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A significant proportion of the electroencephalography (EEG) literature focuses on
differences in historically pre-defined frequency bands in the power spectrum that
are typically referred to as alpha, beta, gamma, theta and delta waves. Here, we
review 184 EEG studies that report differences in frequency bands in the resting state
condition (eyes open and closed) across a spectrum of psychiatric disorders including
depression, attention deficit-hyperactivity disorder (ADHD), autism, addiction, bipolar
disorder, anxiety, panic disorder, post-traumatic stress disorder (PTSD), obsessive
compulsive disorder (OCD) and schizophrenia to determine patterns across disorders.
Aggregating across all reported results we demonstrate that characteristic patterns
of power change within specific frequency bands are not necessarily unique to any
one disorder but show substantial overlap across disorders as well as variability
within disorders. In particular, we show that the most dominant pattern of change,
across several disorder types including ADHD, schizophrenia and OCD, is power
increases across lower frequencies (delta and theta) and decreases across higher
frequencies (alpha, beta and gamma). However, a considerable number of disorders,
such as PTSD, addiction and autism show no dominant trend for spectral change
in any direction. We report consistency and validation scores across the disorders
and conditions showing that the dominant result across all disorders is typically only
2.2 times as likely to occur in the literature as alternate results, and typically with
less than 250 study participants when summed across all studies reporting this result.
Furthermore, the magnitudes of the results were infrequently reported and were typically
small at between 20% and 30% and correlated weakly with symptom severity scores.
Finally, we discuss the many methodological challenges and limitations relating to such
frequency band analysis across the literature. These results caution any interpretation
of results from studies that consider only one disorder in isolation, and for the
overall potential of this approach for delivering valuable insights in the field of mental
health.

Keywords: EEG, electroencephalography, resting-state, power spectrum, psychiatric, ADHD, schizophrenia,
depression
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INTRODUCTION

In 2001 the World Health Organization1 (WHO) reported that
about 450 million people worldwide suffer from some form of
mental disorder or brain condition, and that 1 in 4 people will
meet this criteria at some point in their life (Sayers, 2001). More
recent statistics2 suggest that globally, 300 million people are
affected by depression, 60 million people suffer from bipolar
disorder, 23 million people are affected by schizophrenia, 1 in
160 children has autism spectrum disorder3 and between 5%
and 7% of children and adolescents suffer from attention deficit-
hyperactivity disorder (ADHD; Polanczyk et al., 2007). Diagnosis
of these psychiatric disorders is typically carried out using
clinical interviews structured around the diagnosis classification
systems of DSM-5 and ICD-11. These diagnostic criteria are
based on self-reported symptom clusters, with each disorder
type having its own group of symptoms which can include
behavioral, cognitive, affective or physical disturbances. For
example, ADHD diagnosis primarily focuses on cognitive and
behavioral complaints by the child or adult, whilst diagnosis
of depressive disorders typically focuses on disruptions to an
individual’s affective and physical functioning.

However, the reliance on a subjective assessment approach
which can be prone to patient and expert bias means that
researchers have been trying to develop new ways to inform
clinical diagnosis and treatment effectiveness using objective
symptom biomarkers, with electroencephalography (EEG) being
one method of interest (McLoughlin et al., 2014; Jeste et al.,
2015; Olbrich et al., 2015). The approach that dominates the
literature focuses on analyzing broad frequency bands in the
EEG power spectrum termed delta, theta, alpha, beta, and
gamma (Berger, 1929; Jasper and Andrews, 1936; Hoagland
et al., 1937a,b; Dustman et al., 1962). This interpretation of
the EEG signal in terms of spectral bands has its origins in
the technical limitations of the pre-computer era of the 1930s
and ‘40s when few other analytical options were available.
However, this approach results in a reduction in the rich
temporal information available within the EEG and was, even
at that time, acknowledged to be sub-optimal (Walter, 1938).
Yet, despite the tremendous progress in computing power and
available algorithms, the spectral band approach continues to
persist as the dominant approach to EEG analysis, including in
the development of clinical biomarkers. A recent example of
this is the approval by the FDA4 of the use of the theta/beta
ratio as a biomarker for ADHD diagnosis (Saad et al., 2015;
Gloss et al., 2016) whilst others are exploring the application
of alpha-asymmetry as a potential marker for depression (van
der Vinne et al., 2017; Kaiser et al., 2018). One question,
therefore, is whether the approach of splicing the power spectrum
into bands has persisted because it offers a superior approach
in terms of research insight, methodological standardization,
and reliability of results across studies, or whether it is

1http://www.who.int/
2http://www.who.int/en/news-room/fact-sheets/detail/mental-disorders
3http://www.who.int/en/news-room/fact-sheets/detail/autism-spectrum-
disorders
4https://www.accessdata.fda.gov/cdrh_docs/reviews/K112711.pdf

because researchers have simply kept with the status quo of
80 years ago.

To explore the degree to which spectral band analysis of the
EEG offers a reliable and useful approach for understanding
different psychiatric disorders, we have reviewed the methods
and results from 184 resting-state EEG studies across a host
of psychiatric disorders that report differences (or lack thereof)
in the various frequency bands within the power spectrum.
The objectives of this review are therefore threefold. First, to
determine the dominant patterns of results and reveal similarities
and dissimilarities in the spectral trends both between and
within different brain disorders during resting-state; second, to
report the reliability and consistency of results across disorder
types to determine the validity of applying power spectral
analyses to inform on individual psychiatric disorders; and
thirdly to review the methodological and analytical approaches
across all studies to determine the degree to which they
can be compared and contrasted to draw reliable conclusions
within the field. In this respect, we provide an objective view
of the literature along numerous methodological dimensions
from sample size and choice of demographic (e.g., age,
gender) to method of clinical diagnosis and parameters of
EEG recording (e.g., reference type) and analysis (e.g., artifact
removal, Fourier transform algorithm) used both within and
across disorder types. We note that we restrict our focus to
analysis of frequency bands at the level of single channels or
averaged across channels and do not cover derivative analysis
of these spectral bands such as their spatial coherence or
asymmetry.

Such a cross disorder view is particularly warranted since the
majority of clinical resting-state EEG studies focus primarily on
one clinical disorder at a time, and do not offer a perspective
across a broader range of psychiatric disorders. Therefore, whilst
a study may report changes in particular frequency bands for
one disorder type, it is not always obvious whether this is
unique to this particular disorder, or whether similar patterns
of change are found across other psychiatric disorders. In other
words, are there unique EEG signatures which differentiate one
disorder from another, or do the macro-level changes observed in
studies employing a frequency band approach overlap with other
disorders, therefore being more limited in their clinical diagnosis
potential.

MATERIALS AND METHODS

Studies Identified and Reporting
Characteristics
We present a review of studies published over the last
25 years that report spectral power in different bands during
resting state conditions (eyes open and/or closed) across
10 mental health disorders. These include depression, bipolar
disorder, addiction, autism, ADHD, anxiety, panic disorder,
obsessive compulsive disorder (OCD), post-traumatic stress
disorder (PTSD) and schizophrenia, allowing us to compare
both within and across disorders. We limit our review to
studies with an N of at least 20 participants that reported
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quantifiable results in at least one frequency band. Our intention
was not to perform a full-scale meta-analysis but rather a
comprehensive review of the state of recent literature. To do
so we conducted a search of PubMed5 in May 2018 using
combinations of the following keywords in the title or abstract:
quantitative OR qEEG OR ongoing/on-going OR spontaneous
OR resting/rest, combined with EEG and the key terms for
each of the disorders of interest. Only studies that examined
EEG spectral differences in at least one frequency band
(exclusively or alongside other EEG metrics) between a clinical
and a control group were included. Studies whose research
focus was on other aspects of mental health or cognition,
or whose analysis focused exclusively on other EEG metrics
(e.g., asymmetry, coherence, microstates, entropy etc.) were
excluded. No study was excluded due to methodological
limitations, but rather because it missed the proposed research
topic. This enabled a comprehensive review of the variability
of experimental and clinical parameters across the published
literature, rather than restricting it to a particular subset of
studies.

As a next step, various methodological parameters were
collated including sampling characteristics, EEG recording
parameters and power spectrum computation. Sampling
characteristics included sample size, demographic data (age,
gender), medication status and diagnostic screening method.
Key EEG parameters (where available) included referencing
style, and recording length, and power spectrum computation
included FFT method (windowing function, overlap, epoch
length), frequency bands (and frequency window) and whether
absolute and/or relative power differences were analyzed within
each band. We then noted any reported significant difference
(increase or decrease) or lack of significant difference in
power/amplitude across each spectral band (delta, theta, alpha,
beta, gamma where analyzed) for each study. In addition, to
standardize across studies, frequency bands which had been split
into sub-bands (e.g., beta1/beta2) were collapsed for all analyses,
and where results differed across sub bands (e.g., beta1 showed
significance, beta2 showed no significance) we considered the
significant finding as the primary result. In addition, in one study
(Hong et al., 2012) the theta and alpha bands were collapsed
together and in this instance we allocated the result to both
bands individually.

Where reported in text or figures, the magnitude of change
was also calculated (as a % increase or decrease). Any reported
correlations between individual spectral bands and clinical
symptoms were also recorded when reported. All collected data
were consolidated in a spreadsheet for review and analysis.

Consistency and Reliability Scores
To determine the dominant result for each band within each
disorder group and recording condition we first identified the
most frequently occurring (i.e., dominant) result (significant
increase, significant decrease or no significant difference). For
example, for ADHD in children in the eyes closed condition there
were 13 studies reporting a significant increase in the absolute

5https://www.ncbi.nlm.nih.gov/pubmed/

power of the delta band, one study reporting no difference and
three studies reporting a significant decrease. In this case the
dominant result is a significant increase. When the number of
studies showing either a significant increase or decrease was
the same as the number showing no difference, the dominant
result was considered no difference. When an equal number of
studies showed an increase and a decrease (and the number was
higher than those showing no significant difference) the result
was marked as ‘‘opposing.’’

We then created a consistency score computed as the ratio
of the number of studies reporting the dominant result (e.g.,
no significant difference) to the number of studies reporting a
different result (e.g., significant increase or decrease); essentially
how much more frequently the dominant result was reported in
the literature compared to some other result. When all studies
agreed (i.e., the divisor was zero) we used the number of studies
as the consistency score. When the studies were evenly divided
between any two results, we computed the consistency score as 1.

We next created a validation score by first computing the
average N for the studies showing the dominant result in each
band and multiplying this by the number of studies showing the
dominant result. We then averaged these values across all the
bands (excluding the gamma band which was sparsely reported).
The validation score is therefore an indication of the size of the
population from which the dominant result was obtained.

RESULTS

A total of 184 publications published between 1993 and 2018,
found using the above search criteria in PubMed, matched
our inclusion criteria. A detailed list of studies with key study
parameters can be found in Supplementary Table S1. while
trends in results are summarized below.

Overview of Studies
Sample Characteristics
A summary of the number of studies across disorders and
their corresponding sample characteristics is shown in Table 1.
Some disorders such as ADHD and schizophrenia were widely
studied (65 and 37 articles, respectively) while others such as
depression and autism were also popular, though less so (18 and
16 studies respectively). In contrast, some disorders such as
bipolar, generalized anxiety and panic disorder were very poorly
represented in the literature (six or fewer studies each). The
median sample size across the studies was 60, with roughly equal
numbers of patients and controls in the majority of studies.
Seventy-three percent of studies had sample sizes less than
100 whilst only 10 studies (Clarke et al., 2001d; Wuebben and
Winterer, 2001; Rangaswamy et al., 2002, 2006; Magee et al.,
2005; McFarlane et al., 2005; Grin-Yatsenko et al., 2009; Kam
et al., 2013; Narayanan et al., 2014; Arns et al., 2015) had sample
sizes greater than 250 and only one of these (Arns et al., 2015) had
a sample size greater than 1,000 (N = 1,344; depression; Figure 1).
Participants were generally adults with an average age between
30 and 40 except for ADHD and autism where studies largely
focused on children and the average age ranged from 5 to 11 years
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TABLE 1 | Overview of studies.

No. of studies∗ Median N % Controls Average age (years) % Females % Eyes closed$

ADHD (children) 56# 76 45 11 25 75
ADHD (adults) 14# 55.5 50 33 43 54
Schizophrenia 37 63 54 31 33 92
ASD/Autism& 16 56 52 8.5 21 33
Depression 18 55 44 39 57 86
OCD 10 61.5 49 32 56 100
PTSD 13 74 50 40 37 67
Addiction 16 45 49 33 30 88
Panic disorder 4 79 44 35 69 50
Bipolar disorder 6 99.5 55 30 55 50
Anxiety 3 50 50 31 76 50

∗ Includes five joint studies: (1) depression/post-traumatic stress disorder (PTSD); (2) schizophrenia/bipolar; and (3) schizophrenia/depression. $ Includes studies which had only eyes
closed as well as studies which included both eyes closed and eyes open. &Excludes the one adult ASD/autism study. # Includes five studies with both children and adult participant
groups.

FIGURE 1 | Distribution of sample size across 184 studies in this review.
Sample size includes both patients and controls. Median sample size was 60.
One study, with a sample size of 1,344, was beyond the scale of this graph.

old. Furthermore, samples were typically skewed towards male
subjects (64%).

Each study compared a group with a diagnosed disorder
to a control group. The majority of studies report on only
one disorder, although a minority compare two disorders, e.g.,
bipolar disorder and schizophrenia (Clementz et al., 1994; Kam
et al., 2013; Narayanan et al., 2014), depression and schizophrenia
(Begić et al., 2011), depression and PTSD (Kemp et al., 2010),
alcohol and internet addiction (Son et al., 2015). In each case, the
disorder group(s) were determined using common psychiatric
questionnaires as described in Supplementary Table S2. In the
majority of studies (70%), patients were unmedicated which was
defined as being medication naive or having abstained from
taking medication for a predefined period of time (ranging from
12 h to 3 months).

Reported Metrics
The majority of studies reported resting state EEG with eyes
closed recordings (66% of studies). However, a minority of
studies reported results for eyes open (19% of studies) or
both eyes open and closed (15%), analyzed either combined or
separately. While some studies reported all frequency bands,
many were selective in reporting only one or two bands. Across

the studies, the alpha and theta bands were the most frequently
reported (in 85/84% of studies), followed by beta (80%) and
delta (70%). Gamma is the least frequently reported (only 18% of
studies). Given this pattern of reporting, it is sometimes unclear
when a study reported on only one or two bands, whether it was
because the other bands were not analyzed, or whether they were
excluded on account of negative or null results. Underreporting
of negative or null results may therefore bias this review towards
the positive results. It is also important to note that while most
studies followed a typical definition for the theta and alpha bands,
there was wide variation in the definitions of other bands (see
‘‘Methodological Challenges and Limitations’’ section).

For each band, studies most often reported differences in
the absolute power between control and disorder groups (61%
of studies). Some of these studies additionally reported relative
power (28%) while a few reported differences in relative power
only (10%). Relative power is typically calculated by computing
the power of each given band divided by the sum of power
across all bands. Surprisingly, 29% of studies did not explicitly
indicate the method of reporting and required some inference.
Where a study did not mention whether it reported absolute
or relative data, it was generally assumed that it was absolute
in the absence of any evidence to the contrary. Most studies
reported aggregated results for broad cortical or source localized
regions (60%) while others reported results for individual
channels (32%). A small minority provided results aggregated
across all recorded channels (8%). Given these differences in
reporting we computed the magnitude of difference between
the control and disorder groups as percentages, where the
information was available (in 40% of cases), averaging across
broad regions in all studies. Where there was a regional split
between increases and decreases across the scalp (e.g., frontal
increases and posterior decreases) the regional magnitudes were
allocated to their respective increase and decrease groupings
(rather than being averaged together). Finally, a proportion
of studies (27%) additionally reported correlations (significant
or non-significant) between individual bands and disorder
severity.

It is also important to note that although some of the studies
reported here exclusively focused on the analysis of the power
spectrum, many of them additionally reported on other metrics

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 5217

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Newson and Thiagarajan Frequency Bands in Psychiatric Disorders

including coherence analysis and asymmetries which are not
reported here.

Aggregate Trends Across Frequency
Bands and Disorders
A trend analysis was performed for both absolute and relative
power differences reported between the disorder and control
group in each band (definitional and other methodological
differences notwithstanding) for each disorder. To standardize
across studies, we collapsed across any bands which had been
split into sub-bands (e.g., beta1/beta2). Where results differed
across bands (e.g., beta1 showed significance, beta2 showed no
significance) we considered the significant result as the primary
result. Furthermore, results are shown separately for the eyes
closed and eyes open conditions. A small number of studies that
combined eyes open and closed (for opioid addiction, depression,
panic disorder, anxiety) are excluded from the trend analysis
but displayed in the tables for completeness. In addition, in the
minority of cases where there was only a single study condition
(i.e., eye open/closed, absolute/relative) for a particular disorder,
the study was not included in the summary table or trend
analysis.

Dominant Results Across Disorders
The number of studies reporting either a significant increase, a
significant decrease, or no significant difference in the power in
each of the frequency bands relative to control for each disorder
are shown in Supplementary Tables S3, S4 for absolute and
relative power respectively. The dominant result for each band
within each disorder group and recording condition (significant

increase, significant decrease or no significant difference) was
determined based on the result reported by the greatest number
of studies as described in the methods section ‘‘Consistency and
Reliability Scores.’’

Altogether we found that the most common result across all
disorders and bands combined was an absence of any significant
difference in both the eyes closed (53% absolute power, 63%
relative power) and relative eyes open conditions (83%), whilst
there were similar levels of significant increase (46%) and
no significant difference (39%) for absolute eyes open. The
dominant results for each band aggregated across all distinct
disorders and conditions are shown in Figure 2 for absolute
power (Figure 2A) and relative power (Figure 2B).

When restricting our view to the smaller proportion of
disorders/conditions where the dominant result was a significant
increase or decrease, the general pattern that emerged was that
increases dominated in the lower frequency delta and theta
bands (86% for absolute and relative power) while decreases
dominated in the alpha band (67% absolute, 100% relative). In
contrast decreases were roughly as likely as increases in the beta
band depending on the condition (37.5% absolute, 50% relative).
The gamma band was excluded from analysis due to the small
number of studies, although here again, decreases were more
common.

Examining this general effect at the level of the individual
disorder types, the results showed that there was an increase
in absolute power for both delta and theta in the eyes closed
condition for ADHD (in children), schizophrenia, OCD and
depression, while ADHD (in adults) and alcohol addiction
showed an increase only in the theta band (Figure 3A). In

FIGURE 2 | Dominant result aggregated across all disorders and bands. (A) Number of disorders with no difference in absolute power relative to controls (white), an
increase (black), a decrease (gray) or opposing results (hashed) for eyes closed (top) and eyes open (bottom) conditions. Increases are more common for lower
frequency bands (delta and theta) whilst decreases or no significant difference are more common for higher frequency bands (alpha and beta). (B) Same as (A) for
relative power. Legends and axis labels are common.
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the eyes open condition, an increase was dominant in both
delta and theta for depression, ADHD (in children) and bipolar
disorder but only in the delta band for ADHD (adults) and
only in the theta band for schizophrenia. However, even across
those disorders where an increase dominated these bands, there
were nonetheless a minority of studies reporting the opposite
effect (e.g., three studies of ADHD in children, Dupuy et al.,
2014a; Giertuga et al., 2017; Shephard et al., 2018, two studies
of schizophrenia Pascual-Marqui et al., 1999; Knyazeva et al.,
2008 and one of OCD, Bucci et al., 2004). The only cases in the

FIGURE 3 | Dominant results for each individual disorder and band.
(A) Differences in absolute power for each disorder (relative to control) for eyes
closed condition (top), eyes open (middle) and eyes open and closed
combined (bottom). White boxes indicate no change, black indicates an
increase, and gray indicates a decrease. Opposing results are shown by
hashed boxes. (B) Difference in results between absolute power and relative
power for the same disorders. White indicates no difference, gray indicates a
significant increase or decrease in one but no significant difference in the
other, while a hashed box indicates opposite results.

lower frequency bands where the dominant result was a decrease,
rather than an increase, was in the delta band for autism (eyes
closed, Coben et al., 2008) and in the theta and delta bands
for PTSD/early life stress (eyes open, McFarlane et al., 2005;
Veltmeyer et al., 2006).

Significant decreases in absolute power were dominant in the
alpha band for schizophrenia and OCD (eyes closed ), autism and
PTSD (eyes open), and in the beta band for ADHD (children),
autism and internet addiction (all eyes closed; Figure 3A). In
contrast, significant increases were dominant in a handful of
disorders, most frequently when participants had their eyes open,
including depression (beta, eyes open and closed), bipolar (alpha
and beta, eyes open), schizophrenia (alpha and beta, eyes open)
and alcohol addiction (beta, eyes closed ).

In two cases (OCD, eyes closed beta band and alcohol
addiction, eyes closed delta band) there was no dominant result
but rather an equal number of studies showing increases and
decreases. These are shown as hash marked in Figure 3A.

In Figure 3B we show the differences between the dominant
result for absolute and relative power differences. Overall the
dominant result for relative power was the same as for absolute
power in 62% of experimental comparisons (white squares)
where each comparison is one band within one disorder and
condition. Results were most similar across relative and absolute
for the theta band (73% of disorders/conditions). Cases where
there was a significant difference in one method but not the
other are indicated as gray (36% of disorders/conditions), which,
when examined in more detail, was the case for 50% of the
disorders and conditions in the beta band and 40% in the delta
band. There was a greater proportion of disorders/conditions
with no significant difference for relative power compared to
absolute power. This was particularly true for the delta band. The
only case where the dominant result was diametrically opposed
for absolute power vs. relative power was in the delta band for
ADHD in children (eyes closed) where there was an increase in
the absolute power and decrease in the relative power (Figure 3B,
hashed box).

Given the overall pattern of a greater likelihood of increases
in the lower frequencies and no change or decreases in higher
frequencies, it is important to note that, with the exception of
ADHD, the same disorders that were dominated by increases in
theta were not the ones dominated by decreases in beta. However,
the overall trend across disorders would be for a decreased
theta/beta ratio either due to an increase in theta and decrease
in beta, an increase in theta and no change in beta, or no change
in theta and a decrease in beta.

Consistency of Results
We next report analysis of consistency of the results for
those disorders/conditions where there were at least two
studies reporting on any particular band (Figures 4, 5).
Consistency scores were calculated as described in methods
section ‘‘Consistency and Reliability Scores’’ and can be read as
how much more frequently the dominant result occurred in the
literature compared to any other result.

Figure 4 shows the average consistency scores across all
disorders for each band for the eyes closed (solid bars) and eyes
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open conditions (hashed bars), for both absolute and relative
power (gray and black bars respectively). Overall, the highest
consistency score, aggregated across all disorders and bands was
for relative power with eyes closed (3.0) followed by absolute
power with eyes closed (2.2). Eyes open had lower consistency
with 2.0 and 1.5 for absolute and relative power respectively.
When calculated separately for each band, a similar pattern was
observed, though scores were slightly lower overall for delta and
alpha. Taken together this suggests that eyes open is a much more
variable condition and that relative power estimates are more
reliable.

Analysis of individual disorders/conditions, aggregated across
bands (Figure 5A), revealed that the highest consistency score
was for relative power comparisons of controls to ADHD in
children with eyes closed (7.0) followed by internet addiction
with eyes closed (4). The highest consistency scores for absolute
power with eyes closed was for OCD (3.3), internet addiction
(2.8) and ADHD in children (2.8). Autism and ADHD in adults
had generally the lowest consistency across all conditions. It is
significant, however, that the literature for two disorders with
the highest consistency scores, ADHD in children and internet
addiction, were each dominated by a single research group (47%
of the articles for ADHD, 100% for internet addiction) which was
not the case for other disorders with multiple studies. This has
the advantage of a consistent methodology but also risks bias. We
thus point out the consistency score for ADHD in children when
the dominant group is removed with an asterisk (Figure 5A).

We next report validation scores, computed as described in
methods sections ‘‘Consistency and Reliability Scores,’’ that are
essentially the total number (N) of study participants across all
the studies reporting the dominant result (Figure 5B). ADHD
in children with eyes closed had the highest number of studies
showing the dominant result (8–25 per band) and with an
average N of 129 the validation scores were the highest with
2,516 for relative power (beyond the scale of the graph) and
1,563 for absolute power. We note however that this more than
halves for relative power when the dominant research group is
excluded. Also high was schizophrenia with 1,446 for absolute
power followed by depression (absolute, eyes closed) with 880.

FIGURE 4 | Consistency scores aggregated across disorders for each band
and condition. Consistency scores (frequency of dominant result relative to
other results) were between 2 and 3 for absolute power in the eyes closed
condition for all bands (gray bars), between 2 and 4 for relative power eyes
closed (black bars) and typically between 1 and 2 for eyes open (absolute and
relative, gray and black hashed bars, except beta eyes open absolute power).

Nineteen percentage of disorders/conditions had scores less than
100 and 47% had less than 200 indicating that they involved few
studies and participants and therefore cannot be considered to be
sufficiently validated results.

Magnitude of Results
We next considered the reported magnitudes of difference (in %)
for absolute and relative power, averaged across only those
studies where a significant difference was reported, and where
accurate information was available in the text, tables or figures
of the publication (shown in detail in Supplementary Table S5).
On average, 40% of study comparisons reported magnitude data,
although this varied across disorder types and ranged from 68%,
67% and 58% for ADHD (adults), ASD/Autism and bipolar
disorder respectively at the upper end, through to 26% for ADHD
(children) and 29% for OCD at the lower end (in addition, no
anxiety studies identified for this review included magnitude
data).

Across all disorders/conditions, the reported magnitude of
difference (mean ± SD) was 34 ± 13% for absolute power
and 26 ± 14% for relative power, irrespective of whether the
reported result was the dominant one or not. The distribution
of magnitudes is shown in Figure 6A. Overall the magnitude
of increases (vs. decreases) were higher on average for absolute
power (gray bars) but not relative power (black bars). Given that
magnitude data was not consistently reported across bands and
conditions, no disorder or band specific trend can be reliably
inferred. We therefore do not report any trends. However, we do
note that reported magnitudes were highest for schizophrenia,
depression and bipolar disorder (∼44% on average for eyes
closed and ∼48% on average for eyes open across all bands)
and lowest for opioid, internet addiction, ADHD in children
with eyes open and PTSD with eyes open (all 21%–22%). Overall
magnitudes were also highest for the alpha band, particularly for
decreases reported with eyes closed (46% on average) while other
bands were similarly lower.

We note that in many cases where different studies
reported opposing results, the magnitudes reported were not
very different. For example, although the dominant result for
schizophrenia was a decrease in alpha (on average 58%), those
studies that reported an increase in alpha (Hong et al., 2012; Kim
et al., 2015) reported a similar magnitude (64%).

Correlation With Disorder Severity
We also looked at reported correlations between individual
bands and disorder severity, as rated by the clinical diagnosis
and symptom questionnaire (Supplementary Table S6).
Twenty-seven percent of studies reported multiple such
correlations for different bands and brain regions. We included
all reported correlations regardless of the specific brain region or
band or symptom subset for which the correlation was reported.
The distribution of these correlations is shown in Figure 6B. The
correlations generally ranged from 0.2 to 0.5 with an average
around 0.4 (positive or negative) while a fraction of instances
reported no significant correlation (shown as 0). It is highly
likely that the nonsignificant correlations are underreported.
Higher correlations of 0.6–0.8 were reported in some studies
showing a second peak in the distribution. However, these
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FIGURE 5 | Consistency and validation scores by disorders. (A) Consistency scores for each disorder for relative power (top) with eyes closed (black bars) and eyes
open (black hashed bars) and absolute power (bottom) with eyes closed (gray bars), eyes open (gray hashed bars) and eyes closed and open combined (hatched
bars). Asterisk marks for attention deficit-hyperactivity disorder (ADHD) indicate consistency scores when the dominant research group is excluded. (B) Validation
scores for each disorder. Order and legend are as in (A). Validation score for ADHD in children, relative power with eyes closed goes beyond the scale of this graph
(2,516).

were disproportionately from two studies (Pogarell et al., 2006;
Roh et al., 2015) with a very small number of participants
(less than 40). When these were excluded, the peak at 0.7 was
much reduced (shown by the dotted line). Further, there were
no notable differences in the correlations for any individual
disorder or band. In addition, some studies reported regression
coefficients rather than correlations which were generally lower
(between 0.2 and 0.3) and are not included in the distribution.
Thus, as an overall conclusion, it appears that correlations of
band power to symptom scores are generally weak and not
specific to any band or disorder.

We note that some studies included correlations to other
factors such as a particular task performance, demographic
variables or age of onset that are not reported here. In

addition, a handful of studies performed other types of diagnosis
classification modeling to distinguish and predict differences
between the two study groups (Kim et al., 2015: schizophrenia;
Knott et al., 2001b; Deldin and Chiu, 2005: depression; Chan and
Leung, 2006; Chan et al., 2007; Sheikhani et al., 2012: autism;
Kim et al., 2017: internet addiction; Ogrim et al., 2012; Buyck and
Wiersema, 2014a; Poil et al., 2014; Markovska-Simoska and Pop-
Jordanova, 2017: ADHD). Again, these are not reported here.

Individual Psychiatric Disorders
ADHD
This review identified 65 ADHD studies with a median sample
size of 76 (children) and 55.5 (adults; range 23–378). Of
these, 56 studied children and adolescents (average age of
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FIGURE 6 | Histograms of magnitudes of differences and correlations. (A) All reported magnitudes for differences between disorder groups and controls across all
bands for absolute (gray bars) and relative power (black bars). Increases are shown as positive and decreases are negative. Reported increases for absolute power
outnumbered reported decreases, although were similar in magnitude (35% and 34% respectively). Relative power was relatively symmetric with average magnitude
increases of 22% and decreases of 31%. (B) Histogram of all reported correlations of band increases or decreases with symptom severity scores (all results were
included even if not the dominant result). Reports of “no significant correlation” are shown as 0. Positive and negative correlations were typically between 0.2 and
0.5 although positive correlations were higher on average. High correlations (>0.6) were only found in two small studies (N < 40). Dotted line shows histogram
excluding these two studies.

11 years; Kuperman et al., 1996; Clarke et al., 1998, 2001a,b,c,d,
2002a,b,c,d,e,f, 2003, 2006, 2007, 2008b, 2011, 2013, 2016;
Bresnahan et al., 1999; Swartwood et al., 2003; Hermens et al.,
2005a,b,c; Magee et al., 2005; Hobbs et al., 2007; Fonseca et al.,
2008, 2013; Barry et al., 2009a,b, 2010; Sohn et al., 2010; Dupuy
et al., 2011, 2013, 2014a,b; Lansbergen et al., 2011; Ogrim et al.,
2012; Shi et al., 2012; Liechti et al., 2013; Buyck and Wiersema,
2014a,b, 2015; Poil et al., 2014; Tye et al., 2014; Kitsune et al.,
2015; Roh et al., 2015; Kamida et al., 2016; Kim et al., 2016;
Thomas and Viljoen, 2016; Giertuga et al., 2017; Jarrett et al.,
2017; Markovska-Simoska and Pop-Jordanova, 2017; Park et al.,
2017; Rommel et al., 2017; Shephard et al., 2018) and 14 studied
adults (average age of 33 years; Bresnahan et al., 1999, 2006;
Bresnahan and Barry, 2002; Hermens et al., 2004; Clarke et al.,
2008a; Koehler et al., 2009; van Dongen-Boomsma et al., 2010;
Woltering et al., 2012; Liechti et al., 2013; Buyck and Wiersema,
2014a; Poil et al., 2014; Rommel et al., 2016; Markovska-Simoska
and Pop-Jordanova, 2017; Tombor et al., 2018). Five of these
studies included both adults and children as participant groups
(Bresnahan et al., 1999; Liechti et al., 2013; Buyck and Wiersema,
2014a; Poil et al., 2014; Markovska-Simoska and Pop-Jordanova,
2017). Above and beyond DSM or ICD in these studies, diagnosis

for ADHD was most typically performed using the Conners’
Parent Rating Scale (CPRS; Conners et al., 1998), the Child
Behavior Checklist (CBCL; Achenbach and Rescorla, 2001), the
Wender Utah Rating Scale (WURS; Ward et al., 1993), Conners’
Adult ADHD Rating Scales (CAARS; Conners and Sparrow,
1999) and Barkley’s Semi-structured Interview for Adults with
ADHD (Barkley, 2011; Supplementary Table S2).

The dominant results for all age groups and conditions are
shown in Figure 7A. Overall as described above, the results
for relative power in ADHD in children with eyes closed
had very high consistency (7.0) and validation (2,516) scores.
Absolute power for eyes closed was still reliable but less so,
with a consistency score of 2.8 and validation score of 1,563.
The eyes open condition had a consistency score of 2.8 and
validation score of 460. On the other hand, studies in adults
were substantially less consistent (consistency scores of 2.1 for
eyes open and 1.1 for eyes closed for absolute power, and 2 for
eyes open and 1.5 for eyes closed for relative power) and poorly
validated (75–201 depending on condition). However, given
that nearly half the studies reported for ADHD, particularly
for children, came from a single research group (31 out of
65), we also show here the results when excluding this group
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FIGURE 7 | Dominant results across conditions for specific disorders.
(A) Dominant result for each band for ADHD for each of various conditions
and age groups for both relative (rel) and absolute (abs) power and for eyes
closed (EC) and eyes open (EO), including all studies (top) and excluding the
dominant research group (bottom). White boxes indicate no change, black
indicates an increase, and gray indicates a decrease. Opposing results are
shown by hashed boxes. (B) Dominant result for each band for each type of
addiction and condition. Legend as in (A). (C) Dominant result for each band
for autism for each condition. Legend as in (A).

(Figure 7A, bottom). As can be seen, in the absence of this
group the dominant result for both delta and theta increases for
children remains, as does the decrease in beta activity for relative
eyes closed for children, but there is a greater number of ‘‘no-
significant difference’’ results overall for children. For adults,
theta increases persist for absolute and relative eyes closed, but
differences are observed for the other conditions and bands.

The following nine ADHD studies in children (absolute
power; eyes closed) failed to see the decrease in the beta band
(Clarke et al., 2001d; Hobbs et al., 2007; Fonseca et al., 2008;
Liechti et al., 2013; Buyck and Wiersema, 2014b, 2015; Dupuy
et al., 2014a; Kamida et al., 2016; Kim et al., 2016) whilst three
further ADHD studies reported a decrease in beta in posterior
regions but an increase in frontal regions (Clarke et al., 2002a,

2011; Hermens et al., 2005a). These inconsistencies could be
due to differences in the methodological approach (see below)
or demographic or clinical differences within the participant
groups.

Overall, considering all studies, there is a reasonable
confidence in the general trend reported in the results for
children but not adults, particularly for relative power eyes
closed. However, in all cases the magnitudes of difference
were modest (∼28% for both absolute and relative power) and
correlations with symptom severity were typically in the order
of 0.3–0.4 for all bands (with the exception of Roh et al., 2015)
which reported correlations between 0.6 and 0.7 across all bands
and brain regions for a very small sample set). This indicates that
overall results pertaining to frequency bands are not sufficiently
discriminatory nor predictive of symptoms.

Given the reliable increase in theta and concomitant decrease
in beta reported in children under the eyes closed condition,
the theta/beta ratio had been proposed and approved by the
FDA as a diagnostic biomarker for ADHD. However, the lack
of consistency in adults suggests that these findings are likely
age dependent and can perhaps not be extrapolated beyond
the narrow age group studied. Furthermore, the general pattern
of either an increase in theta or a decrease in beta is shared
by a number of other disorders including OCD, schizophrenia
and internet addiction suggesting that a reduced theta/beta ratio
is a general marker for shared symptoms across a number
of disorders rather than specific to the diagnosis of ADHD.
However, we acknowledge that there are some studies which
specifically examine the theta/beta ratio, without reporting
results from individual spectral bands and therefore did not meet
the inclusion criteria for this review (e.g., see Arns et al., 2013).
Reported results relating to the theta/beta ratio may therefore be
underreported in this review. For this we point the reader to a
number of recent reviews and meta-analyses of EEG and ADHD,
which have tried to detangle the pattern of EEG frequency band
changes across studies (Barry et al., 2003; Snyder and Hall, 2006;
Loo and Makeig, 2012).

Schizophrenia
A number of resting-state EEG studies have been conducted
on patients with schizophrenia (vs. healthy controls) most often
with eyes closed (although see Venables et al., 2009; Hanslmayr
et al., 2013; Narayanan et al., 2014 for three eyes open studies).
In total, 37 schizophrenia studies were identified for this review
(Clementz et al., 1994; Sponheim et al., 1994; Wada et al., 1994;
Omori et al., 1995; Pascual-Marqui et al., 1999; Begić et al., 2000;
Harris et al., 2001; Knott et al., 2001a; Wuebben and Winterer,
2001; Mientus et al., 2002; Veiga et al., 2003; Kirino, 2004; Harris
et al., 2006; Kirino, 2007; Knyazeva et al., 2008; Tislerova et al.,
2008; John et al., 2009; Venables et al., 2009; Bandyopadhyaya
et al., 2011; Begić et al., 2011; Itoh et al., 2011; Schug et al.,
2011; Hong et al., 2012; Hanslmayr et al., 2013; Kam et al.,
2013; Narayanan et al., 2014; Ranlund et al., 2014; Tikka et al.,
2014; Andreou et al., 2015; Garakh et al., 2015; Goldstein et al.,
2015; Kim et al., 2015; Mitra et al., 2015; Shreekantiah Umesh
et al., 2016; Mitra et al., 2017; Moeini et al., 2017; Baradits
et al., 2018). The median sample size was 63 (range 26–425),
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with the average age of participants being 31 years old. As
well as more conventional DSM/ICD measures, schizophrenia
diagnosis and severity was typically assessed using the Positive
and Negative Syndrome Scale (PANSS; Kay et al., 1987) and the
Brief Psychiatric Rating Scale (BPRS; Overall and Gorham, 1962).

Schizophrenia showed consistent and reliable increases in
the absolute delta and theta band power and decreases in the
absolute alpha band power compared to controls with eyes closed
(consistency scores of 2.2, reliability score 1,446). Furthermore,
these differences were higher in magnitude relative to differences
reported for other disorders (average theta increase of 50%,
alpha decrease of 58%). The net result would be a higher
theta/beta ratio compared to controls, very similar to ADHD in
children. However, the three eyes open studies (Venables et al.,
2009; Hanslmayr et al., 2013; Narayanan et al., 2014) showed
a completely different pattern—an increase in theta, alpha and
beta activity. Regional differences were also observed in a handful
of studies in the delta (Begić et al., 2000) and alpha (Omori
et al., 1995; Kim et al., 2015) bands where there was a frontal-
posterior split with frontal increases and posterior decreases for
alpha and the opposite pattern in the delta band. In addition,
we found only three studies (Kirino, 2004, 2007; John et al.,
2009) which measured relative changes in spectral power, the
majority of which showed non-significant differences across all
bands (although see John et al., 2009).

Depression
Eighteen depression studies were identified for this review (Kwon
et al., 1996; Bruder et al., 1997; Bell et al., 1998; Debener et al.,
2000; Knott et al., 2001b; Pizzagalli et al., 2002; Deldin and Chiu,
2005; Morgan et al., 2005; Bruder et al., 2008; Korb et al., 2008;
Price et al., 2008; Grin-Yatsenko et al., 2009; Kemp et al., 2010;
Begić et al., 2011; Jaworska et al., 2012; Cook et al., 2014; Arns
et al., 2015; Slobodskoy-Plusnin, 2018). The median sample size
was 55 (range 21–1344) with the average age of participants being
39 years old. Beyond more conventional DSM/ICD measures,
depression diagnosis and severity was most typically measured
using the Hamilton Rating Scale for Depression (HAM-D;
Hamilton, 1960).

The dominant result for depression was an increase in the
absolute power in both theta and beta bands for both eyes
open and eyes closed conditions (eyes closed consistency 1.8,
validation 880; eyes open consistency 2.0, validation 337) with
average magnitudes of 48%. However, these increases were
no longer visible when considering relative power where most
studies failed to find any significant differences across any band
(Knott et al., 2001b; Morgan et al., 2005; Korb et al., 2008; Cook
et al., 2014). The largest study (Arns et al., 2015) consisting of
1,344 participants showed increases in theta power across frontal
regions of the brain using the eLORETA source localized signal
which is methodologically different from most other depression
studies identified for this review which perform their analysis in
electrode space.

Addiction
Here, we focus on three major types of addiction: opioids,
alcohol and the internet and identified 16 addiction studies in

this review. The median sample size was 45 (range 28–614),
with the average age of participants being 33 years old. Beyond
more conventional DSM/ICD measures, diagnosis and severity
of internet addiction was most typically performed using the
Young’s Internet Addiction Test (IAT; Young, 1998), whilst
alcohol and opioid addiction were assessed using a variable set
of questionnaires depending on the study.

Surprisingly, despite the enormous attention to opioid
addiction by both media and government, particularly in the
United States, only four resting-state EEG studies (Wang et al.,
2015b, 2016; Motlagh et al., 2017; Zhao et al., 2017) were
identified for this review based on our inclusion criteria (for
other reviews, see Wang et al., 2015a; Ieong and Yuan, 2017).
In addition, nine alcohol addiction (Günther et al., 1997; Bauer,
2001; Rangaswamy et al., 2002, 2006; Saletu-Zyhlarz et al., 2004;
Fein and Allen, 2006; Andrew and Fein, 2010; Son et al., 2015;
Herrera-Díaz et al., 2016) and four internet addiction (Choi
et al., 2013; Lee et al., 2014; Son et al., 2015; Kim et al., 2017)
studies were identified for this review (includes one publication
which examined both alcohol and internet addiction in the
same study). It is important to acknowledge that addiction
is a heterogeneous label encompassing multiple ‘‘types’’ of
addictive disorder, and that the similarities and differences
in the underlying etiologies between substance addiction and
internet addiction are still not well defined. However, with
the recent inclusion of gaming addiction in the 11th Revision
of the International Classification of Diseases (ICD-11)6, we
have included internet addiction alongside substance addiction
disorders for interest and comparison.

The dominant result across all addictions and conditions
was one of no significant difference in all bands of the power
spectrum except beta which showed an increase for opioid
and alcohol addiction and a decrease for internet addiction
(Figure 7B). In addition, there was an increase in theta power
for alcohol addiction, and a decrease in alpha power for opioid
addiction. Even where significant differences were reported, the
magnitudes were small (15%–27%). While internet addiction
had a high consistency score of 4, all four studies came from
the same research group. Alcohol addiction had a consistency
score of 2.25 while the studies for opioid addiction were too
few in each condition to calculate a consistency score. Overall,
across all addictions, the validation scores ranged (from 35 to
753 depending on addiction type and condition). Given the
small number of studies and high methodological variability,
dependable conclusions cannot yet be drawn. However, as it
stands, other than for the beta band, the power spectrum appears
essentially unaffected in any consistent and reliable way by
addiction.

OCD
Ten OCD studies were identified (all eyes closed) for this review
(Molina et al., 1995; Tot et al., 2002; Karadag et al., 2003;
Bucci et al., 2004; Pogarell et al., 2006; Velikova et al., 2010;
Kopřivová et al., 2011, 2013; Olbrich et al., 2013; Kamaradova
et al., 2016) with an median sample size of 61.5 (range 26–100).

6http://www.who.int/features/qa/gaming-disorder/en/
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The average age of participants was 32 years old. Five of these
studies analyzed spectral power in the source localized signal
(Velikova et al., 2010; Kopřivová et al., 2011, 2013; Olbrich
et al., 2013; Kamaradova et al., 2016), however source localized
results were not substantially different from non-source localized
studies. Beyond more conventional DSM/ICD measures, OCD
diagnosis and severity was typically performed using the
Yale-Brown Obsessive Compulsive Scale (Y-BOCS; Goodman
et al., 1989).

Like ADHD (in children) and schizophrenia, the dominant
pattern was an increase in the delta and theta bands (average
increases of ∼27 and 36% for absolute and relative power
respectively) and a decrease in the alpha band (average decrease
of 41%). Further this pattern had a high consistency score of
3.3 and a validation score of 231 for absolute power. On the other
hand, relative power was highly inconsistent (score 2) and poorly
validated (score 104).

OCD is often comorbid with other mental disorders and
therefore the pattern of EEG frequency band differences is
unlikely to reflect changes that are purely attributable to
OCD. There may also be overlap in symptoms with ADHD
(Abramovitch et al., 2015) and schizophrenia (Cunill et al., 2009).

PTSD
Thirteen studies with patients with PTSD (Begić et al., 2001;
Jokić-Begić and Begić, 2003; Ehlers et al., 2006; Rabe et al.,
2006; Veltmeyer et al., 2006; Falconer et al., 2008; Shankman
et al., 2008; Kemp et al., 2010; Todder et al., 2012; Wahbeh and
Oken, 2013; Imperatori et al., 2014; Clancy et al., 2017), and
with individuals who have suffered significant early life stress
(McFarlane et al., 2005), were identified for this review. The
median sample size was 74 (range 20–407), with the average age
of participants being 40 years old. In addition to conventional
DSM/ICD measures, PTSD diagnosis and severity was most
typically performed using the Clinician-Administered PTSD
Scale (CAPS; Blake et al., 1995).

The majority of eyes closed studies indicate no significant
differences in spectral bands between PTSD patients and controls
with a reasonable consistency score of 2.4 for absolute power.
When differences were reported, they suggest a decrease in all
bands in the disorder group for eyes open conditions, and both
increases and decreases for eyes closed conditions. However, in
most of these studies while ‘‘significant’’ effects are stated, specific
numbers pertaining to the magnitude are not reported making it
difficult to evaluate.

Autism
Seventeen studies with patients with autism or ASD were
identified for this review (Dawson et al., 1995; Sutton et al., 2004;
Chan and Leung, 2006; Chan et al., 2007; Orekhova et al., 2007;
Stroganova et al., 2007; Coben et al., 2008; Burnette et al., 2011;
Mathewson et al., 2012; Sheikhani et al., 2012; Tierney et al., 2012;
Machado et al., 2015; Maxwell et al., 2015; van Diessen et al.,
2015; Jaime et al., 2016; Kozhushko et al., 2018; Lefebvre et al.,
2018). These have primarily been conducted with children with
the average age of participants (children) being 8.5 years old (but
see Mathewson et al., 2012 for an example of a study with adults,
and not included in the trend analysis). The median sample size

was 56 (range 25–156). Beyond more conventional DSM/ICD
measures, autism diagnosis and severity was typically performed
using Autism Diagnostic Interview-Revised (ADI-R; Lord et al.,
1994), the Autism Diagnostic Observation Schedule (ADOS;
Lord et al., 1989) and the Social Communication Questionnaire
(SCQ; Rutter and Lord, 2003).

Overall autism showed little or no significant difference in
the majority of bands (with the exception of delta and beta eyes
closed and alpha eyes open; Figure 7C). However, the results for
autism are highly inconsistent (consistency scores all below 2),
and no general pattern can be inferred.

Other Disorders
Other disorders such as bipolar disorder (Clementz et al., 1994;
El-Badri et al., 2001; Baş ar et al., 2012; Kam et al., 2013;
Narayanan et al., 2014; Moeini et al., 2015), anxiety (Sachs
et al., 2004; Oathes et al., 2008; Xing et al., 2017) and panic
disorder (Knott et al., 1996; Gordeev, 2008; Wise et al., 2011;
de Carvalho et al., 2015) are included here for completeness.
However generally there was no more than one or two studies
for any one condition (eyes closed, eyes open, relative power,
absolute power), which was too few for the inference of any
trends or for the calculation of consistency scores. Nonetheless
we show these results as part of our table with the caveat that
they are generally poorly validated.

Summary
In summary, differences reported for ADHD in children stood
out as being the most consistent and validated, although
published results were dominated by a single research group. The
trends for schizophrenia could be considered as the next most
reliable with a trend similar to ADHD in children. Others such as
OCD, depression and internet addiction are moderately reliable
while the results for other disorders or conditions are either too
sparse or inconsistent to be considered reliable.

Methodological Challenges and
Limitations
One considerable challenge when reviewing the literature is
the range of methodologies employed that result in difficulties
comparing one study to another. Here, we outline the differences
in participant selection, EEG recording and analysis that could
impact the results reported in this review.

Several sets of EEG guidelines have been published over
the years, including guidelines from the American Clinical
Neurophysiological Society7 as well as from other published
studies (e.g., Pivik et al., 1993; Roach and Mathalon, 2008;
Keil et al., 2013; Webb et al., 2015). These discuss the
various factors that need to be considered when choosing
which EEG parameters to use. For example, Keil et al. (2013),
emphasize the multitude of parameters which can influence
the transformation of the power spectrum and highlight the
importance of noting the parameters that influence the final
reported outcome. For example, in relation to the Fourier
transform, they state that ‘‘Researchers. . . should indicate the

7https://www.acns.org/practice/guidelines
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type, size, and overlap of the window functions used,’’ reminding
researchers that ‘‘When using commercial software, it is not
sufficient to indicate that the spectrum was calculated using
a particular software package.’’ However, when looking across
the 184 resting-state EEG studies identified for this review it is
apparent that there is very poor compliance to many of these
standardization recommendations. For example, several studies
in this review, simply state that the data was transformed by
FFT without providing any further details of the parameters
used. This lack of standards presents a general confound for
the field that extends beyond the implications for this particular
review.

Study Size, Composition and Controls
The sample size of studies varies between n = 20 and
n = 1,344 with three quarters of studies based on less than
100 participants. The median is 60 (Figure 1) with similar
numbers of controls and patients in the majority of studies. For
most studies the age of participants were adults in the range of
25–45.

Interestingly most of the studies in this review were skewed
towards male participants (64% compared to 36% female). This
pattern is found for all disorders except for depression, bipolar
disorder, panic disorder, anxiety and OCD (where the % of
females ranged from 55% to 68%). The largest gender disparity
is seen for ADHD (72% M/28% F), schizophrenia (67% M/33%
F), autism (78% M/22% F) and addiction (70% M/30% F). In
addition, it was more common to study all-male participant
groups (20% of studies) compared to all-female participants
(4% of studies). In some instances, the ratio of males to
females was intentionally designed to reflect the relative
proportions of sufferers in the general population, but at other
times was a reflection of participant availability, limiting the
generalizability of these results, especially towards the female
population.

There is substantial variability in the EEG both across
and within normal individuals that has been reported in the
literature (Haegens et al., 2014) that can relate to various factors
from task performance (Arazi et al., 2017a,b) to age (Voytek
et al., 2015; Hashemi et al., 2016) and socioeconomic factors
(Parameshwaran and Thiagarajan, 2017a,b,c). Furthermore,
there is a great deal of intra person variability that can arise
both naturally and with ingestion of common substances such
as caffeine (Kelly et al., 2008; Foxe et al., 2012; Gonen-Yaacovi
et al., 2016) and alcohol (Korucuoglu et al., 2016). Only a handful
of studies considered inter person variability, relationship to age
or intra person variability in their analysis (e.g., see Debener
et al., 2000; Chan and Leung, 2006). One study (autism) which
did monitor intrapersonal variability by conducting two testing
sessions 3 months apart found that amplitudes of theta, alpha and
beta significantly differed for patients (but not controls) between
the two sessions, although only alpha, and the theta/beta ratio
remained significantly different after correction for familywise
errors (Chan and Leung, 2006). In addition, the small sample
sizes make it challenging to tease out effects of age and
normal individual variability from those related to psychiatric
symptoms.

ADHD provides an example of studies focused separately on
adults and children. The stark difference between the results
of these two groups points to changes over the lifespan and it
is conceivable that similar studies in the elderly may produce
different results still. Without controlling for normal variability
and change across the lifespan, it is difficult to know whether
these changes are due to the clinical evolution of ADHD, or
reflect independent age-related maturation of the EEG.

Clinical Groups and Assessment
Ten different disorder types were included in this review.
These were selected as being the most dominant mental health
disorders in the population. Due to the wide scope of our review,
we acknowledge that we may have missed some studies for the
disorder types of interest. Age-related disorders such as dementia
were not included in this review as they were considered to reflect
a different aspect of brain health.

From a clinical perspective, participants were typically
recruited based on screening with DSM or ICD criteria for
diagnosis, complemented by additional screening questionnaires.
However, a handful of studies relied purely on screening
questionnaires. The study participants also varied according to
whether the clinical group was unmedicated (70%), defined
as naïve or temporarily abstaining from taking medication
for a variable length of time (12 h to 3 months) depending
on the type of drug, medicated (5%) or included a mix
of medicated and unmedicated patients (25%). Furthermore,
although the majority of studies had specific inclusion and
exclusion criteria, only a minority of studies specifically mention
that they excluded patients with comorbidities, or specifically
outlined the comorbidities in their patient group. The results
from a particular disorder may therefore be influenced by other
clinical comorbidities. Finally, the studies typically only report
on spectral differences between groups and only 27% of studies
provide insight into the relationship between the severity of
the symptom score from the diagnosis questionnaires and the
spectral bands.

Recording Configuration
A significant confound in the EEG space is the lack of
standardization of hardware configurations and, in particular,
the wide variety of different reference types used. Most common
are linked ears (34%), average referencing (23%) and mastoids
(15%). However, earlobes (14%), Cz (4%) and the nose (4%) are
also used. The type of referencing used has a significant impact
on the reported results, from the PSD and source localization
(Trujillo et al., 2017) to functional connectivity (Huang et al.,
2017) and various other aspects (e.g., Qin et al., 2010; Lei and
Liao, 2017).

In addition, although the majority of studies covered the
entire scalp, some studies chose to focus on midline sites. Only a
proportion of studies reported results from individual electrodes
(32%), with the majority choosing to focus on broad scalp regions
(60%). In addition, some studies calculated the power spectrum
using source localization techniques (e.g., LORETA) which may
have resulted in a different regional profile from those studies
focusing on the location of the electrodes on the scalp.
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TABLE 2 | Summary of frequency band parameters.

% of Publications Typical range (Hz) Minimum start value (Hz) Maximum end value (Hz)

Delta 70 1.3–3.5 0 6
Theta 84 4–7.5 2.5 8
Alpha 85 8–13 6 14
Beta 80 12.5–30 12 50
Gamma 18 30–40 20 100

Processing of the Signal
The length of recordings was fairly consistent with a median of
5 min. However, often this entire recording window is not used
but is divided up into artifact free segments that are epoched
before the FFT computation is applied. The epoch length used for
the FFT transform displays considerable variability (from 0.5 s to
600 s) with a median of 2.5 s. This variability is of concern as this
can impact the window length utilized in the FFT algorithm and
therefore the spreading or leakage across frequencies.

There are also inconsistencies in the methods used for
identification of artifacts. This is sometimes done with methods
such as Independent Component Analysis (ICA; Makeig
et al., 1996; Vigário, 1997; Vigário et al., 2000; Jung et al.,
2003) but many other techniques exist and many still use
a manual or visually determined approach which can be
highly inconsistent from ‘‘expert’’ to ‘‘expert’’ (see Urigüen and
Garcia-Zapirain, 2015; Islam et al., 2016). These can result in
substantial differences in the signal and therefore the spectral
results.

The method used to determine the spectrum and different
normalizations are another aspect of variability that can impact
the magnitude of differences. There are presently a wide variety
of software packages, algorithms and parameters used for
computing the power spectrum. Software packages and functions
include MATLAB/EEGLab Brainwave, Cadwell, sLORETA,
eLORETA, RHYTHM, Neuroscan, Neuroguide, NXLink, Brain
Vision Analyzer, Neurospeed, Persyst. While the FFT functions
in these packages are roughly similar they do have differences
in their default settings, and in some software the parameters
used in the algorithm are not exposed and therefore not reported.
Each function (for example spectrogram; pwelch algorithm;
psd function; FFT function in MATLAB) further differ in
their default settings with respect to the way the window
length is selected, the overlap (here the studies range from
0 to 80%) and averaging (e.g., Bartlett or Welch method),
and the windowing function used (e.g., Hamming or Hanning
Window). All of these can make the difference between a
small ‘‘significant’’ difference vs. a negative result (Keil et al.,
2013). In addition, several studies did not provide any details
about the parameters used, making it difficult to make a
complete assessment of the consistency of methods in the
field.

Finally, some studies report the differences in the absolute
power and others report relative power which can also result
in different outcomes, as we have seen above. However, as not
all studies specifically mentioned whether they used absolute or
relative power, for 29% of studies we had to infer which one
was used.

Frequency Band Definition
Last, and perhaps most significant, there is a great deal of
variability and confusion as to the specific frequency range that
defines each band (Table 2). We show the more frequently used
range as well as the entire range of definitions found in the
reviewed literature in Figure 8. While alpha and theta were more
consistent, delta could start anywhere from 0 Hz to 2 Hz and
end anywhere from 3.5 Hz to 6 Hz. Meanwhile, beta could begin
anywhere between 12 Hz and 15 Hz and end anywhere between
20 Hz and 50 Hz. Across all bands the most frequently used range
was found in only 30- 50% of studies depending on the particular
band. What one publication means by ‘‘delta,’’ or ‘‘beta’’ (etc.) is
therefore not necessarily the same as what another publication
means by the same terminology.

Some of these differences arise on account of hardware
configurations which apply different band pass filtering of the
signal during preprocessing, forcibly defining the ranges and
definition of the delta and gamma bands. Filters applied to
resting state EEG data typically vary from 0.1 Hz to 1 Hz at the
lower end to 40–100 Hz at the upper end. In addition, notch
filters are often applied at 50 Hz and/or 60 Hz to filter out AC
line noise.

Such differences in definition have enormous consequences
for interpretation. Indeed, it’s conceivable that differences
reported may disappear when moving the band windows
slightly. Thus, the considerable variability and overlapping
definitions across studies greatly diminishes the value of using
the terminology of macro bands.

