and network
attributes (Perez-Orive et al., 2002, 2004), these neurons act as
coincidence detectors of presynaptic input; KCs respond only to
PN input that arrives during short windows of time bounded by
the troughs of an oscillatory LFP cycle (Perez-Orive et al., 2002,
2004). If the same subset of PNs spike synchronously through-
out an odor presentation, the odor would completely specified
by identity of active PNs (an identity code) and the same post-
synaptic KCs would be activated in every cycle. However, in vivo
recordings from the locust AL show that different subsets of PNs
are recruited and become transiently synchronized during differ-
ent cycles of the LFP oscillation in a manner that is predictive
of attributes of the odor. Thus, not only the identity of neurons
that spike, but also the timing at which the spikes occur factor in
encoding the odor representation (a spatiotemporal code).

Within the framework discussed here, the odor input is con-
sidered to be static and it stimulates the same set of PNs and
LNs throughout the duration of the stimulus. This provides a
useful first approximation to understand odor coding by the AL.
Network interactions in the AL ensure that, different odors and
odor attributes result in different spatiotemporal patterns of PN
activity that, in turn, trigger different KC responses (Stopfer et al.,
2003). Transient synchrony of AL neurons serves an important
computational idea—it vastly expands the number of states avail-
able to encode odors when compared to a purely identity code.
The upper bound on the number of states of the system increases
as a power of the duration (measured in oscillatory cycles of the
LFP) of the stimulus presentation. This could allow small differ-
ences in input to be amplified in a manner that it can be read out
by KCs. While the animal need not, necessarily, take full advantage
of this increased computational power, there is evidence to sug-
gest that transient patterning plays a role in odor discrimination,
particularly during difficult discrimination tasks (MacLeod et al.,
1998).

Our goal is to elucidate the intrinsic and network mechanisms
that are responsible for transient synchrony seen in the AL net-
work. In particular we elaborate the specific role played by the
inhibitory sub-network of the AL in facilitating the formation
of transiently synchronous ensembles of PNs. In previous papers
we have conjectured that the operational principles that govern
the dynamics of the AL network include competition between
LNs that generates epochs of time where specific LN sub-sets
are activated. These, in turn, transiently entrain PNs that pro-
vide synchronous input to KCs (Bazhenov et al., 2001b; Assisi
et al., 2011). This focused review further discusses and extends
our theoretical ideas regarding odor coding in insect olfaction.

METHODS
Individual LNs and PNs were modeled by a single compart-
ment with voltage and Ca2+ dependent currents described by
Hodgkin-Huxley kinetics. The model LNs and PNs were con-
structed in order to closely emulate the experimentally observed
dynamics of LNs and PNs using a parsimonious conductance
based model [see (Bazhenov et al., 2001b) for a detailed descrip-
tion of the model parameters]. In vivo, PNs show overshooting
sodium spikes in response to a constant depolarizing stimulus.
LNs in contrast, generate low amplitude calcium spikelets that
demonstrate spike frequency adaptation due to a Ca2+ dependent
potassium current. Fast GABA (LN-PN and LN-LN connections)
and nicotinic cholinergic synaptic currents (PN-LN connections)
were modeled by first-order activation schemes. In addition to
fast GABAergic synapses PNs in the AL are known to receive
slow inhibitory input via GABAB type conductances (Bazhenov
et al., 2001a; Wilson and Laurent, 2005). These slow responses
tend to last over durations of 100 s of ms and generate long
epochs when the neuron is hyperpolarized. However, since we
were largely interested in how transient synchrony occurs on a
fast time scale (lasting the duration of a few oscillatory cycles
<100 ms) we chose to minimize the contributions of this slow
form of inhibition. The specific connectivity of the networks and
the excitatory and inhibitory coupling strengths were varied in
individual simulations. The values are specified with individual
figures. The model equations and other parameter values are
specified in (Assisi et al., 2011). In the insect olfactory system,
odor stimulation activates odor specific subset of PNs and LNs. In
this study, to focus on the network driven spatiotemporal dynam-
ics, we considered simplified stimulus model—a suprathreshold
input was simultaneously provided to all PNs and LNs. The
amplitude of this input was constant across all neurons except
for a low amplitude additive noise term (∼5% of the stimulus
amplitude).

THE ROLE OF INHIBITION IN THE DYNAMICS OF SMALL NETWORKS
To understand the role of inhibition in generating transiently syn-
chronous groups of PNs we first considered the dynamics of a
reciprocally coupled pair of neurons consisting of an LN that
inhibits a PN and receives excitatory input from it (Figure 2A).
Both these neurons received identical depolarizing input that
exceeded the spiking threshold of each neuron. The reciprocally
coupled pair oscillated out of phase with a frequency of ∼25 Hz.
The frequency of oscillation can vary as a function of the strength
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FIGURE 2 | (A) Single PN-LN pair. The top trace shows the membrane
potential of the LN (black) and a frequency filtered version (gray trace,
bandpass filter 10–40 Hz). The middle trace plots the instantaneous
phase of the filtered LN membrane potential. The red dots show the
value of the instantaneous phase at times when the PN generates a
spike. The membrane potential of the PN is shown in the bottom trace.
gACh (PN-LN) = 0.00001. (B) Phase distribution of PN spikes. The

histogram shows the distribution of the phase at which the PN
spikes for different values of the strength of inhibitory coupling from
LN to PN (gGABA−A). The distribution was generated over 20 s.
(C) Mean phase of PN spikes. The mean phase at which the PN spikes is
shown as a function of the inhibitory coupling strength. (D) The circular
standard deviation of the phase as a function of the inhibitory coupling
strength.

of the inhibitory coupling to the PN [see Figure 2 in (Bazhenov
et al., 2001b) for a detailed description]. We sought to deter-
mine the extent of PN entrainment by the inhibitory LN and
the strength of inhibitory synaptic coupling required to entrain
the PN. In order to quantify these features we measured the
instantaneous phase of the LN by first filtering the LN mem-
brane potential (Figure 2A, black line in the top trace) through
a band pass filter (15–40 Hz) and calculating the Hilbert trans-
form (Figure 2A, middle trace) of the resulting smoothed trace
(Figure 2A, gray line in the top trace). The instantaneous phase

thus determined was sampled at times when the PN generated a
spike (red circles in Figure 2A, middle trace). We simulated this
simple network over 20 s and calculated the distribution of these
phase points corresponding to the times when the PN generated
a spike (Figure 2B). The spread of the distribution provided a
measure of the degree to which the LN entrained the dynam-
ics of the PN (Figure 2D). As we varied the strength of the
inhibitory synaptic coupling, the circular standard deviation of
the phase of PN spikes with respect to the LN oscillation decreased
until, at a specific value of gGABA−A, it abruptly dropped from
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∼1.0–∼0.05 radians followed by a gradual monotonic decrease
(Figure 2D). The effect of an LN spike was to shift the onset
of the following PN spike to a later phase of the oscillation as
the coupling strength increased (Figure 2C). The mean phase of
the distribution moved toward the peak of the LN oscillatory
cycle. Thus individual PNs can be entrained by its coupling to a

single LN if the strength of the inhibitory input exceeds a specific
threshold.

Next we sought to determine the collective dynamics of mul-
tiple PNs, all receiving identical inhibitory input from a single
LN. We simulated a network of 10 PNs that were inhibited by
a single LN and provided excitatory input to it (Figure 3A).
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FIGURE 3 | (A) Network consisting of a single LN inhibiting 10 PNs. The LN
receives excitatory input from all PNs. gACh (PN-LN) = 0.00001, gGABA−A

(LN-LN) = 0.00001. (B) The standard deviation of the PN spike phases as a
function increasing strength of inhibitory coupling. (C) The distribution of the

phase of PN spikes for different values of gGABA−A. (D) PN dynamics. Each
dot in a panel corresponds to the instantaneous phase of a PN spike at a
given time. The phase dynamics of 4 PNs of the 10 PNs simulated is shown.
Each column of panels corresponds to a different value of gGABA−A(LN-PN).
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Here too we found that the collective dynamics of all PNs was
strongly entrained by the LN oscillations when the strength of the
inhibitory coupling exceeded a threshold value (Figures 3B,C).
The standard deviation of the phase at which the PNs generated
spikes abruptly decreased as the strength of inhibitory coupling
increased. The dynamics of the PNs however showed complex
patterns of activity relative to the LN (Figure 3D). For different
values of the coupling strength, a given PN could show phase drift
relative to the LN oscillations, multi-frequency phase locking and,
for the strongest coupling strengths, 1:1 phase locked dynamics
(Figure 3D).

These simulations show that LNs can effectively entrain the
dynamics of PNs. Therefore, we hypothesize that transient syn-
chrony between PNs, as seen in experimental recordings in the
locust AL, must, to a significant extent, be driven by its interaction
with the LN sub-network. Evidence for this assertion also comes
from experiments where the influence of fast inhibition medi-
ated by GABAA was selectively abolished by the application of
GABAA antagonist picrotoxin (Stopfer et al., 1997). This had the
effect of curtailing a prominent 20 Hz oscillation that is ubiqui-
tous during odor stimulation. Since the experimentally measured
oscillatory local field potential can be viewed as the synchronized
activity of ensembles of PNs, we can, as subsequent modeling
studies have (Bazhenov et al., 2001b), infer that inhibition indeed
entrains PN activity. Our simulations (Figures 2 and 3) examine
the extent of this entrainment over a broader parameter range
than that simulated in earlier studies (Bazhenov et al., 2001b;
Assisi et al., 2011). Furthermore, reciprocal inhibition between
LNs can enforce competition between groups of inhibitory neu-
rons. This would lead to some groups of LNs being activated in
response to an odor, while other groups are quiescent or hyperpo-
larized by the active LNs (Assisi et al., 2011). Transient synchrony
within groups of LNs, coupled with their ability to drive the
activity of PNs provides a potential mechanism that explains the
observed spatiotemporal patterning of PNs in the AL (see more
on this below).

The role of inhibition in synchronizing the activity of
excitatory PNs has also been examined models of Limax
(Ermentrout et al., 1998) and honeybee (Linster and Cleland,
2001). Synchronization driven by inhibition is not limited to
olfactory networks. In the hippocampus, GABAergic neurons

form the hubs of a network that synchronizes the activity of
pyramidal cells (Bonifazi et al., 2009). Feedback inhibition medi-
ated by LNs can effectively synchronize distributed pyramidal
cells, a mechanism termed pyramidal interneuronal network
gamma (PING) (Borgers and Kopell, 2003, 2005; Borgers et al.,
2005). This mechanism has also been implicated in the genera-
tion of gamma band synchrony (Llinas and Ribary, 1993; Singer
and Gray, 1995; Wang and Buzsaki, 1996).

RECIPROCAL INHIBITION CAN BE RELATED TO THE COLORING
OF THE NETWORK
The two LNs in Figure 4 reciprocally inhibit each other. Over a
wide range of parameters these neurons would tend to spike out
of phase [see (Vreeswijk et al., 1994) for exceptions]. When one
of the neurons generated a burst of spikes it suppressed activ-
ity in the other neuron. In the network simulated above, which
neuron spikes is determined by the calcium concentration in the
cell. Increased intracellular Ca2+ signals a lower propensity for
firing (see (Ahn et al., 2010) for a detailed view of the effects of
Ca2+ on the spiking pattern). We have shown that burst alter-
nation was determined by the activation of Ca2+-dependent K+
currents (Assisi et al., 2011). Each spike led to an increase in the
Ca2+ concentration within a cell and additional K (Ca2+) activa-
tion that consequently delayed the onset of the following spike,
a phenomenon known as spike frequency adaptation. When the
frequency of spiking reduced below certain threshold, the inhibi-
tion provided by this neuron was not sufficient to keep the other
neuron from spiking; as a result, the quiescent neuron switched
to an active state and suppressed activity in the post-synaptic
neuron. Antagonistic interactions between reciprocally coupled
inhibitory neurons allowed us to derive a relationship between
the dynamics of neurons and a structural characteristic of the
underlying network, namely, its coloring.

A coloring of the network is a prescription that assigns dif-
ferent colors to nodes (neurons) that are directly connected to
each other (Chartrand, 1984). The minimum number of colors
required to color a network is known as its chromatic num-
ber. In the example above, the two neurons are reciprocally
coupled and therefore must be assigned different colors. If the
coupling between neurons is inhibitory, we anticipate that neu-
rons associated with different colors, upon stimulation by the

100 ms

50
 m

V

FIGURE 4 | A pair of reciprocally coupled LNs generate alternating patterns of spikes. The two traces correspond to different LNs shown in the figure.
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same depolarizing input, will compete with each other and gen-
erate spikes (or bursts of spikes) at different times. In contrast,
neurons that do not compete (are associated with the same color)
will spike in approximate synchrony. This relationship between
the coloring and the dynamics of the inhibitory network is clearly
evident in the simple network constructed in Figure 4. However,
does this relationship generalize to larger and more complex

networks? To address this question we constructed networks that
possessed the required coloring [see (Assisi et al., 2011)]. For
example to construct a network with two colors, we generated two
groups of neurons that were all-to-all connected across groups
but possessed no connections within groups. Figure 5A1 shows
an example of one such network consisting of 40 neurons with 20
being associated with one color and the remaining with another
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A1 A3A2
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FIGURE 5 | Dynamics of a network of reciprocally connected inhibitory

LNs. (A) Bipartite graph with chromatic number 2. Each LN is reciprocally
connected to all the neurons that are associated with a color different from
its own (A1). The adjacency matrix of the network consists of diagonal blocks
of zeros with ones elsewhere (A2). Raster plot showing the activity of 40
neurons in response to identical input to all the neurons. LNs associated with
the same color spike in approximate synchrony (A3). The traces below the
raster plots in Aiii, Biii, Ciii show the input that is given to all the inhibitory
neurons. The parameter values used for this simulation were gGABA−A

(LN-LN) = 0.00007. (B) A graph with four colors can be constructed by picking
four groups of neurons that do not extend connections within a group but

possess all to all reciprocal inhibitory connections with other groups (B1).
The adjacency matrix consists of four diagonal blocks of zeros with ones
elsewhere (B2). As in the previous case neurons associated with the same
color tend to spike in synchrony (B3) (gGABA−A (LN-LN) = 0.00007). (C) Graph
with multiple colorings. Three groups of neurons possess all-to-all reciprocal
connections between groups. A fourth group of neurons extend connections
only to the group marked in green and not to the others. Therefore, it may be
associated with the blue or the red group (C1). Neurons associated with this
group tend to spike in synchrony with either the red or the blue group but
remain silent when the green groups spikes (C3) (gGABA−A (LN-LN) =
0.00002). The corresponding adjacency matrix is shown in C2.
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color. The adjacency matrix of this network consisted of two
20× 20 diagonal blocks of zeros and ones in all other locations
(Figure 5A2). The diagonal blocks of zeros are the shaded regions
of the adjacency matrices shown in Figure 5A2. The dynamics of
this network with chromatic number, two, clearly showed that
neurons associated with different colors generated an alternat-
ing pattern of activity (Figure 5A3). The antagonistic interactions
between inhibitory groups persisted even as the number of colors
increased (Figure 5B).

A number of experimental recordings show that PNs, and
therefore LNs that entrain them, form transiently synchronous
groups over the duration of an odor. A given PN may participate
in more than one synchronous group. In Figures 5A and 5B, how-
ever, we show that a given LN associated with a particular color,
can only spike in synchrony with LNs that share the same color
and not with any other group. If LNs indeed drive the synchrony
of PN spikes (see below), this would imply that the constitution
of every synchronously spiking group of PNs would never change.
One can circumvent this issue by constructing networks that pos-
sess multiple colorings. For example, the network in Figure 5C1
has chromatic number three. However, in contrast with the net-
works shown in Figures 5A and 5B, this network (Figure 5C1)
can be colored using three colors in two different ways. A group
of ten neurons in Figure 5C1 can be colored either red or blue but
not green since these neurons are connected to the green group
but not to the other two. The adjacency matrix of this network
has three 10× 10 diagonal blocks of zeros in addition to some
off-diagonal blocks of zeros (Figure 5C2) [see Figure 3 in (Assisi
et al., 2011) for a simplified rendering of this graph where all neu-
rons associated with a color are grouped into a single node]. The
dynamics of this network under constant and identical deploariz-
ing input to all neurons evolves such that the group of neurons
that can be colored using multiple colors spikes in synchrony with
both the red and the blue groups while falling silent when the
green group of neurons spike. Multiple colorings can therefore
be associated with transient synchrony where individual neurons
can participate in multiple synchronous groups as seen in experi-
ments. This example also shows that the neurons in the inhibitory
network do not have to be directly connected to each other to
spike asynchronously.

While our simulations show that antagonistic interactions
between LNs generates clusters of synchronously spiking neurons
that respect the coloring of the network, this need not always be
the case. In all-to-all connected (Golomb and Rinzel, 1993; Wang
and Buzsaki, 1996) and random networks (Wang and Buzsaki,
1996), the dynamics can depend on the interaction of intrin-
sic (spike afterhyperpolarization, heterogeneities in spiking fre-
quency) and synaptic (reversal potential, synaptic current decay
time, sparseness of connections) factors. Clustered solutions of
the type observed here form a sub-set of the full dynamical reper-
toire of purely inhibitory networks. Heterogeneities in network
structure [Figure 6 in (Assisi et al., 2011)] and dense connectivity
between neurons, resulting in a larger number of colors [Figure 2
in (Assisi et al., 2011)] can perturb the coloring based dynamics
of the system. However, the inclusion of feedback excitation has
been shown to reduce the extent of this perturbation [Figure 4
in(Assisi et al., 2011)].

TRANSIENT SYNCHRONY IN PROJECTION NEURONS IS DRIVEN
BY THE INHIBITORY SUB-NETWORK
In our simulations we showed that feedback GABAergic inhibi-
tion mediated by LNs could entrain PNs to spike in synchrony
(Figures 2 and 3). Further, reciprocally coupled networks of LNs
could, as determined by the coloring of the network, form tran-
siently synchronous groups that moved in and out of synchrony
with each other over the duration of the odor input (Figures 4
and 5). In what follows we show that these groups of LNs can
entrain PNs to generate the kind of transiently synchronous
dynamics seen in recordings from PNs in the locust AL. This
entrainment is seen in PNs regardless of whether the LN net-
works are uniquely colored or possess multiple colorings. We
constructed a network consisting of forty PNs and forty LNs. The
LN sub-network consisted of four groups (colors) of neurons that
were all-to-all connected across groups but received no connec-
tions from within each group (Figure 5B). Each LN group pro-
vided inhibitory input to one of four groups of PNs but received
excitatory input from all the PNs (Figure 6A). Non-oscillatory
external input (Figure 6B, bottom panel) triggered ∼30 Hz non-
synchronous spiking in all PNs of the network (Figure 6B, middle
panel). As expected, the LNs generated an alternating pattern of
activity consistent with the coloring of the underlying network
(Figure 6B, top panel). Each burst of spikes by an active LN group
synchronized the activity of post-synaptic PNs. As a result, all
PNs that received input from an active LN group showed syn-
chronized ∼20 Hz oscillations (Figure 6B, middle panel). When
the group of LNs became quiescent the post-synaptic PNs drifted
from synchrony during subsequent epochs of time when other
LN groups generated spikes. These dynamics lead to a complex
pattern of synchronization where different groups of PNs became
synchronized during different epochs of odor stimulation.

DISCUSSION
We demonstrated that competitive interactions between LNs can
lead to the formation of groups of synchronously spiking LNs that
can effectively entrain the dynamics of PNs. The identity of LNs
that participate in each group is determined by a characteristic
feature of the connectivity structure of the inhibitory network,
namely, its coloring. Our simulations in Figure 6 demonstrate
that spikes generated by PNs are phase locked to the dynam-
ics of those LNs that provide direct inhibitory input to it. The
degree of PN synchronization is dependent on the strength of
the inhibitory coupling from LNs. In simple networks consist-
ing of a single inhibitory neuron that was reciprocally connected
to multiple PNs, we demonstrated multi-frequency coordination
between PNs and the LN. Multifrequency coordination has also
been reported in Lotka-Volterra models with competing interac-
tions between the nodes (Rabinovich et al., 2006). Such dynamics
clearly defines a widening of the dynamical repertoire of that these
networks are capable of.

The critical feature of out model is that the strongest inhibition
determines the identities of PNs that “talk” to the downstream
neurons in the mushroom bodies. Indeed only PNs that receive
sufficiently strong inhibition can (transiently) synchronize and
drive responses in the KCs that operate as spike coincidence detec-
tors. Therefore, we can classify our model as multiplicative—the
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FIGURE 6 | (A) A network of LNs with chromatic number 4 is connected
to a population of PNs. The PNs were separated into four groups. Each
group received inhibitory input only from LNs that were associated with
one color and not others. The PNs provided excitatory input to all LNs
irrespective of the coloring. (gGABA−A (LN-LN) = 0.00004, gGABA−A

(LN-PN) = 0.00006, gAch (PN-LN) = 0.00004). (B) PNs (top raster)
that received inhibitory input from LNs (bottom raster) of a particular
color tended to spike synchronously only when those LNs were
activated. The black trace at the bottom shows the input provided to all
PNs and LNs.

input from olfactory receptor neurons to PNs is multiplied by
feedback inhibition within AL to determine which PNs transmit
information to the mushroom body. PNs receiving sensory input
but no inhibitory feedback cannot reach the mushroom bodies.
This is in contrast to some other theoretical models of olfactory
processing (in vertebrates) where inhibition balances excitation
in many principal neurons of the olfactory bulb and only the
“error” signal is transmitted to the subsequent level—piriform
cortex (Koulakov and Rinberg, 2011).

A long-standing conjecture in neuroscience has been that neu-
ronal networks possess mechanisms that can string groups of
synchronously spiking neurons into elaborate temporal sequences
(Hebb, 1949). These spatiotemporal patterns, termed phase
sequences, then form the basis of all perception (Gray and Singer,
1989), memory (Cheng and Frank, 2008) and action (Bouyer
et al., 1987). Here we demonstrated that the coloring of the
network determines the identity of neurons that spike together.
However, the coloring does not place any specific constrains
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on the sequence in which successive groups of neurons are
recruited. The occurrence of a specific sequence of spiking is
influenced by the nature of the input, the history, and the current
state of the network. In the inhibitory networks simulated here
the intracellular Ca2+ concentration within a cell plays a promi-
nent role in determining the order in which groups of neurons
generate spikes. The lowest Ca2+ concentration determined the
minimal activation of Ca2+ dependent K+ currents and, there-
fore, the most excitable group of LNs (Ahn et al., 2010; Assisi
et al., 2011). In all the simulations in this paper we introduced
a small amount of variability in the intrinsic properties across
PNs and LNs to ensure that the network dynamics does not set-
tle into a pathological and unstable state. This variability could
potentially lead to asymmetries that define a specific ordering of
the PN sequences. Explicitly imposed asymmetries in the prop-
erties of the neurons such as the excitability of different groups
(either intrinsic or stimulus-dependent) could be used to enforce

the stability of some sequences in lieu of myriad others that could
also be present in the completely symmetric network. Finally,
the LN networks simulated here possessed reciprocal connec-
tions between pairs. Directional connectivity between neurons
is known to introduce a strong asymmetry in the network and
restricts number of stable sequences of activity. This can be used
to construct networks that possess a priori specified patterns of
activity.

Our study revealed a link between the structure of the
excitatory-inhibitory network and its dynamics. It presents a new
approach to understand how the dynamics of the network can be
predicted from the connectivity and may lead to strategies that
could allow us to infer the connectivity of the network from its
observed dynamics.
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The transient oscillatory model of odor identity encoding seeks to explain how odorants with
spatially overlapped patterns of input into primary olfactory networks can be discriminated.
This model provides several testable predictions about the distributed nature of network
oscillations and how they control spike timing. To test these predictions, 16 channel elec-
trode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary
spiking and multi site local field potential (LFP) recordings were made during spontaneous
activity and in response to repeated presentations of an odor panel. We quantified oscil-
latory frequency, cross correlations between LFP recording sites, and spike–LFP phase
relationships. We show that odor-driven AL oscillations in Manduca are frequency modu-
lating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM
oscillatory responses were localized to one or two recording sites suggesting a localized
(perhaps glomerular) not distributed source. LFP cross correlations further demonstrated
that only a small (r < 0.05) distributed and oscillatory component was present. Cross spec-
tral density analysis demonstrated the frequency of these weakly distributed oscillations
was state dependent (spontaneous activity= 25–55 Hz; odor-driven= 55–85 Hz). Surpris-
ingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was
strongest during spontaneous activity and dropped significantly during responses. Appli-
cation of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency
content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike
phase locking generally, but the ubiquitous pattern of increased phase locking during spon-
taneous activity persisted. Collectively, these results indicate that oscillations perform
poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence
are incongruent with the transient oscillatory model.

Keywords: olfaction, odor coding, oscillations, synchrony, GABAA, olfactory bulb, antennal lobe

INTRODUCTION
Odor stimulation drives a combinatorial spatio-temporal response
in first-order olfactory processing centers, the insect anten-
nal lobe (AL), and the vertebrate olfactory bulb (OB). Sev-
eral aspects of these physiological responses have been cor-
related with an animal’s ability to discriminate between even
subtly different odorant stimuli in behavioral assays (Stopfer
et al., 1997; Daly et al., 2001; Linster et al., 2001; Wright et al.,
2002; Galán et al., 2004). For example, odor can drive local
field potential oscillations (LFPOs) at species-specific frequencies
(Gelperin and Tank, 1990; Heinbockel et al., 1998). Superim-
posed on these LFPOs are what has been described as slower
temporal patterns of action potentials among populations of
principal output cells of the AL/OB (for review see Laurent
et al., 2001). At least a subset of action potentials from these
responses has been shown to correlate to a specific phase range
(i.e., phase lock) of the LFPOs in the locust (Laurent and
Davidowitz, 1994; Laurent and Naraghi, 1994; Laurent et al.,

1996a,b, 2001; MacLeod and Laurent, 1996; Wehr and Laurent,
1996).

Selective disruption of GABAA receptor signaling in the locust
AL interferes with fast inhibitory synaptic interactions, thereby
disrupting odor-driven oscillations in the AL and its primary
projection fields (MacLeod and Laurent, 1996). Disruption of
GABAA mediated oscillations also appears to affect discrimination
of closely related monomolecular odors in mouse and honeybee
(Stopfer et al., 1997; Nusser et al., 2001). Thus, based on compara-
tive data from locust (Laurent and Davidowitz, 1994; Laurent and
Naraghi, 1994; Wehr and Laurent, 1996, 1999), honeybee (Stopfer
et al., 1997), zebra fish (Friedrich and Laurent, 2001), and mice
(Nusser et al., 2001), a general model of olfactory encoding has
been proposed, positing that stimulus driven LFPOs synchronize
transiently active spiking responses across a distributed network
of principal output cells in order to mediate enhanced odor dis-
crimination over time in downstream brain centers, such as the
insect mushroom bodies (MB; for review see Laurent, 2002).
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However, odor discrimination is also correlated with more par-
simonious encoding models such as odor dependent patterns of
spike bursting (Stopfer et al., 2003; Daly et al., 2004b; Lehmkuhle
et al., 2006), which optimize on a relatively shorter time scale (ca.
∼140–240 ms after stimulus onset). This rapid timescale is consis-
tent with correspondingly rapid and accurate behavioral responses
in discrimination tasks in both insects and mammals (Uchida
and Mainen, 2003; Budick and Dickinson, 2006; Wesson et al.,
2008a,b). Spatial mapping of odorant responses in the OB and AL
suggest that fine odor discrimination can be largely accounted for
by subtle differences in glomerular input patterns alone (Johnson
et al., 1998, 1999, 2005; Linster et al., 2001; Galán et al., 2004). Con-
sistent with the notion that both spatial and temporal processes
contribute to odor discrimination, we have recently shown that
both odor dependent spatial patterns of glomerular output and
spatio-temporal sequences of activations of these glomeruli can
be observed during a response (Staudacher et al., 2009). In this
case temporal patterns evolved over a ∼120-ms response window
in an odor dependent manner. However, when data are collapsed
across time, the spatial pattern alone remains odor dependent.
Thus even within a given species, there are odor dependent spatial
and temporal components that correlate to an animal’s ability to
discriminate.

The goal of the current study therefore was to better charac-
terize oscillatory dynamics within the AL of the moth Manduca
and to specifically establish whether odor-driven oscillations drive
spike timing in a manner consistent with the transient oscillatory
model. Specifically, we wanted to test the following predictions of
this model: (1) Odor-driven LFPOs should be distributed across
the AL; (2) The frequency content of these oscillations are: (a) of
a consistent and stable frequency; (b) independent of the odor
delivered and (c) occur reasonably consistently in response time
across stimulus repeats; (3) unitary spiking responses should phase
lock to oscillations; (4) this phase locking should be enhanced
during odor-driven responses, relative to spontaneous activity;
and (5) the local inhibitory network should establish oscilla-
tory activity in the field and hence affect precise spike timing.
To test these hypotheses, we placed 16 channel silicon micro-
electrode arrays within the AL to record spatial and temporal
patterns of spiking activity across ensembles of sorted neural
units. In addition, we recorded local field potentials (LFP) in mul-
tiple locations across the electrode array to investigate whether
responses were localized or distributed. These recordings were
made during both spontaneous activity and in response to odor
stimulation in order to compare oscillatory and spiking activity
during spontaneous epochs (i.e., ongoing processes of an active
system), and during odor-driven responses. This allowed us to
test whether the evolution of odor-driven oscillatory activity was
associated with increased phase locking of individual cells. Finally,
in order to address the functional role of local inhibition, the
above observations were made before and during GABAA receptor
blockade.

MATERIALS AND METHODS
MOTHS
Male Manduca moths were reared at West Virginia University
using standard rearing procedures (Bell and Joachim, 1976). At

stage 18 of pupal development, pupae were placed individually
into paper bags and stored in a Percival incubator at 25˚C with
a reversed 16:8 LD cycle and 75% relative humidity. Moths were
allowed to develop 5–7 days post eclosion, prior to experimental
use; this ensures complete development of the AL and is consistent
with our other behavioral studies.

NEUROPHYSIOLOGICAL PREPARATION
The method used for preparing moths has been described in detail
elsewhere (Daly et al., 2004a,b). Briefly, individual moths were
placed into a 14-mm ID copper tube and their heads firmly fixed
to this tube with molten soft dental wax. An approximately 2 mm2

window was cut into the top center of the head capsule. Next, cuts
were made around the perimeter of the bilateral pair of pharyngeal
dilator muscles (again ∼2 mm2). The pharyngeal dilator muscles
with attached head capsule cuticle were then slid forward into the
previously cut window. The repositioned section of cuticle was
then glued into position with superglue. By moving these feeding
muscles, the brain can be directly accessed while leaving the animal
functionally completely intact (Daly et al., 2004a). The prepared
moth was then positioned on an air table and standard physiolog-
ical saline was applied to the opened head to remove hemolymph
and keep the brain moist. The flagellum of the ipsilateral antenna
was then placed into a glass sleeve (ID 2.5 mm), which was con-
nected to an olfactometer. Finally, the 16 channel electrode array
(Neuronexus 2× 2 tet) was placed into the AL using a high reso-
lution motorized micromanipulator and controller (WPI HS6-3)
under visual control. The probes were placed along a visually iden-
tifiable anatomical boundary between the AL and the rest of the
brain, so that the probe array was located at the very caudal bound-
ary of the AL. The depth of the deepest electrode in the array was
between 500 and 600 μm, although this varied somewhat from
moth to moth and was optimized for each recording. The com-
pleted preparation provided stable recordings for several hours.
All recordings were performed between 1 and 4 h after the start of
the moth’s subjective night when they are normally active.

ODOR AND DRUG DELIVERY
Three microliters of monomolecular odorants were individually
placed, undiluted, onto a ∼3-mm× 30-mm strip of Whatman fil-
ter paper and placed into a ∼1.7-ml glass cartridge (see Table 1
for odor list). The cartridge ends were made of 1/16 in ID nylon

Table 1 | List of odorants used.

Odorant Source Purity Density

1-pentanone Sigma 99% 0.815

1-hexanol Sigma 97% 0.861

1-heptanol Sigma 98% 0.822

1-octanol Sigma 99% 0.82

1-nonanol Fluka 98% 0.88

1-decanol Sigma 97% 0.89

2-hexanone Sigma 98% 0.81

2-octanone Sigma 98% 0.82

2-nonanone Sigma 99% 0.821

2-decanone Sigma 98% 0.824
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luer fittings. Prepared cartridges were then connected to the odor
delivery system such that the cartridge was only 2 cm from the
tip of the antenna. Under normal conditions, dried and charcoal
filtered air passed through the air supply tubing to the antenna
at a velocity of 280 cm/s. This velocity was more than sufficient
to minimize boundary layer effects around the antenna’s sensilla,
yet well within the normal flight speed of this moth (Stevenson
et al., 1995). To stimulate with odor, clean air was shunted from
the normally open line, which blows constantly on the antenna,
to a second line which contained the odor cartridge, via a three-
way valve (The Lee Co., model LFAA1200118H). The clean air and
odor lines then merged into a T. The third arm of the T connected
to the glass sleeve, in which the antennal flagellum had previously
been inserted. Thus, air from either the clean air line or the odor
line was continuously flowing over the flagellum.

Nine monomolecular odors were presented separately in ran-
dom order. Each odorant was presented in 20 consecutive 100 ms
pulses, each pulse spaced by 10 s. One hundred millisecond pulses
were used based on empirical evidence indicating that this is the
approximate mean exposure time for moths in the natural outdoor
environment (Murlis and Jones, 1981) and a 10-s inter stimulus
interval is sufficient to eliminate any modulation of responses due
to repeated exposures in this model system (Daly et al., 2004b;
Staudacher et al., 2009). This presentation scheme was repeated
prior to, during and following bath application of 200 μM bicu-
culline methiodide (BMI) in physiological saline solution. This
dose level has been shown to be effective in this (Waldrop et al.,
1987; Christensen et al., 1998) and other insect species (Stopfer
et al., 1997; Hosler et al., 2000). Drug treatment was initiated
10 min prior to the start of the second block of odor stimulations.

In a subset of two recordings, we also varied stimulus duration
(50, 100, 500, and 1000 ms) to assess the effect of both briefer and
more prolonged stimulation on the patterns of oscillatory activity.
In this case we presented a restricted number of odors and did not
apply GABAA receptor antagonists. We again presented 20 repeats
of each stimulus/duration; each stimulus was again spaced by 10 s.

PHYSIOLOGICAL RECORDING AND SPIKE SORTING
Data from the four tetrodes on the electrode array were recorded
using a 24 channel Neuralynx amplifier array and Cheetah
data acquisition and stimulus control software. Spike data were
recorded at 32 kHz using the tetrode sampling technique and local
field recordings were sampled at 10.7 kHz from one electrode in
each of the four tetrodes. Figure 1A highlights the approximate
size relationship of the AL with the microelectrode array and
identifies the relative position of the LFP recording sites on the
array. In this case, LFP recordings were made from the top and
bottom-most electrode sites to provide the greatest vertical cov-
erage (250 μm deep by 200 μm wide); note that this represents
approximately one-half the width of the AL. Spike channels were
amplified between 2000 and 10,000 times, whereas all LFP record-
ings were amplified 2000 times. Hardware band pass filter settings
were 600–6000 Hz for spike data and 1–125 Hz for LFP data.

Spikes were sorted in Matlab using the BubbleClust toolbox
supplied by Neuralynx. This tool box implements a kth nearest
neighbor algorithm in a 12 dimensional spike waveform fea-
ture space. BubbleClust identified clusters of spikes that were

subsequently assessed and “cleaned” manually based on a number
of descriptive and parametric statistics used to assess the over-
all quality and statistical separation of each cluster (see Daly et al.,
2004b for complete description). Only those clusters that were sig-
nificantly distinct from all other clusters and stable for the duration
of the recording were considered for further analysis.

Local field potential recordings were re-filtered off-line via a
windowed-sync FIR band pass filter provided by Neuralynx, using
a rectangular smoothing window and 800 taps. This filtering pro-
cedure caused a linear phase lag that was then corrected to ensure
accurate alignment of the LFPs with the spike data. Results were
compared to several other filter implementations (including But-
terworth and Chebyshev filters) to confirm that any oscillatory
activity was not attributable to filtering artifacts, such as ringing.
All implementations produced essentially identical results. Finally,
for time frequency analysis (below) we also implemented a 60-Hz
(±2 Hz, unless otherwise noted) windowed-sinc notch filter to the
LFP data to remove line noise.

ANALYSIS
Several analytic techniques were used in order to quantify the rela-
tionship between parallel recorded LFPOs and between LFPOs and
unitary spiking. These methods include LFP–LFP and unit–LFP
cross correlations, vector strength analysis, power spectral density
(PSD), cross spectral density (CSD), and time frequency response
spectrograms (TFRs). In all cases a 1-ms binning window was
used unless otherwise noted and all calculations were performed
in either MATLAB or Neuroexplorer. Statistical analyses of the
data generated from these methods were performed in MATLAB
and SAS.

First, in order to characterize the frequency content of odor-
driven oscillations, TFR spectrograms were generated via the Short
Time Fourier Transform method. TFRs were calculated with the
“tfrsp” function in the Time Frequency Toolbox for Matlab (freely
available from the Centre National de la Recherche Scientifique
at http://tftb.non-gnu.org). This analysis was performed on indi-
vidual responses to odor stimulation and the results averaged to
highlight consistent oscillations whilst averaging out inconsistent
oscillatory activity. Because TFRs were calculated individually for
each response, then averaged across repeats, the approach abstracts
from (and is hence tolerant of) variation in oscillatory phase
between stimulus-aligned traces. This is important because aver-
aging of raw oscillations from repeated trials for example could
potentially cancel out oscillations that are not phase aligned across
trials. TFR results were z-score normalized to highlight possible
differences in frequency content and relative amplitude across the
four LFPO recording sites (see Figure 1A). Normalization also
allowed comparison of pre- versus post- GABAA receptor block-
ade in order to highlight changes in frequency content for these
specific comparisons.

To assess whether each odorant produced a unique frequency
modulating (FM) sweep pattern (i.e., differences in frequency
range, onset/offset, and duration) we implemented a discriminant
analysis using a supervised classification approach. Specifically we
used the support vector classifiers method (Boser et al., 1992; Galán
et al., 2004; see also Methods in Appendix). Here the goal was to
determine if TFR’s generated from individual odor responses could
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FIGURE 1 | Odor-driven oscillations are frequency modulating and

localized to a subset of recording sites (A). Schematic of the multichannel
electrode array configuration within the antennal lobe (AL; Cason stain).
Neuronexus two-shank 2× 2 tetrode silicon electrodes array, each shank
containing eight electrodes, which are arrayed into two tetrodes (for tetrode
sampling of spiking activity), are placed into the AL. One electrode from each
tetrode was used to record local field potentials (LFP; red circles). This
provided four parallel LFP recordings (inset) from across the AL. Note in these
example traces, which have been band pass filtered to highlight 25–100 Hz
that there are several instances of spontaneously occurring “bouts” of
oscillatory activity (inset black arrows). (B) Rasterized peri-stimulus LFP traces
from 20 presentations of 9 different alcohols and ketones. Each trace has
been converted to a one dimensional color coded line to indicate whether the
voltage was high (reds) or low (blues; see above inset). All 180 responses are
aligned by stimulus onset (stimulus duration indicated by vertical black lines)
and stacked to create a single composite panel. Odors are separated by black

horizontal lines and identified (left of panel) by moiety (A= alcohol;
K= ketone) and carbon chain length (5–10). Highlighted above are two distinct
oscillatory response epochs; an early phase (e1), and a later phase (e2). (C)

Averaged time frequency response spectrogram showing consistent
oscillatory power (normalized color scale) as a function of frequency (Y -axis)
and peri-stimulus time (X -axis) for a single odor (1-pentanol). Displayed are
the averaged results of 20 independent TFR analyses for each of the 20
presentations 1-pentanol. Inset white bar (bottom) indicates stimulus
duration. Vertical white line indicates odor onset. Horizontal white line is an
80-Hz frequency reference. Inset histogram (light blue) is the corresponding
mean population spiking response to highlight the relationship between the
onset and duration of the spiking response and the oscillations. (D).
Comparison of the spectrogram results from the four parallel recording sites
in response to 2-octanone. Inset numbers correspond to electrode recording
site shown in (A). Power is normalized to the same range to make panels
directly comparable. All panels are scaled and referenced as in (C).

be classified accurately into odor groups based on the multidimen-
sional shape of the FM sweep. Briefly, we first implemented a data
reduction step. This involved cropping the TFRs generated from
each individual stimulus to a 12 to 124-Hz frequency range, and a
−30 to 1000-ms time range and then defined a region of interest
(ROI) within each TFR, consisting of all pixels that were above
the 99th percentile of power density. Next we generated a filtering
mask which represented all pixels from all odors that were above
the 99th percentile and applied it to all TFRs. This data reduc-
tion step effectively selects all significant frequency–time content

both within odor repeats and between different odorants and
removes all irrelevant data. We then implemented the support
vector classifiers using both a linear and third order polynomial
kernel functions. This analysis was performed on two recordings.
Finally, we calculated an experiment wide 95% confidence inter-
val to identify classification performance as significantly above
chance.

In order to statistically quantify differences in odor-driven
spectral content prior to and during GABAA receptor blockade,
PSD analysis was performed. For this analysis we calculated the
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PSD for each odor-driven response in a 1000-ms window start-
ing at stimulus onset. Note that in response to a 100-ms stimulus,
TFR analysis indicated that most evidence of odor-driven oscil-
latory activity terminated within ∼500 ms, thus all odor-driven
oscillatory activity should be encapsulated within this 1000 ms
window. Furthermore, TFR analysis indicated that odor-driven
responses were typically no higher than 100 Hz, thus PSD analy-
sis was performed on a 1 to 100-Hz frequency range, in 0.5 Hz
steps using Neuroexplorer. Resulting PSD data were then statis-
tically analyzed using ANOVA in SAS to determine if spectral
power at each frequency step was affected by GABAA receptor
blockade.

To quantify the precise relationship between LFPs recorded
from different sites across the AL, we calculated all possible pair
wise LFP–LFP cross correlations. For this analysis, a ±100-ms
sliding window was used and data was sampled from sponta-
neous and odor-driven activity (−1000 to 0 and 0 to 1000 ms
respectively; time relative to stimulus onset). This analysis was per-
formed individually for each stimulus presentation, both before
and during GABAA receptor blockade, for all recordings. The cross
correlation not only indicates whether any two traces are corre-
lated, but also highlights any temporal structure of that correlated
activity. In order to extract and quantify the temporal structure
embedded in the cross correlation, CSDs were calculated for each
individually calculated cross correlation. CSDs specifically mea-
sure the relative power of any periodic structure present in the
cross correlation, hence the CSD quantifies oscillatory activity that
is distributed across the two recording sites used for a given cross
correlation. Results of the CSD analysis were then statistically ana-
lyzed using ANOVA in SAS to determine if distributed power at
each frequency step varied as a function of spontaneous versus
odor-driven sampling time, and as a function of GABAA receptor
blockade.

We used two related methods to quantify the phase relationship
between unitary spiking patterns and the LFPO, as both a func-
tion of spontaneous and odor-driven responses, and as a function
of GABAA receptor disruption. First, the instantaneous phase of
the LFP was calculated in MATLAB as the analytical phase of the
signal, i.e., as the instantaneous angle of the complex time series
obtained from the Hilbert transform of the LFP. Results of this
analysis provided a visual display, as a series of histograms for each
cell, highlighting the distribution of spikes relative to oscillatory
phase. Our second approach was to use vector strength analy-
sis. Vector strength quantifies the degree to which unitary spiking
activity exhibits a tendency to occur at a particular phase of the
LFPO by calculating the reciprocal of the circular variance of the
distribution of phases of sampled spikes to the LFP; this was also
performed in MATLAB. For this analysis data was sampled from
three peri-stimulus epochs; spontaneous activity prior to stimu-
lation (−300 to 0 ms), an early response epoch (50–350 ms), and
a late response epoch (350–650 ms). Note that 0–50 ms was not
considered in this analysis to account for the time lag between
when the odor valve opened and the earliest physiological evi-
dence of AL responses. Furthermore, because preliminary results
indicated that odor-driven oscillatory activity was relatively broad
band and in a different frequency range than what was observed
during spontaneous activity, we performed the vector strength

analysis on LFP data that was band pass filtered to highlight two
frequency domains; low (25–55 Hz) and high (55–85 Hz). Filtering
LFP oscillations into narrower pass bands results in a less complex
wave and hence allows more accurate calculation of spike phase.
Filtering also allows segregation and characterization of phase
locking in the separate frequency domains. Subsequently, ANOVA
was used to determine whether vector strength was dependent
on: peri-stimulus time (i.e., pre, early, and late response epochs),
the odorant used, and, GABAA receptor blockade. Analysis was
performed after accounting for random effects such as individ-
ual recording (moth) and individual differences between spiking
units. Finally, the filter implementation (low versus high frequency
pass band) was also included in the statistical model to estab-
lish whether the different pass bands produced statistically similar
results.

Finally, to establish whether vector strength values were above
what might be expected by chance, these values were recalculated
for one of the recordings using a bootstrapping method, whereby
spike times were first jittered randomly within a series of time
ranges from ±1 to ±10 ms in 1 ms steps (spikes were re-jittered
30 times for each step in the jitter width). Results were statistically
analyzed using ANOVA in SAS to determine if vector strength was
dependent on the amount of jittering for the three peri-stimulus
epochs.

RESULTS
ODOR-DRIVEN OSCILLATIONS ARE FREQUENCY MODULATING AND
TYPICALLY LOCALIZED TO A SUBSET OF RECORDING SITES
The transient oscillatory model of odor identity encoding posits
that odor stimulation should produce a reasonably narrow (hence
stable) frequency band of oscillatory activity, which is distributed
across much if not all of the AL. This prediction is based on the
morphological characteristics of LNs, which arborize broadly and
mediate oscillatory activity. The model furthermore predicts that
the elicited frequency should be independent of the odorant pre-
sented (Laurent and Davidowitz, 1994; Laurent et al., 1996a). A
stable response frequency that is independent of varying stim-
uli is an important aspect of this model because the second-order
olfactory center, the MB, are proposed to integrate inputs from the
AL across a limited time window defined by delayed feed-forward
inhibition from the lateral horn (Laurent, 2002; Perez-Orive et al.,
2002). Therefore, we detailed the precise nature of the oscillatory
activity in the AL of Manduca to determine if these criteria could
be met.

Figure 1A is a schematic depicting the approximate position-
ing and size of the electrode array in the AL. This figure also
highlights which electrodes from the 16 channel array were used
for LFP recordings. In this case, we made parallel LFP recordings
from the highest two and lowest two recording sites (shown in
red), during periods of spontaneous activity and in response to
odor stimulation. Superimposed on Figure 1A are peri-stimulus
LFP traces representing a range of typical 25–100 Hz oscillations.
These oscillations occur both spontaneously (black arrows) and
in response to a 100-ms odor presentation (stimulus highlighted
by red rectangles). Note that oscillations can be clearly observed
during spontaneous activity on three of the four traces, albeit
at a lesser amplitude than those observed during an odor-driven
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response. This suggests that oscillations are an ongoing product of
a spontaneously active system.

Figure 1B displays rasterized peri-stimulus LFP traces from
a single LFP electrode in response to the 20 repeats of each of
the nine odors used, thus comprising a total of 180 rows of LFP
data. First, in the 200-ms prior to odor stimulation, there is again
evidence of spontaneous oscillations as indicated by the random
“peppering” of interleaved red and blue “blips” in the horizon-
tal (i.e., time) axis. The presence of spontaneous oscillatory field
activity should not be particularly surprising given the sponta-
neously active nature of the insect AL (Perez-Orive et al., 2002;
Stopfer et al., 2003; Daly et al., 2004b).

However, in the presence of odor, LFPOs become both larger in
amplitude and in some cases coherent across repeats when aligned
by the onset of odor stimulation. For example, inter-trial coher-
ence can be seen in Figure 1B by the prominent vertical striping
of blue and red across the 20 repeats of each odor as well as across
odors in some instances. This indicates that consecutive oscillation
peaks (red) and valleys (blue) were phase aligned from response
to response. This “inter-trial coherence” across stimulus repeats is
most prominent for 1-pentanol (A5) between 150 and 300 ms post
stimulus onset. Figure 1B also suggests that odor-driven oscilla-
tions have two distinct epochs; these epochs are highlighted by
inset brackets labeled e1 and e2. Early phase high frequency oscil-
lations (e1) emerge reasonably consistently (∼60 ms post stimulus
onset) and last for ∼50 ms. Early phase LFPO’s appear to some
degree for most odors. This early phase oscillation precedes onset
of the odor-driven I1, a bicuculline sensitive, fast inward Cl−
conductance observed in Manduca PNs (Waldrop et al., 1987;
Christensen et al., 1998). The I1 phase occurs prior to spiking
responses of PNs. Thus, based on the timing of early phase oscil-
lations, they likely relate to sensory cell input and early synaptic
processing that occurs prior to the onset of PN spiking responses.

Starting no earlier than ∼120 ms is a second bout of high
frequency LFPOs (e2), which appear less coherent in response
time, though exceptions exist (again see responses to 1-pentanol).
These later phase oscillations tend to be odor dependent.
However, it is not always apparent, using this visualization
method, whether odor-driven e2 oscillatory activity is consis-
tent from trial to trial in terms of onset, frequency, and/or
phase.

To establish whether odor-driven oscillations are consistent in
response time and produce a reasonably stable frequency, thereby
providing a faithful temporal encoding mechanism that is inde-
pendent of odor identity (Laurent and Davidowitz, 1994; Laurent
and Naraghi, 1994), we calculated TFRs. Figure 1C displays the
averaged results of 20 separate TFR analyses performed on each
of the 20 presentations of 1-pentanol; results are based on a single
recording site. Power was normalized to a probability distribu-
tion and color coded. The first and most striking observation
is that odor stimulation drives an oscillatory response that is
FM. In response to all 9 odors for all 10 moths in the study
(1,800 total odor presentations) we observed that odor-driven
oscillatory responses produced a high-to-low frequency sweep
that typically ranged from 80 to 100 Hz peak frequency down to
20–40 Hz. Superimposed on this TFR is the corresponding peri-
stimulus histogram, highlighting the summed spiking response

for all units in the corresponding population. Results were then
averaged across the 20 stimulus repeats. Consistent with the above
observation that oscillatory activity precedes spiking activity in
AL neurons, Figure 1C shows that high frequency oscillatory
activity precedes the population spiking response by ∼60 ms in
this case.

Across the 10 moths used for this analysis, odor-driven FM
oscillatory responses were also spatially localized. Figure 1D dis-
plays typical TFRs generated from the four parallel LFP recording
sites from a single animal in response to 20 presentations of 2-
octanone. In Figure 1D, the upper left electrode (1) recorded
an FM sweep starting at ∼60 ms post stimulus onset and a peak
frequency of 100 Hz. The frequency of this oscillation then mod-
ulated down to 35 Hz by 400 ms post stimulus onset. This pattern
is evident in the upper right electrode (2) as well, although the
relative power was lower. In the lower two electrodes (3 and 4)
however, almost no evidence of this FM oscillation was present.
As highlighted in Figure 1D electrode 3, there were also con-
sistent spontaneous 20–50 Hz oscillations that were interrupted
upon odor stimulation; this form of spontaneous oscillatory activ-
ity was observed in at least one of the LFP recording sites for
6 of the 10 moths that we analyzed using the TRF method (see
Figure A1 in Appendix for examples from all six recordings). As
suggested by the raw traces in Figure 1A, these ongoing oscilla-
tions tended to be spontaneous but intermittent; this accounts
for the patchy power structure observed in Figure 1D. Thus,
while 2.7± 1.15 (mean± SD) recording sites exhibiting oscilla-
tory activity of some sort, only 1.8± 1.2 (mean± SD) recording
sites actually displayed the same odor-driven FM response patterns
as seen in electrodes 1 and 2. Contrary to the predictions made
of the transient oscillatory model, this suggests that odor-evoked
oscillations that were FM and typically constrained to a sub region
of the AL.

ODOR-DRIVEN OSCILLATIONS MODULATE IN A STIMULUS SPECIFIC
MANNER
As mentioned above, the transient oscillatory model posits that the
oscillations should be frequency invariant across different odors
(Laurent and Davidowitz, 1994; Laurent et al., 1996a). TFR results,
however, suggest that odor-driven FM LFPOs were dependent on
both the physical features of the odorant molecules used as well as
the duration that a test odorant was presented. Figure 2A displays
TFRs from a single recording electrode in response to each of the
nine odors used (see also Figure A2A in Appendix). Responses
driven by both the short chain alcohols and ketones exhibited a
maximum frequency of approximately 100–105 Hz. As the carbon
chain length of the stimulus was increased the peak frequency at
response onset appeared to drop. For example, Figure 2 shows a
maximum frequency of approximately 85–95 Hz when the moth
was stimulated with 1-decanol and 2-decanone respectively. The
duration of the oscillatory response also increased with carbon
chain length. Note for example, the longer chain odors modu-
late more slowly, in the case of K10 the response persists across
the time window whereas the shorter chain odors do not. Finally,
this implies that the rate of the FM sweep (that is, how long it
took to modulate from high-to-low frequency), is slower with the
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FIGURE 2 | Odor-driven oscillations modulate in an odor-specific manner.

(A) Time frequency response spectrograms calculated as a function of
changing molecular features of the stimulus. All panels are the result of TFR
analyses that were calculated, normalized, and presented as described in
Figure 1. Each panel represents the averaged TFR result for a single odorant
(inset and identified as described in Figure 1). Note that alcohols and ketones
of common length are aligned into columns. Note that with the longer carbon
side chains, the initial peak frequency is decreased by ∼15–20 Hz and the FM
sweep appears both slower and longer in duration (see also Figure A2 in

Appendix). (B) Results of the discriminant analysis, showing classification
performance for each odorant as a function of both the linear (blue bars) and
polynomial discriminant functions (green bars). Red line highlights the 95%
confidence limit and hence identifies those odorants for which the linear and
third order polynomial kernel functions were able to accurately classify
significantly better than chance. Note that while the linear kernel in this case
was not able to classify A10 significantly better than chance, the polynomial
kernel could discriminate all odors with 100% accuracy (see also Figure A2 in
Appendix).

longer carbon chain odors. This resulted in a shallower and more
prolonged downward sweep.

To assess the odor dependency of FM responses we per-
formed a discriminant analysis using support vector classifiers
and implementing both a linear and polynomial discriminant (or
kernel) function on a subset of two recordings. The results of
this analysis for the dataset shown in Figure 2A are displayed in
Figure 2B (for the second example see Figure A2 in Appendix).
The linear discriminant function (blue bars) was able to accu-
rately discriminate all odors significantly above chance (red line
indicates 95% confidence level) for all but a single odor (A10),
whereas the polynomial function (green bars) effectively classified
with 100 percent accuracy for all odors. This indicates that each
odorant produced a unique frequency response “signature.” This
odor dependency can be interpreted as either volatility-dependent
or carbon chain length-dependent. In either case, these results
indicate that the qualitative nature of the oscillation is clearly
stimulus-dependent.

In two moths we also varied stimulus duration for a subset of
odors. Figure 3 displays TFRs results from an individual recording
site where the odor 2-hexanone was presented 20 times for each
of four different stimulus durations, ranging from 50 to 1000 ms.
Note that there is a stimulus duration dependent elongation of the

FM sweep; this was observed in both moths where duration was
manipulated. Thus again, in contrast to theoretical expectations,
the frequency content, and rate of modulation are clearly affected
by the odorant used as well as the duration of the stimulus.

CORRELATED FIELD ACTIVITY IS STATE DEPENDENT AND ONLY
WEAKLY PERIODIC
The observation that odor-driven FM oscillations are localized to a
subset of recording sites does not necessarily imply the absence of
more subtle distributed oscillatory activity that the TFR method
was unable to quantify. Another method for identifying distrib-
uted activity across the four LFP recording sites was to directly
compare pairs of sites using cross correlation analysis. Results of
this analysis revealed that while different recording sites are in fact
moderately to highly correlated, this correlation decays rapidly in
time, producing very little evidence of periodic structure.

For example Figure 4A displays the cross correlation between
LFP recording site 1 with all other LFP recording sites for a single
animal. This analysis was based on one 40 min recording segment
containing both spontaneous and odor-driven activity and serves
to highlight that recording sites are clearly correlated at 0 s. Indeed,
inspection of these cross correlations reveals that the peak corre-
lations are centered on 0 s. and range from r = 0.33 (sites 1 and
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FIGURE 3 | Frequency modulation is dependent on stimulus duration.

Stimulus averagedTFR spectrograms for a single odor (2-hexanone) presented
for durations ranging from 50 to 1000 ms (20 presentations/duration). White

bars at the bottom of each panel indicate stimulus duration. Vertical and
horizontal white lines reference stimulus onset and 80 Hz respectively. Note
that with increased stimulus duration there are more prolonged FM sweeps.

FIGURE 4 | Oscillatory local field activity is weakly distributed

and contains state dependent frequency content. (A) The cross
correlation between LFPs recorded from site 1 (tetrode 1) and the three
other LFP recording sites in the tetrode array (see Figure 1A). Inset
schematic of the 2× 2 tetrode array shows the respective LFP recording site
positions. For purposes of simplification, only the site on each tetrode that
was used for LFP recordings is shown. Sites are color coded to identify which
cross correlation trace is associated with which recording electrode. Thus for
example, the red trace is the cross correlation between site 1 (white) and site
2 (red). Results based on a total of ∼20 min of continuous recording time
from a single moth and contain both spontaneous and odor-driven data. Inset
arrows identify the periodic structure observed in the cross correlation
between electrodes 1 and 2. Note that these small “off center” peaks in the
cross correlations occur in a periodic manner suggesting the presence of a
weak but distributed oscillation. (B) The corresponding cross spectral
densities for the data shown in (A). These CSDs indicate that the cross

correlation between electrodes 1 and 2 contained higher frequency content
than 1 and 3 and 1 and 4 respectively. (C) Mean cross correlations for
spontaneous versus odor-driven periods. Results based on all possible pair
wise comparisons between the four LFP recording sites across seven moths.
Odor-driven cross-correlation based on 1 s samples, starting at odor onset, for
each of 180 odor stimuli per moth. Spontaneous cross correlation based on
180 1 s samples taken immediately prior to odor onset for each odor stimulus,
per moth. Note that cross correlations were calculated for each stimulus and
results were averaged. Shaded regions around the mean represent ±1 SD.
Inset color coded broken lines above the X -axis indicate periods where a
significant difference in the cross correlation value from 0 was observed.
Significance threshold for these tests was set to 2.3× 10−6 to maintain an
overall alpha of 0.01 (see Figure A3 in Appendix for an expanded view). (D)

Mean cross spectral densities as a function of spontaneous and odor-driven
activity. Results based on all responses from the same seven moths shown in
(C). Shaded area represents SE.
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3), to r = 0.68 (sites 1 and 2). This high degree of correlation
occurs between sites which are as much as 250 μm apart. As high-
lighted in Figure 4A, the magnitude of these correlations does not
appear to be dependent on the distance between recording sites.
For example, the cross correlation between sites 1 and 4 in this
experiment (250 μm) was considerably higher than between sites
1 and 3 (200 μm).

Note too that there are some small but regular “ripples” in
the individual cross correlations (highlighted by inset arrows in
Figure 4A). These small and roughly evenly spaced (in time)
peaks and valleys, indicate that there is indeed some periodic tem-
poral structure in the cross correlation. However, the peaks of
these correlations are quite small (ca. r < 0.10). Nevertheless, by
calculating the CSD of each individual cross correlation, any peri-
odic temporal structure in the cross correlation can be quantified;
the corresponding CSDs for the cross correlations displayed in
Figure 4A are shown in Figure 4B. Figure 4B plots the amount
of distributed oscillatory power by frequency and indicates that
there was correlated periodic activity between sites 1 and 2 (red
trace) centered around ∼60 Hz but spanning broadly from ∼40
to 85 Hz. By contrast, distributed oscillatory power present in the
cross correlations between sites 1 and 3, and sites 1 and 4 contained
frequency content in a lower frequency range indicating that the
correlated oscillatory activity between sites 1 and 2 is not the same
as that found between sites 1 and 3 or 1 and 4.

Figure 4C summarizes the mean of all possible unique pair
wise cross correlations for all recordings used in this analysis (six
possible unique pair wise comparisons per moth and seven moths
used for this analysis). Results are based on a total of 360 1000 ms
samples and are broken down as a function of spontaneous versus
odor-driven activity. Mean cross correlations have been plotted
with ±1 SD shading to provide a sense of variability in the cross
correlations; this indicates that the greatest variability occurs in a
±50-ms window centered around 0 ms.

The mean peak cross correlation was 0.38 (SD=± 0.18) for
spontaneous activity and 0.43 (SD=± 0.19) for odor-driven
activity. A one-tailed paired t -test comparing the peak cross cor-
relation revealed that odor produces a significant increase in
this measure across the recording sites (p < 0.001). However,
because these cross correlations are presented as means of mul-
tiple analyses, all but the most consistent and robust temporal
details tend to be averaged out. To determine whether the sec-
ondary peaks (and valleys) that flank the central peak at 0 ms were
significantly different from r = 0.0, a two tailed, t -test was calcu-
lated, for each frequency step; this was performed for both the
spontaneous and odor-driven cross correlations. Inset along the
X -axis in Figure 4C are the results of this test. In this case breaks
in the colored lines indicate moments where the spontaneous or
odor-driven cross correlations were not statistically different from
0. Conversely, the presence of colored lines highlights where there
were significant deviations from 0. Thus, in spite of the fact that
the flanking peaks and valleys were quite small, there were periods
where the correlations were significantly different from 0, suggest-
ing that there is indeed some correlated temporal structure that is
distributed across pairs of recording sites.

Therefore, in order to quantify this distributed temporal struc-
ture, CSD’s were calculated for each individual cross correlation.

Results of these CSD analyses were then averaged as a function
of spontaneous versus odor-driven epochs and are displayed in
Figure 4D. As shown in Figure 4D, the most striking difference
between spontaneous and odor-driven CSDs is that they produce
distributed temporal structure in nearly dichotomous frequency
ranges. That is, during spontaneous epochs of time, the bulk of
distributed periodic activity was in the range of ∼25–55 Hz. In
the presence of odor however, there was relatively more distrib-
uted power in the range of ∼55–85 Hz. After accounting for all
statistical main effects, ANOVA revealed distributed oscillatory
power was significantly dependent on the interaction between the
presence or absence of odor and frequency (p < 0.0001). Collec-
tively then, this pattern of results indicate that both spontaneous
and odor-driven activity produce weak but detectable distributed
oscillatory activity in different frequency ranges. Our expectation
was that the relationship between oscillations across recording
sites would be far greater than actually observed; nevertheless the
presence of distributed oscillations is consistent with the transient
oscillatory model. The next question is whether these weak but
distributed oscillations affect spike timing in a pattern consistent
with the model.

UNITARY SPIKING PHASE LOCKS TO LFPOS AS AN ONGOING, NOT
ODOR-DRIVEN PROCESS
The odor-driven increase in the amplitude and frequency of
weakly but distributed oscillatory activity across the AL could
provide enhanced synchrony of distributed spiking behavior from
populations of AL neurons as predicted by the transient oscillatory
model (Laurent and Davidowitz, 1994; Laurent et al., 1996a,b).
This would require that phase locking of spikes to the oscillations
occurs during odor-driven responses and this phase locking would
presumably be stronger than what is observed during sponta-
neous activity. To test this hypothesis, we calculated unitary vector
strength for the three peri-stimulus time epochs. These calcula-
tions were made for each unit across all stimulations of all odors.
Thus for each moth, individual unitary vector strength calcula-
tions were based on 180 ms× 300 ms (or 54 s) samples for each
of the three peri-stimulus time epochs. Furthermore, given that
two relatively distinct frequency domains were observed for dis-
tributed oscillatory activity during spontaneous and odor-driven
epochs (see Figure 4D), vector strength calculations were made
based on both the low (25–55 Hz) and high (55–85 Hz) LFP band
pass filter implementations. Finally, only vector strength values
that were calculated based on 60 or more spikes were included in
the analysis (376,518 spikes, or 87% of the 433,667 spikes sam-
pled). This criterion was used because vector strength describes
the variation in a distribution of spikes relative to the phase of
a 360˚ oscillation cycle. Hence, with low spike counts, the vector
strength measure is less reliable, particularly in cases where there
are spikes that are outliers. To analyze variation in vector strength,
we implemented a mixed General Linear Model in SAS using the
GLM procedure to model data from five moths (90 neurons) for
which we had comprehensive datasets (including both before and
during GABAA receptor blockade via BMI application; BMI results
described below).

The overall model was significant, explaining 49% of the vari-
ance in unitary vector strength scores (p < 0.0001). This analysis
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found that the main effects of odor identity (of the nine odors
used), the peri-stimulus time epoch (−300 to 0; 50–350; and 350–
650 ms, relative to onset of odor stimulation), and drug treatment
(before versus during BMI application) all significantly influenced
vector strength values (p < 0.0001). However, the LFP frequency
range used to calculate the vector strength values (25–55 or 55–
85 Hz) was not significant (p= 0.7274) indicating that vector
strength values were approximately the same for both frequency
domains.

Of particular importance is the significant main effect of peri-
stimulus epoch, which compared vector strength as a function of
the three different epochs of peri-stimulus time. Post hoc analy-
sis of this effect (Figure 5A) indicates that, independent of the
band pass filter implementation, spontaneous activity prior to
odor stimulation (−300 to 0 ms relative to odor onset) pro-
duced the greatest overall vector strength values. Interestingly,

from 50 to 350 ms, the peri-stimulus epoch typically associated
with odor dependent spiking patterns (Stopfer et al., 2003; Daly
et al., 2004b; Staudacher et al., 2009), produced about half the
vector strength, indicating relatively weak phase locking during
odor-driven responses. Even during the late response epoch (350–
650 ms), while there was a significant increase in vector strength
relative to the early response epoch (p < 0.01), it was still sig-
nificantly lower than vector strength during spontaneous activity
(p < 0.01). In order to better understand this “response epoch”
effect at the single unit level, phase lag histograms are displayed
for all 26 units from a single recording and in response to 20 pre-
sentations of 1-decanol, (Figure 5B). Results are displayed for the
same three peri-stimulus epochs. Here we show that ongoing (i.e.,
spontaneous) spiking tends to occur, in this recording,on the rising
phase of the oscillation cycle. In this exemplar case, all units show
a decrease in their phase relationship to the oscillation during the

FIGURE 5 | Unitary spiking phase locks to LFPOs as an ongoing

not odor-driven process (A). Mean unitary vector strength as a
function of the three stimulus epochs for the five moths used in this
analysis. Results are broken down by LFP band pass filter range.
However, note that there are no significant differences within any
peri-stimulus response epoch between the 25–55 Hz (light gray) and
55–85 Hz (dark gray) band pass filter implementations. Inset are the results of
statistical post hoc comparison mean vector strength values (averaged across
filter implementation) across the different peri-stimulus time epochs; means
with significant differences are indicated with an asterisk. Errors bars
represent SE. (B) Phase lag histograms for all 26 recorded units from a single
recording. Results based on one of the four LFPs recording sites, and in

response to the 20 presentations of 1-decanol. Results are broken down by
spontaneous (300 ms just prior to odor onset), early response (50–350 ms),
and late response (350–650 ms). Note that several units (but not all, for
example see the light green histogram) show a tendency to spike on the
rising phase of the oscillation cycle (between 0 and 1.57 radians; see also
inset red wave) during spontaneous activity. During odor-driven responses
only one unit retains a strong (increased) phase relationship to the oscillation
while the bulk of the units lose their phase relationships. (C) Population-level
vector strength as a function of the three stimulus epochs. Results are for the
25 to 55-Hz band pass filter implementation and each panel represents a
different animal. (D) The same as (C) except using LFP data that was
55–85 Hz band pass filtered.
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early phase of the odor-driven response except one (Figure 5B, 50–
350 ms; unit 7, light blue histogram), which increased and shifted
phase essentially to the peak of the oscillation cycle. Finally, dur-
ing the late phase of the response, units appear to come back into
a similar phase alignment as was observed during spontaneous
activity.

In summary, of those units meeting the 60 spike minimum
criterion for both spontaneous and early response epoch (N = 65
units), odor stimulation resulted in 68% of those units producing
a 0.09± 0.08 (mean± SD) reduction in vector strength relative
to spontaneous activity, while only 32% produced a 0.03± 0.04
(mean± SD) increase. Furthermore, consistent with the finding
that vector strength recovers during the late response epoch, we
found that 71% of units produced a 0.07± 0.05 (mean± SD;
N = 68 units) increase in vector strength scores from the early to
late response epoch, while only 29% of cells produced a 0.06± 0.08
(mean± SD; N = 68 units) decrease. Thus, more than two-thirds
of units show a relative decrease in vector strength during the early
response epoch and recover during the late response epoch.

Unitary vector strength measures represent the best possible
scenario for highlighting the relationship between LFPO’s and
spike timing of individual units because it is tolerant of dif-
ferences in preferred phase angles between units. However, the
transient oscillatory model predicts that not only do spikes phase
lock to oscillations during an odor-driven response, but that phase
locking of the responding assembly of output cells results in an
increase of synchronized spiking of the population on an oscil-
latory timescale. In order to understand how oscillations might
synchronize a population of parallel recorded neural units, the
same vector strength analysis can be applied to a population
vector, which is the summed spiking behavior of the recorded
population. This population vector strength approach is sensitive
to differences in preferred phase angles between units. Thus, as
the variation in preferred phase angle among individual neurons
in the population increases, the population-level measure of vector
strength (and hence synchrony among individuals) will decrease.
Figures 5C,D display population-level vector strength and pre-
ferred phase angle across all recorded units for the five recordings
used in the statistical analysis. We again used the same 60 spike
minimum for inclusion into the population vector. Each panel in
Figures 5C,D displays the vector strength for the same three peri-
stimulus response epochs for a single moth; results are collapsed
across all presentations of all odors. Figure 5C displays results
based on the 25–55 Hz band pass filter implementation, whereas
Figure 5D is based on the 55–85 Hz filter. As statistically veri-
fied in Figure 4A and visualized in Figure 5B, the most striking
result observed in Figure 5C is that, on average, vector strength is
consistently greatest during spontaneous activity and consistently
weakest during odor-driven responses; this pattern of results is
consistent across all recordings and across both filtering ranges,
with only one exception; in this case, vector strength values were
roughly equal (see Figure 5D5). Also consistent with Figures 5A,B,
vector strength values during the late response epoch were,on aver-
age, lower than the spontaneous epoch but greater than the early
response epoch.

Given that CSD analysis indicated that distributed oscillatory
activity was in a higher frequency range during odor responses

(Figure 5D), we might have expected to observe greater vector
strength values during odor-driven responses in the higher fre-
quency domain. However, as shown in Figures 5A,D, the relative
disparity between spontaneous and odor-driven phase locking was
not statistically different as a function of the filter implementa-
tion and we found no examples where odor-driven phase locking
was, on average, stronger than spontaneous phase locking. Thus,
whether considering phase locking at the unitary or population-
level, or at low versus high frequency ranges, the results shown
here are in contrast to what the transient oscillatory model pre-
dicts; namely that phase locking should be (relatively speaking) an
odor-driven phenomenon.

Finally, comparison of mean unitary vector strength values
(Figure 5A) with mean population-level vector strength values
(Figures 5C,D) provides an indicator of how well synchronized
the population is on an oscillatory time scale. Specifically the mean
unitary vector strength should be generally higher than those cal-
culated based on a population vector simply because variability
in preferred phase angle is ignored when averaging unitary vector
strength. Recall that vector strength is defined as the reciprocal
of the circular variance of the distribution of phases of sampled
spikes to the LFP; the preferred phase angle is simply the mean
of a given distribution of spikes. Thus as the variability in spike
phases increases, vector strength decreases. Given a set of individ-
ual units with different preferred phase angles, when treated as a
population, those different preferred phase angles (i.e., different
means) will add variance to the population-level distribution of
spike phases, resulting in lower population-level vector strength.
The ratio of the mean population vector strength to mean unitary
vector strength indicates the relative ability of all of the neurons
to spike in the same phase (sic. synchronously). Based on the 25
to 55-Hz LFPs, the population: unit vector strength ratio of the
three response epochs was 0.63, 0.33, 0.48 for spontaneous, early,
and late response epochs respectively. These results indicate that
the preferred phase angles during spontaneous activity are more
consistent (i.e., producing more synchronous spiking) than the
response epochs within this LFP frequency range. For the 55 to
85-Hz LFPs, the ratios were 0.40, 0.61, and 0.61 for spontaneous,
early, and late response epochs respectively suggesting that units
were relatively less phase aligned spontaneously in this frequency
range. This pattern of results suggests that synchronous spiking
from the population is more likely in the higher frequency range.
In all cases, however, there is variation in individual units’preferred
phase relationships to the oscillations, which results in lower net-
work synchronization. Furthermore, even within the higher LFPO
frequency domain, vector strength values during the odor-driven
response are still quite small.

THE PHASE RELATIONSHIP BETWEEN SPIKING AND OSCILLATIONS IS
SMALL BUT SIGNIFICANT
Relative to vector strength values commonly described in vari-
ous regions of the vertebrates brain such as the auditory system
(e.g., Goldberg and Brown, 1969; Moushegian et al., 1975; Kadner
and Berrebi, 2008), the average vector strength values observed
in the present study as well as those from other insect studies
(Ito et al., 2009) are relatively small. However, we can determine
whether these values are above what is expected by chance, by
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randomly jittering the spike timing within a restricted time range
and recalculating vector strength. If the phase relation between
spikes and the LFP are above what is expected by chance, then ran-
domly jittering spike times will negatively impact vector strength
values while maintaining much of the internal statistics of the
dataset. First, to visualize this point, we randomly jittered all of
the spikes from an individual spike train from a single record-
ing (N = 44,758 across a 166-min recording session) by 0, ±3,
or ±6 ms and cross correlated the spike train to one of the cor-
responding LFP recording sites (Figure 6A). Data includes both
spontaneous and odor-driven activity. Note that in contrast to
the cross correlations between LFPs (see Figure 4), this unit–LFP
cross correlation shows clear temporal structure. Furthermore,
random jittering of spikes by ±3 ms reduced and by ±6 ms elim-
inated this cross correlation. Next, using a bootstrapping method
where spike trains were randomly re-jittered and vector strength

FIGURE 6 |The phase relationship between spiking and oscillations is

significant. (A) The cross-correlation of a single unit to a parallel recorded
LFPO normally (in red), after spikes were randomly jittered by a width of
±3ms (blue) and after spikes were jittered by a width of ±6 ms (black). (B)

Vector strength for the three epochs and their recalculation after jittering.
Jittering width started at ±1 ms and was increased in 1 ms steps. Inset
asterisks indicate significant differences in vector strength to neighboring
jittering ranges (one-way paired t -tests; p < 0.01). Note that the resulting
strength of the unit–LFP relationship is clearly dependent by the degree of
jittering indicating that these correlations, though small, are dependent on
precise spike timing with respect to the periodic nature of the local field.

recalculated, vector strength decay can be quantified as a function
of the time range of the random jittering. In this case we used all
units from a single recording and only spikes occurring within our
three 300 ms peri-stimulus epochs (N = 19 units, 10,762 spikes).
The initial data were re-jittered 30 times for each jitter width and
vector strength was recalculated. Results of this analysis were then
statistically analyzed using one-tailed paired t -tests. Figure 6B
plots the mean vector strength by jitter width for each of the three
peri-stimulus epochs and clearly indicate that the distributions of
spikes tend to occur at a particular phase of the oscillation cycle.
One-way t -test comparison of mean vector strength (significant
results inset as asterisks) indicates a significant drop in strength as
a function of increasing the jitter width by as little as±1 ms up to
the point at which the vector strength values approach 0 (±5 ms;
p < 0.001; Figure 6B); this was true independent of the stimulus
epoch used in the analysis. These results establish that while phase
locking is weak relative to other sensory systems, it is nevertheless
greater than what is expected based on chance.

BICUCULLINE SIGNIFICANTLY REDUCES ODOR-DRIVEN FM
OSCILLATORY RESPONSES AND DECREASES THE LATENCY OF SPIKING
RESPONSES
Previous intracellular investigations on the effects of GABAA

receptor blockade establish that BMI injection into Manduca ALs
specifically and reversibly blocks a GABAA-dependent inward Cl−
conductance in PNs (Christensen et al., 1998). This conductance
normally results in a brief IPSP (44± 31 ms; Staudacher et al.,
2009) and suppression of spontaneous PN spiking followed by a
relatively prolonged supra-threshold EPSP, upon which an exci-
tatory burst of spikes is superimposed. Thus, we first sought to
establish if an additional function of GABAA receptors in the AL
is to mediate the network’s ability to maintain distributed oscilla-
tory activity across the AL using the same methods as above. This
analysis was performed using a within-animal design so that the
results could be directly compared with those obtained prior to
GABAA receptor disruption.

First, application of BMI disrupted and in many cases com-
pletely eliminated the odor-driven FM LFPOs. Figure 7A presents
four typical TFRs from four different moths before and during
BMI application. In all four cases, application of BMI caused
a qualitative decrease in oscillatory power relative to pre-BMI
measures. This decrease ranged from near complete (Figure 7A
panels 1 and 2) to partial (panels 3 and 4). Note too that in
Figure 7A2i the spontaneous 20–50 Hz activity, which terminates
with odor stimulation, was also greatly reduced as compared to
Figure 7A2ii. This suggests that both ongoing and odor-driven
oscillations were decreased. In order to statistically verify the loss
of the FM responses, we modeled z-score normalized oscilla-
tory power as a function of the main effects of individual dif-
ferences between moths, the recording site the frequency step
and the pharmacological treatment and their interactions using
ANOVA. Results were based on five recordings for which we had
comprehensive datasets for both pre and during BMI treatment.
Results of the ANOVA indicate a significant drop in power from
0.32± 0.98 to−0.37± 0.81 (mean± SD) as a result of BMI appli-
cation (p < 0.001). Importantly the interaction of frequency by
treatment was also significant. Post hoc analysis of oscillatory

Frontiers in Neuroengineering www.frontiersin.org October 2011 | Volume 4 | Article 12 | 61

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Daly et al. Local field potentials and spike timing

power as a function of the frequency by treatment interaction
was performed using one-tailed paired t -tests comparing power
at each of 84 frequency steps a p-value of 0.0005 was used to reduce
experiment-wise type 1 error rate (0.05/84). Results of this analy-
sis (inset in Figure 7B indicated that oscillatory power at nearly
every frequency step from 25 to 100 Hz was significantly reduced
during BMI application.

The corresponding spiking responses were also impacted by
BMI application. Figure 7C represents the mean peri-stimulus
response to all presentations of all odors across all five moths used
in this analysis. Note that as the oscillatory activity is decreased
during BMI application (Figures 7A,B), there is a correspond-
ing ∼60 ms decrease in the mean onset latency of the spiking
population response (inset black arrow). There is also an increase
in spike rate (inset gray arrow) and overall duration of the spiking
response. This pattern of results is consistent with the previous

findings of Christensen et al. (1998). That is, by disrupting the
inward Cl− conductance specifically, I1 inhibition is presumably
lost and hence, PNs respond earlier, stronger, and longer.

GABAA RECEPTOR BLOCKADE INCREASES ODOR-DRIVEN DISTRIBUTED
ACTIVITY BUT CHANGES FREQUENCY CONTENT
A paired one-tailed t -test revealed that across all five moths and the
six possible LFP–LFP cross correlations within each,GABAA recep-
tor blockade did not significantly affect the mean peak LFP–LFP
cross-correlation during spontaneous activity (p= 0.28) but did
significantly increased the peak correlation for odor-driven epochs
(p < 0.01; Figure 8A). Persistent cross correlations across record-
ing sites during GABAA receptor blockade suggests that distributed
activity is not entirely GABAA-dependent. Comparison of the pre
versus during BMI cross correlations shown in Figure 8Aii suggests
that odor-driven distributed frequency content has been affected.

FIGURE 7 | Bicuculline significantly reduces odor-driven FM

oscillatory responses (A). TFR analyses from four separate
experiments (columns 1–4) in response to odor prior to
(i) versus during BMI application (ii). All panels are the result of TFR
analyses that were calculated, normalized, and presented as described in
Figure 1. Inset in the upper right corner of each panel (i) are the odorants
used to generate both (i) and (ii). (B) Mean z -score normalized oscillatory
power by frequency for pre versus during bicuculline (BMI) application. Inset
in gray shading are the standard errors for each frequency step. We also
performed a post hoc one-tailed paired t -test. Significance level was set at

0.0005 to maintain an overall post hoc type 1 error rate of 0.05. Inset black
bars above X -axis represent ranges of frequencies where power was
significantly decreased as a function of BMI application; breaks in the bar
indicate frequencies that were not statistically different. Overall only 16 of 84
tests were not significant. (C) Mean peri-stimulus population response
histogram averaged over all responses to all odors for the five moths used in
this series of analyses (gray shaded area around each trace represents SEM).
Gray box indicates Stimulus duration. Inset arrows highlight the decrease in
response onset latency (black) and increased spike rate during the
response (gray).
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FIGURE 8 | GABAA receptor blockade increases odor-driven distributed

activity and broadens its periodic structure (A). The mean cross
correlation prior to BMI application (red) and during BMI application. Results
displayed for spontaneous (i) and odor-driven (ii) epochs. Results based on
all possible pair wise comparisons across the four LFP recording sites. (B)

Mean cross spectral density prior to BMI application (red) and during BMI
application. Results displayed for spontaneous (i) and odor-driven (ii)

epochs and based on the data represented in (A).

To address this question statistical comparison of CSD measures
was performed using ANOVA. Figure 8B displays the mean CSD
for spontaneous and odor-driven activity for pre versus during
BMI application. ANOVA revealed that there was no significant
change in mean CSD during spontaneous activity (p > 0.01) indi-
cating that the relative power of distributed oscillations remained
largely unchanged during this epoch. However, there was a sig-
nificant shift in distributed frequency content during odor-driven
responses that resulted in an increase in lower frequency content
(between 40 and 55 Hz) while at the same time causing a rela-
tive reduction of higher frequency content (65–85 Hz; p < 0.01;
Figure 8B).

GABAA RECEPTOR BLOCKADE DECREASES PHASE RELATIONSHIPS
BETWEEN UNITARY SPIKING AND LOCAL FIELD POTENTIAL
OSCILLATIONS
Finally,we investigated whether BMI application affected the phase
relationship between unitary spiking and oscillatory activity. As
mentioned above, results of the GLM analysis of vector strength
indicated the BMI effect was significant (p < 0.01). Comparison
of mean vector strength indicated that BMI application reduced
mean vector strength (collapsed across all three peri-stimulus
epochs) by 11% (pre-BMI= 0.14; BMI= 0.12). We again found
that phase locking during spontaneous epochs was significantly
stronger than either early or late odor-driven response epochs
(Figure 9A). On a unit by unit basis BMI produced a notable
decrease in phase locking in both spontaneous and odor-driven

responses (Figure 9B). For purpose of comparison, Figure 9B
data are based on the same units and in response to the same odor
(1-decanol) as shown in Figure 5B. There was qualitative evidence
of a phase relationship remaining in some cells in Figure 9B. How-
ever, as compared to pre-BMI application (see Figure 5B) phase
locking has been greatly reduced during both spontaneous and
odor-driven activity. Nevertheless, as demonstrated in Figure 9A,
phase locking clearly remains across all recordings.

Figures 9C,D shows population-level vector strength as a
function of peri-stimulus epoch for both the low (Figure 9C)
and high (Figure 9D) band pass filter settings; these data too
are from the same animals and hence directly comparable to
Figures 5C,D. Here again, phase locking during spontaneous
activity was consistently greater than either of the response epochs
with only one exception (see Figure 9D4). These results suggest
that while phase locking is significantly reduced, what remains is
still greatest during spontaneous rather than odor-driven activity.

DISCUSSION
Currently there is a long standing debate about the role of temporal
processing in odor identity encoding, at the level of primary olfac-
tory networks. One hypothesis, the transient oscillatory synchrony
model, posits that odor stimulation drives LFPOs, which in turn
drives precise spike time synchronization of projection neurons
from across the AL (i.e., in a distributed manner), thereby binding
this distributed output at the level of MB input. These synchro-
nized spikes are the proposed information carriers for subsequent
odor identification by the MB. The MB in turn is structurally
and functionally organized to receive and interpret synchronous
input from the AL on an oscillatory timescale (for review see Lau-
rent, 2002). This is an exciting model because it provides several
predictions, some of which we have attempted to test.

The first major finding of the present study is that odor stim-
ulation drives oscillatory responses that are strongly frequency
modulated. Furthermore, this modulation occurs in a stimulus-
dependent manner. Among vertebrates, both spontaneous and
stimulus driven oscillations have been observed across several
brain regions (including the OB) and across a broad spectral range
of frequencies (for review see Buzsaki and Draguhn, 2004). In the
olfactory system of mammals, stimulus driven oscillations can be
observed in vivo from 15 to 35 Hz (beta band) to 40–90 Hz (gamma
band; Buonviso et al., 2003; Martin et al., 2004) and there is evi-
dence that spiking can phase lock to these oscillations during a
stimulus driven response (Kashiwadani et al., 1999). Odor-driven
oscillations have typically been described as a constant narrow
band (sic 20–30 Hz) in insects, such as the locust and honey bee
(e.g., Laurent and Davidowitz, 1994; Wehr and Laurent, 1996;
Stopfer et al., 1997). Hence, according to the transient oscilla-
tory model these oscillations should be of a reasonably constant
frequency that should be independent of the odorant presented
(Laurent et al.,1996a). However,we find that in the AL of Manduca,
as in vertebrates, oscillations occur across a far broader spectral
range, modulating across response time from as high as ∼100 Hz
down to as low as ∼20–30 Hz; this modulation takes no more than
∼400 ms to evolve given a 100-ms stimulus and does so in an odor-
specific manner. Odor-driven FM oscillations and their tendency
to occur in two distinct epochs within the AL, while until now
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FIGURE 9 | GABAA receptor blockade decreases phase

correlations between unitary spiking and local field

oscillations. (A) Mean vector strength as a function of the three stimulus
epochs during BMI application. Results are broken down by filter
implementation (25–55 Hz in light gray; 55–85 Hz in dark gray). The results of
statistical post hoc comparison between means are inset; means with
significant differences indicate by an asterisk. Errors bars represent standard
errors. (B) Phase lag histograms for 26 individual units from a single recording

during spontaneous and the two odor-driven response epochs during BMI
application. For comparative purposes, these histograms were generated
from the same moth and in response to the same odorants as shown in
Figure 5B. (C) Population-level measures of vector strength as a function of
the three stimulus epochs for the five moths used in this analysis. Results are
for the 25 to 55-Hz band pass filter implementation and each panel represents
a different animal. (D) The same as (C). except using the 55 to 85-Hz band
pass filter.

unreported in the insect literature, is strikingly similar to what has
been observed in mammalian OB (Buonviso et al., 2003).

It has recently been shown that prolonged odor stimulation (ca.
500–4000 ms) drives FM oscillations ranging from 50 Hz down to
10 Hz in the MBs of Manduca (Ito et al., 2009). We find that FM
LFPOs recorded in the AL occur across a broader spectral range,
do not require prolonged stimulation and are furthermore clearly
odor dependent. The two studies taken together suggest that the
highest frequency content does not pass from AL to MB. Indeed,
much of the higher frequency content that occurs during the early
phase of the AL response (100–80 Hz at ∼60–110 ms post stimulus
onset) occurs prior to initiation of PN spiking responses, which
typically start no earlier than ∼110–120 ms after the odor valve is
actuated (Daly et al., 2004b; Staudacher et al., 2009). Thus, at least
some of the higher frequency content observed in the AL, because
it occurs while PN output is suppressed, cannot be transmitted to
the MB.

In insects, it has been proposed that the downstream receivers of
AL output, the Kenyon cells of the MB, are normally under strong

inhibitory control by inputs projecting from the lateral horn. Lat-
eral horn cells, like the Kenyon cells of the MB calyx, receive direct
excitatory input from the AL. It has been furthermore proposed
that this circuitous pathway establishes an integration window
that is opened for synchronous excitatory input from the AL then
abruptly closed by inhibitory input from the lateral horn (Perez-
Orive et al., 2002). This integrate-and-reset window occurs within
the periodic timescale initially established by odor-driven AL oscil-
lations. From a theoretical perspective, given that neurons have
fixed conduction velocities, cable lengths, and synaptic delays, the
circuit function proposed by Perez-Orive et al. (2002) will have a
biophysically constrained integration window. As a result, such an
integrate-and-reset circuit will have limited tolerance for the FM
oscillations that we have observed (for review see Laurent, 2002).
It remains to be determined if and how subsequent decoding in
the MB could occur under the constraints of a static integration
window.

A second finding of this study is that odor-driven FM oscil-
latory responses are largely restricted to a subset (less than 2 on
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average) of the four LFP recording sites and hence appears in most
cases to be regionalized. Furthermore, cross correlation analysis
also indicates that there is only a very small amount of activity
that is both distributed across pairs of recording sites and tem-
porally structured (i.e., oscillatory). This distributed oscillatory
activity is state dependent; that is, spontaneous distributed activ-
ity is dominated by oscillatory activity in the 25 to 55-Hz range,
whereas distributed odor-driven oscillations are in the 55 to 85-Hz
range; this pattern of results of relatively higher frequency oscil-
latory content during odor-driven responses is consistent with
prior findings in honeybee (Ritz et al., 2001). While the precise
degree of this regionalization of responses remains an important
area for further research, it is at odds with the transient oscillatory
model.

One question that arises from these results is whether the rela-
tively small amount of distributed oscillatory activity is sufficient
to correlate with or otherwise influence spiking behavior in PNs
in a manner that increases the amount of synchrony across AL
PNs, as required by the transient oscillatory model. Our results
demonstrate that spike timing is indeed biased to occur in a pre-
ferred phase relationship to the oscillation, though this bias was
clearly state and cell (and recording) specific (see Figures 5 and
6). Contrary to the expectations of the transient oscillatory model,
however, we observed that during an odor-driven response, as a
population, this phase locking was largely lost. This occurred in
part because unitary vector strength values dropped significantly
during the odor response, which means that even at the level of
individual cells, odor stimulation decoupled cells from the influ-
ence of LFPOs. Additionally, preferred phase angles of individual
units became more variable and hence more evenly distributed
across all phases of the oscillation cycle; this lowered population-
level measures of phase locking. Thus, odor-driven oscillations
per se had little effect on synchronizing the spikes across individ-
ual units of the recorded population. It is worth highlighting that
strong phase locking has been typically observed in response to
longer stimulations than we presented here (Laurent and Naraghi,
1994; Laurent et al., 1996b; Stopfer et al., 1997; Kashiwadani et al.,
1999). While future work will explore the possibility that longer
and temporally structured stimuli have differing effects on odor-
driven phase locking, we note that 100 ms stimulations are entirely
consistent with expected encounter times in natural plumes that
the moth might encounter (Murlis and Jones, 1981) and are known
to respond to in behavioral studies (Willis and Baker, 1984).

The fact that phase locking is lost during odor-driven responses
in this model system should not be surprising. Indeed, it has long
been known that in response to odor stimulation, AL PNs in Man-
duca are briefly inhibited followed by a sustained supra-threshold
depolarization and spiking (for several examples see Christensen
et al., 1996; Christensen et al., 1998; Heinbockel et al., 1998, 1999;
Staudacher et al., 2009). This explains in part why odor responses
appear to be characterized by a loss of phase relationship between
our recorded units and LFPOs. This also likely explains why oth-
ers were not able to establish phase locking during odor-driven
responses in previous studies (Christensen et al., 2003). However,
this does not explain the prolonged loss of phase locking.

In the AL of Manduca, LNs and PNs are spontaneously active
under normal conditions; this has long been known (Matsumoto

and Hildebrand, 1981; Kanzaki et al., 1989). Because oscilla-
tions are presumably the result of reciprocal synaptic connectivity
within the network, it is expected that there is always some spon-
taneous oscillatory activity observable in the LFP, even though the
amplitude may be small, relative to what is observed during odor-
driven responses. Unexpectedly, we found that there is a tendency
for individual cells to spontaneously spike in phase with oscillation
cycles in the absence of odor stimulation.

It has been shown that even weak oscillatory signals in neural
circuits can in some cases enhance signal to noise ratios; this phe-
nomena is called stochastic resonance (Wiesenfeld and Moss, 1995;
Wilkens et al., 2002; Korn and Faure, 2003). It has also been shown
that weakly correlated noise in the olfactory circuit can enhance
spike time synchrony (Galán et al., 2006). Perhaps then, the most
intriguing finding in the current study is the significantly greater
spike to LFP phase locking observed during spontaneous activ-
ity, relative to odor-driven responses; this was true independent
of the frequency range of the oscillations under consideration.
Thus, if oscillations were acting as a synchronizing mechanism
in this model system, they are doing so during ongoing, spon-
taneous activity, and not during odor-driven responses. This is
in sharp contrast to predictions made by the transient oscillatory
model, which assumes that phase locking is a stimulus driven phe-
nomenon involved in odor identity encoding. It is worth noting
that we are unaware of any reported comparisons of spontaneous
versus odor-driven phase locking prior to the present study, thus
it is difficult to assess the generality of our findings. However,
“bouts” of spontaneous oscillatory activity have been observed in
both locust (Laurent and Naraghi, 1994) and honeybee (Ritz et al.,
2001) olfactory pathways that appear to be consistent with our
observations.

In response to odor stimulation, individual PNs recorded from
Manduca AL are briefly inhibited via an inward Cl− conductance,
then burst as the second epoch of oscillations emerge. Several
lines of evidence from both vertebrate and invertebrate mod-
els establish that spatially co-localized principal output neurons
tend to produce stimulus driven synchronous spike bursting pat-
terns (Schoppa and Westbrook, 2001, 2002; Lei et al., 2002; Daly
et al., 2004b; Hayar et al., 2005) in what has been described
as onset synchrony (Christensen et al., 2001; Lei et al., 2002).
Parallel recordings of neural ensembles as well as serial recon-
structions of AL output activity suggest that the onset of this
burst of activity is different for different glomeruli thereby pro-
ducing a brief sequence of onsets that are odor dependent and
optimize within ∼240 ms of odor onset (or ∼120 ms from the
onset of the excitatory response) in this model system (Daly
et al., 2004b; Staudacher et al., 2009); this is roughly consistent
with calcium-imaging studies in honeybee (Galán et al., 2004).
This time course for producing odor-specific activation patterns
also appears to be consistent with physiological evidence from
other model organisms (Muller et al., 2002; Lehmkuhle et al.,
2006; Spors et al., 2006; Namiki and Kanzaki, 2008; Namiki et al.,
2009) as well as behavioral evidence demonstrating odor identi-
fication/discrimination within the same approximate time frame
or faster (Laska et al., 1999; Uchida and Mainen, 2003; Budick
and Dickinson, 2006; Wesson et al., 2008a,b). Thus, it is reason-
able to conclude that the temporal window for odor identification
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is in the range of 240 ms from stimulus onset or about ∼120 ms
from initiation of the excitatory response within the AL (e.g., see
Figure 1).

Stopfer et al. (1997) demonstrated that oscillations are abol-
ished in the honeybee by application of the GABAA receptor
antagonist picrotoxin. Based on a stimulus generalization para-
digm they also suggest that GABAA receptor blockade disrupts fine
odor discrimination in this insect. These findings represent a cor-
nerstone of the transient oscillatory model because they identify
a specific functional role for oscillations. More recently, however,
the conclusion that GABAA receptor blockade affects discrimi-
nation only of closely related odors has been challenged by a
more comprehensive behavior-pharmacological study in Manduca
(Mwilaria et al., 2008). This study was based on pharmacological
data from 1680 moths and established that discrimination of pairs
of odors is generally disrupted independent of the relatedness of
the odor pairs. Furthermore, Mwilaria et al. (2008) showed that
GABAA receptor disruption increased detection thresholds. Based
on these finding it was proposed that the disruption of the abil-
ity to discriminate closely related odors was most likely due to
a general increase in detection thresholds, which increased task
difficulty. These findings have been subsequently supported by
physiological and wind tunnel experiments demonstrating that
GABAA receptor blockade in the macroglomerular complex of the
AL (the region of the male AL where the primary components
of female pheromones are processed), does not affect pheromone
detection at the level of spiking PNs but does reduce PN signal to
noise (Lei et al., 2009). These researchers furthermore showed that
reduction in signal to noise disrupts the ability of male moths to
successfully plume track. This is consistent with the interpretation
that at the level of sensory perception, loss of AL GABAA receptor
function results in a loss of ability to clearly perceive the presence
of (i.e., detect) an odor cue (Mwilaria et al., 2008). This too is in
stark contrast to the transient oscillatory model, which predicts
that the sole functional effect of GABAA receptor blockade is on
the ability to discriminate closely related odors.

In conclusion, it is perhaps not surprising that the transient
oscillatory model,which is based primarily on data from the locust,
does not fit well with data from model systems such as Manduca
given the differences in structural organization of the AL between
these two species. For example, locusts have a derived AL morphol-
ogy consisting of hundreds of small microglomeruli, in which both
olfactory receptor neurons and PNs are multi glomerular and LNs

are non-spiking (Anton and Homberg, 1999). In contrast, Mand-
uca, like most insects and mammals, have exclusively uniglomeru-
lar ORNs and predominantly uniglomerular PNs as well as several
LN morphologies, all of which produce action potentials. The dif-
ferences in structure between the locust and Manduca likely reflect
functional adaptations to distinct behavioral and chemical ecolo-
gies. Insects such as Manduca are more or less specialized upon a
single food source as adults (i.e., floral nectars), and heavily depen-
dent upon olfactory cues for locating these food sources from a
distance (Bernays, 2001). For these insects there is a need to detect
and rapidly discriminate among many faint and brief odor cues
in the environment in order to locate a particular food source via
odor plume tracking behavior. In contrast, orthopteran insects
including locusts are extreme dietary generalists, consuming a
wide variety of food sources consisting of both living and dead
plant and animal material (Gangwere, 1961). Individual food pref-
erences appear to be based upon a mixture of variables including
local environmental conditions, the need to avoid predators (Des-
pland and Simpson, 2005), what types of food are available, food
quality, and nutrient need (Raubenheimer and Simpson, 2003).
Given this pattern of food acquisition, it is likely that these insects
are less dependent on identifying palatable food sources using spe-
cific olfactory cues, but may instead navigate to broad categories
of food odors such as green leaf volatiles (Ochieng and Hansson,
1999; Chen and Kang, 2000). Unfortunately, while recent studies
now support the notion that the locust can learn and discriminate
between a pair of broadly different odorants (Simoes et al., 2011)
there are no studies to date that integrate observations of fine
odor discrimination, food choice, and AL physiology in locusts so
it is not possible at present to speculate how this insect actually
detects and utilizes odors in a behavioral context. We can, how-
ever, posit that the locust, an insect with an unusual wide open
feeding ecology, in addition to possessing a unique AL anatomy
and physiology, is unlikely to process odorants in a manner typ-
ical of the majority of insects or of odorant-sensing animals in
general.
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APPENDIX
METHODS
Discriminant analysis of time-frequency response spectrograms
The aim of this analysis was to establish whether odor-driven fre-
quency modulation of the LFP oscillation was odor specific. There
are two main approaches to investigate this: by means of unsu-
pervised learning algorithms (e.g., k-means clustering analysis),
or by means of supervised learning algorithms (e.g., discriminant
analysis via support vector classifiers). In the unsupervised learn-
ing approach, all samples (in our case TFRs) are represented as
points in a multidimensional space and groups of points that are
closer among themselves than among others are classified together.
One thus expects that all points from the same cluster belong to
the same odor. In practice, however, this is seldom the case. The
clouds of points from the same odor may not have radial symme-
try and even worse, they may partially overlap with the “clouds”
of other odors. Thus, the relative distance between points is not
a good criterion to classify odors, regardless of the definition of
distance (Euclidean, angular, etc.). The supervised classification
approach, which is an alternative to unsupervised clustering, has
been used previously to identify odor-specific patterns of neural
activity in the antennal lobe of the honeybee (Galán et al., 2004).
In this case, a multidimensional representation is also used but the
points are labeled, i.e., assigned to an odor. Then, an optimiza-
tion algorithm, the support vector classifier, (Boser et al., 1992)
attempts to find a hyperplane (a plane in more than three dimen-
sions) or another high-dimensional manifold that separates the
points belonging to the same class (odor) from the rest. If success-
ful, the manifold can be used as a classifier to identify that odor:
on one side lie the points of the same odor; on the other side lie
the rest. The same procedure can be repeated for each odor to
compute odor-specific classifiers. Support vector classifiers have
the advantage over clustering methods of tolerating some over-
lap (soft margin) between clouds of points from different stimuli.
However, when the clouds overlap the mere existence of a sep-
arating manifold is not very informative, since both groups are
not 100% separable. In such cases, the Classification Performance
Index (CPI) provides a better parameter to quantify odor-specific
TFR patterns; CPI is computed using the leave-one-out method
(Boser et al., 1992; Galán et al., 2004): First, the separating man-
ifold is computed after removing one point from the data set.
Then, one tests if the point that was left out is correctly clas-
sified. These three steps (removal of a point, calculation of the
discriminator, and classification of the point removed) are then
iterated for all points of a given stimulus. The fraction of points
that are correctly classified for each stimulus is the CPI. A high
CPI means that the separating manifold is fairly insensitive to the
removal of any given point, and hence robust to perturbations
of the data set. A high CPI implies that the high-dimensional
space in which the points are represented is divided into stimu-
lus specific regions, despite some overlap between the clouds of
points.

Dimensionality reduction
As a preprocessing step for TFRs discriminate analysis, we cropped
out a reduced frequency–time window, which contained the vast
bulk of the FM response across all TFRs (from 12 to 124 Hz and

from −30 to 1000 ms); this resulted in a reduced data matrix of
118,800 pixels per TFR/response. For each response to each odor,
we then defined a region of interest (ROI), consisting of all pix-
els that are above the 99th percentile of power density. All these
ROI (9 odors× 20 repeats= 180 ROI) where overlaid to create a
mask whose pixel values were “1” if that pixel was significantly
activated by any odor in any trial and “0” if not. For the discrim-
inant analysis with support vector classifiers, we only considered
the pixels of the TFRs whose values in the mask were“1.”Each TFR
is thus represented as a vector 24,969 components (pixels) instead
of 118,800 for the cropped TFR, thereby leading to a substantial
dimensionality reduction of roughly 80%.

Kernels for the support vector classifier
The vectors representing the TFRs are fed into the algorithm of
the support vector classifier. The output of the algorithms returns
a set of n “support vectors,”�si , weights ai, and bias b that are used
to classify a given vector �x according to the following equation:

c =
n∑

i=1

aiK (�si , �x)+ b, (A1)

where K is a kernel function. In the case of a linear kernel, it is the
dot product: K (�si , �x) = �si · �x and the Eq. A1 defines a plane in the
high-dimensional space. If c≥ 0, then �x is classified as a member
of group 1 (e.g., odor Y), otherwise it is classified as a member
group 2 (e.g., any other odor different from Y). In this paper, we
also use a non-linear kernel, specifically, a third order polynomial
given by:

K (�si , �x) = (�si · �x + 1)3 .

This allows us to separate odors with a curvy manifold and the
region assigned to a given odor may be composed of disjoint sub-
regions. Using this kernel, we can discriminate TRFs from each
odor group with 100% CPI.

Calculation of the confidence interval for the classification
performance index
The null hypothesis to compute the confidence interval is that the
two groups are completely intermingled and cannot be discrimi-
nated so that the probability that any point falls in one side of the
classifier is p= 50%. In our case, the two groups correspond to the
N= 20 trials of the same odor (first group) and the rest of points
from all other odors (second group). Thus the probability that M
out of the N points fall into the same side of the classifier is given
by a binomial distribution whose mean and variance are N × P
and N × P × (1-P), respectively. The binomial distribution itself
is discrete. However, it can be smoothened by interpolation so that
its cumulative distribution is also smooth, not staggered, and the
percentiles can be calculated at any level. For example, the 95th
percentile corresponds to the ratio M /N= 66.25%. This means
that if the CPI is above 66.25%, we can reject the null hypothesis
with 95% confidence and for each CPI value above this level the
p-value is smaller than 0.05. In the CPI plots, the red line indicates
this significance level.
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FIGURE A1 | Averaged time frequency response (TFR) spectrogram from

6 of 10 total recordings. Displayed in each panel are the averaged results of
20 independent analyses for each of the 20 presentations for various odors
(inset; K= ketone, A= alcohol; number= carbon chain length). Also inset are
white bars indicating stimulus duration (100 ms). Vertical white line indicates

odor onset. Horizontal white line is an 80-Hz frequency reference. Note the
ongoing oscillatory activity present centered around 30–50 Hz that occurs
between 600 ms until just after stimulus onset. Upon stimulus onset this
activity abruptly terminates. Note too that the weakest examples are moths
three and six.

FIGURE A2 | Replication of Figure 2 using data from a different moth to

highlight that FM modulation is odor dependent. (A) Each panel
represents the averaged result of 20 individual TFR analyses that were
calculated, normalized and presented as described in Figure 1. Note that
alcohols and ketones of common length are aligned into columns. (B) Results
of the discriminant analysis for the data shown in (A). Blue Bars represent

classification performance for the linear kernel function, whereas green bars
represent performance of the third order polynomial kernel function. Inset red
line represents the 95% confidence interval. Note that the linear kernel
function classified responses of two of the nine odorants significantly above
chance, whereas the polynomial function accurately classified all odor
responses with 100% accuracy.
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FIGURE A3 | Expanded view of the mean cross correlations for

spontaneous versus odor-driven periods. Results based on all possible
pair wise comparisons between the four LFP recording sites (six in total).
Odor-driven cross-correlation based on 1 s samples, starting at odor onset,
for each of 180 odor stimuli per moth (N = 7 moths). Spontaneous cross
correlation based on 180 1 s samples taken immediately prior to odor onset
for each odor stimulus. Note that cross correlations were calculated for
each stimulus and results were averaged across seven moths. Shaded
regions around the mean represent ±1 SD. Inset broken lines just above
the X -axis indicate where in time the cross correlation was significantly
different from 0. Significance threshold for these tests was set to 2.3× 10−6

to maintain an overall alpha of 0.01. Each color coded line corresponds to
regions in time where the correlation was significantly different from zero
for spontaneous (mauve) and odor-driven (green) cross correlations.
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The honeybee Apis mellifera has a remarkable ability to detect and locate food sources
during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory
system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular
projection neurons (PNs) convey the sensory code from the AL to higher brain regions via
two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral
tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor
selectivity, concentration dependence, and representation of mixtures. It is still unknown
how this differential stimulus representation is achieved within the AL network. In this con-
tribution, we use a computational network model to demonstrate that the experimentally
observed features of odor coding in PNs can be reproduced by varying lateral inhibition
and gain control in an otherwise unchanged AL network. We show that odor coding in the
l-ACT supports detection and accurate identification of weak odor traces at the expense of
concentration sensitivity, while odor coding in the m-ACT provides the basis for the compu-
tation and following of concentration gradients but provides weaker discrimination power.
Both coding strategies are mutually exclusive, which creates a tradeoff between detection
accuracy and sensitivity.The development of two parallel systems may thus reflect an evo-
lutionary solution to this problem that enables honeybees to achieve both tasks during bee
foraging in their natural environment, and which could inspire the development of artificial
chemosensory devices for odor-guided navigation in robots.

Keywords: dual pathway odor coding, mixture coding, antennal lobe, computational model, honeybee foraging

INTRODUCTION
Parallel olfactory subsystems are common in vertebrate and insect
nervous systems. As Galizia and Rössler (2010) point out, two cat-
egories of parallel subsystems can be distinguished in the insect
realm: segregate and dual parallel systems. Segregate parallel sys-
tems process different chemical stimuli (e.g., pheromone subsys-
tems). In contrast, dual parallel systems analyze the same odorants,
but with different coding and processing strategies. Often, such
functional distinction is also evident in an anatomical separation.

A prominent case of a dual parallel olfactory system is found in
the order of Hymenoptera, to which bees and ants belong. In these
animals, uniglomerular projection neurons (PNs) relay olfactory
information via two anatomically distinct tracts from the anten-
nal lobe (AL) to higher brain centers, that is, the mushroom body
(MB) and the lateral horn (LH), where sensory pathways from
multiple modalities converge (see Galizia and Rössler, 2010 for a
review). Those two tracts are called the lateral and the medial
antenno-cerebral tract (l- and m-ACT), after their anatomical
location in the brain (Mobbs, 1982). These pathways are specific to
the group of hymenoptera, and hence they are not present in, for
example, Diptera (flies) or Orthoptera (locust; Galizia and Rössler,
2010).

In the honeybee Apis mellifera, uniglomerular PNs sending
their axons along either pathway innervate segregated populations
of glomeruli, the basic functional units in the AL (Abel et al., 2001).
The separation of those groups of PNs on the glomerular level may
indicate that the information they convey is processed separately
(Galizia and Rössler, 2010). The projections of PNs from both
tracts target adjacent and partially overlapping regions in the MB
and LH, suggesting that computational processes in those areas
use information from both tracts (Müller et al., 2002; Kirschner
et al., 2006).

Several studies have addressed functional differences in odor
representation across the two tracts. Müller et al. (2002) reported
that the segregation into two pathways is not related to the dis-
tinction between different odors or odors and pheromones, but
rather appears to reflect an implementation of two different odor
coding strategies. A similar observation regarding shared odor
coding in both tracts has recently been reported in ants (Brand-
stätter and Kleineidam, 2011). This finding is supported by the
observation that m-PNs exhibited complex responses to constant
odor stimuli with alternating phases of excitation and inhibition,
while l-PNs preferably showed stereotypic phasic–tonic responses
(Müller et al., 2002). Using the same recording technique, Krofczik
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et al. (2009) found that PNs in the l-ACT exhibited higher odor
specificity, while m-ACT PNs were more broadly tuned. In addi-
tion, they found that l-ACT PNs exhibited suppressive responses
to mixtures, that is, the response to the mixture was smaller than
the response to the individual components. In contrast, m-ACT
PNs showed hypoadditive mixture responses (mixture response
resembled the strongest component response). Yamagata et al.
(2009) recorded Ca2+-activity of presynaptic PN boutons in one
of their target areas, the MB calyx region. They could confirm nar-
row vs. broad odor tuning as well as suppressive vs. hypoadditive
mixture coding in l- and m-ACTs as reported by Krofczik et al.
(2009). In addition, they analyzed how the neuronal responses
in both pathways depend on odor concentration. They found
strong concentration dependence in m-ACT PN responses in the
tested concentration range, while l-ACT PN responses showed
only weak concentration dependence, but responded already at
very low concentrations.

Taken together, l-ACT PNs show narrower odor tuning, little
concentration dependence, and suppressive mixture coding, while
m-ACT PNs exhibit broader odor tuning, strong concentration
dependence, and hypoadditive mixture coding (Table 1). Hence,
it appears that PNs in the l-ACT are more suited for coding the
identity of an odorant but less so for representing its intensity,
while PNs in the m-ACT exhibit a complementary coding strategy.

In spite of the detailed morphological and functional descrip-
tions of the l- and m-ACT pathways, it is still unclear how the
characteristic coding strategies found therein are brought about.
Lateral inhibition and gain control are well-described properties
of neuronal processing in the insect AL which seem to be partic-
ularly well suited as candidate mechanisms mediating l-ACT-like
narrow odor tuning and concentration invariance. Lateral inhi-
bition has been shown to enhance odor discriminability in the
insect olfactory system (Linster and Smith, 1997; Stopfer et al.,
1997; Perez-Orive et al., 2004; Wilson and Laurent, 2005). Non-
uniform lateral inhibition acting between specific glomeruli has
been demonstrated to improve odor discrimination in a compu-
tational model (Wick et al., 2010). Computational modeling also
suggested that in honeybees, the strength of the inhibitory connec-
tion between pairs of glomeruli matches the correlation between
their response spectra (Linster et al., 2005). Correlation-dependent
lateral inhibition has been shown to significantly increase the per-
formance of a machine-learning classifier framework inspired by
the honeybee olfactory system (Schmuker and Schneider, 2007).

A second role of inhibition in the AL enables gain control,
that is, compression of dynamic range. Gain control can be
implemented by global, recurrent inhibition. Several studies have
stressed that odorant discrimination can benefit from recurrent
feedback inhibition (Stopfer et al., 2003; Olsen and Wilson,

Table 1 | Response properties of boutons in the l-ACT and m-ACT

pathways.

l-ACT m-ACT

Concentration-invariant Concentration-dependent

Narrow odor tuning Broad odor tuning

Suppressive mixture responses Hypoadditive mixture responses

2008; Asahina et al., 2009). Morphological and functional studies
showed that in Drosophila certain populations of local inhibitory
interneurons in the AL connect only specific sets of glomeruli,
while other populations exhibit non-specific projections to virtu-
ally all glomeruli (Silbering et al., 2008; Chou et al., 2010; Seki et al.,
2010), indicating that in Drosophila, specific lateral inhibition and
global gain control are probably mediated by distinct populations
of neurons, potentially belonging to two different functional sub-
systems. There is much less data available on local interneuron
morphology in the honeybee AL, but LNs in the honeybee exhibit
manifold morphology and connectivity patterns (Flanagan and
Mercer, 1989; Fonta et al., 1993; Sachse and Galizia, 2002). Some
LNs have been shown to target exclusively glomeruli in either the
l- or m-ACT part of the AL, supporting the idea of partially sep-
arated processing of odor information across pathways (Meyer,
2011).

In this contribution, we approach the question of differential
coding strategies and potential benefits in a model study. Our
specific aim was to analyze whether lateral inhibition and gain
control could mediate the different coding strategies that have
been observed in the l- and m-ACT pathways in the honeybee
brain. To this end, we developed a computational network model
that allowed us to implement a complementary odor code in dual
pathways, starting from a model that is based on the concept of
virtual sensors (Schmuker and Schneider, 2007). The model uses
a fixed network scheme and identical neuronal resources but dif-
ferent parameters for the local inhibitory processing. Moreover,
the presence of dual olfactory pathways suggests that they pro-
vide a substantial evolutionary advantage in the ecological niche
which honeybees occupy. The model we present here allowed us
to identify specific advantages of dual pathway odor coding for
odor-guided navigation and foraging.

MATERIALS AND METHODS
CONCEPT OF THE NETWORK MODEL
We based our network model on a previously published model
for processing multidimensional data inspired by the insect olfac-
tory system (Schmuker and Schneider, 2007). The model has no
temporal component and hence neglects the fine temporal scale
of odor responses. Odor-evoked activity patterns form temporal
trajectories in multidimensional space which reach a stationary
point shortly after stimulus onset (Stopfer et al., 2003; Galán et al.,
2004; Silbering et al., 2008). Activity values in our model reflect the
average activity of a neuronal population at this stationary point,
and hence capture only the spatial component of olfactory coding
across glomeruli (we elaborate on the limitations of this approach
in Discussion).

Figure 1A outlines the connectivity of the network model.
Olfactory receptor neurons (ORNs) project onto PNs and LNs
which are organized in glomeruli. LNs project inhibitory connec-
tions to PNs in other glomeruli. PNs project their output to higher
brain areas (not part of the model), but their output may undergo
global feedback inhibition, that is, gain control.

SURROGATE ORN INPUT PATTERNS
We simulated the virtual responses pattern of ORNs to a large
set of odorants as previously described (Schmuker and Schneider,
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FIGURE 1 | (A) Schematic of the network topology of the model.
ORN, olfactory receptor neuron; PN, projection neuron; LN, local
(inhibitory) neuron. ORNs project to PNs and LNs in one glomerulus. LNs
exert inhibition upon PNs in other glomeruli (Eq. 4). An inhibitory population

downstream of the lateral inhibition network takes global input and exerts
global inhibitory feedback (see Eqs 5 and 6). Some of the connections are
shaded for better overview. (B) The weight matrix C used for lateral inhibition
(cf. Eq. 4).

2007). Using the chemical structure of 836 odorants from the
Sigma-Aldrich Flavors and Fragrances Catalog (Sigma-Aldrich,
2004) we calculated a set of 184 physico-chemical descriptors
for each individual odorant using the “MOE” software package
version 2005.6 (Chemical Computing Group, Montreal). Next,
we trained a self-organizing map (SOM) on the 184-dimensional
chemical space to mimic the evolution of the olfactory receptor
repertoire using the software package SOMMER (Schmuker et al.,
2006; http://sommer.sourceforge.net). Each SOM unit was then
used as a “virtual receptor” to encode odorants. A virtual recep-
tor is a point p in data space, and its response r to an odorant s
is determined as a function of the distance between p and s. The
response ri of the ith virtual receptor – and hence the ith ORN – to
an odorant s is described by Eq. 1

ri = 1− d
(

s, pi

)− dmin

dmax − dmin
, (1)

where pi represents the coordinates of the ith receptor, d(s, pi)
denotes the city-block distance (i.e., the sum of absolute coordi-
nate differences, Minkowski metric with k = 1), dmin and dmax are
the minimal and maximal distance between s and any pi. Hence,
ri= 0 if d(s, pi) is maximal and ri= 1 if d(s, pi) is minimal. The
number of virtual receptors can be adjusted by using an SOM with
the desired number of units. In this study, we used a toroidal SOM
layout with 5× 7 units, resulting in 35 virtual receptors/ORNs.
The influence of receptor count on stimulus classifiability has been
studied previously (Schmuker and Schneider, 2007). Although our
model can be efficiently evaluated and supports rapid exploration
of large parameter spaces, we limited the model to use only 35
receptors, because increasing the number of receptor types from
35 to 96 yielded only a comparably small improvement in stimulus
representation.

CONCENTRATION DEPENDENCE OF PN ACTIVATION
The previous model did not take into account odor concentration,
so we needed to extend the model to support odor intensity. In

a first step, we account for dynamic range of neuronal activation
in the PN layer by expressing the presynaptic activation pattern
ξ of PNs by ORNs in terms of a logarithmic transfer function of
receptor activation pattern r

ξ = ln (r+ 1) , (2)

based on experimental observations in the fruit fly where PN
responses saturate with linearly increasing ORN firing (Bhandawat
et al., 2007; Kazama and Wilson, 2008). Experimental evidence
suggests that short term depressive synapses between ORNs and
PNs provide the mechanism that underlies rate compression in the
fly (Kazama and Wilson, 2008). Logarithmic transfer functions are
also compatible with psychophysical observations as expressed in
the Weber–Fechner law.

In a second step, concentration dependence of PN responses
was modeled by scaling the presynaptic activation ξ by the decadic
logarithm of odor concentration �,

ξconc =
ξ

1− log10�
. (3)

We chose to represent odor concentration using this logarithmic
description in order to obtain concentration values that are com-
patible with the physiological study which the present work was
inspired from (Yamagata et al., 2009). In that study, odor concen-
tration was reported as a dilution factor of the odorant in solvent.
Dilutions ranged from �= 10−5 to �= 100, and we adopted these
values for the present work. In addition, this kind of scaling is
compatible with physiological measurements of concentration-
dependent responses in the honeybee AL (Sachse and Galizia,
2003), in which the magnitude of the glomerular response signal
scaled with the logarithm of odor concentration.

LATERAL INHIBITION
Many studies have shown that lateral inhibition in the AL plays
an important role in olfactory information processing (see, e.g.,
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Stopfer et al., 1997; Perez-Orive et al., 2004; Wilson and Laurent,
2005). In this study, we used correlation-dependent lateral inhibi-
tion, as suggested by Linster et al. (2005) and in agreement with
the previous incarnation of the model (Schmuker and Schneider,
2007).

We implemented lateral inhibition by subtracting from the
activation of each PN the summed activation of all other PNs,
weighted by correlation between the ORN activations over all
odorants in the data set. Accordingly, we obtain the output
activation pattern ξpost from the concentration-dependent input
activation pattern ξconc as

ξpost = ξconc − q · C · ξconc

n
, (4)

where n is the number of virtual receptors, C is the correlation
matrix with Ci,j containing the Pearson correlation coefficient for
the responses of the ith and jth ORN, and q is a scaling factor
which allows to adjust the overall strength of inhibition. Elements
on the diagonal as well as negative entries of C were set to zero to
avoid self-inhibition and to reflect the fact that inhibited inhibitory
interneurons have no post-synaptic effect. Figure 1B depicts the
weight matrix C. It is calculated on the basis of receptor responses
to all single odorants in the data set and thus reflects the similarity
structure in the input space. It is constant throughout this study.
Note that the structure of lateral inhibition is controlled by C, but
q is factored out to allow control of the overall strength of inhibi-
tion. The factor n was introduced in the previous work to enable
comparison of q values over different receptor counts. Although n
is constant in this study, we kept it as a parameter for consistency
with previous work.

FEEDBACK INHIBITION
Our implementation of feedback inhibition was motivated by two
experimental observations. First, it has been shown that l-ACT
boutons respond to very weak odor concentrations, while m-ACT
PN boutons do not (Yamagata et al., 2009), meaning that PNs in
the l-ACT react more sensitive to weak stimuli compared to m-
ACT PNs. Second, in the honeybee, the input to l-ACT PNs in
the AL exhibits strong dependence on odor concentration. This
has been demonstrated in a study which measured the Ca2+ sig-
nal in backfilled PNs in the AL, where dendritic Ca2+ activity
likely constituted the majority of the signal (Sachse and Gal-
izia, 2003). It hence follows that gain control in the honeybee
AL must act downstream of PN dendrites, but upstream of PN
boutons.

In order to capture this behavior, we extended the model with a
two-step gain control mechanism consisting of a sensitivity boost
and subsequent feedback inhibition. Our implementation of gain
control is described as

ξout =
ξpost · β

ρ
, (5)

where β denotes the sensitivity boost factor, and ρ ≥ 1 describes
the activity of a population of inhibitory neurons that mediates
global feedback inhibition on PN output (see Figure 1A) in a

divisive manner. The inhibitory population receives input from all
PNs; its activity is described as

ρ =

⎧
⎪⎨

⎪⎩

1, if
∣
∣
∣ξpost

∣
∣
∣ � θ

∣∣∣ξpost

∣∣∣
θ

, if
∣
∣
∣ξpost

∣
∣
∣ > θ

. (6)

|ξpost| denotes the L1-norm of the PN output pattern (the sum of
the activity of all PNs), θ the (non-zero) activation threshold of
the inhibitory neurons. The case of ρ≡ 1 describes the case where
no feedback inhibition is present in the network. The inhibitory
population responds as total PN output exceeds θ , which we set
to the average level of PN output for all patterns in our data set
without lateral inhibition and gain control. We normalized the
amount of inhibition by θ , so that ρ≈ 1 when |ξpost|≈ θ . Taken
together, gain control in our model globally boosts the PN signals
if summed activity is weak and attenuates them if it the summed
response is strong.

In our physiological observations, the output from m-ACT
neurons at the highest concentration was in the same range as
the response from l-ACT neurons over concentrations (Yamagata
et al., 2009). Hence, we set β to 6 throughout this study, com-
pensating the concentration discount for the lowest concentration
(10−5) in Eq. 3. Thus, when gain control is effective, the amplitude
of an input pattern at the lowest concentration matches the ampli-
tude of the same pattern at the highest concentration without gain
control.

RESULTS
Stimulus representation differs in a characteristic way across two
parallel pathways in the honeybee olfactory system (Table 1; Yam-
agata et al., 2009). Our aim was to identify network properties
underlying the observed differential odor coding, and to investi-
gate the potential benefit of such a dual coding strategy. To this
end, we used a computational network inspired by the neural cir-
cuits in the olfactory system of the honeybee, based on a model of
olfactory processing in the AL (Schmuker and Schneider, 2007).
We investigated the roles which glomerulus-specific lateral inhi-
bition and non-specific feedback inhibition (“gain control”) may
play in creating the distinct coding properties in the l- and m-ACT.
Since comprehensive characterizations of the molecular receptive
fields of the honeybee’s ORNs are not available, we used surrogate
data as input to the AL (see Materials and Methods for details).

EFFECT OF LATERAL INHIBITION STRENGTH AND GAIN CONTROL ON
THE WIDTH OF ODOR TUNING CURVES
It has long been known that lateral inhibition effects contrast
enhancement and supports a sparse stimulus code in sensory pro-
cessing of various modalities. In the honeybee, PN boutons in the
l-ACT pathway respond to fewer odorants and thus exhibit nar-
rower odor tuning profiles than their m-ACT counterparts – in
other words, l-ACT PNs exhibit a sparser odor tuning code (Yam-
agata et al., 2009). In our model, increasing lateral inhibition in
the absence of gain control leads to an overall reduction in activity,
likely making it more difficult for downstream neurons to detect
the response patterns (Figure 2A, upper row). Obviously, gain
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control (Eqs. 5 and 6) can act as a mechanism to recover the activ-
ity pattern (Figure 2A, lower row). With gain control enabled, the
activity pattern retains its strength, even when lateral inhibition is
strong (q > 1.0). At the same time, the sparsening effect of lateral
inhibition can be observed: many PNs respond when the lateral
inhibition is weak (q is low), but when q increases the activity
pattern gets sparser and its contrast is enhanced.

We then tested whether lateral inhibition as described by Eq. 4
can account for narrow odor response profiles and sparse odor
coding in l-ACT PNs. Figure 2B illustrates the tuning profile
of a single PN with respect to the entire set of 836 odors in
our database. Without gain control, the odorant response pro-
files show overall reduced response magnitude, but their shapes
are not changed (Figure 2B, left panel). But, with gain control in
effect, odorant tuning curves become narrower as lateral inhibi-
tion is increased (Figure 2B, right panel). Thus, we could achieve
substantial narrowing of the odorant response profiles only when
gain control was in effect and, at the same time, lateral inhibition
was strong.

One might argue whether increasing input gain alone may also
be sufficient to produce narrower tuning curves in presence of
strong lateral inhibition. We tested this hypothesis by increas-
ing sensitivity alone without applying feedback inhibition (β = 6
and ρ= 1 in Eq. 6). The resulting tuning curves did not become
narrower, only their amplitude was increased (Figure 2C). This
observation further supports that both, increased input sensitivity

and gain control by feedback inhibition are required to reproduce
narrow odor tuning when lateral inhibition is strong.

Lateral inhibition affects the discriminability of odorant rep-
resentations in PNs. We used the Euclidean distance between PN
response patterns as an estimate for their discriminability. Dis-
tance was calculated for each pair of odors, so that we ended up
with 836∗835∗0.5= 349,030 distance values for each value of lat-
eral inhibition strength q. Two observations can be made from the
distribution of distances (Figure 3). First, when gain control was
in effect, increasing the strength of lateral inhibition also caused
the distance between odorant representations to increase. Second,
when there was no gain control, the distance between odorant
representations slightly decreased with increasing lateral inhibi-
tion. This observation is a consequence of the decreasing overall
amplitude of response patterns with increasing lateral inhibition.
This result indicates that both mechanisms, gain control and lat-
eral inhibition, need to be combined to achieve improved pattern
separability, and hence discriminability by downstream neurons.

This interpretation relies on the assumption that neuronal
responses are not invariant to scaling, that is, the assumption that
small differences in the signal are more difficult to discern than
large differences. Assuming that stochastic fluctuations in the stim-
ulus, the transduction chain, synaptic release, external conditions,
etc., do not or only weakly scale with signal amplitude, they will
affect weak signals more than strong ones. In consequence, large
differences in activity between PNs will be more reliably detected

FIGURE 2 | Effect of lateral inhibition on PN response profiles. (A) The
pattern evoked by a single odor (butyl proprionate, modeled concentration
10−1) transformed by lateral inhibition of different strengths, indicated by the
factor q. Each square in the 5× 7 grid corresponds to the PN response within
one model glomerulus. (B) Response magnitude in PN no. 17 (fourth column,
second row) for all 836 odors for three levels of lateral inhibition, without (left)

and with gain control and increased sensitivity (β = 6, right). The odors are
arranged along the abscissa with descending response strength such that the
strongest odorant is always displayed on the left. Circles denote the
magnitude of the leftmost odorant. (C) Same as (B) without gain control, but
with PN sensitivity increased by the same factor (β = 6). Note the different
scale of the ordinate.
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FIGURE 3 | Discriminability of odor representations in PNs, as

indicated by the average pairwise euclidean distance between PN

response patterns to all odorants. Dotted lines denote the median,
shaded areas denote the difference between the 10th and the 90th
percentile of the distribution of distances.

than weak differences. To demonstrate this aspect would require a
more elaborate model which is outside the scope of this study.

Taken together, lateral inhibition alone leads to reduced
responses without substantial sharpening of PN tuning curves.
It only improves odor discrimination together with gain control
in the scope of our model.

REPRODUCTION OF PHYSIOLOGICAL OBSERVATIONS
We wondered whether we could also reproduce the characteris-
tic differences in odor concentration and mixture representation
across l- and m-ACT that have been described in physiological
studies (Table 1). In the following, we describe the extent to which
our model is able to reproduce physiological observations regard-
ing representation of odor concentration and mixtures of odors.
Since we implemented gain control and lateral inhibition as sep-
arate mechanisms, we were able to gauge their effects on odor
coding separately.

In our previous physiological experiments, we observed pos-
itive concentration dependence in m-ACT PNs and no or even
negative concentration dependence in l-ACT PNs (Yamagata et al.,
2009). We first wanted to investigate to what extent gain control
alone could reproduce our experimental observations on concen-
tration and mixture coding, when there is no lateral inhibition
involved (q= 0 in Eq. 4). Without gain control, the PN responses
naturally exhibited strong concentration dependence, matching
the behavior of m-ACT PNs (upper row in Figure 4A). With gain
control, this dependence was virtually eliminated (lower row in
Figure 4A). In many cases we even observed negative concentra-
tion dependence, as for example in the upper trace in Figure 4B.
Negative concentration dependence occurs when a PN is strongly
activated by its input, but gets attenuated through feedback inhibi-
tion as the other PNs increase their responses with rising concen-
tration. It was weak in magnitude in the cases where it was present.
Negative concentration dependence was also observed physiolog-
ically in a large fraction of l-ACT PN boutons (cf. Figure 4 in
Yamagata et al., 2009).

In order to depict the general effect of feedback inhibition on
intensity representation, we followed the approach of our physi-
ological study by estimating the representation of different odor
concentrations in individual PNs. To this end, we performed lin-
ear regression of the concentration response curves (Figure 4B)
for the response of each of the 35 PNs to each of the 836 odors,
obtaining 836·35= 29,260 slopes. We then compared the distribu-
tion of slopes for the two conditions with and without gain control
(Figure 4C). Without gain control the regression lines had strictly
positive slopes, but when gain control was enabled, the regres-
sion slopes took small values close to zero, both in the positive
and negative range. Hence, the strong concentration dependence
observed in m-ACT PNs was reproduced when gain control was
disabled, while l-ACT-like concentration coding could be achieved
with gain control through feedback inhibition.

Responses of l-ACT PNs to mixtures of two odorants have been
described to be weaker than their responses to each of the compo-
nents (suppressive mixture coding), while in m-ACT PNs mixture
responses have been observed to be as strong or stronger than
the response to each component (hypoadditive mixture coding;
Krofczik et al., 2009; Yamagata et al., 2009). We systematically var-
ied the strength of lateral inhibition in absence and in presence
of gain control to investigate the role of those network properties
in reproducing characteristic differences in mixture coding across
pathways. To this end, we implemented mixtures of two odorants
as linear superposition of their patterns (Eq. 7)

ξmix = ln (rA + rB + 1) , (7)

with rA and rB the receptor patterns of the two components A
and B, and ξmix the activity pattern in response to the mixture.
As in Eq. 2, we used a logarithmic transfer function to account
for the dynamic range of neuronal activation. Activity patterns are
combined before applying the logarithmic transfer function which
models PN activation. In the biological scope, this approach cor-
responds to linearly adding the responses on the receptor level,
which is in line with physiological findings in various organisms.
For example, Tabor et al. (2004) observed in zebrafish that activ-
ity patterns evoked by odor mixtures in afferents to the olfactory
bulb could be predicted from the component patterns, suggesting
that mixture interactions in the peripheral olfactory system exhibit
only weak non-linearity. Similar findings have been described in
Drosophila (Silbering and Galizia, 2007), the moth Spodoptera
litoralis (Carlsson et al., 2007), and the honeybee (Deisig et al.,
2006). To illustrate the effect of mixing odorants, we depict
response patterns of two odorants (acetaldehyde and butyl pro-
prionate) and their mixture without gain control in Figure 5A.
We used the (virtual) concentration of 10−1, the same concentra-
tion that we used in the mixture experiments in our experimental
study (Yamagata et al., 2009). PNs exhibited hypoadditive mixture
coding, as the response of each PN to the mixture was higher than
to each of the components, although the mixture response is not a
strictly additive superposition of both components because of the
PN’s logarithmic transfer function (Eq. 7).