Reporting Omissions
One limitation of the literature was the possible bias towards
positive results. For example, some studies did not include results
for all bands specified in the methods. This could result in
a number of unreported non-significant results that skew our

FIGURE 8 | Variability in frequency band definition. Range of frequencies used
for each band across all 184 studies. Thick line indicates most commonly
used range.
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analysis, particularly in the less frequently reported delta and beta
bands.

Another inadequacy of this review relates to the sparse
reporting of magnitudes of power change. Magnitude changes
were calculated where the information was readily available,
which was only in 40% of studies. The consequence of this is
that the magnitude estimations are only based on a subset of
studies, and do not necessarily reflect the complete picture. This
is especially the case for ADHD (children) and OCD where
the availability of magnitude data was considerably lower. In
addition, this incomplete reporting of magnitudes across studies,
and across individual electrodes also makes it challenging to
study regional differences in spectral power in a consistent
manner.

In summary, there are a number of dimensions of
methodological variability and omissions that form limitations
for this review and the field in general.

DISCUSSION

Our review describes reported differences in bands of the
EEG power spectrum between controls and those with
various psychiatric disorders including ADHD, schizophrenia,
depression, bipolar disorder, anxiety, panic disorder, autism,
PTSD, OCD and addiction. Across all disorders and conditions
however, there was a wide range of often contradictory results
for each frequency band (delta, theta, alpha, beta, gamma),
although one result typically dominated. When considering the
dominant results, the pattern that emerged is a tendency for
higher levels in the low frequency bands (delta and theta) coupled
with lower levels in the higher frequency bands (alpha, beta,
gamma) across one group of disorders (ADHD, schizophrenia
and OCD) relative to controls, and little to no difference in
the power spectrum for others (addiction, PTSD and autism).
Significant differences in this second set, when reported, were
most often decreases in the higher frequency bands. Depression
stood out as having a different pattern—an increase across the
entire spectrum.

Across all disorders and conditions, the number of studies
reporting the dominant result was on average 2.2 times the
number of studies reporting other results and was similar
across bands. In general, the eyes closed condition delivered
more consistent results than the eyes open. Furthermore, while
absolute power was most commonly reported, results were more
consistent across studies for relative power. Across disorders
and conditions, the validation score, a measure of how many
participants and studies, on average, delivered the dominant
result, was less than 250 for the majority of disorders. ADHD
in children with eyes closed stood out as being by far the most
studied and consistent in result, while schizophrenia, alcohol
addiction, depression and PTSD with eyes closed followed by a
substantial lag in being the next most reported and consistent in
the literature. However, it is important to note that the majority
of the ADHD (children) studies identified for this review were
generated from a relatively small group of researchers (from the
University of Wollongong) and the results from other research
groups for ADHD are more variable. Other disorders and

conditions were either too inconsistent or sparsely reported.
The magnitude of significant results, when reported, was on
average 34% across all bands and disorders for absolute power,
and somewhat lower for relative power differences. Interestingly
the magnitude of reported results was highest for schizophrenia
(46%–53%) and lower than average for ADHD (11%–36%) and
autism (11%–33%). Finally, the correlations between symptom
severity and the power in any particular band was low for
any brain regions reported and generally in the range of
0.3–0.5.

Implications of These Results
The extreme lack of standardization across the field raises a
strong caution to any clinical interpretation or application of
current findings. From a purely methodological perspective,
it is important that standards are imposed and adhered to
in the research community. Particularly, we emphasize the
need to use a standardized definition for each frequency band,
based on the most commonly used non-overlapping frequencies:
(delta: <4 Hz; theta: 4–7.5 Hz; alpha: 7.5–12.5 Hz; beta:
12.5–30 Hz; gamma: 30–40 Hz). Standardization of power
spectrum computation, and the comparison of relative as well as
absolute power are also essential. Absolute power, which relates
to amplitude or magnitude of the signal, is more influenced by
factors such as skull thickness and head geometry which vary
considerably across people (Hagemann et al., 2008). These factors
may be mitigated by the normalization used for relative power.
Second, the eyes open paradigm is highly variable as visual input
and attention can vary across subjects during the course of the
experiment, pointing to eyes closed as a more uniform condition.

However, the generally common pattern across multiple
disorders is an indication that individual frequency bands or
even a pattern across frequency bands does not serve as a
useful measure of distinction between disorders. It also strongly
makes the case that studying individual disorders in isolation
can be very misleading. For instance, a higher theta/beta ratio is
considered an indicator of ADHD in children and even approved
as a diagnostic marker by the FDA8. However, a similarly
higher theta/beta ratio would be likely for schizophrenia and
OCD as well. Psychiatric disorders are generally a loose set of
symptoms that may overlap across disorders and there may be
additional symptom comorbidities that are not accounted for
in studies. Consequently, analysis based on specific symptoms
and symptom clusters may yield more specific insights. This is
particularly important to consider in the context of biomarkers
based on the power spectrum.

It is also important to note that the patterns described across
disorders are at a group level. For example, theta power was
on average 27% higher in children diagnosed with ADHD vs.
a control group. However, there was still substantial overlap
in values between the groups. Further, the correlation values
between symptom severity and power were typically around
0.4. This means that differences in frequency bands are not
particularly useful for diagnosis at an individual level. With the
wide variation in the power spectrum across normal populations

8https://www.accessdata.fda.gov/cdrh_docs/reviews/K112711.pdf
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and the lifespan (Haegens et al., 2014; Voytek et al., 2015;
Hashemi et al., 2016; Arazi et al., 2017a,b; Parameshwaran
and Thiagarajan, 2017a,b,c), it would be essential to look at
larger sample sizes across multiple disorders, and with repeated
recording sessions to control for both inter and intra person
variability and parse out relationships to particular symptoms.

That said, in our view, these results along with the associated
methodological concerns and limitations call for a new approach
that goes beyond frequency bands to take into consideration new
advances in our understanding of the power spectrum and new
tools available for analysis.

From Frequency Bands to Integrated
Views: A Way Forward?
The Fourier transform which is used to describe the power
spectrum was invented as a method of resolving sinusoids
of different frequencies—an application of tremendous value
in radio transmission. The EEG however is not a simple
superposition of sinusoids of various frequencies. The power
spectrum therefore should not be interpreted as such.

The dominant structure of the EEG power spectrum has been
shown to be a decreasing function with lower power at higher
frequencies that approximates a 1/fγ pattern (Pritchard, 1992;
Voytek et al., 2015). This is seen at various levels from surface
measurements with microelectrodes (local field potentials or
LFPs; Thiagarajan et al., 2010) and surface electrocorticographs
or ECoG (Gao, 2016). The implication is that there is an
inverse relationship between frequency and power across the
measurable range and as the frequency increases, the power
decreases. The steepness with which the power drops off as the
frequency gets higher is represented by the exponent γ. This
1/fγ structure has an important implication—that there is an
underlying relationship or temporal correlations between the
frequencies such that individual frequencies are not independent
of one another (Milotti, 2002). We note however, that the
origin and mechanisms of this structure is still very much
a subject of debate as a frequency dependent filtering effect
arising from the measurement cannot be ruled out (Bédard
et al., 2006, 2017). Thus, if the spectrum best fits a 1/f
function, the power of any individual frequency or range of
frequency can be estimated if the exponent of the decay is
known.

That said, there can be deviations from the 1/f spectrum. The
most common such deviation are peaks that rises above the 1/f
envelope, particularly with the eyes closed. The harmonic around
10 Hz (in the alpha range) is most commonly encountered,
although it can sometimes occur at other frequencies and can
be visualized in the autocorrelation of the signal. The presence
of an alpha oscillation or harmonic peak is a feature that is
distinct from the underlying 1/f envelope and should therefore
be considered separately from the underlying envelope.

Specifically, we suggest reporting of metrics relating to the
power spectrum in its entirety and identifying ways of identifying
and separating periodicity from the 1/f background. There are a
number of ways in which this can be done. The most obviously
useful metric is estimation of the 1/f exponent γ (Voytek et al.,
2015). This provides a consolidated view of the differences across

bands and can be used to compute the difference between
any two frequencies if desired. The 1/f decay exponent is best
estimated in the range of 2–30 Hz where baseline drifts, line
noise and distortions introduced by band pass filters have the
least impact. Second, goodness of fit or other metrics that provide
insight into deviations from the 1/f structure would also be
informative. Recently new metrics have been proposed to provide
a view into the degree of periodicity in different bands (Haller
et al., 2018) and the harmonic component of the alpha band
separately from the background envelope (Parameshwaran and
Thiagarajan, 2017c). However, even while deeper views of the
power spectrum could potentially provide better discrimination
between disorders, this does not negate the impact of a lack
of standardization in EEG measurement and methods used for
signal preprocessing and computation of the power spectrum
itself.

Beyond the Power Spectrum
While there are ways to substantially improve our understanding
of spectral properties in the context of psychiatric disorders, it
is important to acknowledge that the power spectrum itself is a
very general feature of the signal with few degrees of freedom.
As we have seen it does not show significant difference across
several disorders (autism, addiction, PTSD) and is not a reliable
predictor of outcomes on an individual level (as shown by
similarities of change across multiple disorders). Thus, on its
own, it is not likely to provide fundamental discriminatory power
between disorder types. Spatial views such as spectral coherence
and hemispheric asymmetry can extend the scope of the spectral
approach. However, spectral decomposition and spectral filtering
by definition disregard relative phase information which may
provide important discriminatory perspective.

The power spectrum might be thought of as analogous to
describing a picture in terms of its color spectrum, or the
relative distribution of red, blue and green pixels. While the color
spectrum of an image can provide some general suggestion of the
content of a picture (for example, higher blue on average means
more sky, an increase in green means more nature), it loses all
the relative spatial information that tells you what the picture
actually is. The EEG power spectrum similarly loses relative
temporal information, which at a more general level is one of the
main advantages of EEG signal processing over other methods
such as fMRI. Further, given that spectral decomposition is not
instantaneous and utilized blocks of signal, and spectral filtering
can distort the signal (Vanrullen, 2011; Acunzo et al., 2012;
Rousselet, 2012; Widmann and Schröger, 2012), views such as
spatial coherence are also limited in terms of their temporal
resolution and insight into relative phase information. Using
the same analogy of color, one might think of coherence, for
example, as analogous to comparing the spatial positions of pixels
in one narrow range of colors between successive image frames
after some spatial blurring, while disregarding all the others.

We therefore suggest that more discriminating insights into
differences between disorders are likely to be found in metrics
that probe the temporal structure of the EEG signal as well as
in novel connectivity measures. Numerous metrics have been
proposed including various methods of assessing the entropy of
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the signal (Sabeti et al., 2009; Liang et al., 2015) and temporal
memory (Jospin et al., 2007; Hardstone et al., 2012; Márton
et al., 2014). However, this is a continually evolving field where
new analytical tools are regularly being trialed. These should be
increasingly embraced by EEG researchers involved in resting-
state research who are looking to shift their approach away from
spectral bands towards other potential methods which may offer
greater clinical opportunities, applying these tools to their future
and past datasets.

A Call for Data Sharing and Sharable
Analytical Pipelines
Finally, whether performing spectral analysis or exploring
the signal using other methodologies, the primary issues are
common. First, a lack of standardization of preprocessing
steps and parameter choices within algorithms can result in a
diversity of results that preclude easy comparison, and even
appear contradictory. Second, small datasets limit the ability to
determine meaningful results given the large diversity of human
EEG dynamics. Consequently, we call for a concerted effort by
the field to participate in open data efforts by sharing their raw
data, and for those with analytical toolkits and analysis pipelines
to make them available for the community. We emphasize the
importance of sharing raw rather than preprocessed data given
the numerous differences in preprocessing methodologies. We
also emphasize the need for providing clear descriptions of the
recording parameters such as the referencing, sampling rate and
electrode characteristics.

While well-established databases specific for EEG are not
yet available as they are for fMRI (e.g., openNeuro) some
options presently exist and new ones are in development. For

example, data can be shared in public repositories such as
the National Institute of Mental Health Data Archive (NDA)9,
Physionet10 and Zenodo11 or in the open EEG-specific database
Brainbase which is presently in development (Thiagarajan,
2017). Similarly, open toolkits such as EEGLAB (MATLAB)
and MNE (Python) are already available but complete pipelines
are only now being established or are in development. In the
meantime, tools can be shared on Github and other repositories
and this should be made known through clear referencing in
publications.
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Functional near-infrared spectroscopy (fNIRS) research articles show a large

heterogeneity in the analysis approaches and pre-processing procedures. Additionally,

there is often a lack of a complete description of the methods applied, necessary for

study replication or for results comparison. The aims of this paper were (i) to review and

investigate which information is generally included in published fNIRS papers, and (ii) to

define a signal pre-processing procedure to set a common ground for standardization

guidelines. To this goal, we have reviewed 110 fNIRS articles published in 2016 in the

field of cognitive neuroscience, and performed a simulation analysis with synthetic fNIRS

data to optimize the signal filtering step before applying the GLM method for statistical

inference. Our results highlight the fact that many papers lack important information, and

there is a large variability in the filtering methods used. Our simulations demonstrated

that the optimal approach to remove noise and recover the hemodynamic response

from fNIRS data in a GLM framework is to use a 1000th order band-pass Finite Impulse

Response filter. Based on these results, we give preliminary recommendations as to the

first step toward improving the analysis of fNIRS data and dissemination of the results.

Keywords: functional near infrared spectroscopy, digital filter, general linear model, pre-processing

standardization, functional data analysis, pre-processing guidelines

INTRODUCTION

The last few years have seen a rapid (almost exponential) growth in the number of functional
neuroimaging studies performed and published with functional near-infrared spectroscopy
(fNIRS) (Yücel et al., 2017). fNIRS has provided neuroscientists and clinicians with a novel
and invaluable tool to study and monitor tissue oxygenation changes in the brain non-
invasively. Based on neurovascular coupling, fNIRS measures the brain tissue concentration
changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) associated with an increased
metabolic demand of the brain during neuronal activity, and an increased tissue perfusion
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(Scholkmann et al., 2014). To date, one of the major fields
of application of fNIRS is cognitive neuroscience, where
the mechanisms underlying brain functioning are typically
investigated by monitoring the task or stimulus-evoked changes
in the brain during the execution of cognitive tasks (see Pinti
et al., 2018 for review). fNIRS is well-suited to this application
since it allows the study of cognition with very few physical
constraints, allowing brain monitoring in a wide range of
cognitive tasks, e.g., those including bodily movements, and in
a variety of populations, e.g., infants, healthy adults, clinical
patients. A typical sequence of steps performed in a neuroscience
with fNIRS is shown in Figure 1, usually comprising 4 main
steps.

Step 1: The first step is the design and implementation of the
experimental protocol. Block or event-related designs are usually
employed, in which the stimuli are presented several times to
increase the statistical power, and experimental task periods
are typically interspersed with contrast conditions or stimuli
(or in some cases rest periods) to better assess the presence of
hemodynamic responses. fNIRS data are then collected during
the execution of the designed experiment. A mixed block/event-
related design can be also employed (Petersen and Dubis, 2012).

Step 2: The data acquisition step comprises the placement of
a certain number of light sources and detectors (i.e., “optodes”)
on the participants’ head by means of fiber optics, and at a light
source-detector distance of 3 cm in case of studies with adults.
The raw fNIRS signal measured by the detector, e.g., the raw
light intensity signal, originates from the tissue volume located
below the source and detector having a maximal depth a bit less
than half the source-detector distance [i.e., this is called “channel”
(Patil et al., 2011)]. The number of channels and the sampling
frequency of the acquisition depend on the particular fNIRS
instrument used.

Step 3: During the pre-processing phase, the raw intensity
data are usually visually inspected to assess signals’ quality
(e.g., the presence of large motion artifacts, and of heart beat
oscillations indicating a good optical coupling between the
optodes and the scalp). Intensity time-series are converted
into changes in attenuation (or optical density, 1OD) and
then into concentration changes of HbO2 and HbR (1HbO2

and 1HbR), usually by means of the modified Beer-Lambert
law (Delpy et al., 1988). In order to extract useful information

FIGURE 1 | Typical neuroscience experiment pipeline with fNIRS.

from fNIRS data, any source of variability in the 1HbO2 and
1HbR signals not related to the task-evoked hemodynamic
activity needs to be removed, or at least minimized. For a
review on the structures and the statistical properties of the
noises that are often present in fNIRS data, we advise the
reader to see the publication of Huppert (2016). One typically
experienced source of noise is that due to head movements. In
fact, although fNIRS is more robust to motion artifacts than
other modalities [e.g., functional magnetic resonance imaging
(fMRI), electroencephalography/magnetoencephalography
(EEG/MEG)], signals can be corrupted by head movements,
causing fast spikes or shifts from the baseline values. The most
common practice to deal with these motion errors is to include
the identification and correction of such artifacts as a step in
the signal pre-processing stream. Several techniques have been
proposed so far and have been reviewed elsewhere (Brigadoi
et al., 2014). In addition, fNIRS data are also contaminated
by physiological noises not directly related to cortical brain
activity that can deteriorate the Signal-to-Noise Ratio (SNR),
and mask and/or mimic the presence of brain hemodynamic
responses (Tachtsidis and Scholkmann, 2016). The origin of
these components and the methods developed so far to reduce
their impact on the estimation of brain activity by fNIRS
have been reviewed by Scholkmann et al. (2014). Briefly, such
physiological changes contribute a large amount of variance to
the fNIRS signals and can be elicited both (i) by the execution of
the cognitive task, and (ii) spontaneously. In the first case, the
execution of particularly complex or stressful tasks can affect the
psychophysiological state of the participant, resulting in changes
in heart rate, breathing rate, blood pressure, carbon dioxide
(CO2) concentration of the blood and autonomic regulatory
activity happening both at the intra- and extra-cerebral
levels (Rowley et al., 2006; Kirilina et al., 2012; Scholkmann
et al., 2013; Holper et al., 2014; Tachtsidis and Scholkmann,
2016); the second case refers to the spontaneous hemodynamic
oscillations related to physiological vasomotor regulations and
breathing-related fluctuations (Tachtsidis et al., 2004; Tong
et al., 2012). These spontaneous components are characterized
by signals at specific frequencies associated with the heart rate
(∼1Hz), breathing rate (∼0.3Hz), Mayer waves (∼0.1Hz), and
very low frequency (< 0.04, VLF) oscillations. One of the most
common and more straightforward approaches used by the
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scientific community to reduce the impact of these components,
is to remove specific frequency bands in fNIRS signals by means
of digital filters. Digital filtering is a mathematical procedure
applied to discrete time-series to reduce or enhance certain
properties of the input signals (e.g., frequency ranges). Filters
are divided into three classes: (i) high-pass filters, which remove
high frequency components above the cut-off frequency; (ii)
low-pass filters, which remove low frequency components below
the cut-off frequency; (iii) band-pass filters, which preserve the
frequency range between a lower and a higher cut-off frequency.
Some research groups apply filters on 1OD data prior the
conversion into concentration changes; others apply the filter
on the 1HbO2 and 1HbR signals. However, in both cases,
the frequency range to include needs to be chosen carefully in
order to preserve the stimulus frequency and to preserve the
task-evoked response.

Step 4: Once the data are pre-processed, statistical analyses
are performed, and the pre-processed 1HbO2 and 1HbR
signals are used to make inference about task-evoked functional
brain activity (see Tak and Ye, 2014 for a review). One of
the most common statistical frameworks employed by the
community is the General Linear Model (GLM). This approach
has more statistical power than other methods commonly used
for fNIRS (e.g., block averaging). In fact, the GLM considers
the entire fNIRS time series taking advantage of the high
temporal resolution of fNIRS. It also provides good flexibility as
it allows to test specific hypothesis by comparing combinations
of the experimental conditions with different statistical testing
approaches (e.g., t-tests, F-tests, ANOVAs, ANCOVAs; Monti,
2011). In addition, it permits the inclusion of other covariates
within the model or design matrix [e.g., behavioral performance,
head movement, physiological signals, short-separation fNIRS
channels (Tachtsidis and Scholkmann, 2016)] to improve the
inference accuracy. However, the GLM has the disadvantage
that it assumes a specific pre-defined hemodynamic response
function, which e.g., to a great extent is still unknown for
neonates or might be different across brain regions.

It is important to highlight how the experiment pipeline
described above (Figure 1) is not made of stand-alone steps. Each
phase influences the other and, more importantly, they influence
the outcome of the statistical analyses and the study results. For
instance, if the experimental protocol is not carefully designed
and, for example, a task block duration of ∼10 s is chosen,
the task frequency (∼0.1Hz) overlaps with the Mayer wave
oscillation, leading to inflated statistics. Additionally, the pre-
processing stream has a major impact also on the comparison of
results among different studies and research groups, and on study
replication, because the statistical analyses depend on the data
content. It is therefore extremely important and good practice
to always report detailed information about each individual
step of the experiment pipeline (Figure 1), from the protocol
specification (type of stimuli, structure, durations, presentation
software), the device features (model, sampling frequency,
wavelengths), signal pre-processing (algorithm to compute
1HbO2 and 1HbR, motion artifact correction algorithm, filter
parameters), to the statistical analyses (hypotheses, statistical
test).

Whilst all these procedures are almost standardized for other
neuroimaging modalities such as fMRI, this is not the case for
fNIRS yet. As recently highlighted by Hocke et al. (2018), fNIRS
publications often lack useful information, and there is a huge
variability in the analysis procedures and in the way methods are
described. For instance, the absence of standardization of input
parameters for fNIRS pre-processing and analysis methods can
lead to suboptimal papers or irreproducible studies and results.
In addition, the authors demonstrated how the use and the
combination of different methods (e.g., criteria for identifying
noisy channels, motion artifact correction, signals’ filtering, etc.)
can lead to different results, influencing the neuroscientific
conclusions. Another relevant issue is related to the best fNIRS-
derived signal to infer functional brain activity, as fNIRS provides
measurements of both HbO2 and HbR. For example, some
papers draw neuroscientific conclusions based only on 1HbO2.
But, others report total hemoglobin (1HbO2 +1HbR), and
yet others describe both 1HbO2 and 1HbR. Therefore, there
is an urgent need to move toward a standardization of the
experimental procedures, right through from the study design
phase to the presentation of results. The aim of the current
report is to start tackling this standardization issue and to set
the ground for the development of toward common guidelines.
More precisely, in this work we focus (i) on the filtering step
of the pre-processing phase and (ii) on the assessment of the
completeness of the information reported in the published
research articles. To this end, we first review the papers published
in 2016 in the field of functional neuroimaging with fNIRS
to analyse information on (i) the latest most used filtering
approaches and (ii) the data inclusiveness. Then, we test the
identified filter specifications on synthetic fNIRS data generated
from 18 subjects resting state data with a superimposed task-
related component simulating a block-design experiment, and
explore the effect of filters and their application to 1OD or
1HbO2 and 1HbR on the outcome of statistical analyses in
order to optimize the inference procedure in a GLM-based
framework.

LITERATURE REVIEW

A literature review of fNIRS articles published in the field of
cognitive neuroscience was performed as first step with the aim
of identifying the most common filtering approaches adopted
by the community, and of evaluating the completeness of the
information reported in research papers. To this end, we used
the PubMed database, plus a manual search from articles,
references, and the publication surveys made available by the
Society for functional Near Infrared Spectroscopy (http://fnirs.
org/publications/nirs-niri-publications/). Articles were selected
on the basis of the following criteria:

1. Papers published in 2016, in order to review the most updated
and advanced pre-processing approaches as a representative
sample of the fNIRS field

2. Original research articles published on peer-reviewed
journals. Conference proceedings and review papers were
excluded from further analyses
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3. Studies conducted on adults, as infants’ fNIRS data have
different spectral characteristics [e.g., a higher heart rate
frequency band (von Siebenthal et al., 1999)] and thus
different filtering specifications must be used

4. Papers that included task-evoked functional activation
experiments, as fNIRS is by far mostly used for monitoring
task-related brain activity in response to cognitive tasks

5. Our analysis included only continuous-wave (CW) fNIRS
studies looking at concentration changes of oxy- and deoxy-
hemoglobin due to the popularity of CW-fNIRS in current
fNIRS research and neuroscience applications.

A total of 110 papers were selected (see
Supplementary Material 4 for a complete list). From each
full-text, we collected the following information (Figure 2):

1. the sampling frequency (Fs) of the fNIRS acquisition
2. the inclusion of the filtering step in the pre-processing stream
3. the type of filtered signal (1OD or 1HbO2 and 1HbR)
4. the type of filter applied (e.g., Butterworth, finite impulse

response (FIR), Moving Average)
5. the filter characteristic (low-pass (LP), high-pass (HP), band-

pass (BP) filtering)
6. the filter order, where applicable
7. the cut-off frequencies (Fc)

Note: If the authors stated in the paper that they used the
Homer2 software package (http://homer-fnirs.org/) for their
analysis and did not report any information about the filter type,
we automatically considered they used a 3rd order Butterworth
filter as this is the default option in the software. Papers including
more than one functional experiment within the same work were
considered as separate studies.

Out of the 110 papers, 75.5% of the articles reported the Fs of
the fNIRS acquisition (Figure 2A).

This result suggests that not all the papers report all the
relevant information necessary for replicating or comparing
the study results. Indeed, the Fs is an important parameter to
evaluate the frequency bandwidth of the fNIRS signals or for
assessing the filter stability within a certain frequency range.
Additionally, as Figure 2C shows, there is not a clear agreement
about whether it is a better practice to filter the optical density
data or concentration data, and the fNIRS community is divided

between the two approaches. In fact, for the papers we analyzed,

the filter is applied on 1OD signals in 32.5% of the studies and
on1HbO2 and1HbR in 65%. The remaining 2.5% of the papers
did not include this information.

Concerning the use of filters, the 72.7% of the papers included
a filtering step in the pre-processing pipeline (Figure 2B).
Figure 2D shows the distribution of the filter types across
these papers. With “Generic” (Figure 2D) we refer to those
filters for which the authors did not mention the particular
filter type (e.g., ‘. . . data were band-pass filtered. . . ’). The filter
types shown in Figure 2D were both used individually or
in combination with each other (e.g., W-MDL together with
HRF). Within the majority of the papers (36.3%), the filter
type was not properly described (i.e., Generic), further proving
that not all the articles provide the most salient information,

hence making it difficult for others to replicate the same
procedure.

For the following analyses, we focused on the filter types
being used in more than 3 papers (1.8%, Figure 2D, red
rectangle), these are the Generic, Butterworth (BW), Moving
Average (MovAvg) and Finite Impulse Response (FIR) filters.
Among these filters, we determined how many articles included
information about:

• the type of filter (LP/HP/BP, where applicable, i.e., Generic,
BW, FIR)

• the filter order (where applicable, i.e., Generic, BW, FIR)
• the cut-off frequency ranges (where applicable, i.e., Generic,

BW, MovAvg, FIR)

Results are presented in Figures 2E–H. Encouragingly enough
only 1.6% of the papers did not include information about
the type of filters (Figure 2E). Figure 2E also illustrates the
distribution of the filter characteristics, showing that BP and LP
are more often used rather than HP filters. However, concerning
the filter orders (Figure 2F), the majority of the papers (59.7%)
did not provide information about this parameter, which is really
important for filters design. For our further analyses (see section
Data Analysis), we have focused on BP and LP filters (Figure 2E
red rectangle) since they are the most popular; and on all the
filter orders (3, 4, 5, 20, Figure 2F red rectangle). Regarding
the cut-off frequencies (Figures 2G,H), authors usually reports
these except for the lower Fc for one BP filter (Figure 2G)
and for 8.1% of the LP filters (Figure 2H). For our tests (see
section Data Analysis), we used the Fc adopted by at least 3
papers (1.8%) and we indicated those with red rectangles in
Figures 2G,H.

MATERIALS AND METHODS

Participants
In order to investigate the effects of the filters on the outcome
of statistical analyses, resting-state fNIRS data were collected
on a cohort of healthy adults. Sixteen individuals (9 females, 7
males; age = 26.9 ± 2.9 years) were recruited and 18 sessions
were performed. Prior the experiment, participants acclimated
for about 15min within the testing room. During the experiment,
they were asked to keep their eyes closed for the entire session
while being awake. The study was approved by the UCL ethics
committee (Reference 1133/001) and participants gave informed
consent prior to the experimental session.

fNIRS Data Acquisition
Spontaneous changes in prefrontal cortex hemodynamics were
measured using the Wearable Optical Tomography (WOT,
Hitachi High-technologies Corporation, Japan) fNIRS device.
The system is made of a portable box, containing the
recording unit, and a headset, containing the optical components
(Figure 3A). The headset is equipped with 6 laser diodes emitting
light at 705 and 830 nm, and 6 silicon photodiodes (Atsumori
et al., 2009), arranged in an alternating geometry creating 16
measurement channels (Figure 3B; source-detector separation:
3 cm). Raw fNIRS data were recorded at 5Hz. In order to place
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FIGURE 2 | Summary of the literature review results: inclusion of (A) the Fs and of (B) a filtering step in the studies; proportion of the filtered signals (C), filter type (D),

filter characteristics (E), filter order (F), Fc of band-pass (G) and low-pass (H) filters across the papers that included a filtering step. (BP, band-pass; LP, low-pass).
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FIGURE 3 | (A) Hitachi Wearable Optical Tomography fNIRS device, and corresponding channels configuration onto the prefrontal cortex (B). Sources are

represented as red dots, detectors as blue dots and channels as white dots. Highlighted in green are the channels for which the corresponding time-series are

presented in (C). (C) shows examples of raw 1HbO2 and 1HbR resting-state signals for one channel for each of three participants.

the WOT headset in a reliable way across all the participants,
we used the 10/20 electrode positioning system (Okamoto
et al., 2004) and placed channel 8 in correspondence of the
Fpz point and channel 8 and 9 were aligned to the Nasion-
Inion line. Resting-state data were collected for ∼10min while
participants were comfortably sitting on a chair with their eyes
closed. Examples of resting-state data for one channel from three
subjects are shown in Figure 3C.

Data Analysis
Single-subject’s data analysis flowchart is presented in Figure 4.

Raw time-series were visually inspected to detect noisy
channels (e.g., due to large motion errors, sudden amplitude
changes, poor coupling) and channels with a poor optical
coupling [e.g., absence of the∼1Hz heartbeat oscillations in raw
signals (Pinti et al., 2015)] were excluded from further analyses.
Raw resting-state fNIRS data were first converted into optical
density data and then into changes in concentration through
the modified Beer-Lambert law, using a differential pathlength
factor of 6 (Yücel et al., 2016). For all channels, a synthetic task-
related component (the same for all 16 channels) simulating
a block-design experiment was added to both 1HbO2 and
1HbR signals. This was created by convolving a Hemodynamic
Response Function (HRF) with a boxcar function reflecting the
simulated experimental protocol. The HRF was composed of
two gamma functions, the positive one modeling the response

and the negative one modeling the undershoot (peak: 6 s
and undershoot: 16 s after the onset); the boxcar included
14 task blocks of 20 s spaced out by 20 s rest periods. This
resulted in a stimulation frequency (Fstim) of 0.025Hz (Fstim
= 1/(20+20) Hz). We used different amplitudes for the HbO2

and HbR task-related components, with the HbR one being
∼-1/3 of the HbO2 component, as HbR has smaller changes
than HbO2 (Gagnon et al., 2012). More precisely, in order to
generate signals with different SNR, we considered the following
amplitudes:

1. Amplitude 1: 0.8 µMol for 1HbO2 and −0.27 µMol for
1HbR

2. Amplitude 2: 0.5 µMol for 1HbO2 and −0.17 µMol for
1HbR

3. Amplitude 3: 0.3 µMol for1HbO2 and−0.1 µMol for1HbR

Three different synthetic datasets were thus generated for each of
the 18 resting-state data.

Synthetic 1HbO2 and 1HbR signals were re-converted into
1OD data and motion artifacts were identified and corrected
(Figure 4) using the targeted principal component analysis
(tPCA Yücel et al., 2014) implemented in the Homer2 software
package, as it acts only on corrupted data segments, thus
not altering the frequency content of the signals (function:
hmrMotionCorrectPCArecurse; input parameters: tMotion = 0.5,
tMask= 1, STDthresh= 10,AMPthresh= 5, nSV = 0.97,maxIter
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FIGURE 4 | Data analysis flow chart applied to each participant and to each task-related component amplitude. The procedure is also applied for each filter type and

specification combinations.
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= 5). Optical density data corrected for motion errors were
converted into 1HbO2 and 1HbR.

Based on the literature review (see section Literature Review),
we filtered both synthetic 1OD and, 1HbO2 and 1HbR signals
using the filter specifications summarized in Table 1. All the Fc
ranges include our Fstim (0.025Hz). Filter orders of 100, 500,
1000 were also included in addition to the ones found in the
literature, as FIR filters require higher orders than IIR filters
(i.e., Butterworth) to achieve a good level of performance. More
precisely, for each type of filter, we used all the combinations of
filter type, filtered signals, filter order, and Fc.

Whilst FIR filters are always stable (i.e., for a finite input,
the output is always finite, and the region of convergence of
the transfer function of the filter includes the unit circle), IIR
filters can be unstable for a given order and Fc (Ifeachor and
Jervis, 2002). In fact, considering the transfer function of the
filters, FIR filters have as many poles as zeros but they are all
located at the origin of the z-plane, thus being always stable;
by contrast, IIR filters are stable only if the poles are inside the
unitary circle in the z-plane. Moving average filters operate by
averaging the input signal within a certain window to produce the
output signal. They are a particular type of low-pass FIR filters
where the output signal is not multiplied by filter coefficients,
but it is only scaled by 1/(window length). MovAvg are thus also
always stable. Therefore, we first checked the stability of BP and
LP Butterworth filters since they are IIR, for all the Fc and orders,
using the zero-pole analysis, i.e., looking at the location of poles
in the z-plane (for this procedure we used the Matlab functions
butter, isstable, and zplane). Once the stability was assessed, we
applied the type of filter with all the possible combination of
specifications to synthetic 1OD and,1HbO2 and1HbR signals.
Filtered 1OD were then converted into concentration changes.
We will refer to 1HbOC

2 and 1HbRC if the filter was applied
directly to concentration data, and to 1HbOOD

2 and 1HbROD

if the filter was applied to optical density data and then converted
into concentration changes. In addition to the filters’ stability,
the phase delay introduced by the filter needs to be taken into
account. In fact, the filtered signal can be shifted in time respect
to the original unfiltered signal. In case of a FIR filter, the phase
delay is constant, i.e., the same across the whole frequency range,
and can be corrected by shifting back in time the filtered signal
of the delay amount. With IIR filters (i.e., Butterworth), the
phase delay is frequency-dependent, i.e., the shift is different for
the different frequencies. This phenomenon is known as phase
distortion and can be compensated using a zero-phase filter that
we performed in Matlab with the filtfilt function.

Filtered concentration data were used to carry out statistical
analyses and to establish the best filtering approach. The
procedure described below was applied for each task-related
component amplitude, to each channel of each participant’s
filtered signal (1HbOC

2 , 1HbRC, 1HbOOD
2 , 1HbROD), each

type of filter (BP and LP), and each filter specification
combination (Table 1). Statistical analyses were performed using
the GLM approach (Figure 4). This method consists of regressing
fNIRS data with a linear combination of explanatory variables
(or regressors) and an error term. Regressors are computed
through the convolution of the boxcar function describing the

TABLE 1 | Type of filter and filer specifications resulting from the literature review

process.

FILTER CHARACTERISTIC: BP

Filter type BW, FIR

Filtered signals 1OD, 1HbO2, 1HbR

Filter order 3, 4, 5, 20, 100*, 500*, 1000*

Fc [Hz] 0.01–0.09, 0.01–0.2, 0.01–0.3, 0.01–0.5

FILTER CHARACTERISTIC: LP

Filter type BW, FIR, MovAvg

Filtered signals 1OD, 1HbO2, 1HbR

Filter order 3, 4, 5, 20, 100*, 500*, 1000*

Fc [Hz] 0.09, 0.1, 0.14, 0.5

Asterisks indicate filter orders that were further added.

experimental protocol with the HRF (Friston et al., 1994). In
our case, the design matrix was composed of the task-related
regressor modeling the hemodynamic response to the simulated
block-design experiment, plus the constant term. β-values were
estimated through the least square estimation. These parameters
are indicators of the strength of the relationship between a
regressor and the experimental fNIRS data, and represent the
contribution of each regressor to the fNIRS signal. However,
fNIRS data are affected by serial autocorrelations due to the
oscillating nature of the fNIRS signals (Barker et al., 2016) that
impact on the accuracy of GLM-based analyses (Ye et al., 2009).
Autocorrelations originate from the high sampling rate of fNIRS
acquisition and from the physiological noises and motion errors
present in the signals (Barker et al., 2016; Huppert, 2016). To
account for serial autocorrelations and to minimize their impact
on the GLM, we used two approaches: (i) down-sampling, and
(ii) precoloring. In the first approach, we down-sampled the
filtered concentration data to 1Hz using a spline interpolation to
reduce the sampling rate. Down-sampling the signal before the
filter is applied can introduce a form of distortion in the data
called aliasing, especially at the high-frequencies and when the
new sampling rate is smaller than twice the highest frequency of
interest in the signal (Nyquist frequency). To avoid this issue,
low-pass filters (i.e., anti-aliasing filter) are typically used to
remove the components above the new Nyquist frequency. In
the second approach, we applied the precoloring method, i.e.,
smoothing the fNIRS data and the design matrix with a low-
pass filter shaped like the HRF (Worsley and Friston, 1995;
Huppert, 2016), which is a common method for analyzing fMRI
and fNIRS data (Worsley and Friston, 1995; Ye et al., 2009). In
order to test the impact of serial autocorrelations, we applied
the GLM also to the filtered concentration data without any of
these corrections (Figure 4). For each participant’s data, the GLM
was applied to each channel and each chromophore individually.
β-values were then estimated for each channel and the median β-
value across the 16 channels was computed for each participant.
Median β-values for all the subjects were used to run statistical
analyses at group-level. More precisely, we first checked for (i) the
normality of the distribution of the group median β-values using
the Shapiro-Wilk test as recommended for small sample sizes
(Shapiro et al., 1968; Ghasemi and Zahediasl, 2012;< 50), and (ii)

Frontiers in Human Neuroscience | www.frontiersin.org 8 January 2019 | Volume 12 | Article 50535

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pinti et al. Investigation of fNIRS Signals Filtering

the presence of outliers. We considered as outliers when the β-
values are below Q1− 1.5× IQR or above Q3+ 1.5× IQR (Q1:
1st quartile; Q3: 3rd quartile; IQR: interquartile range). Amplitude
1, Amplitude 2 and Amplitude 3 of the imposed task-related
components constitute the reference β-values and represent the
metric to assess filters’ performance. In fact, the closer are the
estimated β-values to the reference β , the better the filter, i.e.,
less task-related information and more physiological noise were
removed. Therefore, in order to establish the best type of filter,
we used one sample t-tests to test the null hypothesis that the
estimated groupmedian β-values are equal to the reference β at a
significance level α = 0.05. The closer the p-value to α, the more
the group β-values are similar to the reference β , and thus the
better the filter performance.

Additionally, we tested whether the filter performs better if
applied to optical density or concentration data. To this goal,
we used paired sample t-tests to compare the group β-values
estimated on 1HbOC

2 and 1HbRC with the group β-values
estimated on 1HbOOD

2 and 1HbROD, for a given type of filter
and specification combinations.

All the analyses were carried out using Matlab (The
MathWorks Inc., Natick, Massachusetts; v. R2014a) and the
Homer2 software package.

RESULTS

Examples of synthetic iconcentration data for a representative
participant and channel generated using task-related
components with Amplitude 1, Amplitude 2, and Amplitude 3
are shown in Figure 5.

Due to the poor coupling between the fNIRS headset and
the head, channel 11 was excluded from further analyses
for participant 11, and channel 14 and 16 were excluded
for participant 18. Synthetic datasets simulating a block-
design experiment with 20 s task blocks were used to test
the performance of filters in reducing the unwanted noise
components in the fNIRS signals and in preserving the task-
evoked hemodynamic response. To achieve this, we applied the
type of filters and filter specifications summarized in Table 1 to
the synthetic datasets. More precisely, we filtered both the 1OD
and, 1HbO2 and 1HbR time-series to determine the best signal
to filter to obtain correct statistics. Prior the application of these
filters, we tested the stability of BW filters for data sampled at
5Hz using the zero-pole analysis, i.e., looking at the location
of the poles of the filter transfer function with respect to the
unitary circle in the z-plane. Filters with poles located within the
unitary circles were considered stable. The procedure was applied
to all the combinations of orders and Fc and to both BP and
LP BW filters. Results for BP and LP filters are summarized in
Figures 6A,B respectively. Green squares indicate stable filters,
red elements indicate unstable filters.

For instance, a BW BP filter for data sampled at 5Hz with
order 5 and Fc = [0.01 0.2] Hz results stable as all the poles of
the transfer function are inside the unitary circle (Figure 6C),
whereas the same BW with order 20 is unstable (Figure 6D).

Figure 7 shows an example of filtered 1HbOC
2 and 1HbRC

signals using a BW BP filter (5th order, Fc: 0.01–0.2Hz,
Figures 7A,B), FIR BP filters (5th order, Fc: 0.01–0.2Hz,
Figures 7C,D) and FIR BP filters (1000th order, Fc: 0.01–0.2Hz,
Figures 7E,F) to synthetic 1HbO2 and 1HbR, demonstrating
the need for higher orders for FIR filters respect to IIR filters. The
corresponding estimated β-values are reported as well.

Whilst the 5th order BW BP filter was able to remove
the slow drifts in the unfiltered 1HbO2 and 1HbR signals
(Figures 7A,B), a FIR filter with order 5 is not effective enough
(Figures 7C,D). In fact, very low frequency modulations in the
filtered1HbO2 signal can still be observed as well as a slow trend
in the filtered 1HbR (Figures 7C,D) and both signals are not
centered around the zero-level. This results in an overestimation
of the β-values (9.28 × 10−7 for 1HbO2 and of −3.38 × 10−7

for 1HbR). As a property of FIR filters, they require much
higher orders than IIR filters to achieve comparable performance.
As expected, with a 1000th order FIR filter, slow trends are
effectively removed (Figures 7E,F), the signal mean is reported
to be around the zero-level and a similar performance of the
5th order BW filter is achieved (light green and cyan signals in
Figures 7E,F). The improvement in filters’ performance is also
reflected in the estimated β-values. The 1000th order FIR filter
corresponds to a β-value of 7.51 × 10−7 for 1HbOC

2 and of
−2.27 × 10−7 for 1HbRC that are more similar to the reference
β (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for 1HbR) than
the estimated β-values for the 5th order FIR filter (β-value =

9.28 × 10−7 for 1HbOC
2 ; β-value = −3.38 × 10−7 for 1HbRC).

More precisely, the β-values for the 5th order FIR filter are higher
than the reference β because the slow trends of the signals were
not removed effectively, worsening the GLM-fitting. The 1000th
order FIR filter also performs similarly to the 5th order BW BP
filter for which the β-values are 7.58 × 10−7 for 1HbOC

2 and of
−2.26× 10−7 for 1HbRC, demonstrating that FIR filters require
higher orders than IIR to achieve comparable performance.

For each task-related component amplitude, and each type of
filter and filter specification,1HbOC

2 and1HbRC, and1HbOOD
2

and 1HbROD were used to run statistical analyses by means
of the GLM approach. Since GLM-based analyses of fNIRS
data can be influenced by serial autocorrelations, β-values were
estimated (i) with no correction for serial correlations, (ii) down-
sampling to 1Hz the filtered data, (iii) using the precoloring
method. The corresponding median β-values computed for each
participant across the 16 measurement channels were used to
assess filters performance. To achieve this, we first checked
for the normality of the group β-values distribution using the
Shapiro-Wilk test, testing the null hypothesis that median β-
values are normal at significance level α = 0.05. Results referring
to BP filters, Amplitude 1 and 1HbOC

2 obtained using the
precoloring method are shown in Table 2 and in Table 3 for
1HbRC. The corresponding normality test results for LP and BP
filters, all amplitudes, 1HbOOD

2 and 1HbROD are included in
Supplementary Material 1.

Median β-values were normally distributed for BW filters
(p> α) according to the Shapiro-Wilk normality test. By contrast,
for 1HbOC

2 the null hypothesis of normal distribution was
rejected (p < α) for all the FIR filters with an order < 500
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FIGURE 5 | Examples of synthetic 1HbO2 (red) and 1HbR (blue) signals for one channel of a representative participant. The black signal represents the task-related

component with Amplitude 1 (A), Amplitude 2 (B), and Amplitude 3 (C) added to the concentration data.

FIGURE 6 | Results of the filter stability for the BP BW filters (A) and LP BW filters (B) for all the combination of orders and Fc. Green and red squares indicate stable

and unstable filters, respectively. (C,D) show examples of filter stability analysis considering a BW BP filter with Fc = [0.01 0.2] Hz. The filter results stable for a filter

order 5 (C), as the poles are inside the unitary circle as shown in the zoom. By contrast, with an order: 20 (D) the filter becomes unstable. Zeros are indicated by blue

circles and poles by red crosses.
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FIGURE 7 | Examples of filtered 1HbOC
2 and 1HbRC signals with Amplitude 1 for one channel of a representative participant using a 5th order BW BP filter (A,B, red

and blue signals), a 5th order FIR BP filter (C and D, green and magenta signals), and a 1000th order FIR BP filter (E,F, light green and cyan signals) within the range

[0.01, 0.2] Hz. The estimated β-values from the GLM fitting of the filtered 1HbOC
2 and 1HbRC are included. The reference β are 8 × 10−7 for 1HbO2 and of −2.7 ×

10−7 for 1HbR.

(Table 2) and with an order < 200 for 1HbRC (Table 3). In
fact, as also shown in Figure 7, FIR filters require higher orders
to effectively remove unwanted noise. For instance, with lower
orders, slow trends in the signals related to e.g., instrumental
noise or spontaneous physiological fluctuations are not properly
filtered, introducing variability in the group β-values, since
these types of noise can differ from subject to subject. As
1HbR is less influenced by physiological interferences (Kirilina
et al., 2012; Zhang et al., 2016) and there is thus less inter-
subject variability, FIR filters with orders > 200 for are effective
enough for 1HbR. This variability results in outliers that alter
the β-values distribution, as it can be observed in the box-
plots in Supplementary Figures 9, 10 (Supplementary Material
2) referring to the data in Tables 2 and 3, respectively. The
normality assumption is not violated when an order > 500 for
1HbO2 and order > 200 for 1HbR is used for FIR filters

and no outliers are present (Supplementary Figures 9, 10 in
Supplementary Material 2), further demonstrating the need of
high orders.

The same is true for LP filters (Table 4 for 1HbOC
2 , and

Table 5 for 1HbRC), where median β-values never follow a
normal distribution for any filter. In fact, especially in this case,
slower signal modulations related to instrumental noise and
slow vascular regulations are not filtered out since LP filters
only attenuate noise with higher frequency content than the Fc
reported in Table 1.

In fact, outliers can be found for all the three filter
types (Supplementary Figures 11, 12 in Supplementary Material
2). This also results in an overestimation of the β-values
since the noise amplifies the signal amplitude and change its
dynamics. This applies for all amplitudes and filtered signals
(Supplementary Materials 1, 2). The use of LP filters on their
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TABLE 2 | Shapiro-Wilk test results computed on 1HbOC
2 BP filtered data, with Amplitude 1.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.91 0.10 0.91 0.07 0.91 0.07 0.90 0.07

4 0.92 0.14 0.91 0.08 0.91 0.08 0.91 0.08

5 - - 0.93 0.21 0.93 0.20 0.93 0.19

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

4 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

5 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03

20 0.77 9.85E-04 0.77 9.96E-04 0.77 1.01E-03 0.77 1.04E-03

100 0.77 1.09E-03 0.78 1.44E-03 0.78 1.43E-03 0.78 1.43E-03

200 0.85 1.14E-02 0.85 1.18E-02 0.85 1.17E-02 0.85 1.16E-02

500 0.92 1.09E-01 0.91 9.55E-02 0.91 9.23E-02 0.91 9.11E-02

1000 0.91 8.16E-02 0.91 7.44E-02 0.91 7.34E-02 0.91 7.34E-02

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters. ‘-’ indicates unstable filters for which the Shapiro-Wilk test was not carried out.

TABLE 3 | Shapiro-Wilk test results computed on 1HbRC BP filtered data, with Amplitude 1.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.95 0.48 0.95 0.50 0.95 0.50 0.95 0.48

4 0.95 0.51 0.95 0.44 0.95 0.47 0.95 0.48

5 - - 0.95 0.50 0.95 0.47 0.95 0.47

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

4 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

5 0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03

20 0.81 3.11E-03 0.81 3.16E-03 0.81 3.23E-03 0.81 3.35E-03

100 0.82 4.25E-03 0.83 6.28E-03 0.83 6.25E-03 0.83 6.13E-03

200 0.94 2.97E-01 0.94 3.01E-01 0.94 3.01E-01 0.94 2.97E-01

500 0.93 1.76E-01 0.93 2.06E-01 0.93 2.09E-01 0.93 2.10E-01

1000 0.96 6.04E-01 0.96 6.04E-01 0.96 6.03E-01 0.96 6.01E-01

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters. ‘-’ indicates unstable filters for which the Shapiro-Wilk test was not carried out.
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TABLE 4 | Shapiro-Wilk test results computed on 1HbOC
2 LP filtered data, with Amplitude 1.

Order/Fc 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.03E-03 0.77 1.04E-03

4 0.77 1.05E-03 0.77 1.05E-03 0.77 1.03E-03 0.77 1.04E-03

5 0.77 1.08E-03 0.77 1.06E-03 0.77 1.04E-03 0.77 1.04E-03

20 - - - - - - 0.77 1.04E-03

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

4 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

5 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03

20 0.77 9.84E-04 0.77 9.85E-04 0.77 9.88E-04 0.77 1.03E-03

100 0.76 8.65E-04 0.77 9.39E-04 0.77 1.03E-03 0.77 1.05E-03

200 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.05E-03

500 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03

1000 0.77 1.04E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03

MovAvg

0.77 1.03E-03 0.77 1.03E-03 0.77 1.04E-03 - -

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters and Fc = 0.5Hz that corresponds to a null window length for the MovAvg filter. ‘-’ indicates unstable filters for which the

Shapiro-Wilk test was not carried out.

own has thus not enough performance for denoising fNIRS data
so that LP filters were excluded from further analyses.

Concerning the filter performance, we used one-sample t-
tests to compare the group β-values to the reference β for each
amplitude, filtered signals, type of filter and filter specifications.
In addition, this was done for data not corrected for serial
correlations, corrected through down-sampling and precoloring
(Supplementary Material 3). In Table 6 and Table 7 we report
the results referring to the β-values computed on 1HbOC

2 and
1HbRC data corrected through the precoloring method, for
Amplitude 1.

For our experimental design with the Fstim of 0.025Hz, we
found that the best compromise across the three amplitudes,
filtered signals, and in terms of outliers (Tables 2 and 3) is
to use a BP FIR filter with order 1000 and Fc = [0.01, 0.09]
Hz (Supplementary Material 3). In fact, the Fc range is more
centered and narrower around the Fstim than the other Fc
ranges (Table 1), and includes both the Fstim and the following
two harmonics (2 × Fstim and 3 × Fstim), maximizing the
hemodynamic content and removing unnecessary frequency
components. These filter specifications generally correspond to
smallest t-value that means more similarity to the reference
β , i.e., a better recovery of the hemodynamic response.
Concerning the correction for serial autocorrelations, we found
that the best results were obtained using the precoloring
method (Ye et al., 2009), as the median β-values are more
similar to the reference β for all the three amplitudes

respect to the median β-values computed with no correction
and down-sampling (Supplementary Material 3). This further
establishes the precoloring as an effective way of accounting for
autocorrelation in fNIRS signal and a fundamental step for GLM
analyses (Ye et al., 2009).

We did not find statistically significant differences
(p > 0.05) between corresponding β-values computed on
1HbOOD

2 /1HbROD and 1HbOC
2 /1HbRC, suggesting that it

does not make any difference if the filter is applied to 1OD data
prior the conversion in concentration changes or to 1HbO2 and
1HbR (Supplementary Material 3).

DISCUSSION

Since fNIRS is one of the most recent neuroimaging modalities,
there is no agreement yet about the way of analyzing data and
describing the methodological details in research articles. We
have identified 110 papers published in 2016 which reported
task-related investigation of brain activity with fNIRS to identify
the most common missing information that is critical for any
study replication or comparison. More precisely, we found that
nearly ¼ of the papers did not report the sampling frequency
of the fNIRS acquisition, which is important for defining some
preprocessing parameters (e.g., filters’ cut-off frequencies). More
than a half of the reviewed papers used BP filters to denoise fNIRS
data and nearly half employed LP filters. Among the articles using
BP filters, 24 different Fc were proposed with the most common
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TABLE 5 | Shapiro-Wilk test results computed on 1HbRC LP filtered data, with Amplitude 1.

Order/Fc 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz

W(18) p W(18) p W(18) p W(18) p

BW

3 0.81 3.38E-03 0.81 3.38E-03 0.81 3.38E-03 0.81 3.34E-03

4 0.81 3.36E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03

5 0.81 3.37E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03

20 - - - - - - 0.81 3.34E-03

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

4 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03

5 0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03

20 0.81 3.11E-03 0.81 3.11E-03 0.81 3.13E-03 0.81 3.34E-03

100 0.80 2.60E-03 0.81 3.05E-03 0.81 3.42E-03 0.81 3.40E-03

200 0.82 3.65E-03 0.82 3.72E-03 0.81 3.47E-03 0.81 3.41E-03

500 0.81 3.48E-03 0.81 3.51E-03 0.81 3.43E-03 0.81 3.36E-03

1000 0.81 3.58E-03 0.81 3.49E-03 0.81 3.42E-03 0.81 3.35E-03

MovAvg

0.81 3.31E-03 0.81 3.32E-03 0.81 3.33E-03 - -

W-values and corresponding p-values are reported. p < 0.05 are underlined, meaning that the null hypothesis that the β-values are normally distributed is rejected at significance level

α = 0.05. Results are not reported in case of unstable filters and Fc = 0.5Hz that corresponds to a null window length for the MovAvg filter. ‘-’ indicates unstable filters for which the

Shapiro-Wilk test was not carried out.

being [0.01, 0.5] Hz (18.4% of the papers), and themost employed
filter type was not defined (i.e. Generic, 36.3%) followed by
Butterworth filters (28.8%). In terms of LP filters, a Fc of 0.09Hz
was most often used. However, important filtering parameters
are very often missing in articles (see section Literature Review),
especially the filter type (36.3%, Figure 2D) and the filter order
(59.7%, Figure 2F). These are extremely important information
that must be explicitly included in research papers to allow their
full replication and understanding. In addition, there is not an
agreement either on the filter type (Figure 2D) and the best signal
to filter (Figure 2C).

In order to clarify these aspects and to start setting the ground
for common practice in filtering and analyzing fNIRS data, we
investigated the performance of the most frequently used band-
pass and low-pass filters in terms of their influence on the
outcome of the statistical inference step (Figure 1) in a GLM
framework. The main findings of our simulation analysis using
synthetic fNIRS data were:

(1) there is no difference in outcome of the statistical analyses
in terms of filtered signals (optical density or concentration,
Supplementary Material 3)

(2) low-pass filters and FIR filters with low orders (<500)
are not effective in removing the physiological VLF
components and slow trends in the fNIRS signals, resulting
in higher inter-subjects variability that impacts on group-
level statistical analyses (section Materials and Methods,

Supplementary Materials 1, 2, 3). LP filters should thus be
combined with HP filters or detrending approaches (e.g.,
linear detrending) to remove very slow trends and VLF from
fNIRS data

(3) the best signal denoising is achieved using a BP FIR filter with
high orders (e.g., >1000)

(4) better results and more suitable statistics are obtained when
correcting the GLM-analysis for serial correlations by means
of the precoloring method (Supplementary Material 3).

Here, we have only tested three different types of filters with some
specifications based on the most common practices adopted
by the community. Further studies are needed that explore
additional filtering methods in case of e.g., event-related design
and block-design experiments with variable durations, and using
additional parameter specifications. In the following section,
we provide some recommendations and guidelines that we
believe could help users in designing an appropriate filter for
fNIRS data and in disseminating the research procedures in
articles.

RECOMMENDATIONS FOR FILTER
DESIGN AND THE WAY FORWARD

Figure 8 shows the flow-chart of practical steps (A-E)
that we advise to follow to design an effective filter for

Frontiers in Human Neuroscience | www.frontiersin.org 14 January 2019 | Volume 12 | Article 50541

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pinti et al. Investigation of fNIRS Signals Filtering

TABLE 6 | One sample t-test results computed on 1HbOC
2 BP filtered data, with Amplitude 1, comparing the group median β-values to the reference β, in case of

precoloring correction.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

t(17) p t(17) p t(17) p t(17) p

BW

3 −5.12 8.59E-05 −5.10 8.98E-05 −5.09 9.04E-05 −5.11 8.69E-05

4 −5.32 5.62E-05 −5.22 6.87E-05 −5.22 6.93E-05 −5.25 6.49E-05

5 - - −5.09 9.04E-05 −5.20 7.25E-05 −5.20 7.27E-05

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 0.80 4.32E-01 0.88 3.91E-01 0.99 3.36E-01 1.32 2.04E-01

4 0.82 4.25E-01 0.95 3.57E-01 1.14 2.71E-01 1.68 1.12E-01

5 0.83 4.17E-01 1.03 3.18E-01 1.31 2.09E-01 2.05 5.58E-02

20 1.38 1.85E-01 3.11 6.32E-03 3.94 1.05E-03 2.35 3.13E-02

100 1.43 1.72E-01 −5.95 1.59E-05 −5.99 1.45E-05 −5.98 1.48E-05

200 −10.37 9.04E-09 −10.63 6.29E-09 −10.67 5.90E-09 −10.74 5.41E-09

500 −5.76 2.32E-05 −5.93 1.66E-05 −5.93 1.66E-05 −5.93 1.66E-05

1000 –4.73 1.93E-04 −4.93 1.27E-04 −4.92 1.28E-04 −4.92 1.29E-04

Underlined is the highest negative t-value obtained for a 1000th order BP FIR filter. The t-value is negative as the reference β (0.8) is higher than the group median β-values (0.7).