We then checked the influence of gain control and lateral inhi-
bition on mixture coding. Figure 5B shows the response patterns
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FIGURE 4 | Concentration dependence of PN response patterns

with and without gain control. (A) The pattern for butyl
laurate for concentrations of 10−5–100 without gain control
(upper row) and with gain control (lower row). (B) Response magnitude
of the PN in glomerulus no. 8 (the strongest responding glomerulus,

second column, third row) with and without gain control. (C) Box plot of
regression slopes of concentration response curves as in (B), but pooled for
the entire data set, over all odors, and PNs. Lines in boxes denote upper
quartile, median, and lower quartile, “whiskers” denote 10th and 90th
percentile.

for components and mixtures with gain control, and for three dif-
ferent levels of lateral inhibition (controlled by the factor q). Gain
control generally promoted suppressive mixture coding. Lateral
inhibition led to increased contrast of the components as well
as the mixtures (cf. Figure 2), but it was difficult to discern an
effect on mixture coding for q= 1. A clear effect became visible
for q= 2, but it is difficult to estimate from the visualization of the
response pattern alone whether this condition supported suppres-
sion or hypoadditivity. A significant portion of PNs were silenced
by strong lateral inhibition for q= 2, resulting in sparse activity
in the component-evoked pattern, and hence lower overall gain.
With lower total gain, gain control became less effective (see Eq.
6), and its suppressive influence on mixture representation became
smaller. This observation indicates that values of q≥ 2 represent
an extreme case and are most likely not useful in reproducing
experimental observations.

We wanted to obtain a quantitative assessment of whether PNs
express suppressive or hypoadditive responses to a mixture of two
components A and B over a range of parameters. To this end, we
calculated for each PN the index for mixture additivity κ (Krofczik
et al., 2009; Eq. 8)

κ = ξi, mix −max
(
ξi, comp A, ξi, comp B

)

ξi, mix +max
(
ξi, comp A, ξi, comp B

) , (8)

with ξ i, comp A and ξ i, comp B the response of the PN with the index i
to the component A and B, respectively, and ξ i, mix the response of

PN i to the mixture. Hence, values of κ > 0 indicate hypoadditive
mixture representation, while values of κ < 0 indicate suppres-
sive mixture representation. Figure 5C shows the distribution of
κ across PNs for the mixture from Figure 5A, with and without
gain control, for q in the range between zero and two. Gain con-
trol supported suppressive mixture representation (κ < 0) over a
large range of q. Although the values are still close to zero, the
median as well as the 10th and 90th percentiles of the distribu-
tion of κ were below zero, indicating a clear trend to suppressive
responses. In contrast, mixtures were represented in a hypoaddi-
tive way (κ > 0) when there was no gain control. Strikingly, the
amount of lateral inhibition had virtually no effect on the mixture
responses being hypoadditive or suppressive over a large range
of inhibition strength. That stereotypic behavior began to break
down only as q approached the extreme value of 2, when no clear
trend toward hypoadditive or suppressive mixture coding could be
discerned anymore, confirming our qualitative observations from
Figure 5B. Hence, the presence of gain control appears to be the
dominant factor mediating the characteristics of mixture coding
over a large range of parameter values.

Natural odors are typically blends of many different compo-
nents (Knudsen et al., 2006; see Raguso, 2008 for a review), and
the ability to discriminate blends is important for foraging (Wright
et al., 2002). Honeybees can distinguish fine differences in blend
composition foraging (Wright et al., 2005), and it has shown that
AL processing plays an important role in mixture discrimination
(Deisig et al., 2010). As lateral inhibition and gain control enhance
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FIGURE 5 | Effect of lateral inhibition and gain control on mixture

representation. (A) Response patterns without gain control and q = 0 for
two odorants at concentration 10−1 and their mixture. (B) Response
patterns for the odorants and the mixture from (A), but with gain control
and for different values of q. Color scaling in (A,B) is identical to Figures 2A

and 4A. (C) The mixture index κ for different values of q, with and without
gain control, calculated for all glomeruli for the mixture of Acetaldehyde and
Butyl propionate. Black dotted lines indicate the median for all glomeruli, for
different values of q. Shaded areas denote the 10th and the 90th percentile
of κ. The dashed line indicates κ = 0, where mixtures of odorants evoke
exactly the same response as the strongest components, and hence
exhibit neither hypoadditive nor suppressive responses. (D) Euclidian
distance between binary mixtures with slightly different component
concentrations. Dotted line: Median of 100 randomly picked odorant pairs,
shaded areas denote 10th and 90th percentile.

pattern discriminability (cf. Figure 3), we hypothesized that these
mechanisms also affect mixture discrimination. We tested whether
our model reproduces this observation by calculating the distance
between artificial binary blends with slight differences in the pro-
portion of components. To this end, we randomly picked odorant
pairs from our data set and created two binary mixtures from each
pair that differed slightly in their component ratio. In one mix-
ture the ratio of concentration between odor A and odor B was
A:B= 10−1:10−2, while the ratio was reversed in the other mixture
(A:B= 10−2:10−1). We calculated the Euclidean distance between
the response patterns evoked by the two mixtures after process-
ing them with various levels of lateral inhibition. As with single
odors, discriminability of mixtures was enhanced for high levels of
lateral inhibition in combination with gain control (Figure 5D),
thus favoring the discrimination of weak differences in blends of
odorants.

Taken together, lateral inhibition enhanced discriminability of
mixtures on the level of PN response patterns, but it hardly affected
whether mixtures were represented in an additive or subtractive
way at single PNs. The latter aspect of mixture coding was medi-
ated mainly by the presence or absence of gain control, which is
required to avoid that the signal gets lost when lateral inhibition is
strong.

MODEL-BASED EXPLANATION OF AN ATYPICAL EXPERIMENTAL
OBSERVATION
The mechanism we suggest here helps to understand an important
detail in our previous experimental observations on PN bou-
tons in the MB. There was one odor, hexanal, which exhibited
concentration dependence more in l-ACT PN boutons than in m-
ACT boutons, and was more sparsely represented in m-ACT PN
boutons than in l-ACT PN boutons, hence exhibiting “inversed”
behavior (cf. Figure S3 in Yamagata et al., 2009). Both effects can
be explained in a straightforward manner from our model, con-
sidering the particular response pattern that hexanal evokes in the
AL. Hexanal activates comparably few glomeruli in the part of the
l-ACT that is accessible to imaging (Sachse et al., 1999). In the m-
ACT, sparse input will lead to sparse output, but in the l-ACT, PNs
in glomeruli which receive only weak excitatory input may exhibit
stronger responses at their output through the sensitivity boost
that gain control implies (factor β in Eq. 5), apparently reducing
sparseness compared to m-ACT PNs. This explains why hexanal
is sparsely represented in m-ACT PN boutons, but exhibits less
sparse representation in l-ACT PNs.

Along a similar line of thought, our model explains the other
effect we observed, namely concentration-dependent represen-
tation of hexanal in otherwise concentration-insensitive l-ACT
boutons. In the l-ACT, gain control will not exert much influence
when only few PNs are activated, as the strength of gain control
depends on the sum of activation in all PNs (Eq. 6). So gain control
is less effective for odors which activate few PNs (like hexanal), and
in consequence those odors will exhibit concentration dependence
also with l-ACT-like network parameters.

DISCUSSION
In the present study, we have analyzed putative network mech-
anisms which may generate the characteristic features of odor
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Table 2 | Network properties reproducing l-ACT and m-ACT-like coding

characteristics and their functional significance.

l-ACT m-ACT

Strong lateral inhibition

good odor discrimination

Weak lateral inhibition

weak odor discrimination

Strong gain control

weak concentration discrimination

Weak gain control

good concentration discrimination

coding that have been described across two parallel pathways in
the honeybee olfactory system. We have demonstrated that the
complementary features of odor coding at the level of the MB input
found across the two pathways (Table 1) can be captured in a single
model network by using different parameter settings (Table 2). We
could reproduce coding properties observed in PNs of the l-ACT,
namely narrow odor tuning, concentration invariance, and sup-
pressive mixture coding by strong lateral inhibition and strong gain
control in the model network. On the contrary, weak lateral inhi-
bition and absence of gain control reproduced coding properties
of PNs in the m-ACT, namely broad odor tuning, concentration-
dependent responses,and hypoadditive mixture representation. As
a result in the biological scope, this finding is compatible with the
assumption that in the honeybee AL, the l-ACT/m-ACT pathways
represent two partly segregated subnetworks where parameters are
tuned to differential functional properties using the same neu-
ronal ground plan. This constrains current hypotheses on the
connectivity within and between both pathways (see Galizia and
Rössler, 2010 for a review). Our results also suggest dual pathway
odor coding may be of particular value in odor-guided foraging,
when precise information about stimulus intensity and identity is
required simultaneously.

Several assumptions underlying our model are vital for the
validity of these interpretations. For the present study we assumed
that odor selectivity is similar for ORNs that innervate glomeruli
of the l-ACT and those innervating m-ACT. Also, we assumed
homogenous odor sensitivity in ORNs that innervate glomeruli of
either tract. In our model, tract-specific differences in odor sensi-
tivity arise only at the level of PNs and result from computations
within the AL network and (potentially) feedback from down-
stream neuron populations (see below). To our best knowledge,
there is currently no experimental evidence that contradicts any
of these assumptions.

CANDIDATE NEURON POPULATIONS IN THE HONEYBEE BRAIN
MEDIATING FEEDBACK INHIBITION ON THE AL OUTPUT
Our modeling results suggest that gain control is important to
explain the coding differences between l-ACT and m-ACT. In order
to test this hypothesis in future studies, it is important to know
which neuron populations could mediate the gain-controlling
feedback inhibition in the honeybee olfactory pathway. Evidence
from morphological and physiological studies in the honeybee
brain suggests three possibilities.

The first possibility is that gain control is provided by inhibitory
feedback neurons in the protocerebro-calycal tract (PCT). PCT
neurons have post-synaptic profiles in the alpha-lobe of the MB
and project up to the calyx region (Grünewald, 1999; Okada et al.,

2007). In the MB calyx, PCT neurons form reciprocal connections
to PN boutons within so-called microglomeruli (Ganeshina and
Menzel, 2001). At least a part of the PCT neurons are GABAer-
gic. They could mediate the observed feedback inhibition since
the physiological observations which we partly ground our model
upon are based on measurements of presynaptic PN boutons
within these microglomeruli (Yamagata et al., 2009). Dendrites
of PCT neurons span large areas in the alpha-lobe, where they can
pick up the population response from a large fraction of Kenyon
cells (KCs), which in turn may reflect the overall input of PNs
to the MB. Hence, the connection PN–KC–PCT–PN may form
an inhibitory feedback loop. Recently, a similar mechanisms has
been proposed in locust, where negative feedback from the MB
output back to its input is mediated by a large inhibitory neuron
(Papadopoulou et al., 2011), although it is unclear whether that
neuron targets only KC dendrites or if it also synapses onto PN
axonal boutons.

The second possibility is that feedback inhibition from PCT
neurons is mediated directly through the widespread axo-
dendritic ramifications that these neurons form in the calyx region.
Within microglomeruli, PCT neurons can pick up the excitatory
input directly from PNs and feed it back on the boutons through
their inhibitory synapses in the entire calyx region (Ganeshina
and Menzel, 2001; Hourcade et al., 2010). However, it is unclear
how signals traveling on the axo-dendritic structures between
microglomeruli would interfere with action potentials arriving
from the alpha-lobe.

As a third possibility, gain control could be exerted by local
inhibitory interneurons in the AL targeting the PN dendrites very
close to the integrating segment, that is, in the core region of
glomeruli (Fonta et al., 1993). The dendrites would still be showing
concentration-dependent responses, but due to hyperpolarization
close to the integrating segment, fewer action potentials might
be generated. Hence, Ca2+-imaging of backfilled PNs in the AL
would still show concentration-dependent responses, in line with
experimental observations (Sachse and Galizia, 2003). At the same
time, this arrangement would be compatible with the absence of
concentration dependence in l-ACT PN output boutons in the MB
that we observed (Yamagata et al., 2009).

The question whether gain control in l-ACT PNs is achieved
already in the AL or only at the level of the PN boutons may be
resolved by measuring the activity in axons of l-ACT PNs, for
example by measuring electrophysiological signals extracellularly
in the tract (Brill et al., 2011). Also, more detailed physiological
and morphological characterizations of local interneurons in the
honeybee AL are required (Meyer, 2011; Meyer and Galizia, 2011).

POTENTIAL RELEVANCE OF DIFFERENTIAL ODOR CODING IN
ODOR-GUIDED NAVIGATION AND FORAGING
In our model, lateral inhibition and gain control together can
enhance discriminability of single odors (Figure 3) and blends
(Figure 5D). On the other hand, gain control inevitably leads to a
loss of intensity information (Figure 4). Hence, there exists a trade-
off between discriminability of odors and representation of their
intensity. The co-existence of a concentration-invariant and highly
discriminative coding scheme in the l-ACT and a concentration-
sensitive, less discriminant coding scheme in the m-ACT might
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indicate an evolutionary adaptation of the honeybee olfactory
system to achieve both, concentration sensitivity and accurate
detection of odors even at low concentration.

Both capabilities are of vital importance for odor-guided forag-
ing. For example, a foraging bee may encounter a faint odor trace
emanating from a distant flower. Under these conditions, detec-
tion and identification of the odorant requires high sensitivity at
low odor concentrations and narrow odor tuning, as found in l-
ACT PNs. If the odor is attractive, the bee will try to approach
the odor source. Information about the distance to the source is
encoded in odor plumes in two factors: odor intermittency, that
is, the frequency at which the odor is encountered, and odor con-
centration (see Riffell et al., 2008 for a review). Although it has
been shown that odor intermittency alone can be used to success-
fully approach the source of a pheromone via “infotaxis” (Vickers,
2000; Vergassola et al., 2007; Moraud and Martinez, 2010), it is
clear that the distance to the source of an odor is also encoded
in its concentration within plume filaments (Murlis, 1997; Thistle
et al., 2004; Zollner et al., 2004) and hence odor concentration
is a powerful cue for distance to the source. Information about
concentration is encoded in m-ACT PNs. Thus, by integrating
the information about odor identity from l-ACT PNs and con-
centration from m-ACT PNs, the honeybee may be able to detect
and approach an odor source more efficiently than when relying
on infotaxis alone. In addition, odor concentration can be very
high in close vicinity to the odor source, e.g., at the blossom of a
flower. Odor discrimination (and hence odor learning) in this sce-
nario requires that the PN response is not saturated. Gain control
may counteract saturation of l-ACT PNs, enabling reliable, and
concentration-invariant encoding of odor identity even at high
concentrations. Interestingly, previous model studies have shown
that, indeed, gain control can improve learning of odor identity
(Huerta et al., 2004; Nowotny et al., 2005).

If our hypothesis is correct we may predict that a honeybee
whose l-ACT is dysfunctional will still be able to approach odor
sources, but it should exhibit severe impairments in general odor
discrimination, in odor learning at high concentrations, and in
odor detection at low concentrations. On the other hand, a hon-
eybee lacking a functional m-ACT should exhibit little impairment
in odor detection and discrimination, but it may have an impaired
ability to approach an odor source, unless the lack of intensity
information conveyed by m-ACT PNs is compensated by another
mechanism or other neurons, like for example ml-ACT PNs or
multi glomerular PNs (see Galizia and Rössler, 2010 for detailed
overview on PN types in the honeybee AL).

The latter point leads to the question why an entire odor cod-
ing system like the m-ACT should be used to represent intensity
if in principle only one channel would be necessary. However, in
an odor rich environment, where one odor needs to be identi-
fied out of many odors, and its concentration to be determined,
it may be important to have not only a plain intensity signal, but
also substantial odor information associated with it. This infor-
mation may help to bind the concentration information relayed
by the m-ACT to the odor identity information relayed by the
l-ACT in higher brain regions where both pathways converge.
Additional experimental and theoretical studies are needed to test
this hypothesis.

RELATION TO ANOTHER PROPOSED MECHANISM FOR CODING ODOR
IDENTITY VS. INTENSITY
Stopfer et al. (2003) found that in locust, odor intensity, and iden-
tity are represented in parallel within the same spike train, encoded
in temporal patterns which change dynamically during odor pre-
sentation. Locusts do not have dual olfactory pathways like the
l- and m-ACT in honeybees, so the challenge of encoding iden-
tity and intensity at the same time may be solved differently in
these animals. Nevertheless, the presence of parallel pathways for
intensity and identity in the honeybee raises the question of the
particular benefit of that dual system. One potential advantage
of having a parallel representation of those stimulus features as
opposed to encoding it in temporal features is that in a parallel
system, identity and intensity can be provided almost immediately
after stimulus onset. If those features have to be decoded from a
spatio-temporal pattern, a certain amount of time is required until
that pattern has evolved to encode a sufficient amount of infor-
mation. The olfactory system of honeybees signals the presence
of behaviorally relevant odors with very little delay in condition-
ing experiments (Strube-Bloss et al., 2011). In those experiments,
MB-extrinsic neurons which encode the value of the stimulus
(rewarded vs. non-rewarded) exhibited an odor-driven popula-
tion response 60 ms after odor onset, which is approximately
20 ms after a specific representation of the odor has built up in
the PN ensemble in the AL (Krofczik et al., 2009). Moreover, the
representation of the rewarded odor at the MB output became sig-
nificantly different from unrewarded stimuli as quickly as 140 ms
after odor onset. These findings suggest that the olfactory sys-
tem of the honeybee can indeed benefit from a rapid encoding of
odors in the input, and hence from parallel pathways. Moreover,
in a natural environment odor plumes are encountered intermit-
tently and concentration is fluctuating very fast when crossing a
filament (Murlis, 1997; Thistle et al., 2004; Zollner et al., 2004;
Riffell et al., 2008). If odorant concentration and identity are to
be linked, it is hence important to measure the maximum odor
concentration with high temporal precision. This capability may
particularly facilitate odor-guided navigation in an odor rich envi-
ronment where the animal encounters plumes from different odor
sources and needs to distinguish between them.

LIMITATIONS OF THE PROPOSED MODEL IN THE BIOLOGICAL SCOPE
The network model presented in this study considers only the spa-
tial component of the olfactory code and ignores detailed response
dynamics. The main reason for this restriction is that our model is
partly based on experimental results obtained from Ca2+ imaging
of PN boutons, which provides only poor estimates of the tempo-
ral dynamics of the neural code. However, there is much evidence
for the relevance of temporal aspects of the neural code. Stopfer
et al. (1997) have demonstrated the importance of odor-evoked
oscillations in neuronal activity in the AL for odor discrimination
in the honeybee. Krofczik et al. (2009) suggested that PNs may
employ a latency code for representing odors, where the temporal
delay between stimulus onset and PN response is characteristic for
each pair of odor and PN. The temporal structure of odor repre-
sentation in physiological recordings from AL neurons in locust
and fruit fly has been demonstrated to vary strongly with odor
identity, even under constant stimulus conditions (Müller et al.,

Frontiers in Neuroengineering www.frontiersin.org December 2011 | Volume 4 | Article 17 | 81

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Schmuker et al. Dual pathway odor coding

2002; Stopfer et al., 2003; Wilson et al., 2004). Likewise, intensity
has been shown to affect the temporal dynamics of PN responses
in a characteristic way (Stopfer et al., 2003; Ito et al., 2009). A large
part of the temporal complexity seems to be generated already at
the level of ORNs (Raman et al., 2010). A recent modeling study
has shown how downstream neurons can extract temporal rela-
tionships between the firing of populations in the locust AL (Assisi
et al., 2011).

Most studies that deal with olfactory coding in the AL (includ-
ing the present one) have focused on either the spatial or the
temporal aspect of the spatio-temporal code while putting little
emphasis on the other. This can be partly explained by the dis-
tinct experimental approaches that provide the empirical basis for
model approaches. Imaging techniques monitor a spatial arrange-
ment, often with low temporal resolution, while electrophysiologi-
cal recordings of single neurons or few units provide high temporal
resolution but poor spatial information. The existence of a spa-
tial code in the honeybee has been repeatedly proven in glomerular
space and is reproducible across animals (Galizia et al., 1999; Wang
et al., 2003). However, glomerular response patterns have mostly
been obtained by measuring Ca2+-activity, with temporal resolu-
tion typically in the range of 5 Hz. This resolution is not sufficient
to identify temporal variations in odor representation, which have
been described to occur at frequencies starting at 20 Hz using elec-
trophysiological methods (e.g., Stopfer et al., 1997; Laurent et al.,
1998; Wilson and Laurent, 2005). On the other hand, electrophys-
iological studies either have very small spatial coverage, or lack
the possibility to determine the exact spatial location of the sig-
nal source, e.g., in the case of local field potentials. Hence, a direct
comparison of how spatial (that is, glomerular) and temporal cod-
ing interact in the insect olfactory system is still missing. Given the
current experimental evidence, it is difficult to reconcile the debate
whether the spatial or the temporal component of odor coding is
more important in odor discrimination. It is also likely that dif-
ferent insect species have evolved different odor coding strategies,
given the considerable difference in the anatomical layout of their

olfactory systems (e.g., number of glomeruli, functional separa-
tion between structural glomeruli, single vs. dual pathway systems,
multi- vs. uniglomerular PNs, see Martin et al. (2011) for a review),
possibly with different emphasis on spatial and temporal encoding
of odors.

In this context, it is interesting to note that in the honeybee,
temporally complex responses are observed frequently in m-ACT
PNs (Müller et al., 2002), but rarely in l-ACT PNs (Krofczik et al.,
2009). This observation may indicate that l-ACT and m-ACT are
not only different in the spatial component of odor representa-
tion, but also in the temporal component. Moreover, the m-ACT
is shared between locust, Drosophila, and honeybee, while the l-
ACT is unique to Hymenoptera, notably bees, and ants (Galizia and
Rössler, 2010). The difference in temporal aspects of the neural
code between l- and m-ACT will be a fascinating topic for future
studies as simultaneous observations from PNs in both pathways
with suitable temporal resolution become available (Brill et al.,
2011; Rosenbaum et al., 2011).
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The insect olfactory system can be a model for artificial olfactory devices. In particular,
Drosophila melanogaster due to its genetic tractability has yielded much information about
the design and function of such systems in biology. In this study we investigate possible net-
work topologies to separate representations of odors in the primary olfactory neuropil, the
antennal lobe. In particular we compare networks based on stochastic and homogeneous
connection weight distributions to connectivities that are based on the input correlations
between the glomeruli in the antennal lobe. We show that moderate homogeneous inhibi-
tion implements a soft winner-take-all mechanism when paired with realistic input from a
large meta-database of odor responses in receptor cells (DoOR database).The sparseness
of representations increases with stronger inhibition. Excitation, on the other hand, pushes
the representation of odors closer together thus making them harder to distinguish. We
further analyze the relationship between different inhibitory network topologies and the
properties of the receptor responses to different odors. We show that realistic input from
the DoOR database has a relatively high entropy of activation values over all odors and
receptors compared to the theoretical maximum. Furthermore, under conditions in which
the information in the input is artificially decreased, networks with heterogeneous topolo-
gies based on the similarity of glomerular response profiles perform best. These results
indicate that in order to arrive at the most beneficial representation for odor discrimina-
tion it is important to finely tune the strength of inhibition in combination with taking into
account the properties of the available sensors.

Keywords: olfaction, model, antennal lobe, inhibition, odor separation

1. INTRODUCTION
The design of artificial olfactory systems can benefit greatly from a
comparison with natural olfactory systems in animals. For exam-
ple, the olfactory system of insects has an evolutionary history of
more than 400 million years, resulting in a highly efficient and
functional network of neurons that process olfactory informa-
tion. To make use of this evolutionary design knowledge, we need
to understand the interaction between the characteristics of olfac-
tory receptors and the processing in the first olfactory neuropil,
the antennal lobe (AL).

Drosophila melanogaster is an ideal model system to study this
interaction. The available genetic tools have allowed the detailed
and extensive study of both olfactory receptor neurons and the
architecture of downstream processing networks. The processing
stream in Drosophila starts with a number of olfactory receptor
neurons (ORNs) on the antenna that transduce chemical stimuli
into neural signals. Each ORN expresses a few olfactory receptor
types and then projects to one glomerulus in the AL where ORNs
synapse onto projection neurons (PNs; Vosshall et al., 1999; Gao
et al., 2000; Bargmann, 2006). Receptor neurons of the same type
expressing the same receptor mostly project to only one glomeru-
lus (Vosshall et al., 1999). The PNs then carry information from
the glomeruli to higher brain areas like the mushroom bodies or
the lateral horn (Stocker, 1994). Glomeruli can be identified on

anatomical and physiological optical sections of the AL and it has
therefore been possible to establish the spatiotemporal response
patterns specific to particular odor stimuli (Fiala et al., 2002;
Wang et al., 2003; Silbering and Galizia, 2007; Silbering et al.,
2008). The activation patterns in the AL are not only caused
by stimulus-dependent receptor activation but also by secondary
lateral activation within the AL. This internal AL processing is
mediated by local interneurons (LNs) that are activated by ORNs
and PNs and influence the activity of other ORNs and PNs (Wilson
and Laurent, 2005). Drosophila harbors different subsets of LNs
both inhibitory as well as excitatory (Olsen et al., 2007; Shang et al.,
2007), with the inhibitory type being more prominent (Wilson
et al., 2004; Kazama and Wilson, 2008).

The LNs in the AL of Drosophila and other insects play an
important role in the processing of odor information. For exam-
ple in honeybees it has been shown that the specific heterogeneous
connectivity patterns of LNs in the AL are able to decorrelate
similar odor representations and hence facilitate odor identifica-
tion (Sachse and Galizia, 2002). This type of connectivity has been
analyzed in detail (Linster et al., 2005). In Drosophila homogenous
global inhibition is beneficial for the processing of odor stimuli by
means of stimulus normalization that allows for efficient encoding
of odorant stimuli at different concentrations (Kazama and Wil-
son, 2008; Asahina et al., 2009) and equalization that maximizes
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the mutual information of stimuli and representation in down-
stream processing areas (Luo et al., 2010; Olsen et al., 2010; Satoh
et al., 2010). These results also fit well with evidence from anatom-
ical studies in which in Drosophila inhibitory LNs have dense
connections throughout the antennal lobe (Stocker et al., 1990;
Olsen and Wilson, 2008).

In this study we investigate the interaction between the distrib-
ution of receptor response profiles and the processing in different
AL network architectures. In particular we focus on the ability
of a processing network to make odor representations easier to
discriminate. If, in a simplified model, one assumes linear inter-
actions between glomeruli it is possible to represent AL networks
as matrices and the resulting processing as a dot product of this
matrix with the input vector. The input to our model network
comes from the DoOR database (Galizia et al., 2010) which inter-
polates real physiological response data into relative activation
values over a large bank of test odors. This allows us to integrate
the odor-response data from the Drosophila olfactory system into
our model.

We start off by analyzing the odor separation performance in
AL networks derived from basic connectivity principles. In a sim-
plified example we show the relationship between excitation and
inhibition for these networks. Performance is evaluated by look-
ing at the pair-wise angular separation between odor vectors. This
generic description of separation of representations makes rea-
sonable assumptions about the downstream readout networks.
We show that with the default response profile distributions of
the receptors in the DoOR matrix best performance is achieved
with global inhibition between glomeruli and moderate connec-
tion weights. Lastly we systematically change the entropy of the
input matrix while simultaneously evaluating the performance
of our model networks. Under conditions with relatively low
entropy in the input matrix connectivity that is based on input
correlations is more successful in separating odors than other
networks.

2. MATERIALS AND METHODS
2.1. LINEAR TRANSFORMATIONS IN THE AL
Drosophila with its roughly 50 glomeruli (Laissue et al., 1999)
and the ease of targeted genetic manipulations is an ideal animal
for detailed cellular and molecular analyses. It thus offers a lot of
detailed information that can be used for computational models.
However, even in this very limited system the number of free para-
meters can quickly become unfeasible to chart. Also, neurons in
the AL have a complex structure and are most likely not straight-
forward to model with Hodgkin-Huxley equations derived from
the squid giant axon. In this study we therefore made the following
simplifying assumptions:

1. We neglected the temporal structure of odor stimuli and rep-
resented each odor as a static N-dimensional vector of activa-
tion values where N corresponds to the number of measured
receptor neurons.

2. We assumed that transfer of activity between ORNs and PNs in
the glomeruli has a linear input/output relationship and that
interactions with other glomeruli by means of excitatory and
inhibitory local neurons are also linear.

3. We set all diagonal values in the connectivity matrix to 1.
This implies that every olfactory receptor neuron activates its
directly efferent projection neurons with the same strength. If
there are no intra-AL connections the input vectors get mul-
tiplied with a unity matrix and hence the input equals the
output.

4. We assume that an activation of zero represents a completely
silent cell. Hence we set all negative activation values to 0.

Under these assumptions it is possible to represent the transfor-
mation of olfactory neuron activation to PN output as a single
connectivity matrix that incorporates all intermediate steps of
processing. Let x be the input vector of olfactory receptor acti-
vations and y be the output of PN activations, where h, g are
activations of intermediate interneuron populations (only two
of them considered for simplicity, without loss of generality).
These neuron populations have size nx, ny, nh, and ng, respec-
tively. The connectivity between population α to population β

can be expressed in terms of a matrix W αβ of size nα-by-nβ .
In this matrix the element Wi,j maps the activation of unit
i in the source population to unit j in the target population
(Figure 1).

Then the output of this feedforward network can be character-
ized as:

y = xW xy + hW hy + gW gy (1)

where W αβ is the connectivity matrix from population α to pop-
ulation β of size nα-by-nβ . The non-x terms can be described
within a linear regime as

g = xW xg (2)

h = xW xh + gW ih (3)

= xW xh + xW xg W gh (4)

FIGURE 1 | Example of a hierarchical AL network in which the

interactions between neuron populations can be reduced to a single

weight matrix. The activation of neuron subpopulations is contained within
vectors x, g, h, and y. Ultimately the combined matrices map the input x

onto the output vector y.
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Substituting the terms from equations 2 and 3 into equation 1
results in

y = xW xy + xW xhW hy + . . .

xW xg W ghW hy + xW xg W gy
(5)

By means of distributivity

y = x
(

W xy +W xhW hy + . . .

W xg W ghW hy +W xg W gy
) (6)

where all matrix multiplications inside the brackets result in
matrices of size nα-by-nβ and can hence be added to give one
single connectivity matrix. This simplification holds for all linear
feedforward networks.

The anatomy of the first-order olfactory relay in insects can
hence be approximated by a single compound connectivity matrix
that represents the functional interactions between glomeruli
(Figure 2A). This matrix provides a linear map from the input

x to PN output y:

yj = φ

(
∑

i

wij xi

)

(7)

where yj is the activity of a projection neuron, xi is the activity of an
olfactory receptor neuron in response to an odorant stimulus, wij

is the connection weight from ORN i to PN j, and φ is the activity
transfer function. This is equivalent to the dot product between a
vector and a matrix in linear algebraic terms. Conveniently the vec-
tor elements correspond to the activation of ORNs and the weight
matrix represents the functional interactions between glomeruli
(Figure 2B). In our simulations the dimensionality of x and of y
are identical, reflecting the natural situation in insects, where the
number of glomeruli corresponds to the number of receptor neu-
ron input families, an where uniglomerular projection neurons of
a single glomerulus share their response properties (Hallem and
Carlson, 2006).

The activation values from the DoOR input matrix are scaled
between 0 and 1 where 0 corresponds to the neuron being silent.
Similarly we implement a lower limit for the projection neurons

FIGURE 2 | Schematic of the relationship between antennal lobe

anatomy and the linear transformation model. (A) Shows a
simplified antennal lobe architecture. Different receptor types innervate
one glomerulus exclusively (color-coded). Local interactions (gray)
between glomeruli are mediated by local interneurons. The output from
the AL is the activation of PNs in each glomerulus. (B) Odors are
represented as vectors of receptor activation and can be transformed
into PN output by means of multiplication of the input vector with a

connectivity matrix. Diagonal values correspond to a gain factor on the
activation of each glomerulus whereas non-zero off-diagonal values
lead to interglomerular interactions. (C) Shows an example
multiplication for two odors and a hypothetical AL network with
inhibitory connections from glomerulus c to a and from glomerulus c to
b. Negative output neuron activity is set to 0. The diagrams show an
increase in angular distance in 3D space between the two odor vectors
before (left) and after (right) AL processing.
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creating linear threshold dynamics:

φ(x) =
{

x if x ≥ 0

0 if x < 0
(8)

2.2. INPUT DATA
As input data we used the DoOR database of odorant responses
(Galizia et al., 2010). This database uses a sophisticated interpo-
lation algorithm to combine odorant responses from different
studies and provides response values from 50 receptor types to
250 odorant stimuli (Figure 3A). In order to decrease the amount
of empty values in the input matrix we excluded all receptors that
(a) did not have a known glomerular target, and (b) had recorded
responses to less than 70 odorants. We also excluded all odorants
with responses measured in less than 8 receptor types. This left
us with an odorant receptor response matrix with 137 odorant
responses in 22 receptor types. All missing values (ca. 10%) were
filled in with the spontaneous activity values. All receptor types in
our input matrix had a known one-to-one correspondence with
one AL glomerulus so that we could assume the receptor acti-
vation to be equal to the input activation in the corresponding
glomerulus.

2.3. GENERATION OF CONNECTIVITY MATRICES
We generated connectivity matrices according to certain design
principles previously hypothesized to play a role in the

interglomerular interactions in Drosophila and other insects (e.g.,
Linster et al., 2005). In particular, we were interested in the ques-
tion if networks based on external factors such as response simi-
larity or spatial position in the antennal lobe provide advantages
over random networks of similar connection strength distribu-
tions. To this end we calculated a matrix of correlation coeffi-
cients of size 22 by 22 from the input matrix. There are several
possible ways to translate correlation coefficients into connec-
tion weights. The main question is how to interpret negative
values (indicating anti-correlation between input vectors of two
glomeruli). We set all negative coefficients in the matrix to zero
and then normalized all values to fall in the range from 0 to 1.
We also tested alternative scenarios, e.g., to scale all correlation
values or to translate anti-correlation into excitatory connections,
with only minor quantitative effects (data not shown). As a last
step the diagonal values were all set to 1 in order to simulate
the direct input from the ORNs to the PNs in the glomeruli.
This resulted in a 22× 22 connection matrix with unity value
on the diagonal and otherwise negative values. Glomeruli with
highly correlated input profiles were thus set to have inhibitory
influence on each other, proportional to their input correla-
tion coefficients (Figure 3Bi). In order to test to what extent
this correlation-based matrix is superior to a random matrix we
scrambled the values in the original matrix, keeping the diag-
onal and overall symmetry intact (Figure 3Ci). Repeating this
step with different random seeds generated 50 control matrices

FIGURE 3 | Input data and connection matrices derived from

different schemes. (A) Activation values in the DoOR input matrix.
(Bi–v) AL connectivity matrices. (C) Scrambled control matrices (50
different random seeds). (D) Distribution of connection weights in the

matrices. All matrices were normalized to have the same mean of the
off-diagonal values as the correlation-based matrix. This is indicated by
the red dotted line. The positive diagonal values are not shown in the
histograms.
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with the same distribution of connection weights as the original
(Figure 3Di).

In a second step we also generated matrices based on the spa-
tial location of glomeruli within the antennal lobe. We calculated
the Euclidean distance between the center of the glomeruli from
a 3D reconstruction of a whole AL (Laissue et al., 1999), nor-
malized these values to fit on a range between 0 and 1. Again,
the diagonal was set to 1 (Figure 3Bii). We generated 50 con-
trol matrices as described above (Figure 3Bii). There are in fact
many ways in which the spatial distances between glomeruli can
be assessed, e.g., taking into account the connectivity paths of
neurites in the antennal lobe. Here we restricted ourselves to a
simple Euclidean distance assuming that the resulting connec-
tivities form a generic, if not necessarily accurate, representation
of distances in the AL. It should be noted that in the fruit fly,
glomeruli fill the antennal lobe in the entire volume. The situa-
tion is different to that found in mammals or in honeybees, where
glomeruli form a hemispheric sheet. In the latter situation, geo-
metric distance can be calculated in multiple ways (along the sheet,
through the center of the AL, etc.). This does not apply for the
fruit fly.

Two unrelated types of matrices were constructed by sampling
connections from a Gaussian and uniform probability distribu-
tion. Fifty matrices were generated with different random seeds
(Figures 3Biii,iv) and the diagonal set to 1.

Lastly we tested the performance of a matrix approximating an
architecture of global inhibition mediated by a single inhibitory
neuron. For this connectivity matrix we fixed all off-diagonal
weights to one value equivalent to the mean off-diagonal weight
of the correlation-based matrix (Figure 3Bv). The diagonal was
again set to 1.

All resulting networks were normalized to have the same mean
weight value (see Figure 3C). The overall efficacy of the inhibitory
connections was changed by multiplying all off-diagonal values
with a scaling factor. This factor was the only free parameter in
our model. A negative scaling factor is hence equivalent to an
inhibitory network and a positive scaling factor to an excitatory
network.

2.4. QUANTIFICATION OF SEPARABILITY
To benchmark the performance of different AL networks we mea-
sured the geometric angle between odorant response vectors. We
assumed that two odorants are more easily separable if the angle
between their response vectors is larger. The performance P of
a network was quantified as the mean of the sine of the angles
between all odors.

P = 2

n2 − n

n∑

i=0,i<j

sin αij (9)

where P is the performance index and αij is the angle between
odors i and j. The term before the sum normalizes the result by
the number of angles between the vectors, taking into account
only the top half of the angular distance matrix. Taking the sine
of the angles has the advantage of promoting a large number of
smaller angles over a few large angles in the performance index.
Figure 2C shows an example of how input data and connectivity

matrix interact to change the angle between two arbitrary vectors
in two-dimensional space.

In addition, we sought to evaluate the metabolic efficiency
of the tested networks. Since the possible activity value in each
glomerular unit was limited to positive values strong inhibition
that resulted in negative activation was wasted from a metabolic
stand point. We hence evaluated the efficiency E of representation
by first calculating zjk as the PN activations to odor k without
setting negative values to 0:

zjk =
∑

i,k

wij xik (10)

and then calculating E as the mean negative overshoot over all
odors for each network:

E = 1
∑

j ,k

[
zj ,k < 0

]
∑

j ,k

zjk
[
zjk < 0

]
(11)

using Iverson brackets for the conditional sum. E is hence 0 in the
most efficient case where there is no overshoot. The more neg-
ative the value for E the less efficient the network. Similarly, the
sparseness S of a representation was estimated by calculating the
proportion of silent glomeruli over all odors.

S = 1

njk

∑

j ,k

[
yjk = 0

]
(12)

where yj,k are the PN activations as in equation 7 but for all
odors, and njk is the number of elements in the output matrix
(22 glomeruli× 137 odors).

Input data from the DoOR database was prepared in R. All
simulations were carried out using MATLAB (Natick, MA, USA).

2.5. CHANGING INPUT ENTROPY
Lastly we were interested in how the specific distribution of recep-
tor activations present in the DoOR matrix interacts with the
network models described above. We hypothesized that networks
based on relatively homogeneous inhibition would perform well
in scenarios in which response profiles for different odors are well-
separated in the input by their strongest responsive glomeruli. If,
however, the input is structured so it is often the same glomeruli
that is the most active across odors, homogeneous inhibition will
not be able to implement a winner-take-all mechanism as effi-
ciently. In order to evaluate this systematically we calculated a
measure for the input matrix that is related to the Shannon entropy
(Shannon, 1948) of the responses of each glomerulus over all
odorants in the database, Hglo:

Hglo = −
n∑

i=1

p(x)logp(x) (13)

where n is the number of glomeruli used, 22, and p(x) is the
probability of seeing a particular activity value in this glomeru-
lus. Instead of binning the response values we transformed them
into a rank order code by first assigning a number to each odor
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response in the input matrix so that for each odor stimulus the
most active glomerulus was 1, the second most active glomerulus
was 2 and so on. The total entropy of an input matrix was then
calculated as

Htot =
m∑

j=1

Hglo (14)

where m is the number of odors in the matrix. The original
DoOR input matrix had an Htot of 57.6. The theoretical maxi-
mum of our measure value distribution of a 137× 22 input matrix
would be 68.0 if activity values were optimally distributed over
glomeruli for all odors. Interestingly the original DoOR derived
input matrix scores quite high on our entropy score, showing that
over the tested odors glomerular responses are distributed quite
homogeneously.

We generated input matrices with different Htot by taking the
original DoOR matrix and progressively ordering individual odor
vectors to have the first glomerulus responding the strongest, the
second glomerulus the second strongest, and so on. The extreme
case where all odor vectors are ordered for response strength then
has an Htot of 0.

3. RESULTS
3.1. SIMULATIONS IN A TWO-DIMENSIONAL SYSTEM
We first asked what network types are more successful in sepa-
rating odors in our simple vector model. We started by looking
at the angular separation of two arbitrary vectors (Figure 4A) in

two-dimensional space. This is equivalent to 2 odors being rep-
resented by 2 hypothetical glomeruli and the interaction between
the glomeruli is the algebraic equivalent of a multiplication of the
vectors with a shear matrix. An example with 2 different sets of
parameters for m and n shows an increase of angular separation
with negative and a decrease of separation with positive values
(Figure 4B). Figure 4C shows the increase in angular separation
between the two vectors shown in Figure 4A as the off-diagonal
values m and n are altered systematically from negative to posi-
tive values. The highest increase in angular distance between the
two vectors is in the lower left corner approaching point 2 with
negative values of m and n. This indicates that inhibition will be
particularly efficient in separating the angular distance between
odor vectors in contrast to lateral excitation. If m, n ∈R

+ as in
point 1 the angle between the two vectors decreases toward 0.

In our networks we limit the activation values of our model
neurons to values between 0 and 1. If these boundary condi-
tions are implemented with the two example vectors a similar
pattern emerges as before (Figure 4D). It becomes apparent that
the dependence of angular separation on the parameters m/n in
this “cutoff” condition (Figure 4E) is similar to the general case
(Figure 4C) in the sense that the best separation is achieved with
negative values m and n.

The first analysis of the two-vector scenario does not easily
allow us to postulate that inhibition is necessarily the best way to
achieve angle separation in the realistic case with 22 dimensions
and 137 odor vectors. The following analysis is therefore based
on numerical simulations with real input data from the DoOR
database.

FIGURE 4 |The effect of a two-dimensional shear matrix on two

arbitrary vectors (A). (B) Shows an example of the separation of the
input vectors in (A) – black dashed lines – at two points in m, n space.
Negative values of m, n separate the vectors (cyan) whereas positive
decrease the angle between them (magenta). (C) Shows the angle
between the example vectors from (A) over a range of m and n from −1

to 1. The example values from (B) are marked with white crosses. In
general, the more negative m and n the larger the angle of separation
between the two vectors becomes. In the (D,E) all negative values in the
output vector are set to zero restricting the maximum separation that can
be achieved to 90˚. For a direct comparison the black box in (C) indicates
the maximum separation in (E).
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FIGURE 5 | Angle separation between all odor pairs in different AL

network models. Each figure shows the distribution of pairwise angles
between odor vectors (false-color coded) as a function of the scaling factor.
For each scaling value the resultant distribution of angles is normalized so
that the most probable angle is 1. A positive scaling factor indicates
excitation and a negative scaling factor inhibition. The flip from the condition
where all angles are 90–0˚ is an artifact of the very small vector lengths due
to high negative scaling (see Figure 6).

3.2. SIMULATIONS WITH REAL-WORLD INPUT DATA
We next asked how different network architectures performed in
separating the input odor vectors for a potential downstream
readout mechanism in a multidimensional system. We mea-
sured the angular distance between all odor pairs in these dif-
ferent conditions. We assumed that in general a larger Euclidean
angle between two odor vectors will make the two underly-
ing odors more easily separable. Note, that we did not make
any explicit assumptions about the exact form of a readout
mechanism.

This multidimensional analysis confirmed that in general lat-
eral inhibition pushes the distribution of angles between odor
vectors up toward the maximum of 90˚ (Figure 5). If the scaling
parameter is positive (i.e., the lateral interaction is excitatory) the
angles between odors decrease, pushing individual vectors closer
together, and making them more difficult to separate by a readout
mechanism. It can be observed that with moderate inhibition
the natural distribution of angles between odor vectors is shifted
toward larger angles. This is due to the resulting sparsification
of the odor vectors. Small glomerular activations get pushed to
zero by strong lateral inhibition. Geometrically, this means that an
increasing number of angles between odors become perpendicular
in glomerulus space. At a scaling factor around the value of −0.5
many vectors have become perpendicular and the distribution is
not visible any more. However, this comes at the cost that some
odor representations end up with an identical representation in
the output. With very high negative scaling an increasing number
of vectors effectively have zero length and cannot be distinguished
from each other (Figure 6A). The number of vectors that are
effectively identical starts to increase with scaling values lower
than −0.5 (Figure 6B). This image is the same for all network
types tested with the notable exception of the correlation-based
network. This network type has a much less homogeneous devel-
opment of the distribution of angles between odor vectors with
high negative scaling factors (Figure 5A). This is mirrored in the
minimum vector length which is generally higher than in the other
networks for scaling factors below −0.5 (Figure 6A). With such
high negative scaling the correlation-based network also has an
advantage when comparing the number of identical vectors after
processing to the other network types (Figure 6B).

A systematic comparison of the separation performance of dif-
ferent types of network using the performance index in equation
9 is shown in Figure 7. Again moderate inhibition was able to
separate odor representations whereas excitation and strong inhi-
bition decreased the separation performance. In our model with
the natural DoOR matrix input, networks derived from input cor-
relations performed worse in separating odor vectors from each
other than random networks, globally inhibited networks, or the
network derived from the spatial relationships between glomeruli
in the AL. Note, that this is not due to the heterogeneous distri-
bution of connection weights (see Figure 3Di) as the scrambled
version of the correlation-based matrix performs similarly to the
other networks.

Another important factor is the metabolic efficiency with which
a system is able to perform its tasks. We therefore asked to what
extent each of the networks produces inhibition that exceeds the
necessary amount for silencing the glomeruli. The efficiency as
calculated in equation 11 mirrors the results from network per-
formance. It is near identical for all network types apart from the
correlation-based network which is slightly less efficient in this
measure.

To explain why the performance and angle distributions of the
correlation-based network are different from the other networks
we next looked at how sparse the odor vectors become after AL
processing. We hypothesized that in the input-correlation-based
network strong glomeruli tend to inhibit each other selectively
and prevent the winner-take-all mechanism inherent in the more
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FIGURE 6 | Analysis of vectors after processing by different network

types. (A) The minimum vector length for all network types apart from the
correlation-based network shows a decrease to 0 at scaling values around
−0.5. Dashed lines indicate mean results over 50 seeds for the scrambled
versions of the correlation-based (green) and distance-based networks
(blue). (B) Similarly the number of identical vectors that cannot be
distinguished increases drastically at scaling values more negative than 0.5.
This effect is attenuated in the correlation-based network.

homogeneously inhibited networks. If this was the case then we
would expect that sparseness as defined by the number of silent
glomeruli (equation 12) would be lower than in the other net-
works. Figure 7C shows the relationship between the sparseness S
and the scaling factor. Indeed, the correlation-based network pro-
duces noticeably less sparse representations of odors than the other
networks. This becomes even more apparent when looking at the
representation of an example odor after processing. Figure 7D
shows the relative activation values before (input) and after pro-
cessing by two networks of the correlation-based type and its
scrambled control. While both the correlation-based and scram-
bled correlation-based network generate sparse representations
this sparseness is more heterogeneous in the correlation-based
network, i.e., the amount of input activation is no reliable pre-
dictor for the resulting output activation in this network. Due to
the stochasticity of the scrambled network the weakest inputs also
lead to the weakest outputs. Because the amount of effective inhi-
bition is the same in both networks the heterogeneous output in
the functional network case interacts with the zero-cutoff thresh-
old to result in less sparse networks. This is most visible in the
distribution of angles after processing (Figure 5A).

3.3. DIFFERENT INPUT ENTROPIES
In order to compare the performance of different AL network
types under changing input statistics we first generated a number
of networks with different Shannon entropies. We determined the
best possible network instance for each network type by sweeping
over a range of negative scaling factors and then plotting only the
best possible performance against the entropy of the input net-
work (Figure 8). The random network types (scrambled controls,
Gaussian,and uniform) were tested with 10 different random seeds
and did not show large SEM. We also tested two different types of
correlation-based networks: one that was based on the original
input data (correlation-based) and one where the correlation-
based weights were recomputed for each instance of the input
data (correlation-based flexible).

FIGURE 7 | Inhibitory networks lead to an increase in angular

separation between odor pairs. A peak in performance can be observed
with moderate inhibition (A) as compared to strong inhibition and
excitation. The inset shows a magnification of the different network types’
performance around the peak. Unity connection matrix performance is
indicated with the dotted horizontal line. The random networks are
represented by shaded areas of 50 seeds ±1 SEM (green for the
correlation-based scrambled network and blue for the distance-based
scrambled network). (B,C) Show the efficiency and sparseness of the
resulting transformation against different scaling factor values. Here the
mean of 50 different scrambled version is shown as a dashed line in green
for the correlation-based and blue for the distance-based network. Positive
scaling factors are excluded as they do not produce overshoot/sparseness.
(D) Shows example odor representations before and after AL processing
for nonaic acid at a scaling factor of 0.25, negative activity would be set to 0
(shaded area).

At first, the performance in all networks increases slightly
(Figure 8). The input data set contains some correlations and
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FIGURE 8 | Change of peak performance with different constructed

input entropies. The lower the entropy the less random the input odor
matrix. The Peak Performance refers to the mean sine angle differences as
in Figure 7A, tested over a range of negative scaling factors. The vertical
red dotted line is the theoretical maximum. The crosses represent the peak
performances of the input from the original DoOR matrix. Dashed lines
indicate the mean± 1 SD for the random networks, testing 10 different
random seeds. The dotted line is a correlation-based network that has been
recalculated with each new instance of the input data. With increasing
entropy the peak performances decrease. The inset shows a magnification
of the peak performances with high entropies. Note, that the lower SD line
for the scrambled correlation-based networks is mostly hidden underneath
the line for the uniform networks.

therefore has entropy below the theoretical maximum. These
inherent correlations are reduced when odor vectors are ordered,
leading to the initial increase in entropy.

After the transient increase the peak performances decrease
drastically: input with less information leads to less information
in the output. Note, that the peak performance values drop below
their initial values at lower entropies levels than in the original
data. This asymmetry is based on the entropy formula (equation
13). At first the entropy increases because individual rank order
values in a given response profile become more likely. As more
and more values become identical though, the log term increases
non-linearly.

The peak odor-response separation performance of each net-
work type is thus highly dependent on the total entropy of the
input matrix (as measured by our index). While the correlation-
based network performs worse than the other networks at the
entropy of the DoOR input it performs better than other networks
with input matrices of lower entropy. This can not be attributed
to the heterogeneous distribution of connection weights in this
matrix, as its scrambled control also falls below the performance
of the unscrambled network. Surprisingly, if the correlation-based

network is recomputed with each new instance of the input this
network type loses its advantage at low entropies.

A different pattern emerges with the global inhibition net-
work with decreasing entropy. Under high entropy conditions
this network type performs generally better (Figure 8, inset) but
performance decreases more drastically under low input entropy
conditions. The networks based on random distributions have
performances in between these two network type. These results
emphasize the importance of the interaction between the statistical
properties of the input and the AL network processing. Studying
both independently does not reveal the full picture.

4. DISCUSSION
Here we have presented a model of the Drosophila antennal lobe
input-output transformation under the assumption that the topo-
logical effect of the network at this level in the odorant processing
stream can be approximated by linear functions. This facilitates
both the modeling and analysis and provides an intuitive under-
standing of underlying interactions. Thus while our model – as
every simplifying model – can analyze some critical features of the
AL network, it can not be taken as an explanation of the natural
situation. It can, however, be used as a guide for artificial olfaction,
where simplified algorithms add to the efficiency.

In particular, our results help to understand the role that
inhibitory interactions play in influencing separability of odor-
ant stimuli as measured by the average pair-wise angular distance
between odor representations. To start with, the simplification of
the problem into a two-dimensional space allows us to appreciate
the connectivity between glomeruli and the resulting interactions
as the off-diagonal values in a shear-type transformation matrix.
We showed that both in an unbounded scenario and in a scenario
where only positive activations are allowed negative shear values
separate vectors inside the space (Figure 4). This underlines the
robustness of this modeling approach. Positive shear values push
vectors together with the extreme scenario of making the vectors
all point in the same direction.

Such a simplified description can only serve to highlight the key
principles of linear interactions in the AL. It is important to also
take into account both the statistics of real input data. One aspect
not analyzed here is the interaction of v vectors in n-dimensional
space where v ( n, i.e., when the number of odors that need to be
coded is much higher than the number of available odor sensors
(glomeruli). We anticipate that in this case the optimal solution
is likely to be based on the exact distribution of the input vectors
in space, as suggested by our entropy analysis (Figure 8, and see
below). A study by Schmuker and Schneider (2007) used a large
input dataset generated from the chemical properties of more than
800 odorants and found similar winner-take-all dynamics in a
correlation-based lateral inhibition network under the assump-
tion that receptive fields in olfactory sensory neurons are indeed
equivalent to the ones generated in the study.

The high level of abstraction in our model has some advantages
over more classical approaches. The simplicity of the underlying
equations leads to a relatively small number of free parameters.

A neural network model with close-to-realistic neurons needs
to model the electrical properties of the neurons (Bazhenov et al.,
2001; Linster et al., 2005). A single Hodgkin-Huxley neuron model
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with only sodium,potassium,and leak currents will already require
at least 19 parameters to be tuned (maximum conductance and
reversal potential plus 4 parameters for activation and inactivation
variables for each current, plus membrane capacity; Hodgkin and
Huxley, 1952). As a consequence, a simplification of the theoreti-
cal description of such networks has already been implemented
in other studies (Luo et al., 2010; Papadopoulou et al., 2011).
We believe that our simplified model with linear threshold neu-
rons and only one free parameter (scaling factor) and one set of
assumptions (the connectivity values in the matrix) is the most
parsimonious model that allows to draw conclusions about the
network topology. In addition, the resulting speed of simulation
allows for the efficient coverage of large parts of the parameter
space. In this way it was possible to map the relationship between
glomerular interaction and network performance exhaustively.

For the networks that we tested we observed a common pattern.
As predicted by the reduced two-dimensional model, inhibition
led to vector separation whereas excitation led to a reduction of
angles between odor vectors. This has potential advantages for the
reliability of recognition of certain odors but comes at the cost
of a lower capacity for odor representation when the number of
available coding dimensions is much lower than the number of
odor identities the fly needs to be able to distinguish. It is not
known what this number is in flies (i.e., how many odors need to
be distinguished ecologically); in our simulation the number of
odors was about 6-fold (137 odors for 22 glomeruli). It should
be noted that the antennal lobe does not only compute odor
discriminability. Odor identity (as an interplay of generalization
and discriminability) and concentration invariance are but two of
several additional tasks likely to be relevant in the antennal lobe
network. It is feasible that excitatory interneurons play an impor-
tant role here. The processes observed here potentially allow for
a graded mechanism in which modulatory connections attenuate
interglomerular inhibition and hence the sparseness of AL output.
This could serve to adjust the reliability-capacity trade-off to the
requirements of the animal’s environment or life stage. We also
found that in all networks inhibition strength has a sweet spot,
suggesting that biological systems carefully adjust the amount of
inhibition that is exerted in their networks. With increasing inhi-
bition the network degenerates, i.e., several odors collapse onto
the same output vector. In addition, output vectors become too
short, thus losing robustness against noise.

All networks were subject to a soft winner-take-all mechanism.
The network based on input correlations exhibited a more com-
plex behavior when subjected to strong interglomerular inhibition
and the winner-take-all effect was attenuated. This is due to the
fact that the inhibition in the correlation-derived connectivity
matrices focuses on the glomeruli that have the highest corre-
lations. This biases the inhibition toward active glomeruli and can
leave less active glomeruli that have uncorrelated response profiles
unaffected. The separation of odor vectors by soft-winner-take-all
dynamics can thus only occur in part in this type of network. This
effect is no consequence of the heterogeneity of the connection
weights in the correlation-based networks, as shown by the fact
that the scrambled version of the network (with the same dis-
tribution of weights) performs like the stochastic versions. One
important side-effect is that the correlation-based network is less

sensitive to non-optimal scaling factors at the cost of lower peak
performance – that is performance degrades more gracefully in
correlation-based networks.

We compared odor separability by measuring the angle between
all available odor vectors. A maximum odor separation capac-
ity would result from a maximization of the angles between all
the odors in the high-dimensional coding space. This measure
does not make precise assumptions about the possible readout
mechanism nor does it include a measure of ecological relevance
for the animal. While in our benchmark all odors are equally
important it is likely that the biological system places empha-
sis on odors that are frequently encountered or ecologically very
important. Further, with some odor families, generalization might
be more desirable than discrimination. Unfortunately, we cur-
rently lack the data to encorporate such features in our objective
function. One study in honeybees looked at the output activa-
tion patterns of PNs in the AL and found that in these insects
the physiological solution appears to be a correlation-based con-
nectivity pattern (Linster et al., 2005). Apart from the anatomical
differences between honeybees and fruit flies, this apparent con-
tradiction could well be explained by such heterogeneity in the
optimal odorant representation map. It is likely that different
benchmark functions will lead to different optimal AL networks.
Nevertheless the processing strategy characterized here can still be
implemented whenever odors of similar ecological value need to
be distinguished.

Our benchmark is based on physiological observations first
studied in bees and later in several animal species, and consid-
ers concentration invariance (Sachse and Galizia, 2003). When
dynamic odor-evoked activity patterns are represented in a mul-
tidimensional space, they form characteristic trajectories which
quickly reach a set point, and then decay more slowly back to
baseline (Friedrich and Laurent, 2001; Stopfer et al., 2003; Galán
et al., 2004; Silbering et al., 2008). Interestingly, different concen-
trations of the same stimulus have transients that point into the
same direction, but reach less far. Thus, in a static representation
that considers only the set point, and not the dynamic trajectory
(as done in this study), the vector direction contains the informa-
tion about odor quality, and vector size contains the information
about odor concentration (Sachse and Galizia, 2003).

Of course such a reduced description can not account for all
aspects of information processing that have been shown to play
an important role in the discrimination of odors in the AL of
Drosophila and other species. Firstly, the transfer functions of indi-
vidual PNs are not linear but saturate toward high activations.
This is especially important for coding requirements like concen-
tration invariance. Our linearity assumption is thus valid over a
restricted dynamic range in which the transfer function evolves
roughly linearly. Secondly, the neglect of temporal information
rules out any sort of temporal coding strategy. Such strategies
have been found to play an important role for example in locusts
(Wehr and Laurent, 1996).

Our numerical simulations clearly indicate that a connectiv-
ity in the Drosophila AL that is based on input correlations is
not superior in separating odor vectors as compared to randomly
constructed networks, which show superior performance. Con-
nectivity matrices that are based on the distance between glomeruli
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fare similarly well as the random networks. This is an important
result especially in the light of recent studies that characterize LN
connections in Drosophila as homogeneous and global (Olsen and
Wilson, 2008; Olsen et al., 2010). Here we show that under real-
istic input conditions derived from the DoOR database a globally
inhibited network with homogeneous connection weights has the
best odor separating performance. In neuroengineering scenarios
in which neural networks are implemented on a VLSI chips this
network is also the most simple to realize (Beyeler et al., 2010;
Schmuker et al., 2011).

An analog picture is painted when looking at the total amount
of inhibition that is exerted between the glomeruli. When mea-
suring how much excess inhibition was produced by each net-
work type we observed a less efficient inhibition only with the
correlation-based network (Figure 7). This is important if one
considers the metabolic costs of extensive inhibitory networks.
This measure of metabolic costs and efficiency in our simplified
model is admittedly far removed from a physiological description
of metabolic efficiency and can only serve as a rough estimate of
coding costs.

Lastly, we aimed to characterize the interaction between the
statistical properties of the input matrix with the performance
of our model networks. Our findings have important implica-
tions for the design of artificial olfaction systems. We have shown
that different network types have contrasting odor separation
performance depending on the response profiles of the odorant
receptors. Global inhibition is most successful under conditions in
which odor representations are evenly distributed over glomeruli,
that is when the input network has high entropy (Figure 8). On
the other hand, AL networks that inhibit glomeruli based on
the degree of similarity between their response profiles (e.g., as

calculated with a pair-wise correlation coefficient) perform bet-
ter than random networks when the entropy of the input data is
artificially reduced. This effect is somewhat surprising as in our
simulations lower entropy networks are also less similar to the
correlation matrix that underlies the connectivity. This effect can
neither be attributed to the distribution of connection weights nor
to the decorrelation between glomeruli because both the scram-
bled correlation-based network (with the same distribution) nor
the flexible correlation-based network that was recomputed for
each instance of the input (with higher decorrelation) perform
worse than the simple correlation-based network.

Surprisingly, performance first increases slightly and then goes
on to decrease drastically over all network types, as was to be
expected. The initial increase is an expression of how much
entropy is present in the original input data set. Some of the cor-
relations in the dataset are decreased by the ordering of individual
odor vectors when generating input matrices with lower entropy. If
the receptor activations were mathematically optimally distributed
across the whole input space this increase would disappear.

Summing up, our results show that a moderate level of global
inhibition creates improved odor representations in the natural
case of the Drosophila antennal lobe. Thus, this would be a good
starting point for the processing of data from artificial chemosen-
sory arrays. More importantly, however, we show that the best
network is also dependent on the input statistics, which in turn
is dictated both by the sensors used, and by the chemical to be
detected. As a consequence, it is worth investigating the optimal
network for each application. We propose a simplified simulating
environment that allows for an efficient analysis of many possi-
ble networks, easy to be implemented when designing artificial
noses.
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Neural responses to odor blends often exhibit non-linear interactions to blend
components. The first olfactory processing center in insects, the antennal lobe (AL),
exhibits a complex network connectivity. We attempt to determine if non-linear blend
interactions can arise purely as a function of the AL network connectivity itself, without
necessitating additional factors such as competitive ligand binding at the periphery or
intrinsic cellular properties. To assess this, we compared blend interactions among
responses from single neurons recorded intracellularly in the AL of the moth Manduca
sexta with those generated using a population-based computational model constructed
from the morphologically based connectivity pattern of projection neurons (PNs) and local
interneurons (LNs) with randomized connection probabilities from which we excluded
detailed intrinsic neuronal properties. The model accurately predicted most of the
proportions of blend interaction types observed in the physiological data. Our simulations
also indicate that input from LNs is important in establishing both the type of blend
interaction and the nature of the neuronal response (excitation or inhibition) exhibited by
AL neurons. For LNs, the only input that significantly impacted the blend interaction type
was received from other LNs, while for PNs the input from olfactory sensory neurons
and other PNs contributed agonistically with the LN input to shape the AL output. Our
results demonstrate that non-linear blend interactions can be a natural consequence of
AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend
coding to be addressed in future experimental and computational studies.

Keywords: olfaction, computational modeling, neural circuits, mixture processing, synaptic input, inhibitory

interneurons, Manduca sexta

INTRODUCTION
Biological neural networks organize sensory inputs to produce a
meaningful experience of the environment, but the way in which
complex perceptual representations are produced by the olfac-
tory system is not completely understood. For this reason, an
understanding of the relation between the neural representation
of a mixture and its single components constitutes an important
problem in basic neuroscience. Moreover, such analyses can reveal
general properties of perceptual representation in the nervous sys-
tem, and derive principles that may be widely extended across
species and sensory modalities (e.g., Rabinovich et al., 2008).

Natural odors are complex mixtures of different compounds.
Within the olfactory system, the components of a blend often
interact in a non-linear fashion within the olfactory system to
affect the resultant neuronal response. This gives rise to so-
called mixture interactions (Laing et al., 1989; Duchamp-Viret
et al., 2003). The first interaction type is suppression, where the
response to the mixture is less than at least one of the single com-
ponents alone. A related category, in which the mixture evokes a
response that is equivalent to the most effective single component,
is known as hypoadditivity. The final interaction type is syner-
gism, in which the mixture induces a response that is greater than

the addition of the responses to the single components. A special
case is linear addition, in which there is no interaction between
the components, so the mixture evokes a response that is equal to
the component sum.