‘-’ indicates unstable filters for which the t-test was not carried out.

TABLE 7 | One sample t-test results computed on 1HbRC BP filtered data, with Amplitude 1, comparing the group median β-values to the reference β, in case of

precoloring correction.

Order/Fc 0.01–0.09 Hz 0.01–0.2 Hz 0.01–0.3 Hz 0.01–0.5 Hz

t(17) p t(17) p t(17) p t(17) p

BW

3 4.94 1.23E-04 4.82 1.61E-04 4.85 1.49E-04 4.88 1.41E-04

4 5.15 8.06E-05 5.06 9.67E-05 5.05 9.95E-05 5.01 1.07E-04

5 - - 4.96 1.19E-04 4.98 1.13E-04 4.94 1.25E-04

20 - - - - - - - -

100 - - - - - - - -

200 - - - - - - - -

500 - - - - - - - -

1000 - - - - - - - -

FIR

3 −3.05 7.31E-03 −3.12 6.24E-03 −3.23 4.94E-03 −3.55 2.45E-03

4 −3.06 7.12E-03 −3.18 5.42E-03 −3.37 3.63E-03 −3.90 1.16E-03

5 −3.07 6.90E-03 −3.26 4.58E-03 −3.54 2.54E-03 −4.27 5.22E-04

20 −3.59 2.26E-03 −5.28 6.12E-05 −6.10 1.19E-05 −4.55 2.81E-04

100 −3.65 1.99E-03 3.71 1.76E-03 3.75 1.59E-03 3.74 1.64E-03

200 10.09 1.35E-08 10.48 7.79E-09 10.52 7.33E-09 10.59 6.65E-09

500 5.36 5.23E-05 5.56 3.49E-05 5.55 3.54E-05 5.55 3.54E-05

1000 4.01 9.05E-04 4.24 5.49E-04 4.23 5.61E-04 4.22 5.71E-04

Underlined is the lowest positive t-value obtained for a 1000th order BP FIR filter. The t-value is positive as the reference β (-0.27) is smaller than the group median β-values (−0.24).

‘-’ indicates unstable filters for which the t-test was not carried out.
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FIGURE 8 | Digital filter design flow-chart.

fNIRS data. Here, we consider 1HbO2 and 1HbR as
the signals to filter, but the same flow-chart applies to
1OD.

More precisely, the steps are the follows:
Step A) Frequency content assessment: the first step we advise

to perform is to evaluate the frequency content of fNIRS signals.
This will allow the identification of the stimulus frequency band
to preserve and of the physiological noise components (e.g., heart
rate, respiration, Mayer waves) to remove. To this goal, there
are different algorithms that can be used to e.g., compute the
Fast Fourier Transform (FFT) of the signal or the Power Spectral
Density (PSD). For instance, in Figure 9 we used the Welch’s
estimation method to compute the PSD (function: pwelch;
window length: 120 s; overlap: 50%) of the synthetic 1HbO2

and 1HbR signals to assess the physiological noises frequency
ranges to remove. The PSD shows how the power of a signal is
distributed as a function of frequency. From the PSD of the fNIRS
signals of a representative participant (Figure 9), we can identify
the heart rate component (∼1.3Hz), the respiration component
(∼0.25Hz), and the Mayer wave component (∼0.09Hz); these
are frequencies that we want to remove. We can also identify the
stimulation frequency (Fstim = 1/40 s = ∼0.025Hz in our case)
that we want to preserve; and that guides the choice of the Fc of
the filter.

Step B) Filter characteristic: the first choice to make prior to
designing a filter is the filter characteristic (BP/LP/HP). Based
on the literature review (see section Literature Review) and our
results, a BP filter achieves the highest performances in the
outcome of statistical analyses. In fact, a LP filter alone is not
enough as it does not remove the VLF frequencies corresponding
to the very low vasomotion regulations and instrumental noise
(e.g., low trends) (see section Materials and Methods).

Step C) Filter type:Different BP filters are available (e.g., FIR or
IIR). Based on our results (see Section Materials and Methods),
we recommend the use of BP FIR filters as they are (i) more
stable and hence easier to control than IIR filters (i.e., the output
is always finite), and (ii) do not introduce phase distortions and
phase shift across the whole frequency band.

Step D) Cut-off frequencies selection: For BP filters, two cut-off
frequencies must be selected. The lowest Fc (Fc, low) will allow the
frequencies higher than Fc, low to pass. The highest Fc (Fc, high)
will allow the frequencies lower than Fc, high to pass. In this way,
Fc, low and Fc, high define the passband of the BP filter, i.e. the
frequency range that can pass through the filter (Figure 10A).

The cut-off frequency choice is a compromise between noise
reduction and hemodynamic signal maximization. In fact, whilst
it is relatively easy to remove e.g., the heart rate component
and the VLF such as those related to vascular endothelial
regulations [<0.01 (Yücel et al., 2016)], other components [e.g.,
Mayer waves or vascular neurogenic regulations (∼0.04Hz Yücel
et al., 2016)] might overlap or be very close to the stimulation
frequency. This must be taken into consideration when designing
the experimental protocol, e.g., avoiding 10 s blocks overlapping
the Mayer waves frequency and using variable rest durations.
We also have to consider that it is impossible to design ideal
digital filters (Figure 10A) where the filter amplitude response
is rectangular with very sharp passband edges that allow an
exact separation between passband and stopband and e.g., a
precise separation between stimulation and noise frequencies. In
reality, one also has to consider the transition band (which will
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FIGURE 9 | Example of 1HbO2 and 1HbR signals with Amplitude 1 for one channel of a representative participant in the time domain (left panel) and frequency

domain (right panel). The PSD transforms the fNIRS signal from the time domain into the frequency domain. This allows the identification of the noise components

(heart rate, breathing rate, Mayer waves) and the stimulation component, as shown in the left panel.

FIGURE 10 | Filter amplitude response for ideal filters (A) and real filters (B).

depend on the filter order and type, see Step E and Figure 10B),
which includes the frequency components that are progressively
attenuated from −3 dB (i.e., the Fc) to the total attenuation
of the filter. Therefore, some of the signal’s frequencies outside
the passband will be attenuated and will still pass through the
filter.

In our case with 20 s task-rest periods, the stimulation
frequency (0.025Hz) does not overlap with the Mayer wave
component (∼0.09Hz). In this way, based on Figure 9, we can
set Fc, high = 0.09Hz so that the Mayer wave, breathing rate,
heart rate components can be filtered out, and we include also
the second and third harmonic of the fundamental stimulation
frequency (i.e., 2 × Fstim and 3 × Fstim) that still have substantial
information. In terms of Fc, low, Fc, low = 0.01Hz is typically
used (Figure 2). It allows to effectively remove very slow trends
and vascular endothelial regulations (Yücel et al., 2016) in
fNIRS signals, as slow as 100 s, and to preserve the stimulation

frequency as task block/event durations smaller than 100 s are
typically used. In case of stimulation protocols in which brain
activity is expected to be sustained for periods longer than 100 s,
then a smaller Fc, low should be used. Neurogenic regulations
(∼0.04Hz) can be difficult to remove as they are really close to
our stimulation frequency (0.025Hz). By choosing a passband
in the range [0.01, 0.09] Hz (Figure 11A), we can ensure that
the stimulation frequency falls within the flat passband region
(0 dB attenuation; Figure 10B) and is not attenuated, and
that additional unnecessary components are not preserved. For
instance, if higher Fc, high is used such as 0.6Hz (Figure 11B)
and 1.2Hz (Figure 11C), higher frequency oscillations in the
signals are included, worsening the GLM-fitting as shown
by the estimated β-values that are more dissimilar to the
reference β (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for
1HbR) than the ones obtained with the range [0.01, 0.09] Hz
(Figure 11A).
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FIGURE 11 | Examples of filtered 1HbO2 (red) and 1HbR (blue) signals with Amplitude 1 for one channel of a representative participant. Unfiltered 1HbO2 and 1HbR

are presented in black. β-values (in red for 1HbO2 and in blue for 1HbR) are included as well. (A) shows properly filtered 1HbO2 and 1HbR data (BP FIR filter, order

= 1,000, Fc = [0.01, 0.09] Hz) where the stimulation frequency (0.025Hz) is correctly included in the Fc range, so that the hemodynamic response component is

preserved and the β-values are the closest to the reference (8 × 10−7 for 1HbO2 and of −2.7 × 10−7 for 1HbR). (B,C) present filtered 1HbO2 and 1HbR (BP FIR

filter, order = 1,000) with wider passband ranges (Fc = [0.01, 0.6] Hz and Fc = [0.01, 1.2] Hz, respectively) that let pass also unnecessary higher frequency noise (i.e.,

faster oscillations in the signals) that worsen the fit with the GLM approach. (D), wrongly filtered 1HbO2 and 1HbR data (BP FIR filter, order = 1,000, Fc = [0.01 0.015]

Hz) are presented, where the stimulation frequency (0.025Hz) is not included in the Fc range, and the hemodynamic response component is strongly attenuated.

Including the stimulation frequency in the flat passband—
and in the passband in general—is extremely important to avoid
removing the hemodynamic responses that can correctly pass
through the filter (Figure 11A). If the Fc, high is lower than the
stimulation frequency, for instance Fc, high = 0.015Hz as shown
in Figure 11D, the task-related component is strongly attenuated
and can lead to false negatives in the statistical inference step, as
proven by the very small β-values compared to the reference β .

In case the stimulation protocol has different task-rest
durations, a stimulation frequency range [Fstim_min Fstim_max]
must be identified and preserved. Fstim_min is the inverse of the
maximum block duration (e.g., the maximum rest duration+ the
maximum task duration); Fstim_max is the inverse of theminimum
block duration (e.g., the minimum rest duration+ the minimum
task duration);

Step E) Order selection: In order to minimize the transition
band (Figure 10B) and make the filter response more similar to
the response of an ideal filter (Figure 10A), high filter orders

should be used. This is not always possible with IIR filters
because, as demonstrated in Figure 6, they can become unstable
with higher orders in certain passband ranges. On the contrary,
FIR filters are always stable and high orders can be used to
maximize the performance. Based on our analyses, effective
filtering can be achieved with order = 1000. Through the use of
a high order and a passband with a range of [0.01, 0.09] Hz, we
obtain a filter that has a flat passband region (0 dB attenuation)
including the stimulation frequency and a narrow transition band
(Figure 12; for illustration purposes, the frequency axis limit is
set at 0.2Hz).

For an effective filter design and to choose appropriate filters
parameters, a useful tool is to look at the amplitude response
of the filter [e.g., using the Matlab function freqz or the filter
visualization tool (FVtool)] to optimize the passband based
on the task design and the transition band. For instance, a
sharper transition band can be achieved increasing the filter
order (i.e., the higher the order, the higher the slope of the
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response in the transition band). Different formulas have been
proposed for the estimation of the optimal FIR filter order
to meet the design specification. The two oldest ones are
the Kaiser’s (Kaiser, 1974) and the Hermann-Rabiner-Chan’s
(Herrmann et al., 1973) formulas. The Kaiser’s formula is the
simplest and expresses the filter order as inversely proportional
to the transition bandwidth (function kaiserord in Matlab). The

FIGURE 12 | Filter amplitude response considering a BP FIR filter with order =

1000 and Fc = [0.01, 0.09] Hz.

estimation accuracy can decrease when the band ripples are not
equal and the passband and stopband are very narrow respect to
the transition band. Hermann-Rabiner-Chan’s formula provides
a solution for equiripple filters with either very narrow or very
wide bandwidth. However, both formulas were optimized for
filter orders smaller than ∼150 and only for FIR filters with odd
orders or length. New estimation methods were later proposed,
e.g., Ichige et al. (2000) (Ichige et al., 2000), to overcome the
abovementioned limitations.

Besides the optimization of fNIRS signals preprocessing, there
are other aspects that have to be taken into consideration
to improve the information communicated within the fNIRS
papers. Following the experimental stream in Figure 1, we
summarized in Figure 13 the workflow that we think should be
applied when conducting a typical neuroscience experiment with
fNIRS. More importantly, for each stage of the process, we have
indicated in red the information that we recommend to use and
report in the methods section of any fNIRS research article.

Our recommendations refer to basic procedures and the
workflows shown in Figures 12, 13 can be expanded with
further improvements, such as integrating fNIRS measurements
with simultaneous systemic physiology recordings or using
short-separation channels to allow a better interpretation of
fNIRS neuroimaging data and to formulate more accurate
neuroscientific conclusions (Tachtsidis and Scholkmann, 2016).
For instance, these measurements can be easily integrated in
the GLM framework as additional regressors in the design
matrix, making this approach even more powerful and versatile.
Moreover, other approaches can be included as an additional step
between phase 3 and phase 4 of the workflow in Figure 13, such
as the principal component spatial filter developed by Zhang and

FIGURE 13 | Basic workflow to conduct a typical neuroscience experiment with fNIRS. Information and parameters that we advise to report in research papers are

indicated in red and the ones we recommend to use are presented in green.
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colleagues (Zhang et al., 2016) to remove the global systemic
effects from fNIRS data, or combining the HbO2 and HbR
signals in e.g., the activation signal [through the correlation-
based signal improvement (Cui et al., 2010)], total hemoglobin
(HbT = HbO2 + HbR) or hemoglobin difference [Hbdiff =

HbO2 – HbR (Tachtsidis et al., 2009)] and use the combined
signal to carry out the statistical inference. However, the present
workflows (Figures 12, 13) represent the starting point toward
an improvement and standardization of fNIRS studies that could
guide the community through all the phases of a neuroscience
experiment with fNIRS.
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Brain monitoring combined with automatic analysis of EEGs provides a clinical decision

support tool that can reduce time to diagnosis and assist clinicians in real-timemonitoring

applications (e.g., neurological intensive care units). Clinicians have indicated that a

sensitivity of 95% with specificity below 5% was the minimum requirement for clinical

acceptance. In this study, a high-performance automated EEG analysis system based

on principles of machine learning and big data is proposed. This hybrid architecture

integrates hidden Markov models (HMMs) for sequential decoding of EEG events with

deep learning-based post-processing that incorporates temporal and spatial context.

These algorithms are trained and evaluated using the Temple University Hospital EEG,

which is the largest publicly available corpus of clinical EEG recordings in the world.

This system automatically processes EEG records and classifies three patterns of

clinical interest in brain activity that might be useful in diagnosing brain disorders: (1)

spike and/or sharp waves, (2) generalized periodic epileptiform discharges, (3) periodic

lateralized epileptiform discharges. It also classifies three patterns used to model the

background EEG activity: (1) eye movement, (2) artifacts, and (3) background. Our

approach delivers a sensitivity above 90% while maintaining a specificity below 5%. We

also demonstrate that this system delivers a low false alarm rate, which is critical for any

spike detection application.

Keywords: electroencephalography, EEG, hidden markov models, HMM, deep learning, stochastic denoising

autoencoders, SdA, automatic detection

INTRODUCTION

Electroencephalograms (EEGs) are used in a broad range of health care institutions to
monitor and record electrical activity in the brain using electrodes placed on the scalp.
EEGs are essential in diagnosis of clinical conditions such as epilepsy, depth of anesthesia,
coma, encephalopathy, and brain death (Yamada and Meng, 2017). Manual scanning and
interpretation of EEGs is time-consuming since these recordings may last hours or days.
It is also an expensive process as it requires highly trained experts. Therefore, high
performance automated analysis of EEGs can reduce time to diagnosis and enhance real-time
applications by flagging sections of the signal that need further review. Many methods
have been developed over the years (Ney et al., 2016) including time-frequency digital
signal processing techniques (Osorio et al., 1998; Gotman, 1999), wavelet analysis (Sartoretto
and Ermani, 1999), multivariate techniques based on simulated leaky integrate-and-fire
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neurons (Schindler et al., 2001; Schad et al., 2008), non-linear
dynamical analysis of EEG(Stam, 2005), expert systems that
attempt to mimic a human observer (Deburchgraeve et al., 2008)
and autoregressive spectral analysis of scalp EEG (Khamis et al.,
2009). In spite of recent research progress in this field, the
transition of current EEG analysis methodologies to the real-
life usage in clinical settings like ICUs has been limited, mainly
because of unacceptably high false detection rates (Varsavsky and
Mareels, 2006; Hopfengärtner et al., 2007).

Machine learning has made tremendous progress over
the past three decades due to rapid advances in low-cost
highly-parallel computational infrastructure, powerful machine
learning algorithms, and, most importantly, big data. Although
contemporary approaches for automatic interpretation of EEGs
have employed more modern machine learning approaches
such as neural networks (Ramgopal, 2014) and support vector
machines (Alotaiby et al., 2014), state of the art machine
learning algorithms that employ high dimensional models have
not previously been utilized in EEG analysis because there has
been a lack of large databases that incorporate sufficient real-
world variability to adequately train these systems. In fact,
what has been lacking in many bioengineering fields including
automatic interpretation of EEGs are the big data resources
required to support the application of advancedmachine learning
approaches. A significant big data resource, known as the
TUH EEG Corpus (Obeid and Picone, 2016), has recently
become available creating a unique opportunity to evaluate high
performance deep learning models that require large amounts of
training data. This database includes detailed physician reports
and patient medical histories, which are critical to the application
of deep learning. But, transforming physicians’ reports into a
deep learning paradigm is proving to be challenging because
the mapping of reports to underlying EEG events is non-
trivial. Our experiments suggest that a hybrid structure based on
hiddenMarkovmodels and deep learning can approach clinically
acceptable levels of performance.

Spike and seizure detection software is widely used in many
countries around the world. Industry leaders such as Persyst
(Persyst Development Corporation, 2017) provide a wide variety
of tools to automatically detect and classify various EEG events.
The limitations of the performance of such systems on tasks such
as seizure detection is a widely discussed topic within the clinical
and research communities. In fact, in collaboration with IBM,
we are hosting a Kaggle-style challenge (see https://www.kaggle.
com/) focused on the problem of seizure detection. More details
on this challenge will follow in Spring 2019.

METHODS

An overview of our proposed system is shown in Figure 1.
In order to classify data, N independent feature streams
are extracted from the multichannel EEG signal using a
standard cepstral coefficient-based feature extraction approach.
A sequential modeler analyzes each channel and produces
event hypotheses. Three passes of post-processing are performed
to produce the final output. In this section, we discuss the

various components of this system, including development of the
statistical models using a supervised training approach.We begin
with a discussion of the data used to train and evaluate the system.

Data: The TUH EEG Corpus
Our system was developed using the TUH EEG Corpus (TUH-
EEG) (Obeid and Picone, 2016), which is the largest publicly
available corpus of clinical EEG recordings in the world. The
most recent release, v1.1.0, includes data from 2002 to 2015. It
contains over 23,000 sessions from over 13,500 patients (over
1.8 years of multichannel signal data in total). This dataset was
collected at the Department of Neurology at Temple University
Hospital. The data includes sessions taken from outpatient
treatments, Intensive Care Units (ICU) and Epilepsy Monitoring
Units (EMU), Emergency Rooms (ER) as well as several other
locations within the hospital. Since TUH-EEG consists entirely
of clinical data, it contains many real-world artifacts (e.g., eye
blinking, muscle artifacts, head movements). This makes it an
extremely challenging task for machine learning systems and
differentiates from most research corpora currently available in
this area. Each of the sessions contains at least one EDF file and
one physician report. These reports are generated by a board-
certified neurologist and are the official hospital record. These
reports are comprised of unstructured text that describes the
patient, relevant history, medications, and clinical impression.
The corpus is publicly available from the Neural Engineering
Data Consortium (www.nedcdata.org).

EEG signals in TUH-EEG were recorded using several
generations of Natus Medical Incorporated’s NicoletTM EEG
recording technology. The raw signals consist of multichannel
recordings in which the number of channels varies between 20
and 128 channels (Harati et al., 2014). A 16-bit A/D converter
was used to digitize the data. The sample frequency varies from
250 to 1024Hz. In our work, we resample all EEGs to a sample
frequency of 250Hz. The Natus system stores the data in a
proprietary format that has been exported to EDF with the use
of NicVue v5.71.4.2530. The original EEG records are split into
multiple EDF files depending on how the session was annotated
by the attending technician. Some statistics about the corpus
are shown in Figure 2. For our studies, we use the 22 channels
associated with a standard 10/20 EEG configuration (American
Clinical Neurophysiology Society, 2006).

A portion of TUH-EEG was annotated manually during a
study conducted with Temple University Hospital neurologists
(Harati et al., 2014). We selected the data based more on the
presence of the events of interest described below than the type
of EEG since it is difficult to locate examples of spikes. We
have analyzed performance as a function of the type/location of
the EEG recording for a specific application, seizure detection,
using similar technology to that presented in this paper, and
not found a significant correlation. The error profiles are similar
for EEGs collected in the ICU and EMU from a machine
learning perspective.

The annotations we developed comprise six patterns of
clinical interest. The first three patterns that might be useful in
diagnosing brain disorders are:
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FIGURE 1 | A three-pass architecture for automatic interpretation of EEGs that integrates hidden Markov models for sequential decoding of EEG events with deep

learning for decision-making based on temporal and spatial context.

FIGURE 2 | Some relevant statistics demonstrating the variety of data in TUH-EEG.

(1) spike and/or sharp waves (SPSW): patterns of EEGs observed
during epileptic seizures.

(2) periodic lateralized epileptiform discharges (PLED): patterns
observed in the context of destructive structural lesions of
the cortex. PLED events manifest themselves by presence
of a pattern of repetitive periodic, focal, or hemispheric
epileptiform discharges like sharp waves, spikes, spike and
waves and polyspikes, at intervals of between 0.5 and 3 s.

(3) generalized periodic epileptiform discharges (GPED):
manifest themselves as periodic short-interval diffuse
discharges, periodic long-interval diffuse discharges and
suppression-burst patterns. GPEDs are encountered

in metabolic encephalopathy and cerebral hypoxia
and ischemia. They are similar to PLEDs. In fact, if
periodic complexes are limited to a focal brain area
they are called as PLEDs, but if periodic complexes
are observed over both hemispheres in a symmetric,
diffuse and synchronized manner, they are defined
as GPEDs.

The other three patterns were used by our machine learning
technology to model background noise:

(4) eye movement (EYEM): spike-like signals that occur during
patient eye movement.
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(5) artifacts (ARTF): recorded electrical activity that is not
of cerebral origin including physiologic artifacts generated
from sources other than brain. This class also includes
extraphysiologic artifacts arising from outside the body such
as noise generated from the recording equipment.

(6) background (BCKG): a class used to denote all other data that
does not fall in the five classes above. This class usually plays
an instrumental role in machine learning systems and needs
to include a rich variety of artifacts that are not events of
clinical interest.

Note that standard terminology in this field has changed
somewhat. PLEDs are now referred to as lateralized periodic
discharges (LPDs), GPEDs are now referred to as generalized
periodic discharges (GPDs) and spike and sharp waves are
referred to as spike and wave (SW) (American Clinical
Neurophysiology Society, 2012). However, we will retain the
older terminology because this aligns with the way the
corpus was annotated and is what was used in our machine
learning experiments.

There are over 10 different electrode configurations and over
40 channel configurations represented in the corpus. This poses a
serious challenge for machine learning systems since for a system
to be practical it must be able to adapt to the specific type of EEG
being administered. However, for this initial study, we focused
on a subset of the data in which signals were recorded using
the Averaged Reference (AR) electrode configuration (Lopez
et al., 2016). This data is publicly available at https://www.isip.
piconepress.com/projects/tuh_eeg/html/downloads.shtml.

In this paper we focus on the problem of six-way event
classification. We have also recently worked on seizure detection

using technology that was based on the technology presented
here. The work presented here represents our first attempts
at doing machine learning on EEG signals and forms the
basis for our subsequent work on a wide range of EEG
challenges (see https://www.isip.piconepress.com/publications/_
index.shtml).

Data: The TUH-EEG Event Short Set
We collaborated with several neurologists and a team of
undergraduate annotators (Shah et al., 2018) to manually label
a subset of TUH-EEG for the six different kinds of EEG patterns
described in Section Data: The TUH EEG Corpus. This subset,
known as the TUH EEG Events Corpus (TUH-EEG-ESS), is
available from our project web site: https://www.isip.piconepress.
com/projects/tuh_eeg/html/downloads.shtml. The training set
is designed to include segments from 359 sessions and the
evaluation dataset contains segments from 159 sessions. This
data is designed in a way that every patient appears just once in
the dataset.

Note that the annotations were created on a channel basis—
the specific channels on which an event was observed were
annotated. This is in contrast to many open source databases that
we have observed which only mark events in time and do not
annotate the specific channels on which the events occurred. In
general, with EEG signals, events such as SPSW do not appear
on all channels. The subset of channels on which the event
appears is relevant diagnostic information. Our annotations are
demonstrated in Figure 3.

A summary of the TU-EEG-ESS dataset is presented in
Table 1. The dataset is divided into a training and evaluation

FIGURE 3 | An example demonstrating that the reference data is annotated on a per-channel basis.
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TABLE 1 | An overview of the distribution of events in the subset of the TUH EEG

Corpus used in our experiments.

Event Train Train % (CDF) Eval Eval % (CDF)

SPSW 645 0.8% ( 1%) 567 1.9% ( 2%)

GPED 6,184 7.4% (8%) 1,998 6.8% (9%)

PLED 11,254 13.4% (22%) 4,677 15.9% (25%)

EYEM 1,170 1.4% (23%) 329 1.1% (26%)

ARTF 11,053 13.2% (36%) 2,204 7.5% (33%)

BCKG 53,726 63.9% (100%) 19,646 66.8% (100%)

Total: 84,032 100.0% (100%) 29,421 100.0% (100%)

set in a way that it includes sufficient number of observations
to train machine learning models such as HMMs and evaluate
these models on unseen examples from new patients. An
overview of the distribution of six types of events for both
of training and evaluation set demonstrates that some events
occur much less frequently in the actual corpus than other
common events. For example, while just <1%of the subset
is assigned to SPSW more than 60% is assigned to BCKG.
Also notice that 99% of the TU-EEG-ESS data composed of
three classes for modeling background which are EYEM, ARTF
and BCKG. This distribution of data makes the design of
robust classifiers for the detection of non-background classes
even more challenging. High performance automatic analysis
of EEGs requires dealing with infrequently occurring events
since much of the data is uninformative. This is often referred
to as an unbalanced data problem, and it is quite common
in many biomedical applications. Hence, the evaluation set
was designed to contain a reasonable representation of all
classes. All of EEGs in this subset were recorded using
standard 10–20 system and processed using a TCP montage
(Lopez et al., 2016), resulting in 22 channels of signal data
per EEG.

Pre-processing: Feature Extraction
The first step in EEG processing in Figure 1 consists of
converting the signal to a sequence of feature vectors (Picone,
1990). Common EEG feature extraction methods include
temporal, spatial and spectral analysis (Mirowski et al., 2009;
Thodoroff et al., 2016). A variety of methodologies have
been broadly applied for extracting features from EEG signals
including wavelet transform, independent component analysis
and autoregressive modeling (Jahankhani et al., 2006; Subasi,
2007). In this study, we use a methodology based on mel-
frequency cepstral coefficients (MFCC) which have been
successfully applied to many signal processing applications
including speech recognition (Picone, 1993). In our systems,
we use linear frequency cepstral coefficients (LFCCs) since a
linear frequency scale provides some slight advantages over
the mel scale for EEG signals (Harati et al., 2015). A block
diagram summarizing the feature extraction process used in this
work for automatic classification of EEG signals is presented in
Figure 4. Recent experiments with different types of features (Da
Rocha Garrit et al., 2015) or with using sampled data directly

(Xiong et al., 2017) have not shown a significant improvement
in performance by eliminating the feature extraction process and
using sampled data directly.

The first step to derive cepstral coefficients using LFCC
feature extraction method is to divide raw EEG signals into
shorter frames. The second step is to take a high resolution
discreet fast Fourier Transform of each frame. Next, the spectrum
is downsampled with a filter bank composed of an array of
overlapping bandpass filters. Finally, the cepstral coefficients are
derived by computing a discrete cosine transform of the filter
bank’s output (Picone, 1993). In our experiments, we discarded
the zeroth-order cepstral coefficient. Instead of this term we
use a frequency domain energy term which is calculated by
adding the output of the oversampled filter bank after they
are downsampled:

Ef = log
(

∑N−1

k=0

∣

∣X(k)
∣

∣

2
)

(1)

In our experiments, we found adding a new feature that is able
to model the long-term differentiation in energy can improve the
results of spike detection significantly. We call this new feature
as differential energy term which can differentiate between
transient pulse shape patterns and stationary background noise.
To compute differential energy term, we compute the energy
of frames inside a window of a channel of EEG. Differential
energy equals to maximum energy minus minimum energy over
this interval:

Ed = maxm
(

Ef (m)
)

−minm
(

Ef (m)
)

(2)

We have used a window with length of a 0.9 s to calculate
differential energy term. Even though this term is a simple
feature, our experiments showed that it results in a statistically
significant improvement in performance (Harati et al., 2015).

Our experiments have also shown that using derivatives of
features based on a regression approach, which is a popular
method in speech recognition (Picone, 1993), are effective in the
classification of EEG events. We use the following definition for
the derivative:

dt =

∑N
n=1 n (ct+n − ct−n)

2
∑N

n=1 n
2

(3)

Equation (3) is applied to the cepstral coefficients, ct , to compute
the first derivatives, referred to as delta coefficients. Equation (3)
is then reapplied to the first derivatives to compute the second
derivatives, which are referred to as delta-delta coefficients. We
use a window with length of 9 (N = 9) for the first derivative and
a window with length of 3 (N = 3) for the second derivative. The
introduction of derivatives helps the system discriminate between
steady-state behavior, such as that found in a PLED event, and
impulsive or non-stationary signals, such as that found in spikes
(SPSW) and eye movements (EYEM).

In this work, through experiments designed to optimize
feature extraction, we found best performance can be achieved
using a feature vector length of 26. This vector includes nine
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absolute features consisting of seven cepstral coefficients, one
frequency-domain energy term, and one differential energy term.
Nine deltas are added for these nine absolute features. Eight delta-
deltas are added because we exclude the delta-delta term for
differential energy (Harati et al., 2015).

First Pass: Sequential Decoding Using
Hidden Markov Models
Hidden Markov Models (HMMs) are one of the most important
machine learning models available today for sequential machine
learning problems that require both temporal and spectral
modeling (Picone, 1990; Juang and Rabiner, 1991). HMMs can be
considered as a class of doubly stochastic processes that are able
to model discrete state sequences as Markov chains. HMMs have
been used broadly in speech recognition where a speech signal
can be decomposed into an energy and frequency profile in which
particular events in the frequency domain can be used to identify
the sound spoken.

The challenge of interpreting and finding patterns in EEG
signal data is very similar to that of speech related projects. There
is one distinct difference, however. In a typical speech signal,
speech comprises about 50% of the signal and speech events
occur frequently. In EEG signals, key events such as seizures
occur <1% of the time. This disparity in prior probabilities of
these events makes training somewhat of a challenge, since there

is overwhelming pressure for the system to simply ignore the
events of interest.

For automatic analysis of EEGs, we consider EEG signals to
bare composed of a chain of encoded messages as a sequence of
one or more symbols. We model an EEG as a sequence of one
of six symbols: SPSW, PLED, GPED, EYEM, ARTF, and BCKG.
We assume that each one of these patterns is represented by a
sequence of feature vectors or observations O, defined as:

O = o1, o2, . . . , oT (4)

Here oT is the feature vector observed at time t. If we define Si as
the ith event in our dictionary of K events, and S as a sequence
of events from this dictionary, then the EEG pattern recognition
problem can be considered as finding themost probable sequence
of events that maximize the posterior probability P (O | S). We
train one HMM model for each event in our dictionary using
manually annotated data.

A simple left-to-right GMM-HMM, illustrated in Figure 5,
was used for sequential decoding of EEG signals. A GMM-HMM
is characterized by N states where each state consists of an L-
component Gaussian mixture model. The transition probability
matrix which describes how the states are interconnected consists
of a set of probabilities aij which denotes the probability of a
transition from state i to j. Considering α(i, t) as the forward
probability where (i = 1, 2,. . . ,N; t = 1, 2, . . . , T) , β

(

j, t
)

as the

FIGURE 4 | An overview of the feature extraction algorithm.

FIGURE 5 | A left-to-right HMM is used for sequential decoding in the first pass of processing.
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backward probability where (j = 1, 2, . . . , N; t = T-1, . . . ,0), and
P(O|M) as the probability that model M generates symbol series
O, the probability that there will be a transition from state i to
state j at time t can be defined as:

γi
(

i, j
)

=
α (i, t − 1) aijbij(Ot ,µij,6ij)β

(

j, t
)

P(O|M)
(5)

The reestimation formulae for the transition probabilities are:

aij =

∑

t γi
(

i, j
)

∑

t

∑

j γi
(

i, j
) (6)

We can calculate the output density function using the output
vector, Ot, if it follows an n-dimensional normal distribution as:

bij(ot ,µij,6ij) =
exp{−(ot − µij)

t ∑−1
ij (ot − µij)/2

(2π)n/2
∣

∣6ij

∣

∣

1/2
(7)

whereµij is the mean and6ij is the covariance matrix. The mean
and covariance for each Gaussian mixture component can be
estimated by:

µij =

∑

t γi
(

i, j
)

ot
∑

t γi
(

i, j
) (8)

6ij =

∑

t γi
(

i, j
)

(ot − µij)(ot − µij)
t

∑

t γi
(

i, j
) (9)

In the first pass of signal modeling shown in Figure 1, we
divide each channel of the EEG signal into epochs. Each epoch
is represented by a sequence of frames where each frame is
represented by a feature vector. During training, we estimate the
parameters of the K models ({aij}, {bij}, {µij} and {6ij}) from the
training dataset by iterating over all epochs using Equations (5–
9). To determine these parameters in an iterative fashion, it is
first necessary to initialize them with a carefully chosen value
(Picone, 1990). Once this is done, more accurate parameters, in
the maximum likelihood sense, can be found by applying the
so-called Baum-Welch reestimation algorithm (Picone, 1990).
Decoding is typically performed using the Viterbi algorithm
(Alphonso and Picone, 2004). Using one HMM model per label,
we generate one posterior probability for each model and we
select the label that corresponds to the highest probability. Rather
than use the best overall output from the HMM system, we let the
HMM system output probabilities for each event for each epoch
for each channel, and we postprocess these probabilities using a
second pass consisting of a deep learning-based system.

Second Pass: Temporal and Spatial
Context Analysis Based on Deep Learning
The goal of the second pass of processing in Figure 1 is to
integrate spatial and temporal context to improve decision-
making. Therefore, the output of the first pass of processing,
which is a vector of six posterior probabilities for every epoch of
each channel, is postprocessed by a deep learning system. This
system extracts knowledge in a data-driven manner and learn

representations of data that involve multiple levels of abstraction
(LeCun et al., 2015).

In the second pass of processing, we are using a specific
type of deep leaning network known as a Stacked denoising
Autoencoder (SdA) (Vincent et al., 2010). SdAs have proven to
perform well for applications where we need to emulate human
knowledge (Bengio et al., 2007). Since interrater agreement for
annotation of seizures tends to be relatively low and somewhat
ambiguous, we need a deep learning structure that can deal with
noisy inputs. From a structural point of view, SdAs are composed
of multiple layers of denoising autoencoders in a way that the
input to each layer is the latent representation of the denoising
autoencoder found in the layer below. The most important
feature of denoising autoencoders that make them appropriate
for automatic analysis of EEGs is their ability in reconstructing a
repaired input from a corrupted version of it.

Denoising Autoencoders are themselves an extension of a
classical autoencoder (Vincent et al., 2008). The input vector to an
autoencoder is x ∈ [0, 1]d. Then using a deterministic mapping,
autoencoder maps the input to a hidden representation y ∈

[0, 1]d
′

as:

y = fθ (x) = s(Wx+ b) (10)

where W is a d′ × d weight matrix, b is a bias vector, s is a
non-linearity such as sigmoid function and θ = {W, b}.

A decoder maps this latent representation y to a
reconstruction z of the same shape as x:

z = gθ ′
(

y
)

= s
(

W
′

y+ b
′
)

(11)

It is common to constrain this mapping using a technique by
applying a constraint on these equations such as . This particular
constraint is known as tied weights. The parameters of this model
are optimized to minimize the average reconstruction error using
a loss function, L, such as reconstruction cross-entropy:

θ∗, θ ′
∗
= arg minθ , θ ′

1

n

n
∑

i=1

L(x(i), gθ ′
(

fθ

(

x(i)
))

) (12)

To implement a denoising autoencoder, we train an autoencoder
on partially corrupted and destroyed input data in a way that
it learns to reconstruct a repaired version of the input. To
implement this methodology, we use a stochastic mapping
function as x̃ = qD(x̃|x) for mapping the input x to a partially
destroyed version x̃. We use the corrupted data x̃ as the input
of a typical autoencoder to calculate the latent representation by
means of y = fθ (x̃) = s(Wx̃ + b). We reconstruct a repaired
version of the input using y = fθ (x̃) = s(Wx̃+b). The schematic
representation of the process is presented in Figure 6. In the
training process, the goal is to find parameters that minimize the
loss function which in this case is the average reconstruction error
on the training dataset. Note that in these equations, unlike basic
autoencoders, reconstruction of z is not a function of x but it is a
deterministic function of x̃ and thereby the result of a stochastic
mapping of x.
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The application of deep learning networks like SdAs generally
involves three steps: design, training and implementation. In the
design step, the number of inputs and outputs, the number of
layers, and the function of nodes are defined. During training,
the weights of the nodes are determined through a deep learning
process. In the last step, the statistical model is implemented
using the fixed parameters of the network determined during
training. Pre-processing of the input data is an additional step
that is extremely important to various aspects of the deep learning
training process.

The block diagram of the second stage of processing is
depicted in Figure 7. This stage consists of three parallel SdAs
designed to integrate spatial and temporal context to improve
decision-making. These SdAs are implemented with varying
window sizes to effectively perform a multi-time-scale analysis
of the signal and map event labels onto a single composite
epoch label vector. A first SdA, referred to as an SPSW-SdA,
is responsible for mapping labels into one of two classes:
epileptiform and non-epileptiform. A second SdA, EYEM-SdA,
maps labels onto the background (BCKG) and eye movement
(EYEM) classes. A third SdA, 6W-SdA, maps labels to any
one of the six possible classes. The first two SdAs use a
relatively short window context because SPSW and EYEM are
localized events and can only be detected when we have adequate
temporal resolution.

Training of these three SdA networks is done in two steps:
pre-training and fine-tuning. SdAs are deep learning networks

FIGURE 6 | In a stacked denoising autoencoder the input, x, is corrupted to x̃.

The autoencoder then maps it to y and attempts to reconstruct x.

that are composed of multiple layers of denoising autoencoders.
Pre-training is an unsupervised approach that minimizes the
reconstruction error. During pre-training, we train each layer of
the SdA separately using an unsupervised approach in which we
train the first level of a denoising autoencoder to minimize the
error in reconstructing of its input. Next, using the output code
of the first layer, we train the second layer denoising autoencoder
to learn a second level encoding function. This process is repeated
for all layers.

Following completion of pre-training, we perform fine-tuning
using a supervised training procedure. In fine-tuning the goal
is to minimize a loss function that represents the classification
error. First, we compose a network with just the encoding parts
of each denoising auto-encoder and then we add a logistic
regression layer as the last layer of a SdA deep learning network.
We initialize this network using weights that we obtained during
pre-training and train the entire network to minimize the
prediction error (Hinton et al., 2006; Bengio et al., 2007).

As shown in Figure 7, we also preprocess the data using
a global principal components analysis (PCA) to reduce
dimensionality before application of these SdAs (van der
Maaten et al., 2009). PCA is applied to each individual epoch
by concatenating each channel output into a supervector
and then reducing its dimensionality. For rare and localized
events (e.g., SPSW and EYEM), we use an out-of-sample
technique to increase the number of training samples
(van der Maaten et al., 2009).

Finally, using a block called an enhancer (Vincent et al., 2010),
the outputs of these three SdAs are then combined to obtain the
final decision. To add the three outputs together, we initialize our
final probability output with the output of the 6-way classifier.
For each epoch, if the other two classifiers detect epileptiform
or eye movement and the 6-way classifier was not in agreement
with this, we update the output probability based on the output
of 2-way classifiers. The overall result of the second stage is a
probability vector of dimension six containing a likelihood that
each label could have occurred in the epoch. It should also be
noted that the outputs of these SdAs are a probability vector.
A soft decision paradigm is used because this output will be
smoothed in the third stage of processing.

Third Pass: Statistical Language Modeling
Neurologists generally impose certain restrictions on events
when interpreting an EEG. For example, PLEDs and GPEDs
don’t happen in the same session. None of the previous

FIGURE 7 | An overview of the second pass of processing.
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stages of processing address this problem. Even the output
of the second stage accounts mostly for channel context and
is not extremely effective at modeling long-term temporal
context. The third pass of processing addresses this issue
and improves the overall detection performance by using a
finite state machine based on a statistical language model. In
general, for problems such as EEG event detection in which
infrequently occurring events play a significant role, post-
processing based on domain knowledge tends to provide large
gains in performance. Automatic this using deep learning is
not trivial.

As is shown in Figure 1, the third stage of post-processing is
designed to impose some contextual restrictions on the output
of the second stage. These contextual relationships involve
long-term behavior of the signal and are learned in a data-
driven fashion. This approach is also borrowed from speech
recognition where a probabilistic grammar is used that combines
the left and right contexts with the labels (Levinson, 2005).
This is done using a finite state machine that imposes specific
syntactic constraints.

In this study, a bigram probabilistic language model that
provides the probability of transiting from one type of epoch
to another (e.g., PLED to PLED) is prepared using the
training dataset and also in consultation with neurologists in
Temple Hospital University. The bigram probabilities for each
of the six classes are shown in Table 2, which models all
possible transitions from one label to the next. The remaining
columns alternate between the class label being transitioned
to and its associated probability. The probabilities in this
table are optimized on a training database that is a subset of
TUH-EEG. For example, since PLEDs are long-term events,
the probability of transitioning from one PLED to the next
is high ∼0.9. However, since spikes that occur in groups
are PLEDs or GPEDs, and not SPSWs, the probability of
transitioning from a PLED to SPSW is 0.0. Therefore, these
transition probabilities emulate the contextual knowledge used
by neurologists.

After compiling the probability table, a long window is
centered on each epoch and the posterior probability vector for
that epoch is updated by considering left and right context as
a prior (essentially predicting the current epoch from its left
and right context). A Bayesian framework is used to update
the probabilities of this grammar for a single iteration of
the algorithm:

Pgprior =

∑L
i=1 Pi + ǫpriorM

L+M
(13)

RPP(k) =
βR

∑N
i=1 exp (−iλ)Pk+i + αPgprior

1+ α
(14)

LPP(k) =
βL

∑N
i=1 exp (−iλ) Pk−i + αPgprior

1+ α
(15)

PCk|LR = βCPCk
(
∑k

i=1

∑k

j=1
LPP (i)RPP

(

j
)

Prob
(

i, k
)

Prob(k, j))
γ
n

(16)

In these equations, k = 1, 2. . . K where K is the total number of
classes (in this study K= 6), L is number of epochs in a file, ǫprior

is the prior probability for an epoch (a vector of length K) and M
is the weight. LPP and RPP are left and right context probabilities,
respectively.λ is the decaying weight for window, α is the weight
associated with Pgprior and βR and βL are normalization factors.
PCk

is the prior probability, PCk|LR is the posterior probability
of epoch C for class k given the left and right contexts, y is the
grammar weight, n is the iteration number (starting from 1) and
βC is the normalization factor. Prob

(

i, j
)

is a representation of the
probability table shown in Table 2. The algorithm iterates until
the label assignments, which are decoded based on a probability
vector, converge. The output of this stage is the final output and
what was used in the evaluations described in Section Results.

RESULTS

In this section, we present results on a series of experiments
designed to optimize and evaluate each stage of processing.

Pre-processing: Feature Extraction
Features from each epoch are identified using a feature extraction
technique described in Section Data: The TUH-EEG Event
Short Set. Neurologists review EEGs in 10 s windows. Pattern
recognition systems often subdivide the signal into small
segments during which the signal can be considered quasi-
stationary. HMM systems need further subdivision so that there
are enough observations to allow the system to develop a
strong sense of the correct choice. A simple set of preliminary
experiments determined that a reasonable tradeoff between
computational complexity and performance was to split the 10 s
window into 1 s epochs, and to further subdivide these into
0.1 s frames. Hence, features were computed every 0.1 s using
a 0.2 s overlapping analysis window. The output of the feature
extraction system is 22 channels of data, where in each channel, a
feature vector of dimension 26 corresponds to every 0.1 s. These
parameters were optimized experimentally in a previous study
(Harati et al., 2015).

First Pass: Sequential Decoding Using
Hidden Markov Models
A 6-way classification experiment was conducted using the
models described in Figure 5. Each state uses 8 Gaussian mixture
components and a diagonal covariance assumption (drawing on
our experience with speech recognition systems and balancing
dimensionality of the models with the size of the training
data). Models were trained using all events on all channels
resulting in what we refer to as channel independent models.
Channel dependent models have not proven to provide a boost
in performance and add considerable complexity to the system.

The results for the first pass of processing are shown in
Table 3, in the first pass section. Amore informative performance
analysis can be constructed by collapsing the three background
classes into one category. We refer to this second evaluation
paradigm as a 4-way classification task: SPSW, GPED, PLED
and BACKG. The latter class contains an enumeration of the
three background classes. The 4-way classification results for the
first pass of processing are presented in Table 4, in the first pass
section. Finally, in order that we can produce a detection error
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TABLE 2 | A bigram probabilistic language model for the third pass of processing which models all possible transitions from one of the six classes to the next.

i j P(i, j) j P(i, j) j P(i, j) j P(i, j) j P(i, j) j P(i, j)

SPSW SPSW 0.40 PLED 0.00 GPED 0.00 EYEM 0.10 ARTF 0.20 BCKG 0.30

PLED SPSW 0.00 PLED 0.90 GPED 0.00 EYEM 0.00 ARTF 0.05 BCKG 0.05

GPED SPSW 0.00 PLED 0.00 GPED 0.60 EYEM 0.00 ARTF 0.20 BCKG 0.20

EYEM SPSW 0.10 PLED 0.00 GPED 0.00 EYEM 0.40 ARTF 0.10 BCKG 0.40

ARTF SPSW 0.23 PLED 0.05 GPED 0.05 EYEM 0.23 ARTF 0.23 BCKG 0.23

BCKG SPSW 0.33 PLED 0.05 GPED 0.05 EYEM 0.23 ARTF 0.13 BCKG 0.23

TABLE 3 | The 6-way classification results for the three passes of processing.

Pass Event ARTF BCKG EYEM GPED PLED SPSW

First ARTF 41.24 45.19 2.18 3.81 2.77 4.81

BCKG 7.02 71.93 2.59 7.37 2.28 8.81

EYEM 2.13 0.61 82.37 2.13 8.51 4.26

GPED 7.46 4.85 2.39 53.32 20.42 11.55

PLED 0.70 1.85 4.70 17.62 54.80 20.32

SPSW 4.41 8.29 9.17 33.33 4.59 40.21

Second ARTF 27.49 61.73 7.28 0.00 1.08 2.43

BCKG 7.00 82.03 5.79 0.97 0.36 3.86

EYEM 4.21 16.84 77.89 0.00 0.00 1.05

GPED 0.60 14.69 0.00 59.96 10.26 14.49

PLED 1.40 22.65 0.80 13.83 52.30 9.02

SPSW 7.69 35.90 2.56 28.21 0.00 25.64

Third ARTF 14.04 72.98 10.18 0.00 0.00 2.81

BCKG 3.42 81.40 8.93 0.30 0.00 5.95

EYEM 2.30 17.24 79.31 0.00 0.00 1.15

GPED 0.30 3.65 0.00 65.05 13.37 17.63

PLED 0.00 10.76 0.49 9.78 65.28 13.69

SPSW 10.00 33.33 13.33 10.00 0.00 33.33

tradeoff (DET) curve (Martin et al., 1997) we also report a 2-
way classification result in which we collapse the data into a
target class (TARG) and a background class (BCKG). The 2-way
classification results for the first pass of processing are presented
in Table 5, in the first pass section. Note that the classification
results for all these tables are measured by counting each epoch
for each channel as an independent event. We refer to this as
forced-choice event-based scoring because every epoch for every
channel is assigned a score based on its class label.

Second Pass: Temporal and Spatial
Context Analysis Based on Deep Learning
The output of the first stage of processing is a vector of six
scores, or likelihoods, for each channel at each epoch. Therefore,
if we have 22 channels and six classes, we will have a vector
of dimension 6 × 22 = 132 scores for each epoch. This 132-
dimension epoch vector is computed without considering similar
vectors from epochs adjacent in time. Information available
from other channels within the same epoch is referred to as
“spatial” context since each channel corresponds to a specific
electrode location on the skull. Information available from other

TABLE 4 | The 4-way classification results for the three passes of processing.

Pass Event BCKG SPSW GPED PLED

First BCKG 82.30 8.35 6.94 2.42

SPSW 21.87 40.21 33.33 4.59

GPED 14.71 11.55 53.32 20.42

PLED 7.26 20.32 17.62 54.80

Second BCKG 95.60 3.24 0.62 0.54

SPSW 46.15 25.64 28.21 0.00

GPED 15.29 14.49 59.96 10.26

PLED 24.85 9.02 13.83 52.30

Third BCKG 95.11 4.69 0.19 0.00

SPSW 56.67 33.33 10.00 0.00

GPED 3.95 17.63 65.05 13.37

PLED 11.25 13.69 9.78 65.28

TABLE 5 | The 2-way classification results for the three passes of processing.

Pass Event TARG BCKG

First TARG 86.92 13.08

BCKG 18.20 81.80

Second TARG 78.94 21.06

BCKG 4.40 95.60

Third TARG 90.10 9.90

BCKG 4.89 95.11

epochs is referred to as “temporal” context. The goal of this
level of processing is to integrate spatial and temporal context to
improve decision-making.

To integrate context, the input to the second pass deep
learning system is a vector of dimension 6 x 22 x window
length, where we aggregate 132-dimension vectors in time. If
we consider a 41-second window, then we will have a 5,412-
dimension input to the second pass of processing. This input
dimensionality is high even though we have a considerable
amount of manually labeled training. To deal with this problem
we follow a standard approach of using Principal Components
Analysis (PCA) (Fukunaga, 1990) before every SdA. The output
of PCA is a vector of dimension 13 for SdA detectors that look
for SPSW and EYEM and 20 for 6-way SdA classifier.

Further, since we do not have enough SPSW and EYEM events
in the training dataset, we must use an out-of-sample technique
(van der Maaten et al., 2009) to train SdA. Three consecutive
outputs are averaged, so the output is further reduced from 3
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× 13 to just 13, using a sliding window approach to averaging.
Therefore, the input for SPSW SdA and EYEM SdA decreases to
13 x window length and 20 x window length for 6-way SdA.

We used an open source toolkit, Theano (Bergstra et al., 2010;
Bastien et al., 2012), to implement the SdAs. The parameters of
the models are optimized to minimize the average reconstruction
error using a cross-entropy loss function. In the optimization
process, a variant of stochastic gradient descent is used, referred
to as minibatches. Minibatch stochastic gradient descent is
similar to stochastic gradient descent, but we use more than
one training example to calculate each estimate of the gradient.
Using this optimization method, we will have less variance
in the estimate of the gradient. Additionally, this framework
makes better use of the hierarchical memory organization in
modern computers.

SPSW SdA uses a window length of 3 which means it has 39
inputs and 2 outputs. It has three hidden layers with corruption
levels of 0.3 for each layer. The number of nodes per layer are:
first layer = 100, second layer = 100, third layer = 100. The
parameters for pre-training are: learning rate = 0.5, number
of epochs = 200, batch size = 300. The parameters for fine-
tuning are: learning rate = 0.2, number of epochs = 800 and
batch size= 100.

EYEM SdA uses a window length of 3 which means it has 39
inputs and 2 outputs. It has three hidden layers with corruption
levels of 0.3 for each layer. The number of nodes per layer are:
first layer = 100, second layer = 100, third layer = 100. The
parameters for pre-training are: learning rate = 0.5, number
of epochs = 200, batch size = 300. The parameters for fine-
tuning are: learning rate = 0.2, number of epochs = 100 and
batch size= 100.

Six-way SdA uses a window length of 41 which means it
has 820 inputs and 6 outputs. It has three hidden layers with
corruption levels of 0.3 for each layer. The number of nodes per
layer are: first layer= 800, second layer= 500, third layer= 300.
The parameters for pre-training are: learning rate= 0.5, number
of epochs = 150 and batch size = 300. The parameters for fine-
tuning are: learning rate = 0.1, number of epochs = 300 and
batch size= 100.

The 6-way, 4-way and 2-way classification results for the
second stage of processing are presented in Tables 3–5, in the
second pass section, respectively. Note that unlike the tables for
the first pass of processing, the classification results in each of
these tables are measured once per epoch—they are not per-
channel results. We refer to these results as epoch-based.

Third Pass: Statistical Language Modeling
The output of the second stage of processing is a vector of
six scores, or likelihoods, per epoch. This serves as the input
for the third stage of processing. The optimized parameters
for the third pass of processing are: prior probability for an
epoch, ǫprior, is 0.1; the weight, M, is 1; the decaying weight,
λ, is 0.2; the weight associated with Pgprior,α, is 0.1; the
grammar weight, y, is 1; the number of iterations, n, is 20,
and the window length to calculate the left and right prior
probabilities is 10.

The 6-way, 4-way and 2-way classification results are
presented in Tables 3–5, in the third pass section, respectively.
Note that these results are also epoch-based.

DISCUSSION

The 6-way classification task can be structured into several
subtasks. Of course, due to the high probability of the signal
being background, the system is heavily biased toward choosing
the background model. Therefore, in Table 4 in the first pass
section, we see that performance on BACKG is fairly high. Not
surprisingly, BCKG is most often confused with SPSW. SPSW
events are short in duration and there are many transient events
in BCKG that resemble an SPSW event. This is one reason we
added ARTF and EYEM models, so that we can reduce the
confusions of all classes with the short impulsive SPSW events. As
we annotate background data in more detail, and identify more
commonly occurring artifacts, we can expand on our ability to
model BCKG events explicitly.

GPEDs are, not surprisingly, most often confused with PLED
events. Both events have a longer duration than SPSWs and
artifacts. From the first pass section of Table 4, we see that
performance on these two classes is generally high. The main
difference between GPED and PLED is duration, so we designed
the post-processing to learn this as a discriminator. For example,
in the second pass of processing, we implemented a window
duration of 41 s so that the SdA system would be exposed to
long-term temporal context. We also designed three separate
SdA networks to differentiate between short-term and long-
term context. In Table 4 in the second pass section, we see
that the performance of GPEDs and PLEDs improves with
the second pass of post-processing. More significantly, the
confusions between GPEDs and PLEDs also decreased. Note
that also in Table 4 in the second pass section, performance
of BCKG increased significantly. Confusions with GPEDs and
PLEDs dropped dramatically to below 1%.

While performance across the board increased, performance
for SPSW dropped by adding the second pass of post-processing.
This is a reflection on the imbalance of the data. Less than one
percent of data is annotated as SPSWs, while we have ten times
more training samples for GPEDs and PLEDs. Note that we used
an out-of-sample technique to increase the number of training
samples for SPSWs, but even this technique could not solve the
problem of a lack of annotated SPSW data. By comparing the
first pass results of Tables 3–5 we saw a similar behavior with the
EYEM class because there are also fewer EYEM events.

A summary of the results for different stages of processing
is shown in Table 6. The overall performance of the multi-pass

TABLE 6 | Specificity and sensitivity for each pass of processing.

Pass Sensitivity Specificity

1 (HMM) 86.78 17.70

2 (SdA) 78.93 4.40

3 (SLM) 90.10 4.88
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hybrid HMM/deep learning classification system is promising:
more than 90% sensitivity and <5% specificity.

Because the false alarm rate in these types of applications
varies significantly with sensitivity, it is important to examine
performance using a DET curve. A DET curve for the first,
second, and third stage of processing is given in Figure 8.
Note that the tables previously presented use the unprocessed
likelihoods output from the system. They essentially correspond
to the point on theDET curve where a penalty of 0 is applied. This
operating point is identified on each of the curves in Figure 8.
We see that the raw likelihoods of the system correspond to
different operating points in the DET curve space. From Figure 8

it is readily apparent that post-processing significantly improves
our ability to maintain a low false alarm rate as we increase
the detection rate. In virtually all cases, the trends shown in
Tables 3–6 hold up for the full range of the DET curve. This study
demonstrates that a significant amount of contextual processing
is required to achieve a specificity of 5%.

CONCLUSION

Virtually all previous R&D efforts involving EEG, including
seizure detection, have been conducted on small databases
(Akareddy et al., 2014). Often these databases are not good
representations of the type of data observed in clinical
environments. Transient artifacts, not common in databases
collected under research conditions, can significantly degrade
performance. Not surprisingly, despite high accuracies presented
in the research literature, the performance of commercially
available systems has been lacking in clinical settings. There is
still great demand for an automated system that achieves a low
false alarm rate in clinical applications.

We have presented a three-pass system that can achieve
high performance classifying EEG events of clinical relevance.

The system uses a combination of HMMs for accurate
temporal segmentation and deep learning for high performance
classification. In the first pass, the signal is converted to EEG
events using an HMM-based system that models the temporal
evolution of the signal. In the second pass, three stacked
denoising autoencoders (SDAs) with different window durations
are used to map event labels onto a single composite epoch label
vector. We demonstrated that both temporal and spatial context
analysis based on deep learning can improve the performance
of sequential decoding using HMMs. In the third pass, a
probabilistic grammar is applied that combines left and right
context with the current label vector to produce a final decision
for an epoch.

Our hybrid HMM/deep learning system delivered a sensitivity
above 90% while maintaining a specificity below 5%, making
automated analysis a viable option for clinicians. This framework
for automatic analysis of EEGs can be applied in other
classification tasks such as seizure detection or abnormal
detection. There are many straightforward extensions of this
system that can include more powerful deep learning networks
such as Long Short-Term Memory Networks or Convolutional
Neural Networks. This is the subject of our ongoing research.

This project is part of a long-term collaboration with
the Department of Neurology at Temple University Hospital
that has produced several valuable outputs including a large
corpus (TUH-EEG), a subset of the corpus annotated for
clinically relevant events (TUH-EEG-ESS), and technology to
automatically interpret EEGs. In related work, we are alsomaking
the corpus searchable using multimodal queries that integrate
metadata, information extracted from EEG reports and the
signal event data described here (Obeid and Picone, 2016). The
resulting system can be used to retrieve many different types of
cohorts and will be a valuable tool for clinical work, research
and teaching.

FIGURE 8 | DET curves are shown for each pass of processing. The “zero penalty” operating point is also shown since this was used in Tables 3–5.
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Recent studies provided compelling evidence that physical activity leads to specific
changes on a functional and structural level of brain organization. The observed neural
adaptions are specific to the sport and manifested in those brain regions which are
associated with neuronal processing of sport-specific skills. Techniques of non-invasive
brain stimulation have been shown to induce neuroplastic changes and thereby also
facilitate task performance. In the present study, we investigated the influence of
transcranial direct current stimulation (tDCS) over the leg area of the primary motor
cortex (M1) on simple reaction time tasks (RTT) and tapping tasks (TT) as a comparison
between trained football (FB) and handball players (HB) and non-athletes (NA). We
hypothesized that anodal tDCS over M1 (leg area) would lead to specific behavioral
gains in RTT and TT performance of the lower extremity as compared to sham condition.
On an exploratory level, we aimed at revealing if trained athletes would show stronger
tDCS-induced behavioral gains as compared to NA, and, furthermore, if there are any
differential effects between FB and HB. A total number of 46 participants were enrolled in
a sham-controlled, double-blinded, cross-over study. A test block consisting of RTT and
TT was performed before, during, after as well as 30 min after a 20-min tDCS application.
Additionally, the specificity of tDCS-induced changes was examined by testing upper
extremity using the same experimental design as a control condition. Our data showed
no group- or sport-specific tDCS-induced effects (online and offline) on RTT and TT
neither for lower nor upper extremities. These findings indicate that neither athletes nor
NA seems to benefit from a brief period of tDCS application in speed-related motor
tasks. However, more knowledge on neuronal processing of RTT and TT performance
in trained athletes, the influence of tDCS parameters including stimulation sites, and the
effect of inter-individual differences are required in order to draw a comprehensive picture
of whether tDCS can help to enhance motor abilities on a high-performance level.
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INTRODUCTION

A variety of studies suggest that physical exercise leads to
specific changes on a functional and structural level of brain
organization (Colcombe et al., 2006; Bullitt et al., 2009; Voss
et al., 2010; Erickson et al., 2012). In addition, it has been shown
that this neuroplasticity seems to be specific to the individual
exercise regime or sport (Jäncke et al., 2009; Park et al., 2009;
Schlaffke et al., 2014). On a functional level, the findings of Lulic
et al. (2017), using transcranial magnetic stimulation (TMS),
indicate that the propensity for exercise-induced functional
plasticity is different in high vs. low physically active individuals.
In this study, a single session of moderate intensity aerobic
exercise increased the amplitude of corticospinal output in the
HIGH (physically active) group, and, in contrast, did not alter
corticospinal output in the LOW (physically active) group.
Apart from the physical activity itself, also the exercise regime
leads to specific brain alterations and influences the amount of
structural plasticity (Schlaffke et al., 2014). Concerning brain
structure, a study by Meier et al. (2016), for example, showed
that handball players have an increased volume of gray matter
(GM) in the hand area of the primary motor cortex (M1),
while ballet dancers are characterized by an increased GM
volume in the foot area of M1. These results indicate that
the observed functional and structural adaptions are sport-
specific/ physical activity-dependent and seem to manifest in
those brain regions that are involved in the neural processing of
sport-specific skills.

It is well known that M1 is a key region involved in motor
control and functions in terms of precision, speed, strength,
endurance and execution of daily motor tasks (Levasseur-
Moreau et al., 2013). One opportunity to explore the function
of certain brain areas can be found in non-invasive brain
stimulation methods such as transcranial magnetic (TMS)
and/or direct current stimulation (tDCS). To investigate the
role of motor-related brain regions during the execution
of motor tasks, tDCS is a common method to modulate
brain function specifically and thereby induce a possible
behavioral change.

tDCS is a non-invasive method for modulating the excitability
of certain brain regions by applying a weak direct current
to the scalp. It has been proposed that tDCS modulates
neural firing rates during stimulation and synaptic strength
following long-term stimulation (Stagg and Nitsche, 2011).
Using this method, either an increase (by means of anodal
tDCS) or a reduction (by means of cathodal tDCS) of the
area-specific excitability is possible (Nitsche and Paulus, 2000),
as demonstrated by changes in themotor evoked potential (MEP)
elicited via TMS.

Although tDCS has been mainly used for patients with
neurologic disorders (Flöel, 2014; Lattari et al., 2017b) and
psychiatric disorders (Aparício et al., 2016), it has also been
highlighted as a valuable tool to enhance physical performance
in healthy individuals. Current reviews including studies
investigating healthy adults provided evidence that anodal tDCS
over motor-related brain regions can lead to positive behavioral
effects (Banissy and Muggleton, 2013; Machado et al., 2018).

For example, a tDCS-induced increase of isometric muscle
force has been found in both lower (Tanaka et al., 2009) and
upper extremities (Boggio et al., 2006; Hummel et al., 2006;
Stagg et al., 2011; Salimpour and Shadmehr, 2014). Further
studies have shown that endurance performance (Angius et al.,
2018) and both static and dynamic balance regulation (Dutta
et al., 2014; Kaminski et al., 2016) can be improved by anodal
tDCS. However, concerning anodal tDCS effects in speed-related
motor tasks, the current literature is inconsistent. Positive effects
have been demonstrated especially in serial and choice reaction
time tasks (RTT) with upper extremities (Nitsche et al., 2003b;
Verissimo et al., 2016; Drummond et al., 2017; Hupfeld et al.,
2017). In studies using simple RTT, the findings are rather
contradictory, since both improved reaction times (Carlsen
et al., 2015; Devanathan and Madhavan, 2016; Hupfeld et al.,
2017) and no effects (Tanaka et al., 2009; Stagg et al., 2011;
Horvath et al., 2016) are reported. Only a small number of
studies investigated the influence of anodal tDCS on tapping
tasks (TT), focusing mainly on (serial) finger TT. The results
showed either positive (Tecchio et al., 2010; Saimpont et al.,
2016) or null effects (Boehringer et al., 2013), while one reported
a significant impairment following anodal tDCS (Stagg et al.,
2011). However, concerning tDCS effects on frequency-oriented
hand or even foot TT, there is a clear lack of evidence in the
current literature.

More recently, there has been great interest in the use of tDCS
to enhance sports performance (Davis, 2013; Reardon, 2016) and
to facilitate neuroplasticity and training adaptations (Bolognini
et al., 2009) in athletes. First, approaches can be found in recent
studies showing a tDCS-induced increase of isometric strength
of shoulder rotators muscles in handball players (Hazime et al.,
2017) and an increased isometric quadriceps strength after
stimulation in soccer players (Vargas et al., 2018). Similar results
were found by Lattari et al. (2017a) examining tDCS-induced
effects on muscle power in individuals with advanced resistance
training experience. Furthermore, anodal tDCS is capable to
have positive effects on the time of exhaustion in trained
individuals performing a cycling task (Vitor-Costa et al., 2015).
Beyond that, Okano et al. (2015) studied the effects of 20 min
of tDCS with the anode over the left temporal cortex on
trained cyclists during an incremental cycling test and found
significantly improved peak power, as well as reduced heart
rate and perception of effort at submaximal workloads. These
findings suggest that tDCS can potentially facilitate the athlete’s
performance under laboratory conditions. However, there is
no evidence that this could lead to positive transfer effects
under field conditions or even during competition. Further
risks, opportunities and potential approaches concerning the use
of tDCS at an elite sports level have already been discussed
by Banissy and Muggleton (2013) and Edwards et al. (2017).
It seems clear that more research is needed to clarify the
usefulness of tDCS in highly trained individuals (Colzato et al.,
2017; Edwards et al., 2017). As maximum performance in fine
motor control could not be further improved in elite pianists
(Furuya et al., 2013), it needs to be investigated whether similar
ceiling effects might apply to the performance of elite athletes
as well.
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The primary aim of the present study was to investigate
the influence of a 20-min anodal tDCS over leg area of the
M1 on the performance of trained athletes in simple speed-
related motor tasks, using simple reaction time and TT for
both upper and lower extremities. According to a systematic
review and meta-analysis by Machado et al. (2018) that assessed
the effect of tDCS on exercise performance enhancement in
healthy adults, no effect was found for cathodal tDCS for any
tasks (performance in isometric, isokinetic or dynamic strength
exercise and whole-body exercise). Similarly, Tanaka et al. (2009)
found no effect of cathodal tDCS over M1 leg area on simple
RTT for lower extremities. Hence, the application of cathodal
tDCS was waived in the present study. Therefore, the focus was
on the question of whether athletes would show stronger anodal
tDCS-induced performance gains compared to non-athletes and
if sport-specific differences could be determined. In general,
we first hypothesized that anodal tDCS over M1 (leg area)
would lead to specific behavioral gains in simple reaction
time and tapping performance of the foot (not hand, since
this can be considered as a kind of control condition) as
compared to sham condition (in accordance with Devanathan
and Madhavan, 2016; Saimpont et al., 2016). To demonstrate
that potential performance gains are in fact related to tDCS, we
tested a control group (CG) of participants performing exactly
the same procedure but without brain stimulation. Concerning
athletes, we expected football and handball players to show
superior initial performances as compared to non-athletes. This
hypothesis is based on previous studies showing better initial
performances in athletes in several motor abilities (Verburgh
et al., 2016; Seidel et al., 2017). On an exploratory level, we
aimed at revealing if athletes would show stronger tDCS-induced
behavioral gains as compared to non-athletes, and, furthermore,
if there are any differential effects between football and handball
players. Since there is barely evidence concerning tDCS-effects
at an elite sports level in speed-related motor tasks, we cannot
make direct inferences about the directionality of tDCS-induced
behavioral effects.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the local ethics-committee of the
Medical Faculty at the University of Leipzig. All participants
gave written informed consent to participate in the experiments
according to the Declaration of Helsinki, and were compensated
for participation.

Participants
In the present study, a total of 46 healthy, young adults were
recruited, divided into three groups of football players (FB),
handball players (HB) and non-athletes (NA). To exclude the
presence of any neurological disease and/or contraindications,
all participants underwent a detailed neurological examination
prior to the testing phase. Inclusion criteria for FB and
HB consisted of an individual training history of at least
2 years as well as regular practice and regular participation
in competitions/matches in their respective sports discipline.

NA were not allowed to do more than 2 h of combined
sports activities per week. The investigated sample of this study
consisted of 13 FB (three females, mean age = 24.00± 3.89 years),
12 HB (five females, mean age = 22.50 ± 4.32 years) and 21 NA
(11 females, mean age = 26.95 ± 3.43 years). On average, FB
trained for 16.31 ± 5.02 years and currently 5.65 ± 2.15 h/week,
whereas HB trained for 13.17 ± 4.49 years and currently
8.54 ± 3.84 h/week in their respective sports disciplines. On
the other hand, NA performed an average of less than 2 h
of combined sports activities per week (1.41 ± 1.32 h/week).
Additionally, all participants (FB, HB and NA) with regular
practice ofmusical instruments were excluded from participation
in this study. This was motivated by the fact that recent
studies have shown that musical training induces functional
and structural plasticity in motor-related brain regions (Steele
et al., 2013; Vollmann et al., 2014) which in turn might affect
the amount of tDCS effect. As assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971), all participants were
right-handed [mean laterality quotient (LQ) of FB: 84.02± 16.45;
HB: 95.83 ± 8.14; NA: 90.15 ± 14.15].

Furthermore, a CG was tested to ensure that potential
behavioral changes in simple reaction time and tapping
frequency are in fact tDCS related and not a mere effect of
fatigue or learning. A total of six male and six female right-
handed (mean LQ: 80.4 ± 17.1) participants (n = 12) in this
group with an mean age of 21.25 ± 1.14 years and sports-
related activities of 4.85 ± 3.86 h/week had to perform the whole
procedure (see ‘‘Experimental Design’’ section for further details)
but without tDCS.

Experimental Design
A sham-controlled, double-blinded, cross-over design was
carried out. The study was compromised of two sessions that
were separated by at least 24 h in order to avoid task-related
impacts of cognitive or muscular fatigue. Study procedure for
both sessions was identical (see Figure 1A), starting with an
initial run of a test block consisting of RTT and TT for upper
and lower extremities (see ‘‘Motor Tasks’’ section for further
details). Afterward, tDCS was applied over the leg area of the
(M1 leg area) for a period of 20 min. Participants received either
the anodal tDCS condition or the control condition, where sham
tDCS was applied [see ‘‘Transcranial Direct Current Stimulation
(tDCS)’’ section for further details]. For each participant, the type
of stimulation was randomly assigned to either session 1 or 2.
Another run of the aforementioned test block was performed
after 10 min of stimulation (during tDCS, online) as well as
directly after and 30 min after stimulation has ended (offline).
The second test block was performed after 10 min of stimulation
because previous studies have demonstrated that a time of
9–13 min is required to obtain an increase in cortical excitability
for up to 1.5 h (Nitsche and Paulus, 2000). Participants were
instructed to avoid alcohol and caffeine 24 h prior to each
session because of their well-known influences on motor control
and central nervous system (CNS) functioning (Pesta et al.,
2013). Additionally, participants were asked to report their
daily activities 48 h before both sessions, their current levels of
attention, fatigue and discomfort on a visual analog scale (pre and
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FIGURE 1 | Study design and experimental setup. (A) Procedures for session 1 and 2. Study procedure for both sessions was identical, starting with an initial run of
a test block consisting of reaction time tasks (RTT) and tapping tasks (TT) for upper and lower extremities. Afterwards, transcranial direct current stimulation (tDCS)
was applied over the leg area of the primary motor cortex (M1 leg area) for a period of 20 min (indicated by the red frame). Participants received either the anodal
tDCS condition or the control condition, where sham tDCS was applied. Another run of the aforementioned test block was performed after 10 min of stimulation
(during tDCS, online) as well as directly after and 30 min after stimulation has ended (offline). (B) Experimental setup. Participants were seated 1 m away from a
computer monitor, upright on a stool (hips and knees at 90◦) with their hands resting on and their feet resting under a table in front of them. Next to each hand and
foot, with a defined distance of 10 cm, a custom made force plate (indicated as patterned boxes) was installed. Indicated by the red (anode) and blue (cathode)
boxes, the anode was placed over the M1 leg area target region, the cathode (reference electrode) was placed over the middle of the forehead.

post), as well as their individual amount of sleep the night before
the experimental sessions, to sufficiently control for this matter.

Transcranial Direct Current Stimulation
(tDCS)
For tDCS, a weak direct current of 2 mA was delivered for
20 min bymeans of two surface electrodes using a battery driven-
stimulator (neuroConn GmbH, Ilmenau, Germany). For each
session, either anodal tDCS or sham tDCS was applied to the
bilateral M1 leg area. While the anode (7 cm × 5 cm) was placed
over the M1 leg area target region, the cathode (10 cm × 10 cm,
reference electrode) was placed over the middle of the forehead.
The anatomical landmark for M1 leg area was chosen according
to the 10–20 system and the anode was placed over the vertex
(Cz) on the mid-sagittal line (Madhavan and Stinear, 2010;
Laczó et al., 2014). Cz was determined over the intersection of
the courses nasion to inion and left preauricular point to right
preauricular point according to Jurcak et al. (2007). tDCS was
applied using two saline-soaked (0.9%NaCl) sponges and flexible
elastic straps were used to fixate the electrodes on the head.
The current was ramped up for 30 s at the beginning of tDCS
eliciting a transient tingling sensation on the scalp that faded
over seconds (Nitsche et al., 2003a; Gandiga et al., 2006) and
also ramped down for 30 s. During sham tDCS, the current was
increased, maintained and decreased for 30 s each. According to

Gandiga et al. (2006), this is enough time to identify the presence
of the current with no effective brain stimulation. The electrical
resistance was constantly monitored on the stimulator’s display
within a range between 5 and 10 k�. The adverse effects were
evaluated after each application through spontaneous reports of
any unpleasant sensations such as burning, tingling, headache
or nausea.

Motor Tasks
During each session, participants were seated 1 m away from
a computer monitor, upright on a stool (hips and knees at
90◦) with their hands resting on and their feet resting under
a table in front of them (see Figure 1B). Next to each hand
and foot, with a defined distance of 10 cm, a custom made
force plate was installed. Participants were instructed to rest
and relax their inactive extremities in this position. Facing the
computer monitor, participants performed four runs of a test
block (initial, during, after and 30 min after tDCS) consisting
of speed-related motor tasks. Each block consisted of two
runs of a simple RTT and two runs of a TT for each hand
and foot separately. Therefore, a total amount of eight RTTs
and eight TTs had to be performed with a total duration of
approx. 8 min. The order of these tasks was randomized for
each block and the software avoided two or more tasks for
the same extremity in a row. Between each task was a short
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rest period of 3 s when the upcoming task appeared on the
computer monitor.

Simple Reaction Time Task (RTT)
For simple RTT, participants had to place their active hand
(respectively foot) at the defined spot 10 cm away from the
respective force plate. In this position, they were instructed
to face the computer monitor and read the upcoming task
carefully. After a countdown of 3 s, indicating the start of
the run, participants were asked to press the respective force
plate as quickly as possible in response to the appearance of
a visual stimulus (cross) on the computer monitor. During
one RTT, a total of 15 trials had to be responded in this
manner with a randomized inter-trial interval of 0.5–2.0 s
to avoid anticipation of trial onsets. Between each trial, the
active hand (respectively foot) had to be placed back to the
defined spot. For each trial, the time interval (ms) between the
onset of the trial (cross) and the response was recorded as an
outcome measure.

Tapping Task (TT)
For TT, participants were asked to take the same position
as previously described for RTT. After a countdown of 3 s,
participants started the run on their own with their first touch
of the respective force plate. Subsequently, they had to press the
force plate as often as possible over a period of 20 s. Concerning
upper extremity TT, participants were instructed to tap in the
center of the force plate with a flat hand. For the lower extremity
counterpart, they were asked to keep the heel up in the air
and to tap with their forefoot. As an outcome measure, tapping
frequency (Hz) was recorded.

Analysis
For each test block, two runs of 15 trials were recorded for
the left hand (HL), right hand (HR), left foot (FL) and right
foot (FR), respectively. Afterward, these 30 reaction times of
one block were averaged for each extremity separately. Outliers
were defined as values <100 ms and >1,000 ms (Geiger
et al., 2018) of each participant and were excluded from the
averages. The lower limit was determined since all reaction
times <100 ms are considered to be unphysiological and only
in very few cases have been measured so far for the much faster
auditory reaction times (Pain and Hibbs, 2007). After averaging
all valid reaction times, this resulted in one value for RTT
before (initial), during, after and 30 min after tDCS stimulation.
Baseline differences were tested using a univariate ANOVA and
revealed significant differences between groups (see ‘‘Results’’
section for further details). Hence, all values were normalized to
initial (= 100%).

Concerning TT, two runs of 20 s were recorded for each test
block for HL, HR, FL and FR, respectively. First, the total amount
of taps during one run resulted in an average tapping frequency
over 20 s that was averaged for both runs for each extremity
(TT20). Second, the total amount of taps during the first 3 s
was considered, extracting the tapping frequency of the fastest
second (TTmax). According to RTT, this resulted in one value
for TT20 and TTmax before (initial), during, after and 30 min
after tDCS stimulation. Due to baseline differences (see ‘‘Results’’

section for further details), values were also normalized to
initial (= 100%).

All statistical analyses were performed with the software
SPSS 22 (IBM, Armonk, NY, USA) using parametric tests
since Shapiro-Wilk test revealed that RTT and TT data were
normally distributed. As already described above, baseline
differences were examined using an univariate ANOVA with
factor group (FB vs. HB vs. NA) using Gabriel and Games-
Howell post hoc tests, respectively to analyze the differences
if necessary. A 2 × 3 × 3 repeated measures ANOVA was
conducted to analyze the mean normalized values of RTT, TTmax
and TT20 of each group and each extremity for three test blocks
of the tasks (first within-subject factor), including stimulation
condition (anodal vs. sham) as second within-subject factor and
group (FB vs. HB vs. NA) as between-subject factor. Regarding
the first within-subject factor, initial was not included since
data were normalized and level initial would not have any
variance across participants since all of them would have a value
of 100%.

For the CG (without tDCS), a repeated measures ANOVA
with factor test block (within-subjects factor) was conducted.
Additionally, we computed the test-retest reliability using an
intraclass correlation coefficient (ICC) to examine whether
potential performance gains are in fact tDCS related or an effect
of fatigue or learning.

When the respective interactions were significant, also Gabriel
and Games-Howell post hoc tests, respectively were applied to
analyze the differences. The critical level of significance for
RTT and TT differences in all tests was set to p < 0.05 and
Bonferroni adjusted for multiple comparisons. If necessary,
data were corrected for sphericity using Greenhouse-Geisser
correction. Partial eta-squared (η2p) for ANOVAs are provided
as measures of effect size and used to aid in the interpretation
of inferential statistics. As a rule of thumb, introduced by Miles
and Shevlin (2000), η2p ≥ 0.01 is considered to be a small, η2p
≥ 0.06 a medium, and η2p ≥ 0.14 a large effect. Additionally,
as recommended for tDCS studies by Biel and Friedrich (2018),
Bayes factors (BF), a useful tool for evaluating evidence both for
the research hypothesis and for the null hypothesis (Dienes, 2011;
Kruschke, 2011), are reported for repeated measures ANOVAs
using JASP (Jeffreys’s Amazing Statistics Program, Marsman and
Wagenmakers, 2017). BFs above 1 indicate evidence for H1 over
H0, whereas BFs below 1 suggest the exact opposite. If BFs are
above 3 or below 0.33, the strength of evidence for one hypothesis
compared to its competing hypothesis is regarded as noteworthy
(Jeffreys, 1961; Lee andWagenmakers, 2013). Thus, BFs between
0.33 and 3 are considered as inconclusive, or only anecdotal
evidence for any hypothesis.

RESULTS

Test-Retest Reliability of RTT and TT
To exclude that the pure repetition of RTT and TT would
lead to significant behavioral alterations, we performed
a test-retest analysis using a CG (n = 12). We found no
statistically significant alterations neither in RTT performance
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(rmANOVA, main effect of test block, HL: F(3,33) = 0.363,
p = 0.780, η2p = 0.032; HR: F(3,33) = 0.215, p = 0.886,
η2p = 0.019; FL: F(2.139,23.531) = 2.002, p = 0.155, η2p = 0.154;
FR: F(3,33) = 0.290, p = 0.832, η2p = 0.026) nor in TT performance
(rmANOVA, main effect of test block, HL: F(1.914,21.055) = 2.227,
p = 0.134, η2p = 0.168; HR: F(1.379,15.172) = 2.622, p = 0.118,
η2p = 0.192; FL: F(1.600,17.598) = 1.695, p = 0.214, η2p = 0.133; FR:
F(1.525,16.770) = 2.103, p = 0.160, η2p = 0.160) performance.
These findings were confirmed by good intrasession
reliabilities according to Larsson et al. (1999) for RTT
(ICCHL (33,11) = 0.908; ICCHR (33,11) = 0.884; ICCFL
(33,11) = 0.845; ICCFR (33,11) = 0.897) and TT (ICCHL
(33,11) = 0.974; ICCHR (33,11) = 0.952; ICCFL (33,11) = 0.947;
ICCFR (33,11) = 0.940).

Initial Group Comparisons of RTT and TT
Initial RTT Performance
Initial RTT values differed significantly between groups
indicating superior RTT performances in FB and HB as
compared to NA (see Figure 2A). uANOVA revealed a
significant main effect of group in HL (F(2,43) = 4.752, p = 0.014,
η2p = 0.181), HR (F(2,43) = 7.910, p = 0.001, η2p = 0.269), FL
(F(2,43) = 9.272, p = 0.000, η2p = 0.301) and FR (F(2,43) = 6.863,
p = 0.003, η2p = 0.242). Post hoc analyses showed significant
differences between FB and NA in HR (padjusted = 0.018), FL
(padjusted = 0.004) and FR (padjusted = 0.040) as well as between
HB and NA in HL (padjusted = 0.023), HR (padjusted = 0.002),
FL (padjusted = 0.002) and FR (padjusted = 0.003). However,
there were no significant differences between FB and HB (HL:
padjusted = 0.950; HR: padjusted = 0.839; FL: padjusted = 0.983; FR:
padjusted = 0.770).

Initial TTmax Performance
Initial maximum tapping frequency (TTmax) differed
significantly between groups indicating superior TTmax
performances in FB and HB as compared to NA (see Figure 2B).
uANOVA revealed a significant main effect of group in HL
(F(2,43) = 10.729, p = 0.000, η2p = 0.333), HR (F(2,43) = 8.525,
p = 0.001, η2p = 0.284), FL (F(2,43) = 14.231, p = 0.000, η2p = 0.398)
and FR (F(2,43) = 7.501, p = 0.002, η2p = 0.259). Post hoc analyses

showed significant differences between FB and NA in HL
(padjusted = 0.002), HR (padjusted = 0.001), FL (padjusted = 0.000)
and FR (padjusted = 0.008) as well as between HB and NA in HL
(padjusted = 0.001), FL (padjusted = 0.003) and FR (padjusted = 0.006).
However, there were no significant differences between FB
and HB (HL: padjusted = 0.973; HR: padjusted = 0.292; FL:
padjusted = 0.536; FR: padjusted = 0.999).

Initial TT20 Performance
Initial average tapping frequency over 20 s (TT20) differed
significantly between groups indicating superior TT20
performances in FB and HB as compared to NA (see Figure 2C).
uANOVA revealed a significant main effect of group in HL
(F(2,43) = 13.081, p = 0.000, η2p = 0.378), HR (F(2,43) = 9.995,
p = 0.000, η2p = 0.317), FL (F(2,43) = 15.682, p = 0.000, η2p = 0.422)
and FR (F(2,43) = 11.426, p = 0.000, η2p = 0.347). Post hoc analyses
showed significant differences between FB and NA in HL
(padjusted = 0.000), HR (padjusted = 0.000), FL (padjusted = 0.000)
and FR (padjusted = 0.000) as well as between HB and NA in HL
(padjusted = 0.001), FL (padjusted = 0.000) and FR (padjusted = 0.004).
However, there were no significant differences between FB
and HB (HL: padjusted = 0.988; HR: padjusted = 0.282; FL:
padjusted = 0.963; FR: padjusted = 0.815).

tDCS-Induced Effects on RTT and TT
Performance
tDCS-Induced Effects on RTT Performance
Regarding tDCS-induced effects on RTT performance in the
upper extremities (see Figure 3), rmANOVA revealed a
non-significant time × group × condition interaction (HL:
F(4,86) = 0.741, p = 0.566, η2p = 0.033, BF = 0.077; HR:
F(4,86) = 0.321, p = 0.863, η2p = 0.015, BF = 0.064). Only factor
time showed a significant influence on RTT performance (HL:
F(2,86) = 9.228, p = 0.000, η2p = 0.177; HR: F(2,86) = 4.622,
p = 0.012, η2p = 0.097). Moreover, post hoc tests revealed a
significant influence of factor group in HR directly after tDCS
(F(2,43) = 4.267, padjusted = 0.020, η2p = 0.166).

For FL, rmANOVA examined a significant influence of factor
group (F(2,43) = 3.564, p = 0.037, η2p = 0.142) indicating significant
differences between HB and NA (padjusted = 0.045), although

FIGURE 2 | Initial RTT and TT results. Values are mean ± SE of left hand (HL), right hand (HR), left foot (FL) and right foot (FR), respectively. Light gray bars
represent football players (FB), medium gray bars represent handball players (HB) and dark gray bars represent non-athletes (NA). ∗(p < 0.05) indicates significant
differences between groups in their initial performances. Initial simple RTT values (A), TTmax values (B) and TT20 values (C) differed significantly between groups
indicating superior performances in FB and HB as compared to NA.
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FIGURE 3 | tDCS-induced effects on simple RTT performance. Diagrams include normalized (% of initial values) simple reaction time values (mean ± SE) of left
hand (HL), right hand (HR), left foot (FL) and right foot (FR), respectively for before (initial), during, after as well as 30 min after a 20-min tDCS which is indicated by the
red box. Light gray lines represent football players (FB), medium gray lines represent handball players (HB) and dark gray lines represent non-athletes (NA). The solid
lines define values for anodal tDCS and the corresponding dashed lines indicate values for sham tDCS.

there was no significant time × group × condition interaction
(F(3.311,71.190) = 0.788, p = 0.516, η2p = 0.035, BF = 0.078).
For FR, results showed a significant time × group interaction
(F(4,86) = 2.504, p = 0.048, η2p = 0.104) and a significant
influence of factor group (F(2,43) = 4.434, p = 0.018, η2p = 0.171)
indicating differences between FB vs. HB (padjusted = 0.037) and
HB vs. NA (padjusted = 0.029). The highest influence of factor
group has been found 30 min after tDCS (padjusted = 0.001).
However, there was no significant influence of tDCS condition
(time × group × condition: F(4,86) = 1.061, p = 0.381, η2p = 0.047,
BF = 0.088). On a group level, RTT performance in FB
differed significantly between anodal and sham (padjusted = 0.022)
indicating a tDCS-induced RTT performance gain of 3.21%.

tDCS-Induced Effects on TTmax Performance
rmANOVA revealed no significant time × group × condition
interaction for TTmax performance (see Figure 4), neither in
upper (HL: F(3.272,70.351) = 1.114, p = 0.352, η2p = 0.049, BF = 0.091;
HR: F(4,86) = 1.485, p = 0.214, η2p = 0.065, BF = 0.123) nor in
lower extremities (FL: F(3.334,71.682) = 2.039, p = 0.110, η2p = 0.087,
BF = 0.153; FR: F(3.009,64.689) = 1.553, p = 0.209, η2p = 0.067,
BF = 0.210). The same applies to all post hoc tests, which also
showed no significant results.

tDCS-Induced Effects on TT20 Performance
Regarding the upper extremities, rmANOVA revealed a
non-significant time × group × condition interaction for TT20
performance (see Figure 5) in HL (F(4,86) = 0.672, p = 0.613,
η2p = 0.030, BF = 0.070) and HR (F(4,86) = 0.945, p = 0.442,
η2p = 0.042, BF = 0.095). However, findings in HL showed
a significant time × condition interaction (F(2,86) = 4.540,
p = 0.013, η2p = 0.095) indicating a significant influence
of tDCS condition directly after stimulation (post hoc test:
padjusted = 0.011). Moreover, subsequent comparisons on group
level for HL revealed a significant difference between anodal
and sham condition in FB (padjusted = 0.033) indicating a
tDCS-induced performance gain of 4.06% in TT20.

However, regarding the lower extremities, TT20 findings
showed no significant results (see also Figure 5) neither in
rmANOVA (FL: F(3.090,66.440) = 1.019, p = 0.392, η2p = 0.045,
BF = 0.097; FR: F(3.239,69.633) = 1.061, p = 0.375, η2p = 0.047,
BF = 0.120) nor in all post hoc tests.

DISCUSSION

The present study aimed to investigate whether 20 min of anodal
tDCS over the leg area of the M1 is capable to affect motor
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FIGURE 4 | tDCS-induced effects on maximum tapping frequency (TTmax). Diagrams include normalized (% of initial values) TTmax values (mean ± SE) of left hand
(HL), right hand (HR), left foot (FL) and right foot (FR), respectively for before (initial), during, after as well as 30 min after a 20-min tDCS which is indicated by the red
box. Light gray lines represent football players (FB), medium gray lines represent handball players (HB) and dark gray lines represent non-athletes (NA). The solid lines
define values for anodal tDCS and the corresponding dashed lines indicate values for sham tDCS.

performance in a simple reaction time (RTT) and tapping task
(TT) for both upper and lower extremities. Here, trained athletes
of different sports disciplines [football players (FB) and handball
players (HB)] were tested to investigate possible tDCS-induced
behavioral gains using speed-related motor tasks. The study
focused on the question of whether athletes would differ in their
behavioral response to tDCS compared to non-athletes (NA) and
if sport-specific differences could be determined. In line with
previous findings, we revealed no differences between anodal
and sham tDCS conditions neither on RTT (Tanaka et al., 2009;
Stagg et al., 2011; Horvath et al., 2016) nor on TT (Boehringer
et al., 2013) performance. Thus, our results indicate that the
application of tDCS over M1 leg area did not elicit performance
enhancement neither in athletes nor in NA. Future studies can
use this knowledge to identify valid and suitable conditions that
could lead to tDCS-induced performance gains on speed-related
motor tasks with regard to different sports and other responsible
brain regions such as cerebellum.

Superior Initial Performances in Athletes
Compared to Non-athletes
We hypothesized that athletes would show better RTT and TT
performances as compared to NA which was confirmed in both
tasks. As well known, physical training has a positive effect on
both reaction time (Davranche et al., 2006) and speed (Little and

Williams, 2005). Since FB and HB usually integrate speed-related
tasks for upper and lower extremities into their practice routine,
it is reasonable to assume that this translates into superior
performance in RTT and TT compared to performance of NA.
Even an acute short-term physical exercise is capable to improve
motor time in a simple and choice RTT as it has been shown
by Davranche et al. (2006) and Kashihara and Nakahara (2005).
Furthermore, it has been reported by several studies that the
dynamic visual acuity of athletes was superior to that of NA
(Ishigaki and Miyao, 1993) and that athletes were faster in RTTs
than NA (Yandell and Spirduso, 1981; Ando et al., 2001; Akarsu
et al., 2009; Atan and Akyol, 2014; Kuan et al., 2018). These
findings can be explained by the fact that hand-eye coordination
plays an important role especially in sports that require high
motor hand skills such as team sports and racket sports (Paul
et al., 2011; Laby et al., 2018). Moreover, this is also reasonable
for sports depending on high motor foot skills such as football.
In a recent study by Atan and Akyol (2014), a large number of
athletes from different sports branches (football, basketball, judo,
track and field, taekwondo) performed a simple RTT of left and
right hand in comparison to NA. As a conclusion they found that
NA’s reaction time parameters were worse than the most branch
athletes. In addition to that, reaction time parameters of athletes
did not differ between sports branches (except judokas) which
could be confirmed by the present study.
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FIGURE 5 | tDCS-induced effects on average tapping frequency over 20 s (TT20). Diagrams include normalized (% of initial values) TT20 values (mean ± SE) of left
hand (HL), right hand (HR), left foot (FL) and right foot (FR), respectively for before (initial), during, after as well as 30 min after a 20-min tDCS which is indicated by the
red box. Light gray lines represent football players (FB), medium gray lines represent handball players (HB) and dark gray lines represent non-athletes (NA). The solid
lines define values for anodal tDCS and the corresponding dashed lines indicate values for sham tDCS.

No Effect of tDCS on RTT and TT
Performance
We further hypothesized that anodal tDCS over M1 leg area
would lead to specific behavioral gains in simple reaction time
and tapping performance of the foot as compared to sham
condition. Using common tDCS parameters [see ‘‘Transcranial
Direct Current Stimulation (tDCS)’’ section for further details],
our results showed no effect of anodal tDCS on RTT and TT
performance neither as online gains nor offline.

Concerning RTT results, our findings go in line with a
previous study by Tanaka et al. (2009). In this cross-over study,
a total number of 10 participants performed hand and foot RTTs
before and during as well as 10, 30 and 60 min after anodal,
cathodal or sham tDCS, respectively. Stimulation was applied for
10 min over the left leg representation of the right motor cortex
with an intensity of 2 mA (for anodal and cathodal condition).
The authors stated that the anodal tDCS over the leg motor
cortex did not change the leg RTT performance contralateral
to the stimulation. From their point of view, that might be due
to performance ceiling, task sensitivity or stimulation strength
and/or duration. With regard to our results, we could show
that even doubling the stimulation duration did not lead to a
significant enhancement on the behavioral level. Concerning task

sensitivity, some studies suggest that tDCS effects depend upon
task-difficulty and individual level of task performance (Kwon
et al., 2015; Mizuguchi et al., 2018). Hence, the complexity and
sensitivity of simple speed-related motor tasks that were used
in the present study might be too low to induce a modulatory
tDCS effect on a behavioral level. Using a choice RTT as a
more complex task, Drummond et al. (2017) were able to
demonstrate enhanced choice reaction times in left and right
hand after stimulating M1 for 10 min with an intensity of 1 mA.
Furthermore, Hupfeld et al. (2017) provide evidence that a choice
RTT is more sensitive to benefit from tDCS.

In contrast, the simple reaction time in hand motor tasks
has been reported to be facilitated by anodal tDCS (Hummel
and Cohen, 2005; Hummel et al., 2006). Tanaka et al. (2009)
assume that, because of low spatial focality of tDCS, anodal
tDCS in the previous studies stimulated not only the hand motor
cortex but also parts of the premotor cortex. Since this specific
brain region is responsible for externally triggered movements
(Goldberg, 1985; Wessel et al., 1997; Crosson et al., 2001), it
would be reasonable to suppose that RTT performance might
be facilitated by tDCS over this area. This clearly elucidates
that M1 is only one of several brain regions that is eligible to
induce behavioral changes by tDCS in a huge variety of motor
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tasks. Several studies show that also the cerebellum might play
an important role in speed-related motor tasks. In a study by
Martin et al. (2006), magnetoencephalography (MEG) was used
to measure brain activity while participants performed a simple
RTT. The cerebellar results may reflect a number of possible
factors, including a role in timing, response readiness, prediction
and attention. This is confirmed by an investigation by Théoret
et al. (2001), showing no effect of repetitive TMS (rTMS) of the
lateral cerebellum or motor cortex, and sham stimulation, on
performance of a paced-finger-tapping task (PFT) but following
a 5 min train of 1 Hz rTMS to the medial cerebellum.

Concerning TT performance, we hypothesized to elucidate
tDCS-induced effects at least on tapping frequency over 20 s since
this task is mainly influenced by neuromuscular fatigue (Arias
et al., 2012). There is compelling evidence that neuromuscular
fatigue, that is defined as the exercise-dependent decrease
in the ability of muscle fibers to generate force, occurs
due to both central and peripheral factors (Gandevia, 2001).
In a previous study, Cogiamanian et al. (2007) investigated
whether tDCS delivered over motor cortex would have any
effect on fatigue in normal volunteers assessing the endurance
time for a submaximal isometric contraction of left elbow
flexors. Their findings indicate that anodal stimulation had
effects consistent with a reduction in fatigue in comparison
to both no stimulation and cathodal stimulation. According
to Banissy and Muggleton (2013), these results lead to the
assumption that it is possible to modulate fatigue to a
large degree with tDCS stimulation. Contrarily, in our case,
neither tapping performance over 20 s nor maximum tapping
frequency were influenced by anodal tDCS. Therefore, it is
absolutely essential to reveal the underlying neural mechanisms
of maximum fast movements andmovements that are influenced
by neuromuscular fatigue in order to use possible tDCS benefits
in any sports training.

Taken together, we showed that tDCS is not capable of
evoking enhanced performance in speed-related motor tasks.
As argued above, the outcome of tDCS seems to be affected
by multiple factors involving task characteristics and individual
determinants (Ridding and Ziemann, 2010). Furthermore, little
is known about neuronal correlates of RTT and TT performance.
Therefore, more research is needed to draw a comprehensive
picture on speed-related motor abilities in healthy adults and
how non-invasive brain stimulation techniquesmay interact with
such complex coordinative behavior.

tDCS-Effects in Athletes
On an exploratory level, we hypothesized that athletes would
show stronger tDCS-induced behavioral gains as compared to
NA, and, furthermore, if there are any differential effects between
FB and HB. This is based on the assumption that tDCS is
capable to broadly modulate brain activity, but, as pointed
out by Edwards et al. (2017), it remains to be conclusively
determined whether it can improve sports performance at an
elite level. Our results indicate that athletes also did not benefit
from tDCS stimulation on a behavioral level as did NA. This is
partly due to the ceiling effect that may have occurred in RTT
and TT, but is also due to the high specificity of the brain of

trained athletes. According to the ‘‘neural efficiency’’ hypothesis
(Dunst et al., 2014), the athlete’s brain works differently when
performing a task compared to NA. More precisely, it consumes
less neural resources for the same task. Another peculiarity
is based on the concept of ‘‘homeostatic plasticity’’ in human
subjects, suggesting that homeostatic mechanisms operating
across hemispheric boundaries contribute to regulating motor
cortical function in the M1 as previously shown by Ragert
et al. (2009). In terms of the present study, this means that
a high level of performance in a specific task in combination
with an external stimulation can lead to a decline in physical
performance. Consequently, anodal tDCS over M1 can induce
inhibition of cortical excitability or a null effect on a behavioral
level in trained athletes.

However, it is not legitimate to claim that tDCS has no effect
on trained athletes per se. The reviews of Banissy and Muggleton
(2013) and Edwards et al. (2017) include a number of studies
showing positive tDCS-induced effects on motor abilities like
muscle power and endurance in athletes. Nevertheless, Banissy
and Muggleton (2013) draw attention to the point that currently
much of the evidence supporting this is theoretical, having
been obtained from individuals not involved in a high standard
of sport. While this does not apply to the present study, the
investigation of more homogeneous groups of athletes might also
lead to different results. Although the level of FB and HB was
high, they differed quite in their individual training history or in
their current training effort.

Study Limitations
In the present study, we used anodal tDCS to induce a possible
behavioral change in the performance of athletes and NA
in speed-related motor tasks. To get a better understanding
of the neuronal correlates of RTT and TT performance and
potential tDCS effects on neuronal networks, further studies
that combine neurophysiological assessments of brain activation
with behavioral outcome measures are needed. Our findings
indicate that the target region (M1 leg area) seems to be
less responsible for RTT and TT performance in the lower
extremities. Therefore, in future studies, the role of other key
regions such as cerebellum or supplementary motor area (SMA)
needs to be further investigated. Even though we did not detect
any tDCS-induced effects on RTT and TT performance in
our study population, it has been previously shown that tDCS
affects other motor abilities in athletes. Additionally, we did
not investigate the role of multiple tDCS-sessions on RTT and
TT performance and did not test for any long-term effects. It
is worth considering that multiple tDCS application sessions
may have induced stronger behavioral effects that could be
more persistent. Following up on this, future studies should
also address the problem of optimal stimulation duration and
intensity. Concerning polarity, the chance to obtain a different
result using cathodal tDCS over M1 leg area is very little
since previous findings suggest that it is more difficult to
suppress the excitability of the leg motor cortex with cathodal
tDCS than the hand area of the motor cortex (Jeffery et al.,
2007). This might be due to the leg motor cortex having
fewer inhibitory circuits than the hand motor cortex, or
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cathodal current might be less effective in M1 leg area because
of the different orientation and position of the leg motor
cortex relative to the scalp (Jeffery et al., 2007; Tanaka et al.,
2009). However, this study was the first step in understanding
the effect of a single tDCS session on the performance in
simple speed-related motor tasks in trained athletes. For future
studies, it is conceivable that a more sensitive motor task, as
well as a homogeneous study group at a high performance
level, can nevertheless lead to a positive tDCS-induced effect
in athletes.

CONCLUSION

Previous research provides evidence that the application of tDCS
is capable to affect the performance in various motor abilities.
This is not only true for patients or healthy adults, but also
for trained athletes who represent a highly specific group of
experts regarding their neuronal adaptions on long-term physical
activity. The present study contributes to current approaches
to increase sports performance using non-invasive stimulation
methods. Our results provide novel quantitative evidence that
neither athletes nor NA seems to benefit from a brief period
of tDCS application in speed-related motor tasks. However, it
is not legitimate to claim that tDCS has no effect on trained
athletes per se. More knowledge on neuronal processing of
RTT and TT performance in trained athletes, the influence of
tDCS parameters, and the effect of inter-individual differences

are required in order to draw a comprehensive picture of
whether tDCS can help to enhance motor abilities on a high
performance level.
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Introduction: Motor evoked potentials (MEPs) to transcranial magnetic stimulation
(TMS) are known to be susceptible to several sources of variability. However, conflicting
evidences on individual characteristics in relatively small sample sizes have been
reported. We investigated the effect of age, height, and sex on MEPs of the motor
cortex and spinal roots in a large cohort.

Methods: A total of 587 subjects clinically and neuroradiologically intact were included.
MEPs were recorded during mild tonic contraction through a circular coil applied
over the “hot spot” of the first dorsal interosseous and tibialis anterior muscles (TAs),
bilaterally. Central motor conduction time (CMCT) was estimated as the difference
between MEP cortical latency and the peripheral motor conduction time (PMCT)
by cervical or lumbar magnetic stimulation. Peak-to-peak MEP amplitude to cortical
stimulation and right-to-left difference of each parameter were also measured.

Results: After Bonferroni correction, general linear (multiple) regression analysis showed
that both MEP cortical latency and PMCT at four limbs positively correlated with age and
height. At lower limbs, an independent effect of sex on the same measures was also
observed (with females showing smaller values than males). CMCT correlated with both
age (negatively) and height (positively) when analyzed by a single regression; however,
with a multiple regression analysis this significance disappeared, due to the correction
for the multicollinearity within the dataset.

Conclusion: Physical individual features need to be considered for a more accurate
and meaningful MEPs interpretation. Both in clinical practice and in research setting,
patients and controls should be matched for age, height, and sex.

Keywords: motor evoked potentials, transcranial magnetic stimulation, physical variables, reference values,
central motor conduction time, translational neurophysiology
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INTRODUCTION

Transcranial magnetic stimulation is widely employed in daily
clinical practice to non-invasively estimate in vivo and in real
time the excitability of the M1 and the conductivity along the
cortico-spinal tract. Moreover, the analysis of MEPs, produced
contralaterally to the stimulated cortex, has recently attracting
interest also in the assessment of synaptic plasticity and network
connectivity, both in normal subjects and in patients with several
neuropsychiatric disorders (Bella et al., 2011, 2013, 2016; Pennisi
et al., 2015, 2016; Cantone et al., 2017; Lanza et al., 2017a),
including systemic diseases involving the CNS (Pennisi et al.,
2014; Bella et al., 2015). Briefly, TMS produces a rapid high-
intensity pulse which passes unattenuated through the scalp
(Hallett, 2007; Rossini and Rossi, 2007). When TMS is applied
over M1, the cortex is activated through an electromagnetic
induction, the impulses are transmitted along the cortico-spinal
tract and peripheral nerves, so that a MEP can be recorded
from a skeletal muscle using standard EMG surface electrodes.
Translationally, MEPs provide a direct, objective, and painless
assessment of the motor system (Hallett, 1996), including
the excitability of the excitatory and inhibitory circuits, the
integrity of central conduction pathways, and the functioning of
transcallosal connections of motor cortices (Lanza et al., 2013).

Differentiating between altered MEP responses resulting from
a central or peripheral nerve pathology and concomitantly
excluding the sources of variability not related to neural
dysfunction, is of paramount importance in clinical practice
(Lanza et al., 2017b). Therefore, the reliable identification
of normal or abnormal MEPs requires a comprehensive
characterization in appropriate populations. Based on previous
studies, some physical variables (i.e., age, height, and sex) all
showed to affect MEPs (Chu, 1989; Booth et al., 1991; Ghezzi
et al., 1991; Furby et al., 1992; van der Kamp et al., 1996; Mills
and Nithi, 1997), although the samples studied are relatively small
and conflicting evidences on the relationship between MEPs
and individual characteristics have been reported. Additionally,
most studies concentrated on the 20–50 years age range, and no
conclusive description of reference values of upper and lower
limb over different ranges of age (especially in older adults
(Matamala et al., 2013) in a substantial sample of male and female
subjects is available. Finally, several technical and procedural
factors (such as the characteristics of the stimulator, the coil
design, and other experimental conditions) make it difficult to
obtain normative data and to compare those established by
different laboratories.

To date, the relationship between MEPs and source of
variability is not fully understood. If, in the same laboratory
and under the same experimental conditions, a relationship
between physical variables and MEPs is found, then, accounting
for these factors through proper scaling of MEP parameters

Abbreviations: CCCT, cortico-conus motor conduction time; CMCT, central
motor conduction time; CNS, central nervous system; EMG, electromyography;
F, female; FDI, first dorsal interosseous muscle; M, male; M1, primary motor
cortex; MEPs, motor evoked potentials; n, number of subjects; PMCT, peripheral
motor conduction time; SD, standard deviation; TA, tibialis anterior muscle; TMS,
transcranial magnetic stimulation.

would allow for a more accurate recording and meaningful
interpretation. Till now, however, no previously published study
has systematically addressed these variables at the same time
together. Correlating MEP cortical latencies with CMCT and
height was suggested as an approach for standardizing MEPs
response (Booth et al., 1991), although normal values and age- or
height-adjusted latencies were not reported. About the influence
that gender might have on conduction velocity, MEPs cortical
latencies were found to be longer in males than in females
(Mills and Nithi, 1997), albeit the possible confounding effect of
height (in terms of longer conduction pathway in males) was not
adequately addressed. Therefore, a systematic investigation of the
effect of height on MEP cortical latency and CMCT between sexes
and across different age groups is also warranted.

In the present study, diagnostic TMS data from a large cohort
of subjects clinically and neuroradiologically intact are provided.
Then, we assessed the relationship between MEPs and some
physical variables (age, height, and sex) in order to identify
the factors that are likely to affect motor responses. Given the
physiological age-related slowing of the conduction velocity and
the different length-dependent velocities between upper and
lower limb, we hypothesized that both age and height would
positively correlate with MEP cortical latency and PMCT. For the
same reasons, we also expected a negative correlation between
MEPs amplitudes and age, especially for lower limbs. When
subjects’ height is considered, we hypothesized that the adjusted
latencies should demonstrate minimal interindividual variability.

MATERIALS AND METHODS

Participants
A total of 587 consecutive subjects ranging from 18 to 87 years
in age (41.1% males) and from 145 to 197 cm in height were
retrospectively included from the TMS Lab of the University of
Catania (Italy), from March 2008 to November 2018. According
to the inclusion criteria, none of them had motor deficit or history
of central and peripheral motor or neuromuscular disorder based
on a preliminary interview, a specific medical questionnaire, and
a full neurological examination. All subjects had normal mobility
and were able to engage in tasks of daily life without assistance,
even the most elderly. Any CNS pathology was also ruled out
by brain and spinal magnetic resonance imaging. Therefore, all
participants eventually included were neurologically intact.

Based on previous TMS studies (Livingston et al., 2010, 2013;
Matamala et al., 2013; Cueva et al., 2016), subjects were excluded
if they had: history or presence of epilepsy, moderate-to-severe
traumatic head injury, previous cranial or spinal surgery, stroke
or chronic cerebrovascular diseases, chronic pain syndrome,
peripheral neuropathies or other neurological or neuromuscular
disorders; current or previous psychiatric diseases; any acute,
advanced, or chronic not compensated medical illness (including
diabetes, hypothyroidism, and neoplasm); alcohol or drug
abuse; implanted electrical biomedical devices (i.e., pacemaker),
pregnancy at the time of testing, or any other contraindication
to TMS (Rossi et al., 2009); current treatment with neuroactive
drugs or any other medication able to affect cortical excitability
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(Paulus et al., 2008; Ziemann et al., 2015). Out of 587, 482
were out-patients, mainly referred by general practitioners or
other specialists for non-specific clinical complaints in order
to rule out the possibility of an underlying neurological
condition. The remaining 105 were in-patients admitted because
of subjective motor symptoms without clinical, radiological, and
neurophysiological correlates.

Height was measured with a cloth tape measure with the
subject standing in the anatomical position (barefoot, with heels
together, arms at the side, legs straight, shoulders relaxed, and
head in the horizontal plane). Measurement was recorded to
the nearest 0.1 cm.

This study was carried out in accordance with the
recommendations of the guidelines of the International
Federation of Clinical Neurophysiology Committee for the
diagnostic use of TMS (Ziemann et al., 2015). The protocol was
approved by the Ethics Committee of the “Azienda Ospedaliero
Universitaria Policlinico-Vittorio Emanuele” of Catania, Italy.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki of 1964 and its later amendments.

Instrumentations and Technical
Considerations
A high-power monopulse biphasic electromagnetic stimulator
MagStim 220 (The Magstim Co., Ltd., Whitland, Dyfed,
United Kingdom) capable of generating a maximal output of
2.0 Tesla, with a maximum duration of <1 ms and a rise time
of 100 µs, was used to evoke motor responses. Magnetic pulse
intensity was expressed as a percentage of the maximal stimulator
output (100%). The capacitor was connected to a 90 mm circular
coil (inner diameter of 5 cm), routinely employed for diagnostic
TMS. Since the round coil stimulates a larger cortical volume, the
positioning over the target region is easier than with the focal
“figure-of-eight” shaped coil. The large round coil also results
in a better depth penetration, which is advantageous for TMS
of M1 leg area. Finally, the round coil is less susceptible to the
unavoidable minimal changes in the coil position (Groppa et al.,
2012; Rossini et al., 2015).

Coil was applied with the handle pointing backward and held
tangentially flat on the scalp, with its center positioned over Cz
(according to the international EEG 10–20 system) for recording
from the FDI and over Fz for recording from the TA. For TMS
of the right hemisphere, the current direction within the circular
coil was clockwise, so that the induced cortical current was
perpendicular to the cortex in posterior-anterior direction, and
vice versa for the left hemisphere, as recommended (Wassermann
et al., 2008). After the location was identified, the coil position
was slightly adapted until the best excitation point (“hot spot”)
was accomplished. Once the position was defined, the outer rim
of the coil was marked with a dermographic pen on the scalp to
enable the examiner to maintain a constant position.

All motor responses were obtained at 80% of the maximum
stimulator output, based on the evidence that threshold
stimulation for a 2.0 Tesla magnetic stimulator is about 50–65%
of the maximal output (Amassian et al., 1989; Alexeeva et al.,
1998; Garry et al., 2004). In such a way, a visible contraction of

the target muscle was constantly observed after each stimulation.
We also verified that MEP cortical latency did not further
shorten and amplitude did not further increase by incrementing
the intensity above 80%. This implies that the intensity used
was sufficiently high to excite the fast-conducting cortico-spinal
neurons (Groppa et al., 2012).

Motor responses were amplified and filtered (bandwidth
3-3,000 Hz) using a 2-channel Medelec Synergy system
(Oxford Instruments Medical, Inc., United Kingdom), with
an amplification factor of the screen of 1 mV/division unit
during the MEP recording. The temporal resolution of the
screen (sweep) was 5 ms/division unit, in such a way that the
TMS artifact, the beginning and the end of MEP were always
clearly visible.

Subject Preparation
A detailed explanation of the exam was preliminarily provided
to each subject. In preparation for placement of the recording
electrodes and to decrease cutaneous impedances, the skin was
gently abraded with fine-grade sandpaper and cleaned with an
isopropyl alcohol pad. MEPs were recorded via standard surface
EMG silver/silver chloride cup electrodes (9 mm diameter), filled
with electrode jelly and applied on FDI and TA contralaterally to
the side of stimulation, in a conventional belly tendon montage.
For upper limbs, the recording (active) electrode was placed
over the mid-point of the FDI belly, the reference electrode
distally at the metacarpal-phalangeal joint of the index finger,
and the ground electrode on the radial surface of wrist; for lower
limbs, the recording (active) electrode was placed over the mid-
point of TA belly, the reference electrode 3–4 cm distally over
the muscle tendon, and the ground electrode over the patella.
The FDI muscle, commonly examined using TMS, was selected
because it can be easily contracted and recorded compared to
other hand muscles. Based on the fact that evoking MEPs in
the lower limbs is usually more difficult than in the upper
limbs, we used the TA muscle for a number of reasons: it
has a more pronounced representation than most of the other
leg muscles; it has a relatively low excitation threshold; its
MEPs have a larger amplitude compared to other leg muscles
(Petersen et al., 2003); differently from the foot muscles, it is
usually not wasted in elderly patients (Claus, 1990). Electrode
impedance was constantly kept <10 KOhms, as recommended
(Groppa et al., 2012).

Side-to-side difference was also considered, with “right” and
“left” referred to the recording side of the target muscle. Trials
containing any type of artifact were removed. Similarly, we have
excluded trials contaminated by EMG activity at rest (indicating
a non-relaxed muscle), as well as the “active” trials (during
contraction) with excessive EMG voluntary activity that made
a reliable recognition of the onset of MEP cortical latency
difficult or doubtful.

All data were collected on a dedicated PC and stored for off-
line analysis. Subjects were seated in a comfortable armchair,
in a quiet environment, and asked to keep their hands and
legs as relaxed as possible. All exams were conducted in the
same laboratory and experimental conditions (including room
temperature), at the same time of the day (approximately
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9:00–11:30 am) and by the same trained operators. All
measurements were made by a senior operator (GL) and finally
checked and approved by the Lab head (GP).