The antennal lobe (AL) is the first synaptic relay in the olfac-
tory pathway of insects, analogous to the mammalian olfactory
bulb (for recent comparative review, see Martin et al., 2011). It
consists of spheroidal bundles of neuropil known as glomeruli
that contain synaptic contacts between receptors and second-
order neurons. The axons of olfactory sensory neurons (OSNs)
in the antennal nerve contact projection neurons (PNs) that
constitute the output of the AL, and local interneurons (LNs)
that communicate with other glomeruli. OSNs having the same
type of receptor protein contact a specific glomerulus, giving
rise to a spatial representation of chemical identity. In moths,
approximately 250,000 OSNs from the antenna converge onto
roughly 900 PNs and 360 LNs (Homberg et al., 1989; Figure 1).
Interneurons in moths generally exhibit a broad symmetrical
arborization pattern, contacting the majority of AL glomeruli
(Manduca sexta: Matsumoto and Hildebrand, 1981; Kuebler
et al., 2011; Reisenman et al., 2011). Although excitatory LNs
have been found in Drosophila (Shang et al., 2007; Huang et al.,
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FIGURE 1 | (A) Scheme of AL model network connectivity. Each of the
eight OSN types (blue circles) contact only PNs in their corresponding
glomerulus (green dashed circles) as indicated by the blue arrows. OSN types
contact every LN, as indicated by the purple arrows reaching the dashed red
circle containing the LNs. The PNs have reciprocal excitation within the same
glomerulus (green arrows within the dashed green circles), can contact the
LNs (green arrows entering the dashed red circle), and have reciprocal
multiglomerular excitatory contacts with another single glomerulus (dashed
black arrows show a few examples). The LNs have reciprocal inhibition and
can contact the PNs (red lines ending in circles). (B–D) Neuromorphic basis

for the AL model. Confocal micrographs show three female
M. sexta ALs with lines indicating their representative location in the
model schema of A. Each panel extracts a single optical orthogonal slice.
Neurobiotin-injected cells were stained with Alexa-conjugated Streptavidin.
Pictures were obtained by confocal microscopy of three separate whole
mount brain preparations using a 10×, 0.45-NA objective lens
(C-Apochromat, Zeiss). Optical sections (1024 × 1024 pixel) were
taken at intervals of 0.8 μm. B displays a lateral interneuron, while C and D

show a multiglomerular and uniglomerular PN, respectively; scale bar:
100 μm.

2010), to date only inhibitory LNs have been located in moths
(e.g., Reisenman et al., 2011). However, excitatory PNs that inner-
vate two or more neighboring glomeruli have been identified in
Manduca sexta hawkmoths (Homberg et al., 1988; Kuebler et al.,
2011; Figure 1), and could provide a form of potential lateral
excitation within the moth AL.

There exists considerable evidence indicating that the insect
AL is not simply a relay station in the olfactory pathway, but
constitutes the primary processing centre for blend informa-
tion of the insect brain (e.g., Joerges et al., 1997; Linster and
Smith, 1997; Hansson and Anton, 2000; Galizia and Menzel, 2001;
Linster et al., 2005; Deisig et al., 2006, 2010; Carlsson et al., 2007;
Silbering and Galizia, 2007; Krofczik et al., 2008; Lei and Vickers,

2008; Fernandez et al., 2009; Riffell et al., 2009a,b; Yamagata et al.,
2009; Kuebler et al., 2011; Meyer and Galizia, 2011). Odor mix-
tures have been found to elicit mainly suppressive and hypoaddi-
tive responses within the insect AL, while examples of synergism
are rare, as evidenced by both calcium imaging (e.g., Deisig et al.,
2006, 2010; Carlsson et al., 2007; Silbering et al., 2008; Yamagata
et al., 2009) and electrophysiological studies (e.g., Krofczik et al.,
2008; Riffell et al., 2009a; Kuebler et al., 2011). In moths in partic-
ular, mixture interactions have been suggested to occur at the level
of OSNs (e.g., Carlsson and Hansson, 2002; Hillier and Vickers,
2011) but are more commonly observed in second order neurons
(e.g., Christensen et al., 1991; Lei and Vickers, 2008; Pinero et al.,
2008).
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In this study, we are interested in the network processing
within the AL as a potential source of non-linear interactions
between single components in the response to a blend. To assess
this, we constructed a morphologically based computational
model including populations of interconnected PNs and LNs
using probabilistic rules. Parameters were calibrated to match
the excitation/inhibition proportion observed in physiological
recordings of AL neurons of the moth M. sexta (Kuebler et al.,
2011). The model predicted most of the proportions of blend
interactions found in the data, and the results are robust to
changes in many parameters due to the underlying probabilis-
tic connectivity. Finally, we used the model to investigate how
different types of non-linear blend interactions could arise in
terms of the synaptic input received by the PNs and LNs. We
focused on the mean values of synaptic input during odor stim-
ulus and control conditions, leaving the influence of the dynamic
patterns of neural activity for a future study. Our results indi-
cate that the array of blend interactions observed in the biological
data can arise from network connectivity alone via sub-networks
of inhibitory interneurons without requiring special intrinsic
properties of the neurons themselves.

METHODS
NEURONAL RECORDINGS AND ODOR STIMULATION
We used intracellular recordings and morphological observations
of AL neurons performed in the moth M. sexta (Lepidoptera,
Sphingidae) by Kuebler et al. (2011), in addition to previous
studies (see citations in “Network connectivity of the model”) to
construct a computational model of AL processing. The model
parameters were calibrated to reproduce the proportion exci-
tation/inhibition found in their physiological recordings (see
“Network connectivity of the model”), and subsequently the
proportions of blend interactions predicted by the model were
independently compared with the recordings as a way of vali-
dating the model (Figures 3 and 4), which was in turn used to
assess the role of synaptic input on the emergence of blend inter-
actions (Figures 5–8). We include here a brief description of the
recording methods (for full details see Kuebler et al., 2011).

Projection and interneurons were recorded intracellularly
using sharp glass electrodes and stimulated for 500 ms at 10−4

dilution (in mineral oil) with (+) linalool, (−) linalool, phenyl
acetataldehyde, benzaldehyde, hexanol, nonanal, or trans-2-
hexenyl acetate (used instead of nonanal in some experiments),
and cis-3-hexenyl acetate. Stimulus concentrations were equi-
librated according to vapor pressure using a multicomponent
stimulus device (Olsson et al., 2011). Neurons were presented
with each of the seven odors separately, and the odors eliciting
a response were tested together at the same concentration as a
“blend.” Active single components were finally tested separately at
the total blend concentration. Mixture interactions were assessed
as described below from response frequencies for each stimu-
lus presentation, normalized to spontaneous activity as a ratio
(Hz 1.5 s after stimulus onset/Hz 1.5 s before onset; including
mechanical stimulus delay).

The complete data set consisted of 31 neurons tested each in
one trial with the complete stimulus protocol. From this num-
ber, 20 neurons responded with excitation (including biphasic

responses) and 11 responded with inhibition. Most of the
recorded neurons (29 out of 31) could be classified as PNs or LNs
by morphological analysis or by measuring the spike width, which
nearly twice as large in LNs (for details see Kuebler et al., 2011).
The cells that were morphologically labeled were 9 PNs and 5 LNs,
while the criterion of the spike width allowed to classify 12 cells as
PNs and 5 as LNs.

COMPUTATIONAL MODEL
Neuronal model
Individual neuron dynamics of LNs and PNs were modeled
using a first-order differential equation (Chong et al., 2012) that
described the evolution of the firing-rate activation variable of a
neuron over time:

τ
dai

dt
= −ai(t)+ S

⎛

⎝
∑

j∈ P

wi,jaj(t)+
∑

k∈ L

wi,kak(t)+
∑

d∈R

vi,drd

⎞

⎠

with S(x) = x3/(0.53 + x3) for x ≥ 0,

and S(x) = 0 for x < 0,

where ai is the activation level of the i-th neuron, P is the subset of
PN neurons, L is the subset of LN neurons, R is the subset of OSN
neurons, wi,j is the strength of synaptic influence of j on the activ-
ity of i (similarly for wi,k), vi,d is the strength of synaptic influence
of the d-th OSN type on the activity of cell i-th, and rd is the
activity of the d-th OSN type. For PNs, vi,d is non-zero only for
the connections coming from its corresponding OSN. S is a sig-
moid function that limits the neuronal activity to values between
0 and 1. τ(10 ms for PNs and 20 ms for LNs) is the time constant
of neuronal dynamics. We assumed that the larger dendritic ram-
ifications of LNs can make them slower than the PNs, as has been
done in previous articles that modeled the AL (e.g., Linster and
Cleland, 2010; Chong et al., 2012).The neuronal activation func-
tion S(x) (Chong et al., 2012) has a sigmoidal shape that accounts
for saturation in activation level at high input values. We did not
include noise added to each time step, but the initial values of
ai used in each realization were taken from a Gaussian random
distribution with μ = 0.01 and σ = 0.0025. The pre-stimulation
control period started 200 ms after the onset of the simulation,
when the system had already reached its resting state, so the tran-
sients due to the initial conditions (visible at times <50 ms in
Figure 2) did not influence the results shown in Figures 3–8.

Network connectivity of the model
Figure 1A shows a general scheme of the network connectivity
pattern. For simplicity only a few neurons of each type are repre-
sented, PNs with green filled circles and LNs with red filled circles.
Excitatory synaptic contacts are represented with lines ending in
arrow heads, and inhibitory contacts with lines ending in circles.

The model considers eight OSN types and eight glomeruli with
15 PNs each, making a total of 120 PNs. The total number of LNs
was set to 40, resulting in a ratio PN/LN of three, which is realistic
for the moth AL (Homberg et al., 1989). Thus, we are making a
proportional reduction (x = 8.75) of the glomeruli number in the
biological system of M. sexta (which is around 70; Grosse-Wilde
et al., 2011), keeping a realistic number of PNs per glomerulus
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FIGURE 2 | Raster plots showing neuron activity in an example

realization of the AL model. (A) Response to the homogeneous blend.
(B) Response to a single component at blend concentration. The activity
variable of each neuron is represented by a color code (shown in the
scale bars at the lower right side of each panel) plotted against time.

The ordinate’s axis indicates the index numbers of the neurons:
PNs belonging to each of the eight glomeruli (labeled PN 1 to PN
8, with 15 PNs per glomerulus) and 40 multiglomerular LNs
(labeled LN). Odor stimulus duration is marked with gray bars under the
abscissas.

and PN/LN proportions. This reduction resulted in a network
scale in which the dynamic behavior of the model can be cap-
tured without an excessive increase in computational burden. We
checked that the results regarding the proportions of blend inter-
actions did not change significantly for a scaled-up version of the
model having 64 glomeruli.

The connectivity between the different cell types is specified by
its weight and connection probability. In each realization of the
model, the values provided below for the weights were perturbed

with Gaussian noise of mean zero and σ equal to 5% of the weight.
OSNs of a given type are represented as a single unit (blue cir-
cles and arrows in Figure 1A) and only project to PNs of the
corresponding glomerulus (dashed green circles) with a synaptic
weight of 2.0. This configuration retains the generally dogmatic
1:1 principle between OSN type and glomerulus (Ressler et al.,
1994; Mombaerts, 1996; Vosshall, 2000; Baker, 2008; Bruyne and
Baker, 2008). Thus, the PNs of each glomerulus were activated
only by their corresponding receptor type, as indicated by the blue
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arrows. In contrast, the eight receptor types contacted every LN
with a synaptic weight of 2.0, as indicated by the purple arrows of
Figure 1A. Given the high convergence ratio between OSNs and
other AL neurons within each glomerulus (300:1 for OSNs:PNs,
∼1000:1 for OSNs:LNs; Homberg et al., 1989), the connection
probability of OSN to PN or LN contacts was set at 1.0.

The probabilistic rules used to establish the connectivity pat-
tern of the network shown in Figure 1A are based on morpholog-
ical studies of the M. sexta moth AL (e.g., Homberg et al., 1989),
and also on direct observations performed by members of our
group (Figures 1B–D). The location of the cells displayed in the
morphological images in the context of the network scheme is
indicated with triangular zooms. Here, we show the three major
types of AL neurons recorded in the physiological study (Kuebler
et al., 2011). As noted previously (Kuebler et al., 2011; Reisenman
et al., 2011), LNs in the AL of the moth exhibited a broad, sym-
metrical arborization pattern throughout the AL (Figure 1B),
interconnecting a large proportion of the glomeruli, as originally
described (Matsumoto and Hildebrand, 1981). PNs exhibited two
types of arborization patterns (Homberg et al., 1988). The major-
ity of recorded PNs arborized in a single AL glomerulus, thus
synapsing only with other PNs and LNs within that glomerulus
(Figure 1D). However, a small proportion (2:8) of the stained
PNs (Kuebler et al., 2011) arborized in two or more glomeruli
(Figure 1C), thus synapsing with neurons within neighboring
glomeruli.

To reflect these morphological observations in our model, PNs
could have excitatory connections with other PNs of the same
glomerulus with probability 0.8 and weight 0.37 (green arrows
within the green dashed circles). In each glomerulus, we also
randomly chose two PNs that could potentially contact PNs of
another randomly chosen glomerulus with probability of 0.8 and
weight 1.25 (the dashed black arrows in Figure 1A show only
some examples). When a given glomerulus A received this type
of contact from another glomerulus B, then B also innervated
A with the same rule. In this way, each glomerulus was paired
with another single glomerulus through this reciprocal excitatory
connectivity (e.g., multi-glomerular PNs; Figure 1C). In the mor-
phological data, we observed that multi-glomerular PNs generally
innervated 2–3 neighboring glomeruli (Kuebler et al., 2011),
however, our model does not include spatial representation. LNs
could contact other LNs with a synaptic weight of −8.0 and
probability of 0.25 (red lines within the dashed red circle of
Figure 1A). In this way, both the PNs and the LNs had multi-
glomerular connectivity. LNs could contact PNs with a synaptic
weight of −1.8 and a probability of 0.25, irrespectively of the
glomerulus to which each PN belonged (red lines going beyond
the dashed red circle in Figure 1A). PNs could feedback to LNs
with a synaptic weight of 1.4 and probability of 0.15, as shown by
the green arrows entering the dashed red circle in Figure 1A. This
relatively sparse bidirectional connectivity between PNs and LNs
ensured that not all PNs were inhibited during odor presentation,
avoiding an exaggerated activation of the LN population at the
same time (Chong et al., 2012). Synaptic weights of PN to PN and
LN to LN connections were selected to reproduce the proportion
of neurons responding with excitation/inhibition observed in the
data (see below).

The values of synaptic weights and connection probabilities
that we used in the model are biologically plausible. We selected
them because they produced very sparse responses (involving less
than 30% of the neuron population) with a proportion exci-
tation/inhibition around 1.8:1, as observed in the physiological
recordings (Kuebler et al., 2011). This ratio was particularly sen-
sitive to the mean synaptic weight of lateral excitation and lateral
inhibition. For uniglomerular PN to PN connection weight val-
ues of 0–0.3, we obtained ratios of around 2.5:1.0, while for larger
weights the ratios decreased in a monotonic manner, reaching
1.0:1.0 for a weight of 0.6. In order to match the proportion
observed in the recorded data we used a weight of 0.37, as
indicated above. For multi-glomerular PN to PN connections,
the proportion also decreased with an increase in weight, vary-
ing from 2.4:1.0 to 1.26:1.0 for weights of 1.0–1.5, so we chose
the intermediate weight of 1.25 that matched the recordings. In
the case of the LN to LN connections the proportion excita-
tion/inhibition showed a U-shaped profile for a weight range
from −4.0 (4.0:1.0) to −10.0 (2.2:1.0) with a minimum in −60
(1.5:1), and so we selected a weight of −8.0 that matched the
ratio observed in the data (1.8:1.0). We did not optimize the
parameters to match the proportions of blend interactions being
the main focus of our study, which were indeed very robust to
changes in the lateral excitation and to increases in the lateral
inhibition. Some parameters were selected following a previous
study (Chong et al., 2012), such as the probability of LN to LN
contacts and uniglomerular PN to PN contacts, as well as the
use of low levels of bidirectional coupling between PNs and LNs.
Note that reliable estimates for these parameters are not avail-
able in the moth. Furthermore, the high dimensionality of our
model prevents an exhaustive parameter search. Hence, even if
our parameters are within a physiological range, we cannot rule
out the existence of another physiologically plausible parameter
set that also results in the 1.8:1 ratio between excited and inhibited
responses.

Odor stimulus in the model
In line with the blends used in the physiological experiments,
we considered odor stimuli to exist within a five-dimensional
space (Q = 5), where each coordinate represents the concentra-
tion, ch, of a single chemical component, h. The network was
stimulated independently with the single component odors, the
homogeneous blend and the single component odors at blend
concentration. Single component odorants had zero concentra-
tion for each odor dimension but one, such that the five separate
stimulus vectors (q = 1, . . . , Q)

−→cq = [cq1, . . . , cqh, . . . , cqQ],
contain the components cqh = 0 for h �= j and chq = 1 for h = q.
Thus, all component concentrations were normalised to one and
dimensionless for simplicity. The homogeneous blend stimulus
was defined as all components combined simultaneously, ch =
1∀ h, and the single component odors at blend concentrations
were derived from the single component odors −−−−→cq(blend) = 5−→cq .
Thus, in total there are eleven concentration vectors, five single
component odors, −→cq , the homogeneous blend concentration,−−→cblend, and the single component odors at blend concentration
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−−−−→cq(blend). The range of input concentrations used in the sim-
ulations (0–5) was selected to match the range used in the
experiments.

OSN activation in response to stimulus presentation was cal-
culated as follows. First, each OSN type odor dimension pair was
assigned a binding value, a (analogous to affinity to quantify the
strength of binding), drawn from a Gaussian distribution with
mean 0.5 and standard deviation 0.1. These values characterise
the binding strength of the different pure chemicals for each of the
molecular receptor types. Then, for a given OSN type, the differ-
ent input concentration vectors, −→c , were multiplied component
by component with the binding values −→a = [a1, a2, . . . , a5]
to obtain the binding vector −→z = [c1a1, c2a2, . . . , c5a5]. This
scheme provided a plausible description of the typical binding
properties found in insect olfaction systems (Hallem and Carlson,
2006), since it captures the common observation that general-
ist molecular receptors have variable affinity for many chemicals,
and cases of very high or very low affinity are relatively rare among
general odors.

For a given odor presented to the model, the eight binding vec-
tors corresponding to each OSN type were merged into a matrix
zdq of 40 numbers (five columns and eight rows), each specifying
the binding of a given compound q (columns) to each of the OSN
types d (rows). Each binding value zdq was then passed through
a sigmoid function that represented the dose-response curve of
OSN activity to a given component

rdq = λ

1+ e−α(zdq−γ)
+ η

to obtain a matrix rdq which specifies the activities of each OSN
type due to each component. The parameters α, γ, η, and λ con-
trol the slope, horizontal shift, vertical shift, and amplitude of the
sigmoid, respectively. For each element of the match in order to
create a diversity of tunings, parameter values were drawn from
uniform distributions in the range [0,5], [0,4], [0,0.1], and [0,1],
respectively. In this way, we obtained 40 different sigmoid func-
tions (corresponding to each element of the matrix) that were
used to calculate the output activity of each receptor type d due to
the binding of each chemical q. Receptor activations for each OSN
type d were obtained by summing the columns of the matrix rdq.
The sigmoid functions were different for different odorants across
the receptor types (Hallem and Carlson, 2006).

Since we did not want to generate non-linearities in the OSN
response to blends at the periphery level, we assumed a linear
summation in OSN activities of the blend components. Thus,
the columns of this matrix were summed linearly rd =∑q rdq

to obtain an eight-dimensional vector with the total activity of
each receptor type which was the actual input from the OSNs
to the PNs and LNs of the model (see Equation 1). It has been
reported by Rospars et al. (2008), that certain type of competitive
scheme may occur in around half of the receptors, while others
show more complex allosteric interactions. However, since many
details of the periphery function are still unknown in the moth,
we did not want to add further hypothetical non-linear behaviors
at the receptor level of our model, because they would obscure our
assessment of the interaction types at the neuronal and network

levels. In addition, this generalization makes the model more
generally applicable for other non-moth systems.

When a stimulus was present, we added a small positive off-
set to OSN activations. This offset (set to 1.0) represents the
recruitment of non-specific OSNs which activate at very low
concentration and was assumed to be equal for each glomeru-
lus for simplicity. For no binding at the input, the values of d
were small positive numbers, simulating some degree of spon-
taneous discharge in the OSNs (Hallem et al., 2004). Notice
that we are modeling the receptor activity at a population level
and the magnitudes are dimensionless. The parameter ranges
were adjusted qualitatively to obtain a family of sigmoid func-
tions that produced similar dose-response curves in terms of
dynamic range (up to 3 log units), sensitivity, and response
intensity axes to those found experimentally using optical record-
ings (Carlsson and Hansson, 2003). This scheme resulted in
very little blend interactions at the OSN level (see “High cor-
relation in blend interaction types between physiological data
and computational model”), which is in agreement with recent
observations performed using optical recordings (Kuebler et al.,
2012).

PROCEDURE TO COMPUTE THE BLEND INTERACTIONS
The procedure used to determine the proportions of blend inter-
actions in the response of single neurons was the same for the
model simulations and the AL intracellular recordings, using only
the neurons that responded to the stimulus. The stimulation
was performed with the single components, the homogeneous
blend, and the single components at blend concentration, using
a stimulus pulse that lasted for 500 ms. Responsive neurons were
then classified according to the relationship between the blend
response and the responses to single components. Briefly, the
maximum and the standard deviation of the responses to sin-
gle components (maxS, σS) and to single components at blend
concentration (maxSB, σSB) were computed. Then, classification
was performed as follows: (1) suppression: blend response <

maxS − σS, (2) hypoadditivity: maxS − σS < blend response <

maxS + σS, (3) linear addition: maxS + σS < blend response <

max(maxS + σS, maxSB + σSB), and (d) synergy: blend response
> max(maxS + σS, maxSB + σSB).

The index of cell activity used to quantify the response in the
recordings was the mean firing rate. In the case of the model we
used the mean of the activity variable (see “Neuronal model”)
which ranges from 0 to 1. In both cases, we compared the activ-
ity evoked by the stimulus with the activity of a control period
before the stimulus onset. The response was taken as the differ-
ence between the activities in these two time windows. In the AL
of the moth, some neurons exhibited biphasic responses, which
consist of excitation followed by inhibition. Our model does not
account for this response type, and we thus pooled neurons that
responded with excitation with neurons that showed biphasic
responses, since the latter also consist of a net increase in firing
rate. Hence, we concentrated here on the mean values of the neu-
ronal activity leaving the assessment of the dynamic patterns to
be presented in a future study.

As explained above, we followed parallel procedures to calcu-
late the proportions of blend interactions in the recordings and
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the simulations. In both cases, we assessed mean response inten-
sity only, and not response duration. This is important because in
the physiological data the response outlasted the stimulus, while
in the model neurons are endowed with no intrinsic properties
and thus the response ended with the stimulus offset. In order
to account for the entire response period, the response of the
model was considered to be the difference between the mean
activity value in the 500 ms following and preceding the stimu-
lus, while in the intracellular recordings the odorant response was
assessed for 1400 ms following and preceding the stimulus onset.
An assessment of the model with a stimulus lasting 1400 ms gave
the same results as using 500 ms. In the model, a neuron was
considered to be responsive when the difference in mean activ-
ity between the stimulus (with the blend or a single component
at low concentration) and the control period exceeded a value of
0.1, which corresponds to 10% of the maximum activity value.
This gives a response threshold that is close to one observed in
the physiological data (Kuebler et al., 2011).

RESULTS
HIGH CORRELATION IN BLEND INTERACTION TYPES BETWEEN
PHYSIOLOGICAL DATA AND COMPUTATIONAL MODEL
We performed 100 realizations of the computational model (net-
work connectivity shown in Figure 1), each with different recep-
tor binding matrices and sigmoidal functions for the model
OSNs. Figure 2 displays raster plots of an example realization
showing the activity of all cells during the stimulus with the
homogeneous blend (panel A) and with a single odorant at the
blend concentration (panel B).

The biological and computational comparisons of blend inter-
actions were performed by selecting a set of synaptic weights
and connection probabilities that allowed a biologically reflective
sparsity in the AL neuronal response including an approximate
ratio of 1.8:1.0 between neurons that responded with excitation
and inhibition, as observed in the recordings (Kuebler et al.,
2011). In both cases, excitation was more prevalent in LNs, while
PNs exhibited similar levels of excitatory or inhibitory responses.
For PNs, the proportion excitation/inhibition was 0.86:1.0 in the
model and 1.3:1.0 in the recordings where 12 cells responded with
excitation and nine with inhibition. For LNs, this proportion was
3.0:1.0 in the model and also 3.0:1.0 in the recordings where six
LNs responded with excitation and two with inhibition.

Responses were classified into four types according to the
activity of each neuron in response to the blend vs. its single
components. When there is no interaction between the compo-
nents, the response evoked by the blend is equal to the linear
sum of the responses to the individual components. In the case
of synergism, the response exceeds the linear sum. Suppression is
a reduced response with respect to the single components, while
in the case of hypoadditivity (often referred to as overshadow-
ing or blocking) at least one of the components of the blend
is ignored and the response resembles that of the most effective
component.

The proportions of blend interaction types are shown in
Figure 3 for neurons that respond with excitation (Figure 3A)
and inhibition (Figure 3B). The blue columns represent the
model results, while the red squares represent the values found
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FIGURE 3 | The proportions of blend interaction types found in 100

model realizations (µ ± SD) are shown with blue bars. The data values
obtained from the experimental recordings (N = 31 neurons) are plotted
with red squares. (A) Neurons that respond with excitation (N = 20).
(B) Neurons that respond with inhibition (N = 11). The number of neurons
used to compute the proportions represented by the red squares are
provided under their corresponding abscissa labels. For the model
simulations of neurons that respond with excitation (blue bars in A) the
neuron numbers were 901 for suppression, 822 for synergy, 546 for
hypoadditivity, and 81 for linear addition. For the neurons that respond with
inhibition (blue bars in B) the neuron numbers were 622 for suppression,
520 for synergy, 179 for hypoadditivity, and 54 for linear addition.

in the experimental recordings of AL neurons. For both the
recordings and the simulations, we found that most interactions
between odorants were non-linear, and within the non-linear
interactions hypoadditivity (blend response = single compo-
nents) and suppression (blend response < single components)
were more common than synergism (blend response > single
components at blend concentrations). For the responses consist-
ing of excitation (Figure 3A), the red squares are within the error
bars of the blue columns, close to its mean value. This indicates a
good agreement between the physiological data and the model.
This is also the case for synergism and linear addition in the
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neurons that respond with inhibition (Figure 3B). However, in
this case the model does not fit the experimental results for sup-
pression and hypoadditivity but exhibits more of the former and
less of the latter type of blend interaction than the physiology
(Figure 3B). These two categories are both forms of suppression,
and the sum of their relative observations (about 0.8) is equal
between the recordings and the model (Figure 3B). We suspect
that intrinsic neuronal properties that were not included in the
model are responsible for this discrepancy, altering the response
of the neurons in the vicinity of the threshold between both
interaction types.

The results shown in Figure 3 did not change when we
increased or decreased the weight of the lateral excitation or
when we increased the weight of the lateral inhibition in the
ranges specified in section “Network connectivity of the model”.
For weaker lateral inhibition values, we observed an increase in
linear addition accompanied with a decrease of the same mag-
nitude (∼0.1) in suppression in the neurons that respond with
excitation. Conversely, the proportion excitation/inhibition was
very sensitive to variations in the values of these parameters (see
“Network connectivity of the model”).

To assess whether the observed proportions of blend interac-
tion types arose from the AL network (PNs and LNs) or from the
OSN periphery of the model, we ran a separate simulation using
a reduced version of the model. In this simulation, we suppressed
all inhibitory and excitatory connections within the AL and the
input/output function of PNs and LNs was linear [S(x) = x], so
the output of an AL neuron was simply a linear function of the
input received from the OSN periphery. Under these conditions,
we observed that all responses consisted in excitation, resulting
in linear addition for most AL neurons (for every LN and for ¾
of PNs), while the remaining cases showed hypoadditivity. This
is in close agreement with experimental observations found with
optical recordings of the compound input (Kuebler et al., 2012)
and suggests that the periphery has little influence on AL blend
interactions in the moth. The same result was found when we
suppressed only the lateral inhibition (LN to LN and LN to PN
connections) using S(x) = x/10 to avoid an explosion of exci-
tation in the simulation. This means that the result depicted in
the blue bars of Figure 3 arises principally from the AL network
with a fundamental contribution made by the lateral inhibition.
We also performed a control simulation with the full AL connec-
tivity but using the linear input/output function S(x) = x (with
negative values rectified to 0) and observed that the results of
Figure 3 and the ratio excitation/inhibition were not significantly
modified, implying that they are not due to the particular form
of the non-linear squashing function used for AL neurons (see
“Neuronal model”).

As explained in “Neuronal recordings and odor stimulation,”
most of the recorded neurons (29 out of 31) could be classified
as PNs or LNs (Kuebler et al., 2011). Using this classification,
we compared the proportions of blend interaction types for PNs
and LNs of different response types (Figure 4). Neurons that
responded with excitation are depicted in panels A (PNs) and B
(LNs), while neurons that responded with inhibition are depicted
in panel C (PNs) and D (LNs). Despite the low cell numbers for
the physiological measurements, we found that the model follows

the trends observed in the recoded data for both PNs and LNs
that responded with excitation (Figures 4A,B). In the case of PNs
that respond with inhibition (Figure 4C) the model matched the
proportions of the data only for synergism and linear addition.
Comparing Figures 3 and 4 we can conclude that the differences
found in the pooled data set (Figure 3) are still apparent when
assessing PNs and LNs separately (Figure 4).

In this work, as in previous experimental studies (Duchamp-
Viret et al., 2003; Silbering and Galizia, 2007; Kuebler et al.,
2011), blend interaction types (with the exception of synergy)
were defined with respect to single component odors delivered
at a concentration equal to the blend concentration divided by
the number of single components tested (e.g., we used five com-
ponents with blend concentration of five, resulting in a single
concentration of 1). We also confirmed that the results presented
in Figure 3 are similar for blends of 2–7 components, or for
blend concentrations from 1.25 to 10. These alterations did, how-
ever, affect the proportion or excitation/inhibition, which could
be compensated by altering the levels of lateral inhibition. Thus,
although our model results in monotonous responses to changes
in input concentration, more experimental data is necessary to
evaluate the generalization of our simulations over a wide range
of input concentrations.

In this subsection, we have shown that our computational
model, with a parameter set calibrated in order to reproduce the
proportion of excitation/inhibition and response sparsity found
in the physiological recordings, can also reproduce the propor-
tions of blend interactions types without any additional tuning.
While the model matches the data remarkably well for neurons
that respond with excitation, hypoadditivity was underestimated
and suppression was overestimated in neurons that responded
with inhibition, although the sum of their relative observations
was matched. Under these conditions of biologically plausible
synaptic interactions, we assess in the following how blend cod-
ing is shaped by the different sources of synaptic input received by
individual AL neurons.

LN INPUT SHAPES BLEND INTERACTIONS AND RESPONSE
TYPES IN AL
Our goal was to understand how the different types of responses
and blend interactions emerged in the AL network. Hence, we
analyzed the synaptic inputs to AL neurons and their changes as
the stimulus was varied. In Figure 5A we plot the difference in
total synaptic input between the blend stimulation period and the
pre-stimulation period, multiplied by the corresponding synap-
tic weights for different response categories in the model. This
magnitude is referred to as synaptic input. As expected, neurons
that responded with excitation experienced an increase in net
input with blend stimulation, while neurons that responded with
inhibition showed a decrease in their net input (Figure 5A).

Figures 5B and C display the synaptic input arriving from
the LNs (left panels), PNs (middle panels), and OSNs (right
panels) to the PNs (Figure 5B), and LNs (Figure 5C). For both
cell types, changes in lateral inhibition were the main determi-
nants of response type. In the case of PNs, however, other PNs
and OSNs also contributed to the response. In the case of LNs
(Figure 5C) the only relevant input arrived from other LNs, with
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no significant contribution carried by the input arriving from PNs
and OSNs (middle and right panels in Figure 5C).

As interaction types are defined by the relation between the
blend response and the responses to the single components,

we performed a similar analysis on the synaptic inputs to each
neuron considering the difference between the input during blend
stimulation and the mean input during single component pre-
sentations. This magnitude, referred as change in synaptic input,
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FIGURE 4 | The proportions of blend interaction types found in 100

model realizations (µ ± SD, blue bars) are compared with the data

values obtained from the experimental recordings of the neurons that

could be successfully classified as PNs or LNs (N = 29 neurons, red

squares). (A) PNs that respond with excitation (N = 12). (B) LNs that
respond with excitation (N = 6). (C) PNs that respond with inhibition (N = 9).
(D) LNs that respond with inhibition (N = 2). The number of neurons used to
compute the proportions represented by the red squares are provided under
their corresponding abscissa labels. For the model simulations of PNs that

respond with excitation (blue bars in A) the neuron numbers were 397 for
suppression, 306 for synergy, 240 for hypoadditivity, and 47 for linear
addition. For the LNs that respond with excitation (blue bars in B) the neuron
numbers were 504 for suppression, 516 for synergy, 306 for hypoadditivity,
and 34 for linear addition. For the PNs that respond with inhibition (blue bars
in C) the neuron numbers were 506 for suppression, 457 for synergy, 151 for
hypoadditivity, and 42 for linear addition. For the LNs that respond with
inhibition (blue bars in D) the neuron numbers were 116 for suppression, 63
for synergy, 28 for hypoadditivity, and 12 for linear addition.
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FIGURE 5 | Synaptic input (defined as the difference in input between

the blend stimulation period and the pre-stimulation control period,

multiplied by the corresponding synaptic weights) for neurons of

different response type (µ ± SEM for 100 model realizations). (A) Total
input to AL neurons. All comparisons reached p < 1× 10−6 in the t-test after
Bonferroni correction, the most important result being responses consisting
of excitation vs. inhibition (orange and cyan diamonds). In panels B and C, we
show the input arriving from different types of neurons (LNs, PNs, and OSNs)
to AL neurons (PNs and LNs). (B) Input to PNs arriving from LNs (left panel),
PNs (middle panel), and OSNs (right panel). (C) Input to LNs arriving from
LNs (left panel), PNs (middle panel), and OSNs (right panel). The p values for

cases in which we found significant differences in the t-test (p ≤ 0.01, after
Bonferroni correction) are listed in the following, the most important result
being responses consisting of excitation vs. inhibition (orange and cyan
diamonds). For the input from LNs to PNs (left panel of B) all comparisons
reached p < 1× 10−6. For the input from PNs to PNs (middle panel of B)
comparisons reached p < 1× 10−6. For the input from OSNs to PNs (right
panel in B) excitation vs. inhibition p < 1× 10−6, excitation vs. no response
p < 1× 10−6, inhibition vs. mixed response p < 1× 10−6, inhibition vs. no
response p < 2× 10−5, and mixed vs. no response p < 1× 10−6. For the
input from LNs to LNs (left panel in C) all comparisons reached p < 1× 10−6,
with the only exception of mixed vs. no response that was not significant.

was calculated as the difference between the blend and the average
single components at low concentration, multiplied by the corre-
sponding synaptic weights (Figures 6–8). In Figure 6 we depict
the total change in synaptic input for neurons that respond with
excitation (Figure 6A) and inhibition (Figure 6B), irrespective
of their neuronal type (PNs or LNs). The following two figures
unfold this result separating PNs from LNs and specifying the dif-
ferent sources of input. In Figure 7 we show neurons that respond
with excitation (PNs in Figure 7A and LNs in Figure 7B), while

in Figure 8 we show neurons that respond with inhibition (PNs
in Figure 8A and LNs in Figure 8B).

Figure 6 shows that the change in total input grew in the order:
suppression, hypoadditivity, and linear addition in neurons that
responded with excitation (Figure 6A), and it decreased following
the same sequence in the case of neurons that responded with
inhibition (Figure 6B).

Figure 7 shows that the input change arriving from LNs to
LNs that responded with excitation (left panel in Figure 7B) grew
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FIGURE 6 | Change in synaptic input (defined as the difference in input

between the blend response and the average response to the single

components at low concentration, multiplied by the corresponding

synaptic weights) for AL neurons of different blend interaction types

(µ ± SEM for 100 model realizations). (A) Total change in synaptic input
arriving to neurons that respond with excitation. (B) Total change in synaptic
input arriving to neurons that respond with inhibition. The p values for cases

in which we found significant differences in the t-test (p ≤ 0.01, after
Bonferroni correction) are listed in the following. In panel A: suppression vs.
hypoadditivity p < 1× 10−6; suppression vs. linear addition p < 1× 10−6;
suppression vs. synergy p < 1× 10−6; hypoadditivity vs. linear addition
p =< 1× 10−6, hypoadditivity vs. synergy p < 1× 10−6. In panel B:
suppression vs. hypoadditivity p < 1× 10−6; suppression vs. linear addition
p < 1× 10−6; hypoadditivity vs. linear addition p = 3.8× 10−4.

monotonically from suppression to synergy, creating the image
of an ascending ladder. A similar picture applies for the input
change arriving from the LNs to the PNs that responded with
excitation (left panel in Figure 7A), although in this case lin-
ear addition and synergy (the last step of the ladder) were not
significantly different. This suggests that a stronger lateral inhibi-
tion in response to the blend established suppression, while small
changes and decreases in lateral inhibition resulted in hypoaddi-
tivity and linear addition (or synergy), respectively. The change
in input arriving from PNs to PNs that responded with excita-
tion (middle panel in Figure 7A) again created the trend of an
ascending ladder with a missing last step. This is not the case for
the change in input arriving from PNs to LNs that responded
with excitation (middle panel in Figure 7B) where no signifi-
cant differences were found. Regarding the input change from
OSNs, a decrease for PNs that responded with excitation (right
panel in Figure 7A) established suppression, but there were no
significant differences in input changes from OSNs to LNs that
responded with excitation for any interaction type (right panel in
Figure 7B).

Figure 8 shows that the change in input establishing suppres-
sion for responses consisting of inhibition likewise tended to
differ from that establishing the other interactions types. For PNs
that responded with inhibition (left panel in Figure 8A) the input
change from LNs in establishing suppression was greater than
both hypoadditivity or linear addition. This situation repeated
for the input from OSNs to PNs that responded with inhibition
(right panel in Figure 8A). For the input from PNs to PNs that
responded with inhibition, the input change creating suppression
was greater than in the other three categories (middle panel in
Figure 8A). For the input from LNs to LNs that responded with
inhibition the input change creating suppression was greater than
linear addition (left panel in Figure 8B), but no significant differ-
ences were found in the input changes from PNs and OSNs to LNs
(middle and right panels in Figure 8B). The increased change in

synaptic input that created suppression for responses consisting
of inhibition resulted from both a decreased inhibition coming
from the LNs, and a stronger excitation coming from the OSNs
and PNs.

In summary, Figures 7 and 8 indicate that blend interactions
were shaped mainly by the input changes coming from LNs in all
AL cells of the model, with an agonistic contribution of smaller
magnitude from PNs and OSNs in the case of PNs.

DISCUSSION
COMPARISON OF BLEND INTERACTIONS IN THE MODEL AND
RECORDINGS
The proportions of non-linear blend interaction types observed
in the biological data were accurately predicted by the simulation
results in most cases. The matching is almost perfect for neu-
rons that respond with excitation. For neurons that respond with
inhibition, a good agreement was found for synergism and lin-
ear addition, while in the case of suppression and hypoadditivity
the model could only match the sum of both categories, but not
the actual proportions of each. Both hypoadditivity and suppres-
sion are forms of suppressive interactions (Kuebler et al., 2011),
hence this discrepancy is quantitative rather than qualitative.
Future research can elucidate whether more realistic single-cell
properties, or the presence of inhibitory responses at the OSN
level (e.g., Hallem and Carlson, 2006) could result in a better
match. Indeed, the high correlation between the model and the
physiological data is surprising considering the simplicity of the
model employed, and must therefore originate in the morpholog-
ically based pattern of neuronal population interactions. As stated
in section “High correlation in blend interaction types between
physiological data and computational model”, the neuronal acti-
vation function S(x) (Chong et al., 2012) is not responsible for the
proportions of blend interactions observed in Figure 3, which are
also found to hold over a wide dynamic range of stimulus. This
type of non-linearity is widely used in the field of computational
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FIGURE 7 | Change in synaptic input (defined as the difference in input

between the blend response and the average response to the single

components at low concentration, multiplied by the corresponding

synaptic weights) for PNs and LNs that respond with excitation of

different blend interaction types (µ ± SEM for 100 model realizations).

(A) Change in input to PNs arriving from LNs (left panel), PNs (middle panel),
and OSNs (right panel). (B) Change in input to LNs arriving from LNs (left
panel), PNs (middle panel), and OSNs (right panel). The p values for cases in
which we found significant differences in the t-test (p ≤ 0.01, after Bonferroni
correction) are listed in the following. For the change in input arriving from
LNs to PNs that respond with excitation (left panel in A): suppression vs.
hypoadditivity p < 1× 10−6; suppression vs. linear addition p < 1× 10−6,
suppression vs. synergy p < 1× 10−6; hypoadditivity vs. linear addition

p < 1× 10−6; hypoadditivity vs. synergy p = 1× 10−6. For the change in
input arriving from PNs to PNs that respond with excitation (middle panel in
A): suppression vs. hypoadditivity p < 1× 10−6; suppression vs. linear
addition p < 1× 10−6; suppression vs. synergy p < 1× 10−6; hypoadditivity
vs. linear addition p < 1.41× 10−3.For the change in input arriving from OSNs
to PNs that respond with excitation (right panel in A) suppression vs.
hypoadditivity p = 2.8× 10−5; suppression vs. linear addition p < 1× 10−6;
suppression vs. synergy p = 1× 10−6. For the change in input arriving from
LNs to LNs that respond with excitation (left panel in B): suppression vs.
hypoadditivity p < 1× 10−6; suppression vs. linear addition p < 1× 10−6;
suppression vs. synergy p < 1× 10−6; hypoadditivity vs. linear addition
p =< 1× 10−6, hypoadditivity vs. synergy p < 1× 10−6, linear addition vs.
synergy p = 7.9× 10−5.

neuroscience and is in agreement with most observations of the
activation profile in real neurons.

Our computational model of the AL comprises many levels
of biological organization, from the OSN periphery to the net-
work architecture, including the neuronal model and synaptic
interactions. We used probabilistic connectivity to create random
networks that operate in a balanced regime, with strong excita-
tion and strong inhibition that approximately compensate each
other, which is a reasonable strategy considering that the details
of the local synaptic efficacy that operates in the biological system
are unknown. This allows to reproduce the proportion of the dif-
ferent interaction type even when some key parameters (such as

the lateral excitation and lateral inhibition synaptic weights; see
“Network connectivity of the model”) are varied in a relatively
broad range. Whenever possible, morphological and physiolog-
ical data were used to constrain the model, but in some cases
simplifying assumptions had to be made due to the lack of
sufficient experimental evidence. In such cases we adopted deci-
sions that were plausible or based on previous literature. For the
periphery, a linear combination of ingredients was used because it
is the simplest assumption and no information is available about
this issue in the moth. The neuronal and synaptic models were
taken from a previous modeling study (Chong et al., 2012), and
the probabilistic rules used to set the network structure were
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B

FIGURE 8 | Change in synaptic input (defined as the difference in input

between the blend response and the average response to the single

components at low concentration, multiplied by the corresponding

synaptic weights) for PNs and LNs that respond with inhibition of

different blend interaction types (µ ± SEM for 100 model realizations).

(A) Change in input to PNs arriving from LNs (left panel), PNs (middle panel),
and OSNs (right panel). (B) Change in input to LNs arriving from LNs (left
panel), PNs (middle panel), and OSNs (right panel). The p values for cases in
which we found significant differences in the t-test (p ≤ 0.01, after Bonferroni
correction) are listed in the following. For the change in input arriving from

LNs to PNs that respond with inhibition (left panel in A): suppression vs.
hypoadditivity p = 1.64× 10−3; suppression vs. linear addition
p = 2.9× 10−5. For the change in input arriving from PNs to PNs that
respond with inhibition (middle panel in A): suppression vs. hypoadditivity
p < 1× 10−6; suppression vs. linear addition p < 1× 10−6; suppression vs.
synergy p = 9.78× 10−4. For the change in input arriving from OSNs to PNs
that respond with inhibition (right panel in A): suppression vs. hypoadditivity
p < 1× 10−6; suppression vs. linear addition p = 6× 10−6. For the change in
input arriving from LNs to LNs that respond with inhibition (left panel in B):
suppression vs. linear addition p = 3.3× 10−3.

based on morphological studies (Kuebler et al., 2011, and ref-
erences therein). The parameters are biologically plausible and
allow us to reproduce the excitation/inhibition ratio and response
sparsity observed in the recordings. Our results are based on the
average behavior of 100 networks generated with probabilistic
connectivity rules, hence the possibility that they rely on a spe-
cific value for one or more of the non-ranged, fixed parameters
is extremely unlikely. The general agreement between the propor-
tions of blend interactions in the simulations and the recordings
was not calibrated into the model but arises as a purely emer-
gent phenomenon. This predictive power strongly indicates that
the model describes the mean responses of AL neurons to both
pure chemicals and odor blends in a physiologically relevant man-
ner, capturing the working principles of the AL network to a
considerable extent.

In the following, we discuss the role of synaptic input within
the network in determining the type of response and blend inter-
action displayed by individual neurons of the model. Our analysis
is restricted to the mean values of neural activity during the odor
stimulus and control period, leaving the influence of the dynamic
patterns to be presented in a separate study.

SYNAPTIC INPUT, RESPONSE TYPES, AND BLEND INTERACTIONS
IN THE COMPUTATIONAL MODEL
Neurons that respond with excitation undergo an increase in net
synaptic input in response to blend stimulation, while neurons
that respond with inhibition experience a decrease in their input,
as expected (Figure 5A). Individual neurons are implemented
as leaky integrators, hence they can only increase (decrease)
their activation if their input increases (decreases). A more
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surprising result is that the difference in total input depicted in
Figure 5A is determined mainly by the input arriving from the
LNs (Figures 5B,C). The LNs that respond with inhibition do so
because they received a very strong inhibition from other LNs,
and not less excitation from the PNs and OSNs. The LNs that
respond with excitation do so because they received weaker inhi-
bition from the LNs and not larger excitation from the PNs and
OSNs (Figure 5C). In the case of the PNs, the response consisting
of inhibition was built up by a very strong inhibition from LNs
combined with a weaker excitation from PNs and OSNs, while
for the response consisting of excitation a weaker inhibition from
LNs was combined with a stronger excitation from PNs and OSNs
(Figure 5B). To summarize this first finding, we can state that the
response type of all neurons depends on the change in LN input
in response to olfactory stimulation, with an agonistic contribu-
tion of smaller magnitude coming from the PN and OSN input in
the case of PNs.

The second finding in our assessment of the pre-synaptic activ-
ity (Figures 6, 7, and 8), is that the change in synaptic input
from the LNs is key to determining the type of blend interac-
tion shown by a neuron (PN or LN). In the particular case of
LNs that respond with excitation, the change in input from other
LNs is the only determinant of the blend interaction type, with
suppression receiving the largest amount of inhibition (i.e., lower
input value) followed by hypoadditivity, linear addition, and syn-
ergy in a sequence of decreasing inhibition. A similar situation
holds for PNs that respond with excitation, where this sequence
starts in suppression, continues with hypoadditivity, and ends
with linear addition (without including synergy). However, the
change in input arriving from other PNs also contributes to deter-
mine the blend interaction type through an excitation drive that
progressively grows in the sequence suppression, hypoadditivity,
linear addition, and synergy. In addition, the change in input
from OSNs to PNs is smaller in suppression than in the other
categories, creating an additional influence that adds agonistically
with the input from the LNs and PNs. In the case of neurons that
respond with inhibition we can also recognize a key role of the
LNs, although in this case it is mainly to determine the difference
between suppression and other categories, without the sequence
mentioned above. Again, for LNs that respond with inhibition the
only significant influence is the one coming from other LNs, while
for PNs that respond with inhibition the change in input arriving
from PNs and OSNs combines in an agonistic manner with the
change in LN input to determine whether the interaction type
will be suppression or not. From the three agonistic influences
observed in PNs that respond with excitation and inhibition, the
one coming from the LNs is stronger as it can be seen in the scales
of ordinates in the Figures 7 and 8.

As a summary of our synaptic analysis, we can state that the
input changes coming from LNs, PNs, and OSNs drive the mem-
brane potential of the PN output from the AL in an agonistic
manner that determines the type of blend interaction that they
display. In the case of the LNs, the only significant input is the
one arriving from other LNs. Suppressive interactions in neurons
that respond with excitation are associated with smaller changes
in synaptic input than the other types of blend interaction, while
the opposite holds for neurons that respond with inhibition.

The observed proportions of blend interactions types were
robust to changes in lateral excitation, but were affected by
decreases in the weight of lateral inhibition. The fact that less LN
to LN coupling decreased the proportion of suppression (increas-
ing linear addition by a similar amount; see “High correlation in
blend interaction types between physiological data and compu-
tational model”) in neurons that respond with excitation makes
sense on the light of the analysis presented in Figure 7B (left
panel), as suppressive interactions are associated with negative
values of synaptic input change from LNs. Thus, lateral inhibition
appears to be playing a more important role than the lateral exci-
tation (mediated by the PN to PN connectivity) in the shaping of
blend interactions types. This agrees with the results of the honey
bee modeling studies of Linster and Smith (1997) for suppres-
sion and hypoadditivity (referred in Linster’s study as blocking
and overshadowing, respectively) and Schmuker et al. (2011) who
showed that strong lateral inhibition can result in suppressive
mixture coding, allowing good odor discrimination in the PNs
of the lateral antenno-cerebral tract. Our results suggest that lat-
eral inhibition is also very important for the emergence of linear
addition and synergism in the case of the neurons that respond
with excitation (left panels in Figures 7A,B), since these interac-
tion types are associated with a larger input change arriving from
LNs. Behavioral studies have shown that GABAA antagonists dis-
rupt odor discrimination (Mwilaria et al., 2008) and the bursting
response pattern of PNs associated with odor source location (Lei
et al., 2009) in M. sexta. This indicates that pharmacological or
genetic manipulation of the interneuron network of the moth
would result in a severe reduction in non-linear interactions to
blends, as has been observed for mixture suppression in the PNs
of Drosophila after picrotoxin application (Silbering and Galizia,
2007). This type of experiments, combined with simultaneous
multi-unit and optical recordings that assess a greater proportion
of the AL network, would be key to elucidating the nature of AL
blend processing mechanisms in the future.

RELATION WITH PREVIOUS EXPERIMENTAL AND MODELING STUDIES
The results of this computational study provide important global
insights into the biological network that are difficult to uncover
empirically through current physiological methods. Comparative
analyses across several species suggest that odor blends are coded
at the first processing stage in a spatiotemporal fashion (for
review see Lei and Vickers, 2008) defined by a stereotyped spa-
tial pattern (Galizia and Roessler, 2010), different response onsets
(Krofczik et al., 2008), and synchronous ensemble firing patterns
(Riffell et al., 2009a,b). However, the close agreement between
our neuromorphic model and the electrophysiological data sug-
gests that the connectivity pattern of input OSNs, interglomerular
LNs, and output PNs is itself sufficient to confer the level of
blend interactions exhibited by the AL. This implies that other
cellular characteristics relating to the firing and spatiotempo-
ral dynamics of AL neurons are not obligatory to establish the
non-linearity of blend processing witnessed in other electro-
and optophysiological analyses of insects (Carlsson et al., 2005;
Deisig et al., 2006; Pinero et al., 2008; Silbering et al., 2008;
Riffell et al., 2009a). This result is particularly surprising consid-
ering the highly reduced assumptions made in our model that
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do not consider cellular and network properties such as excita-
tory interneuron synapses (Shang et al., 2007), heterogeneity of
interneuron branching (Fonta et al., 1993), and additional electric
coupling between glomeruli (Yaksi and Wilson, 2010).

Further examination of the synaptic interactions in the model
reveals that the source of the non-linear processing is due in
large part to the interneurons within the network. Such a result
is reasonable when one considers the broadly tuned nature of
the input to the AL. A blend response results from the activity
of several OSNs with different affinities and responses to odor
components (Hallem et al., 2004; Hallem and Carlson, 2006).
As receptor neurons expressing the same receptor innervate the
same glomerulus in the AL (Ressler et al., 1994; Mombaerts, 1996;
Vosshall, 2000), some form of interglomerular connectivity is
imperative for accurate blend representation, and any apparent
non-linearity is subsequently the result of such interconnectiv-
ity. Indeed, recent physiological studies in flies (Silbering et al.,
2008) and bees (Deisig et al., 2006) have highlighted the vital
role of the interneuron network in conferring blend non-linearity.
Moreover, the importance of inhibitory sub-networks in shaping
the activity of excitatory neurons and synchronous firing is widely
recognized in the field of sensory perception [e.g., see Assisi et al.,
2011; but note the recent study of Daly et al. (2011) in M. sexta],
and our study suggests it is also vital for neural encoding of
complex odor blends.

Interestingly, the output of the network, relayed by PNs, is
ultimately influenced by synaptic input from all three types

of AL neurons. This indicates that the final representation of
a blend is a composite of all possible interactions within the
AL. This also indicates that any blend non-linearities already
present at the periphery (not included here but implied by
other studies: Carlsson and Hansson, 2002; Hillier and Vickers,
2011; Su et al., 2011) may significantly impact the resul-
tant output from the AL. Additional modulation between PNs
(either within or between glomeruli) further modifies the out-
put and creates the ultimate “blend percept” (Kuebler et al.,
2011).

Our results suggest that the non-linear processing establishing
the unique “blend percept” within the AL can result from network
interactions, without the need of intrinsic neuronal properties in
the cells within that network. Our findings highlight that such
mixture interactions are a natural outcome of the architecture of
the AL, and reveal its important role in shaping the perception
of olfactory information in the CNS. By design, the AL is not
merely a relay station for olfactory information, but filters and
processes multicomponent information into a unique representa-
tion that reduces signal dimensionality for subsequent processing
in the CNS.
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One of the most basic and general tasks faced by all nervous systems is extracting
relevant information from the organism’s surrounding world. While physical signals
available to sensory systems are often continuous, variable, overlapping, and noisy,
high-level neuronal representations used for decision-making tend to be discrete, specific,
invariant, and highly separable. This study addresses the question of how neuronal
specificity is generated. Inspired by experimental findings on network architecture in
the olfactory system of the locust, I construct a highly simplified theoretical framework
which allows for analytic solution of its key properties. For generalized feed-forward
systems, I show that an intermediate range of connectivity values between source- and
target-populations leads to a combinatorial explosion of wiring possibilities, resulting in
input spaces which are, by their very nature, exquisitely sparsely populated. In particular,
connection probability ½, as found in the locust antennal-lobe–mushroom-body circuit,
serves to maximize separation of neuronal representations across the target Kenyon
cells (KCs), and explains their specific and reliable responses. This analysis yields a
function expressing response specificity in terms of lower network parameters; together
with appropriate gain control this leads to a simple neuronal algorithm for generating
arbitrarily sparse and selective codes and linking network architecture and neural coding.
I suggest a straightforward way to construct ecologically meaningful representations from
this code.
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INTRODUCTION
Animals all use information about their surrounding world in
order to function within it. Nervous systems have specialized
in gathering, processing, storing, and retrieving such informa-
tion and in using it to make decisions necessary for survival. To
accomplish these tasks, the brain must disregard much of the
information made available by the senses, extracting only what
is relevant for the animal’s needs. Just as in drawing a map of a
newly discovered land, the brain, in so doing, creates a schematic
internal representation of the animal’s world—and it is over this
internal model that generalizations are drawn, categories are dis-
cerned, associations made, and behavior triggered [Marr, 1970,
1971; Barlow, 1985; von der Malsburg, 1986, 1990; Kanerva, 1988;
Földiák, 1990; reviewed in deCharms and Zador (2000)].

By virtue of the choice of what to keep in it, this internal neu-
ronal representation is tailored to the organism’s needs; and just
as a historian, geologist, and meteorologist would each draw a dif-
ferent map of the same piece of land, it too suggests alternate ways
of viewing and interpreting reality (Barlow, 1972; Kanerva, 1988;
Churchland and Sejnowski, 1990). In other words, a subjective
internal model of the world serves as a substrate for performing
computations which—by predicting the outcome of actions in the
real world—allow efficient decision-making, even in novel situa-
tions (von der Malsburg, 1986, 1990; Kanerva, 1988). This may be
the core of what the brain does.

Olfactory systems, which are in evolutionary terms ancient
and found even in simple animals, accomplish this task very effi-
ciently. The signals they analyze are plumes of airborne molecules
and complex mixtures thereof—variable signals occurring on
highly noisy background (Kadohisa and Wilson, 2006; Raman
and Stopfer, 2010; Raman et al., 2011)—and from this input they
extract meaning (such as “food,” “predator,” or “potential sex-
ual partner”), which is translated into behavioral output (actions
such as foraging, escape, or courtship, respectively).

How is this task accomplished by neural hardware? Circuit
architecture is a key to understand brain dynamics and function.
A full characterization of neural circuitry—including cell types
and their integrative properties (input–output functions), con-
nectivity between them (statistics, pattern, signs, and strengths)
and external input driving the network (rates, auto- and cross-
correlations, synchrony, etc.)—is necessary, though not sufficient,
for transcending the descriptive level and distilling the system’s
design principles (Churchland and Sejnowski, 1992). This in turn
yields a deeper understanding of how basic network features and
their interrelations give rise to its higher properties. Few bio-
logical neural systems, however, are presently characterized in
sufficient detail; most are riddled with complexity, knowledge
gaps, and high-dimensional parameter-spaces.

One example where detailed knowledge exists on network
parameters and coding schemes is the olfactory system of the
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Jortner Network architecture for separating representations

locust (Schistocerca americana) (Figure 1A). In this relatively sim-
ple system, 800 broadly tuned and noisy second-order neurons
(projection neurons, PNs) project directly onto 50,000 third-
order neurons (Kenyon cells, KCs), which are highly selective and
reliable in their odor responses (Perez-Orive et al., 2002). As the
system is feed-forward, small, well-defined, and displays a dra-
matic change in coding—from distributed to sparse—between
source- and target-populations, it seems well suited for studying
the origins of neuronal specificity.

The locust olfactory system (Figure 1A) receives odor input
through the antenna, via ∼90,000 olfactory receptor-neurons

(ORNs) which terminate in the antennal-lobe. The antennal-
lobe is a small network: ∼800 excitatory PNs which send their
axons to the next relays in the system (forming the antennal-lobe’s
sole output), and ∼300 inhibitory interneurons (not shown in
the diagram) which act locally within the network (Laurent and
Davidowitz, 1994; Leitch and Laurent, 1996). PNs each respond
to a wide array of odors with rich, complex spike-trains encod-
ing odor identity (Laurent and Davidowitz, 1994; Laurent, 1996;
Wehr and Laurent, 1996; Perez-Orive et al., 2002; Mazor and
Laurent, 2005) and concentration (Stopfer et al., 2003); PN-
spike-trains are additionally locked to a 20 Hz oscillatory cycle

FIGURE 1 | Framework for studying the separation of neuronal

representations. (A) Circuit diagram of the locust olfactory system. Odor
information reaches the antennal-lobe via ∼90,000 olfactory receptor-neurons
in the antenna. In the antennal-lobe, ∼800 projection neurons (PNs, yellow)
project it further to the mushroom body (onto ∼50,000 Kenyon cells (KCs),
blue; PN–KC connection probability ½) and the lateral horn (not shown). In
transition from PNs to KCs the odor code dramatically changes from broad
and highly distributed (in PNs) to sparse and specific (in KCs). KC axons split
into the α- and β-lobes, where they synapse onto α- and β-lobe extrinsic
neurons (green), respectively (KC–β-lobe-neuron connection probability
∼0.02). Red arrows indicate direction of information flow. See text for more

details. (B) Mathematical framework for studying transformation in coding.
Model represents the state of a theoretical network inspired by PN–KC
circuitry during a brief snapshot in time. Color code and information flow
same as in (A). A set of N source-neurons (activity of which is denoted by
binary-valued vector �S; i.i.d. with probability p) projects onto a set of M target
neurons (activity of which is denoted by vector �K ) via a set of feed-forward
connections (binary-valued connectivity matrix

↔
W ; i.i.d. with probability c).

The aggregate input to the target layer �K is the vector �k, a product of

source-neuron activity vector �S and connectivity matrix
↔
W . �K is obtained by

thresholding �k using the Heaviside function �

(
⇀

k − f

)
.
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which is synchronous across the PN population (Laurent and
Davidowitz, 1994; Laurent, 1996; Laurent et al., 1996) and is
reflected in local-field-potential oscillations. With no odor pre-
sented, PNs fire spontaneously at rates of 2.5–4 Hz (Perez-Orive
et al., 2002; Mazor and Laurent, 2005). Odors are represented
by a dynamic combinatorial code (Laurent et al., 1996; Wehr
and Laurent, 1996) which is broadly distributed across the
PN population (Perez-Orive et al., 2002; Mazor and Laurent,
2005).

Output from the antennal-lobe is projected, via PN axons,
onto two direct target-areas: the mushroom body, a structure
involved in learning and memory (Heisenberg, 1998), and the lat-
eral horn. The mushroom body contains∼50,000 small neurons,
the KCs (Laurent and Naraghi, 1994; Leitch and Laurent, 1996).
Individual KCs respond to specific odors (either monomolec-
ular odors or mixtures), their responses are characterized by
few spikes, are highly reliable across different presentations of
the same odor (Perez-Orive et al., 2002), and are often con-
centration invariant (Stopfer et al., 2003). KC responses occur
on a background of extremely little spontaneous firing (Laurent
and Naraghi, 1994; Perez-Orive et al., 2002; Mazor and Laurent,
2005; Jortner et al., 2007; Jortner, 2009). Mushroom body odor-
responses thus involve small, highly selective subsets of KCs
(Perez-Orive et al., 2002, 2004; Stopfer et al., 2003; Jortner, 2009).

Axons of KCs exit the mushroom body calyx in a tight bundle
(forming the mushroom’s stalk, or pedunculus), branching into
the mushroom body’s output nodes, the α- and β-lobes (Laurent
and Naraghi, 1994). There, KC output is integrated by smaller
populations of extrinsic neurons (called α- and β-lobe neurons,
respectively; Figure 1A) with large, planar dendritic trees which
intersect KC-axon bundles at neat right angles (Li and Strausfeld,
1997; MacLeod et al., 1998; Cassenaer and Laurent, 2007), sug-
gesting potential integration of precisely timed spikes over a wide
KC-subpopulation.

Several previous studies offer theoretical treatment of
the locust antennal-lobe–mushroom-body transformation (e.g.,
Garcia-Sanchez and Huerta, 2003; Theunissen, 2003; Huerta
et al., 2004; Sivan and Kopell, 2004; Finelli et al., 2008); these,
however, lack quantitative data regarding critical network param-
eters, such as connectivity values. More recent experimental work
quantified aspects of network architecture via electrophysiolog-
ical measurements of connectivity between PNs, KCs and β-
lobe-neurons (Jortner et al., 2007; Cassenaer and Laurent, 2007).
Results show that each KC receives synaptic connections from ½
of all PNs on average (∼400 out of ∼800 PNs); PN–KC synapses
are very weak [excitatory-postsynaptic-potential (EPSP) ampli-
tude is 85± 44 μV], and KC firing thresholds correspond to
simultaneous activation of∼100 PN–KC synapses (assuming lin-
ear summation) (Jortner et al., 2007). Connections between KCs
and some of their outputs (β-lobes neurons) are, on the other
hand, sparse (∼2% of pairs) and strong (EPSP amplitude 1.58±
1.1 mV), and exhibit Hebbian spike-timing-dependent plasticity
(Cassenaer and Laurent, 2007).

Can these findings explain the transformation in coding
schemes? What is the functional significance of this design? In
the present study I explore design principles by which the brain
constructs specific, sparse and high-level representations of the

surrounding world. A coding strategy both sparse and selective
would be one where only a small subset of neurons respond to any
given stimulus or external state (i.e., high population sparseness;
Willmore and Tolhurst, 2001), and only a small subset of stim-
uli or external states elicit response in each neuron (Jortner et al.,
2007; Jortner, 2009). Inspired by the network architecture of the
locust olfactory pathways, I suggest an exciting implementation
of neuronal hardware to this end. My central claim is that in a
feed-forward system with connectivity ½, target neurons differ
maximally from each other in information they contain about
the world (or external state); in this sense serving as an optimal
neural module for parsing the world of inputs, and a substrate
for sparse and specific neuronal-responses on the basis of which
learning, categorization, generalization, and other essential com-
putations can occur. The targets’ sparseness is set to a controlled,
arbitrary level by choice of a proper and adaptive firing thresh-
old. Next, I address these points through a straightforward yet
rigorous mathematical approach.

METHODS
The model I use is highly reduced, consisting of a layer of source-
neurons (equivalent to PNs), projecting onto a layer of target
neurons (equivalent to KCs) via a set of feed-forward connec-
tions (Figure 1B). Following several simplifying assumptions, I
describe the mathematical framework and proceed to solve some
of its behavior analytically—yielding predictions about function
and about how network design relates to coding.

MODEL ASSUMPTIONS
For the sake of tractability and predictive power, I make four
important simplifying assumptions. First, I choose to look at a
“snapshot” of the system in time; a brief-enough segment so that
for any given PN the probability for spiking more than once is
negligible. Within this time window, the PN population can be
treated as a vector of binary digits, one denoting the occurrence of
a spike and zero denoting none. As a second assumption, all PNs
are treated each as firing (or not) within this time window with
probability p which is identical across all PNs, and doing so inde-
pendently of each other (i.i.d.); this allows treating the PN activity
vector as binomial with a known parameter. Third, all synap-
tic connections are treated as equal in strength. As a fourth and
last assumption, connectivity between PNs and KCs is assumed
to be random, with i.i.d. statistics and probability c across all
PN–KC pairs.

These assumptions, and particularly those of i.i.d. statistics
of firing and connectivity, wield great predictive power; I will
revisit them in the Discussion (Section “Regaining Complexity:
Reexamining the Model’s Initial Assumptions”), examine their
validity with respect to experimental data on the locust olfactory
system, and assess, wherever biological reality deviates from them
(e.g., when some dependence and correlations are introduced),
how model results may be affected.

MODEL DESCRIPTION
A schematic cartoon of the network-model appears in Figure 1B.

There is a set of N source-neurons, denoted by vector
⇀

S (so
the neurons are S1, S2, . . . , SN ): these are analogous to PNs in
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the antennal-lobe. A second set of M target neurons, denoted by

vector
⇀

K (so neurons K1, K2, . . . , KM ), are analogous to KCs in

the mushroom body. Source-neurons (
⇀

S ) connect to target neu-

rons (
⇀

K ) through randomly determined connections of uniform
strength; each PN can thus either connect to a given KC or not,

with probabilities c and (1− c), respectively.
↔
W is the connection

matrix, with Wij = 1 if the jth PN connects to the ith KC and 0

otherwise. Each row of
↔
W indicates the set of PNs physically con-

nected to a given KC (so there are as many rows as KCs), and each
column indicates the set of KCs receiving physical connections
from a given PN (so there are as many columns as PNs). The rows
I will refer to as the connectivity vectors to KCs.

As pointed out in the assumptions, the model looks at a snap-
shot of the neural system during a brief time window. Within it,
each of the PNs can either fire a spike or not, and does so with

probabilities p and (1− p), respectively, so
⇀

S also takes binary

values. I call
⇀

S the activity vector of the PN population, and S will

be the set of all possible activity vectors, so
⇀

S∈ S.
Formally, then (Figure 1B):

Sj =
{

1
0

with probabil. p
with probabil. 1− p

j = 1, . . . , N

Wij =
{

1
0

with probabil. c
with probabil. 1− c

i = 1, . . . , M; j = 1, . . . , N

During our given time window each of the M KCs receives
PN inputs, which additively determine its “membrane-potential.”
The input to each KC, to which I refer throughout this work as
its aggregate input (denoted by ki for the ith KC) is the sum of
all PNs connected to it which fire during that time window, or
formally

�k = ↔W · �S

ki =
N∑

j = 1

WijSj

Thus, �k is a vector which takes natural values between 0 and N
(according to how many of the PNs converging onto the KC fire).
Each KC then fires a spike if and only if its aggregate input equals
or exceeds the firing threshold, f, or

�K = �
(�k− f

)
= �

(↔
W · �S− f

)

Ki = �
(
ki − f

) = �

⎛

⎝
N∑

j = 1

WijSj − f

⎞

⎠

where �(X) denotes the Heaviside function:

�(X) =
{

1 if X ≥ 0
0 otherwise

So �K is a binary-valued vector, Ki indicating whether or not the
ith KC fires, and K is the set of all possible target-neuron activ-

ity vectors, so
⇀

K∈ K. Thus, in this model, for a network with
N PNs and M KCs (with threshold f ) and a fixed connectivity

matrix
↔
W , a given state of the PN population (denoted by activity

vector
⇀

S ) unambiguously determines the activity vector of the KC

population,
⇀

K .

MATHEMATICAL CONVENTIONS, SYMBOLS, AND ABBREVIATIONS
While the mathematics used throughout this work is mostly ele-
mentary, some of the derivations are nonetheless rather tedious.
For the sake of clarity, they appear in shortened form within
the text; I provide commented step-by-step derivations in the
Appendix.

All but the most standard mathematical symbols used are
defined the first time they appear. For quick reference, they are
also listed in Table 1.

RESULTS
MODEL RESULTS I: EXPLORING PROPERTIES OF THE CONNECTIVITY
MATRIX
Examining the set of connections between the neuronal popu-

lations �S and �K (connectivity matrix
↔
W), we may ask to what

extent two connectivity vectors (rows of
↔
W) differ from each

other. Let us calculate how many binary digits will, on aver-
age, differ across two such connectivity vectors (which I call
�U and �V). This difference-measure is the Hamming distance
between the two vectors, denoted by H( �U, �V). Since all ele-
ments of the connectivity matrix are independent from each
other, we can simply calculate the probability that an element of
�U differs from the matching element in �V(detailed derivation in
Appendix A1):

Pr(Uj �= Vj) = Pr(Uj = 1, Vj = 0)+ Pr(Uj = 0, Vj = 1)

= c(1− c)+ (1− c)c = 2c(1− c)

and multiply by the total number of elements N to get the
Hamming distance:

〈
H( �U, �V)

〉
�U, �V = N ·Pr(Uj �= Vj) = 2Nc(1− c)

As this expression shows, when viewed as a function of the con-
nection probability, c, the Hamming distance between two rows

of
↔
W is maximal for c =½, and drops symmetrically around

it (Figure 2A, for N = 800). Thus, under the model assump-
tions, PN–KC connectivity vectors will on average be maximally
different (as measured by Hamming distance) from each other
when each pair of cells (PN and KC) is equally likely to be con-
nected or not. This already suggests some special property of
the experimentally observed connectivity matrix (Jortner et al.,
2007).

If we now pick two connectivity vectors at random, what is
the probability that they are identical? In other words, what is the
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Table 1 | Mathematical symbols used throughout the paper.

c Probability of PN–KC connection (scalar, real within
interval [0,1])

CDF Cumulative Distribution Function

CLT Central Limit Theorem

D(x, y ) Absolute difference between x and y, |x – y | (For
binary values: (x – y )2)

f Kenyon-cell firing threshold (in units of PN
inputs)—(scalar, non-negative)

H( �X , �Y ) Hamming distance between binary-valued vectors
�X , �Y ; number of bits by which they differ (scalar, real,
non-negative)

i.i.d. independent and identically distributed
�K Activity vector of the Kenyon-cell population (vector,

Mx1, binary values)
�k vector of aggregate inputs to Kenyon cells (vector,

Mx1, natural values)

K Set of all possible Kenyon-cell activity vectors

M Total number of Kenyon-cells (scalar, natural)

N total number of PNs (scalar, natural)

p PN-firing probability within characteristic time window
(scalar, real within interval [0,1])

PDF Probability Density Function

Pr(x) Probability of x

Q; Q(x) The Standard Normal cumulative distribution function;
its value at x

�S Activity vector of the PN population (vector, Nx1,
binary values)

S Set of all possible PN activity vectors
�U, �V Random PN–KC connectivity vectors; rows of

↔
W

(vectors, 1 x N, binary values)

u,v Random subsets of PNs
↔
W Connectivity matrix between PNs and KCs (Matrix,

M x N, Binary values)

� variance of aggregate input to a KC (scalar,
non-negative)

�(x) The Heaviside (step) function; producing 1 if x ≥ 0
and 0 otherwise

� Mean aggregate input to a KC (scalar, real)

ρ(x, y ) Pearson’s correlation coefficient between x and y

∼ Equals in distribution

≡ Equals by definition

A
⋂

B Intersection of sets A and B (objects which belong to
both A and B)

A
⋃

B Union of sets A and B (objects which belong to A or
B, inclusive or )

A�B Symmetric difference of sets A and B (objects belong
to A or B, but not both)

∥∥A
∥∥ Number of elements in set A

A\B Relative complement of sets A and B (objects belong
to A and not to B)

x! Factorial of x

|x| Absolute value of x
〈
X

〉
Y Expected value of X over all possible values of Y

(with their respective probabilities)[
x

y

]

x-choose-y, the number of ways to pick y elements
out of x

probability that two randomly chosen KCs sample the exact same
ensemble of PNs?

Pr
(
H

( �U, �V) = 0
) = Pr

⎛

⎝
N∑

j = 1

(Uj − Vj)
2 = 0

⎞

⎠

= Pr
(
Uj = Vj|∀j

)

= (
Pr

(
Uj= 1, Vj= 1

)+ Pr
(
Uj= 0, Vj= 0

))N

= (
c2 + (1− c)2)N = (

2c2 − 2c + 1
)N

Similarly, the probability that the two connectivity vectors differ
from each other by exactly d PNs is:

Pr
(
H

( �U, �V)=d
) = Pr

⎛

⎝
N∑

j=1

(Uj − Vj)
2=d

⎞

⎠=(
Pr

(
Uj=1, Vj=1

)+ . . .

+ Pr
(
Uj=0, Vj=0

))N−d · (Pr
(
Uj=1, Vj=0

)+ . . .

+ Pr
(
Uj = 0, Vj = 1

))d ·
[

N

d

]

= (
2c2 − 2c + 1

)N−d · (2c(1− c))d · N!
d!(N − d)!

This yields a theoretical probability-density function (PDF)
for the Hamming distance between connectivity vectors
(Figures 2B–D). Note that for all values of c the PDFs are always
rather narrow (Figure 2B), with most of their mass concentrated
close to their mean value. This is a key property of binomial
distributions with large values of N, and implies that most
pairs of connectivity vectors in a system obeying our basic
assumptions will differ by similar values, well predicted by their
mean Hamming distance. Note also, that the PDF centered on
the highest value is for c = ½, the connectivity value measured
between PNs and KCs in the locust. Figures 2C,D provide a
closer look at this particular case (see next section).

Connectivity ½ thus maximizes differences between PN–KC
connectivity vectors. I demonstrate this graphically in Figure 3
using elementary Venn diagrams. Two different KCs, each of
which samples PNs randomly and independently with probability
c, thus define two sets of PNs (I call these sets u and v). Each large
(open) circle in Figure 3A represents the entire PN set (with area
N), the two smaller circles within it mark the PN subsets u and v
sampled by our two KCs (with average area N · c each; the value
of c is indicated above each diagram).

The set of PNs sampled by both KCs (the overlap of the two PN
sets) is the intersection of u and v, the number of PNs it includes
on average is

〈‖u ∩ v‖〉u,v =
〈

N∑

j = 1

UjVj

〉

�U, �V
= Nc2

as demonstrated by the dark-shaded areas in Figures 3A,B.
Similarly, the set of PNs sampled by exactly one of the two KCs
(the non-overlapping portion of inputs to the two KCs, or their
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FIGURE 2 | Analysis of Hamming distances between PN–KC

connectivity vectors. (A) Analytic solution for mean Hamming distance
between PN–KC connectivity vectors as a function of connectivity, c (for
N = 800 PNs). Hamming distance is a parabola in c with maximum at
c = ½. (B) Probability-density functions (PDFs) of Hamming distances
between PN–KC connectivity vectors, Pr

(
H(U, V ) = j

)
, calculated as a

function of connectivity. Each row corresponds to one PDF (with PN–KC
connectivity value on ordinate); color represents probability. N = 800 PNs
assumed in all cases. Note narrow distribution of Hamming distances

around their mean for all values of c. Note PDF centered around highest
value (400) is for c = ½. (C) Theoretically calculated PDF of Hamming
distances between PN–KC connectivity vectors for parameters measured
in the locust olfactory system (N = 800, c = ½). Note most common
Hamming distance value, 400 (as each of two KCs samples on average
200 PNs that the other does not, see text). Shaded area, interval [350,450]
in which most probability-density (0.9997) is concentrated. (D) Linear-log
plot of same PDF as in (C). Shaded area, interval [350,450]. Note
miniscule values away from the mean (outside shaded area).

symmetric difference, �, in set theory terms) is the union of u and
v minus their intersection; the average number of PNs it includes:

〈‖u�v‖〉u,v = 〈‖(u ∪ v)\(u ∩ v)‖〉u,v

=
〈

N∑

j = 1

Uj +
N∑

j = 1

Vj−2
N∑

j = 1

UjVj

〉

�U, �V
=2Nc(1− c)

which corresponds to the light-shaded area in Figures 3A,B. This
tells us how much these two KCs differ on average in PN ensem-
bles they sample (or in their “receptive fields” in terms of input).
This area is small when c is very low or very high, and maxi-
mal when c = 0.5 (as seen in Figure 3A, and more clearly in the
bar graphs in Figure 3B). In fact, this expression is also precisely
the result we got for Hamming distance between connectivity
vectors (see above and Figure 2A). The white areas (“None” in
Figures 3A,B) correspond to PNs not sampled by either of two
KCs. Both the average union and average intersection of the two
PN ensembles increase monotonically with connectivity, but the

difference between them (the non-overlapping ensemble) peaks
at ½ (Figure 3C).

Differences between receptive ranges (or “receptive fields”) of
two target neurons are thus large when they each sample an inter-
mediate proportion of the source-population—sampling either
a very small or very large proportion yields much smaller non-
overlapping ensembles, hence source-populations less different
from each other.

PROPERTIES OF THE CONNECTIVITY MATRIX: PLUGGING IN
REAL-DATA VALUES
To sense how the above translates into biological reality, let us
apply these calculations to the connectivity matrix of the locust
olfactory system. For values relevant to the locust (N = 800 PNs
and c = ½) the mean Hamming distance between two PN–KC
connectivity vectors is 400; two randomly chosen KCs will thus
overlap by 200 connected PNs on average, and each of the KCs
will on average sample 200 PNs which the other does not. There
will be an additional 200 PNs which are not sampled by either of
the two KCs.
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FIGURE 3 | Connection probability ½ maximizes differences between

KC input-populations. (A) Schematic representation of two KC inputs
using Venn diagrams. Each large (empty) circle represents the entire PN
population; the shaded circles within it represent two average KCs
receiving connections from subsets of these PNs (with probability indicated
above each diagram). Total shaded area (light-shaded + dark-shaded)
represents the union of the two KC input-ensembles (or “receptive fields”),
while the dark-shaded area alone is their intersection. The light gray area
thus corresponds to the non-overlapping portion of the input-ensembles
(union minus intersection), or to how different KCs are from each other in
terms of input. (B) Same as in (A) using bar graphs. Each large rectangle
represents the entire PN population; shaded areas use same color code and
same connection probabilities as in (A). (C) Analytically calculated curves of
the union (dotted line), intersection (solid gray) and their difference (red) for
two KCs in terms of PN input, as a function of PN–KC connection
probability c. While the two former are both monotonically increasing, the
latter is maximized at c = ½. Representations of the outside world are thus
spread maximally across the target neuron population for connectivity ½.

Figures 2C,D show the predicted distribution of Hamming
distances between PN–KC connectivity vectors in the locust. Note
the mean Hamming distance between two KC connectivity vec-
tors (400) is also by far the most common value; it occurs with
probability 0.028. The main mass of the distribution is tightly
concentrated around the mean value (Figure 2C): 0.9997 out of
a total mass of 1 of the PDF lies within ±50 PN inputs from the
mean (shaded area in Figure 2C); randomly chosen pairs of KCs
will thus almost always (in 99.97% of cases) have input-ensembles
differing by 350–450 PNs. The PDFs take extremely small values

further away from the mean, as better seen on a semi-logarithmic
scale (Figure 2D, shaded area is same interval): note the minis-
cule probabilities outside the interval 350–450. The probability
that two different KCs will sample the exact same PN ensem-
ble is ∼10−241, and the probabilities that their input-ensembles
will differ by 1, or 2, or 3 inputs are 10−238, 10−235, and 10−233,
respectively—vanishingly small numbers in all these cases.

MODEL RESULTS II: NEURONAL ACTIVITY AND PROPERTIES OF INPUT
TO KCs
Up until now, we only considered the properties of the connec-

tivity matrix,
↔
W . To see what happens when neural activity is

added in, let us put some flesh on the dry skeleton, and proceed to

explore the aggregate input to KCs (
⇀

k ) during network activity—
corresponding to their sub-threshold membrane-potential. The
symbol � denotes the mean aggregate input to a KC, averaged
over all possible PN-population states and across all KCs. Then

� ≡ 〈ki〉�S,i =
〈〈

N∑

j = 1

WijSj

〉

�S

〉

i

=
〈

N∑

j = 1

Wij
〈
Sj

〉
�S

〉

i

= p ·
N∑

j = 1

〈
Wij

〉
i = Npc

the mean aggregate input to a KC during our arbitrary time
window is thus a simple product of the number of PNs, proba-
bility of spiking in a single PN during this snapshot and PN–KC
connection probability (Figure 4A).

� will denote the variance of ki, averaged across all KCs and
over all possible PN-population states (Figure 4B) (see Appendix
A2 for full derivation):

� ≡ 〈var(ki)〉i=
〈〈(

ki − 〈ki〉�S
)2

〉

�S

〉

i

=
〈〈⎛

⎝
N∑

j = 1

WijSj −�

⎞

⎠

2〉

�S

〉

i

=
N∑

j = 1

N∑

k= 1, j �= k

〈
WijWik

〉
i

〈
SjSk

〉
�S + . . .

+
N∑

j = 1

〈
W2

ij

〉

i

〈
S2

j

〉

�S − 2� ·
N∑

j = 1

〈
Wij

〉
i

〈
Sj

〉
�S +�2

= Npc(1− pc)

So we have explicitly expressed the mean and variance of the
aggregate input ki (Figures 4A,B) as a function of basic network
parameters. Note that variable ki is a product of two mutually
independent, binomially distributed variables: the momentary
vector of spiking in the PN population [a binomial with parame-
ters (N, p)], and the vector of connections between the PN set and
the KC [a binomial with parameters (N, c)]. Their dot product,
ki, is also a binomial variable, with parameters N and p · c, as
indicated by the calculations of � and �.
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FIGURE 4 | Theoretical properties of network input to KCs.

(A–D) Analytically calculated properties of the aggregate input to KCs (k)
during network activity. Aggregate input is also analogous to KC
membrane-potential (see text). Each property plotted as a function of
PN-spiking probability p and PN–KC connectivity c, and averaged over all
antennal-lobe states. N = 800 PNs is assumed in all cases. Left, surface
plot; right, contour plot. Contour intervals are identical within each plot.

Dash-dot lines indicate ridge contours. For clarity, isoline values are
sometimes indicated beside plot (when contour lines are too dense for
inline labeling). (A) Mean aggregate input per KC, � [units of PNs]; contour
interval, 40. (B) Variance of aggregate input per KC, � [units of PNs];
contour interval, 10. (C) Covariance between aggregate inputs to two KC
[units of PNs]; contour interval, 10. (D) Correlation coefficient between
aggregate inputs to two KC [unitless]; contour interval, 0.05.
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To what extent are aggregate inputs to two KCs correlated
with each other? Calculating their covariance (Figure 4C) we get
(Appendix A3):

〈cov(kr, kt)〉r �= t =
〈〈(

kr − 〈kr〉�S
) (

kt − 〈kt〉�S
)〉
�S
〉
r �= t

=
〈〈(

N∑

i = 1

WriSi−�

)⎛

⎝
N∑

j = 1

WtjSj−�

⎞

⎠
〉

�S

〉

r �= t

=
N∑

i= 1

N∑

j= 1, i �= j

〈
WriWtj

〉
r �= t

〈
SiSj

〉
�S + . . .

+
N∑

i = 1

〈WriWti〉r �= t

〈
S2

i

〉
�S − . . .

−�

N∑

i = 1

〈Wri〉r �= t 〈Si〉�S − . . .

−�

N∑

j = 1

〈
Wtj

〉
r �= t

〈
Sj

〉
�S +�2 = Nc2p(1− p)

and their correlation coefficient (Figure 4D) is:

〈ρ(kr, kt)〉r �= t =
〈

cov(kr, kt)√
var(kr) · var(kt)

〉

r �= t
= Nc2p(1− p)

√(
Npc(1− pc)

)2

= c − pc

1− pc

Note that both covariance and correlation coefficient have non-
negative values in our model (as p and c are probabilities,
1 ≥ p, c ≥ 0, and N is the number of PNs, N ≥ 0); this is
expected in a network with architecture as described—with all
connections feed-forward and excitatory—and with no correla-
tions assumed between external inputs to the system. For c = 1,
the correlation coefficient is 1 (as all KCs see the exact same
input); for c = ½ the correlation coefficient is 1− p

2− p , ranging

between 0 and ½.

MODEL RESULTS III: INTER-KC DIFFERENCE IS MAXIMAL FOR
CONNECTIVITY ½
We now touch a fundamental question: for given network param-
eters, how much do target neurons differ from each other in
their aggregate inputs? This will tell us how much two KCs dif-
fer in sub-threshold membrane-potentials within a given cycle
in the active network (earlier we asked how connectivity vec-
tors differ; Section “Model Results I: Exploring Properties of the
Connectivity Matrix”). Let us calculate the difference, D(X, Y) ≡
|X − Y |, between aggregate inputs to two KCs (see Appendix A4
for alternative derivation):

D(kr, kt) ≡
〈〈|kr − kt |〉�S

〉
r �= t = N · 〈〈(WriSi −WtiSi)

2〉�S
〉
r �= t

= N · 〈〈(WriSi)
2 − 2WriWtiS

2
i + (WtiSi)

2〉�S
〉
r �= t

= N ·
(
〈Wri〉r �= t · 〈Si〉�S− 2 〈WriWti〉r �= t ·

〈
S2

i

〉
�S + . . .

+〈Wti〉r �= t · 〈Si〉�S
)

= N · (cp − 2c2p+ cp
) = 2pNc (1− c)

It is straightforward to see that when taken as a function of
PN–KC connection probability, D is maximal for c=½; this holds
for any positive p and N (i.e., for all biologically relevant cases,
with non-zero PN-firing probability and more than zero PNs in
the network). The behavior of D as a function of p and c is shown
in Figure 5A, and in normalized form in Figure 5B.

The above proves that when each target-cell samples half of
the source-neurons, the mean difference between inputs to any
two targets is maximized. Stated differently, each KC is on aver-
age maximally different from all other KCs in the information it
carries about the external state.

INTER-KC DIFFERENCE: PLUGGING IN REAL-DATA VALUES
We can now introduce the values measured experimentally in the
locust into our model. At baseline, PNs typically fire at∼2.5–4 Hz
(Perez-Orive et al., 2002; Mazor and Laurent, 2005). The rele-
vant integration time window for KCs is the 50 ms odor-induced
oscillation cycle (Perez-Orive et al., 2002); even in the lack of
oscillations EPSPs in KCs have a time course of several tens of
milliseconds (Jortner et al., 2007). This provides a crude estimate
of p, the probability of spiking within the relevant time window:

p ≈ 0.125–0.2 (Perez-Orive et al., 2002; Mazor and Laurent,
2005);
c ≈ 0.5 (PN–KC connectivity measurements; Jortner et al.,
2007);
N ≈ 800 (axon count in the PN–KC tract; Leitch and Laurent,
1996).

Introducing these numbers into D = 2pNc (1− c), the mean
difference between two KCs is equivalent to 50–80 PN inputs
(Figure 5C). If only 100 PNs converged onto each KC (c = 0.125),
the mean difference would be 22–35 PNs, and with only 10
PNs per KC (c = 0.0125, as previously estimated; Perez-Orive
et al., 2002), it would be equivalent to only 2.4–4 PNs at baseline
(Figure 5C)!

During odor presentation, average PN firing-rates do not
change significantly over the population (Mazor and Laurent,
2005). However, as PN-spikes are now confined to about half
the oscillation cycle (the rising phase; Laurent and Davidowitz,
1994; Laurent et al., 1996; Wehr and Laurent, 1996), p effectively
increases by ∼factor 2 (by virtue of the time window “shrink-
ing”). The mean difference between two KCs thus increases to
100–160 PNs during odor; if the fan-in were 100 PNs per KC
(c = 0.125), or 10 PNs per KC (c = 0.0125), the mean difference
would become 44–70 PNs, or 5–8 PNs, respectively.
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FIGURE 5 | Distance between KC inputs (or membrane-potentials).

(A) Difference (D) between aggregate inputs to two different KCs (averaged
over all pairs of different KCs and over all antennal-lobe states) as a function
of PN-firing probability p and PN–KC connection probability c. D is a parabola
in c (with maximum at c =½) and increases linearly with p and with N.
N = 800 PNs is assumed. D is in PN inputs. Left, surface plot; right, contour

plot, contour interval is 20. (B) Normalized difference and covariance
between KCs as a function of connectivity c; normalized D and cov are
unitless, independent of N and p and vary between 0 and 1. (C) Predicted
difference between two KCs for PN-firing parameters measured of in the
locust olfactory system (at both extremes of the range): N = 800, p = 0.125
(2.5 Hz, red), and p = 0.2 (4 Hz, magenta).

MODEL RESULTS IV: ESTIMATING FIRING THRESHOLD AND
SPARSENESS
The above observations do not yet relate to KC response prop-
erties, as we up to now ignored membrane non-linearities and
spiking. What happens when we impose a firing threshold,
and assume the KC spikes once it is crossed? We now use the
assumption of independence across PNs, and the fact that many
of them respond to each odor and during each cycle (accord-
ing to this model N · p per time window, or 100–160 PNs for
values N = 800, p = 0.125–0.2. According to experimental data,
100–150 PNs fire per cycle; Mazor and Laurent, 2005). With these
assumptions, we can apply the Central Limit Theorem (CLT) to
the summation of inputs onto a KC: we can treat k as a Gaussian
random variable, fully defined by its mean (�) and variance (�)
which we calculated (Section “Model Results II: Neuronal Activity
and Properties of Input to KCs”):

ki =
N∑

j = 1

WijSj

ki ∼ Norm(�,�) = Norm(Npc, Npc(1− pc))

where Norm(X, Y) stands for a Normal distribution with mean
X and variance Y. So for a given threshold f (in units of PN
inputs), the probability of the ith KC crossing the threshold
(i.e., spiking) is:

Pr(ki ≥ f ) = 1√
�2π

+∞∫

f

e
−(x − �)2

2� dx

= 1− 1√
�2π

f∫

−∞
e
−(x − �)2

2� dx = 1− Q
(

f−�√
�

)

where Q(z) denotes the Normal cumulative distribution function
(CDF) of variable z (Figure 6A). If the firing threshold of KCs f is
set to:

f = � + z · √�

this will result in a known and defined fraction of all KCs—
equal to the area of the tail of the Gaussian [given by the CDF,
1− Q(z)]—crossing the firing threshold for a given PN-
population state. Similarly, a given KC will cross threshold f in
response to a known fraction [again, the area of the tail 1−
Q(z)] of all PN-population states. This function, illustrated in
Figure 6A, thus links the KC firing threshold with both the sparse-
ness and the selectivity of the mushroom body neural code (as
described in the Introduction).

To demonstrate the usage of this function: a hypothetical
feed-forward network which satisfies our assumptions (Section
“Model Assumptions”) has parameters N = 100, p = 0.5, and
c = 0.2. If we wish to “design” a population of target neurons
with a particular level of sparseness (say we want each respond-
ing to 2.3% of external states), we will set their firing thresholds
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FIGURE 6 | Linking KC firing threshold and response properties.

(A) Dependence of Kenyon cell response sparseness on firing threshold.
Kenyon cell aggregate input, or membrane-potential, k, behaves as a
Gaussian random variable with mean � and variance � under model
assumptions; KC-response probability is the probability of aggregate input
crossing firing threshold f (red shaded area). This defines both
single-neuron selectivity (i.e., the average fraction of states which evoke
firing in a given cell) as well as population sparseness (i.e., the fraction of
KCs responding to an average state). (B) KC responses to partially
overlapping PN activity patterns. Pairs of PN activity vectors differing from
each other by exactly d bits present a KC with quantifiably different
aggregate inputs. The summed probabilities of the KC responding to the
first pattern and not the second (brown) or vice versa (violet) reflect the
Hamming distance between KC activity vectors. This function thus
expresses the difference between target-states given the difference
between source-states. (C–D) Difference between Kenyon cell activity
vectors as a function of difference between PN activity vectors. Difference
is expressed as Hamming distance normalized by the vector-length (or
number of neurons in the population). The nine different curves represent
different KC firing thresholds, equivalent to (left to right) [0, 1, 2, . . . , 8]
standard deviations above the mean aggregate input. Above the diagonal
(stippled line) are regimes where Kenyon cell activity vectors differ from
each other more than the corresponding PN activity vectors: i.e., where
pattern-separation occurs. Below the diagonal are regimes where different
PN activity vectors evoke relatively close KC activity vectors: i.e.,
generalization/retrieval occurs. Parameters of the locust olfactory system
are used, and (C) and (D) differ by PN-firing rate: (C), p = 0.2,
corresponding to PNs firing at 4Hz; (D), p = 0.125, corresponding to PNs
firing at 2.5 Hz; Note how increasing threshold affects curve shape and
relative regimes of generalization vs. discrimination.

to be equivalent to 2 standard deviations above their mean
aggregate-input (as 1− Q(2) = 0.023), or:

f = Npc + 2 · √Npc(1 − pc)

= 10+ 2
√

9 = 16 simultaneous inputs.

A basic, gross prediction which naturally emerges from the
threshold-sparseness function is that when the target neurons’
threshold is equal to their mean aggregate input (�), each tar-
get neuron responds to half of all external states [as Q(0) =
1− Q(0) = 0.5]; this is the most-distributed code possible (also
known as a holographic code; Földiák, 2002), and thus sparse
coding is conditional on a threshold significantly higher than that,
requiring f >> � .

THRESHOLD ESTIMATION: PLUGGING IN REAL-DATA VALUES
Let us now test the predictions on firing threshold and sparseness
using experimental parameters from the locust. Section “Inter-
KC Difference: Plugging in Real-Data Values” shows the network
parameters for PN-firing rates (p ≈ 0.125–0.2), PN–KC connec-
tivity (c ≈ 0.5) and PN number (N ≈ 800). Given these, the
aggregate input a KC gets is on average

� = Npc ≈ 50–80 PN inputs per cycle

and its standard deviation is:
√

� = √
Npc(1 − pc) ≈ 7–8 PN inputs per cycle

So for KCs to each respond to ∼1% of all PN-population states,
their threshold has to be ∼2.5 SDs above the mean aggregate
input: f ≈ 98–101 PN-inputs for firing rate of 0.2 PN-spikes/cycle
(4 Hz), or f ≈ 67–69 PN inputs for 0.125 PN-spikes per cycle
(2.5 Hz).

This result is in good agreement with experimental measure-
ments of KC-response sparseness (∼1–2% using intracellular
recordings; Jortner, 2009) and their firing threshold (f ≈ 100
assuming linear summation and full PN-synchrony; Jortner et al.,
2007). The estimate’s deviation toward the higher end of the pre-
dicted range may be due to supra-linear summation in KCs at
depolarized membrane-potentials (Laurent and Naraghi, 1994;
Perez-Orive et al., 2002, 2004).

MODEL RESULTS V: NOISE TOLERANCE AND GENERALIZATION
Olfactory stimuli are by nature noisy and variable. PNs show sig-
nificant trial-to-trial variability when presented with the same
odor repeatedly, yet in KCs noise is considerably reduced. Another
issue is that some stimuli are similar to each other (either because
of chemically related odorant molecules, or because they are
mixtures with overlapping components) and others are differ-
ent. Both points—the way the system tolerates noise and the
way it encodes similar or different inputs—are closely related, in
that both require us to examine how two overlapping PN-firing
patterns are transformed into KC firing patterns.

Recall S, the set of all possible activity vectors of the source-

population. Let us define {
⇀

Ṡ ,
⇀

S̈ } as the subset of vector-pairs in S

which differ from each other by exactly d-bits. Formally then:

{
⇀

Ṡ ,
⇀

S̈∈ S|H(
⇀

Ṡ ,
⇀

S̈ ) = d}

The aggregate-input vectors to the target-neuron population

which are evoked by
⇀

Ṡ ,
⇀

S̈ will be
⇀

k̇ ,
⇀

k̈ , respectively; vec-

tors
⇀

K̇ and
⇀

K̈ will be the resulting activity vectors of the
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target-population. Aggregate inputs which a single KC gets in

response to
⇀

Ṡ ,
⇀

S̈ will differ by:

〈
D(k̇r, k̈r)

〉

{
⇀

Ṡ ,
⇀

S̈ }
= 〈∣∣k̇r − k̈r

∣
∣〉

r,{
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Ṡ ,
⇀

S̈ }
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〈(

WrjṠj −WrjS̈j
)2

〉
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⇀
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〈
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〉
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〉
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+ . . .
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〉
r ·

〈
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〉

{
⇀
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⇀
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= Nc ·
(

〈
Ṡj

〉

{
⇀
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〈
ṠjS̈j

〉
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⇀
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+ 〈
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〉

{
⇀
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⇀
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)

= Nc
(

p− 2p
(

1− d
N

)
+ p

)
= 2cpd

and so

k̈r = k̇r ∓ 2cpd

Earlier we linked KC aggregate input and firing threshold to their
firing probability (Section “Model Results IV: Estimating Firing
Threshold and Sparseness”; Figure 6A); let us use the same for-
malism now. The probability that a single KC responds differently
to two PN-states is simply the probability one of these states
drives it across the threshold and the other does not. This is
demonstrated graphically in Figure 6B and is exactly the rationale
behind the following calculation:

〈
D(K̇i, K̈i)

〉

{
⇀

Ṡ ,
⇀

S̈ }
= 〈∣∣K̇i − K̈i

∣
∣〉

{
⇀

Ṡ ,
⇀

S̈ }
= Pr

(
K̇i = 1, K̈i = 0

)+ Pr
(
K̇i = 0, K̈i = 1

)

= Pr
(
k̇i ≥ f , k̈i < f

)+ Pr
(
k̇i < f , k̈i ≥ f

)

= Pr
(
k̇i ≥ f , k̇i < f + 2cpd

) + . . .

+ Pr
(
k̇i < f , k̇i ≥ f − 2cpd

)

= 1√
�2π
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f

e
−(x − �)2

2� dx + . . .
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�2π
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e
−(x − �)2

2� dx

= Q
(

f + 2cpd − �√
�

)
− Q

(
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�

)

What about the activity vectors for the KC population, given
similar PN input? The mean Hamming distance between two
KC activity-patterns given Hamming distance d between the PN
activity patterns will simply be the above expression multiplied by
the number of KCs, M. We can thus write:

〈
H(

⇀

K̇,
⇀

K̈)

∣
∣∣
∣H(

⇀

Ṡ ,
⇀

S̈ ) = d

〉

= M
(

Q
(

f + 2cpd−�√
�

)
− Q

(
f − 2cpd−�√

�

))

NOISE TOLERANCE AND GENERALIZATION: PLUGGING IN REAL-DATA
VALUES
So how well does the locust olfactory system tolerate noise? The
results are shown in Figures 6C,D, where I feed into the rela-
tion derived in the previous section the parameters from the
locust circuitry. Two PN activity-patterns, differing by 0–800 bits
(x axis, normalized to 0–1) evoke KC activity-patterns differing by
0–50,000 bits (y axis, normalized to 0–1). The diagonal (stippled
lines) in both figures shows where the hypothetical curve would
pass if normalized distance between representations would not
change in transition from PNs to KCs. In fact, the relation has a
sigmoid shape, meaning PN patterns close to each other become
even closer in the KC population; whereas PN patterns which are
different become more different (note that distances are normal-
ized to the population size). The nine different sigmoid curves
show the relation between input- and output-overlap when the
firing threshold is varied (left to right: 0–8 standard deviations
above the mean aggregate input). The setting of the firing thresh-
old clearly controls the boundary between generalization and
discrimination; a boundary which is surprisingly sharp.

In the locust olfactory system, the KC threshold is located
∼2.5 SDs above the mean aggregate input (commensurate with
a sparseness of ∼1% as observed; see Section “Threshold
Estimation: Plugging in Real-Data Values”). As seen in
Figures 6C,D, for this value the Kenyon cell population
generalizes (or, tolerates noise) for PN patterns which are within
up to ∼50–100 bits away from the PN–KC connectivity vectors,
and discriminates for ones which are farther. This means, that
with parameters from the locust, the boundary between discrim-
ination and generalization lies in a biologically realistic regime
for highly sparse coding (recall that for binary 800–dimensional
vectors, over 99.9% of space is removed 350–400 bits from any
given vector; Figure 2).

SUMMARY OF MODEL RESULTS AND PREDICTIONS
This analytic model produces several insights and predictions,
applicable to both the locust olfactory circuitry as well as to
feed-forward systems in general. As the model was designed
with generality in mind, its results depend only minimally on
particular parameter values. Here is a brief summary:

(1) In a feed-forward system with random connectivity, pairs of
connectivity vectors from source- to target-population have
a maximal Hamming distance for connection probability ½.

(2) Hamming distances between connectivity vectors are
mostly very similar to each other and to their mean value;
connectivity vectors significantly more similar to each other
(or, more different from each other) will be extremely rare
(negligible).

(3) Differences in aggregate input (or sub-threshold
membrane-potential) between target neurons are maximal
for c = ½. In the locust antennal-lobe–mushroom-body
circuit, where such connectivity is realized, pairs of KCs thus
differ from each other by an equivalent of 50–80 PN-inputs
during baseline, and of 100–160 PN-inputs when odor is
presented. These differences decrease significantly when
connectivity shifts away from ½ (in either direction): with
connectivity of 10 PNs per KC (as previously estimated;
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Perez-Orive et al., 2002) differences between KCs would be
equivalent to only 2.4–4 PN inputs (∼factor 20 lower than
for c =½).

(4) The standard deviation of sub-threshold membrane-
potential in target neurons is maximal when the prod-
uct of spiking probability in the source-neurons (p) and
connectivity between the source- and target-populations (c)
is ½. In locust KCs, the standard deviation of membrane-
potential is predicted to be equivalent to the sum of 7–8
PN-inputs, or∼0.6–0.7 mV, in good agreement with exper-
imental measurements.

(5) The covariance of aggregate inputs to two different target
neurons will be maximal for p=½, and will increase as∼c2.

(6) Both the covariance and correlation coefficient between tar-
get neurons are predicted to be always positive under the
assumptions taken. This is intuitive, given that no correla-
tions were assumed in the external input driving the system,
and only feed-forward excitatory connections exist.

(7) The correlation coefficient between target neuron
membrane-potentials is expected to range within 0–0.5
for c = ½. Particularly, in the locust, where c = ½ and
PN-spiking probability is 0.125–0.2 per cycle (2.5–4 Hz),
correlation coefficients between KCs are predicted to
be 0.4–0.5. This remains to be tested experimentally
with dual-intracellular KC recordings. A related test—
namely measurements of correlations between single-KC
membrane-potentials and local-field-potentials—yielded
correlation coefficients around 0.3 (Jortner et al., 2007).

(8) The response probability (and sparseness) of target neurons
in a feed-forward system with parameters N, p, c is deter-
mined by their firing threshold, and is well approximated by
the area of a Gaussian tail. The threshold-sparseness func-
tion predicts the fraction of states a target cell responds
to, and the fraction of target cells responding to any given
state. It generates the basic prediction that for a threshold
equivalent to the target neurons’ mean aggregate input, � (a
product of source-neuron firing rate, source-neuron num-
ber and connectivity), target neurons will respond to ½ of
all source-population states; so to produce sparse coding the
threshold must exceed that value: f >> � .

(9) Applying the threshold-sparseness function to the locust
olfactory system, the firing threshold measured (∼100
inputs, assuming perfect synchrony and linear summation)
well predicts the measured KC sparseness level (∼1–2%)
and vice-versa (1% sparseness predicts a threshold of
∼70–100 inputs, depending on PN-firing rate).

(10) Given a network with parameters N, p, and c = ½, if target

neurons have a firing threshold of f (z) = Np+ z · √Np(2− p)
2

(see Appendix A5), then each target neuron will respond
to 1− Q(z) of source-population states, and different tar-
get neurons will respond to maximally different states. The
difference between the target neurons will on average be
N · p

2 . Combined with adaptive gain control to ensure that
f is changed appropriately when p changes (Papadopoulou
et al., 2011), this yields a simple way to design a network
with an arbitrarily sparse level of activity, and with specific
and reliable neural responses to external states.

DISCUSSION: LINKING NETWORK ARCHITECTURE
AND NEURAL CODING IN THE
ANTENNAL-LOBE–MUSHROOM-BODY CIRCUIT
Integrating theory and experiment, I here discuss how the archi-
tecture of the locust olfactory system gives rise to Kenyon cell
coding properties: specificity, reliability, low firing rates, corre-
lations, and sparseness, and how these can be utilized to build
higher-level representations of the animal’s world. Several predic-
tions with potentially broader implications will follow.

CONNECTIVITY ½ MAXIMIZES DIFFERENCES BETWEEN TARGET
NEURONS
The key experimental finding motivating this study was that each
KC in the mushroom body receives synaptic connections from
antennal-lobe PNs with probability ½, each thus sampling 400
of the 800 PNs (Jortner et al., 2007). At first, this result may seem
very surprising—because it seems counterintuitive that KC speci-
ficity could arise from such broad PN inputs. It makes sense,
however, when viewed from a combinatorics perspective: the
number of ways to pick n elements out of N is given by the
binomial coefficient:

[
N
n

]
= N!

n!(N − n)!

This expression is maximal for n = N/2, decreasing sharply
and symmetrically around it. The fundamental realization that
choosing half the elements maximizes the number of possi-
ble combinations has dawned independently on several thinkers
throughout history—from Pingala (India, 2nd–5th century BC,
commentated by Halayudha, 10th century AD), through Al Karaji
(Persia, 953–1029), Omar Khayyam (Persia, 1048–1131), Yang
Hui (China, 1238–1298), Niccolo Tartaglia (Italy, 1500–1557) to
Blaise Pascal (France, 1655).

How is this relevant to the olfactory system? Think of each KC
as if picking the PNs it will listen to. If each KC sampled only
n = 1 of N = 800 PNs, there would be exactly 800 ways to pick
which PN to sample (similarly, if each KC sampled 799 out of the
800 PNs; where there would be exactly 800 ways to pick which PN
not to sample). However, when sampling half the PNs, n = 400,
the number of ways to do so is maximal, and equals 800!/400!400!
≈10240. This is an immense number—beyond astronomical—
and way too large for any example from nature to demonstrate
it. It is roughly equivalent to the number of atoms in the known
universe (estimated at∼1079) taken to the power of three. . .

But as there are only 50,000 KCs in the locust mushroom
body, only 5 · 104 combinations are realized out of this vast pool
of possibilities. What is the probability that two randomly cho-
sen KCs sample the exact same PN-ensemble? The answer is
≈10−240, which is for all practical purposes zero. And what is
the probability that two KCs sample very similar PN-ensembles—
that is, ensembles differing from each other by just one, or
2 or 3 inputs? The answers are 10−238, 10−235, and 10−233,
respectively—all vanishingly small. In fact, the average pair of KCs
will differ by∼400 PN inputs (Figure 2C), which also constitutes
the most common case (occurring with probability 0.028), and
99.97% of KC pairs will deviate from it by less than 50 inputs
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(Figures 2C,D). This stems from a key property of binomial dis-
tributions with large N: most of their mass occupies a very narrow
band around their mean.

By this reasoning (proven for generalized cases in Sections
“Model Results I: Exploring Properties of the Connectivity
Matrix” and “Model Results III: Inter-KC Difference is Maximal
for Connectivity ½” for connection vectors and membrane-
potentials, respectively) each target neuron receives a unique set
of source-neuron inputs, very different from that of all other
target neurons. KCs are maximally different from each other in
what they tell us about the world of inputs, because their con-
nectivity vectors are drawn from a pool which is maximal. This
feature of the KC population results directly from combinatorics,
and from the probability ½ of receiving connections from their
source-neurons (Figure 3).

A critical comment raised by several colleagues against the
above argument is that while this architecture indeed maximizes
input separation, this optimum cannot reflect on biological real-
ity. The brain, they argue, could not come so close to it, because
the numbers in question are too large to be distinguished from
each other by a biological system. In other words, realizing 50,000
combinations of “only” 1022 (the number of ways to pick 10 PNs
from 800, corresponding to connection probability c = 0.0125)
would be already immensely sparse; and for all practical purposes
10240 (the number of ways to pick 400 from 800) is not “sparser.”
Moreover, since the mathematical optimum is not necessary, evo-
lution of such connectivity couldn’t have possibly been guided by
biological selection pressures.

The results presented here (Section “Inter-KC Difference:
Plugging in Real-Data Values”; Figure 5) refute this criticism.

While indeed the binomial coefficient

[
800
m

]
rises very steeply

with m and soon produces vast numbers, these numbers directly
translate into state-dependent differences in aggregate input, or
membrane-potential, produced across KCs (Figure 5B, normal-
ized difference; Figure 5C difference in inputs). If 80 PNs were to
connect to each KC (corresponding to c = 0.1), the amount by
which aggregate inputs to different KCs would differ—and the
system’s ability to discriminate between external states—would
drop approximately to a third of the optimum, and for 10 PNs
per KC (c = 0.0125) it would drop by a factor of 20. When
translated to membrane-potential differences between KCs, this
may be critical for readout, especially in the presence of noise.
This maximum is thus likely to be meaningful after all, and may
account for the exquisitely clean performance of sparse neural
systems feeding on noisy input.

WHAT DETERMINES HOW SPARSE THE CODE WILL BE?
KC aggregate inputs differ maximally as a result of the PN–KC
connectivity; yet while this property paves the road toward sparse
coding, it does not in itself suffice to explain the KCs’ rare fir-
ing: it is eventually their firing threshold which determines firing
probability and response sparseness (Section “Model Results IV:
Estimating Firing Threshold and Sparseness”). With such high
convergence ratio (400:1), target cells can afford to have a very
high firing threshold, which can account for KC specificity, reli-
ability, and low firing rates. Experimental measurements show

that KC firing threshold is equivalent to simultaneous activation
of ∼100 PN inputs assuming linear summation (Jortner et al.,
2007). An estimate based on intracellular recordings (and thus
less biased than extracellular studies, as it also captures cells fir-
ing rarely or not at all) suggests KCs respond to 1–2% of odors
tested (Jortner, 2009). Here, a theoretical function was derived
which links firing threshold and response probability (Section
“Model Results IV: Estimating Firing Threshold and Sparseness”):
it closely predicts the experimental results, estimating the firing
threshold necessary to achieve ∼1% KC sparseness at ∼67–
101 inputs, depending on PN-firing rates (Section “Threshold
Estimation: Plugging in Real-data Values”).

The threshold-sparseness function is quite sensitive to activ-
ity levels of the input network (Huerta et al., 2004; Jortner et al.,
2007; Nowotny, 2009). Since PN population activity produces a
range (100–150) of spikes per cycle (Mazor and Laurent, 2005),
this can result in instability of the code—causing some external
states to activate a large number of KCs and others to activate
none at all (Papadopoulou et al., 2011). This requires adaptive
gain control of the KC firing threshold to fit the actual activ-
ity level of the input; one mechanism shown to maintain output
sparseness over a wide range of input conditions in the locust
takes place via a large, non-spiking GABAergic interneuron with
extensive connectivity and graded release properties; it forms a
negative-feedback loop onto KCs and adaptively regulates their
population output on a cycle-to-cycle basis (Leitch and Laurent,
1996; Papadopoulou et al., 2011).

In a theoretical exploration of the hippocampus, O’Reilly and
McClelland (1994) also find that a “floating threshold” (as they
phrase it) is highly useful for determining response sparseness
under different input conditions and postulate that adjustment
of the threshold can be useful for shifting between pattern-
separation (or discrimination, or new-category formation) and
pattern-completion (or generalization, or recall).

It should be noted that the threshold-sparseness function
derived here is independent from the results on connectivity, and
it can be applied to systems with any parameters.

EFFECTS OF PN–KC CONVERGENCE: RELIABILITY AND CORRELATIONS
While overall PN–KC circuit-architecture is highly divergent due
to the increase in dimensionality, the connectivity scheme makes
single KCs receive massively convergent input (from 400 PNs).
Together with the high and adaptive KC-threshold, this con-
vergence sub-serves the KCs’ reliable, low-noise performance:
summing many PN-inputs prior to KC threshold (f ) crossing is
equivalent to massive averaging of PN activity. This reduces the
significant variability (i.e., noise) present in individual, cycle-wise
PN responses by a factor of 1/

√
f ; in locust KCs, where f ≈100,

noise is thus reduced∼10-fold.
Another interesting effect of this convergence is the coexis-

tence of correlations and differences in the mushroom body.
While membrane potential-differences between different KCs are
maximized, they are still predicted by the model to co-vary sig-
nificantly (Figure 5B), with correlation coefficients of 0.4–0.5
[see Section “Summary of Model Results and Predictions”;
Prediction (7)]. Indeed, while the mushroom body code is highly
sparse and specific (Perez-Orive et al., 2002; Jortner, 2009), a
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salient property of KC intracellular membrane potentials is their
strong correlations with the mushroom body local field potential
(Laurent and Naraghi, 1994; Jortner et al., 2007), implying that
they are also highly correlated with each other. How can strong
correlations between cells, which we naturally tend to associate
with similarity, exist side by side with maximal difference between
them?

To answer this apparent paradox we examine the inputs
KCs receive vs. the outputs they produce. Correlations between
membrane-potentials of two KCs result from massive overlap in
their aggregate input: they share on average ∼200 incoming PN-
synapses, and 25–40 active PN-inputs per oscillation cycle. The
relevant feature for the system is, however, the number of inputs
by which they do not overlap (Figure 3): each also receives on
average ∼200 PN synapses (25–40 active ones per cycle) which
the other does not; so they differ by 400 synapses (50–80 active
inputs per cycle). The non-linearity imposed by the KC-threshold
makes the two properties—correlations and difference—strongly
diverge at this point: two KCs can get highly correlated inputs, yet
may easily sit across different sides of the threshold, which in turn
determines who will fire and who won’t; both correlations and
differences can thus coexist between them.

The general message is that while sub-threshold correlations
naturally arise from input overlap in highly interconnected sys-
tems, they do not necessarily imply similarity in function (or
output) between neurons; depending on network design and
on the parameter taken as readout, the non-overlapping input
may outweigh the overlap (as shown for KCs). Eventually, the
non-linearity of thresholding enables brains to parse the world
into percepts and build representations from them. Membrane-
potential correlations between KCs may in this case be side effects
of the interconnected architecture, rather than a computational
feature of the code.

NEURAL DESIGN-PRINCIPLES FOR GENERATING A SPARSE CODE
As pointed out in the Introduction, a prerequisite for understand-
ing a neural system is characterizing its basic features—individual
components, connectivity and external input. Formulating higher
properties in terms of these features bridges levels of descrip-
tion and thus constitutes deeper understanding. This approach
was used here link network design and sparse coding in the
antennal-lobe–mushroom-body circuit. The experimentally mea-
sured parameters f, c, p—corresponding exactly to the individ-
ual unit input–output function, connectivity and input—were
used to express distance-measures between connectivity vectors
and between target neurons, sub-threshold behavior and coding
sparseness.

Three main principles govern the design of the antennal-lobe–
mushroom-body circuit: First, there are many more target cells
than source cells (∼50,000 vs. ∼800); a factor ∼102 increase in
dimensionality between the two odor-representations. Second,
the probability of connection between the principal neurons of
both relays is ∼½; each target thus samples ∼400 of 800 sources.
Third, target-cell firing threshold is high, equivalent to simulta-
neously activating ∼100 of their inputs, and can be fine-tuned to
fit different activity-levels of the source network.

Due to the high threshold, each external state (or here, PN
activity pattern) activates only a small subset of KCs. However,

due to the connectivity scheme, different external states activate
different KC-subsets. The activation of very small, very different
subsets of cells in response to different external states suffices to
produce a sparse and selective neural code as we defined it (see
“Introduction”, and Jortner et al., 2007). At the same time, the
high PN convergence onto individual KCs explains why KCs are
so reliable on the one hand, and on the other hand why their
membrane-potentials are noticeably correlated with the local-
field potential (Laurent and Naraghi, 1994; Perez-Orive et al.,
2002; Jortner et al., 2007), an observation that initially seemed
paradoxical (Jortner et al., 2007). Finally, with thresholds so
high, it is not surprising that the chances of “accidental” spik-
ing are very small, and that KC spontaneous-firing rates are
extremely low.

The design principles described here thus lead to reliable,
specific—sparse as well as selective—representations of random
olfactory-percepts in the mushroom body, and form a simple way
to make a sparse code spontaneously emerge, with no need for a
“guiding hand” such as learning or predetermined connections.

The total number of KCs, their fraction activated per external
state, the levels of noise, and the cost function of classification
errors will together determine how state-space is tiled—or how
many odors can be reliably encoded by the mushroom bodies
(and also, how many KCs are needed to encode a certain number
of odors). A meaningful estimate is beyond the scope of this work,
as a critical parameter—how distant KC representations must be
from each other within noise constraints—is unknown.

Directly from the above principles emerges a simple recipe
for designing networks with optimal separation of representa-
tions and arbitrarily specific responses. If two neuronal pop-
ulations have feed-forward connectivity with probability ½, N
source-neurons firing p spikes per characteristic time, and target

neuron firing threshold is equivalent to f (z) = Np+ z · √Np(2− p)
2

(Appendix A5), then each target neuron will respond to a known
proportion of source-population states (the area under Gaussian
tail 1− Q(z)), and different neurons will respond to maximally
different states. Adaptive gain control should be implemented to
ensure f changes appropriately when p changes (Papadopoulou
et al., 2011). At any given time, target neurons’ aggregate inputs

(momentary membrane-potentials) will on average differ by N · p
2 .

GENERALIZATION vs. DISCRIMINATION
An inherent dilemma when parsing sensory input is where to
draw category-lines. Sometimes a stimulus must be recognized—
i.e., grouped into an already-existing category—even if it has
never been previously encountered in the exact same form. This
allows recognition of sensory stimuli in the presence of noise, as
well as grouping things together into meaningful categories (i.e.,
generalization), both of which are essential requirements for the
brain to perform its tasks.

In other cases, stimuli which may be very close to each other
need to be told apart. Discrimination is critical when selecting
food, for example. An extreme case is when the system needs
to decide that something is completely novel and merits a new
category of its own.

It is important to recognize that these tasks—discrimination
and generalization—contradict each other to some extent, yet
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sensory systems need to be able to do both, and sometimes on the
very same stimulus: something smells like a fruit (generalization),
but clearly does not smell like an apple, though (discrimination).

The model presented here provides some intuition on how this
may happen. As shown in Figures 6C,D, the same network can
perform both tasks: with the sigmoid-shaped relation between
source- and target-separation, stimuli close to each other at the
source-layer will be generalized by the population, whereas stim-
uli farther from each other will be discriminated. The boundary
between discrimination and generalization is rather sharp; and
its location is determined by the firing threshold, which can be
adapted (Papadopoulou et al., 2011).

KENYON CELLS CAN SERVE AS BUILDING BLOCKS FOR MEANINGFUL
(AND PLASTIC) REPRESENTATIONS AT THEIR TARGETS
The basic question we began our journey with is how the brain
creates specific, high-level, and eventually ecologically meaning-
ful percepts. The antennal-lobe–mushroom-body transformation
described above achieves a major step in this direction by sep-
arating representations and giving rise to specific and random
responses. However, it remains to be discussed how these ran-
dom response properties lead to ecologically relevant percepts,
and how this fits into the mushroom body’s widely accepted role
in learning [reviewed in Heisenberg (1998)].

The distribution of connection strengths between PNs and
KCs is rather narrow (Jortner et al., 2007); in addition PN–KC
synapses show no short-term plasticity, such as homo- or hetero-
synaptic facilitation or depression (Jortner et al., 2007). While
these observations do not rule plasticity out altogether, they def-
initely do not support plasticity playing a key role at PN–KC
synapses.

What happens at the transformation to the next relay?
Dendritic trees of β-lobe neurons (one of the main classes of
mushroom body outputs) are planar and oriented perpendicular
to the KC-axon tract; this structure suggests that β-lobe neurons
can integrate precisely timed neural activity over a potentially
wide subpopulation of KCs (Li and Strausfeld, 1997; MacLeod
et al., 1998). Cassenaer and Laurent (2007) showed that connec-
tivity from KCs to β-lobe neurons is low (∼2%), individual active
synapses are relatively strong (1.58± 1.11 mV) and exhibit salient
spike-timing dependent plasticity, which is sensitive even to single
action-potentials.

It is thus attractive to imagine the transformation of informa-
tion from the antennal-lobe to the mushroom body as happening
via widespread, random (or partially random) and largely fixed
connections—designed to spread neuronal information opti-
mally and create discrete, specific and reliable representations of
random features. This would prepare it for further computation
in downstream areas, such as the β-lobe—where more complex
ideas can then be constructed from these elementary building
blocks, much like words and phrases are constructed from an
alphabet (Barlow, 1972; Stryker, 1992). Hence as different KCs
respond specifically to various and different chemicals (or classes
of chemicals), proper wiring of connections and selection/tuning
of their strengths can generate high-level, invariant and “mean-
ingful” representations. For example, a hypothetical downstream
neuron responding only to odors associated with locust foods

could easily be constructed by connecting onto it only KCs firing
in response to various 5- and 6-carbon chained alcohols, alde-
hydes, and esters which are common odorants in grassy plants
(cheerfully nicknamed “green odors”; Hopkins and Young, 1990;
Bernays and Chapman, 1994). Similarly, some downstream neu-
rons can respond to odors indicating plant toxicity (for examples
of such chemical cues see Cottee et al., 1988).

At this downstream stage, learning (i.e., tweaking of incom-
ing synapses from KCs) can shape and tune these represen-
tations, molding them to the animal’s specific surroundings.
Locusts, as many other generalist animals, readily adapt their
food-preferences to seasonal- and regional-variation of plants,
their nutritional value and the animal’s needs (see Cooper-
Driver et al., 1977; Bernays et al., 1992; Bernays and Chapman,
1994), and learning plays an important role in this (Dukas and
Bernays, 2000; Behmer et al., 2005). It is likely, that learn-
ing a different food-preference is accomplished by changes
at KC–β-lobe synapses, based on positive- and/or negative-
reinforcement signals—originating, for example, from the diges-
tive system (Behmer et al., 1999) and relayed via neuromodula-
tory reward/punishment signals, as shown in a variety of insect
species (Hammer and Menzel, 1995, 1998; Schwaerzel et al., 2003;
Unoki et al., 2005).

Learning can thus sculpt and tune higher neuronal represen-
tations, bringing neurons downstream of the mushroom body
to respond to “meaningful” stimuli; i.e., stimuli with ecological
importance for the animal (Barlow, 1972, 1985). Wiring each of
these β-lobe neurons further, to directly trigger a relevant motor-
program (e.g., for eating, avoidance, escape, etc.) would close the
loop from perception to action. This would result in a simple neu-
ral system which receives complex, high-dimensional and noisy
input and produces reliable animal behavior in response to it—
in other words, a simple brain that works—and where we are
approaching a deeper mechanistic understanding of the process.

SWITCHING BETWEEN CODING SCHEMES
A large body of work is focused on sparse codes, pointing out
their many benefits (e.g., Barlow, 1972; Palm, 1980; Baum et al.,
1988; Kanerva, 1988, 1993; Földiák, 1990, 2002). Sparse codes are
attractively easy to read out, as few spikes from few neurons trans-
late to meaning, eliminating the need to integrate over an entire
population or over a long time (Földiák, 1990, 2002). Forming
associations is easy, as learning has to act on few nodes; in the
theoretical limit-case (one-neuron-per-percept) tuning a single
synapse suffices to (asymmetrically) link two percepts (Palm,
1980; Baum et al., 1988; Kanerva, 1993). Complex, meaningful
ideas can be constructed by wiring-together basic random per-
cepts (see Section “Kenyon Cells Can Serve as Building Blocks
for Meaningful (and Plastic) Representations at their Targets”).
Finally, sparse codes are metabolically economical, although an
energetic trade-off exists between firing few spikes and main-
taining many cells (Levy and Baxter, 1996; Attwell and Laughlin,
2001). Sparse codes are thus attractive and economical substrates
for computation.

On the other hand, sparse coding has several serious draw-
backs. It is wasteful in hardware, as each neuron participates
only in a small fraction of representations (each percept requires
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devoted neurons and representations rarely share the same cells).
It is also extremely sensitive to neuronal damage, as losing neu-
rons results in loss of precepts or memories (Földiák, 2002).

Sparse codes thus seem unlikely candidates for applications
such as long-term memory storage, but they are very well suited
for applications such as short-term memory formation and asso-
ciative learning. I find it attractive to envision the brain as
functioning by transitioning back and forth between sparse and
distributed coding schemes across different regions, according
to the computations needed (Baum et al., 1988; Földiák, 1990,
2002). The design principles emerging from the present study
suggest a neural algorithm, or a recipe, of how such transition
may be (biologically and algorithmically) accomplished.

REGAINING COMPLEXITY: RE-EXAMINING THE MODEL’S INITIAL
ASSUMPTIONS
The model I presented here relies on several rather crude
approximations and assumptions (set forth in Section “Model
Assumptions”). I now re-examine them in light of experimen-
tal data, and wherever they deviate from biological reality, try to
assess how the model’s predictions are affected. In other words,
it’s time to make things complicated again.

My first assumption was using discrete time windows, dur-
ing which PN-spiking is treated as binary (firing or not). The
locust olfactory system operates with an internal 20-Hz clock
imposed on it (Laurent and Davidowitz, 1994; Laurent and
Naraghi, 1994; Perez-Orive et al., 2002, 2004); PNs rarely fire
more than once per 50 ms cycle (Perez-Orive et al., 2002, 2004),
with odor-evoked spikes confined to the 25 ms rising-phase of the
local field-potential oscillation (Laurent and Davidowitz, 1994;
Laurent et al., 1996; Wehr and Laurent, 1996). The assumption
is thus justified, at least for odor conditions. During baseline the
coherence of the PN population is much reduced (as reflected
by local-field potentials), yet most PNs retain a 20-Hz oscilla-
tory component, as spike-autocorrelations show (Jortner et al.,
2007). On average, the minimal PN-inter-spike-interval during
baseline is ∼22 ms; so there are definitely sometimes two spikes
per arbitrary 50-ms window, although rarely more than two
(Jortner, 2009). This deviation from model assumptions could
increase the number of EPSPs summing per time window in a
KC during baseline, and reduce the number of inputs needed
for threshold-crossing. Having said this, the proportion of spikes
with inter-spike-intervals below 50 ms is small, and as PN–KC
synapses show no homo-synaptic facilitation on these time scales
(Jortner et al., 2007), biases resulting from two spikes per window
are expected to be small and linear (at most) with spike number.

A second assumption was i.i.d. spiking across different PNs
over the course of the integration time—in other words, that
PN activation-patterns are entirely random. This assumption
simplified calculations and allowed applying the CLT to the sum-
mation of inputs. In reality, however, not all antennal-lobe states
are equally probable given that the animal operates in a natural
olfactory environment; in fact each individual locust is likely to
experience in its lifetime only a miniscule fraction of the enor-
mous number of possible PN activation patterns. Furthermore,
during odor presentation PNs are affected by common excita-
tory input from ORNs and common inhibitory input from local

interneurons, making randomness and mutual independence
even less likely. In a nutshell, caveats of dependences and corre-
lations between PNs may bias my analyses.

Several points support the model’s conclusions despite this
potential bias. First, simultaneous recordings show that spikes
from different PNs are not correlated over short time scales at
baseline (Jortner et al., 2007); this does not establish mutual inde-
pendence but takes a step in that direction. Second, no direct
synaptic connections were ever found between PNs (Jortner
and Laurent, in preparation), which eliminates causality from
contributing to statistical dependence. Finally, the classical CLT
was extended for cases with dependences between variables
(Bernstein, 1922, 1927), yielding modern versions of the theo-
rem which hold under various mutual dependences and correla-
tions (e.g., French and Wilson, 1978; Wilson, 1981; Reichert and
Schilling, 1985; Pinske et al., 2007). The deviation from i.i.d. firing
statistics needs, however, to be borne in mind.

As a third assumption, all PN–KC synaptic connections were
treated as equal in strength. Experiments show PN–KC-EPSP
amplitudes are distributed narrowly, but they are by no means
uniform (86± 44 μV, with half of them within 60–110 μV;
Jortner et al., 2007). Can ignoring the weights’ distribution be
justified? All calculations throughout this study were based on

summation of rows of the connectivity matrix
←→
W . If the number

of summed elements n is large enough, the CLT justifies treating
them as uniform (assuming i.i.d. between connections and finite
variance, which is reasonable). This holds for “large enough”
n, but is the length of a connectivity vector, or the number of
EPSPs summating in a target neuron “large enough”? While the
CLT strictly applies only when n approaches infinity, it in fact
converges to Normality very fast as n starts to increase, then slows
down asymptotically (established by the Berry–Esseen theorem:
the difference between any CDF with finite variance and the
Normal CDF decreases as 1/√

n ; Feller, 1972). The number of
summated connections in the model is on the order of N · c for
connection vectors, and on the order of N · c · p for aggregate
inputs—so for large N (800, in our case) the assumption is
justified for all but very small values of c or of c · p (with locust
parameters, N · c lies within the hundreds, and N · c · p is on the
order of tens).

The last point has also been addressed directly with simula-
tions in which sets of EPSPs from the experimental amplitude
distribution were randomly drawn and summed (Jortner et al.,
2007); for numbers≥50, a Gaussian hypothesis for the sum could
no longer be rejected, and differences between the actual sum
and its estimate assuming uniformity were minute (Jortner et al.,
2007, Supplementary Material). In conclusion, the model results
are only minimally biased by the assumption of uniform connec-
tion strengths because the numbers are sufficiently high; this must
be reexamined, however, if applying this framework to different
systems where parameter values may be lower.

Fourth and last, PN–KC connectivity was treated as random.
Previous work showed no obvious pattern in the pairs tested
positive for connections; in fact, most KCs tested simultane-
ously with several PNs were found to be connected to about
half of them (Jortner et al., 2007). Anatomically, the mush-
room body calyx shows no simple patterning (e.g., layered- or
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columnar-organization) for either PN axons or KC dendrites
(Farivar, 2005). Thus, no data has suggested patterning in the
connectivity matrix. This having been said, it is very difficult
(in fact, impossible) to establish true randomness in experimen-
tal data, and some patterns may have evaded my analysis. Even
in such case, however, due to the huge number of combina-

tions

([
800
400

]
≈ 10240

)
suggested by the data, any component

of randomness in the connectivity matrix would still yield a
combinatorial explosion of wiring possibilities—so very dramatic
connection biases would be required to alter the conclusions of
this study.

RELATED MODELS AND ALTERNATIVE DESIGNS
In this study I took the gross structure of the locust olfactory sys-
tem as starting point and basis for exploration; I did not explore
all possible architectures or parameters, and by no means claim
to offer the only solution for constructing specific representations
from noisy input. A number of theoretical studies have tackled
similar problems using different approaches, and have come up
with a variety of designs. Here I briefly survey some of these mod-
els and their key properties, comparing and contrasting them with
mine.

One example is Kanerva’s (1988) Sparse Distributed Memory
model. Its central idea—that memories can be represented as
binary vectors in a high-dimensional space—stems from a key
property of such spaces: points in them tend to differ from
each other—and from most of the remaining space—along many
dimensions. With this inherent sparseness in mind, a hyper-
sphere is drawn around each point of interest (memory), and the
memory is activated whenever an input vector falls within the
hyper-sphere’s boundaries; this grants the model noise-tolerance
and flexibility more characteristic of brains than of most com-
puters. As different hyper-spheres may partially overlap, input
vectors often activate multiple memories. While performance
depends on dimensionality, number of memories stored and
activation radii, the model’s main results are the feasibility and
robustness of sparse-distributed storage and retrieval.