TMS and Spinal Magnetic Stimulation
First, a reference MEP to TMS in the relaxed muscle was
obtained. Then, subjects were asked to produce a small
transient tonic contraction of the target muscle (about 10–
20% of the subject’s maximum voluntary contraction, just
enough to overcome gravity), in order to obtain MEPs with
higher amplitude and shorter latency compared to the reference
response. Contracted MEPs, indeed, are mediated by the large
and fast-propagating α-motoneuron pools and reflect a fast-
propagating system from the cortex to the muscle (Rossini
et al., 2015). Since active contraction potentiates and stabilizes
MEPs (Boroojerdi et al., 1999; Sohn and Hallett, 2004), five
trials were sufficient to confirm their reproducibility (Rossini
and Caramia, 1992). Muscle contraction was kept constant by
using a strain gauge and with the help of a continuous auditory
and visual EMG activity monitoring, as recommended (Fritz
et al., 1997). The acoustic feedback also allowed to monitor the
level of muscular activity and to check for complete relaxation
(Rossini et al., 2015).

Motor evoked potential cortical latency was calculated as
the time interval from the TMS artifact to the first negative
deflection of the muscular response from EMG baseline (Rossini
et al., 2015). The MEP with the shortest latency was considered
for CMCT calculation, according to international guidelines.
Similarly, since diagnostic TMS estimates the cortico-motor
response with maximal amplitude, only the trial with the
largest amplitude was used for MEP size analysis. Amplitude
was measured from the maximal negative to maximal positive
deflection of the selected MEP (peak-to-peak amplitude) (Groppa
et al., 2012). MEP amplitude represents the final pathway
of spatial and temporal summation of several descending
volleys activating the α-motoneurons, thus reliably reflecting
the excitation state of the cortico-spinal cells, the pyramidal
tract, the peripheral motor nerve, and the target muscle
(Rossini et al., 2015).

Peripheral stimulation of the motor roots was carried out in
all subjects to determine PMCT. MEPs to cervical or lumbar
stimulation are presumably elicited by a direct ventral root
excitation (Mills and Murray, 1986) and have been shown
to display similar latencies when either magnetic or electric
stimuli are applied (Caramia et al., 1989). In order to stimulate
magnetically the spinal roots and facilitate foraminal stimulation,
subjects were requested to slightly bend the neck or the trunk
forward. The center of the coil was placed posteriorly over the
7th cervical (for upper limbs) and 4th lumbar (for lower limbs)
spinous process. In some cases, the coil was slightly shifted
laterally to the same side of the target muscle to define the
location where maximum responses could be obtained, or slightly
moved vertically up and down to determine the most effective
level for stimulation. In any case, coil location and orientation
were such that the maximal induced current flowed horizontally
in the tissue toward the midline from the ipsilateral side of the
muscle (Mills et al., 1993). Unlike stimulation of M1, facilitation

is not needed for spinal stimulation (Claus, 1990), and, therefore,
subjects were recorded at rest. PMCT was calculated as the time
interval from the TMS artifact to the first negative spike from
EMG baseline. To ensure reliability, two reproducible responses
were recorded and averaged (Rossini et al., 2015).

Central motor conduction time was defined as the conduction
time from motor cortical neurons to spinal motor neurons, thus
reflecting the conductivity along the cortico-spinal tract (from
the upper to the lower motor neuron). CMCT was estimated
by subtracting the peripheral (cervical or lumbar) PMCT from
the shortest MEP cortical latency (Rossini et al., 1985a,b, 1987,
1994; Ugawa et al., 1994): CMCT = MEP cortical latency –
PMCT. CMCT is measured with the target muscle active, thereby
giving the shortest latency from the cortex to the muscle.
In this situation, the spinal motoneuron pool is close to the
firing threshold and there is the greatest opportunity for the
earliest descending cortico-spinal volley to induce a discharge
(Chen et al., 2008).

Statistical Analysis
We first assessed the normality of the distribution of each
variable under consideration in the whole group of subjects by
mean of the Kolmogorov–Smirnov and the Lilliefors tests for
normality. We then checked for possible simultaneous effects of
age, height, and sex (independent factors) on the variables under
consideration (dependent variables) by means of the General
Regression Models module offered by the commercially available
software STATISTICA v.6 (2001), StatSoft Inc., (this software was
also used for all other statistical tests carried out in this study).
For each study variable, three partial correlation coefficients were
obtained, one for each independent factor, together with its
statistical significance. Because of the large number of partial
correlation coefficients obtained, we only considered as being
significant the p-values that continued to be <0.05 after the
Bonferroni correction (Bland and Altman, 1995). Due to the high
number of subjects included, also small correlation values tend
to be significant; however, following the Cohen’s (Cohen, 1988)
indications, we considered correlations 0.10, 0.30, and 0.50 as
corresponding to small, medium, and large sizes, respectively,
and considered only correlations ≥0.30 for further analysis. After
this step, we computed descriptive statistics for all variables in the
whole group (mean, standard deviation, mean ± 1.96 SD, and
95% confidence interval). For variables showing a moderate-to-
large partial correlation coefficient with age and/or height and/or
sex, subgroup specific scatterplots were obtained.

RESULTS

Descriptive Results
Both TMS and spinal root stimulations were well tolerated and
no side-effect or significant discomfort was reported during or
after the exam. As shown in Figure 1, no skewed distribution
of age and height was present in the sample. Similarly, in
the whole sample of subjects, the difference in height between
males and females was not statistically significant, whereas, as
expected, there was a decline in the mean height in both sexes
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FIGURE 1 | Three-dimensional histogram of the distribution of the number of
subjects per age and height.

TABLE 1 | Demographic features of the whole group of participants and of
the age subgroups.

n Mean SD

Age ≥ 18 < 35 years F 91 26.8 4.83

M 63 25.8 4.86

Age ≥ 35 < 50 years F 138 41.7 4.05

M 68 42.2 4.02

Age ≥ 50 < 65 years F 83 55.8 3.64

M 71 57.1 4.35

Age ≥ 65 years F 34 70.6 6.32

M 39 69.7 4.12

All F 346 44.0 14.23

M 241 46.7 16.05

Total 587 45.1 15.05

n, number of subjects; SD, standard deviation; F, female; M, male.

as age increased. In all subjects, motor responses during active
contraction of FDI and TA were always obtained and recorded.
Although MEPs from the lower limbs were usually more difficult
to elicit than those recorded from the hand (Barker et al., 1987),
we did not experience significant difficulty.

Table 1 summarizes the demographic features of all
participants and the age subgroups. Mean value ± SD and
the 95% confidence intervals for each measure, in the whole
sample and split by muscle and side, are summarized in Table 2.
The upper and lower limits were derived by determining the
cut-off scores of 1.96 SD above and below the mean value,
although these represented unadjusted latencies (not correlated
for age, height, and sex). Table 3 shows descriptive statistics
of MEP cortical latency and PMCT computed separately
for each age group.

TABLE 2 | Descriptive statistics of all variables studied.

Mean ± SD Mean ± 1.96 SD 95%
confidence

interval

Right FDI

MEP amplitude, mV 7.9 ± 3.21 1.6/14.2 2.8/15.1

MEP cortical latency, ms∗ 19.5 ± 1.45 16.7/22.4 16.9/22.5

PMCT, ms∗ 13.6 ± 1.31 11.0/16.2 11.2/16.2

CMCT, ms∗ 5.9 ± 0.89 4.2/7.7 4.3/7.6

Left FDI

MEP amplitude, mV 7.6 ± 3.09 1.6/13.7 3.0/14.6

MEP cortical latency, ms∗ 19.4 ± 1.45 16.6/22.2 17.0/22.5

PMCT, ms∗ 13.5 ± 1.32 10.9/16.1 11.2/16.0

CMCT, ms∗ 5.9 ± 0.87 4.2/7.6 4.2/7.6

Right-Left difference

MEP amplitude, mV 0.26 ± 2.23 −4.1/4.6 −4.0/4.9

MEP cortical latency, ms 0.12 ± 0.69 −1.2/1.5 −1.3/1.5

PMCT, ms 0.09 ± 0.62 −1.1/1.3 −1.3/1.3

CMCT, ms 0.026 ± 0.75 −1.4/1.5 −1.5/1.5

Right TA

MEP amplitude, mV 5.5 ± 2.30 1.0/10.0 2.0/10.4

MEP cortical latency, ms∗ 26.5 ± 2.21 22.2/30.9 22.7/31.2

PMCT, ms∗ 12.7 ± 1.43 9.8/15.5 10.2/15.8

CMCT, ms∗ 13.9 ± 1.64 10.7/17.1 10.9/17.1

Left TA

Amplitude, mV 5.3 ± 2.17 1.1/9.6 1.9/10.0

MEP cortical latency, ms∗ 26.5 ± 2.20 22.2/30.8 22.7/31.0

PMCT, ms∗ 12.6 ± 1.46 9.7/15.4 10.1/15.9

CMCT, ms∗ 13.9 ± 1.69 10.6/17.2 10.8/17.2

Right-Left difference

MEP amplitude, mV 0.18 ± 2.02 −3.8/4.1 −4.0/4.5

MEP cortical latency, ms 0.07 ± 1.94 −3.7/3.9 −4.4/4.1

PMCT, ms 0.07 ± 1.23 −2.3/2.5 −2.7/2.7

CMCT, ms 0.0002 ± 1.59 −3.1/3.1 −3.5/3.0

∗Subgroup-specific graphs in Figures 2–10; SD, standard deviation; FDI, first
dorsal interosseous muscle; TA, tibialis anterior muscle; MEP, motor evoked
potential; PMCT, peripheral motor conduction time; CMCT, central motor
conduction time.

Correlation Results
The multiple linear regression analysis of the correlation between
age, height, and sex, and all the TMS measures is shown in
Table 4. Subgroup-specific graphs for MEP cortical latency and
PMCT at the four limbs are shown in Figures 2–9, which
illustrate their correlation with height, for each muscle in each
age subgroup, further subdivided by sex. Figure 10 shows the
correlation between height and CMCT from right or left FDI and
TA in participants, divided by sex.

A small non-significant correlation size was observed between
MEP amplitude in the upper limbs and all the physical
variables considered. In the lower limbs, a statistically significant
correlation, but with a small-to-medium correlation size that did
not resist to Bonferroni correction, was observed between MEPs
amplitude and sex.

Motor evoked potential cortical latency at the four limbs
correlated with age (medium-to-large correlation size for the

Frontiers in Human Neuroscience | www.frontiersin.org 5 June 2019 | Volume 13 | Article 18580

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00185 June 2, 2019 Time: 12:15 # 6

Cantone et al. Physical Variables and TMS

TABLE 3 | Descriptive statistics of the MEP cortical latency and PMCT values
computed separately for each age group.

Mean SD Mean ± 1.96
SD

95%
confidence

interval

Age ≥ 18 < 35 years

Right FDI MEP cortical latency, ms 19.2 1.43 16.4/22.0 16.5/21.9

Right FDI PMCT, ms 13.1 1.26 10.6/15.6 10.6/15.9

Left FDI MEP cortical latency, ms 19.1 1.41 16.3/21.8 16.4/22.0

Left FDI PMCT, ms 13.1 1.25 10.6/15.5 10.8/15.8

Right TA MEP cortical latency, ms 26.0 2.41 21.3/30.7 22.4/31.4

Right TA PMCT, ms 12.2 1.38 9.5/14.9 9.9/15.4

Left TA MEP cortical latency, ms 25.9 2.33 21.4/30.5 22.0/30.1

Left TA PMCT, ms 12.1 1.27 9.6/14.6 10.0/14.9

Age ≥ 35 < 50 years

Right FDI MEP cortical latency, ms 19.5 1.40 16.8/22.2 17.1/22.5

Right FDI PMCT, ms 13.6 1.21 11.2/16.0 11.7/16.2

Left FDI MEP cortical latency, ms 19.3 1.38 16.6/22.0 17.1/22.4

Left FDI PMCT, ms 13.4 1.27 10.9/15.9 11.3/15.9

Right TA MEP cortical latency, ms 26.4 1.95 22.5/30.2 22.9/30.5

Right TA PMCT, ms 12.6 1.38 9.9/15.3 10.4/15.6

Left TA MEP cortical latency, ms 26.4 2.07 22.4/30.5 23.0/31.0

Left TA PMCT, ms 12.7 1.47 9.8/15.6 10.3/15.8

Age ≥ 50 < 65 years

Right FDI MEP cortical latency, ms 19.7 1.39 17.0/22.4 17.4/22.8

Right FDI PMCT, ms 13.9 1.27 11.4/16.4 11.5/16.2

Left FDI MEP cortical latency, ms 19.6 1.42 16.8/22.4 17.2/22.7

Left FDI PMCT, ms 13.8 1.23 11.4/16.2 11.5/16.0

Right TA MEP cortical latency, ms 27.0 2.26 22.5/31.4 23.0/31.5

Right TA PMCT, ms 12.9 1.46 10.0/15.8 10.2/16.0

Left TA MEP cortical latency, ms 26.7 2.15 22.5/30.9 23.1/31.2

Left TA PMCT, ms 12.8 1.57 9.7/15.8 10.1/16.3

Age ≥ 65 years

Right FDI MEP cortical latency, ms 20.0 1.59 16.9/23.1 16.9/23.1

Right FDI PMCT, ms 14.2 1.35 11.5/16.8 11.9/17.0

Left FDI MEP cortical latency, ms 19.9 1.56 16.9/23.0 17.0/23.3

Left FDI PMCT, ms 14.2 1.37 11.5/16.8 11.4/16.9

Right TA MEP cortical latency, ms 27.3 2.06 23.2/31.3 22.6/31.3

Right TA PMCT, ms 13.1 1.34 10.5/15.7 10.3/16.3

Left TA MEP cortical latency, ms 27.2 2.13 23.1/31.4 22.7/31.6

Left TA PMCT, ms 12.9 1.30 10.4/15.5 10.1/15.3

Subgroup-specific graphs for all these parameters in Figures 2–10; S.D, standard
deviation; FDI, first dorsal interosseous muscle; TA, tibialis anterior muscle; MEP,
motor evoked potential; PMCT, peripheral motor conduction time.

left FDI and right TA; small-to-medium for the other limbs)
and height (medium-to-large correlation size for the upper
limbs and right TA, small-to-medium for the contralateral
side). At the upper limbs, a significant correlation that passed
the Bonferroni correction was observed between MEP cortical
latency and sex (shorter in women), although with a small-to-
medium correlation size. No correlation was evident between
MEP cortical latency and sex at the lower limbs.

Peripheral motor conduction time at the four limbs positively
correlated with age and height (medium-to-large correlation
size for both FDI and right TA; small-to-medium for the

contralateral muscle). At the upper limbs, PMCT correlated with
sex, being shorter in women (medium-to-large correlation size
for the left FDI; small-to-medium for the contralateral muscle),
with a statistically significant difference, even after correction,
bilaterally. A small non-significant correlation size was found
with gender for the lower limbs.

Central motor conduction time correlated with both age and
height when analyzed by a single regression. In particular, age
negatively correlated (with small correlation coefficients) with
CMCT from the upper limbs (right: r = −0.108, p = 0.009;
left: r = −0.100, p = 0.015); height positively correlated (with
small correlation coefficients) with CMCT from the upper limbs
(right: r = 0.110, p = 0.008; left: r = 0.094, p = 0.024),
while the correlation from the lower limbs appeared to be
small-to-medium (right: r = 0.304, p < 0.001; left: r = 0.173,
p < 0.001). However, when analyzed by multiple regression
these significances disappeared, due to the correction for the
multicollinearity within the dataset.

Regarding the difference between right and left side, a small
non-significant correlation size was found for all TMS measures
and the physical variables here considered at the four limbs.
A statistically significant small-to-medium correlation size was
evident for MEP cortical latency at the lower limbs, although it
was not confirmed after Bonferroni correction.

DISCUSSION

Main Findings
The main finding of this study is that individual features need
to be considered for accurate MEP evaluation and meaningful
interpretation. In particular, when reference values of MEP
cortical latency and PMCT are used, the correlation with
age, height and, to a lesser extent, sex must be taken into
consideration. This approach will account for the unwanted
variability associated with demographic and physical variables
and allows for appropriate and reliable comparisons of MEPs,
especially in studies with heterogeneous groups of participants.
Accounting for the variability of MEP responses is imperative to
demonstrate or confirm a clinical picture possibly due to a central
nerve pathology and not to technical artifact, selection bias, or
methodological error.

More in detail, we found a positive correlation of age and
height with MEP cortical latency at the four limbs, supporting
previous studies showing similar results (Booth et al., 1991). One
of the underlying mechanisms is probably owing to the fact that
age- and length-dependent changes affect the cervical and lumbo-
sacral pools of spinal motoneurons differently (Tomlinson and
Irving, 1977). Indeed, there is a progressive temporal dispersion
of descending impulses with a less synchronized effect on the
foot α-motoneurons (Rossini, 1988; Rossini and Caramia, 1988;
Rossini et al., 1992). The cervical cord also receives much more
cortico-spinal fibers per unit of muscle mass than the lumbo-
sacral cord (Rossini, 1988; Rossini and Caramia, 1988; Rossini
et al., 1992). Such physiological factors might thus influence
the observed changes along the motor pathway. Moreover, MEP
cortical latency have been shown to be different in males and
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TABLE 4 | General linear (multiple) regression analysis of the correlation between age, height, and sex and all the variables studied.

Age Height Sex

partial correlation p < ∗ partial correlation p < ∗ partial correlation p < ∗

Right FDI

MEP amplitude, mV −0.112 0.060 −0.069

MEP cortical latency, ms∗ 0.284 0.000001 0.394 0.000001 −0.212 0.000012

PMCT, ms∗ 0.383 0.000001 0.381 0.000001 −0.281 0.000001

CMCT, ms −0.075 0.099 0.044

Left FDI

MEP amplitude, mV −0.129 0.073 −0.099

MEP cortical latency, ms∗ 0.301 0.000001 0.415 0.000001 −0.243 0.000001

PMCT, ms∗ 0.397 0.000001 0.405 0.000001 −0.324 0.000001

CMCT, ms −0.068 0.092 0.052

Right-Left difference

MEP amplitude, mV 0.015 −0.014 0.037

MEP cortical latency, ms −0.015 −0.018 0.041

PMCT, ms −0.004 −0.024 0.058

CMCT, ms −0.010 0.010 −0.008

Right TA

MEP amplitude, mV −0.089 −0.086 −0.220 0.000004

MEP cortical latency, ms∗ 0.317 0.000001 0.433 0.000001 −0.097

PMCT, ms∗ 0.323 0.000001 0.404 0.000001 −0.023

CMCT, ms 0.119 0.206 0.000025 −0.094

Left TA

MEP amplitude, mV −0.010 −0.038 −0.153 0.0095

MEP cortical latency, ms∗ 0.231 0.0000008 0.265 0.000001 −0.062

PMCT, ms∗ 0.253 0.000001 0.274 0.000001 0.002

CMCT, ms 0.075 0.101 −0.077

Right-Left difference

MEP amplitude, mV −0.088 −0.055 −0.084

MEP cortical latency, ms 0.063 0.159 0.00012 −0.026

PMCT, ms 0.048 0.121 −0.025

CMCT, ms 0.038 0.098 −0.011

Correlations with medium-to-large size (≥0.30) are indicated in bold lettering. ∗, Significant after bonferroni correction (non-significant p-values are not shown); FDI, first
dorsal interosseous muscle; TA, tibialis anterior muscle; MEP, motor evoked potential; PMCT, peripheral motor conduction time; CMCT, central motor conduction time.

females, with longer latencies in the former (Livingston et al.,
2010). This result may be explained by the different average
height between genders (Toleikis et al., 1991), thus explaining
the differences of MEP cortical latency involving upper/lower
limbs and males/females (Toleikis et al., 1991). However, in our
study we found an additional independent effect of sex that
might be based on other features, different from height (i.e.,
nerve diameter), although with our data we cannot speculate
further on this point.

The present study also confirms those investigating the effect
of aging and height on PMCT (Mayer, 1963; Kimura et al.,
1975; Dorfman and Bosley, 1979; Matsumoto et al., 2012). Prior
reports have demonstrated the importance of age-related and
length-dependent peripheral nerve changes, such as progressive
fiber loss and segmental demyelination (Lascelles and Thomas,
1966; Swallow, 1966; Rivner et al., 2001). In this context, it is
worth to highlight that, unlike standing height (which decreases
progressively with aging), knee height remains relatively stable
during adulthood, making this measurement a good alternative

for calculating stature, especially in older adults (Chumlea et al.,
1985; Lera et al., 2005).

It is noteworthy that, although amplitude of the motor
response is known to be subject to several physiological
influences, we did not observe significant correlation of MEP
size with any physical variable, except for a small-to-medium
correlation with sex at the lower limbs. However, this finding
was not observed for the upper limbs, likely reflecting the
gender-specific regional fat distribution and its effects on
electrophysiological recording. As in EMG studies, indeed, most
gender differences in nerve conduction velocity are largely
explained by height, whereas differences in amplitude can be due
to body composition and fat distribution (Robinson et al., 1993;
Buschbacher, 1998).

Regarding CMCT, it is known that in adults it does
not significantly correlate with age (Claus, 1990; Eisen and
Shtybel, 1990; Mano et al., 1992; Mills and Nithi, 1997).
Conversely, based on the different length of the motor pathway,
a relationship between CMCT and height can be expected.
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FIGURE 2 | Correlation between age and right first dorsal interosseous muscle (FDI) cortical latency of the motor evoked potentials (MEPs) in each age subgroup of
participants, divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are
expected.

In particular, since the conduction distance from M1 to the
cervical segment is shorter than the lumbar segment, many
studies found that CMCT to the upper limb muscles had no

or only a weak correlation with height, whereas CMCT to
lumbar segments was correlated with height (Rossini et al.,
1987, 2015; Chu, 1989; Claus, 1990; Ghezzi et al., 1991;
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FIGURE 3 | Correlation between age and left first dorsal interosseous muscle (FDI) cortical latency of the motor evoked potentials (MEPs) in each age subgroup of
participants, divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are
expected.

Ravnborg and Dahl, 1991; Toleikis et al., 1991; Furby et al., 1992;
Wochnik-Dyjas et al., 1997; Groppa et al., 2012; Udupa and
Chen, 2013), without the influence from supraspinal sections

(Claus, 1990). Formulae for calculating the upper limit of normal
CMCT taking height into account have also been proposed
(Claus, 1990).
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FIGURE 4 | Correlation between age and right tibialis anterior muscle (TA) cortical latency of the motor evoked potentials (MEPs) in each age subgroup of
participants, divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are
expected.

Also in our study, CMCT appeared to be correlated with
both age (negatively) and height (positively) when analyzed
by a single regression; however, with a multiple regression

analysis this significance disappeared, due to the correction for
the multicollinearity within the dataset. The use of a multiple
regression analysis, indeed, may probably explain the lack of a
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FIGURE 5 | Correlation between age and left tibialis anterior muscle (TA) cortical latency of the motor evoked potentials (MEPs) in each age subgroup of participants,
divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are expected.

significant effect of height on conventional CMCT. Indeed, any
height-related difference in intrathecal peripheral component is
relatively small when compared with the differences in the more

distal peripheral tract. However, even if our study suggests that
height-related effects are small and non-statistically significant in
these neurologically intact subjects, this might not be true in those
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FIGURE 6 | Correlation between age and right first dorsal interosseous muscle (FDI) peripheral motor conduction time (PMCT) in each age subgroup of participants,
divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are expected.

with specific diseases, such as cauda equina disorders or severe
peripheral neuropathy. In these cases, indeed, the evaluation of
CMCT by means of paravertebral magnetic stimulation might

not be sufficient to differentiate a cortico-spinal tract involvement
from an intrathecal peripheral involvement. In pathological
conditions, therefore, the effect of height becomes much more
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FIGURE 7 | Correlation between age and left first dorsal interosseous muscle (FDI) peripheral motor conduction time (PMCT) in each age subgroup of participants,
divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are expected.

pronounced and an evaluation of CMCT with the F-wave method
is mandatory. An alternative technique is the use of a modified
coil, termed MATS (magnetic augmented translumbosacral

stimulation), that activates the spinal roots at the conus
medullaris level, thus making it possible to evaluate the CCCT
for leg muscles (Matsumoto et al., 2010). Interestingly, using this
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FIGURE 8 | Correlation between age and right tibialis anterior muscle (TA) peripheral motor conduction time (PMCT) in each age subgroup of participants, divided by
sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are expected.

coil in a sample of 51 Asian healthy volunteers, Matsumoto and
coworkers showed that while there was a correlation between
conventional CMCT and height, no correlation was present when

the CCCT was considered (Matsumoto et al., 2010). However,
unlike the present work, a multiple regression analysis was not
performed (Matsumoto et al., 2010).
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FIGURE 9 | Correlation between age and left tibialis anterior muscle (TA) peripheral motor conduction time (PMCT) in each age subgroup of participants, divided by
sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95% of points are expected.

Overall, this matter remains still controversial, with
some investigators showing that CMCT was independent
of both height and age (Ugawa et al., 1989; Booth et al.,

1991; Mano et al., 1992; Heald et al., 1993) and others
demonstrating the opposite (Chu, 1989; Eisen and Shtybel,
1990; Furby et al., 1992) (for a recent comprehensive review,
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FIGURE 10 | Correlation between height and right or left first dorsal interosseous muscle (FDI) and right or left tibialis anterior muscle (TA) central motor conduction
time (CMCT) in participants, divided by sex. The continuous line is the regression line while the two dashed lines represent the limits of the area within which the 95%
of points are expected.
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see Rossini et al., 2015). The reasons for such discrepant results
remain unclear, although a reasonable explanation may be
attributed to the different methods used across the studies
and the demographic characteristics of the subjects. Notably,
as mentioned, most of the previous reports adopted a simple
regression analysis that, however, seems to be insufficient to
analyze the effects of all physical variables on MEPs features.
Conversely, a combined regression analysis provides a better
prediction than each variable alone, as also demonstrated by
studies using somatosensory (Allison et al., 1983; Chu, 1986) and
visual evoked potentials (Celesia et al., 1987).

Finally, we did not find correlation between CMCT and sex or
right-to-left difference (Claus, 1990; Toleikis et al., 1991; Furby
et al., 1992; Mills and Nithi, 1997), in agreement with previously
published reports (Eisen and Shtybel, 1990; Mills and Nithi,
1997), except for two. Chu (1989) compared two subgroups of
female and male subjects with a homogenous height and found
a gender difference in the leg CMCT, but not at the upper limbs.
The other study reported a CMCT to the lower limbs marginally
shorter in women than men, even controlling for differences in
age and height (Tobimatsu et al., 1998).

Clinical Implications
As a general rule, laboratory environment, technical set
up, stimulation and recording protocols, and measurement
procedures need to be all standardized to allow a proper
comparison within and across subjects. For instance, TMS data
are influenced by the intensity and the time course of the
magnetic field, the pulse configuration, and the relative threshold
of each volley to the direction of the induced current flow in
the cortex. The shape of the stimulation coil is also important
because it influences the spatial distribution of the magnetic field
(Di Lazzaro et al., 2003, 2004).

For clinical examination, cut-off values that separate normal
and abnormal measurements should be available in every
laboratory, for each muscle and adjusted for age, height, and
sex. The measurement should be judged as abnormal when a
given value deviates 2 SD (or, more conservatively, 2.5) from
the mean of the data obtained from the control group. A right-
left comparison is also recommended, especially to detect subtle
abnormality on one side. While often difficult, it is important to
build up a set of control data that match the specific population
to study, since sensitivity and specificity of measurements may be
insufficient if this is not done.

Strengths and Limitations
The recruitment of a large and homogenous sample, including
elderly subjects, is the main strength of this study. Additionally,
to the best of our knowledge, this is the largest “real-world”
TMS study. As known, this type of studies allow the inclusion
of a considerable number of subjects with a wide range
of demographic features, thus realistically mimicking real-life
practice settings (Zhang et al., 2019). Nonetheless, several
limitations must also be acknowledged.

(i) Given that the study was conducted within a clinical
environment, the sample could not be represented by

healthy volunteers but by subjects (almost all out-patients)
who, however, did not have any clinical and radiological
evidence of a motor system disorder.

(ii) The sample of subjects was retrieved from a database
containing all the TMS records collected in the Lab.
Therefore, as in all retrospective studies, a selection bias
cannot be entirely excluded, although the subjects were
consecutive and carefully screened. In particular, the
analysis of data was performed independently by two of the
authors (MC and MP) and any discrepancy was discussed
and resolved among all the authors to ensure consensus, as
recommended (Makady et al., 2017).

(iii) The most precise estimation of the MEP size is
through the amplitude ratio (the ratio between the
maximal transcranially evoked MEP amplitude and
the maximal distally evoked compound motor action
potential). Moreover, to describe the stimulus-response
characteristics, one should record MEPs over a wide range
of intensity levels, both at rest and during contraction.
However, even this if helpful in research to minimize the
inter-trial and inter-subject variability, such a detailed
assessment is not feasible in a routine clinical setting for
diagnostic purposes (Groppa et al., 2012).

(iv) Central motor conduction time was not calculated by
stimulating the peripheral nerve and eliciting the F-waves,
but by magnetically stimulating the motor roots at
their exit foramina (Mills and Murray, 1986) where
the depolarizing threshold is the lowest (Rossini et al.,
1987). This method overestimates the CMCT because
the conduction time in proximal root segment between
spinal cord and exit foramen is included. Moreover,
with this method, spinal roots are not necessarily excited
simultaneously (Claus, 1990). Nevertheless, unlike the
F-wave technique, the method used here is applicable
to most muscles (including TA) and is less painful
(Chen et al., 2008). Moreover, as known, the electrical
root stimulation only gives information on a relatively
small sample of α-motoneurons and related motor axons
(Groppa et al., 2012). Additionally, because conduction
in the intraspinal part of the peripheral motor axons
contribute to the central rather than the peripheral
conduction time, the F-wave method can falsely increase
CMCT in patients with nerve root lesions (Claus, 1990;
Groppa et al., 2012). Finally, if F-wave persistence is low
(normal for particular muscles, such as TA), the recorded
F-wave sequence may not sample the fastest axons, thus
producing a spuriously short CMCT (Rossini et al., 2015).
Therefore, given that both approaches have pros and cons
and that there is no optimal technique for all occasions
(Rossini et al., 2015), many laboratories (including ours)
prefer foraminal electromagnetic stimulation for routine
diagnostic exams.

(v) An estimation of the peripheral nerve conduction velocity
would have been useful to rule out a peripheral nervous
system disease, although this goes beyond a routine TMS
exam. Nevertheless, all subjects recruited did not have any
sign or history of peripheral nerve pathology.
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(vi) Limb length was not measured. This might result in some
misinterpretations: for instance, MEP cortical latency can
be prolonged in comparison to the contralateral limb as
a result of pathological processes involving the cortico-
motor pathway rather than explained by a subject’s longer
limb. A previous study showed that when MEP cortical
latencies were adjusted to an individual’s upper extremity
length, no significant differences between limbs were
observed (Livingston et al., 2010). Anyhow, we did not
find correlations between side-to-side difference and any
physical variable.

(vii) Finally, the timing of testing during the menstrual cycle
and its potential effect on MEPs was not considered (Smith
et al., 1999, 2002), although a conclusive remark on the
relationship between TMS and hormonal status has not
been firmly established.

CONCLUSION

The relationship between TMS measures and individual features
needs to be clearly defined. The ability of TMS to discriminate
between a pathology affecting the motor system and a bias from
external variables is mandatory in both clinical practice and
research setting. In this scenario, an optimal interpretation of
MEPs will be possible only by a comprehensive understanding of
the relationship between the motor responses and these variables.
Here, a considerable amount of TMS data over a more than a
decade of daily clinical activity is provided.

Notwithstanding the mentioned limitations, in this large
sample of subjects, age, height, and, sex were all important
in defining and comparing MEPs. In particular, in order to
construct MEPs normograms, age and body height had to be
considered in the definition of the physiological range of MEP
cortical latency and PMCT. Together with clinical, imaging, and
other electrophysiological findings, CMCT can be considered as
a reliable diagnostic and possibly prognostic translational marker
of cortico-spinal conductivity in healthy subjects and in patients
with neurological disorders.
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Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state
and allows to characterize spontaneous brain activity that is not detected when a subject
is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG,
it is possible to perform fast topographical reference-free analysis, since different scalp
potential fields correspond to changes in the underlying sources within the brain. In
this study, the spontaneous EEG resting state (eyes closed) was compared between
10 young adults ages 18–30 years with autism spectrum disorder (ASD) and 13
neurotypical controls. A microstate analysis was applied, focusing on four temporal
parameters: mean duration, the frequency of occurrence, the ratio of time coverage,
and the global explained variance (GEV). Using data that were acquired from a 65-
channel EEG system, six resting-state topographies that best describe the dataset
across all subjects were identified by running a two-step cluster analysis labeled as
microstate classes A–F. The results indicated that microstates B and E displayed
statistically significant differences between both groups among the temporal parameters
evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C
in controls. The combination of these findings with the putative functional significance
of the different classes suggests that during resting state, the ASD group was more
focused on visual scene reconstruction, while the control group was more engaged
with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-
state networks that have been previously associated with each microstate class overlap
the brain regions implicated in impaired social communication and repetitive behaviors
that characterize ASD.

Keywords: EEG microstates, autism spectrum disorder, resting state, topographical analysis,
electroencephalography

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder that has an onset in early life and
is characterized by repetitive behaviors, restricted interests, and impaired social communication
(American Psychiatric Association, 2013). According to the United States Center for Disease
Control and Prevention (CDC), the diagnosis of autism at age 2 is reliable, and about 1 in
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59 children was diagnosed with ASD (Centers for Disease Control
and Prevention, Autism Spectrum Disorder [ASD], 2018).
Attempts to enhance social communication and maintain healthy
and productive social interactions in individuals with ASD have
motivated different studies, which assist in providing data that
enables researchers to model the autistic brain (Billeci et al., 2013;
Mash et al., 2018). Several approaches to evaluate and inspect the
brain networks have been taken, including investigating resting-
state and task-oriented electroencephalography (EEG).

Resting-state EEG is used to determine the brain activity when
an explicit task is not being performed (Biswal, 2012); specifically,
it may detect abnormalities that are not identified using evoked
potentials (Fox, 2010; Wang et al., 2013). In the present study, the
resting-state spontaneous EEG activity of ASD and neurotypical
individuals (controls) young adults is analyzed.

EEG microstates analysis is a well-established technique used
to study the resting state of the human brain based on the
topography of the electric potentials over the electrode array.
The principles of this method are described by Lehman and
collaborators (Lehmann et al., 1987), who observed that a specific
configuration of a global scalp map (or brain state), produced
by the electric field measured via multichannel EEG, remains
stable for around 80–120 ms and then switches to a new brain
state belonging to a limited number of dominant quasi-stable
scalp map set, which were defined considering only the electrode
localization of the extreme potentials (maximal and minimal),
ignoring polarity inversion. The spatial cluster was introduced
in the microstate analysis by Pascual-Marqui et al. (1995), where
the whole scalp topography (or scalp map) is considered, instead
of using only the position of the extreme potentials as in
(Lehmann et al., 1987). In this approach, a group of several
scalp topographies with a high spatial correlation independent
of polarity are clustered into one representative topography
(template map, spatial map, or cluster) that best describes the
variance within this group (Pascual-Marqui et al., 1995; Michel
and Koenig, 2018). The microstates are then defined by fitting
the set of template maps back to the temporal data also ignoring
polarity inversion.

The microstate technique offers a collection of parameters
with physiological relevance that have been widely used in
the last 30 years to display variations across behavioral states,
personality types, and neuropsychiatric disorders (Koenig et al.,
2002; Khanna et al., 2015; Michel and Koenig, 2018), which
make it a suitable tool to evaluate the dissimilarities in these
parameters between ASD and control subjects. Indeed, a recent
study (Jia and Yu, 2019) applied the microstate analysis among
the two groups in resting state (combining eyes-open and eyes-
closed conditions), finding significant differences and indicating
that this technique may offer some intuitions into the intrinsic
activities in the autistic brain. However, the limitations stated by
the authors are the large age range, involving different periods
of development such as middle childhood and adolescence, and
a single analysis for the combined conditions. Therefore, the
goal of the current study was to compare the EEG resting-
state microstates (eyes-closed condition) between neurotypicals
and ASD in the early adulthood, concentrating the analysis on
the four well-established temporal parameters: (1) the mean

duration, (2) frequency of occurrence, (3) the fraction of total
time covered, and (4) the global explained variance (GEV).

MATERIALS AND METHODS

Participants and Data Acquisition
The data set used in this analysis was obtained in a previous study.
The experimental design and procedures, recording techniques,
and participant data are described in more detail in Hames
et al. (2016). Briefly, the EEG study had the participation of
16 neurotypical individuals (controls) and 15 autistic subjects
(ASD) between the ages of 18 and 30 years. One subject
in the ASD group is ambidextrous, and another from the
same group is left-handed. The experiment was approved by
the Human Subjects Internal Review Board at Texas Tech
University, with written informed consent from all participants,
in accordance with the Declaration of Helsinki. The study
presented by Hames et al. (2016) consists of two sessions
of different sensory tasks and one resting state (eyes closed).
In this work, only the latter is considered for the EEG
microstate analysis.

During the EEG resting-state recording, subjects were sitting
in a comfortable upright position in a soundproof and electrical-
shielded room. Participants were asked to stay as calm as
possible, keeping their eyes closed for a time varying between
2 and 4 min. The EEG was acquired with a 65-channel
monopolar EGI Hydrocel Geodesic Sensor using a sampling rate
of 500 Hz (Electrical Geodesics Inc., Eugene, United States) with
a vertex reference.

EEG Data Processing
The preprocessing is carried out using a combination of
MATLAB R2017b (The MathWorks) and the free academic
software Cartool1 (Brunet et al., 2011). Microstate analysis is
performed using only Cartool.

Preprocessing
The EEG data were band-pass filtered with half-power cutoff
frequencies of 1 and 50 Hz applying a fourth-order non-causal
Butterworth filter. The data were then visually inspected to
detect and mark artifacts and bad epochs manually. Independent
component analysis (ICA) was employed to identify and
reject components associated with oculomotor activity and
electrocardiography (ECG), as explained in Jung et al. (2000)
and Makeig et al. (1996), corresponding to their waveform and
topography. Only subjects with a number of samples greater
than 20 times the number of channels squared (to obtain reliable
decompositions) (Delorme and Makeig, 2004), after the visual
inspection was performed, were considered in the ICA stage,
reducing the number of participants to 13 neurotypicals and 10
ASD. The data were then down-sampled by a factor of 4 to 125 Hz
to reduce computational time.

Cartool’s built-in spatial filtering function, which is based on
the XYZ electrode coordinates (obtained from the manufacturer),

1https://sites.google.com/site/cartoolcommunity/
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was used to smooth the EEG signals and topographies for the
posterior analysis. Finally, segments of ± 0.5 s around peaks
with amplitudes above 100 µV, which are more associated with
artifactual components rather than neural activity, were excluded
from further analysis.

Microstate Analysis
In general, microstate analysis consists of finding the set of
the most dominant spatial maps (or template maps) from the
different scalp topographies in the time domain, and then, the
posterior labeling of the EEG data based on these dominant
template maps. Therefore, after preprocessing the data, the stages
involved in the microstate analysis are (1) segmentation of
EEG data to find the most representative template maps, which
correspond to the different classes, and (2) fitting these classes
back to the EEG data to compute the temporal parameters and
statistics. Figure 1 describes both stages with detailed steps.

In this work, the segmentation stage was carried out
by running a two-step spatial cluster analysis, illustrated in
Figures 1A–G, based on a modified version of the classical
k-means algorithm (Pascual-Marqui et al., 1995), with the first
step being run at the individual level (for each participant
separately) (see Figures 1A–E) and the second step across all
subjects (see Figures 1F,G; Murray et al., 2008; Tomescu et al.,
2014; Gschwind et al., 2016). Although additional techniques
are available to compute the segmentation stage (Poulsen et al.,
2018; Von Wegner et al., 2018), a recent study reported that the
underlying dynamics of the EEG signal seem to be independent of
the initial clustering algorithm (Von Wegner et al., 2017, 2018).

To find each subject’s most dominant template maps, the
global field power (GFP) was calculated for each sample time
according to Equation (1), where N is the number of sensors in
each scalp map, ui is the voltage at a specific electrode, and ū is the
average voltage of the electrodes at the respective sample time.

GFP =

√∑N
i=1 (ui − ū)2

N
(1)

The GFP is a reference-free measure that represents the field
strength at a global level (Lehmann and Skrandies, 1980). The
local peaks of the artifact-free GFP curve represent moments
of high global neuronal synchronization (Skrandies, 2007) and
the scalp topographies around them remain stable, maximizing
the signal-to-noise ratio (SNR) (Koenig et al., 2002; Michel
et al., 2009; Michel and Koenig, 2018). The scalp maps at
sample times with a local GFP maximum (see Figure 1C) were
submitted to a spatial k-means clustering algorithm to determine
a subject’s most dominant template maps ignoring polarity
inversion (see Figure 1E). The number of the dominant clusters
was selected by a meta-criterion method described by Custo et al.
(2017), which applies the information of seven different criteria
from the literature.

To accomplish the second step in the two-step spatial cluster
analysis, the dominant template maps for all subjects (ASD and
controls) were submitted together to a spatial k-means group-
cluster analysis to find the most representative maps across
subjects, also denoted as classes. The number of classes was

selected also ignoring polarity inversion based on the same meta-
criterion as in step 1, resulting in the six microstate classes shown
in Figure 1G.

Once the microstate classes were identified, they were fitted
back to the individual EEG data in the temporal domain
to define the microstates, as follows: each time frame (or
sample point) of the original data was labeled with one
microstate, considering the highest spatial correlation between
the instantaneous scalp topography and every microstate class
(winner-takes-all) (Murray et al., 2008; Michel and Koenig, 2018),
but only if its correlation was above 0.5. In the fitting process,
other temporal smoothing parameters such as strength 10 on a
window half-size 3 [Besag factor λ = 10 and b = 3 in (Pascual-
Marqui et al., 1995)] were applied to avoid interruptions in
the EEG sequence associated with the same microstate. The
microstate sequence is displayed color-coded in Figure 1H, and
it is used, for every subject, to compute the different temporal
parameters and the statistical analysis.

Temporal Parameters and Statistical
Analysis
The six microstate classes (A, B, C, D, E, and F) were computed
considering the cluster analysis throughout all subjects to be
able to compare the statistics between the ASD and controls,
calculating the following temporal parameters for each class and
every participant:

- Mean duration: This refers to the average
duration, in milliseconds, that a microstate class is
continuously presented.

- Frequency of occurrence: This indicates how often
a microstate class is present per time interval and
independent of the duration and is computed by taking
the number of segments labeled with a microstate
class divided by the total duration in seconds of
the analyzed EEG.

- Fraction of time covered: This represents the proportion
of the total time a microstate is present during the whole
time considered for analysis.

- GEV: This parameter gives a metric of how well the
selected template maps describe the whole dataset,
calculated for a specific microstate class by summing
the squared spatial correlations between the microstate
specific template map and its corresponding labeled scalp
maps at each time weighted by the GFP using Equation
(2) (Murray et al., 2008) as follows: GFPu (t) is the GFP of
the EEG data assigned to microstate class u at the labeled
time t, and Cu,Tt corresponds to the spatial correlation
previously described.

GEVu =

∑t max
t=1

(
GFPu (t) ·Cu,Tt

)2∑t max
t=1

(
GFP2

u (t)
) (2)

The statistical analysis was performed using R version
3.4.3 (The R Foundation for Statistical Computing, 2017).
Separate post hoc two-tailed Mann–Whitney–Wilcoxon tests
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FIGURE 1 | Microstate analysis. (A) Preprocessed EEG recordings down-sampled at 125 Hz, illustrating 2 s of data for one subject (vertical gray lines represent
intervals of 0.5 s). Black curves correspond to 14 out of the N = 64 channels; the blue curve shows the global field power (GFP). Moreover, a 0.5-s interval is
highlighted in the gray shaded area to display a zoom-in of the topographical data. (B) Sixty-three scalp maps from the 0.5-s interval, i.e., one per time frame.
(C) Identification of the local peaks, displayed as vertical black lines, at the GFP curve within the 0.5-s interval. (D) The scalp maps corresponding to the local GFP
peaks were submitted to a spatial k-means cluster analysis. (E) The most dominant template maps for the subject were selected based on the meta-criterion.
(F) Steps (A) to (E) were repeated at individual level to obtain the set of the most dominant spatial maps for every subject. The individual sets with the dominant
spatial maps for all subjects were submitted together to a group clustering analysis. (G) The six classes are the most dominant template maps after the group
clustering spatial k-means across all subjects. The number of clusters was selected based on the meta-criterion. (H) A microstate sequence for the same subject as
in (A). The six classes are fitted back to the original EEG data of every subject, labeling each time frame with only one microstate, which is selected considering the
highest spatial correlation between the scalp topography and every class (winner-takes-all). The microstate sequence is used, for every subject, to extract the
temporal parameters and statistical analysis.
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were conducted pairwise between the two groups for each
microstate class in every temporal parameter to identify
statistically significant differences. Subsequently, the results
were corrected for multiple comparisons by applying the
false discovery rate (FDR), setting the significance at a 5%
level (α = 0.05).

RESULTS

The first step in the two-step spatial cluster analysis identified
between four and seven template maps, selected by the meta-
criterion method, for each subject as illustrated in Figure 1F.
The second step (group cluster) was firstly performed for each
group separately to compare the different topographies. Based on
the meta-criterion, the number of clusters that best described the
dataset was seven for controls and six for ASD. Similarly, when
the grand-clustering was run across all subjects, the best number
of dominant maps was six. Figure 2A illustrates the GEV as a
function of the number of maps when the group-cluster analysis
was implemented only in autistics (blue curve), controls (red
curve), and all subjects (black curve). As illustrated, considering
the same number of maps, until eight, the GEV was slightly
higher for the neurotypicals. Figure 2B depicts the six template
maps that described more than 80% of the global variance in all
three cases, following the same three approaches, i.e., all subjects
(top row), only ASD (middle row), and controls (bottom row).

Since the resulting template maps showed high similarity
regardless of the approach, the selected temporal parameters are
computed using the same six topographies obtained from all
subjects for both groups to enable direct comparisons. Separate
two-tailed Mann–Whitney–Wilcoxon tests were performed
pairwise between ASD and controls for each microstate class
in every temporal parameter to identify statistically significant
differences and then corrected for multiple comparisons by
applying the FDR.

Table 1 is divided into four major sections to illustrate the
results of the microstate analysis. Each division, containing
four rows, is labeled with the respective temporal parameter,
summarizing the mean values and the standard deviation of

every microstate class (the six columns) for the ASD and control
groups in the first and second row, respectively; the p-value
(pairwise) and the corrected p-value for multiple comparisons
are displayed in the third and fourth row, respectively. The
statistically significant differences (p < 0.05) in the last two rows
are marked with an asterisk. It was observed that microstate
classes B, C, and E exhibited significant group differences in some
of the temporal parameters after the pairwise comparison, but
only classes B and E demonstrated statistical significance at a 5%
level after the correction for multiple comparisons.

- Microstate class A did not exhibit significant differences
in any of the four temporal parameters (p-pairwise > 0.7;
p-corrected > 0.7). However, it was the only class in which
the parameters did not display a consistently increased
presence in a specific group.

- Microstate class B illustrated a consistently higher
presence in ASD, showing statistically significant
differences, before or after correction for multiple
comparisons, in the frequency of occurrence (p-
pairwise = 0.008; p-corrected = 0.030), ratio of time
coverage (p-pairwise = 0.021; p-corrected = 0.063), and
GEV (p-pairwise = 0.018; p-corrected = 0.054).

- Microstate C was the only class that displayed a
consistently higher presence in controls, showing
statistically significant differences, before or after
correction for multiple comparisons, in the main duration
(p-pairwise = 0.026; p-corrected = 0.156), ratio of time
coverage (p-pairwise = 0.042; p-corrected = 0.084),
and GEV (p-pairwise = 0.049; p-corrected = 0.098).
Furthermore, class C was systematically the most
dominant in each group.

- Microstate class D exhibited a consistently increased
presence in ASD, but without statistically significant
differences (p-pairwise > 0.13; p-corrected > 0.26).

- Microstate class E displayed an increased presence
in ASD, showing statistically significant differences,
before or after correction for multiple comparisons,
in the frequency of occurrence (p-pairwise = 0.010;
p-corrected = 0.030), ratio of time coverage

FIGURE 2 | (A) GEV vs. number of template maps using three different approaches in the cluster analysis: considering only autistics (blue curve), only controls (red
curve), and all subjects (black curve). (B) Template topographies of the six classes of microstates using three approaches: all subjects (top row), autistics (middle
row), and controls (bottom row).
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TABLE 1 | Temporal parameters in the microstate analysis of the ASD and control groups.

Microstate classes

Class A Class B Class C Class D Class E Class F

Mean duration [milliseconds]

ASD (mean ± SD) 76.29 ± 6.08 80.60 ± 4.45 87.16 ± 8.67 77.59 ± 6.94 74.26 ± 5.21 75.17 ± 6.23

Controls (mean ± SD) 78.79 ± 6.54 76.40 ± 7.70 103.35 ± 19.40 74.71 ± 11.76 71.87 ± 10.89 74.18 ± 7.29

P-value (pairwise) 0.738 0.077 0.026∗ 0.410 0.115 0.446

Corrected P-value 0.738 0.230 0.156 0.535 0.230 0.535

Freq. of occurrence [counts/second]

ASD (mean ± SD) 1.73 ± 0.36 2.10 ± 0.41 2.24 ± 0.47 1.81 ± 0.38 1.33 ± 0.38 1.58 ± 0.46

Controls (mean ± SD) 1.71 ± 0.43 1.60 ± 0.40 2.54 ± 0.60 1.50 ± 0.64 1.01 ± 0.60 1.49 ± 0.47

P-value (pairwise) 0.927 0.008∗ 0.186 0.131 0.010∗ 0.522

Corrected P-value 0.927 0.030∗ 0.279 0.262 0.030∗ 0.626

Ratio of time coverage

ASD (mean ± SD) 0.152 ± 0.043 0.196 ± 0.046 0.232 ± 0.075 0.162 ± 0.046 0.111 ± 0.038 0.138 ± 0.049

Controls (mean ± SD) 0.157 ± 0.050 0.142 ± 0.044 0.345 ± 0.137 0.136 ± 0.083 0.088 ± 0.082 0.128 ± 0.053

P-value (pairwise) 0.976 0.021∗ 0.042∗ 0.208 0.008∗ 0.446

Corrected P-value 0.976 0.063 0.084 0.312 0.048∗ 0.535

Global explained variance (GEV)

ASD (mean ± SD) 0.077 ± 0.029 0.102 ± 0.035 0.156 ± 0.076 0.078 ± 0.024 0.055 ± 0.027 0.060 ± 0.026

Controls (mean ± SD) 0.081 ± 0.040 0.064 ± 0.026 0.274 ± 0.140 0.061 ± 0.044 0.038 ± 0.038 0.055 ± 0.029

P-value (pairwise) 0.976 0.018∗ 0.049∗ 0.131 0.010∗ 0.483

Corrected P-value 0.976 0.054 0.098 0.197 0.054 0.580

The p-value (pairwise) row corresponds to the result of the pairwise post-hoc Mann–Whitney–Wilcoxon tests. The corrected p-value row was obtained by applying the
false discovery rate (FDR) correction for multiple comparisons. Statistically significant differences (p < 0.05) after the tests are marked with an asterisk.

(p-pairwise = 0.008; p-corrected = 0.048), and GEV (p-
pairwise = 0.010; p-corrected = 0.054). Furthermore, class
E was systematically the least dominant in each group.

- Microstate class F illustrated a consistently higher
presence in ASD, but without statistically significant
differences (p-pairwise > 0.44; p-corrected > 0.53).

DISCUSSION

In this study, we applied the microstate analysis to investigate
the differences in four temporal parameters (mean duration,
frequency of occurrence, time coverage, and GEV) between 10
autistic and 13 neurotypical young adults in resting state (eyes
closed) data. We found that the EEG microstates lasted, on
average, for around 75–105 ms, which is in line with the duration
reported by different literature reviews (Khanna et al., 2015;
Michel and Koenig, 2018).

The two-step cluster analysis combined with the meta-
criterion revealed that six template maps best described the
entire dataset explaining ∼83% of the global variance. Among
these six topographies, it is possible to match the first four
maps with the canonical microstates reported in different
literature reviews (Khanna et al., 2015; Michel and Koenig,
2018) (classes A, B, C, and D); the other two maps also
correspond to classes E and F reported in Bréchet et al.
(2019) and Custo et al. (2017). Moreover, considering the

four canonical topographies, ∼76% of the global variance is
explained. Although predetermining the number of microstates,
e.g., to four for the four canonical maps, has shown stable
topography maps and is useful to compare or complement
results across different studies, we believe that there is not a
correct fixed number of classes, and it has been recommended
that the number of clusters should be determined specifically
for every dataset, based on the explained global variance and
functionality, which depends on the conditions within the
experiments (Michel and Koenig, 2018).

For the temporal parameters analyzed, microstates C and
E were systematically the most and least dominant classes,
respectively, during the eyes-closed resting-state analysis.
Furthermore, classes B, C, and E exhibited significant group
differences in some of the parameters after the pairwise
comparison, but only B and E demonstrated statistical
significance at a 5% level after the correction for multiple
comparisons. However, note that the FDR correction might yield
to conservative results, and therefore, the physiological relevance
of microstate C is also considered.

Although microstate A did not exhibit any statistically
significant difference, interestingly, it was the only class in which
the temporal parameters did not display a consistently higher
occurrence in a specific group, that is, despite having an increased
frequency of occurrence in ASD, the mean duration, GEV, and
time coverage were higher in the controls. These results are
in line with the study conducted by Jia and Yu (2019), but
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the authors reported a significant difference in this class. This
discrepancy might be mainly due to the key differences between
the two studies: age range and the combination of eyes-open
and eyes-closed conditions incorporated Jia and Yu (2019).
However, according to Tomescu et al. (2018), the development
of microstate class A across age does not reveal a statistically
significant difference in neurotypical subjects; still, this has not
been explored in ASD yet.

Microstate class B displayed a systematically higher presence
in the ASD group, being consistent with the results reported
in Jia and Yu (2019). Specifically, it illustrated a significant
higher frequency of occurrence than the control group. However,
the ratio of time coverage and GEV also exhibited statistically
significant differences between both groups after the Mann–
Whitney–Wilcoxon pairwise tests (see Table 1). Microstate B has
been related to the visual network in resting-state (Britz et al.,
2010) and verbal processing (Milz et al., 2016). Consequently,
the increased frequency of occurrence and time coverage
in the ASD might be due to their enhanced inter-network
connectivity reported in Morgan et al. (2019). Particularly, the
authors reported a significant increased functional connectivity
between the language (LAN) and visual (VIS) networks in
resting-state fMRI, which is associated with the communication
impairment that characterizes ASD. Moreover, a recent study
(Bréchet et al., 2019) associates this class with the scene-
reconstruction subsystem. Therefore, the combination of these
findings with the higher presence of this class observed
in the ASD group in this work indicates that autistics
were more engaged with visual scene-reconstruction memories
during resting state.

Microstate class C has a systematically larger occurrence in
the temporal parameters for both groups, and it is expected to
decrease during visualization (Milz et al., 2016). Additionally,
it was the only class that exhibited a higher presence for all
the temporal parameters in the control group. However, the
significant differences obtained by applying the Mann–Whitney–
Wilcoxon pairwise tests in the mean duration, frequency of
occurrence, and GEV were not significant at the 5% level after
the FDR correction. According to some authors (Michel and
Koenig, 2018), microstate class C reflects a portion of the default
mode network (DMN), a network where the brain areas involved
decrease their activity during attention-demanding tasks (Raichle
et al., 2001; Raichle, 2015). This hypothesis is consistent with
the observations made by Custo et al. (2017) where the
underlying sources associated with microstate C overlap a
portion of the DMN, and the significant reduction observed
in math conditions (Bréchet et al., 2019) and visualization
(Milz et al., 2016) when compared to resting state. The higher
presence of microstate class C in the control group might be
addressed from the functional perspective. Some studies have
found a hypo-connectivity in the posteromedial cortex in ASD
(Lynch et al., 2013; Bi et al., 2018), and more importantly, the
connectivity within the DMN not only helps in differentiating
between ASD and neurotypicals (Assaf et al., 2010; Yao et al.,
2016; Morgan et al., 2019) but also might explain the ASD
social impairment due to the decreased functional connectivity
between the precuneus and medial prefrontal cortex/anterior

cingulate cortex (Assaf et al., 2010; Yao et al., 2016), which are
regions associated with the resting-state networks in microstate
class C (Britz et al., 2010).

A recent study (Bréchet et al., 2019) investigated the resting
state compared to conditions of cognitive tasks involving
self-related memories (memory condition) and arithmetic
calculations (math condition). The study reported that compared
to resting state, there is a significant reduction in the incidence
of microstate C for the math condition, and no statistically
significant difference in the presence of microstate C for memory
conditions. Hence, the increased presence of class C in the control
group could also imply that the neurotypicals were more focused
on self-memory retrieval during the resting state.

Microstate class E was systematically the least dominant in
the four temporal parameters analyzed, showing a significant
difference between both groups in the frequency of occurrence
and time coverage. Very few studies have reported the microstate
E presence (Custo et al., 2017; Serrano et al., 2018; Wei et al.,
2018; Bréchet et al., 2019), and its functional significance has
not been explored. However, the brain regions associated with
microstate E reported in Bréchet et al. (2019) and Custo et al.
(2017) include the anterior cingulate cortex (ACC), which is also
a brain area implicated, among others, in the repetitive behaviors
in ASD (Amaral et al., 2008).

The EEG microstates analysis technique is applied over
a broad frequency band. The presence and interpretation of
microstate classes within narrower frequency bands and the
relationship of these states to EEG rhythms, while outside of the
scope of the research presented here, are an important topic and
a worthy focus of future research to evaluate the impact on the
different temporal parameters.