The Sparse Distributed Memory model is fully connected,
meaning that when classifying an input, its values along all
dimensions are taken into account; zeros as well as ones. This
conveys the model its robustness, capacity, and noise tolerance.
The threshold (the radius of the hyper-sphere) can be adapted if
needed: for example, to ensure that state-space is tiled, or that
each output responds with a particular probability. The high-
dimensional space is thus filled with many partially overlapping
hyper-spheres of the same dimension as the space; each represents
one memory and its noise-tolerant envelope.

At another end of the spectrum of connectivity values is
Jaeckel’s (1989) Selected-Coordinate Design. In this model inputs
also reside in a binary, high-dimensional space, yet each out-
put samples just a handful of inputs (10 of 1000; corresponding
to connection probability 0.01). For a memory to be activated,
all of its sampled inputs (or selected coordinated) must take
particular binary values; the rest of the inputs do not matter.
Jaeckel’s model thus attains its noise tolerance via invariance to
most of the input’s dimensions: it only takes into account 10

and ignores the rest. The threshold is thus fixed, and is equal to
the number of selected coordinates (they all need to be active).
In the Selected-Coordinate Design the high-dimensional space
is thus inhabited by subspaces of lower dimensionality, each
corresponding to a memory. To think in three dimensions, if
input space were a cube, memories would be faces (squares) of
this cube.

To compare my model with these, it is useful to speak a com-
mon language. In the locust, input space has 800 dimensions
(one for each PN), so it is also high-dimensional and binary (as I
treat each PN as spiking or not within each time window); PN–
KC connectivity vectors correspond to points of interest in this
space. The interesting properties of my model rely precisely on the
inherent sparseness of high-dimensional binary spaces as formu-
lated by Kanerva: PN–KC connectivity vectors populate a space
so vast (containing roughly 10240 potential points) that the actual
5× 104 points realized tend to populate it extremely sparsely,
each sitting on average very far from all others.

What does the portion of space which KCs respond to look like
in my model, and how does their threshold affect it? In Kanerva’s
model each KC samples all the dimensions and is rather tolerant
to errors in any of them (via the threshold); in Jaeckel’s model it
samples only very few dimensions, but is very strict about per-
fectly matching these. For comparison, in my model each KC
samples half of the dimensions (corresponding to c = ½) and is
invariant to the rest. This means that in 800-dimensional space,
around half of the dimensions—those PNs which the KC is con-
nected to—are treated as spherical, with a threshold, and the
others are ignored, thus treated as cubical. The receptive range
of a KC will thus be an 800-dimensional hyper-cylinder: spheri-
cal along some dimensions and invariant to the others. Adapting
the threshold will only affect the spherical dimensions: the larger
the radius, the lower the threshold, and thus the more states of
the PN population activate the KC. The model suggested here
thus combines the high-dimensionality and dense connectivity
of Sparse Distributed Memory, the invariance to non-connected
inputs from the Selected-Coordinate Design, and elements of
noise-tolerance from both.

WHERE ELSE MAY THESE PRINCIPLES APPLY?
Neuronal specificity and sparse coding are widespread phenom-
ena; relevant way beyond olfaction or sensory systems. The
design principles discussed here are general in nature, relying
on general assumptions and independent of particulars of the
system. It is attractive to hypothesize that they may apply in
a variety of other interconnected systems. While detailed data
on network architecture—especially connection probabilities—
is unfortunately still scarce for most biological networks, I point
out several candidates which merit comparison.

What happens in other olfactory systems? In Drosophila, KCs
are concentration invariant and much more specific than PNs
(Turner et al., 2008; Honegger et al., 2011). KCs each seem to
receive connections from around 10 PNs (corresponding to con-
nectivity of ∼5%), and have high firing thresholds (Turner et al.,
2008). Differences in design and coding between locusts and
flies may relate to their ecology: fruit flies occupy highly spe-
cialized ecological niches whereas locusts are generalist feeders.
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KC numbers also differ greatly across these species (50,000 in
locust vs. 2500 in Drosophila); this could merely reflect size con-
straints, but may also relate to the extent of odor space the
mushroom body needs to tile, or to the resolution required at
different regions of the space.

Mammalian pyriform (olfactory) cortex shows similarities
with the mushroom body: pyriform pyramidal neurons respond
to odors with few spikes locked to respiratory oscillations and
have low baseline firing rates (Poo and Isaacson, 2009). Pyriform
cortex shows no evidence for spatial organization by odor tuning
(Illig and Haberly, 2003; Rennaker et al., 2007; Stettler and Axel,
2009), and axons from individual mitral cells—its input neu-
rons, analogous to insect-PNs—project onto it diffusely, without
apparent spatial preference (Friedrich, 2011; Ghosh et al., 2011;
Miyamichi et al., 2011; Sosulski et al., 2011). Connection prob-
abilities between mitral cells and pyriform pyramidal cells are
unknown; however, as these synapses are strong, coincident input
from just a few may suffice to elicit spiking (Franks and Isaacson,
2006). This implies—albeit indirectly—that connection probabil-
ities from second- to third-order neurons in rodents may be lower
than in the locust. The level of sparseness of pyriform pyramidal
neurons is 3–15%—also considerably lower than in locust KCs
(Poo and Isaacson, 2009; Stettler and Axel, 2009; Isaacson, 2010).
It remains to be seen how the various network parameters work
in concert to yield coding solutions in this system.

One system often treated as a benchmark for decorrelation
of representations is the cerebellum. Theoretical work by Marr
(1969) and Kanerva (1988) suggests that the transformation from
mossy fibers onto cerebellar granule cells is designed to decor-
relate input representations and reduces the number of nodes
learning would have to act on; operations precisely suited for a
neural architecture such as described here. Measurements, how-
ever, indicate that convergence ratios of mossy fibers onto granule
cells are much lower (Chadderton et al., 2004); the architecture
described here may thus not apply to those neurons.

A fascinating candidate for comparison is the mammalian
hippocampus. The ability to build meaningful representation
from discrete random percepts makes sparse codes attractive for
memory formation (Palm, 1980; Baum et al., 1988; Kanerva,
1988, 1993). This is a well-established role of both hippocam-
pus (Scoville and Milner, 1957; Squire, 1992; Tulving and
Markowitch, 1998) and mushroom body [reviewed in Heisenberg
(1998)], and the analogy between the two has been previously
drawn (Strausfeld et al., 1998). Indeed, similarly to KCs, some
hippocampal neurons use extremely sparse codes: spiking specif-
ically and reliably in response to complex, high-level stimuli
and very rarely at baseline (Kreiman et al., 2000; Barnes et al.,
2003; Quian Quiroga et al., 2005), with a majority silent at any
given time (Thompson and Best, 1989). Topologically, hippocam-
pus is largely feed-forward (Andersen et al., 1971; O’Reilly and
McClelland, 1994; Andersen et al., 2000), and while its cytoarchi-
tecture is extensively studied with classical anatomical techniques
(e.g., Amaral and Witter, 1989; Patton and McNaughton, 1995),
quantitative functional connectivity-data at single-cell resolution
is just emerging (e.g., Brivanlou et al., 2004).

O’Reilly and McClelland (1994) provide in-depth theoretical
analysis of hippocampal circuitry. They modeled feed-forward
components of the circuit (entorhinal cortex, dentate gyrus,

and CA3), exploring the effects of network parameters on
pattern-separation and pattern-completion. Testing three values
of feed-forward connectivity (equivalent to connection prob-
ability ∼0.0001, 0.02, and 0.1), they indeed find that con-
trary to their intuition, the lowest connectivity value—which
they had presumed to outperform the higher ones in pattern-
separation—actually performed worse. They found performance
similar between the higher values, suggesting a diminishing-
returns effect; they did not, however, test higher connectivity-
values approaching ∼0.5. It would be tempting to test whether
architecture within or among some hippocampal sub-regions (for
example CA3–CA1) may follow similar design to the locust PN–
KC circuitry, to maximize input separation as a basis for memory
formation.

As the design discussed largely relies on random connectivity,
it is not inherently suitable for circuits where the input’s spatial
relations must be retained, such as early visual- or auditory-areas.
It may, however, apply well locally within spatially dependent
modules, such as cortical columns (Mountcastle, 1997), or in
higher processing areas, where representations become object-
based and spatially invariant—such as infero-temporal cortex
(Gross et al., 1972; Perrett et al., 1982; Fujita et al., 1992; Tanaka,
1996, 2003).

Optimal input-space separation may be useful even when
sparse coding is not the goal: the targets’ firing threshold deter-
mines response probability; if it is low, neurons will respond
broadly. For example, connectivity ½ and a low firing threshold
can generate distributed representations from sparse ones.

Core mechanisms elucidated here may still apply even
with connectivity somewhat removed from the optimum: large
enough cell-numbers, intermediate connectivity and some inher-
ent randomness lead to a combinatorial explosion of wiring
possibilities. This in turn naturally results in input spaces which
are (by virtue of their mere size) extremely sparsely populated.
A central message of this study is that to attain efficient input-
spread, a suitable source–target connectivity regime is neither
very dense, nor very sparse, but rather within an intermediate
range.

CONCLUDING REMARKS: ORIGINS OF NEURONAL
SPECIFICITY AND THE PARSING OF THE OLFACTORY WORLD
Neuronal specificity and sparse neural coding have continu-
ously attracted attention over several decades of brain research
(e.g., Attneave, 1954; Marr, 1969, 1970; Willshaw and Longuet-
Higgins, 1970; Barlow, 1972; Palm, 1980; Baum et al., 1988;
Kanerva, 1988; Tsodyks and Feigel’Man, 1988; Perez-Vicente
and Amit, 1989; Földiák, 1990; Rolls and Tovee, 1995; Vinje
and Gallant, 2000; Willmore and Tolhurst, 2001; Simoncelli and
Olshausen, 2001; Hahnloser et al., 2002; Laurent, 2002; Perez-
Orive et al., 2002; Garcia-Sanchez and Huerta, 2003; DeWeese
et al., 2003; Olshausen and Field, 2004; Huerta et al., 2004;
Quian Quiroga et al., 2005; Jortner et al., 2007). One reason
may be that they highlight a truly fundamental property of
the brain: the ability to parse the surroundings and to extract
meaning from them. Indeed, it seems that once a network of
neurons can—through integration of external sensory inputs and
a series of computations—bring single target-cells to respond
differentially and reliably to particular objects, combinations of
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features or classes of stimuli, a significant part of the way towards
performing the brain’s tasks has already been made. A set of
such “meaningfully responding” cells constitutes the very inter-
nal model of the world in the organism’s brain—molded to its
ecologically dictated requirements and reflecting the world as the
animal views it. For example, characterization of a cell ensem-
ble which represents a complex percept, such as an Apple, puts
a handle on what thinking of an Apple is (Barlow, 1972); and
strengthening a set of connections between this cell ensemble and
another representing the concept of Cake creates both an associa-
tive link, and a higher, more complex idea. Mechanistic insights
into how such representations come into being can open an inti-
mate window onto the brain’s subjective world-view and what
forms it.

The system I have analyzed here does not yet offer direct access
to this level of meaningful representations, but it does highlight
the principles on the basis of which they can emerge. The princi-
ples along which the olfactory circuitry between the antennal-lobe
and mushroom body is designed in the locust are an increase
in dimensionality between source- and target-populations, feed-
forward connectivity with probability of ½, maximizing sepa-
ration between representations; and a high and adaptive firing
threshold. This leads to specific, reliable, and sparse represen-
tations of random olfactory percepts in the mushroom body.
Specificity is explained by a high enough threshold, only crossed
when the KC encounters an appropriate input vector (from a set
of vectors which lie within a particular radius of Hamming dis-
tances from an “ideal” central vector); very different from vectors
which drive other KCs. Reliability results from the combination
of strong convergence of PNs onto KCs (400:1) and cycle-by-
cycle adjustment of the KC firing threshold (Papadopoulou et al.,
2011).

In the following relay subsets of KCs are sampled by extrinsic
β-lobe cells through sparse and strong synapses which are highly
plastic (Cassenaer and Laurent, 2007); this can be used to build
and learn meaningful representations for β-lobe neurons, con-
structed from the sparse discrete percepts randomly assigned to
KCs (Barlow, 1972; Földiák, 2002). Cells responding to “mean-
ingful” stimuli (for example, plants with high protein-content, or
toxic plants) can directly activate motor programs—causing the
insect to respond to the stimulus with an appropriate behavior
(for example foraging or avoidance, respectively).

The locust olfactory circuitry emerges from this study as
general-purpose machinery for information processing: a neu-
ral module which receives highly distributed and noisy inputs,
spreads them maximally, and creates from them an arbitrar-
ily sparse and selective set of representations—to be used
as a substrate for learning, memory formation, categoriza-
tion/generalization, triggering behavioral programs, and poten-
tially a variety of other computations. These principles are suited
to process any input where spatial relations need not be con-
served, as they depend only to a limited extent on the nature
of the signals to be processed. These mechanisms are therefore
potentially of broad applicability and interest; where else they may
apply remains to be seen.
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APPENDIX (JORTNER, 2012)
A1. HAMMING DISTANCE BETWEEN PN–KC CONNECTIVITY

VECTORS—FULL DERIVATION
Let
−→
U ,
−→
V be two arbitrary connectivity vectors, or rows of

the connectivity matrix
←→
W (where 1 denotes connection, with

probability c, and 0 none, with probability 1− c) between the

populations
−→
S and

−→
K . The Hamming distance, H(

−→
U ,
−→
V ),

counts the number of bits different across the two vectors. I derive〈
H

(−→
U ,
−→
V

)〉

U,V
, the average Hamming distance between

−→
U ,
−→
V

over all their possible values:

〈
H

(−→
U ,
−→
V

)〉

U,V
=

〈
N∑

i = 1

(Ui − Vi)
2

〉

U,V

=
〈

N∑

i = 1

(
U2

i − 2UiVi + V2
i

)
〉

U,V

as the average of a sum is the sum of the averages,

=
〈

N∑

i = 1

U2
i

〉

U

−
〈

N∑

i = 1

2UiVi

〉

U,V

+
〈

N∑

i = 1

V2
i

〉

V

=
N∑

i = 1

〈
U2

i

〉
U − 2

N∑

i = 1

〈UiVi〉U,V +
N∑

i = 1

〈
V2

i

〉
V

Finishing the calculation now requires the expected values of the
expressions U2

i , V2
i , UiVi. The following table gives all possible

values of Ui, U2
i and their respective probabilities:

Ui U2
i Probability

1 1 c

0 0 (1− c)

So the expected value of
〈
U2

i

〉
U = 1 · c + 0 · (1− c) = c ; the

same holds for
〈
V2

i

〉
V .

Here are all possible values of Ui, Vi, UiVi and their respective
probabilities:

Ui V i Ui V i Probability

1 1 1 c2

1 0 0 c · (1− c)

0 1 0 (1− c) · c
0 0 0 (1− c)2

So the expected value is

〈ViUi〉U,V = 1 · c2 + 0 · (c · (1− c)+ (1− c) · c + (1− c)2) = c2

Finishing the calculation:

〈
H( �U, �V)

〉
U,V = N · c − 2N · c2 + N · c = 2N · c · (1− c)

A2. VARIANCE OF INPUT TO A KC (�)—FULL DERIVATION
I substitute the mean input to a KC by � , which was already calcu-
lated (Section “Model Results II: Neuronal Activity and Properties
of Input to KCs”):

� ≡ 〈var(ki)〉i =
〈〈(

ki − 〈ki〉�S
)2

〉

�S

〉

i
= 〈〈

(ki −�)2〉�S
〉
i

=
〈〈⎛

⎝
N∑

j = 1

SjWij −�

⎞

⎠

2〉

�S

〉

i

=
〈〈⎛

⎝
N∑

j = 1

SjWij

⎞

⎠

2

− 2�

N∑

j = 1

SjWij +�2

〉

�S

〉

i

=
〈〈

N∑

j = 1

N∑

k = 1

SjSkWijWik − 2�

N∑

j = 1

SjWij +�2

〉

�S

〉

i

=
〈

N∑

j = 1

N∑

k = 1

〈
SjSk

〉
�S WijWik − 2�

N∑

j = 1

〈
Sj

〉
�S Wij +�2

〉

i

Next, I’ll separate the first-term into its non-diagonal (i �= j) and
diagonal (i = j) components and treat them each separately:

� =
〈

N∑

j = 1

N∑

k=1, j�=k

〈
SjSk

〉
�S WijWik +

N∑

j = 1

〈
S2

j

〉

�S W2
ij − . . .

− 2�

N∑

j = 1

〈
Sj

〉
�S Wij +�2

〉

i

To calculate the expected values of the non-diagonal terms
Si, Sj, SiSj, the table below provides all possible values and their
respective probabilities:

Si Sj Si Sj Probablity

1 1 1 p2

1 0 0 p · (1− p)

0 1 0 (1− p) · p
0 0 0 (1− p)2

So the expected value is

〈
SiSj

〉
�S,i�=j = 1 · p2 + 0 · (

p · (1− p)+ (1− p) · p+ (1− p)2) = p2

For the diagonal terms: Sj, S2
j and their respective probabilities:

Sj S2
j Probability

1 1 p

0 0 (1− p)

Frontiers in Neuroengineering www.frontiersin.org January 2013 | Volume 5 | Article 19 | 135

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Jortner Network architecture for separating representations

The expected value of 〈S2
j 〉�S = 1 · p+ 0 · (1− p) = p, the

same holds for 〈Sj〉�S = 1 · p+ 0 · (1− p) = p
Continuing the calculation:

� = p2 ·
N∑

j = 1

N∑

k = 1, j�=k

〈
WijWik

〉
i + p ·

N∑

j = 1

〈
W2

ij

〉

i
− . . .

−2� · p ·
N∑

j = 1

〈
Wij

〉
i +�2

All possible values for 〈WijWik〉i,j�=k, 〈W2
ij 〉i,j, 〈Wij〉i,j and their

respective probabilities:

W ij W ik W ij W ik Probability

1 1 1 c2

1 0 0 c · (1− c)

0 1 0 (1− c) · c
0 0 0 (1− c)2

So the expected value is

〈
WijWik

〉
i,j�=k = 1 · c2 + 0 · (c · (1− c)+ (1− c) · c + (1− c)2) = c2

W ij W 2
ij Probability

1 1 c

0 0 (1− c)

the expected value of
〈
W2

ij

〉

i,j
= 1 · c + 0 · (1− c) = c

and the same holds for
〈
Wij

〉
i,j = 1 · c+ 0 · (1− c) = c

There are exactly (N2 − N) non-diagonal terms, and N diago-
nal terms, so

� = p2 · (
N2 − N

) · c2 + p · N · c− 2� · p · N · c +�2

I will now substitute back � = N · p · c (as shown in Section
“Model Results II: Neuronal Activity and Properties of Input to
KCs”), and get:

� = �2 − p2 · N · c2 + p · N · c − 2�2 +�2

= N · p · c · (1− p · c) = N · p · c · (1− p · c)

A3. COVARIANCE OF THE INPUTS TO TWO KCs—FULL DERIVATION
To calculate the covariance between inputs (or between sub-
threshold membrane potentials) of two KCs, I substitute the mean
input to a KC by � , which was already calculated (Section “Model
Results II: Neuronal Activity and Properties of Input to KCs”).

〈cov(kr, kt)〉r �= t =
〈〈(

kr − 〈kr〉�S
) (

kt − 〈kt〉�S
)〉
�S
〉
r �= t

=
〈〈(

N∑

i = 1

SiWri −�

)⎛

⎝
N∑

j = 1

SjWtj −�

⎞

⎠
〉

�S

〉

r �= t

=
〈〈

N∑

i = 1

N∑

j = 1

SiSjWriWtj −�

N∑

i = 1

SiWri − . . .

−�

N∑

j = 1

SjWtj +�2

〉

�S

〉

r �= t

=
〈

N∑

i = 1

N∑

j = 1

〈
SiSj

〉
�S · WriWtj − . . .

−�

N∑

i = 1

〈Si〉�S · Wri −�

N∑

j = 1

〈
Sj

〉
�S · Wtj +�2

〉

r �= t

separating the first-term into non-diagonal and diagonal compo-
nents:

〈
N∑

i = 1

N∑

j=1,i�=j

〈
SiSj

〉
�S · WriWtj +

N∑

i = 1

〈
S2

i

〉
�S · WriWti − . . .

−�

N∑

i = 1

〈Si〉�S · Wri −�

N∑

j = 1

〈
Sj

〉
�S · Wtj +�2

〉

r �= t

I calculate the expected values of the terms SiSj, S2
i , Si exactly as

in Appendix A2:

〈

p2 ·
N∑

i = 1

N∑

j= 1, i �= j

WriWtj + p ·
N∑

i = 1

WriWti− p · �
N∑

i = 1

Wri − . . .

−p · �
N∑

j = 1

Wtj +�2

〉

r �= t

= p2 ·
N∑

i = 1

N∑

j=1,i �=j

〈
WriWtj

〉
r �= t + p ·

N∑

i = 1

〈WriWti〉r �= t − . . .

−p · �
N∑

i = 1

〈Wri〉r �= t − p · �
N∑

j = 1

〈
Wtj

〉
r �= t +�2

and because of the condition r �= t, the expected value of the term〈
WriWtj

〉
r �=t,i �=j is identical to that of 〈WriWti〉r �= t , both equal to c2.

The rest of the terms are calculated exactly as in A2, so:

p2 · (N2 − N) · c2 + p · N · c2 − p · � · N · c − p · � · N · c + �2

= �2 − p2 · N · c2 + p · N · c2 −�2 −�2 +�2

= N · c2 · p · (1− p)

A4. DIFFERENCE BETWEEN TWO KC INPUTS (OR SUB-THRESHOLD
MEMBRANE POTENTIALS)

Here I follow the exact same lines of reasoning as in Appendix
A1–A3. First, I express the difference between KC inputs, second,
I split it into its non-diagonal and diagonal components, and third,
I average each class of terms separately:
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D(kr, kt) ≡
〈〈
(kr − kt )

2〉�S
〉
r �= t
=

〈〈⎛

⎝
N∑

i = 1

SiWri −
N∑

j = 1

SjWtj

⎞

⎠

2〉

�S

〉

r �= t

=
〈〈⎛

⎝
N∑

i = 1

SiWri −
N∑

j = 1

SjWtj

⎞

⎠ ·
(

N∑

m = 1

SmWrm −
N∑

n = 1

SnWtn

)〉

�S

〉

r �= t

=
〈〈

N∑

i = 1

N∑

m = 1

SiSmWriWrm

〉

�S

〉

r �= t

−
〈〈

N∑

i = 1

N∑

n = 1

SiSnWriWtn

〉

�S

〉

r �= t

− . . .

−
〈〈

N∑

j = 1

N∑
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Clinical olfactory tests are used to address hyposmia/anosmia levels in patients with
different types of olfactory impairments. Typically, a given test is employed clinically and
then replaced by a new one after a certain period of use which can range from days to
several months. There is a need to assess control quality of these tests and also for a
procedure to quantify their degradation over time. In this paper we propose a protocol
to employ low-cost artificial noses for the quantitative characterization of olfactory tests
used in clinical studies. In particular, we discuss a preliminary study on the Connecticut
Chemosensorial Clinical Research Center Test kit which shows that some odorants, as
sensed by an artificial nose, seem to degrade while others are potentiated as the test
ages. We also discuss the need to establish a map of correspondence between human
and machine olfaction when artificial noses are used to characterize or compare human
smell performance in research and clinical studies.

Keywords: electronic noses, quality control of clinical olfactory tests, map of human and machine olfaction,

olfaction, anosmia, olfactory dysfunction, artificial noses

INTRODUCTION
The assessment of olfactory function is an essential step for the
diagnosis and treatment of olfactory disabilities. In particular,
the quantification of the olfaction functional level is necessary
to assess the recovery from or the progression of the smell dys-
function. The link between some types of smell impairments
and the early detection of neurodegenerative (Albers et al., 2006;
Barrios et al., 2007; Doty, 2008) or psychiatric (Atanasova et al.,
2008) diseases also emphasizes the need of precise olfactory quan-
tification procedures. Different protocols like the Connecticut
Chemosensory Clinical Research Center (CCCRC) test (Cain,
1989), the University of Pennsylvania Smell Identification Test
(UPSIT) (Doty et al., 1984), Sniffin’ Sticks (Burghart, Wedel,
Germany) (Hummel et al., 1997), T&T olfactometry, or the Odor
Stick Identification Test for Japanese (OSIT-J) (Zusho, 1983)
are employed throughout the world to assess the sense of smell
in patients with different cultural backgrounds and disabilities.
These tests consist of different odor containers that are presented
to a patient to quantify specific odor thresholds, and to evaluate
odor identification and discrimination.

A given test sample is typically employed in the clinic and then
replaced by a new one after a certain period of use. In many cases
the sample is opened, used, and closed again over an extended
period of time which can range from days to several months. Thus,
there is a need to assess control quality of these test samples and
to establish a protocol to quantify their degradation over time.

Artificial noses are devices that use one or multiple sensors
to mimic the sense of smell. The sensor reacts to an odorant

and generates a signal that can be used for characterization,
discrimination, or recognition purposes. The first artificial nose
with a tin-oxide sensor was reported in the early 1980s. A wide
range of sensor technologies have been developed since them to
build many different types of artificial noses: electrical, gravimet-
ric, optical, etc., [for a review of sensor technologies for artificial
noses see (Stitzel et al., 2011)]. The applications of artificial noses
cover areas such as safety, security, food, and beverage qual-
ity control, environmental monitoring, medical diagnostics, etc.,
(Dymerski et al., 2011; Stitzel et al., 2011).

In the following sections we propose the use of low-cost artifi-
cial noses to quantitatively characterize olfactory tests for clinical
studies, and we discuss a preliminary study on the CCCRC kit.
We also discuss the need to establish a map between human and
machine olfaction for research and clinical studies.

MATERIALS AND METHODS
CONNECTICUT CHEMOSENSORIAL CLINICAL RESEARCH CENTER TEST
The CCCRC kit was developed by Cain and colleagues in 1988.
This test consists of two parts: the butanol threshold test and the
identification test. For the purposes of this study we will mainly
concentrate on the butanol threshold test. The test was manu-
factured at Hospital Fundación de Alcorcón, Madrid with the
collaboration of the Pharmacy Unit following the guidelines of
the original article. The threshold test employs aqueous dilutions
of 1-butanol where successive dilutions differ by a factor of three.
The highest aqueous concentration is 4%. The number of dilu-
tion steps ranges from 0 to 8 depending on testing circumstances.
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FIGURE 1 | The Connecticut Chemosensorial Clinical Research Center

Test used in this study. The brown bottles contain the butanol threshold
test, while the white plastic jars contain the identification test.

The test solutions were stored in 125 ml polyethylene bottles
containing 60 ml of solution which are presented to patients dur-
ing the test. The bottle closure has a pop-up spout that fits
to both nostrils (see Figure 1). To sample a bottle, the per-
son places the spout into both nostrils and then sniffs. There
are two common ways to present the stimulus: the ascending
method of limits (AMLs) procedure and the single staircase (SS)
procedure. In the AML, the odorant and the water are pre-
sented sequentially from low to high concentration and the
point of transition between no detection and detection is esti-
mated. In the SS method, the concentration of the stimulus is
increased following trials in which correct detection occurs. In
both methods, the stimulus is presented in order from weak
to strong. The SS procedure is more reliable and is used more
often for threshold testing. Four correct choices in a row lead to
end the test. The concentration at which this occurs marks the
threshold.

Recently, Toledano and colleagues have described a short olfac-
tory test based on CCCRC that predicts how severe is the smell
loss (Toledano et al., 2009). This short test consists on deter-
mining the lowest concentration of butanol that the patient
can detect four times in a row. Patients detecting beyond the
butanol dilution number 3 have a high probability of normal
olfaction.

The participant receives the identification test after the thresh-
old test. The identification kit is composed of ten 180 ml opaque
plastic jars containing 5 g of the substance in sachet-like packets
of stimuli. Based on the performance of anosmic patients, we can
ascertain that seven stimuli appeal almost exclusively to the sense
of smell (baby powder, chocolate, cinnamon, coffee, mothballs,
peanut butter, and bar soap) and one appeals to the trigemi-
nal sense as well (Vicks). These eight items are presented in the
same order to both nostrils. When presented with an item, the
patient chooses from a 20-item list. The list contains the names
of the eight test products and 13 distractors. In addition to the
names on the list, responses of “no sensation” and “do not know”
are permitted. The examiner provides corrective feedback when-
ever the participant makes an error. If the participant exhibits

some evidence of function, but nevertheless makes mistakes,
the examiner presents missed items for a second time. A cor-
rect answer upon a second presentation cancels a previous error.
This allows the patient to rectify mistakes and thereby decreases
the possibility of cognitive errors. In such cases, the first trial
with an item serves as training. The score for the test comprises
the number of olfactory items out of seven correctly identi-
fied and a notation regarding the ability to perceive trigeminal
stimulation.

The outcome of the threshold and the identification tests is
combined into a composite score, an average of the two tests. As
previously defined (Toledano et al., 2003), a score of 5 points or
more indicates normosmia, a score between 2 and 4.5 points indi-
cates reduced olfactory function in terms of hyposmia, and a score
of less than 2 points indicates functional anosmia.

To categorize progression of olfactory function, a subjective
improvement and a normal score in butanol, threshold and
composite, respectively, are regarded as a clinically significant
improvement of olfactory function. Its correlation with previ-
ously established tests of olfactory function (e.g., the 12-item
Cross-Cultural Smell Identification Test [CC-SIT, a subtest of the
UPSIT] and the “Sniffin’ Sticks” test) has been demonstrated in
various studies (Kobal et al., 2000; Toledano et al., 2007).

ARTIFICIAL NOSES FOR QUALITY CONTROL OF OLFACTORY TESTS
During the last decades artificial nose technology has provided
many successful examples of industrial applications [for recent
reviews see (Dymerski et al., 2011; Stitzel et al., 2011)]. As this
technology becomes cheaper and more accessible, the possibilities
of potential use in medical and clinical studies have also increased.
In this section we discuss a preliminary study on the use of a
low-cost, portable artificial nose to quantitatively characterize the
CCCRC test.

For the study reported in this paper we used an odor analy-
sis platform capable of managing up to 16 samples with on/off
control electrovalves and three auxiliary devices such as pumps,
heaters, and/or mixers (see Figure 2). Although the platform can
be equipped with a wide variety of sensor arrays, we aimed to
study the performance of inexpensive sensors that could be used

FIGURE 2 | Analysis platform used in this study with the TGS2600-B00

(Figaro Engineering Inc.) chemoresistive sensor.
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in future widely distributed control quality devices. Thus, we
selected the TGS2600-B00 (Figaro Engineering Inc.) chemoresis-
tive sensor. This small sensor also provides a good combination of
high sensitivity to low concentrations of odorants, long life, low
power consumption, and robustness. The sensor is comprised of
a metal oxide semiconductor layer formed on an alumina sub-
strate of a sensing chip together with an integrated heater. In the
presence of an odorant, the sensor’s conductivity increases as a
function of the concentration. A simple electrical circuit converts
the change in conductivity to an output signal that corresponds
to the odorant. The signal generated by the sensor is not ampli-
fied, it is only conditioned with an LMC6484 amplifier in voltage
follower mode and sent to the Analog-to-Digital (A/D) converter
module to be acquired and stored in a computer. The voltage
range of this signal is 0–5 V.

From the control point of view, the main component used in
this platform is an 8-bit PIC18F2455 microcontroller (Microchip
Technology Inc.). This microcontroller is ideal for low-cost, low
power (nano-Watt), and connectivity applications. The firmware
was programmed with the MPLAB IDE development environ-
ment provided by the same company. The computer application
software was developed with IDE Dev-C++ (GNU license) using
Windows APIs. The equipment is connected to a PC via serial
bus, by a proprietary protocol based on EIA-485. The transfer rate
used in our study was 100 samples per second. For this applica-
tion we used the rotary vane pump 01-K G-LC (Rietschle Thomas
Company) in continuous vacuum mode (−20 mbar max.) run-
ning at 80% of its nominal voltage. All the instrumentation used
in this study is characterized by its compactness and low price,
which are important factors for a wide dissemination of quality
control in olfactory tests.

Since the goal of our experiments is to assess the degradation
of well-known odorants, we used the peak of the sensor signal
to characterize the dilutions/odorants in a comparative manner
(the peak corresponding to an aged olfactory test vs. the peak
corresponding to a new test). The maximal separability between
signals occurs typically at the peak. This is a simple and straight-
forward measurement that does not require further processing of
the signal.

The performance of the TGS2600-B00 sensor has a mod-
erate ambient temperature/humidity dependence as described
in the manufacturer’s worksheet (http://www.figarosensor.com/
products/2600pdf.pdf). All experiments reported here were per-
formed at a room temperature between 23◦C and 24◦C and a
humidity of 30–35%. The acquisition of the signal was performed
with the following protocol: the sensor was exposed to room air
with no heating (OV) for 5 s, followed by 100 s at maximum heat-
ing (4.8 V) to clean the sensor (heater resistance is 83 �). After
this cleaning phase, we took 5 s of absorption of the odorant
(4.8 V for heating, this duration was chosen to avoid saturation),
and finally 100 s of desorption (room air again at maximum heat-
ing). Five consecutive measurements of all odorants were taken
following this protocol to avoid history dependent effects.

RESULTS
The quality control assessment of a clinical olfactory test can use
the quantitative comparison of the artificial nose characterization

of a brand new test and that of a test that has been used for a
certain period of time. Here, we propose a simple quality anal-
ysis that consists on the quantitative assessment by the artificial
nose of a dilution in the test as compared with the correspond-
ing next dilution of a new test. A given olfactory kit fails the
quality test when the response of the artificial nose for a dilu-
tion is close to the response obtained for the next dilution
in the new test, which contains a lower concentration of the
odorant.

As mentioned above, a short version of the CCCRC kit con-
sists in the presentation of dilution number 3. Patients who
cannot smell this dilution have a very high probability of olfac-
tory dysfunction (Toledano et al., 2009). To illustrate and test the
proposed quality protocol with the artificial nose, we will use dilu-
tions number 2, 3, and 4 of the CCCRC threshold kit. Dilution
2 has a higher concentration of butanol than dilution 3, while
dilution 4 has a lower concentration.

Figure 3 shows the response of the artificial nose to these dilu-
tions corresponding to a one year old test (labeled as O for old)
and to a new test (labeled as N). This figure illustrates that, after
one year, the sensor signal that corresponds to the old dilution
number 2 (2O) differs only slightly from the corresponding to
the new dilution (2N) and remains far from the signal of the new
dilution number 3 (3N). However, the signal corresponding to the
old dilution number 3 (3O) is nearly as close to the signal corre-
sponding to new dilution number 4 (4N) as to the new dilution
number 3 (3N). Thus, as sensed by the artificial nose, dilution 3O
could correspond to the next dilution (lower concentration) of a
new test. In this situation, a quality control criteria based in the
relative distance between the peaks of the signals would result in
discarding the old test kit.

For each dilution, the maximum peak is reached a little after
the stimulation is stopped. We remind that the protocol that we
follow uses five consecutive measurements of the same odorant

FIGURE 3 | Response of the artificial nose to three dilutions of the

CCCRC kit for two different sets: a kit that has been used for over one

year (dilutions labeled as 2O, 3O, and 4O) and a new one (dilutions

labeled as 2N, 3N, and 4N). For each dilution we show the mean of five
measurements (middle trace) together with the standard deviation (upper
and lower traces). Note that the artificial nose signal for dilution 3O is nearly
as close to 3N as to 4N. A quality control criteria based in the relative
distance between the peaks of the signals would result in discarding the
old test kit.
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to avoid history dependent effects between different odorants.
Note that we use the same desorption period for all of them and
odorants that reach a higher maximum also start from a slightly
higher baseline in this protocol.

We have also addressed the analysis with the artificial nose of
the identification kit that the subject receives after the threshold
kit in the CCCRC test. The purpose of this second kit is the eval-
uation of the ability to identify an odor. Thus, the analysis of the
artificial nose in this case is oriented to determine the stability of
the odorant over time. If the odorant changes significantly over
the lifespan of the kit (typically one year), this could result in the
lack of identification or in a wrong identification of the odorant
by the subject. Figure 4 shows the result of this analysis for two
odorants (coffee and peanut butter). The aged tests (used clini-
cally for more than one year) show a larger intensity as sensed by
the artificial nose. The odorants in this identification kit are hid-
den under a gauze pad. The increase in signal amplitude observed
in these aged jars is probably due to a degenerative chemical reac-
tion or the presence of bacteria in the sample and in the pad
because of the prolonged use of the kit. The rest of the odorants
in the identification kit present a normal degradation as sensed by
the electronic nose.

DISCUSSION
The precise quantification of olfactory perception is an essential
step for the evaluation, diagnosis, and treatment of smell disor-
ders and contributes to the success of a corresponding therapy.
In the last decades several olfactory tests have been proposed
to quantify odor thresholds and to evaluate human odor iden-
tification and discrimination. In this paper we have argued that
olfactory tests could benefit from quality control performed by
artificial noses to assess and guarantee their validity over their
lifespan.

We have proposed a protocol to test the quality of a thresh-
old clinical kit by comparing the response of the artificial nose
to a given dilution of the test with the immediate next dilution

FIGURE 4 | Response of the artificial nose to two samples (peanut

butter—left panel and coffee—right panel) of the identification part of

the CCCRC kit. For each sample we show the mean of five measurements
(middle trace) together with the standard deviation (upper and lower
traces). Note that, as sensed by the artificial nose, the old peanut butter
(OP) and coffee jars (OC) have higher odor intensity than the ones that
contain a new test (NP and NC, respectively).

of a new test. We have validated this protocol with the CCCRC
threshold kit using an inexpensive chemoresistive sensor, which is
a requirement for the successful dissemination of a quality control
device for clinical purposes. The protocol does not need a com-
plex processing of the sensor signal such as the use of classification
or clustering algorithms required in many applications with artifi-
cial noses (Hierlemann and Gutierrez-Osuna, 2008; Muezzinoglu
et al., 2010). As illustrated in Figures 3 and 4, the response of
the sensor to the odorants in the CCCRC kit is highly repro-
ducible. The comparative nature of the protocol (the results of
the artificial nose on an old test are always compared with those
of a new test) reduces the dependence of the results on sen-
sor drift and environmental conditions such as temperature and
humidity.

Human olfaction and machine olfaction have different mech-
anisms to sense smell, and thus the quantitative description of an
odorant can also be very different for human and artificial noses
(Burl et al., 2001; Schiffman et al., 2002; Lewis, 2004; Haddad
et al., 2008, 2010). When artificial noses are used to character-
ize or compare human smell performance, the signals obtained
with these devices need to be calibrated and matched to what is
considered a normal perception by a human. In the context of
clinical olfactory tests where the smell of odorants takes place
under controlled conditions, the quantitative description of an
odor by an artificial nose can be compared to an established
reference to assess the quality of the test. The results shown in
this paper indicate that this is possible, and that an inexpensive
chemoresistive sensor can be used to characterize the threshold
part of the Connecticut Chemosensorial Clinical Research Center
Test. We have also reported that some odorants of the identi-
fication part of the CCCRC seem to be potentiated as sensed
by the artificial nose while others tend to degrade as the test
grows older. The analysis of these results suggests that the con-
ditions to keep the odorants in the identification test could be
improved.

Further efforts to build a map between human and machine
olfaction can largely contribute to the assessment of odor per-
ception and to develop novel protocols for odor impairment
diagnosis and treatment. Artificial noses can be used to assess
the intensity, steadiness, or temporal evolution of an odorant
acting as a stimulus in a perception experiment. These exper-
iments can be carried out with a standard feedback from the
self-assessment of smell perception by the subject or through
a more quantitative protocol that takes into account levels of
brain activity in EEG (Lorig, 2000) and/or fMRI setups (Lombion
et al., 2009) (which can largely contribute to a quantitative map
between human and machine olfaction). In all cases, the assess-
ment of odor temporal structure and intensity by artificial noses
will improve the quantification and the standardization criteria
in these protocols. In addition, artificial noses can also be used in
closed-loop experiments with olfactometers and other stimula-
tion devices to implement neural activity-dependent stimulation
protocols.
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Over the past two decades, despite the tremendous research on chemical sensors and
machine olfaction to develop micro-sensory systems that will accomplish the growing
existent needs in personal health (implantable sensors), environment monitoring (widely
distributed sensor networks), and security/threat detection (chemo/bio warfare agents),
simple, low-cost molecular sensing platforms capable of long-term autonomous operation
remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within
this context is that most of the chemical sensors depend on interactions between the tar-
geted species and the surfaces functionalized with receptors that bind the target species
selectively, and that these binding events are coupled with transduction processes that
begin to change when they are exposed to the messy world of real samples. With the
advent of fundamental breakthroughs at the intersection of materials science, micro- and
nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated
tunable, optimizable operating parameters, through which changes in the response charac-
teristics can be modeled and compensated as the environmental conditions or application
needs change. The objective of this article, in this context, is to bring together the key
advances at the device, data processing, and system levels that enable chemo-sensory
systems to “adapt” in response to their environments. Accordingly, in this review we will
feature the research effort made by selected experts on chemical sensing and information
theory, whose work has been devoted to develop strategies that provide tunability and
adaptability to single sensor devices or sensory array systems. Particularly, we consider
sensor-array selection, modulation of internal sensing parameters, and active sensing.The
article ends with some conclusions drawn from the results presented and a visionary look
toward the future in terms of how the field may evolve.

Keywords: electronic nose, metal-oxide gas sensors, sensor optimization, sensor-array optimization,

tunable sensors, active sensing

INTRODUCTION
The idea to mirror the biological senses, particularly the biologi-
cal sense of olfaction, with artificial electronic systems has been a
human dream for many years (Persaud and Dodd, 1982; Gardner
and Bartlett, 1999). The choice of olfaction is not coincidental.
While for humans, whose vision and hearing senses are their pri-
mary mode of communication with the outside world, olfaction is
a rather little used sense, as demonstrated by the relatively normal
lives led by people with anosmia – people who cannot smell – for
most of the animals, olfaction is the primary means of explo-
ration and communication (Bhandawat et al., 2007). The biggest
challenge in performing such an imitation, though, is how to reli-
ably emulate this system by understandable artificial mechanisms,
commonly referred to as electronic noses (e-nose). e-Nose, or their
odorant chemo-receptors to be more precise, play an important
role in this challenge not only because they serve as oversimpli-
fied, yet accurate, reproductions, and simulations of the biological
sense of olfaction, but also because these artifacts are able to
non-invasively detect, acquire, interpret, select, and organize the

sensory information of certain situations that humans can not per-
ceive or understand (Persaud and Dodd, 1982; Freund and Lewis,
1995; Dickinson et al., 1996; Gardner and Bartlett, 1999). The
capabilities of odor chemo-sensors are broad and include many
challenging tasks such as discriminating organic compounds with
chain lengths that differ by a single carbon atom (White et al., 1996;
Persaud and Travers, 1997). However, their limitations in charac-
terizing odor-stimuli, including the poor sensitivity to analytes and
the lack of reproducibility in their responses in repeated trials, are
still very serious (Moseley and Tofield, 1987). With the advent of
the latest technological breakthroughs, recent progress in chemical
micro-sensory systems has been stimulated by inter-disciplinary
perspectives at the intersection of materials science, micro- and
nano-technology, microelectronics, and signal processing/pattern
recognition in an attempt to ameliorate these apparent limitations.
For example, the effect of microstructure, size feature of the mate-
rial, the advantages of nano-structured materials (e.g., nanowires,
nanorods, nanoribbons), and the efforts to functionalize sensing
materials by adding catalysts have been widely studied from the
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material perspective to improve the sensors’ sensitivity and selec-
tivity as well as to reduce their power consumption and time of
response (Yamazoe, 2005; Franke et al., 2006; Comini et al., 2009;
Gurlo, 2010; Stoycheva et al., 2011). On the other hand, differ-
ent feature selection, feature extraction, and pattern-recognition
techniques, from the signal processing and machine learning view-
point, have also been implemented with remarkable results in
many critical applications (Di Natale et al., 1995; Eklöv et al., 1997;
Nakamoto et al., 1997; Gutierrez-Osuna et al., 1999; Muezzinoglu
et al., 2009; Vergara et al., 2011). However, while maintaining and
expanding this fruitful interaction is essential for solving these
problems ahead, this collaborative platform will be lacking a key
player until the material and hardware development component
improves, since the current sensory modalities available do not
meet the power consumption and dimension restrictions required
for particular real-time applications. Therefore, among the many
different strategies implemented in the literature, interacting with
the conditioning parameters at the sensor level (e.g., working tem-
perature for metal-oxide gas sensors) is the only viable solution to
overcome these annotated problems (Moseley and Tofield, 1987).

In principle, almost every odorant-sensing technology offers
the advantage of being tunable through the selection of parameter
values. Interacting with such parameters influences many criti-
cal qualities of the measurement, including sensitivity to analytes
and reproducibility. For example, the temperature-modulation
technique for metal-oxide gas sensors, takes advantage of such
a relationship to enrich the information content of the sensor,
since it directly alters the reaction kinetics at the sensor sur-
face in the presence of an odorant (Sears et al., 1989a,b, 1990;
Nakata et al., 1992, 1996, 1998; Semancik and Cavicchi, 1999). A
thorough understanding of how such interactions take place in
the chemo-sensory system requires quantitative characterizations
of the response of individual sensors, both within and among
chemical stimuli. This approach will enable us to generalize the
relationship between the control variable and the target quality.

Once the odorant-sensing/parameter interaction is known (or
can be inferred from previous observations), a natural venue to fol-
low is the optimization of the chemo-sensory system with respect
to a solid criterion that properly expresses the observed goal. A
number of approaches under the notion of optimization have been
implemented in the literature, but only a handful of authors have
approached the problem in a systematic fashion. In this context,
the purpose of this paper is to provide the reader with a critical
review of the different efforts that have been made in the context
of sensor selection and sensor optimization in the chemo-sensing
community for the last years. We will be visiting these criteria
individually as we proceed further in this review.

Before embarking upon the subject of optimization, we would
like to make a final point in the context of terminology. The label
“optimization” has been very popular for many years to describe
the terms of “sensor optimization” and “sensor-array optimiza-
tion” interchangeably. We believe, however, that this terminology
can be very misleading, since the former mostly refers to finding
the “optimal operational condition” of the sensor device, whereas
the latter usually means selecting an “optimal” combination of
sensors between a potentially large pool of different sensors that
are best suited to the identification task – pretty much as feature

selection. Therefore, although these two groups of procedures are
fully complementary and valuable tools to analyze our chemical
sensors, they deserve to be treated as separate topics. For this rea-
son, we organize the structure of this review according to which of
these two aspects of “adaptation” (or sensor optimization among
many other names considered) is taking place at the sensor level. It
is not say that this adaptation can occur only at one or another side
of the coin; sensor optimization may also involve coordination of
other aspects, such as the adaptability of the chemical sensors at
multiple levels and time scales through their operating parameters
targeted when the environmental conditions change. Accordingly,
we have decided to give three more specific threads to run this
review. The first is gain control in those methods that have been
implemented to optimize the chemical sensors when used as a sen-
sor array. The second, which is the other side of the same coin, is a
functional analysis of the coding schemes used in the optimization
of each chemical sensor individually. And the third is a systematic
analysis of the advantages derived from the coding scheme used
by the early optimization stages implemented on chemical sensors
in an active fashion, or the so-called adaptive sensing optimiza-
tion. Finally, in order to gain a better understanding of how the
optimization processes are occurring at the sensor level, or even
to discuss whether the processes are or are not working, we have
included an overview of the operating temperature dependence
for the response of semiconductor gas sensors at the beginning of
the Section “Metal-oxide Gas Sensors and Their Operation: Ini-
tial Optimization Methods.” We strongly recommend people who
may not be familiarized with the functioning process of chemical
sensors, specifically metal-oxide gas sensors, to review this section.

METAL-OXIDE GAS SENSORS AND THEIR OPERATION:
INITIAL OPTIMIZATION METHODS
METAL-OXIDE GAS SENSORS AND TEMPERATURE DEPENDENCE
Undoubtedly, metal-oxide gas sensors have become one of the
most widely used sensing technologies in machine olfaction for
a diversity of applications. Because of the strict and highly deter-
ministic dependence of the sensor response on its operating tem-
perature, governing the basic operating principle of this sensing
technology, we believe that it is worthwhile to provide a good
insight into the dynamic behavior and operating principle of metal
oxide sensors so we can get a better understanding of how the opti-
mization processes described here take place at the sensor level.
Accordingly, the followings lines of this section feature the basic
operating principle of the said chemo-sensing technology. The
sensitive layer, in this case the metal-oxide film that is made of
particles that range from nanometers up to microns, possesses
two operating mechanisms. The former is associated with an ide-
ally specific interaction of the surface with the target analyte, whilst
the latter refers to an effective transduction of the bulk conduc-
tance. If the interaction takes place exclusively at the surface of the
sensitive layer, then the bulk conductivity does not contribute and
represents only a shunt which decreases the signal-to-noise ratio.
On the other hand, for materials in which interaction originates
in the bulk of the sensitive layer, the response of the sensor, and
in particular its time of response, is affected by the thickness and
porosity of the material, giving faster response times for thin films
than for thick films (Yamazoe, 2005; Franke et al., 2006; Stoycheva
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et al., 2011). Accordingly, for a given type of base material, the
sensor property sensitively depends on the structural features, the
presence and state of catalytically active surface dopants, and the
working temperature.

The central reaction mechanism responsible for most of the
chemical compound responses/interactions involves changes in
the concentration of surface oxygen species, such as O2− (Göpel,
1985, 1988; Göpel et al., 1991). The formation of such ions means
that the oxygen adsorbed at the gas/solid interface abstracts elec-
trons from the conduction band of the sensing material, which
results in the development of Schottky potential barriers at the
grain boundaries. In the case of an n-type semiconductor such as
SnO2, on the one hand, the electrons come from ionized donors
via the conduction band, the charge-carrier density at the inter-
face is reduced, and a potential barrier to charge transport, Δφ,
develops. At the junctions between the grains of the solid (see
Figure 1), the depletion layer and the associated potential barrier
are responsible for high resistance contacts which dominate the
resistance of the sensor. Thus, depending on the temperature, oxy-
gen is ionosorbed on the surface predominantly as O2− ions below
150˚C, or as O− ions between 150 and 400˚C, which is the general
operating temperature range. Above 400˚C, the parallel formation
of O2− occurs, which is then directly incorporated into the lattice
above 600˚C (Barsan et al., 1999). In the case of a p-type oxide, on
the other hand, adsorbed oxygen acts as a surface acceptor state,
abstracting electrons from the valence band, and hence giving rise
to an increase in the charge-carrier (holes) concentration.

In response to an analyte and under stationary conditions (i.e.,
without humidity, constant flow, and fixed operating tempera-
ture), the sensor involves an exponential change in the conduc-
tance/resistance across its sensing layer. This resulting change can
be interpreted as a shift of the state of equilibrium of the surface

FIGURE 1 | Structural and band model showing the role of

intergranular contact regions in determining the conductance over a

polycrystalline metal-oxide semiconductor. Three grains with adsorbed
oxygen providing surface depletion layers. The depleted layers are
responsible for a high contact resistance. For conduction, electrons must
cross over the surface barriers.

oxygen reaction due to the presence of the target analyte, which
can be either a reducing or oxidizing specie. The response of semi-
conductor gas sensors to reducing species implies a change in the
concentration of adsorbed oxygen species. On the other hand, oxi-
dizing species can interact with the sensor surface in a variety of
ways; for example, interacting directly with the surface and form-
ing negatively charged ionosorbed species or in competition with
ionosorbed oxygen or oxygen ions for the adsorption sites available
(Ruhland et al., 1998). These changes modulate the height of the
potential barriers and thus the conductance of the sensing layer.
The reason these characteristic conductance–temperature profiles
arise is summarized as follows:

• There are different adsorbed oxygen species such as O−, O2−,
and O2− over the temperature range (Sears et al., 1989a; Barsan
et al., 1999).
• Different gases have different optimum oxidation temperatures

(Moseley and Tofield, 1987).
• Adsorption, desorption, and diffusion rates (of oxygen species,

reducing and oxidizing gases, and oxidation by-products) are
temperature-dependent (Clifford and Tuma, 1983; Nakata et al.,
1991; Wlodek et al., 1991).

Accordingly, when the operating temperature of the sensor varies,
the kinetics of adsorption, desorption, and reaction occurring at
the sensor surface in the presence of atmospheric oxygen and other
reducing or oxidizing species is altered. This approach leads to
sensor responses (e.g., transient conductance patterns) that are
characteristic of the species present in the gas mixture. Having
such an easy way of interacting with the sensor and its charac-
teristics justifies the use of temperature as a control variable in
a deterministic setting and, thus, the optimization of the sensor
device with respect to this parameter (i.e., the sensor’s operating
temperature).

INITIAL METHODS
More than two decades have passed since Parsaud’s pioneer-
ing publication on machine olfaction and e-nose appeared in
literature (1982). Researchers have since devoted their work to
developing signal processing procedures and optimization strate-
gies to ameliorate the performance of metal-oxide gas sensors.
This section presents an introduction to such first deployed opti-
mization methods. One of the pioneering works was presented
by Corcoran et al. (1998), who applied a triangular waveform
(4.16 mHz) to modulate the operating temperature of eight com-
mercially available gas sensors (from Figaro Engineering Inc.,
Japan, http://www.figaro.co.jp) between 250 and 500˚C. They
extracted features from the sensor transients using two differ-
ent approaches. The first approach consisted of sub-sampling the
response transients obtaining a 26-point vector (equivalent to 10˚C
steps) per transient. The second one, on the other hand, con-
sisted of calculating eight secondary features from each response
transient, such as the time to maximum value, time to minimum
value, maximum positive slope, etc. They implemented then an
optimization procedure to determine which sensors and features
should be used to better classify the aromas from three loose leaf
teas using a neural network classifier. The optimization process
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consisted of applying genetic algorithms (GAs) for variable selec-
tion (Davis, 1991). By applying this technique, the authors showed
that it was possible to reach a high success rate in tea classi-
fication (93%) using only 21 dynamic features out of the 208
available features. However, the optimization of the temperature-
modulating signal (frequency, temperature range, and waveform
type) was not considered at the time by the authors. Had this opti-
mization been envisaged, further improvements in classification
performance would have been obtained.

More recently, Fort et al. (2002) and Fort et al. (2003) used
temperature-modulated metal-oxide gas sensors (sensors modu-
lated with a pure sinusoidal signal) to show that the selection of
the signal frequency was of paramount importance for gas identi-
fication. The authors demonstrated that if the temperature of the
sensors is varied relatively quickly in comparison with the chem-
ical response time, the sensor resistance varies as a function of
the temperature with an exponential law characteristic to metal
oxides. AS a result, the response shape would have only a slight
dependence on the chemical environment. On the other hand,
when the operating temperature varies slowly enough in compar-
ison to the chemical response time, the response profile gives a
series of quasi-stationary chemical responses. The best discrim-
ination among the species studied (vapors from water solutions
containing ethanol and other volatile organic compounds) can be
obtained then by selecting a temperature profile with a period close
to that for the chemical response time of the sensor. Accordingly,
these results suggested that the effectiveness of the temperature-
modulation analysis depends on the period of the sine wave, which
must be chosen in agreement to the chemical reaction rate of
each sensor. Around the same time, Choi et al. (2002) and Huang
et al. (2003) got similar results that the ones presented above. The
authors evaluated the effect of utilizing different kind of temper-
ature modulation signals, such as pulse, trapezoid, triangular, and
saw-tooth, as well as modulating frequency values in the sensor
response performance. In particular, utilizing different modulat-
ing frequencies values (50, 30, 40, and 20 mHz),Huang et al. (2003)
experimentally demonstrated that different and more odor spe-
cific response patterns were developing in the sensor response as
the modulating frequency was taken nearer to low values (e.g.,
20 mHz), suggesting that low-frequency temperature modulation
signals are more relevant to alter the kinetics of adsorption, dif-
fusion, and reaction phenomena (i.e., the interaction of odorous
compounds and the gas-sensitive surface) occurring at the sensor
surface.

SENSOR-ARRAY OPTIMIZATION
A wide variety of sensors, feature extraction, and feature selection
methods that are available to the experimenter when consider-
ing a new sensing problem have been described elsewhere in
the literature (Guyon and Elisseeff, 2003; Rodriguez-Lujan et al.,
2010; Vergara and Llobet, 2011). However, when one is work-
ing with an array of non-specific sensors, the biggest concern
to the experimenter is the number of sensors needed to form
a chemo-sensory array. One manner to approach this dilemma
might be to augment an existing array by adding sensors appro-
priate to the new task. However, this is actually a computation-
ally expensive and potentially wasteful solution because using

more sensors does not necessarily guarantee improvement in
the overall performance. As a consequence, the most conceiv-
able way to address this issue is to design an optimal array of
sensors (even comprising completely different sensing technolo-
gies) that would promote the maximum accuracy with which
the sensory system can estimate the stimulus or optimally dis-
criminate between neighboring stimuli. A number of theoretical
studies have been performed with the notion of “array opti-
mization” and are now available in the literature, where can
be explored when the experimenter is approaching to a new
odor identification scenario. One of the pioneering investiga-
tions in this context is the one presented by Zaromb and Stetter
(1984), who proposed, over 20 years ago, a theoretical model
to estimate the minimum number of parameter P = (S sen-
sors×M operating modes) that would be required to discrim-
inate a mixture of up to A analytes from a pool of n different
odorants. By assuming that the response of each sensor is noise-
less and binary related to each odor stimulus (i.e., response/no
response), they argued for a combinatorial measure of the num-
ber of sensors required to detect a given number of chemical
species as

2p − 1 �
A∑

i=1

n!
(n − i)!i! (1)

The authors, whose work was subsequently corroborated by Alka-
sab et al. (2002), proposed a “rule of thumb” in their work accord-
ing to which sensors and operating modes should be selected so
that each of the P parameters does not respond to more than
P/A individual compounds. Later, in a seminal paper presented
by Niebling and Müller (1995), the authors proposed the use of
an inverse feature space to design sensor arrays. In this inverse
feature space, each of the n analytes was represented as a separate
dimension, and each of the s sensors was then represented as a
point in this n-dimensional space. They showed that this visual
representation should enable the experimenter to detect potential
discrimination problems and to design new sensors to adequately
address these problems. Gardner and Bartlett (1996) proposed a
computational model for cross-selective sensors that also consid-
ers the effects of noise and errors. By using the ratio between the
total volume of the sensor space and the volume made up by the
sensor errors, the authors estimated an upper limit of the num-
ber of analytes that can be discriminated by the given array. As a
final result, they proposed a measure of performance, which was
essentially equivalent to the classical Fisher’s linear discriminant
analysis (LDA) ratio (i.e., the ratio of between-class distance to
within-class variance).

It was not until the early 2000s when Pearce and Sanchez-
Montañes (2003) implemented for the first time an information-
theoretic approach for the optimization of chemo-sensory array
systems. In particular, they demonstrated how the “tunings” of
individual sensors may affect the overall performance of the array.
In order to demonstrate the effects of noise and tuning on array
performance, they incorporated the concept of “hyper-volume of
accessible sensor space” (VS), a volume in the sensor space that
contains the sensor-array response to a specific set of analytes.
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As Figure 2A suggests, for a three-odor by two-sensor problem,
the collinearity limits the number of possible sensor responses.
Therefore, the maximum number of analyte mixtures that can be
discriminated by the array is limited by the ratio between VS and
VN (the hyper-volume defined by the accuracy of the sensor array;
see Figure 2B).

Assuming that the errors/noise ratio does not exhibit any corre-
lation with the analyte stimulus, the authors showed then that the

geometric interpretation in Figure 2 can be expressed by means of
the Fisher information (FI) matrix defined as

Ji,j (c) =
∫

p (x|c)
(

∂

∂ci
ln p (x|c)

)(
∂

∂cj
ln p (x|c)

)
dx , (2)

where c is a vector containing the concentration of the analytes,
x is the response of the sensor array to the stimulus c, and p(x |c)

FIGURE 2 | (A) Visualization of a three-odor-to-two-sensor transformation.
(B) The maximum number of feature vectors that can be discriminated is the
ratio between the hyper-volume of the accessible sensor space (VS) and the

accuracy of the sensor-array response. Figure reproduced with permission
from Pearce and Sanchez-Montañes (2003) Copyright 2003 Wiley-VCH,
Weinheim.
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is the conditional probability of observing the sensor response x
upon a given stimulus c. FI is important in this context because it
provides a lower bound (i.e., best-case case) on the accuracy with
which the stimulus, c, can be predicted from the sensor response
x. This lower limit is determined as

var
(
ĉ |c) =

S∑

i=1

(
J−1 (c)

)
ii (3)

where“var” means the variance, and ĉ is the estimation/prediction
of the component i of c, i= 1, . . ., N. This result was called the
“Cramér–Rao Bound” and limits the performance of the best
unbiased estimator that can be built.

In order to use these theoretical constructs in practice, the first
stage one should perform is the formal description of the sensory
context C and a clear specification of the task. The context C, on
one hand, quantitatively describes the likelihood of occurrence of
each odor stimulus, whereas the chemo-sensory task, on the other
hand, is an interpretation of the sensory response (i.e., a quantifi-
cation or identification task). Once the sensory context and task
are properly defined, one then would assume a parametric density
p(x |c) for each individual sensor, estimate the parameters from
experimental data (i.e., by measuring the sensor-array responses
to a number of analyte mixtures), compute the FI using Eq. 2, and
finally compute the expected accuracy of the array using Eq. 3.
This resulted accuracy estimate would then be used as a “figure
of merit” to select an optimal array configuration from a pool
of cross-selective sensors. Once the “optimal” array condition is
found, a catalog of parameters for each sensor used within prac-
tical systems today may then be envisaged, which would make the
optimization of sensory array systems to particular detection tasks
a simple routine operation.

More recently, in the same domain of information theory,
Muezzinoglu et al. (2010) introduced a sensor-array optimiza-
tion scheme for odor identification. The authors demonstrated
the effects of tuning the sensor’s operating parameter in a chemo-
sensory array by incorporating a measure-index widely used in
signal theory, namely the Mahalanobis distance (MD), which
gives a quantitative measure of the separability among probabil-
ity distributions – odor classes for this specific machine olfaction
application case. Since the chemo-sensory records associated to a
given odor class have a certain variability regardless of the features
selected, they can be assumed to be probability distributions that
log the history of each sensor in response to a specific odor class
over a feature space. Therefore, optimizing this index over a con-
trollable operating parameter (e.g., the operating temperature in
metal-oxide gas sensors) of the sensory device, would result then
in improving the classificatory capabilities of the sensor itself, i.e.,
maximizing the spread of the class prototypes (the class centers)
in the feature space while the response variability within each class
is minimized.

To demonstrate their scheme, the authors first assumed a two-
odor class formulation, where all the possible measurements may
belong to one of the two disjoint classes C1 and C2 in a specific
feature space. Then, given a sample xs, their goal was to accu-
rately determine which of the two-class-conditional distributions

f(x |C1), f(x |C2) was more likely to have produced xs. The squared
MD between two-class-conditional distributions is given by

D2 (C1, C2) = (μ1 − μ2)
T S−1

1,2 (μ1 − μ2) , (4)

where μi=〈x |C i〉, i= 1, 2, . . ., are the class centers and S1,2 is
the weighted average of the two covariance matrices S1 and S2

associated to the two-class-conditional distributions. For nor-
mally distributed classes, the MD index, which is proportional to
the distance between-class centers (the between-class scatter) and
inversely proportional to the individual co-variances (the within-
class scatters), constitutes the best-possible quantification of the
overlap. In this particular odor-discrimination case, this index also
becomes the most accurate indicator of the classification perfor-
mance for any unbiased classifier in the sense that the probability
of misclassification is in inverse proportion with the MD value.

In a more generic case, i.e., when the number of classes is greater
than two, the between-class scatter component of MD that pro-
motes the dispersion of class centers can be generalized by the sum
of their pair-wise distances, thus,

MD2 =
|C |∑

i,j=1

D2 (Ci , Cj
)

(5)

where |C | denotes the number of classes in the problem.
Since the class-conditional distributions are originally

unknown to the designer, it is important to be able to estimate
the MD index value from previous observations, i.e., previous
measurements. Being dependent on the mean and variance, the
sample MD is obtained by substituting these two moments by
their sample estimates:

MD2 =
|C |∑

i,j=1

(
μ̂i − μ̂j

)T
Ŝ−1

i,j

(
μ̂i − μ̂j

)
(6)

where C= {1, . . ., |C |} denotes the class labels, from which each
i∈C class is represented by ni pre-recorded samples. Each class
center μ̂i is approximated by the sample average of all samples in
class i. The joint covariance Si,j is given by

Ŝi,j = ni Ŝi + nj Ŝj

ni + nj − 2
(7)

being Ŝi the sample covariance matrix, i.e., the average of the outer
products of the observations in class i.

Intuitively, the resulting MD index quantifies the difficulty of
the classification problem. When this quantity is large, an arbi-
trary classifier is expected to perform with higher accuracy, since,
relatively to a small MD, the distribution within each class is
shrunk (the within-class scatter becomes small) and the two classes
are located away from each other in the feature space (i.e., the
between-class scatter is large).

Being θ a parameter of a sensor array that alters the sen-
sor response characteristics, the problem configuration is then
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expected to be sensitive to the said operating parameter, making
thereby the MD index dependent on θ. Hence, the value

θ∗ = arg max
θ

MD2 (θ) (8)

defines an optimum operating condition for the classification
problem at hand.

Although this optimization criterion is applicable to any num-
ber and complexity of probability distributions, hence, to any type
and number of odorants as well as any sensor technology with a
conditioning parameter, the authors have shown the applicability
of their approach to a particular three-class classification prob-
lem, i.e., ethanol, acetaldehyde, and ammonia. Figure 3A shows
the maps of 30 samples, grouped with respect to their class labels,
to the selected feature space for heater voltage values applied to
the sensor array. As this example illustrates, the three classes move
and change their relative positions with the temperature, making
the classes easier or more difficult to separate along the sweep.
Note also that the two-sensor responses can be highly correlated
at certain temperatures and uncorrelated at others. As a measure
of separability, the evaluation of the MD estimate, given in Eq. 8
for the triple of classes at each operating temperature labeled as
the parameter θ, yields the profile shown in Figure 3B. Based on
this evaluation, the best operating condition to distinguish among
the triple of classes is determined by the maximum of this curve,

which occurs at θ= 5.4 V, i.e., the best voltage applied to the sensor
heater that yields the optimal sensor’s operating temperature.