CONCLUSION

The main purpose of this study was to compare the EEG resting
state between neurotypicals and ASD young adults applying
microstate analysis, focusing on the analysis of mean duration,
the frequency of occurrence, the ratio of time coverage, and
the GEV. The grand-cluster analysis revealed that across all
subjects, six template maps best described the complete dataset
with ∼83% of the global variance. We suggest that unless a
study is aimed to compare or complement previous reports,
the number of microstates classes should be selected for each
dataset individually, considering the explained global variance
and the significance of the classes, depending on the conditions
within the experiment.

We performed this study considering resting state only,
finding important differences between both groups, and
these results should be contemplated as a reference for
further assessments comparing the different classes and both
groups under task-oriented experiments. Specifically, (1) since
microstate class C was the only one that exhibited a consistently
increased incidence in controls, it would be interesting to
quantify the decreasing presence compared to the ASD group
once the subjects start being cognitively engaged, and (2) evaluate
if microstate class E is still present under certain types of tasks.
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Growing evidence indicates that autism spectrum disorder (ASD) is a neuropsychological

disconnection syndrome that can be analyzed using various complex network metrics

used as pathology biomarkers. Recently, community detection and analysis rooted in the

complex network and graph theories have been introduced to investigate the changes

in resting-state functional network community structure under neurological pathologies.

However, the potential of hidden patterns in themodular organization of networks derived

from resting-state functional magnetic resonance imaging to predict brain pathology has

never been investigated. In this study, we present a novel analysis technique to identify

alterations in community patterns in functional networks under ASD. In addition, we

design machine learning classifiers to predict the clinical class of patients with ASD

and controls by using only community pattern quality metrics as features. Analyses

conducted on six publicly available datasets from 235 subjects, including patients with

ASD and age-matched controls revealed that the modular structure is significantly

disturbed in patients with ASD. Machine learning algorithms showed that the predictive

power of our five metrics is relatively high (∼85.16% peak accuracy for in-site data and

∼75.00% peak accuracy for multisite data). These results lend further credence to the

dysconnectivity theory of this pathology.

Keywords: autism spectrum disorder, resting-state connectivity analysis, community detection, machine learning,

linear discriminant analysis

1. INTRODUCTION

The study of the human brain often confronts problems arising from the brain’s inherent
complexity (Bullmore and Sporns, 2009). To overcome this challenge, complex network analysis
methods have been extensively used in neurosciences, where the human brain is typically modeled
as a network or graph whose nodes represent brain regions and edges represent the anatomical
or functional interactions among them (De Vico Fallani et al., 2014). Network representation has
been a promising computational model to capture the brain’s topological organization as well as
its dynamics (Rubinov and Sporns, 2010). Studies in this area have revealed that the human brain
has a scale-free small-world topology (Eguíluz et al., 2005) with modular fragmentation and highly
connected hubs (Meunier et al., 2010; Nicolini et al., 2017).

One problem eliciting interest in the analysis of resting-state functional brain networks by using
complex network methods is community detection (Fortunato, 2010), which can be described as
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the unsupervised discovery of subgroups of brain regions that
are typically activated together and densely connected (van den
Heuvel et al., 2008; Shen et al., 2010). Several studies have shown
that this modular structure of the functional network reflects the
anatomical and functional segregation of the human brain, with
the presence of hub nodes or regions sharing numerous inter-
community edges. Recent studies have suggested that community
hubs are highly vulnerable to the effects of brain disorders,
resulting in an altered community structure observed in several
neuropsychiatric pathologies (Nicolini et al., 2017).

Previous studies using complex networks methods to the
study of neurological disorders aimed to characterize the
differences between normal and pathological brains. Graph
theoretical metrics illustrated alterations in the resting-
state functional connectome under specific neurological
pathologies, including trauma (van der Horn et al., 2017),
amnestic mild cognitive impairment (Chen et al., 2012),
Alzheimer’s disease (Supekar et al., 2008), epilepsy (Ponten et al.,
2007), attention deficit/hyperactivity disorder(ADHD) (Wang
et al., 2009; Ahmadlou and Adeli, 2011), and autism spectrum
disorder (ASD) (Zhou et al., 2014). In addition, machine
learning techniques using different types of features have
been increasingly used not only to detect pathology-related
alterations but also to make individual subject predictions of
brain disorders (Arbabshirani et al., 2017).

ASD is typically characterized by deficits in social interaction
and communication, rigid and stereotypical behaviors, and
abnormal sensory processing (Rapin and Tuchman, 2008). This
neurological disorder has been classified as a dysconnectivity
syndrome manifesting as the disruption or abnormal integration
of brain regions evidenced by changes in network properties
used as diagnostic markers (Hull et al., 2016). In the task of
automatically detecting ASD by using resting-state functional
MRI (rsfMRI) data, different types of features, including
independent component analysis (ICA) (Uddin et al., 2011) and
functional connectivity among regions of interest (ROIs) (Iidaka,
2015; Plitt et al., 2015), have been used in conjunction with
various machine learning algorithms, such as logistic regression,
random forest, and neural network algorithms.

In this study, we compared the resting-state functional
community patterns of patients with ASD and controls at the
group and individual level to gain a detailed understanding of
the relationship between impaired connectivity and this brain
pathology. We also reconstructed the communities of each ROI
and used a permutation test based on the Rand index to detect
the brain regions whose community structures differ significantly
between patients with ASD and controls.

In previous studies applying network community pattern
analysis to research brain disorders, modularity (a complex
network metric) has emerged as a de facto standard to quantify
the alterations in the distribution of inter-community vs. intra-
community edges under a specific brain disorder. Despite
the increasing popularity of this single metric in community
detection approaches, one common drawback of single indices
is their low sensitivity and specificity (Stam and van Straaten,
2012). Autism being a complex disorder, the underlying neural
phenomenon could be better captured by combined community

patterns indices beyond the individual capability of single
metrics. Here, we used modularity as well as other descriptive
community pattern metrics drawn from the complex networks
literature that have not been previously used for analysing the
community structure of resting-state functional connectivity
networks built from neuroimaging data. By using experimental
data from 235 subjects in six publicly available datasets and
validation data from 214 subjects in six additional datasets, we
showed that these five community patternmetrics alone can serve
as efficient single-subject predictors of autism.

2. MATERIALS AND METHODS

2.1. Datasets
Experimental data were selected from the Autism Brain Imaging
Data Exchange (ABIDE), a large multisite, publicly available
repository of resting-state fMRI scans, forming part of the 1000
Functional Connectomes Project (Di Martino et al., 2014). The
data were downloaded from five sites: Stanford University (STA),
University of Leuven Sample 1 (LV1), University of Leuven
Sample 2 (LV2), Olin Institute of Living at Hartford Hospital
(OLI), University of Pittsburgh, School of Medicine (PIT),
and California Institute of Technology (CAL). The imaging
data included technical scan parameters as well as phenotypic
information of each individual. Demographic information about
participants in each dataset is shown in Table 1; Table S1

provides the technical details of the scans. As part of the
professional and ethical protocol of the 1000 Functional
Connectomes Project, all datasets have been anonymized, and
no protected health information was included. Despite the
availability of phenotypic information, this study did not use
any of this medical or biological information to analyse group
differences or predict the clinical class of individual participants.

2.2. Descriptive Community Pattern
Metrics
In the last decade, community detection has become a prolific
research area in complex networks and pattern recognition (Pons
and Latapy, 2006; Fortunato, 2010; Epalle and Liu, 2016),
with many application domains, such as social network
mining (Girvan andNewman, 2002), graph visualization (Bastian
et al., 2009), compression (Hernández and Navarro, 2012),

TABLE 1 | Datasets.

ASD Control Age(x̄± σ ) Total

Dataset M/F Age M/F Age N = 235

STA 16/4 7.5–12.9 16/4 7.8–12.4 9.9± 1.5 n = 40

LV1 15/0 18–32 14/0 18–32 22.5±3.5 n = 29

LV2 12/3 12.1–16.8 15/5 12.2–16.9 14.16±1.42 n = 35

OLI 17/3 11–24 14/2 10–23 16.8±3.4 n = 36

PIT 26/4 9.3–35.2 23/4 9.4–33.2 18.9±6.8 n = 57

CAL 15/4 17.5–45.1 15/4 17–56.2 28.15±0.41 n = 38

M, male; F, female; x̄, mean; σ , standard deviation.
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parallel computing (Ngonmang et al., 2012), and recommender
systems (Liben-Nowell and Kleinberg, 2007). In neuroscience,
community detection has been applied as an important step in
resolving more complex problems, such as localizing network
alterations in specific brain disorder (Lerman-Sinkoff and Barch,
2016). In this subsection, we introduce the basic mathematical
notations for community detection and review modularity as
well as four other metrics used to describe community structure
in graphs.

A network or graph G = (V ,E) is composed of a set of nodes
V and a set of edges E. In this study, the nodes V , representing
brain regions, are labeled 1, 2, 3...,N, with N = 90. If an edge
(x, y) is in E, then node x is connected to node y. IfG is undirected
and unweighted, the adjacency matrix A of G is the matrix of 0s
and 1s such, that Axy = 1 if and only if (x, y) ∈ E. Community
detection, being a clustering of G, can be defined as a partition
of V into the sets V1, ...,VK such that V1 ∪ ... ∪ VK = V , and
Vi ∩ Vj = ∅ for any i 6= j, with none of the Vi being empty. The
sets V1, ...VK are called communities or clusters. Any partition
V = {V1, ...,VK} is a community structure or community pattern
of a network with K = |V| communities.

Community patterns are commonly described in terms of
quality functions, which depend on both the graph G and the
partition V and whose optimization is typically believed to yield
the best community pattern. However, these metrics can be
considered as descriptive of a network’s modular organization,
rather than true performance metrics, because they do not
provide strict quantitative criteria for more and less optimal
partitioning (Steinhaeuser and Chawla, 2010).

In this study, we investigated the community organization
of resting-state functional brain networks in ASD by using the
following descriptive metrics:

2.2.1. Modularity
Modularity (Q) is the most popular community characterization
metric in the literature. In a network G = (V ,E) and a partition
V = {V1, ...,VK}, the edges of G can be grouped into community
bridge sets Bij as follows: (x, y) ∈ Bkl if and only if x ∈ Vk and

y ∈ Vl. In particular, we note Bi
k
= Bkk as the set of internal

edges of Vk having all their ends in the same community; we note
Be
k
= ∪k6=lBkl as the set of external edges of Vk having one end in

Vk and the other in V−Vk. By using these notations, a network’s
modularity is defined as

Q(G,V) =

K
∑

k=1

(

2|Bi
k
|

2m
− (

mk

2m
)2

)

, (1)

where mk =
∑

x∈Vk

∑

y∈V Axy is the total degree of community

Vk andm the total number of edges in the network.
The four other community pattern metrics which were

first introduced in (Mitalidis et al., 2014) have so far
received little attention from the scientific community
probably because they were proposed after the publication
of two authoritative review articles on complex network
measures of brain connectivity (Bullmore and Sporns, 2009);
(Rubinov and Sporns, 2010).

2.2.2. Global Density
The global density community quality function (not to be
confused with the popular density metric) is defined as

QGD(G,V) =
1

2
[Qi

GD(G,V)+ 1− Qe
GD(G,V)], (2)

where

Qi
GD(G,V) =

∑K
k=1

∑

x∈Vk

∑

y∈Vk
Axy

∑K
k=1 |Vk|

2

represents the global internal density and

Qe
GD(G,V) =

∑K
k=1

∑

x∈Vk

∑

y∈V−Vk
Axy

∑K
k=1 |Vk| ∗ |V − Vk|

represents the global external density. This formula assumes that
Axx = 1 for all x ∈ V , and all other edges are counted twice.
QGD(G,V) takes values in [0,1], where the value 1 is assigned only
to graphs with perfect community structure.

2.2.3. Local Density
The local density quality function is defined as

QLD(G,V) =

K
∑

k=1

|Vk|

2|V|
∗ [qi(Vk,G)+ 1− qe(Vk,G)], (3)

where the local inner and outer densities are, respectively,
defined as

qi(Vk,G) =

∑

x∈Vk

∑

y∈Vk
Axy

|Vk|
2

and

qe(Vk,G) =

∑

x∈Vk

∑

y∈V−Vk
Axy

|Vk| ∗ |V − Vk|
.

QLD is defined slightly differently than is QGD, but both are based
on the idea of communities being formed by subsets of nodes that
are more densely connected with each other than externally. QLD

also takes values in [0,1].

2.2.4. Distance-Based Metric
The distance-based community quality function is defined as

QDB(G,V) =
1

|V|2
||AG − AV ||, (4)

where ||B|| =
∑

x∈V

∑

y∈V
|Bxy| is a matrix norm, AG is the adjacency

matrix of G, and AVxy = 1 if x, y belongs to the same cluster
(under V), whereas AVxy = 0 if x, y belongs to different clusters
(under V). QDB takes values in [0,1], but unlike with the other
metrics, the value 0 is obtained for graphs exhibiting a perfect
community structure.
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2.2.5. Node Membership Metric
The node membership community quality function is defined as
follows:

QNM(G,V) =
1

2|V|

∑

x∈V

[µ(x,V[x])+ 1− µ(x,V − V[x])]. (5)

V[x] indicates the cluster to which x belongs and node
membership is defined by

µ(x,U) =
1

|U|

∑

y∈U

Axy.

Hence, µ(x,U) = 1 if and only if x is connected to every y ∈ U
and µ(x,U) = 0 if and only if x is connected to no y ∈ U; for
intermediate situations, we obtain µ(x,U) ∈ ]0, 1[.

Brain’s functional connectivity networks are known to
be fundamentally modular. The neuronal regions within
a community cluster have strong interconnections among
themselves and weak interdependencies with neuronal regions
outside the cluster. Modularity, global density, local density,
distance-based, and node membership metrics try to quantify the
quality of assignment of regional nodes into cohesive subgroups
or neural functions. All these metrics take values between 0 and
1. A low value of the distance-based metric and a high value of
the four other metrics indicate that connections between regions
within community clusters are dense, and connections between
regions in different community clusters are sparse. An advantage
of these five community pattern metrics is that they can all be
computed based solely on the connectivity of the graph. Figure 1
provides an illustration of how these metrics are computed for
a particular community partitioning of the popular Zachary
Karate’s club network (Zachary, 1977).

Several prior studies have investigated the modular structure
of resting-state structural and functional connectivity networks
derived from MRI in autistic patients compared to healthy
individuals. For instance, Rudie and coauthors used the Louvain
algorithm (Blondel et al., 2008) to partition the brain into
functional subsystems (Rudie et al., 2013). They performed
additional analyses with small-world metrics, including the
clustering coefficient, the characteristic path length, and
modularity, to discover that children and adolescents with
autism display reduction in network modularity. In another
differential study, the authors used the Louvain method to
partition functional brain networks into various subnetworks,
and the Scale Inclusivity metric to estimate the within and
between group similarity of community structures. Their main
finding was that ASD is characterized with atypical connectivity
in the ventro-temporal-limbic subnetworks that may underlie
social impairments in ASD (Glerean et al., 2016). In a similar
study, Keown et al. (2017) showed that functional subnetworks
are globally atypical in ASD, together with reduced network
integration and increased dispersion. Altogether, these findings
suggest an aberrant reorganization of community structure in
ASD, globally characterized by a reduction in modularity in
persons having autism. These pioneering results provide an
important indication that community patterns might be good

neuromarkers for discriminating between ASD patients and
healthy controls. In this study, we verified the hypothesis
that the values of Q,QGD,QLD,QDB, and QNM are significantly
altered under ASD, 0,0,1which would indicate greater evidence
of an altered community organization. In addition, we tested
the hypothesis that these metrics can be used as features for
predicting the clinical class of a particular participant.

The mathematical formulation of each of these metrics
combines both the ideas of both functional integration and
segregation, and they are used in this study to capture
and reflect the imbalance between intra- and inter-cluster
connections in autism. Using these five metrics together
provides different indicators that map the brain’s functional
community patterns and helps highlight significant changes
between health and disease states that can be leveraged by
machine learning classifiers.

2.2.6. Comparing Community Patterns
In this study, we used the Rand index for comparing pairs
of community patterns (Rand, 1971; Steinhaeuser and Chawla,
2010). The Rand index is a statistical metric based on the
community assignment of each pair of nodes and measures the
degree of agreement between two community patterns U and R;
it is computed using the following parameters:

• a: the number of pairs of nodes assigned to the same
community according to both U and R

• b: the number of pairs of nodes assigned to the same
community according to U but different communities
according to R

• c: the number of pairs of nodes assigned to the same
community according to R but different communities
according to U

• d: the number of pairs of nodes placed in different
communities according to both U and R

The sum a + d is the number of agreements between the
two community patterns, whereas b + c is the number of
disagreements. The Rand index between U and R is defined as

Rand(U,R) =
a+ d
(N
2

)
. (6)

2.3. Preprocessing Parameters
The rsfMRI data listed in Table 1 were preprocessed in the
conventional order to facilitate comparison across the six
datasets (Waheed et al., 2016). The data were preprocessed
using the following software tools: MRIcron, SPM12, DPABI
V2.3170105 (Yan et al., 2016), and DPARSFA V4.3170105 (Yan
and Zang, 2010). The first 10 volumes of each series were
discarded for signal equilibrium. Slice timing was performed
to correct images for the acquisition time delay between slices
of each volume, followed by head motion correction by using
a six-parameter (rigid body) spatial transformation. Next, the
images were normalized to the Montreal Neurological Institute
EPI template and resampled into 3-mm isotropic voxels. The
resulting signals were successively smoothed using a 4 mm
FWHM Gaussian kernel, detrended, and band-pass filtered by
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FIGURE 1 | Examples of values of modularity, global density, local density, distance based and node membership metric for a specific community partition of the

popular Zachary Karate’s Club network.This network partition is composed of five communities or modules. Intra-community connections are colored in black and

inter-community connections in red. The five community pattern measures yielded different values for this graph partition.

using the frequency interval of 0.027–0.073 Hz (this interval
was reported to be more reliable when the global signal is not
regressed Liang et al., 2012). The normalized images were finally
mapped with the Automated Anatomical Labeling atlas (AAL) to
obtain 90 ROIs representing functional network nodes (Tzourio-
Mazoyer et al., 2002). After preprocessing each dataset separately,
we merged the time-series extracted from each site to form a
multisite cohort.

2.4. Group-Level Analysis of Community
Structures
To analyse group-level community patterns, first, we computed
the correlation matrix for each participant from time-series data,
by taking the average Pearson’s correlation between all pairs
of ROIs for each dataset. Next, we constructed the average
correlation matrix (average brain network) for each diagnostic
group. Third, these average networks were binarized using
different threshold values ranging from 0.1 to 0.9. Finally,
community detection was performed for each threshold value
and compared between the two diagnostic groups.

Generating graphs at different sparsity levels has the
advantage of allowing comparison between different graph
representations at different levels of correlation. Community
structures were detected using Newman’s spectral modularity
algorithm in the Matlab Community Detection Toolbox
and visualized with BrainNet Viewer (Xia et al., 2013), a
specialized Matlab toolbox for visualizing brain data. Many

algorithms for community detection have been proposed, among
which Newman’s spectral modularity (Newman, 2006) and
Infomap (Rossval and Bergstrom, 2008) have been extensively
used in neuroscience studies. In this study, we used Newman’s
community detection algorithm because it rapidly optimizes
the quality function (modularity) even with poor hardware
performance, and is accurate. Community detection and
evaluation were performed using the Community Detection
Toolbox (ComDet) (Mitalidis et al., 2014) in Matlab. Visual
inspection of networks across the datasets at different sparsities
allowed the identification of general tendencies of group-level
networks toward under- or overconnectivity.

2.5. Subject-Level Analysis
Community detection was also performed at the subject level
and generated four sets of community patterns for sparsity
thresholds ranging from 0.1 to 0.9. Community pattern metrics
were computed for all participants in each site separately, and
multisite data were generated by merging community pattern
metrics computed for each site at each level of sparsity. We used a
two-sample Kolmogorov-Smirnov test to assess the difference in
the distribution of community quality metrics between the two
diagnostic groups. This test was run on each individual dataset
and on the multisite data independently. In addition, kernel
density estimation (KDE) curves were plotted at each sparsity
level to visualize the differences in community pattern metrics
between the two clinical groups (Ledl, 2004). Additionally, a
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pairwise correlation analysis was performed to visualize the
distribution of data from patients with ASD and controls for each
value of the binarization threshold.

The differences in community partition quality indexes,
although important, do not indicate how community
composition or node assignments differ between the two
diagnostic groups. To this end, the Rand index between each
pair of individuals was computed within each clinical group
according to Equation (6). The Rand index was also extended
to test for group differences in each dataset and in the multisite
data. Intuitively, in case of a significant group difference, the
mean within-group pairwise similarity should be higher than
the mean between-group pairwise similarity. Because this
cannot be tested directly, a non-parametric test comparing
the average within-group Rand index in the original data with
that in permuted data with randomized group membership
was performed. P-values were computed based on the number
of times the within-group Rand index on the permuted data
was greater than that on the original data, divided by the total
number of permutations (n= 50,000).

To locate the brain regions that could be responsible for the
difference in the Rand index between the two clinical groups, we
performed another statistical test proposed by Alexander-Bloch
et al. (2012). This test was implemented only on multisite data.
For each network node X, the other 89 nodes were relabeled to
indicate whether they are in the same module as X. These labels
were subsequently compared across participants. In terms of
node X’s functional community, the similarity of two participants
was quantified using the Rand index. Similar to the previous
test, the pairwise similarity metric was used to test for nodal
group difference through a permutation of group labels. The true
within-group mean Rand index was computed for all within-
group subject-by-subject ROI pairs. Subsequently, the labels were
shuffled 10,000 times and the average permuted within-group
Rand index was computed and compared with that of the real
data to generate a p-value. Thus, for each binarization threshold,
a set of 90 p-values was generated to indicate whether each ROI’s
community assignment was more similar across participants
in the same original group than across those in randomly
permuted groups.

2.6. Automatic Prediction of a Participant’s
Class
The spatial distribution of data as visualized in the subject-level
analysis prompted us to verify whether the five community
features (modularity, global density, local density, distance-
based, and node membership) could serve as reliable
predictors of ASD. Therefore, the following classification
algorithms were implemented using Scikit-Learn in a Python
environment: logistic regression (LR), linear discriminant
analysis (LDA), k-nearest neighbors (KNN), classification and
regression trees (CART), naive Bayes (NB), and support vector
machines (SVM).

Given that LDA which yielded the best ASD classification
accuracy with community quality metrics as features is rather
often used as a supervised feature extraction method, we briefly

recall the classification process using LDA. LDA classifier is
derived from a probabilistic model which models, for each class
or diagnostic group k, the class conditional distribution of the
data P(D|y = k). Predictions can then be obtained by applying
Bayes’ rule:

P(y = k|D) =
P(D|y = k)P(y = k)

P(D)
=

P(D|y = k)P(y = k)

6
l∈{0,1}

P(D|y = l)P(y = l)

(7)
and we select the class k which maximizes this conditional
probability. More specifically, P(D|y) is modeled as a multivariate
Gaussian distribution with density:

P(D|y = k) =
1

(2π)p/2|6|1/2
exp

(

−
1

2
(D− µk)

t6−1(D− µk)

)

(8)
where p is the number of features, µk ∈ R

p the class mean
vector, and 6 = cov[D] the p × p covariance matrix. To use this
model as a classifier, we estimate the class priors P(y = k), the
class means µk and the covariance matrix 6 from the training
data (Hastie et al., 2009).

To estimate the performance of each classifier, LOO-cross-
validation was used to evaluate the performance of these
algorithms on each dataset at each sparsity threshold and a 10-
fold cross validation was applied to multisite data at each sparsity
level. The performance of each of these classifiers was reported in
terms of accuracy, precision, and recall.

In order to rank community quality metrics based on
their ASD predictive ability, we employed recursive feature
elimination (RFE) on our best classifiers (Guyon et al., 2002). RFE
is performed by recursively removing predictors and building a
classificationmodel based on those predictors that remain. It uses
classification accuracy to identify predictors and (combination of
predictors) that contribute the most to predicting the diagnostic
group. RFE algorithm outputs a score between 0 and 1 for
each predictor, and the larger the score, the more important
the predictor.

2.7. Robustness of Community Features to
Methodological Variation
Because of concerns about the effect of specific preprocessing
parameters, we tested the robustness of the predictive power of
the five community structure metric using a different validation
dataset preprocessed with several methodological perturbations.
To this end, we formed a separated multisite validation dataset
composed of six additional sites, totalizing in 214 participants
(ASD = 97, CTR = 117). These data were downloaded from
the preprocessed version of ABIDE repository (Craddock et al.,
2013). Our validation cohorts included data from the following
imaging centers: Carnegie Mellon University (CMU, ASD = 14,
CTR = 13), Kennedy Krieger Institute (KKI, ASD = 20, CTR
= 28), Oregon Health and Science University (OHSU, ASD =

12, CTR = 14), Social Brain Laboratory (SBL, ASD = 15, CTR
= 15), San Diego State University (SDS, ASD = 14 , CTR =

22) and Trinity Center for Health Sciences (TRI, ASD = 22,
CTR = 25). Participant demographic information is provided
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in Table S3 and imaging acquisition parameters are summarized
in Table S4. The downloaded imaging data derivatives were
previously preprocessed using the DPARSF pipeline. The
preprocessing treatments included the removal of the first ten
volumes, slice timing and motion correction. Nuisance variable
regression was carried out using 24 motion parameters and low-
frequency drifts. Imaging signals were then band-pass filtered
with a frequency range of 0.01 Hz to 0.1 Hz, without global
signal correction, registered to Montreal Neuroimaging Institute
template using DARTEL (Ashburner, 2007), and smoothed using
a 6-mm FWHM Gaussian Kernel. The mean time courses for
regions of interest were extracted for each subject based on the
CC200 functional atlas which comprises 200 ROIs (Craddock
et al., 2012). Functional connectomes for each participant were
constructed as described previously, and community pattern
metrics were computed for different network sparsity levels
(0.1 ≤ T ≤ 0.9). We retrained KNN and LDA classifiers
with features extracted for each value of the binarization
threshold. Just as previously, A 10-fold cross-validation scheme
was employed to evaluate these additional classifiers.

3. RESULTS

3.1. Variations in Community Patterns
3.1.1. Difference in Overall Network Structure
Visual inspection of community patterns in the group-averaged
networks at all sparsity levels revealed no significant difference
in the number of community clusters between patients with
ASD and controls. Another important observation was an overall
similarity in topological cluster organization between the brains
of patients with ASD and those of controls. However, at higher
sparsities, over- and underactivation of some communities in
the average networks of ASD cohorts was gradually observed.
Notably, overall underconnectivity was found in ASD cohorts
in LV1, LV2, PIT, and CAL data (Figure 2), and resting-state
group network overconnectivity was observed in the OLI and
STA datasets (Figure 3).

To further investigate the extent to which community
structures of task-free functional connectivity were altered in
ASD, we computed the five descriptive community pattern
metrics and generated plots of their average and standard
deviation in patients with ASD and controls (Figure 4). P-
values for mean group differences were estimated using the two-
sample Kolmogorov-Smirnov test. The p-values obtained were
subsequently FDR-corrected for multiple comparisons. Our five
metrics are different ways of capturing the intuition that nodes
within the same cluster should be more densely connected with
each other than the rest of the network; however, they vary
in their mathematical formulations. Communities were isolated
through modularity maximization, and modularity was used in
addition to the other four metrics to compare the resulting
community patterns. Figure 4 shows that the mean difference
between patients with ASD and controls is significant at several
sparsities. For example, modularity is significantly higher for the
ASD class in STA and CAL, whereas it remains significantly
lower in OLI. The spread of the metrics around their averages
also differs between the two clinical classes. Compared with the

control group, in the ASD class we observed a greater spread of
the values of the metrics in STA, LV1, and LV2,and a smaller one
in OLI, PIT, and CAL, possibly reflecting subtypes of ASD.

Multisite data at T = 0.5 exhibited significant differences
in modularity, distance-based and node membership metrics,
with an overall increase in modularity and node membership,
and a decrease in the three other metrics for the ASD group
(Figure 5). This increase in modularity suggests that there
are relatively fewer connections between clusters and more
connections within clusters in patients with ASD. However, the
relationship between community quality metrics and under-
and overconnectivity remains unclear because a decrease in
modularity was associated with underconnectivity in CAL, but
with overconnectivity in STA.

3.1.2. Differences in Community Composition
While the community pattern quality metrics revealed
differences in the structure of resting-state functional networks,
we still needed to quantify the degree of similarity of node
assignment to clusters within each clinical group. To this end,
Rand index similarity was computed between the ASD and
control groups in the datasets (Table 2). The Rand index showed
a high level of agreement and further confirmed the overall visual
similarity of network structures observed (across binarization
thresholds: mean Rand index= 0.82, standard deviation= 0.14).
However, the Rand index permutation testing on individual
subject network partitions revealed that, for some levels of
sparsity, the within-group similarity of community structures of
pairs of participants in the same diagnostic group is higher than
would be expected if the group difference was not significant
(Table 3). Moreover, this difference was also significant for
multisite data (p = 0.033).

3.1.3. Investigating Group Differences by Using

Subject-Level Analysis
The methods used in the group-level analysis enabled qualitative
and quantitative characterization of the difference between the
two clinical groups. However, they do not allow the estimation of
the degree of variability of community structural metrics within
a clinical group compared with that across groups. Visualizing
the inter-subject variability inside and across the two groups
was possible using KDE plots combined with scatter plots
displaying the organization of data from both clinical groups
with respect to each pair of features (see Figures 6, 7 and
Figures S1–S4). Although group-level analyses revealed similar
patterns in the ASD and control groups, KDE showed important
perturbations in the distribution of community quality metrics
in all datasets and across sparsity densities. Moreover, the spatial
organization displayed via feature pairing plots revealed an
interesting tendency of the data frommembers of each of the two
groups to cluster together. These two-dimensional visualizations
provided an encouraging basis for applying machine learning
algorithms to predict the class of a particular participant by using
community structure metrics as features.

A rigorous regional permutation test of community
assignments adapted from Alexander-Bloch et al. (2012)
was applied to multisite data and found several regions
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FIGURE 2 | Group-average network community pattern for the LV2 dataset at sparsity threshold T = 0.8. ROIs are defined according to the AAL90 brain atlas and

colored based on community assignments by Newman’s spectral algorithm. (A) ASD cohort. (B) Control cohort. The group-level community pattern showed an

overall reduction of connectivity in the brains of patients with ASD. Underconnectivity was also observed in LV1, CAL, and PIT.

FIGURE 3 | Evidence of overactivation in the community colored in yellow observed in the average STA dataset network at the sparsity threshold T = 0.4, despite the

community pattern showing an overall preservation of network morphology. (A) ASD cohort. (B) Control cohort. ROIs are defined according to the AAL90 atlas and

colored on the basis of community assignment by using the Newman’s spectral algorithm. At this density level, group-average network overconnectivity was also

observed in the OLI dataset.

with functional community structure assignments differing
significantly between the two clinical populations (see Table 4

and Figure 8). There was variability across groups in the
community assignment of ROIs across all network sparsity
levels. Full details of the test results are presented in Table S2.

3.2. Single Subject Clinical Group
Prediction
As previously mentioned in this document, six classification
algorithms were implemented by using Scikit-learn in a
Python environment to investigate whether the community

structure quality metrics of the participant’s resting-state
functional connectivity networks alone could predict the clinical
group of a particular participant. Among the classification
algorithms, LDA and KNN yielded the best results with
the LOO-cross-validation test; the performances of these
two algorithms are reported in Table 5. LDA achieved peak
accuracy ranging from 74.86% (CAL) to 85.16% (STA).
KNN obtained a range of peak accuracy from 68.42% (PIT)
to 76.12% (STA). However, these results were obtained at
different network sparsity levels. We merged all the five
community pattern features computed for each sparsity level,
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FIGURE 4 | Comparing average and standard deviation of community pattern quality metrics between patients with ASD and controls for the full range of thresholds.

Community quality metrics were computed for each participant, and plots were created based on the average for patients with ASD and controls. Each row

represents a dataset and each column one metric. Group statistical differences were analyzed using the two-sample Kolmogorov-Smirnov test. Only significant

FDR-corrected p-values are reported (p < 0.05).

FIGURE 5 | Evidence of community pattern alteration in ASD. Box plots reveal group differences in terms of community quality indexes at T = 0.5 in pooled data

across experimental sites . P-values were generated with the two-sample Kolmogorov-Smirnov test and subsequently FDR-corrected.

retrained the classifiers and performed a 10-fold cross-validation
test. Multisite data yielded peak accuracy at T = 0.5
(65.66% for KNN and 74.86% for LDA). Compared with

recent autism classification studies, this study obtained a
relatively high classification accuracy with the lowest number of
predictors (Table 6).
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3.3. Feature Importance
To determine which community pattern features were most
predictive, we performed Recursive Feature Elimination (RFE)
on in-site as well as multisite data with stratified-10-fold cross-
validation. This procedure used our LDA model to rank the
five community pattern metrics according to their predictive
performance during the classification process. For CAL, LV1,
LV2, and PIT, the order of feature importance are global density,
node membership, local density, modularity and distance-based
metric, starting from the most important feature. For OLI and
STA, important features are global density, node membership,
local density, distance-based metric, modularity and node
memebership. RFE on multisite data showed that local density
was the most important predictor (score = 0.95), followed by
global density (score= 0.75) and nodemembership (score= 0.5).
Modularity and distance-based metric were the less predictive
features with a score of 0.25 and 0.10, respectively.

3.4. Robustness to Methodological
Variation
Finally, we examined how community pattern metrics would
perform on novel datasets and under a different set of
preprocessing parameters, including the head motion correction

TABLE 2 | Rand Index values measuring the degree of agreement of community

structures between control and ASD groups in real data.

T STA LV1 LV2 OLI PIT CAL

0.1 0.69 0.64 0.76 0.84 0.97 1

0.2 0.62 0.53 0.69 0.71 0.68 0.89

0.3 0.55 0.68 0.6 0.83 0.65 0.65

0.4 0.77 0.77 0.74 0.71 0.75 0.56

0.5 0.89 0.74 0.72 0.82 0.83 0.77

0.6 0.92 0.86 0.84 0.85 0.87 0.76

0.7 0.99 0.95 0.89 0.95 0.92 0.9

0.8 1 1 0.95 0.99 0.99 0.97

0.9 1 1 0.95 1 1 1

x̄ 0.82 0.8 0.79 0.86 0.85 0.83

σ 0.17 0.17 0.12 0.11 0.13 0.16

T, sparsity threshold; x̄, mean; σ , standard deviation.

parameter, the smoothing parameter, the bandpass filtering
frequency range and the ROI parcellation atlas. Our validation
cohorts were used for this purpose. Group-level analyses of
community structure for validation datasets are summarized
in Tables S5, S6. Subject-level analyses of community quality
metrics are recapitulated in Figures S5–S11. Single validation
sites obtained peak classification accuracy of 68.12% for CMU
(T = 0.3), 76.23% for KKI (T = 0.6), 82.02% for OHSU (T =
0.4), 71.09% for SBL (T = 0.7), 80.73% for SDSU (T = 0.3)
and 72.58% for TRINITY (T = 0.8), using LDA and leave-
one-out cross-validation method. Again, classification accuracies
obtained on in-site data using KKN were consistently lower
than those obtained with LDA. For multisite classification on
the whole validation set, the highest classification obtained
is 75.04% (T = 0.4) obtained with LDA and 10-fold cross-
validation (see Table 7 for full classification results on the whole
validation dataset). Taken together, these results suggest that
the discriminative capability of community patterns metrics
used in this study is relatively well-preserved on novel
datasets and under alternative preprocessing choices. However,
the range of filtering thresholds values that yielded peak
classification accuracy differs considerably between experimental
and validation data. Furthermore, the most important features
differs sightly from those obtained with experimental data.
RFE applied on the whole validation dataset revealed global
density was most discriminative (score = 0.90), followed by
local density, node membership, modularity and distance-based
metric that obtained predictive scores of 0.80, 0.70, 0.30, and
0.08, respectively.

4. DISCUSSION

This study addressed two separate but closely related problems:
the characterization of differences in the resting-state functional
network community patterns between patients with ASD and
age-matched controls and the single-subject prediction of this
same neurological disorder. We repeated the same analyses
on six experimental datasets originating from different sites
and including participants of different ages, obtained using
different imaging acquisition parameters. We also applied
this same analysis pipeline on a multisite cohort formed
by merging experimental data from the six sites. We used

TABLE 3 | Rand index permutation testing revealed significant differences between ASD and CTR network community structures.

Dataset Mean

within-CTR

Mean

within-ASD

Mean of all within-group

pairings in real data

Mean of all Within-group

pairings with permuted labels

P-value

real > permuted data

STA (T = 0.4) 0.557 0.548 0.552 0.547 0.017

LV1 (T = 0.3) 0.549 0.551 0.550 0.540 0.032

LV2 (T = 0.3) 0.562 0.536 0.549 0.544 0.019

OLI (T = 0.4) 0.555 0.558 0.557 0.551 0.046

PIT (T = 0.4) 0.541 0.550 0.546 0.541 0.027

CAL (T = 0.4) 0.569 0.564 0.565 0.558 0.001

Multisite (T = 0.5) 0.565 0.557 0.563 0.557 0.033

P-values for mean group differences were estimated using a permutation test with n = 50,000 permutations.
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FIGURE 6 | Left column: KDE plots of variations in the five community pattern metrics across subjects and clinical groups in the CAL dataset at threshold T = 0.4

with a Gaussian kernel bandwidth of 0.02. These plots show significant differences in the distribution of community structure metrics between the two groups. Middle

and right column: organization of ASD and control group data visualized by scatter plots of all pairs of community pattern metrics.

five community pattern comparison metrics to reach more
robust conclusions. The major findings of our investigation
are as follows: (1) Underconnectivity in the networks from
patients with ASD compared with controls was found in
four of the six datasets (LV1, LV2, CAL, and PIT) and
overconnectivity was observed in two (STA and OLI); (2)
statistical analyses provided strong evidence for alterations in
functional community patterns in ASD, as determined using
community quality indexes; (3) group-averaged networks from
patients with ASD and controls exhibited a high level of Rand
index similarity; however, testing of an individual’s community
structures revealed significant differences in cluster composition

between the two classes; (4) the differences in community
assignments was driven by specific regional nodes, most of
which are known to be impaired in ASD; (5) community
quality metrics yielded a minimum of 79% peak classification
accuracy for experimental datasets, and 76% for validation
datasets. Classification accuracy was lower for multisite data
(74.86% for experimental data and 75.04 for validation data).
The originality of our findings stems from the use of four
complex network metrics that have not been previously used to
analyse the functional modular organization of the human brain
using neuroimaging data. To the best of our knowledge, this
study is the first to reveal that the modular organization metrics
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FIGURE 7 | Left column: KDE plots of variations in the five community pattern metrics across subjects and clinical groups in the STA dataset at threshold T = 0.4

with a Gaussian kernel bandwidth of 0.02. These plots show significant differences in the distribution of community structure metrics between the two groups. Middle

and right column: organization of ASD and control group data visualized by scatter plots of all pairs of community pattern metrics.

alone are used to design individual subject predictive models of
neurological disorders.

Our five metrics are derived from the concept of community
structures in complex networks. While the notion of community
structure has not been explicitly defined, community quality
metrics formalize the intuition that while nodes in a community
are densely interconnected, they are only sparsely connected
to the rest of the network. Many quality functions have been
proposed to formalize this intuition, which may suggest that
none of them is completely satisfactory. This justifies the use
of five metrics in this study to investigate community patterns
in ASD. Although the five metrics are formalizations of the

same intuition, they vary considerably in their mathematical
formulations. Modularity Q is the fraction of the edges that
fall within the given clusters or communities minus the
expected fraction if connections were distributed randomly.
Global density QGD is the average of global inner density and
global outer antidensity. Global inner density is the sum of
all within-cluster connections over all communities, divided
by the number of all possible internal edges; global outer
antidensity is evaluated as one minus the number of edges
between the given clusters divided by the number of all possible
bridge connections. Local density QLD is the average of a
cluster’s (local) inner densities and its (local) outer antidensities
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FIGURE 8 | Altered brain regions in autism as revealed by ROI community assignment test. This test was conducted on pooled data across experimental sites.

weighted by a term proportionate to the cluster’s size (to ensure
that small dense clusters do not influence the total clustering
quality disproportionately). QDB tries to formalize the theoretical
hypothesis of perfect community structure stipulating that any
two nodes within the same community are connected and
any two nodes in different communities are not connected.
The node membership quality function computes the average
(over all nodes of the graph) of a statistic that measures the
likelihood of each node to belong to his assigned cluster and
not other clusters. We can see that each of these metrics
summarizing whole-brain connectivity with a single statistic
captures a specific aspect of the quality of functional community
structures. Considering that all these five measures of functional
segregation are highly sensitive to every single connection
and every meaningful grouping of connections in the graph,
they provide a robust method for comparing connectivity
between normal and pathological individuals. Nevertheless,
although both underconnectivity and overconnectivity were
discovered in our datasets, any potential relationship between
these two potential subtypes of autism and functional community
patterns remains unclear. This diversity in findings may be
explained by the multifaceted manners in which ASD manifests
across individuals.

With respect to functional connectivity differences between
the ASD and control groups, our results are in agreement with
previous findings and support the dysconnectivity theory of
autism. Early studies on functional connectivity at rest in autism
tended to support the underconnectivity theory, whereas a few
recent studies have reported either over connectivity or evidence
for both (Hull et al., 2016). However, most of these studies
have focused only on specific ROIs or resting-state networks;

few have addressed connectivity differences at the whole-brain
level by using community detection and analysis over multiple
datasets, as was done in the present study.While statistical testing
revealed significant differences in the network structure and
community composition, a test at the node level indicated that
this difference was caused by several brain regions. These brain
regions include the insula, thalamus, hippocampus, lingual gyrus,
middle temporal gyrus and other functional areas that are known
to be impaired in autism (Nielsen et al., 2013; Chen et al., 2016;
Wang et al., 2017; Heinsfeld et al., 2018).

As shown in Table 6, descriptive community pattern metrics
yielded over 79% accuracy on all of the individual datasets.
Moreover, they yielded a maximum accuracy of 75.04% on a
different multisite validation dataset (Table 7), thus proving to be
robust, viable predictors of autism. While comparing accuracies
across studies is not always straightforward, depending as
they do on additional parameters such as the number of
participants recorded and the preprocessing pipeline used, there
is evidence that our classification significantly outperforms,
even at the group level, recent approaches that used fine-
scaled pairwise correlations on single-site data. Furthermore,
our classification was achieved with the lowest number
of features.

Despite the encouraging prediction performance obtained in
this study, we do not advocate these metrics as potential ASD
clinical biomarkers. One of their limitations for this purpose
is that those network indexes are not complete invariants, in
the sense that non-equivalent graph structures can yield the
same values in those metrics. While this limitation is somewhat
alleviated in this work by the use of several measures, they
nevertheless fall short of neuromarker standards (Plitt et al.,
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TABLE 4 | Regions displaying high disagreement between ASD and control group

for community cluster assignment.

Label Region Hemi Coordinates

x y z

2 Precental gyrus R 41.37 −8.21 52.09

4 Superior frontal gyrus, dorsolateral R 21.9 31.12 43.82

9 Middle frontal gyrus, orbital part L −30.65 50.43 −9.62

12 Inferior frontal gyrus, opercular part R 50.2 14.98 21.41

15 Inferior frontal gyrus, orbital part L −35.98 30.71 −12.11

16 Inferior frontal gyrus, orbital part R 41.22 32.23 −11.91

17 Rolandic operculum L −47.16 −8.48 13.95

20 Supplementary motor area R 8.62 0.17 61.85

23 Superior frontal gyrus, medial L −4.8 49.17 30.89

24 Superior frontal gyrus, medial R 9.1 50.84 30.22

29 Insula L −35.13 6.65 3.44

30 Insula R 39.02 6.25 2.08

37 Hippocampus L −25.03 −20.74 −10.13

38 Hippocampus R 29.23 −19.78 −10.33

47 Lingual gyrus L −14.62 −67.56 −4.63

49 Superior occipital gyrus L −16.54 −84.26 28.17

57 Postcentral gyrus L −42.46 −22.63 48.92

60 Superior parietal gyrus R 26.11 −59.18 62.06

66 Angular gyrus R 45.51 −59.98 38.63

77 Thalamus L −10.85 −17.56 7.98

78 Thalamus R 13 −17.55 8.09

82 Superior temporal gyrus R 58.15 −21.78 6.8

85 Middle temporal gyrus L −55.52 −33.8 −2.2

86 Middle temporal gyrus R 57.47 −37.23 −1.47

89 Inferior temporal gyrus L −49.77 −28.05 −23.17

This test was performed on merged data across experimental sites. Hemi, hemisphere;

L, left; R, right. These regions can be visualized in Figure 8.

TABLE 5 | Classification performance on our data cohorts by using the five

community pattern descriptors as features with KNN and LDA algorithms.

Algorithm KNN LDA

Dataset Accuracy Precision Recall Accuracy Precision Recall

STA (T=0.2) 76.12 74.48 72.91 85.16 84.25 83.95

LV1 (T = 0.3) 70.31 66.83 61.00 82.77 80.10 81.89

LV2 (T = 0.3) 69.69 48.17 51.67 81.33 80.79 80.29

OLI (T = 0.4) 74.44 77.58 72.01 80.28 79.08 80.04

PIT (T = 0.3) 68.42 57.50 52.49 79.59 78.03 78.77

CAL (T =0.6) 72.00 73.33 71.21 83.35 82.92 83.01

Multisite(T = 0.5) 65.66 59.00 59.00 74.86 76.07 71.67

T, Threshold; KNN, K-nearest neighbor; LDA, linear discriminant analysis. We only report

the sparsity thresholds that yielded the highest classification accuracy.

2015). Another major limitation is their great dependence on
network filtering threshold for which there is no objective
selection criterion. That said, community quality patterns
remain a valuable tool for investigating network connectivity
disruptions in ASD pathology and anticipating the polarity of a
particular participant before using the recommended diagnostic

methods. Further research may provide a solid basis for their
clinical application in the future. Autism spectrum encompasses
several neurological disorders andmanifests itself through a wide
range of symptoms and different characteristics. The way the
brain’s architecture breaks down under the effects of autism is
subtle and complex. A single metric, modularity, for example, is
not enough to capture all the changes in brain structure across
the spectrum. The use of several structural metrics is, therefore,
more appropriate to capture and identify this disease.

Classifiers designed based on features extracted from ABIDE
rsfMRI data typically perform better on single-site data than
multisite data. Decreased accuracy in multisite data could be
attributed to ASD subtypes or other heterogeneities across
the ABIDE sites (Di Martino et al., 2014). Different studies
employed different approaches for utilizing multisite data
for ASD classification in the literature. One approach is to
learn biomarkers of neurological status and perform separate
classification at individual sites and then combine the results
in a meta-analysis (Chen et al., 2016). Another approach
consists of treating multisite data as a single, homogeneous
dataset (Nielsen et al., 2013). These two approaches were used
in this study to assess the viability of functional network
community pattern metrics as predictors of ASD. While these
two approaches fail to account for the variability that has
been proven to be significant between sites, their use in this
study provides preliminary evidence for community quality
metrics as potential predictors of autism. Recent approaches
for combining imaging data from multiple sites leverage
similarity across sites while accounting for individual site
differences through a joint optimization (Wang et al., 2017;
Heinsfeld et al., 2018). While these novel approaches yield better
classification accuracy in multisite studies, they may not be
suited for studies that extract imaging features based on global
connectivity indexes.

In this study, community detection was performed by
optimizing themodularity quality function. Then the community
quality indexes were calculated based on the found community
structures. Given the results for feature importance, it is
interesting to see that modularity is one of the least important
predictive features for the ASD classifiers. One might then
suspect that optimizing some of the other quality functions
might lead to communities that yield better discrimination
between persons with ASD and typical controls. In this work, the
modularity maximization algorithm was chosen for community
identification mostly because of its good performance on
functional brain networks in previous studies. We cannot,
therefore, rule out the fact that the predictive power of the
other quality measures is a consequence of using modularity
for the original clustering. Using an alternative graph clustering
algorithm such as Infomap (Rossval and Bergstrom, 2008) to
perform the original clustering could be useful for verifying
this hypothesis. In addition, it would be interesting to conduct
a comparative study where the initial community detection is
performed by optimizing each of the other quality functions
and then computing and using all the metrics as features
for classification. This, however, is beyond the scope of
this paper.
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TABLE 6 | Comparing our classification results with recent works.

Types of features # of features Classifier # of subjects (ASD, CTR, Total) Peak accuracy % References

Functional connectivity 26,393,745 Thresholding (40, 40, 80) 79.0
Anderson et al., 2011

ICA components 10 Linear Regression (20, 20, 40) 78.0 Uddin et al., 2011

Functional connectivity among 7266 ROIs 26,400,000 General Linear Model (447, 517, 964) 60 Nielsen et al., 2013

Functional connectivity among 220 ROIs 24,090 Random Forest (126, 126, 252) 91 Chen et al., 2015

Functional connectivity among 90 ROIs 4005 Probabilistic Neural Network (312, 328, 640) 90 Iidaka, 2015

Functional connectivity Variable Support Vector Machine (59, 89, 148) 76.7 Plitt et al., 2015

Functional connectivity among 84 ROIs 7,056 Support Vector Classification (468, 403, 871) 67 Abraham et al., 2017

Functional connectivity among ROIs 600 Deep neural network (505, 530, 1035) 70 Heinsfeld et al., 2018

HOG and personal characteristic data 47 Support Vector Machine (538, 573, 1111) 65 Ghiassian et al., 2016

ROIs HMMs likelihoods 114 SVM (121, 171, 292) 75.86 Jun et al., 2019

Time series 90 LSTM (529, 571, 1100) 68.5 Dvornek et al., 2017

Community metrics from 90-ROI networks 5 Linear Discriminant Analysis (117, 118, 235) 74.86 This work

HOG, Histogram of Oriented Gradients; LSTM, Long Short-Term Memory network; HMM, Hidden Markov Models.

TABLE 7 | Classification performance on the entire validation set by using the five

community pattern descriptors as features with KNN and LDA algorithms.

Threshold KNN LDA

Accuracy Precision Recall Accuracy Precision Recall

0.1 58.25 59.23 59.27 65.14 64.34 64.89

0.2 55.69 56.61 61.55 68.85 68.15 68.18

0.3 65.95 64.29 64.07 69 70.15 71.58

0.4 65.97 66.13 64.13 75.04 73.16 74.28

0.5 66.16 67.81 64.51 72.49 71.44 72.77

0.6 64.33 62.45 63.18 71.16 70.98 69.14

0.7 64.17 65.3 64.41 67.24 66.88 65.69

0.8 58.09 54.75 56.85 65.55 65.11 63.13

0.9 55.75 55.78 54.07 66.82 67.12 66.33

KNN, K-nearest neighbor; LDA, linear discriminant analysis.

One limitation of the classification framework proposed in
this study, and graph-based approaches in general, is that
the classification results are very dependent on thresholding
parameter T. Graph screening is a major and most recurring
issue for the binarization of functional brain networks. In
this study, we performed a systematic analysis of functional
brain networks for increasing threshold values ranging from
0.1 to 0.9, as there is no objective criterion for determining
an interval of thresholds for which community quality metrics
would remain relatively stable. Our classification results on single
and multisite data show that, broadly, threshold values falling
between 0.3 and 0.6 yielded the best classification accuracies (see
Tables 5, 7). This suggests that brain networks that are either
too densely connected or too sparse are not good choices for
reaching “optimal” classification accuracy on new data. Still,
finding a general rule for choosing the best network filtering
threshold remains a challenging endeavorDe Vico Fallani et al.
(2014). A potential good workaround solution to the threshold
problem could be to perform community detection and compute

metrics directly from unfiltered networks. A drawback of this
solution could be the challenge of defining and interpreting
communities in the context of signed networks with positive and
negative connections.

Other limitations of this study include the fact that the same
spatial normalization template was used for all participants
despite age differences in the experimental populations.
Detection of regional distortions could probably be more
accurate by using multiple brain templates adapted to different
age ranges. Also, many subjects with ASD were on medication at
the time of scanning, and it cannot be ruled out that treatments
could influence resting-state functional connectivity community
patterns in these individuals. Third, community detection was
performed on unweighted networks, ignoring the potential
significance of the information carried by edge weights. Finally,
we used values of Pearson’s correlation coefficient as node
weights before binarization; however, different correlation
metrics may yield different graph representations of the same
datasets and yield different characterizations of functional
connectivity differences in ASD. Further studies are necessary
to investigate community pattern differences in ASD by
using weighted network representation. Further studies are also
warranted to determine the effects of different correlationmetrics
and other network construction techniques on resting-state
functional network community patterns.

5. CONCLUSION

We propose a framework to characterize and discriminate
patients with autism spectrum disorder from normal control
subjects. Our approach is based on graph-based feature
extraction. A combination of five well-selected community
pattern quality indexes was used as features for classification.
In addition, various statistical tests were applied to evaluate the
overall network topology and community composition in ASD
at the group as well as subject levels. Results for functional
connectivity difference between autistic patients and normal

Frontiers in Human Neuroscience | www.frontiersin.org 15 June 2019 | Volume 13 | Article 203119

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Song et al. Functional Community Patterns in Autism

subjects were consistent with existing studies, revealing both
patterns of underconnectivity and overconnectivity. In particular,
we demonstrated that the modular structure is significantly
disturbed in patients with ASD. More importantly, we showed
that the discriminative power of the modular structure as
captured by the selected metrics is comparatively high, lending
further credence to the dysconnectivity theory of this condition,
for which network connectivity patterns are increasingly being
considered as potential biomarkers.
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Human obesity is associated with low-grade chronic systemic inflammation, alterations
in brain structure and function, and cognitive impairment. Rodent models of obesity
show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple
regions, including the hippocampus, and impairments in hippocampal-dependent
memory tasks. To determine if similar effects exist in humans with obesity, we
applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and
axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI)
data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25
obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based
Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare
DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-
obese groups. In both cohorts, the obese group had significantly greater DBSI-derived
restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and
significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal
density) in several WM tracts (all corrected p < 0.05). Moreover, using region of
interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were
significantly greater and lower, respectively, in obese relative to non-obese individuals
(Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and
amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion,
these findings suggest that greater neuroinflammation-related cellularity and lower
apparent axonal density are associated with human obesity and cognitive performance.
Future studies are warranted to determine a potential role for neuroinflammation in
obesity-related cognitive impairment.

Keywords: obesity, white matter, neuroinflammation, diffusion tensor imaging, diffusion basis spectrum imaging

Abbreviations: AD, axial diffusivity; BBB, blood-brain barrier; BMI, body mass index; CNS, central nervous system; CSF,
cerebrospinal fluid; DBSI, Diffusion basis spectrum imaging; DTI, diffusion tensor imaging; FA, fractional anisotropy; FF,
fiber fraction; GLM, general linear model; HF, hindered fraction; ICV, intra-cranial volume; MRI, magnetic resonance
imaging; MS, multiple sclerosis; PET, positron emission tomography; RD, radial diffusivity; RF, restricted fraction; ROI, region
of interest analysis; TBSS, tract-based spatial statistics; TFCE, Threshold-Free Cluster Enhancement; TSPO, translocator
protein; WM, white matter.
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INTRODUCTION

Obesity is a rapidly growing epidemic around the world.
According to the World Health Organization, in 2016 more
than 1.9 billion adults were overweight and 650 million (about
9% of the world population) were obese (≥30 kg/m2) (WHO,
2018). Obesity is associated with comorbidities including type
2 diabetes, hypertension, heart disease, and cancer (Haslam
and James, 2005). In addition, obesity is linked to cognitive
deficits and is a risk factor for Alzheimer’s disease (Miller
and Spencer, 2014; Walker and Harrison, 2015; Alford et al.,
2018). These latter features have raised the question of how
obesity and its comorbidities may influence brain function and
structure. Neuroimaging studies have found both structural
and functional abnormalities in obesity, but the mechanisms
underlying these differences are not well understood (Devoto
et al., 2018; van Galen et al., 2018; Garcia-Garcia et al.,
2019). One potential mechanism for brain structural and
functional findings is brain inflammation (neuroinflammation),
but this has not been explored thoroughly in humans
(Guillemot-Legris and Muccioli, 2017).

Obesity is a disease of low-grade chronic systemic
inflammation that affects many body organs (Gregor and
Hotamisligil, 2011). Also, evidence from rodent models shows
that obesity causes neuroinflammation (Guillemot-Legris
et al., 2016). Similarly, in humans with obesity, postmortem
brain examination shows evidence of gliosis and abnormal
microglia activation in the hypothalamus and altered mRNA
expression of inflammatory markers in frontal cortex suggestive
of neuroinflammation (Baufeld et al., 2016; Lauridsen et al.,
2017). Hypercaloric diet induces breakdown of the BBB, allowing
pro-inflammatory cytokines to enter the CNS (Guillemot-
Legris et al., 2016; Stranahan et al., 2016; Guillemot-Legris and
Muccioli, 2017) and promotes peripheral macrophage infiltration
to the brain (Stranahan et al., 2016), which subsequently
contributes, among other factors such as increased peripheral
free fatty acid circulation (O’Brien et al., 2017), to obesity-
associated neuroinflammation. Intriguingly, hippocampal
neuroinflammation causes deficits in memory tasks in rodent
models of obesity (Pistell et al., 2010; Beilharz et al., 2016; Cope
et al., 2018). In humans, higher adiposity is generally associated
with poorer cognitive performance in a variety of measures, yet
the underlying mechanism is not entirely understood (Wright
et al., 2016; Gameiro et al., 2017; Tsai et al., 2017). Taken
together, it is reasonable to hypothesize that obesity-related
neuroinflammation impacts the function and structure of
the human brain and could be an underlying mechanism of
obesity-associated cognitive impairment.

Evaluation of obesity-associated neuroinflammation in
humans via imaging is technically challenging and there are
few research studies in this area. Measuring specific processes
related to neuroinflammation (e.g., microglial activation)
with neuroimaging is possible via PET with radiotracers (e.g.,
TSPO radiotracer) (Vivash and O’Brien, 2016; Alam et al.,
2017). However, these PET radiotracers vary in specificity, and
some individuals (∼34% of Caucasians) have genotypes that
confer very low to mixed binding affinity for TSPO ligands

(Owen et al., 2012). Other research groups utilized MRI-based
techniques to evaluate obesity-associated neuroinflammation.
For example, alterations in T2-weighted MRI signal intensity
(an indicator of gliosis) in the hypothalamus have been found
in obese individuals (Thaler et al., 2012; Schur et al., 2015;
Kreutzer et al., 2017). Also, plasma fibrinogen, a driver of
inflammation, has been related to alterations in diffusivity
characteristics of extra-hypothalamic brain regions including
orbitofrontal cortex and amygdala in overweight and obese
individuals (Cazettes et al., 2011). Interestingly, a recent study
has also shown sex-specific effects of central adiposity and
systemic inflammatory markers on limbic system microstructure
(Metzler-Baddeley et al., 2019).

At the same time, a large number of neuroimaging studies
have focused on the impact of obesity on WM microstructure
using standard DTI modeling (Kullmann et al., 2015; Alfaro
et al., 2018). DTI models a single diffusion tensor within an
image voxel, to derive the standard diffusion tensor metrics (AD,
RD, FA). Using this standard model, several studies have found
that individuals with higher BMI have lower FA in many WM
tracts (Marks et al., 2011; Mueller et al., 2011; Stanek et al.,
2011; Verstynen et al., 2012; Karlsson et al., 2013; Xu et al.,
2013; Lou et al., 2014; Bolzenius et al., 2015; He et al., 2015;
Kullmann et al., 2015; Kullmann et al., 2016; Mazza et al., 2017;
Papageorgiou et al., 2017; Alfaro et al., 2018) and mixed effects
on AD and RD (Mueller et al., 2011; Xu et al., 2013; Kullmann
et al., 2016; Mazza et al., 2017; Papageorgiou et al., 2017). In
the healthy brain or disease conditions with limited edema
and inflammation, lower FA and AD reflects impaired overall
WM integrity and axonal injury, respectively, while greater
RD reflects myelin damage (Wheeler-Kingshott and Cercignani,
2009; Winklewski et al., 2018). However, neuroinflammation-
related processes such as cellularity and edema may confound
standard DTI modeling, lead to mixed effects on AD and
RD, and decrease the sensitivity and specificity to detect WM
microstructural alterations (Winklewski et al., 2018).

In recent years, a novel data-driven DBSI (Wang et al., 2011;
Wang et al., 2014) approach has been developed that shows
sensitivity to both neuroinflammation and WM microstructural
alterations. DBSI resolves intra-voxel partial volume effects
arising from anisotropic and isotropic diffusion signals, and
models both simultaneously to obtain the best estimation of
anisotropic and isotropic diffusion tensors. Anisotropic tensor
components modeled by DBSI consider water diffusion of
WM tracts within the image voxel, deriving the rate of water
diffusion parallel to the axon (DBSI-axial diffusivity or DBSI-
AD) and perpendicular to the axon (DBSI-radial diffusivity or
DBSI-RD) or fiber-tract specific diffusion anisotropy (DBSI-
fractional anisotropy or DBSI-FA) reflecting the integrity of
axon bundles. DBSI-derived fiber fraction (DBSI-FF) indicates
axonal density. Simultaneously, DBSI models restricted isotropic
diffusion into DBSI-restricted fraction (DBSI-RF; an indicator
of resident and neuroinflammation-related cellularity) and non-
restricted diffusion into DBSI-hindered fraction (DBSI-HF; an
indicator of tissue edema). DBSI-derived isotropic measures
(DBSI-RF and DBSI-HF) are sensitive to inflammation-related
cellularity and tissue edema, respectively (Cross and Song, 2017),
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and both are present in neuroinflammation (Frohman et al.,
2006; Stamatovic et al., 2006). Validation studies of DBSI in
animal models have shown that this method can differentiate
axonal injury, demyelination, and neuroinflammation in white
and gray matter (Wang et al., 2014; Cross and Song, 2017;
Zhan et al., 2018). In humans, DBSI has been used to detect
indicators of neuroinflammation in MS (Chiang et al., 2014),
cervical spondylotic myelopathy (Murphy et al., 2016), traumatic
spinal cord injury (Sun et al., 2017), HIV (Strain et al., 2017),
and Alzheimer’s disease (Wang et al., 2019). Importantly, when
neuroinflammation is present, DBSI can provide further insight
into WM microstructural integrity (Wang et al., 2011; Chiang
et al., 2014; Wang et al., 2014; Wang et al., 2015; Murphy et al.,
2016; Cross and Song, 2017; Lin et al., 2017; Strain et al., 2017; Sun
et al., 2017; Shirani et al., 2018; Zhan et al., 2018; Lin et al., 2019).

The goal of the current study was to apply DBSI in humans to
evaluate the presence of neuroinflammation and provide further
insight into WM microstructural integrity in obesity. DBSI-
derived metrics may also help resolve some of the conflicting
findings from the DTI literature in obesity (Kullmann et al.,
2015). We hypothesized that obese individuals would have
greater DBSI-RF (an indicator of increased neuroinflammation-
related cellularity), greater DBSI-HF (an indicator of increased
edema), and lower DBSI-FF (an indicator of decreased apparent
axonal density) compared to non-obese individuals. We tested
these hypotheses in a cohort of obese and non-obese individuals
recruited specifically for a study of brain alterations in
obesity (Cohort 1). We then examined a more heterogeneous
convenience sample to confirm the presence of similar patterns
related to BMI status (Cohort 2). Since obese individuals show
impaired cognitive function relative to non-obese individuals
(Wright et al., 2016; Gameiro et al., 2017; Tsai et al., 2017),
hippocampal neuroinflammation causes impairment on memory
tasks in rodent models of obesity (Pistell et al., 2010; Beilharz
et al., 2016; Cope et al., 2018), and the hippocampus and
amygdala operate together to form emotion-associated memory
(Yang and Wang, 2017), we selected the hippocampus and
amygdala to perform region of interest (ROI) analyses and
explored the presence of similar alterations in these regions and
their relation to cognitive performance.

MATERIALS AND METHODS

Participants
In both cohorts, obesity was defined as ≥30 kg/m2. Non-obesity
was defined as ≤25 kg/m2. All studies were approved by the
Washington University School of Medicine Human Research
Protection Office and were carried out in accordance with
the principles expressed in the Declaration of Helsinki.
All participants gave written, informed consent prior
to participation.

Cohort 1: Healthy obese and non-obese adults were
recruited through an online research participant database at
Washington University, advertisements, and word of mouth
for a neuroimaging study on obesity. All participants were
assessed for the presence of diabetes with an oral glucose

tolerance test and excluded from further participation if glucose
or hemoglobin A1c levels met American Diabetes Association
criteria for Type 2 diabetes (American Diabetes Association,
2016). Participants were also assessed with a detailed history,
including neurological and physical examinations, psychiatric
interviews using the Structured Interview for DSM-IV-TR Axis
I Disorders (SCID) (First et al., 2002), and routine blood tests.
Volunteers were excluded for history of medical problems as well
as other significant neurological, cerebrovascular, cardiovascular,
or psychiatric diagnosis (DSM-IV Axis I disorders except
for specific phobias), head trauma, any current or recent
dopaminergic drug use (e.g., stimulants, agonists, bupropion,
neuroleptics or metoclopramide), current heavy alcohol use
(males > 2 drinks per day, females > 1 drink per day) or illicit
drug use, history of substance abuse or dependence, and IQ < 80
as measured by the Wechsler Abbreviated Scale of Intelligence
(WASI) (Wechsler, 1999). Data from individuals in this sample
have been reported previously (Eisenstein et al., 2013; Eisenstein
et al., 2015a,b; Pepino et al., 2016).

Cohort 2: Healthy obese and non-obese adults were recruited
through an online research database at Washington University
and flyers to be a control group for ongoing studies. Exclusion
criteria included self-reported diabetic medication use or
unknown diabetic medication status, current or past history
of confounding neurological disorders, depression as assessed
by the Beck Depression Inventory II (BDI-II) (Beck et al.,
1996), current alcohol or substance abuse, head injury with
loss of consciousness greater than 30 min, claustrophobia or
seizures, and fewer than 8 years of education. Data from
some individuals in this sample have been reported previously
(Strain et al., 2017).

BMI Measures
Body mass index was calculated as kg/m2 in both cohorts.
Cohort 1: Height and weight measurements were taken by a
trained nurse. Cohort 2: Height and weight were self-reported
by participants.

Neuropsychological Performance
As described previously (Strain et al., 2017), individuals in
Cohort 2 completed a cognitive test battery that included
executive function, verbal and visuospatial learning and memory,
and psychomotor speed. These included the Wechsler Adult
Intelligence Scale III [WAIS-III including digit span, digit
symbol, symbol search, and letter number sequencing subtests
(Wechsler, 1997)]; Trail-making Test Parts A and B (Reitan,
1958); Multilingual Aphasia Examination verbal fluency subtest
(Benton and Hamsher, 1976); F-A-S test (Spreen and Benton,
1977); animal (category) fluency (Goodglass and Kaplan, 1972);
Delis-Kaplan Executive Function System [D-KEFS including
Color-Word Interference Task (Delis et al., 2001)]; Hopkins
Verbal Learning Test (HVLT) learning and recall (Brandt,
1991); Brief Visuospatial Memory Test-Revised (BVMT-R)
(Benedict, 1997); Grooved Peg Board (Baser and Ruff, 1987);
and finger-tapping test (FTT) (Schmitt, 2013). The Wide Range
Achievement Test 3 (WRAT3) (Snelbaker et al., 2001) was
also administered.
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MRI Acquisition
Cohort 1: Magnetic resonance imaging scanning was performed
on a Siemens Trio 3T scanner with a 20 channel head
coil. Structural magnetic resonance T1-weighted anatomical
images were obtained using a 3-D MPRAGE sequence [sagittal
orientation, repetition time (TR) = 2400 ms, echo time
(TE) = 3.16 ms, inversion time (TI) = 1000 ms, voxel
resolution = 1 × 1 × 1 mm3, frames = 176, flip angle = 8◦,
FOV = 256 × 256 mm]. We acquired two echo planar
DTI sequences, of similar phase encoding direction, with 27
volumes each (transverse orientation, 2 × 2 × 2 mm3 voxels,
TR = 12,300 ms, TE = 108 ms, flip angle = 90◦, 25 directions,
b-values ranging from 0 to 1400 s/mm2, and two non-diffusion
weighted images).

Cohort 2: Magnetic resonance imaging scanning was
performed on the same Siemens Trio 3T scanner with a 12
channel head coil. Structural magnetic resonance T1-weighted
anatomical images were obtained using the 3-D MPRAGE
sequence described for Cohort 1. Two sequential diffusion-
weighted scans, of similar phase encoding direction, were
obtained (transverse orientation, 2 × 2 × 2 mm3 voxels,
TR = 9,900 ms, TE = 102 ms, flip angle = 90◦, 23 directions,
b-values ranging from 0 to 1400 s/mm2, and one non-diffusion
weighted image).

Image Preprocessing and DTI
Processing
For both cohorts, all DTI volumes were manually inspected to
exclude the presence of large artifacts. FMRIB Software Library
(FSL) (Smith et al., 2004) was used to perform all preprocessing
steps and fit the DTI diffusion tensor model at each imaging
voxel. Non-brain tissue was removed using FSL BET (brain
extraction tool) (Smith, 2002), followed by motion and eddy-
current distortions correction. Field maps were not acquired
as part of these studies and thus corrections for susceptibility-
induced distortions were not performed. For DTI analyses, FSL
DTIFIT tool was used to compute diffusivities from fitting the
diffusion tensor model and to generate DTI-FA (DTI-fractional
anisotropy), DTI-MD (DTI-mean diffusivity), DTI-RD (DTI-
radial diffusivity), and DTI-AD (DTI-axial diffusivity) volumes
for each subject. DTI-derived image volumes for each participant
were subsequently processed through the TBSS (Smith et al.,
2006) pipeline to allow for whole-brain WM voxel-wise analyses
as described below.

Since head motion during MRI scans is positively related to
and shares genetic factors with BMI (Hodgson et al., 2017), and
because registration-based correction methods do not exclude
the effects of head motion entirely, we also computed motion
parameters as described by Yendiki et al. (2014). These motion
parameters include average volume-by-volume translation,
average volume-by-volume rotation, percentage of slices with
signal drop-out, and signal drop-out severity. In order to obtain
these motion measures, we completed the image correction and
quality assessment steps of the TRACULA pipeline (TRActs
Constrained by UnderLying Anatomy), without running the
WM pathways reconstruction steps (Yendiki et al., 2011).

TRACULA-derived average volume-by-volume translation and
average volume-by-volume rotation were included as regressors
in subsequent voxel-wise and statistical analyses. The readout
of percentage of slices with signal drop-out and signal drop-
out severity were 0 and 1, respectively, for every participant
in both cohorts.

DBSI Processing
Diffusion basis spectrum imaging measures were calculated
using in-house software scripted in MATLAB and Statistics
Toolbox Release (2012), and as first described in Wang et al.
(2011). Unlike conventional DTI modeling, DBSI modeling
simultaneously differentiates and quantifies several intravoxel
pathological processes (axonal injury/loss, axonal demyelination,
neuroinflammation-related cellularity, and vasogenic edema)
by assigning a dedicated diffusion tensor for each of these
pathological processes. While DTI-derived FA quantifies the
degree of anisotropy for the whole image voxel, DBSI estimates
anisotropy of fiber tracts within the image voxel without being
confounded by isotropic diffusion. The total diffusion signal (Sk)
measured by DBSI includes both anisotropic (Ak) and isotropic
(Ik) diffusion tensor components, and the weighted sum of these
components is presented in Eq. 1.

Sk =

NAniso∑
i=1

fie−|
Ebk|.λ⊥i e−| Ebk|.(λ‖i−λ⊥i ). cos2 8ik +

b∫
a

f (D)e−| Ebk|D dD

(k = 1, 2, 3, . . . , k). (1)

Where Sk and Ebk are the signal and b-value of the kth diffusion
gradient; NAniso is the number of anisotropic tensors, 8ikis the
angle between the principal direction of the ith anisotropic tensor
and the kth diffusion gradient; λ‖i and λ⊥i are the AD and RD
of the ith anisotropic tensor, fi is the signal intensity fraction for
the ith anisotropic tensor, and a and b are the isotropic diffusion
spectrum f (D) low and high diffusivity limits.

Moreover, DBSI assesses isotropic diffusion tensor signal
distribution within the whole spectrum of apparent isotropic
diffusivity (resulting from intracellular and sub-cellular
structures, and edematous extracellular tissue). Through
previous experimental analyses (Wang et al., 2011; Wang et al.,
2015), we grossly grouped isotropic diffusion as restricted
diffusion (D ≤ 0.3 µm2/ms; a proxy measure of water diffusion
in the intracellular compartment hence cellularity), and non-
restricted isotropic diffusion (D > 0.3 µm2/ms; a proxy measure
of water diffusion in the extracellular space). By solving the DBSI
model, we obtain a group of anisotropic and isotropic metrics
that include: DBSI-FA (indicates overall WM integrity), DBSI-
AD (indicates axonal loss/injury), DBSI-RD (indicates myelin
loss), DBSI-fiber fraction or DBSI-FF (indicates apparent axonal
density), DBSI-RF (D ≤ 0.3 µm2/ms; indicates inflammation-
related cellularity), and DBSI-hindered fraction or DBSI-HF
(D > 0.3 µm2/ms; indicates extracellular tissue edema). DBSI-
derived image volumes for each subject were subsequently
processed through the TBSS pipeline to allow for whole-brain
WM voxel-wise analyses as described below.
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TBSS and Voxel-Wise Analyses
Post-processing and voxel-wise analyses of DTI- and DBSI-
derived metrics were completed with TBSS (Smith et al., 2006).
DTI-FA images were used to create an average WM skeleton.
First, all DTI-FA were slightly eroded and end slices were
excluded to remove potential outliers from diffusion tensor
fitting. Secondly, all images were non-linearly registered to
FMRIB58-FA standard-space image as a target image. Aligned
FA images were then averaged to create a mean FA image, and
fed into the skeletonization step to create a WM skeleton using a
threshold of FA > 0.2. Using the same transformation process, all
DTI- and DBSI-derived images, for each subject, were projected
onto the mean FA skeleton, which represents the center of WM
tracts common to all subjects, and used to perform further
voxel-wise and ROI analyses.

Finally, the FSL Randomize tool (Winkler et al., 2014)
was applied to perform separate voxel-wise statistical analyses
within each cohort, and determined which skeleton voxels were
significantly different between obese and non-obese groups
(p < 0.05, corrected for multiple comparisons). We used GLMs
controlling for age, sex, and race. Also, to account for the
effects of head motion, we also controlled for TRACULA-derived
motion measures (volume-by-volume translation and rotation).
The TFCE option was used in TBSS analysis to correct for
family-wise error (Nichols and Holmes, 2002).

Hippocampal and Amygdalar ROI and
WM Tracts Analyses
In both cohorts, total hippocampal and amygdalar volumes
for each individual were computed using FreeSurfer 6.0
segmentation1 of corresponding structural MRI images.
Hippocampal and amygdalar volumes were corrected for
total intracranial volumes (ICV) and compared between
obese and non-obese groups. For all individuals, average
DBSI-derived metrics (both anisotropic and isotropic) in the
right and left hippocampus and amygdala were extracted
using ROIs from the 50% thresholded Harvard-Oxford
Subcortical Structural Atlas provided by the Harvard Center
for Morphometric Analysis in FSL (Smith et al., 2004). Average
hippocampal and amygdalar DBSI-metrics were compared
between obese and non-obese groups in each cohort separately.
Additionally, the JHU-ICBM-DTI-81 WM labels atlas was
used to create masks to define WM ROIs for further analyses
(Mori et al., 2008). To assess whether differences in DBSI
metrics between obese and non-obese groups were spatially
and qualitatively similar across cohorts, we computed the
percentage of overlap between cohorts in all 48 WM tracts
for significant differences in DBSI-RF, DBSI-FF, and DBSI-
AD. Importantly, the hypothalamus was not included in our
ROI analyses. In our experience, anatomical boundaries of
the hypothalamus are not clearly visible on MRIs, making it
difficult to be certain whether measures are not affected by
partial volume effects. Therefore, we did not include this region
in our analyses.

1https://surfer.nmr.mgh.harvard.edu/

Statistical Analyses
Differences in demographic, motion parameters, and
hippocampal volume variables between non-obese and obese
individuals were assessed with between-subjects Student’s t-tests
or, if data were not normally distributed, Mann–Whitney
U tests. Differences in race and sex distributions between
obese and non-obese groups were assessed with Chi-square
tests. Voxel-wise analyses compared DTI- and DBSI-derived
metrics between obese and non-obese groups within each
cohort separately, using GLM controlling for age, sex, race,
and TRACULA-derived motion parameters (volume-by-
volume translation and rotation). Further voxelwise GLM
analyses determined whether BMI related to DBSI metrics of
interest within each group in both cohorts. For each GLM,
the FSL statistical package Randomize (Winkler et al., 2014)
was used to correct for multiple comparisons via a TFCE
approach with a family-wise error rate derived from 5000 Monte
Carlo permutations (Nichols and Holmes, 2002). Statistical
significance was thresholded at corrected p ≤ 0.05. Average
hippocampal and amygdalar DTI- and DBSI-derived metrics
were compared between obese and non-obese groups, within
each cohort separately, using a multiple linear regression
model with age, sex, race, average hippocampal or amgydalar
volume, and motion parameters as covariates. Additionally, in
Cohort 2, we used partial Pearson r correlations controlling
for age to relate main DBSI outcomes in the hippocampus
and amygdala with performance on cognitive tasks. It was
not expected that these exploratory correlational analyses
would survive multiple comparison correction [0.05/(19
tests × 2 brain regions) = 0.0013]. Differences in cognitive
performance between obese and non-obese individuals in
Cohort 2 were assessed with two-tailed between-subjects
Student’s t-tests.

RESULTS

Participants
Participant demographics and descriptive statistics for Cohort 1
and Cohort 2 are shown in Table 1.

Cohort 1: Twenty-five obese (BMI = 33.4–51 kg/m2) and
twenty-one non-obese (BMI = 18.6–25.9 kg/m2) participants
contributed DTI scans for analyses. Data from two individuals
whose BMIs were 25.1 and 25.9 kg/m2 were included as non-
obese since they met criteria for normal percent body fat
and other metabolic parameters. Obese participants were older
than non-obese participants and had a larger proportion of
African Americans compared to the non-obese group. Non-
obese and obese groups did not differ in sex distribution or
years of education.

Cohort 2: Eighteen obese (BMI = 30–43 kg/m2) and forty-
one non-obese (BMI = 18.5–25 kg/m2) participants contributed
DTI scans for analyses. Sex and race distributions differed
between obese and non-obese groups such that there were higher
proportions of females and African Americans in the obese
group. Obese and non-obese groups did not differ in age or
years of education.
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TABLE 1 | Demographic data and TRACULA-derived motion parameters for
obese and non-obese participants in Cohort 1 and Cohort 2.

Cohort 1 Non-obese Obese p-value
(n = 21) (n = 25)

Age (years) mean (S.D.) 28 (5.2) 31.6 (6.4) 0.05∗

Sex (male/female) 5/16 4/21 0.51

Race 18 C/2 AA/1 H 13 C/12 AA 0.01∗∗

Body mass index (kg/m2) mean
(S.D.)

22 (2.2) 40 (4.9) <0.001∗∗∗

Education level (years) mean (S.D.) 15.8 (1.49) 15.1 (1.82) 0.23

Volume-by-volume translation
(mm) mean (S.D.)

0.96 (0.2) 1.1 (0.1) 0.03∗

Volume-by-volume rotation
(mm) mean (S.D.)

0.0039 (0.0007) 0.0043 (0.0007) 0.08

Cohort 2 Non-obese Obese p-value
(n = 41) (n = 18)

Age (years) mean (S.D.) 29.5 (14.4) 29.8 (12.9) 0.12

Sex (male/female) 25/16 3/15 0.002∗∗

Race 23 C/16 AA/1 5 C/13 AA 0.03∗

AS/1 BI

Body mass index (kg/m2) mean
(S.D.)

21.7 (1.7) 35.7 (4.3) <0.001∗∗∗

Education level (years) mean (S.D.) 13.2 (2.08) 13.3 (1.33) 0.55

Volume-by-volume translation
(mm) mean (S.D.)

1.06 (0.1) 1.13 (0.13) 0.04∗

Volume-by-volume rotation
(mm) mean (S.D.)

0.0042 (0.001) 0.0048 (0.001) 0.09

∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. Independent Student’s
t-test, Mann–Whitney U test, or Pearson Chi-Square test were used as appropriate.
C, Caucasian; AA, African American; H, Hispanic; AS, Asian; BI, Bi-racial. S.D.,
standard deviation.

Motion Parameters
TRACULA-derived motion parameters for Cohort 1 and Cohort
2 are shown in Table 1. In both cohorts, the obese group required
greater volume-by-volume translation for motion correction
during the DTI scans. However, neither this measure nor volume-
by-volume rotation related to BMI within non-obese (r ≤ 0.31,
p ≥ 0.18) or obese (r ≤ 0.21, p ≥ 0.40) groups in either cohort.

Voxel-Wise Comparison of DBSI and DTI
Metrics
Cohort 1: In TBSS analyses that covaried age, sex, race, and
motion parameters, DBSI-FA was lower in obese compared to
non-obese individuals, while DBSI-AD and RD were greater
in obese compared to non-obese individuals (Figures 1A–C).
DBSI-FF was lower in obese compared to non-obese individuals
(Figure 1D) while DBSI-RF and DBSI-HF were greater in obese
compared to non-obese individuals (Figures 1E,F). Lower DTI-
FA and DTI-AD were observed in obese compared to non-
obese individuals (Figure 2A). DTI-MD and DTI-RD were not
significantly different between obese and non-obese individuals
(data not shown).

Cohort 2: In TBSS analyses that covaried age, sex, race, and
motion parameters, similar to Cohort 1, the obese group had

FIGURE 1 | Diffusion basis spectrum imaging-derived measures of white
matter integrity and indicators of neuroinflammation in Cohort 1 and Cohort 2.
(A) DBSI-derived fractional anisotropy. (B) DBSI-derived axial diffusivity.
(C) DBSI-derived radial diffusivity. (D) DBSI-derived fiber fraction.
(E) DBSI-derived restricted fraction. (F) DBSI-derived hindered fraction.
Green, white matter skeleton; red-yellow, obese greater than non-obese
group (p < 0.05, corrected); blue-light blue, obese lower than non-obese
group (p < 0.05, corrected).

lower DBSI-FF and greater DBSI-RF when compared to the non-
obese group (Figures 1D,E). DBSI-FA and DBSI-AD were greater
in the obese compared to the non-obese group while DBSI-RD
was lower in the obese group compared to the non-obese group
(Figures 1A–C). DBSI-HF did not differ between obese and non-
obese groups. DTI-AD was lower in the obese compared to the
non-obese group (Figure 2B). DTI-FA (Figure 2B), DTI-MD
and DTI-RD were not significantly different between obese and
non-obese individuals (data not shown).

For the group differences in DBSI-FF and DBSI-RF, we
determined the degree to which WM tracts overlapped in
both cohorts (Figure 3). Differences in DBSI-RF and DBSI-FF
were observed in widespread WM tracts and the percentage
of overlap between both cohorts in all 48 WM tracts are
included in Supplementary Table 1, in which columns are sorted
in descending order according to the number of voxels that
overlap for DBSI-RF.

Voxelwise Correlations Between BMI and
DBSI Metrics of Interest
Higher BMI related to greater voxelwise DBSI-RF in WM
tracts within obese and non-obese groups in Cohort 1 but
not within either group in Cohort 2. BMI did not relate to
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FIGURE 2 | Diffusion tensor imaging-derived measures of white matter
integrity in Cohort 1 and Cohort 2. (A) Cohort 1: Obese individuals had lower
white matter fractional anisotropy (FA) and axial diffusivity (AD) than non-obese
individuals. (B) Cohort 2: Obese individuals had similar white matter FA but
lower AD than non-obese individuals. Green, white matter skeleton; blue-light
blue, obese lower than non-obese group (p < 0.05, corrected).

voxelwise DBSI-FF in WM tracts in either group in either cohort
(data not shown).

ROI Analyses of Hippocampal and
Amygdalar DBSI Metrics
In both Cohort 1 and Cohort 2, we compared average
hippocampal and amygdalar volumes and hippocampal and
amygdalar DBSI-derived metrics (DBSI-FA, DBSI-AD, DBSI-
RD, DBSI-FF, DBSI-RF, DBSI-HF) between obese and non-obese
groups using multiple linear regression, covarying for age, sex,
race, average hippocampal or amygdalar volumes, and motion
measures (volume-by-volume translation and rotation) (Figure 4
and Tables 2, 3). In Cohort 1, hippocampal DBSI-RF was
greater in the obese group when compared to the non-obese
group (Cohen’s d effect size = 1.03; 19.7% increase). Amygdalar
DBSI metrics were not different between obese and non-obese
groups in Cohort 1. In Cohort 2, hippocampal DBSI-AD and
DBSI-RF were greater in the obese compared to the non-obese
group (Cohen’s d effect sizes = 0.59 and 0.70, 3.4% increase
and 12.2% increase, respectively) and amygdalar DBSI-FF and
DBSI-RF were lower and greater in the obese compared to the
non-obese group, respectively (Cohen’s d effect sizes = 1.2 for
both comparisons, 8.3% decrease and 22% increase, respectively).
Amygdalar volume was larger in obese relative to non-obese

FIGURE 3 | Overlap in white matter tracts with significant differences between
obese and non-obese groups in both cohorts (Cohort 1: Blue-purple; Cohort
2: Red-yellow). (A) Lower DBSI fiber fraction in obese compared to
non-obese. (B) Greater DBSI restricted fraction in obese compared to
non-obese.

individuals in both cohorts. Hippocampal volumes and other
DBSI-derived metrics were not different between obese and non-
obese individuals in either cohort.

Cognitive Correlations With
Hippocampal and Amygdalar DBSI-RF
and DBSI-FF
Scores from cognitive measures acquired from Cohort 2 were
correlated across obese and non-obese individuals with DBSI-
RF and DBSI FF in the hippocampus and amygdala, controlling
for age (Figure 5). Eighteen cognitive measures had enough
data points to be included in these exploratory analyses. BVMT,
WAIS-III digit span subtest and FTT for the non-dominant
hand performances were not included due to insufficient data
points (≥20 subjects did not have one or more of these data
points). All other correlations between ROI DBSI-FF or DBSI-RF
and cognitive measures were not significant (p ≥ 0.06; data not
shown). Also, we compared cognitive measure scores to assess
between-group differences (data not shown). The obese group
showed lower total recall (HVLT total recall, p = 0.02) and lower
delayed verbal recall (HVLT delayed recall; p = 0.007), while no
differences were observed in other cognitive measures (p≥ 0.11).

DISCUSSION

The findings of our current study indicate the presence of diffuse
neuroinflammation (greater DBSI-RF) in several WM tracts
and hippocampus in both cohorts and amygdala in Cohort 2
and lower apparent axonal density (DBSI-FF) in several WM
tracts in both cohorts and amygdala in Cohort 2 in obese
individuals as assessed by DBSI. Additionally, obese groups
had consistently higher DBSI-AD when compared to non-
obese groups, but DBSI-FA and DBSI-RD were inconsistent
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FIGURE 4 | Comparison of DBSI metrics in the hippocampus (A,B) and amygdala (C,D) between obese and non-obese groups in Cohort 1 and Cohort 2. FA,
fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; HF, hindered fraction. Median, first and third quartiles, 1.5 × interquartile range
shown. ∗, ∗∗, p ≤ 0.05, 0.01, respectively.
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TABLE 2 | Hippocampal DBSI metrics and volumes in obese and non-obese groups in Cohort 1 and Cohort 2.

Cohort 1 Cohort 2

Obese Non-obese p-value Obese Non-obese p-value

DBSI-FA 0.52 ± 0.03 0.5 ± 0.03 0.06 0.68 ± 0.03 0.67 ± 0.03 0.37

DBSI-AD 1.54 ± 0.11 1.48 ± 0.09 0.09 1.97 ± 0.1 1.9 ± 0.1 0.02∗

DBSI-RD 0.54 ± 0.05 0.53 ± 0.03 0.35 0.44 ± 0.03 0.45 ± 0.04 0.67

DBSI-FF 0.23 ± 0.02 0.23 ± 0.02 0.37 0.28 ± 0.02 0.29 ± 0.03 0.22

DBSI-RF 0.08 ± 0.01 0.06 ± 0.01 0.045∗ 0.08 ± 0.01 0.07 ± 0.01 0.008∗

DBSI-HF 0.51 ± 0.05 0.50 ± 0.04 0.35 0.43 ± 0.05 0.44 ± 0.06 0.54

Hippocampal volume (mm3) 4203.2 ± 308 4009.2 ± 274 0.89 4358.8 ± 810 3856.1 ± 356 0.67

Mean ± S.D. shown. DBSI metrics are unitless. ∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. DBSI, Diffusion Basis Spectrum Imaging; FA, fractional anisotropy;
AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; RF, restricted fraction; HF, hindered fraction.

TABLE 3 | Amygdalar DBSI metrics and volumes in obese and non-obese groups in Cohort 1 and Cohort 2.

Cohort 1 Cohort 2

Obese Non-obese p-value Obese Non-obese p-value

DBSI-FA 0.54 ± 0.02 0.55 ± 0.02 0.3 0.7 ± 0.03 0.68 ± 0.02 0.41

DBSI-AD 1.43 ± 0.12 1.44 ± 0.09 0.61 1.83 ± 0.11 1.75 ± 0.11 0.31

DBSI-RD 0.51 ± 0.06 0.51 ± 0.04 0.26 0.42 ± 0.04 0.43 ± 0.03 0.16

DBSI-FF 0.33 ± 0.02 0.33 ± 0.02 0.27 0.36 ± 0.02 0.39 ± 0.03 <0.001∗∗∗

DBSI-RF 0.05 ± 0.01 0.06 ± 0.01 0.33 0.07 ± 0.01 0.05 ± 0.01 <0.001∗∗∗

DBSI-HF 0.49 ± 0.04 0.49 ± 0.04 0.28 0.42 ± 0.05 0.43 ± 0.03 0.78

Amygdala volume (mm3) 1746.04 ± 157 1669.41 ± 116 0.07 1802.5 ± 338 1575.7 ± 117 0.05∗

Mean ± S.D. shown. DBSI metrics are unitless. ∗, ∗∗, ∗∗∗, p ≤ 0.05, 0.01, 0.001 relative to non-obese. DBSI, diffusion basis spectrum imaging; FA, fractional anisotropy;
AD, axial diffusivity; RD, radial diffusivity; FF, fiber fraction; RF, restricted fraction; HF, hindered fraction.

across cohorts (lower DBSI-FA and greater DBSI-RD in Cohort
1; greater DBSI-FA and lower DBSI-RD in Cohort 2). These
findings might also indicate that neuroinflammation-related
processes (cellular infiltration and tissue edema) could have
confounded DTI-derived metrics. Exploratory analyses showed
correlations between hippocampal and amygdalar DBSI-RF or
DBSI-FF and some cognitive variables in Cohort 2.

Comparison Between DTI and DBSI
Findings in Obesity
Diffusion tensor imaging has been extensively used to
evaluate WM microstructure changes associated with obesity.
Consistently, lower DTI-FA has been observed in obese
compared to non-obese groups (Kullmann et al., 2015), while
DTI-AD and DTI-RD alterations have been mixed (Mueller
et al., 2011; Xu et al., 2013; Kullmann et al., 2016; Mazza et al.,
2017; Papageorgiou et al., 2017). In our study, in several WM
tracts, DTI-AD was lower in obese groups in both cohorts,
DTI-FA was lower in the obese group in Cohort 1, while
DTI-RD was not different between groups in either cohort.
Using the traditional interpretation of DTI results, these findings
indicate impaired overall WM integrity and axonal injury
in the obese groups. Because DTI models both intra-axonal
and extra-axonal water diffusion, cellularity associated with
obesity might lead to decreased diffusion in all directions,
resulting in the observed decrease in DTI-AD even without

the presence of axonal injury. When isotropic diffusion was
accounted for in the DBSI modeling, DBSI-AD was slightly
greater in the obese groups in both cohorts, which could indicate
increased water diffusion parallel to the axons in the extracellular
compartment as a result of increased tissue edema. The presence
of tissue edema could also contribute to the lower apparent
axonal density (lower DBSI-FF) in the obese groups. These
findings indicate that neuroinflammation-related processes
(cellular infiltration and tissue edema) could have confounded
DTI-derived metrics. This notion was previously suggested by
some authors and demonstrated by histopathological studies
in animal models of neuroinflammatory diseases (Wang
et al., 2014; Cross and Song, 2017; Winklewski et al., 2018;
Zhan et al., 2018).

The inconsistent differences in DBSI-FA and DBSI-RD (lower
DBSI-FA and greater DBSI-RD in Cohort 1; greater DBSI-
FA and lower DBSI-RD in Cohort 2) could also support
the hypothesis that different biological processes may underlie
obesity-related WM microstructure alterations (Haley et al.,
2018). In each cohort, the pattern of change in DBSI-FA,
DBSI-AD, and DBSI-RD might represent a different stage
of WM reorganization post-injury. This hypothesis has been
used to explain the bi-directional changes in DTI-FA in other
conditions (e.g., a rodent model of traumatic brain injury) (Harris
et al., 2016). In the case of obesity, the underlying mechanism
could be an ongoing process of WM structural reorganization
(demyelination/remyelination, loss of long WM tracts, axon
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FIGURE 5 | Significant correlations between hippocampus/amygdala DBSI fiber fraction and DBSI restricted fraction with performance in key measures of cognition
in Cohort 2 (blue: obese; red: non-obese). Shaded area surrounding regression lines are 95% confidence intervals). DBSI-FF, fiber fraction; DBSI-RF, restricted
fraction; HVLT, Hopkins Verbal Learning Test; WRAT-3, Wide Range Achievement Test 3; Dom, dominant; Non-dom, Non-dominant.

sprouting) associated with persistent neuroinflammatory process.
Nevertheless, although this hypothesis is a plausible explanation
for the inconsistent diffusivity differences observed in our study,
these differences might also be due to between-cohort differences
in hardware used, such as head coils, and DTI acquisition
parameters or participant characteristics due to sample selection
criteria. As mentioned above, while DTI data from Cohort 2
participants were primarily selected from a convenience sample
comprising the HIV- control group of an HIV neuroimaging
study, Cohort 1 participants were selected specifically for a
study of brain alterations in obesity unconfounded by current
or past co-morbid disease. Therefore, more stringent screening
for diabetes, mental illness, substance and alcohol abuse,
and IQ/education was performed in Cohort 1 relative to
Cohort 2. We excluded individuals with diabetes in order to
study neuroinflammation in obesity per se, unconfounded by
hyperglycemia and insulin resistance, factors already linked to

neuroinflammation (Pugazhenthi et al., 2017). More rigorous
experimental designs are necessary to confirm the validity of
these hypotheses and to determine what non-BMI factors relate
to DBSI measures.

Histopathological Abnormalities
Associated With Neuroinflammation in
Obesity
In obese groups, greater DBSI-RF in WM tracts and
hippocampus presumably reflect an increase in CNS resident
inflammatory cells. Significant increases in glial fibrillary acidic
protein (GFAP) immunoreactive astrocytes were observed in the
hippocampus and frontal and parietal cortices in rodent models
of obesity (Tomassoni et al., 2013). Evidence of increased gliosis
was observed in the mediobasal hypothalamus of living obese
humans assessed by MRI (Thaler et al., 2012; Schur et al., 2015),
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which related to greater post-mortem GFAP staining intensity
(Schur et al., 2015). Peripheral inflammation as indicated
by plasma fibrinogen related to alterations in DTI-measured
apparent diffusivity in the amygdala (Cazettes et al., 2011). In
several rodent studies, obesity-induced microglia activation and
other types of neuroinflammation were frequently observed in
hypothalamus, hippocampus, amygdala, and other brain regions
(Erion et al., 2014; Tucsek et al., 2014; Guillemot-Legris and
Muccioli, 2017). Obesity-related microglial activation in rodents
mediates the relationship between synaptic dysfunction and
cognitive deficits, which are blocked by inhibition of microglial
activation (Erion et al., 2014; Cope et al., 2018). Reversal
of obesity-related macrophage infiltration into leaky BBB
improves obesity-associated cognitive dysfunction (Stranahan
et al., 2016). Since DBSI doesn’t distinguish different cell
types, it would be necessary to perform validation studies, e.g.,
correlation of DBSI-derived metrics with histopathological
measures of neuroinflammation in rodent models of obesity
and in human postmortem brain, to confirm that these
altered properties truly reflect neuroinflammation and detect
which cell types are responsible for the observed changes in
DBSI-RF in our study.

Interestingly, in Cohort 1, DBSI-HF was greater in obese
compared to non-obese individuals. DBSI-HF models non-
restricted water diffusion in the extracellular compartment and
reflects tissue edema in acute neuroinflammatory conditions
(Wang et al., 2011; Wang et al., 2014; Zhan et al., 2018). In the
case of possible chronic neuroinflammation in disease states such
as obesity, histopathological evaluation is needed to determine
the mechanism that underlies greater DBSI-HF.

Neuroinflammation, Axonal Density, and
Cognitive Performance
In the current study, we showed that DBSI-RF, an indicator
of neuroinflammation, and DBSI-FF, an indicator of axonal
density, in hippocampus and amygdala related to cognitive
performance in some measures. These results are in line with
studies in which impaired performance on memory tasks is
induced by hippocampal neuroinflammation in rodents with
diet-induced obesity (Pistell et al., 2010; Beilharz et al., 2016;
Cope et al., 2018) and the observed association between plasma
fibrinogen and water diffusion in the amygdala in obese and
overweight individuals (Cazettes et al., 2011). The current results
suggest altered water diffusivity in the brain, and perhaps
neuroinflammation, may relate to altered cognitive performance.
However, these data should be considered preliminary since
analyses were exploratory and not corrected for multiple
comparisons. Future studies may determine whether putative
neuroinflammation modulates the relationship between BMI and
cognitive performance.

Limitations and Future Directions
The primary strength of the current study is the replication of the
findings that DBSI-RF, a putative marker of neuroinflammation,
and DBSI-FF, a marker of axonal density, are greater and
lower, respectively, in obese than non-obese individuals in two

independent cohorts. The main weakness of this study is that
data were not available to link DBSI metrics to alterations in
inflammation-related behavior or proinflammatory cytokines in
plasma or CSF. Without histopathological validation, though
plausible, it remains speculative that the DBSI-measured
alterations truly reflect neuroinflammation. Previous studies
showed that DBSI-RF is associated with activated microglia
and astrogliosis in several neuroinflammatory conditions (Wang
et al., 2011; Chiang et al., 2014; Wang et al., 2014) but this
has not been examined in obesity. Interestingly, the regions of
increased DBSI-RF and decreased DBSI-FF in obese individuals
in Cohort 1, from a study designed to test for differences
in the brain due to obesity unconfounded by other health
issues, falls almost entirely within the regions of the findings
from obese individuals in Cohort 2, a convenience sample, as
described above. Lack of convergent findings for some DBSI
anisotropic metrics could be due to variations in stage of
WM reorganization and differences between cohorts including
participant characteristics and DTI sequence parameters, as
discussed above. A third weakness is that age, sex and race
distributions differed between obese and non-obese individuals
in one or both cohorts. There are age, sex, and racial differences in
adiposity and associated traits including systemic inflammation
severity due to physiological, social and psychological factors
(Thorand et al., 2006; Stepanikova et al., 2017a,b). While
we controlled for age, sex and race in our data analyses,
we cannot rule out the possibility that differences between
groups in these factors contributed to our results. Clearly,
age, sex, and race should be included in future studies as
variables of primary interest with sufficient sample size to power
these studies. DTI sequence parameters were slightly different
between cohorts, which prevented us from combining data
across cohorts. Future studies should be prospective in nature,
include larger sample sizes and obtain complimentary measures
of neuroinflammation using PET with radiotracers specific for
activated microglia, plasma and CSF inflammatory marker levels,
and measures of cognitive function. Also, studies of animal
models of obesity would allow for histopathological validation
of DBSI metrics.

CONCLUSION

In two independent cohorts, we showed that a DBSI-derived
indicator of neuroinflammation is greater and axonal density
is lower in obese compared to non-obese humans. In addition,
the discrepancies between DBSI- and DTI-derived anisotropic
metrics demonstrate the limitations of DTI when applied to
disease states that may be accompanied by neuroinflammation.
Additionally, these findings highlight the significance of
applying multi-component models of diffusion imaging in these
populations. Future studies are warranted to determine whether
high-calorie diet-induced neuroinflammation occurs in ROIs
outside hippocampus, amygdala, and hypothalamus and its
potential role in obesity-associated impairment in behaviors
thought to be regulated by these regions. Finally, the results
of the current study indicate that putative neuroinflammation
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and associated cognitive impairment occurs even in obese
individuals without diabetes. Given the evidence implicating
diabetes in the development of neuroinflammation and
cognitive impairment (Pugazhenthi et al., 2017), it will
be important to assess relationships between metabolic
markers, cognition, and MRI-derived neuroinflammation
metrics in individuals who do and do not develop insulin
resistance over time. Also, further histopathological studies in
postmortem brain are necessary to confirm that the altered
DBSI properties we observed in obese humans truly reflect
neuroinflammatory processes.
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Direct eye contact between two individuals is a salient social behavior known to initiate
and promote interpersonal interaction. However, the neural processes that underlie these
live interactive behaviors and eye-to-eye contact are not well understood. The Dynamic
Neural Coupling Hypothesis presents a general theoretical framework proposing that
shared interactive behaviors are represented by cross-brain signal coherence. Using
functional near-infrared spectroscopy (fNIRS) adapted for hyper scanning, we tested this
hypothesis specifically for neural mechanisms associated with eye-to-eye gaze between
human participants compared to similar direct eye-gaze at a dynamic video of a face
and predicted that the coherence of neural signals between the two participants during
reciprocal eye-to-eye contact would be greater than coherence observed during direct
eye-gaze at a dynamic video for those signals originating in social and face processing
systems. Consistent with this prediction cross-brain coherence was increased for signals
within the angular gyrus (AG) during eye-to-eye contact relative to direct eye-gaze at a
dynamic face video (p< 0.01). Further, activity in the right temporal-parietal junction (TPJ)
was increased in the real eye-to-eye condition (p< 0.05, FDR corrected). Together, these
findings advance a functional and mechanistic understanding of the AG and cross-brain
neural coupling associated with real-time eye-to-eye contact.

Keywords: eye-to-eye contact, temporoparietal junction, two-person neuroscience, live dyadic interactions,
fNIRS, hyperscanning, neural coupling, neural coherence

INTRODUCTION

Eye contact is a fundamental component of face-to-face communications and important in a
number of developmental disorders including autism and psychiatric conditions (Pelphrey et al.,
2005; Nation and Penny, 2008; Schneier et al., 2009; Senju and Johnson, 2009; McPartland et al.,
2011; Jones and Klin, 2013). However, the neural mechanisms underlying direct eye-to-eye contact
and its specific role in communication and social interaction are active areas of research. Technical
developments in functional near-infrared spectroscopy (fNIRS) now enable broad acquisition of
brain signals acquired simultaneously on two individuals under naturalistic conditions. Previous
hyper scanning investigations of real (person-to-person) eye-to-eye contact compared with
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simultaneously viewing static face pictures using this technology
have confirmed an association with language systems in the
brain suggesting a link between eye contact and left hemisphere
non-verbal communication systems (Hirsch et al., 2017). Other
studies have shown roles for the inferior frontal gyrus, medial
frontal gyrus, and occipito-temporal cortex involved in cross-
brain interactions during up-regulation of attention and direct
eye gaze (Lachat et al., 2012; Koike et al., 2016, 2019). In this
study, we build on these advances to examine localized coherence
responses of interacting dyads during real eye-to-eye contact,
in contrast, to gaze at dynamic face videos. This is in contrast
to previous work that focused on static photographs (Hirsch
et al., 2017). We hypothesized that neural systems associated
with socialization (Carter and Huettel, 2013) and dynamic face
tracking (Pitcher et al., 2011a) would be associated with face
and eye processing and that cross-brain coherence of neural
responses would entrain face and social mechanisms between
interacting pairs.

The perception of a dynamic face requires many complex
factors to be interpreted in real-time to facilitate socialization
and communication (Lachat et al., 2012; Koike et al., 2016,
2019; Chang and Tsao, 2017). Eye-to-eye contact is a dynamic
and interactive behavior in which face cues are reciprocally
exchanged and activity within neural networks specialized for
facial recognition, dynamic motion, emotion, and socialization
are expected to play a fundamental role. These networks include
the temporal-parietal junction (TPJ), fusiform face area, occipital
face area, and the posterior superior temporal sulcus (pSTS;
George et al., 2001; Hooker et al., 2003; Mosconi et al., 2005;
Pelphrey et al., 2005; Sorger et al., 2007; Saito et al., 2010;
Cavallo et al., 2015). Additional anterior temporal gyrus and
prefrontal lobe structures have also been shown to play a role
in these interactions including the inferior and medial frontal
gyri (Duchaine and Yovel, 2015). Neural activity specific to
perception of faces has been observed in the inferior occipital
and fusiform gyri, while perception of dynamic eye gaze has
been associated with higher processing areas in the superior
temporal sulci and TPJ (Haxby et al., 2000; Hoffman and
Haxby, 2000; Pitcher et al., 2011a; Sato et al., 2016). While these
areas have been shown to be involved in static and dynamic
facial processing, the mechanism of information exchange and
regulation of circuits that upregulate attentional mechanisms
related to real and dynamic eye-to-eye contact between partners
in social interaction is not well understood. Previous studies
have explored the role of eye movement behaviors including
blinking and attention regulation in a social circuit that is
more active in joint attention tasks compared to simple eye
gaze or during randomized video sequences (Lachat et al.,
2012; Koike et al., 2016, 2019). Specifically, it was shown that
neural synchrony across subjects was correlated with eye-blink
synchronization (Koike et al., 2016) and that differences in alpha
and mu oscillations in joint attention vs. no joint attention tasks
suggested an increase in attention related to the social interaction
(Lachat et al., 2012). The significance of these findings related
to understanding the exchange of information in face-to-face
interaction is enhanced by the relevance of eye contact behavior
and social interaction difficulties that are characteristic of autism

spectrum disorders (ASD), social anxiety, and schizophrenia
(Schneier et al., 2009; Senju and Johnson, 2009; Tso et al., 2012).

The Dynamic Neural Coupling Hypothesis predicts that
cross-brain coherence, calculated on residual, non-task related
signals, represents a specific class of interactive functions
characterized by exchange of rapid social information (Hasson
and Frith, 2016). Evidence for coherence between neural circuits
across partners has been observed during coordinated button
pressing (Funane et al., 2011; Dikker et al., 2014); coordinated
singing and humming (Osaka et al., 2014, 2015); gestural
communication (Schippers et al., 2010); cooperative memory
tasks (Dommer et al., 2012); and face-to-face unstructured
dialogue (Jiang et al., 2012). Cross-brain coherence has also been
previously shown to increase during live face-to-face interactions
between dyads engaged in poker competitions in contrast to
human-to-computer partners (Piva et al., 2017) in which cross-
brain coherence specific to the human-to-human condition was
observed between the angular gyrus (AG; a part of the TPJ)
and occipito-temporal area, including the lateral aspect of the
occipital and temporal lobes. This finding suggests a functional
role for AG and face processing areas in coherent social
interaction associated with face and eye processing andmotivates
the current investigation. It has been argued that increased neural
synchrony or cross-brain coherence may represent changes in
neural activity in the perceptual system of one brain which is
coupled to the motor output system of another (Jacob, 2009;
Dumas et al., 2010; Schippers et al., 2010; Koike et al., 2016).

Here, the specific neural responses across dyads while making
eye contact were compared to when each subject alone interacted
with a pre-recorded video of the face of a partner. In the
case of the real partner, we hypothesize that detection of
dynamic stimuli, such as facial expressions and eye movements
known to occur in the real face condition, will elicit neural
activity that is not present when subjects perform the same
task with a pre-recorded video sequence of a dynamic face.
Specifically, we predict increased cross-brain coherence of signals
originating from areas of the cortex associated with visual and
social functions.

MATERIALS AND METHODS

Participants
Thirty healthy adults (15 pairs; 75% female; mean age
27.1± 8.5 years; 100% right-handed; Oldfield, 1971) participated
in the study. All participants provided written informed consent
in accordance with guidelines approved by the Yale University
Human Investigation Committee (HIC #1501015178) and were
reimbursed for participation. Dyads were not acquainted prior
to the experiment and were assigned in order of recruitment.

Stimuli and Procedures
Each dyad participated in two tasks in which they were seated
140 cm across a table from each other. In both tasks, dyads
alternated their gaze between the eyes of their partner and
two small Light Emitting Diodes (LEDs) 10◦ to the left and
to the right of their partner (Figure 1). In one condition, the
partner was a real participant (Figure 1A), and in the other
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FIGURE 1 | Experimental conditions. (A) Subjects were set up with 58 functional near-infrared spectroscopy (fNIRS) channels distributed bilaterally on the heads of
both participants, who were seated across from each other so that each individual in a dyad could see the face of their partner. A small green Light Emitting Diode
(LED) indicator lights located to either side of their partner indicated rest gaze targets. (B) Twenty-four-inch 16 × 9 monitors were placed between subjects and a
size-calibrated, pre-recorded face video was presented in the same field of view as the live interaction. (C) Diagrammatic representation of dyadic interaction.
Subjects were 140 cm apart from each other and the LED indicator lights placed 10◦ to the left and right of the face. (D) In the face-video condition, a partition was
placed between subjects and monitors were arranged in the field of view of both partners. The face and LED sizes and positions were calibrated to subtend the
same visual angles in both conditions. (E) Time course of the experimental paradigm. The entire duration of the run was 3 min and was repeated twice each for both
the live interaction and the video face interaction. During the 3-min interaction, participants alternated between 15-s task and rest periods. In the task period,
participants looked either directly at the eyes of their partner or at the left or right LED that was lit. During the rest period, subjects looked only at the lighted LED. The
task was modified from one that has been used previously (Hirsch et al., 2017). (F) Optical channel layout for both hemispheres of each participant. The median
locations of each channel are shown in Supplementary Table S1. Written informed consent was obtained from the individual for the publication of the images
shown in panels (A,B).

condition, the ‘‘partner’’ was a pre-rendered video of a person
performing the same task (Figure 1B). In both conditions, dyad
partners performed all tasks concurrently. The order of runs was
randomly sequenced between viewing their real partner directly
or viewing a visual-angle corrected video partner on a 24-inch
16 × 9 computer monitor placed back-to-back between subjects,
including a partition to assure that dyads could not see their
real partner during video conditions (Figures 1C,D). The face
and distance of the video stimuli were calibrated to subtend
identical degrees of visual angle in the field of view of the subjects
and the timing and range of motion of eye movements between
partners was the same in both tasks. A version of the time-series
(Figure 1E) and experimental details are similar to a prior study
(Hirsch et al., 2017). At the start of each task, an auditory cue
prompted participants to gaze at the eyes of their real or recorded
partner. Subsequent auditory tones alternatingly cued eye gaze
between eyes or LED according to the protocol time series. The
15-s active task period alternated with a 15 s rest/baseline period.
The task period consisted of three 6 s cycles in which gaze
alternated on eyes for 3 s and on a lighted LED to either the right
or left (alternating) of the subject for 3 s for each of three events.
The time series was performed in the same way for all runs.
The order of runs was counterbalanced across pairs of subjects.
During the 15 s rest/baseline period, participants focused on the
lighted LED, as in the case of the 3 s periods that separated the eye
contact and gaze events. The 15 s activity epoch with alternating
eye contact events was processed as a single block.

Signal Acquisition and Channel
Localization
Functional NIRS signal acquisition, optode localization, and
signal processing, including global mean removal, were similar
to methods described previously (Noah et al., 2015, 2017; Zhang
et al., 2016, 2017; Piva et al., 2017; Dravida et al., 2018; Hirsch
et al., 2018) and are summarized below. To assure that all
participants provided recordable hemodynamic signals using
fNIRS prior to participation in this experiment, subjects who
demonstrated a significant fNIRS signal (p < 0.05) in the left
motor cortex for both OxyHb and deOxyHb signals were eligible
to participate in the present study. This technique assured that
viable signals were recordable on all subjects.

Hemodynamic signals were acquired using three wavelengths
of light, and an 80 fiber multichannel, continuous-wave fNIRS
system (LABNIRS, Shimadzu Corporation, Kyoto, Japan). Each
participant was fitted with an optode cap with predefined
channel distances. Three sizes of caps were used based on
the circumference of the heads of subjects. Large caps had a
60 cm circumference. Medium caps were 56.5 cm and small
caps were 54.5 cm. Optode distances of 3 cm were designed
for the 60 cm cap layout but were scaled equally to smaller
caps. A lighted fiber-optic probe (Daiso, Hiroshima, Japan)
was used to remove all hair from the optode channel prior
to optode placement. Optodes consisting of 40 emitters and
40 detectors were arranged in a custom matrix, providing a
total of 54 acquisition channels per subject. The specific layout
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with the coverage of the optode channels is shown in Figure 1F
and the mean channel coordinates and locations are detailed
in Supplementary Table S1. For consistency, placement of the
most anterior channel of the optode holder cap was centered
1 cm above nasion. To assure acceptable signal-to-noise ratios,
resistance was measured for each channel prior to recording,
and adjustments were made for each channel until all recording
optodes were calibrated and able to sense known quantities of
light from each laser wavelength (Tachibana et al., 2011; Ono
et al., 2014; Noah et al., 2015).

Anatomical locations of optodes in relation to standard
head landmarks were determined for each participant using a
Patriot 3D Digitizer (Polhemus, Colchester, VT, USA; Okamoto
and Dan, 2005; Singh et al., 2005; Eggebrecht et al., 2012,
2014; Ferradal et al., 2014). Montreal Neurological Institute
(MNI) coordinates (Mazziotta et al., 2001) for each channel
were obtained using NIRS-SPM software (Ye et al., 2009), and
the corresponding anatomical locations of each channel shown
in Figure 1F was determined and detailed in Supplementary
Table S1, which lists the group median MNI coordinates
and anatomical regions with probability estimates for each of
the channels.

Signal Processing
Shimadzu LABNIRS systems utilize laser diodes at three
wavelengths of light (780 nm, 805 nm, 830 nm). Raw optical
density variations were translated into changes in relative
chromophore concentrations using a modified Beer-Lambert
equation (Hazeki and Tamura, 1988; Matcher et al., 1995; Hoshi,
2003). Signals were recorded at 30 Hz. Baseline drift was removed
using wavelet detrending provided in NIRS-SPM (Ye et al.,
2009). Global components attributable to blood pressure and
other systemic effects (Tachtsidis and Scholkmann, 2016) were
removed using a principal component analysis (PCA) spatial,
global-mean filter (Zhang et al., 2016, 2017) prior to general
linear model (GLM) analysis. Comparisons between conditions
were based on GLM procedures using the NIRS-SPM software
package. Event epochs within the time series (Figure 1E) were
convolved with the hemodynamic response function provided
from SPM8 (Penny et al., 2011) and were fit to the data,
providing individual ‘‘beta values’’ for each participant across
conditions. Group results based on these ‘‘beta values’’ were
rendered on a standard MNI brain template (Figure 3). All
analyses were performed on both Oxy- and deOxyHb signals
(see Figure 3).