Utilizing a similar statistical argument, Raman et al. (2009)
pioneered the development of an optimization method to design
micro-sensing arrays for complex chemical sensing tasks. The
method consisted of utilizing statistical methods to systematically
assess the analytical information obtained from the conductomet-
ric responses of chemo-resistive elements at different operating
temperatures, i.e., the similarity/orthogonality of responses; test
their reproducibility; and determine an optimal set of material
compositions to be incorporated within an array of sensors for
the recognition of individual species. They presented qualitative
and quantitative approaches to determine both the sufficiency of
the chosen materials for sensing targets in the test matrix and an
optimal array configuration for the desired application.

In order to optimize the array configuration, the authors pre-
sented a modular approach, a sophisticated temperature pattern
(see Figure 4A) and micro-hotplate platforms with different
metal-oxide chemo-resistors (see Figure 4B) that examines the
target matrix with five high-priority chemical hazards (i.e., ammo-
nia, hydrogen cyanide, chlorine, ethylene oxide, and cyanogen
chloride). The temperature program used to operate the sens-
ing elements toggles the temperature between (a) 32 ramp values
that sample most of the temperature range of the device and
(b) four different baseline temperature values to allow relaxation

FIGURE 3 | (A) Feature maps obtained for three operating temperatures as
indicated by θ on each figure. The two features (i.e., axes) used in this
representation are the transient features extracted from the response x 1 of
TGS2600 and x 2 of TGS2610. Each of the analyte classes contain 10 samples,

which are labeled with a different color/shape on the maps. (B) MD2(θ)
evaluations estimated from the dataset for 11 heater voltages. Figure
reprinted from Muezzinoglu et al. (2010), Copyright 2010, with permission
from Elsevier Science.
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FIGURE 4 | (A) Temperature program used for the detection of high-priority
chemical hazards. A conductance measurement was made at each base and
ramp temperature, but only the ramp values were used for further analysis in
this study. (B) Micro-sensor array platform. A layered schematic showing the

three primary components of the micro-sensor elements: polycrystalline
silicon heater, interdigitated platinum electrodes, and metal-oxide sensing
film. Figure reprinted from Raman et al. (2009), Copyright 2009, with
permission from Elsevier Science.

toward some initial state prior to each ramp temperature.
These different baselines allow thus different film–analyte inter-
actions (i.e., adsorption/desorption, decomposition, and reac-
tion) at the sensing surface prior to the ramp measurements.
Then, they defined the following objective function with three
components:

O = γ1J − γ2N1 − γ3N2 (9)

where J is the maximization term that takes into account
the sufficiency of solution (i.e., separability of the five chem-
ical analyte clusters from different background conditions and
from each other); N 1 and N 2 are two penalty terms that
symbolize the number of different materials used and the
array size respectively; and γ1, γ2, and γ3, are component
weights. The two penalty terms allow comparison between
solutions with different numbers of materials and array sizes.
In order to be able to increase the objective function, each
new material or array element must increase the analyte’s
cluster separability sufficiently to compensate for its “cost.”

This cluster separability is derived from Fisher’s LDA as
follows:

J = trace(SB)

trace(SB)+ trace(SW)
(10)

where SW and SB are the within-cluster and between-cluster scat-
ter matrices, respectively. Being the ratio of the spread between
classes relative to the spread within each class, the measure
J increases monotonically as classes become increasingly more
separable.

With this approach, the authors were able to demonstrate that
cycling each sensing film through the 32 temperatures shown in
Figure 4A did not necessarily create information that spanned 32
different dimensions. The responses were highly correlated and
information seemed to be grouped based on temperature ranges;
all lower temperature responses of a film type provided similar
information that differs from that available from high temper-
ature signals. On the other hand, cross-correlations computed
across materials were comparatively lower than self-correlations.
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Therefore, taken together with the results from the dimen-
sionality reduction analysis, these results suggested that differ-
ent materials provide orthogonal information about the target
analytes.

There is a last important remark to emphasize here. The form
of dependence of the objective function of the methods presented
here on their respective optimizable control parameters is ini-
tially unknown, yet to be inferred from a provided training set
containing labeled measurements from the same sensor array at
representative values of the parameter itself. As a consequence,
any change in the problem setup, e.g., addition or removal of
an analyte class, necessitates a re-calculation of the control para-
meter with the updated dataset, meaning that the sensor array
must be re-conditioned for each class configuration. This outcome,
nonetheless, is normal for any optimization solution considered,
meaning that the found solution is to be customized to the set of
analytes being analyzed. In any case, the statistical methods pre-
sented in this section provided a generalizable methodology for
designing and evaluating array-based solutions for a wide variety
of specific detection problems. Ultimately, it is envisage that the
advances generated by these methods are critical to the produc-
tion of pre-programmed micro-sensors for non-invasive, real time,
multi-species recognition relevant to homeland security, and other
applications involving trace analyte detection in complex chemical
cocktails.

ON THE OPTIMIZATION OF SINGLE CHEMICAL SENSORS
Much less attention has been paid to the optimization of metal-
oxide sensors as a single device. As stated at the beginning of this
review, and more specifically in Section “Metal-oxide Gas Sen-
sors and Temperature Dependence,” there are an extensive number
of articles reporting empirical studies dealing with dynamic fea-
tures obtained from transient responses, e.g.,different temperature
waveforms patterns and stimulus frequencies implemented as a
countermeasure to the effects of selectivity and reproducibility
encountered in gas sensors. There is no doubt that a high variance
in response is detrimental in most chemo-transduction applica-
tions that must be tackled. This general treatment, though, consti-
tutes only one facet of the sensor optimization problem that does
not necessarily yield better performance in the odor identification
task. The reason for this is that a reduction in the response vari-
ance does not ensure a non-overlapping class configuration in the
feature space. Therefore, to maximize classification performance,
one needs a more comprehensive formulation that quantifies the
separation of specific odor classes in the sensor response. Both of
these aspects have been covered in literature under the notion of
“optimization.” The thematic issues relevant to these works will be
reviewed here.

OPTIMIZATION OF EXCITATION PROFILES
Chemical sensing can benefit from a variable-temperature sig-
nal generation. In most of the cases, the temperature variation
(a.k.a. temperature modulation) has been approached empirically
by implementing various temperatures waveforms and stimulus
frequencies (Sears et al., 1989a,b, 1990; Nakata et al., 1992, 1996,
1998; Semancik and Cavicchi, 1999). Although the results achieved
by such a technique are very promising, in most of the reported

works the selection of waveforms and the frequencies used to mod-
ulate sensor temperature has been conducted in a non-systematic
way (Davis, 1991; Corcoran et al., 1998; Choi et al., 2002; Fort
et al., 2002, 2003; Huang et al., 2003). Even the selection of fea-
tures from the sensor transients is a somewhat obscure process.
Therefore, since these selections are based on a trial and error
procedure, there is no way to ensure that the modulation fre-
quencies, modulation depth, or features chosen are the optimal
for a given application. Very few authors, though, have systemati-
cally addressed this problem by suggesting different optimization
strategies.

The first approach to review, in this context, is the one
implemented by Kunt et al. (1998) and Cavicchi et al. (1996),
who pioneered the development of an optimization method for
temperature-modulated micro-hotplate gas-sensor devices. They
implemented a two-step optimization process for determining the
optimal temperature trajectory (or trajectories) that would exploit
the information characteristics contained in the sensor dynam-
ics when operated in temperature-pulsed mode. In particular, the
authors sought to optimize the said sequence by adapting the pulse
amplitude, pulse duration, delay between two consecutive pulses,
and number of pulses in a cycle to better discriminate between
two different gaseous analytes: ethanol and methanol. In the first
stage, the authors introduced a black-box dynamical model of the
sensor from input–output experimental data; they input a tem-
perature programmed excitatory signal to the heating element
of a single micro-hotplate sensor device and collected the sen-
sor conductance in presence to vapors of methanol and ethanol.
The authors then sought to predict the next conductance value of
the sensor response (y i+1) from the previous values of the con-

ductance
{

yk
}i−ny+1

k=i , as well as the next and previous values of

the temperature set points {uk}i−nu+2
k=i+1 , thus,

yi+1 = F
(
yi , yi−1, . . . , yi−ny+1, ui+1, ui , . . . , ui−nu+2

)
, (11)

where ny and nu represent the model order in the input and output,
respectively.

Utilizing different dynamic modeling methods, a suitable
model F(·) was then built from the experimental data collected,
being the wavelet network (WNET) method, for this particular
case, the most accurate of all the tested methods. This initial
model was further trained to set the final parameter values of
the model F(·) and then used to simulate the sensor response to
different temperature programs. In the second stage, the authors
then implemented an off-line optimization routine to find the
“optimal” temperature profile {ui}Ti=1 that maximizes the distance
between the (simulated) temperature-modulated sensor responses
to the targeted gases, thus

{ui}Ti=1 = arg max
u1,u2,...,uT

d
(
yMeOH, yEtOH) , (12)

where yMeOH and yEtOH are the conductance responses predicted
by the WNET models for methanol and ethanol, respectively.

Above, the search space for this optimal temperature profile is
over a limited subset of realizable temperature pulses (e.g., lower
and upper limits are chosen based on the sensor structure) and
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under the constraint that two consecutive pulses cannot differ in
more than 40˚C in order to avoid drastic changes in the surface.
Finally, the metric used to quantify the said distance is the normal-
ized sum of squared differences (NSSD) between the two response
curves

NSSD =
n∑

i=1

(
yMeOH

i − yEtOH
i

)

n

2

, (13)

where n is the number of temperature pulses in a cycle.
Figure 5 shows the optimal temperature profile to discrim-

inate ethanol and methanol that was computed and validated
through experimental measurements. This temperature profile
(see the temperature profile shown in Figures 5C,D) produces
methanol and ethanol responses that are out of phase (i.e., easy
to discriminate). On the other hand, when applying a simple lin-
ear ramp (see Figures 5A,B), the sensor responses to ethanol and
methanol were highly overlapped (i.e., becoming a non-trivial case
of discrimination).

Although this methodology is systematic and should be applic-
able to other analytes, its application to the qualitative and quan-
titative analysis of multi-component mixtures is not straightfor-
ward. The fact that the method relies on the construction of good
predictive response models, complicates the optimization process
for multi-gas, concentration variant environments.

With this motivation, more recently Vergara et al.
(2005a,b, 2007a, 2008) introduced, in a series of works, a
system-identification method for optimizing the temperature-
modulation frequencies in order to solve a given gas analysis prob-
lem. The optimization method consisted of utilizing one of the
most useful types of periodic signal for process identification, the
pseudo-random sequences of maximum length (PRS-ML), either
binary or multi-level, to determine the most suitable temperature-
modulation frequencies for discriminating and/or quantifying a
number of specific target compounds at different concentrations.

Pseudo-random sequence signals are the most popular choice
for the persistently exciting perturbation signals required in system
identification. The most common application of these sequences
is the identification of linear systems. In particular, the pseudo-
random signal sequences considered by the authors in their opti-
mization scheme are based on maximum-length q-sequences,
either binary or multi-level1, the generation and properties of
which were described by Zierler (1959). The relevant theory
behind these signals is based on the algebra of finite fields. When
q (the number of levels) is a prime, the digits of the sequence are
the integers 0, 1, . . ., (q− 1) and the sequence can be generated
by a q-level, n-stage shift register with feedback to the first stage
consisting of the modulo q sum of the outputs of the other stages
multiplied by coefficients a1, . . ., an, which are also the integers
0, 1, . . ., (q− 1). The length (or period) of a maximum-length
sequence is qn− 1, which signifies that the sequence repeats itself

1One of the main reasons for considering signals with more than 2 levels is that
multi-level signals provide the possibility of identifying a better estimate of the lin-
ear dynamics of a process with non-linearity than the binary sequences and that they
can also be of use in the identification of the non-linear characteristics themselves
(Vergara et al., 2005b, 2007a).

after qn− 1 logic values. The pseudo-random sequences are peri-
odic, deterministic signals that have a flat power spectrum over
a large frequency range. These properties imply that a PRS-ML
shares some properties with white noise, but with the advantage
of being repeatable, which makes these signals even more attractive
and suitable for the system-identification task ahead. The gener-
ator of such a sequence and an example of a 5-level sequence
(fragment) are shown in Figures 6A,B, respectively. Notice how
the initial state of the shift register can be any combination of
length n of the values 0, 1, . . ., (q− 1), with an exception made of
n= zeros, and that each combination of these values appears as the
state of the register exactly once during a period of the PRS-ML
(Godfrey, 1993).

The impulse response, h(t ), is the main descriptor of a linear
invariant system. Among the different strategies to estimate the
impulse response, noise based methods allow to excite the system
under study for enough time to supply it with the necessary energy
to obtain a good estimate of h(t ). By using white noise as excita-
tion signals, one ensures that there is a homogeneous distribution
of the energy over a large frequency range. Since PRS-ML sig-
nals have a low crest factor (i.e., low peak-to-average factor), they
minimize the risk of saturating the system under study, which, in
practice, means that these signals contain energy enough to obtain
a good signal-to-noise ratio in a wide frequency range (i.e., mea-
surement with high dynamic range) and that they avoid possible
sensor non-linearities caused by signals with high crest factors
(e.g., impulsive signals). Therefore, since these excitatory noise
signals are deterministic, reproducible results are expected to be
obtained, provided that the conditions of the system under analysis
remain unchanged.

The power spectrum envelope of a PRS-ML is almost flat up
to a frequency equal to 0.45× fc, where fc is the frequency of the
clock signal applied to the shift register used to generate the sig-
nal. The power spectrum is discrete and the separation between
spectral lines (i.e., the spectral resolution) is fc/L, where L is the
length of the PRS-ML. Figure 6C shows the power spectrum of a
PRS-ML signal, where, as observed, the power spectrum envelope
is similar to the power spectrum of white noise up to the −3 dB
cut-off frequency, which in this particular case is equal to 0.45× fc.

When the pseudo-random sequence is a maximum-length

signal, the impulse response estimate, ĥ(n), can be obtained
by computing the circular cross-correlation between the exci-
tatory signal, x(n), and the response signal, y(n). The circu-
lar cross-correlation of two sequences x and y in �L may be
defined as,

ĥ(n) = 1

L

L−1∑

l=0

y(l + n)x(l), n = 0, 1, 2, . . . , L − 1. (14)

Above, the cross-correlation is circular since l+ n is interpreted as
modulo of L, where L is the length of the sequence and that can be
optionally utilized as a normalization factor. The circular cross-
correlation between the input and output sequences can readily

be interpreted in terms of ĥ(n), since the autocorrelation function
of the PRS-ML signal is of approximately impulsive form.
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FIGURE 5 | (A) Normalized conductance response to methanol (solid) and
ethanol (dashed) upon applying a linear temperature ramp as shown in (B).
(C) Actual experiments with methanol (solid line) and ethanol (dashed line)
gases, model predictions are shown by circles for methanol and plus for

ethanol models; (D) the optimum temperature profile derived from the off-line
optimization process. Note the dramatic improvement in discrimination
between (A) and (C). Figure reprinted from Kunt et al. (1998), Copyright 1998,
with permission Elsevier Science.

The whole optimization method proposed is illustrated in
Figure 7. In a practical instance, it works as follows. First, a
voltage PRS-ML signal is applied to the heating element of a

micro-hotplate gas sensor while the sensors are exposed to vari-
ous target compounds (e.g., nitrogen dioxide, ammonia, ethylene,
ethanol, acetaldehyde, and their binary mixtures), hence ensuring
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FIGURE 6 | (A) A q-level pseudo-random maximum-length sequence
generator. (B) Fragment of a 5-level pseudo-random sequence. (C) Discrete
power spectrum of a PRS-ML signal. Spectral resolution is f c/L, where f c is

the frequency of the clock signal applied to the shift register and L is the
length of the sequence. Figure reprinted from Vergara et al. (2007a),
Copyright 2007, with permission Elsevier Science.

that the sensor’s working temperature is modulated over the whole
wide frequency range considered. Then, for each individual target
compound the impulse response h(t ) is computed as the circu-
lar cross-correlation between the excitation signal (PRS-ML) and
the sensor response. Afterward, the absolute values of the FFT
of the impulse response estimate are calculated, determining, in
essence, which spectral components contain important informa-
tion for the identification and quantification of gases. Finally, each
individual frequency is ranked on the basis of its information

content (between-class to within-class scatter ratio), and a sub-
set of the most informative frequencies is selected. As the authors
have shown in their results, this procedure succeeded in maxi-
mizing the discrimination and quantification of various gases and
their mixtures using even a single sensor with its optimized set of
modulating frequencies.

In addition, the authors extended their optimization study
on a completely two-stage validation procedure, demonstrat-
ing thus the consistency and robustness of the method itself
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FIGURE 7 | Study of the sensor/gas system using MLPRS signals. The
MLPRS voltage signal, x (n), is input to the heating element of a
micro-hotplate gas sensor. The transient of the sensor conductance (i.e.,
the response in the presence of gases), y (n), is recorded. An estimate of
the impulse response, ĥ(n), can be computed via the circular
cross-correlation of x (n) and y (n). Finally, by performing the FFT of ĥ(n), the
spectral components of the impulse response estimate are found. Figure
reprinted from Vergara et al. (2007a,c), Copyright 2007, with permission
Elsevier Science.

(Vergara et al., 2007c, 2008). The two-stage method consisted of,
first, running the whole optimization process presented above uti-
lizing a set of measurements pre-recorded with one micro-sensor
array, and then, validate the resulting outcome employing a new
set of measurements collected with a different sensor array with
the same characteristics of the one used in the first stage. This new
set of measurements, though, was based on the multi-sinusoidal
temperature-modulating signal showed in Figure 8A, the frequen-
cies of which were the reduced set of the optimal ones estimated
in the first stage. The Figures 8B,C show the FFT spectra of the
transient response of a sensor in the presence of two different ana-
lytes [acetaldehyde (50 ppm) and ethylene (50 ppm)]. Notice how
the peaks in these plots correspond to the “optimal” temperature-
modulating frequencies selected. As the variation of peaks’ height
(i.e., the pattern) between Figures 8B and 8C shows, significant
improvements in the classification and quantification capability of
a single gas-sensor operated under the temperature-modulation
scheme is attained. Particularly, their results revealed a classifi-
cation performance of up to 98.2% even when a single sensor
was used, and a shift of the odor concentration prediction of
down to 0.92 ppm for single species and 2.81 ppm for binary mix-
tures. These illustrated performance improvements were expected,
though, in the sense that, as the Figures 8B,C shows,a different pat-
tern develops when different odorant species are measured, whilst
the resulting pattern is preserved, to a large extent, when the vapor
concentrations change, meaning that the illustrated evaluation is a
reliable indicator of the improvement of the classification capabil-
ity of the sensors when their operating temperature is modulated
at the frequencies selected.

As a final remark to emphasize here, it was demonstrated that
for each gas-sensor pair, the modulating frequencies selected are
related to the characterization of the interaction between the
metal-oxide layer and the gas, e.g., film microstructure; surface
diffusion; and reaction kinetics. Even though the method was
implemented for the analysis of the specific qualitative and quanti-
tative task earlier described, this optimization procedure is generic
and could be applied to many qualitative and quantitative gas
analysis applications.

OPTIMIZATION OF THE OPERATING TEMPERATURE: INTERNALLY
TUNING THE CHEMICAL SENSORS
It has long been known that varying or setting different values of
the sensor’s operating temperature affects all the aspects of the
sensor response, including its selectivity and sensitivity to differ-
ent volatile compounds (i.e., the sensor’s ability to encode the odor
information), as well as its reproducibility. For example, carbon
monoxide (CO) is usually best detected at lower operation temper-
atures (e.g., 250˚C) when using a tin dioxide based sensitive layer,
whereas higher temperatures (e.g., 350˚C) are used for monitor-
ing hydrocarbons such as methane among others. In view of this,
different strategies, such as the idea of periodically changing the
sensor working temperature, have been implemented to maximize
the performance of the sensors. However, despite the promising
results obtained in all these previously cited attempts, one question
remains unanswered: given a metal-oxide based chemical sensor,
how does one select the best (i.e., the optimal) operating tem-
perature (or temperatures) for fast and reliable discrimination or
quantification of chemical species? One conceivable manner to
address this issue is to empirically vary the operating temperature
through all the possible values available in the sensor so that its
response to each gas is maximized (Cavicchi et al., 1996; Maziarz
and Pisarkiewicz, 2008). However, this may be an expensive and
inefficient solution because it does not guarantee the improvement
of the performance of the sensors.

Undoubtedly, heightened sensitivity to a spectrum of chemi-
cal hazards is necessary for the detection of analytes at relevant
concentrations. However, this general treatment constitutes only
one facet of the problem, a substantial selectivity is also necessary
to rapidly and accurately perform the odor identity representation
task. The reason for this is that an increase in the response does not
ensure a non-overlapping class configuration in the feature space.
Therefore, to maximize the classification performance, one needs
a more comprehensive formulation that quantifies the separation
of specific odor classes in the sensor response.

Following this scheme, Vergara et al. (2009b, 2010) formu-
lated an optimization method to select, for a single sensor, the
best operating temperature to discriminate a given set of odor-
ants. The authors presented a rigorous way of selecting the best
operating temperature for a chemical sensor. The method hinges
on an information measure widely used in information theory,
namely the relative entropy or Kullback–Leibler divergence (KL-
divergence; Kullback and Leibler, 1951), a measure index that
rates the difference between two probability distributions. Since
these probability distributions may belong to one of the disjoint
classes of interest in a particular odor universe, this annotated
quantitative measure shows how odors are encoded in every odor-
ant chemo-receptor and how distinguishable they are from each
other at different parameter values. Tuning a control parameter,
such as the sensor’s operating temperature, will maximize such a
difference, yielding thereby a substantial improvement in the clas-
sification performance (separation of classes) and reproducibility
of the process. In particular, using a metal-oxide gas sensor in
an odor-discrimination instance, the authors demonstrated the
proposed criterion by studying the impact of adjusting the sens-
ing parameter on the odor-sensor pair interaction and on the
confidence of the information yielded by the sensor individually.
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FIGURE 8 | (A) Setup used to generate a multi-sinusoidal signal, which
consists of the sum of six sinusoids of identical amplitudes and different
frequencies. The signal is applied to the heating element of the micro-sensors
studied. FFT (absolute value) of the transient response of a

temperature-modulated WO3 micro-hotplate sensor in the presence of (B)

50 ppm acetaldehyde and (C) 50 ppm ethylene. Figure reprinted from Vergara
et al. (2007a, 2008), Copyright 2007 and 87, Copyright 2008, with permission
Elsevier Science.
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The KL-divergence is a very well-known index for class separa-
tion that is a non-commutative measure (a“distance” in a heuristic
sense) of the difference between two distributions: a conceptual
reality [probability distribution g (·)] and an approximate model
[probability distribution h(·)]. For two continuous functions qual-
ifying as probability distributions, the KL-divergence is defined by
the integral:

KL(g ||h) =
∞∫

−∞
g (x) log

g (x)

h(x)
dx , (15)

where KL is the measure of “information” lost when a model h(·) is
used to approximate reality [i.e., model g (·); Kullback and Leibler,
1951].

The utility of the KL-divergence is based on a certain number
of properties that make it unique for measuring the difference
between two probability distributions. For example, this approach
can account for a number of key characteristics of a response,
including, for example, higher order moments (e.g., skewness) or
multi-modality, which in turn may be involved in the response
distribution (at least in odor representation), causing thus loss
of information. However, the measure is still not commutative,
i.e., KL(g (x) || h(x)) is in general different from KL(h(x) || g (x));
therefore, the KL-divergence is not a legitimate metric by itself. As a
consequence, a symmetrized version, namely the KL-distance, can
be readily composed after a straightforward manipulation given
by:

KL(g , h) = 1

2
KL(g ||h)+ 1

2
KL(h||g ), (16)

which the authors adopted as a measure of the class-conditional
distributions’ separation for the specific purpose.

In a context C (i.e., the likelihood of occurrence of each odor
stimulus from a finite list of analytes whose classes are known) in
which one is trying to discriminate two compounds that is com-
plicated by the similarities/overlaps among the class-conditional
distributions, the KL-distance index, given in Eq. 16, constitutes
an accurate measure of discrimination, hence a good indicator of
the classification performance for any unbiased classifier. There-
fore, given the simplest two-dimension discrimination problem
(i.e., a two-class discrimination task), when the class-conditional
distributions depend on a measurement parameter (e.g., oper-
ating temperature in metal-oxide gas sensors), maximizing the
KL-distance is a valid objective function for tuning that parameter
(see Figure 9).

Using a binary classification instance as a case of study may
be very convenient from many perspectives; in odor representa-
tion, however, this assumption may be very unrealistic. When the
number of classes (i.e., the possible outcomes of the identification
problem) is more than two, the KL-distance should be generalized
to promote the dispersion of the whole classes. The authors have
addressed this issue by replacing (16) with the sum of pair-wise
distances, thus:

CKL =
|C |∑

i,j=1

KL(gi , hj), (17)

FIGURE 9 | Class-conditional probability distributions in a two-class

discrimination instance. Each class response models the histograms by a
normalized fifth-order polynomial (plain and dashed lines). These models
accurately approximate the sensor’s response to an odor class while
accounting for the asymmetry (i.e., skewness) in the distribution. The
KL-distance index then captures the influence of the operating parameter
on the separability of such distributions. Maximizing this index for a pair of
distributions results in a better discrimination between the corresponding
two classes (top versus bottom figures). Figure reprinted from Vergara et al.
(2010), Copyright 2010, with permission Elsevier Science.

where |C | denotes the number of classes in the problem and gi(·)
and h(·), i ∈C, j ∈C, are the class-conditional distributions, each
potentially depending on the operating parameter (e.g., the sen-
sor’s operating temperature). The CKL quantifies the difficulty of
the classification problem. When this quantity is large, an arbi-
trary classifier is expected to perform with higher accuracy, since,
relative to a small CKL, the distribution within each class shrinks
whilst the distance among the considered classes increases in the
feature space.

Assuming that β denotes an intrinsic parameter of a sensor
device that alters the response characteristics (see Figure 9), then
the problem configuration CKL is expected to be sensitive toβ

itself. Hence, the value

β∗ = arg max
β

CKL(β), (18)

defines an optimum operating condition for the classification
problem at hand.

In demonstrating their optimization scheme, the authors
applied the criterion (18) to optimize the operating conditions
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of commercialized metal-oxide gas sensors (sensors provided by
Figaro Engineering Inc., Japan, http://www.figaro.co.jp). In par-
ticular, they have examined the performance of each gas sensor in
a six-class classification problem, comprised by six different ana-
lytes dosed at different concentrations (i.e., ethylene, ethanol, and
toluene dosed at 10 ppm; acetone and acetaldehyde at 100 ppm;
and ammonia at 120 ppm). They thus studied the impact of adjust-
ing its sensing parameter β on the odor-sensor pair interaction
and on the confidence of the information yielded by the sensor
individually.

In principle almost any controllable variable that alter or mod-
ify the operating characteristics of the sensor, such as the environ-
ment temperature, flow rate, or even construction methodologies,
can be used as a parameter of the response profile that can
be tuned to improve the processing performance. However, in
this popular odor sensing technology, it is very well-known, and
proved in many empirical works (see, e.g., works from Sears and
Nakata), that there is a strict dependence of the sensor response
on its operating temperature (temperature normally ranging in
high orders of magnitude, e.g., 400˚C, responsible of the adsorp-
tion/desorption reaction occurring at the micro-porous surface
of the sensor in response to an analyte). Accordingly, having
such an easy way of interacting with the sensor, the most nat-
ural way to optimize the sensor device is with respect to this
parameter (i.e., the sensor’s operating temperature), assuming
that all the other parameters remain constant. Since the sensor
packaging does not permit direct access to this temperature, its
tuning can be achieved via a resistive heater element with con-
trollable voltage, which has a deterministic one-to-one mapping
with the actual active layer temperature2. Accordingly, the authors

2A look-up table with a deterministic one-to-one mapping of the actual active layer
temperature and the controllable heater voltage was provided in Figaro Engineering
Inc., Japan, http://www.figaro.co.jp

have considered this heater voltage and the operating tempera-
ture interchangeably as the sensing conditioning parameter β to
be optimized.

To demonstrate the optimization scheme in a practical instance,
the authors established the following procedure: Initially, the form
of the dependence of CKL on β is initially unknown, yet to be
inferred from a provided training set (containing labeled mea-
surements) from the same sensor at representative β values. For
each sensor the authors then compiled a comprehensive dataset
containing the analytes described above. Each set of time series
contained 30 independent measurements taken from each class at
each of the 13 sensor operating temperatures corresponding to the
heater voltages β∈ {3.8, 4.0, . . ., 6.2 V}3. Thus, the authors repre-
sented each of the chemo-sensory records, associated with each
odor class and operating temperature, as independent and identi-
cally distributed (i.i.d.) samples, from which the class-conditional
distribution is derived. Then, they modeled each odorant class by
a polynomial fit to the histogram of previously collected samples
from that odorant type. In particular, they consider a fifth-order
polynomial to represent odorant class/histogram relation. Finally,
by plugging these functions into Eq. 17, the CKL criterion (18)
was implemented, and the maximum β value obtained, yielding
thus the optimal operating temperature values for the particular
discrimination task. As a measure of separability, the evaluation of
the CKL for the six classes at each temperature β yielded the profile
shown in Figure 10 (dashed lines). Based on this evaluation, the
best operating condition for each sensor to distinguish between
the set of classes is determined by the maximum value of their
respective curves.

3The operating temperature values selected perform a dataset with a tempera-
ture resolution (i.e., separation value among the temperatures evaluated) of 20˚C,
under the assumption that this temperature resolution suffices in making a reliable
inference of the dependence of the CKL on the parameter value β.

FIGURE 10 | Observed discrimination performance of a linear-SVM

classifier of each sensor on the six-class identification problem (dotted

lines). Profiles for each sensor as estimated by the CKL index (dashed lines)
with respect to β. Based on the proposed criterion, the optimal operating

condition that best discriminates between the set of classes can be
determined for each sensor individually by obtaining the maximum value of
the curve shown. Figure reprinted from Vergara et al. (2010), Copyright 2010,
with permission Elsevier Science.
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To demonstrate the consistency and robustness of the opti-
mization method, the authors conducted a validation process that
consisted of measuring the correlation between the information
given by the optimization criterion (18) and the performance given
by an arbitrary linear support-vector classifier based classifier. As
observed in Figure 10, the results yielded by the SVM classifier
(see Figure 10, dotted lines) follow a similar pattern to the esti-
mated measure CKL index (Figure 10, dashed lines) in the sense
that their extreme points occur at the same β values. The ordering
of these points in magnitude was also preserved to a large extent,
meaning that the proposed measurement is a reliable indicator of
the classification performance at almost all temperatures within
the range.

In addition, the authors validated the whole optimization
process with the second dataset 4 months later. To validate the
results, they re-calculated the proposed cost function CKL of the
second dataset by applying the same procedure described above.
Based on this re-evaluation, the best operating condition to dis-
tinguish between the new set of classes was determined, and
compared to the performance yielded by the linear-SVM classifier.
As can be seen in Table 1, the results obtained in the validation
stage perfectly matches with the information given by the classi-
fier, showing the consistency of the method. These results indicate
that the proposed CKL measure-index is optimum for any com-
plexity of probability distribution models; hence, for any type and
number of odorants as well as any type of sensor technology with
a conditioning parameter, provided that these models are accurate
in identifying the response distribution. Nevertheless, the method
could be extended to an arbitrary classification instance as needed,
including complex odors at different concentrations or mixtures
of gases, provided that a sufficiently representative database of rel-
evant measurements is available. It is also important to emphasize
that the solution β∗ does not impose a particular classification
method. Therefore, the parameter value resulting from the max-
imization of Eq. 18 simplifies the task of an arbitrary unbiased
classifier.

It is important to comment on one last issue here. An oper-
ating condition is optimal for a well-defined task. If this task
changes then the best condition should be re-calculated. This
applies, nonetheless, to any optimization method, not just this one.
For example, considering a generic classifier training instance, if
the training data changes (e.g., some data turns out to be invalid
or relabeled), then the device needs to be re-trained in order to
determine the optimal performance. In this optimization case, a
re-calculation of β∗ with the updated dataset is therefore needed,
too.

ACTIVE-SENSING OPTIMIZATION
The idea of applying sophisticated signal processing procedures
and optimization strategies to ameliorate the performance of
metal-oxide gas sensors has been around for more than two
decades. Researchers have since used a wide array of dynamic fea-
tures obtained from transient responses, but most of these studies
have been empirical. To the best of our knowledge, very few stud-
ies have proposed systematic approaches to optimizing the sensor
performance as a single device (Cavicchi et al., 1996; Kunt et al.,
1998; Vergara et al., 2005a,b, 2007a,c, 2008, 2009a,b, 2010). These
methods, though, require that the optimization be performed off-
line; therefore, they cannot adapt to changes in the environment. In
view of this, a novel active-sensing approach that can optimize the
temperature profile online (i.e., as the sensor collects data from
its environment), has recently emerged in literature. The most
relevant works on this thematic issue are reviewed in this section.

Active-sensing strategies are inspired by the fact that per-
ception is not a passive process (Gibson, 1979), but an active
one, in which an organism controls its sensory organs in order
to extract behaviorally relevant information from the environ-
ment (see Figure 11A). Active sensing has been traditionally used
in robotics and computer vision, in which the localization and
navigation tasks, on the one hand, and the recognition of three-
dimensional (3-D) objects from 2-D image, on the other hand,
respectively, is a recurrent theme (Paletta and Pinz, 2000; Denzler
and Brown, 2002; Floreano et al., 2004). In chemical sensing, how-
ever, it has received only minimal attention. In one of the earliest
studies, Nakamoto et al. (1995) developed a method for active
odor blending, where the goal was to reproduce an odor blend by
creating a mixture from its individual components. The authors
developed a control algorithm that adjusted the mixture ratio, so
the response of a gas-sensor array to the mixture could matched
the response to the odor blend.

It was not until 2010, when Gosangi and Gutierrez-Osuna
(2009, 2010) proposed an active-sensing approach to optimize
the temperature profile of metal oxide sensors in real time, as
the sensor reacts to its environment. To see how their approach
works let us consider the problem of classifying an unknown gas
sample into one of M known categories {ω(1), ω(2), . . ., ω(M)}
using a MOX sensor with D different operating temperatures {ρ(1),
ρ(2), . . ., ρ(D)}. To solve this sensing problem, one typically mea-
sures the sensor’s response at each of the D temperatures and then
analyzes the complete feature vector x= [χ1, χ2, . . ., χD]T with
a pattern-recognition algorithm. Although straightforward, this
passive sensing approach is unlikely to be cost effective because
only a fraction of the measurements are generally necessary to

Table 1 | Optimal operating parameter values β selected versus the observed classification performances for each metal-oxide gas sensor given

by the linear-SVM classifier during the validation stage.

Sensor type → TGS2602 TGS2600 TGS2610 TGS2620

Optimal parameter value β using the CKL-distance (V) 5.4 4.4 4.4 4.4

Validation discrimination performance rate in percent (CKL-distance) 90.50 84.55 87.68 94.23

The performance of the linear-SVM classifier was quantified for each sensor on each optimized parameter value. Table adapted from Vergara et al. (2010), with

permission from Elsevier Science.
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FIGURE 11 | (A) In active sensing, the system adapts its sensing
parameters based on its belief about the world (e.g., class
membership of a stimulus). (B) Illustration of active-classification
with an array of four metal-oxide gas sensors, 10 temperatures
per sensor, and a discrimination problem with six chemicals. At
time zero, no information is available except that classes are a priori
equiprobable: p(ω(i ) = 1/6). Based on this information, the active
classifier decides to measure the response of sensor S2 at temperature T4,

which leads to observation o1 and an updated posterior p(ω(i ) |o1,a1). After four
sensing actions, evidence accumulated in the posterior p(ω(i ) |o1. . . o1, a1. . . a1)
and the cost of additional measurements are sufficient for the algorithm to
assign the unknown sample to class ω (3). In this toy example, accurate
classification is reached using only 10% of all sensor configurations.
(C) Classification performance and average sequence length as a function of
feature acquisition costs. Figure adapted from Gosangi and Gutierrez-Osuna
(2009) ©IEEE.
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classify the chemical sample. Instead, the authors seek to deter-
mine an optimal sequence of actions a= [a1, a2, . . ., aT], where
each action corresponds to setting the sensor to one of the D
possible temperatures or terminating the process by assigning the
sample to one of the M chemical classes. More importantly, they
seek to select this sequence of actions dynamically on the basis of
accumulating evidence. This process is illustrated in Figure 11B.

In demonstrating their approach, the authors first model the
sensor’s steady-state response at temperature ρi to chemical ω(c)

with a Gaussian mixture:

p
(

xiω
(c)
)
=

Mi∑

mi=1

α
(c)
i,mi

N

⎛

⎝xi |μ(c)
i,mi

,
(c)∑

i,mi

⎞

⎠ (19)

where Mi is the number of Gaussians, and α
(c)
i,mi

, μ(c)
i,mi

,
∑(c)

i,mi
are

the mixing coefficient, mean vector, and covariance matrix of each
Gaussian for class ω(c), respectively. Given a sequence of actions
[a1, a2, . . ., aT], the authors assumed that the sensor progresses
through a series of states s= [s1, s2, . . ., sT] to produce an obser-
vation sequence o= [o1, o2, . . ., oT]. Each state si represents a
Gaussian in (19) and is therefore hidden. Following this step, they
modeled the dynamic response of a sensor to a sequence of temper-
ature pulses by means of an input–output hidden Markov model.
This is a machine learning technique that can be used to learn a
dynamic mapping between two data streams: (a) an input (temper-
ature in this case) and (b) an output (sensor conductance). Once
a dynamic sensor model has been learned, they then approach the
temperature-optimization process as one of sequential decision-
making steps under uncertainty, where the goal is to balance the
cost of applying additional temperature pulses against the risk
of classifying the chemical analyte on the basis of the available
information. As a result, the problem is solved through a partially
observable Markov decision process (Papadimitriou and Tsitsiklis,
1987).

Simulation results from this study are shown in Figure 11C;
these results indicate that the method can balance sensing costs and
classification accuracy: higher classification rates can be achieved
by decreasing sensing costs, which in turns increases the length of
the temperature sequence and the amount of information avail-
able to the classifier. One last think to comment on here is that
the active-sensing approach proposed here has great potential
in pioneering new strategies to be implemented in energy-aware
chemical sensing networks using low-cost commercial sensors.

CONCLUSION AND OUTLOOK
Most of the work reviewed in this article has focused on optimiza-
tion schemes for single sensors or sensor arrays within a single
chemo-sensing system. Advances at the intersection of materi-
als science, micro- and nano-technology, microelectronics, and
chemical micro-sensory systems together with the explosion of
mobile computing and the wireless communications capabili-
ties will soon dramatically influence the deployment of mas-
sively distributed sensory micro-systems networks with capabil-
ities that, only years ago, were confined to the lab bench of
research laboratories. It can be concluded from the contents of
this review that the integration of chemical micro-systems and

wireless networks may, indeed, have a profound impact not only
in different applications ranging from environmental monitor-
ing to personal health care, but also in the formidable chal-
lenges present at the current practices of sensor management
and data analysis. However, we believe that the sensor-based
detection of chemical analytes in a dynamic real-world environ-
ment is a complex task, in which the interest of the final-user
is to have reliable, user-friendly, and affordable sensory sys-
tems, irrespective of the internal system complexity. Therefore,
the concept of an adaptive optimal sensory system can be most
successful.

Adaptive sensory systems may be devices that include various
chemical transducer types and sensor operation modes, the use
of auxiliary sensors, and separation and pre-concentration units,
which can respond or adapt their optimal operation to the occur-
ring analysis situations or events. Then, in the instance where
a certain odorant compound or a major interfering chemical is
present, the sensor/feature selection, sensor operation mode, fea-
ture extraction, and data treatment should be able to adapt to this
event so that their protocols execute in such a way that the best-
possible target-analyte detection is achieved or that the influence
of the interfering analyte can be recognized and minimized if not
suppressed at all. In dealing with the just described issues, it may
be very effective to purposefully select or deselect sensors, to find
the optimal sensor’s operation mode, or to use signal ratios or dif-
ferential values instead of merely increasing the array size or the
transducer diversity.

Another important observation to make from the optimization
schemes reviewed here is that the chances for these optimization
schemes to succeed, or in other words maximizing the perfor-
mance in a gas-sensor identification system to be more precise,
truly depends on multiple factors that all together determine the
problem setup. These factors include the hierarchical level of
the classification problem pursued (e.g., gas discrimination ver-
sus quantification and prediction of the gas concentration), the
environmental parameter conditions, the features selected for eval-
uation, and the classifiers utilized to map the extracted features to
class labels (Vergara et al., 2009a). A more comprehensive for-
mulation addressing all of these options would almost certainly
yield a better performance than the generic solutions presented in
these works (Di Natale et al., 1995; Wilson and De Weerth, 1995;
Martinelli et al., 2003; Vergara et al., 2007b,d). We held this issue,
though, as an arguable position that we would address in future
works.

Finally, when facing a general problem of sensor-array opti-
mization, sensor selection, or sensor optimization, it would be
worth considering the following steps:

1. In case there is domain knowledge (e.g., underlying physic-
ochemical phenomena is known or a sensor response model
is available), then consider building a better set of “ad hoc”
features.

2. Are features commensurate? If a hybrid multi-sensor system is
employed, which combines different odor sensing technologies
it is likely that feature normalization will be of help.

3. If there is a need to prune the number of sensors or input
features (e.g., for simplicity, data understanding, etc.) then
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start by assessing features individually. This will help in
understanding their relative influence on the system. Addition-
ally, if their number is too large use a variable ranking method
to implement a first step of filtering.

4. In case some response patterns within the optimization data-
base are suspected to be meaningless or have the wrong class
labels, outliers should be detected by employing the top ranking
features/sensors obtained in step 3.

5. In case there is not an evident option for the classifier model
to be used, start by trying first a linear model. Following the
ranking of step 3, construct a sequence of classifiers of similar
nature using increasing (or decreasing) subsets of features (e.g.,
by implementing a forward or backward selection strategy). In
case performance is matched or improved with a smaller sub-
set, then try a non-linear classifier model with this subset. As a
rule of thumb, it is better to try simple strategies first.

6. If the database available has a large number of samples and there
is time enough and computational resources, then it is worth
comparing several sensor/feature selection methods coupled
to linear or non-linear classifier models. Consider combining

filters either with wrapper or embedded approaches. Do not
refrain from trying your own ideas.

7. Finally, in order to achieve a stable solution to the optimization
problem and effectively improve performance, employ data re-
sampling methods (e.g., by constructing bootstrap sets) and
redo the sensor selection analysis for different sets.
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Roboticists often take inspiration from animals for designing sensors, actuators, or algo-
rithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny
ability of animals to solve complex tasks like recognizing and manipulating objects, walk-
ing on uneven terrains, or navigating to the source of an odor plume. In particular the task
of tracking an odor plume up to its source has nearly exclusively been addressed using
biologically inspired algorithms and robots have been developed, for example, to mimic
the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic
approaches to gas source localization are of limited use, primarily because animals differ
fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive
mobile robots.To support our claim, we compare actuation and chemical sensing available
to mobile robots to the corresponding capabilities of moths. We further characterize air-
flow and chemosensor measurements obtained with three different robot platforms (two
wheeled robots and one flying micro-drone) in four prototypical environments and show
that the assumption of a constant and unidirectional airflow, which is the basis of many gas
source localization approaches, is usually far from being valid. This analysis should help to
identify how underlying principles, which govern the gas source tracking behavior of ani-
mals, can be usefully “translated” into gas source localization approaches that fully take
into account the capabilities of mobile robots. We also describe the requirements for a
reference application, monitoring of gas emissions at landfill sites with mobile robots, and
discuss an engineered gas source localization approach based on statistics as an alternative
to biologically inspired algorithms.

Keywords: mobile robotics, mobile robot olfaction, landfill surveillance, biologically inspired robots

1. INTRODUCTION
Gas-sensitive mobile robots are valuable instruments for address-
ing tasks like detection of gas leaks, search for explosives, sur-
veillance, or exploration of areas where hazardous gases might
be present. A concrete example of these application fields that is
gaining particular interest among the EU authorities is monitor-
ing of gaseous emissions in landfill sites (Scharff, 2008). Landfill
emissions account for 2% of the total greenhouse gases (GHG)
released by human activity (Bogner et al., 2007). The GHG released
from landfill sites are mainly methane (CH4) and carbon dioxide
(CO2), and to a minor extent mixtures of oxygen (O2), nitro-
gen (N2), and hydrogen (H2). Also, poisonous gases like hydrogen
sulfide (H2S) can be released in landfills. In particular, methane
produced from solid waste is a biogas that can be used as an alter-
native energy source (Scharff, 2008). According to Atleverket, the
agency responsible of waste management in the province of Öre-
bro, Sweden, 18000 MWh are produced yearly from the biogas
that is obtained from the landfill sites in Örebro. It is important
to notice that methane leaks occur frequently even in landfills that
have been closed for decades. These leaks are difficult to detect and
with current monitoring technologies it can take weeks before a
leak is detected and localized. Ultimately, this turns into a waste

of resources and in a substantial emission of GHG. The delay and
inaccuracy in the leak detection are mainly due to the sparsity,
both spatial and temporal, of collected samples. Currently, a land-
fill operator is required by law to collect one sample a month for a
few predetermined locations. Mobile robotics can make a signif-
icant contribution in this area by providing versatile systems for
autonomous monitoring of diverse environments. Robotic solu-
tions can adaptively collect sensor measurements, cooperate with
other systems, and provide useful indications to landfill operators.
Compared to human operators, mobile robots have the advan-
tage to carry out the required repetitive measurement procedure
without suffering from fatigue and therefore, they can perform
measurements with a much denser spatio-temporal granularity.
Moreover, the use of an automated monitoring platform can min-
imize the exposure of human operators to hazardous compounds
like, for example, H2S. In addition, the mobile robots that carry
the sensors offer the required accurate localization and computa-
tional resources to compute for example, on-line gas distribution
models. This enables the possibility to decide which locations to
observe next based on the current model (Neumann et al., 2012).

A landfill monitoring robot should be able to perform two
major tasks. (1) Serve as an autonomous and flexible system that
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can explore large areas in order to measure biogas concentrations
(e.g., CO2 and CH4). (2) From the acquired measurements, it
should be able to provide the landfill operators with useful infor-
mation such as gas distribution maps and locations of possible
gas leaks. Strictly, for none of the two tasks there is a direct bio-
logical example to mimic. However, these two complex tasks can
be broken down into specific subtasks like discriminating among
the different gases, estimating the location of multiple gas sources
and building gas distribution maps. For what concerns odor dis-
crimination, many works can be found in literature that formulate
mathematical models of the olfactory pathways that process the
signal coming from the olfactory receptors (Cleland and Linster,
2005). While, to the knowledge of the authors, the construction
of a gas distribution map has no direct biological counterpart,
insects have an outstanding ability to find distant sources of odors
(Cardé and Willis, 2008). Insects locate odor sources by tracking
wind-borne odor plumes to their emission source. The majority
of robots that have been proposed for gas source localization take
inspiration from insects and try to track an odor plume up to its
source, where they declare the end of their task (Lilienthal and
Duckett, 2003; Lilienthal et al., 2003, 2006b; Kowadlo and Rus-
sell, 2008). The animals that have inspired most of the robotics
research for odor plume tracking are:

Moths, which use odor localization to find mates (Kuwana et al.,
1999; Ishida et al., 2001; Pyk et al., 2006).
Lobsters, which use odor localization to locate food (Grasso
et al., 1998).
Escherichia Coli, which use odor localization to locate nutrients
(Russell et al., 2003).
Dung Beetles, which use odor localization to find hatching
niches, habitation, and food (Russell et al., 2003).

The bio-inspired gas source tracking algorithms that have been
implemented on mobile robots are based on two principles,
namely chemotaxis and anemotaxis. Chemotaxis refers to a mech-
anism in which the movement of an organism (or robot) is deter-
mined by the distribution of chemical compounds, most often by
the concentration gradient of one or more volatiles. Anemotaxis
instead refers to a mechanism in which the movement of an organ-
ism (or robot) is determined by the perceived airflow (air can be
generalized to fluid).

More recently Vergassola et al. (2007) proposed infotaxis, which
is a search strategy based on probability and information theory.
It was designed for addressing the gas source localization problem
in uncontrolled indoor or outdoor environments characterized
by a high Reynolds number and thus dominated by turbulence
(Roberts and Webster, 2002). Instead of using concentration and
flow gradients, infotaxis models the location of the source as a
probability distribution derived from previously collected mea-
surements and the next actions of the robot (i.e., move to a
neighboring location or standing still) are decided based on a
minimum entropy criterion.

To the knowledge of the authors, only two works have eval-
uated the concepts presented by infotaxis with physical exper-
iments. In Moraud and Martinez (2010), the authors assess
the robustness and reliability of infotaxis for localizing a heat
source, arguing that heat has dispersion properties very similar to

chemical compounds. However, temperature sensors have a much
faster dynamics than gas sensors. In addition, an artificial airflow
was induced with a fan, which simplifies the gas source local-
ization problem even further. In Lochmatter (2010), the authors
evaluated, among other source location algorithms, a statistical
approach that follows the same principles as infotaxis. The authors
performed their experiments inside a 18 m× 4 m wind tunnel with
an ethanol gas source and a robot equipped with a commercial
gas sensor. The experiments were carried out under laminar flow
conditions.

In general, most of the work in mobile robot olfaction has
been developed under simplified assumptions. The most com-
mon assumptions on which works in literature are based are steady
constant airflow and the presence of a single gas source emitting a
known chemical compound at a constant rate. Moreover, in most
of the cases the exploration area is of limited size, the airflow is
artificially modified and the robot’s starting position is located
downwind with respect to the gas source, making it easy for the
robot to collect odor cues. Obviously, those assumptions do not
hold in a scenario like a landfill. First of all, a landfill is an area
of considerable size, where finding gas traces that can initiate a
plume tracking algorithm is difficult. Therefore, initial exploration
strategies for gas finding cannot be trivially formulated. Moreover,
more than one gas leak emitting different compounds (at vari-
able rates) may be present at the same time. Finally, the airflow
in an open outdoor environment like a landfill is dominated by
turbulent advection (Shraiman and Siggia, 2000). Turbulent air-
flow disperses the gas plume creating a complex structure of gas
patches with different concentration levels. Furthermore, advec-
tion can create areas of high concentration away from the location
where the gas was released.

The main contribution of this paper is to highlight the weak-
nesses of state-of-the-art bio-inspired algorithms for gas source
localization that aim to directly reproduce insect behavior. The
argumentation brought at support is twofold: first, the sensing
mechanisms available to robotic systems are completely different
from biological receptors, and second, the chaotic environmental
properties of natural environments do not allow the formation of
a steady odor plume that would lead a robot that implements a
form of bio-inspired anemotaxis to the gas source. Moreover, for
localizing a gas source a mobile robot does not necessarily need
to travel toward it tracking the odor plume. Indeed, the robot can
collect measurements in locations far away from the gas source
and still be able to infer the position of the emission source.

We provide observations collected in four different experimen-
tal areas with three different platforms in order to support our
claims. We then use an engineered approach as an alternative to
biologically inspired gas localization algorithms. To conclude, we
argue that isolated principles of animal behavior can help us to
understand the task of gas source localization better, provided
that we carefully take into account the limited mobility of a robot
and the difference between biological receptors and the sensors
that are available to a robot.

2. MATERIALS AND METHODS
In order to investigate the characteristics of measurements col-
lected by mobile robots in natural environments, we perform
experiments in four different locations with three different robotic
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platforms. The different locations have been chosen in order to
have a wide spectrum of possible environmental conditions, rang-
ing from a closed isolated room, to a long corridor with open ends
and two different courtyards. Also, the selection of the robotic plat-
form aims at investigating different sensor configurations imposed
by the constraints of the different platforms. In particular, the
experiments were performed with two wheeled robots and one
flying quadrocopter. Wheeled robots have a high payload, a long
battery life, and they can have large computational resources on-
board. On the other hand flying platforms have less restrictions
regarding mobility compared to wheeled robots but typically they
have limited payload and battery life. Another shortcoming of
helicopter platforms is that the action of their rotors can influence
significantly the airflow, modifying the original gas distribution. In
all the experiments the robots were following a predefined trajec-
tory that covered the area of inspection. The robots were stopping
at regular intervals in order to collect series of measurements. No
attempt was made to move the robot toward the location of the
gas source but instead, data have been collected over all the area of
inspection and then, gas distribution maps have been produced at
the end of the experiments. As we will see in Section 3, gas distrib-
ution maps can provide good indications on the location of the gas
source. In the next subsections we will first introduce the robotics
platforms (Section 2.1), then describe the experimental environ-
ments (Section 2.2), and finally illustrate the sensing modalities
employed for chemical (Section 2.3) and airflow (Section 2.4)
sensing.

2.1. ROBOTIC PLATFORMS
2.1.1. Outdoor wheeled robot
The first robot, shown in Figure 1A is an ATRV-JR all terrain
robot equipped with a laser range scanner (SICK LMS 200) used
for localization, an electronic nose, and an anemometer. The elec-
tronic nose comprises six gas sensors (five metal oxide and one
electrochemical) enclosed in an aluminum tube. This tube is hori-
zontally mounted at the front side of the robot at a height of 0.1 m
over the ground. The electronic nose is actively ventilated through
a fan that creates a constant airflow toward the gas sensors. Thus, it
lowers the effect of external airflow and the movement of the robot

on the sensor response and guarantees a continuous exchange of
gas in situations with very low external airflow. The gas sensors
used in the electronic nose are listed in Table 1. The ultrasonic
anemometer used to measure the airflow is a Young 81000 with
a range from 0.02 up to 40 m/s and a resolution of 0.01 m/s. The
placement of the anemometer had to be a compromise between
the desire to measure the airflow as close to the gas sensors and as
undisturbed as possible. It was finally placed above the top of the
robot in order to minimize the influence of the fan of the electronic
nose and the body of the robot itself. The robot software is based
on the Player robot server (Gerkey et al., 2003), a control interface
that simplifies access to standard robot sensors and actuators and
provides implementations of standard algorithms. In particular,
adaptive Monte Carlo localization (amcl driver), VFH+ obstacle
avoidance (vfh driver), and the wavefront path planner (wavefront
driver) were used for localization, local, and global path planning,
respectively. The localization module implemented in the amcl
driver uses the odometry and the laser scanner readings in order
to localize the robot on a map provided to the algorithm at the
startup.

2.1.2. Indoor wheeled robot
The second robot used in our experiments is a Pioneer P3-DX
(MobileRobots), shown in Figure 1B. The Pioneer P3-DX is a
smaller platform compared to the ATRV-JR. It has been selected
due to its better maneuverability, a desirable characteristic while
performing experiments in a small room. As in the case of the
ATRV-JR, the robot is equipped with a laser scanner and it runs
the Player robot server for performing localization and naviga-
tion tasks. For what concerns gas sensing devices, the robot was
equipped with three MOX gas sensors (TGS2620, Figaro Engineer-
ing) positioned at different heights (0.571, 0.393, and 0.199 m on
the ground). Moreover, the robot was equipped with two e-noses
containing the 11 sensors listed in Table 1 and a photo ionization
(PID) gas detector (ppbRAE 3000, RAE Systems). The e-noses and
the PID inlet were mounted 0.065 m over the ground. The photo
ionization gas detector shows quick response to a wide range of
gases, and provides calibrated readings of the gas concentration
(given that the chemical compound is known). The responses

FIGURE 1 | Robots used in the presented experiments. Notice that the three pictures are not in scale. (A) Outdoor wheeled robot (B) indoor wheeled robot
(C) outdoor flying robot.
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of the metal-oxide gas sensors are slower and the sensors are
not calibrated, but enable selective gas detection. The robot is
also equipped with a two-dimensional ultrasonic anemometer
(WindSonic, Gill). The device can measure the airflow veloc-
ity from 0 to 60 m/s with 0.01 m/s resolution. The specifications
of the Gill WindSonic anemometer are very similar to the ones
of the Young 81000, and the only major difference is that the
WindSonic provides a 2-D reading instead of 3-D, and is much
smaller.

2.1.3. Outdoor flying robot
The third robot that we used for our tests is the AR100-B micro-
drone developed by AirRobot GmbH & Co. The micro-drone
was modified by the Federal Institute for Materials Research and
Testing (BAM, Germany) to incorporate gas-sensitive devices as
payload. The sensors mounted on the micro-drone are listed in
Table 1. The AR100-B (Figure 1C) is a highly maneuverable and
compact platform. With a diameter of 1 m and a weight of approx.
One kilogram, it supports up to 200 g of payload and its LiPo bat-
tery can provide a maximum flight time of about 20–30 min. The
flight control relies on an on-board Inertial Measurement Unit
(IMU) that comprises a three axis accelerometer and a three axis
rotation rate sensor. The IMU is also used along with a GPS unit
and a compass for localization purposes. Communication with
the ground station is established through a 2.4-GHz RF link in
which the data packets sent can include steering instructions or
data coming from the payload and micro-drone sensors. Due to
the restrictions imposed by the platform, the micro-drone doesn’t
carry an anemometer. Instead, wind measurements are estimated
by fusing the different on-board sensing modalities using the wind
triangle approach explained later in Section 2.4. By using this wind
sensing approach, it is possible to measure windflows in the range
of 0–8 m/s.

2.2. EXPERIMENTAL ENVIRONMENTS
A first set of three experiments was conducted in a 5-m× 5-
m× 5-m× 2-m closed room shown in Figure 2A. Although no
artificial airflow was induced, a weak circulating airflow field

Table 1 | Gas sensors used in the electronic noses mounted on the

three robotic platforms.

Gas sensor model ATRV-JR Pioneer P3-DX AR100-B

Figaro TGS 2600 2 2 1

Figaro TGS 2602 1 1 1

Figaro TGS 2611 1 1 1

Figaro TGS 2620 1 1 1

Figaro TGS 4161 1 – 1

e2v Mics 2610 – 1 –

e2v Mics 2710 – 1 –

e2v Mics 5521 – 2 –

e2v Mics 5121 – 1 –

e2v Mics 5135 – 1 –

Please notice that the sensors listed are all MOX sensors except the TGS 4161

which is an electrochemical sensor used for CO2 detection.

(0.01–0.03 m/s) was formed in the room by natural convec-
tion. Ethanol and 2-propanol vapors were used as detection
targets, and were released from two tubes at a constant flow
rate (0.2 l/min). In this set of experiments, the robot was pro-
grammed to move along a predefined spiral path that covered
the whole experimental area. The robot was stopping at regular
intervals for data collection. The reason for stopping the robot
at each waypoint to collect wind measurements is due to the
difficulty in compensating for the movement of the robot on
the anemometer readings. At each measurement point, the sen-
sor data were recorded for 30 s and the sensors were sampled at
4 Hz. A total of three experimental trials were conducted in this
scenario.

Once the experiments in the closed room have been completed,
experiments in less controlled environments have been carried
out. The second location chosen was a section of a long cor-
ridor with open ends and a high ceiling, shown in Figure 2B.
The area covered by the trajectory of the robot was approxi-
mately 14 m× 2.0 m. There was more disturbance in this scenario
caused by people passing by and the opening of doors and win-
dows during the run of the experiment. The gas source was a
cup full of ethanol placed on the floor in the middle of the
investigated corridor segment. A total of five trials were carried
out in this experimental configuration. Moreover, the outdoor
scenario shown in Figure 2C was considered. Here, four experi-
mental trials were carried out in an 8-m× 8-m region that is part
of a much bigger open area. Again, the gas source was a cup of
ethanol placed in the middle of this area. In these two experimen-
tal locations, the robot followed a predefined sweeping trajectory

FIGURE 2 | Experimental locations considered in this work. The dashed
line displays the path followed by the robot and the dots indicate the points
where the robot was stopping for collecting measurements. The squares
denote the actual location of the gas sources. (A) Closed room (B) Orebro
University corridor (C) Orebro University courtyard (D) BAM courtyard.
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covering the area of interest, using a fixed starting point. Along
its path, the robot stopped at predefined positions and carried out
a sequence of measurements on the spot for 10 s (outdoors) and
30 s (for both indoor locations). The predefined sweeping motion
was performed once in each directions and the robot was driven
at a maximum speed of 0.05 m/s in between the stops. In these
two scenarios the measurements were recorded at a frequency of
1 Hz.

A set of five additional trials were conducted in the out-
door environment shown in Figure 2D, with an electronic nose
mounted on the micro-drone previously described in Section 2.1.
A CH4 (99.5%-pure methane) gas cylinder was placed in a 14-
m× 14-m area and at each trial, the valve of the cylinder was let
open to release CH4 in the environment. In order to spread the
analyte away from the cylinder, an AC fan was placed near the odor
outlets. The air current introduced by the fan also prevented the
CH4 to immediately rise up to the atmosphere when released. The
micro-drone was programmed to explore the experimental area
following a sweeping trajectory, starting from a remote location
and moving at 1 m/s toward the gas cylinder. Data samples were
acquired at a sampling frequency of 8 Hz and transmitted down to
the ground stating using the micro-drone’s RF link. At each mea-
suring position the micro-drone stopped to take gas concentration
measurements for about 20 s.

2.3. CHEMO SENSING
The metal-oxide (MOX) gas sensors are by far the most widely
used in electronic nose applications as well as in mobile robot-
ics olfaction. The most prominent reasons for this are that they
are commercially available, have a relatively fast response and a
higher sensitivity than most other sensing technologies. MOX gas
sensors are conductometric sensors, that means that a change in
the conductance of the oxide is measured when a gas interacts
with the sensing surface. The logarithm of the change in resis-
tance over a certain range is approximately linearly proportional
to the logarithm of the concentration of the gas (Ihokura and Wat-
son, 1994). There are two types of MOX sensors: n-type (SnO2,
ZnO), which respond to reducing gases like H2, CH4, CO, C2H5,
C2H5OH, (CH3)2CHOH, or H2S and p-type (NiO, CoO) which
respond to oxidizing gases like O2, NO2, and Cl2 (Janata, 2009).
The response of a MOX sensor results from chemosorption and
redox reactions at the surface. Since the rate of such reactions is
dependent on the temperature, it is clear that the temperature of
the sensing surface considerably affects the sensor characteristics
(Ihokura and Watson, 1994). Typical temperatures for the sensing
surface of MOX sensors lie between 300 and 500˚C. Selectivity is
obtained either by doping the sensing surface with different addi-
tives or by setting different operating temperatures. It has also been
demonstrated that introducing a dynamic operating temperature
further enhances the selectivity of the sensor (Ihokura and Wat-
son, 1994). In addition, Gas discrimination with MOX sensors on
a mobile robot has been analyzed in Trincavelli et al. (2009) and
Trincavelli (2011). Figure 3 shows a schematic of a MOX sensor.
RH and Rs are respectively the heater and the sensor resistances,
while RL is the load resistance that is applied in series to Rs in
order to be able to read it. VH is the voltage applied to the heat-
ing resistance and it is proportional to the operating temperature,

FIGURE 3 | Electrical schema of a MOX gas sensor.

VC is the reference voltage for the measurement, while VL is the
voltage drop on RL. In order to calculate the value of the sen-
sor resistance (inverse of the sensor conductance – the quantity
that changes when the sensor responds) the following formula is
applied:

RS = VC − VL

VL
× RL (1)

Another gas sensor that is gaining popularity in the mobile
robotics olfaction community is the photo ionization detector
(PID). A PID is an ion detector which uses high-energy photons,
typically in the ultraviolet range (UV), to break gas molecules into
positively charged ions. As a compound enters the PID it is ionized
when it absorbs high-energy UV light. In commercial PID detec-
tors the UV light is normally provided with a 10.6-eV UV lamp.
The UV light excites the molecules, which temporarily lose an elec-
tron, and thus become positively charged ions. The ions produce
an electric current, which is the signal output from the detector.
According to the manufacturer of the PID used in our experiments
(ppbRAE 3000: Portable VOC Monitor for ppb Measurement,
Available at: http://www.raesystems.com/products/ppbrae-3000),
the output signal is linearly proportional to the concentration of
the chemical compound being analyzed. As a standalone detector
PIDs are broad band detectors and are not selective, as these may
ionize everything with an ionization energy less than or equal to
the lamp output. Unlike MOX gas sensors, if the chemical com-
pound is known, PIDs provide true concentration measurements.
Moreover the response dynamics of PIDs is much quicker com-
pared to the one of MOX sensors. Two of the main drawback of
PID gas sensors compared to MOX gas sensors are the high price
and the considerable weight (738 g for the ppbRAE that we use in
our experiments), that makes them unsuitable for platforms with
a limited payload. A viable solution, that we adopt for our indoor
wheeled robot is to use both sensor modalities in order to try to
combine the advantages of both while limiting the shortcomings.
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2.4. WIND SENSING
Wind information can be of high importance for gas-sensitive
robots. For example, the steering trajectories of anemotaxis plume
tracking algorithms are based on wind measurements. More-
over, more accurate gas distribution models can be obtained by
considering the advective influence of local airflow (Reggente
and Lilienthal, 2009). Anemometers based on ultrasonic mea-
surements are a convenient solution for robotics applications
due to of their high resolution, wide measurement range and
their relatively compact size compared to anemometers based
on mechanical principles (e.g., windmill and cup anemome-
ters).

The basic operational principle of an ultrasonic anemometer
can be explained with the schematic shown in Figure 4A. Pairs of
piezoelectric transmitters and transducers are placed at locations
s1 and s2 separated by a distance L. The oscillator at s1 produces
a sonic pulse that reaches the transducer at s2 in a time of flight
t 12 while a second pulse travels from s2 to s1 in t 21. From Equa-
tion 2, the wind speed and direction can be estimated. When wind
conditions are negligible, t 12≈ t 21 and therefore |u|≈0. If wind
is blowing toward a location i, the sonic pulse emitted from a
location j will travel faster than the pulse emitted from i and there-
fore tji < tji. The wind direction is then inferred from the sign of u.
By placing additional orthogonal arrays of transducers/oscillators,
2-D and 3-D wind information can be acquired.

u = L

2
×
[

1

tij
− 1

tji

]
(2)

While ultrasonic anemometers are a reliable means to acquire
wind information, alternative approaches have been developed
for platforms with particular restrictions. Specifically, the micro-
drone described in Section 2.1 has a limited payload capacity
which imposes weight and size constraints for on-board equip-
ment and furthermore, the turbulence and vibrations caused
by the micro-drone’s rotors can disrupt the anemometer read-
ings.

By fusing different sensing modalities, it is nevertheless possible
to estimate the wind information. Neumann et al. (2010) proposed
a method that can be used by aerial robots to estimate the wind
vector−→u . The authors used data coming from the embedded sen-
sors of their micro-drone to compute the parameters of the wind
triangle shown in Figure 4B. The ground vector −→w and its direc-
tion wdir were directly obtained from the GPS readings while the
flight vector �v was calculated using a reference function computed
from a set of wind tunnel measurements. Additionally, the orien-
tation information coming from the on-board compass was used
to compute the flight direction vdir and finally, the wind vector

−→u and direction udir were computed from the wind triangle by
applying the law of cosines.

3. RESULTS
In this section, we analyze the data recorded with the three
robotic platforms in the four experimental locations summarized
in Table 2. We characterize the wind measurements to describe
the environmental conditions that prevailed during the data col-
lection in the four locations. In addition, we analyze the response
dynamics in the frequency domain of a PID sensor and two MOX
sensors that are commonly used in robotic olfaction. To conclude
this section, we explore a non-biological approach to gas source
localization.

FIGURE 4 | Schematic diagrams of the wind measurement principles

considered in this work. (A) Ultrasonic measurement principle (B) wind
triangle measurement principle.

Table 2 | Measurement configurations used in the four experimental locations considered in this work.

Location Platform Area Waypoint distance (m) Gas source Trials

Closed room Wheeled Pioneer P3-DX 5 m× 2 m 0.5 Ethanol 3

Örebro University corridor Wheeled ATRV-JR 14 m× 2 m 2 Ethanol 5

Örebro University courtyard Wheeled ATRV-JR 8 m× 8 m 2 Ethanol 4

BAM courtyard Micro-drone AR100-B 14 m× 14 m 2 Methane 5
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For each of the four experimental locations, we generated a
typical airflow map using the data from one of the trials. At
each waypoint where the robot was stopped, a mean wind vector
was computed. The size of the exploration area and the distance
between consecutive waypoints are listed in Table 2. Figures 5A–
8A show the exploration trajectories and the computed airflow
maps. The arrow’s length represents the average wind speed and
the circular mean direction is represented by the arrow’s orienta-
tion. Although the explored areas are not of considerable size and
the measurement points are spatially dense, regularity in the wind
flow direction is hardly observed. This clearly indicates that the
assumption of laminar air flow does not hold in any of the four
environments. Large directional fluctuations were also observed
between measurements taken at a single waypoint. Figures 5B–8B
show polar plots, which were computed from a selected waypoint
(denoted by red squares in the corresponding figures) on the
robot’s trajectory. Each arrow in the plot is a measurement taken
at the waypoint. The length is proportional to the wind speed and
the arrow’s direction represents the wind angle. The polar wind
measurement plots show an irregular distribution of the measured
wind direction, which is certainly non-Gaussian. Accordingly, the
circular mean direction (denoted by a dashed red line) is not a
good indicator of the wind conditions present at the waypoint.
The wind distribution is further characterized by wind speed his-
tograms that can be seen in Figures 5C–8C. Again, uneven speed
distributions were sensed even in the indoor experimental set-ups
where one might expect less distinct fluctuations.

Figure 9A displays an example of the response of the chemosen-
sors employed in our experiments, namely a MOX gas sensors and
a PID. The response of the PID is linear with respect to the chemi-
cal compound concentration and the rise and decay time constants
of this sensor are symmetric and much smaller than of the MOX
sensors. The PID response thus provides a good reference of the
concentration the MOX gas sensor was exposed to. The plot in
Figure 9A shows the non-linearity in the response of the MOX
gas sensor, and most importantly, the slow dynamics of the MOX
gas sensor. The asymmetric low-pass filtering performed by the
MOX sensor is evident, especially during the long recovery of the
MOX sensors. The spectra of the measurements collected with the
MOX sensors and the PID are plotted in Figure 9B. As expected
the frequency content of the signal collected with MOX sensors is
much smaller than the one of a signal collected with the PID.

It has been previously reported that statistical moments can be
used as indicators of gas source proximity (Lilienthal and Duckett,
2004). More specifically, the variance of a set of gas concentration
measurements has been suggested as a feature that can identify
the location of a source of gas (Lilienthal et al., 2006a). From
the collected sensor measurements, we explored the feasibility of
inferring the location of a gaseous source through the use of a
gas distribution model generated by the Kernel DM+V algo-
rithm proposed by Lilienthal et al. (2009). This algorithm is a
non-parametric estimation approach that neither makes strong
assumptions about the particular form of the modeled gas dis-
tribution, nor relies on expensive fluid dynamics computations
to generate the model. Instead, Kernel DM+V takes a set of spa-
tially located measurements and computes a discretized grid model
where, for each cell k, a confidence value as well as distribution

FIGURE 5 | Wind measurements collected during one experimental

trial, closed room set-up. (A) Airflow map. The squares denote the points
where the robot stopped to collect measurements. The dashed line
denotes the robot trajectory. (B) Polar plot of the measurements acquired
at the waypoint denoted by a red square in the airflow map. (C) Wind speed
histogram for the measurements acquired at the waypoint denoted by a red
square in the airflow map.
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FIGURE 6 | Wind measurements collected during one experimental

trial, Örebro University corridor set-up. (A) Airflow map. The squares
denote the points where the robot stopped to collect measurements. The
dashed line denotes the robot trajectory. (B) Polar plot of the
measurements acquired at the waypoint denoted by a red square in the
airflow map. (C) Wind speed histogram for the measurements acquired at
the waypoint denoted by a red square in the airflow map.

FIGURE 7 | Wind measurements collected during one experimental

trial, Örebro University courtyard set-up. (A) Airflow map. The squares
denote the points where the robot stopped to collect measurements. The
dashed line denotes the robot trajectory. (B) Polar plot of the
measurements acquired at the waypoint denoted by a red square in the
airflow map. (C) Wind speed histogram for the measurements acquired at
the waypoint denoted by a red square in the airflow map.
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FIGURE 8 | Wind measurements collected during one experimental

trial, BAM courtyard set-up. (A) Airflow map. The squares denote the
points where the robot stopped to collect measurements. The dashed line
denotes the robot trajectory. (B) Polar plot of the measurements acquired
at the waypoint denoted by a red square in the airflow map. (C) Wind speed
histogram for the measurements acquired at the waypoint denoted by a red
square in the airflow map.

FIGURE 9 | Responses in time domain and frequency domain of a

TGS2620 and a PID ppbRAE 3000. The responses were recorded with the
robot stopped at a fixed position in the Closed room experimental set-up.
(A) Time domain responses of the TGS2620 and the PID (ppbRAE 3000)
normalized to be between 0 and 1. (B) Frequency spectra computed from
the response of the TGS2620 and the ppbRAE 3000 in the Closed room
experimental set-up.

mean and predictive variance are computed. The model is com-
puted by extrapolating from neighboring measurements weighted
by a Gaussian function N of width σ. Thus, the parameters that
regulate the Kernel DM+V algorithm are kernel width σ and cell
size c. Furthermore, the authors proposed a method to learn the
parameters of the algorithm from the measurements by minimiz-
ing the average negative log predictive density (NLPD), which is a
standard criterion to evaluate distribution models.

For each experimental location, a single sensor was selected
according to its sensitivity to generate a gas distribution model.
For the three experiments were ethanol was used as the target
source, the TGS2620 was selected, while the TGS2611 was used for
the experiment conducted with a methane source. The maps were
generated using the sensor conductance values recorded while the
robot was following the exploration path. The obtained mean and
variance maps are shown in Figure 10. The learned parameters
σ and c are listed in Table 3. In order to estimate the gas source
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FIGURE 10 | Predictive variance and mean distribution maps

obtained with the Kernel DM +V algorithm in the four experimental

locations considered in this work. The dashed lines represent the
exploration path followed by the robot and the red circle represents the
actual gas source location. (A) Mean distribution map, closed room. (B)

Variance distribution map, closed room. (C) Mean distribution map, OU
corridor. (D) Variance distribution map, OU corridor. (E) Mean distribution
map, OU courtyard (F) Variance distribution map, OU courtyard. (G)

Mean distribution map, BAM courtyard. (H) Variance distribution map,
BAM courtyard.

locations, we used the variance maps as indicators of the source
proximity. It can be noticed that the cells adjacent to the actual
source location have a higher variance value, which is represented
by brighter color shades in the figures.

4. DISCUSSION
Probably one of the most crucial aspects of research in mobile
robot olfaction is the design of the experiments that enable to study
and develop systems for airborne chemical monitoring. A major
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Table 3 | Kernel DM+V learned parameters used in the four test

locations. c Stands for grid cell size and σ is the kernel width.

Location c (m) σ (m)

Closed room 0.10 0.20

Örebro University corridor 0.10 0.44

Örebro University courtyard 0.10 0.40

BAM courtyard 0.10 1.2

technical difficulty is that the dispersion of chemicals in natural
environments is difficult to observe since most chemicals produce
an invisible plume. In a non-artificial environment, the plume
evolution is also difficult to predict a priori due to the chaotic
dispersal of gas. A second major difficulty is that environmental
conditions are often very variable and therefore experiments are
hard to repeat. Thus it is difficult to obtain ground truth that
can be used to validate experimental results. In order to overcome
this limitation, experiments are often carried out under controlled
conditions that limit variations from the expected ground truth
plume behavior and thus increase repeatability of the experiments.
On the other hand, it is hard to predict how the results obtained
in such experiments extend to uncontrolled environments. It is
very important in the mobile robot olfaction domain that great
care is used in describing the experimental set-up in which the
claimed results are obtained, and it should be avoided to state
that results obtained in an environment with, e.g., steady and
controlled airflow trivially extend to more general and complex
environments.

In this paper we showed results obtained in four experimen-
tal scenarios ranging from a closed room to outdoor areas. In
the presented experiments different experimental platforms have
been used in order to try to minimize the effect of the choice
of a specific robotic system on the presented results. Moreover,
the different platforms posed different constraints to the sensors
that could be mounted. Given the observed irregularity of the
airflow, it is hard to imagine that strategies like casting, surge-
spiral, and surge-cast, that try to mimic insect behavior that is
adaptive to the up-stream direction, can work reliably. While
these strategies have obtained excellent results in a laminar air-
flow setting, the extension to a turbulent environment is not
clear (Lochmatter and Martinoli, 2009). In an attempt to iden-
tify possible reasons why the clearly successful reactive tracking
behavior of animals cannot be mimicked by current mobile robots,
we make two observations: the chemosensing mechanisms cur-
rently available are much slower than the biological receptors and
mobile robots do not have the same maneuvering capabilities of
animals.

According to Justus et al. (2005) the filtering applied by moth
antennae is a linear, noise-free representation of odorant con-
centration in the range of 1–10 Hz, while the gain is reduced for
frequencies below 1 Hz. It is argued that the most likely cause
for this effect is the adaptation of the receptor cells, a com-
mon feature of biological sensory receptors that is most often
seen as a slowing or cessation of response to a constant stim-
ulus. According to the data we collected in the four different

scenarios mentioned in this paper the bandwidth of the signal
collected with MOX gas sensors contains frequencies in the range
of 0–0.04 Hz while the signal collected with a PID contains fre-
quencies between 0 and 0.015 Hz. It is striking that currently
available chemical sensors stop filtering out the signal in the band-
width that insects actually can perceive and use for tracking an
odor plume. On the other hand, chemical sensors capture the
signal in a bandwidth that insects filter out through the adap-
tation process. Therefore, the perception of the chemical stim-
ulus is totally different for insects compared to state-of-the-art
gas-sensitive robots.

Regarding the maneuvering capabilities of animals we con-
sider the moth as an example that has been a predominant source
of inspiration for the construction of gas source tracking with
mobile robots. According to Kuenen and Cardé (1993) moths fly
at a speed of roughly 0.5 m/s and with an average turning rate
of roughly 3.5 turns/s. Gas-sensitive mobile robots were instead
typically operated at speeds between 0.05–0.1 m/s and can per-
form much less than 1 turn/s. The limitation in linear speed is
mostly to avoid spatial averaging over large areas, which occurs
because the gas sensors act as a low-pass filter. (Note, how-
ever, that spatial averaging might even help to better localize a
gas source in a corridor environment; Lilienthal et al., 2001.)
On the other hand, the angular speed is mainly limited by the
actuation principles. Based on these differences it seems possible
that current gas-sensitive mobile robots are just too slow to per-
form insect-like reactive steering strategies that allow successful
plume tracking in a highly dynamic environment with turbulent
airflow.

To conclude, the design of gas-sensitive mobile robots should
take into account the limitations of the sensors and robotic plat-
forms currently available. This does not imply that the design
of olfactory mobile robots can not be biologically inspired but
that mobile robots should not try to directly replicate the move-
ments of insects without a deep understanding how the underlying
principles depend on the sensing and actuation capabilities of
animals. Instead of mimicking “zigzagging” and “casting” paths,
for example, the underlying principles, e.g., the importance of
mechanisms to recover from situations in which the animal or
robot looses contact with the plume, should be applied when
developing gas source tracking approaches. A very interesting
example in this regard is the infotaxis algorithm which mini-
mizes an entropy function but is nevertheless observed to pro-
duce “zigzagging” and “casting” paths similar to those observed
in the flight of moths and other animals. Here the underlying
principle is probably that the information gain is highest close
to the boundary of the plume and this principle could also be
used in approaches that do not attempt to zigzag toward a gas
source.

In addition to non-biological algorithms that take inspira-
tion from the successful principles reflected in animal behav-
ior, the mobile robot olfaction community should also con-
sider emerging gas sensing technologies like methane laser sen-
sors or infrared cameras that can provide valuable inputs for
locations that are meters away from the actual position of the
robot.
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To provide a platform to enable the study of simulated olfactory circuitry in context, we have
integrated a simulated neural olfactorimotor system with a virtual world which simulates
both computational fluid dynamics as well as a robotic agent capable of exploring the simu-
lated plumes. A number of the elements which we developed for this purpose have not, to
our knowledge, been previously assembled into an integrated system, including: control of
a simulated agent by a neural olfactorimotor system; continuous interaction between the
simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and
background odor; the systematic use of artificial evolution driven by olfactorimotor perfor-
mance (e.g., time to locate a plume source) to specify parameter values; the incorporation
of the realities of an imperfect physical robot using a hybrid model where a physical robot
encounters a simulated plume. We close by describing ongoing work toward engineering a
high dimensional, reversible, low power electronic olfactory sensor which will allow olfac-
torimotor neural circuitry evolved in the virtual world to control an autonomous olfactory
robot in the physical world. The platform described here is intended to better test theories
of olfactory circuit function, as well as provide robust odor source localization in realistic
environments.

Keywords: computational fluid dynamics, odor sensor, olfactory, robotics, simulation, virtual world

INTRODUCTION
Brain sensory and control systems evolved to enable action which
leads to organism survival. The active interplay between sen-
sation, motor action, and the environment is at the heart of
the field of evolutionary robotics (Cliff, 1991; Cliff et al., 1993;
Nolfi and Floreano, 2000) and has been studied extensively in
the context of visuomotor interaction, so-called “active vision”
(Churchland et al., 1994; Floreano et al., 2005). However, evo-
lutionary robotics has received limited attention in the context
of olfaction, though olfaction is the more evolutionarily prim-
itive sensory system. While olfactory neural circuitry has been
profitably studied as a stand-alone sensory system, combining an
olfactory sensory representation with an ability to trigger motor
activity has not been attempted. Studying the evolution of senso-
rimotor transformations is particularly apt in olfaction: olfacto-
rimotor function is reflected in the most evolutionarily primitive
chemotactic sensory-motor interactions, such as the spin-and-run
behavior observed in paramecium where cilia activity is triggered
by chemosensitive ion channels (Greenspan, 2007). Further, the
olfactory bulb and piriform cortex dominates the cerebrum in
the most evolutionarily primitive vertebrates, hagfish and lam-
prey (Wicht and Northcutt, 1998), reminding us that olfaction
was the foundational cortical sense followed much later by the
dedicated visual cortex arising in reptiles (Ulinski, 1990). The
physical exploration of a plume has been suggested to be criti-
cal in nulling background, making sensory-guided motor control
directly related to odorant object identification (Best and Wil-
son, 2004; Rhodes, submitted). The evolutionarily ancient role

of olfaction and the role of exploration in olfactory function
suggests that the study of olfactorimotor neural systems will iden-
tify principles fundamental to sensorimotor neural systems of all
modalities.

A number of intriguing studies have recently pointed to the
need for simulations of realistic plume environments in which
to develop and test models of olfactorimotor control. Trincavelli
(2011) emphasized the joint need for an experimental environ-
ment reflecting the turbulence and convection characteristic of
natural conditions, but in this work imposed a fixed quasi lam-
inar airflow between source and sensor to enable repeated trials
under comparable conditions. In an attempt to develop a data-
base for potential use in studies of olfactorimotor control, Ishida’s
group (Wada et al., 2010) obtained maps of convection and sensor
readings at a regular grid of points in both indoor and outdoor
environments; however, the difficulty entailed in using physical
robotic platforms to simply map turbulent plumes was reflected in
the fact that minutes separated each of dozens of serial measure-
ments of the ever-changing convective environment, preventing
the ability to use the database to reproduce the sensor and con-
vection experience of a robotic agent in traversing any path other
than the one used to collect the data. Recently Bennetts et al. (2012)
addressed olfactorimotor control in several natural environments
with sensors on board three types of physical robot platform, two
wheeled and one aerial, equipped with metal oxide (MOX) and
photon ionization detector (PID) sensors. They also quantified the
effective sampling rate for these sensors (<0.04 Hz for the MOX
and <0.15 Hz for the PID) suggesting that reversibility is far slower

Frontiers in Neuroengineering www.frontiersin.org October 2012 | Volume 5 | Article 22 | 176

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/about
http://www.frontiersin.org/Neuroengineering/10.3389/fneng.2012.00022/abstract
http://www.frontiersin.org/Neuroengineering/10.3389/fneng.2012.00022/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PaulRhodes&UID=2066
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ToddAnderson&UID=16860
mailto:prhodes@evolvedmachines.com
mailto:prhodes@evolvedmachines.com
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Rhodes and Anderson Simulation environment for neural olfaction

than the 1–10 Hz relevant to biological sensor responses ranging
from canine or rat sniff rates to insect olfactory receptor neurons.
Trincavelli and colleagues particularly emphasize the joint neces-
sity of olfactorimotor control experiments with rapidly reversible
sensors operating in realistic environments, along with the exper-
imental reproducibility required to systematically test models of
olfactorimotor control, whether neurally inspired or not. We have
set out to develop a simulation system that meets these goals in
this work.

With respect to the control algorithms much work has been
motivated by the apparent search strategies adopted by animals,
and over the last 15 years a compelling body of work on robotic
olfactorimotor control has developed (reviewed in Kowadlo and
Russell, 2008; McGill and Taylor, 2011). Most of these studies
have however incorporated a more traditional robotic sensorimo-
tor controller, and there has thus far been little work embedding
a neural olfactory sensorimotor system in a simulated (or real)
olfactory environment. In this paper we report on the develop-
ment of a virtual olfactory plume world with a robotic agent
controlled by a neural olfactorimotor simulation. We argue for
the use of artificial evolution of the parameters controlling the
simulated brain, and then describe how the virtual closed world
can be linked to a physical robot, both before and after the devel-
opment of a physical olfactory sensor with the high dimensionality
and rapid reversibility needed to enable plume exploration, so that
neural olfactorimotor systems can be evolved in virtual and real
worlds in tandem. Describing the components we have chosen
to assemble for this integrated system, and addressing some of the
constraints encountered and the trade-offs entailed, is the purpose
of the present work.

MATERIALS AND METHODS
AN ENVIRONMENT FOR THE SIMULATION OF NEURAL SENSORIMOTOR
INTERACTION IN A VIRTUAL PLUME WORLD
To explore olfactorimotor circuit function we embedded a simu-
lated sensory-motor system in a virtual world which simulates
multiple turbulent plume sources and their interaction with a
robot agent in real-time. This enables modeling two effects of
motor commands on the sensory experience: movement of the
sensor position through the plume, and perturbation of the plume
dynamics due to agent movement. The virtual plume environ-
ment is crucial for developing artificial olfactorimotor machines:
robots that can autonomously locate a plume source in the
face of their interaction with the plume during exploration. As
reviewed in the Discussion below, there are currently no vir-
tual world/robotic simulation packages which integrate real-time
computational fluid dynamics (CFD) solvers capable of incor-
porating flow fields shaped by the features of the environment
(convection sources, temperature differences) in which to situate
odorant plumes. We first explored available CFD implementa-
tions capable of integration into a virtual world, seeking one
computationally light enough to update plumes and convection
fields interactively during simulation, in order to allow agent posi-
tion and velocity to affect plume and convection motion. The
following is an outline of the set of elements that we suggest
need to be assembled to enable the study of neural olfactorimotor
interactions:

1. A computationally efficient fluid dynamics simulator inte-
grated into a virtual world.

2. A model of robotic agent, including positions of the olfactory
sensors and motor effectors to be connected to neuronal motor
representation.

3. A means of communicating the currently sampled odorant con-
centration from the robot sensor to the brain simulation, and
of communicating the motor unit activity levels, or resulting
effector control signals, back to the agent.

4. Simulated source odorants, an odorant background, and a
sensor array.

5. A simulated neural system including circuitry for sensory
representation, motor units, and the linkage between them.

6. A mapping of motor unit activity to the control of effectors
on the agent, so that the firing of motor neurons in the circuit
simulation moves the agent in the virtual world.

7. A means to select and optimize simulation parameters to guide
the construction of a biologically inspired neural implementa-
tion of an olfactorimotor system embedded in such a virtual
world. We have adopted the large-scale use of artificial evo-
lution for this purpose, and outline some of the challenges
entailed.

8. A means to bring all three simulations (sensorimotor neural,
robotic agent, and plume CFD) into correspondence with a
physical robot, initially in a hybrid real-virtual environment
where the plume simulation generates the sensor signals and
the output of the neural simulation drive both a virtual and
real robot in tandem.

Moving from simulated olfactorimotor environments into physi-
cal agents of course requires the availability of a physical olfactory
sensor array. A suitable artificial olfactory sensor must be rapidly
reversible with a time constant comparable to that of biological
olfactory sensors to extract information about plume spatiotem-
poral changes during exploration (Wada et al., 2010; Trincavelli,
2011), and high dimensional if it is to represent a wide range of
odorants, two fundamental prerequisites not jointly met by exist-
ing physical olfactory sensor alternatives. We are engineering such
a sensor1, an array of functionalized carbon nanotube field effect
transistors, and briefly reference this work below.

Below, we report the development of a system incorporating
the elements enumerated above:

Computational fluid dynamics simulator
Arguably, the most important aspect of a virtual world devoted
to olfactory search behavior is the fluid simulator. Typically the
robotic system has the goal of discovering the location of an object
(often called the “source”) by utilizing a stream of sensor signals
triggered by the odorant plume emitted by the source. The CFD
simulator determines odorant dispersal from the source by con-
structing a flow field which takes into account multiple physical
effects including air entering and exiting the simulation environ-
ment (for example, through an open window, under a door-jam, in
a heating vent, or out an air return duct), temperature differentials

1www.nanosensetech.com
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leading to convective currents, and air displacements due to robot
movement (detailed further below). The odor plume, represented
as either particles or a continuous value in a voxel or other finite
element array, is then transported along this flow field. While the
simple diffusion of odor molecules is a factor, real plumes of the
scale encountered by most laboratory animals are dominated by
turbulent flow.

While simulated robotic olfaction plumes are often pre-
computed or simulated without ongoing interaction with the
moving robotic agent in order to reduce simulation overhead
(Cabrita et al., 2010), simulations of the interaction of the body
of a moving agent of several centimeters in size or larger with
plumes from compact objects (for example sources of food) sug-
gest the perturbation of the plume by the moving agent is very
significant, and cannot be plausibly neglected, even in first-order
approximation (Dickman et al., 2009). Further, many creatures
utilize a variety of means of active intake to enhance olfactory
function, including the familiar sniffing characteristic of many
mammals and the antennule motion drawing in a stream of water
crucial for crustacean olfaction. Such active sensing has been used
to advantage in robotic olfactory function (e.g., Ohashi et al.,
2008). Simulating olfactorimotor behavior which accounts for
perturbation of the plume by movement of the agent, as well as
incorporates active intake, requires interactive CFD simulation
with an update time comparable in speed to the time step update
of the sensorimotor control system.

In selecting a CFD implementation we were therefore forced
to balance accuracy with the need for interactive plume updates
to account for the movement of the robotic agent under con-
stant (and unpredictable) sensorimotor control by the simulated
neural control system. We tested a variety of CFD solutions that
enabled multiple odors and interaction between flow field and
moving objects but with sufficient computational efficiency to
allow plume dynamics to be updated in a time comparable to the
neuronal simulation update time. While accurate, traditional CFD
software packages such as OpenFOAM, and Comsol Multiphysics
are designed to simulate steady-state equilibrium dynamics, rather
than the transient dynamics we seek to capture here, and further
do not run at speeds approaching real-time. Software designed for
generating computer graphics, such as Blender and Houdini, offer
exceptional rendering of 3D plumes, but focus on the generation
of high resolution effects suited for offline dedicated computation
without ongoing interaction with a separately simulated robotic
controller. We thus found these software packages unsuited for
real-time interactive operation.

While exact implementations of the Navier–Stokes equation
system must use very short time steps or implicit solvers in order
to avoid instability in the system, Jos Stam has invented a method
which employs a simplified version of the Navier–Stokes equa-
tions optimized for use in interactive applications such as games
(Stam, 1999). To solve fluid equations at video rate, Stam crafts
a robust version of the equations which are inherently bounded
and thus stable, allowing longer time deltas between simulation
steps. Though each time step requires solving a few linear systems
and thus is expensive computationally, the fact that each step can
represent tens of milliseconds means very few steps are required
to run at real-time.

Many implementations of the Stam algorithms exist; for the
present work we used Java implementations for ease of prototyp-
ing. For rendering a rich graphical interface on a desktop computer
we used the MSAfluid fluid dynamics library2 within the Pro-
cessing graphics framework3, and for fast computation with no
graphics or interface we used an implementation from Karsten
Schmidt’s Toxiclibs4. The libraries facilitate the creation of a grid
of cells, each of which contains a flow force vector and a density
variable referred to as “dye.” The regional neighborhood of flow
vectors determines the transfer (or advection) of dye from one cell
to another, as well as the effect of flow velocity on the flow field.
Dye may be injected (or removed) at any cell, and thus is ideal
for representing odorant plumes (see Movie S1 in Supplementary
Material). This CFD implementation allows in-simulation manip-
ulation of plume-related variables, such the position and intensity
of the simulated plume and wind sources. Crucially, this system
enables interaction between robotic agent and plume environ-
ment that characterizes the genuinely interactive system we wish to
study (see Movie S2 in Supplementary Material). Our Processing
source code implementing the Stam algorithm in two dimensions
is linked here: www.stanford.edu/∼tanders/CFD

Currently the virtual world, like the CFD, is two dimensional.
Three independent plume sources are modeled, representing three
distinct odorants rendered in red, green, and blue, respectively
(Figure 1). Odorant concentration is represented by color inten-
sity at the specified x, y cell coordinate within the scalar field
(Figures 2A–C). Air movement, modeled as a force vector field,
advects the odor plume. A convection source, such as a fan or vent,
is incorporated by adding an additional vector to the existing vec-
tor in a specified cell or set of cells. The robot body is modeled as
a rectangle, with a top-down image of our real robot (a Surveyor
SRV-1) mapped on top. The user may reposition and modify the
strength of odor and wind sources using a graphical interface. A
separate slider-based panel allows adjustment of such global sim-
ulation parameters as viscosity, time step delta, odor evaporation,
friction between robot and floor, and the magnitude of the robot’s
effect on the flow vector field (Figure 3). In addition, a graph of
the concentrations of each odor over time is plotted in separate
window (see Figure 1, and Movie S3 in Supplementary Material).

Robot agent simulation
In order to interact with the simulated plume, we need to represent
the robotic agent within that plume. The agent, whether simu-
lated or physical, will include olfactory and other sensors (e.g.,
for collision detection), as well as effectors to transport the robot
(motor-driven tracks) and provide for active air intake mecha-
nisms (“sniffing” fans). We require a virtual world which captures
both the physics of moving robots, such as friction, inertia, colli-
sions with obstacles, as well as the fluid dynamics discussed in the
previous section. As the robot carries the virtual sensor through the
virtual world, encountering different parts of the plume, the odor
concentrations at the sensor fluctuate from moment-to-moment
in a realistic manner (Figure 1). These concentration values are

2http://memo.tv/msafluid_for_processing
3http://www.processing.org
4http://toxiclibs.org/
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FIGURE 1 | Concentration of three odors (red, green, and blue lines)
experienced by the virtual robot as it moves in the virtual
environment, with each point representing 1/30 of a second. Thus the
x -axis reflects 30 s of sensor response. Odor concentration is normalized

to the maximum concentration found at the odor source. Note the high
rate of change of odorant concentration at the sensor surface, and the
independence of relative concentration from the two stationary (blue and
red) odorant sources.

sent to the brain (see Figures 2D–F), triggering a cascade of activ-
ity which eventually activates the motor units. These motor signals
are transmitted back to the virtual world to drive the simulated
motor effectors used to update the robot position, thus closing the
sensorimotor loop via continuous interaction between the virtual
environment and separately simulated neural circuitry.

Available virtual worlds designed for simulating robotics are
abundant; examples include Microsoft Robotic Simulator (Johns
and Taylor, 2008), Webots (Michel, 2004), Player/Stage (Cabrita
et al., 2010), and the Robotic Operating System (ROS) promul-
gated by Willow Garage. Additionally many software packages
designed to facilitate creation of video games contain many of
the necessary features, including game engines such as Quake
(Harvey et al., 2009), Blender (Echeverria et al., 2011), Irrlicht
(Ettlin et al., 2005), Unity (Craighead et al., 2007). However,
aside from the simplistic particle systems built into many game
engines, these existing solutions have not included objects capa-
ble of representing odor plumes. One implementation, PlumeSim
(Cabrita et al., 2010) built on top of the open source robot sim-
ulator Player5 may enable integration of plumes into a virtual
environment but presently lacks support for interaction between
the plume and the exploring robots. Because of the plethora of
existing libraries for graphical user interface (GUI) control, fluid
simulation, and robot communication, and because of the lan-
guage used to build the CFD model described in Section “CFD
Simulator,” we wrote a simple custom model robot, incorporat-
ing friction via velocity-proportional speed decrement, collision
proximity detection, in Java.

Communication between virtual world and neural simulation
To guide the robot agent toward the source of the plume, we
integrated the virtual world with a separately simulated neural sen-
sorimotor system based on the Evolved Machines neural simulator

5http://playerstage.sourceforge.net/

(briefly described below in A Simulated Neural System). The sim-
ulated agent in the virtual world was connected to the neural
simulation (“brain”) via a two-way socket protocol based on the
Microsoft socket library winsock2 and the Processing library called
“Network6”. Socket connections allow the brain and CFD-virtual
world to be modular processes running on separate computers and
compatible with any programming language supporting socket
communication.

The amount of data to be passed between the neural simulation
and the virtual world is extremely light, just a few tens of bytes per
timestep. The concentration of each of the three distinct odor-
ants at the position of the sensor is sent from the virtual world
to the Neural Simulator. These values activate the sensor array
as described in Section “Simulated Virtual Odorants, Background,
and the Sensor Array”below, which in turn activates the mitral and
cortical arrays, finally activating the motor units (Figure 4). The
net right-left, forward-backward movement signal resulting from
the pattern of activity in the motor unit array, encoded as described
in Section “A Mapping of the Motor Units to the Control of Effec-
tors on the Agent” below, is then relayed back to the virtual world
so that the agent moves through and perturbs the plume environ-
ment. Neural activity passes from the sensor to motor units in five
simulation timesteps, creating a degree of propagation-time based
latency in the neural system.

The robot interacts with the plumes by adding fluid forces to
the vector representing the leading edge of the robot chassis. These
forces are equal and opposite to the force measured at each CFD
cell along this vector, and as the robot moves so do these vec-
tors. This method generates realistic-looking perturbations of the
plume during robot movement (see Movie S2 in Supplementary
Material).

The robot movement may be controlled in a variety of ways.
A human user can steer the robot, using keyboard controls. The

6http://processing.org/reference/libraries/net/
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FIGURE 2 | Series of panels show the incremental build up of our
simulation framework. (A) CFD alone, near the start of the simulation.
(B) CFD with robot positioned in the center, and a plot of the odor
concentrations experienced by the robot at bottom; the current reading is
on the right, and the plot scrolls to the left. (C) Robot perturbing the odor
plumes; dotted line is the robot path. (D) Simulated brain responding to

odor concentrations sent by the virtual robot; dashed line shows
information flow. (E) Simulated brain sending motor commands to the
virtual robot. (F) Hybrid real-virtual world, where motor commands are
sent to a real robot, which is tracked by video to update the position of the
virtual robot in the CFD, and therefore send new odor concentrations to
the simulated brain.

robot also has a built-in exploratory behavior, which generates
motor commands based on the detection of five sensory states. Two
of these states are triggered based on absolute odor concentration

being either low or high, and two more on rising or falling concen-
trations relative to a measurement 1 s prior. The fifth behavioral
state is a reversing mode, triggered when the virtual robot collides
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FIGURE 3 | Virtual World graphical user interface. The left side shows a
panel containing sliders to control simulation parameters, as well as a
scrolling plot of odor concentration history experienced by the robot. The

right side shows the virtual world rendering, with two plumes (red and
blue), a robot (center), two wind sources (gray circles), and an internal
boundary.

FIGURE 4 | Screenshot of the neural simulator (left side) reacting to
odorant concentration from three odorant plumes (red, green, and
blue) at the virtual sensor location (right side). A set of 16 motor units
activates the forward/backward left/right track treds of the simulated
virtual robot, closing the sensorimotor loop with the simulated “brain”

receiving sensor information from the virtual world, and via its motor
neuron activity sending motor commands into the virtual world. The two
otherwise independent software processes were linked by socket-based
communications using winsock libraries. See Movie S4 in Supplementary
Material.

(reaches zero proximity) with a virtual wall. Finally, the robot can
be controlled over the local network, using socket connections.
This last method allows communication with human interface
devices like joysticks or mobile phones, or more importantly for
this project, a remote brain.

Simulated virtual odorants, background, and the sensor array
Odorants. A set of abstract “motifs” was used to specify both
odorants and an array of sensors: odorants were defined by the
degree (a real number between 0.0 and 1.0) to which they exhibit
each of a set of 10 abstract “motifs” (by analogy to the molecular
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motifs that correlate with glomerular activation; c.f. Mori et al.,
2006). Two odorants could exhibit the same two motifs, though
in different relative and absolute degree. The concentration of an
odorant is multiplied by motif degree to compute the concentra-
tion of the motif present. It is the concentration of motif (not
odorant per se) that activates the sensors. The background odor-
ant environment comprises a set of additional odorants, constant
in space and time but for zero-mean stochastic variation.

Sensors. Input to the neural system initiated with the activation
of an array of 256 or 1,024 sensors, each defined by their affinity
to several of the motifs chosen at random from the 10 available
motifs. For the ith sensor the affinity associated with motif α is
defined as the inverse of the concentration Ki,α of that motif α

(not the associated odorant) necessary to elicit 50% maximal sen-
sor activation. With sensors activation level ranging from 0.0 to
1.0, if a given sensor has affinity 1/Ki,α to motif α, and an odorant
present at concentration C possesses only motif α in degree dα,
then the concentration of the motif present is C·dα, and at odorant
concentration C50≡Ki,α/dα, sensor i reaches activation level 0.5.
Assuming a first-order interaction between sensor and the con-
centration of motif α and linear activation of the sensor itself, the
steady-state activation level Aα of sensor i in the presence of an
odorant at concentration C is given by:

Aα =
C ·dα

C · dα + Ki,α

If an odorant exhibits multiple motifs it is assumed that each
activates an independent receptor with first-order kinetics which
combine linearly and act jointly to activate the sensor; thus in
steady-state the activation level of sensor i presented with an
odorant possessing multiple motifs is:

Aα =
C

C +
∑
α

Ki,α
/

dα

where the sum runs over all motifs α present in the odorant to
which the sensor i also has affinity. If one assumes that instead of
instantaneous activation receptors have a finite rate of activation
and deactivation toward the equilibrium activation level, then we
instead have:

dAα

dt
= rf ·

(
Āα − Aα

)
− rβ · Aα

where rα and rβ are the rates of activation and deactivation of
the sensor respectively. In this work, it was assumed that sensors
activated rapidly in comparison to the rate of odorant variation,
and so instantaneous activation of sensors was adopted.

A simulated neural system
A very brief description of a subset of the Evolved Machines Neural
Simulator used for this work follows. The self-organization of
wiring during sensory experience (Rhodes and Taba, 2007), for
which this system was built, was de-activated during the present
study, which was primarily concerned with putting in place the
virtual world and software mechanisms to allow interaction with
the a neural sensorimotor circuitry.

Piriform cortex. Pyramidal neurons in piriform cortex and
Kenyon cells in the insect homolog both receive input on a set
of vertically oriented apical dendrites traversed by a horizontal
sheaf of afferent axons from the olfactory bulb and antennal lobe
respectively. In a typical cortical pyramidal cell these apical den-
drites number between 8 and 50, depending upon species, are
largely equal in rank, so that given equivalent excitation it is plau-
sible that each branch could make a comparable contribution to
somatic depolarization. The Kenyon cells of the Mushroom Body
are similar. Inputs from bulb to piriform cortex are very widely
distributed (Stettler and Axel, 2009; Nagayama et al., 2010), as
is the projection from antennal lobe to Mushroom Body (Jort-
ner et al., 2007), reflecting a remarkable similarity in architecture
between insect and vertebrate olfactory systems. Motivated by
these anatomical observations, a cortical array of 4,096 neurons
(versus 50,000 in the locust Mushroom Body), each with eight
identical branches was constructed, with each neuron receiving
160 inputs, 16 excitatory and 4 inhibitory on each branch, from the
bulb output units. Thus the piriform cortex incorporated 655,360
synapses. Branches were independent thresholded units (Rhodes,
1999; but see Bathellier et al., 2009), a branch-spike based model
of integration encouraged by indirect evidence suggesting that
regenerative branch-level spikes are produced in these branches
in vivo in insects (Laurent et al., 1993), with a neuron activated in
turn by the firing of a threshold number of its branches. Branch
threshold was a global parameter that homeostatically adjusted
during calibration periods. A model neuron of this type can be
considered a detector of the presence of a member of a family
of subset detectors, well suited mathematically to orthogonalize
overlapping inputs that may represent different objects (Rhodes,
2008). As in vivo assessment of branch electrogenesis in vertebrate
olfactory cortex pyramids has not yet been made, alternative inte-
grative models were considered, including linear dendrites each of
which conveyed their unthresholded summed input to the soma,
and sigmoidally activated dendrites (Poirazi et al., 2003) which
transformed the linear sum of their inputs with a sigmoid and
conveyed the resulting value to the soma. Thresholded units per-
formed better in concentration-invariant olfactory classification
in preliminary studies and so were adopted for this study.

Mitral cells. A highly simplified “mitral cell” layer consisting of
256 units with a single dendritic branch was utilized, simply to
receive the output of a cluster of four of the 1,024 sensor neurons
(Figure 5). The interaction between the granule cells and mitral
cells present in the vertebrate bulb was neglected in this work, and
as a consequence the use of the term “mitral cell” is made only
to signify the position of this second layer of units in the flow of
activity from sensors to cortex.

Synapses and synaptic depression. There were five classes of
synapses in this simulated system: (1) sensor neuron to mitral cell;
(2) mitral cell to feedforward interneuron; (3) mitral cell to the
dendrites of cortical pyramidal cells; (4) feedforward interneu-
ron to the dendrites of cortical pyramidal cells; (5) and cortical
pyramidal cell to motor neuron. Each was modeled as an addi-
tive weight, with duration of excitatory post-synaptic potential
(EPSP) or inhibitory post-synaptic potential (IPSP) an evolvable
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FIGURE 5 | A simulated neural olfactory system, developed using the
Evolved Machines neural simulator. Here a sensor sheet (far left)
innervates a mitral array (orange dendrites). An inhibitory granule cell layer
(green cells and dendrites) is synaptically interconnected with mitral cell
lateral dendrites via dendrodendritic reciprocal connections. The resulting
mitral cell activity is projected (dark orange axons) to the cortex (sheet of
gray cells at bottom left; feedforward interneurons shown without

dendrites, at top right), where the pattern of activated cortical cells
(lavender) represents the sensor information at this timestep. In the first
simulations of the sensorimotor system and plume world, the granule cell
dendrodendritic interaction was omitted for simplicity, and a set of 16
motor neurons was added, as described in Section “A Mapping of the
Motor Units to the Control of Effectors on the Agent” below and illustrated
in Figures 2D–F.

parameter for each class. Short term synaptic dynamics (depres-
sion and facilitation) is present at all cortical synapses (Thomson,
2000), and accordingly here first-order synaptic depression and
recover was incorporated at all synapses in the system. During the
evolution of system depression and recovery rates for each of the
five classes of synapses were among the variables free to evolve to
maximize system performance (see below).

Local homeostatic adjustment of excitability. It has become
increasingly clear that the local homeostatic adjustment of den-
dritic and neuronal excitability and of synaptic efficacy, via a
myriad of co-active mechanisms, is ubiquitous in both inverte-
brate and vertebrate neural circuitry (Davis, 2006). We have found
that when simulating the activity-dependent wiring of developing
neural circuits homeostatic adjustment of excitability is indispens-
able, because the target neurons must have a useful dynamic range
early in the wiring process, where there are very few connections
per neuron so that excitability must be high to enable some post-
synaptic activity, as well as and later when hundreds or thousands
of connections have been made, so excitability must decline to
present constant activation. Here the thresholds of the individual
dendrites of cortical pyramids, as well as firing threshold of the
pyramidal cells themselves, independently locally self-adjusted to
maintain a target average firing rate. The dendritic and somatic
average activity rates were independently evolved, while rates of
adjustment and the time constant used to compute the activity
average were fixed.

A mapping of the motor units to the control of effectors on the agent
While the circuitry and synaptic physiology of the insect and verte-
brate olfactory sensory system has been extensively characterized,
less information is available, in either insect or vertebrate, regard-
ing the motor system controlled by or affected by olfactory sensory
representations. In order to establish an interactive connection
between the sensor input from the virtual world to the simulated
“brain” and the motor commands sent from the neural system
back to move the agent in the virtual world, we connected the
cortical array described above to an array of 16 “motor” neurons,
each receiving 256 connections from the 4,096 cortical neurons,
drawn at random. Given the set of motor effectors on board the
simulated agent (forward, backward, left, and right controllers) it
was then necessary to define the functional connectivity between
the 16 motor units and 4 motor effectors. In other words, when
one of these motor neurons fires, what effect occurs at the robot’s
motor effectors? We chose a mapping that incorporates the “size
principle,”which in physiology refers to the incremental activation
of muscle fibers of increasing power to grade effector force in a
useful way, allowing for both fine movement, perhaps appropri-
ate for exploration, and more powerful motor action as might be
useful during a surge in the direction of a plume upon its location
(Henneman et al., 1965). Motor neurons were divided into two
populations, left and right, each of which is further divided into
another two populations corresponding to forward and backward
control. Within each of these four populations a given neuron dri-
ves one wheel of the simulated agent (or a track on the physical

Frontiers in Neuroengineering www.frontiersin.org October 2012 | Volume 5 | Article 22 | 183

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Rhodes and Anderson Simulation environment for neural olfaction

Surveyor robot) left/right, forward/backward, depending on the
population identity of that neuron, with force 1, 2, 4, or 8 assigned
to the four motor units in each directional pool.

The motor effector system of the agent we chose was intended
to mirror the two treads of a bulldozer-like physical robot, the Sur-
veyor SRV-1, that we used in the hybrid system described below.
Thus the four motor neuron pools are all that are needed to repre-
sent the positive or negative motor current values transmitted to
control the two track motors. The two motors require four graded
control populations instead of two, because negative values are not
represented by spike rates. To solve the problem of representing
negative numbers, which are readily interpreted as negative cur-
rent values to drive the tread motor backward, the neural system
encodes negative values with a second set of units for each tread.
The activity of each set of motor units is then added together to
compute a net current value for the motor for each tread, which is
finally the actual 8-bit integer relayed back to the virtual world to
control robot motion, as well as to the physical Surveyor robot in
the hybrid system described below.

Artificial evolution as a mechanism for refining parameters used in
the neural simulation
The sections above outline the components enabling interaction
between a simulated robotic agent situated in a virtual olfac-
tory world, with a simulated olfactory sensor activating a neural
olfactorimotor simulation, and motor unit activity controlling the
actions of the agent. The emphasis has been on achieving an inter-
active linkage between “brain” activity leading to motor action,
and updated sensor stimulation from contact with a plume in the
virtual world. The system we describe is clearly highly complex,
with a great many parameters associated with the components of
the neural mechanisms, including non-linear dendrites, short term
synaptic dynamics, and local homeostatic regulation of excitabil-
ity, all interacting to result in the dynamic relationship between
sensor input and motor output. How does one select parameters
for this neural system, and make systematically grounded deci-
sions as to which individually well-studied neural mechanisms
should be integrated into this system, or excluded in the interest
of parsimony and computational efficiency?

We have chosen to approach this problem by defining a per-
formance measure for olfactorimotor behavior of the neurally
controlled simulated agent, and then applying large-scale artifi-
cial evolution as a means to search the space of parameters as
well as neural mechanisms driven by maximization of this fitness.
In recent work (Rhodes, submitted) we have evolved simulated
olfactory circuitry driven by purely sensory fitness measures, for
example the concentration-invariant identification of odorants in
stimulus environments incorporating unknown background. In
the framework described here, the development of an interac-
tive virtual olfactory world with a robotic agent controlled by the
simulated neural olfactorimotor system now brings this work one
step closer to true survival-relevant fitness by defining behaviorally
defined fitness measures, such as the speed with which the robotic
agent achieves a defined proximity to a target odorant source. This
measure implicitly combines odorant identification, inherent in
reacting to the desired plume amidst other unimportant distract-
ing point sources, and in the midst of distracting background,

along with motor control suited to explore and thereby exploit the
plume environment to get to the proximity of a source.

Evolution operators, and the selection of parameters subject to
evolution. An evolution process entails the choice of the ≈50
parameters for one or more initial “parent” parameter sets, the for-
mation of a first generation from these parents, the specification
of a subset of parameters to be subject to variation by mutation,
the specification of evolution operators (e.g., mutation, recombi-
nation, and selection methods) and their parameters. In each trial,
then, a particular parameterization of the neural sensorimotor sys-
tem controls the action and interaction of the robot in the virtual
world, defined by a fixed set of odorant sources and convection
boundary conditions. For each such trial fitness (e.g., speed of
source localization) is computed and stored, and when a full gen-
eration of trials is completed the relative fitness of each individual
member of the generation is used to select a set of parents for the
next generation. Typically a single generation has minimum on
the order of 100 distinct parameter sets (“individuals”), with the
selection process iterated for order 100 generations, so that in an
evolution process order 10,000–50,000 individual interactive neu-
rally controlled robotic runs are performed. The neural system
is simulated entirely on NVIDIA GPU hardware employing their
CUDA software framework. The speed of this hardware is such
that at the scale of order 10,000 neurons, 100,000 compartments,
and several million synapses the neural system side of a simulation
of order 10,000 timesteps requires a few minutes, excluding virtual
world update. If we consider a model of olfactory function, as sug-
gested by Stopfer et al. (2003), that updates cortical representation
in a sequence of cycles clocked by the 20–50 ms beta oscillation
for vertebrates and invertebrates respectively, and if we allocate
four simulation timesteps with which to update the neural system
for each such beta cycle (allowing a single timestep to correspond
to a 5–10 ms EPSP), then 10,000 simulation timesteps is approx-
imately 2,500 beta cycles, corresponding to approximately 2 min
of sensorimotor exploration of the virtual environment. We chose
the CFD simulation with the constraint that the time required for
these 2,500 updates of 20–50 ms real-time was also order a few
minutes of compute time, so that the neural circuit simulation
and CFD simulation with which it interacts runs in compara-
ble times. For the 2-dimensional CFD environment with sources
and moving robot, at a 140× 140 grid spacing, simulating a 30 ms
update requires approximately 2–5 ms on a modern CPU. Thus the
2,500 such updates in a run the interacting CFD requires approxi-
mately 10 s While we do not yet know the update time required for
the three-dimensional plume world, including perturbation of the
convection field by robot motion, it can be 50-fold longer than the
interactive CFD update for the 2-dimensional world and remain
comparable in time required for update of a neural system of sev-
eral million synapses. Therefore, depending on the simultaneity
of update a 2 min (real-time) robotic exploration of the virtual
plume world controlled by a neural sensorimotor system of the
scale noted above is computed in approximately 5 min.

The computational resources required, and the use of a farm of
GPU’s. Given that a parameter evolution process with a 100-
member population evolving for 100 generations requires 10,000
such interactive trials, a single GPU-accelerated compute node
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would require approximately 1,000 h for a single evolution. If we
wish to have these evolutions instead run overnight, say a 12-h
period, so each evolution runs results can be analyzed daily, then
we can take advantage of the profound parallelism of the evolu-
tion process the trials for all members are entirely independent,
and so can be run on independent GPU-accelerated nodes, with
very data-light communication of fitness results to a control node,
and subsequent data-light propagation of the next generation’s
parameter sets out to the compute nodes, then 80 such GPU-
accelerated compute nodes suffices. At Evolved Machines we are
completing installation of a 216-node array of NVIDIA GTX-580-
accelerated GPU’s, which we estimate will allow the evolution of an
interactive olfactorimotor system, with fitness computed during
several minutes of plume exploration in each simulation, over the
course of 150 generations computed for a 150-member population
in a 12-h period.

Hybrid virtual world
This paper describes a method for building a robotic odor source
localization system which uses a sensorimotor loop modeled after
real neural systems. This brain model contains a large number
of parameters, and we would like to tune this model to produce
behavior which robustly guides the robot to the source the of odor
plume. Two facts have lead us to build a virtual world for simu-
lating the interaction between a robot and a set of odor plumes.
The first is that we do not yet have a biologically realistic sensor
module which can be mounted on a moving robot. The second
is that tuning the brain model requires many simulation runs.
As compared to running experiments using real robots and real
plumes, simulations vastly increase the number of parameter sets
which can be tested in a given amount of time.

However, simulations fail to capture all the complexities
inherent in real-world robotics and fluids, for example non-
homogeneous ground surface topography and friction, sensor
noise, wheels/track slippage, uneven motor power. In order to
ensure robust behavior, the simulation-tuned brain models must
be exposed to these complexities. A hybrid virtual world, in which
certain aspects of the real world are simulated, lets us select which
of these complexities our system experiences. In addition, the
hybrid world lets us get started tuning the neural model even
before we have a reliable mobile olfactory sensor. The ultimate
goal is to build a real robot to operate in real environments, and
we want to be certain our early experiments are grounded in the
complexities of the physical world.

Further, wear and tear would render the robot model non-
stationary, and while an effective neural controller of physical
robots needs to adjust continually for the drift in the physical
model (Bongard et al., 2006), just as animal neural circuits do,
that would add a challenge to exclusively using physical robots for
this study. It is for this reason that we have developed a virtual
plume world, where computing power and a farm of compute
nodes running in parallel enables running tens of thousands of
plume tracking trials in order 10 h instead of order 1000 h.

For these reasons, we sought to increase the realism of our test-
ing system by putting a real robot in the sensorimotor loop. The
robot we used is an SRV-1 from Surveyor Corporation7, which

7http://surveyor.com/

is a small tracked robot, about 10 cm× 12 cm in dimension, and
350 g in its most basic configuration8. Motor control commands
are relayed to the agent over WiFi (802.11 b/g protocol), as are
the signals from the variety of sensors that are conventionally
mounted on board, which can include a 1.3 M pixel video camera
and infrared proximity sensors. To incorporate the robot into the
sensorimotor feedback loop, we need to both control the robot
motors using signals from the simulated brain, and send odor
concentration signals from the robot to the brain. The first task
is relatively straightforward; the socket commands consisting of
wheel motor control signals are converted from the activity of
the motor units as described in Section “A Mapping of the Motor
Units to the Control of Effectors on the Agent” above are con-
verted to Transmission Control Protocol (TCP) commands and
passed across the network to a server running on the real robot,
which then sends a varying amount of current to the left and right
motors. The result is that the simulated brain, activated by vir-
tual sensor activity in the virtual world due to contact between an
odorant plume and the location of the virtual sensor, result in acti-
vation of motor units in the simulated brain which are converted
into motor signals which move the physical Surveyor robot on the
floor of the lab (see Movie S5 in Supplementary Material).

Since we do not yet have a physical olfactory sensor for the Sur-
veyor robot, we cannot yet have the sensor signals to the simulated
brain come from the physical robot. To bridge the gap we have
developed a hybrid system, where the new position of the physical
robot, controlled by the simulated motor units as just described
in this Section and Section “A Mapping of the Motor Units to the
Control of Effectors on the Agent” above, is detected and relayed
to the virtual world, where it is used to update the position of
the virtual robot in the plume world simulation. This requires
tracking the real robot in X and Y, as well as determining the head-
ing (for the purposes of sensor localization). To capture robot
posture, we use the infrared blob tracking camera on a WiiMote
(Nintendo Corporation) to localize three infrared light-emitting
diodes (LEDs) we positioned in an isosceles triangle arrangement
on top of the robot (Figure 6). The asymmetry of the LEDs lets
us determine position and heading from single time points sent
over Bluetooth by the WiiMote at 100 Hz, using custom software
built with Processing (see text foot note 3) and DarwiinRemote9.
As the real robot moves, driving by motor commands from the
simulated brain, the tracked position and heading are fed into the
virtual world to update the posture of the virtual robot. The odor
concentrations sent back to the simulated brain are drawn from
the robot’s position in the simulated plumes, which are perturbed
by the motion of the real robot. Thus the virtual robot is no longer
controlled by the neural motor units, but rather mirrors the move-
ment of the physical robot, which is tracked as just described. In
this way, we are equipped to begin to study the control of a phys-
ical robot by a simulated neural sensorimotor systems activated
by interaction between a moving olfactory sensor and a simu-
lated plume, and begin to deal with the attendant irregularities
(and non-stationarities) including motor response, floor surface
traction, power source variability.

8http://www.surveyor.com/SRV_info.html
9www.sourceforge.net/projects/darwiin-remote
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FIGURE 6 |The hybrid virtual-real world experimental setup. Upon
receiving a motor command, the physical robot (lower right) executes a
maneuver beneath the tracking camera (WiiMote, upper right). Based
on isolating the coordinates of three LEDs positioned on the robot’s top
surface, the coordinates and heading of the robot are sent to the virtual
world CFD simulation. The odor concentrations extracted from the

robot’s position in the CFD are sent to the computer in the lower left,
which is running the brain simulation. The odor concentrations are
transduced by olfactory receptor neurons, which spread activation
through the neural simulation. When the motor neurons become
active, a motor command is sent to the physical robot, which
completes the feedback loop.

Thus we are able to run 10,000 trials to evolve the parameters
of the simulated sensorimotor to optimize as an intermediate step
until such time as physical sensors with adequate properties can
be engineered and made available, as further described in the next
section.

The development of a high dimensional, rapidly reversible,
compact, low power artificial olfactory sensor using functionalized
nanotube FET arrays
In the foregoing we have outlined a system to study the function of
olfactory sensory and sensorimotor circuitry with the assistance
of a simulated agent embedded in a virtual world, controlled by
the simulated neural “brain.”While we expect that the exploration
of mechanisms, neural architectures, and parameters choices over

order 10,000 trials will continue to require acceleration using a
virtual world environments, as noted in the previous section, the
olfactory conditions of the real world, and the imperfections of
the motor model and effector action (e.g., slippage on the car-
pet of a wheel) call for transition to a physical machine. To build
autonomous olfactory robots driven by reverse-engineered bio-
logical neural circuitry requires an olfactory sensor with several
crucial properties: (1) High dimensionality. Odorants and odor-
ant mixtures activate biological olfactory sensor arrays identified
by expression of a large set of distinct olfactory receptors, ranging
from 50 to 150 in the antenna of insects to 900 in the olfactory
receptor neuron sheet of olfaction-oriented vertebrates such as
canines and rats. The result is a high dimensional dimensional dis-
tributed representation, enabling the identification of thousands
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of objects and environments. (2) Rapid reversibility, so that a time
series of odorant measurements can be collected at an adequate
rate as an animal explores a plume environment (as emphasized
by Bennetts et al., 2012), a dynamic agility which may be central to
nulling background and to facilitate odorant identification in com-
plex environments (Best and Wilson, 2004; Rhodes, submitted).
The sample rate which has evolved in of highly olfactory animals,
around 5 Hz, as a practical target sampling rate. (3) Further to
plausibly be mounted on an autonomous physical robot such a
sensor would ideally be low power, compact, rugged, and require
no consumables. One of us (PAR) is affiliated with a company
(see text footnote 1) engineering a sensor comprised of an array
of functionalized carbon nanotube field effect transistors which
seeks to meet these requirements, and which will be made available
to the academic community. With such a sensor, robotic devices
could be used in conjunction with the interactive CFD simulations
described here to develop and test models of olfactory sensory and
sensorimotor circuitry, situating such simulated neural systems in
the context for which that circuitry evolved.

DISCUSSION
SUMMARY OF THE PRESENT WORK
In order to study simulations of neural olfactory circuitry in a
motor context we have developed an integrated olfactory virtual
world incorporating a computationally light CFD simulation of
plumes and convection, in which a simulated robotic agent sends
odorant concentration values at its location to a separately sim-
ulated neural olfactorimotor system. The resulting continuous
stream of activation of a simulated sensory array produces activity
in the “cortex” of a simulated neural system incorporating approx-
imately 10,000 cells and a million synapses, for now connected to
a simple motor array. The units firing in this motor array in turn
relay activation signals to a set of motor effectors on the robotic
agent, moving it within the virtual world. Its movement there
disturbs the plumes and convection fields being simulated in the
ongoing computational fluid dynamic simulation, with the result-
ing update of odorant concentration at the location of the robot
sensor being again relayed to the simulated neural system, closing
the sensorimotor loop. We optimize neuronal and circuit parame-
ters and refine the choice of neural mechanisms incorporated in
this complex interacting system by the systematic use of artificial
evolution, driven by fitness measures chosen to reward perfor-
mance on relevant sensorimotor tasks such a rapidly locating a
plume source, amidst other distracting plumes, and unfamiliar
background.

THE PROPOSED PARADIGM IN THE CONTEXT OF RECENT WORK IN
NEURAL OLFACTORIMOTOR CONTROL
While there is a rich and growing literature exploring olfactorimo-
tor control in both real and simulated environments (reviewed in
Kowadlo and Russell, 2008; McGill and Taylor, 2011), the combi-
nation of elements listed above, including a turbulent plume simu-
lation perturbed by a robot which is controlled by a realistic neural
simulation optimized using artificial evolution, have not yet been
integrated. Table 1 presents a summary of the literature identifying
the simulated environment, method of parameter optimization,
motor performance measure, and algorithm space explored, level

of interaction between robot and plume, and other characteris-
tics of each of 12 studies, reported within the last 5 years, so that
the neural olfactorimotor simulation environment developed and
advocated here can be put in context of the distinguished body of
work that has informed this field.

With respect to CFD implementation, many studies have imple-
mented turbulent plume simulations using the filament technique
of Farrell et al. (2002) or more classic Navier–Stokes (Cabrita
et al., 2010). While potentially highly accurate, these equation sys-
tems require solution times incompatible with interaction between
robot movement (or convection source such as fans, and other
mechanisms to achieve sniffing) in real-time during the neural
simulation (obviating the ability to run the number of simula-
tions required to do systematic parameter optimization) and so to
our knowledge none have enabled the alteration of the plume by
a moving robot.

Only a few studies have incorporated neural simulations in
guiding olfactory behavior (Mathews et al., 2009; Lopez, 2011),
using models built with the IQR simulation framework (Bernardet
and Verschure, 2010). Though multiple studies have attempted
to emulate the general behavior patterns of odor-seeking insects,
often moths (Willis, 2008; Ferri et al., 2009; Cabrita et al., 2010;
Lopez, 2011), the use of artificial evolution to systematically search
the space of olfactorimotor source localization algorithms (neural
or otherwise) is, to our knowledge, unique.

Studies which utilize physical robots (Willis, 2008; Ferri et al.,
2009; Mathews et al., 2009; Li et al., 2011; Lopez, 2011) sample
real turbulent plume conditions where the perturbation of robot
motion is accounted-for, of course, but aside from wind tunnels
that ensure laminar flow conditions, it is impossible to ensure that
the turbulent plume sensed by the agent is the same from one trial
to another. Any method of systematic optimization of the para-
meters of the simulated system entails a large number of repeated
trials which must be sufficiently similarity to make the parameter
optimization tractable, suggesting that the use of simulated olfac-
tory environments is indispensable in enabling the exploration
of parameter space to an extent that use of physical robots pre-
clude. Once the neural parameters, architecture and mechanisms
have been explored in a virtual plume world, incorporation into
physical robots is of course a necessary transition to make practical
use of the system developed; we therefore emphasized an inter-
mediate step wherein from time to time the physical robot was
controlled by the neural motor output, with its resulting position
imported to the agent in the plume world, enabling continuous
refinement of the virtual world motor model to ensure its relevance
to developing motor control of the robot available.

The foregoing review of the literature supports the following
enumeration of characteristics of the present system that have not
been brought together previously:

1. Control of virtual world agent by a neural olfactorimotor
system, rather than more conventional robotic control system.

2. Interaction between the simulated robot and the virtual plume
and convection field, so that movement of the robot perturbs
the plume. This interaction also will enable the addition of (and
evolution of the optimum characteristics of) active fluid intake
mechanisms such as are employed by biological creatures from
lobster to canine to help more efficiently find plume sources.
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Table 1 | A survey of studies of olfactorimotor control presented within the last 5 years.

Authors and

Year

Neural

brain

Parameter optimization

via artificial evolution

Closed

loop

2D/3D Real or

simulated

# odors Fluid interaction

with robot

Rhodes and Anderson (present work) Yes Yes Yes 2D Both 3 Yes

McGill and Taylor (2011) No No Yes 2D Both Up to 3 No

Li et al. (2011) No No Yes 3D Real 1 Real

Lopez (2011) Yes No No 3D Real 2 Real

Lu and Luo (2011) No No Yes 2D Sim 1 No

Cabrita et al. (2010) No No No 3D Both 1 No

Moraud and Martinez (2010) 2D Both 1 No

Li et al. (2011) No 2D Sim 1 No

Zarzhitsky et al. (2010) No No Yes 2D Sim 1 No

Ferri et al. (2009) No No Yes 3D Real 1 Real

Mathews et al. (2009) Yes No Yes 3D Real 1 Real

Willis (2008) No No Yes 3D Real 1 Real

In all but one case, aside from the present study, the sensorimotor control system was not neural, though a variety motor strategies observed in nature were

implemented in non-neural control systems. None of the simulation studies incorporated a CFD model that enabled the robot to interact with the plume as it moved,

a significant limitation. We advocate the use of a simulated environment to enable the systematic optimization of system parameters, a process that requires the

repeated run of plume-robot interaction order 103–105 times, depending on the number of parameters to be jointly optimized.

3. The routine inclusion of multiple distinct odorant plumes and
background odor.

4. The systematic and extensive use of artificial evolution driven
by olfactorimotor performance (e.g., to minimize the time to
locate a plume source) to specify the parameter values for the
neural system and to refine the selection of neural mechanisms
to incorporate.

5. A hybrid virtual world with the output of the simulated motor
units triggering the motion of a physical robot, the resulting
position of which updates the location of the agent in the virtual
world,as a bridge to incorporate the realities of motor control of
an imperfect physical robot. We note that recently Cabrita et al.
(2010) presented a hybrid world with a physical agent wherein
a Figaro sensor on board moving through a real environment
is assessed in parallel with a simulated agent in a virtual world,
though the sensory and motor system was not neural, and there
was no interaction between the agent and plume.

OUTLOOK FOR THE FUTURE
While we await development of a physical olfactory sensor with
the high dimensionality and rapid reversibility necessary to serve
as a front end for a real robot, we have developed an intermediate

system connecting the purely simulated neural control system and
virtual world to the real world. In this hybrid a physical robot, with
its motor control imperfections and non-stationarities, is activated
by the motor signals from the simulated neural system, with its
position on the lab floor monitored and imported to update the
position of the simulated agent, which moves through and per-
turbs the simulated plume. Finally, we describe the development
of a new class of high dimensional, rapidly reversible, low power
electronic artificial olfactory sensor which, when available, could
be the front end for a fully autonomous neural olfactory robotic,
with a neural control system co-evolved in virtual and physical
environments. When developed, this olfactory sensor platform will
be made available to the research community to both explore the
development of working olfactory robotic devices and to enable
the study of highly neural simulated olfactory circuitry in the
sensorimotor context for which it evolved.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at:http://www.frontiersin.org/Neuroengineering/10.3389/fneng.
2012.00022/abstract
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