Region of Interest: Temporal-Parietal
Junction (TPJ)
Real-face and face-video conditions were compared using TPJ as
a region of interest. The mask for the region was determined
using Neurosynth (Yarkoni et al., 2011) and created through
a meta-search performed for the term ‘‘TPJ.’’ Ninety-two
results were found containing a total of 3,460 clusters. The
mask was thresholded using a z-score of 6.3, and conditions
were compared within this mask in the right hemisphere. To
evaluate activity in the ROI determined in Neurosynth, each
participant’s channel locations were first converted into MNI

space (Dravida et al., 2018). Once in normalized space, a median
beta value was determined within the mask and within a 1.8 cm
depth from the cortical surface to use for subsequent analysis
(Hirsch et al., 2018).

Cross-Brain Coherence: Network of
Interest
Cross-brain synchrony (coherence) was evaluated using wavelet
analysis (Torrence and Compo, 1998; Cui et al., 2012) in the
MATLAB 2018A Wavelet Toolbox. The wavelet kernel was a
complex Gaussian provided byMATLAB. The number of octaves
was four, and the range of frequencies was 0.4–0.025 Hz. The
number of voices per octave was also four, and, therefore,
16 scales were used for which the wavelength difference was
2.5 s. Methodological details and validation of this technique
have been previously described (Hirsch et al., 2017, 2018).
Cross-brain coherence between dyads was measured between
homologous pairs of brain regions using the combined Oxy-
and deOxyHb signals. Individual channels were grouped into
anatomical regions based on shared anatomy, which served
to optimize signal-to-noise ratios. Grouping was achieved by
identification of 14 bilateral ROIs from the acquired channels
including: (1) AG (BA 39); (2) dorsolateral prefrontal cortex
(BA 9); (3) dorsolateral prefrontal cortex (BA 46); (4) pars
triangularis, BA 45; (5) supramarginal gyrus (SMG; BA 40);
(6) middle temporal gyrus (MTG; BA 21); (7) superior temporal
gyrus (STG; BA 22); (8) somatosensory cortex (BA 1, 2, and 3);
(9) somatosensory association cortex (BA 7); (10) pre-motor
and supplementary motor cortex (BA 6); (11) subcentral area
(BA 43); (12) inferior frontal gyrus (BA 47); (13) visual cortex
(Area V3, BA 19); and (14) frontal eye fields (BA 8). Signals
acquired from predefined anatomical regions were decomposed
into a range of temporal frequencies that were correlated across
two brains for each dyad. This technique effectively removes
the task regressor as is conventional for Psychophysiological
Interaction (PPI) analysis (Friston et al., 1997). Here, we apply
the decomposed ‘‘residual signal’’ to investigate effects other
than the main task-induced effect. For example, cross-brain
coherence of multiple signal components (wavelets) is thought
to provide an indication of dynamic coupling processes rather
than task-specific processes, which are coupled by virtue of the
coordinated task. Coherence during eye-gaze was compared for
face-to-face gaze and video-face gaze conditions. This analysis
was also applied to shuffled dyads (random pairs). If the
effects were due to social exchanges of salient cues, then the
effects would be expected to disappear when partners were
mixed (shuffled).

RESULTS

Figures 2A,B show cross-brain coherence (y-axis) and wavelet
period in seconds (x-axis) for real and shuffled partners
respectively comparing the eye-to-eye and face-video conditions.
Red traces and shading indicate the mean ± SD in the
live partner eye-to-eye condition, and blue traces indicate the
face-video condition. An increase in coherence across live
partners making direct eye-to-eye contact was observed in
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FIGURE 2 | Cross-brain coherence. (A) Angular gyrus (AG) cross-brain coherence between paired dyads during direct eye-to-eye contact (red trace) shows
increased coherence in the combined DeOxy+OxyHb signals for periods between 15 and 25 s compared to the face video condition (blue trace; p 0.01, N = 15
pairs). (B) Shuffled dyads do not show differences in cross-brain synchrony in the AG when comparing face-to-face or video face interactions.

the AG between partners for temporal periods (wavelengths)
between 15 and 25 s (p < 0.01). Figure 2B shows no difference
in coherence between conditions when partners are shuffled,
i.e., computationally paired with ‘‘partners’’ other than the real
partner with whom he/she performed the task concurrently.
Wavelet coherence was calculated for homologous regions.
To further confirm the coherence results, we performed a
permutation test between the 15 pairs of subjects and the two
conditions. For this permutation test, we flipped the condition
(face-to-face and video) for half the subjects and performed
a t-test between the new mixed ‘‘conditions’’. This procedure
was repeated 1,000 times. The results of this permutation test
showed 3.7% of trials produced type 1 error (rejection of the
null hypothesis when it is really true) with similar significance
as our result.

Averaged event-triggered responses for Oxy- and deOxyHb
signals for the two conditions are shown in Figure 3. The top
row shows the average localized responses for the real face-to-
face task and the bottom row shows responses for the video gaze
task. The black circle on the right hemisphere diagrammatically
represents the TPJ. The hemodynamic responses with relative
increases in OxyHb and decreases in deOxyHb can be seen
in this region for the eye-to-eye condition compared to the
video condition.

GLM comparisons are shown on brain renderings in Figure 4
for both the deOxyHb (Figure 4A) and the OxyHb (Figure 4B)
signals (N = 30). Functional activity on the right hemisphere
cortical surface for the eye-to-eye (left) and face-video (right)
conditions are shown vs. rest (p ≤ 0.05, FDR-corrected).
Findings are similar for both Oxy- and deOxyHb signals, and
the deOxyHb signal is described in detail below because the
deOxyHb signal is considered most similar to the blood oxygen
level-dependent (BOLD) signal acquired by functional magnetic
resonance imaging (fMRI; Strangman et al., 2002; Kirilina et al.,
2012; Dravida et al., 2018). In the eye-to-eye vs. rest condition,
a single cluster of activity was found including the STG, MTG,

AG, and SMG with a peak MNI coordinate of 68, −46, 18,
T = 4.67 and a p-value of 0.00003 (FDR-corrected, p ≤ 0.05). In
the eye-to-video vs. rest condition, a single cluster of activity was
found overlapping the right tertiary visual cortex and AG with
a peak MNI coordinate of 48, −74, 18, T = 3.26 and a p-value
of 0.0014.

A region of interest analysis based on the right TPJ
(Figure 5A) was used to compare average signal strength (beta
values) for the two conditions and two signals (Figure 5B). The
real-eye > rest signals were greater than the video-gaze > rest
for the deOxyHb signals. Average beta values in the ROI (paired
t-test) yields a T statistic of 3.237± 1.63e−04 (p≤ 0.05; Figure 5B,
deOxyHb, left panel). OxyHb signals show a similar trend.

DISCUSSION

Increased cross-brain coherence between signals in the AG in the
real eye-to-eye condition suggests that interactive and reciprocal
behaviors between partners during eye contact increase activity
in neural circuits associated with AG, a component of the
TPJ. These results were specific only for eye-to-eye interactions
(compared to watching a face video) and only occurred
between interacting dyads (results on shuffled pairs showed
no coherence). Increased coherence only in the live face-to-
face task provides support for the hypothesis that reciprocal
eye-contact dynamics between partners influences or modulates
social network activity. A similar mechanism has been proposed
by Tanabe and colleagues, suggesting an integrative role of the
right STS in gaze processing, which has also been shown to
be altered when individuals with autism interact with typically-
developing subjects (Saito et al., 2010; Tanabe et al., 2012).

Both GLM (Figure 4) and ROI (Figure 5) results of the
present study support and extend previous findings regarding
the role of the TPJ in social interaction by demonstrating
increased TPJ responses specific to dynamic face and eye
contact in a live interaction. Real-time face-to-face interaction
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FIGURE 3 | Event-triggered responses. Brain renders indicate event-triggered averaged eye-to-eye responses (top) compared to gaze at face video responses
(bottom). Red traces represent group averaged OxyHb responses and blue traces represent deOxyHb responses. The circle represents a diagrammatic
representation of the TPJ region of interest for the OxyHb signal (top) and deOxyHb (bottom) signal.

in a direct eye-gaze task activates this area to a greater
extent during eye-to-eye contact with a live partner compared
to the same task in a dynamic video face interaction with
a pre-recorded video partner. The increased activity in the
TPJ for the live condition that is not observed in the video
condition supports the theoretical framework proposed in the
Interactive Brain Hypothesis (De Jaegher et al., 2016), which
purports that live interaction between individuals engages
neural functions not engaged during similar tasks performed
alone, i.e., without interaction. The increased activity in
the right TPJ during the real eye task is consistent with
sensitivity to social interaction in that region and suggests
that these neural circuits reflect ecologically valid social
activity highlighting the importance of two-person paradigms
(Schilbach et al., 2013).

These findings advance a framework for interpersonal
interaction that is linked to reciprocally shared dynamic content.
We suggest that eye contact mediates information transfer

between dynamic face and social areas across the brains of
interacting dyads. The right-lateralized TPJ has been referred
to as the hub of human socialization (Carter and Huettel,
2013) and shares overlapping functional responses to stimuli
associated with visual discrimination of human or biological
motion. For example, lateral temporal regions of the brain have
been shown to display specialized responses to the motion
of humans and objects (Beauchamp et al., 2002). The pSTS
specifically responds more to humanmotion than object motion,
and lateral temporal regions respond to themovement of humans
and objects more than ventral temporal areas, which respond
to static human and object stimuli. Lateral regions of superior
temporal sulcus display specific responses to dynamic or moving
faces in addition to motion of the whole body (Avidan et al.,
2005). More recently, it has been suggested that the pSTS
processes specific information regarding the dynamic aspects of
faces, including movements of eye, mouth and head (Pitcher
et al., 2011a,b). These findings advance our understanding of
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FIGURE 4 | GLM responses for (A) deOxyHb and (B) OxyHb signals. The left column shows results for real eye-to-eye > rest. The right column shows results for
gaze at face video > rest, respectively. GLM results for real eye-to-eye > rest (left column) show a cluster of activity located centrally in the right-lateralized TPJ
region of interest, including the SMG, AG, middle temporal gyrus (MTG), and the STG (p 0.05, FDR-corrected, N = 30). Face video > rest fails to provide evidence for
activity in the TPJ.

FIGURE 5 | Region of interest comparison of signal strength (beta values) for eye-to-eye gaze at a real face and a pre-rendered dynamic face video. (A) Region of
interest within the right TPJ as determined by Neurosynth (neurosynth.org). (B) Region of interest analysis: TPJ, Comparison of deOxyHb (left) and OxyHb (right)
responses. The left bar in each graph shows results for real eye-to-eye > rest and the right bar in each shows results for gaze at face video > rest. ROI comparisons
demonstrate the increased sensitivity of the deOxyHb signal (left) compared to the spatially-filtered OxyHb signal (right). However, both signals provide consistent and
congruent findings.

information transfer across individuals in the case of dynamic eye
contact with cross-brain networks related to social interactions.

There are limitations to the interpretation of the results
of this study. While the ROI analysis in this study showed

activities specific to eye-to-eye interaction in the TPJ, other
masks in additional ROIs were not investigated including the
inferior and medial frontal gyri. These areas may also play a
role in social attention. It is also possible that the mindset
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of individuals was not identical in both eye-to-eye and face
video conditions. Differences in mindsets when looking at a
live face and a video of a face may have provided additional
social information and contributed to the increased activity
in the TPJ. The spatial resolution of fNIRS (approximately
3 cm) does not allow discrimination of small anatomical
differences in functional activity between gyri and sulci in
similar locations, such as the STG vs. the neighboring sulci.
Even with this limitation the results of this study show activity
and connectivity specific to the superficial cortex, including
the pSTS and the TPJ, during live interaction. Due to the
optical methods of fNIRS, signals may contain systemic effects
that originate from cardiovascular rather than neural sources
(Tachtsidis and Scholkmann, 2016). Recent techniques that
employ spatial filtering and short channel separation to remove
these artifacts have been developed (Gagnon et al., 2014;
Goodwin et al., 2014; Zhang et al., 2016, 2017). Here, when
the spatial filtering technique was employed (Zhang et al.,
2016, 2017) we found that the deOxyHb signals in the ROI
analysis showed a significant difference between groups, and
the OxyHb signals revealed a similar trend. Although event-
triggered average results indicated localized concordance of Oxy-
and deOxyHb signals associated with neural processing, the
additional variance in the OxyHb signal (seen in the error bars
in Figure 5) may have contributed to the lack of a significant
difference, although a consistent trend is observed between the
two signals. fNIRS has a penetration limit into the superficial
gray matter of the cortex of around 2 cm. While we have
access to the superficial face and eye areas on the occipital
face area and TPJ, this limitation does not allow us to record
from deeper structures involved in face processing, such as
the medial structures of the fusiform face area. All reported
findings are restricted to these superficial regions. Activities and
coherence are also limited to temporal resolutions associated
with hemodynamic responses. Future experiments could include
methodologies that employ electroencephalography (EEG) and
double density fNIRS to further investigate the relation of
hemodynamic and electrocortical signals.

In conclusion, the findings of this experiment show increased
task-related activity in the right TPJ in pairs of subjects that
view each other face-to-face in real-time compared to when they
perform an identical task with a pre-recorded video of a dynamic
face. Further, increased coherence of signals in the AG (part of

the TPJ) of both partners in the face-to-face condition suggests
a link between eye-contact behavior and neural mechanisms of
social interaction.
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Transcranial focused ultrasound (tFUS) is an emerging method for non-invasive
neuromodulation akin to transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS). tFUS offers several advantages over electromagnetic
methods including high spatial resolution and the ability to reach deep brain targets.
Here we describe two experiments assessing whether tFUS could modulate mood
in healthy human volunteers by targeting the right inferior frontal gyrus (rIFG), an area
implicated in mood and emotional regulation. In a randomized, placebo-controlled,
double-blind study, participants received 30 s of 500 kHz tFUS or a placebo control.
Visual Analog Mood Scales (VAMS) assessed mood four times within an hour (baseline
and three times after tFUS). Participants who received tFUS reported an overall increase
in Global Affect (GA), an aggregate score from the VAMS scale, indicating a positive
shift in mood. Experiment 2 examined resting-state functional (FC) connectivity using
functional magnetic resonance imaging (fMRI) following 2 min of 500 kHz tFUS at the
rIFG. As in Experiment 1, tFUS enhanced self-reported mood states and also decreased
FC in resting state networks related to emotion and mood regulation. These results
suggest that tFUS can be used to modulate mood and emotional regulation networks
in the prefrontal cortex.

Keywords: transcranial focused ultrasound, neuromodulation, mood, functional connectivity, brain stimulation

INTRODUCTION

Transcranial focused ultrasound (tFUS) is an emerging tool for non-invasive neuromodulation that
transmits low-intensity ultrasound through the skull to temporarily and safely modulate regional
brain activity (Tyler, 2011). Ultrasound neuromodulation offers advantages over transcranial
magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), such as better
spatial resolution and the ability to reach deep targets in the brain (Fini and Tyler, 2017).
tFUS reversibly modulates neuronal activity in rats (Tufail et al., 2010; Kim et al., 2014), sheep
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(Lee et al., 2016c), pigs (Dallapiazza et al., 2017), and monkeys
(Downs et al., 2016). In humans, tFUS has temporarily altered
activity in somatosensory (Lee et al., 2016a), visual (Lee
et al., 2016b), and thalamic brain regions (Legon et al., 2018).
Researchers are interested in clinical applications of tFUS,
including the treatment of psychiatric and neurological disease
(Bystritsky and Korb, 2015; Monti et al., 2016). The current
experiments investigated whether tFUS could modulate mood
in healthy participants by sonicating a region in the prefrontal
cortex implicated in emotional regulation, thereby uncovering
a target for future therapeutic interventions (Experiment 1).
The second experiment used resting-state functional magnetic
resonance imaging (fMRI) to investigate FC changes after
sonication of the prefrontal cortex to demonstrate that tFUS
modulates brain function in networks related to emotional
processing and mood.

The prefrontal cortex plays a vital role in emotion and
mood regulation (Phan et al., 2002; Coan and Allen, 2004;
Ochsner and Gross, 2005; Price and Drevets, 2012). Hemispheric
asymmetries in prefrontal activity are thought to contribute to
emotional processing (Coan and Allen, 2004; Davidson, 2004;
Craig, 2005), and dysfunctions in these networks are related to
mood disorders like depression (Stewart et al., 2014) and bipolar
disorder (Kerestes et al., 2012). Higher levels of left frontal activity
are correlated with more approach motivation (Phillips et al.,
2008) and positive mood (Fitzgerald et al., 2008), whereas higher
levels of right frontal activity are associated with more withdrawal
motivation, negative mood (Hauptman et al., 2008), and
increased risk for anxiety and depression (Rempel-Clower, 2007).
Currently, TMS and tDCS interventions target lateralized frontal
cortex to enhance emotional control in healthy participants or to
treat negative mood states in depression (George et al., 2000) and
bipolar disorder (Michael and Erfurth, 2004).

In addition to TMS and tDCS, tFUS shows promise as a
neuromodulation technique for altering mood states. In a pilot
experiment testing the effects of ultrasound neuromodulation
on patients, Hameroff et al. (2013) used a clinical ultrasound
device at eight megahertz and found that 15 s of sonication of
the prefrontal cortex enhanced mood in chronic pain patients,
which lasted up to 40 min. Although this experiment suggests
that ultrasound neuromodulation could be useful as a therapeutic
tool to modulate mood states, the results must be interpreted with
caution due to methodological limitations. First, the researchers
delivered ultrasound to the prefrontal cortex contralateral to
the side that patients reported the most significant pain. In
other words, the location where the ultrasound transducer was
placed was not uniform across patients. Second, Hameroff and
colleagues used an unfocused ultrasound beam applied to the
temporal window of the skull, likely sonicating frontal, temporal,
and prefrontal cortices. The lack of control of stimulation
location makes it impossible to determine whether the unfocused
ultrasound affected mood directly, by stimulating a substrate of
mood, or indirectly, by modulating other networks, such as those
involved in pain perception (i.e., reducing pain perception may
lead to more positive mood states). tFUS can untangle these
issues by directly targeting brain regions involved in mood and
emotional regulation.

One major advantage of tFUS relative to the other
neuromodulation techniques like TMS and tDCS is that
tFUS has a higher spatial resolution relative to the others.
In tFUS applications, the ultrasound beam can be focused at
virtually any depth through the human skull to target distinct
cortical areas with millimeter resolution (Kubanek, 2018).
Lee et al. (2015) showed that tFUS targeting the primary
somatosensory cortex produced sonication-specific tactile
sensations and somatosensory evoked potentials. Another
study further demonstrated the high spatial specificity of
tFUS by targeting the primary or secondary sensory cortices
with a dual-transducer apparatus, which elicited tactile
sensations correlated with the targeted cortical area (Lee
et al., 2016a). Sonication of a sub-region of the thalamus with
tFUS modulates somatosensory evoked potentials in healthy
volunteers, exhibiting the deep focal ability and superior spatial
resolution of tFUS (Legon et al., 2018). These experiments
suggest that tFUS offers a unique modality for non-invasive
modulation of region-specific brain function, and could
be a useful method for exploring the effects of ultrasound
neuromodulation on emotional regulation centers in the
prefrontal cortex.

The goal of the current study was to use tFUS to modulate
mood by targeting the right ventrolateral prefrontal cortex
(rVLPFC), one of the major areas in the prefrontal cortex for
emotional control and mood regulation (Sang and Hamann,
2007), and in particular the regulation and suppression of
negative emotions (Ochsner and Gross, 2005; Goldin et al., 2008;
Wager et al., 2008). Increased activity of rVLPFC is associated
with less negative emotional experience when participants view
aversive stimuli (Wager et al., 2008), and symptoms of depression
inversely correlate with rVLPFC activity (Drevets et al., 2008).
Several experiments show that modulation of the rVLPFC
can alter the subjective experience of emotions. For instance,
the application of anodal tDCS over the rVLPFC reduces
negative feelings in social isolation video games (Riva et al.,
2012, 2015a,b) and reduces emotional reactions to negative
video clips, even when participants are not explicitly told to
suppress negative emotion (Vergallito et al., 2018). Thus, the
rVLPFC can serve as a target to enhance control over the
emotional experience, which may lead to more positive mood
states. Given the focal specificity of tFUS, we chose to target
a specific region in rVLPFC, the right inferior frontal gyrus
(rIFG; BA 35). The rIFG is a central hub for inhibition and
cognitive control (Aron et al., 2014) and has been demonstrated
to promote control over emotional processing (Chiu et al.,
2008). We predicted that tFUS to the rIFG, using pulse
parameters previously shown by Hameroff et al. (2013) to
modulate mood in chronic pain patients, would enhance mood
in healthy volunteers (Experiment 1). Experiment 2 used resting-
state fMRI FC analysis to determine whether tFUS to the
rIFG temporarily altered networks associated with mood and
emotional regulation. These results would support the notion
that the rVLPFC (specifically the rIFG) is involved in processing
mood states and would serve as the foundation for future
research investigating therapeutic applications of tFUS for mood-
related disorders.
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EXPERIMENT 1

Methods
Participants
The Institutional Review Board of the University of Arizona
approved the experimental protocol. From an introductory-level
psychology class, 51 volunteers (27 female, mean age 19.7 years)
participated and received class credit. All participants signed
an informed consent document. Participants had no history of
epilepsy, severe neurological problems, or psychiatric history,
and were medication free and not pregnant. All participants were
right-handed. Participants were randomly assigned to either the
tFUS-Active (n = 25) or Placebo condition (n = 26). We removed
data from three participants due to technical malfunction of the
computer that collected mood responses, yielding a final sample
of 48 participants (tFUS-Active n = 24; Placebo n = 24).

Experimental Design and Procedures
The experiment was conducted in a small private room at
the University of Arizona and occurred between 10 AM
and 5 PM. During the consent process, we told participants
that the purpose of the study was to test the effects of
ultrasound on mood, but we did not specify whether they
should expect to feel better or worse after sonication (i.e.,
after receiving ultrasound). The experimenters followed a
structured protocol that would minimize the chance that
interaction could prejudice the volunteers about mood
changes during the consent or experimental procedures.
Participants remained seated throughout the experiment.
They were instructed to remain seated during the procedures
and to respond as honestly and accurately as they could on
the mood questionnaires. Participants were not allowed to
use any electronic devices (e.g., cellular phones) during the
experiment and were asked to sit quietly until they received
instructions. The researchers did not engage in conversation
with the participants and only answered questions if the
participants asked.

After providing consent, the researcher marked the
participants head at a location directly above the rVLPFC:
the F8 electrode location [International 10/20 EEG placement
system; Klem et al. (1999)]. The J&J psychophysiology system
recorded the electrocardiogram (ECG), with bipolar electrodes
situated under a wrist strap on the arms, and a strap was placed
around the upper abdomen, on the outside of the shirt, to
measure respiration. Average heart rate, heart-rate variability
(HRV), and respiratory sinus arrhythmia (RSA) were derived.
These cardiovascular psychophysiological measures (average
heart rate, HRV, and RSA) did not vary as a function of tFUS
condition and are therefore not discussed further.

Measurements occurred at four-time points within a 1-h time
frame: Once during a baseline period before tFUS (Baseline),
10 min after tFUS (Post-10), 20 min after tFUS (Post-20),
and 30 min after tFUS (Post-30). At the start of each of the
four data recording assessments, participants sat quietly for
5 min (for the ECG baseline), after which they rated their
subjective mood states by filling out a Visual Analog Mood
Scale (VAMS; Ahearn, 1997; Nyenhuis, 1997) on a computer

(Marsh-Richard et al., 2009). The VAMS is composed of eight
questions related to mood and arousal. Participants rated their
answer on a scale ranging from 0 to 10. The categories were
Happy, Calm, Sad, Tense, Alert, Sleepy, Effort, and Weary. From
these categories, we calculated a metric for Global Affect (GA;
feelings and mood) and another for Global Vigor [GV; alertness
and vigilance (Monk, 1989)]. An increase in the GA rating would
indicate an overall positive increase in affective state (happiness,
calmness, and reverse-keyed sadness and tenseness). An increase
in GV would indicate an overall increase in arousal (alert, reverse
keyed weariness, effort, and sleepiness). These measures were the
primary dependent variables.

The custom ultrasound system had two modes: stimulation
and placebo. The researcher entered a unique five-digit code
for each session that would select the mode; the experimenter
was blinded to code-condition assignments. Stimulation mode
emitted the ultrasound parameters outlined below, and the
placebo mode emitted no ultrasound. The device had an LED
screen with a timer count-down on it to notify the researcher
when 10 min had passed. The screen looked the same for
stimulation and placebo modes. Therefore, the researchers and
participants were blind to the condition. An offsite researcher
(TS), who had no contact with the participants or experimenters,
created the randomization codes.

Safety
The use of ultrasound, or any source of energy on tissue,
requires consideration of significant bioeffects. The effects of
ultrasound on living tissue have been well-studied (Dalecki,
2004; O’Brien, 2007; ter Haar, 2007; Church et al., 2008). High-
intensity ultrasound can cause tissue heating and cavitation,
or small potentially damaging bubbles (usually > 600 W/cm2;
Wu and Nyborg, 2008). In order to avoid deleterious effects on
tissue, the FDA guidelines specify that global maximum acoustic
output of ultrasound should be below 720 mW/cm2, measured
as spatial peak temporal average (Ispta), and a peak average of
190 mW/cm2, measured as spatial peak pulse average (Isppa;
Barnett et al., 2000). Decades of animal and human research, as
well as thousands of hours of incident-free clinical use, provide
evidence that ultrasound at these levels is safe and biological
effects are reversible, including effects on the human brain (Tufail
et al., 2010; Yoo et al., 2011; Mueller et al., 2014; Downs et al.,
2016; Legon et al., 2018, 2012).

Focused Ultrasound Waveform
A custom focused ultrasound system generated ultrasound pulses
(Neurotrek, Inc., Boston, MA, United States) emitted with
a single element transducer (500 kHz, with a two-part lens
focused at 30 mm; Blatek, Inc., Pittsburg, PA, United States).
The resultant tFUS waveform had the following characteristics:
acoustic frequency was 0.5 MHz, pulse duration was 65 µs,
pulse repetition period was 23 ms, pulse repetition frequency was
40 Hz, duty cycle was 0.26%, and stimulus duration was 30 s.
We chose these parameters on the waveforms used previously to
enhance mood states in chronic pain patients (Hameroff et al.,
2013) with a diagnostic ultrasound system. The parameters were
matched as best as possible given the differences between a
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FIGURE 1 | Acoustic simulation model on a representative CT scan of a male
patient. The transducer was positioned over the F8 EEG electrode location on
the scalp which centers over the rIFG. Hotter colors (red, yellow) indicate more
intense sonication, cooler colors (blue, green) indicate less intense sonication.

single-element focused custom ultrasound system and a phase-
array diagnostic ultrasound system. A calibrated hydrophone
measured the acoustic intensity (Onda, HN-500, Sunnyvale, CA,
United States) by mounting the hydrophone on a three-axis stage
positioning system and submerging the ultrasound transducer
in a water tank with degassed water. At the center of the
emitted ultrasound beam, the peak rarefactional pressure was
1.27 MPa, the mechanical index was 1.79, Isppa was 54 W/cm2,
and Ispta was 130 mW/cm2. Note, these measurements were
taken in water alone (without skull) and therefore represented
the energy delivered before transcutaneous and transcranial
attenuation. All intensity levels were well below FDA guidelines.
When measuring single-channel 500 kHz ultrasound beam
characteristics in free water through a human skull, about 70–
80% of the intensity is absorbed (Legon et al., 2018). Thus,
Isppa delivered to brain tissue, attenuated by the skull, would be
unlikely to exceed 16.2 W/cm2.

To better understand the tFUS properties of the focal beam,
a head model was created using the K-Wave (Treeby and Cox,
2010) toolbox in MATLAB. A CT scan (randomly chosen from
the R.I.R.E. project)1 was used to construct the acoustic model of
the head. The ultrasound field reported above was entered into
the model and projected into the brain assuming the transducer
was placed perpendicular to the scalp over F8 (the EEG location
centered over the rIFG). The speed of sound entered was
1,550 m/s, and the brain density was 1030 kg/m3. Acoustic
simulations were performed with the k-Wave MATLAB toolbox
on an archival CT scan to estimate the effects of an individual
skull on the ultrasound beam properties targeting the rIFG.
Figure 1 displays the simulated ultrasound wave propagation

1http://www.insight-journal.org/rire

through the skull at the location of F8. In this model, the skull
reduced the intracranial max acoustic pressure by 53%.

Post-experiment Questions
At the end of the experiment, the blinded experimenter queried
the participants about their subjective sensations when the
transducer was on their head. They were asked to report any
sounds they heard from the transducer on their head and were
also asked to report any sensations they felt while the transducer
was on their head.

Statistical Analysis
The dependent variables were GA and GV for the VAMS. We
conducted a 4 × 2 repeated measures ANOVA for GA, and
separately for GV, with Time of Assessment (Baseline, Post-10,
Post-20, and Post-30 assessments) as the within-subjects’ variable
and Stimulation (tFUS-Active; Placebo) as the between subjects.
Planned comparisons were performed when appropriate.

Results
Post-experiment Questions
A total of 15 out of 24 participants in the tFUS-Active condition
reporting hearing some form of “buzzing, clicking or vibrating”
when the transducer was on their head, and zero of 24
participants in the Placebo condition reported hearing any form
or sound from the transducer. Additionally, 10 of 24 participants
in the tFUS-Active condition reported feeling some sensation
from the transducer (3 “pulsing,” 5 “buzzing,” and 2 “pressure”); 7
out of 24 participants in the Placebo condition reported feeling
some sensation from the transducer (3 “pulsing,” 3 “pressure,”
and 1 “warm”). We analyzed the difference in mood reports for
participants in the tFUS-Active condition who reported hearing
a sound to those who did not (“Sound Report”) to ensure that
hearing a sound did not influence the results below. Mauchly’s
Test of Sphericity indicated that the assumption of sphericity was
violated, χ2(5) = 16.112, p = 0.007, and thus Greenhouse–Geisser
corrections were used, with the original degrees of freedom
reported. There was a significant main effect of Time, F(3,
66) = 7.536, p = 0.002, and there was not a significant interaction
between Time of Assessment and Sound Report, F(3, 66) = 0.591,
p = 0.556, indicating that hearing the sound from the transducer
did not influence mood reports.

Visual Analog Mood Scales
For GA, Mauchly’s Test of Sphericity indicated that the
assumption of sphericity was violated, χ2(2) = 19.220, p = 0.002,
and thus Greenhouse–Geisser corrections were used, with the
original degrees of freedom reported. There was a significant
main effect of Time, F(3, 138) = 4.208, p = 0.013, η2

ð = 0.084.
There was a significant interaction between Stimulation and
Time of Assessment, F(3, 138) = 3.817, p = 0.019, ηð2 = 0.077.
Pairwise comparisons were used to compare each Time of
Assessment time-point relative to Baseline (within stimulation
conditions; Bonferroni corrected). For participants receiving
tFUS-Active, relative to Baseline (M = 67.22; SD = 13.74), GA
was not significantly higher at the Post-10 condition (M = 71.97;
SD = 12.05), p = 0.173, but was significant at Post-20 (M = 75.36;
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TABLE 1 | Global Affect scores for Experiment 1.

Global Affect

Baseline Post-10 Post-20 Post-30

tFUS-Active

Mean 67.22 71.97 75.36* 75.49*

SD 13.74 12.05 11.71 10.99

Placebo

Mean 70.79 67.70 70.28 71.16

SD 13.16 16.00 13.60 11.99

Significant differences (p < 0.05) relative to Baseline are indicated by an asterisk.

TABLE 2 | Global Vigor scores for Experiment 1.

Global Vigor

Baseline Post-10 Post-20 Post-30

tFUS-Active

Mean 47.57 47.35 55.41 57.08

SD 14.27 12.57 16.74 17.72

Placebo

Mean 53.44 48.53 56.7 57.89

SD 14.33 16.64 16.93 16.74

No significant differences were found relative to Baseline.

SD = 11.71), p = 0.014, and Post-30 (M = 75.49; SD = 10.99),
p = 0.006 (Table 1). No time points differed from baseline for
those in the Placebo condition. Individual participant scores for
GA and scores for the questions that comprise GA can be found
in the Supplementary Material.

There was no difference in the baseline GA scores between
tFUS-Active and Placebo conditions, p > 0.05, demonstrating
that the groups did not differ in mood reports at the beginning
of the experiment.

For GV, Mauchly’s Test of Sphericity again indicated that the
assumption of sphericity was violated, χ2(2) = 33.915, p = 0.001,
and thus Greenhouse–Geisser corrections were used, with the
original degrees of freedom reported. There was a main effect of
time, F(3, 138) = 8.794, p < 0.001, ηð2 = 0.160, as participants’
tended to increase in GV over the experiment (Table 2). There
was not a significant interaction between Stimulation and Time
of Assessment, F(3, 138) = 0.620, p = 0.537, ηð2 = 0.013 (Table 2).

The results from Experiment 1 suggest that 30-s exposures
of 500 kHz focused ultrasound targeting the rIFG can induce
positive mood effects for up to 30 min. Next, we determined the
extent to which tFUS modulated brain activity using fMRI.

EXPERIMENT 2

To determine whether tFUS altered brain activity, we recorded
resting state fMRI before and 20 min after sonification with
the same custom focused ultrasound system from Experiment
1. Resting-state FC analysis was conducted by seeding the
rIFG to determine whether sonification altered connectivity
patterns relative in the rIFG network. We also seeded major

hubs in the Default Mode Network (DMN). The DMN is
a highly interconnected network of brain areas that are
active when participants are not focused on a task and are
instead daydreaming or involved with self-referential processing.
Researchers have proposed that the DMN is a fundamental part
of the neuronal substrate of the self (Gusnard et al., 2001). In
mood disorders like depression, there is enhanced activity in
the rIFG and hyper-connectivity in the DMN, which reflects
the internal, ruminative nature of depression and the inability
to regulate self-referential processes and emotion (Sheline et al.,
2009; Kaiser et al., 2016). We hypothesized that 2 min of
tFUS to the rIFG would alter connectivity patterns in the
rIFG network. Additionally, we predicted that rIFG tFUS would
alter connectivity in the DMN in a direction opposite to those
patterns found in mood disorders. These results suggest that
rIFG enhanced regulation of networks related to emotional
processing (rIFG) and self-referential activity (DMN) may lead
to altered mood states.

Methods
Participants
The Institutional Review Board of the University of Arizona
approved the experiment. Nine volunteers (four females, mean
age 19.2) participated. All participants signed an informed
consent document. Participants had no history of epilepsy,
severe neurological problems, or psychiatric history, and
were medication free and not pregnant. All participants
were right-handed.

Experimental Design and Procedures
After informed consent, participants filled out the VAMS
scales (Baseline). Then, we collected 8 min of resting-state
neuroimaging data. Participants were not given a task but were
told to sit in the MRI scanner with their eyes open. Participants
were then taken out of the MRI scanner and immediately received
tFUS to the rIFG; they then sat quietly, without interacting with
the researchers or anybody else for 10 min before completing
the VAMS again; they sat for another 10 min before going back
into the MRI scanner (20 min after sonication). After the scan,
participants completed the VAMS scales outside the scanner
(30 min after sonication). There were only three-time points
for VAMS ratings: baseline, 10 min after sonication (Post-10),
and 30 min after sonication (Post-30). There was no control
condition. For the VAMS scale, we performed an ANOVA with
Time as the factor with post hoc tests when appropriate. We used
the same tFUS device and waveforms from Experiment 1, except
the duty cycle increased to 0.5%, and the duration was 2 min. At
the center of the emitted ultrasound beam, the peak rarefactional
pressure, measured in water, was 1.26 MPa, the mechanical index
was 1.79, Isppa was 54 W/cm2, and Ispta was 272 mW/cm2.

fMRI Data Acquisition and Analysis
Functional images were acquired on a Siemens Skyra 3-Tesla
scanner using EPI gradient echo sequence (TR = 1800 ms;
TE = 25 ms; flip angle = 90; FOV = 192 mm; acquisition
voxel size 3 mm × 3 mm × 3 mm). T1-weighted anatomical
images were also acquired for registration of the functional
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scans (MP-RAGE; TR was 2500 ms; TE was 4.35 ms; TI
was 900 ms; flip angle was 8; FOV was 256 mm). Data
pre-processing and analysis were performed using SPM8
(Welcome Trust Centre for Neuroimaging, University College
London, United Kingdom) and the Functional Connectivity
Toolbox (CONN; Whitfield-Gabrieli and Nieto-Castanon,
2012) in MATLAB (The MathWorks Inc., United States).
Functional volumes underwent realignment and unwarping,
slice-timing correction, structural segmentation, functional
normalization, outlier detection, spatial smoothing (8 mm
full width half maximum Gaussian kernel filter) and were
normalized to the Montreal Neurological Institute (MNI) space
using the normalized EPI template image (SPM) using CONN’s
“defaultMNI” pre-processing pipeline. Noise correction was
performed in the CONN toolbox with the CompCor method
(Behzadi et al., 2007).

We placed a seed at the tFUS target region (rIFG; BA 45;
58, 13, 6) to determine if network level changes occurred after
sonication. We used the 10–20 International EEG coordinate
system to place the transducer on the scalp at electrode location
F8. We chose BA 45 as our RIO for the rIFG because F8 is
correlated with BA 45 and is the most likely region sonicated
with a transducer placed on F8 (Koessler et al., 2009). We also
examined network-level changes in the DMN after sonication
by placing seeds in the medial prefrontal cortex (BA10; 0,
48, −4) and posterior cingulate cortex (BA 31; −5, −51,
39). The DMN BA areas were chosen from the literature
suggesting a link between those areas and mood disorder
(increased DMN connectivity; e.g., Chen et al., 2015), mind
wandering or mindfulness training (reduced DMN connectivity;
e.g., Taylor et al., 2013). The seed-to-voxel analysis determined
the connectivity of the specific seed regions outlined above
with the whole brain and was carried out in CONN. White
matter WM, cerebrospinal fluid, realignment parameters, motion
artifacts, and physiological noise were taken as confounds
and regressed out as implemented with the CompCor strategy
(Behzadi et al., 2007). Heart rate and motion artifacts were taken
as confounders. The whole-brain BOLD signal was also excluded
to eliminate erroneous anti-correlations; the resulting data were
bandpass filtered at 0.001 to 0.1 Hz. The temporal correlation
between the BOLD signal from a given voxel to all other voxels
in the brain was computed.

We computed differences in FC between networks before (pre)
and after (post) tFUS with t-tests and Fisher’s Z-transformed
correlations in the second-level analysis. A first-level analysis
used a general linear model (GLM) to determine significant
resting-state connections at the individual level. We reported
seed-to-voxel results with significant voxel wise thresholds
exceeded at a level of p < 0.001 (uncorrected) and a cluster-level
threshold of p < 0.05 FDR (corrected). Significant clusters (>10
voxels) are reported below.

Results
Visual Analog Mood Scales
For GA, Mauchly’s Test of Sphericity indicated that the
assumption of sphericity was violated, χ2(2) = 8.891, p = 0.012,
and thus Greenhouse–Geisser corrections were used, with the
original degrees of freedom reported. There was a main effect

TABLE 3 | Global Affect and Global Vigor scores for Experiment 2.

Baseline Post-10 Post-30

Global Affect

Mean 81.44 84.44 87.56*

SD 16.34 15.45 14.89

Global Vigor

Mean 75.83 78.06 82.5*

SD 13.22 13.56 13.57

Significant differences relative to Baseline are indicated by an asterisk. tFUS was
active in both conditions.

of time, F(2, 16) = 4.908, p = 0.049, ηð2 = 0.54. GA ratings did
not differ significantly between Baseline (M = 81.44, SD = 16.34)
relative to Post-10 (M = 84.44; SD = 15.45), p = 0.31; however,
mood significantly improved 30 min after stimulation, Post-30
(M = 87.56, SD = 14.89) relative to Baseline, p = 0.044 (Table 3).

For GV, the assumption of sphericity was not violated,
χ2(2) = 2.605, p = 0.272. There was a main effect of time,
F(2, 16) = 5.439, p = 0.016, ηð2 = 0.76. On the GV scale,
participants reported the same level of overall mental energy
on baseline relative to Post-10, p = 0.085; however, participants
reported an overall significant increase in mental vigor 30 min
after sonication relative to baseline, p = 0.028 (Table 3).

fMRI Connectivity Results
Functional connectivity decreased after sonication within the
rIFG network used in the seed-to-voxel analysis. Compared to
the baseline, participants had significantly reduced connectivity
between the rIFG and the subgenual cortex, orbitofrontal cortex,
inferior prefrontal gyrus, dorsal anterior cingulate cortex, and
entorhinal cortex (Table 4 and Figure 2). The analysis revealed
significant increases in connectivity between the rIFG and the
premotor cortex (Table 5 and Figure 2).

The DMN demonstrated decreased connectivity after
sonication. For the MPFC seed, there was decreased connectivity
with the premotor cortex, and ventral anterior cingulate cortex
(Table 4 and Figure 3) and increased connectivity with the
superior temporal gyrus, insular cortex, primary auditory cortex,
and subcentral area (Table 5 and Figure 3). The PCC seed
demonstrated decreased connectivity with the parahippocampal
cortex, fusiform gyrus, perirhinal cortex, entorhinal cortex, and
associative visual cortex (Table 4 and Figure 4). Figures 2, 3
represent the regions of interest (seeds) and the corresponding
locations of clusters of significant difference between pre-
and post-sessions.

The results from Experiment 2 show that 2 min of tFUS
targeting the rIFG modulated FC in a network related to the rIFG
as well as the DMN 20 min after sonication. These results suggest
that tFUS has effects on brain networks related to the area of
sonication that lasts up to 20 min.

GENERAL DISCUSSION

Here we report two experiments that demonstrate for the first
time that tFUS targeting the rIFG enhances mood, accompanied
by changes in FC in networks related to emotional regulation.
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TABLE 4 | Seed-to-voxel connectivity values for each seed region.

Reduced functional connectivity post-relative to pre for three seed regions

Cluster Voxels in Coverage Cluster p value

Seed region Cluster coordinates size Cluster regions BA regions (%) (p < 0.05 FDR)

Inferior Frontal Gyrus −06 + 28 − 24 548 (L) Subgenual cortex 25 101 17 0.001

(R) Orbitofrontal cortex 11 83 3

(L) Inferior prefrontal gyrus 47 41 2

(L) Orbitofrontal cortex 11 32 1

(L) Dorsal anterior cingulate 32 17 1

(L) Posterior entorhinal cortex 28 12 2

(L) Anterior entorhinal cortex 34 12 2

(R) Subgenual cortex 25 4 1

Not assigned or <1% coverage 246

Medial Prefrontal −12 + 08 + 48 232 (L) Premotor cortex 6 96 1 0.008

(L) Ventral anterior cingulate 24 66 4

(R) Premotor cortex 6 45 1

Not assigned or <1% coverage – 25 –

Posterior Cingulate +20 − 40 − 10 263 (R) Parahippocampal cortex 36 97 13 0.002

(R) Fusiform gyrus 37 47 3

(R) Associative visual cortex 19 26 1

(R) Perirhinal Cortex 35 18 5

(R) Posterior entorhinal cortex 28 7 1

Not assigned or <1% coverage – 68 –

−34 − 88 + 28 145 (L) Associative visual cortex 19 105 2 0.033

Not assigned or <1% coverage – 40 –

Reduced connectivity values are shown in this table, for the post-sonication scan relative to baseline.

In a double-blind, placebo-controlled experiment, participants
reported a significant increase in mood 20 and 30 min after
tFUS (Experiment 1). Experiment 2 replicated the positive

FIGURE 2 | Significant clusters for the rIFG seed-to-voxel analysis. Increased
connectivity with rIFG is shown in red and decreased connectivity with rIFG in
blue in the Post-scan relative to Baseline.

mood effects of rIFG sonication and demonstrated FC changes
in the rIFG network and the DMN after tFUS. Overall, we
found an increase in connectivity between the rIFG and right
middle frontal gyrus (rMFG) and decreased connectivity with left
prefrontal and limbic areas. Regions within the DMN showed a
general decrease in FC.

Previous research with ultrasound has demonstrated that
ultrasound can modulate neural activity (see Introduction).
Hameroff et al. (2013) found that a diagnostic ultrasound system
altered mood in a population of chronic pain patients. We report,
for the first time, that tFUS alters mood in healthy participants
independent of clinical symptoms. The Hameroff et al. (2013)
experiment did not control the location of stimulation, and
the participants were chronic pain patients, some of whom
were clinically depressed, complicating the interpretation of the
result. Nonetheless, Hameroff et al. (2013) induced positive mood
changes with 8 MHz stimulation (relative to placebo). In the
Hameroff et al. (2013) study, patients reported a slight (but non-
significant) decrease in pain. Thus, it is not clear if the elevation
in mood was related to the reduction in pain in some participants,
from ultrasound altering “mood circuits” in the brain, or a
combination of both. By targeting the rIFG in a population of
healthy participants with no clinical history or neurological or
psychiatric disease, the current experiment is thus the first to
demonstrate that tFUS of the rIFG can modulate mood.

The finding that tFUS focused on the rIFG resulted in
improved self-reported mood can be understood in terms of
the functions and connectivity of the rIFG. The rIFG plays
a significant role in response inhibition and executive control
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TABLE 5 | Seed-to-voxel connectivity values for each seed region.

Increased functional connectivity post-relative to pre by seed region

Cluster Voxels in Coverage Cluster p value

Seed region Cluster coordinates size Cluster regions BA region (%) (p < 0.05 FDR)

Inferior Frontal Gyrus (BA 44) + 40 + 08 + 60 300 (R) Premotor cortex 6 253 3 0.001

Not assigned or <1% coverage – 47 –

Medial Prefrontal (BA 10) + 52 − 6 − 4 220 (R) Superior temporal gyrus 22 98 4 0.008

(R) Insular cortex 13 41 2

(R) Primary auditory cortex 41 39 6

(R) Subcentral area 43 12 4

Not assigned or <1% coverage – 30 –

Increased connectivity values are shown in this table, for the post-sonication scan relative to baseline.

(Aron et al., 2014). The rIFG is also involved in exerting
cognitive control over emotion networks. For example, when
participants are asked to voluntarily inhibit negative emotion
during a task, or down-regulate emotion, rIFG is involved
(Goldin et al., 2008) as it is generally with regulation of negative
emotions (Ochsner and Gross, 2005; Sang and Hamann, 2007;
Wager et al., 2008; Berkman and Lieberman, 2009; Parvaz et al.,
2012; Touroutoglou et al., 2014). tDCS experiments targeting
the same location we targeted in the current experiments
have shown that modulation of that region enhances control
over emotional experience, especially negative emotions (Riva
et al., 2012, 2015b; Vergallito et al., 2018). Along with the
middle frontal gyrus and limbic brain regions, the rIFG is part
of an important mood regulation network that is related to

FIGURE 3 | Significant clusters for the medial prefrontal cortex (MPFC)
seed-to-voxel analysis. Increased connectivity with MPFC is shown in red and
decreased connectivity with MPFC in blue in the Post-scan relative to
Baseline.

mood disorders (Phillips et al., 2003). Patients with significant
mood symptoms, including those with Parkinson’s Disease,
Bipolar Disorder, and Major Depressive Disorder (MDD) have
altered connectivity in the rIFG network (Phillips et al., 2008).
The results reported here support the notion that the rIFG
is involved in a critical network that facilitates the overall
regulation of mood states and is a promising target for
therapeutic neuromodulation.

Experiment 2 found a significant increase in connectivity
between the rIFG and the right middle frontal gyrus (rMFG)
after sonication, which may have enhanced participants’ ability to
regulate emotional experience and mood during the experiment.
Supporting the notion that the rIFG is involved in emotional
regulation, research finds that the rIFG is hypoactivated
in patients with mood disorders and increases activation

FIGURE 4 | Significant clusters for the medial posterior cingulate gyrus
seed-to-voxel analysis. Increased connectivity with posterior cingulate gyrus is
shown in red and decreased connectivity with posterior cingulate gyrus in blue
in the Post-scan relative to Baseline.
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after psychotherapy (Fitzgerald et al., 2008). The dorsolateral
prefrontal cortex (DLPFC), in the MFG, has been linked to
emotional regulation as well (Golkar et al., 2012). Female patients
at high risk to develop MDD display decreased connectivity
between the rIFG and the rMFG (Clasen et al., 2014). The
rIFG-rMFG connectivity increases are suggestive of enhanced
inter-region communication after sonication that may enable
better regulation of emotional response to the challenges of the
experimental setting.

There was also evidence of reduced connectivity between
rIFG and left prefrontal and limbic areas. Indeed, left subgenual
cortex (BA 25), dorsal anterior cingulate (BA 32), anterior
entorhinal cortex (BA 34), left orbitofrontal cortex (BA 11),
and left inferior prefrontal gyrus (BA 47), all showed decreased
connectivity with the rIFG after sonication. These regions
have demonstrated associations with affect and mood. The
subgenual cortex (Lozano et al., 2010) is consistently associated
with negative affect (Lindquist et al., 2016), and is a primary
target of Deep Brain Stimulation for refractory depression.
Dorsal anterior cingulate is involved in emotional reappraisal
(Kalisch, 2009). The left orbitofrontal cortex (Rempel-Clower,
2007) and left inferior prefrontal gyrus (Ray and Zald,
2012) are involved in emotional regulation. Portions of
the limbic system, including the entorhinal cortex, may be
involved in mood disorders (Price and Drevets, 2012). The
reduced connectivity of these many regions with the rIFG
and increased connectivity of rIFG with rMFG, therefore,
suggest a re-distribution or re-balancing of activity among
a set of brain regions important for emotional experience
and regulation.

Changes in connectivity within the DMN were also detected,
which may relate to enhanced mood by reducing self-referential
thinking and mind-wandering. In particular, the MPFC had
reduced connectivity with the ventral anterior cingulate (BA
24), which is a major hub in the DMN (Greicius et al.,
2003). The DMN is central to internal, self-referential thinking
(Andrews-hanna et al., 2010); hyperconnectivity within the
DMN is found for MDD (Kaiser et al., 2015). Alternatively,
mindfulness training leads to a decrease in DMN activity,
which correlates with positive health outcomes (Keng et al.,
2011). Indeed, mind wandering relates to rumination (an
essential feature of depression and anxiety), less happiness,
and adverse health outcomes (Killingsworth and Gilbert, 2010).
Thus, the decreased connectivity in the DMN may indicate a
reduction in self-referential thinking and mind wandering, and
a state characterized by being engaged in the present moment
with the external environment rather than engaging in self-
referential processing and rumination, all of which could lead
to enhanced mood.

Decreases in the DMN network may also be related to
enhanced cognitive control over emotional regulation during
the experiment. Relative to the PCC seed, we found decreased
connectivity for the right parahippocampal gyrus (BA 36), right
temporal fusiform cortex (BA 37), right associative visual cortex
(BA 19) and, perirhinal cortex (BA 35). PCC connectivity with
parahippocampal gyrus and temporal cortex increases with sad
mood induction in depressed patients and decreases in control

participants (Renner et al., 2017). The observed changes in the
DMN after negative mood induction in depressed patients may
reflect an inability to exert cognitive control over emotional
processing. Here, the opposite pattern was found, suggesting that
the decreased connectivity supported greater cognitive control
over emotional states during the experiment, which may have led
to enhanced mood.

The effects of tFUS on mood in the current experiments
indicate a lag between tFUS exposure and changes in functional
brain activity, with effects peaking between 20 and 30 min
(Hameroff et al., 2013; Sanguinetti et al., 2013). In experiments
on rabbits and felines, respectively, modulatory effects of tFUS
on visual evoked potentials lasted for several minutes (Yoo et al.,
2011) and 30 min (Fry, 1957). These results suggest that the
immediate physiological effects of tFUS may lead to reversible
network-level changes over several minutes. The network-level
changes could occur through membrane effects but are also
consistent with ultrasound having immediate resonant effects on
microtubules that result in delayed effects on synaptic plasticity.
Assessing the time course of brain activity following tFUS, for
example with EEG, could address more specifically how tFUS
modulates brain activity and network dynamics, and how these,
in turn, relate to mood and mental states.

The mechanisms by which tFUS modulates neuronal activity
remains unknown, as is the mechanism by which neuronal
activity results in phenomenal experience including mood.
Several authors have proposed a mechanosensitivity hypothesis
whereby ultrasound affects stretch-sensitive ion channels
(Chapman et al., 1980), or lipid membranes surrounding them
(Krasovitski et al., 2011), thus affecting membrane conductance
(Tyler, 2011; Sassaroli and Vykhodtseva, 2016). Tyler (2011)
suggested a “continuum mechanics hypothesis” in which
ultrasound alters neuronal excitability through a combination
of pressure/fluid/membrane actions involving stable cavitation,
acoustic streaming, and fluid dynamics (radiation forces, shear
stress, Bernoulli effects). Hameroff and others proposed that
tFUS directly affects cytoskeletal microtubules inside neurons
(and glia) (Hameroff et al., 2013) which may alter synaptic
activity and function and lead to functional changes in brain
processes (Hameroff and Penrose, 2014). Indeed, microtubules
have been shown to have alternating current (AC) electron
conductance resonances in the megahertz (Sahu et al., 2013)
range. However, the mechanisms by which tFUS affects neural
activity remain unknown, and more research is needed.

Limitations
The majority of recent human tFUS experiments have focused
the sonication beam with MRI-based neuronavigation, which
was unavailable for the present studies. Accordingly, we
chose to use the 10–20 EEG system to aim the single-element
transducer with a 30 mm focal depth beam. The 10–20
EEG system is considered accurate to 0.5-cm resolution
(Chatrian et al., 2018) and our focal beam is on the order
of millimeters; thus, we cannot validate precise targeting.
With this limitation in mind, the experiments reported
here demonstrate that tFUS navigated by EEG coordinates
is useful to modulate mood in healthy volunteers. Indeed,
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Legon et al. (2014) showed high spatial specificity with tFUS
guided by EEG coordinates to stimulate the somatosensory
cortex with at least centimeter resolution. These results could
be significant for clinical applications where expensive and
time-consuming neuronavigation is not feasible. Future
experiments should directly compare the reliability of
tFUS navigated by EEG coordinates to tFUS navigated
by neuroimaging.

Some participants in the tFUS-Active condition reported
hearing a sound when the transducer was on their head while
none of the participants in the placebo condition reported
hearing a sound. While an audible noise is not necessarily
a cue for improved mood or active treatment, hearing a
sound could have led participants to believe they were in
the active condition thereby altering their mood. To rule
out this possibility, we analyzed the changes in mood scores
for participants in the active condition who reported hearing
a sound to those who did not and found no significant
difference in the scores. Furthermore, the difference scores
for Post-30 (relative to Baseline) were 4.48 (SD = 9.10) for
those who heard a sound and 13.99 (SD = 15.31) for those
who did not. Although this difference was not significant,
p = 0.078, this is the opposite pattern to what would be
expected if hearing the sound from the transducer were to bias
positive mood reports.

Experiments investigating tFUS in rodents have recently
found that induced excitability changes in the brain can be, at
least partially, due to an indirect effect of auditory stimulation,
which was eliminated by removal of the cochlear fluid (Guo
et al., 2018). Additionally, Sato et al. (2018) found that
temporary chemical deafness could reduce the effects of tFUS
on the brain. These studies show that important confounds
can lead to brain activation through indirect pathways, but
do not negate the notion that tFUS can also influence the
brain directly. Experiments with organisms that lack auditory
systems, like Xenopus oocyte (the “clawed frog”), show the
effects of tFUS on neural activity (Kubanek et al., 2016), and
ultrasound also influences neural activity and causes spike
trains in slice preparations (Tyler et al., 2008). In humans,
tFUS has produced tactile sensations (Lee et al., 2016a) and
visual phosphenes (Lee et al., 2016b) with corresponding focal
tissue activation that is hard to explain by activation through
ascending auditory activation. Future experiments will need to
better control unconscious and conscious auditory effects for
ultrasound neuromodulation experiments on mood.

Future Research and Treatment
Overall, results from the experiments reported here and other
recent tFUS studies motivate future investigations into the
effects of ultrasound on brain function and cognitive disorders.
Specifically, future studies should directly assess the impact of
tFUS on experience, behavior, and brain network connectivity,
with time-varying assessments in a sufficiently large sample to
examine the potential mediational role of changes in network
connectivity on mood and behavior. The positive findings
reported here motivate testing tFUS in clinical populations with
negative affect such as depression and anxiety disorders. Offering

advantages over other non-invasive methods like TMS and
tDCS, tFUS can be focused through the skull with millimeter
precision or used in a wide beam to target large cortical
areas. tFUS is relatively inexpensive, safe, and painless and can
be used in an MRI or with EEG with little minimal signal
interference. Additionally, other brain areas implicated in mood
and emotional regulation, e.g., deep brain targets accessible until
now only with invasive deep brain stimulation, can be targeted
with tFUS. Therefore, tFUS holds excellent promise for the
treatment of mental and cognitive disorders.

CONCLUSION

Transcranial focused ultrasound at 500 kHz targeting the
rIFG for 30 s (Experiment 1) and 2 min (Experiment
2) increased self-reported mood in healthy participants as
compared to baseline mood. Corresponding connectivity changes
in networks relevant for emotion/mood regulation occurred
20 min after sonication in Experiment 2, demonstrating that
tFUS could modulate functionally specific brain networks
relevant for mood regulation. These results are in line with
recent experiments suggesting that tFUS can modulate network
connectivity (Folloni et al., 2019; Verhagen et al., 2019).
These results are the first to demonstrate that tFUS can affect
mood and cortical networks important for mood regulation,
with effects that appear on the order of 20 min following
tFUS delivery. Our results show that tFUS aimed at rIFG
with a single element transducer can modulate prefrontal
cortical activity and improve mood. The present findings
suggest that tFUS could be a useful tool in the treatment
of clinical disorders characterized by negative mood states,
like depression and anxiety disorders and future studies
are warranted.
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